WorldWideScience

Sample records for high computational requirements

  1. Biomedical Requirements for High Productivity Computing Systems

    Science.gov (United States)

    2005-04-01

    differences in heart muscle structure between normal and brittle-boned mice suffering from osteogenesis imperfecta (OI) because of a deficiency in the protein...reached. In a typical comparative modeling exercise one would use a heuristic algorithm to determine possible sequences of interest, then the Smith...example exercise , require a description of the cellular events that create demands for oxygen. Having cellular level equations together with

  2. Large Scale Computing and Storage Requirements for High Energy Physics

    International Nuclear Information System (INIS)

    Gerber, Richard A.; Wasserman, Harvey

    2010-01-01

    The National Energy Research Scientific Computing Center (NERSC) is the leading scientific computing facility for the Department of Energy's Office of Science, providing high-performance computing (HPC) resources to more than 3,000 researchers working on about 400 projects. NERSC provides large-scale computing resources and, crucially, the support and expertise needed for scientists to make effective use of them. In November 2009, NERSC, DOE's Office of Advanced Scientific Computing Research (ASCR), and DOE's Office of High Energy Physics (HEP) held a workshop to characterize the HPC resources needed at NERSC to support HEP research through the next three to five years. The effort is part of NERSC's legacy of anticipating users needs and deploying resources to meet those demands. The workshop revealed several key points, in addition to achieving its goal of collecting and characterizing computing requirements. The chief findings: (1) Science teams need access to a significant increase in computational resources to meet their research goals; (2) Research teams need to be able to read, write, transfer, store online, archive, analyze, and share huge volumes of data; (3) Science teams need guidance and support to implement their codes on future architectures; and (4) Projects need predictable, rapid turnaround of their computational jobs to meet mission-critical time constraints. This report expands upon these key points and includes others. It also presents a number of case studies as representative of the research conducted within HEP. Workshop participants were asked to codify their requirements in this case study format, summarizing their science goals, methods of solution, current and three-to-five year computing requirements, and software and support needs. Participants were also asked to describe their strategy for computing in the highly parallel, multi-core environment that is expected to dominate HPC architectures over the next few years. The report includes

  3. Large Scale Computing and Storage Requirements for High Energy Physics

    Energy Technology Data Exchange (ETDEWEB)

    Gerber, Richard A.; Wasserman, Harvey

    2010-11-24

    The National Energy Research Scientific Computing Center (NERSC) is the leading scientific computing facility for the Department of Energy's Office of Science, providing high-performance computing (HPC) resources to more than 3,000 researchers working on about 400 projects. NERSC provides large-scale computing resources and, crucially, the support and expertise needed for scientists to make effective use of them. In November 2009, NERSC, DOE's Office of Advanced Scientific Computing Research (ASCR), and DOE's Office of High Energy Physics (HEP) held a workshop to characterize the HPC resources needed at NERSC to support HEP research through the next three to five years. The effort is part of NERSC's legacy of anticipating users needs and deploying resources to meet those demands. The workshop revealed several key points, in addition to achieving its goal of collecting and characterizing computing requirements. The chief findings: (1) Science teams need access to a significant increase in computational resources to meet their research goals; (2) Research teams need to be able to read, write, transfer, store online, archive, analyze, and share huge volumes of data; (3) Science teams need guidance and support to implement their codes on future architectures; and (4) Projects need predictable, rapid turnaround of their computational jobs to meet mission-critical time constraints. This report expands upon these key points and includes others. It also presents a number of case studies as representative of the research conducted within HEP. Workshop participants were asked to codify their requirements in this case study format, summarizing their science goals, methods of solution, current and three-to-five year computing requirements, and software and support needs. Participants were also asked to describe their strategy for computing in the highly parallel, multi-core environment that is expected to dominate HPC architectures over the next few years

  4. Computer Science in High School Graduation Requirements. ECS Education Trends

    Science.gov (United States)

    Zinth, Jennifer Dounay

    2015-01-01

    Computer science and coding skills are widely recognized as a valuable asset in the current and projected job market. The Bureau of Labor Statistics projects 37.5 percent growth from 2012 to 2022 in the "computer systems design and related services" industry--from 1,620,300 jobs in 2012 to an estimated 2,229,000 jobs in 2022. Yet some…

  5. Computer Science in High School Graduation Requirements. ECS Education Trends (Updated)

    Science.gov (United States)

    Zinth, Jennifer

    2016-01-01

    Allowing high school students to fulfill a math or science high school graduation requirement via a computer science credit may encourage more student to pursue computer science coursework. This Education Trends report is an update to the original report released in April 2015 and explores state policies that allow or require districts to apply…

  6. Requirements for high performance computing for lattice QCD. Report of the ECFA working panel

    International Nuclear Information System (INIS)

    Jegerlehner, F.; Kenway, R.D.; Martinelli, G.; Michael, C.; Pene, O.; Petersson, B.; Petronzio, R.; Sachrajda, C.T.; Schilling, K.

    2000-01-01

    This report, prepared at the request of the European Committee for Future Accelerators (ECFA), contains an assessment of the High Performance Computing resources which will be required in coming years by European physicists working in Lattice Field Theory and a review of the scientific opportunities which these resources would open. (orig.)

  7. High Performance Computing and Storage Requirements for Nuclear Physics: Target 2017

    Energy Technology Data Exchange (ETDEWEB)

    Gerber, Richard [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Wasserman, Harvey [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2014-04-30

    In April 2014, NERSC, ASCR, and the DOE Office of Nuclear Physics (NP) held a review to characterize high performance computing (HPC) and storage requirements for NP research through 2017. This review is the 12th in a series of reviews held by NERSC and Office of Science program offices that began in 2009. It is the second for NP, and the final in the second round of reviews that covered the six Office of Science program offices. This report is the result of that review

  8. High Performance Computing and Storage Requirements for Biological and Environmental Research Target 2017

    Energy Technology Data Exchange (ETDEWEB)

    Gerber, Richard [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC); Wasserman, Harvey [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC)

    2013-05-01

    The National Energy Research Scientific Computing Center (NERSC) is the primary computing center for the DOE Office of Science, serving approximately 4,500 users working on some 650 projects that involve nearly 600 codes in a wide variety of scientific disciplines. In addition to large-­scale computing and storage resources NERSC provides support and expertise that help scientists make efficient use of its systems. The latest review revealed several key requirements, in addition to achieving its goal of characterizing BER computing and storage needs.

  9. Meeting the security requirements of electronic medical records in the ERA of high-speed computing.

    Science.gov (United States)

    Alanazi, H O; Zaidan, A A; Zaidan, B B; Kiah, M L Mat; Al-Bakri, S H

    2015-01-01

    This study has two objectives. First, it aims to develop a system with a highly secured approach to transmitting electronic medical records (EMRs), and second, it aims to identify entities that transmit private patient information without permission. The NTRU and the Advanced Encryption Standard (AES) cryptosystems are secured encryption methods. The AES is a tested technology that has already been utilized in several systems to secure sensitive data. The United States government has been using AES since June 2003 to protect sensitive and essential information. Meanwhile, NTRU protects sensitive data against attacks through the use of quantum computers, which can break the RSA cryptosystem and elliptic curve cryptography algorithms. A hybrid of AES and NTRU is developed in this work to improve EMR security. The proposed hybrid cryptography technique is implemented to secure the data transmission process of EMRs. The proposed security solution can provide protection for over 40 years and is resistant to quantum computers. Moreover, the technique provides the necessary evidence required by law to identify disclosure or misuse of patient records. The proposed solution can effectively secure EMR transmission and protect patient rights. It also identifies the source responsible for disclosing confidential patient records. The proposed hybrid technique for securing data managed by institutional websites must be improved in the future.

  10. Future Computer Requirements for Computational Aerodynamics

    Science.gov (United States)

    1978-01-01

    Recent advances in computational aerodynamics are discussed as well as motivations for and potential benefits of a National Aerodynamic Simulation Facility having the capability to solve fluid dynamic equations at speeds two to three orders of magnitude faster than presently possible with general computers. Two contracted efforts to define processor architectures for such a facility are summarized.

  11. Computing in high energy physics

    Energy Technology Data Exchange (ETDEWEB)

    Watase, Yoshiyuki

    1991-09-15

    The increasingly important role played by computing and computers in high energy physics is displayed in the 'Computing in High Energy Physics' series of conferences, bringing together experts in different aspects of computing - physicists, computer scientists, and vendors.

  12. Computers and geophysics: Requirements outlined

    Science.gov (United States)

    The use of computers to process enormous volumes of data is likely to improve our abilities to predict earthquakes and issue tsunami warnings, geophysicist J. Freeman Gilbert recently told a House of Representatives task force on science policy. Gilbert, of the Scripps Institution of Oceanography at the University of California, San Diego, testified before the task force on September 11, in one of a series of hearings intended to explore the “impact of the information age on science.” Scientists and administrators from universities and private industry served as witnesses during the 3 days of hearings.Rep. George E. Brown, J r . , (D-Calif.) asked Gilbert to compare the amount of damage done by tsunamis in the United States to the cost of improved detection and warning systems. “I think it's worth the effort,” Gilbert responded, adding that as in the case of hurricane warnings, tsunami warnings would affect only a small proportion of the nation's population but could be crucial to protect their lives and property. Such a system, Gilbert said, “represents technology that is easy to implement.”

  13. Requirements for SSC central computing staffing (conceptual)

    International Nuclear Information System (INIS)

    Pfister, J.

    1985-01-01

    Given a computation center with --10,000 MIPS supporting --1,000 users, what are the staffing requirements? The attempt in this paper is to list the functions and staff size required in a central computing or centrally supported computing complex. The organization assumes that although considerable computing power would exist (mostly for online) in the four interaction regions (IR) that there are functions/capabilities better performed outside the IR and in this model at a ''central computing facility.'' What follows is one staffing approach, not necessarily optimal, with certain assumptions about numbers of computer systems, media, networks and system controls, that is, one would get the best technology available. Thus, it is speculation about what the technology may bring and what it takes to operate it. From an end user support standpoint it is less clear, given the geography of an SSC, where and what the consulting support should look like and its location

  14. High energy physics and grid computing

    International Nuclear Information System (INIS)

    Yu Chuansong

    2004-01-01

    The status of the new generation computing environment of the high energy physics experiments is introduced briefly in this paper. The development of the high energy physics experiments and the new computing requirements by the experiments are presented. The blueprint of the new generation computing environment of the LHC experiments, the history of the Grid computing, the R and D status of the high energy physics grid computing technology, the network bandwidth needed by the high energy physics grid and its development are described. The grid computing research in Chinese high energy physics community is introduced at last. (authors)

  15. Computing in high energy physics

    International Nuclear Information System (INIS)

    Watase, Yoshiyuki

    1991-01-01

    The increasingly important role played by computing and computers in high energy physics is displayed in the 'Computing in High Energy Physics' series of conferences, bringing together experts in different aspects of computing - physicists, computer scientists, and vendors

  16. Cloud computing security requirements: a systematic review

    NARCIS (Netherlands)

    Iankoulova, Iliana; Daneva, Maia; Rolland, C; Castro, J.; Pastor, O

    Many publications have dealt with various types of security requirements in cloud computing but not all types have been explored in sufficient depth. It is also hard to understand which types of requirements have been under-researched and which are most investigated. This paper's goal is to provide

  17. Computational Biology and High Performance Computing 2000

    Energy Technology Data Exchange (ETDEWEB)

    Simon, Horst D.; Zorn, Manfred D.; Spengler, Sylvia J.; Shoichet, Brian K.; Stewart, Craig; Dubchak, Inna L.; Arkin, Adam P.

    2000-10-19

    The pace of extraordinary advances in molecular biology has accelerated in the past decade due in large part to discoveries coming from genome projects on human and model organisms. The advances in the genome project so far, happening well ahead of schedule and under budget, have exceeded any dreams by its protagonists, let alone formal expectations. Biologists expect the next phase of the genome project to be even more startling in terms of dramatic breakthroughs in our understanding of human biology, the biology of health and of disease. Only today can biologists begin to envision the necessary experimental, computational and theoretical steps necessary to exploit genome sequence information for its medical impact, its contribution to biotechnology and economic competitiveness, and its ultimate contribution to environmental quality. High performance computing has become one of the critical enabling technologies, which will help to translate this vision of future advances in biology into reality. Biologists are increasingly becoming aware of the potential of high performance computing. The goal of this tutorial is to introduce the exciting new developments in computational biology and genomics to the high performance computing community.

  18. High-End Scientific Computing

    Science.gov (United States)

    EPA uses high-end scientific computing, geospatial services and remote sensing/imagery analysis to support EPA's mission. The Center for Environmental Computing (CEC) assists the Agency's program offices and regions to meet staff needs in these areas.

  19. Computing in high energy physics

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Sarah; Devenish, Robin [Nuclear Physics Laboratory, Oxford University (United Kingdom)

    1989-07-15

    Computing in high energy physics has changed over the years from being something one did on a slide-rule, through early computers, then a necessary evil to the position today where computers permeate all aspects of the subject from control of the apparatus to theoretical lattice gauge calculations. The state of the art, as well as new trends and hopes, were reflected in this year's 'Computing In High Energy Physics' conference held in the dreamy setting of Oxford's spires. The conference aimed to give a comprehensive overview, entailing a heavy schedule of 35 plenary talks plus 48 contributed papers in two afternoons of parallel sessions. In addition to high energy physics computing, a number of papers were given by experts in computing science, in line with the conference's aim – 'to bring together high energy physicists and computer scientists'.

  20. Computing in high energy physics

    International Nuclear Information System (INIS)

    Smith, Sarah; Devenish, Robin

    1989-01-01

    Computing in high energy physics has changed over the years from being something one did on a slide-rule, through early computers, then a necessary evil to the position today where computers permeate all aspects of the subject from control of the apparatus to theoretical lattice gauge calculations. The state of the art, as well as new trends and hopes, were reflected in this year's 'Computing In High Energy Physics' conference held in the dreamy setting of Oxford's spires. The conference aimed to give a comprehensive overview, entailing a heavy schedule of 35 plenary talks plus 48 contributed papers in two afternoons of parallel sessions. In addition to high energy physics computing, a number of papers were given by experts in computing science, in line with the conference's aim – 'to bring together high energy physicists and computer scientists'

  1. High Performance Computing Multicast

    Science.gov (United States)

    2012-02-01

    A History of the Virtual Synchrony Replication Model,” in Replication: Theory and Practice, Charron-Bost, B., Pedone, F., and Schiper, A. (Eds...Performance Computing IP / IPv4 Internet Protocol (version 4.0) IPMC Internet Protocol MultiCast LAN Local Area Network MCMD Dr. Multicast MPI

  2. Optimal neural computations require analog processors

    Energy Technology Data Exchange (ETDEWEB)

    Beiu, V.

    1998-12-31

    This paper discusses some of the limitations of hardware implementations of neural networks. The authors start by presenting neural structures and their biological inspirations, while mentioning the simplifications leading to artificial neural networks. Further, the focus will be on hardware imposed constraints. They will present recent results for three different alternatives of parallel implementations of neural networks: digital circuits, threshold gate circuits, and analog circuits. The area and the delay will be related to the neurons` fan-in and to the precision of their synaptic weights. The main conclusion is that hardware-efficient solutions require analog computations, and suggests the following two alternatives: (i) cope with the limitations imposed by silicon, by speeding up the computation of the elementary silicon neurons; (2) investigate solutions which would allow the use of the third dimension (e.g. using optical interconnections).

  3. INSPIRED High School Computing Academies

    Science.gov (United States)

    Doerschuk, Peggy; Liu, Jiangjiang; Mann, Judith

    2011-01-01

    If we are to attract more women and minorities to computing we must engage students at an early age. As part of its mission to increase participation of women and underrepresented minorities in computing, the Increasing Student Participation in Research Development Program (INSPIRED) conducts computing academies for high school students. The…

  4. Computing in high energy physics

    International Nuclear Information System (INIS)

    Hertzberger, L.O.; Hoogland, W.

    1986-01-01

    This book deals with advanced computing applications in physics, and in particular in high energy physics environments. The main subjects covered are networking; vector and parallel processing; and embedded systems. Also examined are topics such as operating systems, future computer architectures and commercial computer products. The book presents solutions that are foreseen as coping, in the future, with computing problems in experimental and theoretical High Energy Physics. In the experimental environment the large amounts of data to be processed offer special problems on-line as well as off-line. For on-line data reduction, embedded special purpose computers, which are often used for trigger applications are applied. For off-line processing, parallel computers such as emulator farms and the cosmic cube may be employed. The analysis of these topics is therefore a main feature of this volume

  5. Large Scale Computing and Storage Requirements for Nuclear Physics Research

    Energy Technology Data Exchange (ETDEWEB)

    Gerber, Richard A.; Wasserman, Harvey J.

    2012-03-02

    IThe National Energy Research Scientific Computing Center (NERSC) is the primary computing center for the DOE Office of Science, serving approximately 4,000 users and hosting some 550 projects that involve nearly 700 codes for a wide variety of scientific disciplines. In addition to large-scale computing resources NERSC provides critical staff support and expertise to help scientists make the most efficient use of these resources to advance the scientific mission of the Office of Science. In May 2011, NERSC, DOE’s Office of Advanced Scientific Computing Research (ASCR) and DOE’s Office of Nuclear Physics (NP) held a workshop to characterize HPC requirements for NP research over the next three to five years. The effort is part of NERSC’s continuing involvement in anticipating future user needs and deploying necessary resources to meet these demands. The workshop revealed several key requirements, in addition to achieving its goal of characterizing NP computing. The key requirements include: 1. Larger allocations of computational resources at NERSC; 2. Visualization and analytics support; and 3. Support at NERSC for the unique needs of experimental nuclear physicists. This report expands upon these key points and adds others. The results are based upon representative samples, called “case studies,” of the needs of science teams within NP. The case studies were prepared by NP workshop participants and contain a summary of science goals, methods of solution, current and future computing requirements, and special software and support needs. Participants were also asked to describe their strategy for computing in the highly parallel, “multi-core” environment that is expected to dominate HPC architectures over the next few years. The report also includes a section with NERSC responses to the workshop findings. NERSC has many initiatives already underway that address key workshop findings and all of the action items are aligned with NERSC strategic plans.

  6. High Energy Physics Exascale Requirements Review. An Office of Science review sponsored jointly by Advanced Scientific Computing Research and High Energy Physics, June 10-12, 2015, Bethesda, Maryland

    Energy Technology Data Exchange (ETDEWEB)

    Habib, Salman [Argonne National Lab. (ANL), Argonne, IL (United States); Roser, Robert [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Gerber, Richard [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Antypas, Katie [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Dart, Eli [Esnet, Berkeley, CA (United States); Dosanjh, Sudip [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Hack, James [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Monga, Inder [Esnet, Berkeley, CA (United States); Papka, Michael E. [Argonne National Lab. (ANL), Argonne, IL (United States); Riley, Katherine [Argonne National Lab. (ANL), Argonne, IL (United States); Rotman, Lauren [Esnet, Berkeley, CA (United States); Straatsma, Tjerk [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wells, Jack [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Williams, Tim [Argonne National Lab. (ANL), Argonne, IL (United States); Almgren, A. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Amundson, J. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Bailey, Stephen [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Bard, Deborah [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Bloom, Ken [Univ. of Nebraska, Lincoln, NE (United States); Bockelman, Brian [Univ. of Nebraska, Lincoln, NE (United States); Borgland, Anders [SLAC National Accelerator Lab., Menlo Park, CA (United States); Borrill, Julian [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Boughezal, Radja [Argonne National Lab. (ANL), Argonne, IL (United States); Brower, Richard [Boston Univ., MA (United States); Cowan, Benjamin [SLAC National Accelerator Lab., Menlo Park, CA (United States); Finkel, Hal [Argonne National Lab. (ANL), Argonne, IL (United States); Frontiere, Nicholas [Argonne National Lab. (ANL), Argonne, IL (United States); Fuess, Stuart [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Ge, Lixin [SLAC National Accelerator Lab., Menlo Park, CA (United States); Gnedin, Nick [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Gottlieb, Steven [Indiana Univ., Bloomington, IN (United States); Gutsche, Oliver [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Han, T. [Indiana Univ., Bloomington, IN (United States); Heitmann, Katrin [Argonne National Lab. (ANL), Argonne, IL (United States); Hoeche, Stefan [SLAC National Accelerator Lab., Menlo Park, CA (United States); Ko, Kwok [SLAC National Accelerator Lab., Menlo Park, CA (United States); Kononenko, Oleksiy [SLAC National Accelerator Lab., Menlo Park, CA (United States); LeCompte, Thomas [Argonne National Lab. (ANL), Argonne, IL (United States); Li, Zheng [SLAC National Accelerator Lab., Menlo Park, CA (United States); Lukic, Zarija [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Mori, Warren [Univ. of California, Los Angeles, CA (United States); Ng, Cho-Kuen [SLAC National Accelerator Lab., Menlo Park, CA (United States); Nugent, Peter [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Oleynik, Gene [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); O’Shea, Brian [Michigan State Univ., East Lansing, MI (United States); Padmanabhan, Nikhil [Yale Univ., New Haven, CT (United States); Petravick, Donald [Univ. of Illinois, Urbana, IL (United States). National Center for Supercomputing Applications; Petriello, Frank J. [Argonne National Lab. (ANL), Argonne, IL (United States); Pope, Adrian [Argonne National Lab. (ANL), Argonne, IL (United States); Power, John [Argonne National Lab. (ANL), Argonne, IL (United States); Qiang, Ji [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Reina, Laura [Florida State Univ., Tallahassee, FL (United States); Rizzo, Thomas Gerard [SLAC National Accelerator Lab., Menlo Park, CA (United States); Ryne, Robert [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Schram, Malachi [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Spentzouris, P. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Toussaint, Doug [Univ. of Arizona, Tucson, AZ (United States); Vay, Jean Luc [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Viren, B. [Brookhaven National Lab. (BNL), Upton, NY (United States); Wuerthwein, Frank [Univ. of California, San Diego, CA (United States); Xiao, Liling [SLAC National Accelerator Lab., Menlo Park, CA (United States); Coffey, Richard [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-11-29

    The U.S. Department of Energy (DOE) Office of Science (SC) Offices of High Energy Physics (HEP) and Advanced Scientific Computing Research (ASCR) convened a programmatic Exascale Requirements Review on June 10–12, 2015, in Bethesda, Maryland. This report summarizes the findings, results, and recommendations derived from that meeting. The high-level findings and observations are as follows. Larger, more capable computing and data facilities are needed to support HEP science goals in all three frontiers: Energy, Intensity, and Cosmic. The expected scale of the demand at the 2025 timescale is at least two orders of magnitude — and in some cases greater — than that available currently. The growth rate of data produced by simulations is overwhelming the current ability of both facilities and researchers to store and analyze it. Additional resources and new techniques for data analysis are urgently needed. Data rates and volumes from experimental facilities are also straining the current HEP infrastructure in its ability to store and analyze large and complex data volumes. Appropriately configured leadership-class facilities can play a transformational role in enabling scientific discovery from these datasets. A close integration of high-performance computing (HPC) simulation and data analysis will greatly aid in interpreting the results of HEP experiments. Such an integration will minimize data movement and facilitate interdependent workflows. Long-range planning between HEP and ASCR will be required to meet HEP’s research needs. To best use ASCR HPC resources, the experimental HEP program needs (1) an established, long-term plan for access to ASCR computational and data resources, (2) the ability to map workflows to HPC resources, (3) the ability for ASCR facilities to accommodate workflows run by collaborations potentially comprising thousands of individual members, (4) to transition codes to the next-generation HPC platforms that will be available at ASCR

  7. 12 CFR 204.4 - Computation of required reserves.

    Science.gov (United States)

    2010-01-01

    ... RESERVE REQUIREMENTS OF DEPOSITORY INSTITUTIONS (REGULATION D) § 204.4 Computation of required reserves. (a) In determining the reserve requirement under this part, the amount of cash items in process of... reserves are computed by applying the reserve requirement ratios below to net transaction accounts...

  8. Requirements on high resolution detectors

    Energy Technology Data Exchange (ETDEWEB)

    Koch, A. [European Synchrotron Radiation Facility, Grenoble (France)

    1997-02-01

    For a number of microtomography applications X-ray detectors with a spatial resolution of 1 {mu}m are required. This high spatial resolution will influence and degrade other parameters of secondary importance like detective quantum efficiency (DQE), dynamic range, linearity and frame rate. This note summarizes the most important arguments, for and against those detector systems which could be considered. This article discusses the mutual dependencies between the various figures which characterize a detector, and tries to give some ideas on how to proceed in order to improve present technology.

  9. Computer controlled high voltage system

    Energy Technology Data Exchange (ETDEWEB)

    Kunov, B; Georgiev, G; Dimitrov, L [and others

    1996-12-31

    A multichannel computer controlled high-voltage power supply system is developed. The basic technical parameters of the system are: output voltage -100-3000 V, output current - 0-3 mA, maximum number of channels in one crate - 78. 3 refs.

  10. Computer proficiency questionnaire: assessing low and high computer proficient seniors.

    Science.gov (United States)

    Boot, Walter R; Charness, Neil; Czaja, Sara J; Sharit, Joseph; Rogers, Wendy A; Fisk, Arthur D; Mitzner, Tracy; Lee, Chin Chin; Nair, Sankaran

    2015-06-01

    Computers and the Internet have the potential to enrich the lives of seniors and aid in the performance of important tasks required for independent living. A prerequisite for reaping these benefits is having the skills needed to use these systems, which is highly dependent on proper training. One prerequisite for efficient and effective training is being able to gauge current levels of proficiency. We developed a new measure (the Computer Proficiency Questionnaire, or CPQ) to measure computer proficiency in the domains of computer basics, printing, communication, Internet, calendaring software, and multimedia use. Our aim was to develop a measure appropriate for individuals with a wide range of proficiencies from noncomputer users to extremely skilled users. To assess the reliability and validity of the CPQ, a diverse sample of older adults, including 276 older adults with no or minimal computer experience, was recruited and asked to complete the CPQ. The CPQ demonstrated excellent reliability (Cronbach's α = .98), with subscale reliabilities ranging from .86 to .97. Age, computer use, and general technology use all predicted CPQ scores. Factor analysis revealed three main factors of proficiency related to Internet and e-mail use; communication and calendaring; and computer basics. Based on our findings, we also developed a short-form CPQ (CPQ-12) with similar properties but 21 fewer questions. The CPQ and CPQ-12 are useful tools to gauge computer proficiency for training and research purposes, even among low computer proficient older adults. © The Author 2013. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. Grid computing in high energy physics

    CERN Document Server

    Avery, P

    2004-01-01

    Over the next two decades, major high energy physics (HEP) experiments, particularly at the Large Hadron Collider, will face unprecedented challenges to achieving their scientific potential. These challenges arise primarily from the rapidly increasing size and complexity of HEP datasets that will be collected and the enormous computational, storage and networking resources that will be deployed by global collaborations in order to process, distribute and analyze them. Coupling such vast information technology resources to globally distributed collaborations of several thousand physicists requires extremely capable computing infrastructures supporting several key areas: (1) computing (providing sufficient computational and storage resources for all processing, simulation and analysis tasks undertaken by the collaborations); (2) networking (deploying high speed networks to transport data quickly between institutions around the world); (3) software (supporting simple and transparent access to data and software r...

  12. GRID computing for experimental high energy physics

    International Nuclear Information System (INIS)

    Moloney, G.R.; Martin, L.; Seviour, E.; Taylor, G.N.; Moorhead, G.F.

    2002-01-01

    Full text: The Large Hadron Collider (LHC), to be completed at the CERN laboratory in 2006, will generate 11 petabytes of data per year. The processing of this large data stream requires a large, distributed computing infrastructure. A recent innovation in high performance distributed computing, the GRID, has been identified as an important tool in data analysis for the LHC. GRID computing has actual and potential application in many fields which require computationally intensive analysis of large, shared data sets. The Australian experimental High Energy Physics community has formed partnerships with the High Performance Computing community to establish a GRID node at the University of Melbourne. Through Australian membership of the ATLAS experiment at the LHC, Australian researchers have an opportunity to be involved in the European DataGRID project. This presentation will include an introduction to the GRID, and it's application to experimental High Energy Physics. We will present the results of our studies, including participation in the first LHC data challenge

  13. Crosscut report: Exascale Requirements Reviews, March 9–10, 2017 – Tysons Corner, Virginia. An Office of Science review sponsored by: Advanced Scientific Computing Research, Basic Energy Sciences, Biological and Environmental Research, Fusion Energy Sciences, High Energy Physics, Nuclear Physics

    Energy Technology Data Exchange (ETDEWEB)

    Gerber, Richard [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC); Hack, James [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF); Riley, Katherine [Argonne National Lab., IL (United States). Argonne Leadership Computing Facility (ALCF); Antypas, Katie [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC); Coffey, Richard [Argonne National Lab. (ANL), Argonne, IL (United States). Argonne Leadership Computing Facility (ALCF); Dart, Eli [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). ESnet; Straatsma, Tjerk [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF); Wells, Jack [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF); Bard, Deborah [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC); Dosanjh, Sudip [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC); Monga, Inder [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). ESnet; Papka, Michael E. [Argonne National Lab. (ANL), Argonne, IL (United States). Argonne Leadership Computing Facility; Rotman, Lauren [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). ESnet

    2018-01-22

    The mission of the U.S. Department of Energy Office of Science (DOE SC) is the delivery of scientific discoveries and major scientific tools to transform our understanding of nature and to advance the energy, economic, and national security missions of the United States. To achieve these goals in today’s world requires investments in not only the traditional scientific endeavors of theory and experiment, but also in computational science and the facilities that support large-scale simulation and data analysis. The Advanced Scientific Computing Research (ASCR) program addresses these challenges in the Office of Science. ASCR’s mission is to discover, develop, and deploy computational and networking capabilities to analyze, model, simulate, and predict complex phenomena important to DOE. ASCR supports research in computational science, three high-performance computing (HPC) facilities — the National Energy Research Scientific Computing Center (NERSC) at Lawrence Berkeley National Laboratory and Leadership Computing Facilities at Argonne (ALCF) and Oak Ridge (OLCF) National Laboratories — and the Energy Sciences Network (ESnet) at Berkeley Lab. ASCR is guided by science needs as it develops research programs, computers, and networks at the leading edge of technologies. As we approach the era of exascale computing, technology changes are creating challenges for science programs in SC for those who need to use high performance computing and data systems effectively. Numerous significant modifications to today’s tools and techniques will be needed to realize the full potential of emerging computing systems and other novel computing architectures. To assess these needs and challenges, ASCR held a series of Exascale Requirements Reviews in 2015–2017, one with each of the six SC program offices,1 and a subsequent Crosscut Review that sought to integrate the findings from each. Participants at the reviews were drawn from the communities of leading domain

  14. Functional requirements for gas characterization system computer software

    International Nuclear Information System (INIS)

    Tate, D.D.

    1996-01-01

    This document provides the Functional Requirements for the Computer Software operating the Gas Characterization System (GCS), which monitors the combustible gasses in the vapor space of selected tanks. Necessary computer functions are defined to support design, testing, operation, and change control. The GCS requires several individual computers to address the control and data acquisition functions of instruments and sensors. These computers are networked for communication, and must multi-task to accommodate operation in parallel

  15. High-Precision Computation and Mathematical Physics

    International Nuclear Information System (INIS)

    Bailey, David H.; Borwein, Jonathan M.

    2008-01-01

    At the present time, IEEE 64-bit floating-point arithmetic is sufficiently accurate for most scientific applications. However, for a rapidly growing body of important scientific computing applications, a higher level of numeric precision is required. Such calculations are facilitated by high-precision software packages that include high-level language translation modules to minimize the conversion effort. This paper presents a survey of recent applications of these techniques and provides some analysis of their numerical requirements. These applications include supernova simulations, climate modeling, planetary orbit calculations, Coulomb n-body atomic systems, scattering amplitudes of quarks, gluons and bosons, nonlinear oscillator theory, Ising theory, quantum field theory and experimental mathematics. We conclude that high-precision arithmetic facilities are now an indispensable component of a modern large-scale scientific computing environment.

  16. Surveillance Analysis Computer System (SACS) software requirements specification (SRS)

    International Nuclear Information System (INIS)

    Glasscock, J.A.; Flanagan, M.J.

    1995-09-01

    This document is the primary document establishing requirements for the Surveillance Analysis Computer System (SACS) Database, an Impact Level 3Q system. The purpose is to provide the customer and the performing organization with the requirements for the SACS Project

  17. Planning is not sufficient - Reliable computers need good requirements specifications

    International Nuclear Information System (INIS)

    Matras, J.R.

    1992-01-01

    Computer system reliability is the assurance that a computer system will perform its functions when required to do so. To ensure such reliability, it is important to plan the activities needed for computer system development. These development activities, in turn, require a Computer Quality Assurance Plan (CQAP) that provides the following: a Configuration Management Plan, a Verification and Validation (V and V) Plan, documentation requirements, a defined life cycle, review requirements, and organizational responsibilities. These items are necessary for system reliability; ultimately, however, they are not enough. Development of a reliable system is dependent on the requirements specification. This paper discusses how to use existing industry standards to develop a CQAP. In particular, the paper emphasizes the importance of the requirements specification and of methods for establishing reliability goals. The paper also describes how the revision of ANSI/IEE-ANS-7-4.3.2, Application Criteria for Digital Computer Systems of Nuclear Power Generating Stations, has addressed these issues

  18. Requiring students to have computers: questions for consideration.

    Science.gov (United States)

    McAuley, R J

    1998-06-01

    For the past several years a dialogue has been taking place in the offices, lounges, and meeting rooms of medical schools about whether medical students should be required to bring or purchase computers when they enter school. Microcomputers offer educators a unique opportunity to provide students with access to computer-assisted instruction, asynchronous communication, and extensive knowledge bases. However, there is still no evidence attesting to the effectiveness of computers as teaching or learning tools in medical education. The author raises questions that schools need to consider before requiring students to own computers: What kind of computer best suits their needs? What might impede using computers to teach? And who is currently requiring computers? In addressing the last question, the author presents information about 15 North American schools that currently require their students to have computers, reporting each school's software and hardware requirements; how each expects students to use the computers; and who covers the cost of the computers (the students or the school). Finally, he argues that major institutional commitment is needed for computers to be successfully integrated into any medical school curriculum.

  19. Dimensioning storage and computing clusters for efficient High Throughput Computing

    CERN Multimedia

    CERN. Geneva

    2012-01-01

    Scientific experiments are producing huge amounts of data, and they continue increasing the size of their datasets and the total volume of data. These data are then processed by researchers belonging to large scientific collaborations, with the Large Hadron Collider being a good example. The focal point of Scientific Data Centres has shifted from coping efficiently with PetaByte scale storage to deliver quality data processing throughput. The dimensioning of the internal components in High Throughput Computing (HTC) data centers is of crucial importance to cope with all the activities demanded by the experiments, both the online (data acceptance) and the offline (data processing, simulation and user analysis). This requires a precise setup involving disk and tape storage services, a computing cluster and the internal networking to prevent bottlenecks, overloads and undesired slowness that lead to losses cpu cycles and batch jobs failures. In this paper we point out relevant features for running a successful s...

  20. High speed computer assisted tomography

    International Nuclear Information System (INIS)

    Maydan, D.; Shepp, L.A.

    1980-01-01

    X-ray generation and detection apparatus for use in a computer assisted tomography system which permits relatively high speed scanning. A large x-ray tube having a circular anode (3) surrounds the patient area. A movable electron gun (8) orbits adjacent to the anode. The anode directs into the patient area xrays which are delimited into a fan beam by a pair of collimating rings (21). After passing through the patient, x-rays are detected by an array (22) of movable detectors. Detector subarrays (23) are synchronously movable out of the x-ray plane to permit the passage of the fan beam

  1. Computer simulation at high pressure

    International Nuclear Information System (INIS)

    Alder, B.J.

    1977-11-01

    The use of either the Monte Carlo or molecular dynamics method to generate equations-of-state data for various materials at high pressure is discussed. Particular emphasis is given to phase diagrams, such as the generation of various types of critical lines for mixtures, melting, structural and electronic transitions in solids, two-phase ionic fluid systems of astrophysical interest, as well as a brief aside of possible eutectic behavior in the interior of the earth. Then the application of the molecular dynamics method to predict transport coefficients and the neutron scattering function is discussed with a view as to what special features high pressure brings out. Lastly, an analysis by these computational methods of the measured intensity and frequency spectrum of depolarized light and also of the deviation of the dielectric measurements from the constancy of the Clausius--Mosotti function is given that leads to predictions of how the electronic structure of an atom distorts with pressure

  2. Grid Computing in High Energy Physics

    International Nuclear Information System (INIS)

    Avery, Paul

    2004-01-01

    Over the next two decades, major high energy physics (HEP) experiments, particularly at the Large Hadron Collider, will face unprecedented challenges to achieving their scientific potential. These challenges arise primarily from the rapidly increasing size and complexity of HEP datasets that will be collected and the enormous computational, storage and networking resources that will be deployed by global collaborations in order to process, distribute and analyze them.Coupling such vast information technology resources to globally distributed collaborations of several thousand physicists requires extremely capable computing infrastructures supporting several key areas: (1) computing (providing sufficient computational and storage resources for all processing, simulation and analysis tasks undertaken by the collaborations); (2) networking (deploying high speed networks to transport data quickly between institutions around the world); (3) software (supporting simple and transparent access to data and software resources, regardless of location); (4) collaboration (providing tools that allow members full and fair access to all collaboration resources and enable distributed teams to work effectively, irrespective of location); and (5) education, training and outreach (providing resources and mechanisms for training students and for communicating important information to the public).It is believed that computing infrastructures based on Data Grids and optical networks can meet these challenges and can offer data intensive enterprises in high energy physics and elsewhere a comprehensive, scalable framework for collaboration and resource sharing. A number of Data Grid projects have been underway since 1999. Interestingly, the most exciting and far ranging of these projects are led by collaborations of high energy physicists, computer scientists and scientists from other disciplines in support of experiments with massive, near-term data needs. I review progress in this

  3. Advanced Scientific Computing Research Network Requirements: ASCR Network Requirements Review Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Bacon, Charles [Argonne National Lab. (ANL), Argonne, IL (United States); Bell, Greg [ESnet, Berkeley, CA (United States); Canon, Shane [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Dart, Eli [ESnet, Berkeley, CA (United States); Dattoria, Vince [Dept. of Energy (DOE), Washington DC (United States). Office of Science. Advanced Scientific Computing Research (ASCR); Goodwin, Dave [Dept. of Energy (DOE), Washington DC (United States). Office of Science. Advanced Scientific Computing Research (ASCR); Lee, Jason [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Hicks, Susan [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Holohan, Ed [Argonne National Lab. (ANL), Argonne, IL (United States); Klasky, Scott [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Lauzon, Carolyn [Dept. of Energy (DOE), Washington DC (United States). Office of Science. Advanced Scientific Computing Research (ASCR); Rogers, Jim [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Shipman, Galen [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Skinner, David [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Tierney, Brian [ESnet, Berkeley, CA (United States)

    2013-03-08

    The Energy Sciences Network (ESnet) is the primary provider of network connectivity for the U.S. Department of Energy (DOE) Office of Science (SC), the single largest supporter of basic research in the physical sciences in the United States. In support of SC programs, ESnet regularly updates and refreshes its understanding of the networking requirements of the instruments, facilities, scientists, and science programs that it serves. This focus has helped ESnet to be a highly successful enabler of scientific discovery for over 25 years. In October 2012, ESnet and the Office of Advanced Scientific Computing Research (ASCR) of the DOE SC organized a review to characterize the networking requirements of the programs funded by the ASCR program office. The requirements identified at the review are summarized in the Findings section, and are described in more detail in the body of the report.

  4. High Performance Spaceflight Computing (HPSC)

    Data.gov (United States)

    National Aeronautics and Space Administration — Space-based computing has not kept up with the needs of current and future NASA missions. We are developing a next-generation flight computing system that addresses...

  5. High performance computing in Windows Azure cloud

    OpenAIRE

    Ambruš, Dejan

    2013-01-01

    High performance, security, availability, scalability, flexibility and lower costs of maintenance have essentially contributed to the growing popularity of cloud computing in all spheres of life, especially in business. In fact cloud computing offers even more than this. With usage of virtual computing clusters a runtime environment for high performance computing can be efficiently implemented also in a cloud. There are many advantages but also some disadvantages of cloud computing, some ...

  6. High energy physics and cloud computing

    International Nuclear Information System (INIS)

    Cheng Yaodong; Liu Baoxu; Sun Gongxing; Chen Gang

    2011-01-01

    High Energy Physics (HEP) has been a strong promoter of computing technology, for example WWW (World Wide Web) and the grid computing. In the new era of cloud computing, HEP has still a strong demand, and major international high energy physics laboratories have launched a number of projects to research on cloud computing technologies and applications. It describes the current developments in cloud computing and its applications in high energy physics. Some ongoing projects in the institutes of high energy physics, Chinese Academy of Sciences, including cloud storage, virtual computing clusters, and BESⅢ elastic cloud, are also described briefly in the paper. (authors)

  7. Design requirements for ubiquitous computing environments for healthcare professionals.

    Science.gov (United States)

    Bång, Magnus; Larsson, Anders; Eriksson, Henrik

    2004-01-01

    Ubiquitous computing environments can support clinical administrative routines in new ways. The aim of such computing approaches is to enhance routine physical work, thus it is important to identify specific design requirements. We studied healthcare professionals in an emergency room and developed the computer-augmented environment NOSTOS to support teamwork in that setting. NOSTOS uses digital pens and paper-based media as the primary input interface for data capture and as a means of controlling the system. NOSTOS also includes a digital desk, walk-up displays, and sensor technology that allow the system to track documents and activities in the workplace. We propose a set of requirements and discuss the value of tangible user interfaces for healthcare personnel. Our results suggest that the key requirements are flexibility in terms of system usage and seamless integration between digital and physical components. We also discuss how ubiquitous computing approaches like NOSTOS can be beneficial in the medical workplace.

  8. Design of a modular digital computer system, DRL 4. [for meeting future requirements of spaceborne computers

    Science.gov (United States)

    1972-01-01

    The design is reported of an advanced modular computer system designated the Automatically Reconfigurable Modular Multiprocessor System, which anticipates requirements for higher computing capacity and reliability for future spaceborne computers. Subjects discussed include: an overview of the architecture, mission analysis, synchronous and nonsynchronous scheduling control, reliability, and data transmission.

  9. PREPARING FOR EXASCALE: ORNL Leadership Computing Application Requirements and Strategy

    Energy Technology Data Exchange (ETDEWEB)

    Joubert, Wayne [ORNL; Kothe, Douglas B [ORNL; Nam, Hai Ah [ORNL

    2009-12-01

    In 2009 the Oak Ridge Leadership Computing Facility (OLCF), a U.S. Department of Energy (DOE) facility at the Oak Ridge National Laboratory (ORNL) National Center for Computational Sciences (NCCS), elicited petascale computational science requirements from leading computational scientists in the international science community. This effort targeted science teams whose projects received large computer allocation awards on OLCF systems. A clear finding of this process was that in order to reach their science goals over the next several years, multiple projects will require computational resources in excess of an order of magnitude more powerful than those currently available. Additionally, for the longer term, next-generation science will require computing platforms of exascale capability in order to reach DOE science objectives over the next decade. It is generally recognized that achieving exascale in the proposed time frame will require disruptive changes in computer hardware and software. Processor hardware will become necessarily heterogeneous and will include accelerator technologies. Software must undergo the concomitant changes needed to extract the available performance from this heterogeneous hardware. This disruption portends to be substantial, not unlike the change to the message passing paradigm in the computational science community over 20 years ago. Since technological disruptions take time to assimilate, we must aggressively embark on this course of change now, to insure that science applications and their underlying programming models are mature and ready when exascale computing arrives. This includes initiation of application readiness efforts to adapt existing codes to heterogeneous architectures, support of relevant software tools, and procurement of next-generation hardware testbeds for porting and testing codes. The 2009 OLCF requirements process identified numerous actions necessary to meet this challenge: (1) Hardware capabilities must be

  10. PREPARING FOR EXASCALE: ORNL Leadership Computing Application Requirements and Strategy

    International Nuclear Information System (INIS)

    Joubert, Wayne; Kothe, Douglas B.; Nam, Hai Ah

    2009-01-01

    In 2009 the Oak Ridge Leadership Computing Facility (OLCF), a U.S. Department of Energy (DOE) facility at the Oak Ridge National Laboratory (ORNL) National Center for Computational Sciences (NCCS), elicited petascale computational science requirements from leading computational scientists in the international science community. This effort targeted science teams whose projects received large computer allocation awards on OLCF systems. A clear finding of this process was that in order to reach their science goals over the next several years, multiple projects will require computational resources in excess of an order of magnitude more powerful than those currently available. Additionally, for the longer term, next-generation science will require computing platforms of exascale capability in order to reach DOE science objectives over the next decade. It is generally recognized that achieving exascale in the proposed time frame will require disruptive changes in computer hardware and software. Processor hardware will become necessarily heterogeneous and will include accelerator technologies. Software must undergo the concomitant changes needed to extract the available performance from this heterogeneous hardware. This disruption portends to be substantial, not unlike the change to the message passing paradigm in the computational science community over 20 years ago. Since technological disruptions take time to assimilate, we must aggressively embark on this course of change now, to insure that science applications and their underlying programming models are mature and ready when exascale computing arrives. This includes initiation of application readiness efforts to adapt existing codes to heterogeneous architectures, support of relevant software tools, and procurement of next-generation hardware testbeds for porting and testing codes. The 2009 OLCF requirements process identified numerous actions necessary to meet this challenge: (1) Hardware capabilities must be

  11. Dimensioning storage and computing clusters for efficient high throughput computing

    International Nuclear Information System (INIS)

    Accion, E; Bria, A; Bernabeu, G; Caubet, M; Delfino, M; Espinal, X; Merino, G; Lopez, F; Martinez, F; Planas, E

    2012-01-01

    Scientific experiments are producing huge amounts of data, and the size of their datasets and total volume of data continues increasing. These data are then processed by researchers belonging to large scientific collaborations, with the Large Hadron Collider being a good example. The focal point of scientific data centers has shifted from efficiently coping with PetaByte scale storage to deliver quality data processing throughput. The dimensioning of the internal components in High Throughput Computing (HTC) data centers is of crucial importance to cope with all the activities demanded by the experiments, both the online (data acceptance) and the offline (data processing, simulation and user analysis). This requires a precise setup involving disk and tape storage services, a computing cluster and the internal networking to prevent bottlenecks, overloads and undesired slowness that lead to losses cpu cycles and batch jobs failures. In this paper we point out relevant features for running a successful data storage and processing service in an intensive HTC environment.

  12. High-Performance Computing Paradigm and Infrastructure

    CERN Document Server

    Yang, Laurence T

    2006-01-01

    With hyperthreading in Intel processors, hypertransport links in next generation AMD processors, multi-core silicon in today's high-end microprocessors from IBM and emerging grid computing, parallel and distributed computers have moved into the mainstream

  13. High energy physics computing in Japan

    International Nuclear Information System (INIS)

    Watase, Yoshiyuki

    1989-01-01

    A brief overview of the computing provision for high energy physics in Japan is presented. Most of the computing power for high energy physics is concentrated in KEK. Here there are two large scale systems: one providing a general computing service including vector processing and the other dedicated to TRISTAN experiments. Each university group has a smaller sized mainframe or VAX system to facilitate both their local computing needs and the remote use of the KEK computers through a network. The large computer system for the TRISTAN experiments is described. An overview of a prospective future large facility is also given. (orig.)

  14. Grid computing in high-energy physics

    International Nuclear Information System (INIS)

    Bischof, R.; Kuhn, D.; Kneringer, E.

    2003-01-01

    Full text: The future high energy physics experiments are characterized by an enormous amount of data delivered by the large detectors presently under construction e.g. at the Large Hadron Collider and by a large number of scientists (several thousands) requiring simultaneous access to the resulting experimental data. Since it seems unrealistic to provide the necessary computing and storage resources at one single place, (e.g. CERN), the concept of grid computing i.e. the use of distributed resources, will be chosen. The DataGrid project (under the leadership of CERN) develops, based on the Globus toolkit, the software necessary for computation and analysis of shared large-scale databases in a grid structure. The high energy physics group Innsbruck participates with several resources in the DataGrid test bed. In this presentation our experience as grid users and resource provider is summarized. In cooperation with the local IT-center (ZID) we installed a flexible grid system which uses PCs (at the moment 162) in student's labs during nights, weekends and holidays, which is especially used to compare different systems (local resource managers, other grid software e.g. from the Nordugrid project) and to supply a test bed for the future Austrian Grid (AGrid). (author)

  15. Computer simulations of high pressure systems

    International Nuclear Information System (INIS)

    Wilkins, M.L.

    1977-01-01

    Numerical methods are capable of solving very difficult problems in solid mechanics and gas dynamics. In the design of engineering structures, critical decisions are possible if the behavior of materials is correctly described in the calculation. Problems of current interest require accurate analysis of stress-strain fields that range from very small elastic displacement to very large plastic deformation. A finite difference program is described that solves problems over this range and in two and three space-dimensions and time. A series of experiments and calculations serve to establish confidence in the plasticity formulation. The program can be used to design high pressure systems where plastic flow occurs. The purpose is to identify material properties, strength and elongation, that meet the operating requirements. An objective is to be able to perform destructive testing on a computer rather than on the engineering structure. Examples of topical interest are given

  16. Physical-resource requirements and the power of quantum computation

    International Nuclear Information System (INIS)

    Caves, Carlton M; Deutsch, Ivan H; Blume-Kohout, Robin

    2004-01-01

    The primary resource for quantum computation is the Hilbert-space dimension. Whereas Hilbert space itself is an abstract construction, the number of dimensions available to a system is a physical quantity that requires physical resources. Avoiding a demand for an exponential amount of these resources places a fundamental constraint on the systems that are suitable for scalable quantum computation. To be scalable, the number of degrees of freedom in the computer must grow nearly linearly with the number of qubits in an equivalent qubit-based quantum computer. These considerations rule out quantum computers based on a single particle, a single atom, or a single molecule consisting of a fixed number of atoms or on classical waves manipulated using the transformations of linear optics

  17. Computer system validation: an overview of official requirements and standards.

    Science.gov (United States)

    Hoffmann, A; Kähny-Simonius, J; Plattner, M; Schmidli-Vckovski, V; Kronseder, C

    1998-02-01

    A brief overview of the relevant documents for companies in the pharmaceutical industry, which are to be taken into consideration to fulfil computer system validation requirements, is presented. We concentrate on official requirements and valid standards in the USA, European Community and Switzerland. There are basically three GMP-guidelines. their interpretations by the associations of interests like APV and PDA as well as the GAMP Suppliers Guide. However, the three GMP-guidelines imply the same philosophy about computer system validation. They describe more a what-to-do approach for validation, whereas the GAMP Suppliers Guide describes a how-to-do validation. Nevertheless, they do not contain major discrepancies.

  18. High-performance computing using FPGAs

    CERN Document Server

    Benkrid, Khaled

    2013-01-01

    This book is concerned with the emerging field of High Performance Reconfigurable Computing (HPRC), which aims to harness the high performance and relative low power of reconfigurable hardware–in the form Field Programmable Gate Arrays (FPGAs)–in High Performance Computing (HPC) applications. It presents the latest developments in this field from applications, architecture, and tools and methodologies points of view. We hope that this work will form a reference for existing researchers in the field, and entice new researchers and developers to join the HPRC community.  The book includes:  Thirteen application chapters which present the most important application areas tackled by high performance reconfigurable computers, namely: financial computing, bioinformatics and computational biology, data search and processing, stencil computation e.g. computational fluid dynamics and seismic modeling, cryptanalysis, astronomical N-body simulation, and circuit simulation.     Seven architecture chapters which...

  19. High accuracy ion optics computing

    International Nuclear Information System (INIS)

    Amos, R.J.; Evans, G.A.; Smith, R.

    1986-01-01

    Computer simulation of focused ion beams for surface analysis of materials by SIMS, or for microfabrication by ion beam lithography plays an important role in the design of low energy ion beam transport and optical systems. Many computer packages currently available, are limited in their applications, being inaccurate or inappropriate for a number of practical purposes. This work describes an efficient and accurate computer programme which has been developed and tested for use on medium sized machines. The programme is written in Algol 68 and models the behaviour of a beam of charged particles through an electrostatic system. A variable grid finite difference method is used with a unique data structure, to calculate the electric potential in an axially symmetric region, for arbitrary shaped boundaries. Emphasis has been placed upon finding an economic method of solving the resulting set of sparse linear equations in the calculation of the electric field and several of these are described. Applications include individual ion lenses, extraction optics for ions in surface analytical instruments and the design of columns for ion beam lithography. Computational results have been compared with analytical calculations and with some data obtained from individual einzel lenses. (author)

  20. High-level language computer architecture

    CERN Document Server

    Chu, Yaohan

    1975-01-01

    High-Level Language Computer Architecture offers a tutorial on high-level language computer architecture, including von Neumann architecture and syntax-oriented architecture as well as direct and indirect execution architecture. Design concepts of Japanese-language data processing systems are discussed, along with the architecture of stack machines and the SYMBOL computer system. The conceptual design of a direct high-level language processor is also described.Comprised of seven chapters, this book first presents a classification of high-level language computer architecture according to the pr

  1. Requirements for the evaluation of computational speech segregation systems

    DEFF Research Database (Denmark)

    May, Tobias; Dau, Torsten

    2014-01-01

    Recent studies on computational speech segregation reported improved speech intelligibility in noise when estimating and applying an ideal binary mask with supervised learning algorithms. However, an important requirement for such systems in technical applications is their robustness to acoustic...... associated with perceptual attributes in speech segregation. The results could help establish a framework for a systematic evaluation of future segregation systems....

  2. Computational tools for high-throughput discovery in biology

    OpenAIRE

    Jones, Neil Christopher

    2007-01-01

    High throughput data acquisition technology has inarguably transformed the landscape of the life sciences, in part by making possible---and necessary---the computational disciplines of bioinformatics and biomedical informatics. These fields focus primarily on developing tools for analyzing data and generating hypotheses about objects in nature, and it is in this context that we address three pressing problems in the fields of the computational life sciences which each require computing capaci...

  3. High-performance computing — an overview

    Science.gov (United States)

    Marksteiner, Peter

    1996-08-01

    An overview of high-performance computing (HPC) is given. Different types of computer architectures used in HPC are discussed: vector supercomputers, high-performance RISC processors, various parallel computers like symmetric multiprocessors, workstation clusters, massively parallel processors. Software tools and programming techniques used in HPC are reviewed: vectorizing compilers, optimization and vector tuning, optimization for RISC processors; parallel programming techniques like shared-memory parallelism, message passing and data parallelism; and numerical libraries.

  4. Software Systems for High-performance Quantum Computing

    Energy Technology Data Exchange (ETDEWEB)

    Humble, Travis S [ORNL; Britt, Keith A [ORNL

    2016-01-01

    Quantum computing promises new opportunities for solving hard computational problems, but harnessing this novelty requires breakthrough concepts in the design, operation, and application of computing systems. We define some of the challenges facing the development of quantum computing systems as well as software-based approaches that can be used to overcome these challenges. Following a brief overview of the state of the art, we present models for the quantum programming and execution models, the development of architectures for hybrid high-performance computing systems, and the realization of software stacks for quantum networking. This leads to a discussion of the role that conventional computing plays in the quantum paradigm and how some of the current challenges for exascale computing overlap with those facing quantum computing.

  5. Vehicle systems and payload requirements evaluation. [computer programs for identifying launch vehicle system requirements

    Science.gov (United States)

    Rea, F. G.; Pittenger, J. L.; Conlon, R. J.; Allen, J. D.

    1975-01-01

    Techniques developed for identifying launch vehicle system requirements for NASA automated space missions are discussed. Emphasis is placed on development of computer programs and investigation of astrionics for OSS missions and Scout. The Earth Orbit Mission Program - 1 which performs linear error analysis of launch vehicle dispersions for both vehicle and navigation system factors is described along with the Interactive Graphic Orbit Selection program which allows the user to select orbits which satisfy mission requirements and to evaluate the necessary injection accuracy.

  6. Debugging a high performance computing program

    Science.gov (United States)

    Gooding, Thomas M.

    2013-08-20

    Methods, apparatus, and computer program products are disclosed for debugging a high performance computing program by gathering lists of addresses of calling instructions for a plurality of threads of execution of the program, assigning the threads to groups in dependence upon the addresses, and displaying the groups to identify defective threads.

  7. Large Scale Computing and Storage Requirements for Fusion Energy Sciences: Target 2017

    Energy Technology Data Exchange (ETDEWEB)

    Gerber, Richard

    2014-05-02

    The National Energy Research Scientific Computing Center (NERSC) is the primary computing center for the DOE Office of Science, serving approximately 4,500 users working on some 650 projects that involve nearly 600 codes in a wide variety of scientific disciplines. In March 2013, NERSC, DOE?s Office of Advanced Scientific Computing Research (ASCR) and DOE?s Office of Fusion Energy Sciences (FES) held a review to characterize High Performance Computing (HPC) and storage requirements for FES research through 2017. This report is the result.

