WorldWideScience

Sample records for high compressive strains

  1. High Strain Rate Compressive Tests on Woven Graphite Epoxy Composites

    Science.gov (United States)

    Allazadeh, Mohammad Reza; Wosu, Sylvanus N.

    2011-08-01

    The behavior of composite materials may be different when they are subjected to high strain rate load. Penetrating split Hopkinson pressure bar (P-SHPB) is a method to impose high strain rate on specimen in the laboratory experiments. This research work studied the response of the thin circular shape specimens, made out of woven graphite epoxy composites, to high strain rate impact load. The stress-strain relationships and behavior of the specimens were investigated during the compressive dynamic tests for strain rates as high as 3200 s-1. One dimensional analysis was deployed for analytical calculations since the experiments fulfilled the ratio of diameter to length of bars condition in impact load experiments. The mechanics of dynamic failure was studied and the results showed the factors which govern the failure mode in high strain deformation via absorbed energy by the specimen. In this paper, the relation of particle velocity with perforation depth was discussed for woven graphite epoxy specimens.

  2. High strain rate compression testing of glass fibre reinforced polypropylene

    Directory of Open Access Journals (Sweden)

    Cloete T.J.

    2012-08-01

    Full Text Available This paper details an investigation of the high strain rate compression testing of GFPP with the Split Hopkinson Pressure Bar (SHPB in the through-thickness and in-plane directions. GFPP posed challenges to SHPB testing as it fails at relatively high stresses, while having relatively low moduli and hence mechanical impedance. The modifications to specimen geometry and incident pulse shaping in order to gather valid test results, where specimen equilibrium was achieved for SHPB tests on GFPP are presented. In addition to conventional SHPB tests to failure, SHPB experiments were designed to achieve specimen equilibration at small strains, which permitted the capture of high strain rate elastic modulus data. The strain rate dependency of GFPP’s failure strengths in the in-plane and through-thickness direction is modelled using a logarithmic law.

  3. High Strain Rate Compression Testing of Ceramics and Ceramic Composites.

    Energy Technology Data Exchange (ETDEWEB)

    Blumenthal, W. R. (William R.)

    2005-01-01

    The compressive deformation and failure behavior of ceramics and ceramic-metal composites for armor applications has been studied as a function of strain rate at Los Alamos National Laboratory since the late 1980s. High strain rate ({approx}10{sup 3} s{sup -1}) uniaxial compression loading can be achieved using the Kolsky-split-Hopkinson pressure bar (SHPB) technique, but special methods must be used to obtain valid strength results. This paper reviews these methods and the limitations of the Kolsky-SHPB technique for this class of materials. The Kolsky-split-Hopkinson pressure bar (Kolsky-SHPB) technique was originally developed to characterize the mechanical behavior of ductile materials such as metals and polymers where the results can be used to develop strain-rate and temperature-dependent constitutive behavior models that empirically describe macroscopic plastic flow. The flow behavior of metals and polymers is generally controlled by thermally-activated and rate-dependent dislocation motion or polymer chain motion in response to shear stresses. Conversely, the macroscopic mechanical behavior of dense, brittle, ceramic-based materials is dominated by elastic deformation terminated by rapid failure associated with the propagation of defects in the material in response to resolved tensile stresses. This behavior is usually characterized by a distribution of macroscopically measured failure strengths and strains. The basis for any strain-rate dependence observed in the failure strength must originate from rate-dependence in the damage and fracture process, since uniform, uniaxial elastic behavior is rate-independent (e.g. inertial effects on crack growth). The study of microscopic damage and fracture processes and their rate-dependence under dynamic loading conditions is a difficult experimental challenge that is not addressed in this paper. The purpose of this paper is to review the methods that have been developed at the Los Alamos National Laboratory to

  4. Dynamic High-Temperature Characterization of an Iridium Alloy in Compression at High Strain Rates

    Energy Technology Data Exchange (ETDEWEB)

    Song, Bo [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Experimental Environment Simulation Dept.; Nelson, Kevin [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Mechanics of Materials Dept.; Lipinski, Ronald J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Advanced Nuclear Fuel Cycle Technology Dept.; Bignell, John L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Structural and Thermal Analysis Dept.; Ulrich, G. B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Radioisotope Power Systems Program; George, E. P. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Radioisotope Power Systems Program

    2014-06-01

    Iridium alloys have superior strength and ductility at elevated temperatures, making them useful as structural materials for certain high-temperature applications. However, experimental data on their high-temperature high-strain-rate performance are needed for understanding high-speed impacts in severe elevated-temperature environments. Kolsky bars (also called split Hopkinson bars) have been extensively employed for high-strain-rate characterization of materials at room temperature, but it has been challenging to adapt them for the measurement of dynamic properties at high temperatures. Current high-temperature Kolsky compression bar techniques are not capable of obtaining satisfactory high-temperature high-strain-rate stress-strain response of thin iridium specimens investigated in this study. We analyzed the difficulties encountered in high-temperature Kolsky compression bar testing of thin iridium alloy specimens. Appropriate modifications were made to the current high-temperature Kolsky compression bar technique to obtain reliable compressive stress-strain response of an iridium alloy at high strain rates (300 – 10000 s-1) and temperatures (750°C and 1030°C). Uncertainties in such high-temperature high-strain-rate experiments on thin iridium specimens were also analyzed. The compressive stress-strain response of the iridium alloy showed significant sensitivity to strain rate and temperature.

  5. Twin Interactions in Pure Ti Under High Strain Rate Compression

    Science.gov (United States)

    Zhou, Ping; Xiao, Dawu; Jiang, Chunli; Sang, Ge; Zou, Dongli

    2017-01-01

    Twin interactions associated with {11 overline{2} 1} (E2) twins in titanium deformed by high strain rate ( 2600 s-1) compression were studied using electron backscatter diffraction technique. Three types of twins, {10 overline{1} 2} (E1), {11 overline{2} 2} (C1), and {11 overline{2} 4} (C3), were observed to interact with the preformed E2 twins in four parent grains. The E1 variants nucleated at twin boundaries of some E2 variants. And the C3 twins were originated from the intersection of C1 and E2. The selection of twin variant was investigated by the Schmid factors (SFs) and the twinning shear displacement gradient tensors (DGTs) calculations. The results show that twin variants that did not follow the Schmid law were more frequently observed under high strain rate deformation than quasi-static deformation. Among these low-SF active variants, 73 pct (8 out of 11) can be interpreted by DGT. Besides, 26 variants that have SF values close to or higher than their active counterparts were absent. Factors that may affect the twin variant selections were discussed.

  6. High Strain Rate Compression of Martensitic NiTi Shape Memory Alloy at Different Temperatures

    Science.gov (United States)

    Qiu, Ying; Young, Marcus L.; Nie, Xu

    2017-02-01

    The compressive response of martensitic NiTi shape memory alloy (SMA) rods has been investigated using a modified Kolsky compression bar at various strain rates (400, 800, and 1200 s-1) and temperatures [room temperature and 373 K (100 °C)], i.e., in the martensitic state and in the austenitic state. SEM, DSC, and XRD were performed on NiTi SMA rod samples after high strain rate compression in order to reveal the influence of strain rate and temperature on the microstructural evolution, phase transformation, and crystal structure. It is found that at room temperature, the critical stress increases slightly as strain rate increases, whereas the strain-hardening rate decreases. However, the critical stress under high strain rate compression at 373 K (100 °C) increase first and then decrease due to competing strain hardening and thermal softening effects. After high rate compression, the microstructure of both martensitic and austenitic NiTi SMAs changes as a function of increasing strain rate, while the phase transformation after deformation is independent of the strain rate at room temperature and 373 K (100 °C). The preferred crystal plane of the martensitic NiTi SMA changes from ( 1bar{1}1 )M before compression to (111)M after compression, while the preferred plane remains the same for austenitic NiTi SMA before and after compression. Additionally, dynamic recovery and recrystallization are also observed to occur after deformation of the austenitic NiTi SMA at 373 K (100 °C). The findings presented here extend the basic understanding of the deformation behavior of NiTi SMAs and its relation to microstructure, phase transformation, and crystal structure, especially at high strain rates.

  7. High compressive pre-strains reduce the bending fatigue life of nitinol wire.

    Science.gov (United States)

    Gupta, Shikha; Pelton, Alan R; Weaver, Jason D; Gong, Xiao-Yan; Nagaraja, Srinidhi

    2015-04-01

    Prior to implantation, Nitinol-based transcatheter endovascular devices are subject to a complex thermo-mechanical pre-strain associated with constraint onto a delivery catheter, device sterilization, and final deployment. Though such large thermo-mechanical excursions are known to impact the microstructural and mechanical properties of Nitinol, their effect on fatigue properties is still not well understood. The present study investigated the effects of large thermo-mechanical pre-strains on the fatigue of pseudoelastic Nitinol wire using fully reversed rotary bend fatigue (RBF) experiments. Electropolished Nitinol wires were subjected to a 0%, 8% or 10% bending pre-strain and RBF testing at 0.3-1.5% strain amplitudes for up to 10(8) cycles. The imposition of 8% or 10% bending pre-strain resulted in residual set in the wire. Large pre-strains also significantly reduced the fatigue life of Nitinol wires below 0.8% strain amplitude. While 0% and 8% pre-strain wires exhibited distinct low-cycle and high-cycle fatigue regions, reaching run out at 10(8) cycles at 0.6% and 0.4% strain amplitude, respectively, 10% pre-strain wires continued to fracture at less than 10(5) cycles, even at 0.3% strain amplitude. Furthermore, over 70% fatigue cracks were found to initiate on the compressive pre-strain surface in pre-strained wires. In light of the texture-dependent tension-compression asymmetry in Nitinol, this reduction in fatigue life and preferential crack initiation in pre-strained wires is thought to be attributed to compressive pre-strain-induced plasticity and tensile residual stresses as well as the formation of martensite variants. Despite differences in fatigue life, SEM revealed that the size, shape and morphology of the fatigue fracture surfaces were comparable across the pre-strain levels. Further, the mechanisms underlying fatigue were found to be similar; despite large differences in cycles to failure across strain amplitudes and pre-strain levels, cracks

  8. Inlfuence of Specimen Size on Compression Behavior of Cement Paste and Mortar under High Strain Rates

    Institute of Scientific and Technical Information of China (English)

    CHEN Xudong; CHEN Chen; QIAN Pingping; XU Lingyu

    2016-01-01

    Static and dynamic compression tests were carried out on mortar and paste specimens of three sizes (f68 mm×32 mm,f59 mm×29.5 mm andf32 mm×16 mm) to study the inlfuence of specimen size on the compression behavior of cement-based materials under high strain rates. The static tests were applied using a universal servo-hydraulic system, and the dynamic tests were applied by a spilt Hopkinson pressure bar (SHPB) system. The experimental results show that for mortar and paste specimens, the dynamic compressive strength is greater than the quasi-static one, and the dynamic compressive strength for specimens of large size is lower than those of small size. However, the dynamic increase factors (DIF) has an opposite trend. Obviously, both strain rate and size effect exist in mortar and paste. The test results were then analyzed using Weibull, Carpinteri and Bažant’s size effect laws. A good agreement between these three laws and the test results was reached on the compressive strength. However, for the experimental results of paste and cement mortar, the size effect is not evident for the peak strain and elastic modulus of paste and cement mortar.

  9. Quasi-Static and High Strain Rate Compressive Response of Injection-Molded Cenosphere/HDPE Syntactic Foam

    Science.gov (United States)

    Bharath Kumar, B. R.; Singh, Ashish Kumar; Doddamani, Mrityunjay; Luong, Dung D.; Gupta, Nikhil

    2016-07-01

    High strain rate compressive properties of high-density polyethylene (HDPE) matrix syntactic foams containing cenosphere filler are investigated. Thermoplastic matrix syntactic foams have not been studied extensively for high strain rate deformation response despite interest in them for lightweight underwater vehicle structures and consumer products. Quasi-static compression tests are conducted at 10-4 s-1, 10-3 s-1 and 10-2 s-1 strain rates. Further, a split-Hopkinson pressure bar is utilized for characterizing syntactic foams for high strain rate compression. The compressive strength of syntactic foams is higher than that of HDPE resin at the same strain rate. Yield strength shows an increasing trend with strain rate. The average yield strength values at high strain rates are almost twice the values obtained at 10-4 s-1 for HDPE resin and syntactic foams. Theoretical models are used to estimate the effectiveness of cenospheres in reinforcing syntactic foams.

  10. Deformation and failure of OFHC copper under high strain rate shear compression

    Science.gov (United States)

    Ruggiero, Andrew; Testa, Gabriel; Bonora, Nicola; Iannitti, Gianluca; Persechino, Italo; Colliander, Magnus Hörnqvist

    2017-01-01

    Hat-shaped specimen geometries were developed to generate high strain, high-strain-rates deformation under prescribed conditions. These geometries offer also the possibility to investigate the occurrence of ductile rupture under low or negative stress triaxiality, where most failure models fail. In this work, three tophat geometries were designed, by means of extensive numerical simulation, to obtain desired stress triaxiality values within the shear region that develops across the ligament. Material failure was simulated using the Continuum Damage Model (CDM) formulation with a unilateral condition for damage accumulation and validated by comparing with quasi-static and high strain rate compression tests results on OFHC copper. Preliminary results seem to indicate that ductile tearing initiates at the specimen corner location where positive stress triaxiality occurs because of local rotation and eventually propagates along the ligament.

  11. Prediction of flow stress of 7017 aluminium alloy under high strain rate compression at elevated temperatures

    Institute of Scientific and Technical Information of China (English)

    Ravindranadh BOBBILI; B. RAMAKRISHNA; V. MADHU; A.K. GOGIA

    2015-01-01

    An artificial neural network (ANN) constitutive model and JohnsoneCook (JeC) model were developed for 7017 aluminium alloy based on high strain rate data generated from split Hopkinson pressure bar (SHPB) experiments at various temperatures. A neural network configuration consists of both training and validation, which is effectively employed to predict flow stress. Temperature, strain rate and strain are considered as inputs, whereas flow stress is taken as output of the neural network. A comparative study on JohnsoneCook (JeC) model and neural network model was performed. It was observed that the developed neural network model could predict flow stress under various strain rates and tem-peratures. The experimental stressestrain data obtained from high strain rate compression tests using SHPB over a range of temperatures (25?e300 ?C), strains (0.05e0.3) and strain rates (1500e4500 s?1) were employed to formulate JeC model to predict the flow stress behaviour of 7017 aluminium alloy under high strain rate loading. The JeC model and the back-propagation ANN model were developed to predict the flow stress of 7017 aluminium alloy under high strain rates, and their predictability was evaluated in terms of correlation coefficient (R) and average absolute relative error (AARE). R and AARE for the J-C model are found to be 0.8461 and 10.624%, respectively, while R and AARE for the ANN model are 0.9995 and 2.58%, respectively. The predictions of ANN model are observed to be in consistent with the experimental data for all strain rates and temperatures.

  12. High Strain Rate Compressive Behavior of Polyurethane Resin and Polyurethane/Al2O3 Hollow Sphere Syntactic Foams

    Directory of Open Access Journals (Sweden)

    Dung D. Luong

    2014-01-01

    Full Text Available Polyurethane resins and foams are finding extensive applications. Seat cushions and covers in automobiles are examples of these materials. In the present work, hollow alumina particles are used as fillers in polyurethane resin to develop closed-cell syntactic foams. The fabricated syntactic foams are tested for compressive properties at quasistatic and high strain rates. Strain rate sensitivity is an important concern for automotive applications due to the possibility of crash at high speeds. Both the polyurethane resin and the syntactic foam show strain rate sensitivity in compressive strength. It is observed that the compressive strength increases with strain rate. The energy absorbed up to 10% strain in the quasistatic regime is 400% higher for the syntactic foam in comparison to that of neat resin at the same strain rate.

  13. Analysis and simulation of high strain compression of anisotropic open-cell elastic foams

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    By elongating the regular Kelvin model in one direction and keeping unchanged in the other two directions,the anisotropic model was constructed.Then,the simplified periodic structural cell was obtained according to the periodicity and symmetry of the model in the whole space.Using the half-strut element and elastic deflection theory to analyze the mechanical behavior as were adopted in the previous studies,this paper obtained the theoretical expressions for the compressive stress and strain as well as the corresponding curves in the rise and transverse directions.In addition,the theoretical results were examined by the finite element simulation.Results indicated that the theoretical analysis was very close to the finite element simulation when the strain was not too high,which confirmed the validity of theoretical analysis.At the same time,the anisotropy was shown to have a significant effect on the mechanical properties of open-cell foams.As the anisotropy ratio increased,the compressive stress was improved in the rise direction but dropped in the transverse direction under the same strain.

  14. Compressive Strength of Hydrostatic-Stress-Sensitive Materials at High Strain-Rates

    Institute of Scientific and Technical Information of China (English)

    LI Q M; LU Y B

    2008-01-01

    Many engineering materials demonstrate dynamic enhancement of their compressive strength with the increase of strain-rate.which have been included in material models to improve the reliability of numerical Simulations of the material and structural responses Under impact and biasl tcads,The strain-rate effects on the dynamic Compressive strength of a range of engineering materials which behave in hydrostatic-stress-sensitive manner were investigated.It is concluded that the dynamic enhancement of the compressive strength of a hydrostatic-stress-sensitive material may include inertia-induced lateral confinement effects,which,as a non-strain-rate factor,may greatly enhance the compressive strength of these materials.Some empirical formulae based on the dynamic stress-strain measurements over-predict the strain-rate effects on the compressive strength of these hydrostatic-stress-sensitive materials,and thus may over-estimate the structural resistance to impact and blast lgads.leading fo non-conservative design of protective structures.

  15. Neural network modeling to evaluate the dynamic flow stress of high strength armor steels under high strain rate compression

    Institute of Scientific and Technical Information of China (English)

    Ravindranadh BOBBILI; V. MADHU; A.K. GOGIA

    2014-01-01

    An artificial neural network (ANN) constitutive model is developed for high strength armor steel tempered at 500 ?C, 600 ?C and 650 ?C based on high strain rate data generated from split Hopkinson pressure bar (SHPB) experiments. A new neural network configuration consisting of both training and validation is effectively employed to predict flow stress. Tempering temperature, strain rate and strain are considered as inputs, whereas flow stress is taken as output of the neural network. A comparative study on JohnsoneCook (JeC) model and neural network model is performed. It was observed that the developed neural network model could predict flow stress under various strain rates and tempering temperatures. The experimental stressestrain data obtained from high strain rate compression tests using SHPB, over a range of tempering temperatures (500e650 ?C), strains (0.05e0.2) and strain rates (1000e5500/s) are employed to formulate JeC model to predict the high strain rate deformation behavior of high strength armor steels. The J-C model and the back-propagation ANN model were developed to predict the high strain rate deformation behavior of high strength armor steel and their predictability is evaluated in terms of correlation coefficient (R) and average absolute relative error (AARE). R and AARE for the JeC model are found to be 0.7461 and 27.624%, respectively, while R and AARE for the ANN model are 0.9995 and 2.58%, respectively. It was observed that the predictions by ANN model are in consistence with the experimental data for all tempering temperatures.

  16. Influence of free water content on the compressive mechanical behaviour of cement mortar under high strain rate

    Indian Academy of Sciences (India)

    Jikai Zhou; Xudong Chen; Longqiang Wu; Xiaowei Kan

    2011-06-01

    The effect of free water content upon the compressive mechanical behaviour of cement mortar under high loading rate was studied. The uniaxial rapid compressive loading testing of a total of 30 specimens, nominally 37 mm in diameter and 18.5 mm in height, with five different saturations (0%, 25%, 50%, 75% and 100%, respectively) were executed in this paper. The technique ‘Split Hopkinson pressure bar’ (SHPB) was used. The impact velocity was 10 m/s with the corresponding strain rate as 102/s. Water-cement ratio of 0.5 was used. The compressive behaviour of the materials was measured in terms of the maximum stress, Young’s modulus, critical strain at maximum stress and ultimate strain at failure. The data obtained from test indicates that the similarity exists in the shape of strain–stress curves of cement mortars with different water content, the upward section of the stress–strain curve shows bilinear characteristics, while the descending stage (softening state) is almost linear. The dynamic compressive strength of cement mortar increased with the decreasing of water content, the dynamic compressive strength of the saturated specimens was 23% lower than that of the totally dry specimens. With an increase in water content, the Young’s modulus first increases and then decreases, the Young’s modulus of the saturated specimens was 23% lower than that of the totally dry specimens. No significant changes occurred in the critical and ultimate strain value as the water content is changed.

  17. Prediction of flow stress of 7017 aluminium alloy under high strain rate compression at elevated temperatures

    National Research Council Canada - National Science Library

    Bobbili, Ravindranadh; Ramakrishna, B; Madhu, V; Gogia, A.K

    2015-01-01

    An artificial neural network (ANN) constitutive model and Johnson–Cook (J–C) model were developed for 7017 aluminium alloy based on high strain rate data generated from split Hopkinson pressure bar (SHPB...

  18. High- and low-strain rate compression properties of several energetic material composites as a function of strain rate and temperature

    Energy Technology Data Exchange (ETDEWEB)

    Gray, G.T. III; Idar, D.J.; Blumenthal, W.R.; Cady, C.M.; Peterson, P.D.

    1998-12-31

    High- and low-strain rate compression data were obtained on several different energetic composites: PBX 9501, X0242-92-4-4, PBXN-9, as well as the polymeric binder used in PBX 9501 and X0242-92-4-4 composites. The effects of energetic-to-binder ratios, different binder systems, and different energetic formulations were investigated. All the energetic composites exhibit increasing elastic modulus, E, maximum flow stresses, {sigma}{sub m}, and strain-at-maximum stress, {var_epsilon}{sub m}, with increasing strain rate at ambient temperature. PBX 9501 displays marginally higher ultimate flow strength than X0242-92-4-4, and significantly higher ultimate compressive strength than PBXN-9 at quasi-static and dynamic strain rates. The failure mode of PBX 9501 and X0242-92-4-4 under high-rate loading changes from a mixture of ductile binder tearing and transgranular cleavage and cracking of the HMX when tested at 20 C to transgranular brittle HMX cleavage and glassy fracture of the binder at {minus}40 C.

  19. Dynamic Evaluation of Acrylonitrile Butadiene Styrene Subjected to High-Strain-Rate Compressive Loads

    Science.gov (United States)

    2014-12-01

    explores the fused deposition modeling ( FDM ) and the printing orientation as a means to quantify the potential benefits. These benefits include more cost...effective, time-efficient, in-house fabrication of designs, while optimizing the mechanical and structural integrity. In FDM , CAD software is used to...relationship to the stress experienced in a material at high-strain-rate deformation. For polymers such as ABS, the mechanical properties vary

  20. Characterization of unidirectional carbon fiber reinforced polyamide-6 thermoplastic composite under longitudinal compression loading at high strain rate

    Science.gov (United States)

    Ploeckl, Marina; Kuhn, Peter; Koerber, Hannes

    2015-09-01

    In the presented work, an experimental investigation has been performed to characterize the strain rate dependency of unidirectional carbon fiber reinforced polyamide-6 composite for longitudinal compression loading. An end-loaded compression specimen geometry, suitable for contactless optical strain measurement via digital image correlation and dynamic loading in a split-Hopkinson pressure bar, was developed. For the dynamic experiments at a constant strain rate of 100 s-1 a modified version of the Dynamic Compression Fixture, developed by Koerber and Camanho [Koerber and Camanho, Composites Part A, 42, 462-470, 2011] was used. The results were compared with quasi-static test results at a strain rate of 3 · 10-4 s-1 using the same specimen geometry. It was found that the longitudinal compressive strength increased by 61% compared to the strength value obtained from the quasi-static tests.

  1. Fracto-mechanoluminescent light emission of EuD4TEA-PDMS composites subjected to high strain-rate compressive loading

    Science.gov (United States)

    Ryu, Donghyeon; Castaño, Nicolas; Bhakta, Raj; Kimberley, Jamie

    2017-08-01

    The objective of this study is to understand light emission characteristics of fracto-mechanoluminescent (FML) europium tetrakis(dibenzoylmethide)-triethylammonium (EuD4TEA) crystals under high strain-rate compressive loading. As a sensing material that can play a pivotal role for the self-powered impact sensor technology, it is important to understand transformative light emission characteristics of the FML EuD4TEA crystals under high strain-rate compressive loading. First, EuD4TEA crystals were synthesized and embedded into polydimethylsiloxane (PDMS) elastomer to fabricate EuD4TEA-PDMS composite test specimens. Second, the prepared EuD4TEA-PDMS composites were tested using the modified Kolsky bar setup equipped with a high-speed camera. Third, FML light emission was captured to yield 12 bit grayscale video footage, which was processed to quantify the FML light emission. Finally, quantitative parameters were generated by taking into account pixel values and population of pixels of the 12 bit grayscale images to represent FML light intensity. The FML light intensity was correlated with high strain-rate compressive strain and strain rate to understand the FML light emission characteristics under high strain-rate compressive loading that can result from impact occurrences.

  2. Laser-Driven Ramp Compression to Investigate and Model Dynamic Response of Iron at High Strain Rates

    Directory of Open Access Journals (Sweden)

    Nourou Amadou

    2016-12-01

    Full Text Available Efficient laser shock processing of materials requires a good characterization of their dynamic response to pulsed compression, and predictive numerical models to simulate the thermomechanical processes governing this response. Due to the extremely high strain rates involved, the kinetics of these processes should be accounted for. In this paper, we present an experimental investigation of the dynamic behavior of iron under laser driven ramp loading, then we compare the results to the predictions of a constitutive model including viscoplasticity and a thermodynamically consistent description of the bcc to hcp phase transformation expected near 13 GPa. Both processes are shown to affect wave propagation and pressure decay, and the influence of the kinetics of the phase transformation on the velocity records is discussed in details.

  3. On inhomogeneous straining in compressed sylvinite

    Science.gov (United States)

    Barannikova, S. A.; Nadezhkin, M. V.; Zuev, L. B.; Zhigalkin, V. M.

    2010-06-01

    Spatiotemporal distributions of local components of the distortion tensor of quasi-plastic materials—saliferous rocks (sylvinite)—have been studied under active compressive straining conditions using double-exposure speckle photography techniques. The strain localization patterns are presented and the features of macroscopic strain inhomogeneity are considered for inelastic behavior of the material. Results obtained for the slow wave processes in deformed saliferous rocks are compared to analogous data available for ionic crystals.

  4. Spatial Compressive Sensing for Strain Data Reconstruction from Sparse Sensors

    Science.gov (United States)

    2014-10-01

    Spatial Compressive Sensing for Strain Data Reconstruction from Sparse Sensors by Mulugeta A Haile ARL-TR-7126 October 2014...Spatial Compressive Sensing for Strain Data Reconstruction from Sparse Sensors Mulugeta A Haile Vehicle Technology Directorate, ARL...

  5. Modelling of pressure-strain correlation in compressible turbulent flow

    Institute of Scientific and Technical Information of China (English)

    Siyuan Huang; Song Fu

    2008-01-01

    Previous studies carried out in the early 1990s conjectured that the main compressible effects could be associated with the dilatational effects of velocity fluctuation.Later,it was shown that the main compressibility effect came from the reduced pressure-strain term due to reduced pressure fluctuations.Although better understanding of the compressible turbulence is generally achieved with the increased DNS and experimental research effort,there are still some discrepancies among these recent findings.Analysis of the DNS and experimental data suggests that some of the discrepancies are apparent if the compressible effect is related to the turbulent Mach number,Mt.From the comparison of two classes of compressible flow,homogenous shear flow and inhomogeneous shear flow(mixing layer),we found that the effect of compressibility on both classes of shear flow can be characterized in three categories corresponding to three regions of turbulent Mach numbers:the low-Mt,the moderate-Mt and high-Mt regions.In these three regions the effect of compressibility on the growth rate of the turbulent mixing layer thickness is rather different.A simple approach to the reduced pressure-strain effect may not necessarily reduce the mixing-layer growth rate,and may even cause an increase in the growth rate.The present work develops a new second-moment model for the compressible turbulence through the introduction of some blending functions of Mt to account for the compressibility effects on the flow.The model has been successfully applied to the compressible mixing layers.

  6. Transfer induced compressive strain in graphene

    DEFF Research Database (Denmark)

    Larsen, Martin Benjamin Barbour Spanget; Mackenzie, David; Caridad, Jose

    2014-01-01

    We have used spatially resolved micro Raman spectroscopy to map the full width at half maximum (FWHM) of the graphene G-band and the 2D and G peak positions, for as-grown graphene on copper catalyst layers, for transferred CVD graphene and for micromechanically exfoliated graphene, in order...... to characterize the effects of a transfer process on graphene properties. Here we use the FWHM(G) as an indicator of the doping level of graphene, and the ratio of the shifts in the 2D and G bands as an indicator of strain. We find that the transfer process introduces an isotropic, spatially uniform, compressive...... strain in graphene, and increases the carrier concentration....

  7. Impact Compression Experiment for EPS Foam under Mid-high Strain Rate%中高应变率下EPS泡沫的冲击压缩实验

    Institute of Scientific and Technical Information of China (English)

    徐沛保; 巫绪涛; 李和平

    2012-01-01

    用SHPB装置对三种密度的发泡聚苯乙烯(Expanded Polystyrene,EPS)材料进行了从300/s至1400/s共五个中高应变率下的冲击压缩实验.实验中采用波分离技术有效延长应力-应变曲线的测量范围,并简要介绍了其原理和具体实施办法.所有应变率下均获得了含有弹性段、平台屈服段和压实段完整三阶段的应力-应变曲线.曲线的重复性较好,应变率基本恒定.实验结果表明,相同密度EPS泡沫应力-应变曲线的屈服平台段长度随应变率的增加而增加,且趋于平缓.在相近应变率下,随EPS泡沫的密度增加,屈服应力增加,而变形及吸能能力减弱.%Impact compression experiment was carried by using Split Hopkinson Pressure Bar (SHPB) for expanded polystyrene (EPS) foams with three different densities and under five different mid-high strain rates ranging from 300/s to 1400/s. In experiment, wave separation technique was adopted to extend the measuring range of stress-strain curve. Principle and implement of this method is introduced briefly in this paper. Integrated three-stage stress-strain curve including elastic region, plastic collapsing region and densification region was all obtained under different strain rates. Curves have better repeatability and strain rate is basically kept constant. Experimental results show that for EPS foam with the same density, the length of plastic collapsing region in a stress-strain curve increases and the curve form flattens along with strain rate increase. Under similar strain rate, the yield stress increases with the increasing of EPS foam density, but the ability of deformation and energy absorption are weakened.

  8. Microstructural Analysis of Orientation-Dependent Recovery and Recrystallization in a Modified 9Cr-1Mo Steel Deformed by Compression at a High Strain Rate

    DEFF Research Database (Denmark)

    Zhang, Zhenbo; Zhang, Yubin; Mishin, Oleg

    2016-01-01

    The evolution of the microstructure and texture during annealing of a modified ferritic/martensitic 9Cr-1Mo steel compressed by dynamic plastic deformation (DPD) to a strain of 2.3 has been investigated using transmission electron microscopy and electron backscatter diffraction. It is found...

  9. A finite strain Eulerian formulation for compressible and nearly incompressible hyperelasticity using high-order B-spline finite elements

    KAUST Repository

    Duddu, Ravindra

    2011-10-05

    We present a numerical formulation aimed at modeling the nonlinear response of elastic materials using large deformation continuum mechanics in three dimensions. This finite element formulation is based on the Eulerian description of motion and the transport of the deformation gradient. When modeling a nearly incompressible solid, the transport of the deformation gradient is decomposed into its isochoric part and the Jacobian determinant as independent fields. A homogeneous isotropic hyperelastic solid is assumed and B-splines-based finite elements are used for the spatial discretization. A variational multiscale residual-based approach is employed to stabilize the transport equations. The performance of the scheme is explored for both compressible and nearly incompressible applications. The numerical results are in good agreement with theory illustrating the viability of the computational scheme. © 2011 John Wiley & Sons, Ltd.

  10. Tunable biaxial in-plane compressive strain in a Si nanomembrane transferred on a polyimide film

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Munho; Mi, Hongyi; Cho, Minkyu; Seo, Jung-Hun; Ma, Zhenqiang, E-mail: mazq@engr.wisc.edu [Department of Electrical and Computer Engineering, University of Wisconsin–Madison, Madison, Wisconsin 53706 (United States); Zhou, Weidong [Department of Electrical Engineering, University of Texas at Arlington, Arlington, Texas 76019 (United States); Gong, Shaoqin [Department of Biomedical Engineering and Wisconsin Institute for Discovery, University of Wisconsin–Madison, Madison, Wisconsin 53706 (United States)

    2015-05-25

    A method of creating tunable and programmable biaxial compressive strain in silicon nanomembranes (Si NMs) transferred onto a Kapton{sup ®} HN polyimide film has been demonstrated. The programmable biaxial compressive strain (up to 0.54%) was generated utilizing a unique thermal property exhibited by the Kapton HN film, namely, it shrinks from its original size when exposed to elevated temperatures. The correlation between the strain and the annealing temperature was carefully investigated using Raman spectroscopy and high resolution X-ray diffraction. It was found that various amounts of compressive strains can be obtained by controlling the thermal annealing temperatures. In addition, a numerical model was used to evaluate the strain distribution in the Si NM. This technique provides a viable approach to forming in-plane compressive strain in NMs and offers a practical platform for further studies in strain engineering.

  11. Ge nanobelts with high compressive strain fabricated by secondary oxidation of self-assembly SiGe rings

    DEFF Research Database (Denmark)

    Lu, Weifang; Li, Cheng; Lin, Guangyang

    2015-01-01

    Curled Ge nanobelts were fabricated by secondary oxidation of self-assembly SiGe rings, which were exfoliated from the SiGe stripes on the insulator. The Ge-rich SiGe stripes on insulator were formed by hololithography and modified Ge condensation processes of Si0.82Ge0.18 on SOI substrate. Ge na...... nanobelts, which extrudes to Ge nanobelts in radial and tangent directions during the cooling process. This technique is promising for application in high-mobility Ge nano-scale transistors...

  12. Lightweight, highly compressible, noncrystalline cellulose capsules.

    Science.gov (United States)

    Carrick, Christopher; Lindström, Stefan B; Larsson, Per Tomas; Wågberg, Lars

    2014-07-08

    We demonstrate how to prepare extraordinarily deformable, gas-filled, spherical capsules from nonmodified cellulose. These capsules have a low nominal density, ranging from 7.6 to 14.2 kg/m(3), and can be deformed elastically to 70% deformation at 50% relative humidity. No compressive strain-at-break could be detected for these dry cellulose capsules, since they did not rupture even when compressed into a disk with pockets of highly compressed air. A quantitative constitutive model for the large deformation compression of these capsules is derived, including their high-frequency mechanical response and their low-frequency force relaxation, where the latter is governed by the gas barrier properties of the dry capsule. Mechanical testing corroborated these models with good accuracy. Force relaxation measurements at a constant compression rendered an estimate for the gas permeability of air through the capsule wall, calculated to 0.4 mL μm/m(2) days kPa at 50% relative humidity. These properties taken together open up a large application area for the capsules, and they could most likely be used for applications in compressible, lightweight materials and also constitute excellent model materials for adsorption and adhesion studies.

  13. Effect of Strain Rate on Compression Behavior of Vinyl Ester Resin Casting

    Institute of Scientific and Technical Information of China (English)

    XIONG Tao; YANG Bin; XIONG Jie; XU Xian-jian; ZHOU Kai; MAO Ming-zhong

    2006-01-01

    Quasi-static and high strain rate compressive experiments on vinyl ester casting were carried out by means of MTS (Material Test System) and Hopkinson bar. The behaviors of the compressed unstable and fracture of the resin casting at different strain rates were investigated. The results indicate that the response behavior of the resin casting is controlled by different mechanisms at different strain rate, and some mechanical properties of vinyl ester casting are ratedependent: the casting are destroyed in toughness model under strain rate 3.3 × 10-4 ~ 6.6 × 10-3/s, while the casting are destroyed in brittleness model under strain rate 950~5800/s. The yield stress, yield strain energy density are all increased with the increasing strain rates at quasi-static as well as at high strain rates. What is interesting is that the yield strain decreased with the strain rates increasing at quasi-static while increased at high strain rates. It is considered that the casting occurred forcing high elastic deformation at high strain rates. The damage of the specimens is mainly controlled by axial stress before unstable deformation, while mainly controlled by shear stress after unstable deformation, and then developed to fracture finally. This progress is rate-dependent: the development of the cracks inside the castings increased with the strain rate increasing.

  14. Microstructural Analysis of Orientation-Dependent Recovery and Recrystallization in a Modified 9Cr-1Mo Steel Deformed by Compression at a High Strain Rate

    Science.gov (United States)

    Zhang, Zhenbo; Zhang, Yubin; Mishin, Oleg V.; Tao, Nairong; Pantleon, Wolfgang; Juul Jensen, Dorte

    2016-09-01

    The evolution of the microstructure and texture during annealing of a modified ferritic/martensitic 9Cr-1Mo steel compressed by dynamic plastic deformation (DPD) to a strain of 2.3 has been investigated using transmission electron microscopy and electron backscatter diffraction. It is found that the duplex + fiber texture formed by DPD is transformed during annealing to a dominant fiber texture, and that crystallites of the component have an advantage during both nucleation and growth. Detailed characterization of the microstructural morphology, and estimation of the stored energies in - and -oriented regions in deformed and annealed samples, as well as investigations of the growth of recrystallizing grains, are used to analyze the annealing behavior. It is concluded that recrystallization in the given material occurs by a combination of oriented nucleation and oriented growth.

  15. Compressibility, turbulence and high speed flow

    CERN Document Server

    Gatski, Thomas B

    2013-01-01

    Compressibility, Turbulence and High Speed Flow introduces the reader to the field of compressible turbulence and compressible turbulent flows across a broad speed range, through a unique complimentary treatment of both the theoretical foundations and the measurement and analysis tools currently used. The book provides the reader with the necessary background and current trends in the theoretical and experimental aspects of compressible turbulent flows and compressible turbulence. Detailed derivations of the pertinent equations describing the motion of such turbulent flows is provided and

  16. COMPRESSIVE AND SHEAR ANALYSIS OF RUBBER BLOCK UNDER LARGE STRAIN

    Directory of Open Access Journals (Sweden)

    K. Sridharan

    2013-01-01

    Full Text Available The Elastomeric materials have found use in a wide range of applications, including hoses, tires, gaskets, seals, vibration isolators, bearings and dock fenders. The analysis of rubber blocks for its compression and shear behavior has been carried out using the imaging techniques. The dynamic stressing and its associated change in shape of the rubber blocks during large compression are very limited as their measurements were difficult. A newly developed Machine Vision based image processing test has been effectively used to study the deformation characteristics of the rubber blocks under large strains. An extended analysis on the rubber blocks has been carried out to understand the compression and deformation behavior in static and dynamic condition and the nonlinear behavior were also characterized. The rubber blocks of distinguished geometries have shown diverse change in shape and nonlinear deformation behavior under compression/shear loading.