  8. Large Scale Computing and Storage Requirements for Basic Energy Sciences Research

    Energy Technology Data Exchange (ETDEWEB)

    Gerber, Richard; Wasserman, Harvey

    2011-03-31

    The National Energy Research Scientific Computing Center (NERSC) is the leading scientific computing facility supporting research within the Department of Energy's Office of Science. NERSC provides high-performance computing (HPC) resources to approximately 4,000 researchers working on about 400 projects. In addition to hosting large-scale computing facilities, NERSC provides the support and expertise scientists need to effectively and efficiently use HPC systems. In February 2010, NERSC, DOE's Office of Advanced Scientific Computing Research (ASCR) and DOE's Office of Basic Energy Sciences (BES) held a workshop to characterize HPC requirements for BES research through 2013. The workshop was part of NERSC's legacy of anticipating users future needs and deploying the necessary resources to meet these demands. Workshop participants reached a consensus on several key findings, in addition to achieving the workshop's goal of collecting and characterizing computing requirements. The key requirements for scientists conducting research in BES are: (1) Larger allocations of computational resources; (2) Continued support for standard application software packages; (3) Adequate job turnaround time and throughput; and (4) Guidance and support for using future computer architectures. This report expands upon these key points and presents others. Several 'case studies' are included as significant representative samples of the needs of science teams within BES. Research teams scientific goals, computational methods of solution, current and 2013 computing requirements, and special software and support needs are summarized in these case studies. Also included are researchers strategies for computing in the highly parallel, 'multi-core' environment that is expected to dominate HPC architectures over the next few years. NERSC has strategic plans and initiatives already underway that address key workshop findings. This report includes a

  9. Large Scale Computing and Storage Requirements for Biological and Environmental Research

    Energy Technology Data Exchange (ETDEWEB)

    DOE Office of Science, Biological and Environmental Research Program Office (BER),

    2009-09-30

    In May 2009, NERSC, DOE's Office of Advanced Scientific Computing Research (ASCR), and DOE's Office of Biological and Environmental Research (BER) held a workshop to characterize HPC requirements for BER-funded research over the subsequent three to five years. The workshop revealed several key points, in addition to achieving its goal of collecting and characterizing computing requirements. Chief among them: scientific progress in BER-funded research is limited by current allocations of computational resources. Additionally, growth in mission-critical computing -- combined with new requirements for collaborative data manipulation and analysis -- will demand ever increasing computing, storage, network, visualization, reliability and service richness from NERSC. This report expands upon these key points and adds others. It also presents a number of"case studies" as significant representative samples of the needs of science teams within BER. Workshop participants were asked to codify their requirements in this"case study" format, summarizing their science goals, methods of solution, current and 3-5 year computing requirements, and special software and support needs. Participants were also asked to describe their strategy for computing in the highly parallel,"multi-core" environment that is expected to dominate HPC architectures over the next few years.

  10. Federal High End Computing (HEC) Information Portal

    Data.gov (United States)

    Networking and Information Technology Research and Development, Executive Office of the President — This portal provides information about opportunities to engage in U.S. Federal government high performance computing activities, including supercomputer use,...

  11. Embedded High Performance Scalable Computing Systems

    National Research Council Canada - National Science Library

    Ngo, David

    2003-01-01

    The Embedded High Performance Scalable Computing Systems (EHPSCS) program is a cooperative agreement between Sanders, A Lockheed Martin Company and DARPA that ran for three years, from Apr 1995 - Apr 1998...

  12. Computing and data handling requirements for SSC [Superconducting Super Collider] and LHC [Large Hadron Collider] experiments

    International Nuclear Information System (INIS)

    Lankford, A.J.

    1990-05-01

    A number of issues for computing and data handling in the online in environment at future high-luminosity, high-energy colliders, such as the Superconducting Super Collider (SSC) and Large Hadron Collider (LHC), are outlined. Requirements for trigger processing, data acquisition, and online processing are discussed. Some aspects of possible solutions are sketched. 6 refs., 3 figs

  13. Safety integrity requirements for computer based I ampersand C systems

    International Nuclear Information System (INIS)

    Thuy, N.N.Q.; Ficheux-Vapne, F.

    1997-01-01

    In order to take into account increasingly demanding functional requirements, many instrumentation and control (I ampersand C) systems in nuclear power plants are implemented with computers. In order to ensure the required safety integrity of such equipment, i.e., to ensure that they satisfactorily perform the required safety functions under all stated conditions and within stated periods of time, requirements applicable to these equipment and to their life cycle need to be expressed and followed. On the other hand, the experience of the last years has led EDF (Electricite de France) and its partners to consider three classes of systems and equipment, according to their importance to safety. In the EPR project (European Pressurized water Reactor), these classes are labeled E1A, E1B and E2. The objective of this paper is to present the outline of the work currently done in the framework of the ETC-I (EPR Technical Code for I ampersand C) regarding safety integrity requirements applicable to each of the three classes. 4 refs., 2 figs

  14. Computing in high-energy physics

    International Nuclear Information System (INIS)

    Mount, Richard P.

    2016-01-01

    I present a very personalized journey through more than three decades of computing for experimental high-energy physics, pointing out the enduring lessons that I learned. This is followed by a vision of how the computing environment will evolve in the coming ten years and the technical challenges that this will bring. I then address the scale and cost of high-energy physics software and examine the many current and future challenges, particularly those of management, funding and software-lifecycle management. Lastly, I describe recent developments aimed at improving the overall coherence of high-energy physics software

  15. Computing in high-energy physics

    Science.gov (United States)

    Mount, Richard P.

    2016-04-01

    I present a very personalized journey through more than three decades of computing for experimental high-energy physics, pointing out the enduring lessons that I learned. This is followed by a vision of how the computing environment will evolve in the coming ten years and the technical challenges that this will bring. I then address the scale and cost of high-energy physics software and examine the many current and future challenges, particularly those of management, funding and software-lifecycle management. Finally, I describe recent developments aimed at improving the overall coherence of high-energy physics software.

  16. AHPCRC - Army High Performance Computing Research Center

    Science.gov (United States)

    2010-01-01

    computing. Of particular interest is the ability of a distrib- uted jamming network (DJN) to jam signals in all or part of a sensor or communications net...and reasoning, assistive technologies. FRIEDRICH (FRITZ) PRINZ Finmeccanica Professor of Engineering, Robert Bosch Chair, Department of Engineering...High Performance Computing Research Center www.ahpcrc.org BARBARA BRYAN AHPCRC Research and Outreach Manager, HPTi (650) 604-3732 bbryan@hpti.com Ms

  17. DURIP: High Performance Computing in Biomathematics Applications

    Science.gov (United States)

    2017-05-10

    Mathematics and Statistics (AMS) at the University of California, Santa Cruz (UCSC) to conduct research and research-related education in areas of...Computing in Biomathematics Applications Report Title The goal of this award was to enhance the capabilities of the Department of Applied Mathematics and...DURIP: High Performance Computing in Biomathematics Applications The goal of this award was to enhance the capabilities of the Department of Applied

  18. High Available COTS Based Computer for Space

    Science.gov (United States)

    Hartmann, J.; Magistrati, Giorgio

    2015-09-01

    The availability and reliability factors of a system are central requirements of a target application. From a simple fuel injection system used in cars up to a flight control system of an autonomous navigating spacecraft, each application defines its specific availability factor under the target application boundary conditions. Increasing quality requirements on data processing systems used in space flight applications calling for new architectures to fulfill the availability, reliability as well as the increase of the required data processing power. Contrary to the increased quality request simplification and use of COTS components to decrease costs while keeping the interface compatibility to currently used system standards are clear customer needs. Data processing system design is mostly dominated by strict fulfillment of the customer requirements and reuse of available computer systems were not always possible caused by obsolescence of EEE-Parts, insufficient IO capabilities or the fact that available data processing systems did not provide the required scalability and performance.

  19. High-performance computing for airborne applications

    International Nuclear Information System (INIS)

    Quinn, Heather M.; Manuzatto, Andrea; Fairbanks, Tom; Dallmann, Nicholas; Desgeorges, Rose

    2010-01-01

    Recently, there has been attempts to move common satellite tasks to unmanned aerial vehicles (UAVs). UAVs are significantly cheaper to buy than satellites and easier to deploy on an as-needed basis. The more benign radiation environment also allows for an aggressive adoption of state-of-the-art commercial computational devices, which increases the amount of data that can be collected. There are a number of commercial computing devices currently available that are well-suited to high-performance computing. These devices range from specialized computational devices, such as field-programmable gate arrays (FPGAs) and digital signal processors (DSPs), to traditional computing platforms, such as microprocessors. Even though the radiation environment is relatively benign, these devices could be susceptible to single-event effects. In this paper, we will present radiation data for high-performance computing devices in a accelerated neutron environment. These devices include a multi-core digital signal processor, two field-programmable gate arrays, and a microprocessor. From these results, we found that all of these devices are suitable for many airplane environments without reliability problems.

  20. Quantum Accelerators for High-performance Computing Systems

    Energy Technology Data Exchange (ETDEWEB)

    Humble, Travis S. [ORNL; Britt, Keith A. [ORNL; Mohiyaddin, Fahd A. [ORNL

    2017-11-01

    We define some of the programming and system-level challenges facing the application of quantum processing to high-performance computing. Alongside barriers to physical integration, prominent differences in the execution of quantum and conventional programs challenges the intersection of these computational models. Following a brief overview of the state of the art, we discuss recent advances in programming and execution models for hybrid quantum-classical computing. We discuss a novel quantum-accelerator framework that uses specialized kernels to offload select workloads while integrating with existing computing infrastructure. We elaborate on the role of the host operating system to manage these unique accelerator resources, the prospects for deploying quantum modules, and the requirements placed on the language hierarchy connecting these different system components. We draw on recent advances in the modeling and simulation of quantum computing systems with the development of architectures for hybrid high-performance computing systems and the realization of software stacks for controlling quantum devices. Finally, we present simulation results that describe the expected system-level behavior of high-performance computing systems composed from compute nodes with quantum processing units. We describe performance for these hybrid systems in terms of time-to-solution, accuracy, and energy consumption, and we use simple application examples to estimate the performance advantage of quantum acceleration.

  1. The ongoing investigation of high performance parallel computing in HEP

    CERN Document Server

    Peach, Kenneth J; Böck, R K; Dobinson, Robert W; Hansroul, M; Norton, Alan Robert; Willers, Ian Malcolm; Baud, J P; Carminati, F; Gagliardi, F; McIntosh, E; Metcalf, M; Robertson, L; CERN. Geneva. Detector Research and Development Committee

    1993-01-01

    Past and current exploitation of parallel computing in High Energy Physics is summarized and a list of R & D projects in this area is presented. The applicability of new parallel hardware and software to physics problems is investigated, in the light of the requirements for computing power of LHC experiments and the current trends in the computer industry. Four main themes are discussed (possibilities for a finer grain of parallelism; fine-grain communication mechanism; usable parallel programming environment; different programming models and architectures, using standard commercial products). Parallel computing technology is potentially of interest for offline and vital for real time applications in LHC. A substantial investment in applications development and evaluation of state of the art hardware and software products is needed. A solid development environment is required at an early stage, before mainline LHC program development begins.

  2. High-order hydrodynamic algorithms for exascale computing

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, Nathaniel Ray [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-02-05

    Hydrodynamic algorithms are at the core of many laboratory missions ranging from simulating ICF implosions to climate modeling. The hydrodynamic algorithms commonly employed at the laboratory and in industry (1) typically lack requisite accuracy for complex multi- material vortical flows and (2) are not well suited for exascale computing due to poor data locality and poor FLOP/memory ratios. Exascale computing requires advances in both computer science and numerical algorithms. We propose to research the second requirement and create a new high-order hydrodynamic algorithm that has superior accuracy, excellent data locality, and excellent FLOP/memory ratios. This proposal will impact a broad range of research areas including numerical theory, discrete mathematics, vorticity evolution, gas dynamics, interface instability evolution, turbulent flows, fluid dynamics and shock driven flows. If successful, the proposed research has the potential to radically transform simulation capabilities and help position the laboratory for computing at the exascale.

  3. High-performance computing in seismology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-09-01

    The scientific, technical, and economic importance of the issues discussed here presents a clear agenda for future research in computational seismology. In this way these problems will drive advances in high-performance computing in the field of seismology. There is a broad community that will benefit from this work, including the petroleum industry, research geophysicists, engineers concerned with seismic hazard mitigation, and governments charged with enforcing a comprehensive test ban treaty. These advances may also lead to new applications for seismological research. The recent application of high-resolution seismic imaging of the shallow subsurface for the environmental remediation industry is an example of this activity. This report makes the following recommendations: (1) focused efforts to develop validated documented software for seismological computations should be supported, with special emphasis on scalable algorithms for parallel processors; (2) the education of seismologists in high-performance computing technologies and methodologies should be improved; (3) collaborations between seismologists and computational scientists and engineers should be increased; (4) the infrastructure for archiving, disseminating, and processing large volumes of seismological data should be improved.

  4. High performance computing in linear control

    International Nuclear Information System (INIS)

    Datta, B.N.

    1993-01-01

    Remarkable progress has been made in both theory and applications of all important areas of control. The theory is rich and very sophisticated. Some beautiful applications of control theory are presently being made in aerospace, biomedical engineering, industrial engineering, robotics, economics, power systems, etc. Unfortunately, the same assessment of progress does not hold in general for computations in control theory. Control Theory is lagging behind other areas of science and engineering in this respect. Nowadays there is a revolution going on in the world of high performance scientific computing. Many powerful computers with vector and parallel processing have been built and have been available in recent years. These supercomputers offer very high speed in computations. Highly efficient software, based on powerful algorithms, has been developed to use on these advanced computers, and has also contributed to increased performance. While workers in many areas of science and engineering have taken great advantage of these hardware and software developments, control scientists and engineers, unfortunately, have not been able to take much advantage of these developments

  5. Nurses and computers. An international perspective on nurses' requirements.

    Science.gov (United States)

    Bond, Carol S

    2007-01-01

    This paper reports the findings from a Florence Nightingale Foundation Travel Scholarship undertaken by the author in the spring of 2006. The aim of the visit was to explore nurses' attitudes towards, and experiences of, using computers in their practice, and the requirements that they have to encourage, promote and support them in using ICT. Nurses were found to be using computers mainly for carrying out administrative tasks, such as updating records, rather than as information tools to support evidence based practice, or patient information needs. Nurses discussed the systems they used, the equipment provided, and their skills, or more often their lack of skills. The need for support was a frequent comment, most nurses feeling that it was essential that help was available at the point of need, and that it was provided by someone, preferably a nurse, who understood the work context. Three groups of nurses were identified. Engagers; Worried Willing and Resisters. The report concludes that pre-registration education has a responsibility to seek to ensure that newly qualified nurses enter practice as engagers.

  6. High performance parallel computers for science

    International Nuclear Information System (INIS)

    Nash, T.; Areti, H.; Atac, R.; Biel, J.; Cook, A.; Deppe, J.; Edel, M.; Fischler, M.; Gaines, I.; Hance, R.

    1989-01-01

    This paper reports that Fermilab's Advanced Computer Program (ACP) has been developing cost effective, yet practical, parallel computers for high energy physics since 1984. The ACP's latest developments are proceeding in two directions. A Second Generation ACP Multiprocessor System for experiments will include $3500 RISC processors each with performance over 15 VAX MIPS. To support such high performance, the new system allows parallel I/O, parallel interprocess communication, and parallel host processes. The ACP Multi-Array Processor, has been developed for theoretical physics. Each $4000 node is a FORTRAN or C programmable pipelined 20 Mflops (peak), 10 MByte single board computer. These are plugged into a 16 port crossbar switch crate which handles both inter and intra crate communication. The crates are connected in a hypercube. Site oriented applications like lattice gauge theory are supported by system software called CANOPY, which makes the hardware virtually transparent to users. A 256 node, 5 GFlop, system is under construction

  7. High-performance computing in accelerating structure design and analysis

    International Nuclear Information System (INIS)

    Li Zenghai; Folwell, Nathan; Ge Lixin; Guetz, Adam; Ivanov, Valentin; Kowalski, Marc; Lee, Lie-Quan; Ng, Cho-Kuen; Schussman, Greg; Stingelin, Lukas; Uplenchwar, Ravindra; Wolf, Michael; Xiao, Liling; Ko, Kwok

    2006-01-01

    Future high-energy accelerators such as the Next Linear Collider (NLC) will accelerate multi-bunch beams of high current and low emittance to obtain high luminosity, which put stringent requirements on the accelerating structures for efficiency and beam stability. While numerical modeling has been quite standard in accelerator R and D, designing the NLC accelerating structure required a new simulation capability because of the geometric complexity and level of accuracy involved. Under the US DOE Advanced Computing initiatives (first the Grand Challenge and now SciDAC), SLAC has developed a suite of electromagnetic codes based on unstructured grids and utilizing high-performance computing to provide an advanced tool for modeling structures at accuracies and scales previously not possible. This paper will discuss the code development and computational science research (e.g. domain decomposition, scalable eigensolvers, adaptive mesh refinement) that have enabled the large-scale simulations needed for meeting the computational challenges posed by the NLC as well as projects such as the PEP-II and RIA. Numerical results will be presented to show how high-performance computing has made a qualitative improvement in accelerator structure modeling for these accelerators, either at the component level (single cell optimization), or on the scale of an entire structure (beam heating and long-range wakefields)

  8. High performance computing on vector systems

    CERN Document Server

    Roller, Sabine

    2008-01-01

    Presents the developments in high-performance computing and simulation on modern supercomputer architectures. This book covers trends in hardware and software development in general and specifically the vector-based systems and heterogeneous architectures. It presents innovative fields like coupled multi-physics or multi-scale simulations.

  9. Parallel computing for event reconstruction in high-energy physics

    International Nuclear Information System (INIS)

    Wolbers, S.

    1993-01-01

    Parallel computing has been recognized as a solution to large computing problems. In High Energy Physics offline event reconstruction of detector data is a very large computing problem that has been solved with parallel computing techniques. A review of the parallel programming package CPS (Cooperative Processes Software) developed and used at Fermilab for offline reconstruction of Terabytes of data requiring the delivery of hundreds of Vax-Years per experiment is given. The Fermilab UNIX farms, consisting of 180 Silicon Graphics workstations and 144 IBM RS6000 workstations, are used to provide the computing power for the experiments. Fermilab has had a long history of providing production parallel computing starting with the ACP (Advanced Computer Project) Farms in 1986. The Fermilab UNIX Farms have been in production for over 2 years with 24 hour/day service to experimental user groups. Additional tools for management, control and monitoring these large systems will be described. Possible future directions for parallel computing in High Energy Physics will be given

  10. A High Performance VLSI Computer Architecture For Computer Graphics

    Science.gov (United States)

    Chin, Chi-Yuan; Lin, Wen-Tai

    1988-10-01

    A VLSI computer architecture, consisting of multiple processors, is presented in this paper to satisfy the modern computer graphics demands, e.g. high resolution, realistic animation, real-time display etc.. All processors share a global memory which are partitioned into multiple banks. Through a crossbar network, data from one memory bank can be broadcasted to many processors. Processors are physically interconnected through a hyper-crossbar network (a crossbar-like network). By programming the network, the topology of communication links among processors can be reconfigurated to satisfy specific dataflows of different applications. Each processor consists of a controller, arithmetic operators, local memory, a local crossbar network, and I/O ports to communicate with other processors, memory banks, and a system controller. Operations in each processor are characterized into two modes, i.e. object domain and space domain, to fully utilize the data-independency characteristics of graphics processing. Special graphics features such as 3D-to-2D conversion, shadow generation, texturing, and reflection, can be easily handled. With the current high density interconnection (MI) technology, it is feasible to implement a 64-processor system to achieve 2.5 billion operations per second, a performance needed in most advanced graphics applications.

  11. High-Degree Neurons Feed Cortical Computations.

    Directory of Open Access Journals (Sweden)

    Nicholas M Timme

    2016-05-01

    Full Text Available Recent work has shown that functional connectivity among cortical neurons is highly varied, with a small percentage of neurons having many more connections than others. Also, recent theoretical developments now make it possible to quantify how neurons modify information from the connections they receive. Therefore, it is now possible to investigate how information modification, or computation, depends on the number of connections a neuron receives (in-degree or sends out (out-degree. To do this, we recorded the simultaneous spiking activity of hundreds of neurons in cortico-hippocampal slice cultures using a high-density 512-electrode array. This preparation and recording method combination produced large numbers of neurons recorded at temporal and spatial resolutions that are not currently available in any in vivo recording system. We utilized transfer entropy (a well-established method for detecting linear and nonlinear interactions in time series and the partial information decomposition (a powerful, recently developed tool for dissecting multivariate information processing into distinct parts to quantify computation between neurons where information flows converged. We found that computations did not occur equally in all neurons throughout the networks. Surprisingly, neurons that computed large amounts of information tended to receive connections from high out-degree neurons. However, the in-degree of a neuron was not related to the amount of information it computed. To gain insight into these findings, we developed a simple feedforward network model. We found that a degree-modified Hebbian wiring rule best reproduced the pattern of computation and degree correlation results seen in the real data. Interestingly, this rule also maximized signal propagation in the presence of network-wide correlations, suggesting a mechanism by which cortex could deal with common random background input. These are the first results to show that the extent to

  12. High-End Computing Challenges in Aerospace Design and Engineering

    Science.gov (United States)

    Bailey, F. Ronald

    2004-01-01

    High-End Computing (HEC) has had significant impact on aerospace design and engineering and is poised to make even more in the future. In this paper we describe four aerospace design and engineering challenges: Digital Flight, Launch Simulation, Rocket Fuel System and Digital Astronaut. The paper discusses modeling capabilities needed for each challenge and presents projections of future near and far-term HEC computing requirements. NASA's HEC Project Columbia is described and programming strategies presented that are necessary to achieve high real performance.

  13. CHEP95: Computing in high energy physics. Abstracts

    International Nuclear Information System (INIS)

    1995-01-01

    These proceedings cover the technical papers on computation in High Energy Physics, including computer codes, computer devices, control systems, simulations, data acquisition systems. New approaches on computer architectures are also discussed

  14. High gain requirements and high field Tokamak experiments

    International Nuclear Information System (INIS)

    Cohn, D.R.

    1994-01-01

    Operation at sufficiently high gain (ratio of fusion power to external heating power) is a fundamental requirement for tokamak power reactors. For typical reactor concepts, the gain is greater than 25. Self-heating from alpha particles in deuterium-tritium plasmas can greatly reduce ητ/temperature requirements for high gain. A range of high gain operating conditions is possible with different values of alpha-particle efficiency (fraction of alpha-particle power that actually heats the plasma) and with different ratios of self heating to external heating. At one extreme, there is ignited operation, where all of the required plasma heating is provided by alpha particles and the alpha-particle efficiency is 100%. At the other extreme, there is the case of no heating contribution from alpha particles. ητ/temperature requirements for high gain are determined as a function of alpha-particle heating efficiency. Possibilities for high gain experiments in deuterium-tritium, deuterium, and hydrogen plasmas are discussed

  15. HIGH PERFORMANCE PHOTOGRAMMETRIC PROCESSING ON COMPUTER CLUSTERS

    Directory of Open Access Journals (Sweden)

    V. N. Adrov

    2012-07-01

    Full Text Available Most cpu consuming tasks in photogrammetric processing can be done in parallel. The algorithms take independent bits as input and produce independent bits as output. The independence of bits comes from the nature of such algorithms since images, stereopairs or small image blocks parts can be processed independently. Many photogrammetric algorithms are fully automatic and do not require human interference. Photogrammetric workstations can perform tie points measurements, DTM calculations, orthophoto construction, mosaicing and many other service operations in parallel using distributed calculations. Distributed calculations save time reducing several days calculations to several hours calculations. Modern trends in computer technology show the increase of cpu cores in workstations, speed increase in local networks, and as a result dropping the price of the supercomputers or computer clusters that can contain hundreds or even thousands of computing nodes. Common distributed processing in DPW is usually targeted for interactive work with a limited number of cpu cores and is not optimized for centralized administration. The bottleneck of common distributed computing in photogrammetry can be in the limited lan throughput and storage performance, since the processing of huge amounts of large raster images is needed.

  16. National Ignition Facility system design requirements NIF integrated computer controls SDR004

    International Nuclear Information System (INIS)

    Bliss, E.

    1996-01-01

    This System Design Requirement document establishes the performance, design, development, and test requirements for the NIF Integrated Computer Control System. The Integrated Computer Control System (ICCS) is covered in NIF WBS element 1.5. This document responds directly to the requirements detailed in the NIF Functional Requirements/Primary Criteria, and is supported by subsystem design requirements documents for each major ICCS Subsystem

  17. High Performance Computing in Science and Engineering '15 : Transactions of the High Performance Computing Center

    CERN Document Server

    Kröner, Dietmar; Resch, Michael

    2016-01-01

    This book presents the state-of-the-art in supercomputer simulation. It includes the latest findings from leading researchers using systems from the High Performance Computing Center Stuttgart (HLRS) in 2015. The reports cover all fields of computational science and engineering ranging from CFD to computational physics and from chemistry to computer science with a special emphasis on industrially relevant applications. Presenting findings of one of Europe’s leading systems, this volume covers a wide variety of applications that deliver a high level of sustained performance. The book covers the main methods in high-performance computing. Its outstanding results in achieving the best performance for production codes are of particular interest for both scientists and engineers. The book comes with a wealth of color illustrations and tables of results.

  18. High Performance Computing in Science and Engineering '17 : Transactions of the High Performance Computing Center

    CERN Document Server

    Kröner, Dietmar; Resch, Michael; HLRS 2017

    2018-01-01

    This book presents the state-of-the-art in supercomputer simulation. It includes the latest findings from leading researchers using systems from the High Performance Computing Center Stuttgart (HLRS) in 2017. The reports cover all fields of computational science and engineering ranging from CFD to computational physics and from chemistry to computer science with a special emphasis on industrially relevant applications. Presenting findings of one of Europe’s leading systems, this volume covers a wide variety of applications that deliver a high level of sustained performance.The book covers the main methods in high-performance computing. Its outstanding results in achieving the best performance for production codes are of particular interest for both scientists and engineers. The book comes with a wealth of color illustrations and tables of results.

  19. Monitoring SLAC High Performance UNIX Computing Systems

    International Nuclear Information System (INIS)

    Lettsome, Annette K.

    2005-01-01

    Knowledge of the effectiveness and efficiency of computers is important when working with high performance systems. The monitoring of such systems is advantageous in order to foresee possible misfortunes or system failures. Ganglia is a software system designed for high performance computing systems to retrieve specific monitoring information. An alternative storage facility for Ganglia's collected data is needed since its default storage system, the round-robin database (RRD), struggles with data integrity. The creation of a script-driven MySQL database solves this dilemma. This paper describes the process took in the creation and implementation of the MySQL database for use by Ganglia. Comparisons between data storage by both databases are made using gnuplot and Ganglia's real-time graphical user interface

  20. High Performance Computing Operations Review Report

    Energy Technology Data Exchange (ETDEWEB)

    Cupps, Kimberly C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2013-12-19

    The High Performance Computing Operations Review (HPCOR) meeting—requested by the ASC and ASCR program headquarters at DOE—was held November 5 and 6, 2013, at the Marriott Hotel in San Francisco, CA. The purpose of the review was to discuss the processes and practices for HPC integration and its related software and facilities. Experiences and lessons learned from the most recent systems deployed were covered in order to benefit the deployment of new systems.

  1. Nuclear fuels with high burnup: safety requirements

    International Nuclear Information System (INIS)

    Phuc Tran Dai

    2016-01-01

    Vietnam authorities foresees to build 3 reactors from Russian design (VVER AES 2006) by 2030. In order to prepare the preliminary report on safety analysis the Vietnamese Agency for Radioprotection and Safety has launched an investigation on the behaviour of nuclear fuels at high burnups (up to 60 GWj/tU) that will be those of the new plants. This study deals mainly with the behaviour of the fuel assemblies in case of loss of coolant (LOCA). It appears that for an average burnup of 50 GWj/tU and for the advanced design of the fuel assembly (cladding and materials) safety requirements are fulfilled. For an average burnup of 60 GWj/tU, a list of issues remains to be assessed, among which the impact of clad bursting or the hydrogen embrittlement of the advanced zirconium alloys. (A.C.)

  2. A high level language for a high performance computer

    Science.gov (United States)

    Perrott, R. H.

    1978-01-01

    The proposed computational aerodynamic facility will join the ranks of the supercomputers due to its architecture and increased execution speed. At present, the languages used to program these supercomputers have been modifications of programming languages which were designed many years ago for sequential machines. A new programming language should be developed based on the techniques which have proved valuable for sequential programming languages and incorporating the algorithmic techniques required for these supercomputers. The design objectives for such a language are outlined.

  3. High Performance Numerical Computing for High Energy Physics: A New Challenge for Big Data Science

    International Nuclear Information System (INIS)

    Pop, Florin

    2014-01-01

    Modern physics is based on both theoretical analysis and experimental validation. Complex scenarios like subatomic dimensions, high energy, and lower absolute temperature are frontiers for many theoretical models. Simulation with stable numerical methods represents an excellent instrument for high accuracy analysis, experimental validation, and visualization. High performance computing support offers possibility to make simulations at large scale, in parallel, but the volume of data generated by these experiments creates a new challenge for Big Data Science. This paper presents existing computational methods for high energy physics (HEP) analyzed from two perspectives: numerical methods and high performance computing. The computational methods presented are Monte Carlo methods and simulations of HEP processes, Markovian Monte Carlo, unfolding methods in particle physics, kernel estimation in HEP, and Random Matrix Theory used in analysis of particles spectrum. All of these methods produce data-intensive applications, which introduce new challenges and requirements for ICT systems architecture, programming paradigms, and storage capabilities.

  4. Nuclear forces and high-performance computing: The perfect match

    International Nuclear Information System (INIS)

    Luu, T; Walker-Loud, A

    2009-01-01

    High-performance computing is now enabling the calculation of certain hadronic interaction parameters directly from Quantum Chromodynamics, the quantum field theory that governs the behavior of quarks and gluons and is ultimately responsible for the nuclear strong force. In this paper we briefly describe the state of the field and show how other aspects of hadronic interactions will be ascertained in the near future. We give estimates of computational requirements needed to obtain these goals, and outline a procedure for incorporating these results into the broader nuclear physics community.

  5. Optical interconnection networks for high-performance computing systems

    International Nuclear Information System (INIS)

    Biberman, Aleksandr; Bergman, Keren

    2012-01-01

    Enabled by silicon photonic technology, optical interconnection networks have the potential to be a key disruptive technology in computing and communication industries. The enduring pursuit of performance gains in computing, combined with stringent power constraints, has fostered the ever-growing computational parallelism associated with chip multiprocessors, memory systems, high-performance computing systems and data centers. Sustaining these parallelism growths introduces unique challenges for on- and off-chip communications, shifting the focus toward novel and fundamentally different communication approaches. Chip-scale photonic interconnection networks, enabled by high-performance silicon photonic devices, offer unprecedented bandwidth scalability with reduced power consumption. We demonstrate that the silicon photonic platforms have already produced all the high-performance photonic devices required to realize these types of networks. Through extensive empirical characterization in much of our work, we demonstrate such feasibility of waveguides, modulators, switches and photodetectors. We also demonstrate systems that simultaneously combine many functionalities to achieve more complex building blocks. We propose novel silicon photonic devices, subsystems, network topologies and architectures to enable unprecedented performance of these photonic interconnection networks. Furthermore, the advantages of photonic interconnection networks extend far beyond the chip, offering advanced communication environments for memory systems, high-performance computing systems, and data centers. (review article)

  6. Functional requirements for design of the Space Ultrareliable Modular Computer (SUMC) system simulator

    Science.gov (United States)

    Curran, R. T.; Hornfeck, W. A.

    1972-01-01

    The functional requirements for the design of an interpretive simulator for the space ultrareliable modular computer (SUMC) are presented. A review of applicable existing computer simulations is included along with constraints on the SUMC simulator functional design. Input requirements, output requirements, and language requirements for the simulator are discussed in terms of a SUMC configuration which may vary according to the application.

  7. Future requirements and roles of computers in aerodynamics

    Science.gov (United States)

    Gregory, T. J.

    1978-01-01

    While faster computers will be needed to make solution of the Navier-Stokes equations practical and useful, most all of the other aerodynamic solution techniques can benefit from faster computers. There is a wide variety of computational and measurement techniques, the prospect of more powerful computers permits extension and an enhancement across all aerodynamic methods, including wind-tunnel measurement. It is expected that, as in the past, a blend of methods will be used to predict aircraft aerodynamics in the future. These will include methods based on solution of the Navier-Stokes equations and the potential flow equations as well as those based on empirical and measured results. The primary flows of interest in aircraft aerodynamics are identified, the predictive methods currently in use and/or under development are reviewed and two of these methods are analyzed in terms of the computational resources needed to improve their usefulness and practicality.

  8. Regulatory considerations for computational requirements for nuclear criticality safety

    International Nuclear Information System (INIS)

    Bidinger, G.H.

    1995-01-01

    As part of its safety mission, the U.S. Nuclear Regulatory Commission (NRC) approves the use of computational methods as part of the demonstration of nuclear criticality safety. While each NRC office has different criteria for accepting computational methods for nuclear criticality safety results, the Office of Nuclear Materials Safety and Safeguards (NMSS) approves the use of specific computational methods and methodologies for nuclear criticality safety analyses by specific companies (licensees or consultants). By contrast, the Office of Nuclear Reactor Regulation approves codes for general use. Historically, computational methods progressed from empirical methods to one-dimensional diffusion and discrete ordinates transport calculations and then to three-dimensional Monte Carlo transport calculations. With the advent of faster computational ability, three-dimensional diffusion and discrete ordinates transport calculations are gaining favor. With the proper user controls, NMSS has accepted any and all of these methods for demonstrations of nuclear criticality safety

  9. The path toward HEP High Performance Computing

    International Nuclear Information System (INIS)

    Apostolakis, John; Brun, René; Gheata, Andrei; Wenzel, Sandro; Carminati, Federico

    2014-01-01

    High Energy Physics code has been known for making poor use of high performance computing architectures. Efforts in optimising HEP code on vector and RISC architectures have yield limited results and recent studies have shown that, on modern architectures, it achieves a performance between 10% and 50% of the peak one. Although several successful attempts have been made to port selected codes on GPUs, no major HEP code suite has a 'High Performance' implementation. With LHC undergoing a major upgrade and a number of challenging experiments on the drawing board, HEP cannot any longer neglect the less-than-optimal performance of its code and it has to try making the best usage of the hardware. This activity is one of the foci of the SFT group at CERN, which hosts, among others, the Root and Geant4 project. The activity of the experiments is shared and coordinated via a Concurrency Forum, where the experience in optimising HEP code is presented and discussed. Another activity is the Geant-V project, centred on the development of a highperformance prototype for particle transport. Achieving a good concurrency level on the emerging parallel architectures without a complete redesign of the framework can only be done by parallelizing at event level, or with a much larger effort at track level. Apart the shareable data structures, this typically implies a multiplication factor in terms of memory consumption compared to the single threaded version, together with sub-optimal handling of event processing tails. Besides this, the low level instruction pipelining of modern processors cannot be used efficiently to speedup the program. We have implemented a framework that allows scheduling vectors of particles to an arbitrary number of computing resources in a fine grain parallel approach. The talk will review the current optimisation activities within the SFT group with a particular emphasis on the development perspectives towards a simulation framework able to profit

  10. A computational study of high entropy alloys

    Science.gov (United States)

    Wang, Yang; Gao, Michael; Widom, Michael; Hawk, Jeff

    2013-03-01

    As a new class of advanced materials, high-entropy alloys (HEAs) exhibit a wide variety of excellent materials properties, including high strength, reasonable ductility with appreciable work-hardening, corrosion and oxidation resistance, wear resistance, and outstanding diffusion-barrier performance, especially at elevated and high temperatures. In this talk, we will explain our computational approach to the study of HEAs that employs the Korringa-Kohn-Rostoker coherent potential approximation (KKR-CPA) method. The KKR-CPA method uses Green's function technique within the framework of multiple scattering theory and is uniquely designed for the theoretical investigation of random alloys from the first principles. The application of the KKR-CPA method will be discussed as it pertains to the study of structural and mechanical properties of HEAs. In particular, computational results will be presented for AlxCoCrCuFeNi (x = 0, 0.3, 0.5, 0.8, 1.0, 1.3, 2.0, 2.8, and 3.0), and these results will be compared with experimental information from the literature.

  11. Computer simulation of high energy displacement cascades

    International Nuclear Information System (INIS)

    Heinisch, H.L.

    1990-01-01

    A methodology developed for modeling many aspects of high energy displacement cascades with molecular level computer simulations is reviewed. The initial damage state is modeled in the binary collision approximation (using the MARLOWE computer code), and the subsequent disposition of the defects within a cascade is modeled with a Monte Carlo annealing simulation (the ALSOME code). There are few adjustable parameters, and none are set to physically unreasonable values. The basic configurations of the simulated high energy cascades in copper, i.e., the number, size and shape of damage regions, compare well with observations, as do the measured numbers of residual defects and the fractions of freely migrating defects. The success of these simulations is somewhat remarkable, given the relatively simple models of defects and their interactions that are employed. The reason for this success is that the behavior of the defects is very strongly influenced by their initial spatial distributions, which the binary collision approximation adequately models. The MARLOWE/ALSOME system, with input from molecular dynamics and experiments, provides a framework for investigating the influence of high energy cascades on microstructure evolution. (author)

  12. High-resolution computer-aided moire

    Science.gov (United States)

    Sciammarella, Cesar A.; Bhat, Gopalakrishna K.

    1991-12-01

    This paper presents a high resolution computer assisted moire technique for the measurement of displacements and strains at the microscopic level. The detection of micro-displacements using a moire grid and the problem associated with the recovery of displacement field from the sampled values of the grid intensity are discussed. A two dimensional Fourier transform method for the extraction of displacements from the image of the moire grid is outlined. An example of application of the technique to the measurement of strains and stresses in the vicinity of the crack tip in a compact tension specimen is given.

  13. Software Requirements for a System to Compute Mean Failure Cost

    Energy Technology Data Exchange (ETDEWEB)

    Aissa, Anis Ben [University of Tunis, Belvedere, Tunisia; Abercrombie, Robert K [ORNL; Sheldon, Frederick T [ORNL; Mili, Ali [New Jersey Insitute of Technology

    2010-01-01

    In earlier works, we presented a computational infrastructure that allows an analyst to estimate the security of a system in terms of the loss that each stakeholder. We also demonstrated this infrastructure through the results of security breakdowns for the ecommerce case. In this paper, we illustrate this infrastructure by an application that supports the computation of the Mean Failure Cost (MFC) for each stakeholder.

  14. Evaluation of high-performance computing software

    Energy Technology Data Exchange (ETDEWEB)

    Browne, S.; Dongarra, J. [Univ. of Tennessee, Knoxville, TN (United States); Rowan, T. [Oak Ridge National Lab., TN (United States)

    1996-12-31

    The absence of unbiased and up to date comparative evaluations of high-performance computing software complicates a user`s search for the appropriate software package. The National HPCC Software Exchange (NHSE) is attacking this problem using an approach that includes independent evaluations of software, incorporation of author and user feedback into the evaluations, and Web access to the evaluations. We are applying this approach to the Parallel Tools Library (PTLIB), a new software repository for parallel systems software and tools, and HPC-Netlib, a high performance branch of the Netlib mathematical software repository. Updating the evaluations with feed-back and making it available via the Web helps ensure accuracy and timeliness, and using independent reviewers produces unbiased comparative evaluations difficult to find elsewhere.

  15. System Requirements Analysis for a Computer-based Procedure in a Research Reactor Facility

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jaek Wan; Jang, Gwi Sook; Seo, Sang Moon; Shin, Sung Ki [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-10-15

    This can address many of the routine problems related to human error in the use of conventional, hard-copy operating procedures. An operating supporting system is also required in a research reactor. A well-made CBP can address the staffing issues of a research reactor and reduce the human errors by minimizing the operator's routine tasks. A CBP for a research reactor has not been proposed yet. Also, CBPs developed for nuclear power plants have powerful and various technical functions to cover complicated plant operation situations. However, many of the functions may not be required for a research reactor. Thus, it is not reasonable to apply the CBP to a research reactor directly. Also, customizing of the CBP is not cost-effective. Therefore, a compact CBP should be developed for a research reactor. This paper introduces high level requirements derived by the system requirements analysis activity as the first stage of system implementation. Operation support tools are under consideration for application to research reactors. In particular, as a full digitalization of the main control room, application of a computer-based procedure system has been required as a part of man-machine interface system because it makes an impact on the operating staffing and human errors of a research reactor. To establish computer-based system requirements for a research reactor, this paper addressed international standards and previous practices on nuclear plants.

  16. Parameters that affect parallel processing for computational electromagnetic simulation codes on high performance computing clusters

    Science.gov (United States)

    Moon, Hongsik

    What is the impact of multicore and associated advanced technologies on computational software for science? Most researchers and students have multicore laptops or desktops for their research and they need computing power to run computational software packages. Computing power was initially derived from Central Processing Unit (CPU) clock speed. That changed when increases in clock speed became constrained by power requirements. Chip manufacturers turned to multicore CPU architectures and associated technological advancements to create the CPUs for the future. Most software applications benefited by the increased computing power the same way that increases in clock speed helped applications run faster. However, for Computational ElectroMagnetics (CEM) software developers, this change was not an obvious benefit - it appeared to be a detriment. Developers were challenged to find a way to correctly utilize the advancements in hardware so that their codes could benefit. The solution was parallelization and this dissertation details the investigation to address these challenges. Prior to multicore CPUs, advanced computer technologies were compared with the performance using benchmark software and the metric was FLoting-point Operations Per Seconds (FLOPS) which indicates system performance for scientific applications that make heavy use of floating-point calculations. Is FLOPS an effective metric for parallelized CEM simulation tools on new multicore system? Parallel CEM software needs to be benchmarked not only by FLOPS but also by the performance of other parameters related to type and utilization of the hardware, such as CPU, Random Access Memory (RAM), hard disk, network, etc. The codes need to be optimized for more than just FLOPs and new parameters must be included in benchmarking. In this dissertation, the parallel CEM software named High Order Basis Based Integral Equation Solver (HOBBIES) is introduced. This code was developed to address the needs of the

  17. National Ignition Facility sub-system design requirements computer system SSDR 1.5.1

    International Nuclear Information System (INIS)

    Spann, J.; VanArsdall, P.; Bliss, E.

    1996-01-01

    This System Design Requirement document establishes the performance, design, development and test requirements for the Computer System, WBS 1.5.1 which is part of the NIF Integrated Computer Control System (ICCS). This document responds directly to the requirements detailed in ICCS (WBS 1.5) which is the document directly above

  18. Computer code validation by high temperature chemistry

    International Nuclear Information System (INIS)

    Alexander, C.A.; Ogden, J.S.

    1988-01-01

    At least five of the computer codes utilized in analysis of severe fuel damage-type events are directly dependent upon or can be verified by high temperature chemistry. These codes are ORIGEN, CORSOR, CORCON, VICTORIA, and VANESA. With the exemption of CORCON and VANESA, it is necessary that verification experiments be performed on real irradiated fuel. For ORIGEN, the familiar knudsen effusion cell is the best choice and a small piece of known mass and known burn-up is selected and volatilized completely into the mass spectrometer. The mass spectrometer is used in the integral mode to integrate the entire signal from preselected radionuclides, and from this integrated signal the total mass of the respective nuclides can be determined. For CORSOR and VICTORIA, experiments with flowing high pressure hydrogen/steam must flow over the irradiated fuel and then enter the mass spectrometer. For these experiments, a high pressure-high temperature molecular beam inlet must be employed. Finally, in support of VANESA-CORCON, the very highest temperature and molten fuels must be contained and analyzed. Results from all types of experiments will be discussed and their applicability to present and future code development will also be covered

  19. 12 CFR 1750.4 - Minimum capital requirement computation.

    Science.gov (United States)

    2010-01-01

    ... current market value of posted qualifying collateral, computed in accordance with appendix A to this subpart; (ii) 1.50 percent of the market value of qualifying collateral posted to secure interest rate and... differences in the credit risk of such obligations in relation to mortgage-backed securities. (b) Any asset or...

  20. Computer System Resource Requirements of Novice Programming Students.

    Science.gov (United States)

    Nutt, Gary J.

    The characteristics of jobs that constitute the mix for lower division FORTRAN classes in a university were investigated. Samples of these programs were also benchmarked on a larger central site computer and two minicomputer systems. It was concluded that a carefully chosen minicomputer system could offer service at least the equivalent of the…

  1. High-Precision Computation: Mathematical Physics and Dynamics

    International Nuclear Information System (INIS)

    Bailey, D.H.; Barrio, R.; Borwein, J.M.

    2010-01-01

    At the present time, IEEE 64-bit oating-point arithmetic is suficiently accurate for most scientic applications. However, for a rapidly growing body of important scientic computing applications, a higher level of numeric precision is required. Such calculations are facilitated by high-precision software packages that include high-level language translation modules to minimize the conversion e ort. This pa- per presents a survey of recent applications of these techniques and provides someanalysis of their numerical requirements. These applications include supernova simulations, climate modeling, planetary orbit calculations, Coulomb n-body atomic systems, studies of the one structure constant, scattering amplitudes of quarks, glu- ons and bosons, nonlinear oscillator theory, experimental mathematics, evaluation of orthogonal polynomials, numerical integration of ODEs, computation of periodic orbits, studies of the splitting of separatrices, detection of strange nonchaotic at- tractors, Ising theory, quantum held theory, and discrete dynamical systems. We conclude that high-precision arithmetic facilities are now an indispensable compo- nent of a modern large-scale scientic computing environment.

  2. High-Precision Computation: Mathematical Physics and Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, D. H.; Barrio, R.; Borwein, J. M.

    2010-04-01

    At the present time, IEEE 64-bit oating-point arithmetic is suficiently accurate for most scientic applications. However, for a rapidly growing body of important scientic computing applications, a higher level of numeric precision is required. Such calculations are facilitated by high-precision software packages that include high-level language translation modules to minimize the conversion e ort. This pa- per presents a survey of recent applications of these techniques and provides someanalysis of their numerical requirements. These applications include supernova simulations, climate modeling, planetary orbit calculations, Coulomb n-body atomic systems, studies of the one structure constant, scattering amplitudes of quarks, glu- ons and bosons, nonlinear oscillator theory, experimental mathematics, evaluation of orthogonal polynomials, numerical integration of ODEs, computation of periodic orbits, studies of the splitting of separatrices, detection of strange nonchaotic at- tractors, Ising theory, quantum held theory, and discrete dynamical systems. We conclude that high-precision arithmetic facilities are now an indispensable compo- nent of a modern large-scale scientic computing environment.

  3. Implementing an Affordable High-Performance Computing for Teaching-Oriented Computer Science Curriculum

    Science.gov (United States)

    Abuzaghleh, Omar; Goldschmidt, Kathleen; Elleithy, Yasser; Lee, Jeongkyu

    2013-01-01

    With the advances in computing power, high-performance computing (HPC) platforms have had an impact on not only scientific research in advanced organizations but also computer science curriculum in the educational community. For example, multicore programming and parallel systems are highly desired courses in the computer science major. However,…

  4. High Performance Computing in Science and Engineering '02 : Transactions of the High Performance Computing Center

    CERN Document Server

    Jäger, Willi

    2003-01-01

    This book presents the state-of-the-art in modeling and simulation on supercomputers. Leading German research groups present their results achieved on high-end systems of the High Performance Computing Center Stuttgart (HLRS) for the year 2002. Reports cover all fields of supercomputing simulation ranging from computational fluid dynamics to computer science. Special emphasis is given to industrially relevant applications. Moreover, by presenting results for both vector sytems and micro-processor based systems the book allows to compare performance levels and usability of a variety of supercomputer architectures. It therefore becomes an indispensable guidebook to assess the impact of the Japanese Earth Simulator project on supercomputing in the years to come.

  5. High performance computing network for cloud environment using simulators

    OpenAIRE

    Singh, N. Ajith; Hemalatha, M.

    2012-01-01

    Cloud computing is the next generation computing. Adopting the cloud computing is like signing up new form of a website. The GUI which controls the cloud computing make is directly control the hardware resource and your application. The difficulty part in cloud computing is to deploy in real environment. Its' difficult to know the exact cost and it's requirement until and unless we buy the service not only that whether it will support the existing application which is available on traditional...

  6. The path toward HEP High Performance Computing

    CERN Document Server

    Apostolakis, John; Carminati, Federico; Gheata, Andrei; Wenzel, Sandro

    2014-01-01

    High Energy Physics code has been known for making poor use of high performance computing architectures. Efforts in optimising HEP code on vector and RISC architectures have yield limited results and recent studies have shown that, on modern architectures, it achieves a performance between 10% and 50% of the peak one. Although several successful attempts have been made to port selected codes on GPUs, no major HEP code suite has a 'High Performance' implementation. With LHC undergoing a major upgrade and a number of challenging experiments on the drawing board, HEP cannot any longer neglect the less-than-optimal performance of its code and it has to try making the best usage of the hardware. This activity is one of the foci of the SFT group at CERN, which hosts, among others, the Root and Geant4 project. The activity of the experiments is shared and coordinated via a Concurrency Forum, where the experience in optimising HEP code is presented and discussed. Another activity is the Geant-V project, centred on th...

  7. Quality assurance requirements for the computer software and safety analyses

    International Nuclear Information System (INIS)

    Husarecek, J.

    1992-01-01

    The requirements are given as placed on the development, procurement, maintenance, and application of software for the creation or processing of data during the design, construction, operation, repair, maintenance and safety-related upgrading of nuclear power plants. The verification and validation processes are highlighted, and the requirements put on the software documentation are outlined. The general quality assurance principles applied to safety analyses are characterized. (J.B.). 1 ref

  8. Large-scale computation at PSI scientific achievements and future requirements

    International Nuclear Information System (INIS)

    Adelmann, A.; Markushin, V.

    2008-11-01

    ' (SNSP-HPCN) is discussing this complex. Scientific results which are made possible by PSI's engagement at CSCS (named Horizon) are summarised and PSI's future high-performance computing requirements are evaluated. The data collected shows the current situation and a 5 year extrapolation of the users' needs with respect to HPC resources is made. In consequence this report can serve as a basis for future strategic decisions with respect to a non-existing HPC road-map for PSI. PSI's institutional HPC area started hardware-wise approximately in 1999 with the assembly of a 32-processor LINUX cluster called Merlin. Merlin was upgraded several times, lastly in 2007. The Merlin cluster at PSI is used for small scale parallel jobs, and is the only general purpose computing system at PSI. Several dedicated small scale clusters followed the Merlin scheme. Many of the clusters are used to analyse data from experiments at PSI or CERN, because dedicated clusters are most efficient. The intellectual and financial involvement of the procurement (including a machine update in 2007) results in a PSI share of 25 % of the available computing resources at CSCS. The (over) usage of available computing resources by PSI scientists is demonstrated. We actually get more computing cycles than we have paid for. The reason is the fair share policy that is implemented on the Horizon machine. This policy allows us to get cycles, with a low priority, even when our bi-monthly share is used. Five important observations can be drawn from the analysis of the scientific output and the survey of future requirements of main PSI HPC users: (1) High Performance Computing is a main pillar in many important PSI research areas; (2) there is a lack in the order of 10 times the current computing resources (measured in available core-hours per year); (3) there is a trend to use in the order of 600 processors per average production run; (4) the disk and tape storage growth is dramatic; (5) small HPC clusters located

  9. Large-scale computation at PSI scientific achievements and future requirements

    Energy Technology Data Exchange (ETDEWEB)

    Adelmann, A.; Markushin, V

    2008-11-15

    and Networking' (SNSP-HPCN) is discussing this complex. Scientific results which are made possible by PSI's engagement at CSCS (named Horizon) are summarised and PSI's future high-performance computing requirements are evaluated. The data collected shows the current situation and a 5 year extrapolation of the users' needs with respect to HPC resources is made. In consequence this report can serve as a basis for future strategic decisions with respect to a non-existing HPC road-map for PSI. PSI's institutional HPC area started hardware-wise approximately in 1999 with the assembly of a 32-processor LINUX cluster called Merlin. Merlin was upgraded several times, lastly in 2007. The Merlin cluster at PSI is used for small scale parallel jobs, and is the only general purpose computing system at PSI. Several dedicated small scale clusters followed the Merlin scheme. Many of the clusters are used to analyse data from experiments at PSI or CERN, because dedicated clusters are most efficient. The intellectual and financial involvement of the procurement (including a machine update in 2007) results in a PSI share of 25 % of the available computing resources at CSCS. The (over) usage of available computing resources by PSI scientists is demonstrated. We actually get more computing cycles than we have paid for. The reason is the fair share policy that is implemented on the Horizon machine. This policy allows us to get cycles, with a low priority, even when our bi-monthly share is used. Five important observations can be drawn from the analysis of the scientific output and the survey of future requirements of main PSI HPC users: (1) High Performance Computing is a main pillar in many important PSI research areas; (2) there is a lack in the order of 10 times the current computing resources (measured in available core-hours per year); (3) there is a trend to use in the order of 600 processors per average production run; (4) the disk and tape storage growth

  10. High Performance Computing in Science and Engineering '99 : Transactions of the High Performance Computing Center

    CERN Document Server

    Jäger, Willi

    2000-01-01

    The book contains reports about the most significant projects from science and engineering of the Federal High Performance Computing Center Stuttgart (HLRS). They were carefully selected in a peer-review process and are showcases of an innovative combination of state-of-the-art modeling, novel algorithms and the use of leading-edge parallel computer technology. The projects of HLRS are using supercomputer systems operated jointly by university and industry and therefore a special emphasis has been put on the industrial relevance of results and methods.

  11. High Performance Computing in Science and Engineering '98 : Transactions of the High Performance Computing Center

    CERN Document Server

    Jäger, Willi

    1999-01-01

    The book contains reports about the most significant projects from science and industry that are using the supercomputers of the Federal High Performance Computing Center Stuttgart (HLRS). These projects are from different scientific disciplines, with a focus on engineering, physics and chemistry. They were carefully selected in a peer-review process and are showcases for an innovative combination of state-of-the-art physical modeling, novel algorithms and the use of leading-edge parallel computer technology. As HLRS is in close cooperation with industrial companies, special emphasis has been put on the industrial relevance of results and methods.

  12. A High Performance COTS Based Computer Architecture

    Science.gov (United States)

    Patte, Mathieu; Grimoldi, Raoul; Trautner, Roland

    2014-08-01

    Using Commercial Off The Shelf (COTS) electronic components for space applications is a long standing idea. Indeed the difference in processing performance and energy efficiency between radiation hardened components and COTS components is so important that COTS components are very attractive for use in mass and power constrained systems. However using COTS components in space is not straightforward as one must account with the effects of the space environment on the COTS components behavior. In the frame of the ESA funded activity called High Performance COTS Based Computer, Airbus Defense and Space and its subcontractor OHB CGS have developed and prototyped a versatile COTS based architecture for high performance processing. The rest of the paper is organized as follows: in a first section we will start by recapitulating the interests and constraints of using COTS components for space applications; then we will briefly describe existing fault mitigation architectures and present our solution for fault mitigation based on a component called the SmartIO; in the last part of the paper we will describe the prototyping activities executed during the HiP CBC project.

  13. Functions and Requirements and Specifications for Replacement of the Computer Automated Surveillance System (CASS)

    International Nuclear Information System (INIS)

    SCAIEF, C.C.

    1999-01-01

    This functions, requirements and specifications document defines the baseline requirements and criteria for the design, purchase, fabrication, construction, installation, and operation of the system to replace the Computer Automated Surveillance System (CASS) alarm monitoring

  14. Usage of super high speed computer for clarification of complex phenomena

    International Nuclear Information System (INIS)

    Sekiguchi, Tomotsugu; Sato, Mitsuhisa; Nakata, Hideki; Tatebe, Osami; Takagi, Hiromitsu

    1999-01-01

    This study aims at construction of an efficient super high speed computer system application environment in response to parallel distributed system with easy transplantation to different computer system and different number by conducting research and development on super high speed computer application technology required for elucidation of complicated phenomenon in elucidation of complicated phenomenon of nuclear power field due to computed scientific method. In order to realize such environment, the Electrotechnical Laboratory has conducted development on Ninf, a network numerical information library. This Ninf system can supply a global network infrastructure for worldwide computing with high performance on further wide range distributed network (G.K.)

  15. Computer-Aided Identification and Validation of Privacy Requirements

    Directory of Open Access Journals (Sweden)

    Rene Meis

    2016-05-01

    Full Text Available Privacy is a software quality that is closely related to security. The main difference is that security properties aim at the protection of assets that are crucial for the considered system, and privacy aims at the protection of personal data that are processed by the system. The identification of privacy protection needs in complex systems is a hard and error prone task. Stakeholders whose personal data are processed might be overlooked, or the sensitivity and the need of protection of the personal data might be underestimated. The later personal data and the needs to protect them are identified during the development process, the more expensive it is to fix these issues, because the needed changes of the system-to-be often affect many functionalities. In this paper, we present a systematic method to identify the privacy needs of a software system based on a set of functional requirements by extending the problem-based privacy analysis (ProPAn method. Our method is tool-supported and automated where possible to reduce the effort that has to be spent for the privacy analysis, which is especially important when considering complex systems. The contribution of this paper is a semi-automatic method to identify the relevant privacy requirements for a software-to-be based on its functional requirements. The considered privacy requirements address all dimensions of privacy that are relevant for software development. As our method is solely based on the functional requirements of the system to be, we enable users of our method to identify the privacy protection needs that have to be addressed by the software-to-be at an early stage of the development. As initial evaluation of our method, we show its applicability on a small electronic health system scenario.

  16. Personal computers in high energy physics

    International Nuclear Information System (INIS)

    Quarrie, D.R.

    1987-01-01

    The role of personal computers within HEP is expanding as their capabilities increase and their cost decreases. Already they offer greater flexibility than many low-cost graphics terminals for a comparable cost and in addition they can significantly increase the productivity of physicists and programmers. This talk will discuss existing uses for personal computers and explore possible future directions for their integration into the overall computing environment. (orig.)

  17. High resolution muon computed tomography at neutrino beam facilities

    International Nuclear Information System (INIS)

    Suerfu, B.; Tully, C.G.

    2016-01-01

    X-ray computed tomography (CT) has an indispensable role in constructing 3D images of objects made from light materials. However, limited by absorption coefficients, X-rays cannot deeply penetrate materials such as copper and lead. Here we show via simulation that muon beams can provide high resolution tomographic images of dense objects and of structures within the interior of dense objects. The effects of resolution broadening from multiple scattering diminish with increasing muon momentum. As the momentum of the muon increases, the contrast of the image goes down and therefore requires higher resolution in the muon spectrometer to resolve the image. The variance of the measured muon momentum reaches a minimum and then increases with increasing muon momentum. The impact of the increase in variance is to require a higher integrated muon flux to reduce fluctuations. The flux requirements and level of contrast needed for high resolution muon computed tomography are well matched to the muons produced in the pion decay pipe at a neutrino beam facility and what can be achieved for momentum resolution in a muon spectrometer. Such an imaging system can be applied in archaeology, art history, engineering, material identification and whenever there is a need to image inside a transportable object constructed of dense materials

  18. 77 FR 50726 - Software Requirement Specifications for Digital Computer Software and Complex Electronics Used in...