  17. Evaluation Study of Pressure-Strain Correlation Models in Compressible Flow

    Directory of Open Access Journals (Sweden)

    Aicha Hanafi

    2016-01-01

    Full Text Available This paper is devoted to the second-order closure for compressible turbulent flows with special attention paid to modeling the pressure-strain correlation appearing in the Reynolds stress equation. This term appears as the main one responsible for the changes of the turbulence structures that arise from structural compressibility effects. The structure of the gradient Mach number is similar to that of turbulence, therefore this parameter may be appropriate to study the changes in turbulence structures that arise from structural compressibility effects. Thus, the incompressible model (LRR of the pressure-strain correlation and its corrected form by using the turbulent Mach number, fail to correctly evaluate the compressibility effects at high shear flow. An extension of the widely used incompressible model (LRR on compressible homogeneous shear flow is the major aim of the present work. From this extension the standard coefficients Ci became a function of the compressibility parameters (the turbulent Mach number and the gradient Mach number. Application of the model on compressible homogeneous shear flow by considering various initial conditions shows reasonable agreement with the DNS results of Sarkar. The ability of the models to predict the equilibrium states for the flow in cases A1 and A4 from DNS results of Sarkar is examined, the results appear to be very encouraging. Thus, both parameters Mt and Mg should be used to model significant structural compressibility effects at high-speed shear flow.

  18. Analysis of Large-Strain Extrusion Machining with Different Chip Compression Ratios

    Directory of Open Access Journals (Sweden)

    Wen Jun Deng

    2012-01-01

    Full Text Available Large-Strain Extrusion Machining (LSEM is a novel-introduced process for deforming materials to very high plastic strains to produce ultra-fine nanostructured materials. Before the technique can be exploited, it is important to understand the deformation behavior of the workpiece and its relationship to the machining parameters and friction conditions. This paper reports finite-element method (FEM analysis of the LSEM process to understand the evolution of temperature field, effective strain, and strain rate under different chip compression ratios. The cutting and thrust forces are also analyzed with respect to time. The results show that LSEM can produce very high strains by changing in the value of chip compression ratio, thereby enabling the production of nanostructured materials. The shape of the chip produced by LSEM can also be geometrically well constrained.

  19. Uniaxial Compressive Properties of Ultra High Toughness Cementitious Composite

    Institute of Scientific and Technical Information of China (English)

    CAI Xiangrong; XU Shilang

    2011-01-01

    Uniaxial compression tests were conducted to characterize the main compressive performance of ultra high toughness cementitious composite(UHTCC)in terms of strength and toughness and to obtain its stress-strain relationships.The compressive strength investigated ranges from 30 MPa to 60 MPa.Complete stress-strain curves were directly obtained,and the strength indexes,including uniaxial compressive strength,compressive strain at peak stress,elastic modulus and Poisson's ratio,were calculated.The comparisons between UHTCC and matrix were also carried out to understand the fiber effect on the compressive strength indexes.Three dimensionless toughness indexes were calculated,which either represent its relative improvement in energy absorption capacity because of fiber addition or provide an indication of its behavior relative to a rigid-plastic material.Moreover,two new toughness indexes,which were named as post-crack deformation energy and equivalent compressive strength,were proposed and calculated with the aim at linking up the compressive toughness of UHTCC with the existing design concept of concrete.The failure mode was also given.The study production provides material characteristics for the practical engineering application of UHTCC.

  20. Characterization of network parameters for UHMWPE by plane strain compression.

    Science.gov (United States)

    Abreu, E L; Ngo, H D; Bellare, A

    2014-04-01

    Ultra-high molecular weight polyethylene (PE) is used as a bearing material for total joint replacement prostheses since it is a tough, wear-resistant semicrystalline polymer. Despite its high resistance to wear, PE components have shown measureable wear in vivo, which can cause wear-particle induced osteolysis. Crosslinking of PE using ionizing radiation has been shown to increase wear resistance since both chemical crosslinks and physical entanglements provide high resistance to wear. Molecular characterization of crosslinked PEs is usually conducted using equilibrium swelling or by quantifying gel content. In this study, we compared crosslink densities and molecular weight between crosslinks derived from equilibrium swelling to those obtained by applying the Gaussian and Eight-Chain model to describe plane strain compression of the PE melt. The latter approach has the advantage of accounting for contributions of entanglements to the overall crosslink density, which solvent-based techniques largely neglect. As expected, the crosslink density calculated from model fitting increased monotonically with increase in radiation dose in a 0-200kGy dose range, with a corresponding monotonic decrease in molecular weight between crosslinks, but provided higher values of crosslink density and correspondingly lower values of molecular weight between crosslinks compared to the equilibrium swelling technique.

  1. Effect of strain rate and water-to-cement ratio on compressive mechanical behavior of cement mortar

    Institute of Scientific and Technical Information of China (English)

    周继凯; 葛利梅

    2015-01-01

    Effects of strain rate and water-to-cement ratio on the dynamic compressive mechanical behavior of cement mortar are investigated by split Hopkinson pressure bar (SHPB) tests. 124 specimens are subjected to dynamic uniaxial compressive loadings. Strain rate sensitivity of the materials is measured in terms of failure modes, stress−strain curves, compressive strength, dynamic increase factor (DIF) and critical strain at peak stress. A significant change in the stress−strain response of the materials with each order of magnitude increase in strain rate is clearly seen from test results. The slope of the stress−strain curve after peak value for low water-to-cement ratio is steeper than that of high water-to-cement ratio mortar. The compressive strength increases with increasing strain rate. With increase in strain rate, the dynamic increase factor (DIF) increases. However, this increase in DIF with increase in strain rate does not appear to be a function of the water-to-cement ratio. The critical compressive strain increases with the strain rate.

  2. STUDY ON STRESS-STRAIN PROPERTIES OF REACTIVE POWDER CONCRETE UNDER UNIAXIAL COMPRESSION

    Directory of Open Access Journals (Sweden)

    M.V.SESHAGIRI RAO

    2010-11-01

    Full Text Available Reactive Powder Concrete(RPC which is a new type of improved high strength concrete, is a recent development in concrete technology. Because the material is intrinsically strong in compression, the stress-strain behaviour of RPC under compression is of considerable interest in the design of RPC members and accurate prediction of their structural behaviour. An attempt has been made in the present study to determine the complete stress-strain curves from uniaxial compression tests. The effect of material composition on the stressstrain behaviour and the compression toughness are presented in the paper. The highest cylinder compressive strength of 171.3 MPa and elastic modulus of 44.8 GPa were recorded for 2% 13 mm Fibres. The optimum Fibre content was found to be 3% of 6mm or 2% of 13 mm. A new measure of compression toughness known as MTI (modified toughness index is proposed and it is found to range from 2.64 to 4.65 for RPC mixes.

  3. Tuning Optical Properties of MoS2 Bulk and Monolayer Under Compressive and Tensile Strain: A First Principles Study

    Science.gov (United States)

    Kafi, Fariba; Pilevar Shahri, Raheleh; Benam, Mohammad Reza; Akhtar, Arsalan

    2017-06-01

    Knowledge of the optical properties under compressive and tensile strain is highly important in photoelectron devices and the semiconductor industry. In this work, optical properties of bulk and monolayer MoS2 under compressive and tensile strains are investigated by means of density functional theory. The dielectric tensor is derived within the random phase approximation. Calculations indicate that unstrained two-dimensional and bulk MoS2 lead to semiconductors with the gaps of 1.64 eV and 0.84 eV, respectively, whereas the change in the value of the gap by applying tensile or compressive strain depends on the nature of strains. Dielectric function, absorption coefficient, reflectivity, energy loss and the refraction index of the strained and unstrained systems are studied for both parallel (E||x) and perpendicular (E||z) applied electric field polarizations, which are very sensitive to the type and amount of strains. For instance, the reflectivity of a MoS2 monolayer exposed to visible light in the E||z polarization direction, can be tuned from 4% to 10% by introducing strain. Finally, the Abbe number is calculated to characterize the dispersion of the materials under compressive and tensile strain. Bulk MoS2 for E||x shows the highest value of the Abbe number, which shrinks twenty times under the influence of compressive strain.

  4. Tuning Optical Properties of MoS2 Bulk and Monolayer Under Compressive and Tensile Strain: A First Principles Study

    Science.gov (United States)

    Kafi, Fariba; Pilevar Shahri, Raheleh; Benam, Mohammad Reza; Akhtar, Arsalan

    2017-10-01

    Knowledge of the optical properties under compressive and tensile strain is highly important in photoelectron devices and the semiconductor industry. In this work, optical properties of bulk and monolayer MoS2 under compressive and tensile strains are investigated by means of density functional theory. The dielectric tensor is derived within the random phase approximation. Calculations indicate that unstrained two-dimensional and bulk MoS2 lead to semiconductors with the gaps of 1.64 eV and 0.84 eV, respectively, whereas the change in the value of the gap by applying tensile or compressive strain depends on the nature of strains. Dielectric function, absorption coefficient, reflectivity, energy loss and the refraction index of the strained and unstrained systems are studied for both parallel ( E||x) and perpendicular ( E||z) applied electric field polarizations, which are very sensitive to the type and amount of strains. For instance, the reflectivity of a MoS2 monolayer exposed to visible light in the E||z polarization direction, can be tuned from 4% to 10% by introducing strain. Finally, the Abbe number is calculated to characterize the dispersion of the materials under compressive and tensile strain. Bulk MoS2 for E||x shows the highest value of the Abbe number, which shrinks twenty times under the influence of compressive strain.

  5. Compressive mechanical of high strength concrete (HSC) after different high temperature history

    Science.gov (United States)

    Zhao, Dongfu; Liu, Yuchen; Gao, Haijing; Han, Xiao

    2017-08-01

    The compression strength test of high strength concrete under different high-temperature conditions was carried out by universal testing machine. The friction surface of the pressure bearing surface of the specimen was composed of three layers of plastic film and glycerol. The high temperature working conditions were the combination of different heating temperature and different constant temperature time. The characteristics of failure modes and the developments of cracks were observed; the residual compressive strength and stress-strain curves were measured; the effect of different temperature and heating time on the strength and deformation of high strength concrete under uniaxial compression were analyzed; the failure criterion formula of the high strength concrete after high temperature under uniaxial compression was established. The formula of the residual compressive strength of high strength concrete under the influence of heating temperature and constant temperature time was put forward. The relationship between the residual elastic modulus and the peak strain and residual compressive strength of high strength concrete and different high temperature conditions is established. The quantitative relationship that the residual compressive strength decreases the residual elastic modulus decreases and the peak strain increases with the increase of heating temperature and the constant temperature time was given, which provides a reference for the detection and evaluation of high strength concrete structures after fire.

  6. Compressive behavior of bulk metallic glass under different conditions --- Coupled effect of temperature and strain rate

    Science.gov (United States)

    Yin, Weihua

    Metallic glass was first reported in 1960 by rapid quenching of Au-Si alloys. But, due to the size limitation, this material did not attract remarkable interest until the development of bulk metallic glasses (BMGs) with specimen sizes in excess of 1 mm. BMGs are considered to be promising engineering materials because of their ultrahigh strength, high elastic limit and wear resistance. However, they usually suer from a strong tendency for localized plastic deformation with catastrophic failure. Many basic questions, such as the origin of shear softening and the strain rate eect remain unclear. In this thesis, the mechanical behavior of the Zr55Al 10Ni5Cu30 bulk metallic glass and a metallic glass composite is investigated. The stress-strain relationship for Zr55Al10Ni 5Cu30 over a wide range of strain rate (5x10 --5 to 2x103 s--1) was investigated in uniaxial compression loading using both MTS servo-hydraulic system (quasi-static) and compression Kolsky bar system (dynamic). The effect of the strain rate on the fracture stress at room temperature was discussed. Based on the experimental results, the strain rate sensitivity of the bulk metallic glass changes from a positive value to a negative value at high strain rate, which is a consequence of the significant adiabatic temperature rise during the dynamic testing. In order to characterize the temperature eect on the mechanical behavior of the metallic glass, a synchronically assembled heating unit was designed to be attached onto the Kolsky bar system to perform high temperature and high strain rate mechanical testing. A transition from inhomogeneous deformation to homogeneous deformation has been observed during the quasi-static compressive experiments at testing temperatures close to the glass transition temperature. However, no transition has been observed at high strain rates at all the testing temperatures. A free volume based model is applied to analyze the stress-strain behavior of the homogeneous

  7. Material Compressing Test of the High Polymer Part Used in Draft Gear of Heavy Load Locomotive

    Directory of Open Access Journals (Sweden)

    Wei Yangang

    2016-01-01

    Full Text Available According to the actual load cases of heavy load locomotive, the material compressing tests of the high polymer parts used in the locomotive are researched. The relationship between stress and strain during the material compressing are acquired by means of comparing the many results of the material compressing tests under different test condition. The relationship between stress and strain during the material compressing is nonlinear in large range of strain, but the relationship is approximately linear in small range of strain. The material of the high polymer made in China and the material of the high polymer imported are compared through the tests. The results show that the compressing property of the material of the high polymer made in China and the material of the high polymer imported are almost same. The research offers the foundation to study the structure elasticity of the draft gear.

  8. Compressive and tensile strain sensing using a polymer planar Bragg grating.

    Science.gov (United States)

    Rosenberger, M; Hessler, S; Belle, S; Schmauss, B; Hellmann, R

    2014-03-10

    A polymer planar Bragg grating sensor is used for measuring both mechanical compressive and tensile strain. The planar waveguide with integrated Bragg grating is fabricated in bulk Polymethylmethacrylate in a single writing step using combined amplitude and phase mask technique. After butt coupling of a single-mode optical fiber the planar structure can be applied for measuring both mechanical tensile and compressive strain alongside the integrated waveguide without the need of further modifications. In this respect, we particularly report for the first time compressive strain measurements using a polymer Bragg grating. Furthermore, the sensitivity of the sensor against tensile and compressive strain, its reproducibility and hysteresis are investigated and discussed.

  9. Entire deformational characteristics and strain localization of jointed rock specimen in plane strain compression

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Shear band (SB),axial, lateral and volumetric strains as well as Poisson's ratio of anisotropic jointed rock specimen (JRS) were modeled by Fast Lagrangian Analysis of Continua (FLAC). Failure criterion of rock was a composited Mohr-Coulomb criterion with tension cut-off. An inclined joint was treated as square elements of ideal plastic material beyond the peak strength. Several FISH functions were written to automatically find the addresses of elements in the joint and to calculate the entire deformational characteristics of plane strain JRS. The results show that for moderate joint inclination (JI), strain is only concentrated into the joint governing the behavior of JRS,leading to ideal plastic responses in axial and lateral directions. For higher JI, the post-peak stress-axial and lateral strain curves become steeper as JI increases owing to the increase of new SB's length. Lateral expansion and precursor to the unstable failure are the most apparent, resulting in the highest Poisson's ratio and even negative volumetric strain. For lower JI, the entire post-peak deformational characteristics are independent of JI. The lowest lateral expansion occurs, leading to the lowest Poisson's ratio and positive volumetric strain all along. The present prediction on anisotropic strength in plane strain compression qualitatively agrees with the results in triaxial tests of rocks.The JI calculated by Jaeger's formula overestimates that related to the minimum strength. Advantages of the present numerical model over the Jaeger's model are pointed out.

  10. Characterization of optical anisotropy in quantum wells under compressive anisotropic in-plane strain

    Science.gov (United States)

    Biermann, Mark L.; Walters, Matthew; Diaz-Barriga, James; Rabinovich, W. S.

    2003-10-01

    Anisotropic in-plane strain in quantum wells leads to an optical polarization anisotropy that can be exploited for device applications. We have determined that for many anisotropic compressive strain cases, the dependence of the optical anisotropy is linear in the strain anisotropy. This result holds for a variety of well and barrier materials and widths and for various overall strain conditions. Further, the polarization anisotropy per strain anisotropy varies as the reciprocal of the energy separation of the relevant hole sub-bands. Hence, a general result for the polarization anisotropy per strain anisotropy is avialable for cases of compressive anisotropic in-plane strain.

  11. Characterization of optical anisotropy in quantum wells under compressive anisotropic in-plane strain

    Energy Technology Data Exchange (ETDEWEB)

    Biermann, Mark L [Physics Department, 566 Brownson Rd., U.S. Naval Academy, Annapolis, MD 21402 (United States); Walters, Matthew [Physics Department, 566 Brownson Rd., U.S. Naval Academy, Annapolis, MD 21402 (United States); Diaz-Barriga, James [Physics Department, 566 Brownson Rd., U.S. Naval Academy, Annapolis, MD 21402 (United States); Rabinovich, W S [Naval Research Laboratory, Code 5652, 4555 Overlook Ave. SW, Washington, DC 20375-5320 (United States)

    2003-10-21

    Anisotropic in-plane strain in quantum wells leads to an optical polarization anisotropy that can be exploited for device applications. We have determined that for many anisotropic compressive strain cases, the dependence of the optical anisotropy is linear in the strain anisotropy. This result holds for a variety of well and barrier materials and widths and for various overall strain conditions. Further, the polarization anisotropy per strain anisotropy varies as the reciprocal of the energy separation of the relevant hole sub-bands. Hence, a general result for the polarization anisotropy per strain anisotropy is available for cases of compressive anisotropic in-plane strain.

  12. Highly Strained Organophosphorus Compounds

    NARCIS (Netherlands)

    Slootweg, J.C.

    2005-01-01

    In our research on small, strained organophosphorus ring systems we became interested in the synthesis and applications of species that are even more strained than the parent phosphirane, by introducing an exocyclic double bond (methylenephosphirane), and by cyclopropyl spirofusion to the edge (e.g

  13. Recrystallization of High Carbon Steel during High Strain Rate

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The recrystallization of high carbon steel during high temperature and high speed rolling has been studied by analyzing the stress-strain curves and the austenite grain size.Isothermal multi-pass hot compression at high strain rate was carried out by Gleeble-2000. The austenite grain size was measured by IBAS image analysis system. The results show that static recrystallization occurred at interpass time under pre-finish rolling, and at the finish rolling stage, due to the brief interpass time, static recrystallization can not be found.

  14. The compressive behaviour and constitutive equation of polyimide foam in wide strain rate and temperature

    Directory of Open Access Journals (Sweden)

    Yoshimoto Akifumi

    2015-01-01

    Full Text Available These days, polymer foams, such as polyurethane foam and polystyrene foam, are used in various situations as a thermal insulator or shock absorber. In general, however, their strength is insufficient in high temperature environments because of their low glass transition temperature. Polyimide is a polymer which has a higher glass transition temperature and high strength. Its mechanical properties do not vary greatly, even in low temperature environments. Therefore, polyimide foam is expected to be used in the aerospace industry. Thus, the constitutive equation of polyimide foam that can be applied across a wide range of strain rates and ambient temperature is very useful. In this study, a series of compression tests at various strain rates, from 10−3 to 103 s−1 were carried out in order to examine the effect of strain rate on the compressive properties of polyimide foam. The flow stress of polyimide foam increased rapidly at dynamic strain rates. The effect of ambient temperature on the properties of polyimide foam was also investigated at temperature from − 190 °C to 270°∘C. The flow stress decreased with increasing temperature.

  15. High SNR Consistent Compressive Sensing

    OpenAIRE

    Kallummil, Sreejith; Kalyani, Sheetal

    2017-01-01

    High signal to noise ratio (SNR) consistency of model selection criteria in linear regression models has attracted a lot of attention recently. However, most of the existing literature on high SNR consistency deals with model order selection. Further, the limited literature available on the high SNR consistency of subset selection procedures (SSPs) is applicable to linear regression with full rank measurement matrices only. Hence, the performance of SSPs used in underdetermined linear models ...

  16. Relationship between burgers vectors of dislocations and plastic strain localization patterns in compression-strained alkali halide crystals

    Science.gov (United States)

    Barannikova, S. A.; Nadezhkin, M. V.; Zuev, L. B.

    2011-08-01

    Plastic strain localization patterns in compression-strained alkali halide (NaCl, KCl, and LiF) crystals have been studied using a double-exposure speckle photography technique. The main parameters of strain localization autowaves at the linear stages of deformation hardening in alkali halide crystals have been determined. A quantitative relationship between the macroscopic parameters of plastic flow localization and microscopic parameters of strained alkali halide crystals has been established.

  17. Lattice strains in gold and rhenium under nonhydrostatic compression to 37 GPa

    Energy Technology Data Exchange (ETDEWEB)

    Duffy, Thomas S. [Department of Geosciences, Princeton University, Princeton, New Jersey 08544 (United States); Shen, Guoyin [Consortium for Advanced Radiation Sources, The University of Chicago, Chicago, Illinois 60637 (United States); Heinz, Dion L. [Department of Geophysical Sciences, The University of Chicago, Chicago, Illinois 60637 (United States); Shu, Jinfu [Geophysical Laboratory and Center for High-Pressure Research, Carnegie Institution of Washington, Washington, DC 20015 (United States); Ma, Yanzhang [Geophysical Laboratory and Center for High-Pressure Research, Carnegie Institution of Washington, Washington, DC 20015 (United States); Mao, Ho-Kwang [Geophysical Laboratory and Center for High-Pressure Research, Carnegie Institution of Washington, Washington, DC 20015 (United States); Hemley, Russell J. [Geophysical Laboratory and Center for High-Pressure Research, Carnegie Institution of Washington, Washington, DC 20015 (United States); Singh, Anil K. [Materials Science Division, National Aerospace Laboratories, Bangalore 5600 17, (India)

    1999-12-01

    Using energy-dispersive x-ray diffraction techniques together with the theory describing lattice strains under nonhydrostatic compression, the behavior of a layered sample of gold and rhenium has been studied at pressures of 14-37 GPa. For gold, the uniaxial stress component t is consistent with earlier studies and can be described by t=0.06+0.015P where P is the pressure in GPa. The estimated single-crystal elastic moduli are in reasonable agreement with trends based on extrapolated low-pressure data. The degree of elastic anisotropy increases as {alpha}, the parameter which characterizes stress-strain continuity across grain boundaries, is reduced from 1.0 to 0.5. For rhenium, the apparent equation of state has been shown to be strongly influenced by nonhydrostatic compression, as evidenced by its dependence on the angle {psi} between the diffracting plane normal and the stress axis. The bulk modulus obtained by inversion of nonhydrostatic compression data can differ by nearly a factor of 2 at angles of 0 degree sign and 90 degree sign . On the other hand, by a proper choice of {psi}, d spacings corresponding to quasihydrostatic compression can be obtained from data obtained under highly nonhydrostatic conditions. The uniaxial stress in rhenium over the pressure range from 14-37 GPa can be described by t=2.5+0.09P. The large discrepancy between x-ray elastic moduli and ultrasonic data and theoretical calculations indicates that additional factors such as texturing or orientation dependence of t need to be incorporated to more fully describe the strain distribution in hexagonal-close-packed metals. (c) 1999 The American Physical Society.

  18. Compressive sensing for high resolution radar imaging

    NARCIS (Netherlands)

    Anitori, L.; Otten, M.P.G.; Hoogeboom, P.

    2010-01-01

    In this paper we present some preliminary results on the application of Compressive Sensing (CS) to high resolution radar imaging. CS is a recently developed theory which allows reconstruction of sparse signals with a number of measurements much lower than what is required by the Shannon sampling th

  19. Sieving hydrogen based on its high compressibility

    Science.gov (United States)

    Chen, Hangyan; Sun, Deyan; Gong, Xingao; Liu, Zhifeng

    2011-03-01

    Based on carbon nanotube intramolecular junction and a C60, a molecular sieve for hydrogen is presented. The small interspace between C60 and junction provides a size changeable channel for the permselectivity of hydrogen while blocking Ne and Ar. The sieving mechanism is due to the high compressibility of hydrogen.

  20. Strain localization in compressed ZrO2(Y2O3) ceramics

    Science.gov (United States)

    Barannikova, S. A.; Buyakova, S. P.; Zuev, L. B.; Kul'Kov, S. N.

    2007-06-01

    Spatiotemporal distributions of local components of the distortion tensor of a nonplastic material—yttria partially stabilized tetragonal zirconia (YTZ) ceramics—have been studied under active compressive straining conditions using double-exposure speckle photography techniques. The strain localization patterns are presented and the features of macroscopic strain inhomogeneity in the elastic state of YTZ ceramics are considered.

  1. Stress-Strain Relationship of High-Strength Steel Fiber Reinforced Concrete in Compression%钢纤维高强混凝土单轴压缩下应力应变关系

    Institute of Scientific and Technical Information of China (English)

    严少华; 钱七虎; 孙伟; 尹放林

    2001-01-01

    在实际工程中推广应用钢纤维高强混凝土,要了解其基本力学性能.采用MTS815.03型液压伺服刚性压力试验机,对钢纤维含量为0~6%、抗压强度在65~120MPa范围的4种钢纤维高强混凝土,进行单轴压缩荷载作用下的应力应变全过程试验.结合试验给出全曲线的方程,并分析钢纤维对抗压强度、弹性模量、韧度、泊松比等的影响.试验表明,当钢纤维长度大于或接近于最大集料尺寸时,钢纤维高强混凝土具有较高的抗压强度和韧度,是一种优良的新型建筑材料.%It is necessary to research the basic mechanical performance inorder to use high-strength steel fiber reinforced concrete (HSFC) in practical engineering. Tests are conducted to characterize the stress-strain relationship of HSFC in compression by MTS815.03 rock testing machine. The concrete strength investigated ranges from 65 to 120 MPa and the volume fraction of steel fiber ranges from 0 to 6%. Based on the test data, an analytical model is proposed to generate the complete stress-strain curve for HSFC. The elastic modulus and toughness and Poisson’s ration of HSFC are also calculated in this paper. It is also proved by tests that HSFC is a good building material with high strength and high toughness when steel fibers are longer than the size of aggregate in concrete.

  2. Shock Compression and Strain Rate Effect in Composites and Polymers

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Eric [Los Alamos National Laboratory

    2012-06-20

    Polymers are increasingly being utilized as monolithic materials and composite matrices for structural applications historically reserved for metals. High strain and high strain-rate applications in aerospace, defense, and automotive industries have lead to interest in utilizing the ability of many polymers to withstand extensions to failure of several hundred percent, often without localization or necking and their strong rate dependence. A broad range of characterization techniques will be presented for semi-crystalline polymers and composites including elastic-plastic fracture, split Hopkinson pressure bar (SHPB), plate impact including soft-recovery and lateral gage measurements and Taylor Impact. Gas-launched, plate impact experiments have been performed on pedigreed PTFE 7C, mounted in momentum-trapped, shock assemblies, with impact pressures above and below the phase II to phase III crystalline transition to probe subtle changes in the crystallinity, microstructure, and mechanical response of PTFE. Observed strong anisotropy on the hugoniot and spall behavior of fiber-reinforced composites will be discussed. Polymers are known to exhibit a strong dependence of the yield stress on temperature and strain-rate that are often observed to be linear for temperature and logarithmic for strain-rate. Temperature and strain-rate dependence will be reviewed in terms of classic time-temperature superposition and an empirical mapping function for superposition between temperature and strain-rate. The recent extension of the new Dynamic-Tensile-Extrusion (Dyn-Ten-Ext) technique to probe the dynamic tensile responses of polymers will be discussed, where more irregular deformation and stochastic-based damage and failure mechanisms than the stable plastic elongation and shear instabilities observed that in metals. The opportunity to use of Dyn-Ten-Ext to probe incipient damage at very high strain-rate by linking in situ and post mortem experimental observations with high

  3. Study of the stress-strain state of compressed concrete elements with composite reinforcement

    Directory of Open Access Journals (Sweden)

    Bondarenko Yurii

    2017-01-01

    Full Text Available The efficiency analysis of the application of glass composite reinforcement in compressed concrete elements as a load-carrying component has been performed. The results of experimental studies of the deformation-strength characteristics of this reinforcement on compression and compressed concrete cylinders reinforced by this reinforcement are presented. The results of tests and mechanisms of sample destruction have been analyzed. The numerical analysis of the stress-strain state has been performed for axial compression of concrete elements with glasscomposite reinforcement. The influence of the reinforcement percentage on the stressed state of a concrete compressed element with the noted reinforcement is estimated. On the basis of the obtained results, it is established that the glass-composite reinforcement has positive effect on the strength of the compressed concrete elements. That is, when calculating the load-bearing capacity of such structures, the function of composite reinforcement on compression should not be neglected.

  4. Effects of texture on shear band formation in plane strain tension/compression and bending

    DEFF Research Database (Denmark)

    Kuroda, M.; Tvergaard, Viggo

    2007-01-01

    model analysis. Third, shear band developments in plane strain pure bending of a sheet specimen with the typical textures are studied. Regions near the surfaces in a bent sheet specimen are approximately subjected to plane strain tension or compression. From this viewpoint, the bendability of a sheet......In this study, effects of typical texture components observed in rolled aluminum alloy sheets on shear band formation in plane strain tension/compression and bending are systematically studied. The material response is described by a generalized Taylor-type polycrystal model, in which each grain...... are obtained: i.e. the critical strain at the onset of shear banding and the corresponding orientation of shear band. Second, the shear band development in plane strain tension/compression is analyzed by the finite element method. Predictability of the finite element analysis is compared to that of the simple...

  5. Strain Rate Dependence of Compressive Yield and Relaxation in DGEBA Epoxies

    Science.gov (United States)

    Arechederra, Gabriel K.; Reprogle, Riley C.; Clarkson, Caitlyn M.; McCoy, John D.; Kropka, Jamie M.; Long, Kevin N.; Chambers, Robert S.

    2015-03-01

    The mechanical response in uniaxial compression of two diglycidyl ether of bisphenol-A epoxies were studied. These were 828DEA (Epon 828 cured with diethanolamine (DEA)) and 828T403 (Epon 828 cured with Jeffamine T-403). Two types of uniaxial compression tests were performed: A) constant strain rate compression and B) constant strain rate compression followed by a constant strain relaxation. The peak (yield) stress was analyzed as a function of strain rate from Eyring theory for activation volume. Runs at different temperatures permitted the construction of a mastercurve, and the resulting shift factors resulted in an activation energy. Strain and hold tests were performed for a low strain rate where a peak stress was lacking and for a higher strain rate where the peak stress was apparent. Relaxation from strains at different places along the stress-strain curve was tracked and compared. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  6. High reflection mirrors for pulse compression gratings.

    Science.gov (United States)

    Palmier, S; Neauport, J; Baclet, N; Lavastre, E; Dupuy, G

    2009-10-26

    We report an experimental investigation of high reflection mirrors used to fabricate gratings for pulse compression application at the wavelength of 1.053microm. Two kinds of mirrors are studied: the mixed Metal MultiLayer Dielectric (MMLD) mirrors which combine a gold metal layer with some e-beam evaporated dielectric bilayers on the top and the standard e-beam evaporated MultiLayer Dielectric (MLD) mirrors. Various samples were manufactured, damage tested at a pulse duration of 500fs. Damage sites were subsequently observed by means of Nomarski microscopy and white light interferometer microscopy. The comparison of the results evidences that if MMLD design can offer damage performances rather similar to MLD design, it also exhibits lower stresses; being thus an optimal mirror substrate for a pulse compression grating operating under vacuum.

  7. High strain rate behaviour of polypropylene microfoams

    Science.gov (United States)

    Gómez-del Río, T.; Garrido, M. A.; Rodríguez, J.; Arencón, D.; Martínez, A. B.

    2012-08-01

    Microcellular materials such as polypropylene foams are often used in protective applications and passive safety for packaging (electronic components, aeronautical structures, food, etc.) or personal safety (helmets, knee-pads, etc.). In such applications the foams which are used are often designed to absorb the maximum energy and are generally subjected to severe loadings involving high strain rates. The manufacture process to obtain polymeric microcellular foams is based on the polymer saturation with a supercritical gas, at high temperature and pressure. This method presents several advantages over the conventional injection moulding techniques which make it industrially feasible. However, the effect of processing conditions such as blowing agent, concentration and microfoaming time and/or temperature on the microstructure of the resulting microcellular polymer (density, cell size and geometry) is not yet set up. The compressive mechanical behaviour of several microcellular polypropylene foams has been investigated over a wide range of strain rates (0.001 to 3000 s-1) in order to show the effects of the processing parameters and strain rate on the mechanical properties. High strain rate tests were performed using a Split Hopkinson Pressure Bar apparatus (SHPB). Polypropylene and polyethylene-ethylene block copolymer foams of various densities were considered.

  8. High strain rate behaviour of polypropylene microfoams

    Directory of Open Access Journals (Sweden)

    Martínez A.B.

    2012-08-01

    Full Text Available Microcellular materials such as polypropylene foams are often used in protective applications and passive safety for packaging (electronic components, aeronautical structures, food, etc. or personal safety (helmets, knee-pads, etc.. In such applications the foams which are used are often designed to absorb the maximum energy and are generally subjected to severe loadings involving high strain rates. The manufacture process to obtain polymeric microcellular foams is based on the polymer saturation with a supercritical gas, at high temperature and pressure. This method presents several advantages over the conventional injection moulding techniques which make it industrially feasible. However, the effect of processing conditions such as blowing agent, concentration and microfoaming time and/or temperature on the microstructure of the resulting microcellular polymer (density, cell size and geometry is not yet set up. The compressive mechanical behaviour of several microcellular polypropylene foams has been investigated over a wide range of strain rates (0.001 to 3000 s−1 in order to show the effects of the processing parameters and strain rate on the mechanical properties. High strain rate tests were performed using a Split Hopkinson Pressure Bar apparatus (SHPB. Polypropylene and polyethylene-ethylene block copolymer foams of various densities were considered.

  9. Thermal Annealing induced relaxation of compressive strain in porous GaN structures

    KAUST Repository

    Ben Slimane, Ahmed

    2012-01-01

    The effect of annealing on strain relaxation in porous GaN fabricated using electroless chemical etching is presented. The Raman shift of 1 cm-1 in phonon frequency of annealed porous GaN with respect to as-grown GaN corresponds to a relaxation of compressive strain by 0.41 ± 0.04 GPa. The strain relief promises a marked reduction in threading dislocation for subsequent epitaxial growth.

  10. High-quality lossy compression: current and future trends

    Science.gov (United States)

    McLaughlin, Steven W.

    1995-01-01

    This paper is concerned with current and future trends in the lossy compression of real sources such as imagery, video, speech and music. We put all lossy compression schemes into common framework where each can be characterized in terms of three well-defined advantages: cell shape, region shape and memory advantages. We concentrate on image compression and discuss how new entropy constrained trellis-based compressors achieve cell- shape, region-shape and memory gain resulting in high fidelity and high compression.

  11. High strain rate deformation of layered nanocomposites

    Science.gov (United States)

    Lee, Jae-Hwang; Veysset, David; Singer, Jonathan P.; Retsch, Markus; Saini, Gagan; Pezeril, Thomas; Nelson, Keith A.; Thomas, Edwin L.

    2012-11-01

    Insight into the mechanical behaviour of nanomaterials under the extreme condition of very high deformation rates and to very large strains is needed to provide improved understanding for the development of new protective materials. Applications include protection against bullets for body armour, micrometeorites for satellites, and high-speed particle impact for jet engine turbine blades. Here we use a microscopic ballistic test to report the responses of periodic glassy-rubbery layered block-copolymer nanostructures to impact from hypervelocity micron-sized silica spheres. Entire deformation fields are experimentally visualized at an exceptionally high resolution (below 10 nm) and we discover how the microstructure dissipates the impact energy via layer kinking, layer compression, extreme chain conformational flattening, domain fragmentation and segmental mixing to form a liquid phase. Orientation-dependent experiments show that the dissipation can be enhanced by 30% by proper orientation of the layers.

  12. Unified analytical stress- strain curve for quasibrittle geomaterial in uniaxial tension, direct shear and uniaxial compression

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Considering strain localization in the form of a narrow band initiated just at peak stress, three analytical expressions for stress- strain curves of quasibrittle geomaterial (such as rock and concrete) in uniaxial tension, direct shear and uniaxial compression were presented, respectively. The three derived stress- strain curves were generalized as a unified formula. Beyond the onset of strain localization, a linear strain-softening constitutive relation for localized band was assigned. The size of the band was controlled by internal or characteristic length according to gradient-dependent plasticity. Elastic strain within the entire specimen was assumed to be uniform and decreased with the increase of plastic strain in localized band. Total strain of the specimen was decomposed into elastic and plastic parts. Plastic strain of the specimen was the average value of plastic strains in localized band over the entire specimen. For different heights, the predicted softening branches of the relative stress - strain curves in uniaxial compression are consistent with the previously experimental results for normal concrete specimens. The present expressions for the post-peak stress - deformation curves in uniaxial tension and direct shear agree with the previously numerical results based on gradient-dependent plasticity.

  13. Room temperature direct band gap emission characteristics of surfactant mediated grown compressively strained Ge films

    Science.gov (United States)

    Katiyar, Ajit K.; Grimm, Andreas; Bar, R.; Schmidt, Jan; Wietler, Tobias; Joerg Osten, H.; Ray, Samit K.

    2016-10-01

    Compressively strained Ge films have been grown on relaxed Si0.45Ge0.55 virtual substrates using molecular beam epitaxy in the presence of Sb as a surfactant. Structural characterization has shown that films grown in the presence of surfactant exhibit very smooth surfaces with a relatively higher strain value in comparison to those grown without any surfactant. The variation of strain with increasing Ge layer thickness was analyzed using Raman spectroscopy. The strain is found to be reduced with increasing film thickness due to the onset of island nucleation following Stranski-Krastanov growth mechanism. No phonon assisted direct band gap photoluminescence from compressively strained Ge films grown on relaxed Si0.45Ge0.55 has been achieved up to room temperature. Excitation power and temperature dependent photoluminescence have been studied in details to investigate the origin of different emission sub-bands.

  14. High Temperature Behavior of Isothermally Compressed M50 Steel

    Institute of Scientific and Technical Information of China (English)

    Li-xing SUN; Miao-quan LI

    2015-01-01

    The isothermal compression of M50 steel is carried out on a Gleeble-3500 thermo-mechanical simulator in temperature range of 1 223—1 423 K and strain rates range of 10—70 s—1. The results show that the carbides play a signiifcant role in the lfow be-havior and microstructure evolution during isothermal compression of M50 steel. The average apparent activation energy for defor-mation in isothermal compression of M50 steel is (281.1±42.6) kJ∙mol—1 at the strains of 0.4—0.8. The dynamic recrystallization of austenite grains occurs in isothermal compression of M50 steel at 1 363 K and 1 393 K, enhancing with the increase of strain rate and/or strain. The volume fraction of the carbides decreases with the increase of deformation temperature during isothermal com-pression of M50 steel and the ifne carbides inhibit the dynamic recrystallization of austenite grain. With the occurrence of dynamic recrystallization, the austenite grains are reifned, leading to a minor increase in the lfow stress and apparent activation energy for deformation in isothermal compression of M50 steel. The austenite grains begin to coarsen at 1 423 K and dynamic recrystalliza-tion is limited. Hot working of M50 steel should not be performed above 1 393 K in order to achieve good workability.

  15. Refinement of the wedge bar technique for compression tests at intermediate strain rates

    Directory of Open Access Journals (Sweden)

    Stander M.

    2012-08-01

    Full Text Available A refined development of the wedge-bar technique [1] for compression tests at intermediate strain rates is presented. The concept uses a wedge mechanism to compress small cylindrical specimens at strain rates in the order of 10s−1 to strains of up to 0.3. Co-linear elastic impact principles are used to accelerate the actuation mechanism from rest to test speed in under 300μs while maintaining near uniform strain rates for up to 30 ms, i.e. the transient phase of the test is less than 1% of the total test duration. In particular, a new load frame, load cell and sliding anvil designs are presented and shown to significantly reduce the noise generated during testing. Typical dynamic test results for a selection of metals and polymers are reported and compared with quasistatic and split Hopkinson pressure bar results.

  16. On the localization of plastic strain under compression of LiF crystals

    Science.gov (United States)

    Barannikova, S. A.; Nadezhkin, M. V.; Zuev, L. B.