    Science.gov (United States)

    2012-08-22

    ... Computer Software and Complex Electronics Used in Safety Systems of Nuclear Power Plants AGENCY: Nuclear...-1209, ``Software Requirement Specifications for Digital Computer Software and Complex Electronics used... Electronics Engineers (ANSI/IEEE) Standard 830-1998, ``IEEE Recommended Practice for Software Requirements...

  19. NINJA: Java for High Performance Numerical Computing

    Directory of Open Access Journals (Sweden)

    José E. Moreira

    2002-01-01

    Full Text Available When Java was first introduced, there was a perception that its many benefits came at a significant performance cost. In the particularly performance-sensitive field of numerical computing, initial measurements indicated a hundred-fold performance disadvantage between Java and more established languages such as Fortran and C. Although much progress has been made, and Java now can be competitive with C/C++ in many important situations, significant performance challenges remain. Existing Java virtual machines are not yet capable of performing the advanced loop transformations and automatic parallelization that are now common in state-of-the-art Fortran compilers. Java also has difficulties in implementing complex arithmetic efficiently. These performance deficiencies can be attacked with a combination of class libraries (packages, in Java that implement truly multidimensional arrays and complex numbers, and new compiler techniques that exploit the properties of these class libraries to enable other, more conventional, optimizations. Two compiler techniques, versioning and semantic expansion, can be leveraged to allow fully automatic optimization and parallelization of Java code. Our measurements with the NINJA prototype Java environment show that Java can be competitive in performance with highly optimized and tuned Fortran code.

  20. High resolution computed tomography of positron emitters

    International Nuclear Information System (INIS)

    Derenzo, S.E.; Budinger, T.F.; Cahoon, J.L.; Huesman, R.H.; Jackson, H.G.

    1976-10-01

    High resolution computed transaxial radionuclide tomography has been performed on phantoms containing positron-emitting isotopes. The imaging system consisted of two opposing groups of eight NaI(Tl) crystals 8 mm x 30 mm x 50 mm deep and the phantoms were rotated to measure coincident events along 8960 projection integrals as they would be measured by a 280-crystal ring system now under construction. The spatial resolution in the reconstructed images is 7.5 mm FWHM at the center of the ring and approximately 11 mm FWHM at a radius of 10 cm. We present measurements of imaging and background rates under various operating conditions. Based on these measurements, the full 280-crystal system will image 10,000 events per sec with 400 μCi in a section 1 cm thick and 20 cm in diameter. We show that 1.5 million events are sufficient to reliably image 3.5-mm hot spots with 14-mm center-to-center spacing and isolated 9-mm diameter cold spots in phantoms 15 to 20 cm in diameter

  1. Concept for high speed computer printer

    Science.gov (United States)

    Stephens, J. W.

    1970-01-01

    Printer uses Kerr cell as light shutter for controlling the print on photosensitive paper. Applied to output data transfer, the information transfer rate of graphic computer printers could be increased to speeds approaching the data transfer rate of computer central processors /5000 to 10,000 lines per minute/.

  2. Computational aerodynamics requirements: The future role of the computer and the needs of the aerospace industry

    Science.gov (United States)

    Rubbert, P. E.

    1978-01-01

    The commercial airplane builder's viewpoint on the important issues involved in the development of improved computational aerodynamics tools such as powerful computers optimized for fluid flow problems is presented. The primary user of computational aerodynamics in a commercial aircraft company is the design engineer who is concerned with solving practical engineering problems. From his viewpoint, the development of program interfaces and pre-and post-processing capability for new computational methods is just as important as the algorithms and machine architecture. As more and more details of the entire flow field are computed, the visibility of the output data becomes a major problem which is then doubled when a design capability is added. The user must be able to see, understand, and interpret the results calculated. Enormous costs are expanded because of the need to work with programs having only primitive user interfaces.

  3. Computational Thinking and Practice - A Generic Approach to Computing in Danish High Schools

    DEFF Research Database (Denmark)

    Caspersen, Michael E.; Nowack, Palle

    2014-01-01

    Internationally, there is a growing awareness on the necessity of providing relevant computing education in schools, particularly high schools. We present a new and generic approach to Computing in Danish High Schools based on a conceptual framework derived from ideas related to computational thi...

  4. DOE research in utilization of high-performance computers

    International Nuclear Information System (INIS)

    Buzbee, B.L.; Worlton, W.J.; Michael, G.; Rodrigue, G.

    1980-12-01

    Department of Energy (DOE) and other Government research laboratories depend on high-performance computer systems to accomplish their programatic goals. As the most powerful computer systems become available, they are acquired by these laboratories so that advances can be made in their disciplines. These advances are often the result of added sophistication to numerical models whose execution is made possible by high-performance computer systems. However, high-performance computer systems have become increasingly complex; consequently, it has become increasingly difficult to realize their potential performance. The result is a need for research on issues related to the utilization of these systems. This report gives a brief description of high-performance computers, and then addresses the use of and future needs for high-performance computers within DOE, the growing complexity of applications within DOE, and areas of high-performance computer systems warranting research. 1 figure

  5. High Performance Computing Facility Operational Assessment, FY 2010 Oak Ridge Leadership Computing Facility

    Energy Technology Data Exchange (ETDEWEB)

    Bland, Arthur S Buddy [ORNL; Hack, James J [ORNL; Baker, Ann E [ORNL; Barker, Ashley D [ORNL; Boudwin, Kathlyn J. [ORNL; Kendall, Ricky A [ORNL; Messer, Bronson [ORNL; Rogers, James H [ORNL; Shipman, Galen M [ORNL; White, Julia C [ORNL

    2010-08-01

    Oak Ridge National Laboratory's (ORNL's) Cray XT5 supercomputer, Jaguar, kicked off the era of petascale scientific computing in 2008 with applications that sustained more than a thousand trillion floating point calculations per second - or 1 petaflop. Jaguar continues to grow even more powerful as it helps researchers broaden the boundaries of knowledge in virtually every domain of computational science, including weather and climate, nuclear energy, geosciences, combustion, bioenergy, fusion, and materials science. Their insights promise to broaden our knowledge in areas that are vitally important to the Department of Energy (DOE) and the nation as a whole, particularly energy assurance and climate change. The science of the 21st century, however, will demand further revolutions in computing, supercomputers capable of a million trillion calculations a second - 1 exaflop - and beyond. These systems will allow investigators to continue attacking global challenges through modeling and simulation and to unravel longstanding scientific questions. Creating such systems will also require new approaches to daunting challenges. High-performance systems of the future will need to be codesigned for scientific and engineering applications with best-in-class communications networks and data-management infrastructures and teams of skilled researchers able to take full advantage of these new resources. The Oak Ridge Leadership Computing Facility (OLCF) provides the nation's most powerful open resource for capability computing, with a sustainable path that will maintain and extend national leadership for DOE's Office of Science (SC). The OLCF has engaged a world-class team to support petascale science and to take a dramatic step forward, fielding new capabilities for high-end science. This report highlights the successful delivery and operation of a petascale system and shows how the OLCF fosters application development teams, developing cutting-edge tools

  6. High Energy Physics Computer Networking: Report of the HEPNET Review Committee

    International Nuclear Information System (INIS)

    1988-06-01

    This paper discusses the computer networks available to high energy physics facilities for transmission of data. Topics covered in this paper are: Existing and planned networks and HEPNET requirements

  7. Peregrine System | High-Performance Computing | NREL

    Science.gov (United States)

    classes of nodes that users access: Login Nodes Peregrine has four login nodes, each of which has Intel E5 /scratch file systems, the /mss file system is mounted on all login nodes. Compute Nodes Peregrine has 2592

  8. Evolution of facility layout requirements and CAD [computer-aided design] system development

    International Nuclear Information System (INIS)

    Jones, M.

    1990-06-01

    The overall configuration of the Superconducting Super Collider (SSC) including the infrastructure and land boundary requirements were developed using a computer-aided design (CAD) system. The evolution of the facility layout requirements and the use of the CAD system are discussed. The emphasis has been on minimizing the amount of input required and maximizing the speed by which the output may be obtained. The computer system used to store the data is also described

  9. Bringing together high energy physicist and computer scientist

    International Nuclear Information System (INIS)

    Bock, R.K.

    1989-01-01

    The Oxford Conference on Computing in High Energy Physics approached the physics and computing issues with the question, ''Can computer science help?'' always in mind. This summary is a personal recollection of what I considered to be the highlights of the conference: the parts which contributed to my own learning experience. It can be used as a general introduction to the following papers, or as a brief overview of the current states of computer science within high energy physics. (orig.)

  10. Integrated computer network high-speed parallel interface

    International Nuclear Information System (INIS)

    Frank, R.B.

    1979-03-01

    As the number and variety of computers within Los Alamos Scientific Laboratory's Central Computer Facility grows, the need for a standard, high-speed intercomputer interface has become more apparent. This report details the development of a High-Speed Parallel Interface from conceptual through implementation stages to meet current and future needs for large-scle network computing within the Integrated Computer Network. 4 figures

  11. Resilient and Robust High Performance Computing Platforms for Scientific Computing Integrity

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Yier [Univ. of Central Florida, Orlando, FL (United States)

    2017-07-14

    As technology advances, computer systems are subject to increasingly sophisticated cyber-attacks that compromise both their security and integrity. High performance computing platforms used in commercial and scientific applications involving sensitive, or even classified data, are frequently targeted by powerful adversaries. This situation is made worse by a lack of fundamental security solutions that both perform efficiently and are effective at preventing threats. Current security solutions fail to address the threat landscape and ensure the integrity of sensitive data. As challenges rise, both private and public sectors will require robust technologies to protect its computing infrastructure. The research outcomes from this project try to address all these challenges. For example, we present LAZARUS, a novel technique to harden kernel Address Space Layout Randomization (KASLR) against paging-based side-channel attacks. In particular, our scheme allows for fine-grained protection of the virtual memory mappings that implement the randomization. We demonstrate the effectiveness of our approach by hardening a recent Linux kernel with LAZARUS, mitigating all of the previously presented side-channel attacks on KASLR. Our extensive evaluation shows that LAZARUS incurs only 0.943% overhead for standard benchmarks, and is therefore highly practical. We also introduced HA2lloc, a hardware-assisted allocator that is capable of leveraging an extended memory management unit to detect memory errors in the heap. We also perform testing using HA2lloc in a simulation environment and find that the approach is capable of preventing common memory vulnerabilities.

  12. Highly parallel machines and future of scientific computing

    International Nuclear Information System (INIS)

    Singh, G.S.

    1992-01-01

    Computing requirement of large scale scientific computing has always been ahead of what state of the art hardware could supply in the form of supercomputers of the day. And for any single processor system the limit to increase in the computing power was realized a few years back itself. Now with the advent of parallel computing systems the availability of machines with the required computing power seems a reality. In this paper the author tries to visualize the future large scale scientific computing in the penultimate decade of the present century. The author summarized trends in parallel computers and emphasize the need for a better programming environment and software tools for optimal performance. The author concludes this paper with critique on parallel architectures, software tools and algorithms. (author). 10 refs., 2 tabs

  13. Student Computer Use in Selected Undergraduate Agriculture Courses: An Examination of Required Tasks.

    Science.gov (United States)

    Johnson, Donald M.; Ferguson, James A.; Vokins, Nancy W.; Lester, Melissa L.

    2000-01-01

    Over 50% of faculty teaching undergraduate agriculture courses (n=58) required use of word processing, Internet, and electronic mail; less than 50% required spreadsheets, databases, graphics, or specialized software. They planned to maintain or increase required computer tasks in their courses. (SK)

  14. I - Detector Simulation for the LHC and beyond: how to match computing resources and physics requirements

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    Detector simulation at the LHC is one of the most computing intensive activities. In these lectures we will show how physics requirements were met for the LHC experiments and extrapolate to future experiments (FCC-hh case). At the LHC, detectors are complex, very precise and ambitious: this implies modern modelisation tools for geometry and response. Events are busy and characterised by an unprecedented energy scale with hundreds of particles to be traced and high energy showers to be accurately simulated. Furthermore, high luminosities imply many events in a bunch crossing and many bunch crossings to be considered at the same time. In addition, backgrounds not directly correlated to bunch crossings have also to be taken into account. Solutions chosen for ATLAS (a mixture of detailed simulation and fast simulation/parameterisation) will be described and CPU and memory figures will be given. An extrapolation to the FCC-hh case will be tried by taking as example the calorimeter simulation.

  15. II - Detector simulation for the LHC and beyond : how to match computing resources and physics requirements

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    Detector simulation at the LHC is one of the most computing intensive activities. In these lectures we will show how physics requirements were met for the LHC experiments and extrapolate to future experiments (FCC-hh case). At the LHC, detectors are complex, very precise and ambitious: this implies modern modelisation tools for geometry and response. Events are busy and characterised by an unprecedented energy scale with hundreds of particles to be traced and high energy showers to be accurately simulated. Furthermore, high luminosities imply many events in a bunch crossing and many bunch crossings to be considered at the same time. In addition, backgrounds not directly correlated to bunch crossings have also to be taken into account. Solutions chosen for ATLAS (a mixture of detailed simulation and fast simulation/parameterisation) will be described and CPU and memory figures will be given. An extrapolation to the FCC-hh case will be tried by taking as example the calorimeter simulation.

  16. Business Process Quality Computation : Computing Non-Functional Requirements to Improve Business Processes

    NARCIS (Netherlands)

    Heidari, F.

    2015-01-01

    Business process modelling is an important part of system design. When designing or redesigning a business process, stakeholders specify, negotiate, and agree on business requirements to be satisfied, including non-functional requirements that concern the quality of the business process. This thesis

  17. Heterogeneous High Throughput Scientific Computing with APM X-Gene and Intel Xeon Phi

    CERN Document Server

    Abdurachmanov, David; Elmer, Peter; Eulisse, Giulio; Knight, Robert; Muzaffar, Shahzad

    2014-01-01

    Electrical power requirements will be a constraint on the future growth of Distributed High Throughput Computing (DHTC) as used by High Energy Physics. Performance-per-watt is a critical metric for the evaluation of computer architectures for cost- efficient computing. Additionally, future performance growth will come from heterogeneous, many-core, and high computing density platforms with specialized processors. In this paper, we examine the Intel Xeon Phi Many Integrated Cores (MIC) co-processor and Applied Micro X-Gene ARMv8 64-bit low-power server system-on-a-chip (SoC) solutions for scientific computing applications. We report our experience on software porting, performance and energy efficiency and evaluate the potential for use of such technologies in the context of distributed computing systems such as the Worldwide LHC Computing Grid (WLCG).

  18. Heterogeneous High Throughput Scientific Computing with APM X-Gene and Intel Xeon Phi

    Science.gov (United States)

    Abdurachmanov, David; Bockelman, Brian; Elmer, Peter; Eulisse, Giulio; Knight, Robert; Muzaffar, Shahzad

    2015-05-01

    Electrical power requirements will be a constraint on the future growth of Distributed High Throughput Computing (DHTC) as used by High Energy Physics. Performance-per-watt is a critical metric for the evaluation of computer architectures for cost- efficient computing. Additionally, future performance growth will come from heterogeneous, many-core, and high computing density platforms with specialized processors. In this paper, we examine the Intel Xeon Phi Many Integrated Cores (MIC) co-processor and Applied Micro X-Gene ARMv8 64-bit low-power server system-on-a-chip (SoC) solutions for scientific computing applications. We report our experience on software porting, performance and energy efficiency and evaluate the potential for use of such technologies in the context of distributed computing systems such as the Worldwide LHC Computing Grid (WLCG).

  19. Heterogeneous High Throughput Scientific Computing with APM X-Gene and Intel Xeon Phi

    International Nuclear Information System (INIS)

    Abdurachmanov, David; Bockelman, Brian; Elmer, Peter; Eulisse, Giulio; Muzaffar, Shahzad; Knight, Robert

    2015-01-01

    Electrical power requirements will be a constraint on the future growth of Distributed High Throughput Computing (DHTC) as used by High Energy Physics. Performance-per-watt is a critical metric for the evaluation of computer architectures for cost- efficient computing. Additionally, future performance growth will come from heterogeneous, many-core, and high computing density platforms with specialized processors. In this paper, we examine the Intel Xeon Phi Many Integrated Cores (MIC) co-processor and Applied Micro X-Gene ARMv8 64-bit low-power server system-on-a-chip (SoC) solutions for scientific computing applications. We report our experience on software porting, performance and energy efficiency and evaluate the potential for use of such technologies in the context of distributed computing systems such as the Worldwide LHC Computing Grid (WLCG). (paper)

  20. Inclusive vision for high performance computing at the CSIR

    CSIR Research Space (South Africa)

    Gazendam, A

    2006-02-01

    Full Text Available and computationally intensive applications. A number of different technologies and standards were identified as core to the open and distributed high-performance infrastructure envisaged...

  1. Verifying cell loss requirements in high-speed communication networks

    Directory of Open Access Journals (Sweden)

    Kerry W. Fendick

    1998-01-01

    Full Text Available In high-speed communication networks it is common to have requirements of very small cell loss probabilities due to buffer overflow. Losses are measured to verify that the cell loss requirements are being met, but it is not clear how to interpret such measurements. We propose methods for determining whether or not cell loss requirements are being met. A key idea is to look at the stream of losses as successive clusters of losses. Often clusters of losses, rather than individual losses, should be regarded as the important “loss events”. Thus we propose modeling the cell loss process by a batch Poisson stochastic process. Successive clusters of losses are assumed to arrive according to a Poisson process. Within each cluster, cell losses do not occur at a single time, but the distance between losses within a cluster should be negligible compared to the distance between clusters. Thus, for the purpose of estimating the cell loss probability, we ignore the spaces between successive cell losses in a cluster of losses. Asymptotic theory suggests that the counting process of losses initiating clusters often should be approximately a Poisson process even though the cell arrival process is not nearly Poisson. The batch Poisson model is relatively easy to test statistically and fit; e.g., the batch-size distribution and the batch arrival rate can readily be estimated from cell loss data. Since batch (cluster sizes may be highly variable, it may be useful to focus on the number of batches instead of the number of cells in a measurement interval. We also propose a method for approximately determining the parameters of a special batch Poisson cell loss with geometric batch-size distribution from a queueing model of the buffer content. For this step, we use a reflected Brownian motion (RBM approximation of a G/D/1/C queueing model. We also use the RBM model to estimate the input burstiness given the cell loss rate. In addition, we use the RBM model to

  2. Contemporary high performance computing from petascale toward exascale

    CERN Document Server

    Vetter, Jeffrey S

    2013-01-01

    Contemporary High Performance Computing: From Petascale toward Exascale focuses on the ecosystems surrounding the world's leading centers for high performance computing (HPC). It covers many of the important factors involved in each ecosystem: computer architectures, software, applications, facilities, and sponsors. The first part of the book examines significant trends in HPC systems, including computer architectures, applications, performance, and software. It discusses the growth from terascale to petascale computing and the influence of the TOP500 and Green500 lists. The second part of the

  3. Scalable optical packet switch architecture for low latency and high load computer communication networks

    NARCIS (Netherlands)

    Calabretta, N.; Di Lucente, S.; Nazarathy, Y.; Raz, O.; Dorren, H.J.S.

    2011-01-01

    High performance computer and data-centers require PetaFlop/s processing speed and Petabyte storage capacity with thousands of low-latency short link interconnections between computers nodes. Switch matrices that operate transparently in the optical domain are a potential way to efficiently

  4. A high performance scientific cloud computing environment for materials simulations

    OpenAIRE

    Jorissen, Kevin; Vila, Fernando D.; Rehr, John J.

    2011-01-01

    We describe the development of a scientific cloud computing (SCC) platform that offers high performance computation capability. The platform consists of a scientific virtual machine prototype containing a UNIX operating system and several materials science codes, together with essential interface tools (an SCC toolset) that offers functionality comparable to local compute clusters. In particular, our SCC toolset provides automatic creation of virtual clusters for parallel computing, including...

  5. Requirements Report Computer Software System for a Semi-Automatic Pipe Handling System and Fabrication Facility

    National Research Council Canada - National Science Library

    1980-01-01

    .... This report is to present the requirements of the computer software that must be developed to create Pipe Detail Drawings and to support the processing of the Pipe Detail Drawings through the Pipe Shop...

  6. Material requirements for the High Speed Civil Transport

    Science.gov (United States)

    Stephens, Joseph R.; Hecht, Ralph J.; Johnson, Andrew M.

    1993-01-01

    Under NASA-sponsored High Speed Research (HSR) programs, the materials and processing requirements have been identified for overcoming the environmental and economic barriers of the next generation High Speed Civil Transport (HSCT) propulsion system. The long (2 to 5 hours) supersonic cruise portion of the HSCT cycle will place additional durability requirements on all hot section engine components. Low emissions combustor designs will require high temperature ceramic matrix composite liners to meet an emission goal of less than 5g NO(x) per Kg fuel burned. Large axisymmetric and two-dimensional exhaust nozzle designs are now under development to meet or exceed FAR 36 Stage III noise requirements, and will require lightweight, high temperature metallic, intermetallic, and ceramic matrix composites to reduce nozzle weight and meet structural and acoustic component performance goals. This paper describes and discusses the turbomachinery, combustor, and exhaust nozzle requirements of the High Speed Civil Transport propulsion system.

  7. Benchmark Numerical Toolkits for High Performance Computing, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Computational codes in physics and engineering often use implicit solution algorithms that require linear algebra tools such as Ax=b solvers, eigenvalue,...

  8. Low cost highly available digital control computer

    International Nuclear Information System (INIS)

    Silvers, M.W.

    1986-01-01

    When designing digital controllers for critical plant control it is important to provide several features. Among these are reliability, availability, maintainability, environmental protection, and low cost. An examination of several applications has lead to a design that can be produced for approximately $20,000 (1000 control points). This design is compatible with modern concepts in distributed and hierarchical control. The canonical controller element is a dual-redundant self-checking computer that communicates with a cross-strapped, electrically isolated input/output system. The input/output subsystem comprises multiple intelligent input/output cards. These cards accept commands from the primary processor which are validated, executed, and acknowledged. Each card may be hot replaced to facilitate sparing. The implementation of the dual-redundant computer architecture is discussed. Called the FS-86, this computer can be used for a variety of applications. It has most recently found application in the upgrade of San Francisco's Bay Area Rapid Transit (BART) train control currently in progress and has been proposed for feedwater control in a boiling water reactor

  9. Regional research exploitation of the LHC a case-study of the required computing resources

    CERN Document Server

    Almehed, S; Eerola, Paule Anna Mari; Mjörnmark, U; Smirnova, O G; Zacharatou-Jarlskog, C; Åkesson, T

    2002-01-01

    A simulation study to evaluate the required computing resources for a research exploitation of the Large Hadron Collider (LHC) has been performed. The evaluation was done as a case study, assuming existence of a Nordic regional centre and using the requirements for performing a specific physics analysis as a yard-stick. Other imput parameters were: assumption for the distribution of researchers at the institutions involved, an analysis model, and two different functional structures of the computing resources.

  10. Proceedings of the workshop on high resolution computed microtomography (CMT)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-02-01

    The purpose of the workshop was to determine the status of the field, to define instrumental and computational requirements, and to establish minimum specifications required by possible users. The most important message sent by implementers was the remainder that CMT is a tool. It solves a wide spectrum of scientific problems and is complementary to other microscopy techniques, with certain important advantages that the other methods do not have. High-resolution CMT can be used non-invasively and non-destructively to study a variety of hierarchical three-dimensional microstructures, which in turn control body function. X-ray computed microtomography can also be used at the frontiers of physics, in the study of granular systems, for example. With high-resolution CMT, for example, three-dimensional pore geometries and topologies of soils and rocks can be obtained readily and implemented directly in transport models. In turn, these geometries can be used to calculate fundamental physical properties, such as permeability and electrical conductivity, from first principles. Clearly, use of the high-resolution CMT technique will contribute tremendously to the advancement of current R and D technologies in the production, transport, storage, and utilization of oil and natural gas. It can also be applied to problems related to environmental pollution, particularly to spilling and seepage of hazardous chemicals into the Earth's subsurface. Applications to energy and environmental problems will be far-ranging and may soon extend to disciplines such as materials science--where the method can be used in the manufacture of porous ceramics, filament-resin composites, and microelectronics components--and to biomedicine, where it could be used to design biocompatible materials such as artificial bones, contact lenses, or medication-releasing implants. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  11. Research Activity in Computational Physics utilizing High Performance Computing: Co-authorship Network Analysis

    Science.gov (United States)

    Ahn, Sul-Ah; Jung, Youngim

    2016-10-01

    The research activities of the computational physicists utilizing high performance computing are analyzed by bibliometirc approaches. This study aims at providing the computational physicists utilizing high-performance computing and policy planners with useful bibliometric results for an assessment of research activities. In order to achieve this purpose, we carried out a co-authorship network analysis of journal articles to assess the research activities of researchers for high-performance computational physics as a case study. For this study, we used journal articles of the Scopus database from Elsevier covering the time period of 2004-2013. We extracted the author rank in the physics field utilizing high-performance computing by the number of papers published during ten years from 2004. Finally, we drew the co-authorship network for 45 top-authors and their coauthors, and described some features of the co-authorship network in relation to the author rank. Suggestions for further studies are discussed.

  12. High performance computations using dynamical nucleation theory

    International Nuclear Information System (INIS)

    Windus, T L; Crosby, L D; Kathmann, S M

    2008-01-01

    Chemists continue to explore the use of very large computations to perform simulations that describe the molecular level physics of critical challenges in science. In this paper, we describe the Dynamical Nucleation Theory Monte Carlo (DNTMC) model - a model for determining molecular scale nucleation rate constants - and its parallel capabilities. The potential for bottlenecks and the challenges to running on future petascale or larger resources are delineated. A 'master-slave' solution is proposed to scale to the petascale and will be developed in the NWChem software. In addition, mathematical and data analysis challenges are described

  13. A data acquisition computer for high energy physics applications DAFNE:- hardware manual

    International Nuclear Information System (INIS)

    Barlow, J.; Seller, P.; De-An, W.

    1983-07-01

    A high performance stand alone computer system based on the Motorola 68000 micro processor has been built at the Rutherford Appleton Laboratory. Although the design was strongly influenced by the requirement to provide a compact data acquisition computer for the high energy physics environment, the system is sufficiently general to find applications in a wider area. It provides colour graphics and tape and disc storage together with access to CAMAC systems. This report is the hardware manual of the data acquisition computer, DAFNE (Data Acquisition For Nuclear Experiments), and as such contains a full description of the hardware structure of the computer system. (author)

  14. A Heterogeneous High-Performance System for Computational and Computer Science

    Science.gov (United States)

    2016-11-15

    expand the research infrastructure at the institution but also to enhance the high -performance computing training provided to both undergraduate and... cloud computing, supercomputing, and the availability of cheap memory and storage led to enormous amounts of data to be sifted through in forensic... High -Performance Computing (HPC) tools that can be integrated with existing curricula and support our research to modernize and dramatically advance

  15. High Performance Computing in Science and Engineering '08 : Transactions of the High Performance Computing Center

    CERN Document Server

    Kröner, Dietmar; Resch, Michael

    2009-01-01

    The discussions and plans on all scienti?c, advisory, and political levels to realize an even larger “European Supercomputer” in Germany, where the hardware costs alone will be hundreds of millions Euro – much more than in the past – are getting closer to realization. As part of the strategy, the three national supercomputing centres HLRS (Stuttgart), NIC/JSC (Julic ¨ h) and LRZ (Munich) have formed the Gauss Centre for Supercomputing (GCS) as a new virtual organization enabled by an agreement between the Federal Ministry of Education and Research (BMBF) and the state ministries for research of Baden-Wurttem ¨ berg, Bayern, and Nordrhein-Westfalen. Already today, the GCS provides the most powerful high-performance computing - frastructure in Europe. Through GCS, HLRS participates in the European project PRACE (Partnership for Advances Computing in Europe) and - tends its reach to all European member countries. These activities aligns well with the activities of HLRS in the European HPC infrastructur...

  16. HIGH-PERFORMANCE COMPUTING FOR THE STUDY OF EARTH AND ENVIRONMENTAL SCIENCE MATERIALS USING SYNCHROTRON X-RAY COMPUTED MICROTOMOGRAPHY

    International Nuclear Information System (INIS)

    FENG, H.; JONES, K.W.; MCGUIGAN, M.; SMITH, G.J.; SPILETIC, J.

    2001-01-01

    Synchrotron x-ray computed microtomography (CMT) is a non-destructive method for examination of rock, soil, and other types of samples studied in the earth and environmental sciences. The high x-ray intensities of the synchrotron source make possible the acquisition of tomographic volumes at a high rate that requires the application of high-performance computing techniques for data reconstruction to produce the three-dimensional volumes, for their visualization, and for data analysis. These problems are exacerbated by the need to share information between collaborators at widely separated locations over both local and tide-area networks. A summary of the CMT technique and examples of applications are given here together with a discussion of the applications of high-performance computing methods to improve the experimental techniques and analysis of the data

  17. HIGH-PERFORMANCE COMPUTING FOR THE STUDY OF EARTH AND ENVIRONMENTAL SCIENCE MATERIALS USING SYNCHROTRON X-RAY COMPUTED MICROTOMOGRAPHY.

    Energy Technology Data Exchange (ETDEWEB)

    FENG,H.; JONES,K.W.; MCGUIGAN,M.; SMITH,G.J.; SPILETIC,J.

    2001-10-12

    Synchrotron x-ray computed microtomography (CMT) is a non-destructive method for examination of rock, soil, and other types of samples studied in the earth and environmental sciences. The high x-ray intensities of the synchrotron source make possible the acquisition of tomographic volumes at a high rate that requires the application of high-performance computing techniques for data reconstruction to produce the three-dimensional volumes, for their visualization, and for data analysis. These problems are exacerbated by the need to share information between collaborators at widely separated locations over both local and tide-area networks. A summary of the CMT technique and examples of applications are given here together with a discussion of the applications of high-performance computing methods to improve the experimental techniques and analysis of the data.

  18. A comprehensive approach to decipher biological computation to achieve next generation high-performance exascale computing.

    Energy Technology Data Exchange (ETDEWEB)

    James, Conrad D.; Schiess, Adrian B.; Howell, Jamie; Baca, Michael J.; Partridge, L. Donald; Finnegan, Patrick Sean; Wolfley, Steven L.; Dagel, Daryl James; Spahn, Olga Blum; Harper, Jason C.; Pohl, Kenneth Roy; Mickel, Patrick R.; Lohn, Andrew; Marinella, Matthew

    2013-10-01

    The human brain (volume=1200cm3) consumes 20W and is capable of performing > 10^16 operations/s. Current supercomputer technology has reached 1015 operations/s, yet it requires 1500m^3 and 3MW, giving the brain a 10^12 advantage in operations/s/W/cm^3. Thus, to reach exascale computation, two achievements are required: 1) improved understanding of computation in biological tissue, and 2) a paradigm shift towards neuromorphic computing where hardware circuits mimic properties of neural tissue. To address 1), we will interrogate corticostriatal networks in mouse brain tissue slices, specifically with regard to their frequency filtering capabilities as a function of input stimulus. To address 2), we will instantiate biological computing characteristics such as multi-bit storage into hardware devices with future computational and memory applications. Resistive memory devices will be modeled, designed, and fabricated in the MESA facility in consultation with our internal and external collaborators.

  19. Power/energy use cases for high performance computing

    Energy Technology Data Exchange (ETDEWEB)

    Laros, James H. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Kelly, Suzanne M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hammond, Steven [National Renewable Energy Lab. (NREL), Golden, CO (United States); Elmore, Ryan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Munch, Kristin [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2013-12-01

    Power and Energy have been identified as a first order challenge for future extreme scale high performance computing (HPC) systems. In practice the breakthroughs will need to be provided by the hardware vendors. But to make the best use of the solutions in an HPC environment, it will likely require periodic tuning by facility operators and software components. This document describes the actions and interactions needed to maximize power resources. It strives to cover the entire operational space in which an HPC system occupies. The descriptions are presented as formal use cases, as documented in the Unified Modeling Language Specification [1]. The document is intended to provide a common understanding to the HPC community of the necessary management and control capabilities. Assuming a common understanding can be achieved, the next step will be to develop a set of Application Programing Interfaces (APIs) to which hardware vendors and software developers could utilize to steer power consumption.

  20. RISC Processors and High Performance Computing

    Science.gov (United States)

    Bailey, David H.; Saini, Subhash; Craw, James M. (Technical Monitor)

    1995-01-01

    This tutorial will discuss the top five RISC microprocessors and the parallel systems in which they are used. It will provide a unique cross-machine comparison not available elsewhere. The effective performance of these processors will be compared by citing standard benchmarks in the context of real applications. The latest NAS Parallel Benchmarks, both absolute performance and performance per dollar, will be listed. The next generation of the NPB will be described. The tutorial will conclude with a discussion of future directions in the field. Technology Transfer Considerations: All of these computer systems are commercially available internationally. Information about these processors is available in the public domain, mostly from the vendors themselves. The NAS Parallel Benchmarks and their results have been previously approved numerous times for public release, beginning back in 1991.

  1. 78 FR 47015 - Software Requirement Specifications for Digital Computer Software Used in Safety Systems of...

    Science.gov (United States)

    2013-08-02

    ... NUCLEAR REGULATORY COMMISSION [NRC-2012-0195] Software Requirement Specifications for Digital Computer Software Used in Safety Systems of Nuclear Power Plants AGENCY: Nuclear Regulatory Commission... issuing a revised regulatory guide (RG), revision 1 of RG 1.172, ``Software Requirement Specifications for...

  2. Development of superconductor electronics technology for high-end computing

    Energy Technology Data Exchange (ETDEWEB)

    Silver, A [Jet Propulsion Laboratory, 4800 Oak Grove Drive, Pasadena, CA 91109-8099 (United States); Kleinsasser, A [Jet Propulsion Laboratory, 4800 Oak Grove Drive, Pasadena, CA 91109-8099 (United States); Kerber, G [Northrop Grumman Space Technology, One Space Park, Redondo Beach, CA 90278 (United States); Herr, Q [Northrop Grumman Space Technology, One Space Park, Redondo Beach, CA 90278 (United States); Dorojevets, M [Department of Electrical and Computer Engineering, SUNY-Stony Brook, NY 11794-2350 (United States); Bunyk, P [Northrop Grumman Space Technology, One Space Park, Redondo Beach, CA 90278 (United States); Abelson, L [Northrop Grumman Space Technology, One Space Park, Redondo Beach, CA 90278 (United States)

    2003-12-01

    This paper describes our programme to develop and demonstrate ultra-high performance single flux quantum (SFQ) VLSI technology that will enable superconducting digital processors for petaFLOPS-scale computing. In the hybrid technology, multi-threaded architecture, the computational engine to power a petaFLOPS machine at affordable power will consist of 4096 SFQ multi-chip processors, with 50 to 100 GHz clock frequency and associated cryogenic RAM. We present the superconducting technology requirements, progress to date and our plan to meet these requirements. We improved SFQ Nb VLSI by two generations, to a 8 kA cm{sup -2}, 1.25 {mu}m junction process, incorporated new CAD tools into our methodology, demonstrated methods for recycling the bias current and data communication at speeds up to 60 Gb s{sup -1}, both on and between chips through passive transmission lines. FLUX-1 is the most ambitious project implemented in SFQ technology to date, a prototype general-purpose 8 bit microprocessor chip. We are testing the FLUX-1 chip (5K gates, 20 GHz clock) and designing a 32 bit floating-point SFQ multiplier with vector-register memory. We report correct operation of the complete stripline-connected gate library with large bias margins, as well as several larger functional units used in FLUX-1. The next stage will be an SFQ multi-processor machine. Important challenges include further reducing chip supply current and on-chip power dissipation, developing at least 64 kbit, sub-nanosecond cryogenic RAM chips, developing thermally and electrically efficient high data rate cryogenic-to-ambient input/output technology and improving Nb VLSI to increase gate density.

  3. Development of superconductor electronics technology for high-end computing

    International Nuclear Information System (INIS)

    Silver, A; Kleinsasser, A; Kerber, G; Herr, Q; Dorojevets, M; Bunyk, P; Abelson, L

    2003-01-01

    This paper describes our programme to develop and demonstrate ultra-high performance single flux quantum (SFQ) VLSI technology that will enable superconducting digital processors for petaFLOPS-scale computing. In the hybrid technology, multi-threaded architecture, the computational engine to power a petaFLOPS machine at affordable power will consist of 4096 SFQ multi-chip processors, with 50 to 100 GHz clock frequency and associated cryogenic RAM. We present the superconducting technology requirements, progress to date and our plan to meet these requirements. We improved SFQ Nb VLSI by two generations, to a 8 kA cm -2 , 1.25 μm junction process, incorporated new CAD tools into our methodology, demonstrated methods for recycling the bias current and data communication at speeds up to 60 Gb s -1 , both on and between chips through passive transmission lines. FLUX-1 is the most ambitious project implemented in SFQ technology to date, a prototype general-purpose 8 bit microprocessor chip. We are testing the FLUX-1 chip (5K gates, 20 GHz clock) and designing a 32 bit floating-point SFQ multiplier with vector-register memory. We report correct operation of the complete stripline-connected gate library with large bias margins, as well as several larger functional units used in FLUX-1. The next stage will be an SFQ multi-processor machine. Important challenges include further reducing chip supply current and on-chip power dissipation, developing at least 64 kbit, sub-nanosecond cryogenic RAM chips, developing thermally and electrically efficient high data rate cryogenic-to-ambient input/output technology and improving Nb VLSI to increase gate density

  4. Parallel Computing:. Some Activities in High Energy Physics

    Science.gov (United States)

    Willers, Ian

    This paper examines some activities in High Energy Physics that utilise parallel computing. The topic includes all computing from the proposed SIMD front end detectors, the farming applications, high-powered RISC processors and the large machines in the computer centers. We start by looking at the motivation behind using parallelism for general purpose computing. The developments around farming are then described from its simplest form to the more complex system in Fermilab. Finally, there is a list of some developments that are happening close to the experiments.

  5. A high performance scientific cloud computing environment for materials simulations

    Science.gov (United States)

    Jorissen, K.; Vila, F. D.; Rehr, J. J.

    2012-09-01

    We describe the development of a scientific cloud computing (SCC) platform that offers high performance computation capability. The platform consists of a scientific virtual machine prototype containing a UNIX operating system and several materials science codes, together with essential interface tools (an SCC toolset) that offers functionality comparable to local compute clusters. In particular, our SCC toolset provides automatic creation of virtual clusters for parallel computing, including tools for execution and monitoring performance, as well as efficient I/O utilities that enable seamless connections to and from the cloud. Our SCC platform is optimized for the Amazon Elastic Compute Cloud (EC2). We present benchmarks for prototypical scientific applications and demonstrate performance comparable to local compute clusters. To facilitate code execution and provide user-friendly access, we have also integrated cloud computing capability in a JAVA-based GUI. Our SCC platform may be an alternative to traditional HPC resources for materials science or quantum chemistry applications.

  6. The Principals and Practice of Distributed High Throughput Computing

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    The potential of Distributed Processing Systems to deliver computing capabilities with qualities ranging from high availability and reliability to easy expansion in functionality and capacity were recognized and formalized in the 1970’s. For more three decade these principals Distributed Computing guided the development of the HTCondor resource and job management system. The widely adopted suite of software tools offered by HTCondor are based on novel distributed computing technologies and are driven by the evolving needs of High Throughput scientific applications. We will review the principals that underpin our work, the distributed computing frameworks and technologies we developed and the lessons we learned from delivering effective and dependable software tools in an ever changing landscape computing technologies and needs that range today from a desktop computer to tens of thousands of cores offered by commercial clouds. About the speaker Miron Livny received a B.Sc. degree in Physics and Mat...

  7. Highly reliable computer network for real time system

    International Nuclear Information System (INIS)

    Mohammed, F.A.; Omar, A.A.; Ayad, N.M.A.; Madkour, M.A.I.; Ibrahim, M.K.

    1988-01-01

    Many of computer networks have been studied different trends regarding the network architecture and the various protocols that govern data transfers and guarantee a reliable communication among all a hierarchical network structure has been proposed to provide a simple and inexpensive way for the realization of a reliable real-time computer network. In such architecture all computers in the same level are connected to a common serial channel through intelligent nodes that collectively control data transfers over the serial channel. This level of computer network can be considered as a local area computer network (LACN) that can be used in nuclear power plant control system since it has geographically dispersed subsystems. network expansion would be straight the common channel for each added computer (HOST). All the nodes are designed around a microprocessor chip to provide the required intelligence. The node can be divided into two sections namely a common section that interfaces with serial data channel and a private section to interface with the host computer. This part would naturally tend to have some variations in the hardware details to match the requirements of individual host computers. fig 7

  8. Agglomeration Economies and the High-Tech Computer

    OpenAIRE

    Wallace, Nancy E.; Walls, Donald

    2004-01-01

    This paper considers the effects of agglomeration on the production decisions of firms in the high-tech computer cluster. We build upon an alternative definition of the high-tech computer cluster developed by Bardhan et al. (2003) and we exploit a new data source, the National Establishment Time-Series (NETS) Database, to analyze the spatial distribution of firms in this industry. An essential contribution of this research is the recognition that high-tech firms are heterogeneous collections ...

  9. Computer-aided engineering in High Energy Physics

    International Nuclear Information System (INIS)

    Bachy, G.; Hauviller, C.; Messerli, R.; Mottier, M.

    1988-01-01

    Computing, standard tool for a long time in the High Energy Physics community, is being slowly introduced at CERN in the mechanical engineering field. The first major application was structural analysis followed by Computer-Aided Design (CAD). Development work is now progressing towards Computer-Aided Engineering around a powerful data base. This paper gives examples of the power of this approach applied to engineering for accelerators and detectors

  10. Quantum Accelerators for High-Performance Computing Systems

    OpenAIRE

    Britt, Keith A.; Mohiyaddin, Fahd A.; Humble, Travis S.

    2017-01-01

    We define some of the programming and system-level challenges facing the application of quantum processing to high-performance computing. Alongside barriers to physical integration, prominent differences in the execution of quantum and conventional programs challenges the intersection of these computational models. Following a brief overview of the state of the art, we discuss recent advances in programming and execution models for hybrid quantum-classical computing. We discuss a novel quantu...

  11. High Performance Networks From Supercomputing to Cloud Computing

    CERN Document Server

    Abts, Dennis

    2011-01-01

    Datacenter networks provide the communication substrate for large parallel computer systems that form the ecosystem for high performance computing (HPC) systems and modern Internet applications. The design of new datacenter networks is motivated by an array of applications ranging from communication intensive climatology, complex material simulations and molecular dynamics to such Internet applications as Web search, language translation, collaborative Internet applications, streaming video and voice-over-IP. For both Supercomputing and Cloud Computing the network enables distributed applicati

  12. Real-time Tsunami Inundation Prediction Using High Performance Computers

    Science.gov (United States)

    Oishi, Y.; Imamura, F.; Sugawara, D.

    2014-12-01

    Recently off-shore tsunami observation stations based on cabled ocean bottom pressure gauges are actively being deployed especially in Japan. These cabled systems are designed to provide real-time tsunami data before tsunamis reach coastlines for disaster mitigation purposes. To receive real benefits of these observations, real-time analysis techniques to make an effective use of these data are necessary. A representative study was made by Tsushima et al. (2009) that proposed a method to provide instant tsunami source prediction based on achieving tsunami waveform data. As time passes, the prediction is improved by using updated waveform data. After a tsunami source is predicted, tsunami waveforms are synthesized from pre-computed tsunami Green functions of linear long wave equations. Tsushima et al. (2014) updated the method by combining the tsunami waveform inversion with an instant inversion of coseismic crustal deformation and improved the prediction accuracy and speed in the early stages. For disaster mitigation purposes, real-time predictions of tsunami inundation are also important. In this study, we discuss the possibility of real-time tsunami inundation predictions, which require faster-than-real-time tsunami inundation simulation in addition to instant tsunami source analysis. Although the computational amount is large to solve non-linear shallow water equations for inundation predictions, it has become executable through the recent developments of high performance computing technologies. We conducted parallel computations of tsunami inundation and achieved 6.0 TFLOPS by using 19,000 CPU cores. We employed a leap-frog finite difference method with nested staggered grids of which resolution range from 405 m to 5 m. The resolution ratio of each nested domain was 1/3. Total number of grid points were 13 million, and the time step was 0.1 seconds. Tsunami sources of 2011 Tohoku-oki earthquake were tested. The inundation prediction up to 2 hours after the

  13. Short-term effects of implemented high intensity shoulder elevation during computer work

    DEFF Research Database (Denmark)

    Larsen, Mette K.; Samani, Afshin; Madeleine, Pascal

    2009-01-01

    computer work to prevent neck-shoulder pain may be possible without affecting the working routines. However, the unexpected reduction in clavicular trapezius rest during a pause with preceding high intensity contraction requires further investigation before high intensity shoulder elevations can......BACKGROUND: Work-site strength training sessions are shown effective to prevent and reduce neck-shoulder pain in computer workers, but difficult to integrate in normal working routines. A solution for avoiding neck-shoulder pain during computer work may be to implement high intensity voluntary...... contractions during the computer work. However, it is unknown how this may influence productivity, rate of perceived exertion (RPE) as well as activity and rest of neck-shoulder muscles during computer work. The aim of this study was to investigate short-term effects of a high intensity contraction...

  14. High temperature estimation through computer vision

    International Nuclear Information System (INIS)

    Segovia de los R, J.A.

    1996-01-01

    The form recognition process has between his purposes to conceive and to analyze the classification algorithms applied to the image representations, sounds or signals of any kind. In a process with a thermal plasma reactor in which cannot be employed conventional dispositives or methods for the measurement of the very high temperatures. The goal of this work was to determine these temperatures in an indirect way. (Author)

  15. Leadership in organizations with high security and reliability requirements

    International Nuclear Information System (INIS)

    Gonzalez, F.

    2013-01-01

    Developing leadership skills in organizations is the key to ensure the sustainability of excellent results in industries with high requirements safety and reliability. In order to have a model of leadership development specific to this type of organizations, Tecnatom in 2011, we initiated a project internal, to find and adapt a competency model to these requirements.

  16. X-ray beam-shaping via deformable mirrors: Analytical computation of the required mirror profile

    International Nuclear Information System (INIS)

    Spiga, Daniele; Raimondi, Lorenzo; Svetina, Cristian; Zangrando, Marco

    2013-01-01

    X-ray mirrors with high focusing performances are in use in both mirror modules for X-ray telescopes and in synchrotron and FEL (Free Electron Laser) beamlines. A degradation of the focus sharpness arises in general from geometrical deformations and surface roughness, the former usually described by geometrical optics and the latter by physical optics. In general, technological developments are aimed at a very tight focusing, which requires the mirror profile to comply with the nominal shape as much as possible and to keep the roughness at a negligible level. However, a deliberate deformation of the mirror can be made to endow the focus with a desired size and distribution, via piezo actuators as done at the EIS-TIMEX beamline of FERMI@Elettra. The resulting profile can be characterized with a Long Trace Profilometer and correlated with the expected optical quality via a wavefront propagation code. However, if the roughness contribution can be neglected, the computation can be performed via a ray-tracing routine, and, under opportune assumptions, the focal spot profile (the Point Spread Function, PSF) can even be predicted analytically. The advantage of this approach is that the analytical relation can be reversed; i.e., from the desired PSF the required mirror profile can be computed easily, thereby avoiding the use of complex and time-consuming numerical codes. The method can also be suited in the case of spatially inhomogeneous beam intensities, as commonly experienced at synchrotrons and FELs. In this work we expose the analytical method and the application to the beam shaping problem

  17. High Performance Computing in Science and Engineering '14

    CERN Document Server

    Kröner, Dietmar; Resch, Michael

    2015-01-01

    This book presents the state-of-the-art in supercomputer simulation. It includes the latest findings from leading researchers using systems from the High Performance Computing Center Stuttgart (HLRS). The reports cover all fields of computational science and engineering ranging from CFD to computational physics and from chemistry to computer science with a special emphasis on industrially relevant applications. Presenting findings of one of Europe’s leading systems, this volume covers a wide variety of applications that deliver a high level of sustained performance. The book covers the main methods in high-performance computing. Its outstanding results in achieving the best performance for production codes are of particular interest for both scientists and   engineers. The book comes with a wealth of color illustrations and tables of results.  

  18. Input data requirements for special processors in the computation system containing the VENTURE neutronics code

    International Nuclear Information System (INIS)

    Vondy, D.R.; Fowler, T.B.; Cunningham, G.W.

    1979-07-01

    User input data requirements are presented for certain special processors in a nuclear reactor computation system. These processors generally read data in formatted form and generate binary interface data files. Some data processing is done to convert from the user oriented form to the interface file forms. The VENTURE diffusion theory neutronics code and other computation modules in this system use the interface data files which are generated

  19. Input data requirements for special processors in the computation system containing the VENTURE neutronics code

    International Nuclear Information System (INIS)

    Vondy, D.R.; Fowler, T.B.; Cunningham, G.W.

    1976-11-01

    This report presents user input data requirements for certain special processors in a nuclear reactor computation system. These processors generally read data in formatted form and generate binary interface data files. Some data processing is done to convert from the user-oriented form to the interface file forms. The VENTURE diffusion theory neutronics code and other computation modules in this system use the interface data files which are generated

  20. The Computer Industry. High Technology Industries: Profiles and Outlooks.

    Science.gov (United States)

    International Trade Administration (DOC), Washington, DC.

    A series of meetings was held to assess future problems in United States high technology, particularly in the fields of robotics, computers, semiconductors, and telecommunications. This report, which focuses on the computer industry, includes a profile of this industry and the papers presented by industry speakers during the meetings. The profile…

  1. An Introduction to Computing: Content for a High School Course.

    Science.gov (United States)

    Rogers, Jean B.

    A general outline of the topics that might be covered in a computers and computing course for high school students is provided. Topics are listed in the order in which they should be taught, and the relative amount of time to be spent on each topic is suggested. Seven units are included in the course outline: (1) general introduction, (2) using…

  2. Improvements in high energy computed tomography

    International Nuclear Information System (INIS)

    Burstein, P.; Krieger, A.; Annis, M.

    1984-01-01

    In computerized axial tomography employed with large relatively dense objects such as a solid fuel rocket engine, using high energy x-rays, such as a 15 MeV source, a collimator is employed with an acceptance angle substantially less than 1 0 , in a preferred embodiment 7 minutes of a degree. In a preferred embodiment, the collimator may be located between the object and the detector, although in other embodiments, a pre-collimator may also be used, that is between the x-ray source and the object being illuminated. (author)

  3. Building a High Performance Computing Infrastructure for Novosibirsk Scientific Center

    International Nuclear Information System (INIS)

    Adakin, A; Chubarov, D; Nikultsev, V; Belov, S; Kaplin, V; Sukharev, A; Zaytsev, A; Kalyuzhny, V; Kuchin, N; Lomakin, S

    2011-01-01

    Novosibirsk Scientific Center (NSC), also known worldwide as Akademgorodok, is one of the largest Russian scientific centers hosting Novosibirsk State University (NSU) and more than 35 research organizations of the Siberian Branch of Russian Academy of Sciences including Budker Institute of Nuclear Physics (BINP), Institute of Computational Technologies (ICT), and Institute of Computational Mathematics and Mathematical Geophysics (ICM and MG). Since each institute has specific requirements on the architecture of the computing farms involved in its research field, currently we've got several computing facilities hosted by NSC institutes, each optimized for the particular set of tasks, of which the largest are the NSU Supercomputer Center, Siberian Supercomputer Center (ICM and MG), and a Grid Computing Facility of BINP. Recently a dedicated optical network with the initial bandwidth of 10 Gbps connecting these three facilities was built in order to make it possible to share the computing resources among the research communities of participating institutes, thus providing a common platform for building the computing infrastructure for various scientific projects. Unification of the computing infrastructure is achieved by extensive use of virtualization technologies based on XEN and KVM platforms. The solution implemented was tested thoroughly within the computing environment of KEDR detector experiment which is being carried out at BINP, and foreseen to be applied to the use cases of other HEP experiments in the upcoming future.

  4. High performance computing system in the framework of the Higgs boson studies

    CERN Document Server

    Belyaev, Nikita; The ATLAS collaboration

    2017-01-01

    The Higgs boson physics is one of the most important and promising fields of study in modern High Energy Physics. To perform precision measurements of the Higgs boson properties, the use of fast and efficient instruments of Monte Carlo event simulation is required. Due to the increasing amount of data and to the growing complexity of the simulation software tools, the computing resources currently available for Monte Carlo simulation on the LHC GRID are not sufficient. One of the possibilities to address this shortfall of computing resources is the usage of institutes computer clusters, commercial computing resources and supercomputers. In this paper, a brief description of the Higgs boson physics, the Monte-Carlo generation and event simulation techniques are presented. A description of modern high performance computing systems and tests of their performance are also discussed. These studies have been performed on the Worldwide LHC Computing Grid and Kurchatov Institute Data Processing Center, including Tier...

  5. High performance computing in power and energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Khaitan, Siddhartha Kumar [Iowa State Univ., Ames, IA (United States); Gupta, Anshul (eds.) [IBM Watson Research Center, Yorktown Heights, NY (United States)

    2013-07-01

    The twin challenge of meeting global energy demands in the face of growing economies and populations and restricting greenhouse gas emissions is one of the most daunting ones that humanity has ever faced. Smart electrical generation and distribution infrastructure will play a crucial role in meeting these challenges. We would need to develop capabilities to handle large volumes of data generated by the power system components like PMUs, DFRs and other data acquisition devices as well as by the capacity to process these data at high resolution via multi-scale and multi-period simulations, cascading and security analysis, interaction between hybrid systems (electric, transport, gas, oil, coal, etc.) and so on, to get meaningful information in real time to ensure a secure, reliable and stable power system grid. Advanced research on development and implementation of market-ready leading-edge high-speed enabling technologies and algorithms for solving real-time, dynamic, resource-critical problems will be required for dynamic security analysis targeted towards successful implementation of Smart Grid initiatives. This books aims to bring together some of the latest research developments as well as thoughts on the future research directions of the high performance computing applications in electric power systems planning, operations, security, markets, and grid integration of alternate sources of energy, etc.

  6. COMPUTERS: Teraflops for Europe; EEC Working Group on High Performance Computing

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1991-03-15

    In little more than a decade, simulation on high performance computers has become an essential tool for theoretical physics, capable of solving a vast range of crucial problems inaccessible to conventional analytic mathematics. In many ways, computer simulation has become the calculus for interacting many-body systems, a key to the study of transitions from isolated to collective behaviour.

  7. COMPUTERS: Teraflops for Europe; EEC Working Group on High Performance Computing

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    In little more than a decade, simulation on high performance computers has become an essential tool for theoretical physics, capable of solving a vast range of crucial problems inaccessible to conventional analytic mathematics. In many ways, computer simulation has become the calculus for interacting many-body systems, a key to the study of transitions from isolated to collective behaviour

  8. High throughput computing: a solution for scientific analysis

    Science.gov (United States)

    O'Donnell, M.

    2011-01-01

    Public land management agencies continually face resource management problems that are exacerbated by climate warming, land-use change, and other human activities. As the U.S. Geological Survey (USGS) Fort Collins Science Center (FORT) works with managers in U.S. Department of the Interior (DOI) agencies and other federal, state, and private entities, researchers are finding that the science needed to address these complex ecological questions across time and space produces substantial amounts of data. The additional data and the volume of computations needed to analyze it require expanded computing resources well beyond single- or even multiple-computer workstations. To meet this need for greater computational capacity, FORT investigated how to resolve the many computational shortfalls previously encountered when analyzing data for such projects. Our objectives included finding a solution that would:

  9. Profiles of Motivated Self-Regulation in College Computer Science Courses: Differences in Major versus Required Non-Major Courses

    Science.gov (United States)

    Shell, Duane F.; Soh, Leen-Kiat

    2013-12-01

    The goal of the present study was to utilize a profiling approach to understand differences in motivation and strategic self-regulation among post-secondary STEM students in major versus required non-major computer science courses. Participants were 233 students from required introductory computer science courses (194 men; 35 women; 4 unknown) at a large Midwestern state university. Cluster analysis identified five profiles: (1) a strategic profile of a highly motivated by-any-means good strategy user; (2) a knowledge-building profile of an intrinsically motivated autonomous, mastery-oriented student; (3) a surface learning profile of a utility motivated minimally engaged student; (4) an apathetic profile of an amotivational disengaged student; and (5) a learned helpless profile of a motivated but unable to effectively self-regulate student. Among CS majors and students in courses in their major field, the strategic and knowledge-building profiles were the most prevalent. Among non-CS majors and students in required non-major courses, the learned helpless, surface learning, and apathetic profiles were the most prevalent. Students in the strategic and knowledge-building profiles had significantly higher retention of computational thinking knowledge than students in other profiles. Students in the apathetic and surface learning profiles saw little instrumentality of the course for their future academic and career objectives. Findings show that students in STEM fields taking required computer science courses exhibit the same constellation of motivated strategic self-regulation profiles found in other post-secondary and K-12 settings.

  10. High resolution computed tomography of auditory ossicles

    International Nuclear Information System (INIS)

    Isono, M.; Murata, K.; Ohta, F.; Yoshida, A.; Ishida, O.; Kinki Univ., Osaka

    1990-01-01

    Auditory ossicular sections were scanned at section thicknesses (mm)/section interspaces (mm) of 1.5/1.5 (61 patients), 1.0/1.0 (13 patients) or 1.5/1.0 (33 patients). At any type of section thickness/interspace, the malleal and incudal structures were observed with almost equal frequency. The region of the incudostapedial joint and each component part of the stapes were shown more frequently at a section interspace of 1.0 mm than at 1.5 mm. The visualization frequency of each auditory ossicular component on two or more serial sections was investigated. At a section thickness/section interspace of 1.5/1.5, the visualization rates were low except for large components such as the head of the malleus and the body of the incus, but at a slice interspace of 1.0 mm, they were high for most components of the auditory ossicles. (orig.)

  11. Enabling Efficient Climate Science Workflows in High Performance Computing Environments

    Science.gov (United States)

    Krishnan, H.; Byna, S.; Wehner, M. F.; Gu, J.; O'Brien, T. A.; Loring, B.; Stone, D. A.; Collins, W.; Prabhat, M.; Liu, Y.; Johnson, J. N.; Paciorek, C. J.

    2015-12-01

    A typical climate science workflow often involves a combination of acquisition of data, modeling, simulation, analysis, visualization, publishing, and storage of results. Each of these tasks provide a myriad of challenges when running on a high performance computing environment such as Hopper or Edison at NERSC. Hurdles such as data transfer and management, job scheduling, parallel analysis routines, and publication require a lot of forethought and planning to ensure that proper quality control mechanisms are in place. These steps require effectively utilizing a combination of well tested and newly developed functionality to move data, perform analysis, apply statistical routines, and finally, serve results and tools to the greater scientific community. As part of the CAlibrated and Systematic Characterization, Attribution and Detection of Extremes (CASCADE) project we highlight a stack of tools our team utilizes and has developed to ensure that large scale simulation and analysis work are commonplace and provide operations that assist in everything from generation/procurement of data (HTAR/Globus) to automating publication of results to portals like the Earth Systems Grid Federation (ESGF), all while executing everything in between in a scalable environment in a task parallel way (MPI). We highlight the use and benefit of these tools by showing several climate science analysis use cases they have been applied to.

  12. Fluid/Structure Interaction Studies of Aircraft Using High Fidelity Equations on Parallel Computers

    Science.gov (United States)

    Guruswamy, Guru; VanDalsem, William (Technical Monitor)

    1994-01-01

    Abstract Aeroelasticity which involves strong coupling of fluids, structures and controls is an important element in designing an aircraft. Computational aeroelasticity using low fidelity methods such as the linear aerodynamic flow equations coupled with the modal structural equations are well advanced. Though these low fidelity approaches are computationally less intensive, they are not adequate for the analysis of modern aircraft such as High Speed Civil Transport (HSCT) and Advanced Subsonic Transport (AST) which can experience complex flow/structure interactions. HSCT can experience vortex induced aeroelastic oscillations whereas AST can experience transonic buffet associated structural oscillations. Both aircraft may experience a dip in the flutter speed at the transonic regime. For accurate aeroelastic computations at these complex fluid/structure interaction situations, high fidelity equations such as the Navier-Stokes for fluids and the finite-elements for structures are needed. Computations using these high fidelity equations require large computational resources both in memory and speed. Current conventional super computers have reached their limitations both in memory and speed. As a result, parallel computers have evolved to overcome the limitations of conventional computers. This paper will address the transition that is taking place in computational aeroelasticity from conventional computers to parallel computers. The paper will address special techniques needed to take advantage of the architecture of new parallel computers. Results will be illustrated from computations made on iPSC/860 and IBM SP2 computer by using ENSAERO code that directly couples the Euler/Navier-Stokes flow equations with high resolution finite-element structural equations.

  13. Software Applications on the Peregrine System | High-Performance Computing

    Science.gov (United States)

    Algebraic Modeling System (GAMS) Statistics and analysis High-level modeling system for mathematical reactivity. Gurobi Optimizer Statistics and analysis Solver for mathematical programming LAMMPS Chemistry and , reactivities, and vibrational, electronic and NMR spectra. R Statistical Computing Environment Statistics and

  14. The comparison of high and standard definition computed ...

    African Journals Online (AJOL)

    The comparison of high and standard definition computed tomography techniques regarding coronary artery imaging. A Aykut, D Bumin, Y Omer, K Mustafa, C Meltem, C Orhan, U Nisa, O Hikmet, D Hakan, K Mert ...

  15. Enabling High-Performance Computing as a Service

    KAUST Repository

    AbdelBaky, Moustafa; Parashar, Manish; Kim, Hyunjoo; Jordan, Kirk E.; Sachdeva, Vipin; Sexton, James; Jamjoom, Hani; Shae, Zon-Yin; Pencheva, Gergina; Tavakoli, Reza; Wheeler, Mary F.

    2012-01-01

    With the right software infrastructure, clouds can provide scientists with as a service access to high-performance computing resources. An award-winning prototype framework transforms the Blue Gene/P system into an elastic cloud to run a

  16. GPU-based high-performance computing for radiation therapy

    International Nuclear Information System (INIS)

    Jia, Xun; Jiang, Steve B; Ziegenhein, Peter

    2014-01-01

    Recent developments in radiotherapy therapy demand high computation powers to solve challenging problems in a timely fashion in a clinical environment. The graphics processing unit (GPU), as an emerging high-performance computing platform, has been introduced to radiotherapy. It is particularly attractive due to its high computational power, small size, and low cost for facility deployment and maintenance. Over the past few years, GPU-based high-performance computing in radiotherapy has experienced rapid developments. A tremendous amount of study has been conducted, in which large acceleration factors compared with the conventional CPU platform have been observed. In this paper, we will first give a brief introduction to the GPU hardware structure and programming model. We will then review the current applications of GPU in major imaging-related and therapy-related problems encountered in radiotherapy. A comparison of GPU with other platforms will also be presented. (topical review)

  17. High contrast computed tomography with synchrotron radiation

    Science.gov (United States)

    Itai, Yuji; Takeda, Tohoru; Akatsuka, Takao; Maeda, Tomokazu; Hyodo, Kazuyuki; Uchida, Akira; Yuasa, Tetsuya; Kazama, Masahiro; Wu, Jin; Ando, Masami

    1995-02-01

    This article describes a new monochromatic x-ray CT system using synchrotron radiation with applications in biomedical diagnosis which is currently under development. The system is designed to provide clear images and to detect contrast materials at low concentration for the quantitative functional evaluation of organs in correspondence with their anatomical structures. In this system, with x-ray energy changing from 30 to 52 keV, images can be obtained to detect various contrast materials (iodine, barium, and gadolinium), and K-edge energy subtraction is applied. Herein, the features of the new system designed to enhance the advantages of SR are reported. With the introduction of a double-crystal monochromator, the high-order x-ray contamination is eliminated. The newly designed CCD detector with a wide dynamic range of 60 000:1 has a spatial resolution of 200 μm. The resulting image quality, which is expected to show improved contrast and spatial resolution, is currently under investigation.

  18. Modeling of requirement specification for safety critical real time computer system using formal mathematical specifications

    International Nuclear Information System (INIS)

    Sankar, Bindu; Sasidhar Rao, B.; Ilango Sambasivam, S.; Swaminathan, P.

    2002-01-01

    Full text: Real time computer systems are increasingly used for safety critical supervision and control of nuclear reactors. Typical application areas are supervision of reactor core against coolant flow blockage, supervision of clad hot spot, supervision of undesirable power excursion, power control and control logic for fuel handling systems. The most frequent cause of fault in safety critical real time computer system is traced to fuzziness in requirement specification. To ensure the specified safety, it is necessary to model the requirement specification of safety critical real time computer systems using formal mathematical methods. Modeling eliminates the fuzziness in the requirement specification and also helps to prepare the verification and validation schemes. Test data can be easily designed from the model of the requirement specification. Z and B are the popular languages used for modeling the requirement specification. A typical safety critical real time computer system for supervising the reactor core of prototype fast breeder reactor (PFBR) against flow blockage is taken as case study. Modeling techniques and the actual model are explained in detail. The advantages of modeling for ensuring the safety are summarized

  19. High Performance Computing in Science and Engineering '16 : Transactions of the High Performance Computing Center, Stuttgart (HLRS) 2016

    CERN Document Server

    Kröner, Dietmar; Resch, Michael

    2016-01-01

    This book presents the state-of-the-art in supercomputer simulation. It includes the latest findings from leading researchers using systems from the High Performance Computing Center Stuttgart (HLRS) in 2016. The reports cover all fields of computational science and engineering ranging from CFD to computational physics and from chemistry to computer science with a special emphasis on industrially relevant applications. Presenting findings of one of Europe’s leading systems, this volume covers a wide variety of applications that deliver a high level of sustained performance. The book covers the main methods in high-performance computing. Its outstanding results in achieving the best performance for production codes are of particular interest for both scientists and engineers. The book comes with a wealth of color illustrations and tables of results.

  20. After Installation: Ubiquitous Computing and High School Science in Three Experienced, High-Technology Schools

    Science.gov (United States)

    Drayton, Brian; Falk, Joni K.; Stroud, Rena; Hobbs, Kathryn; Hammerman, James

    2010-01-01

    There are few studies of the impact of ubiquitous computing on high school science, and the majority of studies of ubiquitous computing report only on the early stages of implementation. The present study presents data on 3 high schools with carefully elaborated ubiquitous computing systems that have gone through at least one "obsolescence cycle"…

  1. High burnup models in computer code fair

    Energy Technology Data Exchange (ETDEWEB)

    Dutta, B K; Swami Prasad, P; Kushwaha, H S; Mahajan, S C; Kakodar, A [Bhabha Atomic Research Centre, Bombay (India)

    1997-08-01

    An advanced fuel analysis code FAIR has been developed for analyzing the behavior of fuel rods of water cooled reactors under severe power transients and high burnups. The code is capable of analyzing fuel pins of both collapsible clad, as in PHWR and free standing clad as in LWR. The main emphasis in the development of this code is on evaluating the fuel performance at extended burnups and modelling of the fuel rods for advanced fuel cycles. For this purpose, a number of suitable models have been incorporated in FAIR. For modelling the fission gas release, three different models are implemented, namely Physically based mechanistic model, the standard ANS 5.4 model and the Halden model. Similarly the pellet thermal conductivity can be modelled by the MATPRO equation, the SIMFUEL relation or the Halden equation. The flux distribution across the pellet is modelled by using the model RADAR. For modelling pellet clad interaction (PCMI)/ stress corrosion cracking (SCC) induced failure of sheath, necessary routines are provided in FAIR. The validation of the code FAIR is based on the analysis of fuel rods of EPRI project ``Light water reactor fuel rod modelling code evaluation`` and also the analytical simulation of threshold power ramp criteria of fuel rods of pressurized heavy water reactors. In the present work, a study is carried out by analysing three CRP-FUMEX rods to show the effect of various combinations of fission gas release models and pellet conductivity models, on the fuel analysis parameters. The satisfactory performance of FAIR may be concluded through these case studies. (author). 12 refs, 5 figs.

  2. High burnup models in computer code fair

    International Nuclear Information System (INIS)

    Dutta, B.K.; Swami Prasad, P.; Kushwaha, H.S.; Mahajan, S.C.; Kakodar, A.

    1997-01-01

    An advanced fuel analysis code FAIR has been developed for analyzing the behavior of fuel rods of water cooled reactors under severe power transients and high burnups. The code is capable of analyzing fuel pins of both collapsible clad, as in PHWR and free standing clad as in LWR. The main emphasis in the development of this code is on evaluating the fuel performance at extended burnups and modelling of the fuel rods for advanced fuel cycles. For this purpose, a number of suitable models have been incorporated in FAIR. For modelling the fission gas release, three different models are implemented, namely Physically based mechanistic model, the standard ANS 5.4 model and the Halden model. Similarly the pellet thermal conductivity can be modelled by the MATPRO equation, the SIMFUEL relation or the Halden equation. The flux distribution across the pellet is modelled by using the model RADAR. For modelling pellet clad interaction (PCMI)/ stress corrosion cracking (SCC) induced failure of sheath, necessary routines are provided in FAIR. The validation of the code FAIR is based on the analysis of fuel rods of EPRI project ''Light water reactor fuel rod modelling code evaluation'' and also the analytical simulation of threshold power ramp criteria of fuel rods of pressurized heavy water reactors. In the present work, a study is carried out by analysing three CRP-FUMEX rods to show the effect of various combinations of fission gas release models and pellet conductivity models, on the fuel analysis parameters. The satisfactory performance of FAIR may be concluded through these case studies. (author). 12 refs, 5 figs

  3. High Performance Computing Modernization Program Kerberos Throughput Test Report

    Science.gov (United States)

    2017-10-26

    Naval Research Laboratory Washington, DC 20375-5320 NRL/MR/5524--17-9751 High Performance Computing Modernization Program Kerberos Throughput Test ...NUMBER 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 2. REPORT TYPE1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND SUBTITLE 6. AUTHOR(S) 8. PERFORMING...PAGE 18. NUMBER OF PAGES 17. LIMITATION OF ABSTRACT High Performance Computing Modernization Program Kerberos Throughput Test Report Daniel G. Gdula* and

  4. Topic 14+16: High-performance and scientific applications and extreme-scale computing (Introduction)

    KAUST Repository

    Downes, Turlough P.

    2013-01-01

    As our understanding of the world around us increases it becomes more challenging to make use of what we already know, and to increase our understanding still further. Computational modeling and simulation have become critical tools in addressing this challenge. The requirements of high-resolution, accurate modeling have outstripped the ability of desktop computers and even small clusters to provide the necessary compute power. Many applications in the scientific and engineering domains now need very large amounts of compute time, while other applications, particularly in the life sciences, frequently have large data I/O requirements. There is thus a growing need for a range of high performance applications which can utilize parallel compute systems effectively, which have efficient data handling strategies and which have the capacity to utilise current and future systems. The High Performance and Scientific Applications topic aims to highlight recent progress in the use of advanced computing and algorithms to address the varied, complex and increasing challenges of modern research throughout both the "hard" and "soft" sciences. This necessitates being able to use large numbers of compute nodes, many of which are equipped with accelerators, and to deal with difficult I/O requirements. © 2013 Springer-Verlag.

  5. Cielo Computational Environment Usage Model With Mappings to ACE Requirements for the General Availability User Environment Capabilities Release Version 1.1

    Energy Technology Data Exchange (ETDEWEB)

    Vigil,Benny Manuel [Los Alamos National Laboratory; Ballance, Robert [SNL; Haskell, Karen [SNL

    2012-08-09

    Cielo is a massively parallel supercomputer funded by the DOE/NNSA Advanced Simulation and Computing (ASC) program, and operated by the Alliance for Computing at Extreme Scale (ACES), a partnership between Los Alamos National Laboratory (LANL) and Sandia National Laboratories (SNL). The primary Cielo compute platform is physically located at Los Alamos National Laboratory. This Cielo Computational Environment Usage Model documents the capabilities and the environment to be provided for the Q1 FY12 Level 2 Cielo Capability Computing (CCC) Platform Production Readiness Milestone. This document describes specific capabilities, tools, and procedures to support both local and remote users. The model is focused on the needs of the ASC user working in the secure computing environments at Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory, or Sandia National Laboratories, but also addresses the needs of users working in the unclassified environment. The Cielo Computational Environment Usage Model maps the provided capabilities to the tri-Lab ASC Computing Environment (ACE) Version 8.0 requirements. The ACE requirements reflect the high performance computing requirements for the Production Readiness Milestone user environment capabilities of the ASC community. A description of ACE requirements met, and those requirements that are not met, are included in each section of this document. The Cielo Computing Environment, along with the ACE mappings, has been issued and reviewed throughout the tri-Lab community.

  6. Regulatory requirements to the thermal-hydraulic and thermal-mechanical computer codes

    International Nuclear Information System (INIS)

    Vitkova, M.; Kalchev, B.; Stefanova, S.

    2006-01-01

    The paper presents an overview of the regulatory requirements to the thermal-hydraulic and thermal-mechanical computer codes, which are used for safety assessment of the fuel design and the fuel utilization. Some requirements to the model development, verification and validation of the codes and analysis of code uncertainties are also define. Questions concerning Quality Assurance during development and implementation of the codes as well as preparation of a detailed verification and validation plan are briefly discussed

  7. High threshold distributed quantum computing with three-qubit nodes

    International Nuclear Information System (INIS)

    Li Ying; Benjamin, Simon C

    2012-01-01

    In the distributed quantum computing paradigm, well-controlled few-qubit ‘nodes’ are networked together by connections which are relatively noisy and failure prone. A practical scheme must offer high tolerance to errors while requiring only simple (i.e. few-qubit) nodes. Here we show that relatively modest, three-qubit nodes can support advanced purification techniques and so offer robust scalability: the infidelity in the entanglement channel may be permitted to approach 10% if the infidelity in local operations is of order 0.1%. Our tolerance of network noise is therefore an order of magnitude beyond prior schemes, and our architecture remains robust even in the presence of considerable decoherence rates (memory errors). We compare the performance with that of schemes involving nodes of lower and higher complexity. Ion traps, and NV-centres in diamond, are two highly relevant emerging technologies: they possess the requisite properties of good local control, rapid and reliable readout, and methods for entanglement-at-a-distance. (paper)

  8. Automated high speed volume computed tomography for inline quality control

    International Nuclear Information System (INIS)

    Hanke, R.; Kugel, A.; Troup, P.

    2004-01-01

    Increasing complexity of innovative products as well as growing requirements on quality and reliability call for more detailed knowledge about internal structures of manufactured components rather by 100 % inspection than just by sampling test. A first-step solution, like radioscopic inline inspection machines, equipped with automated data evaluation software, have become state of the art in the production floor during the last years. However, these machines provide just ordinary two-dimensional information and deliver no volume data e.g. to evaluate exact position or shape of detected defects. One way to solve this problem is the application of X-ray computed tomography (CT). Compared to the performance of the first generation medical scanners (scanning times of many hours), today, modern Volume CT machines for industrial applications need about 5 minutes for a full object scan depending on the object size. Of course, this is still too long to introduce this powerful method into the inline production quality control. In order to gain acceptance, the scanning time including subsequent data evaluation must be decreased significantly and adapted to the manufacturing cycle times. This presentation demonstrates the new technical set up, reconstruction results and the methods for high-speed volume data evaluation of a new fully automated high-speed CT scanner with cycle times below one minute for an object size of less than 15 cm. This will directly create new opportunities in design and construction of more complex objects. (author)

  9. Lightweight Provenance Service for High-Performance Computing

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Dong; Chen, Yong; Carns, Philip; Jenkins, John; Ross, Robert

    2017-09-09

    Provenance describes detailed information about the history of a piece of data, containing the relationships among elements such as users, processes, jobs, and workflows that contribute to the existence of data. Provenance is key to supporting many data management functionalities that are increasingly important in operations such as identifying data sources, parameters, or assumptions behind a given result; auditing data usage; or understanding details about how inputs are transformed into outputs. Despite its importance, however, provenance support is largely underdeveloped in highly parallel architectures and systems. One major challenge is the demanding requirements of providing provenance service in situ. The need to remain lightweight and to be always on often conflicts with the need to be transparent and offer an accurate catalog of details regarding the applications and systems. To tackle this challenge, we introduce a lightweight provenance service, called LPS, for high-performance computing (HPC) systems. LPS leverages a kernel instrument mechanism to achieve transparency and introduces representative execution and flexible granularity to capture comprehensive provenance with controllable overhead. Extensive evaluations and use cases have confirmed its efficiency and usability. We believe that LPS can be integrated into current and future HPC systems to support a variety of data management needs.

  10. A Primer on High-Throughput Computing for Genomic Selection

    Directory of Open Access Journals (Sweden)

    Xiao-Lin eWu

    2011-02-01

    Full Text Available High-throughput computing (HTC uses computer clusters to solve advanced computational problems, with the goal of accomplishing high throughput over relatively long periods of time. In genomic selection, for example, a set of markers covering the entire genome is used to train a model based on known data, and the resulting model is used to predict the genetic merit of selection candidates. Sophisticated models are very computationally demanding and, with several traits to be evaluated sequentially, computing time is long and output is low. In this paper, we present scenarios and basic principles of how HTC can be used in genomic selection, implemented using various techniques from simple batch processing to pipelining in distributed computer clusters. Various scripting languages, such as shell scripting, Perl and R, are also very useful to devise pipelines. By pipelining, we can reduce total computing time and consequently increase throughput. In comparison to the traditional data processing pipeline residing on the central processors, performing general purpose computation on a graphics processing unit (GPU provide a new-generation approach to massive parallel computing in genomic selection. While the concept of HTC may still be new to many researchers in animal breeding, plant breeding, and genetics, HTC infrastructures have already been built in many institutions, such as the University of Wisconsin – Madison, which can be leveraged for genomic selection, in terms of central processing unit (CPU capacity, network connectivity, storage availability, and middleware connectivity. Exploring existing HTC infrastructures as well as general purpose computing environments will further expand our capability to meet increasing computing demands posed by unprecedented genomic data that we have today. We anticipate that HTC will impact genomic selection via better statistical models, faster solutions, and more competitive products (e.g., from design of

  11. Acquired and Required Competencies in Interactive Computer in Labour Market Sector from the Employers

    Science.gov (United States)

    Adodo, S. O.; Adewole, Timothy

    2013-01-01

    This study investigated acquired and required competencies in interactive computer technology (ICT) in labour data were collected from employers' and employees'. The study is a descriptive research of the survey type. The population of the study consisted of unemployed graduates, employed graduates and various parastatal where graduates seek for…

  12. Computing requirements for S.S.C. accelerator design and studies

    International Nuclear Information System (INIS)

    Dragt, A.; Talman, R.; Siemann, R.; Dell, G.F.; Leemann, B.; Leemann, C.; Nauenberg, U.; Peggs, S.; Douglas, D.

    1984-01-01

    We estimate the computational hardware resources that will be required for accelerator physics studies during the design of the Superconducting SuperCollider. It is found that both Class IV and Class VI facilities (1) will be necessary. We describe a user environment for these facilities that is desirable within the context of accelerator studies. An acquisition scenario for these facilities is presented

  13. Identification of Requirements for Computer-Supported Matching of Food Consumption Data with Food Composition Data.

    NARCIS (Netherlands)

    Koroušić Seljak, Barbara; Korošec, Peter; Eftimov, Tome; Ocke, Marga; van der Laan, Jan; Roe, Mark; Berry, Rachel; Crispim, Sandra Patricia; Turrini, Aida; Krems, Carolin; Slimani, Nadia; Finglas, Paul

    2018-01-01

    This paper identifies the requirements for computer-supported food matching, in order to address not only national and European but also international current related needs and represents an integrated research contribution of the FP7 EuroDISH project. The available classification and coding systems

  14. CRITICAL ISSUES IN HIGH END COMPUTING - FINAL REPORT

    Energy Technology Data Exchange (ETDEWEB)

    Corones, James [Krell Institute

    2013-09-23

    High-End computing (HEC) has been a driver for advances in science and engineering for the past four decades. Increasingly HEC has become a significant element in the national security, economic vitality, and competitiveness of the United States. Advances in HEC provide results that cut across traditional disciplinary and organizational boundaries. This program provides opportunities to share information about HEC systems and computational techniques across multiple disciplines and organizations through conferences and exhibitions of HEC advances held in Washington DC so that mission agency staff, scientists, and industry can come together with White House, Congressional and Legislative staff in an environment conducive to the sharing of technical information, accomplishments, goals, and plans. A common thread across this series of conferences is the understanding of computational science and applied mathematics techniques across a diverse set of application areas of interest to the Nation. The specific objectives of this program are: Program Objective 1. To provide opportunities to share information about advances in high-end computing systems and computational techniques between mission critical agencies, agency laboratories, academics, and industry. Program Objective 2. To gather pertinent data, address specific topics of wide interest to mission critical agencies. Program Objective 3. To promote a continuing discussion of critical issues in high-end computing. Program Objective 4.To provide a venue where a multidisciplinary scientific audience can discuss the difficulties applying computational science techniques to specific problems and can specify future research that, if successful, will eliminate these problems.

  15. High performance computing system in the framework of the Higgs boson studies

    CERN Document Server

    Belyaev, Nikita; The ATLAS collaboration; Velikhov, Vasily; Konoplich, Rostislav

    2017-01-01

    The Higgs boson physics is one of the most important and promising fields of study in the modern high energy physics. It is important to notice, that GRID computing resources become strictly limited due to increasing amount of statistics, required for physics analyses and unprecedented LHC performance. One of the possibilities to address the shortfall of computing resources is the usage of computer institutes' clusters, commercial computing resources and supercomputers. To perform precision measurements of the Higgs boson properties in these realities, it is also highly required to have effective instruments to simulate kinematic distributions of signal events. In this talk we give a brief description of the modern distribution reconstruction method called Morphing and perform few efficiency tests to demonstrate its potential. These studies have been performed on the WLCG and Kurchatov Institute’s Data Processing Center, including Tier-1 GRID site and supercomputer as well. We also analyze the CPU efficienc...

  16. Multicore Challenges and Benefits for High Performance Scientific Computing

    Directory of Open Access Journals (Sweden)

    Ida M.B. Nielsen

    2008-01-01

    Full Text Available Until recently, performance gains in processors were achieved largely by improvements in clock speeds and instruction level parallelism. Thus, applications could obtain performance increases with relatively minor changes by upgrading to the latest generation of computing hardware. Currently, however, processor performance improvements are realized by using multicore technology and hardware support for multiple threads within each core, and taking full advantage of this technology to improve the performance of applications requires exposure of extreme levels of software parallelism. We will here discuss the architecture of parallel computers constructed from many multicore chips as well as techniques for managing the complexity of programming such computers, including the hybrid message-passing/multi-threading programming model. We will illustrate these ideas with a hybrid distributed memory matrix multiply and a quantum chemistry algorithm for energy computation using Møller–Plesset perturbation theory.

  17. 3rd International Conference on High Performance Scientific Computing

    CERN Document Server

    Kostina, Ekaterina; Phu, Hoang; Rannacher, Rolf

    2008-01-01

    This proceedings volume contains a selection of papers presented at the Third International Conference on High Performance Scientific Computing held at the Hanoi Institute of Mathematics, Vietnamese Academy of Science and Technology (VAST), March 6-10, 2006. The conference has been organized by the Hanoi Institute of Mathematics, Interdisciplinary Center for Scientific Computing (IWR), Heidelberg, and its International PhD Program ``Complex Processes: Modeling, Simulation and Optimization'', and Ho Chi Minh City University of Technology. The contributions cover the broad interdisciplinary spectrum of scientific computing and present recent advances in theory, development of methods, and applications in practice. Subjects covered are mathematical modelling, numerical simulation, methods for optimization and control, parallel computing, software development, applications of scientific computing in physics, chemistry, biology and mechanics, environmental and hydrology problems, transport, logistics and site loca...

  18. 5th International Conference on High Performance Scientific Computing

    CERN Document Server

    Hoang, Xuan; Rannacher, Rolf; Schlöder, Johannes

    2014-01-01

    This proceedings volume gathers a selection of papers presented at the Fifth International Conference on High Performance Scientific Computing, which took place in Hanoi on March 5-9, 2012. The conference was organized by the Institute of Mathematics of the Vietnam Academy of Science and Technology (VAST), the Interdisciplinary Center for Scientific Computing (IWR) of Heidelberg University, Ho Chi Minh City University of Technology, and the Vietnam Institute for Advanced Study in Mathematics. The contributions cover the broad interdisciplinary spectrum of scientific computing and present recent advances in theory, development of methods, and practical applications. Subjects covered include mathematical modeling; numerical simulation; methods for optimization and control; parallel computing; software development; and applications of scientific computing in physics, mechanics and biomechanics, material science, hydrology, chemistry, biology, biotechnology, medicine, sports, psychology, transport, logistics, com...

  19. 6th International Conference on High Performance Scientific Computing

    CERN Document Server

    Phu, Hoang; Rannacher, Rolf; Schlöder, Johannes

    2017-01-01

    This proceedings volume highlights a selection of papers presented at the Sixth International Conference on High Performance Scientific Computing, which took place in Hanoi, Vietnam on March 16-20, 2015. The conference was jointly organized by the Heidelberg Institute of Theoretical Studies (HITS), the Institute of Mathematics of the Vietnam Academy of Science and Technology (VAST), the Interdisciplinary Center for Scientific Computing (IWR) at Heidelberg University, and the Vietnam Institute for Advanced Study in Mathematics, Ministry of Education The contributions cover a broad, interdisciplinary spectrum of scientific computing and showcase recent advances in theory, methods, and practical applications. Subjects covered numerical simulation, methods for optimization and control, parallel computing, and software development, as well as the applications of scientific computing in physics, mechanics, biomechanics and robotics, material science, hydrology, biotechnology, medicine, transport, scheduling, and in...

  20. Surveillance Analysis Computer System (SACS): Software requirements specification (SRS). Revision 2

    International Nuclear Information System (INIS)

    Glasscock, J.A.

    1995-01-01

    This document is the primary document establishing requirements for the Surveillance Analysis Computer System (SACS) database, an Impact Level 3Q system. SACS stores information on tank temperatures, surface levels, and interstitial liquid levels. This information is retrieved by the customer through a PC-based interface and is then available to a number of other software tools. The software requirements specification (SRS) describes the system requirements for the SACS Project, and follows the Standard Engineering Practices (WHC-CM-6-1), Software Practices (WHC-CM-3-10) and Quality Assurance (WHC-CM-4-2, QR 19.0) policies

  1. Bringing Computational Thinking into the High School Science and Math Classroom

    Science.gov (United States)

    Trouille, Laura; Beheshti, E.; Horn, M.; Jona, K.; Kalogera, V.; Weintrop, D.; Wilensky, U.; University CT-STEM Project, Northwestern; University CenterTalent Development, Northwestern

    2013-01-01

    Computational thinking (for example, the thought processes involved in developing algorithmic solutions to problems that can then be automated for computation) has revolutionized the way we do science. The Next Generation Science Standards require that teachers support their students’ development of computational thinking and computational modeling skills. As a result, there is a very high demand among teachers for quality materials. Astronomy provides an abundance of opportunities to support student development of computational thinking skills. Our group has taken advantage of this to create a series of astronomy-based computational thinking lesson plans for use in typical physics, astronomy, and math high school classrooms. This project is funded by the NSF Computing Education for the 21st Century grant and is jointly led by Northwestern University’s Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA), the Computer Science department, the Learning Sciences department, and the Office of STEM Education Partnerships (OSEP). I will also briefly present the online ‘Astro Adventures’ courses for middle and high school students I have developed through NU’s Center for Talent Development. The online courses take advantage of many of the amazing online astronomy enrichment materials available to the public, including a range of hands-on activities and the ability to take images with the Global Telescope Network. The course culminates with an independent computational research project.

  2. A first attempt to bring computational biology into advanced high school biology classrooms.

    Science.gov (United States)

    Gallagher, Suzanne Renick; Coon, William; Donley, Kristin; Scott, Abby; Goldberg, Debra S

    2011-10-01

    Computer science has become ubiquitous in many areas of biological research, yet most high school and even college students are unaware of this. As a result, many college biology majors graduate without adequate computational skills for contemporary fields of biology. The absence of a computational element in secondary school biology classrooms is of growing concern to the computational biology community and biology teachers who would like to acquaint their students with updated approaches in the discipline. We present a first attempt to correct this absence by introducing a computational biology element to teach genetic evolution into advanced biology classes in two local high schools. Our primary goal was to show students how computation is used in biology and why a basic understanding of computation is necessary for research in many fields of biology. This curriculum is intended to be taught by a computational biologist who has worked with a high school advanced biology teacher to adapt the unit for his/her classroom, but a motivated high school teacher comfortable with mathematics and computing may be able to teach this alone. In this paper, we present our curriculum, which takes into consideration the constraints of the required curriculum, and discuss our experiences teaching it. We describe the successes and challenges we encountered while bringing this unit to high school students, discuss how we addressed these challenges, and make suggestions for future versions of this curriculum.We believe that our curriculum can be a valuable seed for further development of computational activities aimed at high school biology students. Further, our experiences may be of value to others teaching computational biology at this level. Our curriculum can be obtained at http://ecsite.cs.colorado.edu/?page_id=149#biology or by contacting the authors.

  3. High-performance scientific computing in the cloud

    Science.gov (United States)

    Jorissen, Kevin; Vila, Fernando; Rehr, John

    2011-03-01

    Cloud computing has the potential to open up high-performance computational science to a much broader class of researchers, owing to its ability to provide on-demand, virtualized computational resources. However, before such approaches can become commonplace, user-friendly tools must be developed that hide the unfamiliar cloud environment and streamline the management of cloud resources for many scientific applications. We have recently shown that high-performance cloud computing is feasible for parallelized x-ray spectroscopy calculations. We now present benchmark results for a wider selection of scientific applications focusing on electronic structure and spectroscopic simulation software in condensed matter physics. These applications are driven by an improved portable interface that can manage virtual clusters and run various applications in the cloud. We also describe a next generation of cluster tools, aimed at improved performance and a more robust cluster deployment. Supported by NSF grant OCI-1048052.

  4. Micromagnetics on high-performance workstation and mobile computational platforms

    Science.gov (United States)

    Fu, S.; Chang, R.; Couture, S.; Menarini, M.; Escobar, M. A.; Kuteifan, M.; Lubarda, M.; Gabay, D.; Lomakin, V.

    2015-05-01

    The feasibility of using high-performance desktop and embedded mobile computational platforms is presented, including multi-core Intel central processing unit, Nvidia desktop graphics processing units, and Nvidia Jetson TK1 Platform. FastMag finite element method-based micromagnetic simulator is used as a testbed, showing high efficiency on all the platforms. Optimization aspects of improving the performance of the mobile systems are discussed. The high performance, low cost, low power consumption, and rapid performance increase of the embedded mobile systems make them a promising candidate for micromagnetic simulations. Such architectures can be used as standalone systems or can be built as low-power computing clusters.

  5. Functional requirements document for the Earth Observing System Data and Information System (EOSDIS) Scientific Computing Facilities (SCF) of the NASA/MSFC Earth Science and Applications Division, 1992

    Science.gov (United States)

    Botts, Michael E.; Phillips, Ron J.; Parker, John V.; Wright, Patrick D.

    1992-01-01

    Five scientists at MSFC/ESAD have EOS SCF investigator status. Each SCF has unique tasks which require the establishment of a computing facility dedicated to accomplishing those tasks. A SCF Working Group was established at ESAD with the charter of defining the computing requirements of the individual SCFs and recommending options for meeting these requirements. The primary goal of the working group was to determine which computing needs can be satisfied using either shared resources or separate but compatible resources, and which needs require unique individual resources. The requirements investigated included CPU-intensive vector and scalar processing, visualization, data storage, connectivity, and I/O peripherals. A review of computer industry directions and a market survey of computing hardware provided information regarding important industry standards and candidate computing platforms. It was determined that the total SCF computing requirements might be most effectively met using a hierarchy consisting of shared and individual resources. This hierarchy is composed of five major system types: (1) a supercomputer class vector processor; (2) a high-end scalar multiprocessor workstation; (3) a file server; (4) a few medium- to high-end visualization workstations; and (5) several low- to medium-range personal graphics workstations. Specific recommendations for meeting the needs of each of these types are presented.

  6. New Challenges for Computing in High Energy Physics

    International Nuclear Information System (INIS)

    Santoro, Alberto

    2003-01-01

    In view of the new scientific programs established for the LHC (Large Hadron Collider) era, the way to face the technological challenges in computing was develop a new concept of GRID computing. We show some examples and, in particular, a proposal for high energy physicists in countries like Brazil. Due to the big amount of data and the need of close collaboration it will be impossible to work in research centers and universities very far from Fermilab or CERN unless a GRID architecture is built. An important effort is being made by the international community to up to date their computing infrastructure and networks

  7. OMNET - high speed data communications for PDP-11 computers

    International Nuclear Information System (INIS)

    Parkman, C.F.; Lee, J.G.

    1979-12-01

    Omnet is a high speed data communications network designed at CERN for PDP-11 computers. It has grown from a link multiplexor system built for a CII 10070 computer into a full multi-point network, to which some fifty computers are now connected. It provides communications facilities for several large experimental installations as well as many smaller systems and has connections to all parts of the CERN site. The transmission protocol is discussed and brief details are given of the hardware and software used in its implementation. Also described is the gateway interface to the CERN packet switching network, 'Cernet'. (orig.)

  8. Enabling high performance computational science through combinatorial algorithms

    International Nuclear Information System (INIS)

    Boman, Erik G; Bozdag, Doruk; Catalyurek, Umit V; Devine, Karen D; Gebremedhin, Assefaw H; Hovland, Paul D; Pothen, Alex; Strout, Michelle Mills

    2007-01-01

    The Combinatorial Scientific Computing and Petascale Simulations (CSCAPES) Institute is developing algorithms and software for combinatorial problems that play an enabling role in scientific and engineering computations. Discrete algorithms will be increasingly critical for achieving high performance for irregular problems on petascale architectures. This paper describes recent contributions by researchers at the CSCAPES Institute in the areas of load balancing, parallel graph coloring, performance improvement, and parallel automatic differentiation

  9. Enabling high performance computational science through combinatorial algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Boman, Erik G [Discrete Algorithms and Math Department, Sandia National Laboratories (United States); Bozdag, Doruk [Biomedical Informatics, and Electrical and Computer Engineering, Ohio State University (United States); Catalyurek, Umit V [Biomedical Informatics, and Electrical and Computer Engineering, Ohio State University (United States); Devine, Karen D [Discrete Algorithms and Math Department, Sandia National Laboratories (United States); Gebremedhin, Assefaw H [Computer Science and Center for Computational Science, Old Dominion University (United States); Hovland, Paul D [Mathematics and Computer Science Division, Argonne National Laboratory (United States); Pothen, Alex [Computer Science and Center for Computational Science, Old Dominion University (United States); Strout, Michelle Mills [Computer Science, Colorado State University (United States)

    2007-07-15

    The Combinatorial Scientific Computing and Petascale Simulations (CSCAPES) Institute is developing algorithms and software for combinatorial problems that play an enabling role in scientific and engineering computations. Discrete algorithms will be increasingly critical for achieving high performance for irregular problems on petascale architectures. This paper describes recent contributions by researchers at the CSCAPES Institute in the areas of load balancing, parallel graph coloring, performance improvement, and parallel automatic differentiation.

  10. Experimental high energy physics and modern computer architectures

    International Nuclear Information System (INIS)

    Hoek, J.

    1988-06-01

    The paper examines how experimental High Energy Physics can use modern computer architectures efficiently. In this connection parallel and vector architectures are investigated, and the types available at the moment for general use are discussed. A separate section briefly describes some architectures that are either a combination of both, or exemplify other architectures. In an appendix some directions in which computing seems to be developing in the USA are mentioned. (author)

  11. Computer-Aided Identification and Validation of Intervenability Requirements

    Directory of Open Access Journals (Sweden)

    Rene Meis

    2017-03-01

    Full Text Available Privacy as a software quality is becoming more important these days and should not be underestimated during the development of software that processes personal data. The privacy goal of intervenability, in contrast to unlinkability (including anonymity and pseudonymity, has so far received little attention in research. Intervenability aims for the empowerment of end-users by keeping their personal data and how it is processed by the software system under their control. Several surveys have pointed out that the lack of intervenability options is a central privacy concern of end-users. In this paper, we systematically assess the privacy goal of intervenability and set up a software requirements taxonomy that relates the identified intervenability requirements with a taxonomy of transparency requirements. Furthermore, we provide a tool-supported method to identify intervenability requirements from the functional requirements of a software system. This tool-supported method provides the means to elicit and validate intervenability requirements in a computer-aided way. Our combined taxonomy of intervenability and transparency requirements gives a detailed view on the privacy goal of intervenability and its relation to transparency. We validated the completeness of our taxonomy by comparing it to the relevant literature that we derived based on a systematic literature review. The proposed method for the identification of intervenability requirements shall support requirements engineers to elicit and document intervenability requirements in compliance with the EU General Data Protection Regulation.

  12. Proceedings from the conference on high speed computing: High speed computing and national security

    Energy Technology Data Exchange (ETDEWEB)

    Hirons, K.P.; Vigil, M.; Carlson, R. [comps.

    1997-07-01

    This meeting covered the following topics: technologies/national needs/policies: past, present and future; information warfare; crisis management/massive data systems; risk assessment/vulnerabilities; Internet law/privacy and rights of society; challenges to effective ASCI programmatic use of 100 TFLOPs systems; and new computing technologies.

  13. High performance computing environment for multidimensional image analysis.

    Science.gov (United States)

    Rao, A Ravishankar; Cecchi, Guillermo A; Magnasco, Marcelo

    2007-07-10

    The processing of images acquired through microscopy is a challenging task due to the large size of datasets (several gigabytes) and the fast turnaround time required. If the throughput of the image processing stage is significantly increased, it can have a major impact in microscopy applications. We present a high performance computing (HPC) solution to this problem. This involves decomposing the spatial 3D image into segments that are assigned to unique processors, and matched to the 3D torus architecture of the IBM Blue Gene/L machine. Communication between segments is restricted to the nearest neighbors. When running on a 2 Ghz Intel CPU, the task of 3D median filtering on a typical 256 megabyte dataset takes two and a half hours, whereas by using 1024 nodes of Blue Gene, this task can be performed in 18.8 seconds, a 478x speedup. Our parallel solution dramatically improves the performance of image processing, feature extraction and 3D reconstruction tasks. This increased throughput permits biologists to conduct unprecedented large scale experiments with massive datasets.

  14. Universal continuous-variable quantum computation: Requirement of optical nonlinearity for photon counting

    International Nuclear Information System (INIS)

    Bartlett, Stephen D.; Sanders, Barry C.

    2002-01-01

    Although universal continuous-variable quantum computation cannot be achieved via linear optics (including squeezing), homodyne detection, and feed-forward, inclusion of ideal photon-counting measurements overcomes this obstacle. These measurements are sometimes described by arrays of beam splitters to distribute the photons across several modes. We show that such a scheme cannot be used to implement ideal photon counting and that such measurements necessarily involve nonlinear evolution. However, this requirement of nonlinearity can be moved ''off-line,'' thereby permitting universal continuous-variable quantum computation with linear optics

  15. Strength-toughness requirements for thick walled high pressure vessels

    International Nuclear Information System (INIS)

    Kapp, J.A.

    1990-01-01

    The strength and toughness requirements of materials for use in high pressure vessels has been the subject of some discussion in the meetings of the Materials Task Group of the Special Working Group High Pressure Vessels. A fracture mechanics analysis has been performed to theoretically establish the required toughness for a high pressure vessel. This paper reports that the analysis performed is based on the validity requirement for plane strain fracture of fracture toughness test specimens. This is that at the fracture event, the crack length, uncracked ligament, and vessel length must each be greater than fifty times the crack tip plastic zone size for brittle fracture to occur. For high pressure piping applications, the limiting physical dimension is the uncracked ligament, as it can be assumed that the other dimensions are always greater than fifty times the crack tip plastic zone. To perform the fracture mechanics analysis several parameters must be known: these include vessel dimensions, material strength, degree of autofrettage, and design pressure. Results of the analysis show, remarkably, that the effects of radius ratio, pressure and degree of autofrettage can be ignored when establishing strength and toughness requirements for code purposes. The only parameters that enter into the calculation are yield strength, toughness and vessel thickness. The final results can easily be represented as a graph of yield strength against toughness on which several curves, one for each vessel thickness, are plotted

  16. Computer-aided design of control systems to meet many requirements

    Science.gov (United States)

    Schy, A. A.; Adams, W. M., Jr.; Johnson, K. G.

    1974-01-01

    A method is described for using nonlinear programing in the computer-aided design of airplane control systems. It is assumed that the quality of such systems depends on many criteria. These criteria are included in the constraints vector (instead of attempting to combine them into a single scalar criterion, as is usually done), and the design proceeds through a sequence of nonlinear programing solutions in which the designer varies the specification of sets of requirements levels. The method is applied to design of a lateral stability augmentation system (SAS) for a fighter airplane, in which the requirements vector is chosen from the official handling qualities specifications. Results are shown for several simple SAS configurations designed to obtain desirable handling qualities over all design flight conditions with minimum feedback gains. The choice of the final design for each case is not unique but depends on the designer's decision as to which achievable set of requirements levels represents the best for that system. Results indicate that it may be possible to design constant parameter SAS which can satisfy the most stringent handling qualities requirements for fighter airplanes in all flight conditions. The role of the designer as a decision maker, interacting with the computer program, is discussed. Advantages of this type of designer-computer interaction are emphasized. Desirable extensions of the method are indicated.

  17. NCI Workshop Report: Clinical and Computational Requirements for Correlating Imaging Phenotypes with Genomics Signatures

    Directory of Open Access Journals (Sweden)

    Rivka Colen

    2014-10-01

    Full Text Available The National Cancer Institute (NCI Cancer Imaging Program organized two related workshops on June 26–27, 2013, entitled “Correlating Imaging Phenotypes with Genomics Signatures Research” and “Scalable Computational Resources as Required for Imaging-Genomics Decision Support Systems.” The first workshop focused on clinical and scientific requirements, exploring our knowledge of phenotypic characteristics of cancer biological properties to determine whether the field is sufficiently advanced to correlate with imaging phenotypes that underpin genomics and clinical outcomes, and exploring new scientific methods to extract phenotypic features from medical images and relate them to genomics analyses. The second workshop focused on computational methods that explore informatics and computational requirements to extract phenotypic features from medical images and relate them to genomics analyses and improve the accessibility and speed of dissemination of existing NIH resources. These workshops linked clinical and scientific requirements of currently known phenotypic and genotypic cancer biology characteristics with imaging phenotypes that underpin genomics and clinical outcomes. The group generated a set of recommendations to NCI leadership and the research community that encourage and support development of the emerging radiogenomics research field to address short-and longer-term goals in cancer research.

  18. High Performance Computing Software Applications for Space Situational Awareness

    Science.gov (United States)

    Giuliano, C.; Schumacher, P.; Matson, C.; Chun, F.; Duncan, B.; Borelli, K.; Desonia, R.; Gusciora, G.; Roe, K.

    The High Performance Computing Software Applications Institute for Space Situational Awareness (HSAI-SSA) has completed its first full year of applications development. The emphasis of our work in this first year was in improving space surveillance sensor models and image enhancement software. These applications are the Space Surveillance Network Analysis Model (SSNAM), the Air Force Space Fence simulation (SimFence), and physically constrained iterative de-convolution (PCID) image enhancement software tool. Specifically, we have demonstrated order of magnitude speed-up in those codes running on the latest Cray XD-1 Linux supercomputer (Hoku) at the Maui High Performance Computing Center. The software applications improvements that HSAI-SSA has made, has had significant impact to the warfighter and has fundamentally changed the role of high performance computing in SSA.

  19. High performance parallel computers for science: New developments at the Fermilab advanced computer program

    International Nuclear Information System (INIS)

    Nash, T.; Areti, H.; Atac, R.

    1988-08-01

    Fermilab's Advanced Computer Program (ACP) has been developing highly cost effective, yet practical, parallel computers for high energy physics since 1984. The ACP's latest developments are proceeding in two directions. A Second Generation ACP Multiprocessor System for experiments will include $3500 RISC processors each with performance over 15 VAX MIPS. To support such high performance, the new system allows parallel I/O, parallel interprocess communication, and parallel host processes. The ACP Multi-Array Processor, has been developed for theoretical physics. Each $4000 node is a FORTRAN or C programmable pipelined 20 MFlops (peak), 10 MByte single board computer. These are plugged into a 16 port crossbar switch crate which handles both inter and intra crate communication. The crates are connected in a hypercube. Site oriented applications like lattice gauge theory are supported by system software called CANOPY, which makes the hardware virtually transparent to users. A 256 node, 5 GFlop, system is under construction. 10 refs., 7 figs

  20. High performance sealing - meeting nuclear and aerospace requirements

    International Nuclear Information System (INIS)

    Wensel, R.; Metcalfe, R.

    1994-11-01

    Although high performance sealing is required in many places, two industries lead all others in terms of their demand-nuclear and aerospace. The factors that govern the high reliability and integrity of seals, particularly elastomer seals, for both industries are discussed. Aerospace requirements include low structural weight and a broad range of conditions, from the cold vacuum of space to the hot, high pressures of rocket motors. It is shown, by example, how a seal can be made an integral part of a structure in order to improve performance, rather than using a conventional handbook design. Typical processes are then described for selection, specification and procurement of suitable elastomers, functional and accelerated performance testing, database development and service-life prediction. Methods for quality assurance of elastomer seals are summarized. Potentially catastrophic internal dejects are a particular problem for conventional non-destructive inspection techniques. A new method of elastodynamic testing for these is described. (author)

  1. Big Data and High-Performance Computing in Global Seismology

    Science.gov (United States)

    Bozdag, Ebru; Lefebvre, Matthieu; Lei, Wenjie; Peter, Daniel; Smith, James; Komatitsch, Dimitri; Tromp, Jeroen

    2014-05-01

    Much of our knowledge of Earth's interior is based on seismic observations and measurements. Adjoint methods provide an efficient way of incorporating 3D full wave propagation in iterative seismic inversions to enhance tomographic images and thus our understanding of processes taking place inside the Earth. Our aim is to take adjoint tomography, which has been successfully applied to regional and continental scale problems, further to image the entire planet. This is one of the extreme imaging challenges in seismology, mainly due to the intense computational requirements and vast amount of high-quality seismic data that can potentially be assimilated. We have started low-resolution inversions (T > 30 s and T > 60 s for body and surface waves, respectively) with a limited data set (253 carefully selected earthquakes and seismic data from permanent and temporary networks) on Oak Ridge National Laboratory's Cray XK7 "Titan" system. Recent improvements in our 3D global wave propagation solvers, such as a GPU version of the SPECFEM3D_GLOBE package, will enable us perform higher-resolution (T > 9 s) and longer duration (~180 m) simulations to take the advantage of high-frequency body waves and major-arc surface waves, thereby improving imbalanced ray coverage as a result of the uneven global distribution of sources and receivers. Our ultimate goal is to use all earthquakes in the global CMT catalogue within the magnitude range of our interest and data from all available seismic networks. To take the full advantage of computational resources, we need a solid framework to manage big data sets during numerical simulations, pre-processing (i.e., data requests and quality checks, processing data, window selection, etc.) and post-processing (i.e., pre-conditioning and smoothing kernels, etc.). We address the bottlenecks in our global seismic workflow, which are mainly coming from heavy I/O traffic during simulations and the pre- and post-processing stages, by defining new data

  2. Requirements for fault-tolerant factoring on an atom-optics quantum computer.

    Science.gov (United States)

    Devitt, Simon J; Stephens, Ashley M; Munro, William J; Nemoto, Kae

    2013-01-01

    Quantum information processing and its associated technologies have reached a pivotal stage in their development, with many experiments having established the basic building blocks. Moving forward, the challenge is to scale up to larger machines capable of performing computational tasks not possible today. This raises questions that need to be urgently addressed, such as what resources these machines will consume and how large will they be. Here we estimate the resources required to execute Shor's factoring algorithm on an atom-optics quantum computer architecture. We determine the runtime and size of the computer as a function of the problem size and physical error rate. Our results suggest that once the physical error rate is low enough to allow quantum error correction, optimization to reduce resources and increase performance will come mostly from integrating algorithms and circuits within the error correction environment, rather than from improving the physical hardware.

  3. IT Requirements Integration in High-Rise Construction Design Projects

    Science.gov (United States)

    Levina, Anastasia; Ilin, Igor; Esedulaev, Rustam

    2018-03-01

    The paper discusses the growing role of IT support for the operation of modern high-rise buildings, due to the complexity of managing engineering systems of buildings and the requirements of consumers for the IT infrastructure. The existing regulatory framework for the development of design documentation for construction, including high-rise buildings, is analyzed, and the lack of coherence in the development of this documentation with the requirements for the creation of an automated management system and the corresponding IT infrastructure is stated. The lack of integration between these areas is the cause of delays and inefficiencies both at the design stage and at the stage of putting the building into operation. The paper proposes an approach to coordinate the requirements of the IT infrastructure of high-rise buildings and design documentation for construction. The solution to this problem is possible within the framework of the enterprise architecture concept by coordinating the requirements of the IT and technological layers at the design stage of the construction.

  4. High-speed linear optics quantum computing using active feed-forward.

    Science.gov (United States)

    Prevedel, Robert; Walther, Philip; Tiefenbacher, Felix; Böhi, Pascal; Kaltenbaek, Rainer; Jennewein, Thomas; Zeilinger, Anton

    2007-01-04

    As information carriers in quantum computing, photonic qubits have the advantage of undergoing negligible decoherence. However, the absence of any significant photon-photon interaction is problematic for the realization of non-trivial two-qubit gates. One solution is to introduce an effective nonlinearity by measurements resulting in probabilistic gate operations. In one-way quantum computation, the random quantum measurement error can be overcome by applying a feed-forward technique, such that the future measurement basis depends on earlier measurement results. This technique is crucial for achieving deterministic quantum computation once a cluster state (the highly entangled multiparticle state on which one-way quantum computation is based) is prepared. Here we realize a concatenated scheme of measurement and active feed-forward in a one-way quantum computing experiment. We demonstrate that, for a perfect cluster state and no photon loss, our quantum computation scheme would operate with good fidelity and that our feed-forward components function with very high speed and low error for detected photons. With present technology, the individual computational step (in our case the individual feed-forward cycle) can be operated in less than 150 ns using electro-optical modulators. This is an important result for the future development of one-way quantum computers, whose large-scale implementation will depend on advances in the production and detection of the required highly entangled cluster states.

  5. High performance computing and communications: FY 1997 implementation plan

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-01

    The High Performance Computing and Communications (HPCC) Program was formally authorized by passage, with bipartisan support, of the High-Performance Computing Act of 1991, signed on December 9, 1991. The original Program, in which eight Federal agencies participated, has now grown to twelve agencies. This Plan provides a detailed description of the agencies` FY 1996 HPCC accomplishments and FY 1997 HPCC plans. Section 3 of this Plan provides an overview of the HPCC Program. Section 4 contains more detailed definitions of the Program Component Areas, with an emphasis on the overall directions and milestones planned for each PCA. Appendix A provides a detailed look at HPCC Program activities within each agency.

  6. Visualization and Data Analysis for High-Performance Computing

    Energy Technology Data Exchange (ETDEWEB)

    Sewell, Christopher Meyer [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-09-27

    This is a set of slides from a guest lecture for a class at the University of Texas, El Paso on visualization and data analysis for high-performance computing. The topics covered are the following: trends in high-performance computing; scientific visualization, such as OpenGL, ray tracing and volume rendering, VTK, and ParaView; data science at scale, such as in-situ visualization, image databases, distributed memory parallelism, shared memory parallelism, VTK-m, "big data", and then an analysis example.

  7. Computer Security: SAHARA - Security As High As Reasonably Achievable

    CERN Multimedia

    Stefan Lueders, Computer Security Team

    2015-01-01

    History has shown us time and again that our computer systems, computing services and control systems have digital security deficiencies. Too often we deploy stop-gap solutions and improvised hacks, or we just accept that it is too late to change things.    In my opinion, this blatantly contradicts the professionalism we show in our daily work. Other priorities and time pressure force us to ignore security or to consider it too late to do anything… but we can do better. Just look at how “safety” is dealt with at CERN! “ALARA” (As Low As Reasonably Achievable) is the objective set by the CERN HSE group when considering our individual radiological exposure. Following this paradigm, and shifting it from CERN safety to CERN computer security, would give us “SAHARA”: “Security As High As Reasonably Achievable”. In other words, all possible computer security measures must be applied, so long as ...

  8. A primer on high-throughput computing for genomic selection.

    Science.gov (United States)

    Wu, Xiao-Lin; Beissinger, Timothy M; Bauck, Stewart; Woodward, Brent; Rosa, Guilherme J M; Weigel, Kent A; Gatti, Natalia de Leon; Gianola, Daniel

    2011-01-01

    High-throughput computing (HTC) uses computer clusters to solve advanced computational problems, with the goal of accomplishing high-throughput over relatively long periods of time. In genomic selection, for example, a set of markers covering the entire genome is used to train a model based on known data, and the resulting model is used to predict the genetic merit of selection candidates. Sophisticated models are very computationally demanding and, with several traits to be evaluated sequentially, computing time is long, and output is low. In this paper, we present scenarios and basic principles of how HTC can be used in genomic selection, implemented using various techniques from simple batch processing to pipelining in distributed computer clusters. Various scripting languages, such as shell scripting, Perl, and R, are also very useful to devise pipelines. By pipelining, we can reduce total computing time and consequently increase throughput. In comparison to the traditional data processing pipeline residing on the central processors, performing general-purpose computation on a graphics processing unit provide a new-generation approach to massive parallel computing in genomic selection. While the concept of HTC may still be new to many researchers in animal breeding, plant breeding, and genetics, HTC infrastructures have already been built in many institutions, such as the University of Wisconsin-Madison, which can be leveraged for genomic selection, in terms of central processing unit capacity, network connectivity, storage availability, and middleware connectivity. Exploring existing HTC infrastructures as well as general-purpose computing environments will further expand our capability to meet increasing computing demands posed by unprecedented genomic data that we have today. We anticipate that HTC will impact genomic selection via better statistical models, faster solutions, and more competitive products (e.g., from design of marker panels to realized

  9. Parametric analysis of diffuser requirements for high expansion ratio space engine

    Science.gov (United States)

    Wojciechowski, C. J.; Anderson, P. G.

    1981-01-01

    A supersonic diffuser ejector design computer program was developed. Using empirically modified one dimensional flow methods the diffuser ejector geometry is specified by the code. The design code results for calculations up to the end of the diffuser second throat were verified. Diffuser requirements for sea level testing of high expansion ratio space engines were defined. The feasibility of an ejector system using two commonly available turbojet engines feeding two variable area ratio ejectors was demonstrated.

  10. Symbolic computation and its application to high energy physics

    International Nuclear Information System (INIS)

    Hearn, A.C.

    1981-01-01

    It is clear that we are in the middle of an electronic revolution whose effect will be as profound as the industrial revolution. The continuing advances in computing technology will provide us with devices which will make present day computers appear primitive. In this environment, the algebraic and other non-mumerical capabilities of such devices will become increasingly important. These lectures will review the present state of the field of algebraic computation and its potential for problem solving in high energy physics and related areas. We shall begin with a brief description of the available systems and examine the data objects which they consider. As an example of the facilities which these systems can offer, we shall then consider the problem of analytic integration, since this is so fundamental to many of the calculational techniques used by high energy physicists. Finally, we shall study the implications which the current developments in hardware technology hold for scientific problem solving. (orig.)