    2010-07-01

    The plastic flow localization patterns for alkali halide LiF crystals under compression have been investigated. The main spatiotemporal regularities of the strain localization at different stages of deformation hardening in the single crystals have been established. The relation has been traced between the orientation of localized strain zones and the crystallography of slip systems of the test specimens studied simultaneously by the double-exposure speckle photography and photoelasticity methods.

  17. Thermal conductivity and compressive strain of foam neoprene insulation under hydrostatic pressure

    Science.gov (United States)

    Bardy, Erik; Mollendorf, Joseph; Pendergast, David

    2005-10-01

    The purpose of this study was to show that the thermal properties of foam neoprene under hydrostatic pressure cannot be predicted by theoretical means, and that uni-axial pressure cannot simulate hydrostatic compression. The thermal conductivity and compressive strain of foam neoprene were measured under hydrostatic pressure. In parallel, uni-axial compressive strain data were collected. The experimental set-up and data were put into perspective with past published studies. It was shown that uni-axial compression yielded strains 20-25% greater than did hydrostatic compression. This suggests the need for direct hydrostatic pressure measurement. For comparison to hydrostatic experimental data, a series of thermal conductivity theories of two phase composites based on particulate phase geometry were utilized. Due to their dependence on the porosity and constituent thermal conductivities, a model to predict porosity under hydrostatic pressure was used and an empirical correlation was derived to calculate the thermal conductivity of pure neoprene rubber from experimental data. It was shown that, although some agreement between experimental data and thermal conductivity theories was present, no particular theory can be used because they all fail to model the complex structure of the pores. It was therefore concluded that an experimental programme, such as reported here, is necessary for direct measurement.

  18. Compressive response of a glass-polymer system at various strain rates

    NARCIS (Netherlands)

    Fan, J.T.; Weerheijm, J.; Sluys, L.J.

    2016-01-01

    A glass-polymer system of a polyurethane elastomeric matrix with a single 3 mm-diameter glass particle was investigated using a split Hopkinson pressure bar (SHPB) setup for revealing the dynamic compressive mechanical response. This study produced the characteristics of the dynamic stress-strain re

  19. Strain effects on the optical properties of compressively-strained InGaAs/InP multiple quantum wires

    Energy Technology Data Exchange (ETDEWEB)

    Park, Seoung-Hwan [Catholic University of Daegu, Hayang (Korea, Republic of)

    2014-04-15

    Strain effects on the optical properties of compressively-strained InGaAs/InP multiple quantum wires (QWRs) are investigated as functions of the wire thickness along the x direction, L{sub x}, by using a six-band strain-dependent k·p Hamiltonian. In the case of QWRs with the same initial strains, the transition energy decreases with increasing number of wire layers, and its rate of decrease is shown to increase with increasing L{sub x}. On the other hand, in the case of QWRs with different initial strains, the transition energy slightly increases with increasing number of wire layers and its rate of increase is nearly independent of L{sub x}. The z-polarized optical matrix element for QWRs with different initial strains is shown to be much larger than that for QWRs with the same initial strains, irrespective of L{sub x}. This can be explained by the fact that the confinement of the wave function in the conduction band is enhanced due to the strain effect.

  20. The Role of Arch Compression and Metatarsophalangeal Joint Dynamics in Modulating Plantar Fascia Strain in Running.

    Directory of Open Access Journals (Sweden)

    Kirsty A McDonald

    Full Text Available Elastic energy returned from passive-elastic structures of the lower limb is fundamental in lowering the mechanical demand on muscles during running. The purpose of this study was to investigate the two length-modulating mechanisms of the plantar fascia, namely medial longitudinal arch compression and metatarsophalangeal joint (MPJ excursion, and to determine how these mechanisms modulate strain, and thus elastic energy storage/return of the plantar fascia during running. Eighteen runners (9 forefoot and 9 rearfoot strike performed three treadmill running trials; unrestricted shod, shod with restricted arch compression (via an orthotic-style insert, and barefoot. Three-dimensional motion capture and ground reaction force data were used to calculate lower limb kinematics and kinetics including MPJ angles, moments, powers and work. Estimates of plantar fascia strain due to arch compression and MPJ excursion were derived using a geometric model of the arch and a subject-specific musculoskeletal model of the plantar fascia, respectively. The plantar fascia exhibited a typical elastic stretch-shortening cycle with the majority of strain generated via arch compression. This strategy was similar in fore- and rear-foot strike runners. Restricting arch compression, and hence the elastic-spring function of the arch, was not compensated for by an increase in MPJ-derived strain. In the second half of stance the plantar fascia was found to transfer energy between the MPJ (energy absorption and the arch (energy production during recoil. This previously unreported energy transfer mechanism reduces the strain required by the plantar fascia in generating useful positive mechanical work at the arch during running.

  1. The Role of Arch Compression and Metatarsophalangeal Joint Dynamics in Modulating Plantar Fascia Strain in Running.

    Science.gov (United States)

    McDonald, Kirsty A; Stearne, Sarah M; Alderson, Jacqueline A; North, Ian; Pires, Neville J; Rubenson, Jonas

    2016-01-01

    Elastic energy returned from passive-elastic structures of the lower limb is fundamental in lowering the mechanical demand on muscles during running. The purpose of this study was to investigate the two length-modulating mechanisms of the plantar fascia, namely medial longitudinal arch compression and metatarsophalangeal joint (MPJ) excursion, and to determine how these mechanisms modulate strain, and thus elastic energy storage/return of the plantar fascia during running. Eighteen runners (9 forefoot and 9 rearfoot strike) performed three treadmill running trials; unrestricted shod, shod with restricted arch compression (via an orthotic-style insert), and barefoot. Three-dimensional motion capture and ground reaction force data were used to calculate lower limb kinematics and kinetics including MPJ angles, moments, powers and work. Estimates of plantar fascia strain due to arch compression and MPJ excursion were derived using a geometric model of the arch and a subject-specific musculoskeletal model of the plantar fascia, respectively. The plantar fascia exhibited a typical elastic stretch-shortening cycle with the majority of strain generated via arch compression. This strategy was similar in fore- and rear-foot strike runners. Restricting arch compression, and hence the elastic-spring function of the arch, was not compensated for by an increase in MPJ-derived strain. In the second half of stance the plantar fascia was found to transfer energy between the MPJ (energy absorption) and the arch (energy production during recoil). This previously unreported energy transfer mechanism reduces the strain required by the plantar fascia in generating useful positive mechanical work at the arch during running.

  2. Size effect of sandstone after high temperature under uniaxial compression

    Institute of Scientific and Technical Information of China (English)

    SU Hai-jian; JING Hong-wen; MAO Xian-biao; ZHAO Hong-hui; YIN Qian; WANG Chen

    2015-01-01

    Uniaxial compression tests on sandstone samples with five different sizes after high temperature processes were performed in order to investigate the size effect and its evolution. The test results show that the density, longitudinal wave velocity, peak strength, average modulus and secant modulus of sandstone decrease with the increase of temperature, however, peak strain increases gradually. With the increase of ratio of height to diameter, peak strength of sandstone decreases, which has an obvious size effect. A new theoretical model of size effect of sandstone material considering the influence of temperature is put forward, and with the increase of temperature, the size effect is more apparent. The threshold decreases gradually with the increase of temperature, and the deviations of the experimental values and the theoretical values are between 0.44% and 6.06%, which shows quite a credibility of the theoretical model.

  3. Highly compressible 3D periodic graphene aerogel microlattices.

    Science.gov (United States)

    Zhu, Cheng; Han, T Yong-Jin; Duoss, Eric B; Golobic, Alexandra M; Kuntz, Joshua D; Spadaccini, Christopher M; Worsley, Marcus A

    2015-04-22

    Graphene is a two-dimensional material that offers a unique combination of low density, exceptional mechanical properties, large surface area and excellent electrical conductivity. Recent progress has produced bulk 3D assemblies of graphene, such as graphene aerogels, but they possess purely stochastic porous networks, which limit their performance compared with the potential of an engineered architecture. Here we report the fabrication of periodic graphene aerogel microlattices, possessing an engineered architecture via a 3D printing technique known as direct ink writing. The 3D printed graphene aerogels are lightweight, highly conductive and exhibit supercompressibility (up to 90% compressive strain). Moreover, the Young's moduli of the 3D printed graphene aerogels show an order of magnitude improvement over bulk graphene materials with comparable geometric density and possess large surface areas. Adapting the 3D printing technique to graphene aerogels realizes the possibility of fabricating a myriad of complex aerogel architectures for a broad range of applications.

  4. Strain engineered pyrochlore at high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Rittman, Dylan R.; Turner, Katlyn M.; Park, Sulgiye; Fuentes, Antonio F.; Park, Changyong; Ewing, Rodney C.; Mao, Wendy L.

    2017-05-22

    Strain engineering is a promising method for next-generation materials processing techniques. Here, we use mechanical milling and annealing followed by compression in diamond anvil cell to tailor the intrinsic and extrinsic strain in pyrochlore, Dy2Ti2O7 and Dy2Zr2O7. Raman spectroscopy, X-ray pair distribution function analysis, and X-ray diffraction were used to characterize atomic order over short-, medium-, and long-range spatial scales, respectively, under ambient conditions. Raman spectroscopy and X-ray diffraction were further employed to interrogate the material in situ at high pressure. High-pressure behavior is found to depend on the species and concentration of defects in the sample at ambient conditions. Overall, we show that defects can be engineered to lower the phase transformation onset pressure by ~50% in the ordered pyrochlore Dy2Zr2O7, and lower the phase transformation completion pressure by ~20% in the disordered pyrochlore Dy2Zr2O7. These improvements are achieved without significantly sacrificing mechanical integrity, as characterized by bulk modulus.

  5. The Microstructural Evolution and Mechanical Properties of Zr-Based Metallic Glass under Different Strain Rate Compressions

    Directory of Open Access Journals (Sweden)

    Tao-Hsing Chen

    2015-04-01

    Full Text Available In this study, the high strain rate deformation behavior and the microstructure evolution of Zr-Cu-Al-Ni metallic glasses under various strain rates were investigated. The influence of strain and strain rate on the mechanical properties and fracture behavior, as well as microstructural properties was also investigated. Before mechanical testing, the structure and thermal stability of the Zr-Cu-Al-Ni metallic glasses were studied with X-ray diffraction (XRD and differential scanning calorimeter. The mechanical property experiments and microstructural observations of Zr-Cu-Al-Ni metallic glasses under different strain rates ranging from 10−3 to 5.1 × 103 s−1 and at temperatures of 25 °C were investigated using compressive split-Hopkinson bar (SHPB and an MTS tester. An in situ transmission electron microscope (TEM nanoindenter was used to carry out compression tests and investigate the deformation behavior arising at nanopillars of the Zr-based metallic glass. The formation and interaction of shear band during the plastic deformation were investigated. Moreover, it was clearly apparent that the mechanical strength and ductility could be enhanced by impeding the penetration of shear bands with reinforced particles.

  6. Mechanical Characterization of Brain Tissue in Compression at Dynamic Strain Rates

    CERN Document Server

    Rashid, Badar; Gilchrist, Michael; 10.1016/j.jmbbm.2012.01.022

    2013-01-01

    Traumatic brain injury (TBI) occurs when local mechanical load exceeds certain tolerance levels for brain tissue. Extensive research has been done previously for brain matter experiencing compression at quasistatic loading; however, limited data is available to model TBI under dynamic impact conditions. In this research, an experimental setup was developed to perform unconfined compression tests and stress relaxation tests at strain rates < 90/s. The brain tissue showed a stiffer response with increasing strain rates, showing that hyperelastic models are not adequate. Specifically, the compressive nominal stress at 30% strain was 8.83 +/- 1.94, 12.8 +/- 3.10 and 16.0 +/- 1.41 kPa (mean +/- SD) at strain rates of 30, 60 and 90/s, respectively. Relaxation tests were also conducted at 10%-50% strain with the average rise time of 10 ms, which can be used to derive time dependent parameters. Numerical simulations were performed using one-term Ogden model with initial shear modulus mu_0 = 6.06 +/- 1.44, 9.44 +/-...

  7. Modelling to very high strains

    Science.gov (United States)

    Bons, P. D.; Jessell, M. W.; Griera, A.; Evans, L. A.; Wilson, C. J. L.

    2009-04-01

    development of very high-strain structures. Jessell, M.W., Bons, P.D., Evans, L., Barr, T., Stüwe, K. 2001. Elle: a micro-process approach to the simulation of microstructures. Computers & Geosciences 27, 17-30. Houseman, G., Barr, T., Evans, L. 2008. Basil: stress and deformation in a viscous material. In: P.D. Bons, D. Koehn & M.W.Jessell (Eds.) Microdynamics Simulation. Lecture Notes in Earth Sciences 106, Springer, Berlin, 405p.

  8. Explicit mixed strain-displacement finite elements for compressible and quasi-incompressible elasticity and plasticity

    Science.gov (United States)

    Cervera, M.; Lafontaine, N.; Rossi, R.; Chiumenti, M.

    2016-09-01

    This paper presents an explicit mixed finite element formulation to address compressible and quasi-incompressible problems in elasticity and plasticity. This implies that the numerical solution only involves diagonal systems of equations. The formulation uses independent and equal interpolation of displacements and strains, stabilized by variational subscales. A displacement sub-scale is introduced in order to stabilize the mean-stress field. Compared to the standard irreducible formulation, the proposed mixed formulation yields improved strain and stress fields. The paper investigates the effect of this enhancement on the accuracy in problems involving strain softening and localization leading to failure, using low order finite elements with linear continuous strain and displacement fields ( P1 P1 triangles in 2D and tetrahedra in 3D) in conjunction with associative frictional Mohr-Coulomb and Drucker-Prager plastic models. The performance of the strain/displacement formulation under compressible and nearly incompressible deformation patterns is assessed and compared to analytical solutions for plane stress and plane strain situations. Benchmark numerical examples show the capacity of the mixed formulation to predict correctly failure mechanisms with localized patterns of strain, virtually free from any dependence of the mesh directional bias. No auxiliary crack tracking technique is necessary.

  9. High-strain composites and dual-matrix composite structures

    Science.gov (United States)

    Maqueda Jimenez, Ignacio

    Most space applications require deployable structures due to the limiting size of current launch vehicles. Specifically, payloads in nanosatellites such as CubeSats require very high compaction ratios due to the very limited space available in this typo of platform. Strain-energy-storing deployable structures can be suitable for these applications, but the curvature to which these structures can be folded is limited to the elastic range. Thanks to fiber microbuckling, high-strain composite materials can be folded into much higher curvatures without showing significant damage, which makes them suitable for very high compaction deployable structure applications. However, in applications that require carrying loads in compression, fiber microbuckling also dominates the strength of the material. A good understanding of the strength in compression of high-strain composites is then needed to determine how suitable they are for this type of application. The goal of this thesis is to investigate, experimentally and numerically, the microbuckling in compression of high-strain composites. Particularly, the behavior in compression of unidirectional carbon fiber reinforced silicone rods (CFRS) is studied. Experimental testing of the compression failure of CFRS rods showed a higher strength in compression than the strength estimated by analytical models, which is unusual in standard polymer composites. This effect, first discovered in the present research, was attributed to the variation in random carbon fiber angles respect to the nominal direction. This is an important effect, as it implies that microbuckling strength might be increased by controlling the fiber angles. With a higher microbuckling strength, high-strain materials could carry loads in compression without reaching microbuckling and therefore be suitable for several space applications. A finite element model was developed to predict the homogenized stiffness of the CFRS, and the homogenization results were used in

  10. Stoichiometry as key to ferroelectricity in compressively strained SrTiO{sub 3} films

    Energy Technology Data Exchange (ETDEWEB)

    Haislmaier, R. C.; Engel-Herbert, R.; Gopalan, V. [Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802 (United States)

    2016-07-18

    While strain is a powerful tuning parameter for inducing ferroelectricity in thin film oxides, the role of stoichiometry control is critical, but far less explored. A series of compressively strained SrTiO{sub 3} films on (001) (LaAlO{sub 3}){sub 0.3}(Sr{sub 2}AlTaO{sub 6}){sub 0.35} substrates were grown by hybrid molecular beam epitaxy where the Ti cation was supplied using a metal-organic titanium tetraisopropoxide molecule that helps systematically and precisely control Sr:Ti stoichiometry in the resulting films. A stoichiometric growth window is located through X-ray diffraction and in-situ reflection high-energy electron diffraction measurements, which show a minimum out-of-plane lattice parameter as well as constant growth rate within the stoichiometric growth window range. Using temperature dependent optical second harmonic generation (SHG) characterization, a ferroelectric-to-paraelectric transition at T ∼ 180 K is observed for a stoichiometric SrTiO{sub 3} film, as well as a higher temperature structural transition at T ∼ 385 K. Using SHG polarimetry modeling, the polar point group symmetry is determined to be tetragonal 4mm with the polarization pointing out-of-plane of the film. The SHG coefficients, d{sub 31}/d{sub 15}=3 and d{sub 33}/d{sub 15}=21, were determined at 298 K. The ferroelectric transition disappears in films grown outside the growth window, thus proving the critical role of stoichiometry control in realizing strain-induced ferroelectricity.

  11. Stress-Strain Compression of AA6082-T6 Aluminum Alloy at Room Temperature

    Directory of Open Access Journals (Sweden)

    Alexandre da Silva Scari

    2014-01-01

    Full Text Available Short cylindrical specimens made of AA6082-T6 aluminum alloy were studied experimentally (compression tests, analytically (normalized Cockcroft-Latham criteria—nCL, and numerically (finite element analysis—FEA. The mechanical properties were determined with the stress-strain curves by the Hollomon equation. The elastic modulus obtained experimentally differs from the real value, as expected, and it is also explained. Finite element (FE analysis was carried out with satisfactory correlation to the experimental results, as it differs about 1,5% from the damage analysis by the nCL concerning the experimental data obtained by compression tests.

  12. High Strain, Strain Rate Behavior of PTFE/Al/W

    Science.gov (United States)

    Addiss, John; Cai, Jing; Walley, Steve; Proud, William; Nesterenko, Vitali

    2007-06-01

    Conventional dropweight technique was modified to accommodate low amplitude signals from low strength, cold isostatically pressed energetic ``heavy'' composites of polytetrafluoroethylene (PTFE)/AL/W. The fracture strength, strain and post-critical behaviour of fractured samples were measured for samples of different porosity and W grain size (the masses of each component being the same in each case). Unusual phenomenon of significantly higher strength (55 MPa) of porous composites (density 5.9 g/cc) with small tungsten particles (1 micron) in comparison with strength (32 MPa) of dense composites (7.1 g/cc) with larger tungsten particles (20 micron) was observed. This is attributed to force chains created by a network of small tungsten particles. Interrupted tests at the different level of strains revealed mechanism of fracture under dynamic compression.

  13. Covalent Nitrogen Doping and Compressive Strain in MoS2 by Remote N2 Plasma Exposure.

    Science.gov (United States)

    Azcatl, Angelica; Qin, Xiaoye; Prakash, Abhijith; Zhang, Chenxi; Cheng, Lanxia; Wang, Qingxiao; Lu, Ning; Kim, Moon J; Kim, Jiyoung; Cho, Kyeongjae; Addou, Rafik; Hinkle, Christopher L; Appenzeller, Joerg; Wallace, Robert M

    2016-09-14

    Controllable doping of two-dimensional materials is highly desired for ideal device performance in both hetero- and p-n homojunctions. Herein, we propose an effective strategy for doping of MoS2 with nitrogen through a remote N2 plasma surface treatment. By monitoring the surface chemistry of MoS2 upon N2 plasma exposure using in situ X-ray photoelectron spectroscopy, we identified the presence of covalently bonded nitrogen in MoS2, where substitution of the chalcogen sulfur by nitrogen is determined as the doping mechanism. Furthermore, the electrical characterization demonstrates that p-type doping of MoS2 is achieved by nitrogen doping, which is in agreement with theoretical predictions. Notably, we found that the presence of nitrogen can induce compressive strain in the MoS2 structure, which represents the first evidence of strain induced by substitutional doping in a transition metal dichalcogenide material. Finally, our first principle calculations support the experimental demonstration of such strain, and a correlation between nitrogen doping concentration and compressive strain in MoS2 is elucidated.

  14. Properties of two composite materials made of toughened epoxy resin and high-strain graphite fiber

    Science.gov (United States)

    Dow, Marvin B.; Smith, Donald L.

    1988-01-01

    Results are presented from an experimental evaluation of IM7/8551-7 and IM6/18081, two new toughened epoxy resin, high strain graphite fiber composite materials. Data include ply-level strengths and moduli, notched tension and compression strengths and compression-after-impact assessments. The measured properties are compared with those of other graphite-epoxy materials.

  15. CWICOM: A Highly Integrated & Innovative CCSDS Image Compression ASIC

    Science.gov (United States)

    Poupat, Jean-Luc; Vitulli, Raffaele

    2013-08-01

    The space market is more and more demanding in terms of on image compression performances. The earth observation satellites instrument resolution, the agility and the swath are continuously increasing. It multiplies by 10 the volume of picture acquired on one orbit. In parallel, the satellites size and mass are decreasing, requiring innovative electronic technologies reducing size, mass and power consumption. Astrium, leader on the market of the combined solutions for compression and memory for space application, has developed a new image compression ASIC which is presented in this paper. CWICOM is a high performance and innovative image compression ASIC developed by Astrium in the frame of the ESA contract n°22011/08/NLL/LvH. The objective of this ESA contract is to develop a radiation hardened ASIC that implements the CCSDS 122.0-B-1 Standard for Image Data Compression, that has a SpaceWire interface for configuring and controlling the device, and that is compatible with Sentinel-2 interface and with similar Earth Observation missions. CWICOM stands for CCSDS Wavelet Image COMpression ASIC. It is a large dynamic, large image and very high speed image compression ASIC potentially relevant for compression of any 2D image with bi-dimensional data correlation such as Earth observation, scientific data compression… The paper presents some of the main aspects of the CWICOM development, such as the algorithm and specification, the innovative memory organization, the validation approach and the status of the project.

  16. High pressure, quasi-isentropic compression experiments on the Omega laser

    Energy Technology Data Exchange (ETDEWEB)

    Lorenz, K; Edwards, M; Jankowski, A; Pollaine, S; Smith, R; Remington, B

    2006-05-26

    The high energy density of pulsed lasers can be used to generate shockless loading in solids to high pressures and compressions but low temperatures. We have used the Omega laser to extend the capabilities of this technique to multi-Mbar pressures and compressions approaching a factor of 2 in aluminum foils. The energy from a 3.7 ns laser pulse is used to drive a strong shock through a 200 {micro}m polystyrene disc. The disc material unloads from a high-pressure state and expands across a 300 {micro}m vacuum gap where it stagnates against the sample to produce a smooth, monotonically increasing load with rise times from a few to {approx} 20 ns. Ramped compression reasing waves having peak pressures of 14-200 GPa (0.14-2.0 Mbar) and peak compressions {rho}/{rho}{sub 0} of 1.1-2.0 were generated in the aluminum samples using laser pulse energies of 400 J to 2 kJ. Wave profiles from a series of successively thicker targets loaded to 120 GPa show the evolution of the high-pressure compression wave within the sample. The initial loading in the sample is shockless, and develops into a shock at a depth of 20-25 {micro}m. We compare these wave profiles with hydrodynamic simulations from which we extract material temperatures and plastic strain rates behind the compression wave. Limitations and future prospects for this new shockless loading technique are discussed.

  17. Experimental study of the compression properties of Al/W/PTFE granular composites under elevated strain rates

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, X.F., E-mail: lynx@mail.njust.edu.cn [School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094 (China); Zhang, J.; Qiao, L.; Shi, A.S.; Zhang, Y.G.; He, Y. [School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094 (China); Guan, Z.W. [School of Engineering, University of Liverpool, Brownlow Street, Liverpool L69 3GQ (United Kingdom)

    2013-10-01

    Granular composites consisting of aluminium (Al), tungsten (W) and polytetraflouroethylene (PTFE) are typical energetic materials, which possess high density and strength along with other advantageous properties. To investigate the mechanical behaviour of Al/W/PTFE granular composites, compression tests of three Al/W/PTFE mixtures under quasi-static loading and high strain rate conditions were conducted on a CSS-44100 Materials Testing System and a Split-Hopkinson Pressure Bar (SHPB), respectively. By employing Al bars, the amplitude of the transmitted signal was significantly enhanced and a high signal-to-noise ratio was obtained. This enhancement was due to the decreased Young's modulus of the bars, which led to increased signal amplitude from the strain gauges. The Al/W/PTFE granular composites were processed using a cold isostatic pressing and vacuum sintering approach. In this work, the fracture modes and stress-strain relationships of Al/W/PTFE composites with mass ratios of Al:W:PTFE of 24:0:76, 12:50:38 and 5.5:77:17.5 were studied. A detailed discussion is provided to cover the effect that tungsten addition, strain rate and mass ratio have on the deformation behaviour of the composites. The results show that the mass ratio plays a significant role in determining the dynamic behaviour and failure modes of the composites. Both the Al/W/PTFE (24:0:76) and the Al/W/PTFE (12:50:38) composites are strain rate dependent, elasto-plastic materials characterised by increased yield stress with increased strain rate. However, the Al/W/PTFE (5.5:77:17.5) composite is a brittle material, which shows brittle fracture at a relatively low strain.

  18. High temperature strain measurement with a resistance strain gage

    Science.gov (United States)

    Lei, Jih-Fen; Fichtel, ED; Mcdaniel, Amos

    1993-01-01

    A PdCr based electrical resistance strain gage was demonstrated in the laboratory to be a viable sensor candidate for static strain measurement at high temperatures. However, difficulties were encountered while transferring the sensor to field applications. This paper is therefore prepared for recognition and resolution of the problems likely to be encountered with PdCr strain gages in field applications. Errors caused by the measurement system, installation technique and lead wire attachment are discussed. The limitations and some considerations related to the temperature compensation technique used for this gage are also addressed.

  19. Thermal stability and relaxation mechanisms in compressively strained Ge0.94Sn0.06 thin films grown by molecular beam epitaxy

    Science.gov (United States)

    Fleischmann, C.; Lieten, R. R.; Hermann, P.; Hönicke, P.; Beckhoff, B.; Seidel, F.; Richard, O.; Bender, H.; Shimura, Y.; Zaima, S.; Uchida, N.; Temst, K.; Vandervorst, W.; Vantomme, A.

    2016-08-01

    Strained Ge1-xSnx thin films have recently attracted a lot of attention as promising high mobility or light emitting materials for future micro- and optoelectronic devices. While they can be grown nowadays with high crystal quality, the mechanism by which strain energy is relieved upon thermal treatments remains speculative. To this end, we investigated the evolution (and the interplay) of composition, strain, and morphology of strained Ge0.94Sn0.06 films with temperature. We observed a diffusion-driven formation of Sn-enriched islands (and their self-organization) as well as surface depressions (pits), resulting in phase separation and (local) reduction in strain energy, respectively. Remarkably, these compositional and morphological instabilities were found to be the dominating mechanisms to relieve energy, implying that the relaxation via misfit generation and propagation is not intrinsic to compressively strained Ge0.94Sn0.06 films grown by molecular beam epitaxy.

  20. Strain analysis of different diameter Morse taper implants under overloading compressive conditions

    Directory of Open Access Journals (Sweden)

    Carolina Guimarães CASTRO

    2015-01-01

    Full Text Available The aim of this study was to evaluate the amount of deformation from compression caused by different diameters of Morse taper implants and the residual deformation after load removal. Thirty Morse taper implants lacking external threads were divided into 3 groups (n = 10 according to their diameter as follows: 3.5 mm, 4.0 mm and 5.0 mm. Two-piece abutments were fixed into the implants, and the samples were subjected to compressive axial loading up to 1500 N of force. During the test, one strain gauge remained fixed to the cervical portion of each implant to measure the strain variation. The strain values were recorded at two different time points: at the maximum load (1500 N and 60 seconds after load removal. To calculate the strain at the implant/abutment interface, a mathematical formula was applied. Data were analyzed using a one-way Anova and Tukey’s test (α = 0.05. The 5.0 mm diameter implant showed a significantly lower strain (650.5 μS ± 170.0 than the 4.0 mm group (1170.2 μS ± 374.7 and the 3.5 mm group (1388.1 μS ± 326.6 (p < 0.001, regardless of the load presence. The strain values decreased by approximately 50% after removal of the load, regardless of the implant diameter. The 5.0 mm implant showed a significantly lower strain at the implant/abutment interface (943.4 μS ± 504.5 than the 4.0 mm group (1057.4 μS ± 681.3 and the 3.5 mm group (1159.6 μS ± 425.9 (p < 0.001. According to the results of this study, the diameter influenced the strain around the internal and external walls of the cervical region of Morse taper implants; all diameters demonstrated clinically acceptable values of strain.

  1. Miniaturized platform with on-chip strain sensors for compression testing of arrayed materials.

    Science.gov (United States)

    MacQueen, Luke; Chebotarev, Oleg; Simmons, Craig A; Sun, Yu

    2012-10-21

    We report a microfabricated mechanical testing platform with on-chip strain sensors for in situ mechanical characterization of arrayed materials. The device is based on deformable elastomeric membranes that are actuated by pressure that is delivered through an underlying channel network. The bulging membranes compress material samples that are confined between the membranes and a rigid top-plate. Carbon nanotube-based strain sensors that exhibit strain-dependent electrical resistivity were integrated within the membranes to provide continuous read-out of membrane deflection amplitude. We used this platform to study the cyclic compression of several different silicone samples and thereby measured their elastic moduli. The results obtained using our miniaturized platform were in excellent agreement with those obtained using a commercially available mechanical testing platform and clearly demonstrated the utility of our platform for the mechanical testing of small samples in parallel. The miniaturized platform can significantly increase mechanical testing efficiency, particularly when testing of iterative sample formulations is required.

  2. Uniaxial Compressive Strength and Fracture Mode of Lake Ice at Moderate Strain Rates Based on a Digital Speckle Correlation Method for Deformation Measurement

    Directory of Open Access Journals (Sweden)

    Jijian Lian

    2017-05-01

    Full Text Available Better understanding of the complex mechanical properties of ice is the foundation to predict the ice fail process and avoid potential ice threats. In the present study, uniaxial compressive strength and fracture mode of natural lake ice are investigated over moderate strain-rate range of 0.4–10 s−1 at −5 °C and −10 °C. The digital speckle correlation method (DSCM is used for deformation measurement through constructing artificial speckle on ice sample surface in advance, and two dynamic load cells are employed to measure the dynamic load for monitoring the equilibrium of two ends’ forces under high-speed loading. The relationships between uniaxial compressive strength and strain-rate, temperature, loading direction, and air porosity are investigated, and the fracture mode of ice at moderate rates is also discussed. The experimental results show that there exists a significant difference between true strain-rate and nominal strain-rate derived from actuator displacement under dynamic loading conditions. Over the employed strain-rate range, the dynamic uniaxial compressive strength of lake ice shows positive strain-rate sensitivity and decreases with increasing temperature. Ice obtains greater strength values when it is with lower air porosity and loaded vertically. The fracture mode of ice seems to be a combination of splitting failure and crushing failure.

  3. Performance evaluation of high-detectivity p-i-n infrared photodetector based on compressively-strained Ge0.964Sn0.036/Ge multiple quantum wells by quantum modelling

    Science.gov (United States)

    Yahyaoui, N.; Sfina, N.; Lazzari, J.-L.; Bournel, A.; Said, M.

    2015-08-01

    GeSn/Ge p-i-n photodetectors with practical Ge0.964Sn0.036 active layers are theoretically investigated. First, we calculated the electronic band parameters for the heterointerfaces between strained Ge1-xSnx and relaxed (001)-oriented Ge. The carrier transport in a p-i-n photodiode built on a ten-period Ge0.964Sn0.036/Ge multiple quantum well absorber was then analyzed and numerically simulated within the Tsu-Esaki formalism by self-consistently solving the Schrödinger and Poisson equations, coupled to the kinetic rate equations. Photodetection up to a 2.1 μm cut-off wavelength is achieved. High responsivities of 0.62 A W-1 and 0.71 A W-1 were obtained under a reverse bias voltage of -3 V at peak wavelengths of 1550 nm and 1781 nm, respectively. Even for this low Sn-fraction, it is found that the photodetector quantum efficiency (49%@1.55 μm) is higher than those of comparable pure-Ge devices at room temperature. Detectivity of 3.8 × 1010 cm Hz1/2 W-1 and 7.9 × 1010 cm Hz1/2 W-1 at -1 V and -0.5 V, respectively, is achievable at room temperature for a 1550 nm wavelength peak of responsivity. This work represents a step forward in developing GeSn/Ge based infrared photodetectors.

  4. Pre-Peak and Post-Peak Rock Strain Characteristics During Uniaxial Compression by 3D Digital Image Correlation

    Science.gov (United States)

    Munoz, H.; Taheri, A.; Chanda, E. K.

    2016-07-01

    A non-contact optical method for strain measurement applying three-dimensional digital image correlation (3D DIC) in uniaxial compression is presented. A series of monotonic uniaxial compression tests under quasi-static loading conditions on Hawkesbury sandstone specimens were conducted. A prescribed constant lateral-strain rate to control the applied axial load in a closed-loop system allowed capturing the complete stress-strain behaviour of the rock, i.e. the pre-peak and post-peak stress-strain regimes. 3D DIC uses two digital cameras to acquire images of the undeformed and deformed shape of an object to perform image analysis and provides deformation and motion measurements. Observations showed that 3D DIC provides strains free from bedding error in contrast to strains from LVDT. Erroneous measurements due to the compliance of the compressive machine are also eliminated. Furthermore, by 3D DIC technique relatively large strains developed in the post-peak regime, in particular within localised zones, difficult to capture by bonded strain gauges, can be measured in a straight forward manner. Field of strains and eventual strain localisation in the rock surface were analysed by 3D DIC method, coupled with the respective stress levels in the rock. Field strain development in the rock samples, both in axial and shear strain domains suggested that strain localisation takes place progressively and develops at a lower rate in pre-peak regime. It is accelerated, otherwise, in post-peak regime associated with the increasing rate of strength degradation. The results show that a major failure plane, due to strain localisation, becomes noticeable only long after the peak stress took place. In addition, post-peak stress-strain behaviour was observed to be either in a form of localised strain in a shearing zone or inelastic unloading outside of the shearing zone.

  5. The compression stress-strain behavior of Sn-Ag-Cu solder

    Science.gov (United States)

    Vianco, Paul T.; Rejent, Jerome A.; Martin, Joseph J.

    2003-06-01

    The yield-stress behavior was investigated for the 95.5Sn-4.3Ag-0.2Cu (wt.%), 95.5Sn-3.9Ag-0.6Cu, and 95.5Sn-3.8Ag-0.7Cu ternary lead-free solders using the compression stress-strain test technique. Cylindrical specimens were evaluated in the as-cast or aged (125°C, 24 h) condition. The tests were performed at -25°C, 25°C, 75°C, 125°C, and 160°C using strain rates of 4.2×10-5s-1 or 8.3×10-4s-1. Specially designed Sn-Ag-0.6Cu samples were fabricated to compare the yield stress of the dendritic microstructure versus that of the equiaxed microstructure that occurs in this alloy.

  6. Dynamic Increase Factors for High Performance Concrete in Compression using Split Hopkinson Pressure Bar

    DEFF Research Database (Denmark)

    Riisgaard, Benjamin; Ngo, Tuan; Mendis, Priyan

    2007-01-01

    This paper provides dynamic increase factors (DIF) in compression for two different High Performance Concretes (HPC), 100 MPa and 160 MPa, respectively. In the experimental investigation 2 different Split Hopkinson Pressure Bars are used in order to test over a wide range of strain rates, 100 sec1...... to 700 sec-1. The results are compared with the CEB Model Code and the Spilt Hopkinson Pressure Bar technique is briefly de-scribed....

  7. Effects of strain rate and elevated temperature on compressive flow stress and absorbed energy of polyimide foam

    Directory of Open Access Journals (Sweden)

    Horikawa K.

    2012-08-01

    Full Text Available In this study, at first, the effect of strain rate on the strength and the absorbed energy of polyimide foam was experimentally examined by carrying out a series of compression tests at various strain rates, from 10−3 to 103 s−1. This polyimide foam has open cell structure with small cell size of 0.3 ∼ 0.6 mm. In the measurement of impact load, a special load cell with a small part for sensing load was adopted. For the measurement of the displacement, a high-speed camera was used. It was found that the flow stress of polyimide foam and the absorbed energy up to a strain of 0.4 increased with the increase of the strain rates. Secondly, the effect of ambient temperature on the strength and absorbed energy of polyimide foam was also investigated by using a sprit Hopkinson pressure bar apparatus and testing at elevated temperatures of 100 and 200 ∘C. With the increase of temperature, the strength and absorbed energy decreased and the effect is smaller in dynamic tests than static tests.

  8. Ultrasonic Measurement of Strain Distribution Inside Object Cyclically Compressed by Dual Acoustic Radiation Force

    Science.gov (United States)

    Odagiri, Yoshitaka; Hasegawa, Hideyuki; Kanai, Hiroshi

    2008-05-01

    One possible way to evaluate acupuncture therapy quantitatively is to measure the change in the elastic property of muscle after application of the therapy. Many studies have been conducted to measure mechanical properties of tissues using ultrasound-induced acoustic radiation force. To assess mechanical properties, strain must be generated in an object. However, a single radiation force is not effective because it mainly generates translational motion when the object is much harder than the surrounding medium. In this study, two cyclic radiation forces are simultaneously applied to a muscle phantom from two opposite horizontal directions so that the object is cyclically compressed in the horizontal direction. By the horizontal compression, the object is expanded vertically based on its incompressibility. The resultant vertical displacement is measured using another ultrasound pulse. Two ultrasonic transducers for actuation were both driven by the sum of two continuous sinusoidal signals at two slightly different frequencies [1 MHz and (1 M + 5) Hz]. The displacement of several micrometers in amplitude, which fluctuated at 5 Hz, was measured by the ultrasonic phased tracking method. Increase in thickness inside the object was observed just when acoustic radiation forces increased. Such changes in thickness correspond to vertical expansion due to horizontal compression.

  9. Strain and rate-dependent neuronal injury in a 3D in vitro compression model of traumatic brain injury.

    Science.gov (United States)

    Bar-Kochba, Eyal; Scimone, Mark T; Estrada, Jonathan B; Franck, Christian

    2016-08-02

    In the United States over 1.7 million cases of traumatic brain injury are reported yearly, but predictive correlation of cellular injury to impact tissue strain is still lacking, particularly for neuronal injury resulting from compression. Given the prevalence of compressive deformations in most blunt head trauma, this information is critically important for the development of future mitigation and diagnosis strategies. Using a 3D in vitro neuronal compression model, we investigated the role of impact strain and strain rate on neuronal lifetime, viability, and pathomorphology. We find that strain magnitude and rate have profound, yet distinctively different effects on the injury pathology. While strain magnitude affects the time of neuronal death, strain rate influences the pathomorphology and extent of population injury. Cellular injury is not initiated through localized deformation of the cytoskeleton but rather driven by excess strain on the entire cell. Furthermore we find that, mechanoporation, one of the key pathological trigger mechanisms in stretch and shear neuronal injuries, was not observed under compression.