  11. High performance computing and communications: FY 1996 implementation plan

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-05-16

    The High Performance Computing and Communications (HPCC) Program was formally authorized by passage of the High Performance Computing Act of 1991, signed on December 9, 1991. Twelve federal agencies, in collaboration with scientists and managers from US industry, universities, and research laboratories, have developed the Program to meet the challenges of advancing computing and associated communications technologies and practices. This plan provides a detailed description of the agencies` HPCC implementation plans for FY 1995 and FY 1996. This Implementation Plan contains three additional sections. Section 3 provides an overview of the HPCC Program definition and organization. Section 4 contains a breakdown of the five major components of the HPCC Program, with an emphasis on the overall directions and milestones planned for each one. Section 5 provides a detailed look at HPCC Program activities within each agency.

  12. High Performance Computing Facility Operational Assessment, FY 2011 Oak Ridge Leadership Computing Facility

    Energy Technology Data Exchange (ETDEWEB)

    Baker, Ann E [ORNL; Bland, Arthur S Buddy [ORNL; Hack, James J [ORNL; Barker, Ashley D [ORNL; Boudwin, Kathlyn J. [ORNL; Kendall, Ricky A [ORNL; Messer, Bronson [ORNL; Rogers, James H [ORNL; Shipman, Galen M [ORNL; Wells, Jack C [ORNL; White, Julia C [ORNL

    2011-08-01

    Oak Ridge National Laboratory's Leadership Computing Facility (OLCF) continues to deliver the most powerful resources in the U.S. for open science. At 2.33 petaflops peak performance, the Cray XT Jaguar delivered more than 1.5 billion core hours in calendar year (CY) 2010 to researchers around the world for computational simulations relevant to national and energy security; advancing the frontiers of knowledge in physical sciences and areas of biological, medical, environmental, and computer sciences; and providing world-class research facilities for the nation's science enterprise. Scientific achievements by OLCF users range from collaboration with university experimentalists to produce a working supercapacitor that uses atom-thick sheets of carbon materials to finely determining the resolution requirements for simulations of coal gasifiers and their components, thus laying the foundation for development of commercial-scale gasifiers. OLCF users are pushing the boundaries with software applications sustaining more than one petaflop of performance in the quest to illuminate the fundamental nature of electronic devices. Other teams of researchers are working to resolve predictive capabilities of climate models, to refine and validate genome sequencing, and to explore the most fundamental materials in nature - quarks and gluons - and their unique properties. Details of these scientific endeavors - not possible without access to leadership-class computing resources - are detailed in Section 4 of this report and in the INCITE in Review. Effective operations of the OLCF play a key role in the scientific missions and accomplishments of its users. This Operational Assessment Report (OAR) will delineate the policies, procedures, and innovations implemented by the OLCF to continue delivering a petaflop-scale resource for cutting-edge research. The 2010 operational assessment of the OLCF yielded recommendations that have been addressed (Reference Section 1) and

  13. High-integrity software, computation and the scientific method

    International Nuclear Information System (INIS)

    Hatton, L.

    2012-01-01

    Computation rightly occupies a central role in modern science. Datasets are enormous and the processing implications of some algorithms are equally staggering. With the continuing difficulties in quantifying the results of complex computations, it is of increasing importance to understand its role in the essentially Popperian scientific method. In this paper, some of the problems with computation, for example the long-term unquantifiable presence of undiscovered defect, problems with programming languages and process issues will be explored with numerous examples. One of the aims of the paper is to understand the implications of trying to produce high-integrity software and the limitations which still exist. Unfortunately Computer Science itself suffers from an inability to be suitably critical of its practices and has operated in a largely measurement-free vacuum since its earliest days. Within computer science itself, this has not been so damaging in that it simply leads to unconstrained creativity and a rapid turnover of new technologies. In the applied sciences however which have to depend on computational results, such unquantifiability significantly undermines trust. It is time this particular demon was put to rest. (author)

  14. Enabling High-Performance Computing as a Service

    KAUST Repository

    AbdelBaky, Moustafa

    2012-10-01

    With the right software infrastructure, clouds can provide scientists with as a service access to high-performance computing resources. An award-winning prototype framework transforms the Blue Gene/P system into an elastic cloud to run a representative HPC application. © 2012 IEEE.

  15. Computer science of the high performance; Informatica del alto rendimiento

    Energy Technology Data Exchange (ETDEWEB)

    Moraleda, A.

    2008-07-01

    The high performance computing is taking shape as a powerful accelerator of the process of innovation, to drastically reduce the waiting times for access to the results and the findings in a growing number of processes and activities as complex and important as medicine, genetics, pharmacology, environment, natural resources management or the simulation of complex processes in a wide variety of industries. (Author)

  16. Contemporary high performance computing from petascale toward exascale

    CERN Document Server

    Vetter, Jeffrey S

    2015-01-01

    A continuation of Contemporary High Performance Computing: From Petascale toward Exascale, this second volume continues the discussion of HPC flagship systems, major application workloads, facilities, and sponsors. The book includes of figures and pictures that capture the state of existing systems: pictures of buildings, systems in production, floorplans, and many block diagrams and charts to illustrate system design and performance.

  17. Hot Chips and Hot Interconnects for High End Computing Systems

    Science.gov (United States)

    Saini, Subhash

    2005-01-01

    I will discuss several processors: 1. The Cray proprietary processor used in the Cray X1; 2. The IBM Power 3 and Power 4 used in an IBM SP 3 and IBM SP 4 systems; 3. The Intel Itanium and Xeon, used in the SGI Altix systems and clusters respectively; 4. IBM System-on-a-Chip used in IBM BlueGene/L; 5. HP Alpha EV68 processor used in DOE ASCI Q cluster; 6. SPARC64 V processor, which is used in the Fujitsu PRIMEPOWER HPC2500; 7. An NEC proprietary processor, which is used in NEC SX-6/7; 8. Power 4+ processor, which is used in Hitachi SR11000; 9. NEC proprietary processor, which is used in Earth Simulator. The IBM POWER5 and Red Storm Computing Systems will also be discussed. The architectures of these processors will first be presented, followed by interconnection networks and a description of high-end computer systems based on these processors and networks. The performance of various hardware/programming model combinations will then be compared, based on latest NAS Parallel Benchmark results (MPI, OpenMP/HPF and hybrid (MPI + OpenMP). The tutorial will conclude with a discussion of general trends in the field of high performance computing, (quantum computing, DNA computing, cellular engineering, and neural networks).

  18. Computer simulation of high resolution transmission electron micrographs: theory and analysis

    International Nuclear Information System (INIS)

    Kilaas, R.

    1985-03-01

    Computer simulation of electron micrographs is an invaluable aid in their proper interpretation and in defining optimum conditions for obtaining images experimentally. Since modern instruments are capable of atomic resolution, simulation techniques employing high precision are required. This thesis makes contributions to four specific areas of this field. First, the validity of a new method for simulating high resolution electron microscope images has been critically examined. Second, three different methods for computing scattering amplitudes in High Resolution Transmission Electron Microscopy (HRTEM) have been investigated as to their ability to include upper Laue layer (ULL) interaction. Third, a new method for computing scattering amplitudes in high resolution transmission electron microscopy has been examined. Fourth, the effect of a surface layer of amorphous silicon dioxide on images of crystalline silicon has been investigated for a range of crystal thicknesses varying from zero to 2 1/2 times that of the surface layer

  19. Computation of high Reynolds number internal/external flows

    Science.gov (United States)

    Cline, M. C.; Wilmoth, R. G.

    1981-01-01

    A general, user oriented computer program, called VNAP2, was developed to calculate high Reynolds number, internal/ external flows. The VNAP2 program solves the two dimensional, time dependent Navier-Stokes equations. The turbulence is modeled with either a mixing-length, a one transport equation, or a two transport equation model. Interior grid points are computed using the explicit MacCormack Scheme with special procedures to speed up the calculation in the fine grid. All boundary conditions are calculated using a reference plane characteristic scheme with the viscous terms treated as source terms. Several internal, external, and internal/external flow calculations are presented.

  20. Computation of high Reynolds number internal/external flows

    International Nuclear Information System (INIS)

    Cline, M.C.; Wilmoth, R.G.

    1981-01-01

    A general, user oriented computer program, called VNAP2, has been developed to calculate high Reynolds number, internal/external flows. VNAP2 solves the two-dimensional, time-dependent Navier-Stokes equations. The turbulence is modeled with either a mixing-length, a one transport equation, or a two transport equation model. Interior grid points are computed using the explicit MacCormack scheme with special procedures to speed up the calculation in the fine grid. All boundary conditions are calculated using a reference plane characteristic scheme with the viscous terms treated as source terms. Several internal, external, and internal/external flow calculations are presented

  1. 2003 Conference for Computing in High Energy and Nuclear Physics

    International Nuclear Information System (INIS)

    Schalk, T.

    2003-01-01

    The conference was subdivided into the follow separate tracks. Electronic presentations and/or videos are provided on the main website link. Sessions: Plenary Talks and Panel Discussion; Grid Architecture, Infrastructure, and Grid Security; HENP Grid Applications, Testbeds, and Demonstrations; HENP Computing Systems and Infrastructure; Monitoring; High Performance Networking; Data Acquisition, Triggers and Controls; First Level Triggers and Trigger Hardware; Lattice Gauge Computing; HENP Software Architecture and Software Engineering; Data Management and Persistency; Data Analysis Environment and Visualization; Simulation and Modeling; and Collaboration Tools and Information Systems

  2. Component-based software for high-performance scientific computing

    Energy Technology Data Exchange (ETDEWEB)

    Alexeev, Yuri; Allan, Benjamin A; Armstrong, Robert C; Bernholdt, David E; Dahlgren, Tamara L; Gannon, Dennis; Janssen, Curtis L; Kenny, Joseph P; Krishnan, Manojkumar; Kohl, James A; Kumfert, Gary; McInnes, Lois Curfman; Nieplocha, Jarek; Parker, Steven G; Rasmussen, Craig; Windus, Theresa L

    2005-01-01

    Recent advances in both computational hardware and multidisciplinary science have given rise to an unprecedented level of complexity in scientific simulation software. This paper describes an ongoing grass roots effort aimed at addressing complexity in high-performance computing through the use of Component-Based Software Engineering (CBSE). Highlights of the benefits and accomplishments of the Common Component Architecture (CCA) Forum and SciDAC ISIC are given, followed by an illustrative example of how the CCA has been applied to drive scientific discovery in quantum chemistry. Thrusts for future research are also described briefly.

  3. Component-based software for high-performance scientific computing

    International Nuclear Information System (INIS)

    Alexeev, Yuri; Allan, Benjamin A; Armstrong, Robert C; Bernholdt, David E; Dahlgren, Tamara L; Gannon, Dennis; Janssen, Curtis L; Kenny, Joseph P; Krishnan, Manojkumar; Kohl, James A; Kumfert, Gary; McInnes, Lois Curfman; Nieplocha, Jarek; Parker, Steven G; Rasmussen, Craig; Windus, Theresa L

    2005-01-01

    Recent advances in both computational hardware and multidisciplinary science have given rise to an unprecedented level of complexity in scientific simulation software. This paper describes an ongoing grass roots effort aimed at addressing complexity in high-performance computing through the use of Component-Based Software Engineering (CBSE). Highlights of the benefits and accomplishments of the Common Component Architecture (CCA) Forum and SciDAC ISIC are given, followed by an illustrative example of how the CCA has been applied to drive scientific discovery in quantum chemistry. Thrusts for future research are also described briefly

  4. Computational methods for high-energy source shielding

    International Nuclear Information System (INIS)

    Armstrong, T.W.; Cloth, P.; Filges, D.

    1983-01-01

    The computational methods for high-energy radiation transport related to shielding of the SNQ-spallation source are outlined. The basic approach is to couple radiation-transport computer codes which use Monte Carlo methods and discrete ordinates methods. A code system is suggested that incorporates state-of-the-art radiation-transport techniques. The stepwise verification of that system is briefly summarized. The complexity of the resulting code system suggests a more straightforward code specially tailored for thick shield calculations. A short guide line to future development of such a Monte Carlo code is given

  5. Study of the operation and maintenance of computer systems to meet the requirements of 10 CFR 73.55

    International Nuclear Information System (INIS)

    Lewis, J.R.; Byers, K.R.; Fluckiger, J.D.; McBride, K.C.

    1986-01-01

    The Pacific Northwest Laboratory has studied the operation and maintenance of computer-managed systems that can help nuclear power plant licensees to meet the physical security requirements of 10 CFR 73.55 (for access control, alarm monitoring, and alarm recording). This report of that study describes a computer system quality assurance program that is based on a system of related internal controls. A discussion of computer system evaluation includes verification and validation mechanisms for assuring that requirements are stated and that the product fulfills these requirements. Finally, the report describes operator and security awareness training and a computer system preventive maintenance program. 24 refs

  6. Computational fluid dynamics research at the United Technologies Research Center requiring supercomputers

    Science.gov (United States)

    Landgrebe, Anton J.

    1987-01-01

    An overview of research activities at the United Technologies Research Center (UTRC) in the area of Computational Fluid Dynamics (CFD) is presented. The requirement and use of various levels of computers, including supercomputers, for the CFD activities is described. Examples of CFD directed toward applications to helicopters, turbomachinery, heat exchangers, and the National Aerospace Plane are included. Helicopter rotor codes for the prediction of rotor and fuselage flow fields and airloads were developed with emphasis on rotor wake modeling. Airflow and airload predictions and comparisons with experimental data are presented. Examples are presented of recent parabolized Navier-Stokes and full Navier-Stokes solutions for hypersonic shock-wave/boundary layer interaction, and hydrogen/air supersonic combustion. In addition, other examples of CFD efforts in turbomachinery Navier-Stokes methodology and separated flow modeling are presented. A brief discussion of the 3-tier scientific computing environment is also presented, in which the researcher has access to workstations, mid-size computers, and supercomputers.

  7. Computing trends using graphic processor in high energy physics

    CERN Document Server

    Niculescu, Mihai

    2011-01-01

    One of the main challenges in Heavy Energy Physics is to make fast analysis of high amount of experimental and simulated data. At LHC-CERN one p-p event is approximate 1 Mb in size. The time taken to analyze the data and obtain fast results depends on high computational power. The main advantage of using GPU(Graphic Processor Unit) programming over traditional CPU one is that graphical cards bring a lot of computing power at a very low price. Today a huge number of application(scientific, financial etc) began to be ported or developed for GPU, including Monte Carlo tools or data analysis tools for High Energy Physics. In this paper, we'll present current status and trends in HEP using GPU.

  8. Overview of Parallel Platforms for Common High Performance Computing

    Directory of Open Access Journals (Sweden)

    T. Fryza

    2012-04-01

    Full Text Available The paper deals with various parallel platforms used for high performance computing in the signal processing domain. More precisely, the methods exploiting the multicores central processing units such as message passing interface and OpenMP are taken into account. The properties of the programming methods are experimentally proved in the application of a fast Fourier transform and a discrete cosine transform and they are compared with the possibilities of MATLAB's built-in functions and Texas Instruments digital signal processors with very long instruction word architectures. New FFT and DCT implementations were proposed and tested. The implementation phase was compared with CPU based computing methods and with possibilities of the Texas Instruments digital signal processing library on C6747 floating-point DSPs. The optimal combination of computing methods in the signal processing domain and new, fast routines' implementation is proposed as well.

  9. School of Analytic Computing in Theoretical High-Energy Physics

    CERN Document Server

    2015-01-01

    In recent years, a huge progress has been made on computing rates for production processes of direct relevance to experiments at the Large Hadron Collider (LHC). Crucial to that remarkable advance has been our understanding and ability to compute scattering amplitudes and cross sections. The aim of the School is to bring together young theorists working on the phenomenology of LHC physics with those working in more formal areas, and to provide them the analytic tools to compute amplitudes in gauge theories. The school is addressed to Ph.D. students and post-docs in Theoretical High-Energy Physics. 30 hours of lectures and 4 hours of tutorials will be delivered over the 6 days of the School.

  10. Providing a computing environment for a high energy physics workshop

    International Nuclear Information System (INIS)

    Nicholls, J.

    1991-03-01

    Although computing facilities have been provided at conferences and workshops remote from the hose institution for some years, the equipment provided has rarely been capable of providing for much more than simple editing and electronic mail over leased lines. This presentation describes the pioneering effort involved by the Computing Department/Division at Fermilab in providing a local computing facility with world-wide networking capability for the Physics at Fermilab in the 1990's workshop held in Breckenridge, Colorado, in August 1989, as well as the enhanced facilities provided for the 1990 Summer Study on High Energy Physics at Snowmass, Colorado, in June/July 1990. Issues discussed include type and sizing of the facilities, advance preparations, shipping, on-site support, as well as an evaluation of the value of the facility to the workshop participants

  11. COMPUTING

    CERN Multimedia

    M. Kasemann

    Overview During the past three months activities were focused on data operations, testing and re-enforcing shift and operational procedures for data production and transfer, MC production and on user support. Planning of the computing resources in view of the new LHC calendar in ongoing. Two new task forces were created for supporting the integration work: Site Commissioning, which develops tools helping distributed sites to monitor job and data workflows, and Analysis Support, collecting the user experience and feedback during analysis activities and developing tools to increase efficiency. The development plan for DMWM for 2009/2011 was developed at the beginning of the year, based on the requirements from the Physics, Computing and Offline groups (see Offline section). The Computing management meeting at FermiLab on February 19th and 20th was an excellent opportunity discussing the impact and for addressing issues and solutions to the main challenges facing CMS computing. The lack of manpower is particul...

  12. High performance stream computing for particle beam transport simulations

    International Nuclear Information System (INIS)

    Appleby, R; Bailey, D; Higham, J; Salt, M

    2008-01-01

    Understanding modern particle accelerators requires simulating charged particle transport through the machine elements. These simulations can be very time consuming due to the large number of particles and the need to consider many turns of a circular machine. Stream computing offers an attractive way to dramatically improve the performance of such simulations by calculating the simultaneous transport of many particles using dedicated hardware. Modern Graphics Processing Units (GPUs) are powerful and affordable stream computing devices. The results of simulations of particle transport through the booster-to-storage-ring transfer line of the DIAMOND synchrotron light source using an NVidia GeForce 7900 GPU are compared to the standard transport code MAD. It is found that particle transport calculations are suitable for stream processing and large performance increases are possible. The accuracy and potential speed gains are compared and the prospects for future work in the area are discussed

  13. Computational Fluid Dynamics (CFD): Future role and requirements as viewed by an applied aerodynamicist. [computer systems design

    Science.gov (United States)

    Yoshihara, H.

    1978-01-01

    The problem of designing the wing-fuselage configuration of an advanced transonic commercial airliner and the optimization of a supercruiser fighter are sketched, pointing out the essential fluid mechanical phenomena that play an important role. Such problems suggest that for a numerical method to be useful, it must be able to treat highly three dimensional turbulent separations, flows with jet engine exhausts, and complex vehicle configurations. Weaknesses of the two principal tools of the aerodynamicist, the wind tunnel and the computer, suggest a complementing combined use of these tools, which is illustrated by the case of the transonic wing-fuselage design. The anticipated difficulties in developing an adequate turbulent transport model suggest that such an approach may have to suffice for an extended period. On a longer term, experimentation of turbulent transport in meaningful cases must be intensified to provide a data base for both modeling and theory validation purposes.

  14. Development of utility generic functional requirements for electronic work packages and computer-based procedures

    Energy Technology Data Exchange (ETDEWEB)

    Oxstrand, Johanna [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-06-01

    The Nuclear Electronic Work Packages - Enterprise Requirements (NEWPER) initiative is a step toward a vision of implementing an eWP framework that includes many types of eWPs. This will enable immediate paper-related cost savings in work management and provide a path to future labor efficiency gains through enhanced integration and process improvement in support of the Nuclear Promise (Nuclear Energy Institute 2016). The NEWPER initiative was organized by the Nuclear Information Technology Strategic Leadership (NITSL) group, which is an organization that brings together leaders from the nuclear utility industry and regulatory agencies to address issues involved with information technology used in nuclear-power utilities. NITSL strives to maintain awareness of industry information technology-related initiatives and events and communicates those events to its membership. NITSL and LWRS Program researchers have been coordinating activities, including joint organization of NEWPER-related meetings and report development. The main goal of the NEWPER initiative was to develop a set of utility generic functional requirements for eWP systems. This set of requirements will support each utility in their process of identifying plant-specific functional and non-functional requirements. The NEWPER initiative has 140 members where the largest group of members consists of 19 commercial U.S. nuclear utilities and eleven of the most prominent vendors of eWP solutions. Through the NEWPER initiative two sets of functional requirements were developed; functional requirements for electronic work packages and functional requirements for computer-based procedures. This paper will describe the development process as well as a summary of the requirements.

  15. Simple, parallel, high-performance virtual machines for extreme computations

    International Nuclear Information System (INIS)

    Chokoufe Nejad, Bijan; Ohl, Thorsten; Reuter, Jurgen

    2014-11-01

    We introduce a high-performance virtual machine (VM) written in a numerically fast language like Fortran or C to evaluate very large expressions. We discuss the general concept of how to perform computations in terms of a VM and present specifically a VM that is able to compute tree-level cross sections for any number of external legs, given the corresponding byte code from the optimal matrix element generator, O'Mega. Furthermore, this approach allows to formulate the parallel computation of a single phase space point in a simple and obvious way. We analyze hereby the scaling behaviour with multiple threads as well as the benefits and drawbacks that are introduced with this method. Our implementation of a VM can run faster than the corresponding native, compiled code for certain processes and compilers, especially for very high multiplicities, and has in general runtimes in the same order of magnitude. By avoiding the tedious compile and link steps, which may fail for source code files of gigabyte sizes, new processes or complex higher order corrections that are currently out of reach could be evaluated with a VM given enough computing power.

  16. Field-flood requirements for emission computed tomography with an Anger camer

    International Nuclear Information System (INIS)

    Rogers, W.L.; Clinthorne, N.H.; Harkness, B.A.; Koral, K.F.; Keyes, J.W. Jr.

    1982-01-01

    Emission computed tomography with a rotating camera places stringent requirements on camera uniformity and the stability of camera response. In terms of clinical tomographic imaging, we have studied the statistical accuracy required for camera flood correction, the requirements for flood accuracy, the utility and validity of flood and data image smoothing to reduce random noise effects, and the magnitude and effect of camera variations as a function of angular position, energy window, and tuning. Uniformity of the corrected flood response must be held to better than 1% to eliminate image artifacts that are apparent in a million-count image of a liver slice. This requires calibration with an accurate, well-mixed flood source. Both random fluctuations and variations in camera response with rotation must be kept below 1%. To meet the statistical limit, one requires at least 30 million counts for the flod-correction image. Smoothing the flood image alone introduces unacceptable image artifacts. Smoothing both the flood image and data, however, appears to be a good approach toward reducing noise effects. Careful camera tuning and magnetic shield design provide camera stability suitable for present clinical applications

  17. Integrated State Estimation and Contingency Analysis Software Implementation using High Performance Computing Techniques

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yousu; Glaesemann, Kurt R.; Rice, Mark J.; Huang, Zhenyu

    2015-12-31

    Power system simulation tools are traditionally developed in sequential mode and codes are optimized for single core computing only. However, the increasing complexity in the power grid models requires more intensive computation. The traditional simulation tools will soon not be able to meet the grid operation requirements. Therefore, power system simulation tools need to evolve accordingly to provide faster and better results for grid operations. This paper presents an integrated state estimation and contingency analysis software implementation using high performance computing techniques. The software is able to solve large size state estimation problems within one second and achieve a near-linear speedup of 9,800 with 10,000 cores for contingency analysis application. The performance evaluation is presented to show its effectiveness.

  18. Benchmarking high performance computing architectures with CMS’ skeleton framework

    Science.gov (United States)

    Sexton-Kennedy, E.; Gartung, P.; Jones, C. D.

    2017-10-01

    In 2012 CMS evaluated which underlying concurrency technology would be the best to use for its multi-threaded framework. The available technologies were evaluated on the high throughput computing systems dominating the resources in use at that time. A skeleton framework benchmarking suite that emulates the tasks performed within a CMSSW application was used to select Intel’s Thread Building Block library, based on the measured overheads in both memory and CPU on the different technologies benchmarked. In 2016 CMS will get access to high performance computing resources that use new many core architectures; machines such as Cori Phase 1&2, Theta, Mira. Because of this we have revived the 2012 benchmark to test it’s performance and conclusions on these new architectures. This talk will discuss the results of this exercise.

  19. Unravelling the structure of matter on high-performance computers

    International Nuclear Information System (INIS)

    Kieu, T.D.; McKellar, B.H.J.

    1992-11-01

    The various phenomena and the different forms of matter in nature are believed to be the manifestation of only a handful set of fundamental building blocks-the elementary particles-which interact through the four fundamental forces. In the study of the structure of matter at this level one has to consider forces which are not sufficiently weak to be treated as small perturbations to the system, an example of which is the strong force that binds the nucleons together. High-performance computers, both vector and parallel machines, have facilitated the necessary non-perturbative treatments. The principles and the techniques of computer simulations applied to Quantum Chromodynamics are explained examples include the strong interactions, the calculation of the mass of nucleons and their decay rates. Some commercial and special-purpose high-performance machines for such calculations are also mentioned. 3 refs., 2 tabs

  20. Multi-Language Programming Environments for High Performance Java Computing

    OpenAIRE

    Vladimir Getov; Paul Gray; Sava Mintchev; Vaidy Sunderam

    1999-01-01

    Recent developments in processor capabilities, software tools, programming languages and programming paradigms have brought about new approaches to high performance computing. A steadfast component of this dynamic evolution has been the scientific community’s reliance on established scientific packages. As a consequence, programmers of high‐performance applications are reluctant to embrace evolving languages such as Java. This paper describes the Java‐to‐C Interface (JCI) tool which provides ...

  1. Aspects of pulmonary histiocytosis X on high resolution computed tomography

    International Nuclear Information System (INIS)

    Costa, N.S.S.; Castro Lessa Angela, M.T. de; Angelo Junior, J.R.L.; Silva, F.M.D.; Kavakama, J.; Carvalho, C.R.R. de; Cerri, G.G.

    1995-01-01

    Pulmonary histiocytosis X is a disease that occurs in young adults and presents with nodules and cysts, mainly in upper lobes, with consequent pulmonary fibrosis. These pulmonary changes are virtually pathognomonic findings on high resolution computed tomography, that allows estimate the area of the lung involved and distinguish histiocytosis X from other disorders that also produces nodules and cysts. (author). 10 refs, 2 tabs, 6 figs

  2. Intel: High Throughput Computing Collaboration: A CERN openlab / Intel collaboration

    CERN Multimedia

    CERN. Geneva

    2015-01-01

    The Intel/CERN High Throughput Computing Collaboration studies the application of upcoming Intel technologies to the very challenging environment of the LHC trigger and data-acquisition systems. These systems will need to transport and process many terabits of data every second, in some cases with tight latency constraints. Parallelisation and tight integration of accelerators and classical CPU via Intel's OmniPath fabric are the key elements in this project.

  3. High End Computing Technologies for Earth Science Applications: Trends, Challenges, and Innovations

    Science.gov (United States)

    Parks, John (Technical Monitor); Biswas, Rupak; Yan, Jerry C.; Brooks, Walter F.; Sterling, Thomas L.

    2003-01-01

    Earth science applications of the future will stress the capabilities of even the highest performance supercomputers in the areas of raw compute power, mass storage management, and software environments. These NASA mission critical problems demand usable multi-petaflops and exabyte-scale systems to fully realize their science goals. With an exciting vision of the technologies needed, NASA has established a comprehensive program of advanced research in computer architecture, software tools, and device technology to ensure that, in partnership with US industry, it can meet these demanding requirements with reliable, cost effective, and usable ultra-scale systems. NASA will exploit, explore, and influence emerging high end computing architectures and technologies to accelerate the next generation of engineering, operations, and discovery processes for NASA Enterprises. This article captures this vision and describes the concepts, accomplishments, and the potential payoff of the key thrusts that will help meet the computational challenges in Earth science applications.

  4. Distributed project scheduling at NASA: Requirements for manual protocols and computer-based support

    Science.gov (United States)

    Richards, Stephen F.

    1992-01-01

    The increasing complexity of space operations and the inclusion of interorganizational and international groups in the planning and control of space missions lead to requirements for greater communication, coordination, and cooperation among mission schedulers. These schedulers must jointly allocate scarce shared resources among the various operational and mission oriented activities while adhering to all constraints. This scheduling environment is complicated by such factors as the presence of varying perspectives and conflicting objectives among the schedulers, the need for different schedulers to work in parallel, and limited communication among schedulers. Smooth interaction among schedulers requires the use of protocols that govern such issues as resource sharing, authority to update the schedule, and communication of updates. This paper addresses the development and characteristics of such protocols and their use in a distributed scheduling environment that incorporates computer-aided scheduling tools. An example problem is drawn from the domain of Space Shuttle mission planning.

  5. Virtual environment and computer-aided technologies used for system prototyping and requirements development

    Science.gov (United States)

    Logan, Cory; Maida, James; Goldsby, Michael; Clark, Jim; Wu, Liew; Prenger, Henk

    1993-01-01

    The Space Station Freedom (SSF) Data Management System (DMS) consists of distributed hardware and software which monitor and control the many onboard systems. Virtual environment and off-the-shelf computer technologies can be used at critical points in project development to aid in objectives and requirements development. Geometric models (images) coupled with off-the-shelf hardware and software technologies were used in The Space Station Mockup and Trainer Facility (SSMTF) Crew Operational Assessment Project. Rapid prototyping is shown to be a valuable tool for operational procedure and system hardware and software requirements development. The project objectives, hardware and software technologies used, data gained, current activities, future development and training objectives shall be discussed. The importance of defining prototyping objectives and staying focused while maintaining schedules are discussed along with project pitfalls.

  6. High Performance Computing Facility Operational Assessment 2015: Oak Ridge Leadership Computing Facility

    Energy Technology Data Exchange (ETDEWEB)

    Barker, Ashley D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility; Bernholdt, David E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility; Bland, Arthur S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility; Gary, Jeff D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility; Hack, James J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility; McNally, Stephen T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility; Rogers, James H. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility; Smith, Brian E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility; Straatsma, T. P. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility; Sukumar, Sreenivas Rangan [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility; Thach, Kevin G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility; Tichenor, Suzy [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility; Vazhkudai, Sudharshan S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility; Wells, Jack C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility

    2016-03-01

    Oak Ridge National Laboratory’s (ORNL’s) Leadership Computing Facility (OLCF) continues to surpass its operational target goals: supporting users; delivering fast, reliable systems; creating innovative solutions for high-performance computing (HPC) needs; and managing risks, safety, and security aspects associated with operating one of the most powerful computers in the world. The results can be seen in the cutting-edge science delivered by users and the praise from the research community. Calendar year (CY) 2015 was filled with outstanding operational results and accomplishments: a very high rating from users on overall satisfaction that ties the highest-ever mark set in CY 2014; the greatest number of core-hours delivered to research projects; the largest percentage of capability usage since the OLCF began tracking the metric in 2009; and success in delivering on the allocation of 60, 30, and 10% of core hours offered for the INCITE (Innovative and Novel Computational Impact on Theory and Experiment), ALCC (Advanced Scientific Computing Research Leadership Computing Challenge), and Director’s Discretionary programs, respectively. These accomplishments, coupled with the extremely high utilization rate, represent the fulfillment of the promise of Titan: maximum use by maximum-size simulations. The impact of all of these successes and more is reflected in the accomplishments of OLCF users, with publications this year in notable journals Nature, Nature Materials, Nature Chemistry, Nature Physics, Nature Climate Change, ACS Nano, Journal of the American Chemical Society, and Physical Review Letters, as well as many others. The achievements included in the 2015 OLCF Operational Assessment Report reflect first-ever or largest simulations in their communities; for example Titan enabled engineers in Los Angeles and the surrounding region to design and begin building improved critical infrastructure by enabling the highest-resolution Cybershake map for Southern

  7. High-Performance Java Codes for Computational Fluid Dynamics

    Science.gov (United States)

    Riley, Christopher; Chatterjee, Siddhartha; Biswas, Rupak; Biegel, Bryan (Technical Monitor)

    2001-01-01

    The computational science community is reluctant to write large-scale computationally -intensive applications in Java due to concerns over Java's poor performance, despite the claimed software engineering advantages of its object-oriented features. Naive Java implementations of numerical algorithms can perform poorly compared to corresponding Fortran or C implementations. To achieve high performance, Java applications must be designed with good performance as a primary goal. This paper presents the object-oriented design and implementation of two real-world applications from the field of Computational Fluid Dynamics (CFD): a finite-volume fluid flow solver (LAURA, from NASA Langley Research Center), and an unstructured mesh adaptation algorithm (2D_TAG, from NASA Ames Research Center). This work builds on our previous experience with the design of high-performance numerical libraries in Java. We examine the performance of the applications using the currently available Java infrastructure and show that the Java version of the flow solver LAURA performs almost within a factor of 2 of the original procedural version. Our Java version of the mesh adaptation algorithm 2D_TAG performs within a factor of 1.5 of its original procedural version on certain platforms. Our results demonstrate that object-oriented software design principles are not necessarily inimical to high performance.

  8. Computational Environments and Analysis methods available on the NCI High Performance Computing (HPC) and High Performance Data (HPD) Platform

    Science.gov (United States)

    Evans, B. J. K.; Foster, C.; Minchin, S. A.; Pugh, T.; Lewis, A.; Wyborn, L. A.; Evans, B. J.; Uhlherr, A.

    2014-12-01

    The National Computational Infrastructure (NCI) has established a powerful in-situ computational environment to enable both high performance computing and data-intensive science across a wide spectrum of national environmental data collections - in particular climate, observational data and geoscientific assets. This paper examines 1) the computational environments that supports the modelling and data processing pipelines, 2) the analysis environments and methods to support data analysis, and 3) the progress in addressing harmonisation of the underlying data collections for future transdisciplinary research that enable accurate climate projections. NCI makes available 10+ PB major data collections from both the government and research sectors based on six themes: 1) weather, climate, and earth system science model simulations, 2) marine and earth observations, 3) geosciences, 4) terrestrial ecosystems, 5) water and hydrology, and 6) astronomy, social and biosciences. Collectively they span the lithosphere, crust, biosphere, hydrosphere, troposphere, and stratosphere. The data is largely sourced from NCI's partners (which include the custodians of many of the national scientific records), major research communities, and collaborating overseas organisations. The data is accessible within an integrated HPC-HPD environment - a 1.2 PFlop supercomputer (Raijin), a HPC class 3000 core OpenStack cloud system and several highly connected large scale and high-bandwidth Lustre filesystems. This computational environment supports a catalogue of integrated reusable software and workflows from earth system and ecosystem modelling, weather research, satellite and other observed data processing and analysis. To enable transdisciplinary research on this scale, data needs to be harmonised so that researchers can readily apply techniques and software across the corpus of data available and not be constrained to work within artificial disciplinary boundaries. Future challenges will

  9. Computational quantum chemistry for single Heisenberg spin couplings made simple: Just one spin flip required

    International Nuclear Information System (INIS)

    Mayhall, Nicholas J.; Head-Gordon, Martin

    2014-01-01

    We highlight a simple strategy for computing the magnetic coupling constants, J, for a complex containing two multiradical centers. On the assumption that the system follows Heisenberg Hamiltonian physics, J is obtained from a spin-flip electronic structure calculation where only a single electron is excited (and spin-flipped), from the single reference with maximum S ^ z , M, to the M − 1 manifold, regardless of the number of unpaired electrons, 2M, on the radical centers. In an active space picture involving 2M orbitals, only one β electron is required, together with only one α hole. While this observation is extremely simple, the reduction in the number of essential configurations from exponential in M to only linear provides dramatic computational benefits. This (M, M − 1) strategy for evaluating J is an unambiguous, spin-pure, wave function theory counterpart of the various projected broken symmetry density functional theory schemes, and likewise gives explicit energies for each possible spin-state that enable evaluation of properties. The approach is illustrated on five complexes with varying numbers of unpaired electrons, for which one spin-flip calculations are used to compute J. Some implications for further development of spin-flip methods are discussed

  10. What Physicists Should Know About High Performance Computing - Circa 2002

    Science.gov (United States)

    Frederick, Donald

    2002-08-01

    High Performance Computing (HPC) is a dynamic, cross-disciplinary field that traditionally has involved applied mathematicians, computer scientists, and others primarily from the various disciplines that have been major users of HPC resources - physics, chemistry, engineering, with increasing use by those in the life sciences. There is a technological dynamic that is powered by economic as well as by technical innovations and developments. This talk will discuss practical ideas to be considered when developing numerical applications for research purposes. Even with the rapid pace of development in the field, the author believes that these concepts will not become obsolete for a while, and will be of use to scientists who either are considering, or who have already started down the HPC path. These principles will be applied in particular to current parallel HPC systems, but there will also be references of value to desktop users. The talk will cover such topics as: computing hardware basics, single-cpu optimization, compilers, timing, numerical libraries, debugging and profiling tools and the emergence of Computational Grids.

  11. Computing with high-resolution upwind schemes for hyperbolic equations

    International Nuclear Information System (INIS)

    Chakravarthy, S.R.; Osher, S.; California Univ., Los Angeles)

    1985-01-01

    Computational aspects of modern high-resolution upwind finite-difference schemes for hyperbolic systems of conservation laws are examined. An operational unification is demonstrated for constructing a wide class of flux-difference-split and flux-split schemes based on the design principles underlying total variation diminishing (TVD) schemes. Consideration is also given to TVD scheme design by preprocessing, the extension of preprocessing and postprocessing approaches to general control volumes, the removal of expansion shocks and glitches, relaxation methods for implicit TVD schemes, and a new family of high-accuracy TVD schemes. 21 references

  12. High spatial resolution CT image reconstruction using parallel computing

    International Nuclear Information System (INIS)

    Yin Yin; Liu Li; Sun Gongxing

    2003-01-01

    Using the PC cluster system with 16 dual CPU nodes, we accelerate the FBP and OR-OSEM reconstruction of high spatial resolution image (2048 x 2048). Based on the number of projections, we rewrite the reconstruction algorithms into parallel format and dispatch the tasks to each CPU. By parallel computing, the speedup factor is roughly equal to the number of CPUs, which can be up to about 25 times when 25 CPUs used. This technique is very suitable for real-time high spatial resolution CT image reconstruction. (authors)

  13. Requirements for a system to analyze HEP events using database computing

    International Nuclear Information System (INIS)

    May, E.; Lifka, D.; Lusk, E.; Price, L.E.; Day, C.T.; Loken, S.; MacFarlane, J.F.; Baden, A.

    1992-01-01

    We describe the requirements for the design and prototyping of an object-oriented database designed to analyze data in high energy physics. Our goal is to satisfy the data processing and analysis needs of a generic high energy physics experiment to be proposed for the Superconducting SuperCollider (SSC), and requires the collection and analysis of between 10 and 100 million sets of vectors (events), each approximately one megabyte in length. We sketch how this analysis would proceed using an object-oriented database which support the basic data types used in HEP

  14. Precision cosmology with time delay lenses: high resolution imaging requirements

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Xiao-Lei; Liao, Kai [Department of Astronomy, Beijing Normal University, 19 Xinjiekouwai Street, Beijing, 100875 (China); Treu, Tommaso; Agnello, Adriano [Department of Physics, University of California, Broida Hall, Santa Barbara, CA 93106 (United States); Auger, Matthew W. [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom); Marshall, Philip J., E-mail: xlmeng919@gmail.com, E-mail: tt@astro.ucla.edu, E-mail: aagnello@physics.ucsb.edu, E-mail: mauger@ast.cam.ac.uk, E-mail: liaokai@mail.bnu.edu.cn, E-mail: dr.phil.marshall@gmail.com [Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, 452 Lomita Mall, Stanford, CA 94305 (United States)

    2015-09-01

    Lens time delays are a powerful probe of cosmology, provided that the gravitational potential of the main deflector can be modeled with sufficient precision. Recent work has shown that this can be achieved by detailed modeling of the host galaxies of lensed quasars, which appear as ''Einstein Rings'' in high resolution images. The distortion of these arcs and counter-arcs, as measured over a large number of pixels, provides tight constraints on the difference between the gravitational potential between the quasar image positions, and thus on cosmology in combination with the measured time delay. We carry out a systematic exploration of the high resolution imaging required to exploit the thousands of lensed quasars that will be discovered by current and upcoming surveys with the next decade. Specifically, we simulate realistic lens systems as imaged by the Hubble Space Telescope (HST), James Webb Space Telescope (JWST), and ground based adaptive optics images taken with Keck or the Thirty Meter Telescope (TMT). We compare the performance of these pointed observations with that of images taken by the Euclid (VIS), Wide-Field Infrared Survey Telescope (WFIRST) and Large Synoptic Survey Telescope (LSST) surveys. We use as our metric the precision with which the slope γ' of the total mass density profile ρ{sub tot}∝ r{sup −γ'} for the main deflector can be measured. Ideally, we require that the statistical error on γ' be less than 0.02, such that it is subdominant to other sources of random and systematic uncertainties. We find that survey data will likely have sufficient depth and resolution to meet the target only for the brighter gravitational lens systems, comparable to those discovered by the SDSS survey. For fainter systems, that will be discovered by current and future surveys, targeted follow-up will be required. However, the exposure time required with upcoming facilitites such as JWST, the Keck Next Generation

  15. Precision cosmology with time delay lenses: High resolution imaging requirements

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Xiao -Lei [Beijing Normal Univ., Beijing (China); Univ. of California, Santa Barbara, CA (United States); Treu, Tommaso [Univ. of California, Santa Barbara, CA (United States); Univ. of California, Los Angeles, CA (United States); Agnello, Adriano [Univ. of California, Santa Barbara, CA (United States); Univ. of California, Los Angeles, CA (United States); Auger, Matthew W. [Univ. of Cambridge, Cambridge (United Kingdom); Liao, Kai [Beijing Normal Univ., Beijing (China); Univ. of California, Santa Barbara, CA (United States); Univ. of California, Los Angeles, CA (United States); Marshall, Philip J. [Stanford Univ., Stanford, CA (United States)

    2015-09-28

    Lens time delays are a powerful probe of cosmology, provided that the gravitational potential of the main deflector can be modeled with sufficient precision. Recent work has shown that this can be achieved by detailed modeling of the host galaxies of lensed quasars, which appear as ``Einstein Rings'' in high resolution images. The distortion of these arcs and counter-arcs, as measured over a large number of pixels, provides tight constraints on the difference between the gravitational potential between the quasar image positions, and thus on cosmology in combination with the measured time delay. We carry out a systematic exploration of the high resolution imaging required to exploit the thousands of lensed quasars that will be discovered by current and upcoming surveys with the next decade. Specifically, we simulate realistic lens systems as imaged by the Hubble Space Telescope (HST), James Webb Space Telescope (JWST), and ground based adaptive optics images taken with Keck or the Thirty Meter Telescope (TMT). We compare the performance of these pointed observations with that of images taken by the Euclid (VIS), Wide-Field Infrared Survey Telescope (WFIRST) and Large Synoptic Survey Telescope (LSST) surveys. We use as our metric the precision with which the slope γ' of the total mass density profile ρtot∝ r–γ' for the main deflector can be measured. Ideally, we require that the statistical error on γ' be less than 0.02, such that it is subdominant to other sources of random and systematic uncertainties. We find that survey data will likely have sufficient depth and resolution to meet the target only for the brighter gravitational lens systems, comparable to those discovered by the SDSS survey. For fainter systems, that will be discovered by current and future surveys, targeted follow-up will be required. Furthermore, the exposure time required with upcoming facilitites such as JWST, the Keck Next Generation Adaptive

  16. Optimizing clinical trial supply requirements: simulation of computer-controlled supply chain management.

    Science.gov (United States)

    Peterson, Magnus; Byrom, Bill; Dowlman, Nikki; McEntegart, Damian

    2004-01-01

    Computer-controlled systems are commonly used in clinical trials to control dispensing and manage site inventories of trial supplies. Typically such systems are used with an interactive telephone or web system that provide an interface with the study site. Realizing the maximum savings in medication associated with this approach has, in the past, been problematic as it has been difficult to fully estimate medication requirements due to the complexities of these algorithms and the inherent variation in the clinical trial recruitment process. We describe the traditional and automated methods of supplying sites. We detail a simulation approach that models the automated system. We design a number of simulation experiments using this model to investigate the supply strategy properties that influence medication overage and other strategy performance metrics. The computer-controlled medication system gave superior performance to the traditional method. In one example, a 75% overage of wasted medication in the traditional system was associated with higher supply failure than an automated system strategy with an overage of 47%. In a further example, we demonstrate that the impact of using a country stratified as opposed to site stratified scheme affects the number of deliveries and probability of supply failures more than the amount of drug wasted with respective increases of 20, 2300 and 4%. Medication savings with automated systems are particularly significant in repeat dispensing designs. We show that the number of packs required can fall by as much as 50% if one uses a predictive medication algorithm. We conclude that a computer-controlled supply chain enables medication savings to be realized and that it is possible to quantify the distribution of these savings using a simulation model. The simulation model can be used to optimize the prestudy medication supply strategy and for midstudy monitoring using real-time data contained in the study database.

  17. A Computer Controlled Precision High Pressure Measuring System

    Science.gov (United States)

    Sadana, S.; Yadav, S.; Jha, N.; Gupta, V. K.; Agarwal, R.; Bandyopadhyay, A. K.; Saxena, T. K.

    2011-01-01

    A microcontroller (AT89C51) based electronics has been designed and developed for high precision calibrator based on Digiquartz pressure transducer (DQPT) for the measurement of high hydrostatic pressure up to 275 MPa. The input signal from DQPT is converted into a square wave form and multiplied through frequency multiplier circuit over 10 times to input frequency. This input frequency is multiplied by a factor of ten using phased lock loop. Octal buffer is used to store the calculated frequency, which in turn is fed to microcontroller AT89C51 interfaced with a liquid crystal display for the display of frequency as well as corresponding pressure in user friendly units. The electronics developed is interfaced with a computer using RS232 for automatic data acquisition, computation and storage. The data is acquired by programming in Visual Basic 6.0. This system is interfaced with the PC to make it a computer controlled system. The system is capable of measuring the frequency up to 4 MHz with a resolution of 0.01 Hz and the pressure up to 275 MPa with a resolution of 0.001 MPa within measurement uncertainty of 0.025%. The details on the hardware of the pressure measuring system, associated electronics, software and calibration are discussed in this paper.

  18. High performance computing and communications: FY 1995 implementation plan

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-04-01

    The High Performance Computing and Communications (HPCC) Program was formally established following passage of the High Performance Computing Act of 1991 signed on December 9, 1991. Ten federal agencies in collaboration with scientists and managers from US industry, universities, and laboratories have developed the HPCC Program to meet the challenges of advancing computing and associated communications technologies and practices. This plan provides a detailed description of the agencies` HPCC implementation plans for FY 1994 and FY 1995. This Implementation Plan contains three additional sections. Section 3 provides an overview of the HPCC Program definition and organization. Section 4 contains a breakdown of the five major components of the HPCC Program, with an emphasis on the overall directions and milestones planned for each one. Section 5 provides a detailed look at HPCC Program activities within each agency. Although the Department of Education is an official HPCC agency, its current funding and reporting of crosscut activities goes through the Committee on Education and Health Resources, not the HPCC Program. For this reason the Implementation Plan covers nine HPCC agencies.

  19. FPGAs in High Perfomance Computing: Results from Two LDRD Projects.

    Energy Technology Data Exchange (ETDEWEB)

    Underwood, Keith D; Ulmer, Craig D.; Thompson, David; Hemmert, Karl Scott

    2006-11-01

    Field programmable gate arrays (FPGAs) have been used as alternative computational de-vices for over a decade; however, they have not been used for traditional scientific com-puting due to their perceived lack of floating-point performance. In recent years, there hasbeen a surge of interest in alternatives to traditional microprocessors for high performancecomputing. Sandia National Labs began two projects to determine whether FPGAs wouldbe a suitable alternative to microprocessors for high performance scientific computing and,if so, how they should be integrated into the system. We present results that indicate thatFPGAs could have a significant impact on future systems. FPGAs have thepotentialtohave order of magnitude levels of performance wins on several key algorithms; however,there are serious questions as to whether the system integration challenge can be met. Fur-thermore, there remain challenges in FPGA programming and system level reliability whenusing FPGA devices.4 AcknowledgmentArun Rodrigues provided valuable support and assistance in the use of the Structural Sim-ulation Toolkit within an FPGA context. Curtis Janssen and Steve Plimpton provided valu-able insights into the workings of two Sandia applications (MPQC and LAMMPS, respec-tively).5

  20. High performance computing in science and engineering '09: transactions of the High Performance Computing Center, Stuttgart (HLRS) 2009

    National Research Council Canada - National Science Library

    Nagel, Wolfgang E; Kröner, Dietmar; Resch, Michael

    2010-01-01

    ...), NIC/JSC (J¨ u lich), and LRZ (Munich). As part of that strategic initiative, in May 2009 already NIC/JSC has installed the first phase of the GCS HPC Tier-0 resources, an IBM Blue Gene/P with roughly 300.000 Cores, this time in J¨ u lich, With that, the GCS provides the most powerful high-performance computing infrastructure in Europe alread...

  1. Computational Fluid Dynamics (CFD) Computations With Zonal Navier-Stokes Flow Solver (ZNSFLOW) Common High Performance Computing Scalable Software Initiative (CHSSI) Software

    National Research Council Canada - National Science Library

    Edge, Harris

    1999-01-01

    ...), computational fluid dynamics (CFD) 6 project. Under the project, a proven zonal Navier-Stokes solver was rewritten for scalable parallel performance on both shared memory and distributed memory high performance computers...

  2. High Performance Computing - Power Application Programming Interface Specification.

    Energy Technology Data Exchange (ETDEWEB)

    Laros, James H.,; Kelly, Suzanne M.; Pedretti, Kevin; Grant, Ryan; Olivier, Stephen Lecler; Levenhagen, Michael J.; DeBonis, David

    2014-08-01

    Measuring and controlling the power and energy consumption of high performance computing systems by various components in the software stack is an active research area [13, 3, 5, 10, 4, 21, 19, 16, 7, 17, 20, 18, 11, 1, 6, 14, 12]. Implementations in lower level software layers are beginning to emerge in some production systems, which is very welcome. To be most effective, a portable interface to measurement and control features would significantly facilitate participation by all levels of the software stack. We present a proposal for a standard power Application Programming Interface (API) that endeavors to cover the entire software space, from generic hardware interfaces to the input from the computer facility manager.

  3. TOWARD HIGHLY SECURE AND AUTONOMIC COMPUTING SYSTEMS: A HIERARCHICAL APPROACH

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hsien-Hsin S

    2010-05-11

    The overall objective of this research project is to develop novel architectural techniques as well as system software to achieve a highly secure and intrusion-tolerant computing system. Such system will be autonomous, self-adapting, introspective, with self-healing capability under the circumstances of improper operations, abnormal workloads, and malicious attacks. The scope of this research includes: (1) System-wide, unified introspection techniques for autonomic systems, (2) Secure information-flow microarchitecture, (3) Memory-centric security architecture, (4) Authentication control and its implication to security, (5) Digital right management, (5) Microarchitectural denial-of-service attacks on shared resources. During the period of the project, we developed several architectural techniques and system software for achieving a robust, secure, and reliable computing system toward our goal.

  4. From the web to the grid and beyond. Computing paradigms driven by high energy physics

    International Nuclear Information System (INIS)

    Brun, Rene; Carminati, Federico; Galli Carminati, Giuliana

    2012-01-01

    Born after World War II, large-scale experimental high-energy physics (HEP) has found itself limited ever since by available accelerator, detector and computing technologies. Accordingly, HEP has made significant contributions to the development of these fields, more often than not driving their innovations. The invention of the World Wide Web at CERN is merely the best-known example out of many. This book is the first comprehensive account to trace the history of this pioneering spirit in the field of computing technologies. It covers everything up to and including the present-day handling of the huge demands imposed upon grid and distributed computing by full-scale LHC operations - operations which have for years involved many thousands of collaborating members worldwide and accordingly provide the original and natural testbed for grid computing concepts. This book takes the reader on a guided tour encompassing all relevant topics, including programming languages, software engineering, large databases, the Web, and grid- and cloud computing. The important issue of intellectual property regulations for distributed software engineering and computing is also addressed. Aptly, the book closes with a visionary chapter of what may lie ahead. Approachable and requiring only basic understanding of physics and computer sciences, this book is intended for both education and research. (orig.)

  5. From the web to the grid and beyond. Computing paradigms driven by high energy physics

    Energy Technology Data Exchange (ETDEWEB)

    Brun, Rene; Carminati, Federico [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Galli Carminati, Giuliana (eds.) [Hopitaux Universitaire de Geneve, Chene-Bourg (Switzerland). Unite de la Psychiatrie du Developpement Mental

    2012-07-01

    Born after World War II, large-scale experimental high-energy physics (HEP) has found itself limited ever since by available accelerator, detector and computing technologies. Accordingly, HEP has made significant contributions to the development of these fields, more often than not driving their innovations. The invention of the World Wide Web at CERN is merely the best-known example out of many. This book is the first comprehensive account to trace the history of this pioneering spirit in the field of computing technologies. It covers everything up to and including the present-day handling of the huge demands imposed upon grid and distributed computing by full-scale LHC operations - operations which have for years involved many thousands of collaborating members worldwide and accordingly provide the original and natural testbed for grid computing concepts. This book takes the reader on a guided tour encompassing all relevant topics, including programming languages, software engineering, large databases, the Web, and grid- and cloud computing. The important issue of intellectual property regulations for distributed software engineering and computing is also addressed. Aptly, the book closes with a visionary chapter of what may lie ahead. Approachable and requiring only basic understanding of physics and computer sciences, this book is intended for both education and research. (orig.)

  6. High-reliability computing for the smarter planet

    International Nuclear Information System (INIS)

    Quinn, Heather M.; Graham, Paul; Manuzzato, Andrea; Dehon, Andre

    2010-01-01

    The geometric rate of improvement of transistor size and integrated circuit performance, known as Moore's Law, has been an engine of growth for our economy, enabling new products and services, creating new value and wealth, increasing safety, and removing menial tasks from our daily lives. Affordable, highly integrated components have enabled both life-saving technologies and rich entertainment applications. Anti-lock brakes, insulin monitors, and GPS-enabled emergency response systems save lives. Cell phones, internet appliances, virtual worlds, realistic video games, and mp3 players enrich our lives and connect us together. Over the past 40 years of silicon scaling, the increasing capabilities of inexpensive computation have transformed our society through automation and ubiquitous communications. In this paper, we will present the concept of the smarter planet, how reliability failures affect current systems, and methods that can be used to increase the reliable adoption of new automation in the future. We will illustrate these issues using a number of different electronic devices in a couple of different scenarios. Recently IBM has been presenting the idea of a 'smarter planet.' In smarter planet documents, IBM discusses increased computer automation of roadways, banking, healthcare, and infrastructure, as automation could create more efficient systems. A necessary component of the smarter planet concept is to ensure that these new systems have very high reliability. Even extremely rare reliability problems can easily escalate to problematic scenarios when implemented at very large scales. For life-critical systems, such as automobiles, infrastructure, medical implantables, and avionic systems, unmitigated failures could be dangerous. As more automation moves into these types of critical systems, reliability failures will need to be managed. As computer automation continues to increase in our society, the need for greater radiation reliability is necessary

  7. High-reliability computing for the smarter planet

    Energy Technology Data Exchange (ETDEWEB)

    Quinn, Heather M [Los Alamos National Laboratory; Graham, Paul [Los Alamos National Laboratory; Manuzzato, Andrea [UNIV OF PADOVA; Dehon, Andre [UNIV OF PENN; Carter, Nicholas [INTEL CORPORATION

    2010-01-01

    The geometric rate of improvement of transistor size and integrated circuit performance, known as Moore's Law, has been an engine of growth for our economy, enabling new products and services, creating new value and wealth, increasing safety, and removing menial tasks from our daily lives. Affordable, highly integrated components have enabled both life-saving technologies and rich entertainment applications. Anti-lock brakes, insulin monitors, and GPS-enabled emergency response systems save lives. Cell phones, internet appliances, virtual worlds, realistic video games, and mp3 players enrich our lives and connect us together. Over the past 40 years of silicon scaling, the increasing capabilities of inexpensive computation have transformed our society through automation and ubiquitous communications. In this paper, we will present the concept of the smarter planet, how reliability failures affect current systems, and methods that can be used to increase the reliable adoption of new automation in the future. We will illustrate these issues using a number of different electronic devices in a couple of different scenarios. Recently IBM has been presenting the idea of a 'smarter planet.' In smarter planet documents, IBM discusses increased computer automation of roadways, banking, healthcare, and infrastructure, as automation could create more efficient systems. A necessary component of the smarter planet concept is to ensure that these new systems have very high reliability. Even extremely rare reliability problems can easily escalate to problematic scenarios when implemented at very large scales. For life-critical systems, such as automobiles, infrastructure, medical implantables, and avionic systems, unmitigated failures could be dangerous. As more automation moves into these types of critical systems, reliability failures will need to be managed. As computer automation continues to increase in our society, the need for greater radiation reliability is

  8. Department of Energy Mathematical, Information, and Computational Sciences Division: High Performance Computing and Communications Program

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-11-01

    This document is intended to serve two purposes. Its first purpose is that of a program status report of the considerable progress that the Department of Energy (DOE) has made since 1993, the time of the last such report (DOE/ER-0536, The DOE Program in HPCC), toward achieving the goals of the High Performance Computing and Communications (HPCC) Program. The second purpose is that of a summary report of the many research programs administered by the Mathematical, Information, and Computational Sciences (MICS) Division of the Office of Energy Research under the auspices of the HPCC Program and to provide, wherever relevant, easy access to pertinent information about MICS-Division activities via universal resource locators (URLs) on the World Wide Web (WWW).

  9. Department of Energy: MICS (Mathematical Information, and Computational Sciences Division). High performance computing and communications program

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-06-01

    This document is intended to serve two purposes. Its first purpose is that of a program status report of the considerable progress that the Department of Energy (DOE) has made since 1993, the time of the last such report (DOE/ER-0536, {open_quotes}The DOE Program in HPCC{close_quotes}), toward achieving the goals of the High Performance Computing and Communications (HPCC) Program. The second purpose is that of a summary report of the many research programs administered by the Mathematical, Information, and Computational Sciences (MICS) Division of the Office of Energy Research under the auspices of the HPCC Program and to provide, wherever relevant, easy access to pertinent information about MICS-Division activities via universal resource locators (URLs) on the World Wide Web (WWW). The information pointed to by the URL is updated frequently, and the interested reader is urged to access the WWW for the latest information.