  10. Strain and rate-dependent neuronal injury in a 3D in vitro compression model of traumatic brain injury

    Science.gov (United States)

    Bar-Kochba, Eyal; Scimone, Mark T.; Estrada, Jonathan B.; Franck, Christian

    2016-08-01

    In the United States over 1.7 million cases of traumatic brain injury are reported yearly, but predictive correlation of cellular injury to impact tissue strain is still lacking, particularly for neuronal injury resulting from compression. Given the prevalence of compressive deformations in most blunt head trauma, this information is critically important for the development of future mitigation and diagnosis strategies. Using a 3D in vitro neuronal compression model, we investigated the role of impact strain and strain rate on neuronal lifetime, viability, and pathomorphology. We find that strain magnitude and rate have profound, yet distinctively different effects on the injury pathology. While strain magnitude affects the time of neuronal death, strain rate influences the pathomorphology and extent of population injury. Cellular injury is not initiated through localized deformation of the cytoskeleton but rather driven by excess strain on the entire cell. Furthermore we find that, mechanoporation, one of the key pathological trigger mechanisms in stretch and shear neuronal injuries, was not observed under compression.

  11. High strain rate behavior of pure metals at elevated temperature

    Science.gov (United States)

    Testa, Gabriel; Bonora, Nicola; Ruggiero, Andrew; Iannitti, Gianluca; Domenico, Gentile

    2013-06-01

    In many applications and technology processes, such as stamping, forging, hot working etc., metals and alloys are subjected to elevated temperature and high strain rate deformation process. Characterization tests, such as quasistatic and dynamic tension or compression test, and validation tests, such as Taylor impact and DTE - dynamic tensile extrusion -, provide the experimental base of data for constitutive model validation and material parameters identification. Testing material at high strain rate and temperature requires dedicated equipment. In this work, both tensile Hopkinson bar and light gas gun where modified in order to allow material testing under sample controlled temperature conditions. Dynamic tension tests and Taylor impact tests, at different temperatures, on high purity copper (99.98%), tungsten (99.95%) and 316L stainless steel were performed. The accuracy of several constitutive models (Johnson and Cook, Zerilli-Armstrong, etc.) in predicting the observed material response was verified by means of extensive finite element analysis (FEA).

  12. The high-pressure compressibility of B12P2

    Science.gov (United States)

    Gao, Yang; Zhou, Mi; Wang, Haiyan; Ji, Cheng; Whiteley, C. E.; Edgar, J. H.; Liu, Haozhe; Ma, Yanzhang

    2017-03-01

    In situ high pressure synchrotron X-ray diffraction measurements were performed on icosahedral boron phosphide (B12P2) to 43.2 GPa. No structural phase transition occurs over this pressure range. The bulk modulus of B12P2 is KOT = 207 ± 7 GPa with pressure derivative of K'OT = 6.6 ± 0.8 . The structure is most compressible along the chain formed by phosphorus and boron atoms in the crystal structure. It is believed that the compressibility of boron-rich compounds at close to ambient pressure is determined by the boron icosahedral structure, while the inclusive atoms (both boron and non-boron) between the icosahedra determine the high-pressure compressibility and structure stability.

  13. Experimental Results of High Pressure and High Strain Rate Tantalum Flow Stress on Omega and NIF

    Science.gov (United States)

    Park, Hye-Sook; Arsenlis, A.; Barton, N.; Benedetti, L.; Huntington, C.; McNaney, J.; Orlikowski, D.; Prisbrey, S.; Remington, B.; Rudd, R.; Swift, D.; Weber, S.; Wehrenberg, C.; Comley, A.

    2015-11-01

    Understanding the high pressure, high strain rate plastic deformation dynamics of materials is an area of research of high interest to planetary formation dynamics, meteor impact dynamics, and inertial confinement fusion designs. Developing predictive theoretical and computational descriptions of such systems, however, has been a difficult undertaking. We have performed many experiments on Omega, LCLS and NIF to test Ta strength models at high pressures (~ up to 4 Mbar), high strain rates (~ 107 s-1) and high strains (>30%) under ramped compression conditions using Rayleigh-Taylor and Richtmyer-Meshkov instability properties. These experiments use plasma drive to ramp compress the sample to higher pressure without shock-melting. We also studied lattice level strength mechanisms under shocked compression using a diffraction-based technique. Our studies show that the strength mechanisms from macro to micro scales are different from the traditional strength model predictions and that they are loading path dependent. We will report the experimental results. Work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA273.

  14. Expansion of spherical cavity of strain-softening materials with different elastic moduli of tension and compression

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    An expansion theory of spherical cavities in strain-softening materials with different moduli of tension and compression was presented. For geomaterials, two controlling parameters were introduced to take into account the different moduli and strain-softening properties. By means of elastic theory with different moduli and stress-softening models, g. eneral solutions calculating Tresca and Mohr-Coulomb materials' stress and displacement fields of expansion of spherical cavity were derived. The effects caused by different elastic moduli in tensile and compression and strain-softening rates on stress and displacement fields and development of plastic zone of expansion of cavity were analyzed. The results show that the ultimate expansion pressure,stress and displacement fields and development of plastic zone vary with the different elastic moduli and strain-softening properties. If classical elastic theory is adopted and strain-softening properties are neglected, rather large errors may be the result.

  15. Strain distribution in the intervertebral disc under unconfined compression and tension load by the optimized digital image correlation technique.

    Science.gov (United States)

    Liu, Qing; Wang, Tai-Yong; Yang, Xiu-Ping; Li, Kun; Gao, Li-Lan; Zhang, Chun-Qiu; Guo, Yue-Hong

    2014-05-01

    The unconfined compression and tension experiments of the intervertebral disc were conducted by applying an optimized digital image correlation technique, and the internal strain distribution was analysed for the disc. It was found that the axial strain values of different positions increased obviously with the increase in loads, while inner annulus fibrosus and posterior annulus fibrosus experienced higher axial strains than the outer annulus fibrosus and anterior annulus fibrosus. Deep annulus fibrosus exhibited higher compressive and tensile axial strains than superficial annulus fibrosus for the anterior region, while there was an opposite result for the posterior region. It was noted that all samples demonstrated a nonlinear stress-strain profile in the process of deforming, and an elastic region was shown once the sample was deformed beyond its toe region.

  16. Relaxation of compressively strained AlGaN by inclined threading dislocations.

    Energy Technology Data Exchange (ETDEWEB)

    Follstaedt, David Martin; Lee, Stephen Roger; Crawford, Mary Hagerott; Provencio, Paula Polyak; Allerman, Andrew Alan; Floro, Jerrold Anthony

    2005-06-01

    Transmission electron microscopy and x-ray diffraction were used to assess the microstructure and strain of Al{sub x}Ga{sub 1?x}N(x = 0.61-0.64) layers grown on AlN. The compressively-strained AlGaN is partially relaxed by inclined threading dislocations, similar to observations on Si-doped AlGaN by P. Cantu, F. Wu, P. Waltereit, S. Keller, A. E. Romanov, U. K. Mishra, S. P. DenBaars, and J. S. Speck [Appl. Phys. Lett. 83, 674 (2003) ]; however, in our material, the dislocations bend before the introduction of any Si. The bending may be initiated by the greater lattice mismatch or the lower dislocation density of our material, but the presence of Si is not necessarily required. The relaxation by inclined dislocations is quantitatively accounted for with the model of A. E. Romanov and J. S. Speck [Appl. Phys. Lett. 83, 2569 (2003)], and we demonstrate the predicted linear dependence of relaxation on layer thickness. Notably, such relaxation was not found in tensile strained AlGaN grown on GaN [J. A. Floro, D. M. Follstaedt, P. Provencio, S. J. Hearne, and S. R. Lee, J. Appl. Phys. 96, 7087 (2004)], even though the same mechanism appears applicable.

  17. TRIAXIAL COMPRESSIVE STRENGTH OF ULTRA HIGH PERFORMANCE CONCRETE

    Directory of Open Access Journals (Sweden)

    Radoslav Sovják

    2013-12-01

    Full Text Available The aim of this work is to describe the strength of Ultra High Performance Concrete (UHPC under triaxial compression. The main goal is to find a trend in the triaxial compressive strength development under various values of confinement pressure. The importance of triaxial tests lies in the spatial loading of the sample, which simulates the real loading of the material in the structure better than conventional uniaxial strength tests. In addition, the authors describe a formulation process for UHPC that has been developed without using heat treatment, pressure or a special mixer. Only ordinary materials available commercially in the Czech Republic were utilized throughout the material design process.

  18. A compression scheme for radio data in high performance computing

    CERN Document Server

    Masui, Kiyoshi; Connor, Liam; Deng, Meiling; Fandino, Mateus; Höfer, Carolin; Halpern, Mark; Hanna, David; Hincks, Adam D; Hinshaw, Gary; Parra, Juan Mena; Newburgh, Laura B; Shaw, J Richard; Vanderlinde, Keith

    2015-01-01

    We present a procedure for efficiently compressing astronomical radio data for high performance applications. Integrated, post-correlation data are first passed through a nearly lossless rounding step which compares the precision of the data to a generalized and calibration-independent form of the radiometer equation. This allows the precision of the data to be reduced in a way that has an insignificant impact on the data. The newly developed Bitshuffle lossless compression algorithm is subsequently applied. When the algorithm is used in conjunction with the HDF5 library and data format, data produced by the CHIME Pathfinder telescope is compressed to 28% of its original size and decompression throughputs in excess of 1 GB/s are obtained on a single core.

  19. Normal and Fibrotic Rat Livers Demonstrate Shear Strain Softening and Compression Stiffening: A Model for Soft Tissue Mechanics.

    Science.gov (United States)

    Perepelyuk, Maryna; Chin, LiKang; Cao, Xuan; van Oosten, Anne; Shenoy, Vivek B; Janmey, Paul A; Wells, Rebecca G

    2016-01-01

    Tissues including liver stiffen and acquire more extracellular matrix with fibrosis. The relationship between matrix content and stiffness, however, is non-linear, and stiffness is only one component of tissue mechanics. The mechanical response of tissues such as liver to physiological stresses is not well described, and models of tissue mechanics are limited. To better understand the mechanics of the normal and fibrotic rat liver, we carried out a series of studies using parallel plate rheometry, measuring the response to compressive, extensional, and shear strains. We found that the shear storage and loss moduli G' and G" and the apparent Young's moduli measured by uniaxial strain orthogonal to the shear direction increased markedly with both progressive fibrosis and increasing compression, that livers shear strain softened, and that significant increases in shear modulus with compressional stress occurred within a range consistent with increased sinusoidal pressures in liver disease. Proteoglycan content and integrin-matrix interactions were significant determinants of liver mechanics, particularly in compression. We propose a new non-linear constitutive model of the liver. A key feature of this model is that, while it assumes overall liver incompressibility, it takes into account water flow and solid phase compressibility. In sum, we report a detailed study of non-linear liver mechanics under physiological strains in the normal state, early fibrosis, and late fibrosis. We propose a constitutive model that captures compression stiffening, tension softening, and shear softening, and can be understood in terms of the cellular and matrix components of the liver.

  20. High rate fabrication of compression molded components

    Energy Technology Data Exchange (ETDEWEB)

    Matsen, Marc R.; Negley, Mark A.; Dykstra, William C.; Smith, Glen L.; Miller, Robert J.

    2016-04-19

    A method for fabricating a thermoplastic composite component comprises inductively heating a thermoplastic pre-form with a first induction coil by inducing current to flow in susceptor wires disposed throughout the pre-form, inductively heating smart susceptors in a molding tool to a leveling temperature with a second induction coil by applying a high-strength magnetic field having a magnetic flux that passes through surfaces of the smart susceptors, shaping the magnetic flux that passes through surfaces of the smart susceptors to flow substantially parallel to a molding surface of the smart susceptors, placing the heated pre-form between the heated smart susceptors; and applying molding pressure to the pre-form to form the composite component.

  1. High pressure, high strain rate material strength studies

    Science.gov (United States)

    Remington, B. A.; Arsenlis, A.; Barton, N.; Belof, J.; Cavallo, R.; Maddox, B.; Park, H.-S.; Prisbrey, S.; Rudd, R.; Comley, A.; Meyers, M.; Wark, J.

    2011-10-01

    Constitutive models for material strength are currently being tested at high pressures by comparing 2D simulations with experiments measuring the Rayleigh-Taylor (RT) instability evolution in solid-state samples of vanadium (V), tantalum (Ta), and iron (Fe). The multiscale strength models being tested combine molecular dynamics, dislocation dynamics, and continuum simulations. Our analysis for the V experiments suggests that the material deformation at these conditions falls into the phonon drag regime, whereas for Ta, the deformation resides mainly in the thermal activation regime. Recent Fe-RT experiments suggest perturbation growth about the alpha-epsilon (bcc-hcp) phase transition threshold has been observed. Using the LLNL multiscale models, we decompose the strength as a function of strain rate into its dominant components of thermal activation, phonon drag, and work hardening. We have also developed a dynamic diffraction diagnostic technique to measure strength directly from shock compressed single crystal samples. Finally, recovery experiments allow a comparison of residual dislocation density with predictions from the multiscale model. This work performed under the auspices of the U.S. DoE by LLNL Security, LLC under Contract DE-AC52-07NA27344.

  2. Shape memory and transformation behavior of high strength 60NiTi in compression

    Science.gov (United States)

    Kaya, I.

    2016-12-01

    This study investigates the transformation behavior of highly Ni-rich 60NiTi alloys after aging at 600 °C for 3 h. After 600 °C-3h aging, R-phase disappeared and alloy transformed in one step. The latent heats of austenite to martensite and martensite to austenite transformations were 13 Jg-1 and 16.4 Jg-1, respectively, for 600 °C-3h aged alloy. The elastic strain energy of 0.75 Jg-1 was obtained in aged alloy. The maximum recoverable transformation strain of 1.7% is obtained under 500 MPa in compression. The superelastic behavior was observed accompanied with a recoverable strain of 1.4%, even high stress level of 1000 MPa is applied.

  3. Influence of prior austenite grain size on the critical strain for completion of DEFT through hot compression test

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A low carbon steel was used to determine the critical strain εc for completion of deformation enhanced ferrite transformation (DEFT) through a series of hot compression tests.In addition, the influence of prior austenite grain size (PAGS) on the critical strain was systematically investigated.Experimental results showed that the critical strain is affected by PAGS.When γ→α transformation completes, the smaller the PAGS is, the smaller the critical strain is.The ferrite grains obtained through DEFT can be refined to about 3 μm when the DEFT is completed.

  4. Progress at SLAC on high-power rf pulse compression

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, P.B.; Farkas, Z.D.; Lavine, T.L.; Menegat, A.; Nantista, C.; Ruth, R.D. [Stanford Linear Accelerator Center, Menlo Park, CA (United States); Kroll, N.M. [Stanford Linear Accelerator Center, Menlo Park, CA (United States)]|[California Univ., San Diego, La Jolla, CA (United States). Dept. of Physics

    1992-06-01

    Rf pulse compression is a technique for augmenting the peak power output of a klystron (typically 50--100 MW) to obtain the high peak power required to drive a linear collider at a high accelerating gradient (typically 200 MW/m is required for a gradient of 100 MV/m). The SLED pulse compression system, with a power gain of about 2.6, has been operational on the SLAC linac for more than a decade. Recently, a binary pulse-compression system with a power gain of about 5.2 has been tested up to an output power of 120 MW. Further high-power tests are in progress. Our current effort is focused on prototyping a so-called SLED-II pulse-compression system with a power gain of four. Over-moded TE{sub 01}-mode circular waveguide components, some with novel technical features, are used to reduce losses at the 11.4-GHz operating frequency.

  5. Progress at SLAC on high-power rf pulse compression

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, P.B.; Farkas, Z.D.; Lavine, T.L.; Menegat, A.; Nantista, C.; Ruth, R.D. (Stanford Linear Accelerator Center, Menlo Park, CA (United States)); Kroll, N.M. (Stanford Linear Accelerator Center, Menlo Park, CA (United States) California Univ., San Diego, La Jolla, CA (United States). Dept. of Physics)

    1992-06-01

    Rf pulse compression is a technique for augmenting the peak power output of a klystron (typically 50--100 MW) to obtain the high peak power required to drive a linear collider at a high accelerating gradient (typically 200 MW/m is required for a gradient of 100 MV/m). The SLED pulse compression system, with a power gain of about 2.6, has been operational on the SLAC linac for more than a decade. Recently, a binary pulse-compression system with a power gain of about 5.2 has been tested up to an output power of 120 MW. Further high-power tests are in progress. Our current effort is focused on prototyping a so-called SLED-II pulse-compression system with a power gain of four. Over-moded TE[sub 01]-mode circular waveguide components, some with novel technical features, are used to reduce losses at the 11.4-GHz operating frequency.

  6. Experimental characterization and modelling of UO{sub 2} behavior at high temperatures and high strain rates

    Energy Technology Data Exchange (ETDEWEB)

    Salvo, Maxime, E-mail: maxime.salvo@cea.fr [CEA, DEN, DEC/SESC, F-13108 Saint-Paul-lez-Durance (France); Sercombe, Jérôme [CEA, DEN, DEC/SESC, F-13108 Saint-Paul-lez-Durance (France); Ménard, Jean-Claude [CEA, DEN, DEC/SPUA, F-13108 Saint-Paul-lez-Durance (France); Julien, Jérôme; Helfer, Thomas [CEA, DEN, DEC/SESC, F-13108 Saint-Paul-lez-Durance (France); Désoyer, Thierry [CNRS, LMA, 13402 Marseille Cedex 20 (France)

    2015-01-15

    Highlights: • This paper presents an experimental characterization of UO{sub 2} in compression. • The tests are performed at high temperatures (1100–1700 °C) and high strain rates (10{sup -4}–10{sup -1}/s). • With a power law model, the stress exponent n deduced from the tests varies between 16 and 20. • A hyperbolic sine model was therefore developed to describe UO{sub 2} behavior at high strain rates. • Pore compressibility as observed during the tests was introduced in the model. - Abstract: This work presents an experimental characterization of uranium dioxide (UO{sub 2}) in compression under Reactivity Initiated Accident (RIA) conditions. Pellet samples were tested at four temperatures (1100, 1350, 1550 and 1700°C) and at a strain rate varying over 4 decades (10{sup -4}–10{sup -3}–10{sup -2}–10{sup -1}/s). The experimental results show that the stress–strain curves cannot be fitted with a unique power law as it is the case at smaller strain rates (10{sup -9}–10{sup -5}/s). A strain-hardening also appears in most of the tests. The microstructural observations show a pronounced evolution of the porosity at the pellet center during the tests. A hyperbolic sine model which accounts for volume variations (pore compressibility) was therefore proposed to describe the behavior of UO{sub 2} on a large range of temperatures (1100-1700°C) and strain rates (10{sup -9}–10{sup -1}/s). The Finite Element simulations of the compression tests lead to results (maximum stress, axial and hoop strain distribution, porosity distribution) in good agreement with the measurements. The model was then assessed on a database of more than two hundred creep tests.

  7. Scaling laws and deformation mechanisms of nanoporous copper under adiabatic uniaxial strain compression

    Directory of Open Access Journals (Sweden)

    Fuping Yuan

    2014-12-01

    Full Text Available A series of large-scale molecular dynamics simulations were conducted to investigate the scaling laws and the related atomistic deformation mechanisms of Cu monocrystal samples containing randomly placed nanovoids under adiabatic uniaxial strain compression. At onset of yielding, plastic deformation is accommodated by dislocations emitted from void surfaces as shear loops. The collapse of voids are observed by continuous emissions of dislocations from void surfaces and their interactions with further plastic deformation. The simulation results also suggest that the effect modulus, the yield stress and the energy aborption density of samples under uniaxial strain are linearly proportional to the relative density ρ. Moreover, the yield stress, the average flow stress and the energy aborption density of samples with the same relative density show a strong dependence on the void diameter d, expressed by exponential relations with decay coefficients much higher than -1/2. The corresponding atomistic mechanisms for scaling laws of the relative density and the void diameter were also presented. The present results should provide insights for understanding deformation mechanisms of nanoporous metals under extreme conditions.

  8. Scaling laws and deformation mechanisms of nanoporous copper under adiabatic uniaxial strain compression

    Science.gov (United States)

    Yuan, Fuping; Wu, Xiaolei

    2014-12-01

    A series of large-scale molecular dynamics simulations were conducted to investigate the scaling laws and the related atomistic deformation mechanisms of Cu monocrystal samples containing randomly placed nanovoids under adiabatic uniaxial strain compression. At onset of yielding, plastic deformation is accommodated by dislocations emitted from void surfaces as shear loops. The collapse of voids are observed by continuous emissions of dislocations from void surfaces and their interactions with further plastic deformation. The simulation results also suggest that the effect modulus, the yield stress and the energy aborption density of samples under uniaxial strain are linearly proportional to the relative density ρ. Moreover, the yield stress, the average flow stress and the energy aborption density of samples with the same relative density show a strong dependence on the void diameter d, expressed by exponential relations with decay coefficients much higher than -1/2. The corresponding atomistic mechanisms for scaling laws of the relative density and the void diameter were also presented. The present results should provide insights for understanding deformation mechanisms of nanoporous metals under extreme conditions.

  9. Finite Element Modeling of the Behavior of Armor Materials Under High Strain Rates and Large Strains

    Science.gov (United States)

    Polyzois, Ioannis

    For years high strength steels and alloys have been widely used by the military for making armor plates. Advances in technology have led to the development of materials with improved resistance to penetration and deformation. Until recently, the behavior of these materials under high strain rates and large strains has been primarily based on laboratory testing using the Split Hopkinson Pressure Bar apparatus. With the advent of sophisticated computer programs, computer modeling and finite element simulations are being developed to predict the deformation behavior of these metals for a variety of conditions similar to those experienced during combat. In the present investigation, a modified direct impact Split Hopkinson Pressure Bar apparatus was modeled using the finite element software ABAQUS 6.8 for the purpose of simulating high strain rate compression of specimens of three armor materials: maraging steel 300, high hardness armor (HHA), and aluminum alloy 5083. These armor materials, provided by the Canadian Department of National Defence, were tested at the University of Manitoba by others. In this study, the empirical Johnson-Cook visco-plastic and damage models were used to simulate the deformation behavior obtained experimentally. A series of stress-time plots at various projectile impact momenta were produced and verified by comparison with experimental data. The impact momentum parameter was chosen rather than projectile velocity to normalize the initial conditions for each simulation. Phenomena such as the formation of adiabatic shear bands caused by deformation at high strains and strain rates were investigated through simulations. It was found that the Johnson-Cook model can accurately simulate the behavior of body-centered cubic (BCC) metals such as steels. The maximum shear stress was calculated for each simulation at various impact momenta. The finite element model showed that shear failure first occurred in the center of the cylindrical specimen and

  10. Microstructure, Compression Property and Shape Memory Effect of Equiatomic TaRu High Temperature Shape Memory Alloy

    Institute of Scientific and Technical Information of China (English)

    Xin GAO; Yufeng ZHENG; Wei CAI; Su ZHANG; Liancheng ZHAO

    2004-01-01

    The microstructure, phase transformation, compression property and strain recovery characteristics of equiatomic TaRu super high temperature shape memory alloy have been studied by optical microscope, XRD, DTA, compression tests and TEM observations. When cooling the alloy specimen from high temperature to the room temperature,β(parent phase)→β′(interphase) →β"(martensite) two-step phase transformations occur. The microstructure at room temperature show regularly arranged band morphology, with the monoclinic crystal structure. The twinning relationship between the martensite bands is determined to be (101) of Type I. Reorientation and coalescence of the martensite bands inside the variant happened during compression at room temperature. The β′→β reversible transformation contributes mainly the shape memory effect, with the maximum completely recovery strain of 2%.

  11. Feature preserving compression of high resolution SAR images

    Science.gov (United States)

    Yang, Zhigao; Hu, Fuxiang; Sun, Tao; Qin, Qianqing

    2006-10-01

    Compression techniques are required to transmit the large amounts of high-resolution synthetic aperture radar (SAR) image data over the available channels. Common Image compression methods may lose detail and weak information in original images, especially at smoothness areas and edges with low contrast. This is known as "smoothing effect". It becomes difficult to extract and recognize some useful image features such as points and lines. We propose a new SAR image compression algorithm that can reduce the "smoothing effect" based on adaptive wavelet packet transform and feature-preserving rate allocation. For the reason that images should be modeled as non-stationary information resources, a SAR image is partitioned to overlapped blocks. Each overlapped block is then transformed by adaptive wavelet packet according to statistical features of different blocks. In quantifying and entropy coding of wavelet coefficients, we integrate feature-preserving technique. Experiments show that quality of our algorithm up to 16:1 compression ratio is improved significantly, and more weak information is reserved.

  12. A high-dynamic range transimpedance amplifier with compression

    Science.gov (United States)

    Mičušík, D.; Zimmermann, H.

    2007-02-01

    This paper presents a transimpedance amplifier (TIA) with the logarithmic compression of the input current signal. The presented TIA has two regions of operation: a linear one for small input current signals and a compression one for high input currents, that could otherwise saturate the TIA. The measured -3dB bandwidth in the linear region of operation is 102MHz. The measured maximum input current overdrive is 20.5mA. However, the maximum of the monotonic compression is approx. 8mA. Using the compression technique we could achieve low rms equivalent input noise current (~20.2nA) within the measured bandwidth and with approx. 2pF capacitance at the input. Thus the dynamic range at the input of the TIA is approx. 120dB considering the maximal current overdrive. The proposed TIA represents the input stage of a optical receiver with integrated differential 50Ω output driver. The optical receiver occupies approx. 1.24mm2 in 0.35 μm SiGe BiCMOS technology and consumes 78mA from 5V supply.

  13. A high-strain-rate superplastic ceramic.

    Science.gov (United States)

    Kim, B N; Hiraga, K; Morita, K; Sakka, Y

    2001-09-20

    High-strain-rate superplasticity describes the ability of a material to sustain large plastic deformation in tension at high strain rates of the order of 10-2 to 10-1 s-1 and is of great technological interest for the shape-forming of engineering materials. High-strain-rate superplasticity has been observed in aluminium-based and magnesium-based alloys. But for ceramic materials, superplastic deformation has been restricted to low strain rates of the order of 10-5 to 10-4 s-1 for most oxides and nitrides with the presence of intergranular cavities leading to premature failure. Here we show that a composite ceramic material consisting of tetragonal zirconium oxide, magnesium aluminate spinel and alpha-alumina phases exhibits superplasticity at strain rates up to 1 s-1. The composite also exhibits a large tensile elongation, exceeding 1,050 per cent for a strain rate of 0.4 s-1. The tensile flow behaviour and deformed microstructure of the material indicate that superplasticity is due to a combination of limited grain growth in the constitutive phases and the intervention of dislocation-induced plasticity in the zirconium oxide phase. We suggest that the present results hold promise for the application of shape-forming technologies to ceramic materials.

  14. Offshore compression system design for low cost high and reliability

    Energy Technology Data Exchange (ETDEWEB)

    Castro, Carlos J. Rocha de O.; Carrijo Neto, Antonio Dias; Cordeiro, Alexandre Franca [Chemtech Engineering Services and Software Ltd., Rio de Janeiro, RJ (Brazil). Special Projects Div.], Emails: antonio.carrijo@chemtech.com.br, carlos.rocha@chemtech.com.br, alexandre.cordeiro@chemtech.com.br

    2010-07-01

    In the offshore oil fields, the oil streams coming from the wells usually have significant amounts of gas. This gas is separated at low pressure and has to be compressed to the export pipeline pressure, usually at high pressure to reduce the needed diameter of the pipelines. In the past, this gases where flared, but nowadays there are a increasing pressure for the energy efficiency improvement of the oil rigs and the use of this gaseous fraction. The most expensive equipment of this kind of plant are the compression and power generation systems, being the second a strong function of the first, because the most power consuming equipment are the compressors. For this reason, the optimization of the compression system in terms of efficiency and cost are determinant to the plant profit. The availability of the plants also have a strong influence in the plant profit, specially in gas fields where the products have a relatively low aggregated value, compared to oil. Due this, the third design variable of the compression system becomes the reliability. As high the reliability, larger will be the plant production. The main ways to improve the reliability of compression system are the use of multiple compression trains in parallel, in a 2x50% or 3x50% configuration, with one in stand-by. Such configurations are possible and have some advantages and disadvantages, but the main side effect is the increase of the cost. This is the offshore common practice, but that does not always significantly improve the plant availability, depending of the previous process system. A series arrangement and a critical evaluation of the overall system in some cases can provide a cheaper system with equal or better performance. This paper shows a case study of the procedure to evaluate a compression system design to improve the reliability but without extreme cost increase, balancing the number of equipment, the series or parallel arrangement, and the driver selection. Two cases studies will be

  15. Stainless steel component with compressed fiber Bragg grating for high temperature sensing applications

    Science.gov (United States)

    Jinesh, Mathew; MacPherson, William N.; Hand, Duncan P.; Maier, Robert R. J.

    2016-05-01

    A smart metal component having the potential for high temperature strain sensing capability is reported. The stainless steel (SS316) structure is made by selective laser melting (SLM). A fiber Bragg grating (FBG) is embedded in to a 3D printed U-groove by high temperature brazing using a silver based alloy, achieving an axial FBG compression of 13 millistrain at room temperature. Initial results shows that the test component can be used for up to 700°C for sensing applications.

  16. On the self-pinning character of synchro-Shockley dislocations in a Laves phase during strain rate cyclical compressions

    NARCIS (Netherlands)

    Kazantzis, A. V.; Aindow, M.; Triantafyllidis, G. K.; De Hosson, J. Th. M.

    2008-01-01

    Strain rate cyclical tests in compression, between 1350 and 1500 degrees C, have been employed to study the self-pinning character of thermally activated synchro-Shockley dislocations in the C15 Cr2Nb Laves phase. An average minimum effective (pinning) stress was calculated to be necessary for their

  17. Mechanical Behavior of MTMoCr under High Temperature and High Strain-rate

    Directory of Open Access Journals (Sweden)

    Zhengwei Dong

    2013-02-01

    Full Text Available MTMoCr is a kind of Mo-Cr alloy cast iron often used to make automobile panel dies. To study high-speed machining process of automobile panel dies, the material’s elastic modulus and rupture critical values of MTMoCr at 20℃-800℃ were studied based on the high temperature elongation test. The material’s stress-strain diagram at various temperatures set-points (20℃-500℃ and various strain-rates (500/s-5000/s were studied and the dynamic tensile yield strength values were obtained by dynamic SHPB (Split Hopkinson Pressure Bar high-speed compression test. The experimental results indicate that MTMoCr has heat resistance and its behavior is between toughness and brittleness materials. Its toughness is enhanced with temperature increasing. The strain-rate strengthening effect prevails over temperature softening effect.

  18. Bilateral high radial nerve compressions: a case report.

    Science.gov (United States)

    Chuangsuwanich, A; Muangsombut, S; Sangruchi, T

    2000-06-01

    A 40-year-old woman with bilateral high radial nerve compressions by non-traumatic cause was reported. It occurred first at the right radial nerve which was explored after a period of investigation and conservative treatment. Two constricted sites 2.0 cm apart of the right radial nerve crossed by branches of the radial collateral artery beneath the lateral head of the triceps were found. The constricted sites including tissue in between was resected and replaced with a sural nerve graft. One year later the patient had the same episode on the left side. The operative finding was the same as the previous one. Sural nerve graft was performed after neurolysis had failed. The patient's normal radial nerve function returned in one year. This is the first reported case in the literature of bilateral high radial nerve compressions by branches of the radial collateral artery.

  19. The Turbulent Dynamo in Highly Compressible Supersonic Plasmas

    CERN Document Server

    Federrath, Christoph; Bovino, Stefano; Schleicher, Dominik R G

    2014-01-01

    The turbulent dynamo may explain the origin of cosmic magnetism. While the exponential amplification of magnetic fields has been studied for incompressible gases, little is known about dynamo action in highly-compressible, supersonic plasmas, such as the interstellar medium of galaxies and the early Universe. Here we perform the first quantitative comparison of theoretical models of the dynamo growth rate and saturation level with three-dimensional magnetohydrodynamical simulations of supersonic turbulence with grid resolutions of up to 1024^3 cells. We obtain numerical convergence and find that dynamo action occurs for both low and high magnetic Prandtl numbers Pm = nu/eta = 0.1-10 (the ratio of viscous to magnetic dissipation), which had so far only been seen for Pm >= 1 in supersonic turbulence. We measure the critical magnetic Reynolds number, Rm_crit = 129 (+43, -31), showing that the compressible dynamo is almost as efficient as in incompressible gas. Considering the physical conditions of the present a...

  20. High-Frequency Chest Compression: A Summary of the Literature

    OpenAIRE

    Dosman, Cara F; Jones, Richard L

    2005-01-01

    The purpose of the present literature summary is to describe high-frequency chest compression (HFCC), summarize its history and outline study results on its effect on mucolysis, mucus transport, pulmonary function and quality of life. HFCC is a mechanical method of self-administered chest physiotherapy, which induces rapid air movement in and out of the lungs. This mean oscillated volume is an effective method of mucolysis and mucus clearance. HFCC can increase independence. Some studies have...

  1. IMPACT OF TONE MAPPING IN HIGH DYNAMIC RANGE IMAGE COMPRESSION

    OpenAIRE

    Narwaria, Manish; Perreira Da Silva, Matthieu; Le Callet, Patrick; Pépion, Romuald

    2014-01-01

    International audience; Tone mapping or range reduction is often used in High Dynamic Range (HDR) visual signal compression to take advantage of the existing image/video coding architectures. Thus, it is important to study the impact of tone mapping on the visual quality of decompressed HDR visual signals. To our knowledge, most of the existing studies focus only on the quality loss in the resultant low dynamic range (LDR) signal (obtained via tone mapping) and typically employ LDR displays f...

  2. Diffraction Correlation to Reconstruct Highly Strained Particles

    Science.gov (United States)

    Brown, Douglas; Harder, Ross; Clark, Jesse; Kim, J. W.; Kiefer, Boris; Fullerton, Eric; Shpyrko, Oleg; Fohtung, Edwin

    2015-03-01

    Through the use of coherent x-ray diffraction a three-dimensional diffraction pattern of a highly strained nano-crystal can be recorded in reciprocal space by a detector. Only the intensities are recorded, resulting in a loss of the complex phase. The recorded diffraction pattern therefore requires computational processing to reconstruct the density and complex distribution of the diffracted nano-crystal. For highly strained crystals, standard methods using HIO and ER algorithms are no longer sufficient to reconstruct the diffraction pattern. Our solution is to correlate the symmetry in reciprocal space to generate an a priori shape constraint to guide the computational reconstruction of the diffraction pattern. This approach has improved the ability to accurately reconstruct highly strained nano-crystals.

  3. High Strain Rate Characterisation of Composite Materials

    DEFF Research Database (Denmark)

    Eriksen, Rasmus Normann Wilken

    The high strain rate characterisation of FRP materials present the experimenter with a new set of challenges in obtaining valid experimental data. These challenges were addressed in this work with basis in classic wave theory. The stress equilibrium process for linear elastic materials, as fibre...... a linear elastic specimen to reach a state of constant strain rate before fracture. This was in contrast to ductile materials, which are widely tested with for the High-speed servohydraulic test machine. The development of the analysis and the interpretation of the results, were based on the experience...

  4. Compressive behaviour at High Temperatures of Fibre Reinforced Concretes

    Directory of Open Access Journals (Sweden)

    S. O. Santos

    2009-01-01

    Full Text Available This paper summarizes the research that is being carried out at the Universities of Coimbra and Rio de Janeiro, on fibre reinforced concretes at high temperatures. Several high strength concrete compositions reinforced with fibres (polypropylene, steel and glass fibres were developed. The results of compressive tests at high temperatures (300 °C, 500 °C and 600 °C and after heating and cooling down of the concrete are presented in the paper. In both research studies, the results indicated that polypropylene fibers prevent concrete spalling. 

  5. Properties of heterogeneous energetic materials under high strain, high strain rate deformation

    Science.gov (United States)

    Cai, Jing

    Heterogeneous energetic materials have many applications. Their dynamic behavior and microstructural evolution upon plastic deformation have remained not fully understood. The following heterogeneous materials were investigated in the this study: the pure PTFE (usually a mixture of crystalline and amorphous phases), PTFE-Sn, PTFE-Al, PTFE-Al-W, and carbon fibers filled Al alloy. Sample manufacturing processes involving ball milling and Cold Isostatic Pressing were employed. Quasi-static and Hopkinson bar tests were carried out to obtain the compressive strengths of composites. The Conventional Thick-walled Cylinder (TWC) method and newly developed small-scale Hopkinson bar based TWC experiments were conducted to investigate single shear bands and their assembly. Conventional and "soft" drop-weight tests were performed to examine the mechanical properties and the initiation of chemical reactions. Scanning Electron Microscopy was used to detect the details of the microstructures and failure mechanisms of heterogeneous materials. New features in the dynamic behavior of heterogeneous materials were observed. They include the following: (1) Strain softening, instead of thermal softening, is the main mechanism in the initiation of shear bands in explosively driven TWC tests of solid PTFE. (2) Cold isostatically pressed PTFE-Sn samples were more stable with respect to shear localization than solid PTFE. (3) The dynamic collapse of solid PTFE-Al samples with different particle sizes was accomplished with the shear localization bands and cracks. (4) Force chains in the fine W and Al particles were attributed to the high strength of the porous PTFE-Al-W composite containing fine W particles in comparison with composites with coarse W particles. (5) Debonding of metal particles from the PTFE matrix and the fracture of the matrix were identified to be two major mechanisms for the failure of the PTFE-Al-W composites. (6) The formation of PTFE nano-fibers during high strain flow

  6. Equation of State for Shock Compression of High Distension Solids

    Science.gov (United States)

    Grady, Dennis

    2013-06-01

    Shock Hugoniot data for full-density and porous compounds of boron carbide, silicon dioxide, tantalum pentoxide, uranium dioxide and playa alluvium are investigated for the purpose of equation-of-state representation of intense shock compression. Complications of multivalued Hugoniot behavior characteristic of highly distended solids are addressed through the application of enthalpy-based equations of state of the form originally proposed by Rice and Walsh in the late 1950's. Additivity of cold and thermal pressure intrinsic to the Mie-Gruneisen EOS framework is replaced by isobaric additive functions of the cold and thermal specific volume components in the enthalpy-based formulation. Additionally, experimental evidence supports acceleration of shock-induced phase transformation on the Hugoniot with increasing levels of initial distention for silicon dioxide, uranium dioxide and possibly boron carbide. Methods for addressing this experimentally observed facet of the shock compression are introduced into the EOS model.

  7. Viscosity and compressibility of diacylglycerol under high pressure

    Science.gov (United States)

    Malanowski, Aleksander; Rostocki, A. J.; Kiełczyński, P.; Szalewski, M.; Balcerzak, A.; Kościesza, R.; Tarakowski, R.; Ptasznik, S.; Siegoczyński, R. M.

    2013-03-01

    The influence of high pressure on viscosity and compressibility of diacylglycerol (DAG) oil has been presented in this paper. The investigated DAG oil was composed of 82% of DAGs and 18% TAGs (triacylglycerols). The dynamic viscosity of DAG was investigated as a function of the pressure up to 400 MPa. The viscosity was measured by means of the surface acoustic wave method, where the acoustic waveguides were used as sensing elements. As the pressure was rising, the larger ultrasonic wave attenuation was observed, whereas amplitude decreased with the liquid viscosity augmentation. Measured changes of physical properties were most significant in the pressure range near the phase transition. Deeper understanding of DAG viscosity and compressibility changes versus pressure could shed more light on thermodynamic properties of edible oils.

  8. A high-power SLED 2 pulse compression system

    Energy Technology Data Exchange (ETDEWEB)

    Kroll, N.M. [California Univ., San Diego, La Jolla, CA (United States). Dept. of Physics; Farkas, Z.D.; Lavine, T.L.; Menegat, A.; Ruth, R.D.; Wilson, P.B. [Stanford Linear Accelerator Center, Menlo Park, CA (United States); Nantista, C. [California Univ., Los Angeles, CA (United States). Dept. of Physics

    1992-03-01

    The enhancement of peak power by means of RF pulse compression has found important application for driving high energy electron linacs, the SLAC linac in particular. The SLAC Energy Doubler (SLED), however, yields a pulse shape in the form of a decaying exponential which limits the applicability of the method. Two methods of improving this situation have been suggested: binary pulse compression (BPC), in which the pulse is compressed by successive factors of two, and SLED II in which the pair of resonant cavities of SLED are replaced by long resonant delay lines (typically waveguides). Intermediate schemes in which the cavity pair is replaced by sequences of coupled cavities have also been considered. In this paper we describe our efforts towards the design and construction of high-power SLED II systems, which are intended to provide drivers for various advanced accelerator test facilities and potentially for the Next Linear Collider itself. The design path we have chosen requires the development of a number of microwave components in overmoded waveguide, and the bulk of this paper will be devoted to reporting our progress.

  9. Compression of structured high-throughput sequencing data.

    Directory of Open Access Journals (Sweden)

    Fabien Campagne

    Full Text Available Large biological datasets are being produced at a rapid pace and create substantial storage challenges, particularly in the domain of high-throughput sequencing (HTS. Most approaches currently used to store HTS data are either unable to quickly adapt to the requirements of new sequencing or analysis methods (because they do not support schema evolution, or fail to provide state of the art compression of the datasets. We have devised new approaches to store HTS data that support seamless data schema evolution and compress datasets substantially better than existing approaches. Building on these new approaches, we discuss and demonstrate how a multi-tier data organization can dramatically reduce the storage, computational and network burden of collecting, analyzing, and archiving large sequencing datasets. For instance, we show that spliced RNA-Seq alignments can be stored in less than 4% the size of a BAM file with perfect data fidelity. Compared to the previous compression state of the art, these methods reduce dataset size more than 40% when storing exome, gene expression or DNA methylation datasets. The approaches have been integrated in a comprehensive suite of software tools (http://goby.campagnelab.org that support common analyses for a range of high-throughput sequencing assays.

  10. High-resolution three-dimensional imaging with compress sensing

    Science.gov (United States)

    Wang, Jingyi; Ke, Jun

    2016-10-01

    LIDAR three-dimensional imaging technology have been used in many fields, such as military detection. However, LIDAR require extremely fast data acquisition speed. This makes the manufacture of detector array for LIDAR system is very difficult. To solve this problem, we consider using compress sensing which can greatly decrease the data acquisition and relax the requirement of a detection device. To use the compressive sensing idea, a spatial light modulator will be used to modulate the pulsed light source. Then a photodetector is used to receive the reflected light. A convex optimization problem is solved to reconstruct the 2D depth map of the object. To improve the resolution in transversal direction, we use multiframe image restoration technology. For each 2D piecewise-planar scene, we move the SLM half-pixel each time. Then the position where the modulated light illuminates will changed accordingly. We repeat moving the SLM to four different directions. Then we can get four low-resolution depth maps with different details of the same plane scene. If we use all of the measurements obtained by the subpixel movements, we can reconstruct a high-resolution depth map of the sense. A linear minimum-mean-square error algorithm is used for the reconstruction. By combining compress sensing and multiframe image restoration technology, we reduce the burden on data analyze and improve the efficiency of detection. More importantly, we obtain high-resolution depth maps of a 3D scene.

  11. Compressed gas domestic aerosol valve design using high viscous product

    Directory of Open Access Journals (Sweden)

    A Nourian

    2016-10-01

    Full Text Available Most of the current universal consumer aerosol products using high viscous product such as cooking oil, antiperspirants, hair removal cream are primarily used LPG (Liquefied Petroleum Gas propellant which is unfriendly environmental. The advantages of the new innovative technology described in this paper are: i. No butane or other liquefied hydrocarbon gas is used as a propellant and it replaced with Compressed air, nitrogen or other safe gas propellant. ii. Customer acceptable spray quality and consistency during can lifetime iii. Conventional cans and filling technology There is only a feasible energy source which is inert gas (i.e. compressed air to replace VOCs (Volatile Organic Compounds and greenhouse gases, which must be avoided, to improve atomisation by generating gas bubbles and turbulence inside the atomiser insert and the actuator. This research concentrates on using "bubbly flow" in the valve stem, with injection of compressed gas into the passing flow, thus also generating turbulence. The new valve designed in this investigation using inert gases has advantageous over conventional valve with butane propellant using high viscous product (> 400 Cp because, when the valving arrangement is fully open, there are negligible energy losses as fluid passes through the valve from the interior of the container to the actuator insert. The use of valving arrangement thus permits all pressure drops to be controlled, resulting in improved control of atomising efficiency and flow rate, whereas in conventional valves a significant pressure drops occurs through the valve which has a complex effect on the corresponding spray.

  12. High sensitivity knitted fabric strain sensors

    Science.gov (United States)

    Xie, Juan; Long, Hairu; Miao, Menghe

    2016-10-01

    Wearable sensors are increasingly used in smart garments for detecting and transferring vital signals and body posture, movement and respiration. Existing fabric strain sensors made from metallized yarns have low sensitivity, poor comfort and low durability to washing. Here we report a knitted fabric strain sensor made from a cotton/stainless steel (SS) fibre blended yarn which shows much higher sensitivity than sensors knitted from metallized yarns. The fabric feels softer than pure cotton textiles owing to the ultrafine stainless steel fibres and does not lose its electrical property after washing. The reason for the high sensitivity of the cotton/SS knitted fabric sensor was explored by comparing its sensing mechanism with the knitted fabric sensor made from metallized yarns. The results show that the cotton/SS yarn-to-yarn contact resistance is highly sensitive to strain applied to hooked yarn loops.

  13. A computer program for plotting stress-strain data from compression, tension, and torsion tests of materials

    Science.gov (United States)

    Greenbaum, A.; Baker, D. J.; Davis, J. G., Jr.

    1974-01-01

    A computer program for plotting stress-strain curves obtained from compression and tension tests on rectangular (flat) specimens and circular-cross-section specimens (rods and tubes) and both stress-strain and torque-twist curves obtained from torsion tests on tubes is presented in detail. The program is written in FORTRAN 4 language for the Control Data 6000 series digital computer with the SCOPE 3.0 operating system and requires approximately 110000 octal locations of core storage. The program has the capability of plotting individual strain-gage outputs and/or the average output of several strain gages and the capability of computing the slope of a straight line which provides a least-squares fit to a specified section of the plotted curve. In addition, the program can compute the slope of the stress-strain curve at any point along the curve. The computer program input and output for three sample problems are presented.

  14. Experimental study of dynamic mechanical properties of reactive powder concrete under high-strain-rate impacts

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The dynamic mechanical properties of reactive powder concrete subjected to compressive impacts with high strain rates ranging from 10 to 1.1×102 s-1 were investigated by means of SHPB (split-Hopkinson-pressure-bar) tests of the cylindrical specimens with five different steel fiber volumetric fractions.The properties of wave stress transmission,failure,strength,and energy consumption of RPC with varied fiber volumes and impact strain rates were analyzed.The influences of impact strain rates and fiber volumes on those properties were characterized as well.The general forms of the dynamic stress-strain relationships of RPC were modeled based on the experimental data.The investigations indicate that for the plain RPC the stress response is greater than the strain response,showing strong brittle performance.The RPC with a certain volume of fibers sustains higher strain rate impact and exhibits better deformability as compared with the plain RPC.With a constant fiber fraction,the peak compressive strength,corresponding peak strain and the residual strain of the fiber-reinforced RPC rise by varying amounts when the impact strain rate increases,with the residual strain demonstrating the greatest increment.Elevating the fiber content makes trivial contribution to improving the residual deformability of RPC when the impact strain rate is constant.The tests also show that the fiber content affects the peak compressive strength and the peak deformability of RPC in a different manner.With a constant impact strain rate and the fiber fraction less than 1.75%,the peak compressive strength rises with an increasing fiber volume.The peak compressive strength tends to decrease as the fiber volume exceeds 1.75%.The corresponding peak strain,however,incessantly rises with the increasing fiber volume.The total energy Edisp that RPC consumed during the period from the beginning of impacts to the time of residual strains elevates with the fiber volume increment as long as the fiber

  15. Strength Regularity and Failure Criterion of High-Strength High-Performance Concrete under Multiaxial Compression

    Institute of Scientific and Technical Information of China (English)

    HE Zhen-jun; SONG Yu-pu

    2008-01-01

    Multiaxial compression tests were performed on 100 mm × 100 mm × 100 nun high-strength high-performance concrete (HSHPC) cubes and normal strength concrete (NSC) cubes. The failure modes of specimens were presented, the static compressive strengths in principal directions were measured, the influence of the stress ratios was analyzed. The experimental results show that the ultimate strengths for HSHPC and NSC under multiaxial compression are greater than the uniaxial compressive strengths at all stress ratios, and the multiaxial strength is dependent on the brittleness and stiffness of concrete, the stress state and the stress ratios. In addition, the Kupfer-Gerstle and Ottosen's failure criteria for plain HSHPC and NSC under multiaxial compressive loading were modified.

  16. High Strain Rate Tensile and Compressive Effects in Glassy Polymers

    Science.gov (United States)

    2013-02-08

    Cheng, Polymer Testing, 21, 113 (2002). 11. D.R. Mears, K.D. Pae , and J.A. Sauer, Journal of Applied Physics, 40 [11], 4229 (1969). 12. J.A. Sauer...D.R. Mears, and K.D. Pae , European Polymer Journal, 6, 1015 (1970). 13. C. Bauwens-Crowet, J-C. Bauwens, and G. Homes, Journal of Materials Science, 7

  17. FAILURE MODE AND CONSTITUTIVE MODEL OF PLAIN HIGH-STRENGTH HIGH-PERFORMANCE CONCRETE UNDER BIAXIAL COMPRESSION AFTER EXPOSURE TO HIGH TEMPERATURES

    Institute of Scientific and Technical Information of China (English)

    Zhenjun He; Yupu Song

    2008-01-01

    An orthotropic constitutive relationship with temperature parameters for plain highstrength high-performance concrete (HSHPC) under biaxial compression is developed. It is based on the experiments performed for characterizing the strength and deformation behavior at two strength levels of HSHPC at 7 different stress ratios including α = σ2 : σ3 = 0.00 : -1, -0.20 : -1, -0.30 : -1, -0.40 : -1, -0.50 : -1, -0.75 : -1, -1.00 : -1, after the exposure to normal and high temperatures of 20, 200, 300, 400, 500 and 600℃, and using a large static-dynamic true triaxial machine. The biaxial tests were performed on 100 mm × 100 mm × 100 mm cubic specimens, and friction-reducing pads were used consisting of three layers of plastic membrane with glycerine in-between for the compressive loading plane. Based on the experimental results, failure modes of HSHPC specimens were described. The principal static compressive strengths, strains at the peak stress and stress-strain curves were measured; and the influence of the temperature and stress ratios on them was also analyzed. The experimental results showed that the uniaxial compressive strength of plain HSHPC after exposure to high temperatures does not decrease dramatically with the increase of temperature. The ratio of the biaxial to its uniaxial compressive strength depends on the stress ratios and brittleness-stiffness of HSHPC after exposure to different temperature levels. Comparison of the stress-strain results obtained from the theoretical model and the experimental data indicates good agreement.

  18. Thermal stability and relaxation mechanisms in compressively strained Ge{sub 0.94}Sn{sub 0.06} thin films grown by molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Fleischmann, C.; Lieten, R. R.; Shimura, Y.; Vandervorst, W. [Instituut voor Kern-en Stralingsfysica, KU Leuven, Celestijnenlaan 200D, 3001 Leuven (Belgium); imec, Kapeldreef 75, 3001 Leuven (Belgium); Hermann, P.; Hönicke, P.; Beckhoff, B. [Physikalisch-Technische Bundesanstalt (PTB), Abbestraße 2-12, 10587 Berlin (Germany); Seidel, F. [Instituut voor Kern-en Stralingsfysica, KU Leuven, Celestijnenlaan 200D, 3001 Leuven (Belgium); imec, Kapeldreef 75, 3001 Leuven (Belgium); Institut für Elektronik-und Sensormaterialien, TU Bergakademie Freiberg, Gustav-Zeuner-Str. 3, 09599 Freiberg (Germany); Richard, O.; Bender, H. [imec, Kapeldreef 75, 3001 Leuven (Belgium); Zaima, S. [Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Uchida, N. [Nanoelectronics Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba West SCR, 16-1 Onogawa, Tsukuba, Ibaraki 305-8569 (Japan); Temst, K.; Vantomme, A. [Instituut voor Kern-en Stralingsfysica, KU Leuven, Celestijnenlaan 200D, 3001 Leuven (Belgium)

    2016-08-28

    Strained Ge{sub 1-x}Sn{sub x} thin films have recently attracted a lot of attention as promising high mobility or light emitting materials for future micro- and optoelectronic devices. While they can be grown nowadays with high crystal quality, the mechanism by which strain energy is relieved upon thermal treatments remains speculative. To this end, we investigated the evolution (and the interplay) of composition, strain, and morphology of strained Ge{sub 0.94}Sn{sub 0.06} films with temperature. We observed a diffusion-driven formation of Sn-enriched islands (and their self-organization) as well as surface depressions (pits), resulting in phase separation and (local) reduction in strain energy, respectively. Remarkably, these compositional and morphological instabilities were found to be the dominating mechanisms to relieve energy, implying that the relaxation via misfit generation and propagation is not intrinsic to compressively strained Ge{sub 0.94}Sn{sub 0.06} films grown by molecular beam epitaxy.

  19. Modeling of Flow Stress of High Titanium Content 6061 Aluminum Alloy Under Hot Compression

    Science.gov (United States)

    Chen, Wei; Guan, Yingping; Wang, Zhenhua

    2016-09-01

    Hot compression tests were performed on high titanium content 6061 aluminum alloy (AA 6061-Ti) using a Gleeble-3500 thermomechanical testing system at temperatures from 350 to 510 °C with a constant strain rate in the range of 0.001-10 s-1. Three types of flow stress models were established from the experimental stress-strain curves, the correlation coefficient ( R), mean absolute relative error ( MARE), and root mean square deviation ( RMSD) between the predicted data and the experimental data were also calculated. The results show that the Fields-Backofen model, which includes a softening factor, was the simplest mathematical expression with a level of precision appropriate for the numerical simulations. However, the Arrhenius and artificial neural network (ANN) models were also consistent with the experimental results but they are more limited in their application in terms of their accuracy and the mathematical expression of the models.

  20. High frequency chest compression therapy: a case study.

    Science.gov (United States)

    Butler, S; O'Neill, B

    1995-01-01

    A new device, the ThAIRapy Bronchial Drainage System, enables patients with cystic fibrosis to self-administer the technique of high frequency chest compression (HFCC) to assist with mucociliary clearance. We review the literature on HFCC and outline a case study of a patient currently using the ThAIRapy Bronchial Drainage System. While mucociliary clearance and lung function may be enhanced by HFCC therapy, more research is needed to determine its efficacy, cost benefits, and optimum treatment guidelines. Although our initial experience with the patient using this device has been positive, we were unable to accurately evaluate the ThAIRapy Bronchial Drainage System.

  1. Highly compressible fluorescent particles for pressure sensing in liquids

    Science.gov (United States)

    Cellini, F.; Peterson, S. D.; Porfiri, M.

    2017-05-01

    Pressure sensing in liquids is important for engineering applications ranging from industrial processing to naval architecture. Here, we propose a pressure sensor based on highly compressible polydimethylsiloxane foam particles embedding fluorescent Nile Red molecules. The particles display pressure sensitivities as low as 0.0018 kPa-1, which are on the same order of magnitude of sensitivities reported in commercial pressure-sensitive paints for air flows. We envision the application of the proposed sensor in particle image velocimetry toward an improved understanding of flow kinetics in liquids.

  2. Impact of biaxial compressive strain on the heterostructures of paraelectrics KTaO3 and SrTiO3

    Directory of Open Access Journals (Sweden)

    Yi Yang

    2015-05-01

    Full Text Available We have performed density functional theory calculations to explore the impact of biaxial compressive strain on the heterostructures of paraelectrics KTaO3 and SrTiO3. We find that the strain induces strong ferroelectric distortion in KTaO3/SrTiO3 heterostructures and it stabilizes the heterostructures in ferroelectric states.The strain influences the distribution of doped holes and leads to the localization of holes in TiO2 layer. It is very interesting that ferroelectricity and ferromagnetism simultaneously present in the strained heterostructures formed by the paraelectrics KTaO3 and SrTiO3. The reversal of ferroelectric polarization changes the interface magnetization and thus results in magnetoelectric coupling effect in the heterostructures.

  3. Direct angle resolved photoemission spectroscopy and superconductivity of strained high-c films

    Indian Academy of Sciences (India)

    Davor Pavuna; Daniel Ariosa; Dominique Cloetta; Claudia Cancellieri; Mike Abrecht

    2008-02-01

    Since 1997 we systematically perform direct angle resolved photoemission spectroscopy (ARPES) on in-situ grown thin (< 30 nm) cuprate films. Specifically, we probe low-energy electronic structure and properties of high-c superconductors (HTSC) under different degrees of epitaxial (compressive vs. tensile) strain. In overdoped and underdoped in-plane compressed (the strain is induced by the choice of substrate) ≃ 15 nm thin La2-SrCuO4 (LSCO) films we almost double c to 40 K, from 20 K and 24 K, respectively. Yet the Fermi surface (FS) remains essentially two-dimensional. In contrast, ARPES data under tensile strain exhibit the dispersion that is three-dimensional, yet c drastically decreases. It seems that the in-plane compressive strain tends to push the apical oxygen far away from the CuO2 plane, enhances the two-dimensional character of the dispersion and increases c, while the tensile strain acts in the opposite direction and the resulting dispersion is three-dimensional. We have established the shape of the FS for both cases, and all our data are consistent with other ongoing studies, like EXAFS. As the actual lattice of cuprates is like a `Napoleon-cake', i.e. rigid CuO2 planes alternating with softer `reservoir', that distort differently under strain, our data rule out all oversimplified two-dimensional (rigid lattice) mean field models. The work is still in progress on optimized La-doped Bi-2201 films with enhanced c.

  4. Stability of retained austenite in high carbon steel under compressive stress: an investigation from macro to nano scale

    Science.gov (United States)

    Hossain, R.; Pahlevani, F.; Quadir, M. Z.; Sahajwalla, V.

    2016-10-01

    Although high carbon martensitic steels are well known for their industrial utility in high abrasion and extreme operating environments, due to their hardness and strength, the compressive stability of their retained austenite, and the implications for the steels’ performance and potential uses, is not well understood. This article describes the first investigation at both the macro and nano scale of the compressive stability of retained austenite in high carbon martensitic steel. Using a combination of standard compression testing, X-ray diffraction, optical microstructure, electron backscattering diffraction imaging, electron probe micro-analysis, nano-indentation and micro-indentation measurements, we determined the mechanical stability of retained austenite and martensite in high carbon steel under compressive stress and identified the phase transformation mechanism, from the macro to the nano level. We found at the early stage of plastic deformation hexagonal close-packed (HCP) martensite formation dominates, while higher compression loads trigger body-centred tetragonal (BCT) martensite formation. The combination of this phase transformation and strain hardening led to an increase in the hardness of high carbon steel of around 30%. This comprehensive characterisation of stress induced phase transformation could enable the precise control of the microstructures of high carbon martensitic steels, and hence their properties.

  5. Stability of retained austenite in high carbon steel under compressive stress: an investigation from macro to nano scale.

    Science.gov (United States)

    Hossain, R; Pahlevani, F; Quadir, M Z; Sahajwalla, V

    2016-10-11

    Although high carbon martensitic steels are well known for their industrial utility in high abrasion and extreme operating environments, due to their hardness and strength, the compressive stability of their retained austenite, and the implications for the steels' performance and potential uses, is not well understood. This article describes the first investigation at both the macro and nano scale of the compressive stability of retained austenite in high carbon martensitic steel. Using a combination of standard compression testing, X-ray diffraction, optical microstructure, electron backscattering diffraction imaging, electron probe micro-analysis, nano-indentation and micro-indentation measurements, we determined the mechanical stability of retained austenite and martensite in high carbon steel under compressive stress and identified the phase transformation mechanism, from the macro to the nano level. We found at the early stage of plastic deformation hexagonal close-packed (HCP) martensite formation dominates, while higher compression loads trigger body-centred tetragonal (BCT) martensite formation. The combination of this phase transformation and strain hardening led to an increase in the hardness of high carbon steel of around 30%. This comprehensive characterisation of stress induced phase transformation could enable the precise control of the microstructures of high carbon martensitic steels, and hence their properties.

  6. Data Compression on Zero Suppressed High Energy Physics Data

    CERN Document Server

    Schindler, M; CERN. Geneva

    1996-01-01

    Future High Energy Physics experiments will produce unprecedented data volumes (up to 1 GB/s [1]). In most cases it will be impossible to analyse these data in real time and they will have to be stored on durable mostly magnetic linear media (e.g. tapes) for later analysis. This threatens to become a major cost factor for the running of these experiments. Here we present some ideas developed together with the Institute of Computer Graphics, Department for Algorithms and Programming on how this volume and the related cost can be reduced significantly. The algorithms presented are not general ones but aimed in particular to physics experiments data. Taking advantage of the knowledge of the data they are highly superior to general ones (Huffman, LZW, arithmetic coding) both in compression rate but more importantly in speed as to keep up with the output rate to modern tape drives. Above standard algorithms are, however, used after the data have been transferred in a more 'compressible' data space. These algorithm...

  7. THE TURBULENT DYNAMO IN HIGHLY COMPRESSIBLE SUPERSONIC PLASMAS

    Energy Technology Data Exchange (ETDEWEB)

    Federrath, Christoph [Research School of Astronomy and Astrophysics, The Australian National University, Canberra, ACT 2611 (Australia); Schober, Jennifer [Universität Heidelberg, Zentrum für Astronomie, Institut für Theoretische Astrophysik, Albert-Ueberle-Strasse 2, D-69120 Heidelberg (Germany); Bovino, Stefano; Schleicher, Dominik R. G., E-mail: christoph.federrath@anu.edu.au [Institut für Astrophysik, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, D-37077 Göttingen (Germany)

    2014-12-20

    The turbulent dynamo may explain the origin of cosmic magnetism. While the exponential amplification of magnetic fields has been studied for incompressible gases, little is known about dynamo action in highly compressible, supersonic plasmas, such as the interstellar medium of galaxies and the early universe. Here we perform the first quantitative comparison of theoretical models of the dynamo growth rate and saturation level with three-dimensional magnetohydrodynamical simulations of supersonic turbulence with grid resolutions of up to 1024{sup 3} cells. We obtain numerical convergence and find that dynamo action occurs for both low and high magnetic Prandtl numbers Pm = ν/η = 0.1-10 (the ratio of viscous to magnetic dissipation), which had so far only been seen for Pm ≥ 1 in supersonic turbulence. We measure the critical magnetic Reynolds number, Rm{sub crit}=129{sub −31}{sup +43}, showing that the compressible dynamo is almost as efficient as in incompressible gas. Considering the physical conditions of the present and early universe, we conclude that magnetic fields need to be taken into account during structure formation from the early to the present cosmic ages, because they suppress gas fragmentation and drive powerful jets and outflows, both greatly affecting the initial mass function of stars.

  8. Design of High Compressive Strength Concrete Mix without Additives

    Directory of Open Access Journals (Sweden)

    Akasha, N, M

    2017-02-01

    Full Text Available In this paper, the crashed Basalt and uncrushed granite is used in concrete mixes as coarse aggregate. The selected materials, with high specification using special production techniques, the properties ,the mix design procedure and mix proportion of the high strength concrete (HSC were discussed. Different proportions of Ordinary Portland cement (410,430 and 450 kg/m3 with different crashed Basalt and uncrushed Granite coarse aggregate amount (1120 and 1050 kg/m3 and fine aggregate with fine modulus of 3.65 were used. Eight concrete mixes were prepared: two as control mix for crashed Basalt and uncrushed Granite, three with crashed Basalt and three with uncrushed Granite coarse aggregate with mix amount(410:680:1120,430:610:1050 and 450:550:1050 kg/m3,(cement: fine aggregate: coarse aggregaterespectively. The study showed that the use of granite coarse aggregate in concrete mixes has a clear effect in mix proportion. The compressive strength of concrete was measured at ages of 7, 28 and 56 days and it was found that the granite (Mix3 of (450:550:1050 kg/m3 with w/c of 0.46 give the highest of strength in 28 and 56 days among the abovementioned mixes its 56 and 64 N/mm2 respectively. The paper shows that good results of compressive strength and workability of concrete were obtained when using granite coarse aggregate.

  9. Initial Results on Neutralized Drift Compression Experiments (NDCX-IA) for High Intensity Ion Beam

    CERN Document Server

    Roy, Prabir K; Baca, David; Bieniosek, Frank; Coleman, Joshua E; Davidson, Ronald C; Efthimion, Philip; Eylon, Shmuel; Gilson, Erik P; Grant Logan, B; Greenway, Wayne; Henestroza, Enrique; Kaganovich, Igor D; Leitner, Matthaeus; Rose, David; Sefkow, Adam; Sharp, William M; Shuman, Derek; Thoma, Carsten H; Vanecek, David; Waldron, William; Welch, Dale; Yu, Simon

    2005-01-01

    Ion beam neutralization and compression experiments are designed to determine the feasibility of using compressed high intensity ion beams for high energy density physics (HEDP) experiments and for inertial fusion power. To quantitatively ascertain the various mechanisms and methods for beam compression, the Neutralized Drift Compression Experiment (NDCX) facility is being constructed at Lawrence Berkeley National Laboratory (LBNL). In the first compression experiment, a 260 KeV, 25 mA, K+ ion beam of centimeters size is radially compressed to a mm size spot by neutralization in a meter-long plasma column and beam peak current is longitudinally compressed by an induction velocity tilt core. Instrumentation, preliminary results of the experiments, and practical limits of compression are presented. These include parameters such as emittance, degree of neutralization, velocity tilt time profile, and accuracy of measurements (fast and spatially high resolution diagnostic) are discussed.

  10. High frequency chest compression effects heart rate variability.

    Science.gov (United States)

    Lee, Jongwon; Lee, Yong W; Warwick, Warren J

    2007-01-01

    High frequency chest compression (HFCC) supplies a sequence of air pulses through a jacket worn by a patient to remove excessive mucus for the treatment or prevention of lung disease patients. The air pulses produced from the pulse generator propagates over the thorax delivering the vibration and compression energy. A number of studies have demonstrated that the HFCC system increases the ability to clear mucus and improves lung function. Few studies have examined the change in instantaneous heart rate (iHR) and heart rate variability (HRV) during the HFCC therapy. The purpose of this study is to measure the change of HRV with four experimental protocols: (a) without HFCC, (b) during Inflated, (c)HFCC at 6Hz, and (d) HFCC at 21Hz. The nonlinearity and regularity of HRV was assessed by approximate entropy (ApEn), a method used to quantify the complexities and randomness. To compute the ApEn, we sectioned with a total of eight epochs and displayed the ApEn over the each epoch. Our results show significant differences in the both the iHR and HRV between the experimental protocols. The iHR was elevated at both the (c) 6Hz and (d) 21Hz condition from without HFCC (10%, 16%, respectively). We also found that the HFCC system tends to increase the HRV. Our study suggests that monitoring iHR and HRV are very important physiological indexes during HFCC therapy.

  11. A very high speed lossless compression/decompression chip set

    Science.gov (United States)

    Venbrux, Jack; Liu, Norley; Liu, Kathy; Vincent, Peter; Merrell, Randy

    1991-01-01

    A chip is described that will perform lossless compression and decompression using the Rice Algorithm. The chip set is designed to compress and decompress source data in real time for many applications. The encoder is designed to code at 20 M samples/second at MIL specifications. That corresponds to 280 Mbits/second at maximum quantization or approximately 500 Mbits/second under nominal conditions. The decoder is designed to decode at 10 M samples/second at industrial specifications. A wide range of quantization levels is allowed (4...14 bits) and both nearest neighbor prediction and external prediction are supported. When the pre and post processors are bypassed, the chip set performs high speed entropy coding and decoding. This frees the chip set from being tied to one modeling technique or specific application. Both the encoder and decoder are being fabricated in a 1.0 micron CMOS process that has been tested to survive 1 megarad of total radiation dosage. The CMOS chips are small, only 5 mm on a side, and both are estimated to consume less than 1/4 of a Watt of power while operating at maximum frequency.

  12. Squeezing the muscle: compression clothing and muscle metabolism during recovery from high intensity exercise.

    Directory of Open Access Journals (Sweden)

    Billy Sperlich

    Full Text Available The purpose of this experiment was to investigate skeletal muscle blood flow and glucose uptake in m. biceps (BF and m. quadriceps femoris (QF 1 during recovery from high intensity cycle exercise, and 2 while wearing a compression short applying ~37 mmHg to the thigh muscles. Blood flow and glucose uptake were measured in the compressed and non-compressed leg of 6 healthy men by using positron emission tomography. At baseline blood flow in QF (P = 0.79 and BF (P = 0.90 did not differ between the compressed and the non-compressed leg. During recovery muscle blood flow was higher compared to baseline in both compressed (P<0.01 and non-compressed QF (P<0.001 but not in compressed (P = 0.41 and non-compressed BF (P = 0.05; effect size = 2.74. During recovery blood flow was lower in compressed QF (P<0.01 but not in BF (P = 0.26 compared to the non-compressed muscles. During baseline and recovery no differences in blood flow were detected between the superficial and deep parts of QF in both, compressed (baseline P = 0.79; recovery P = 0.68 and non-compressed leg (baseline P = 0.64; recovery P = 0.06. During recovery glucose uptake was higher in QF compared to BF in both conditions (P<0.01 with no difference between the compressed and non-compressed thigh. Glucose uptake was higher in the deep compared to the superficial parts of QF (compression leg P = 0.02. These results demonstrate that wearing compression shorts with ~37 mmHg of external pressure reduces blood flow both in the deep and superficial regions of muscle tissue during recovery from high intensity exercise but does not affect glucose uptake in BF and QF.

  13. HIGH STRAIN RATE BEHAVIOUR OF AN AZ31 + 0.5 Ca MAGNESIUM ALLOY

    Directory of Open Access Journals (Sweden)

    Josef Pešička

    2012-01-01

    Full Text Available The paper reports behaviour of magnesium alloy AZ31 (nominal composition 3 % Al - 1 % Zn – balance Mg with an addition of 0.5 wt. % Ca at high strain rates. Samples were prepared by the squeeze cast technology. Dynamic compression Hopkinson tests were performed at room temperature with impact velocities ranging from 11.2 to 21.9 m.s-1. A rapid increase of the flow stress and the strain rate sensitivity was observed at high strain rates. Transmission electron microscopy showed extremely high dislocation density and mechanical twins of two types. Adiabatic shear banding is discussed as the reason for the observed behaviour at high strain rates.

  14. Compressed Sensing ISAR Reconstruction Considering Highly Maneuvering Motion

    Directory of Open Access Journals (Sweden)

    Ahmed Shaharyar Khwaja

    2017-03-01

    Full Text Available In this report, we propose compressed sensing inverse synthetic aperture radar (ISAR imaging in the presence of highly maneuvering motion using a modified orthogonal matching pursuit (OMP reconstruction algorithm. Unlike existing methods where motion is limited to first- or second-order phase terms, we take into account realistic motion of a maneuvering target that can involve a third-order phase term corresponding to the rate of rotational acceleration. In addition, unlike existing fixed dictionary-based methods, which require designing a large dictionary that needs to take into account all of the possible motion parameters, we propose a modified OMP reconstruction method that requires a dictionary only based on the first-order phase term and estimates the secondand third-order phase terms using an optimization algorithm. Simulation examples and comparison with existing methods show the viability of our approach for imaging moving targets consisting of higher order motion.

  15. Novel Efficient De-blocking Method for Highly Compressed Images

    Institute of Scientific and Technical Information of China (English)

    SHI Min; YI Qing-ming; YANG Liang

    2007-01-01

    Due to coarse quantization,block-based discrete cosine transform(BDCT) compression methods usually suffer from visible blocking artifacts at the block boundaries.A novel efficient de-blocking method in DCT domain is proposed.A specific criterion for edge detection is given,one-dimensional DCT is applied on each row of the adjacent blocks and the shifted block in smooth region,and the transform coefficients of the shifted block are modified by weighting the average of three coefficients of the block.Mean square difference of slope criterion is used to judge the efficiency of the proposed algorithm.Simulation results show that the new method not only obtains satisfactory image quality,but also maintains high frequency information.

  16. High-frequency chest compression: effect of the third generation compression waveform.

    Science.gov (United States)

    Milla, Carlos E; Hansen, Leland G; Weber, Adam; Warwick, Warren J

    2004-01-01

    High-frequency chest compression (HFCC) therapy has become the prevailing form of airway clearance for patients with cystic fibrosis (CF) in the United States. The original square waveform was replaced in 1995 with a sine waveform without published evidence of an equality of effectiveness. The recent development of a triangle waveform for HFCC provided the opportunity to compare the functional and therapeutic effects of different waveforms. Clinical testing was done in patients at home with therapy times recorded with all sputum collected in preweighed sealable vials. The eight study patients with CF were regular users of a sine waveform device. They produced sputum consistently and were clinically stable. They used their optimum frequencies for therapy for each waveform and, for one week for each waveform, collected all sputum during their twice-daily timed HFCC therapies. After collection, these vials were reweighed, desiccated, and reweighed to calculate wet and dry weights of sputum per minute of therapy time. Frequency associated vest pressures transmitted to the mouth, and induced airflows at the mouth were measured in healthy volunteers. The pressure waveforms produced in the vest were, in shape, faithfully demonstrable at the mouth. In the healthy subject the transmission occurred in 2 ms and was attenuated to about 75% of the vest pressure for the triangle waveform and 60% for the sine waveform. All patients produced more sputum with the triangle waveform than with the sine waveform. The mean increase was 20%+ range of 4% to 41%. P value was HFCC should investigate the other effects of the sine and triangle waveforms, as well as the neglected square waveform, on mucus clearance and determine the best frequencies for each waveform, disease, and patient.

  17. Highly Compressed Ion Beams for High Energy Density Science

    CERN Document Server

    Friedman, Alex; Briggs, Richard J; Callahan, Debra; Caporaso, George; Celata, C M; Davidson, Ronald C; Faltens, Andy; Grant-Logan, B; Grisham, Larry; Grote, D P; Henestroza, Enrique; Kaganovich, Igor D; Lee, Edward; Lee, Richard; Leitner, Matthaeus; Nelson, Scott D; Olson, Craig; Penn, Gregory; Reginato, Lou; Renk, Tim; Rose, David; Sessler, Andrew M; Staples, John W; Tabak, Max; Thoma, Carsten H; Waldron, William; Welch, Dale; Wurtele, Jonathan; Yu, Simon

    2005-01-01

    The Heavy Ion Fusion Virtual National Laboratory (HIF-VNL) is developing the intense ion beams needed to drive matter to the High Energy Density (HED) regimes required for Inertial Fusion Energy (IFE) and other applications. An interim goal is a facility for Warm Dense Matter (WDM) studies, wherein a target is heated volumetrically without being shocked, so that well-defined states of matter at 1 to 10 eV are generated within a diagnosable region. In the approach we are pursuing, low to medium mass ions with energies just above the Bragg peak are directed onto thin target "foils," which may in fact be foams or "steel wool" with mean densities 1% to 100% of solid. This approach complements that being pursued at GSI, wherein high-energy ion beams deposit a small fraction of their energy in a cylindrical target. We present the requirements for warm dense matter experiments, and describe suitable accelerator concepts, including novel broadband traveling wave pulse-line, drift-tube linac, RF, and single-gap approa...

  18. Strain and High Temperature Superconductivity: Unexpected Results from Direct Electronic Structure Measurements in Thin Films

    Science.gov (United States)

    Abrecht, M.; Ariosa, D.; Cloetta, D.; Mitrovic, S.; Onellion, M.; Xi, X.; Margaritondo, G.; Pavuna, D.

    2003-07-01

    Angle-resolved photoemission spectroscopy reveals very surprising strain-induced effects on the electronic band dispersion of epitaxial La2-xSrxCuO4-δ thin films. In strained films we measure a band that crosses the Fermi level (EF) well before the Brillouin zone boundary. This is in contrast to the flat band reported in unstrained single crystals and in our unstrained films, as well as in contrast to the band flattening predicted by band structure calculations for in-plane compressive strain. In spite of the density of states reduction near EF, the critical temperature increases in strained films with respect to unstrained samples. These results require a radical departure from commonly accepted notions about strain effects on high temperature superconductors, with possible general repercussions on superconductivity theory.

  19. Mixed DPPC/DPPG monolayers at very high film compression.

    Science.gov (United States)

    Saad, Sameh M I; Policova, Zdenka; Acosta, Edgar J; Hair, Michael L; Neumann, A Wilhelm

    2009-09-15

    A drop shape technique using a constrained sessile drop constellation (ADSA-CSD) has been introduced as a superior technique for studying spread films specially at high collapse pressures [Saad et al. Langmuir 2008, 24, 10843-10850]. It has been shown that ADSA-CSD has certain advantages including the need only for small quantities of liquid and insoluble surfactants, the ability to measure very low surface tension values, easier deposition procedure, and leak-proof design. Here, this technique was applied to investigate mixed DPPC/DPPG monolayers to characterize the role of such molecules in maintaining stable film properties and surface activity of lung surfactant preparations. Results of compression isotherms were obtained for different DPPC/DPPG mixture ratios: 90/10, 80/20, 70/30, 60/40, and 50/50 in addition to pure DPPC and pure DPPG at room temperature of 24 degrees C. The ultimate collapse pressure of DPPC/DPPG mixtures was found to be 70.5 mJ/m2 (similar to pure DPPC) for the cases of low DPPG content (up to 20%). Increasing the DPPG content in the mixture (up to 40%) caused a slight decrease in the ultimate collapse pressure. However, further increase of DPPG in the mixture (50% or more) caused a sharp decrease in the ultimate collapse pressure to a value of 59.9 mJ/m2 (similar to pure DPPG). The change in film elasticity was also tracked for the range of mixture ratios studied. The physical reasons for such changes and the interaction between DPPC and DPPG molecules are discussed. The results also show a change in the film hysteresis upon successive compression and expansion cycles for different mixture ratios.

  20. Energy absorption at high strain rate of glass fiber reinforced mortars

    Directory of Open Access Journals (Sweden)

    Fenu Luigi

    2015-01-01

    Full Text Available In this paper, the dynamic behaviour of cement mortars reinforced with glass fibers was studied. The influence of the addition of glass fibers on energy absorption and tensile strength at high strain-rate was investigated. Static tests in compression, in tension and in bending were first performed. Dynamic tests by means of a Modified Hopkinson Bar were then carried out in order to investigate how glass fibers affected energy absorption and tensile strength at high strain-rate of the fiber reinforced mortar. The Dynamic Increase Factor (DIF was finally evaluated.