  10. High-throughput computational search for strengthening precipitates in alloys

    International Nuclear Information System (INIS)

    Kirklin, S.; Saal, James E.; Hegde, Vinay I.; Wolverton, C.

    2016-01-01

    The search for high-strength alloys and precipitation hardened systems has largely been accomplished through Edisonian trial and error experimentation. Here, we present a novel strategy using high-throughput computational approaches to search for promising precipitate/alloy systems. We perform density functional theory (DFT) calculations of an extremely large space of ∼200,000 potential compounds in search of effective strengthening precipitates for a variety of different alloy matrices, e.g., Fe, Al, Mg, Ni, Co, and Ti. Our search strategy involves screening phases that are likely to produce coherent precipitates (based on small lattice mismatch) and are composed of relatively common alloying elements. When combined with the Open Quantum Materials Database (OQMD), we can computationally screen for precipitates that either have a stable two-phase equilibrium with the host matrix, or are likely to precipitate as metastable phases. Our search produces (for the structure types considered) nearly all currently known high-strength precipitates in a variety of fcc, bcc, and hcp matrices, thus giving us confidence in the strategy. In addition, we predict a number of new, currently-unknown precipitate systems that should be explored experimentally as promising high-strength alloy chemistries.

  11. Expectations of Competency: The Mismatch between Employers' and Graduates' Views of End-User Computing Skills Requirements in the Workplace

    Science.gov (United States)

    Gibbs, Shirley; Steel, Gary; Kuiper, Alison

    2011-01-01

    The use of computers has become part of everyday life. The high prevalence of computer use appears to lead employers to assume that university graduates will have the good computing skills necessary in many graduate level jobs. This study investigates how well the expectations of employers match the perceptions of near-graduate students about the…

  12. Performance of particle in cell methods on highly concurrent computational architectures

    International Nuclear Information System (INIS)

    Adams, M.F.; Ethier, S.; Wichmann, N.

    2009-01-01

    Particle in cell (PIC) methods are effective in computing Vlasov-Poisson system of equations used in simulations of magnetic fusion plasmas. PIC methods use grid based computations, for solving Poisson's equation or more generally Maxwell's equations, as well as Monte-Carlo type methods to sample the Vlasov equation. The presence of two types of discretizations, deterministic field solves and Monte-Carlo methods for the Vlasov equation, pose challenges in understanding and optimizing performance on today large scale computers which require high levels of concurrency. These challenges arises from the need to optimize two very different types of processes and the interactions between them. Modern cache based high-end computers have very deep memory hierarchies and high degrees of concurrency which must be utilized effectively to achieve good performance. The effective use of these machines requires maximizing concurrency by eliminating serial or redundant work and minimizing global communication. A related issue is minimizing the memory traffic between levels of the memory hierarchy because performance is often limited by the bandwidths and latencies of the memory system. This paper discusses some of the performance issues, particularly in regard to parallelism, of PIC methods. The gyrokinetic toroidal code (GTC) is used for these studies and a new radial grid decomposition is presented and evaluated. Scaling of the code is demonstrated on ITER sized plasmas with up to 16K Cray XT3/4 cores.

  13. Performance of particle in cell methods on highly concurrent computational architectures

    International Nuclear Information System (INIS)

    Adams, M F; Ethier, S; Wichmann, N

    2007-01-01

    Particle in cell (PIC) methods are effective in computing Vlasov-Poisson system of equations used in simulations of magnetic fusion plasmas. PIC methods use grid based computations, for solving Poisson's equation or more generally Maxwell's equations, as well as Monte-Carlo type methods to sample the Vlasov equation. The presence of two types of discretizations, deterministic field solves and Monte-Carlo methods for the Vlasov equation, pose challenges in understanding and optimizing performance on today large scale computers which require high levels of concurrency. These challenges arises from the need to optimize two very different types of processes and the interactions between them. Modern cache based high-end computers have very deep memory hierarchies and high degrees of concurrency which must be utilized effectively to achieve good performance. The effective use of these machines requires maximizing concurrency by eliminating serial or redundant work and minimizing global communication. A related issue is minimizing the memory traffic between levels of the memory hierarchy because performance is often limited by the bandwidths and latencies of the memory system. This paper discusses some of the performance issues, particularly in regard to parallelism, of PIC methods. The gyrokinetic toroidal code (GTC) is used for these studies and a new radial grid decomposition is presented and evaluated. Scaling of the code is demonstrated on ITER sized plasmas with up to 16K Cray XT3/4 cores

  14. NCI's High Performance Computing (HPC) and High Performance Data (HPD) Computing Platform for Environmental and Earth System Data Science

    Science.gov (United States)

    Evans, Ben; Allen, Chris; Antony, Joseph; Bastrakova, Irina; Gohar, Kashif; Porter, David; Pugh, Tim; Santana, Fabiana; Smillie, Jon; Trenham, Claire; Wang, Jingbo; Wyborn, Lesley

    2015-04-01

    The National Computational Infrastructure (NCI) has established a powerful and flexible in-situ petascale computational environment to enable both high performance computing and Data-intensive Science across a wide spectrum of national environmental and earth science data collections - in particular climate, observational data and geoscientific assets. This paper examines 1) the computational environments that supports the modelling and data processing pipelines, 2) the analysis environments and methods to support data analysis, and 3) the progress so far to harmonise the underlying data collections for future interdisciplinary research across these large volume data collections. NCI has established 10+ PBytes of major national and international data collections from both the government and research sectors based on six themes: 1) weather, climate, and earth system science model simulations, 2) marine and earth observations, 3) geosciences, 4) terrestrial ecosystems, 5) water and hydrology, and 6) astronomy, social and biosciences. Collectively they span the lithosphere, crust, biosphere, hydrosphere, troposphere, and stratosphere. The data is largely sourced from NCI's partners (which include the custodians of many of the major Australian national-scale scientific collections), leading research communities, and collaborating overseas organisations. New infrastructures created at NCI mean the data collections are now accessible within an integrated High Performance Computing and Data (HPC-HPD) environment - a 1.2 PFlop supercomputer (Raijin), a HPC class 3000 core OpenStack cloud system and several highly connected large-scale high-bandwidth Lustre filesystems. The hardware was designed at inception to ensure that it would allow the layered software environment to flexibly accommodate the advancement of future data science. New approaches to software technology and data models have also had to be developed to enable access to these large and exponentially

  15. Computer aided seismic and fire retrofitting analysis of existing high rise reinforced concrete buildings

    CERN Document Server

    Hussain, Raja Rizwan; Hasan, Saeed

    2016-01-01

    This book details the analysis and design of high rise buildings for gravity and seismic analysis. It provides the knowledge structural engineers need to retrofit existing structures in order to meet safety requirements and better prevent potential damage from such disasters as earthquakes and fires. Coverage includes actual case studies of existing buildings, reviews of current knowledge for damages and their mitigation, protective design technologies, and analytical and computational techniques. This monograph also provides an experimental investigation on the properties of fiber reinforced concrete that consists of natural fibres like coconut coir and also steel fibres that are used for comparison in both Normal Strength Concrete (NSC) and High Strength Concrete (HSC). In addition, the authors examine the use of various repair techniques for damaged high rise buildings. The book will help upcoming structural design engineers learn the computer aided analysis and design of real existing high rise buildings ...

  16. WIPP conceptual design report. Addendum M. Computer system and data processing requirements for Waste Isolation Pilot Plant (WIPP)

    International Nuclear Information System (INIS)

    Young, R.

    1977-06-01

    Data-processing requirements for the Waste Isolation Pilot Plant (WIPP) dictate a computing system that can provide a wide spectrum of data-processing needs on a 24-hour-day basis over an indeterminate time. A computer system is defined as a computer or computers complete with all peripheral equipment and extensive software and communications capabilities, including an operating system, compilers, assemblers, loaders, etc., all applicable to real-world problems. The computing system must be extremely reliable and easily expandable in both hardware and software to provide for future capabilities with a minimum impact on the existing applications software and operating system. The computer manufacturer or WIPP operating contractor must provide continuous on-site computer maintenance (maintain an adequate inventory of spare components and parts to guarantee a minimum mean-time-to-repair of any portion of the computer system). The computer operating system or monitor must process a wide mix of application programs and languages, yet be readily changeable to obtain maximum computer usage. The WIPP computing system must handle three general types of data processing requirements: batch, interactive, and real-time. These are discussed. Data bases, data collection systems, scientific and business systems, building and facilities, remote terminals and locations, and cables are also discussed

  17. A Crafts-Oriented Approach to Computing in High School: Introducing Computational Concepts, Practices, and Perspectives with Electronic Textiles

    Science.gov (United States)

    Kafai, Yasmin B.; Lee, Eunkyoung; Searle, Kristin; Fields, Deborah; Kaplan, Eliot; Lui, Debora

    2014-01-01

    In this article, we examine the use of electronic textiles (e-textiles) for introducing key computational concepts and practices while broadening perceptions about computing. The starting point of our work was the design and implementation of a curriculum module using the LilyPad Arduino in a pre-AP high school computer science class. To…

  18. New strategies of the LHC experiments to meet the computing requirements of the HL-LHC era

    CERN Document Server

    Adamova, Dagmar

    2017-01-01

    The performance of the Large Hadron Collider (LHC) during the ongoing Run 2 is above expectations both concerning the delivered luminosity and the LHC live time. This resulted in a volume of data much larger than originally anticipated. Based on the current data production levels and the structure of the LHC experiment computing models, the estimates of the data production rates and resource needs were re-evaluated for the era leading into the High Luminosity LHC (HLLHC), the Run 3 and Run 4 phases of LHC operation. It turns out that the raw data volume will grow 10 times by the HL-LHC era and the processing capacity needs will grow more than 60 times. While the growth of storage requirements might in principle be satisfied with a 20 per cent budget increase and technology advancements, there is a gap of a factor 6 to 10 between the needed and available computing resources. The threat of a lack of computing and storage resources was present already in the beginning of Run 2, but could still be mitigated, e.g....

  19. Computationally-optimized bone mechanical modeling from high-resolution structural images.

    Directory of Open Access Journals (Sweden)

    Jeremy F Magland

    Full Text Available Image-based mechanical modeling of the complex micro-structure of human bone has shown promise as a non-invasive method for characterizing bone strength and fracture risk in vivo. In particular, elastic moduli obtained from image-derived micro-finite element (μFE simulations have been shown to correlate well with results obtained by mechanical testing of cadaveric bone. However, most existing large-scale finite-element simulation programs require significant computing resources, which hamper their use in common laboratory and clinical environments. In this work, we theoretically derive and computationally evaluate the resources needed to perform such simulations (in terms of computer memory and computation time, which are dependent on the number of finite elements in the image-derived bone model. A detailed description of our approach is provided, which is specifically optimized for μFE modeling of the complex three-dimensional architecture of trabecular bone. Our implementation includes domain decomposition for parallel computing, a novel stopping criterion, and a system for speeding up convergence by pre-iterating on coarser grids. The performance of the system is demonstrated on a dual quad-core Xeon 3.16 GHz CPUs equipped with 40 GB of RAM. Models of distal tibia derived from 3D in-vivo MR images in a patient comprising 200,000 elements required less than 30 seconds to converge (and 40 MB RAM. To illustrate the system's potential for large-scale μFE simulations, axial stiffness was estimated from high-resolution micro-CT images of a voxel array of 90 million elements comprising the human proximal femur in seven hours CPU time. In conclusion, the system described should enable image-based finite-element bone simulations in practical computation times on high-end desktop computers with applications to laboratory studies and clinical imaging.

  20. Diagnosis of cholesteatoma by high resolution computed tomography

    International Nuclear Information System (INIS)

    Kakitsubata, Yousuke; Kakitsubata, Sachiko; Ogata, Noboru; Asada, Keiko; Watanabe, Katsushi; Tohno, Tetsuya; Makino, Kohji

    1988-01-01

    Three normal volunteers and 57 patients with cholesteatoma were examined by high resolution computed tomography. Serial sections were made through the temporal bone at the nasaly inclined position of 30 degree to the orbitomeatal line (semiaxial plane ; SAP). The findings of temporal bone structures in normal subjects were evaluated in SAP and axial plane (OM). Although the both planes showed good visualization, SAP showed both the eustachian tube and tympanic cavity in one slice. In cholesteatoma soft tissue masses in the tympanic cavity, mastoid air cells and Eustachian tube were demonstrated clearly by SAP. (author)

  1. KWIKPLAN: a computer program for projecting the annual requirements of nuclear fuel cycle operations

    International Nuclear Information System (INIS)

    Salmon, R.; Kee, C.W.

    1977-06-01

    The computer code KWIKPLAN was written to facilitate the calculation of projected nuclear fuel cycle activities. Using given projections of power generation, the code calculates annual requirements for fuel fabrication, fuel reprocessing, uranium mining, and plutonium use and production. The code uses installed capacity projections and mass flow data for six types of reactors to calculate projected fuel cycle activities and inventories. It calculates fissile uranium and plutonium flows and inventories after allowing for an economy with limited reprocessing capacity and a backlog of unreprocessed fuel. All calculations are made on a quarterly basis; printed and punched output of the projected fuel cycle activities are made on an annual basis. Since the punched information is used in another code to determine waste inventories, the code punches a table from which the effective average burnup can be calculated for the fuel being reprocessed

  2. High-Speed Maglev Trains; German Safety Requirements

    Science.gov (United States)

    1991-12-31

    This document is a translation of technology-specific safety requirements developed : for the German Transrapid Maglev technology. These requirements were developed by a : working group composed of representatives of German Federal Railways (DB), Tes...

  3. Ergonomic requirements on computer-based information- and handling engineering in nuclear power plants

    International Nuclear Information System (INIS)

    Fassmann, W.

    2002-01-01

    This project provides regulatory authorities with a set of criteria for evaluating hybrid man-machine interfaces in nuclear power plant control rooms from a human factors point of view. Such standards are necessary for two reasons: (1) More and more computerised information and control systems have been and will be introduced in nuclear power plant control rooms. One possible result of this trend will be the creation of hybrid man machine interfaces which will provide both conventional and computer-based display and control devices. (2) Available rules and regulations do not contain detailed requirements on how to integrate both types of interface in such a way that plant operation by means of hybrid interfaces will be performed at least as reliably and safely as by means of conventional ones. To fill this gap, criteria and methods were developed which support practical checks of requirements to be applied to hybrid control rooms. This approach is based on state of the art methods and criteria in ergonomics. It makes it possible to analyse and to describe personnel's actions in a consistent and structured way in order to provide the information which is necessary for evaluating human reliability of task performance. Reliability can be evaluated with respect to - accuracy of required information on displays, - networking of tasks, - possibilities of interrupting and cancelling measures which have already been initiated, - possibility to carry out required manuel actions, - level of mental work-strain, - workload level, - probability of erroneous actions. This method is part of a catalogue of recommendations for evaluating hybrid nuclear power plant control rooms. The catalogue also contains recommendations for the design of computerised parts of the man-machine-interface. Application of these design recommendations will help create favourable conditions for an acceptable level of work-strain and for reliable task performance. (orig.) [de

  4. High Energy Physics and Nuclear Physics Network Requirements

    Energy Technology Data Exchange (ETDEWEB)

    Dart, Eli; Bauerdick, Lothar; Bell, Greg; Ciuffo, Leandro; Dasu, Sridhara; Dattoria, Vince; De, Kaushik; Ernst, Michael; Finkelson, Dale; Gottleib, Steven; Gutsche, Oliver; Habib, Salman; Hoeche, Stefan; Hughes-Jones, Richard; Ibarra, Julio; Johnston, William; Kisner, Theodore; Kowalski, Andy; Lauret, Jerome; Luitz, Steffen; Mackenzie, Paul; Maguire, Chales; Metzger, Joe; Monga, Inder; Ng, Cho-Kuen; Nielsen, Jason; Price, Larry; Porter, Jeff; Purschke, Martin; Rai, Gulshan; Roser, Rob; Schram, Malachi; Tull, Craig; Watson, Chip; Zurawski, Jason

    2014-03-02

    The Energy Sciences Network (ESnet) is the primary provider of network connectivity for the U.S. Department of Energy (DOE) Office of Science (SC), the single largest supporter of basic research in the physical sciences in the United States. In support of SC programs, ESnet regularly updates and refreshes its understanding of the networking requirements needed by instruments, facilities, scientists, and science programs that it serves. This focus has helped ESnet to be a highly successful enabler of scientific discovery for over 25 years. In August 2013, ESnet and the DOE SC Offices of High Energy Physics (HEP) and Nuclear Physics (NP) organized a review to characterize the networking requirements of the programs funded by the HEP and NP program offices. Several key findings resulted from the review. Among them: 1. The Large Hadron Collider?s ATLAS (A Toroidal LHC Apparatus) and CMS (Compact Muon Solenoid) experiments are adopting remote input/output (I/O) as a core component of their data analysis infrastructure. This will significantly increase their demands on the network from both a reliability perspective and a performance perspective. 2. The Large Hadron Collider (LHC) experiments (particularly ATLAS and CMS) are working to integrate network awareness into the workflow systems that manage the large number of daily analysis jobs (1 million analysis jobs per day for ATLAS), which are an integral part of the experiments. Collaboration with networking organizations such as ESnet, and the consumption of performance data (e.g., from perfSONAR [PERformance Service Oriented Network monitoring Architecture]) are critical to the success of these efforts. 3. The international aspects of HEP and NP collaborations continue to expand. This includes the LHC experiments, the Relativistic Heavy Ion Collider (RHIC) experiments, the Belle II Collaboration, the Large Synoptic Survey Telescope (LSST), and others. The international nature of these collaborations makes them heavily

  5. Application of High Performance Computing to Earthquake Hazard and Disaster Estimation in Urban Area

    Directory of Open Access Journals (Sweden)

    Muneo Hori

    2018-02-01

    Full Text Available Integrated earthquake simulation (IES is a seamless simulation of analyzing all processes of earthquake hazard and disaster. There are two difficulties in carrying out IES, namely, the requirement of large-scale computation and the requirement of numerous analysis models for structures in an urban area, and they are solved by taking advantage of high performance computing (HPC and by developing a system of automated model construction. HPC is a key element in developing IES, as it needs to analyze wave propagation and amplification processes in an underground structure; a model of high fidelity for the underground structure exceeds a degree-of-freedom larger than 100 billion. Examples of IES for Tokyo Metropolis are presented; the numerical computation is made by using K computer, the supercomputer of Japan. The estimation of earthquake hazard and disaster for a given earthquake scenario is made by the ground motion simulation and the urban area seismic response simulation, respectively, for the target area of 10,000 m × 10,000 m.

  6. Quantitative analysis of cholesteatoma using high resolution computed tomography

    International Nuclear Information System (INIS)

    Kikuchi, Shigeru; Yamasoba, Tatsuya; Iinuma, Toshitaka.

    1992-01-01

    Seventy-three cases of adult cholesteatoma, including 52 cases of pars flaccida type cholesteatoma and 21 of pars tensa type cholesteatoma, were examined using high resolution computed tomography, in both axial (lateral semicircular canal plane) and coronal sections (cochlear, vestibular and antral plane). These cases were classified into two subtypes according to the presence of extension of cholesteatoma into the antrum. Sixty cases of chronic otitis media with central perforation (COM) were also examined as controls. Various locations of the middle ear cavity were measured in terms of size in comparison with pars flaccida type cholesteatoma, pars tensa type cholesteatoma and COM. The width of the attic was significantly larger in both pars flaccida type and pars tensa type cholesteatoma than in COM. With pars flaccida type cholesteatoma there was a significantly larger distance between the malleus and lateral wall of the attic than with COM. In contrast, the distance between the malleus and medial wall of the attic was significantly larger with pars tensa type cholesteatoma than with COM. With cholesteatoma extending into the antrum, regardless of the type of cholesteatoma, there were significantly larger distances than with COM at the following sites: the width and height of the aditus ad antrum, and the width, height and anterior-posterior diameter of the antrum. However, these distances were not significantly different between cholesteatoma without extension into the antrum and COM. The hitherto demonstrated qualitative impressions of bone destruction in cholesteatoma were quantitatively verified in detail using high resolution computed tomography. (author)

  7. High resolution computed tomography of the post partum pituitary gland

    International Nuclear Information System (INIS)

    Hinshaw, D.B.; Hasso, A.N.; Thompson, J.R.; Davidson, B.J.

    1984-01-01

    Eight volunteer post partum female patients were examined with high resolution computed tomography during the week immediately after delivery. All patients received high dose (40-70 gm) intravenous iodine contrast administration. The scans were examined for pituitary gland height, shape and homogeneity. All of the patients had enlarged glands by the traditional standards (i.e. gland height of 8 mm or greater). The diaphragma sellae in every call bulged upward with a convex domed appearance. The glands were generally inhomogeneous. One gland had a 4 mm focal well defined area of decreased attenuation. Two patients who were studied again months later had glands which had returned to ''normal'' size. The enlarged, upwardly convex pituitary gland appears to be typical and normal for the recently post partum period. (orig.)

  8. FPGA based compute nodes for high level triggering in PANDA

    International Nuclear Information System (INIS)

    Kuehn, W; Gilardi, C; Kirschner, D; Lang, J; Lange, S; Liu, M; Perez, T; Yang, S; Schmitt, L; Jin, D; Li, L; Liu, Z; Lu, Y; Wang, Q; Wei, S; Xu, H; Zhao, D; Korcyl, K; Otwinowski, J T; Salabura, P

    2008-01-01

    PANDA is a new universal detector for antiproton physics at the HESR facility at FAIR/GSI. The PANDA data acquisition system has to handle interaction rates of the order of 10 7 /s and data rates of several 100 Gb/s. FPGA based compute nodes with multi-Gb/s bandwidth capability using the ATCA architecture are designed to handle tasks such as event building, feature extraction and high level trigger processing. Data connectivity is provided via optical links as well as multiple Gb Ethernet ports. The boards will support trigger algorithms such us pattern recognition for RICH detectors, EM shower analysis, fast tracking algorithms and global event characterization. Besides VHDL, high level C-like hardware description languages will be considered to implement the firmware

  9. QSPIN: A High Level Java API for Quantum Computing Experimentation

    Science.gov (United States)

    Barth, Tim

    2017-01-01

    QSPIN is a high level Java language API for experimentation in QC models used in the calculation of Ising spin glass ground states and related quadratic unconstrained binary optimization (QUBO) problems. The Java API is intended to facilitate research in advanced QC algorithms such as hybrid quantum-classical solvers, automatic selection of constraint and optimization parameters, and techniques for the correction and mitigation of model and solution errors. QSPIN includes high level solver objects tailored to the D-Wave quantum annealing architecture that implement hybrid quantum-classical algorithms [Booth et al.] for solving large problems on small quantum devices, elimination of variables via roof duality, and classical computing optimization methods such as GPU accelerated simulated annealing and tabu search for comparison. A test suite of documented NP-complete applications ranging from graph coloring, covering, and partitioning to integer programming and scheduling are provided to demonstrate current capabilities.

  10. Ground-glass opacity: High-resolution computed tomography and 64-multi-slice computed tomography findings comparison

    International Nuclear Information System (INIS)

    Sergiacomi, Gianluigi; Ciccio, Carmelo; Boi, Luca; Velari, Luca; Crusco, Sonia; Orlacchio, Antonio; Simonetti, Giovanni

    2010-01-01

    Objective: Comparative evaluation of ground-glass opacity using conventional high-resolution computed tomography technique and volumetric computed tomography by 64-row multi-slice scanner, verifying advantage of volumetric acquisition and post-processing technique allowed by 64-row CT scanner. Methods: Thirty-four patients, in which was assessed ground-glass opacity pattern by previous high-resolution computed tomography during a clinical-radiological follow-up for their lung disease, were studied by means of 64-row multi-slice computed tomography. Comparative evaluation of image quality was done by both CT modalities. Results: It was reported good inter-observer agreement (k value 0.78-0.90) in detection of ground-glass opacity with high-resolution computed tomography technique and volumetric Computed Tomography acquisition with moderate increasing of intra-observer agreement (k value 0.46) using volumetric computed tomography than high-resolution computed tomography. Conclusions: In our experience, volumetric computed tomography with 64-row scanner shows good accuracy in detection of ground-glass opacity, providing a better spatial and temporal resolution and advanced post-processing technique than high-resolution computed tomography.

  11. Definition, modeling and simulation of a grid computing system for high throughput computing

    CERN Document Server

    Caron, E; Tsaregorodtsev, A Yu

    2006-01-01

    In this paper, we study and compare grid and global computing systems and outline the benefits of having an hybrid system called dirac. To evaluate the dirac scheduling for high throughput computing, a new model is presented and a simulator was developed for many clusters of heterogeneous nodes belonging to a local network. These clusters are assumed to be connected to each other through a global network and each cluster is managed via a local scheduler which is shared by many users. We validate our simulator by comparing the experimental and analytical results of a M/M/4 queuing system. Next, we do the comparison with a real batch system and we obtain an average error of 10.5% for the response time and 12% for the makespan. We conclude that the simulator is realistic and well describes the behaviour of a large-scale system. Thus we can study the scheduling of our system called dirac in a high throughput context. We justify our decentralized, adaptive and oppor! tunistic approach in comparison to a centralize...

  12. Ubiquitous Green Computing Techniques for High Demand Applications in Smart Environments

    Directory of Open Access Journals (Sweden)

    Jose M. Moya

    2012-08-01

    Full Text Available Ubiquitous sensor network deployments, such as the ones found in Smart cities and Ambient intelligence applications, require constantly increasing high computational demands in order to process data and offer services to users. The nature of these applications imply the usage of data centers. Research has paid much attention to the energy consumption of the sensor nodes in WSNs infrastructures. However, supercomputing facilities are the ones presenting a higher economic and environmental impact due to their very high power consumption. The latter problem, however, has been disregarded in the field of smart environment services. This paper proposes an energy-minimization workload assignment technique, based on heterogeneity and application-awareness, that redistributes low-demand computational tasks from high-performance facilities to idle nodes with low and medium resources in the WSN infrastructure. These non-optimal allocation policies reduce the energy consumed by the whole infrastructure and the total execution time.

  13. Ubiquitous green computing techniques for high demand applications in Smart environments.

    Science.gov (United States)

    Zapater, Marina; Sanchez, Cesar; Ayala, Jose L; Moya, Jose M; Risco-Martín, José L

    2012-01-01

    Ubiquitous sensor network deployments, such as the ones found in Smart cities and Ambient intelligence applications, require constantly increasing high computational demands in order to process data and offer services to users. The nature of these applications imply the usage of data centers. Research has paid much attention to the energy consumption of the sensor nodes in WSNs infrastructures. However, supercomputing facilities are the ones presenting a higher economic and environmental impact due to their very high power consumption. The latter problem, however, has been disregarded in the field of smart environment services. This paper proposes an energy-minimization workload assignment technique, based on heterogeneity and application-awareness, that redistributes low-demand computational tasks from high-performance facilities to idle nodes with low and medium resources in the WSN infrastructure. These non-optimal allocation policies reduce the energy consumed by the whole infrastructure and the total execution time.

  14. Investigation of Vocational High-School Students' Computer Anxiety

    Science.gov (United States)

    Tuncer, Murat; Dogan, Yunus; Tanas, Ramazan

    2013-01-01

    With the advent of the computer technologies, we are increasingly encountering these technologies in every field of life. The fact that the computer technology is so much interwoven with the daily life makes it necessary to investigate certain psychological attitudes of those working with computers towards computers. As this study is limited to…

  15. Site safety requirements for high level waste disposal

    International Nuclear Information System (INIS)

    Chen Weiming; Wang Ju

    2006-01-01

    This paper outlines the content, status and trend of site safety requirements of International Atomic Energy Agency, America, France, Sweden, Finland and Japan. Site safety requirements are usually represented as advantageous vis-a-vis disadvantagous conditions, and potential advantage vis-a-vis disadvantage conditions, respectively in aspects of geohydrology, geochemistry, lithology, climate and human intrusion etc. Study framework and steps of site safety requirements for China are discussed under the view of systems science. (authors)

  16. High performance parallel computing of flows in complex geometries: II. Applications

    International Nuclear Information System (INIS)

    Gourdain, N; Gicquel, L; Staffelbach, G; Vermorel, O; Duchaine, F; Boussuge, J-F; Poinsot, T

    2009-01-01

    Present regulations in terms of pollutant emissions, noise and economical constraints, require new approaches and designs in the fields of energy supply and transportation. It is now well established that the next breakthrough will come from a better understanding of unsteady flow effects and by considering the entire system and not only isolated components. However, these aspects are still not well taken into account by the numerical approaches or understood whatever the design stage considered. The main challenge is essentially due to the computational requirements inferred by such complex systems if it is to be simulated by use of supercomputers. This paper shows how new challenges can be addressed by using parallel computing platforms for distinct elements of a more complex systems as encountered in aeronautical applications. Based on numerical simulations performed with modern aerodynamic and reactive flow solvers, this work underlines the interest of high-performance computing for solving flow in complex industrial configurations such as aircrafts, combustion chambers and turbomachines. Performance indicators related to parallel computing efficiency are presented, showing that establishing fair criterions is a difficult task for complex industrial applications. Examples of numerical simulations performed in industrial systems are also described with a particular interest for the computational time and the potential design improvements obtained with high-fidelity and multi-physics computing methods. These simulations use either unsteady Reynolds-averaged Navier-Stokes methods or large eddy simulation and deal with turbulent unsteady flows, such as coupled flow phenomena (thermo-acoustic instabilities, buffet, etc). Some examples of the difficulties with grid generation and data analysis are also presented when dealing with these complex industrial applications.

  17. Communication Requirements and Interconnect Optimization forHigh-End Scientific Applications

    Energy Technology Data Exchange (ETDEWEB)

    Kamil, Shoaib; Oliker, Leonid; Pinar, Ali; Shalf, John

    2007-11-12

    The path towards realizing peta-scale computing isincreasingly dependent on building supercomputers with unprecedentednumbers of processors. To prevent the interconnect from dominating theoverall cost of these ultra-scale systems, there is a critical need forhigh-performance network solutions whose costs scale linearly with systemsize. This work makes several unique contributions towards attaining thatgoal. First, we conduct one of the broadest studies to date of high-endapplication communication requirements, whose computational methodsinclude: finite-difference, lattice-bolzmann, particle in cell, sparselinear algebra, particle mesh ewald, and FFT-based solvers. Toefficiently collect this data, we use the IPM (Integrated PerformanceMonitoring) profiling layer to gather detailed messaging statistics withminimal impact to code performance. Using the derived communicationcharacterizations, we next present fit-trees interconnects, a novelapproach for designing network infrastructure at a fraction of thecomponent cost of traditional fat-tree solutions. Finally, we propose theHybrid Flexibly Assignable Switch Topology (HFAST) infrastructure, whichuses both passive (circuit) and active (packet) commodity switchcomponents to dynamically reconfigure interconnects to suit thetopological requirements of scientific applications. Overall ourexploration leads to a promising directions for practically addressingthe interconnect requirements of future peta-scale systems.

  18. Investigation of high-alpha lateral-directional control power requirements for high-performance aircraft

    Science.gov (United States)

    Foster, John V.; Ross, Holly M.; Ashley, Patrick A.

    1993-01-01

    Designers of the next-generation fighter and attack airplanes are faced with the requirements of good high angle-of-attack maneuverability as well as efficient high speed cruise capability with low radar cross section (RCS) characteristics. As a result, they are challenged with the task of making critical design trades to achieve the desired levels of maneuverability and performance. This task has highlighted the need for comprehensive, flight-validated lateral-directional control power design guidelines for high angles of attack. A joint NASA/U.S. Navy study has been initiated to address this need and to investigate the complex flight dynamics characteristics and controls requirements for high angle-of-attack lateral-directional maneuvering. A multi-year research program is underway which includes groundbased piloted simulation and flight validation. This paper will give a status update of this program that will include a program overview, description of test methodology and preliminary results.

  19. Computation of High-Frequency Waves with Random Uncertainty

    KAUST Repository

    Malenova, Gabriela

    2016-01-06

    We consider the forward propagation of uncertainty in high-frequency waves, described by the second order wave equation with highly oscillatory initial data. The main sources of uncertainty are the wave speed and/or the initial phase and amplitude, described by a finite number of random variables with known joint probability distribution. We propose a stochastic spectral asymptotic method [1] for computing the statistics of uncertain output quantities of interest (QoIs), which are often linear or nonlinear functionals of the wave solution and its spatial/temporal derivatives. The numerical scheme combines two techniques: a high-frequency method based on Gaussian beams [2, 3], a sparse stochastic collocation method [4]. The fast spectral convergence of the proposed method depends crucially on the presence of high stochastic regularity of the QoI independent of the wave frequency. In general, the high-frequency wave solutions to parametric hyperbolic equations are highly oscillatory and non-smooth in both physical and stochastic spaces. Consequently, the stochastic regularity of the QoI, which is a functional of the wave solution, may in principle below and depend on frequency. In the present work, we provide theoretical arguments and numerical evidence that physically motivated QoIs based on local averages of |uE|2 are smooth, with derivatives in the stochastic space uniformly bounded in E, where uE and E denote the highly oscillatory wave solution and the short wavelength, respectively. This observable related regularity makes the proposed approach more efficient than current asymptotic approaches based on Monte Carlo sampling techniques.

  20. Computational Fluid Dynamics Analysis of High Injection Pressure Blended Biodiesel

    Science.gov (United States)

    Khalid, Amir; Jaat, Norrizam; Faisal Hushim, Mohd; Manshoor, Bukhari; Zaman, Izzuddin; Sapit, Azwan; Razali, Azahari

    2017-08-01

    Biodiesel have great potential for substitution with petrol fuel for the purpose of achieving clean energy production and emission reduction. Among the methods that can control the combustion properties, controlling of the fuel injection conditions is one of the successful methods. The purpose of this study is to investigate the effect of high injection pressure of biodiesel blends on spray characteristics using Computational Fluid Dynamics (CFD). Injection pressure was observed at 220 MPa, 250 MPa and 280 MPa. The ambient temperature was kept held at 1050 K and ambient pressure 8 MPa in order to simulate the effect of boost pressure or turbo charger during combustion process. Computational Fluid Dynamics were used to investigate the spray characteristics of biodiesel blends such as spray penetration length, spray angle and mixture formation of fuel-air mixing. The results shows that increases of injection pressure, wider spray angle is produced by biodiesel blends and diesel fuel. The injection pressure strongly affects the mixture formation, characteristics of fuel spray, longer spray penetration length thus promotes the fuel and air mixing.

  1. Computational aspects in high intensity ultrasonic surgery planning.

    Science.gov (United States)

    Pulkkinen, A; Hynynen, K

    2010-01-01

    Therapeutic ultrasound treatment planning is discussed and computational aspects regarding it are reviewed. Nonlinear ultrasound simulations were solved with a combined frequency domain Rayleigh and KZK model. Ultrasonic simulations were combined with thermal simulations and were used to compute heating of muscle tissue in vivo for four different focused ultrasound transducers. The simulations were compared with measurements and good agreement was found for large F-number transducers. However, at F# 1.9 the simulated rate of temperature rise was approximately a factor of 2 higher than the measured ones. The power levels used with the F# 1 transducer were too low to show any nonlinearity. The simulations were used to investigate the importance of nonlinarities generated in the coupling water, and also the importance of including skin in the simulations. Ignoring either of these in the model would lead to larger errors. Most notably, the nonlinearities generated in the water can enhance the focal temperature by more than 100%. The simulations also demonstrated that pulsed high power sonications may provide an opportunity to significantly (up to a factor of 3) reduce the treatment time. In conclusion, nonlinear propagation can play an important role in shaping the energy distribution during a focused ultrasound treatment and it should not be ignored in planning. However, the current simulation methods are accurate only with relatively large F-numbers and better models need to be developed for sharply focused transducers. Copyright 2009 Elsevier Ltd. All rights reserved.

  2. Real-time computer treatment of THz passive device images with the high image quality

    Science.gov (United States)

    Trofimov, Vyacheslav A.; Trofimov, Vladislav V.

    2012-06-01

    We demonstrate real-time computer code improving significantly the quality of images captured by the passive THz imaging system. The code is not only designed for a THz passive device: it can be applied to any kind of such devices and active THz imaging systems as well. We applied our code for computer processing of images captured by four passive THz imaging devices manufactured by different companies. It should be stressed that computer processing of images produced by different companies requires using the different spatial filters usually. The performance of current version of the computer code is greater than one image per second for a THz image having more than 5000 pixels and 24 bit number representation. Processing of THz single image produces about 20 images simultaneously corresponding to various spatial filters. The computer code allows increasing the number of pixels for processed images without noticeable reduction of image quality. The performance of the computer code can be increased many times using parallel algorithms for processing the image. We develop original spatial filters which allow one to see objects with sizes less than 2 cm. The imagery is produced by passive THz imaging devices which captured the images of objects hidden under opaque clothes. For images with high noise we develop an approach which results in suppression of the noise after using the computer processing and we obtain the good quality image. With the aim of illustrating the efficiency of the developed approach we demonstrate the detection of the liquid explosive, ordinary explosive, knife, pistol, metal plate, CD, ceramics, chocolate and other objects hidden under opaque clothes. The results demonstrate the high efficiency of our approach for the detection of hidden objects and they are a very promising solution for the security problem.

  3. Trends in high-performance computing for engineering calculations.

    Science.gov (United States)

    Giles, M B; Reguly, I

    2014-08-13

    High-performance computing has evolved remarkably over the past 20 years, and that progress is likely to continue. However, in recent years, this progress has been achieved through greatly increased hardware complexity with the rise of multicore and manycore processors, and this is affecting the ability of application developers to achieve the full potential of these systems. This article outlines the key developments on the hardware side, both in the recent past and in the near future, with a focus on two key issues: energy efficiency and the cost of moving data. It then discusses the much slower evolution of system software, and the implications of all of this for application developers. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  4. High resolution computed tomography of the middle ear

    International Nuclear Information System (INIS)

    Ikeda, Katsuhisa; Sakurai, Tokio; Saijo, Shigeru; Kobayashi, Toshimitsu

    1983-01-01

    High resolution computed tomography was performed in 57 cases with various middle ear diseases (chronic otitis media, otitis media with effusion, acute otitis media and atelectasis). Although further improvement in detectability is necessary in order to discriminate each type of the soft tissue lesions, CT is the most useful method currently available in detecting the small structures and soft tissue lesions of the middle ear. In particular, the lesions at the tympanic isthmus and tympanic fold could very clearly be detected only by CT. In acute otitis media, lesions usually started in the attic and spread to the mastoid air cells. In otitis media with effusion, the soft tissue shadow was ovserved in the attic and mastoid air cell. CT is valuable in diagnosis, evaluation of the treatment and prognosis, and analysis of pathophysiology in the middle ear diseases. (author)

  5. Scalability of DL_POLY on High Performance Computing Platform

    Directory of Open Access Journals (Sweden)

    Mabule Samuel Mabakane

    2017-12-01

    Full Text Available This paper presents a case study on the scalability of several versions of the molecular dynamics code (DL_POLY performed on South Africa‘s Centre for High Performance Computing e1350 IBM Linux cluster, Sun system and Lengau supercomputers. Within this study different problem sizes were designed and the same chosen systems were employed in order to test the performance of DL_POLY using weak and strong scalability. It was found that the speed-up results for the small systems were better than large systems on both Ethernet and Infiniband network. However, simulations of large systems in DL_POLY performed well using Infiniband network on Lengau cluster as compared to e1350 and Sun supercomputer.

  6. Electromagnetic Modeling of Human Body Using High Performance Computing

    Science.gov (United States)

    Ng, Cho-Kuen; Beall, Mark; Ge, Lixin; Kim, Sanghoek; Klaas, Ottmar; Poon, Ada

    Realistic simulation of electromagnetic wave propagation in the actual human body can expedite the investigation of the phenomenon of harvesting implanted devices using wireless powering coupled from external sources. The parallel electromagnetics code suite ACE3P developed at SLAC National Accelerator Laboratory is based on the finite element method for high fidelity accelerator simulation, which can be enhanced to model electromagnetic wave propagation in the human body. Starting with a CAD model of a human phantom that is characterized by a number of tissues, a finite element mesh representing the complex geometries of the individual tissues is built for simulation. Employing an optimal power source with a specific pattern of field distribution, the propagation and focusing of electromagnetic waves in the phantom has been demonstrated. Substantial speedup of the simulation is achieved by using multiple compute cores on supercomputers.

  7. Paracoccidioidomycosis: High-resolution computed tomography-pathologic correlation

    International Nuclear Information System (INIS)

    Marchiori, Edson; Valiante, Paulo Marcos; Mano, Claudia Mauro; Zanetti, Glaucia; Escuissato, Dante L.; Souza, Arthur Soares; Capone, Domenico

    2011-01-01

    Objective: The purpose of this study was to describe the high-resolution computed tomography (HRCT) features of pulmonary paracoccidioidomycosis and to correlate them with pathologic findings. Methods: The study included 23 adult patients with pulmonary paracoccidioidomycosis. All patients had undergone HRCT, and the images were retrospectively analyzed by two chest radiologists, who reached decisions by consensus. An experienced lung pathologist reviewed all pathological specimens. The HRCT findings were correlated with histopathologic data. Results: The predominant HRCT findings included areas of ground-glass opacities, nodules, interlobular septal thickening, airspace consolidation, cavitation, and fibrosis. The main pathological features consisted of alveolar and interlobular septal inflammatory infiltration, granulomas, alveolar exudate, cavitation secondary to necrosis, and fibrosis. Conclusion: Paracoccidioidomycosis can present different tomography patterns, which can involve both the interstitium and the airspace. These abnormalities can be pathologically correlated with inflammatory infiltration, granulomatous reaction, and fibrosis.

  8. High-order computer-assisted estimates of topological entropy

    Science.gov (United States)

    Grote, Johannes

    The concept of Taylor Models is introduced, which offers highly accurate C0-estimates for the enclosures of functional dependencies, combining high-order Taylor polynomial approximation of functions and rigorous estimates of the truncation error, performed using verified interval arithmetic. The focus of this work is on the application of Taylor Models in algorithms for strongly nonlinear dynamical systems. A method to obtain sharp rigorous enclosures of Poincare maps for certain types of flows and surfaces is developed and numerical examples are presented. Differential algebraic techniques allow the efficient and accurate computation of polynomial approximations for invariant curves of certain planar maps around hyperbolic fixed points. Subsequently we introduce a procedure to extend these polynomial curves to verified Taylor Model enclosures of local invariant manifolds with C0-errors of size 10-10--10 -14, and proceed to generate the global invariant manifold tangle up to comparable accuracy through iteration in Taylor Model arithmetic. Knowledge of the global manifold structure up to finite iterations of the local manifold pieces enables us to find all homoclinic and heteroclinic intersections in the generated manifold tangle. Combined with the mapping properties of the homoclinic points and their ordering we are able to construct a subshift of finite type as a topological factor of the original planar system to obtain rigorous lower bounds for its topological entropy. This construction is fully automatic and yields homoclinic tangles with several hundred homoclinic points. As an example rigorous lower bounds for the topological entropy of the Henon map are computed, which to the best knowledge of the authors yield the largest such estimates published so far.

  9. Concept and computation of radiation dose at high energies

    International Nuclear Information System (INIS)

    Sarkar, P.K.

    2010-01-01

    Computational dosimetry, a subdiscipline of computational physics devoted to radiation metrology, is determination of absorbed dose and other dose related quantities by numbers. Computations are done separately both for external and internal dosimetry. The methodology used in external beam dosimetry is necessarily a combination of experimental radiation dosimetry and theoretical dose computation since it is not feasible to plan any physical dose measurements from inside a living human body

  10. Polymer waveguides for electro-optical integration in data centers and high-performance computers.

    Science.gov (United States)

    Dangel, Roger; Hofrichter, Jens; Horst, Folkert; Jubin, Daniel; La Porta, Antonio; Meier, Norbert; Soganci, Ibrahim Murat; Weiss, Jonas; Offrein, Bert Jan

    2015-02-23

    To satisfy the intra- and inter-system bandwidth requirements of future data centers and high-performance computers, low-cost low-power high-throughput optical interconnects will become a key enabling technology. To tightly integrate optics with the computing hardware, particularly in the context of CMOS-compatible silicon photonics, optical printed circuit boards using polymer waveguides are considered as a formidable platform. IBM Research has already demonstrated the essential silicon photonics and interconnection building blocks. A remaining challenge is electro-optical packaging, i.e., the connection of the silicon photonics chips with the system. In this paper, we present a new single-mode polymer waveguide technology and a scalable method for building the optical interface between silicon photonics chips and single-mode polymer waveguides.

  11. COMPUTING

    CERN Multimedia

    M. Kasemann P. McBride Edited by M-C. Sawley with contributions from: P. Kreuzer D. Bonacorsi S. Belforte F. Wuerthwein L. Bauerdick K. Lassila-Perini M-C. Sawley

    Introduction More than seventy CMS collaborators attended the Computing and Offline Workshop in San Diego, California, April 20-24th to discuss the state of readiness of software and computing for collisions. Focus and priority were given to preparations for data taking and providing room for ample dialog between groups involved in Commissioning, Data Operations, Analysis and MC Production. Throughout the workshop, aspects of software, operating procedures and issues addressing all parts of the computing model were discussed. Plans for the CMS participation in STEP’09, the combined scale testing for all four experiments due in June 2009, were refined. The article in CMS Times by Frank Wuerthwein gave a good recap of the highly collaborative atmosphere of the workshop. Many thanks to UCSD and to the organizers for taking care of this workshop, which resulted in a long list of action items and was definitely a success. A considerable amount of effort and care is invested in the estimate of the comput...

  12. Computer Simulation Studies of Ion Channels at High Temperatures

    Science.gov (United States)

    Song, Hyun Deok

    The gramicidin channel is the smallest known biological ion channel, and it exhibits cation selectivity. Recently, Dr. John Cuppoletti's group at the University of Cincinnati showed that the gramicidin channel can function at high temperatures (360 ˜ 380K) with significant currents. This finding may have significant implications for fuel cell technology. In this thesis, we have examined the gramicidin channel at 300K, 330K, and 360K by computer simulation. We have investigated how the temperature affects the current and differences in magnitude of free energy between the two gramicidin forms, the helical dimer (HD) and the double helix (DH). A slight decrease of the free energy barrier inside the gramicidin channel and increased diffusion at high temperatures result in an increase of current. An applied external field of 0.2V/nm along the membrane normal results in directly observable ion transport across the channels at high temperatures for both HD and DH forms. We found that higher temperatures also affect the probability distribution of hydrogen bonds, the bending angle, the distance between dimers, and the size of the pore radius for the helical dimer structure. These findings may be related to the gating of the gramicidin channel. Methanococcus jannaschii (MJ) is a methane-producing thermophile, which was discovered at a depth of 2600m in a Pacific Ocean vent in 1983. It has the ability to thrive at high temperatures and high pressures, which are unfavorable for most life forms. There have been some experiments to study its stability under extreme conditions, but still the origin of the stability of MJ is not exactly known. MJ0305 is the chloride channel protein from the thermophile MJ. After generating a structure of MJ0305 by homology modeling based on the Ecoli ClC templates, we examined the thermal stability, and the network stability from the change of network entropy calculated from the adjacency matrices of the protein. High temperatures increase the

  13. A Non-Linear Digital Computer Model Requiring Short Computation Time for Studies Concerning the Hydrodynamics of the BWR

    Energy Technology Data Exchange (ETDEWEB)

    Reisch, F; Vayssier, G

    1969-05-15

    This non-linear model serves as one of the blocks in a series of codes to study the transient behaviour of BWR or PWR type reactors. This program is intended to be the hydrodynamic part of the BWR core representation or the hydrodynamic part of the PWR heat exchanger secondary side representation. The equations have been prepared for the CSMP digital simulation language. By using the most suitable integration routine available, the ratio of simulation time to real time is about one on an IBM 360/75 digital computer. Use of the slightly different language DSL/40 on an IBM 7044 computer takes about four times longer. The code has been tested against the Eindhoven loop with satisfactory agreement.

  14. Requirements for Control Room Computer-Based Procedures for use in Hybrid Control Rooms

    Energy Technology Data Exchange (ETDEWEB)

    Le Blanc, Katya Lee [Idaho National Lab. (INL), Idaho Falls, ID (United States); Oxstrand, Johanna Helene [Idaho National Lab. (INL), Idaho Falls, ID (United States); Joe, Jeffrey Clark [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-05-01

    Many plants in the U.S. are currently undergoing control room modernization. The main drivers for modernization are the aging and obsolescence of existing equipment, which typically results in a like-for-like replacement of analogue equipment with digital systems. However, the modernization efforts present an opportunity to employ advanced technology that would not only extend the life, but enhance the efficiency and cost competitiveness of nuclear power. Computer-based procedures (CBPs) are one example of near-term advanced technology that may provide enhanced efficiencies above and beyond like for like replacements of analog systems. Researchers in the LWRS program are investigating the benefits of advanced technologies such as CBPs, with the goal of assisting utilities in decision making during modernization projects. This report will describe the existing research on CBPs, discuss the unique issues related to using CBPs in hybrid control rooms (i.e., partially modernized analog control rooms), and define the requirements of CBPs for hybrid control rooms.

  15. FY 1995 Blue Book: High Performance Computing and Communications: Technology for the National Information Infrastructure

    Data.gov (United States)

    Networking and Information Technology Research and Development, Executive Office of the President — The Federal High Performance Computing and Communications HPCC Program was created to accelerate the development of future generations of high performance computers...

  16. HIGH-FIDELITY SIMULATION-DRIVEN MODEL DEVELOPMENT FOR COARSE-GRAINED COMPUTATIONAL FLUID DYNAMICS

    Energy Technology Data Exchange (ETDEWEB)

    Hanna, Botros N.; Dinh, Nam T.; Bolotnov, Igor A.

    2016-06-01

    Nuclear reactor safety analysis requires identifying various credible accident scenarios and determining their consequences. For a full-scale nuclear power plant system behavior, it is impossible to obtain sufficient experimental data for a broad range of risk-significant accident scenarios. In single-phase flow convective problems, Direct Numerical Simulation (DNS) and Large Eddy Simulation (LES) can provide us with high fidelity results when physical data are unavailable. However, these methods are computationally expensive and cannot be afforded for simulation of long transient scenarios in nuclear accidents despite extraordinary advances in high performance scientific computing over the past decades. The major issue is the inability to make the transient computation parallel, thus making number of time steps required in high-fidelity methods unaffordable for long transients. In this work, we propose to apply a high fidelity simulation-driven approach to model sub-grid scale (SGS) effect in Coarse Grained Computational Fluid Dynamics CG-CFD. This approach aims to develop a statistical surrogate model instead of the deterministic SGS model. We chose to start with a turbulent natural convection case with volumetric heating in a horizontal fluid layer with a rigid, insulated lower boundary and isothermal (cold) upper boundary. This scenario of unstable stratification is relevant to turbulent natural convection in a molten corium pool during a severe nuclear reactor accident, as well as in containment mixing and passive cooling. The presented approach demonstrates how to create a correction for the CG-CFD solution by modifying the energy balance equation. A global correction for the temperature equation proves to achieve a significant improvement to the prediction of steady state temperature distribution through the fluid layer.

  17. High-throughput landslide modelling using computational grids

    Science.gov (United States)

    Wallace, M.; Metson, S.; Holcombe, L.; Anderson, M.; Newbold, D.; Brook, N.

    2012-04-01

    Landslides are an increasing problem in developing countries. Multiple landslides can be triggered by heavy rainfall resulting in loss of life, homes and critical infrastructure. Through computer simulation of individual slopes it is possible to predict the causes, timing and magnitude of landslides and estimate the potential physical impact. Geographical scientists at the University of Bristol have developed software that integrates a physically-based slope hydrology and stability model (CHASM) with an econometric model (QUESTA) in order to predict landslide risk over time. These models allow multiple scenarios to be evaluated for each slope, accounting for data uncertainties, different engineering interventions, risk management approaches and rainfall patterns. Individual scenarios can be computationally intensive, however each scenario is independent and so multiple scenarios can be executed in parallel. As more simulations are carried out the overhead involved in managing input and output data becomes significant. This is a greater problem if multiple slopes are considered concurrently, as is required both for landslide research and for effective disaster planning at national levels. There are two critical factors in this context: generated data volumes can be in the order of tens of terabytes, and greater numbers of simulations result in long total runtimes. Users of such models, in both the research community and in developing countries, need to develop a means for handling the generation and submission of landside modelling experiments, and the storage and analysis of the resulting datasets. Additionally, governments in developing countries typically lack the necessary computing resources and infrastructure. Consequently, knowledge that could be gained by aggregating simulation results from many different scenarios across many different slopes remains hidden within the data. To address these data and workload management issues, University of Bristol particle

  18. Acceleration of FDTD mode solver by high-performance computing techniques.

    Science.gov (United States)

    Han, Lin; Xi, Yanping; Huang, Wei-Ping

    2010-06-21

    A two-dimensional (2D) compact finite-difference time-domain (FDTD) mode solver is developed based on wave equation formalism in combination with the matrix pencil method (MPM). The method is validated for calculation of both real guided and complex leaky modes of typical optical waveguides against the bench-mark finite-difference (FD) eigen mode solver. By taking advantage of the inherent parallel nature of the FDTD algorithm, the mode solver is implemented on graphics processing units (GPUs) using the compute unified device architecture (CUDA). It is demonstrated that the high-performance computing technique leads to significant acceleration of the FDTD mode solver with more than 30 times improvement in computational efficiency in comparison with the conventional FDTD mode solver running on CPU of a standard desktop computer. The computational efficiency of the accelerated FDTD method is in the same order of magnitude of the standard finite-difference eigen mode solver and yet require much less memory (e.g., less than 10%). Therefore, the new method may serve as an efficient, accurate and robust tool for mode calculation of optical waveguides even when the conventional eigen value mode solvers are no longer applicable due to memory limitation.

  19. Using high performance interconnects in a distributed computing and mass storage environment

    International Nuclear Information System (INIS)

    Ernst, M.

    1994-01-01

    Detector Collaborations of the HERA Experiments typically involve more than 500 physicists from a few dozen institutes. These physicists require access to large amounts of data in a fully transparent manner. Important issues include Distributed Mass Storage Management Systems in a Distributed and Heterogeneous Computing Environment. At the very center of a distributed system, including tens of CPUs and network attached mass storage peripherals are the communication links. Today scientists are witnessing an integration of computing and communication technology with the open-quote network close-quote becoming the computer. This contribution reports on a centrally operated computing facility for the HERA Experiments at DESY, including Symmetric Multiprocessor Machines (84 Processors), presently more than 400 GByte of magnetic disk and 40 TB of automoted tape storage, tied together by a HIPPI open-quote network close-quote. Focussing on the High Performance Interconnect technology, details will be provided about the HIPPI based open-quote Backplane close-quote configured around a 20 Gigabit/s Multi Media Router and the performance and efficiency of the related computer interfaces

  20. COMPUTING

    CERN Multimedia

    I. Fisk

    2012-01-01

    Introduction Computing continued with a high level of activity over the winter in preparation for conferences and the start of the 2012 run. 2012 brings new challenges with a new energy, more complex events, and the need to make the best use of the available time before the Long Shutdown. We expect to be resource constrained on all tiers of the computing system in 2012 and are working to ensure the high-priority goals of CMS are not impacted. Heavy ions After a successful 2011 heavy-ion run, the programme is moving to analysis. During the run, the CAF resources were well used for prompt analysis. Since then in 2012 on average 200 job slots have been used continuously at Vanderbilt for analysis workflows. Operations Office As of 2012, the Computing Project emphasis has moved from commissioning to operation of the various systems. This is reflected in the new organisation structure where the Facilities and Data Operations tasks have been merged into a common Operations Office, which now covers everything ...

  1. APPLICATION OF SOFT COMPUTING TECHNIQUES FOR PREDICTING COOLING TIME REQUIRED DROPPING INITIAL TEMPERATURE OF MASS CONCRETE

    Directory of Open Access Journals (Sweden)

    Santosh Bhattarai

    2017-07-01

    Full Text Available Minimizing the thermal cracks in mass concrete at an early age can be achieved by removing the hydration heat as quickly as possible within initial cooling period before the next lift is placed. Recognizing the time needed to remove hydration heat within initial cooling period helps to take an effective and efficient decision on temperature control plan in advance. Thermal properties of concrete, water cooling parameters and construction parameter are the most influencing factors involved in the process and the relationship between these parameters are non-linear in a pattern, complicated and not understood well. Some attempts had been made to understand and formulate the relationship taking account of thermal properties of concrete and cooling water parameters. Thus, in this study, an effort have been made to formulate the relationship for the same taking account of thermal properties of concrete, water cooling parameters and construction parameter, with the help of two soft computing techniques namely: Genetic programming (GP software “Eureqa” and Artificial Neural Network (ANN. Relationships were developed from the data available from recently constructed high concrete double curvature arch dam. The value of R for the relationship between the predicted and real cooling time from GP and ANN model is 0.8822 and 0.9146 respectively. Relative impact on target parameter due to input parameters was evaluated through sensitivity analysis and the results reveal that, construction parameter influence the target parameter significantly. Furthermore, during the testing phase of proposed models with an independent set of data, the absolute and relative errors were significantly low, which indicates the prediction power of the employed soft computing techniques deemed satisfactory as compared to the measured data.

  2. A computational study of highly viscous impinging jets

    International Nuclear Information System (INIS)

    Silva, M.W.