  1. Fracture Energy of High-Strength Concrete in Compression

    DEFF Research Database (Denmark)

    Dahl, H.; Brincker, Rune

    1989-01-01

    is essential for understanding the fracture mechanism of concrete in compression. In this paper a series of tests is reported, carried out for the purpose of studying the fracture mechanical properties of concrete in compression. Including the measurement and study of the descending branch, a new experimental...

  2. Peak compression technique in high-performance liquid chromatography

    Institute of Scientific and Technical Information of China (English)

    WEI YuXia; WANG Lin; XlAO ShengYuan; QING Hong; ZHU Yong; HU GaoFei; DENG YuLin

    2009-01-01

    Peak compression technique based on the difference of the solute migration velocity in two different mobile phases was described theoretically and confirmed using benzaldehyde and 4-hydroxyquinoline (4-HQ) as model compounds.After peak compression,the peak compression factors (the ratio of peak width at half-height under non-compression and that under compression condition) of benzaldehyde and 4-HQ were 0.19 and 0.13,respectively.By this application of the peak compression technique to the mixture,both enhanced peak height and good separation were obtained in one run cycle.This peak compression technique was introduced to determine benzaldehyde from semicarbazide-sensitive amine oxidase-catalyzed enzymetic reaction in order to illustrate the applicability of this technique to the real sample.As a result,the peak was compressed effectively,and 4.94-fold,19.3-fold and 5.74-fold enhancement in peak height,plate number and signal to noise ratio were also achieved,respectively.

  3. Dynamic Stress-Strain Behaviour of Steel Fiber Reinforced High-Performance Concrete with Fly Ash

    Directory of Open Access Journals (Sweden)

    Tan Chien Yet

    2012-01-01

    Full Text Available The addition of steel fibers into concrete mix can significantly improve the engineering properties of concrete. The mechanical behaviors of steel fiber reinforced high-performance concrete with fly ash (SFRHPFAC are studied in this paper through both static compression test and dynamic impact test. Cylindrical and cube specimens with three volume fractions of end-hooked steel fibers with volume fraction of 0.5%, 1.0%, and 1.5% (39.25, 78.50, and 117.75 kg/m3 and aspect ratio of 64 are used. These specimens are then tested for static compression and for dynamic impact by split Hopkinson pressure bar (SHPB at strain rate of 30–60 s−1. The results reveal that the failure mode of concrete considerably changes from brittle to ductile with the addition of steel fibers. The plain concrete may fail under low-strain-rate single impact whereas the fibrous concrete can resist impact at high strain rate loading. It is shown that strain rate has great influence on concrete strength. Besides, toughness energy is proportional to the fiber content in both static and dynamic compressions.

  4. FE Simulation of the Stress-Strain State during Shear-Compression Testing and Asymmetric Three-Roll Rolling Process

    Directory of Open Access Journals (Sweden)

    Pesin Alexander

    2017-01-01

    Full Text Available A three-roll rolling process is a significant technique in the production of wire rod, round bars and hexagonal profiles for structural applications. Better mechanical properties of wire rod, round bars and hexagonal profiles can be achieved due to large plastic deformation by the three-roll rolling process. Asymmetric rolling is a novel technique characterized by a kinematic asymmetry linked to the difference in peripheral speed of the rolls, able to introduce additional shear strains through the bar thickness. Physical simulation of shear strain, which is similar to that occurring in asymmetric three-roll rolling process, is very important for design of technology of producing ultrafine grain materials. Shear testing is complicated by the fact that a state of large shear is not easily achievable in most specimen geometries. Application of the shear-compression testing and specimen geometry to physical simulation of asymmetric three-roll rolling process is discussed in the paper. FEM simulation and comparison of the stress-strain state during shear-compression testing and asymmetric three-roll rolling process is presented. The results of investigation can be used to optimize the physical simulation of asymmetric three-roll rolling processes and for design of technology of producing ultrafine grain materials by severe plastic deformation.

  5. Effect of strain rate and temperature at high strains on fatigue behavior of SAP alloys

    DEFF Research Database (Denmark)

    Blucher, J.T.; Knudsen, Per; Grant, N.J.

    1968-01-01

    Fatigue behavior of three SAP alloys of two nominal compositions (7 and 13% Al2O3) was studied in terms of strain rate and temperature at high strains; strain rate had no effect on life at 80 F, but had increasingly greater effect with increasing temperature above 500 F; life decreased with decre......Fatigue behavior of three SAP alloys of two nominal compositions (7 and 13% Al2O3) was studied in terms of strain rate and temperature at high strains; strain rate had no effect on life at 80 F, but had increasingly greater effect with increasing temperature above 500 F; life decreased...

  6. High Strain and Strain-Rate Behaviour of Ptfe/aluminuim/tungsten Mixtures

    Science.gov (United States)

    Addiss, John; Cai, Jing; Walley, Stephen; Proud, William; Nesterenko, Vitali

    2007-12-01

    Conventional drop-weight techniques were modified to accommodate low-amplitude force transducer signals from low-strength, cold isostatically pressed `heavy' composites of polytetrafluoroethylene, aluminum and tungsten (W). The failure strength, strain and the post-critical behavior of failed samples were measured for samples of different porosity and tungsten grain size. Unusual phenomenon of significantly higher strength (55 MPa) of porous composites (density 5.9 g/cm3) with small W particles (compression.

  7. Detailed thermodynamic analyses of high-speed compressible turbulence

    Science.gov (United States)

    Towery, Colin; Darragh, Ryan; Poludnenko, Alexei; Hamlington, Peter

    2016-11-01

    Interactions between high-speed turbulence and flames (or chemical reactions) are important in the dynamics and description of many different combustion phenomena, including autoignition and deflagration-to-detonation transition. The probability of these phenomena to occur depends on the magnitude and spectral content of turbulence fluctuations, which can impact a wide range of science and engineering problems, from the hypersonic scramjet engine to the onset of Type Ia supernovae. In this talk, we present results from new direct numerical simulations (DNS) of homogeneous isotropic turbulence with turbulence Mach numbers ranging from 0 . 05 to 1 . 0 and Taylor-scale Reynolds numbers as high as 700. A set of detailed analyses are described in both Eulerian and Lagrangian reference frames in order to assess coherent (structural) and incoherent (stochastic) thermodynamic flow features. These analyses provide direct insights into the thermodynamics of strongly compressible turbulence. Furthermore, presented results provide a non-reacting baseline for future studies of turbulence-chemistry interactions in DNS with complex chemistry mechanisms. This work was supported by the Air Force Office of Scientific Research (AFOSR) under Award No. FA9550-14-1-0273, and the Department of Defense (DoD) High Performance Computing Modernization Program (HPCMP) under a Frontier project award.

  8. The comparison of three high-frequency chest compression devices.

    Science.gov (United States)

    Lee, Yong W; Lee, Jongwon; Warwick, Warren J

    2008-01-01

    High-frequency chest compression (HFCC) is shown to enhance clearance of pulmonary airway secretions. Several HFCC devices have been designed to provide this therapy. Standard equipment consists of an air pulse generator attached by lengths of tubing to an adjustable, inflatable vest/jacket (V/J) garment. In this study, the V/Js were fitted over a mannequin. The three device air pulse generators produced characteristic waveform patterns. The variations in the frequency and pressure setting of devices were consistent with specific device design features. These studies suggest that a better understanding of the effects of different waveform, frequency, and pressure combinations may improve HFCC therapeutic efficacy of three different HFCC machines. The V/J component of HFCC devices delivers the compressive pulses to the chest wall to produce both airflow through and oscillatory effects in the airways. The V/J pressures of three HFCC machines were measured and analyzed to characterize the frequency, pressure, and waveform patterns generated by each of three device models. The dimensions of all V/Js were adjusted to a circumference of approximately 110% of the chest circumference. The V/J pressures were measured, and maximum, minimum, and mean pressure, pulse pressure, and root mean square of three pulse generators were calculated. Jacket pressures ranged between 2 and 34 mmHg. The 103 and 104 models' pulse pressures increased with the increase in HFCC frequency at constant dial pressure. With the ICS the pulse pressure decreased when the frequency increased. The waveforms of models 103 and 104 were symmetric sine wave and asymmetric sine wave patterns, respectively. The ICS had a triangular waveform. At 20 Hz, both the 103 and 104 were symmetric sine waveform but the ICS remained triangular. Maximum crest factors emerged in low-frequency and high-pressure settings for the ICS and in the high-frequency and low-pressure settings for models 103 and 104. Recognizing the

  9. Accelerated high-resolution photoacoustic tomography via compressed sensing

    Science.gov (United States)

    Arridge, Simon; Beard, Paul; Betcke, Marta; Cox, Ben; Huynh, Nam; Lucka, Felix; Ogunlade, Olumide; Zhang, Edward

    2016-12-01

    Current 3D photoacoustic tomography (PAT) systems offer either high image quality or high frame rates but are not able to deliver high spatial and temporal resolution simultaneously, which limits their ability to image dynamic processes in living tissue (4D PAT). A particular example is the planar Fabry-Pérot (FP) photoacoustic scanner, which yields high-resolution 3D images but takes several minutes to sequentially map the incident photoacoustic field on the 2D sensor plane, point-by-point. However, as the spatio-temporal complexity of many absorbing tissue structures is rather low, the data recorded in such a conventional, regularly sampled fashion is often highly redundant. We demonstrate that combining model-based, variational image reconstruction methods using spatial sparsity constraints with the development of novel PAT acquisition systems capable of sub-sampling the acoustic wave field can dramatically increase the acquisition speed while maintaining a good spatial resolution: first, we describe and model two general spatial sub-sampling schemes. Then, we discuss how to implement them using the FP interferometer and demonstrate the potential of these novel compressed sensing PAT devices through simulated data from a realistic numerical phantom and through measured data from a dynamic experimental phantom as well as from in vivo experiments. Our results show that images with good spatial resolution and contrast can be obtained from highly sub-sampled PAT data if variational image reconstruction techniques that describe the tissues structures with suitable sparsity-constraints are used. In particular, we examine the use of total variation (TV) regularization enhanced by Bregman iterations. These novel reconstruction strategies offer new opportunities to dramatically increase the acquisition speed of photoacoustic scanners that employ point-by-point sequential scanning as well as reducing the channel count of parallelized schemes that use detector arrays.

  10. High-degree pulse compression and high-coherence supercontinuum generation in a convex dispersion profile

    Science.gov (United States)

    Li, Qian; Kutz, J. Nathan; Wai, P. K. A.

    2013-08-01

    We consider the non-adiabatic pulse compression of cascaded soliton propagating in three consecutive optical fiber segments, each of which has a convex dispersion profile with two zero-dispersion wavelengths. The convex dispersion profile provides an accurate description of the chromatic dispersion over the whole frequency range, thus allowing for a comprehensive theoretical treatment of the cascaded third order soliton compression when ultrashort pulses (DFDF) has a convex curvature in its dispersion profile which varies along length of fiber. Compared to DFDF, the cascading of fiber segments with convex dispersion that stays constant along the fiber length greatly reduces the manufacture difficulties and provides a much simpler engineering design in practice. High-degree pulse compression and high-coherence supercontinuum generation are demonstrated.

  11. Lagrangian transported MDF methods for compressible high speed flows

    Science.gov (United States)

    Gerlinger, Peter

    2017-06-01

    This paper deals with the application of thermochemical Lagrangian MDF (mass density function) methods for compressible sub- and supersonic RANS (Reynolds Averaged Navier-Stokes) simulations. A new approach to treat molecular transport is presented. This technique on the one hand ensures numerical stability of the particle solver in laminar regions of the flow field (e.g. in the viscous sublayer) and on the other hand takes differential diffusion into account. It is shown in a detailed analysis, that the new method correctly predicts first and second-order moments on the basis of conventional modeling approaches. Moreover, a number of challenges for MDF particle methods in high speed flows is discussed, e.g. high cell aspect ratio grids close to solid walls, wall heat transfer, shock resolution, and problems from statistical noise which may cause artificial shock systems in supersonic flows. A Mach 2 supersonic mixing channel with multiple shock reflection and a model rocket combustor simulation demonstrate the eligibility of this technique to practical applications. Both test cases are simulated successfully for the first time with a hybrid finite-volume (FV)/Lagrangian particle solver (PS).

  12. Constitutive Models for Compressive Deformation of AZ80 Magnesium Alloy under Multiple Loading Directions and Strain Rates

    Institute of Scientific and Technical Information of China (English)

    Xu-qing CHANG; Li-ying ZHANG; Yong-biao YANG; Jing-li REN

    2016-01-01

    Two constitutive models,the modified Johnson-Cook model and the logarithm linear relation model based on empirical approach and data analysis,were presented to illustrate compressive deformation of magnesium alloys AZ80 under multiple loading directions and strain rates.The results of stress-strain curve analysis and sensitivity in-dex analysis suggested that the stress held large fluctuations in loading direction of 90°.Model testing signified that the logarithm linear relation model was more proper than the modified Johnson-Cook model in view of relative mean square error and correlation coefficients.Moreover,numerical simulation building on established models also indica-ted that the logarithm linear model is more precise than the modified Johnson-Cook model.

  13. Control of high power pulse extracted from the maximally compressed pulse in a nonlinear optical fiber

    CERN Document Server

    Yang, Guangye; Jia, Suotang; Mihalache, Dumitru

    2013-01-01

    We address the possibility to control high power pulses extracted from the maximally compressed pulse in a nonlinear optical fiber by adjusting the initial excitation parameters. The numerical results show that the power, location and splitting order number of the maximally compressed pulse and the transmission features of high power pulses extracted from the maximally compressed pulse can be manipulated through adjusting the modulation amplitude, width, and phase of the initial Gaussian-type perturbation pulse on a continuous wave background.

  14. Development of ultra-short high voltage pulse technology using magnetic pulse compression

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Byung Heon; Kim, S. G.; Nam, S. M.; Lee, B. C.; Lee, S. M.; Jeong, Y. U.; Cho, S. O.; Jin, J. T.; Choi, H. L

    1998-01-01

    The control circuit for high voltage switches, the saturable inductor for magnetic assist, and the magnetic pulse compression circuit were designed, constructed, and tested. The core materials of saturable inductors in magnetic pulse compression circuit were amorphous metal and ferrite and total compression stages were 3. By the test, in high repetition rate, high pulse compression were certified. As a result of this test, it became possible to increase life-time of thyratrons and to replace thyratrons by solid-state semiconductor switches. (author). 16 refs., 16 tabs.

  15. High-performance JPEG image compression chip set for multimedia applications

    Science.gov (United States)

    Razavi, Abbas; Shenberg, Isaac; Seltz, Danny; Fronczak, Dave

    1993-04-01

    By its very nature, multimedia includes images, text and audio stored in digital format. Image compression is an enabling technology essential to overcoming two bottlenecks: cost of storage and bus speed limitation. Storing 10 seconds of high resolution RGB (640 X 480) motion video (30 frames/sec) requires 277 MBytes and a bus speed of 28 MBytes/sec (which cannot be handled by a standard bus). With high quality JPEG baseline compression the storage and bus requirements are reduced to 12 MBytes of storage and a bus speed of 1.2 MBytes/sec. Moreover, since consumer video and photography products (e.g., digital still video cameras, camcorders, TV) will increasingly use digital (and therefore compressed) images because of quality, accessibility, and the ease of adding features, compressed images may become the bridge between the multimedia computer and consumer products. The image compression challenge can be met by implementing the discrete cosine transform (DCT)-based image compression algorithm defined by the JPEG baseline standard. Using the JPEG baseline algorithm, an image can be compressed by a factor of about 24:1 without noticeable degradation in image quality. Because motion video is compressed frame by frame (or field by field), system cost is minimized (no frame or field memories and interframe operations are required) and each frame can be edited independently. Since JPEG is an international standard, the compressed files generated by this solution can be readily interchanged with other users and processed by standard software packages. This paper describes a multimedia image compression board utilizing Zoran's 040 JPEG Image Compression chip set. The board includes digitization, video decoding and compression. While the original video is sent to the display (`video in a window'), it is also compressed and transferred to the computer bus for storage. During playback, the system receives the compressed sequence from the bus and displays it on the screen.

  16. High-performance compression and double cryptography based on compressive ghost imaging with the fast Fourier transform

    Science.gov (United States)

    Leihong, Zhang; Zilan, Pan; Luying, Wu; Xiuhua, Ma

    2016-11-01

    To solve the problem that large images can hardly be retrieved for stringent hardware restrictions and the security level is low, a method based on compressive ghost imaging (CGI) with Fast Fourier Transform (FFT) is proposed, named FFT-CGI. Initially, the information is encrypted by the sender with FFT, and the FFT-coded image is encrypted by the system of CGI with a secret key. Then the receiver decrypts the image with the aid of compressive sensing (CS) and FFT. Simulation results are given to verify the feasibility, security, and compression of the proposed encryption scheme. The experiment suggests the method can improve the quality of large images compared with conventional ghost imaging and achieve the imaging for large-sized images, further the amount of data transmitted largely reduced because of the combination of compressive sensing and FFT, and improve the security level of ghost images through ciphertext-only attack (COA), chosen-plaintext attack (CPA), and noise attack. This technique can be immediately applied to encryption and data storage with the advantages of high security, fast transmission, and high quality of reconstructed information.

  17. Effect of strain rate and temperature at high strains on fatigue behavior of SAP alloys

    DEFF Research Database (Denmark)

    Blucher, J.T.; Knudsen, Per; Grant, N.J.

    1968-01-01

    Fatigue behavior of three SAP alloys of two nominal compositions (7 and 13% Al2O3) was studied in terms of strain rate and temperature at high strains; strain rate had no effect on life at 80 F, but had increasingly greater effect with increasing temperature above 500 F; life decreased...

  18. Thermomechanical process optimization of U-10 wt% Mo - Part 1: high-temperature compressive properties and microstructure

    Science.gov (United States)

    Joshi, Vineet V.; Nyberg, Eric A.; Lavender, Curt A.; Paxton, Dean; Garmestani, Hamid; Burkes, Douglas E.

    2015-10-01

    Nuclear power research facilities require alternatives to existing highly enriched uranium alloy fuel. One option for a high density metal fuel is uranium alloyed with 10 wt% molybdenum (U-10Mo). Fuel fabrication process development requires specific mechanical property data that, to date has been unavailable. In this work, as-cast samples were compression tested at three strain rates over a temperature range of 400-800 °C to provide data for hot rolling and extrusion modeling. The results indicate that with increasing test temperature the U-10Mo flow stress decreases and becomes more sensitive to strain rate. In addition, above the eutectoid transformation temperature, the drop in material flow stress is prominent and shows a strain-softening behavior, especially at lower strain rates. Room temperature X-ray diffraction and scanning electron microscopy combined with energy dispersive spectroscopy analysis of the as-cast and compression tested samples were conducted. The analysis revealed that the as-cast samples and the samples tested below the eutectoid transformation temperature were predominantly γ phase with varying concentration of molybdenum, whereas the ones tested above the eutectoid transformation temperature underwent significant homogenization.

  19. High-frequency chest compression: a summary of the literature.

    Science.gov (United States)

    Dosman, Cara F; Jones, Richard L

    2005-01-01

    The purpose of the present literature summary is to describe high-frequency chest compression (HFCC), summarize its history and outline study results on its effect on mucolysis, mucus transport, pulmonary function and quality of life. HFCC is a mechanical method of self-administered chest physiotherapy, which induces rapid air movement in and out of the lungs. This mean oscillated volume is an effective method of mucolysis and mucus clearance. HFCC can increase independence. Some studies have shown that HFCC leads to more mucus clearance and better lung function compared with conventional chest physiotherapy. However, HFCC also decreases end-expiratory lung volume, which can lead to increased airway resistance and a decreased oscillated volume. Adding positive end-expiratory pressure to HFCC has been shown to prevent this decrease in end-expiratory lung volume and to increase the oscillated volume. It is possible that the HFCC-induced decrease in end-expiratory lung volume may result in more mucus clearance in airways that remain open by reducing airway size. Adjunctive methods, such as positive end-expiratory pressure, may not always be needed to make HFCC more effective.

  20. High-Frequency Chest Compression: A Summary of the Literature

    Directory of Open Access Journals (Sweden)

    Cara F Dosman

    2005-01-01

    Full Text Available The purpose of the present literature summary is to describe high-frequency chest compression (HFCC, summarize its history and outline study results on its effect on mucolysis, mucus transport, pulmonary function and quality of life. HFCC is a mechanical method of self-administered chest physiotherapy, which induces rapid air movement in and out of the lungs. This mean oscillated volume is an effective method of mucolysis and mucus clearance. HFCC can increase independence. Some studies have shown that HFCC leads to more mucus clearance and better lung function compared with conventional chest physiotherapy. However, HFCC also decreases end-expiratory lung volume, which can lead to increased airway resistance and a decreased oscillated volume. Adding positive end-expiratory pressure to HFCC has been shown to prevent this decrease in end-expiratory lung volume and to increase the oscillated volume. It is possible that the HFCC-induced decrease in end-expiratory lung volume may result in more mucus clearance in airways that remain open by reducing airway size. Adjunctive methods, such as positive end-expiratory pressure, may not always be needed to make HFCC more effective.

  1. A High Resolution Low Dissipation Hybrid Scheme for Compressible Flows

    Institute of Scientific and Technical Information of China (English)

    YU Jian; YAN Chao; JIANG Zhenhua

    2011-01-01

    In this paper,an efficient hybrid shock capturing scheme is proposed to obtain accurate results both in the smooth region and around discontinuities for compressible flows.The hybrid algorithm is based on a fifth-order weighted essentially non-oscillatory (WENO) scheme in the finite volume form to solve the smooth part of the flow field,which is coupled with a characteristic-based monotone upstream-centered scheme for conservation laws(MUSCL) to capture discontinuities.The hybrid scheme is intended to combine high resolution of MUSCL scheme and low dissipation of WENO scheme.The two ingredients in this hybrid scheme are switched with an indicator.Three typical indicators are chosen and compared.MUSCL and WENO are both shock capturing schemes making the choice of the indicator parameter less crucial.Several test cases are carried out to investigate hybrid scheme with different indicators in terms of accuracy and efficiency.Numerical results demonstrate that the hybrid scheme in the present work performs well in a broad range of problems.

  2. STRAIN LOCALIZATION PECULIARITIES AND DISTRIBUTION OF ACOUSTIC EMISSION SOURCES IN ROCK SAMPLES TESTED BY UNIAXIAL COMPRESSION AND EXPOSED TO ELECTRIC PULSES

    Directory of Open Access Journals (Sweden)

    V. A. Mubassarova

    2015-09-01

    accumulation of defects. The location system can be effectively applied when events with high amplitudes are accumulated in sufficient number. In this regard, clustering of AE sources (defects in the area of a future fault was recorded only during the measuring test when the AE activity was quite high at the constant load.As shown by data from the optical diagnostics set of equipment, LаVision Strain Master System, deformation of a specimen takes place in a non-uniform pattern over its surface, which is manifested as consecutively propagating waves of localized strain. This conclusion contributes to the research results obtained earlier for rock samples under tension and compression [Panteleev et al., 2013b, 2013c, 2013d]. Localized axial strain waves and localized radial strain waves (when material particles move in the direction perpendicular to the compression direction are concurrently observed. Such localized strain waves are ‘slow’ – they propagate at velocities that are by six or seven orders lower than the intrinsic velocity of sound propagation in the material. This observation correlates with the research results obtained earlier in studies of strain localization forms in the course of rock deformation [Zuev, 2011; Zuev et al., 2012].When the loaded specimen is impacted by the electromagnetic field, maximum strain values are slightly decreased in comparison with those in the ordinary case (when only compressive load is applied. This trend seems to be a specific feature of changes in localization of deformation in the loaded rock samples impacted by electric pulses. Besides, the experiments demonstrate that a source of macro-destruction can be induced by the influence of an external electromagnetic field, and the growth of a nucleus of such source can be stabilized during the impact. The above conclusions correlate with the statistical model of a solid body with defects which is developed in ICMM [Panteleev et al., 2011, 2012, 2013a].

  3. Effect of Friction Models and Parameters on the Lagrangian Flow Fields in High-Temperature Compression Testing

    Science.gov (United States)

    Kundalkar, Deepak; Singh, Rajkumar; Tewari, Asim

    2017-07-01

    Friction plays an important role in high-temperature deformation process. Friction affects local displacement field in the tool-workpiece interface region, thus affecting the overall material flow. Under high-temperature compression, macro-indicators like bulge radius and load displacement curves are not sensitive enough to distinguish subtle differences between various friction models. Hence, a new approach to match the experimental Lagrangian flow field with flow field obtained from FE simulation is proposed. For this uniaxial barreling, compression tests at constant temperature were conducted on Gleeble thermo-mechanical simulator. The compression tests were conducted at different strain, strain rate and friction conditions. Finite element simulations employing various friction models and parameters were performed for matching the experimental conditions. Experimental Lagrangian flow fields were obtained from the grain flow lines observed on high-resolution larger area micrographs of the specimen. It was observed that all the investigated friction models provided equally good fit with the macro-experimental indicators (bulge radius and load displacement curves). However, Coulomb friction model was the only friction model that provided the closest fit with the experimentally obtained Lagrangian flow fields. Coulomb friction model provided the best agreement between experimental and numerical simulation for both lubricated and non-lubricated conditions using friction coefficients μ = 0.2993 and μ = 0.3895, respectively.

  4. Compressive strains and displacement in a partially dentate lower jaw rehabilitated with two different treatment modalities.

    Science.gov (United States)

    Sojic, Ljiljana Tihacek; Milic Lemic, Aleksandra; Tanasic, Ivan; Mitrovic, Nenad; Milosevic, Milos; Petrovic, Aleksandar

    2012-06-01

    Understanding of the biomechanical consequences of the stresses generated to the supporting bone during occlusal loading is significant for improving the design and clinical planning process in partial edentulism therapy.   The aim of this study was to analyse the distribution of strain and displacement on the partially dentate lower jaw rehabilitated with an partial denture (RPD) and to compare it to the strain and displacement distribution on a partially dentate lower jaw rehabilitated with a cantilever fixed partial denture (FPD). The experimental models were a partially dentate mandible with full-arch PFM crowns and RPD and a partially dentate mandible rehabilitated with a full-arch cantilever FPD. Strains and displacement were measured using the Digital Image Correlation Method. Displacement values of the first experimental model ranged from 0.31 to 0.54 mm with strains from 1.35 to 2.34%. Analysis of the second experimental model results showed displacement values from 0 to 0.34 mm, while strains were in the range of 0-1.40%. Higher displacements and strains of bone tissue were observed below the RPD, especially in the region of the distal abutment and distal portion of the free-end saddle. Strains within bone and the bone-denture contact area were mostly influenced by the teeth and denture vertical displacement. © 2011 The Gerodontology Society and John Wiley & Sons A/S.

  5. Cascaded quadratic soliton compression of high-power femtosecond fiber lasers in Lithium Niobate crystals

    DEFF Research Database (Denmark)

    Bache, Morten; Moses, Jeffrey; Wise, Frank W.

    2008-01-01

    The output of a high-power femtosecond fiber laser is typically 300 fs with a wavelength around $\\lambda=1030-1060$ nm. Our numerical simulations show that cascaded quadratic soliton compression in bulk LiNbO$_3$ can compress such pulses to below 100 fs.......The output of a high-power femtosecond fiber laser is typically 300 fs with a wavelength around $\\lambda=1030-1060$ nm. Our numerical simulations show that cascaded quadratic soliton compression in bulk LiNbO$_3$ can compress such pulses to below 100 fs....

  6. Enhancement of perpendicular magnetic anisotropy by compressive strain in alternately layered FeNi thin films.

    Science.gov (United States)

    Sakamaki, M; Amemiya, K

    2014-04-23

    The effect of the lattice strain on magnetic anisotropy of alternately layered FeNi ultrathin films grown on a substrate, Cu(tCu = 0-70 ML)/Ni(48)Cu(52)(124 ML)/Cu(0 0 1) single crystal, is systematically studied by means of in situ x-ray magnetic circular dichroism (XMCD) and reflection high-energy electron diffraction (RHEED) analyses. To investigate the magnetic anisotropy of the FeNi layer itself, a non-magnetic substrate is adopted. From the RHEED analysis, the in-plane lattice constant, ain, of the substrate is found to shrink by 0.8% and 0.5% at tCu = 0 and 10 ML as compared to that of bulk Cu, respectively. Fe L-edge XMCD analysis is performed for n ML FeNi films grown on various ain, and perpendicular magnetic anisotropy (PMA) is observed at n = 3 and 5, whereas the film with n = 7 shows in-plane magnetic anisotropy. Moreover, it is found that PMA is enhanced with decreasing ain, in the case where a Cu spacer layer is inserted. We suppose that magnetic anisotropy in the FeNi films is mainly carried by Fe, and the delocalization of the in-plane orbitals near the Fermi level increases the perpendicular orbital magnetic moment, which leads to the enhancement of PMA.

  7. Effect of internal heating during hot compression testing on the stress-strain behavior and hot working characteristics of Alloy 304L

    Energy Technology Data Exchange (ETDEWEB)

    Mataya, M.C.; Sackschewsky, V.E.

    1993-05-01

    Temperature change from conversion of deformation to internal heat, and its effect on stress-strain behavior of alloy 304L was investigated by initially isothermal (temperature of specimen, compression dies, environment equilibrated at initiation of test) uniaxial compression. Strain rate was varied 0.01 s{sup {minus}1} to 1 s{sup {minus}1} (thermal state of specimen varied from nearly isothermal to nearly adiabatic). Specimens were deformed at 750 to 1150 to a strain of 1. Change in temperature with strain was calculated via finite element analysis from measured stress-strain data and predictions were confirmed with thermocouples to verify the model. Temperature increased nearly linearly at the highest strain rate, consistent with temperature rise being a linear function of strain (adiabatic). As strain rate was lowered, heat transfer from superheated specimen to cooler dies caused sample temperature to increase and then decrease with strain as the sample thinned and specimen-die contact area increased. As-measured stress was corrected. Resulting isothermal flow curves were compared to predictions of a simplified method suggested by Thomas and Shrinivasan and differences are discussed. Strain rate sensitivity, activation energy for deformation, and flow curve peak associated with onset of dynamic recrystallization were determined from both as-measured and isothermal stress-strain data and found to vary widely. The impact of utilizing as-measured stress-strain data, not corrected for internal heating, on results of a number of published investigations is discussed.

  8. High strain rate characterization of polymers

    Science.gov (United States)

    Siviour, Clive R.

    2017-01-01

    This paper reviews the literature on the response of polymers to high strain rate deformation. The main focus is on the experimental techniques used to characterize this response. The paper includes a small number of examples as well as references to experimental data over a wide range of rates, which illustrate the key features of rate dependence in these materials; however this is by no means an exhaustive list. The aim of the paper is to give the reader unfamiliar with the subject an overview of the techniques available with sufficient references from which further information can be obtained. In addition to the `well established' techniques of the Hopkinson bar, Taylor Impact and Transverse impact, a discussion of the use of time-temperature superposition in interpreting and experimentally replicating high rate response is given, as is a description of new techniques in which mechanical parameters are derived by directly measuring wave propagation in specimens; these are particularly appropriate for polymers with low wave speeds. The vast topic of constitutive modelling is deliberately excluded from this review.

  9. Relating speech production to tongue muscle compressions using tagged and high-resolution magnetic resonance imaging

    Science.gov (United States)

    Xing, Fangxu; Ye, Chuyang; Woo, Jonghye; Stone, Maureen; Prince, Jerry

    2015-03-01

    The human tongue is composed of multiple internal muscles that work collaboratively during the production of speech. Assessment of muscle mechanics can help understand the creation of tongue motion, interpret clinical observations, and predict surgical outcomes. Although various methods have been proposed for computing the tongue's motion, associating motion with muscle activity in an interdigitated fiber framework has not been studied. In this work, we aim to develop a method that reveals different tongue muscles' activities in different time phases during speech. We use fourdimensional tagged magnetic resonance (MR) images and static high-resolution MR images to obtain tongue motion and muscle anatomy, respectively. Then we compute strain tensors and local tissue compression along the muscle fiber directions in order to reveal their shortening pattern. This process relies on the support from multiple image analysis methods, including super-resolution volume reconstruction from MR image slices, segmentation of internal muscles, tracking the incompressible motion of tissue points using tagged images, propagation of muscle fiber directions over time, and calculation of strain in the line of action, etc. We evaluated the method on a control subject and two postglossectomy patients in a controlled speech task. The normal subject's tongue muscle activity shows high correspondence with the production of speech in different time instants, while both patients' muscle activities show different patterns from the control due to their resected tongues. This method shows potential for relating overall tongue motion to particular muscle activity, which may provide novel information for future clinical and scientific studies.

  10. Dynamic recrystallization and precipitation in high manganese austenitic stainless steel during hot compression

    Institute of Scientific and Technical Information of China (English)

    Amir Momeni; Shahab Kazemi; Golam Ebrahimi; Alireza Maldar

    2014-01-01

    Dynamic recrystallization and precipitation in a high manganese austenitic stainless steel were investigated by hot compression tests over temperatures of 950-1150°C at strain rates of 0.001 s-1-1 s-1. All the flow curves within the studied deformation regimes were typ-ical of dynamic recrystallization. A window was constructed to determine the value of apparent activation energy as a function of strain rate and deformation temperature. The kinetics of dynamic recrystallization was analyzed using the Avrami kinetics equation. A range of apparent activation energy for hot deformation from 303 kJ/mol to 477 kJ/mol is obtained at different deformation regimes. Microscopic characterization confirms that under a certain deformation condition (medium Zener-Hollomon parameter (Z) values), dynamic recrystalliza-tion appears at first, but large particles can not inhibit the recrystallization. At low or high Z values, dynamic recrystallization may occur be-fore dynamic precipitation and proceeds faster. In both cases, secondary phase precipitation is observed along prior austenite grain bounda-ries. Stress relaxation tests at the same deformation temperatures also confirm the possibility of dynamic precipitation. Unexpectedly, the Avrami's exponent value increases with the increase of Z value. It is associated with the priority of dynamic recrystallization to dynamic pre-cipitation at higher Z values.

  11. Behavior of steel fiber-reinforced high-strength concrete at medium strain rate

    Institute of Scientific and Technical Information of China (English)

    Chujie JIAO; Wei SUN; Shi HUAN; Guoping JIANG

    2009-01-01

    Impact compression experiments for the steel fiber-reinforced high-strength concrete (SFRHSC) at medium strain rate were conducted using the split Hopkinson press bar (SHPB) testing method. The volume fractions of steel fibers of SFRHSC were between 0 and 3%. The experimental results showed that, when the strain rate increased from threshold value to 90 s-1, the maximum stress of SFRHSC increased about 30%, the elastic modulus of SFRHSC increased about 50%, and the increase in the peak strain of SFRHSC was 2-3 times of that in the matrix specimen. The strength and toughness of the matrix were improved remarkably because of the superposition effect of the aggregate high-strength matrix and steel fiber high-strength matrix. As a result, under impact loading, cracks developed in the SFRHSC specimen, but the overall shape of the specimen remained virtually unchanged. However, under similar impact loading, the matrix specimens were almost broken into small pieces.

  12. Microstructure and strain-stress analysis of the dynamic strain aging in inconel 625 at high temperature

    Science.gov (United States)

    Maj, P.; Zdunek, J.; Mizera, J.; Kurzydlowski, K. J.; Sakowicz, B.; Kaminski, M.

    2017-01-01

    Serrated flow is a result of unstable plastic flow, which occurs during tensile and compression tests on some dilute alloys. This phenomenon is referred as the Portevin Le-Chatelier effect (PLC effect). The aim of this research was to investigate and analyze this phenomenon in Inconel 625 solution strengthened superalloy. The tested material was subjected to tensile tests carried out within the temperature range 200-700 °C, with three different strain rates: 0.002 1/s, 0.01/s, and 0.05 1/s and additional compression tests with high deformation speeds of 0.1, 1, and 10 1/s. The tensile strain curves were analyzed in terms of intensity and the observed patterns of serrations Using a modified stress drop method proposed by the authors, the activation energy was calculated with the assumption that the stress drops' distribution is a direct representation of an average solute atom's interaction with dislocations. Subsequently, two models, the standard vacancy diffusion Bilby-Cottrell model and the realistic cross-core diffusion mechanism proposed by Zhang and Curtin, were compared. The results obtained show that the second one agrees with the experimental data. Additional microstructure analysis was performed to identify microstructure elements that may be responsible for the PLC effect. Based on the results, the relationship between the intensity of the phenomenon and the conditions of the tests were determined.

  13. Dynamic tensile behavior of AZ31B magnesium alloy at ultra-high strain rates

    Directory of Open Access Journals (Sweden)

    Geng Changjian

    2015-04-01

    Full Text Available The samples having {0001} parallel to extruding direction (ED present a typical true stress–true strain curve with concave-down shape under tension at low strain rate. Ultra-rapid tensile tests were conducted at room temperature on a textured AZ31B magnesium alloy. The dynamic tensile behavior was investigated. The results show that at ultra-high strain rates of 1.93 × 102 s−1 and 1.70 × 103 s−1, the alloy behaves with a linear stress–strain response in most strain range and exhibits a brittle fracture. In this case, {10-12}  extension twinning is basic deformation mode. The brittleness is due to the macroscopic viscosity at ultra-high strain rate, for which the external critical shear stress rapidly gets high to result in a cleavage fracture before large amounts of dislocations are activated. Because {10-12} tension twinning, {10-11} compressive twinning, basal slip, prismatic slip and pyramidal slip have different critical shear stresses (CRSS, their contributions to the degree of deformation are very differential. In addition, Schmid factor plays an important role in the activity of various deformation modes and it is the key factor for the samples with different strain rates exhibit various mechanical behavior under dynamic tensile loading.

  14. Adaptivity with near-orthogonality constraint for high compression rates in lifting scheme framework

    Science.gov (United States)

    Sliwa, Tadeusz; Voisin, Yvon; Diou, Alain

    2004-01-01

    Since few years, Lifting Scheme has proven its utility in compression field. It permits to easily create fast, reversible, separable or no, not necessarily linear, multiresolution analysis for sound, image, video or even 3D graphics. An interesting feature of lifting scheme is the ability to build adaptive transforms for compression, more easily than with other decompositions. Many works have already be done in this subject, especially in lossless or near-lossless compression framework : better compression than with usually used methods can be obtained. However, most of the techniques used in adaptive near-lossless compression can not be extended to higher lossy compression rates, even in the simplest cases. Indeed, this is due to the quantization error introduced before coding, which has not controlled propagation through inverse transform. Authors have put their interest to the classical Lifting Scheme, with linear convolution filters, but they studied criterions to maintain a high level of adaptivity and a good error propagation through inverse transform. This article aims to present relatively simple criterion to obtain filters able to build image and video compression with high compression rate, tested here with the Spiht coder. For this, upgrade and predict filters are simultaneously adapted thanks to a constrained least-square method. The constraint consists in a near-orthogonality inequality, letting sufficiently high level of adaptivity. Some compression results are given, illustrating relevance of this method, even with short filters.

  15. Experimental investigation on high temperature anisotropic compression properties of ceramic-fiber-reinforced SiO{sub 2} aerogel

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Duoqi; Sun, Yantao [School of Energy and Power Engineering, Beihang University, P.O. Box 405, Beijing 100191 (China); Feng, Jian [National Key Laboratory of Science and Technology on Advanced Ceramic Fibers and Composites, College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073 (China); Yang, Xiaoguang, E-mail: yxg@buaa.edu.cn [School of Energy and Power Engineering, Beihang University, P.O. Box 405, Beijing 100191 (China); Han, Shiwei; Mi, Chunhu [School of Energy and Power Engineering, Beihang University, P.O. Box 405, Beijing 100191 (China); Jiang, Yonggang [National Key Laboratory of Science and Technology on Advanced Ceramic Fibers and Composites, College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073 (China); Qi, Hongyu [School of Energy and Power Engineering, Beihang University, P.O. Box 405, Beijing 100191 (China)

    2013-11-15

    Compression tests were conducted on a ceramic-fiber-reinforced SiO{sub 2} aerogel at high temperature. Anisotropic mechanical property was found. In-plane Young's modulus is more than 10 times higher than that of out-of-plane, but fracture strain is much lower by a factor of 100. Out-of-plane Young's modulus decreases with increasing temperature, but the in-plane modulus and fracture stress increase with temperature. The out-of-plane property does not change with loading rates. Viscous flow at high temperature is found to cause in-plane shrinkage, and both in-plane and out-of-plane properties change. Compression induced densification of aerogel matrix was also found by Scanning Electron Microscope analysis.

  16. Highly efficient frequency conversion with bandwidth compression of quantum light

    Science.gov (United States)

    Allgaier, Markus; Ansari, Vahid; Sansoni, Linda; Eigner, Christof; Quiring, Viktor; Ricken, Raimund; Harder, Georg; Brecht, Benjamin; Silberhorn, Christine

    2017-01-01

    Hybrid quantum networks rely on efficient interfacing of dissimilar quantum nodes, as elements based on parametric downconversion sources, quantum dots, colour centres or atoms are fundamentally different in their frequencies and bandwidths. Although pulse manipulation has been demonstrated in very different systems, to date no interface exists that provides both an efficient bandwidth compression and a substantial frequency translation at the same time. Here we demonstrate an engineered sum-frequency-conversion process in lithium niobate that achieves both goals. We convert pure photons at telecom wavelengths to the visible range while compressing the bandwidth by a factor of 7.47 under preservation of non-classical photon-number statistics. We achieve internal conversion efficiencies of 61.5%, significantly outperforming spectral filtering for bandwidth compression. Our system thus makes the connection between previously incompatible quantum systems as a step towards usable quantum networks. PMID:28134242

  17. Highly efficient frequency conversion with bandwidth compression of quantum light

    Science.gov (United States)

    Allgaier, Markus; Ansari, Vahid; Sansoni, Linda; Eigner, Christof; Quiring, Viktor; Ricken, Raimund; Harder, Georg; Brecht, Benjamin; Silberhorn, Christine

    2017-01-01

    Hybrid quantum networks rely on efficient interfacing of dissimilar quantum nodes, as elements based on parametric downconversion sources, quantum dots, colour centres or atoms are fundamentally different in their frequencies and bandwidths. Although pulse manipulation has been demonstrated in very different systems, to date no interface exists that provides both an efficient bandwidth compression and a substantial frequency translation at the same time. Here we demonstrate an engineered sum-frequency-conversion process in lithium niobate that achieves both goals. We convert pure photons at telecom wavelengths to the visible range while compressing the bandwidth by a factor of 7.47 under preservation of non-classical photon-number statistics. We achieve internal conversion efficiencies of 61.5%, significantly outperforming spectral filtering for bandwidth compression. Our system thus makes the connection between previously incompatible quantum systems as a step towards usable quantum networks.

  18. Highly efficient frequency conversion with bandwidth compression of quantum light

    CERN Document Server

    Allgaier, Markus; Sansoni, Linda; Quiring, Viktor; Ricken, Raimund; Harder, Georg; Brecht, Benjamin; Silberhorn, Christine

    2016-01-01

    Hybrid quantum networks rely on efficient interfacing of dissimilar quantum nodes, since elements based on parametric down-conversion sources, quantum dots, color centres or atoms are fundamentally different in their frequencies and bandwidths. While pulse manipulation has been demonstrated in very different systems, to date no interface exists that provides both an efficient bandwidth compression and a substantial frequency translation at the same time. Here, we demonstrate an engineered sum-frequency-conversion process in Lithium Niobate that achieves both goals. We convert pure photons at telecom wavelengths to the visible range while compressing the bandwidth by a factor of 7.47 under preservation of non-classical photon-number statistics. We achieve internal conversion efficiencies of 75.5%, significantly outperforming spectral filtering for bandwidth compression. Our system thus makes the connection between previously incompatible quantum systems as a step towards usable quantum networks.

  19. Highly compressed nanosolution restricted in cylindrical carbon nanospaces

    Science.gov (United States)

    Nishi, Masayasu; Ohkubo, Takahiro; Tsurusaki, Kazuma; Itadani, Atsushi; Ahmmad, Bashir; Urita, Koki; Moriguchi, Isamu; Kittaka, Shigeharu; Kuroda, Yasushige

    2013-02-01

    We shed light on the specific hydration structure around a zinc ion of nanosolution restricted in a cylindrical micropore of single-wall carbon nanotube (SWNT) by comparison with the structure restricted in a cylindrical mesopore of multi-wall carbon nanotube (MWNT) and that of bulk aqueous solution. The average micropore width of open-pore SWNT was 0.87 nm which is equivalent to the size of a hydrated zinc ion having 6-hydrated water molecules. We could impregnate the zinc ions into the micropore of SWNT with negligible amounts of ion-exchanged species on surface functional groups by the appropriate oxidation followed by heat treatment under an inert condition. The results of X-ray absorption fine structure (XAFS) spectra confirmed that the proportion of dissolved species in nanospaces against the total adsorbed amounts of zinc ions on the open-pore SWNT and MWNT were 44 and 61%, respectively, indicating the formation of a dehydrated structure in narrower nanospaces. The structure parameters obtained by the analysis of XAFS spectra also indicate that the dehydrated and highly compressed hydration structure can be stably formed inside the cylindrical micropore of SWNT where the structure is different from that inside the slit-shaped micropore whose pore width is less than 1 nm. Such a unique structure needs not only a narrow micropore geometry which is equivalent to the size of a hydrated ion but also the cylindrical nature of the pore.We shed light on the specific hydration structure around a zinc ion of nanosolution restricted in a cylindrical micropore of single-wall carbon nanotube (SWNT) by comparison with the structure restricted in a cylindrical mesopore of multi-wall carbon nanotube (MWNT) and that of bulk aqueous solution. The average micropore width of open-pore SWNT was 0.87 nm which is equivalent to the size of a hydrated zinc ion having 6-hydrated water molecules. We could impregnate the zinc ions into the micropore of SWNT with negligible amounts of

  20. Direct angle resolved photoemission spectroscopy and superconductivity of strained high-Tc films

    Science.gov (United States)

    Pavuna, Davor; Ariosa, Daniel; Cloetta, Dominique; Cancellieri, Claudia; Abrecht, Mike

    2008-02-01

    Since 1997 we systematically perform direct angle resolved photoemission spectroscopy (ARPES) on in-situ grown thin (<30 nm) cuprate films. Specifically, we probe low-energy electronic structure and properties of high-T_{c} superconductors (HTSC) under different degrees of epitaxial ({compressive vs. tensile}) strain. In overdoped and underdoped in-plane compressed (the strain is induced by the choice of substrate) ≈15 nm thin La_{2-x}Sr_{x}CuO_{4} (LSCO) films we almost double T_{c} to 40 K, from 20 K and 24 K, respectively. Yet the Fermi surface (FS) remains essentially two-dimensional. In contrast, ARPES data under {tensile} strain exhibit the dispersion that is three-dimensional, yet T_{c} drastically decreases. It seems that the in-plane compressive strain tends to push the apical oxygen far away from the CuO_{2} plane, enhances the two-dimensional character of the dispersion and increases T_{c}, while the tensile strain acts in the opposite direction and the resulting dispersion is three-dimensional. We have established the shape of the FS for both cases, and all our data are consistent with other ongoing studies, like EXAFS. As the actual lattice of cuprates is like a `Napoleon-cake', i.e. rigid CuO_{2 } planes alternating with softer `reservoir', that distort differently under strain, our data rule out all oversimplified two-dimensional (rigid lattice) mean field models. The work is still in progress on optimized La-doped Bi-2201 films with enhanced T_{c}.

  1. Compressive Behavior and Mechanical Characteristics and Their Application to Stress-Strain Relationship of Steel Fiber-Reinforced Reactive Powder Concrete

    Directory of Open Access Journals (Sweden)

    Baek-Il Bae

    2016-01-01

    Full Text Available Although mechanical properties of concrete under uniaxial compression are important to design concrete structure, current design codes or other empirical equations have clear limitation on the prediction of mechanical properties. Various types of fiber-reinforced reactive powder concrete matrix were tested for making more usable and accurate estimation equations for mechanical properties for ultra high strength concrete. Investigated matrix has compressive strength ranged from 30 MPa to 200 MPa. Ultra high strength concrete was made by means of reactive powder concrete. Preventing brittle failure of this type of matrix, steel fibers were used. The volume fraction of steel fiber ranged from 0 to 2%. From the test results, steel fibers significantly increase the ductility, strength and stiffness of ultra high strength matrix. They are quantified with previously conducted researches about material properties of concrete under uniaxial loading. Applicability of estimation equations for mechanical properties of concrete was evaluated with test results of this study. From the evaluation, regression analysis was carried out, and new estimation equations were proposed. And these proposed equations were applied into stress-strain relation which was developed by previous research. Ascending part, which was affected by proposed equations of this study directly, well fitted into experimental results.

  2. Dynamic damage and stress-strain relations of ultra-high performance cementitious composites subjected to repeated impact

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Ultra-high performance cementitious composites (UHPCC) were prepared by replacing 60% of cement with ultra-fine industrial waste powders.The dynamic damage and compressive stress-strain relations of UHPCC were studied using split Hopkinson pressure bar (SHPB).The damage of UHPCC subjected to repeated impact was measured by the ultrasonic pulse velocity method.Results show that the dynamic damage of UHPCC increases linearly with impact times and the abilities of repeated impact resistance of UHPCC are improved with increasing fiber volume fraction.The stress waves on impact were recorded and the average stress,strain and strain rate of UHPCC were calculated based on the wave propagation theory.The effects of strain rate,fibers volume fraction and impact times on the stress-strain relations of UHPCC were studied.Results show that the peak stress and elastic modulus decrease while the strain rate and peak strain increase gradually with increasing impact times.

  3. Compressive sensing for high resolution profiles with enhanced Doppler performance

    NARCIS (Netherlands)

    Anitori, L.; Hoogeboom, P.; Chevalier, F. Le; Otten, M.P.G.

    2012-01-01

    In this paper we demonstrate how Compressive Sensing (CS) can be used in pulse-Doppler radars to improve the Doppler performance while preserving range resolution. We investigate here two types of stepped frequency waveforms, the coherent frequency bursts and successive frequency ramps, which can be

  4. Studies of Shear Band Velocity Using Spatially and Temporally Resolved Measurements of Strain During Quasistatic Compression of Bulk Metallic Glass

    Energy Technology Data Exchange (ETDEWEB)

    Wright, W J; Samale, M; Hufnagel, T; LeBlanc, M; Florando, J

    2009-06-15

    We have made measurements of the temporal and spatial features of the evolution of strain during the serrated flow of Pd{sub 40}Ni{sub 40}P{sub 20} bulk metallic glass tested under quasistatic, room temperature, uniaxial compression. Strain and load data were acquired at rates of up to 400 kHz using strain gages affixed to all four sides of the specimen and a piezoelectric load cell located near the specimen. Calculation of the displacement rate requires an assumption about the nature of the shear displacement. If one assumes that the entire shear plane displaces simultaneously, the displacement rate is approximately 0.002 m/s. If instead one assumes that the displacement occurs as a localized propagating front, the velocity of the front is approximately 2.8 m/s. In either case, the velocity is orders of magnitude less than the shear wave speed ({approx}2000 m/s). The significance of these measurements for estimates of heating in shear bands is discussed.

  5. Core-shell Rh-Pt nanocubes: A model for studying compressive strain effects in bimetallic nanocatalysts

    Science.gov (United States)

    Harak, Ethan William

    Shape-controlled bimetallic nanocatalysts often have increased activities and stabilities over their monometallic counterparts due to surface strain effects and electron transfer between the two metals. Here, we demonstrate that the degree of surface strain can be manipulated in shape-controlled nanocrystals through a bimetallic core shell architecture. This ability is achieved in a model core shell Rh Pt nanocube system through control of shell thickness. An increase in the Pt shell thickness leads to more compressive strain, which can increase the Pt 4f7/2 binding energy by as much as 0.13 eV. This change in electronic structure is correlated with a weakening of surface-adsorbate interactions, which we exploit to reduce catalyst poisoning by CO during formic acid electrooxidation. In fact, by precisely controlling the Pt shell thickness, the maximum current density achieved with Rh Pt nanocubes was 3.5 times greater than that achieved with similarly sized Pt nanocubes, with decreased CO generation as well. This system serves as a model for how bimetallic architectures can be used to manipulate the electronic structure of nanoparticle surfaces for efficient catalysis. The strategy employed here should enable the performance of bimetallic nanomaterials comprised of more cost-effective metals to be enhanced as well.

  6. High Efficiency, Low Emissions Homogeneous Charge Compression Ignition (HCCI) Engines

    Energy Technology Data Exchange (ETDEWEB)

    Gravel, Roland [U.S. Department of Energy' s Vehicle Technologies Office, Washington, DC (United States); Maronde, Carl [National Energy Technology Lab. (NETL), Albany, OR (United States); Gehrke, Chris [Caterpillar, Inc., Peoria, IL (United States); Fiveland, Scott [Caterpillar, Inc., Peoria, IL (United States)

    2010-10-30

    This is the final report of the High Efficiency Clean Combustion (HECC) Research Program for the U.S. Department of Energy. Work under this co-funded program began in August 2005 and finished in July 2010. The objective of this program was to develop and demonstrate a low emission, high thermal efficiency engine system that met 2010 EPA heavy-duty on-highway truck emissions requirements (0.2g/bhp-hr NOx, 0.14g/bhp-hr HC and 0.01g/bhp-hr PM) with a thermal efficiency of 46%. To achieve this goal, development of diesel homogenous charge compression ignition (HCCI) combustion was the chosen approach. This report summarizes the development of diesel HCCI combustion and associated enabling technologies that occurred during the HECC program between August 2005 and July 2010. This program showed that although diesel HCCI with conventional US diesel fuel was not a feasible means to achieve the program objectives, the HCCI load range could be increased with a higher volatility, lower cetane number fuel, such as gasoline, if the combustion rate could be moderated to avoid excessive cylinder pressure rise rates. Given the potential efficiency and emissions benefits, continued research of combustion with low cetane number fuels and the effects of fuel distillation are recommended. The operation of diesel HCCI was only feasible at part-load due to a limited fuel injection window. A 4% fuel consumption benefit versus conventional, low-temperature combustion was realized over the achievable operating range. Several enabling technologies were developed under this program that also benefited non-HCCI combustion. The development of a 300MPa fuel injector enabled the development of extended lifted flame combustion. A design methodology for minimizing the heat transfer to jacket water, known as precision cooling, will benefit conventional combustion engines, as well as HCCI engines. An advanced combustion control system based on cylinder pressure measurements was developed. A Well

  7. Strain rate effect in high-speed wire drawing process

    Science.gov (United States)

    He, S.; Van Houtte, P.; Van Bael, A.; Mei, F.; Sarban, A.; Boesman, P.; Galvez, F.; Atienza, J. M.

    2002-05-01

    This paper presents a study on the strain rate effect during high-speed wire drawing process by means of finite element simulation. Based on the quasistatic stresses obtained by normal tensile tests and dynamic stresses at high strain rates by split Hopkinson pressure bar tests, the wire drawing process was simulated for low carbon steel and high carbon steel. The results show that both the deformation process and the final properties of drawn wires are influenced by the strain rate.

  8. Highly Invasive Listeria monocytogenes Strains Have Growth and Invasion Advantages in Strain Competition.

    Science.gov (United States)

    Zilelidou, Evangelia A; Rychli, Kathrin; Manthou, Evanthia; Ciolacu, Luminita; Wagner, Martin; Skandamis, Panagiotis N

    2015-01-01

    Multiple Listeria monocytogenes strains can be present in the same food sample; moreover, infection with more than one L. monocytogenes strain can also occur. In this study we investigated the impact of strain competition on the growth and in vitro virulence potential of L. monocytogenes. We identified two strong competitor strains, whose growth was not (or only slightly) influenced by the presence of other strains and two weak competitor strains, which were outcompeted by other strains. Cell contact was essential for growth inhibition. In vitro virulence assays using human intestinal epithelial Caco2 cells showed a correlation between the invasion efficiency and growth inhibition: the strong growth competitor strains showed high invasiveness. Moreover, invasion efficiency of the highly invasive strain was further increased in certain combinations by the presence of a low invasive strain. In all tested combinations, the less invasive strain was outcompeted by the higher invasive strain. Studying the effect of cell contact on in vitro virulence competition revealed a complex pattern in which the observed effects depended only partially on cell-contact suggesting that competition occurs at two different levels: i) during co-cultivation prior to infection, which might influence the expression of virulence factors, and ii) during infection, when bacterial cells compete for the host cell. In conclusion, we show that growth of L. monocytogenes can be inhibited by strains of the same species leading potentially to biased recovery during enrichment procedures. Furthermore, the presence of more than one L. monocytogenes strain in food can lead to increased infection rates due to synergistic effects on the virulence potential.

  9. Following the Evolution of Hard Sphere Glasses in Infinite Dimensions under External Perturbations: Compression and Shear Strain

    Science.gov (United States)

    Rainone, Corrado; Urbani, Pierfrancesco; Yoshino, Hajime; Zamponi, Francesco

    2015-01-01

    We consider the adiabatic evolution of glassy states under external perturbations. The formalism we use is very general. Here we use it for infinite-dimensional hard spheres where an exact analysis is possible. We consider perturbations of the boundary, i.e., compression or (volume preserving) shear strain, and we compute the response of glassy states to such perturbations: pressure and shear stress. We find that both quantities overshoot before the glass state becomes unstable at a spinodal point where it melts into a liquid (or yields). We also estimate the yield stress of the glass. Finally, we study the stability of the glass basins towards breaking into sub-basins, corresponding to a Gardner transition. We find that close to the dynamical transition, glasses undergo a Gardner transition after an infinitesimal perturbation.

  10. Preprocessing Techniques for High-Efficiency Data Compression in Wireless Multimedia Sensor Networks

    Directory of Open Access Journals (Sweden)

    Junho Park

    2015-01-01

    Full Text Available We have proposed preprocessing techniques for high-efficiency data compression in wireless multimedia sensor networks. To do this, we analyzed the characteristics of multimedia data under the environment of wireless multimedia sensor networks. The proposed preprocessing techniques consider the characteristics of sensed multimedia data to perform the first stage preprocessing by deleting the low priority bits that do not affect the image quality. The second stage preprocessing is also performed for the undeleted high priority bits. By performing these two-stage preprocessing techniques, it is possible to reduce the multimedia data size in large. To show the superiority of our techniques, we simulated the existing multimedia data compression scheme with/without our preprocessing techniques. Our experimental results show that our proposed techniques increase compression ratio while reducing compression operations compared to the existing compression scheme without preprocessing techniques.

  11. Spatiotemporal reshaping and compression of high intensity femtosecond pulses

    Science.gov (United States)

    Trunov, V. I.; Pestryakov, E. V.; Petrov, V. V.; Kirpichnikov, A. V.; Frolov, S. A.; Harenko, D. S.; Bagayev, S. N.

    2007-06-01

    Experimental results of self-compression of femtosecond pulses under filamentation in argon and xenon are presented. The mode of a self-compression in xenon is realized for the first time. The dependence of the spectrum broadening from pressure of these gases, input energy and focusing parameters are studied in detail. The spectral and temporary profiles of the first and the second filaments at multiple filamentation are analyzed. Features of multiple filamentation are revealed in xenon. For the first time experimentally the effect of restriction a number of filaments and effective swapping of energy from one filament to another (more than 70 % of energy in two-filament mode without increasing of their amount is founded). The possible mechanism of the phenomenon related with the saturation of the third order nonlinearity in xenon and influence of the higher fifth-order susceptibility χ (5) are discussed.

  12. Lattice strain of osmium diboride under high pressure and nonhydrostatic stress

    Energy Technology Data Exchange (ETDEWEB)

    Kavner, Abby; Weinberger, Michelle B.; Shahar, Anat; Cumberland, Robert W.; Levine, Jonathan B.; Kaner, Richard B.; Tolbert, Sarah H.

    2012-01-01

    The lattice strain behavior of osmium diboride—a member of a group of third-row transition metal borides associated with hard/superhard behavior—has been studied using radial diffraction in a diamond anvil cell under high pressure and non-hydrostatic stress. We interpret the average values of the measured lattice strains as a lower-bound to the lattice-plane dependent yield strengths using existing estimates for the elastic constants of OsB2, with a yield strength of 11 GPa at 27.5 GPa of hydrostaticpressure. The measured differential lattice strains show significant plane-dependent anisotropy, with the (101) lattice plane showing the largest differential strain and the (001) lattice plane showing the least strain. At the highest pressure, the a-axis develops a larger compressive strain and supports a larger differential strain than either the b or c axes. This causes an increase in the c/a ratio and a decrease in the a/b ratio especially in the maximum stress direction. The large strength anisotropy of this material points to possible ways to modulate directional mechanical properties by taking advantage of the interplay between aggregate polycrystalline texture with directional mechanical properties.

  13. Strain-effect transistors: Theoretical study on the effects of external strain on III-nitride high-electron-mobility transistors on flexible substrates

    Science.gov (United States)

    Shervin, Shahab; Kim, Seung-Hwan; Asadirad, Mojtaba; Ravipati, Srikanth; Lee, Keon-Hwa; Bulashevich, Kirill; Ryou, Jae-Hyun

    2015-11-01

    This paper presents strain-effect transistors (SETs) based on flexible III-nitride high-electron-mobility transistors (HEMTs) through theoretical calculations. We show that the electronic band structures of InAlGaN/GaN thin-film heterostructures on flexible substrates can be modified by external bending with a high degree of freedom using polarization properties of the polar semiconductor materials. Transfer characteristics of the HEMT devices, including threshold voltage and transconductance, are controlled by varied external strain. Equilibrium 2-dimensional electron gas (2DEG) is enhanced with applied tensile strain by bending the flexible structure with the concave-side down (bend-down condition). 2DEG density is reduced and eventually depleted with increasing compressive strain in bend-up conditions. The operation mode of different HEMT structures changes from depletion- to enchantment-mode or vice versa depending on the type and magnitude of external strain. The results suggest that the operation modes and transfer characteristics of HEMTs can be engineered with an optimum external bending strain applied in the device structure, which is expected to be beneficial for both radio frequency and switching applications. In addition, we show that drain currents of transistors based on flexible InAlGaN/GaN can be modulated only by external strain without applying electric field in the gate. The channel conductivity modulation that is obtained by only external strain proposes an extended functional device, gate-free SETs, which can be used in electro-mechanical applications.

  14. Strain-effect transistors: Theoretical study on the effects of external strain on III-nitride high-electron-mobility transistors on flexible substrates

    Energy Technology Data Exchange (ETDEWEB)

    Shervin, Shahab; Asadirad, Mojtaba [Department of Mechanical Engineering, University of Houston, Houston, Texas 77204-4006 (United States); Materials Science and Engineering Program, University of Houston, Houston, Texas 77204 (United States); Kim, Seung-Hwan; Ravipati, Srikanth; Lee, Keon-Hwa [Department of Mechanical Engineering, University of Houston, Houston, Texas 77204-4006 (United States); Bulashevich, Kirill [STR Group, Inc., Engels av. 27, P.O. Box 89, 194156, St. Petersburg (Russian Federation); Ryou, Jae-Hyun, E-mail: jryou@uh.edu [Department of Mechanical Engineering, University of Houston, Houston, Texas 77204-4006 (United States); Materials Science and Engineering Program, University of Houston, Houston, Texas 77204 (United States); Texas Center for Superconductivity at the University of Houston (TcSUH), University of Houston, Houston, Texas 77204 (United States)

    2015-11-09

    This paper presents strain-effect transistors (SETs) based on flexible III-nitride high-electron-mobility transistors (HEMTs) through theoretical calculations. We show that the electronic band structures of InAlGaN/GaN thin-film heterostructures on flexible substrates can be modified by external bending with a high degree of freedom using polarization properties of the polar semiconductor materials. Transfer characteristics of the HEMT devices, including threshold voltage and transconductance, are controlled by varied external strain. Equilibrium 2-dimensional electron gas (2DEG) is enhanced with applied tensile strain by bending the flexible structure with the concave-side down (bend-down condition). 2DEG density is reduced and eventually depleted with increasing compressive strain in bend-up conditions. The operation mode of different HEMT structures changes from depletion- to enchantment-mode or vice versa depending on the type and magnitude of external strain. The results suggest that the operation modes and transfer characteristics of HEMTs can be engineered with an optimum external bending strain applied in the device structure, which is expected to be beneficial for both radio frequency and switching applications. In addition, we show that drain currents of transistors based on flexible InAlGaN/GaN can be modulated only by external strain without applying electric field in the gate. The channel conductivity modulation that is obtained by only external strain proposes an extended functional device, gate-free SETs, which can be used in electro-mechanical applications.

  15. ANALYSIS OF THE LOCALIZATION OF DAMAGE AND THE COMPLETE STRESS-STRAIN RELATION FOR MESOSCOPIC HETEROGENEOUS BRITTLE ROCK SUBJECTED TO COMPRESSIVE LOADS

    Institute of Scientific and Technical Information of China (English)

    周小平; 张永兴; 哈秋聆; 王建华

    2004-01-01

    A micromechanics-based model is established. The model takes the interaction among sliding cracks into account, and it is able to quantify the effect of various parameters on the localization condition of damage and deformation for brittle rock subjected to compressive loads. The closed-form explicit expression for the complete stress-strain relation of rock containing microcracks subjected to compressive loads was obtained. It is showed that the complete stress-strain relation includes linear elasticity,nonlinear hardening,rapid stress drop and strain softening.The behavior of rapid stress drop and strain softening is due to localization of deformation and damage. Theoretical predictions have shown to be consistent with the experimental results.

  16. Systematic studies of La2-xSrxCuO4 in direct synchrotron light: on the role of compressive against tensile strain

    Science.gov (United States)

    Cloetta, D.; Ariosa, D.; Abrecht, M.; Cancellieri, C.; Mitrovic, S.; Papagno, M.; Pavuna, D.

    2005-08-01

    We systematically study the structural and electronic properties of very thin cuprate films. Our direct angle resolved photoemission spectroscopy (ARPES) measurements on the low binding energy electronic structure of La2-xSrxCuO4 (LSCO) films confirmed that the Fermi surface evolves with doping, but changes even more significantly with growth-induced compressive strain. For a given doping, the in-plane compressive strain enhances TC's and modifies the 2-dimensional hole-like Fermi surface as to appear more electron-like. In contrast, the in-plane tensile strain reduces TC (suppressing superconductivity for huge tensile strain) and shows 3-dimensional ARPES dispersion with a corresponding 3-dimensional Fermi surface. To account for these striking changes in electronic structure and superconductivity, the out-of-plane states should be taken into account, as well as some subtle changes in the associated atomic distances.

  17. Developments in time-resolved high pressure x-ray diffraction using rapid compression and decompression

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Jesse S.; Sinogeikin, Stanislav V.; Lin, Chuanlong; Rod, Eric; Bai, Ligang; Shen, Guoyin [High Pressure Collaborative Access Team, Geophysical Laboratory, Carnegie Institution of Washington, Argonne, Illinois 60439 (United States)

    2015-07-15

    Complementary advances in high pressure research apparatus and techniques make it possible to carry out time-resolved high pressure research using what would customarily be considered static high pressure apparatus. This work specifically explores time-resolved high pressure x-ray diffraction with rapid compression and/or decompression of a sample in a diamond anvil cell. Key aspects of the synchrotron beamline and ancillary equipment are presented, including source considerations, rapid (de)compression apparatus, high frequency imaging detectors, and software suitable for processing large volumes of data. A number of examples are presented, including fast equation of state measurements, compression rate dependent synthesis of metastable states in silicon and germanium, and ultrahigh compression rates using a piezoelectric driven diamond anvil cell.

  18. Experimental characterization and modelling of UO2 behavior at high temperatures and high strain rates

    Science.gov (United States)

    Salvo, Maxime; Sercombe, Jérôme; Ménard, Jean-Claude; Julien, Jérôme; Helfer, Thomas; Désoyer, Thierry

    2015-01-01

    This work presents an experimental characterization of uranium dioxide (UO2) in compression under Reactivity Initiated Accident (RIA) conditions. Pellet samples were tested at four temperatures (1100, 1350, 1550 and 1700 °C) and at a strain rate varying over 4 decades (10-4-10-3-10-2-10-1 /s). The experimental results show that the stress-strain curves cannot be fitted with a unique power law as it is the case at smaller strain rates (10-9-10-5 /s). A strain-hardening also appears in most of the tests. The microstructural observations show a pronounced evolution of the porosity at the pellet center during the tests. A hyperbolic sine model which accounts for volume variations (pore compressibility) was therefore proposed to describe the behavior of UO2 on a large range of temperatures (1100 - 1700 °C) and strain rates (10-9-10-1 /s). The Finite Element simulations of the compression tests lead to results (maximum stress, axial and hoop strain distribution, porosity distribution) in good agreement with the measurements. The model was then assessed on a database of more than two hundred creep tests.

  19. Material characterization at high strain by adapted tensile tests

    NARCIS (Netherlands)

    Emmens, W.C.; van den Boogaard, Antonius H.

    2012-01-01

    The strength of materials at high strain levels has been determined using the so-called Continuous-Bendingunder- Tension (CBT) test. This is a modified tensile test where the specimen is subjected to repetitive bending at the same time. This test enables to create high levels of uniform strain. A

  20. Experimental investigation of an aggregate material behavior under confinement at high strain rate

    Directory of Open Access Journals (Sweden)

    Biessy M.

    2010-06-01

    Full Text Available Low velocity impacts can ignite explosives or energetic materials. Ignition depends on the mechanical behavior of the energetic material which needs to be characterized for both high pressure level and high strain rate. A technique based on the Split Hopkinson Pressure Bars system is proposed to reproduce these loading conditions. A cylindrical specimen is placed in a confining ring and is dynamically compressed. The ring prevents the radial extension and confines the specimen. Each ring is designed to plastify and to obtain a constant radial pressure during the test. Some experiments are carried out on an inert aggregate material and show the validity of this experimental device.

  1. In-Situ Welding Carbon Nanotubes into a Porous Solid with Super-High Compressive Strength and Fatigue Resistance

    Science.gov (United States)

    Lin, Zhiqiang; Gui, Xuchun; Gan, Qiming; Chen, Wenjun; Cheng, Xiaoping; Liu, Ming; Zhu, Yuan; Yang, Yanbing; Cao, Anyuan; Tang, Zikang

    2015-06-01

    Carbon nanotube (CNT) and graphene-based sponges and aerogels have an isotropic porous structure and their mechanical strength and stability are relatively lower. Here, we present a junction-welding approach to fabricate porous CNT solids in which all CNTs are coated and welded in situ by an amorphous carbon layer, forming an integral three-dimensional scaffold with fixed joints. The resulting CNT solids are robust, yet still highly porous and compressible, with compressive strengths up to 72 MPa, flexural strengths up to 33 MPa, and fatigue resistance (recovery after 100,000 large-strain compression cycles at high frequency). Significant enhancement of mechanical properties is attributed to the welding-induced interconnection and reinforcement of structural units, and synergistic effects stemming from the core-shell microstructures consisting of a flexible CNT framework and a rigid amorphous carbon shell. Our results provide a simple and effective method to manufacture high-strength porous materials by nanoscale welding.

  2. Influence of High-Current-Density Impulses on the Compression Behavior: Experiments with Iron and a Nickel-Based Alloy

    Science.gov (United States)

    Demler, E.; Gerstein, G.; Dalinger, A.; Epishin, A.; Rodman, D.; Nürnberger, F.

    2017-01-01

    Difficulties of processing of high strength and/or brittle materials by plastic deformation, e.g., by forging, require to develop new industrial technologies. In particular, the feasible deformation rates are limited for low-ductile metallic materials. For this reason, processes were investigated to improve the deformability in which electrical impulses are to be applied to lower the yield strength. However, owing to the impulse duration and low current densities, concomitant effects always occur, e.g., as a result of Joule heating. Current developments in power electronics allow now to transmit high currents as short pulses. By reducing the impulse duration and increasing the current density, the plasticity of metallic materials can be correspondingly increased. Using the examples of polycrystalline iron and a single-crystal, nickel-based alloy (PWA 1480), current advances in the development of methods for forming materials by means of high-current-density impulses are demonstrated. For this purpose, appropriate specimens were loaded in compression and, using novel testing equipment, subjected to a current strength of 10 kA with an impulse duration of 2 ms. For a pre-defined strain, the test results show a significant decrease in the compressive stress during the compression test and a significant change in the dislocation distribution following the current impulse treatment.

  3. Influence of High-Current-Density Impulses on the Compression Behavior: Experiments with Iron and a Nickel-Based Alloy

    Science.gov (United States)

    Demler, E.; Gerstein, G.; Dalinger, A.; Epishin, A.; Rodman, D.; Nürnberger, F.

    2016-12-01

    Difficulties of processing of high strength and/or brittle materials by plastic deformation, e.g., by forging, require to develop new industrial technologies. In particular, the feasible deformation rates are limited for low-ductile metallic materials. For this reason, processes were investigated to improve the deformability in which electrical impulses are to be applied to lower the yield strength. However, owing to the impulse duration and low current densities, concomitant effects always occur, e.g., as a result of Joule heating. Current developments in power electronics allow now to transmit high currents as short pulses. By reducing the impulse duration and increasing the current density, the plasticity of metallic materials can be correspondingly increased. Using the examples of polycrystalline iron and a single-crystal, nickel-based alloy (PWA 1480), current advances in the development of methods for forming materials by means of high-current-density impulses are demonstrated. For this purpose, appropriate specimens were loaded in compression and, using novel testing equipment, subjected to a current strength of 10 kA with an impulse duration of 2 ms. For a pre-defined strain, the test results show a significant decrease in the compressive stress during the compression test and a significant change in the dislocation distribution following the current impulse treatment.

  4. Twin stability in highly nanotwinned Cu under compression, torsion and tension

    DEFF Research Database (Denmark)

    Hodge, A.M.; Furnish, T.A.; Shute, C.J.;

    2012-01-01

    Twin stability under four distinct mechanical loading states has been investigated for highly nanotwinned Cu containing parallel nanotwins 40 nm thick. Observed deformation-induced microstructural changes under tension, compression, tension–tension fatigue and torsion are qualitatively compared...

  5. Parallel Microcracks-based Ultrasensitive and Highly Stretchable Strain Sensors.

    Science.gov (United States)

    Amjadi, Morteza; Turan, Mehmet; Clementson, Cameron P; Sitti, Metin

    2016-03-01

    There is an increasing demand for flexible, skin-attachable, and wearable strain sensors due to their various potential applications. However, achieving strain sensors with both high sensitivity and high stretchability is still a grand challenge. Here, we propose highly sensitive and stretchable strain sensors based on the reversible microcrack formation in composite thin films. Controllable parallel microcracks are generated in graphite thin films coated on elastomer films. Sensors made of graphite thin films with short microcracks possess high gauge factors (maximum value of 522.6) and stretchability (ε ≥ 50%), whereas sensors with long microcracks show ultrahigh sensitivity (maximum value of 11,344) with limited stretchability (ε ≤ 50%). We demonstrate the high performance strain sensing of our sensors in both small and large strain sensing applications such as human physiological activity recognition, human body large motion capturing, vibration detection, pressure sensing, and soft robotics.

  6. RECRYSTALLIZATION BEHAVIOR AND PRIOR AUSTENITE GRAIN BOUNDARY CORROSION IN THE PLANE STRAIN COMPRESSION CONDITION FOR A LOW CARBON X70 PIPELINE STEEL

    Institute of Scientific and Technical Information of China (English)

    Y.H. Li; J. Wang; Y.S. Li; Y. Y. Shan

    2004-01-01

    Recrystallization behavior of a low carbon X70 pipeline steel was studied in the plane strain compression condition. It was found that the dynamic recovery but no dynamic recrystallization occurred in the current experimental condition. A method for examining the prior austenite grain boundary corrosion was supposed.

  7. High precision Hugoniot measurements of D2 near maximum compression

    Science.gov (United States)

    Benage, John; Knudson, Marcus; Desjarlais, Michael

    2015-11-01

    The Hugoniot response of liquid deuterium has been widely studied due to its general importance and to the significant discrepancy in the inferred shock response obtained from early experiments. With improvements in dynamic compression platforms and experimental standards these results have converged and show general agreement with several equation of state (EOS) models, including quantum molecular dynamics (QMD) calculations within the Generalized Gradient Approximation (GGA). This approach to modeling the EOS has also proven quite successful for other materials and is rapidly becoming a standard approach. However, small differences remain among predictions obtained using different local and semi-local density functionals; these small differences show up in the deuterium Hugoniot at ~ 30-40 GPa near the region of maximum compression. Here we present experimental results focusing on that region of the Hugoniot and take advantage of advancements in the platform and standards, resulting in data with significantly higher precision than that obtained in previous studies. These new data may prove to distinguish between the subtle differences predicted by the various density functionals. Results of these experiments will be presented along with comparison to various QMD calculations. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin company, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  8. Real-time distortionless high-factor compression scheme.

    Science.gov (United States)

    Liénard, J

    1989-01-01

    Nowadays, digital subtraction angiography systems must be able to sustain real-time acquisition (30 frames per second) of 512 x 512 x 8 bit images and store several sequences of such images on low cost and general-purpose mass memories. Concretely, that means a 7.8 Mbytes per second rate and about 780 Mbytes disk space to hold a 100-s cardiac examination. To fulfill these requirements at competitive cost, a distortionless compressor/decompressor system can be designed: during acquisition, the real-time compressor transforms the input images into a lower quantity of coded information through a predictive coder and a variable-length Huffman code. The process is fully reversible because during review, the real-time decompressor exactly recovers the acquired images from the stored compressed data. Test results on many raw images demonstrate that real-time compression is feasible and takes place with absolutely no loss of information. The designed system indifferently works on 512 or 1024 formats, and 256 or 1024 gray levels.

  9. Two strains of Crocosphaera watsonii with highly conserved genomes are distinguished by strain-specific features

    Directory of Open Access Journals (Sweden)

    Shellie Roxanne Bench

    2011-12-01

    Full Text Available Unicellular nitrogen-fixing cyanobacteria are important components of marine phytoplankton. Although non-nitrogen-fixing marine phytoplankton generally exhibit high gene sequence and genomic diversity, gene sequences of natural populations and isolated strains of Crocosphaera watsonii, one of two most abundant open ocean unicellular cyanobacteria groups, have been shown to be 98-100% identical.. The low sequence diversity in Crocosphaera is a dramatic contrast to sympatric species of Prochlorococcus and Synechococcus, and raises the question of how genome differences can explain observed phenotypic diversity among Crocosphaera strains. Here we show, through whole genome comparisons of two phenotypically different strains, that there are strain-specific sequences in each genome, and numerous genome rearrangements, despite exceptionally low sequence diversity in shared genomic regions. Some of the strain-specific sequences encode functions that explain observed phenotypic differences, such as exopolysaccharide biosynthesis. The pattern of strain-specific sequences distributed throughout the genomes, along with rearrangements in shared sequences is evidence of significant genetic mobility that may be attributed to the hundreds of transposase genes found in both strains. Furthermore, such genetic mobility appears to be the main mechanism of strain divergence in Crocosphaera which do not accumulate DNA microheterogeneity over the vast majority of their genomes. The strain-specific sequences found in this study provide tools for future physiological studies, as well as genetic markers to help determine the relative abundance of phenotypes in natural populations.