    1998-11-01

    Two commercially-available computational fluid dynamics codes, FIDAP (Fluent, Inc., Lebanon, NH) and FLOW-3D (Flow Science, Inc., Los Alamos, NM), were used to simulate the landing region of jets of highly viscous fluids impinging on flat surfaces. The volume-of-fluid method was combined with finite difference and finite element approaches to predict the jet behavior. Several computational models with varying degrees of physical realism were developed, and the results were compared with experimental observations. In experiments, the jet exhibited several complex behaviors. As soon as it exited the nozzle, the jet began to neck down and become narrower. When it impacted the solid surface, the jet developed an instability near the impact point and buckled to the side. This buckling became a spiraling motion, and the jet spiraled about the impact point. As the jet spiraled around, a cone-shaped pile was build up which eventually became unstable and slumped to the side. While all of these behaviors were occurring, air bubbles, or voids, were being entrapped in the fluid pool. The results obtained from the FLOW-3D models more closely matched the behavior of real jets than the results obtained from /the FIDAP models. Most of the FLOW-3D models predicted all of the significant jet behaviors observed in experiments: necking, buckling, spiraling, slumping, and void entrapment. All of the FIDAP models predicted that the jet would buckle relatively far from the point of impact, whereas the experimentally observed jet behavior indicates that the jets buckle much nearer the impact point. Furthermore, it was shown that FIDAP is incapable of incorporating heat transfer effects into the model, making it unsuitable for this work

  3. A computational study of highly viscous impinging jets

    Energy Technology Data Exchange (ETDEWEB)

    Silva, M.W. [Univ. of Texas, Austin, TX (United States). Dept. of Mechanical Engineering

    1998-11-01

    Two commercially-available computational fluid dynamics codes, FIDAP (Fluent, Inc., Lebanon, NH) and FLOW-3D (Flow Science, Inc., Los Alamos, NM), were used to simulate the landing region of jets of highly viscous fluids impinging on flat surfaces. The volume-of-fluid method was combined with finite difference and finite element approaches to predict the jet behavior. Several computational models with varying degrees of physical realism were developed, and the results were compared with experimental observations. In experiments, the jet exhibited several complex behaviors. As soon as it exited the nozzle, the jet began to neck down and become narrower. When it impacted the solid surface, the jet developed an instability near the impact point and buckled to the side. This buckling became a spiraling motion, and the jet spiraled about the impact point. As the jet spiraled around, a cone-shaped pile was build up which eventually became unstable and slumped to the side. While all of these behaviors were occurring, air bubbles, or voids, were being entrapped in the fluid pool. The results obtained from the FLOW-3D models more closely matched the behavior of real jets than the results obtained from /the FIDAP models. Most of the FLOW-3D models predicted all of the significant jet behaviors observed in experiments: necking, buckling, spiraling, slumping, and void entrapment. All of the FIDAP models predicted that the jet would buckle relatively far from the point of impact, whereas the experimentally observed jet behavior indicates that the jets buckle much nearer the impact point. Furthermore, it was shown that FIDAP is incapable of incorporating heat transfer effects into the model, making it unsuitable for this work.

  4. Pulmonary leukemic involvement: high-resolution computed tomography evaluation

    International Nuclear Information System (INIS)

    Oliveira, Ana Paola de; Marchiori, Edson; Souza Junior, Arthur Soares

    2004-01-01

    Objective: To evaluate the role of high-resolution computed tomography (HRCT) in patients with leukemia and pulmonary symptoms, to establish the main patterns and to correlate them with the etiology. Materials and Methods: This is a retrospective study of the HRCT of 15 patients with leukemia and pulmonary symptoms. The examinations were performed using a spatial high-resolution protocol and were analyzed by two independent radiologists. Results: The main HRCT patterns found were ground-glass opacity (n=11), consolidation (n=9), airspace nodules (n=3), septal thickening (n=3), tree-in-bud pattern (n=3), and pleural effusion (n=3). Pulmonary infection was the most common finding seen in 12 patients: bacterial pneumonia (n=6), fungal infection (n = 4), pulmonary tuberculosis (n=1) and viral infection (n=1). Leukemic pleural infiltration (n=1), lymphoma (n=1) and pulmonary hemorrhage (n=1) were detected in the other three patients. Conclusion: HRCT is an important tool that may suggest the cause of lung involvement, its extension and in some cases to guide invasive procedures in patients with leukemia. (author)

  5. Computer-aided control of high-quality cast iron

    Directory of Open Access Journals (Sweden)

    S. Pietrowski

    2008-04-01

    Full Text Available The study discusses the possibility of control of the high-quality grey cast iron and ductile iron using the author’s genuine computer programs. The programs have been developed with the help of algorithms based on statistical relationships that are said to exist between the characteristic parameters of DTA curves and properties, like Rp0,2, Rm, A5 and HB. It has been proved that the spheroidisation and inoculation treatment of cast iron changes in an important way the characteristic parameters of DTA curves, thus enabling a control of these operations as regards their correctness and effectiveness, along with the related changes in microstructure and mechanical properties of cast iron. Moreover, some examples of statistical relationships existing between the typical properties of ductile iron and its control process were given for cases of the melts consistent and inconsistent with the adopted technology.A test stand for control of the high-quality cast iron and respective melts has been schematically depicted.

  6. COMPUTER APPROACHES TO WHEAT HIGH-THROUGHPUT PHENOTYPING

    Directory of Open Access Journals (Sweden)

    Afonnikov D.

    2012-08-01

    Full Text Available The growing need for rapid and accurate approaches for large-scale assessment of phenotypic characters in plants becomes more and more obvious in the studies looking into relationships between genotype and phenotype. This need is due to the advent of high throughput methods for analysis of genomes. Nowadays, any genetic experiment involves data on thousands and dozens of thousands of plants. Traditional ways of assessing most phenotypic characteristics (those with reliance on the eye, the touch, the ruler are little effective on samples of such sizes. Modern approaches seek to take advantage of automated phenotyping, which warrants a much more rapid data acquisition, higher accuracy of the assessment of phenotypic features, measurement of new parameters of these features and exclusion of human subjectivity from the process. Additionally, automation allows measurement data to be rapidly loaded into computer databases, which reduces data processing time.In this work, we present the WheatPGE information system designed to solve the problem of integration of genotypic and phenotypic data and parameters of the environment, as well as to analyze the relationships between the genotype and phenotype in wheat. The system is used to consolidate miscellaneous data on a plant for storing and processing various morphological traits and genotypes of wheat plants as well as data on various environmental factors. The system is available at www.wheatdb.org. Its potential in genetic experiments has been demonstrated in high-throughput phenotyping of wheat leaf pubescence.

  7. Computer code to predict the heat of explosion of high energy materials

    International Nuclear Information System (INIS)

    Muthurajan, H.; Sivabalan, R.; Pon Saravanan, N.; Talawar, M.B.

    2009-01-01

    The computational approach to the thermochemical changes involved in the process of explosion of a high energy materials (HEMs) vis-a-vis its molecular structure aids a HEMs chemist/engineers to predict the important thermodynamic parameters such as heat of explosion of the HEMs. Such a computer-aided design will be useful in predicting the performance of a given HEM as well as in conceiving futuristic high energy molecules that have significant potential in the field of explosives and propellants. The software code viz., LOTUSES developed by authors predicts various characteristics of HEMs such as explosion products including balanced explosion reactions, density of HEMs, velocity of detonation, CJ pressure, etc. The new computational approach described in this paper allows the prediction of heat of explosion (ΔH e ) without any experimental data for different HEMs, which are comparable with experimental results reported in literature. The new algorithm which does not require any complex input parameter is incorporated in LOTUSES (version 1.5) and the results are presented in this paper. The linear regression analysis of all data point yields the correlation coefficient R 2 = 0.9721 with a linear equation y = 0.9262x + 101.45. The correlation coefficient value 0.9721 reveals that the computed values are in good agreement with experimental values and useful for rapid hazard assessment of energetic materials

  8. Single High Fidelity Geometric Data Sets for LCM - Model Requirements

    Science.gov (United States)

    2006-11-01

    designed specifically to withstand severe underwater explosion (UNDEX) loading caused by the detonation of weapons such as bombs, missiles, mines and... Explosions ( BLEVEs ): The energy from a BLEVE is from a sudden change of phase of stored material. Tanks of liquids immersed in pool fires BLEVE when the...2.10.3 Summary of Data Requirements ....................................................... 46 2.11 Underwater Explosion

  9. Comparison of High-Fidelity Computational Tools for Wing Design of a Distributed Electric Propulsion Aircraft

    Science.gov (United States)

    Deere, Karen A.; Viken, Sally A.; Carter, Melissa B.; Viken, Jeffrey K.; Derlaga, Joseph M.; Stoll, Alex M.

    2017-01-01

    A variety of tools, from fundamental to high order, have been used to better understand applications of distributed electric propulsion to aid the wing and propulsion system design of the Leading Edge Asynchronous Propulsion Technology (LEAPTech) project and the X-57 Maxwell airplane. Three high-fidelity, Navier-Stokes computational fluid dynamics codes used during the project with results presented here are FUN3D, STAR-CCM+, and OVERFLOW. These codes employ various turbulence models to predict fully turbulent and transitional flow. Results from these codes are compared for two distributed electric propulsion configurations: the wing tested at NASA Armstrong on the Hybrid-Electric Integrated Systems Testbed truck, and the wing designed for the X-57 Maxwell airplane. Results from these computational tools for the high-lift wing tested on the Hybrid-Electric Integrated Systems Testbed truck and the X-57 high-lift wing presented compare reasonably well. The goal of the X-57 wing and distributed electric propulsion system design achieving or exceeding the required ?? (sub L) = 3.95 for stall speed was confirmed with all of the computational codes.

  10. Functional requirements of computer systems for the U.S. Geological Survey, Water Resources Division, 1988-97

    Science.gov (United States)

    Hathaway, R.M.; McNellis, J.M.

    1989-01-01

    Investigating the occurrence, quantity, quality, distribution, and movement of the Nation 's water resources is the principal mission of the U.S. Geological Survey 's Water Resources Division. Reports of these investigations are published and available to the public. To accomplish this mission, the Division requires substantial computer technology to process, store, and analyze data from more than 57,000 hydrologic sites. The Division 's computer resources are organized through the Distributed Information System Program Office that manages the nationwide network of computers. The contract that provides the major computer components for the Water Resources Division 's Distributed information System expires in 1991. Five work groups were organized to collect the information needed to procure a new generation of computer systems for the U. S. Geological Survey, Water Resources Division. Each group was assigned a major Division activity and asked to describe its functional requirements of computer systems for the next decade. The work groups and major activities are: (1) hydrologic information; (2) hydrologic applications; (3) geographic information systems; (4) reports and electronic publishing; and (5) administrative. The work groups identified 42 functions and described their functional requirements for 1988, 1992, and 1997. A few new functions such as Decision Support Systems and Executive Information Systems, were identified, but most are the same as performed today. Although the number of functions will remain about the same, steady growth in the size, complexity, and frequency of many functions is predicted for the next decade. No compensating increase in the Division 's staff is anticipated during this period. To handle the increased workload and perform these functions, new approaches will be developed that use advanced computer technology. The advanced technology is required in a unified, tightly coupled system that will support all functions simultaneously

  11. FPGA Compute Acceleration for High-Throughput Data Processing in High-Energy Physics Experiments

    CERN Multimedia

    CERN. Geneva

    2017-01-01

    The upgrades of the four large experiments of the LHC at CERN in the coming years will result in a huge increase of data bandwidth for each experiment which needs to be processed very efficiently. For example the LHCb experiment will upgrade its detector 2019/2020 to a 'triggerless' readout scheme, where all of the readout electronics and several sub-detector parts will be replaced. The new readout electronics will be able to readout the detector at 40MHz. This increases the data bandwidth from the detector down to the event filter farm to 40TBit/s, which must be processed to select the interesting proton-proton collisions for later storage. The architecture of such a computing farm, which can process this amount of data as efficiently as possible, is a challenging task and several compute accelerator technologies are being considered.    In the high performance computing sector more and more FPGA compute accelerators are being used to improve the compute performance and reduce the...

  12. Determining the dimensions of essential medical coverage required by military body armour plates utilising Computed Tomography.

    Science.gov (United States)

    Breeze, J; Lewis, E A; Fryer, R

    2016-09-01

    Military body armour is designed to prevent the penetration of ballistic projectiles into the most vulnerable structures within the thorax and abdomen. Currently the OSPREY and VIRTUS body armour systems issued to United Kingdom (UK) Armed Forces personnel are provided with a single size front and rear ceramic plate regardless of the individual's body dimensions. Currently limited information exists to determine whether these plates overprotect some members of the military population, and no method exists to accurately size plates to an individual. Computed Tomography (CT) scans of 120 male Caucasian UK Armed Forces personnel were analysed to measure the dimensions of internal thoraco-abdominal anatomical structures that had been defined as requiring essential medical coverage. The boundaries of these structures were related to three potential anthropometric landmarks on the skin surface and statistical analysis was undertaken to validate the results. The range of heights of each individual used in this study was comparable to previous anthropometric surveys, confirming that a representative sample had been used. The vertical dimension of essential medical coverage demonstrated good correlation to torso height (suprasternal notch to iliac crest) but not to stature (r(2)=0.53 versus 0.04). Horizontal coverage did not correlate to either measure of height. Surface landmarks utilised in this study were proven to be reliable surrogate markers for the boundaries of the underlying anatomical structures potentially requiring essential protection by a plate. Providing a range of plate sizes, particularly multiple heights, should optimise the medical coverage and thus effectiveness of body armour for UK Armed Forces personnel. The results of this work provide evidence that a single width of plate if chosen correctly will provide the essential medical coverage for the entire military population, whilst recognising that it still could overprotect the smallest individuals

  13. Identification of Requirements for Computer-Supported Matching of Food Consumption Data with Food Composition Data

    Directory of Open Access Journals (Sweden)

    Barbara Koroušić Seljak

    2018-03-01

    Full Text Available This paper identifies the requirements for computer-supported food matching, in order to address not only national and European but also international current related needs and represents an integrated research contribution of the FP7 EuroDISH project. The available classification and coding systems and the specific problems of food matching are summarized and a new concept for food matching based on optimization methods and machine-based learning is proposed. To illustrate and test this concept, a study has been conducted in four European countries (i.e., Germany, The Netherlands, Italy and the UK using different classification and coding systems. This real case study enabled us to evaluate the new food matching concept and provide further recommendations for future work. In the first stage of the study, we prepared subsets of food consumption data described and classified using different systems, that had already been manually matched with national food composition data. Once the food matching algorithm was trained using this data, testing was performed on another subset of food consumption data. Experts from different countries validated food matching between consumption and composition data by selecting best matches from the options given by the matching algorithm without seeing the result of the previously made manual match. The evaluation of study results stressed the importance of the role and quality of the food composition database as compared to the selected classification and/or coding systems and the need to continue compiling national food composition data as eating habits and national dishes still vary between countries. Although some countries managed to collect extensive sets of food consumption data, these cannot be easily matched with food composition data if either food consumption or food composition data are not properly classified and described using any classification and coding systems. The study also showed that the

  14. Identification of Requirements for Computer-Supported Matching of Food Consumption Data with Food Composition Data

    Science.gov (United States)

    Korošec, Peter; Eftimov, Tome; Ocke, Marga; van der Laan, Jan; Roe, Mark; Berry, Rachel; Turrini, Aida; Krems, Carolin; Slimani, Nadia; Finglas, Paul

    2018-01-01

    This paper identifies the requirements for computer-supported food matching, in order to address not only national and European but also international current related needs and represents an integrated research contribution of the FP7 EuroDISH project. The available classification and coding systems and the specific problems of food matching are summarized and a new concept for food matching based on optimization methods and machine-based learning is proposed. To illustrate and test this concept, a study has been conducted in four European countries (i.e., Germany, The Netherlands, Italy and the UK) using different classification and coding systems. This real case study enabled us to evaluate the new food matching concept and provide further recommendations for future work. In the first stage of the study, we prepared subsets of food consumption data described and classified using different systems, that had already been manually matched with national food composition data. Once the food matching algorithm was trained using this data, testing was performed on another subset of food consumption data. Experts from different countries validated food matching between consumption and composition data by selecting best matches from the options given by the matching algorithm without seeing the result of the previously made manual match. The evaluation of study results stressed the importance of the role and quality of the food composition database as compared to the selected classification and/or coding systems and the need to continue compiling national food composition data as eating habits and national dishes still vary between countries. Although some countries managed to collect extensive sets of food consumption data, these cannot be easily matched with food composition data if either food consumption or food composition data are not properly classified and described using any classification and coding systems. The study also showed that the level of human

  15. On the impact of quantum computing technology on future developments in high-performance scientific computing

    OpenAIRE

    Möller, Matthias; Vuik, Cornelis

    2017-01-01

    Quantum computing technologies have become a hot topic in academia and industry receiving much attention and financial support from all sides. Building a quantum computer that can be used practically is in itself an outstanding challenge that has become the ‘new race to the moon’. Next to researchers and vendors of future computing technologies, national authorities are showing strong interest in maturing this technology due to its known potential to break many of today’s encryption technique...

  16. COMPUTING

    CERN Multimedia

    M. Kasemann

    CCRC’08 challenges and CSA08 During the February campaign of the Common Computing readiness challenges (CCRC’08), the CMS computing team had achieved very good results. The link between the detector site and the Tier0 was tested by gradually increasing the number of parallel transfer streams well beyond the target. Tests covered the global robustness at the Tier0, processing a massive number of very large files and with a high writing speed to tapes.  Other tests covered the links between the different Tiers of the distributed infrastructure and the pre-staging and reprocessing capacity of the Tier1’s: response time, data transfer rate and success rate for Tape to Buffer staging of files kept exclusively on Tape were measured. In all cases, coordination with the sites was efficient and no serious problem was found. These successful preparations prepared the ground for the second phase of the CCRC’08 campaign, in May. The Computing Software and Analysis challen...

  17. COMPUTING

    CERN Multimedia

    M. Kasemann

    Introduction More than seventy CMS collaborators attended the Computing and Offline Workshop in San Diego, California, April 20-24th to discuss the state of readiness of software and computing for collisions. Focus and priority were given to preparations for data taking and providing room for ample dialog between groups involved in Commissioning, Data Operations, Analysis and MC Production. Throughout the workshop, aspects of software, operating procedures and issues addressing all parts of the computing model were discussed. Plans for the CMS participation in STEP’09, the combined scale testing for all four experiments due in June 2009, were refined. The article in CMS Times by Frank Wuerthwein gave a good recap of the highly collaborative atmosphere of the workshop. Many thanks to UCSD and to the organizers for taking care of this workshop, which resulted in a long list of action items and was definitely a success. A considerable amount of effort and care is invested in the estimate of the co...

  18. Computer-aided safety systems of industrial high energy objects

    International Nuclear Information System (INIS)

    Topolsky, N.G.; Gordeev, S.G.

    1995-01-01

    Modern objects of fuel and energy, chemical industries are characterized by high power consumption; by presence of large quantities of combustible and explosive substances used in technological processes; by advanced communications of submission systems of initial liquid and gasiform reagents, lubricants and coolants, the products of processing, and wastes of production; by advanced ventilation and pneumatic transport; and by complex control systems of energy, material and information flows. Such objects have advanced infrastructures, including a significant quantity of engineering buildings intended for storage, transportation, and processing of combustible liquids, gasiform fuels and materials, and firm materials. Examples of similar objects are nuclear and thermal power stations, chemical plants, machine-building factories, iron and steel industry enterprises, etc. Many tasks and functions characterizing the problem of fire safety of these objects can be accomplished only upon the development of special Computer-Aided Fire Safety Systems (CAFSS). The CAFSS for these objects are intended to reduce the hazard of disastrous accidents both causing fires and caused by them. The tasks of fire prevention and rescue work of large-scale industrial objects are analyzed within the bounds of the recommended conception. A functional structure of CAFSS with a list of the main subsystems forming a part of its composition has been proposed

  19. Pulmonary high-resolution computed tomography findings in nephropathia epidemica

    Energy Technology Data Exchange (ETDEWEB)

    Paakkala, Antti, E-mail: antti.paakkala@pshp.fi [Medical Imaging Centre, Tampere University Hospital, 33521 Tampere (Finland); Jaervenpaeae, Ritva, E-mail: ritva.jarvenpaa@pshp.fi [Medical Imaging Centre, Tampere University Hospital, 33521 Tampere (Finland); Maekelae, Satu, E-mail: satu.marjo.makela@uta.fi [Department of Internal Medicine, Tampere University Hospital, 33521 Tampere (Finland); Medical School, University of Tampere, 33521 Tampere (Finland); Huhtala, Heini, E-mail: heini.huhtala@uta.fi [School of Public Health, University of Tampere, 33521 Tampere (Finland); Mustonen, Jukka, E-mail: jukka.mustonen@uta.fi [Department of Internal Medicine, Tampere University Hospital, 33521 Tampere (Finland); Medical School, University of Tampere, 33521 Tampere (Finland)

    2012-08-15

    Purpose: To evaluate lung high-resolution computed tomography (HRCT) findings in patients with Puumala hantavirus-induced nephropathia epidemica (NE), and to determine if these findings correspond to chest radiograph findings. Materials and methods: HRCT findings and clinical course were studied in 13 hospital-treated NE patients. Chest radiograph findings were studied in 12 of them. Results: Twelve patients (92%) showed lung parenchymal abnormalities in HRCT, while only 8 had changes in their chest radiography. Atelectasis, pleural effusion, intralobular and interlobular septal thickening were the most common HRCT findings. Ground-glass opacification (GGO) was seen in 4 and hilar and mediastinal lymphadenopathy in 3 patients. Atelectasis and pleural effusion were also mostly seen in chest radiographs, other findings only in HRCT. Conclusion: Almost every NE patient showed lung parenchymal abnormalities in HRCT. The most common findings of lung involvement in NE can be defined as accumulation of pleural fluid and atelectasis and intralobular and interlobular septal thickening, most profusely in the lower parts of the lung. As a novel finding, lymphadenopathy was seen in a minority, probably related to capillary leakage and overall fluid overload. Pleural effusion is not the prominent feature in other viral pneumonias, whereas intralobular and interlobular septal thickening are characteristic of other viral pulmonary infections as well. Lung parenchymal findings in HRCT can thus be taken not to be disease-specific in NE and HRCT is useful only for scientific purposes.

  20. The Future of Software Engineering for High Performance Computing

    Energy Technology Data Exchange (ETDEWEB)

    Pope, G [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-07-16

    DOE ASCR requested that from May through mid-July 2015 a study group identify issues and recommend solutions from a software engineering perspective transitioning into the next generation of High Performance Computing. The approach used was to ask some of the DOE complex experts who will be responsible for doing this work to contribute to the study group. The technique used was to solicit elevator speeches: a short and concise write up done as if the author was a speaker with only a few minutes to convince a decision maker of their top issues. Pages 2-18 contain the original texts of the contributed elevator speeches and end notes identifying the 20 contributors. The study group also ranked the importance of each topic, and those scores are displayed with each topic heading. A perfect score (and highest priority) is three, two is medium priority, and one is lowest priority. The highest scoring topic areas were software engineering and testing resources; the lowest scoring area was compliance to DOE standards. The following two paragraphs are an elevator speech summarizing the contributed elevator speeches. Each sentence or phrase in the summary is hyperlinked to its source via a numeral embedded in the text. A risk one liner has also been added to each topic to allow future risk tracking and mitigation.

  1. A checkpoint compression study for high-performance computing systems

    Energy Technology Data Exchange (ETDEWEB)

    Ibtesham, Dewan [Univ. of New Mexico, Albuquerque, NM (United States). Dept. of Computer Science; Ferreira, Kurt B. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States). Scalable System Software Dept.; Arnold, Dorian [Univ. of New Mexico, Albuquerque, NM (United States). Dept. of Computer Science

    2015-02-17

    As high-performance computing systems continue to increase in size and complexity, higher failure rates and increased overheads for checkpoint/restart (CR) protocols have raised concerns about the practical viability of CR protocols for future systems. Previously, compression has proven to be a viable approach for reducing checkpoint data volumes and, thereby, reducing CR protocol overhead leading to improved application performance. In this article, we further explore compression-based CR optimization by exploring its baseline performance and scaling properties, evaluating whether improved compression algorithms might lead to even better application performance and comparing checkpoint compression against and alongside other software- and hardware-based optimizations. Our results highlights are: (1) compression is a very viable CR optimization; (2) generic, text-based compression algorithms appear to perform near optimally for checkpoint data compression and faster compression algorithms will not lead to better application performance; (3) compression-based optimizations fare well against and alongside other software-based optimizations; and (4) while hardware-based optimizations outperform software-based ones, they are not as cost effective.

  2. Multi-Language Programming Environments for High Performance Java Computing

    Directory of Open Access Journals (Sweden)

    Vladimir Getov

    1999-01-01

    Full Text Available Recent developments in processor capabilities, software tools, programming languages and programming paradigms have brought about new approaches to high performance computing. A steadfast component of this dynamic evolution has been the scientific community’s reliance on established scientific packages. As a consequence, programmers of high‐performance applications are reluctant to embrace evolving languages such as Java. This paper describes the Java‐to‐C Interface (JCI tool which provides application programmers wishing to use Java with immediate accessibility to existing scientific packages. The JCI tool also facilitates rapid development and reuse of existing code. These benefits are provided at minimal cost to the programmer. While beneficial to the programmer, the additional advantages of mixed‐language programming in terms of application performance and portability are addressed in detail within the context of this paper. In addition, we discuss how the JCI tool is complementing other ongoing projects such as IBM’s High‐Performance Compiler for Java (HPCJ and IceT’s metacomputing environment.

  3. Patients with computed tomography-proven acute diverticulitis require follow-up to exclude colorectal cancer

    Directory of Open Access Journals (Sweden)

    Shafquat Zaman

    2017-04-01

    Full Text Available Background/Aims: Traditionally, patients with acute diverticulitis undergo follow-up endoscopy to exclude colorectal cancer (CRC. However, its usefulness has been debated in this era of high-resolution computed tomography (CT diagnosis. We assessed the frequency and outcome of endoscopic follow-up for patients with CT-proven acute diverticulitis, according to the confidence in the CT diagnosis.Methods: Records of patients with CT-proven acute diverticulitis between October 2007 and March 2014 at Sandwell & West Birmingham Hospitals NHS Trust were retrieved. The National Cancer Registry confirmed the cases of CRC. Endoscopy quality indicators were compared between these patients and other patients undergoing the same endoscopic examination over the same period.Results: We identified 235 patients with CT-proven acute diverticulitis, of which, 187 were managed conservatively. The CT report was confident of the diagnosis of acute diverticulitis in 75% cases. Five of the 235 patients were subsequently diagnosed with CRC (2.1%. Three cases of CRC were detected in the 187 patients managed conservatively (1.6%. Forty-eight percent of the conservatively managed patients underwent follow-up endoscopy; one case of CRC was identified. Endoscopies were often incomplete and caused more discomfort for patients with diverticulitis compared with controls.Conclusions: CRC was diagnosed in patients with CT-proven diverticulitis at a higher rate than in screened asymptomatic populations, necessitating follow-up. CT reports contained statements regarding diagnostic uncertainty in 25% cases, associated with an increased risk of CRC. Follow-up endoscopy in patients with CT-proven diverticulitis is associated with increased discomfort and high rates of incompletion. The use of other follow-up modalities should be considered.

  4. Computational Study of Nonequilibrium Chemistry in High Temperature Flows

    Science.gov (United States)

    Doraiswamy, Sriram

    Recent experimental measurements in the reflected shock tunnel CUBRC LENS-I facility raise questions about our ability to correctly model the recombination processes in high enthalpy flows. In the carbon dioxide flow, the computed shock standoff distance over the Mars Science Laboratory (MSL) shape was less than half of the experimental result. For the oxygen flows, both pressure and heat transfer data on the double cone geometry were not correctly predicted. The objective of this work is to investigate possible reasons for these discrepancies. This process involves systematically addressing different factors that could possibly explain the differences. These factors include vibrational modeling, role of electronic states and chemistry-vibrational coupling in high enthalpy flows. A state-specific vibrational model for CO2, CO, O2 and O system is devised by taking into account the first few vibrational states of each species. All vibrational states with energies at or below 1 eV are included in the present work. Of the three modes of vibration in CO2 , the antisymmetric mode is considered separately from the symmetric stretching mode and the doubly degenerate bending modes. The symmetric and the bending modes are grouped together since the energy transfer rates between the two modes are very large due to Fermi resonance. The symmetric and bending modes are assumed to be in equilibrium with the translational and rotational modes. The kinetic rates for the vibrational-translation energy exchange reactions, and the intermolecular and intramolecular vibrational-vibrational energy exchange reactions are based on experimental data to the maximum extent possible. Extrapolation methods are employed when necessary. This vibrational model is then coupled with an axisymmetric computational fluid dynamics code to study the expansion of CO2 in a nozzle. The potential role of low lying electronic states is also investigated. Carbon dioxide has a single excited state just below

  5. Using a Computer Animation to Teach High School Molecular Biology

    Science.gov (United States)

    Rotbain, Yosi; Marbach-Ad, Gili; Stavy, Ruth

    2008-01-01

    We present an active way to use a computer animation in secondary molecular genetics class. For this purpose we developed an activity booklet that helps students to work interactively with a computer animation which deals with abstract concepts and processes in molecular biology. The achievements of the experimental group were compared with those…

  6. Multimodal Information Presentation for High-Load Human Computer Interaction

    NARCIS (Netherlands)

    Cao, Y.

    2011-01-01

    This dissertation addresses multimodal information presentation in human computer interaction. Information presentation refers to the manner in which computer systems/interfaces present information to human users. More specifically, the focus of our work is not on which information to present, but

  7. A ground-up approach to High Throughput Cloud Computing in High-Energy Physics

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00245123; Ganis, Gerardo; Bagnasco, Stefano

    The thesis explores various practical approaches in making existing High Throughput computing applications common in High Energy Physics work on cloud-provided resources, as well as opening the possibility for running new applications. The work is divided into two parts: firstly we describe the work done at the computing facility hosted by INFN Torino to entirely convert former Grid resources into cloud ones, eventually running Grid use cases on top along with many others in a more flexible way. Integration and conversion problems are duly described. The second part covers the development of solutions for automatizing the orchestration of cloud workers based on the load of a batch queue and the development of HEP applications based on ROOT's PROOF that can adapt at runtime to a changing number of workers.

  8. Computer-controlled detection system for high-precision isotope ratio measurements

    International Nuclear Information System (INIS)

    McCord, B.R.; Taylor, J.W.

    1986-01-01

    In this paper the authors describe a detection system for high-precision isotope ratio measurements. In this new system, the requirement for a ratioing digital voltmeter has been eliminated, and a standard digital voltmeter interfaced to a computer is employed. Instead of measuring the ratio of the two steadily increasing output voltages simultaneously, the digital voltmeter alternately samples the outputs at a precise rate over a certain period of time. The data are sent to the computer which calculates the rate of charge of each amplifier and divides the two rates to obtain the isotopic ratio. These results simulate a coincident measurement of the output of both integrators. The charge rate is calculated by using a linear regression method, and the standard error of the slope gives a measure of the stability of the system at the time the measurement was taken

  9. On the impact of quantum computing technology on future developments in high-performance scientific computing

    NARCIS (Netherlands)

    Möller, M.; Vuik, C.

    2017-01-01

    Quantum computing technologies have become a hot topic in academia and industry receiving much attention and financial support from all sides. Building a quantum computer that can be used practically is in itself an outstanding challenge that has become the ‘new race to the moon’. Next to

  10. High-Performance Compute Infrastructure in Astronomy: 2020 Is Only Months Away

    Science.gov (United States)

    Berriman, B.; Deelman, E.; Juve, G.; Rynge, M.; Vöckler, J. S.

    2012-09-01

    By 2020, astronomy will be awash with as much as 60 PB of public data. Full scientific exploitation of such massive volumes of data will require high-performance computing on server farms co-located with the data. Development of this computing model will be a community-wide enterprise that has profound cultural and technical implications. Astronomers must be prepared to develop environment-agnostic applications that support parallel processing. The community must investigate the applicability and cost-benefit of emerging technologies such as cloud computing to astronomy, and must engage the Computer Science community to develop science-driven cyberinfrastructure such as workflow schedulers and optimizers. We report here the results of collaborations between a science center, IPAC, and a Computer Science research institute, ISI. These collaborations may be considered pathfinders in developing a high-performance compute infrastructure in astronomy. These collaborations investigated two exemplar large-scale science-driver workflow applications: 1) Calculation of an infrared atlas of the Galactic Plane at 18 different wavelengths by placing data from multiple surveys on a common plate scale and co-registering all the pixels; 2) Calculation of an atlas of periodicities present in the public Kepler data sets, which currently contain 380,000 light curves. These products have been generated with two workflow applications, written in C for performance and designed to support parallel processing on multiple environments and platforms, but with different compute resource needs: the Montage image mosaic engine is I/O-bound, and the NASA Star and Exoplanet Database periodogram code is CPU-bound. Our presentation will report cost and performance metrics and lessons-learned for continuing development. Applicability of Cloud Computing: Commercial Cloud providers generally charge for all operations, including processing, transfer of input and output data, and for storage of data

  11. High ionization radiation field remote visualization device - shielding requirements

    International Nuclear Information System (INIS)

    Fernandez, Antonio P. Rodrigues; Omi, Nelson M.; Silveira, Carlos Gaia da; Calvo, Wilson A. Pajero

    2011-01-01

    The high activity sources manipulation hot-cells use special and very thick leaded glass windows. This window provides a single sight of what is being manipulated inside the hot-cell. The use of surveillance cameras would replace the leaded glass window, provide other sights and show more details of the manipulated pieces, using the zoom capacity. Online distant manipulation may be implemented, too. The limitation is their low ionizing radiation resistance. This low resistance also limited the useful time of robots made to explore or even fix problematic nuclear reactor core, industrial gamma irradiators and high radioactive leaks. This work is a part of the development of a high gamma field remote visualization device using commercial surveillance cameras. These cameras are cheap enough to be discarded after the use for some hours of use in an emergency application, some days or some months in routine applications. A radiation shield can be used but it cannot block the camera sight which is the shield weakness. Estimates of the camera and its electronics resistance may be made knowing each component behavior. This knowledge is also used to determine the optical sensor type and the lens material, too. A better approach will be obtained with the commercial cameras working inside a high gamma field, like the one inside of the IPEN Multipurpose Irradiator. The goal of this work is to establish the radiation shielding needed to extend the camera's useful time to hours, days or months, depending on the application needs. (author)

  12. COMPUTING

    CERN Multimedia

    I. Fisk

    2012-01-01

      Introduction Computing activity has been running at a sustained, high rate as we collect data at high luminosity, process simulation, and begin to process the parked data. The system is functional, though a number of improvements are planned during LS1. Many of the changes will impact users, we hope only in positive ways. We are trying to improve the distributed analysis tools as well as the ability to access more data samples more transparently.  Operations Office Figure 2: Number of events per month, for 2012 Since the June CMS Week, Computing Operations teams successfully completed data re-reconstruction passes and finished the CMSSW_53X MC campaign with over three billion events available in AOD format. Recorded data was successfully processed in parallel, exceeding 1.2 billion raw physics events per month for the first time in October 2012 due to the increase in data-parking rate. In parallel, large efforts were dedicated to WMAgent development and integrati...

  13. Path Not Found: Disparities in Access to Computer Science Courses in California High Schools

    Science.gov (United States)

    Martin, Alexis; McAlear, Frieda; Scott, Allison

    2015-01-01

    "Path Not Found: Disparities in Access to Computer Science Courses in California High Schools" exposes one of the foundational causes of underrepresentation in computing: disparities in access to computer science courses in California's public high schools. This report provides new, detailed data on these disparities by student body…

  14. Application of cadmium telluride detectors to high energy computed tomography

    International Nuclear Information System (INIS)

    Glasser, F.; Thomas, G.; Cuzin, M.; Verger, L.

    1991-01-01

    15 years ago, Cadmium Telluride detectors have been investigated in our laboratory as possible detectors for medical scanners [1]. Today most of these machines are using high pressure Xenon gas as multicells detectors, BGO or CdWO 4 scintillators for industrial computerized tomography. Xenon gas detectors are well suited for detection of 100 KeV X-rays and enables to build 1000 cells homogeneous detector with a dynamic range of 3 decades. BGO and CdWO 4 scintillators, associated with photomultipliers or photodiodes are used for higher energy (400 KeV). They present a low afterglow and a dynamic range of 4 to 5 decades. Non destructive testing of very absorbing objects (eg 2 m diameter solid rocket motor) by X-ray tomography requires much higher energy X-rays (16 MeV) and doses up to 12000 rads/min at 1 meter. For this application Cadmium Telluride detectors operating as photoconductors are well suited. A prototype of tomograph machine, able to scan 0.5 m diameter high density objects has been realized with 25 CdTe detectors (25x15x0.8 mm 3 ). It produces good quality 1024x1024 tomographic images

  15. Superconductor Requirements and Characterization for High Field Accelerator Magnets

    Energy Technology Data Exchange (ETDEWEB)

    Barzi, E.; Zlobin, A. V.

    2015-05-01

    The 2014 Particle Physics Project Prioritization Panel (P5) strategic plan for U.S. High Energy Physics (HEP) endorses a continued world leadership role in superconducting magnet technology for future Energy Frontier Programs. This includes 10 to 15 T Nb3Sn accelerator magnets for LHC upgrades and a future 100 TeV scale pp collider, and as ultimate goal that of developing magnet technologies above 20 T based on both High Temperature Superconductors (HTS) and Low Temperature Superconductors (LTS) for accelerator magnets. To achieve these objectives, a sound conductor development and characterization program is needed and is herein described. This program is intended to be conducted in close collaboration with U.S. and International labs, Universities and Industry.

  16. Department of Energy research in utilization of high-performance computers

    International Nuclear Information System (INIS)

    Buzbee, B.L.; Worlton, W.J.; Michael, G.; Rodrigue, G.

    1980-08-01

    Department of Energy (DOE) and other Government research laboratories depend on high-performance computer systems to accomplish their programmatic goals. As the most powerful computer systems become available, they are acquired by these laboratories so that advances can be made in their disciplines. These advances are often the result of added sophistication to numerical models, the execution of which is made possible by high-performance computer systems. However, high-performance computer systems have become increasingly complex, and consequently it has become increasingly difficult to realize their potential performance. The result is a need for research on issues related to the utilization of these systems. This report gives a brief description of high-performance computers, and then addresses the use of and future needs for high-performance computers within DOE, the growing complexity of applications within DOE, and areas of high-performance computer systems warranting research. 1 figure

  17. A Computational Approach to Diagnosing Misfits, Inducing Requirements, and Delineating Transformations for Edge Organizations

    National Research Council Canada - National Science Library

    Nissen, Mark E

    2005-01-01

    .... Our research stream employs methods and tools of Computational Organization Theory to investigate the design and efficacy of Edge organizations for current and future, military, mission-environmental contexts...

  18. FY 1992 Blue Book: Grand Challenges: High Performance Computing and Communications

    Data.gov (United States)

    Networking and Information Technology Research and Development, Executive Office of the President — High performance computing and computer communications networks are becoming increasingly important to scientific advancement, economic competition, and national...

  19. FY 1993 Blue Book: Grand Challenges 1993: High Performance Computing and Communications

    Data.gov (United States)

    Networking and Information Technology Research and Development, Executive Office of the President — High performance computing and computer communications networks are becoming increasingly important to scientific advancement, economic competition, and national...

  20. International Conference: Computer-Aided Design of High-Temperature Materials

    National Research Council Canada - National Science Library

    Kalia, Rajiv

    1998-01-01

    .... The conference was attended by experimental and computational materials scientists, and experts in high performance computing and communications from universities, government laboratories, and industries in the U.S., Europe, and Japan...

  1. The contribution of high-performance computing and modelling for industrial development

    CSIR Research Space (South Africa)

    Sithole, Happy

    2017-10-01

    Full Text Available Performance Computing and Modelling for Industrial Development Dr Happy Sithole and Dr Onno Ubbink 2 Strategic context • High-performance computing (HPC) combined with machine Learning and artificial intelligence present opportunities to non...

  2. High-speed packet switching network to link computers

    CERN Document Server

    Gerard, F M

    1980-01-01

    Virtually all of the experiments conducted at CERN use minicomputers today; some simply acquire data and store results on magnetic tape while others actually control experiments and help to process the resulting data. Currently there are more than two hundred minicomputers being used in the laboratory. In order to provide the minicomputer users with access to facilities available on mainframes and also to provide intercommunication between various experimental minicomputers, CERN opted for a packet switching network back in 1975. It was decided to use Modcomp II computers as switching nodes. The only software to be taken was a communications-oriented operating system called Maxcom. Today eight Modcomp II 16-bit computers plus six newer Classic minicomputers from Modular Computer Services have been purchased for the CERNET data communications networks. The current configuration comprises 11 nodes connecting more than 40 user machines to one another and to the laboratory's central computing facility. (0 refs).

  3. Distributed metadata in a high performance computing environment

    Science.gov (United States)

    Bent, John M.; Faibish, Sorin; Zhang, Zhenhua; Liu, Xuezhao; Tang, Haiying

    2017-07-11

    A computer-executable method, system, and computer program product for managing meta-data in a distributed storage system, wherein the distributed storage system includes one or more burst buffers enabled to operate with a distributed key-value store, the co computer-executable method, system, and computer program product comprising receiving a request for meta-data associated with a block of data stored in a first burst buffer of the one or more burst buffers in the distributed storage system, wherein the meta data is associated with a key-value, determining which of the one or more burst buffers stores the requested metadata, and upon determination that a first burst buffer of the one or more burst buffers stores the requested metadata, locating the key-value in a portion of the distributed key-value store accessible from the first burst buffer.

  4. Two-dimensional computer simulation of high intensity proton beams

    CERN Document Server

    Lapostolle, Pierre M

    1972-01-01

    A computer program has been developed which simulates the two- dimensional transverse behaviour of a proton beam in a focusing channel. The model is represented by an assembly of a few thousand 'superparticles' acted upon by their own self-consistent electric field and an external focusing force. The evolution of the system is computed stepwise in time by successively solving Poisson's equation and Newton's law of motion. Fast Fourier transform techniques are used for speed in the solution of Poisson's equation, while extensive area weighting is utilized for the accurate evaluation of electric field components. A computer experiment has been performed on the CERN CDC 6600 computer to study the nonlinear behaviour of an intense beam in phase space, showing under certain circumstances a filamentation due to space charge and an apparent emittance growth. (14 refs).

  5. EBR-II high-ramp transients under computer control

    International Nuclear Information System (INIS)

    Forrester, R.J.; Larson, H.A.; Christensen, L.J.; Booty, W.F.; Dean, E.M.

    1983-01-01

    During reactor run 122, EBR-II was subjected to 13 computer-controlled overpower transients at ramps of 4 MWt/s to qualify the facility and fuel for transient testing of LMFBR oxide fuels as part of the EBR-II operational-reliability-testing (ORT) program. A computer-controlled automatic control-rod drive system (ACRDS), designed by EBR-II personnel, permitted automatic control on demand power during the transients

  6. Diamond High Assurance Security Program: Trusted Computing Exemplar

    Science.gov (United States)

    2002-09-01

    computing component, the Embedded MicroKernel Prototype. A third-party evaluation of the component will be initiated during development (e.g., once...target technologies and larger projects is a topic for future research. Trusted Computing Reference Component – The Embedded MicroKernel Prototype We...Kernel The primary security function of the Embedded MicroKernel will be to enforce process and data-domain separation, while providing primitive

  7. Computational design of high efficiency release targets for use at ISOL facilities

    CERN Document Server

    Liu, Y

    1999-01-01

    This report describes efforts made at the Oak Ridge National Laboratory to design high-efficiency-release targets that simultaneously incorporate the short diffusion lengths, high permeabilities, controllable temperatures, and heat-removal properties required for the generation of useful radioactive ion beam (RIB) intensities for nuclear physics and astrophysics research using the isotope separation on-line (ISOL) technique. Short diffusion lengths are achieved either by using thin fibrous target materials or by coating thin layers of selected target material onto low-density carbon fibers such as reticulated-vitreous-carbon fiber (RVCF) or carbon-bonded-carbon fiber (CBCF) to form highly permeable composite target matrices. Computational studies that simulate the generation and removal of primary beam deposited heat from target materials have been conducted to optimize the design of target/heat-sink systems for generating RIBs. The results derived from diffusion release-rate simulation studies for selected t...

  8. Generating high gray-level resolution monochrome displays with conventional computer graphics cards and color monitors.

    Science.gov (United States)

    Li, Xiangrui; Lu, Zhong-Lin; Xu, Pengjing; Jin, Jianzhong; Zhou, Yifeng

    2003-11-30

    Display systems based on conventional computer graphics cards are capable of generating images with about 8-bit luminance resolution. However, most vision experiments require more than 12 bits of luminance resolution. Pelli and Zhang [Spatial Vis. 10 (1997) 443] described a video attenuator for generating high luminance resolution displays on a monochrome monitor, or for driving just the green gun of a color monitor. Here we show how to achieve a white display by adding video amplifiers to duplicate the monochrome signal to drive all three guns of any color monitor. Because of the lack of the availability of high quality monochrome monitors, our method provides an inexpensive way to achieve high-resolution monochromatic displays using conventional, easy-to-get equipment. We describe the design principles, test results, and a few additional functionalities.

  9. Soft Computing Techniques for the Protein Folding Problem on High Performance Computing Architectures.

    Science.gov (United States)

    Llanes, Antonio; Muñoz, Andrés; Bueno-Crespo, Andrés; García-Valverde, Teresa; Sánchez, Antonia; Arcas-Túnez, Francisco; Pérez-Sánchez, Horacio; Cecilia, José M

    2016-01-01

    The protein-folding problem has been extensively studied during the last fifty years. The understanding of the dynamics of global shape of a protein and the influence on its biological function can help us to discover new and more effective drugs to deal with diseases of pharmacological relevance. Different computational approaches have been developed by different researchers in order to foresee the threedimensional arrangement of atoms of proteins from their sequences. However, the computational complexity of this problem makes mandatory the search for new models, novel algorithmic strategies and hardware platforms that provide solutions in a reasonable time frame. We present in this revision work the past and last tendencies regarding protein folding simulations from both perspectives; hardware and software. Of particular interest to us are both the use of inexact solutions to this computationally hard problem as well as which hardware platforms have been used for running this kind of Soft Computing techniques.

  10. The computer simulation of automobile use patterns for defining battery requirements for electric cars

    Science.gov (United States)

    Schwartz, H. J.

    1976-01-01

    A Monte Carlo simulation process was used to develop the U.S. daily range requirements for an electric vehicle from probability distributions of trip lengths and frequencies and average annual mileage data. The analysis shows that a car in the U.S. with a practical daily range of 82 miles (132 km) can meet the needs of the owner on 95% of the days of the year, or at all times other than his long vacation trips. Increasing the range of the vehicle beyond this point will not make it more useful to the owner because it will still not provide intercity transportation. A daily range of 82 miles can be provided by an intermediate battery technology level characterized by an energy density of 30 to 50 watt-hours per pound (66 to 110 W-hr/kg). Candidate batteries in this class are nickel-zinc, nickel-iron, and iron-air. The implication of these results for the research goals of far-term battery systems suggests a shift in emphasis toward lower cost and greater life and away from high energy density.

  11. COMPUTING

    CERN Multimedia

    P. MacBride

    The Computing Software and Analysis Challenge CSA07 has been the main focus of the Computing Project for the past few months. Activities began over the summer with the preparation of the Monte Carlo data sets for the challenge and tests of the new production system at the Tier-0 at CERN. The pre-challenge Monte Carlo production was done in several steps: physics generation, detector simulation, digitization, conversion to RAW format and the samples were run through the High Level Trigger (HLT). The data was then merged into three "Soups": Chowder (ALPGEN), Stew (Filtered Pythia) and Gumbo (Pythia). The challenge officially started when the first Chowder events were reconstructed on the Tier-0 on October 3rd. The data operations teams were very busy during the the challenge period. The MC production teams continued with signal production and processing while the Tier-0 and Tier-1 teams worked on splitting the Soups into Primary Data Sets (PDS), reconstruction and skimming. The storage sys...

  12. Sympathetic Tone Induced by High Acoustic Tempo Requires Fast Respiration.

    Directory of Open Access Journals (Sweden)

    Ken Watanabe

    Full Text Available Many studies have revealed the influences of music, and particularly its tempo, on the autonomic nervous system (ANS and respiration patterns. Since there is the interaction between the ANS and the respiratory system, namely sympatho-respiratory coupling, it is possible that the effect of musical tempo on the ANS is modulated by the respiratory system. Therefore, we investigated the effects of the relationship between musical tempo and respiratory rate on the ANS. Fifty-two healthy people aged 18-35 years participated in this study. Their respiratory rates were controlled by using a silent electronic metronome and they listened to simple drum sounds with a constant tempo. We varied the respiratory rate-acoustic tempo combination. The respiratory rate was controlled at 15 or 20 cycles per minute (CPM and the acoustic tempo was 60 or 80 beats per minute (BPM or the environment was silent. Electrocardiograms and an elastic chest band were used to measure the heart rate and respiratory rate, respectively. The mean heart rate and heart rate variability (HRV were regarded as indices of ANS activity. We observed a significant increase in the mean heart rate and the low (0.04-0.15 Hz to high (0.15-0.40 Hz frequency ratio of HRV, only when the respiratory rate was controlled at 20 CPM and the acoustic tempo was 80 BPM. We suggest that the effect of acoustic tempo on the sympathetic tone is modulated by the respiratory system.

  13. Sympathetic Tone Induced by High Acoustic Tempo Requires Fast Respiration.

    Science.gov (United States)

    Watanabe, Ken; Ooishi, Yuuki; Kashino, Makio

    2015-01-01

    Many studies have revealed the influences of music, and particularly its tempo, on the autonomic nervous system (ANS) and respiration patterns. Since there is the interaction between the ANS and the respiratory system, namely sympatho-respiratory coupling, it is possible that the effect of musical tempo on the ANS is modulated by the respiratory system. Therefore, we investigated the effects of the relationship between musical tempo and respiratory rate on the ANS. Fifty-two healthy people aged 18-35 years participated in this study. Their respiratory rates were controlled by using a silent electronic metronome and they listened to simple drum sounds with a constant tempo. We varied the respiratory rate-acoustic tempo combination. The respiratory rate was controlled at 15 or 20 cycles per minute (CPM) and the acoustic tempo was 60 or 80 beats per minute (BPM) or the environment was silent. Electrocardiograms and an elastic chest band were used to measure the heart rate and respiratory rate, respectively. The mean heart rate and heart rate variability (HRV) were regarded as indices of ANS activity. We observed a significant increase in the mean heart rate and the low (0.04-0.15 Hz) to high (0.15-0.40 Hz) frequency ratio of HRV, only when the respiratory rate was controlled at 20 CPM and the acoustic tempo was 80 BPM. We suggest that the effect of acoustic tempo on the sympathetic tone is modulated by the respiratory system.

  14. Performance Measurements in a High Throughput Computing Environment

    CERN Document Server

    AUTHOR|(CDS)2145966; Gribaudo, Marco

    The IT infrastructures of companies and research centres are implementing new technologies to satisfy the increasing need of computing resources for big data analysis. In this context, resource profiling plays a crucial role in identifying areas where the improvement of the utilisation efficiency is needed. In order to deal with the profiling and optimisation of computing resources, two complementary approaches can be adopted: the measurement-based approach and the model-based approach. The measurement-based approach gathers and analyses performance metrics executing benchmark applications on computing resources. Instead, the model-based approach implies the design and implementation of a model as an abstraction of the real system, selecting only those aspects relevant to the study. This Thesis originates from a project carried out by the author within the CERN IT department. CERN is an international scientific laboratory that conducts fundamental researches in the domain of elementary particle physics. The p...

  15. A PROFICIENT MODEL FOR HIGH END SECURITY IN CLOUD COMPUTING

    Directory of Open Access Journals (Sweden)

    R. Bala Chandar

    2014-01-01

    Full Text Available Cloud computing is an inspiring technology due to its abilities like ensuring scalable services, reducing the anxiety of local hardware and software management associated with computing while increasing flexibility and scalability. A key trait of the cloud services is remotely processing of data. Even though this technology had offered a lot of services, there are a few concerns such as misbehavior of server side stored data , out of control of data owner's data and cloud computing does not control the access of outsourced data desired by the data owner. To handle these issues, we propose a new model to ensure the data correctness for assurance of stored data, distributed accountability for authentication and efficient access control of outsourced data for authorization. This model strengthens the correctness of data and helps to achieve the cloud data integrity, supports data owner to have control on their own data through tracking and improves the access control of outsourced data.

  16. High-pressure fluid phase equilibria phenomenology and computation

    CERN Document Server

    Deiters, Ulrich K

    2012-01-01

    The book begins with an overview of the phase diagrams of fluid mixtures (fluid = liquid, gas, or supercritical state), which can show an astonishing variety when elevated pressures are taken into account; phenomena like retrograde condensation (single and double) and azeotropy (normal and double) are discussed. It then gives an introduction into the relevant thermodynamic equations for fluid mixtures, including some that are rarely found in modern textbooks, and shows how they can they be used to compute phase diagrams and related properties. This chapter gives a consistent and axiomatic approach to fluid thermodynamics; it avoids using activity coefficients. Further chapters are dedicated to solid-fluid phase equilibria and global phase diagrams (systematic search for phase diagram classes). The appendix contains numerical algorithms needed for the computations. The book thus enables the reader to create or improve computer programs for the calculation of fluid phase diagrams. introduces phase diagram class...

  17. High resolution computed tomographic features of pulmonary alveolar microlithiasis

    International Nuclear Information System (INIS)

    Deniz, Omer; Ors, Fatih; Tozkoparan, Ergun; Ozcan, Ayhan; Gumus, Seyfettin; Bozlar, Ugur; Bilgic, Hayati; Ekiz, Kudret; Demirci, Necmettin

    2005-01-01

    Background: Pulmonary alveolar microlithiasis (PAM) is a rare, chronic lung disease with unknown etiology and with a nonuniform clinical course. Nonuniformity of clinical course might be related to the degree of pulmonary parenchymal alterations, which can be revealed with high resolution computed tomography (HRCT). However, HRCT findings of PAM were not fully described in the current literature. Aim: The aim of this study was to interpret and to contribute to describe HRCT findings of PAM and to investigate a correlation between profusion of micro nodules (MN) and pulmonary parenchymal alterations in patients with PAM. Material and methods: Ten male patients with PAM (mean age: 22 ± 3.2) were included into the study. HRCT images were assessed for patterns, distribution, and profusion of pulmonary abnormalities. Dividing the lungs into three zones, profusion of abnormalities was assessed. A profusion score (1-4) was given and the scores of each zone were then summed to obtain a global profusion score for HRCT ranging from 0 to 12. Also a parenchymal alteration score (PAS) was defined with respect to profusion of abnormalities. Chest X-rays were also scored. Results: All of ten patients with PAM had findings of interstitial lung disease in varying degrees on their HRCTs. HRCT findings of patients with PAM were as following: MN, parenchymal bands (PB), ground glass opacity (GGO) and, sub pleural interstitial thickening (SPIT) in 10 patients; interlobular septal thickening (ILST), in 9 patients; paraseptal emphysema (PSA) in 8 patients; centrilobular emphysema (CLA) in 7 patients; bronchiectasis (BE), confluent micro nodules (CMN) in 6 patients; peri bronchovascular interstitial thickening (PBIT) in 5 patients; panacinar emphysema (PANAA) in 3 patients; pleural calcification (PC) in 2 patients. A significant correlation between MN scores and PAS (r = 0.68, p = 0.031, MN scores and GGO scores (r = 0.69, p = 0.027) and, MN scores and CLA scores (r = 0.67, p = 0

  18. High Resolution Computed Tomography in Asthma 

    Directory of Open Access Journals (Sweden)

    Nabil Maradny

    2012-03-01

    Full Text Available  Objectives: High-resolution computed tomography (HRCT can detect the structural abnormalities in asthma. This study attempts to correlate these abnormalities with clinical and pulmonary function test (PFT data.Methods: Consecutive stable asthma patients attending Mubarak Al Kabeer Hospital, Kuwait, were subjected to HRCT during a six month period from July 2004 to December 2004, after initial evaluation and PFT.Results: Of the 28 cases, sixteen (57.1�20had moderate, 6 (21.4�20had mild and 6 (21.4�20had severe persistent asthma. Thirteen (46.4�20patients had asthma for 1 to 5 years and 12 (42.9�20were having asthma for >10 years. Bronchial wall thickening (57.1� bronchiectasis (28.6� mucoid impaction (17.9� mosaic attenuation (10.7� air trapping (78.6�20and plate like atelectasis (21.4�20were noted. Bronchial wall thickening (p=0.044 and bronchiectasis (p=0.063 were most prevalent in males. Ten (35.7�20patients exhibited mild, 9 (32.1�20had moderate and 3 (10.7�20had severe air trapping. The difference in Hounsfield units between expiratory and inspiratory slices (air trapping when correlated with percent-predicted FEV1 in right upper (r=0.25;p=0.30, left upper (r=0.20; p=0.41, right mid (r=0.15; p=0.53, left mid (r=-0.04; p=0.60, right lower (r=0.04; p=0.86 and left lower zones (r=-0.13; p=0.58 showed no relation. The same when correlated as above with the percent predicted FEF 25-75 did not show any significant association. The presence of air trapping was compared with sex (p=0.640, nationality (p=1.000, disease duration (p=1.000 and severity of symptoms (p=0.581.Conclusion: Abnormal HRCT findings are common in asthma; however, air trapping when present was not related to the duration or severity of the illness or to the FEV1.

  19. Scalability of DL_POLY on High Performance Computing Platform

    CSIR Research Space (South Africa)

    Mabakane, Mabule S

    2017-12-01

    Full Text Available stream_source_info Mabakanea_19979_2017.pdf.txt stream_content_type text/plain stream_size 33716 Content-Encoding UTF-8 stream_name Mabakanea_19979_2017.pdf.txt Content-Type text/plain; charset=UTF-8 SACJ 29(3) December... when using many processors within the compute nodes of the supercomputer. The type of the processors of compute nodes and their memory also play an important role in the overall performance of the parallel application running on a supercomputer. DL...

  20. Failure detection in high-performance clusters and computers using chaotic map computations

    Science.gov (United States)

    Rao, Nageswara S.

    2015-09-01

    A programmable media includes a processing unit capable of independent operation in a machine that is capable of executing 10.sup.18 floating point operations per second. The processing unit is in communication with a memory element and an interconnect that couples computing nodes. The programmable media includes a logical unit configured to execute arithmetic functions, comparative functions, and/or logical functions. The processing unit is configured to detect computing component failures, memory element failures and/or interconnect failures by executing programming threads that generate one or more chaotic map trajectories. The central processing unit or graphical processing unit is configured to detect a computing component failure, memory element failure and/or an interconnect failure through an automated comparison of signal trajectories generated by the chaotic maps.

  1. High-Throughput Computing on High-Performance Platforms: A Case Study

    Energy Technology Data Exchange (ETDEWEB)

    Oleynik, D [University of Texas at Arlington; Panitkin, S [Brookhaven National Laboratory (BNL); Matteo, Turilli [Rutgers University; Angius, Alessio [Rutgers University; Oral, H Sarp [ORNL; De, K [University of Texas at Arlington; Klimentov, A [Brookhaven National Laboratory (BNL); Wells, Jack C. [ORNL; Jha, S [Rutgers University

    2017-10-01

    The computing systems used by LHC experiments has historically consisted of the federation of hundreds to thousands of distributed resources, ranging from small to mid-size resource. In spite of the impressive scale of the existing distributed computing solutions, the federation of small to mid-size resources will be insufficient to meet projected future demands. This paper is a case study of how the ATLAS experiment has embraced Titan -- a DOE leadership facility in conjunction with traditional distributed high- throughput computing to reach sustained production scales of approximately 52M core-hours a years. The three main contributions of this paper are: (i) a critical evaluation of design and operational considerations to support the sustained, scalable and production usage of Titan; (ii) a preliminary characterization of a next generation executor for PanDA to support new workloads and advanced execution modes; and (iii) early lessons for how current and future experimental and observational systems can be integrated with production supercomputers and other platforms in a general and extensible manner.

  2. High resolution weather data for urban hydrological modelling and impact assessment, ICT requirements and future challenges

    Science.gov (United States)

    ten Veldhuis, Marie-claire; van Riemsdijk, Birna

    2013-04-01

    Hydrological analysis of urban catchments requires high resolution rainfall and catchment information because of the small size of these catchments, high spatial variability of the urban fabric, fast runoff processes and related short response times. Rainfall information available from traditional radar and rain gauge networks does no not meet the relevant scales of urban hydrology. A new type of weather radars, based on X-band frequency and equipped with Doppler and dual polarimetry capabilities, promises to provide more accurate rainfall estimates at the spatial and temporal scales that are required for urban hydrological analysis. Recently, the RAINGAIN project was started to analyse the applicability of this new type of radars in the context of urban hydrological modelling. In this project, meteorologists and hydrologists work closely together in several stages of urban hydrological analysis: from the acquisition procedure of novel and high-end radar products to data acquisition and processing, rainfall data retrieval, hydrological event analysis and forecasting. The project comprises of four pilot locations with various characteristics of weather radar equipment, ground stations, urban hydrological systems, modelling approaches and requirements. Access to data processing and modelling software is handled in different ways in the pilots, depending on ownership and user context. Sharing of data and software among pilots and with the outside world is an ongoing topic of discussion. The availability of high resolution weather data augments requirements with respect to the resolution of hydrological models and input data. This has led to the development of fully distributed hydrological models, the implementation of which remains limited by the unavailability of hydrological input data. On the other hand, if models are to be used in flood forecasting, hydrological models need to be computationally efficient to enable fast responses to extreme event conditions. This

  3. Treated effluent disposal system process control computer software requirements and specification

    International Nuclear Information System (INIS)

    Graf, F.A. Jr.

    1994-01-01

    The software requirements for the monitor and control system that will be associated with the effluent collection pipeline system known as the 200 Area Treated Effluent Disposal System is covered. The control logic for the two pump stations and specific requirements for the graphic displays are detailed

  4. Effective computing algorithm for maintenance optimization of highly reliable systems

    Czech Academy of Sciences Publication Activity Database

    Briš, R.; Byczanski, Petr

    2013-01-01

    Roč. 109, č. 1 (2013), s. 77-85 ISSN 0951-8320 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0070 Institutional support: RVO:68145535 Keywords : exact computing * maintenance * optimization * unavailability Subject RIV: BA - General Mathematics Impact factor: 2.048, year: 2013 http://www.sciencedirect.com/science/article/pii/S0951832012001639

  5. High speed switching for computer and communication networks

    NARCIS (Netherlands)

    Dorren, H.J.S.

    2014-01-01

    The role of data centers and computers are vital for the future of our data-centric society. Historically the performance of data-centers is increasing with a factor 100-1000 every ten years and as a result of this the capacity of the data-center communication network has to scale accordingly. This

  6. Running Batch Jobs on Peregrine | High-Performance Computing | NREL

    Science.gov (United States)

    and run your application. Users typically create or edit job scripts using a text editor such as vi Using Resource Feature to Request Different Node Types Peregrine has several types of compute nodes , which differ in the amount of memory and number of processor cores. The majority of the nodes have 24

  7. Running Interactive Jobs on Peregrine | High-Performance Computing | NREL

    Science.gov (United States)

    shell prompt, which allows users to execute commands and scripts as they would on the login nodes. Login performed on the compute nodes rather than on login nodes. This page provides instructions and examples of , start GUIs etc. and the commands will execute on that node instead of on the login node. The -V option

  8. Simulating elastic light scattering using high performance computing methods

    NARCIS (Netherlands)

    Hoekstra, A.G.; Sloot, P.M.A.; Verbraeck, A.; Kerckhoffs, E.J.H.

    1993-01-01

    The Coupled Dipole method, as originally formulated byPurcell and Pennypacker, is a very powerful method tosimulate the Elastic Light Scattering from arbitraryparticles. This method, which is a particle simulationmodel for Computational Electromagnetics, has one majordrawback: if the size of the

  9. High performance computer code for molecular dynamics simulations

    International Nuclear Information System (INIS)

    Levay, I.; Toekesi, K.

    2007-01-01

    Complete text of publication follows. Molecular Dynamics (MD) simulation is a widely used technique for modeling complicated physical phenomena. Since 2005 we are developing a MD simulations code for PC computers. The computer code is written in C++ object oriented programming language. The aim of our work is twofold: a) to develop a fast computer code for the study of random walk of guest atoms in Be crystal, b) 3 dimensional (3D) visualization of the particles motion. In this case we mimic the motion of the guest atoms in the crystal (diffusion-type motion), and the motion of atoms in the crystallattice (crystal deformation). Nowadays, it is common to use Graphics Devices in intensive computational problems. There are several ways to use this extreme processing performance, but never before was so easy to programming these devices as now. The CUDA (Compute Unified Device) Architecture introduced by nVidia Corporation in 2007 is a very useful for every processor hungry application. A Unified-architecture GPU include 96-128, or more stream processors, so the raw calculation performance is 576(!) GFLOPS. It is ten times faster, than the fastest dual Core CPU [Fig.1]. Our improved MD simulation software uses this new technology, which speed up our software and the code run 10 times faster in the critical calculation code segment. Although the GPU is a very powerful tool, it has a strongly paralleled structure. It means, that we have to create an algorithm, which works on several processors without deadlock. Our code currently uses 256 threads, shared and constant on-chip memory, instead of global memory, which is 100 times slower than others. It is possible to implement the total algorithm on GPU, therefore we do not need to download and upload the data in every iteration. On behalf of maximal throughput, every thread run with the same instructions

  10. Electro-optical system for the high speed reconstruction of computed tomography images

    International Nuclear Information System (INIS)

    Tresp, V.

    1989-01-01

    An electro-optical system for the high-speed reconstruction of computed tomography (CT) images has been built and studied. The system is capable of reconstructing high-contrast and high-resolution images at video rate (30 images per second), which is more than two orders of magnitude faster than the reconstruction rate achieved by special purpose digital computers used in commercial CT systems. The filtered back-projection algorithm which was implemented in the reconstruction system requires the filtering of all projections with a prescribed filter function. A space-integrating acousto-optical convolver, a surface acoustic wave filter and a digital finite-impulse response filter were used for this purpose and their performances were compared. The second part of the reconstruction, the back projection of the filtered projections, is computationally very expensive. An optical back projector has been built which maps the filtered projections onto the two-dimensional image space using an anamorphic lens system and a prism image rotator. The reconstructed image is viewed by a video camera, routed through a real-time image-enhancement system, and displayed on a TV monitor. The system reconstructs parallel-beam projection data, and in a modified version, is also capable of reconstructing fan-beam projection data. This extension is important since the latter are the kind of projection data actually acquired in high-speed X-ray CT scanners. The reconstruction system was tested by reconstructing precomputed projection data of phantom images. These were stored in a special purpose projection memory and transmitted to the reconstruction system as an electronic signal. In this way, a projection measurement system that acquires projections sequentially was simulated

  11. Building highly available control system applications with Advanced Telecom Computing Architecture and open standards

    International Nuclear Information System (INIS)

    Kazakov, Artem; Furukawa, Kazuro

    2010-01-01

    Requirements for modern and future control systems for large projects like International Linear Collider demand high availability for control system components. Recently telecom industry came up with a great open hardware specification - Advanced Telecom Computing Architecture (ATCA). This specification is aimed for better reliability, availability and serviceability. Since its first market appearance in 2004, ATCA platform has shown tremendous growth and proved to be stable and well represented by a number of vendors. ATCA is an industry standard for highly available systems. On the other hand Service Availability Forum, a consortium of leading communications and computing companies, describes interaction between hardware and software. SAF defines a set of specifications such as Hardware Platform Interface, Application Interface Specification. SAF specifications provide extensive description of highly available systems, services and their interfaces. Originally aimed for telecom applications, these specifications can be used for accelerator controls software as well. This study describes benefits of using these specifications and their possible adoption to accelerator control systems. It is demonstrated how EPICS Redundant IOC was extended using Hardware Platform Interface specification, which made it possible to utilize benefits of the ATCA platform.

  12. Implementing Molecular Dynamics for Hybrid High Performance Computers - 1. Short Range Forces

    International Nuclear Information System (INIS)

    Brown, W. Michael; Wang, Peng; Plimpton, Steven J.; Tharrington, Arnold N.

    2011-01-01

    The use of accelerators such as general-purpose graphics processing units (GPGPUs) have become popular in scientific computing applications due to their low cost, impressive floating-point capabilities, high memory bandwidth, and low electrical power requirements. Hybrid high performance computers, machines with more than one type of floating-point processor, are now becoming more prevalent due to these advantages. In this work, we discuss several important issues in porting a large molecular dynamics code for use on parallel hybrid machines - (1) choosing a hybrid parallel decomposition that works on central processing units (CPUs) with distributed memory and accelerator cores with shared memory, (2) minimizing the amount of code that must be ported for efficient acceleration, (3) utilizing the available processing power from both many-core CPUs and accelerators, and (4) choosing a programming model for acceleration. We present our solution to each of these issues for short-range force calculation in the molecular dynamics package LAMMPS. We describe algorithms for efficient short range force calculation on hybrid high performance machines. We describe a new approach for dynamic load balancing of work between CPU and accelerator cores. We describe the Geryon library that allows a single code to compile with both CUDA and OpenCL for use on a variety of accelerators. Finally, we present results on a parallel test cluster containing 32 Fermi GPGPUs and 180 CPU cores.

  13. Cloud CPFP: a shotgun proteomics data analysis pipeline using cloud and high performance computing.

    Science.gov (United States)

    Trudgian, David C; Mirzaei, Hamid

    2012-12-07

    We have extended the functionality of the Central Proteomics Facilities Pipeline (CPFP) to allow use of remote cloud and high performance computing (HPC) resources for shotgun proteomics data processing. CPFP has been modified to include modular local and remote scheduling for data processing jobs. The pipeline can now be run on a single PC or server, a local cluster, a remote HPC cluster, and/or the Amazon Web Services (AWS) cloud. We provide public images that allow easy deployment of CPFP in its entirety in the AWS cloud. This significantly reduces the effort necessary to use the software, and allows proteomics laboratories to pay for compute time ad hoc, rather than obtaining and maintaining expensive local server clusters. Alternatively the Amazon cloud can be used to increase the throughput of a local installation of CPFP as necessary. We demonstrate that cloud CPFP allows users to process data at higher speed than local installations but with similar cost and lower staff requirements. In addition to the computational improvements, the web interface to CPFP is simplified, and other functionalities are enhanced. The software is under active development at two leading institutions and continues to be released under an open-source license at http://cpfp.sourceforge.net.

  14. High-speed computation of the EM algorithm for PET image reconstruction

    International Nuclear Information System (INIS)

    Rajan, K.; Patnaik, L.M.; Ramakrishna, J.

    1994-01-01

    The PET image reconstruction based on the EM algorithm has several attractive advantages over the conventional convolution backprojection algorithms. However, two major drawbacks have impeded the routine use of the EM algorithm, namely, the long computational time due to slow convergence and the large memory required for the storage of the image, projection data and the probability matrix. In this study, the authors attempts to solve these two problems by parallelizing the EM algorithm on a multiprocessor system. The authors have implemented an extended hypercube (EH) architecture for the high-speed computation of the EM algorithm using the commercially available fast floating point digital signal processor (DSP) chips as the processing elements (PEs). The authors discuss and compare the performance of the EM algorithm on a 386/387 machine, CD 4360 mainframe, and on the EH system. The results show that the computational speed performance of an EH using DSP chips as PEs executing the EM image reconstruction algorithm is about 130 times better than that of the CD 4360 mainframe. The EH topology is expandable with more number of PEs

  15. Using NCLab-karel to improve computational thinking skill of junior high school students

    Science.gov (United States)

    Kusnendar, J.; Prabawa, H. W.

    2018-05-01

    Increasingly human interaction with technology and the increasingly complex development of digital technology world make the theme of computer science education interesting to study. Previous studies on Computer Literacy and Competency reveal that Indonesian teachers in general have fairly high computational skill, but their skill utilization are limited to some applications. This engenders limited and minimum computer-related learning for the students. On the other hand, computer science education is considered unrelated to real-world solutions. This paper attempts to address the utilization of NCLab- Karel in shaping the computational thinking in students. This computational thinking is believed to be able to making learn students about technology. Implementation of Karel utilization provides information that Karel is able to increase student interest in studying computational material, especially algorithm. Observations made during the learning process also indicate the growth and development of computing mindset in students.

  16. Present capabilities and future requirements for computer-aided geometric modeling in the design and manufacture of gas turbine

    Science.gov (United States)

    Caille, E.; Propen, M.; Hoffman, A.

    1984-01-01

    Gas turbine engine design requires the ability to rapidly develop complex structures which are subject to severe thermal and mechanical operating loads. As in all facets of the aerospace industry, engine designs are constantly driving towards increased performance, higher temperatures, higher speeds, and lower weight. The ability to address such requirements in a relatively short time frame has resulted in a major thrust towards integrated design/analysis/manufacturing systems. These computer driven graphics systems represent a unique challenge, with major payback opportunities if properly conceived, implemented, and applied.

  17. Computational model of lightness perception in high dynamic range imaging

    Science.gov (United States)

    Krawczyk, Grzegorz; Myszkowski, Karol; Seidel, Hans-Peter

    2006-02-01

    An anchoring theory of lightness perception by Gilchrist et al. [1999] explains many characteristics of human visual system such as lightness constancy and its spectacular failures which are important in the perception of images. The principal concept of this theory is the perception of complex scenes in terms of groups of consistent areas (frameworks). Such areas, following the gestalt theorists, are defined by the regions of common illumination. The key aspect of the image perception is the estimation of lightness within each framework through the anchoring to the luminance perceived as white, followed by the computation of the global lightness. In this paper we provide a computational model for automatic decomposition of HDR images into frameworks. We derive a tone mapping operator which predicts lightness perception of the real world scenes and aims at its accurate reproduction on low dynamic range displays. Furthermore, such a decomposition into frameworks opens new grounds for local image analysis in view of human perception.

  18. Development of optimized techniques and requirements for computer enhancement of structural weld radiographs. Volume 1: Technical report

    Science.gov (United States)

    Adams, J. R.; Hawley, S. W.; Peterson, G. R.; Salinger, S. S.; Workman, R. A.

    1971-01-01

    A hardware and software specification covering requirements for the computer enhancement of structural weld radiographs was considered. Three scanning systems were used to digitize more than 15 weld radiographs. The performance of these systems was evaluated by determining modulation transfer functions and noise characteristics. Enhancement techniques were developed and applied to the digitized radiographs. The scanning parameters of spot size and spacing and film density were studied to optimize the information content of the digital representation of the image.

  19. Toward a Computational Neuropsychology of High-Level Vision.

    Science.gov (United States)

    1984-08-20

    known as visual agnosia ’ (also called "mindblindness’)l this patient failed to *recognize her nurses, got lost frequently when travelling familiar routes...visual agnosia are not blind: these patients can compare two shapes reliably when Computational neuropsychology 16 both are visible, but they cannot...visually recognize what an object is (although many can recognize objects by touch). This sort of agnosia has been well-documented in the literature (see

  20. WinHPC System Configuration | High-Performance Computing | NREL

    Science.gov (United States)

    ), login node (WinHPC02) and worker/compute nodes. The head node acts as the file, DNS, and license server . The login node is where the users connect to access the cluster. Node 03 has dual Intel Xeon E5530 2008 R2 HPC Edition. The login node, WinHPC02, is where users login to access the system. This is where

  1. Architecture and Programming Models for High Performance Intensive Computation

    Science.gov (United States)

    2016-06-29

    commands from the data processing center to the sensors is needed. It has been noted that the ubiquity of mobile communication devices offers the...commands from a Processing Facility by way of mobile Relay Stations. The activity of each component of this model other than the Merge module can be...evaluation of the initial system implementation. Gao also was in charge of the development of Fresh Breeze architecture backend on new many-core computers

  2. An experimental platform for triaxial high-pressure/high-temperature testing of rocks using computed tomography

    Science.gov (United States)

    Glatz, Guenther; Lapene, Alexandre; Castanier, Louis M.; Kovscek, Anthony R.

    2018-04-01

    A conventional high-pressure/high-temperature experimental apparatus for combined geomechanical and flow-through testing of rocks is not X-ray compatible. Additionally, current X-ray transparent systems for computed tomography (CT) of cm-sized samples are limited to design temperatures below 180 °C. We describe a novel, high-temperature (>400 °C), high-pressure (>2000 psi/>13.8 MPa confining, >10 000 psi/>68.9 MPa vertical load) triaxial core holder suitable for X-ray CT scanning. The new triaxial system permits time-lapse imaging to capture the role of effective stress on fluid distribution and porous medium mechanics. System capabilities are demonstrated using ultimate compressive strength (UCS) tests of Castlegate sandstone. In this case, flooding the porous medium with a radio-opaque gas such as krypton before and after the UCS test improves the discrimination of rock features such as fractures. The results of high-temperature tests are also presented. A Uintah Basin sample of immature oil shale is heated from room temperature to 459 °C under uniaxial compression. The sample contains kerogen that pyrolyzes as temperature rises, releasing hydrocarbons. Imaging reveals the formation of stress bands as well as the evolution and connectivity of the fracture network within the sample as a function of time.

  3. Increased insulin requirements during exercise at very high altitude in type 1 diabetes

    NARCIS (Netherlands)

    de Mol, Pieter; de Vries, Suzanna T.; de Koning, Eelco J. P.; Gans, Rijk O. B.; Tack, Cees J.; Bilo, Henk J. G.

    OBJECTIVE-Safe, very high altitude trekking in subjects with type 1 diabetes requires understanding of glucose regulation at high altitude. We investigated insulin requirements, energy expenditure, and glucose levels at very high altitude in relation to acute mountain sickness (AMS) symptoms in

  4. Safety Culture: A Requirement for New Business Models — Lessons Learned from Other High Risk Industries

    International Nuclear Information System (INIS)

    Kecklund, L.

    2016-01-01

    Technical development and changes on global markets affects all high risk industries creating opportunities as well as risks related to the achievement of safety and business goals. Changes in legal and regulatory frameworks as well as in market demands create a need for major changes. Several high risk industries are facing a situation where they have to develop new business models. Within the transportation domain, e.g., aviation and railways, there is a growing concern related to how the new business models may affects safety issues. New business models in aviation and railways include extensive use of outsourcing and subcontractors to reduce costs resulting in, e.g., negative changes in working conditions, work hours, employment conditions and high turnover rates. The energy sector also faces pressures to create new business models for transition to renewable energy production to comply with new legal and regulatory requirements and to make best use of new reactor designs. In addition, large scale phase out and decommissioning of nuclear facilities have to be managed by the nuclear industry. Some negative effects of new business models have already arisen within the transportation domain, e.g., the negative effects of extensive outsourcing and subcontractor use. In the railway domain the infrastructure manager is required by European and national regulations to assure that all subcontractors are working according to the requirements in the infrastructure managers SMS (Safety Management System). More than ten levels of subcontracts can be working in a major infrastructure project making the system highly complex and thus difficult to control. In the aviation domain, tightly coupled interacting computer networks supplying airport services, as well as air traffic control, are managed and maintained by several different companies creating numerous interfaces which must be managed by the SMS. There are examples where a business model with several low

  5. Early-state damage detection, characterization, and evolution using high-resolution computed tomography

    Science.gov (United States)

    Grandin, Robert John

    Safely using materials in high performance applications requires adequately understanding the mechanisms which control the nucleation and evolution of damage. Most of a material's operational life is spent in a state with noncritical damage, and, for example in metals only a small portion of its life falls within the classical Paris Law regime of crack growth. Developing proper structural health and prognosis models requires understanding the behavior of damage in these early stages within the material's life, and this early-stage damage occurs on length scales at which the material may be considered "granular'' in the sense that the discrete regions which comprise the whole are large enough to require special consideration. Material performance depends upon the characteristics of the granules themselves as well as the interfaces between granules. As a result, properly studying early-stage damage in complex, granular materials requires a means to characterize changes in the granules and interfaces. The granular-scale can range from tenths of microns in ceramics, to single microns in fiber-reinforced composites, to tens of millimeters in concrete. The difficulty of direct-study is often overcome by exhaustive testing of macro-scale damage caused by gross material loads and abuse. Such testing, for example optical or electron microscopy, destructive and further, is costly when used to study the evolution of damage within a material and often limits the study to a few snapshots. New developments in high-resolution computed tomography (HRCT) provide the necessary spatial resolution to directly image the granule length-scale of many materials. Successful application of HRCT with fiber-reinforced composites, however, requires extending the HRCT performance beyond current limits. This dissertation will discuss improvements made in the field of CT reconstruction which enable resolutions to be pushed to the point of being able to image the fiber-scale damage structures and

  6. Study of application technology of ultra-high speed computer to the elucidation of complex phenomena

    International Nuclear Information System (INIS)

    Sekiguchi, Tomotsugu

    1996-01-01

    The basic design of numerical information library in the decentralized computer network was explained at the first step of constructing the application technology of ultra-high speed computer to the elucidation of complex phenomena. Establishment of the system makes possible to construct the efficient application environment of ultra-high speed computer system to be scalable with the different computing systems. We named the system Ninf (Network Information Library for High Performance Computing). The summary of application technology of library was described as follows: the application technology of library under the distributed environment, numeric constants, retrieval of value, library of special functions, computing library, Ninf library interface, Ninf remote library and registration. By the system, user is able to use the program concentrating the analyzing technology of numerical value with high precision, reliability and speed. (S.Y.)

  7. Functional and performance requirements of the next NOAA-Kasas City computer system

    Science.gov (United States)

    Mosher, F. R.

    1985-01-01

    The development of the Advanced Weather Interactive Processing System for the 1990's (AWIPS-90) will result in more timely and accurate forecasts with improved cost effectiveness. As part of the AWIPS-90 initiative, the National Meteorological Center (NMC), the National Severe Storms Forecast Center (NSSFC), and the National Hurricane Center (NHC) are to receive upgrades of interactive processing systems. This National Center Upgrade program will support the specialized inter-center communications, data acquisition, and processing needs of these centers. The missions, current capabilities and general functional requirements for the upgrade to the NSSFC are addressed. System capabilities are discussed along with the requirements for the upgraded system.

  8. Using High Performance Computing to Support Water Resource Planning

    Energy Technology Data Exchange (ETDEWEB)

    Groves, David G. [RAND Corporation, Santa Monica, CA (United States); Lembert, Robert J. [RAND Corporation, Santa Monica, CA (United States); May, Deborah W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Leek, James R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Syme, James [RAND Corporation, Santa Monica, CA (United States)

    2015-10-22

    In recent years, decision support modeling has embraced deliberation-withanalysis— an iterative process in which decisionmakers come together with experts to evaluate a complex problem and alternative solutions in a scientifically rigorous and transparent manner. Simulation modeling supports decisionmaking throughout this process; visualizations enable decisionmakers to assess how proposed strategies stand up over time in uncertain conditions. But running these simulation models over standard computers can be slow. This, in turn, can slow the entire decisionmaking process, interrupting valuable interaction between decisionmakers and analytics.

  9. Performance management of high performance computing for medical image processing in Amazon Web Services

    Science.gov (United States)

    Bao, Shunxing; Damon, Stephen M.; Landman, Bennett A.; Gokhale, Aniruddha

    2016-03-01

    Adopting high performance cloud computing for medical image processing is a popular trend given the pressing needs of large studies. Amazon Web Services (AWS) provide reliable, on-demand, and inexpensive cloud computing services. Our research objective is to implement an affordable, scalable and easy-to-use AWS framework for the Java Image Science Toolkit (JIST). JIST is a plugin for Medical- Image Processing, Analysis, and Visualization (MIPAV) that provides a graphical pipeline implementation allowing users to quickly test and develop pipelines. JIST is DRMAA-compliant allowing it to run on portable batch system grids. However, as new processing methods are implemented and developed, memory may often be a bottleneck for not only lab computers, but also possibly some local grids. Integrating JIST with the AWS cloud alleviates these possible restrictions and does not require users to have deep knowledge of programming in Java. Workflow definition/management and cloud configurations are two key challenges in this research. Using a simple unified control panel, users have the ability to set the numbers of nodes and select from a variety of pre-configured AWS EC2 nodes with different numbers of processors and memory storage. Intuitively, we configured Amazon S3 storage to be mounted by pay-for- use Amazon EC2 instances. Hence, S3 storage is recognized as a shared cloud resource. The Amazon EC2 instances provide pre-installs of all necessary packages to run JIST. This work presents an implementation that facilitates the integration of JIST with AWS. We describe the theoretical cost/benefit formulae to decide between local serial execution versus cloud computing and apply this analysis to an empirical diffusion tensor imaging pipeline.

  10. Performance Management of High Performance Computing for Medical Image Processing in Amazon Web Services.

    Science.gov (United States)

    Bao, Shunxing; Damon, Stephen M; Landman, Bennett A; Gokhale, Aniruddha

    2016-02-27

    Adopting high performance cloud computing for medical image processing is a popular trend given the pressing needs of large studies. Amazon Web Services (AWS) provide reliable, on-demand, and inexpensive cloud computing services. Our research objective is to implement an affordable, scalable and easy-to-use AWS framework for the Java Image Science Toolkit (JIST). JIST is a plugin for Medical-Image Processing, Analysis, and Visualization (MIPAV) that provides a graphical pipeline implementation allowing users to quickly test and develop pipelines. JIST is DRMAA-compliant allowing it to run on portable batch system grids. However, as new processing methods are implemented and developed, memory may often be a bottleneck for not only lab computers, but also possibly some local grids. Integrating JIST with the AWS cloud alleviates these possible restrictions and does not require users to have deep knowledge of programming in Java. Workflow definition/management and cloud configurations are two key challenges in this research. Using a simple unified control panel, users have the ability to set the numbers of nodes and select from a variety of pre-configured AWS EC2 nodes with different numbers of processors and memory storage. Intuitively, we configured Amazon S3 storage to be mounted by pay-for-use Amazon EC2 instances. Hence, S3 storage is recognized as a shared cloud resource. The Amazon EC2 instances provide pre-installs of all necessary packages to run JIST. This work presents an implementation that facilitates the integration of JIST with AWS. We describe the theoretical cost/benefit formulae to decide between local serial execution versus cloud computing and apply this analysis to an empirical diffusion tensor imaging pipeline.

  11. High performance graphics processor based computed tomography reconstruction algorithms for nuclear and other large scale applications.

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez, Edward S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Orr, Laurel J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Thompson, Kyle R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2013-09-01

    The goal of this work is to develop a fast computed tomography (CT) reconstruction algorithm based on graphics processing units (GPU) that achieves significant improvement over traditional central processing unit (CPU) based implementations. The main challenge in developing a CT algorithm that is capable of handling very large datasets is parallelizing the algorithm in such a way that data transfer does not hinder performance of the reconstruction algorithm. General Purpose Graphics Processing (GPGPU) is a new technology that the Science and Technology (S&T) community is starting to adopt in many fields where CPU-based computing is the norm. GPGPU programming requires a new approach to algorithm development that utilizes massively multi-threaded environments. Multi-threaded algorithms in general are difficult to optimize since performance bottlenecks occur that are non-existent in single-threaded algorithms such as memory latencies. If an efficient GPU-based CT reconstruction algorithm can be developed; computational times could be improved by a factor of 20. Additionally, cost benefits will be realized as commodity graphics hardware could potentially replace expensive supercomputers and high-end workstations. This project will take advantage of the CUDA programming environment and attempt to parallelize the task in such a way that multiple slices of the reconstruction volume are computed simultaneously. This work will also take advantage of the GPU memory by utilizing asynchronous memory transfers, GPU texture memory, and (when possible) pinned host memory so that the memory transfer bottleneck inherent to GPGPU is amortized. Additionally, this work will take advantage of GPU-specific hardware (i.e. fast texture memory, pixel-pipelines, hardware interpolators, and varying memory hierarchy) that will allow for additional performance improvements.

  12. CUDA/GPU Technology : Parallel Programming For High Performance Scientific Computing

    OpenAIRE

    YUHENDRA; KUZE, Hiroaki; JOSAPHAT, Tetuko Sri Sumantyo

    2009-01-01

    [ABSTRACT]Graphics processing units (GP Us) originally designed for computer video cards have emerged as the most powerful chip in a high-performance workstation. In the high performance computation capabilities, graphic processing units (GPU) lead to much more powerful performance than conventional CPUs by means of parallel processing. In 2007, the birth of Compute Unified Device Architecture (CUDA) and CUDA-enabled GPUs by NVIDIA Corporation brought a revolution in the general purpose GPU a...

  13. Clinical cone beam computed tomography compared to high-resolution peripheral computed tomography in the assessment of distal radius bone.

    Science.gov (United States)

    de Charry, C; Boutroy, S; Ellouz, R; Duboeuf, F; Chapurlat, R; Follet, H; Pialat, J B

    2016-10-01

    Clinical cone beam computed tomography (CBCT) was compared to high-resolution peripheral quantitative computed tomography (HR-pQCT) for the assessment of ex vivo radii. Strong correlations were found for geometry, volumetric density, and trabecular structure. Using CBCT, bone architecture assessment was feasible but compared to HR-pQCT, trabecular parameters were overestimated whereas cortical ones were underestimated. HR-pQCT is the most widely used technique to assess bone microarchitecture in vivo. Yet, this technology has been only applicable at peripheral sites, in only few research centers. Clinical CBCT is more widely available but quantitative assessment of the bone structure is usually not performed. We aimed to compare the assessment of bone structure with CBCT (NewTom 5G, QR, Verona, Italy) and HR-pQCT (XtremeCT, Scanco Medical AG, Brüttisellen, Switzerland). Twenty-four distal radius specimens were scanned with these two devices with a reconstructed voxel size of 75 μm for Newtom 5G and 82 μm for XtremeCT, respectively. A rescaling-registration scheme was used to define the common volume of interest. Cortical and trabecular compartments were separated using a semiautomated double contouring method. Density and microstructure were assessed with the HR-pQCT software on both modality images. Strong correlations were found for geometry parameters (r = 0.98-0.99), volumetric density (r = 0.91-0.99), and trabecular structure (r = 0.94-0.99), all p < 0.001. Correlations were lower for cortical microstructure (r = 0.80-0.89), p < 0.001. However, absolute differences were observed between modalities for all parameters, with an overestimation of the trabecular structure (trabecular number, 1.62 ± 0.37 vs. 1.47 ± 0.36 mm(-1)) and an underestimation of the cortical microstructure (cortical porosity, 3.3 ± 1.3 vs. 4.4 ± 1.4 %) assessed on CBCT images compared to HR-pQCT images. Clinical CBCT devices are able to

  14. High Performance Computing Facility Operational Assessment, CY 2011 Oak Ridge Leadership Computing Facility

    Energy Technology Data Exchange (ETDEWEB)

    Baker, Ann E [ORNL; Barker, Ashley D [ORNL; Bland, Arthur S Buddy [ORNL; Boudwin, Kathlyn J. [ORNL; Hack, James J [ORNL; Kendall, Ricky A [ORNL; Messer, Bronson [ORNL; Rogers, James H [ORNL; Shipman, Galen M [ORNL; Wells, Jack C [ORNL; White, Julia C [ORNL; Hudson, Douglas L [ORNL

    2012-02-01

    Oak Ridge National Laboratory's Leadership Computing Facility (OLCF) continues to deliver the most powerful resources in the U.S. for open science. At 2.33 petaflops peak performance, the Cray XT Jaguar delivered more than 1.4 billion core hours in calendar year (CY) 2011 to researchers around the world for computational simulations relevant to national and energy security; advancing the frontiers of knowledge in physical sciences and areas of biological, medical, environmental, and computer sciences; and providing world-class research facilities for the nation's science enterprise. Users reported more than 670 publications this year arising from their use of OLCF resources. Of these we report the 300 in this review that are consistent with guidance provided. Scientific achievements by OLCF users cut across all range scales from atomic to molecular to large-scale structures. At the atomic scale, researchers discovered that the anomalously long half-life of Carbon-14 can be explained by calculating, for the first time, the very complex three-body interactions between all the neutrons and protons in the nucleus. At the molecular scale, researchers combined experimental results from LBL's light source and simulations on Jaguar to discover how DNA replication continues past a damaged site so a mutation can be repaired later. Other researchers combined experimental results from ORNL's Spallation Neutron Source and simulations on Jaguar to reveal the molecular structure of ligno-cellulosic material used in bioethanol production. This year, Jaguar has been used to do billion-cell CFD calculations to develop shock wave compression turbo machinery as a means to meet DOE goals for reducing carbon sequestration costs. General Electric used Jaguar to calculate the unsteady flow through turbo machinery to learn what efficiencies the traditional steady flow assumption is hiding from designers. Even a 1% improvement in turbine design can save the nation

  15. High-resolution x-ray computed tomography to understand ruminant phylogeny

    Science.gov (United States)

    Costeur, Loic; Schulz, Georg; Müller, Bert

    2014-09-01

    High-resolution X-ray computed tomography has become a vital technique to study fossils down to the true micrometer level. Paleontological research requires the non-destructive analysis of internal structures of fossil specimens. We show how X-ray computed tomography enables us to visualize the inner ear of extinct and extant ruminants without skull destruction. The inner ear, a sensory organ for hearing and balance has a rather complex three-dimensional morphology and thus provides relevant phylogenetical information what has been to date essentially shown in primates. We made visible the inner ears of a set of living and fossil ruminants using the phoenix x-ray nanotom®m (GE Sensing and Inspection Technologies GmbH). Because of the high absorbing objects a tungsten target was used and the experiments were performed with maximum accelerating voltage of 180 kV and a beam current of 30 μA. Possible stem ruminants of the living families are known in the fossil record but extreme morphological convergences in external structures such as teeth is a strong limitation to our understanding of the evolutionary history of this economically important group of animals. We thus investigate the inner ear to assess its phylogenetical potential for ruminants and our first results show strong family-level morphological differences.

  16. Comparison of Themodynamic and Transport Property Models for Computing Equilibrium High Enthalpy Flows

    Science.gov (United States)

    Ramasahayam, Veda Krishna Vyas; Diwakar, Anant; Bodi, Kowsik

    2017-11-01

    To study the flow of high temperature air in vibrational and chemical equilibrium, accurate models for thermodynamic state and transport phenomena are required. In the present work, the performance of a state equation model and two mixing rules for determining equilibrium air thermodynamic and transport properties are compared with that of curve fits. The thermodynamic state model considers 11 species which computes flow chemistry by an iterative process and the mixing rules considered for viscosity are Wilke and Armaly-Sutton. The curve fits of Srinivasan, which are based on Grabau type transition functions, are chosen for comparison. A two-dimensional Navier-Stokes solver is developed to simulate high enthalpy flows with numerical fluxes computed by AUSM+-up. The accuracy of state equation model and curve fits for thermodynamic properties is determined using hypersonic inviscid flow over a circular cylinder. The performance of mixing rules and curve fits for viscosity are compared using hypersonic laminar boundary layer prediction on a flat plate. It is observed that steady state solutions from state equation model and curve fits match with each other. Though curve fits are significantly faster the state equation model is more general and can be adapted to any flow composition.

  17. Scalable domain decomposition solvers for stochastic PDEs in high performance computing

    International Nuclear Information System (INIS)

    Desai, Ajit; Pettit, Chris; Poirel, Dominique; Sarkar, Abhijit

    2017-01-01

    Stochastic spectral finite element models of practical engineering systems may involve solutions of linear systems or linearized systems for non-linear problems with billions of unknowns. For stochastic modeling, it is therefore essential to design robust, parallel and scalable algorithms that can efficiently utilize high-performance computing to tackle such large-scale systems. Domain decomposition based iterative solvers can handle such systems. And though these algorithms exhibit excellent scalabilities, significant algorithmic and implementational challenges exist to extend them to solve extreme-scale stochastic systems using emerging computing platforms. Intrusive polynomial chaos expansion based domain decomposition algorithms are extended here to concurrently handle high resolution in both spatial and stochastic domains using an in-house implementation. Sparse iterative solvers with efficient preconditioners are employed to solve the resulting global and subdomain level local systems through multi-level iterative solvers. We also use parallel sparse matrix–vector operations to reduce the floating-point operations and memory requirements. Numerical and parallel scalabilities of these algorithms are presented for the diffusion equation having spatially varying diffusion coefficient modeled by a non-Gaussian stochastic process. Scalability of the solvers with respect to the number of random variables is also investigated.

  18. Calculating additional shielding requirements in diagnostics X-ray departments by computer

    International Nuclear Information System (INIS)

    Rahimi, A.

    2004-01-01

    This report provides an extension of an existing method for the calculation of the barrier thickness required to reduce the three types of radiation exposure emitted from the source, the primary, secondary and leakage radiation, to a specified weekly design limit (MPD). Since each of these three types of radiation are of different beam quality, having different shielding requirements, NCRP 49 has provided means to calculate the necessary protective barrier thickness for each type of radiation individually. Additionally, barrier requirements specified using the techniques stated at NCRP 49, show enormous variations among users. Part of the variations is due to different assumptions made regarding the use of the examined room and the characteristics of adjoining space. Many of the differences result from the difficulty of accurately relating information from the calculations to graphs and tables involved in the calculation process specified by this report. Moreover, the latest technological developments such as mammography are not addressed and attenuation data for three-phase generators, that are most widely used today, is not provided. The design of shielding barriers in diagnostic X-ray departments generally follow the ALARA principle. That means that, in practice, the exposure levels are kept 'as low as reasonably achievable', taking into account economical and technical factors. Additionally, the calculation of barrier requirements includes many uncertainties (e.g. the workload, the actual kVp used etc.). (author)

  19. Data needs and computational requirements for ST decision making. Internal deliverable ID6.2.1

    DEFF Research Database (Denmark)

    Clement, Rémy; Tournebise, Pascal; Perkin, Samuel

    The objective of this deliverable is to present the requirements for adapting available tools/models and identifying data needs for probabilistic reliability analysis and optimal decision-making in the short-term decision making process. It will serve as a basis for the next tasks of GARPUR work ...

  20. Requirements on software lifecycle process (RSLP) for KALIMER digital computer-based MMIS design

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jang Soo; Kwon, Kee Choon; Kim, Jang Yeol [Korea Atomic Energy Research Institute, Taejon (Korea)

    1998-04-01

    Digital Man Machine Interface System (MMIS) systems of Korea Advanced Liquid MEtal Reactor (KALIMER) may share code, data transmission, data, and process equipment to a greater degree than analog systems. Although this sharing is the basis for many of the advantages of digital systems, it also raises a key concern: a design using shared data or code has the potential to propagate a common-cause or common-mode failure via software errors, thus defeating the redundancy achieved by the hardware architectural structure. Greater sharing of process equipment among functions within a channel increases the consequences of the failure of a single hardware module and reduces the amount of diversity available within a single safety channel. The software safety plan describes the safety analysis implementation tasks that are to be carried out during the software life cycle. Documentation should exist that shows that the safety analysis activities have been successfully accomplished for each life cycle activity group. In particular, the documentation should show that the system safety requirement have been adequately addressed for each life cycle activity group, that no new hazards have been introduced, and that the software requirements, design elements, and code elements that can affect safety have been identified. Because the safety of software can be assured through both the process Verification and Validation (V and V) itself and the V and V of all the intermediate and final products during the software development lifecycle, the development of KALIMER Software Safety Framework (KSSF) must be established. As the first activity for establishing KSSF, we have developed this report, Requirement on Software Life-cycle Process (RSLP) for designing KALIMER digital MMIS. This report is organized as follows. Section I describes the background, definitions, and references of RSLP. Section II describes KALIMER safety software categorization. In Section III, we define the

  1. High Dynamic Range Imaging and Computational Challenges with LOFAR

    NARCIS (Netherlands)

    Pandey, Vishambhar; Lofar Eor Group, [Unknown

    The 3C196 field is one of the primary EoR fields being observed (115-185MHz) with LOFAR, to detect the cosmological re-ionization signal. A crucial requirement for its success is, to be able to achieve thermal noise limited performance after several hundreds of hours of integration. This is a bright

  2. VLab: A Science Gateway for Distributed First Principles Calculations in Heterogeneous High Performance Computing Systems

    Science.gov (United States)

    da Silveira, Pedro Rodrigo Castro

    2014-01-01

    This thesis describes the development and deployment of a cyberinfrastructure for distributed high-throughput computations of materials properties at high pressures and/or temperatures--the Virtual Laboratory for Earth and Planetary Materials--VLab. VLab was developed to leverage the aggregated computational power of grid systems to solve…

  3. The Relationship between Utilization of Computer Games and Spatial Abilities among High School Students

    Science.gov (United States)

    Motamedi, Vahid; Yaghoubi, Razeyah Mohagheghyan

    2015-01-01

    This study aimed at investigating the relationship between computer game use and spatial abilities among high school students. The sample consisted of 300 high school male students selected through multi-stage cluster sampling. Data gathering tools consisted of a researcher made questionnaire (to collect information on computer game usage) and the…

  4. High School Computer Science Education Paves the Way for Higher Education: The Israeli Case

    Science.gov (United States)

    Armoni, Michal; Gal-Ezer, Judith

    2014-01-01

    The gap between enrollments in higher education computing programs and the high-tech industry's demands is widely reported, and is especially prominent for women. Increasing the availability of computer science education in high school is one of the strategies suggested in order to address this gap. We look at the connection between exposure to…

  5. Computer simulations in the high school: students' cognitive stages, science process skills and academic achievement in microbiology

    Science.gov (United States)

    Huppert, J.; Michal Lomask, S.; Lazarowitz, R.

    2002-08-01

    Computer-assisted learning, including simulated experiments, has great potential to address the problem solving process which is a complex activity. It requires a highly structured approach in order to understand the use of simulations as an instructional device. This study is based on a computer simulation program, 'The Growth Curve of Microorganisms', which required tenth grade biology students to use problem solving skills whilst simultaneously manipulating three independent variables in one simulated experiment. The aims were to investigate the computer simulation's impact on students' academic achievement and on their mastery of science process skills in relation to their cognitive stages. The results indicate that the concrete and transition operational students in the experimental group achieved significantly higher academic achievement than their counterparts in the control group. The higher the cognitive operational stage, the higher students' achievement was, except in the control group where students in the concrete and transition operational stages did not differ. Girls achieved equally with the boys in the experimental group. Students' academic achievement may indicate the potential impact a computer simulation program can have, enabling students with low reasoning abilities to cope successfully with learning concepts and principles in science which require high cognitive skills.

  6. Event parallelism: Distributed memory parallel computing for high energy physics experiments

    International Nuclear Information System (INIS)

    Nash, T.

    1989-05-01

    This paper describes the present and expected future development of distributed memory parallel computers for high energy physics experiments. It covers the use of event parallel microprocessor farms, particularly at Fermilab, including both ACP multiprocessors and farms of MicroVAXES. These systems have proven very cost effective in the past. A case is made for moving to the more open environment of UNIX and RISC processors. The 2nd Generation ACP Multiprocessor System, which is based on powerful RISC systems, is described. Given the promise of still more extraordinary increases in processor performance, a new emphasis on point to point, rather than bussed, communication will be required. Developments in this direction are described. 6 figs

  7. Analysis of a computational benchmark for a high-temperature reactor using SCALE

    International Nuclear Information System (INIS)

    Goluoglu, S.

    2006-01-01

    Several proposed advanced reactor concepts require methods to address effects of double heterogeneity. In doubly heterogeneous systems, heterogeneous fuel particles in a moderator matrix form the fuel region of the fuel element and thus constitute the first level of heterogeneity. Fuel elements themselves are also heterogeneous with fuel and moderator or reflector regions, forming the second level of heterogeneity. The fuel elements may also form regular or irregular lattices. A five-phase computational benchmark for a high-temperature reactor (HTR) fuelled with uranium or reactor-grade plutonium has been defined by the Organization for Economic Cooperation and Development, Nuclear Energy Agency (OECD NEA), Nuclear Science Committee, Working Party on the Physics of Plutonium Fuels and Innovative Fuel Cycles. This paper summarizes the analysis results using the latest SCALE code system (to be released in CY 2006 as SCALE 5.1). (authors)

  8. Event parallelism: Distributed memory parallel computing for high energy physics experiments

    International Nuclear Information System (INIS)

    Nash, T.

    1989-01-01

    This paper describes the present and expected future development of distributed memory parallel computers for high energy physics experiments. It covers the use of event parallel microprocessor farms, particularly at Fermilab, including both ACP multiprocessors and farms of MicroVAXES. These systems have proven very cost effective in the past. A case is made for moving to the more open environment of UNIX and RISC processors. The 2nd Generation ACP Multiprocessor System, which is based on powerful RISC systems, is described. Given the promise of still more extraordinary increases in processor performance, a new emphasis on point to point, rather than bussed, communication will be required. Developments in this direction are described. (orig.)

  9. Event parallelism: Distributed memory parallel computing for high energy physics experiments

    Science.gov (United States)

    Nash, Thomas

    1989-12-01

    This paper describes the present and expected future development of distributed memory parallel computers for high energy physics experiments. It covers the use of event parallel microprocessor farms, particularly at Fermilab, including both ACP multiprocessors and farms of MicroVAXES. These systems have proven very cost effective in the past. A case is made for moving to the more open environment of UNIX and RISC processors. The 2nd Generation ACP Multiprocessor System, which is based on powerful RISC system, is described. Given the promise of still more extraordinary increases in processor performance, a new emphasis on point to point, rather than bussed, communication will be required. Developments in this direction are described.

  10. Mixed-Language High-Performance Computing for Plasma Simulations

    Directory of Open Access Journals (Sweden)

    Quanming Lu

    2003-01-01

    Full Text Available Java is receiving increasing attention as the most popular platform for distributed computing. However, programmers are still reluctant to embrace Java as a tool for writing scientific and engineering applications due to its still noticeable performance drawbacks compared with other programming languages such as Fortran or C. In this paper, we present a hybrid Java/Fortran implementation of a parallel particle-in-cell (PIC algorithm for plasma simulations. In our approach, the time-consuming components of this application are designed and implemented as Fortran subroutines, while less calculation-intensive components usually involved in building the user interface are written in Java. The two types of software modules have been glued together using the Java native interface (JNI. Our mixed-language PIC code was tested and its performance compared with pure Java and Fortran versions of the same algorithm on a Sun E6500 SMP system and a Linux cluster of Pentium~III machines.

  11. High resolution computed tomography of chronic otitis media

    International Nuclear Information System (INIS)

    Shirahata, Yuichi; Tachibana, Toshiro; Fukami, Masaya; Onishi, Toshiro; Doi, Osamu

    1986-01-01

    Seventy six patients with chronic otitis media were examined by CT. Using 3 dried skulls, the epitympanum was impacted with a piece of paraffin containing of 2 % iodine, and studied with CT-scan (Toshiba 60A-30) to clarify whether or not the paraffin could produce a soft tissue density on CT which was similar to that of cholesteatoma in the middle ear. The results showed that computed tomography was excellent in demonstrating a soft tissue mass in the middle ear with inflammatory disease. When the middle ear infection with granulation tissue or cholesteatoma existed, the resulting soft tissue mass was indistinguishable. CT scanning was useful for accurate determination of location of bone destruction in the middle ear as well as of the ossicles. (author)

  12. High-resolution computed tomography scan of lumbosacral spine

    International Nuclear Information System (INIS)

    Lifson, A.; Heithoff, K.B.; Burton, C.V.; Ray, C.D.

    1981-01-01

    A GE 8800 computed tomography (CT) scanner was used in over 4,000 cases of acute and chronic low back pain. Practically unlimited potentials of the study were clearly demonstrated in the diagnosis of such conditions as central and lateral spinal stenosis, overgrowth of fusions, disk herniation and free extrusion. Nonenhanced CT scanning is capable of clear visualization of soft-tissue structures: nerve roots and ganglia, epidural fat, epidural fibrous tissue, and epidural veins. CT scanning has become a primary diagnostic modality in the Low Back Clinic at our institute, replacing myelography in the majority of cases. Enhancement of the image with metrizamide was found to be of limited diagnostic value in lumbar degenerative disk disease. However, the utilization of a radiopaque material is indicated in selected circumstances. (Auth.)

  13. The computer simulation of automobile use patterns for defining battery requirements for electric cars

    Science.gov (United States)

    Schwartz, H.-J.

    1976-01-01

    The modeling process of a complex system, based on the calculation and optimization of the system parameters, is complicated in that some parameters can be expressed only as probability distributions. In the present paper, a Monte Carlo technique was used to determine the daily range requirements of an electric road vehicle in the United States from probability distributions of trip lengths, frequencies, and average annual mileage data. The analysis shows that a daily range of 82 miles meets to 95% of the car-owner requirements at all times with the exception of long vacation trips. Further, it is shown that the requirement of a daily range of 82 miles can be met by a (intermediate-level) battery technology characterized by an energy density of 30 to 50 Watt-hours per pound. Candidate batteries in this class are nickel-zinc, nickel-iron, and iron-air. These results imply that long-term research goals for battery systems should be focused on lower cost and longer service life, rather than on higher energy densities

  14. COMPUTING

    CERN Multimedia

    M. Kasemann

    Overview In autumn the main focus was to process and handle CRAFT data and to perform the Summer08 MC production. The operational aspects were well covered by regular Computing Shifts, experts on duty and Computing Run Coordination. At the Computing Resource Board (CRB) in October a model to account for service work at Tier 2s was approved. The computing resources for 2009 were reviewed for presentation at the C-RRB. The quarterly resource monitoring is continuing. Facilities/Infrastructure operations Operations during CRAFT data taking ran fine. This proved to be a very valuable experience for T0 workflows and operations. The transfers of custodial data to most T1s went smoothly. A first round of reprocessing started at the Tier-1 centers end of November; it will take about two weeks. The Computing Shifts procedure was tested full scale during this period and proved to be very efficient: 30 Computing Shifts Persons (CSP) and 10 Computing Resources Coordinators (CRC). The shift program for the shut down w...

  15. JMS: An Open Source Workflow Management System and Web-Based Cluster Front-End for High Performance Computing.

    Directory of Open Access Journals (Sweden)

    David K Brown

    Full Text Available Complex computational pipelines are becoming a staple of modern scientific research. Often these pipelines are resource intensive and require days of computing time. In such cases, it makes sense to run them over high performance computing (HPC clusters where they can take advantage of the aggregated resources of many powerful computers. In addition to this, researchers often want to integrate their workflows into their own web servers. In these cases, software is needed to manage the submission of jobs from the web interface to the cluster and then return the results once the job has finished executing. We have developed the Job Management System (JMS, a workflow management system and web interface for high performance computing (HPC. JMS provides users with a user-friendly web interface for creating complex workflows with multiple stages. It integrates this workflow functionality with the resource manager, a tool that is used to control and manage batch jobs on HPC clusters. As such, JMS combines workflow management functionality with cluster administration functionality. In addition, JMS provides developer tools including a code editor and the ability to version tools and scripts. JMS can be used by researchers from any field to build and run complex computational pipelines and provides functionality to include these pipelines in external interfaces. JMS is currently being used to house a number of bioinformatics pipelines at the Research Unit in Bioinformatics (RUBi at Rhodes University. JMS is an open-source project and is freely available at https://github.com/RUBi-ZA/JMS.

  16. JMS: An Open Source Workflow Management System and Web-Based Cluster Front-End for High Performance Computing.

    Science.gov (United States)

    Brown, David K; Penkler, David L; Musyoka, Thommas M; Bishop, Özlem Tastan

    2015-01-01

    Complex computational pipelines are becoming a staple of modern scientific research. Often these pipelines are resource intensive and require days of computing time. In such cases, it makes sense to run them over high performance computing (HPC) clusters where they can take advantage of the aggregated resources of many powerful computers. In addition to this, researchers often want to integrate their workflows into their own web servers. In these cases, software is needed to manage the submission of jobs from the web interface to the cluster and then return the results once the job has finished executing. We have developed the Job Management System (JMS), a workflow management system and web interface for high performance computing (HPC). JMS provides users with a user-friendly web interface for creating complex workflows with multiple stages. It integrates this workflow functionality with the resource manager, a tool that is used to control and manage batch jobs on HPC clusters. As such, JMS combines workflow management functionality with cluster administration functionality. In addition, JMS provides developer tools including a code editor and the ability to version tools and scripts. JMS can be used by researchers from any field to build and run complex computational pipelines and provides functionality to include these pipelines in external interfaces. JMS is currently being used to house a number of bioinformatics pipelines at the Research Unit in Bioinformatics (RUBi) at Rhodes University. JMS is an open-source project and is freely available at https://github.com/RUBi-ZA/JMS.

  17. JMS: An Open Source Workflow Management System and Web-Based Cluster Front-End for High Performance Computing

    Science.gov (United States)

    Brown, David K.; Penkler, David L.; Musyoka, Thommas M.; Bishop, Özlem Tastan

    2015-01-01

    Complex computational pipelines are becoming a staple of modern scientific research. Often these pipelines are resource intensive and require days of computing time. In such cases, it makes sense to run them over high performance computing (HPC) clusters where they can take advantage of the aggregated resources of many powerful computers. In addition to this, researchers often want to integrate their workflows into their own web servers. In these cases, software is needed to manage the submission of jobs from the web interface to the cluster and then return the results once the job has finished executing. We have developed the Job Management System (JMS), a workflow management system and web interface for high performance computing (HPC). JMS provides users with a user-friendly web interface for creating complex workflows with multiple stages. It integrates this workflow functionality with the resource manager, a tool that is used to control and manage batch jobs on HPC clusters. As such, JMS combines workflow management functionality with cluster administration functionality. In addition, JMS provides developer tools including a code editor and the ability to version tools and scripts. JMS can be used by researchers from any field to build and run complex computational pipelines and provides functionality to include these pipelines in external interfaces. JMS is currently being used to house a number of bioinformatics pipelines at the Research Unit in Bioinformatics (RUBi) at Rhodes University. JMS is an open-source project and is freely available at https://github.com/RUBi-ZA/JMS. PMID:26280450

  18. 28 CFR 570.43 - Inmates requiring a high degree of control and supervision.

    Science.gov (United States)

    2010-07-01

    ... 28 Judicial Administration 2 2010-07-01 2010-07-01 false Inmates requiring a high degree of control and supervision. 570.43 Section 570.43 Judicial Administration BUREAU OF PRISONS, DEPARTMENT OF JUSTICE COMMUNITY PROGRAMS AND RELEASE COMMUNITY PROGRAMS Escorted Trips § 570.43 Inmates requiring a high degree of control and supervision. Only the...

  19. A three-dimensional ground-water-flow model modified to reduce computer-memory requirements and better simulate confining-bed and aquifer pinchouts

    Science.gov (United States)

    Leahy, P.P.

    1982-01-01

    The Trescott computer program for modeling groundwater flow in three dimensions has been modified to (1) treat aquifer and confining bed pinchouts more realistically and (2) reduce the computer memory requirements needed for the input data. Using the original program, simulation of aquifer systems with nonrectangular external boundaries may result in a large number of nodes that are not involved in the numerical solution of the problem, but require computer storage. (USGS)

  20. Standardized Procedure Content And Data Structure Based On Human Factors Requirements For Computer-Based Procedures

    International Nuclear Information System (INIS)

    Bly, Aaron; Oxstrand, Johanna; Le Blanc, Katya L

    2015-01-01

    Most activities that involve human interaction with systems in a nuclear power plant are guided by procedures. Traditionally, the use of procedures has been a paper-based process that supports safe operation of the nuclear power industry. However, the nuclear industry is constantly trying to find ways to decrease the human error rate, especially the human errors associated with procedure use. Advances in digital technology make computer-based procedures (CBPs) a valid option that provides further enhancement of safety by improving human performance related to procedure use. The transition from paper-based procedures (PBPs) to CBPs creates a need for a computer-based procedure system (CBPS). A CBPS needs to have the ability to perform logical operations in order to adjust to the inputs received from either users or real time data from plant status databases. Without the ability for logical operations the procedure is just an electronic copy of the paper-based procedure. In order to provide the CBPS with the information it needs to display the procedure steps to the user, special care is needed in the format used to deliver all data and instructions to create the steps. The procedure should be broken down into basic elements and formatted in a standard method for the CBPS. One way to build the underlying data architecture is to use an Extensible Markup Language (XML) schema, which utilizes basic elements to build each step in the smart procedure. The attributes of each step will determine the type of functionality that the system will generate for that step. The CBPS will provide the context for the step to deliver referential information, request a decision, or accept input from the user. The XML schema needs to provide all data necessary for the system to accurately perform each step without the need for the procedure writer to reprogram the CBPS. The research team at the Idaho National Laboratory has developed a prototype CBPS for field workers as well as the