  10. Twinning in copper deformed at high strain rates

    Indian Academy of Sciences (India)

    S Cronje; R E Kroon; W D Roos; J H Neethling

    2013-02-01

    Copper samples having varying microstructures were deformed at high strain rates using a split-Hopkinson pressure bar. Transmission electron microscopy results show deformation twins present in samples that were both annealed and strained, whereas samples that were annealed and left unstrained, as well as samples that were unannealed and strained, are devoid of these twins. These deformation twins occurred at deformation conditions less extreme than previously predicted.

  11. High temperature static strain gage development

    Science.gov (United States)

    Hulse, C. O.; Bailey, R. S.; Grant, H. P.; Anderson, W. L.; Przybyszewski, J. S.

    1991-01-01

    Final results are presented from a program to develop a thin film static strain gage for use on the blades and vanes of running, test stand gas turbine engines with goals of an 3 x 3 mm gage area and total errors of less than 10 pct. of + or - 2,000 microstrain after 50 hrs at 1250 K. Pd containing 13 Wt. pct. Cr was previously identified as a new strain sensor alloy that appeared to be potentially usable to 1250 K. Subsequently, it was discovered, in contrast with its behavior in bulk, that Pd-13Cr suffered from oxidation attack when prepared as a 4.5 micron thick thin film. Continuing problems with electrical leakage to the substrate and the inability of sputtered alumina overcoats to prevent oxidation led to the discovery that sputtered alumina contains appreciable amounts of entrapped argon. After the argon has been exsolved by heating to elevated temperatures, the alumina films undergo a linear shrinkage of about 2 pct. resulting in formation of cracks. These problems can be largely overcome by sputtering the alumina with the substrate heated to 870 K. With 2 micron thick hot sputtered alumina insulation and overcoat films, total 50 hr drifts of about 100 microstrain (2 tests) and about 500 microstrain (1 test) were observed at 1000 and 1100 K, respectively. Results of tests on complete strain gage systems on constant moment bend bars with Pd temperature compensation grids revealed that oxidation of the Pd grid was a major problem even when the grid was overcoated with a hot or cold sputtered alumina overcoat.

  12. High Strain-Rate Material Model Validation for Laser Peening Simulation

    Directory of Open Access Journals (Sweden)

    Kristina Langer

    2015-09-01

    Full Text Available Finite element modeling can be a powerful tool for predicting residual stresses induced by laser peening; however the sign and magnitude of the stress predictions depend strongly on how the material model captures the high strain rate response. Although a Johnson-Cook formulation is often employed, its suitability for modeling phenomena at very high strain rates has not been rigorously evaluated. In this paper, we address the effectiveness of the Johnson-Cook model, with parameters developed from lower strain rate material data (∼10^3 s^–1, to capture the higher strain rate response (∼10^5–10^6 s^–1 encountered during the laser peening process. Published Johnson-Cook parameters extracted from split Hopkinson bar testing were used to predict the shock response of aluminum samples during high-impact flyer plate tests. Additional quasi-static and split Hopkinson bar tests were also conducted to study the model response in the lower strain rate regime. The overall objective of the research was to ascertain whether a material model based on conventional test data (quasi-static compression testing and split Hopkinson bar measurements can credibly be used in FE simulations to predict laser peen-induced stresses.

  13. High temperature absorption compression heat pump for industrial waste heat

    DEFF Research Database (Denmark)

    Reinholdt, Lars; Horntvedt, B.; Nordtvedt, S. R.

    2016-01-01

    Heat pumps are currently receiving extensive interest because they may be able to support the integration of large shares of fluctuating electricity production based on renewable sources, and they have the potential for the utilization of low temperature waste heat from industry. In most industries......, the needed temperature levels often range from 100°C and up, but until now, it has been quite difficult to find heat pump technologies that reach this level, and thereby opening up the large-scale heat recovery in the industry. Absorption compression heat pumps can reach temperatures above 100°C......, and they have proved themselves a very efficient and reliable technology for applications that have large temperature changes on the heat sink and/or heat source. The concept of Carnot and Lorenz efficiency and its use in the analysis of system integration is shown. A 1.25 MW system having a Carnot efficiency...

  14. High strain rate loading of polymeric foams and solid plastics

    Science.gov (United States)

    Dick, Richard D.; Chang, Peter C.; Fourney, William L.

    2000-04-01

    The split-Hopkinson pressure bar (SHPB) provided a technique to determine the high strain rate response for low density foams and solid ABS and polypropylene plastics. These materials are used in the interior safety panels of automobiles and crash test dummies. Because the foams have a very low impedance, polycarbonate bars were used to acquire the strain rate data in the 100 to 1600 l/s range. An aluminum SPHB setup was used to obtain the solid plastics data which covered strain rates of 1000 to 4000 l/s. The curves for peak strain rate versus peak stress for the foams over the test range studied indicates only a slight strain rate dependence. Peak strain rate versus peak stress curves for polypropylene shows a strain rate dependence up to about 1500 l/s. At that rate the solid poly propylene indicates no strain rate dependence. The ABS plastics are strain rate dependent up to 3500 l/s and then are independent at larger strain rates.

  15. 饱和冻结粉土在常应变速率下的单轴抗压强度%Uniaxial Compressive Strength of the Saturated Frozen Silt at Constant Strain Rates

    Institute of Scientific and Technical Information of China (English)

    李海鹏; 朱元林; 潘卫东

    2002-01-01

    Uniaxial compressive strength tests were conducted on the saturated frozen Lanzhou silt (loess) at various constant strain rates and at various constant temperatures. It is concluded from the test results that: the compressive strength (σ f) is very sensitive to temperature (θ) and increases with the temperature decreasing as a power law. Compressive strength is sensitive to strain rate () and increases with strain rates increasing within a certain range of strain rates as a power law. Compressive strength decreases when time to failure (tf) increases, also following a power law. Finally, Compressive strength of frozen silt with higher dry density (γd) is higher than that of frozen silt with lower dry density. The difference between them is mainly influenced by strain rate.

  16. Search for New Highly Energetic Phases under Compression and Shear

    Science.gov (United States)

    2015-05-01

    diamond anvil cell. Europhysics Letters , 2009, Vol. 88, 16004, 1-6. IF: 2.753 4. Ji, C., Hou, D., Zhu, H., Wu, J., Chyu, M., Ma, Y., Pressure...I-2. The room temperature phase diagram of NaN3. Letters mark the material surrounding the sample as pressure transmitting media. (b) Shear...transitions at large strains: Phase-field theory and simulations. Physical Review Letters , 2009, Vol. 103, No. 2, 025702; selected and published by

  17. Lossy compression of floating point high-dynamic range images using JPEG2000

    Science.gov (United States)

    Springer, Dominic; Kaup, Andre

    2009-01-01

    In recent years, a new technique called High Dynamic Range (HDR) has gained attention in the image processing field. By representing pixel values with floating point numbers, recorded images can hold significantly more luminance information than ordinary integer images. This paper focuses on the realization of a lossy compression scheme for HDR images. The JPEG2000 standard is used as a basic component and is efficiently integrated into the compression chain. Based on a detailed analysis of the floating point format and the human visual system, a concept for lossy compression is worked out and thoroughly optimized. Our scheme outperforms all other existing lossy HDR compression schemes and shows superior performance both at low and high bitrates.

  18. Residual Stress Reversal in Highly Strained Shot Peened Structural Elements. Degree awarded by Florida Univ.

    Science.gov (United States)

    Mitchell, William S.; Throckmorton, David (Technical Monitor)

    2002-01-01

    The purpose of this research was to further the understanding of a crack initiation problem in a highly strained pressure containment housing. Finite Element Analysis methods were used to model the behavior of shot peened materials undergoing plastic deformation. Analytical results are in agreement with laboratory tensile tests that simulated the actual housing load conditions. These results further validate the original investigation finding that the shot peened residual stress had reversed, changing from compressive to tensile, and demonstrate that analytical finite element methods can be used to predict this behavior.

  19. Compression Behavior of Confined Columns with High-Volume Fly Ash Concrete

    Directory of Open Access Journals (Sweden)

    Sung-Won Yoo

    2017-01-01

    Full Text Available The use of fly ash in ordinary concrete provides practical benefits to concrete structures, such as a gain in long-term strength, reduced hydration heat, improved resistance to chloride, and enhanced workability. However, few studies with high-volume fly ash (HVFA concrete have been conducted that focus on the structural applications such as a column. Thus, there is a need to promote field applications of HVFA concrete as a sustainable construction material. To this end, this study investigated the compressive behavior of reinforced concrete columns that contain HVFA with a 50 percent replacement rate. Six columns were fabricated for this study. The study variables were the HVFA replacement rate, tied steel ratio, and tie steel spacing. The computed ultimate strength by the American Concrete Institute (ACI code conservatively predicted the measured values, and, thus, the existing equation in the ACI code is feasible for confined RC columns that contain HVFA. In addition, an analysis model was calibrated based on the experimental results and is recommended for predicting the stress-strain relationship of confined reinforced concrete columns that contain HVFA.

  20. Direct angle resolved photoelectron spectroscopy (DARPES) on high-Tc films: doping, strains, Fermi surface topology and superconductivity

    Science.gov (United States)

    Pavuna, D.; Ariosa, D.; Cancellieri, C.; Cloetta, D.; Abrecht, M.

    2008-03-01

    Since 1997 we systematically perform Direct ARPES ( = DARPES) on in-situ grown, non-cleaved, ultra-thin (<25nm) cuprate films. Specifically, we probe low energy electronic structure and properties of high-Tc films under different degree of epitaxial (compressive vs tensile) strain. In overdoped in-plane compressed La2-xSrxCuO4 (LSCO) thin films we double Tc from 20K to 40K, yet the Fermi surface (FS) remains essentially 2-dimensional (2D). In contrast, tensile strained films show 3-dimensional (3D) dispersion, while Tc is drastically reduced. It seems that the in-plane compressive strain tends to push the apical oxygen far away from the CuO2 plane, enhances the 2D character of the dispersion and increases Tc, while the tensile strain seems to act exactly in the opposite direction and the resulting dispersion is 3D. We have the FS topology for both cases. As the actual lattice of cuprates is 'Napoleon-cake' -like i.e. rigid CuO2 planes alternate with softer 'reservoir' (that strains distort differently) our results tend to rule out 2D rigid lattice mean field models. Finally, we briefly discuss recent successful determination of the FS topology from the observed wavevector quantization by DARPES in cuprate films thinner than 18 units cells (<24nm). Such an approach is of broader interest as it can be extended to other similar confined (ultra-thin) functional oxide systems.

  1. Compressive behavior of fine sand.

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Bradley E. (Air Force Research Laboratory, Eglin, FL); Kabir, Md. E. (Purdue University, West Lafayette, IN); Song, Bo; Chen, Wayne (Purdue University, West Lafayette, IN)

    2010-04-01

    The compressive mechanical response of fine sand is experimentally investigated. The strain rate, initial density, stress state, and moisture level are systematically varied. A Kolsky bar was modified to obtain uniaxial and triaxial compressive response at high strain rates. A controlled loading pulse allows the specimen to acquire stress equilibrium and constant strain-rates. The results show that the compressive response of the fine sand is not sensitive to strain rate under the loading conditions in this study, but significantly dependent on the moisture content, initial density and lateral confinement. Partially saturated sand is more compliant than dry sand. Similar trends were reported in the quasi-static regime for experiments conducted at comparable specimen conditions. The sand becomes stiffer as initial density and/or confinement pressure increases. The sand particle size become smaller after hydrostatic pressure and further smaller after dynamic axial loading.

  2. Construction of acetoin high-producing Bacillus subtilis strain

    Directory of Open Access Journals (Sweden)

    Yanjun Tian

    2016-07-01

    Full Text Available This paper describes the construction and selection of a high-producing mutant, Bacillus subtilis HB-32, with enhanced acetoin yield and productivity. The mutant was obtained by the protoplast fusion of a Bacillus subtilis mutant TH-49 (Val− producing acetoin and Bacillus licheniformis AD-30 producing α-acetolactate decarboxylase, with the fusogen polyethylene glycol and after the regeneration and selection, etc. of the fusant. The acetoin production reached 49.64 g/L, which is an increase of 61.8% compared to that of B. subtilis strain TH-49. Random amplified polymorphic DNA analysis was performed to determine the mutagenic and protoplast fusion effects and the genomic changes in the acetoin high-producing strain compared to the parent strains at the molecular level. The constructed strain was shown to be promising for large-scale acetoin production. Future studies should focus on the application of the mutant strain in practice.

  3. Development of High Cordycepin-Producing Cordyceps militaris Strains.

    Science.gov (United States)

    Kang, Naru; Lee, Hyun-Hee; Park, Inmyoung; Seo, Young-Su

    2017-03-01

    Cordyceps militaris, known as Dong-Chong-Xia-Cao, produces the most cordycepin among Cordyceps species and can be cultured artificially. For these reasons, C. militaris is widely used as herb or functional food in the East Asia. In this study, we developed a new strain of C. militaris that produces higher cordycepin content than parent strains through mating-based sexual reproduction. Twenty parent strains were collected and identified as C. militaris based on internal trasncrived spacer and rDNA sequences. Seven single spores of MAT 1-1 idiomorph and five single spores of MAT 1-2 idiomorph were isolated from 12 parent strains. When 35 combinations were mated on the brown rice medium with the isolated single spores, eight combinations formed a stroma with a normal perithecia and confirmed mated strains. High pressure liquid chromatography analysis showed that mated strain KSP8 produced the most cordycepin in all the media among all the tested strains. This result showed due to genetic recombination occurring during the sexual reproduction of C. militaris. The development of C. militaris strain with increased cordycepin content by this approach can help not only to generate new C. militaris strains, but also to contribute to the health food or medicine industry.

  4. Modeling of high-explosive driven plasma compression opening switches

    Science.gov (United States)

    Greene, A. E.; Lindemuth, I. R.; Goforth, J. H.

    The initial path of the current through a plasma compression switch is through a thin (500-nm thick) metal foil. The current explodes the foil to form the seed for the conducting plasma. The behavior of the foil at this point is the same as an exploding metal fuse for which we have a simple model. We have, therefore, chosen this model as our starting point. The fuse model assumes that the foil material is homogeneous and is characterized by a single temperature and density. The thickness of the foil is assumed to be much less than the magnetic diffusion skin depth so that the magnetic field varies linearly across the foil. For the present application we assume that the side of the foil away from the channel is fixed in space while the side by the channel is untamped. The foil/plasma will, therefore, cross the channel at the expansion velocity as the foil explodes. Equations for the electrical resistance of the foil, the magnetic fields, the motion of the foil, and the kinetic and internal energies are all solved selfconsistantly. The electrical resistivity, the pressure, and the specific energy of aluminum are taken from the Los Alamos SESAME EOS library. In the case of aluminum we have created a SESAME-style table based on the theory of More and Lee which we have modified to agree with experiment where possible.

  5. A high-resolution SWIR camera via compressed sensing

    Science.gov (United States)

    McMackin, Lenore; Herman, Matthew A.; Chatterjee, Bill; Weldon, Matt

    2012-06-01

    Images from a novel shortwave infrared (SWIR, 900 nm to 1.7 μm) camera system are presented. Custom electronics and software are combined with a digital micromirror device (DMD) and a single-element sensor; the latter are commercial off-the-shelf devices, which together create a lower-cost imaging system than is otherwise available in this wavelength regime. A compressive sensing (CS) encoding schema is applied to the DMD to modulate the light that has entered the camera. This modulated light is directed to a single-element sensor and an ensemble of measurements is collected. With the data ensemble and knowledge of the CS encoding, images are computationally reconstructed. The hardware and software combination makes it possible to create images with the resolution of the DMD while employing a substantially lower-cost sensor subsystem than would otherwise be required by the use of traditional focal plane arrays (FPAs). In addition to the basic camera architecture, we also discuss a technique that uses the adaptive functionality of the DMD to search and identify regions of interest. We demonstrate adaptive CS in solar exclusion experiments where bright pixels, which would otherwise reduce dynamic range in the images, are automatically removed.

  6. Strain Amount Dependent Grain Size and Orientation Developments during Hot Compression of a Polycrystalline Nickel Based Superalloy

    Directory of Open Access Journals (Sweden)

    Guoai He

    2017-02-01

    Full Text Available Controlling grain size in polycrystalline nickel base superalloy is vital for obtaining required mechanical properties. Typically, a uniform and fine grain size is required throughout forging process to realize the superplastic deformation. Strain amount occupied a dominant position in manipulating the dynamic recrystallization (DRX process and regulating the grain size of the alloy during hot forging. In this article, the high-throughput double cone specimen was introduced to yield wide-range strain in a single sample. Continuous variations of effective strain ranging from 0.23 to 1.65 across the whole sample were achieved after reaching a height reduction of 70%. Grain size is measured to be decreased from the edge to the center of specimen with increase of effective strain. Small misorientation tended to generate near the grain boundaries, which was manifested as piled-up dislocation in micromechanics. After the dislocation density reached a critical value, DRX progress would be initiated at higher deformation region, leading to the refinement of grain size. During this process, the transformations from low angle grain boundaries (LAGBs to high angle grain boundaries (HAGBs and from subgrains to DRX grains are found to occur. After the accomplishment of DRX progress, the neonatal grains are presented as having similar orientation inside the grain boundary.

  7. Effect of inclusions on strain localization during high temperature creep of marble

    Science.gov (United States)

    Rybacki, E.; Morales, L. G.; Naumann, M.; Dresen, G. H.

    2013-12-01

    orientation of the marble within this process zone, owing to stress concentration and associated strain localization at the tip of the inclusions. The recrystallization-induced weakening requires a minimum local shear strain of about 1 in the process zone, corresponding to a bulk shear strain of about 0.1. One sample deformed at constant torque reveals an increase of the bulk shear strain rate up to a factor of about 3 between γ ≈ 0.1 and 1, induced by intense recrystallization in the process zone. Additional brittle microfracturing adjacent to the inclusion tip was observed in a soft inclusion-bearing marble, deformed in triaxial compression at a bulk strain rate of 7.3 x 10-5 s-1 to an axial strain of ≈0.02, induced by high stress concentrations. In contrast, strong inclusions do not show localization weakening presumably because the local strain in front of the inclusion is too low to initiate recrystallization. The experimental results demonstrate that interacting weak structural defects initiate localization of creeping carbonate rocks by enhanced dynamic recrystallization.

  8. Large-strain time-temperature equivalence in high density polyethylene for prediction of extreme deformation and damage

    Directory of Open Access Journals (Sweden)

    Gray G.T.

    2012-08-01

    Full Text Available Time-temperature equivalence is a widely recognized property of many time-dependent material systems, where there is a clear predictive link relating the deformation response at a nominal temperature and a high strain-rate to an equivalent response at a depressed temperature and nominal strain-rate. It has been found that high-density polyethylene (HDPE obeys a linear empirical formulation relating test temperature and strain-rate. This observation was extended to continuous stress-strain curves, such that material response measured in a load frame at large strains and low strain-rates (at depressed temperatures could be translated into a temperature-dependent response at high strain-rates and validated against Taylor impact results. Time-temperature equivalence was used in conjuction with jump-rate compression tests to investigate isothermal response at high strain-rate while exluding adiabatic heating. The validated constitutive response was then applied to the analysis of Dynamic-Tensile-Extrusion of HDPE, a tensile analog to Taylor impact developed at LANL. The Dyn-Ten-Ext test results and FEA found that HDPE deformed smoothly after exiting the die, and after substantial drawing appeared to undergo a pressure-dependent shear damage mechanism at intermediate velocities, while it fragmented at high velocities. Dynamic-Tensile-Extrusion, properly coupled with a validated constitutive model, can successfully probe extreme tensile deformation and damage of polymers.

  9. Audiovisual focus of attention and its application to Ultra High Definition video compression

    Science.gov (United States)

    Rerabek, Martin; Nemoto, Hiromi; Lee, Jong-Seok; Ebrahimi, Touradj

    2014-02-01

    Using Focus of Attention (FoA) as a perceptual process in image and video compression belongs to well-known approaches to increase coding efficiency. It has been shown that foveated coding, when compression quality varies across the image according to region of interest, is more efficient than the alternative coding, when all region are compressed in a similar way. However, widespread use of such foveated compression has been prevented due to two main conflicting causes, namely, the complexity and the efficiency of algorithms for FoA detection. One way around these is to use as much information as possible from the scene. Since most video sequences have an associated audio, and moreover, in many cases there is a correlation between the audio and the visual content, audiovisual FoA can improve efficiency of the detection algorithm while remaining of low complexity. This paper discusses a simple yet efficient audiovisual FoA algorithm based on correlation of dynamics between audio and video signal components. Results of audiovisual FoA detection algorithm are subsequently taken into account for foveated coding and compression. This approach is implemented into H.265/HEVC encoder producing a bitstream which is fully compliant to any H.265/HEVC decoder. The influence of audiovisual FoA in the perceived quality of high and ultra-high definition audiovisual sequences is explored and the amount of gain in compression efficiency is analyzed.

  10. High-Temperature Strain Sensing for Aerospace Applications

    Science.gov (United States)

    Piazza, Anthony; Richards, Lance W.; Hudson, Larry D.

    2008-01-01

    Thermal protection systems (TPS) and hot structures are utilizing advanced materials that operate at temperatures that exceed abilities to measure structural performance. Robust strain sensors that operate accurately and reliably beyond 1800 F are needed but do not exist. These shortcomings hinder the ability to validate analysis and modeling techniques and hinders the ability to optimize structural designs. This presentation examines high-temperature strain sensing for aerospace applications and, more specifically, seeks to provide strain data for validating finite element models and thermal-structural analyses. Efforts have been made to develop sensor attachment techniques for relevant structural materials at the small test specimen level and to perform laboratory tests to characterize sensor and generate corrections to apply to indicated strains. Areas highlighted in this presentation include sensors, sensor attachment techniques, laboratory evaluation/characterization of strain measurement, and sensor use in large-scale structures.

  11. Novel High Temperature Strain Gauge Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced high-temperature sensor technology and bonding methods are of great interests in designing and developing advanced future aircraft. Current state-of-the-art...

  12. Development of Ti-Nb-Zr alloys with high elastic admissible strain for temporary orthopedic devices.

    Science.gov (United States)

    Ozan, Sertan; Lin, Jixing; Li, Yuncang; Ipek, Rasim; Wen, Cuie

    2015-07-01

    A new series of beta Ti-Nb-Zr (TNZ) alloys with considerable plastic deformation ability during compression test, high elastic admissible strain, and excellent cytocompatibility have been developed for removable bone tissue implant applications. TNZ alloys with nominal compositions of Ti-34Nb-25Zr, Ti-30Nb-32Zr, Ti-28Nb-35.4Zr and Ti-24.8Nb-40.7Zr (wt.% hereafter) were fabricated using the cold-crucible levitation technique, and the effects of alloying element content on their microstructures, mechanical properties (tensile strength, yield strength, compressive yield strength, Young's modulus, elastic energy, toughness, and micro-hardness), and cytocompatibilities were investigated and compared. Microstructural examinations revealed that the TNZ alloys consisted of β phase. The alloy samples displayed excellent ductility with no cracking, or fracturing during compression tests. Their tensile strength, Young's modulus, elongation at rupture, and elastic admissible strain were measured in the ranges of 704-839 MPa, 62-65 GPa, 9.9-14.8% and 1.08-1.31%, respectively. The tensile strength, Young's modulus and elongation at rupture of the Ti-34Nb-25Zr alloy were measured as 839 ± 31.8 MPa, 62 ± 3.6 GPa, and 14.8 ± 1.6%, respectively; this alloy exhibited the elastic admissible strain of approximately 1.31%. Cytocompatibility tests indicated that the cell viability ratios (CVR) of the alloys are greater than those of the control group; thus the TNZ alloys possess excellent cytocompatibility. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  13. Stress-strain characteristics of materials at high strain rates. Part II. Experimental results

    Energy Technology Data Exchange (ETDEWEB)

    Ripperger, E. A. [Texas. Univ., Austin, TX (US). Structural Mechanics Research Lab.

    1958-08-29

    These two reports were issued separately, but are cataloged as a unit. A photoelectric method for measuring displacements during high-velocity impacts is described. The theory of the system is discussed in detail, and a prototype system which was built and tested is described. The performance of the prototype system is evaluated by comparing the results which it gives with results obtained by other methods of measurement. The system was found capable of a resolution of at least 0.01 inches. static and dynamic stress-strain characteristics of seven high polymers, polyethylene, teflon, nylon, tenite M, tenite H, polystyrene, and saran, plus three metals, lead, copper, and aluminum, are described and compared by means of stress-strain curves and photographs. Data are also presented which show qualitatively the effects produced on stress-strain characteristics by specimen configuration, temperature, and impact velocity. It is shown that there is a definite strain-rate effect for all these materials except polystyrene. The effect is one of an apparent stiffening of the material with increasing strain rate, which is similar to the effect produced by lowering the temperature. The stress-strain measurements are examined critically, inconsistencies are pointed out, and possible sources of error suggested. Values of yield stress, modulus of elasticity and energy absorption for all materials (except copper and aluminum), specimen configurations, temperatures, and impact velocities included in the investigation are tabulated.

  14. Creep Strain and Strain Rate Response of 2219 Al Alloy at High Stress Levels

    Science.gov (United States)

    Taminger, Karen M. B.; Wagner, John A.; Lisagor, W. Barry

    1998-01-01

    As a result of high localized plastic deformation experienced during proof testing in an International Space Station connecting module, a study was undertaken to determine the deformation response of a 2219-T851 roll forging. After prestraining 2219-T851 Al specimens to simulate strains observed during the proof testing, creep tests were conducted in the temperature range from ambient temperature to 107 C (225 F) at stress levels approaching the ultimate tensile strength of 2219-T851 Al. Strain-time histories and strain rate responses were examined. The strain rate response was extremely high initially, but decayed rapidly, spanning as much as five orders of magnitude during primary creep. Select specimens were subjected to incremental step loading and exhibited initial creep rates of similar magnitude for each load step. Although the creep rates decreased quickly at all loads, the creep rates dropped faster and reached lower strain rate levels for lower applied loads. The initial creep rate and creep rate decay associated with primary creep were similar for specimens with and without prestrain; however, prestraining (strain hardening) the specimens, as in the aforementioned proof test, resulted in significantly longer creep life.

  15. Stretching Behavior of Red Blood Cells at High Strain Rates

    Science.gov (United States)

    Mancuso, Jordan; Ristenpart, William

    2016-11-01

    Most work on the mechanical behavior of red blood cells (RBCs) has focused on simple shear flows. Relatively little work has examined RBC deformations in the physiologically important extensional flow that occurs at the entrance to a constriction. In particular, previous work suggests that RBCs rapidly stretch out and then retract upon entering the constriction, but to date no model predicts this behavior for the extremely high strain rates typically experienced there. In this work, we use high speed video to perform systematic measurements of the dynamic stretching behavior of RBCs as they enter a microfluidic constriction. We demonstrate that a simple viscoelastic model captures the observed stretching dynamics, up to strain rates as high as 1000 s-1. The results indicate that the effective elastic modulus of the RBC membrane at these strain rates is an order of magnitude larger than moduli measured by micropipette aspiration or other low strain rate techniques.

  16. Type-I cascaded quadratic soliton compression in lithium niobate: Compressing femtosecond pulses from high-power fiber lasers

    DEFF Research Database (Denmark)

    Bache, Morten; Wise, Frank W.

    2010-01-01

    using second-harmonic generation in a type-I phase-matching configuration. We find that because of competing cubic material nonlinearities, compression can only occur in the nonstationary regime, where group-velocity-mismatch–induced Raman-like nonlocal effects prevent compression to less than 100 fs...

  17. Flexible Carbon Nanotube Films for High Performance Strain Sensors

    Directory of Open Access Journals (Sweden)

    Olfa Kanoun

    2014-06-01

    Full Text Available Compared with traditional conductive fillers, carbon nanotubes (CNTs have unique advantages, i.e., excellent mechanical properties, high electrical conductivity and thermal stability. Nanocomposites as piezoresistive films provide an interesting approach for the realization of large area strain sensors with high sensitivity and low manufacturing costs. A polymer-based nanocomposite with carbon nanomaterials as conductive filler can be deposited on a flexible substrate of choice and this leads to mechanically flexible layers. Such sensors allow the strain measurement for both integral measurement on a certain surface and local measurement at a certain position depending on the sensor geometry. Strain sensors based on carbon nanostructures can overcome several limitations of conventional strain sensors, e.g., sensitivity, adjustable measurement range and integral measurement on big surfaces. The novel technology allows realizing strain sensors which can be easily integrated even as buried layers in material systems. In this review paper, we discuss the dependence of strain sensitivity on different experimental parameters such as composition of the carbon nanomaterial/polymer layer, type of polymer, fabrication process and processing parameters. The insights about the relationship between film parameters and electromechanical properties can be used to improve the design and fabrication of CNT strain sensors.

  18. High-sensitivity strain visualization using electroluminescence technologies

    Science.gov (United States)

    Xu, Jian; Jo, Hongki

    2016-04-01

    Visualizing mechanical strain/stress changes is an emerging area in structural health monitoring. Several ways are available for strain change visualization through the color/brightness change of the materials subjected to the mechanical stresses, for example, using mechanoluminescence (ML) materials and mechanoresponsive polymers (MRP). However, these approaches were not effectively applicable for civil engineering system yet, due to insufficient sensitivity to low-level strain of typical civil structures and limitation in measuring both static and dynamic strain. In this study, design and validation for high-sensitivity strain visualization using electroluminescence technologies are presented. A high-sensitivity Wheatstone bridge, of which bridge balance is precisely controllable circuits, is used with a gain-adjustable amplifier. The monochrome electroluminescence (EL) technology is employed to convert both static and dynamic strain change into brightness/color change of the EL materials, through either brightness change mode (BCM) or color alternation mode (CAM). A prototype has been made and calibrated in lab, the linearity between strain and brightness change has been investigated.

  19. High Strain Rate Experiments of Energetic Material Binder

    OpenAIRE

    Rangel Mendoza, Roberto; Harr, Michael; Chen, Weinong

    2016-01-01

    Energetic materials, in particular HMX, is widely used in many applications as polymer bonded explosives (PBX) and rocket propellant. However, when damaged, HMX is known to be an unstable substance which renders it a hazardous material and in some cases unreliable. Finding critical mechanical conditions at high rates that render various forms of energetic materials as unreliable would be vital to understand the effects that vibrations and compression forces have on energetic materials. A bett...

  20. High-power radio-frequency binary pulse-compression experiment at SLAC

    Energy Technology Data Exchange (ETDEWEB)

    Lavine, T.L.; Farkas, Z.D.; Menegat, A.; Miller, R.H.; Nantista, C.; Spalek, G.; Wilson, P.B.

    1991-05-01

    Using rf pulse compression it will be possible to boost the 50- to 100-MW output expected from high-power microwave tubes operating in the 10- to 20-GHz frequency range to the 300- to 1000-MW level required by the next generation of high-gradient linacs for linear colliders. A high-power X-band three-stage binary rf pulse compressor has been implemented and operated at the Stanford Linear Accelerator Center (SLAC). In each of three successive stages, the rf pulse-length is compressed by half, and the peak power is approximately doubled. The experimental results presented here have been obtained at power levels up to 25-MW input (from an X-Band klystron) and up to 120-MW output (compressed to 60 nsec). Peak power gains greater than 5.2 have been measured. 5 refs., 6 figs., 5 tabs.

  1. Compressible Air Entrapment in High-Speed Drop Impacts on Solid Surfaces

    CERN Document Server

    Liu, Yuan; Xu, Lei

    2012-01-01

    Using high-speed photography coupled with optical interference, we experimentally study the air entrapment during a liquid drop impacting a solid substrate. We observe the formation of a compressed air film before the liquid touches the substrate, with internal pressure considerably higher than the atmospheric value. The degree of compression highly depends on the impact velocity, as explained by balancing the liquid deceleration with the large pressure of compressed air. After contact, the air film expands vertically at the edge, reducing its pressure within a few tens of microseconds and producing a thick rim on the perimeter. This thick-rimmed air film subsequently contracts into an air bubble, governed by the complex interaction between surface tension, inertia and viscous drag. Such a process is universally observed for impacts above a few centimeters high.

  2. Development of High-Temperature Strain Gages.

    Science.gov (United States)

    1961-03-17

    lengths the article is either dipped in a slip (finely divided tend to require a support for the grid, while shorter coating material suspended in a...liquid) or the lengths require too many loops to achieve the slip is sprayed onto the article , followed in both cases by high-temperature fusion. An...Electrochemistry. Electrical Instruments. Magnetic Measurements. Dielectrics. Metrology. Photometry and Colorimetry. Refractometry . Photographic Research

  3. Controlled disordering of compressively strained InGaAsP multiple quantum wells under SiO:P encapsulant and application to laser-modulator integration

    Science.gov (United States)

    Hamoudi, A.; Rao, E. V. K.; Krauz, Ph.; Ramdane, A.; Ougazzaden, A.; Robein, D.; Thibierge, H.

    1995-11-01

    We investigated the potentiality of a phosphorus-doped silicon oxide (SiO:P) carrier-free disordering source for applications in photonic devices integration schemes. This is accomplished in three successive steps by employing an InGaAsP/InGaAsP structure with compressively strained wells and lattice-matched barriers designed for operation around ˜1.55 μm. First of all, we showed that the SiO:P encapsulant offers a good control over a wide range of disorder (blue shifts as high as ˜150 meV). Later on, the high optical quality of the disordered regions is demonstrated by detecting 300 K excitonic features in moderately blue-shifted (˜40 meV) samples. And, finally, a first attempt of its application in integration technology is made by realizing a monolithic composite of a distributed feedback laser and a quantum-confined stark effect electroabsorption modulator operating around 1.54 μm.

  4. High Definition Video Streaming Using H.264 Video Compression

    OpenAIRE

    Bechqito, Yassine

    2009-01-01

    This thesis presents high definition video streaming using H.264 codec implementation. The experiment carried out in this study was done for an offline streaming video but a model for live high definition streaming is introduced, as well. Prior to the actual experiment, this study describes digital media streaming. Also, the different technologies involved in video streaming are covered. These include streaming architecture and a brief overview on H.264 codec as well as high definition t...

  5. A VLSI Processor Design of Real-Time Data Compression for High-Resolution Imaging Radar

    Science.gov (United States)

    Fang, W.

    1994-01-01

    For the high-resolution imaging radar systems, real-time data compression of raw imaging data is required to accomplish the science requirements and satisfy the given communication and storage constraints. The Block Adaptive Quantizer (BAQ) algorithm and its associated VLSI processor design have been developed to provide a real-time data compressor for high-resolution imaging radar systems.

  6. High-resolution PIV analysis of compressibility effects in turbulent jets

    NARCIS (Netherlands)

    Ceglia, G.; Violato, D.; Tuinstra, M.; Scarano, F.

    An investigation on the compressibility effects arising into the near field of turbulent jets operated at high Reynolds number at Mach numbers M=0.3, 0.9 and 1.1 (under-expanded regime) is carried out with two-components planar PIV experiments with high resolution cameras. The arrangement of the PIV

  7. Compressively strained SiGe band-to-band tunneling model calibration based on p-i-n diodes and prospect of strained SiGe tunneling field-effect transistors

    Energy Technology Data Exchange (ETDEWEB)

    Kao, Kuo-Hsing; Meyer, Kristin De [imec, Kapeldreef 75, 3001 Leuven (Belgium); Department of Electrical Engineering, KU Leuven, Leuven (Belgium); Verhulst, Anne S.; Rooyackers, Rita; Douhard, Bastien; Delmotte, Joris; Bender, Hugo; Richard, Olivier; Vandervorst, Wilfried; Simoen, Eddy; Hikavyy, Andriy; Loo, Roger; Arstila, Kai; Collaert, Nadine; Thean, Aaron; Heyns, Marc M. [imec, Kapeldreef 75, 3001 Leuven (Belgium)

    2014-12-07

    Band-to-band tunneling parameters of strained indirect bandgap materials are not well-known, hampering the reliability of performance predictions of tunneling devices based on these materials. The nonlocal band-to-band tunneling model for compressively strained SiGe is calibrated based on a comparison of strained SiGe p-i-n tunneling diode measurements and doping-profile-based diode simulations. Dopant and Ge profiles of the diodes are determined by secondary ion mass spectrometry and capacitance-voltage measurements. Theoretical parameters of the band-to-band tunneling model are calculated based on strain-dependent properties such as bandgap, phonon energy, deformation-potential-based electron-phonon coupling, and hole effective masses of strained SiGe. The latter is determined with a 6-band k·p model. The calibration indicates an underestimation of the theoretical electron-phonon coupling with nearly an order of magnitude. Prospects of compressively strained SiGe tunneling transistors are made by simulations with the calibrated model.

  8. Accelerated High-Resolution Photoacoustic Tomography via Compressed Sensing

    CERN Document Server

    Arridge, Simon; Betcke, Marta; Cox, Ben; Huynh, Nam; Lucka, Felix; Ogunlade, Olumide; Zhang, Edward

    2016-01-01

    Current 3D photoacoustic tomography (PAT) systems offer either high image quality or high frame rates but are not able to deliver high spatial and temporal resolution simultaneously, which limits their ability to image dynamic processes in living tissue. A particular example is the planar Fabry-Perot (FP) scanner, which yields high-resolution images but takes several minutes to sequentially map the photoacoustic field on the sensor plane, point-by-point. However, as the spatio-temporal complexity of many absorbing tissue structures is rather low, the data recorded in such a conventional, regularly sampled fashion is often highly redundant. We demonstrate that combining variational image reconstruction methods using spatial sparsity constraints with the development of novel PAT acquisition systems capable of sub-sampling the acoustic wave field can dramatically increase the acquisition speed while maintaining a good spatial resolution: First, we describe and model two general spatial sub-sampling schemes. Then...

  9. Effect of compressive and tensile stresses on swelling and creep strain of Fe-18Cr-10Ni-Ti austenitic steel

    Energy Technology Data Exchange (ETDEWEB)

    Neustroev, V.S.; Makarov, E.I.; Belozerov, S.V.; Ostrovsky, Z.E. [JSC ' SSC RIAR' (Russian Federation)

    2011-07-01

    At present, work in justification of the lifetime prolongation of the operated VVER-440 and VVER-1000 internals as well as of the operation of new VVER reactor internals up to 60 years is the most urgent. Fe-0.08C-18Cr-10Ni-Ti austenitic steel, being the material of operated and new VVER internals, was selected for the experiment. As the design of internals is very complicated and there are many holes for cooling, areas with compressive and tensile stresses may appear, so it is important to investigate the effect of stresses on the properties and structure of the material. Experiments to investigate the effect of tensile stress on the properties and structure of the material have been carried out both at 'SSC RIAR', Russia and abroad, but the effect of compressive stress has not been practically studied. Besides, we had to check if the known mechanisms and dependence of creep strain on stress type would remain. This paper presents the effect of compressive and tensile stresses on swelling, microstructure and creep strain of Fe-0.08C-18Cr-10Ni-Ti steel. It appears that: -) creep strain of the specimens is in the proportion to damage dose and tensile stress, and -) hardening induced by irradiation is the same for both stressed and non-stressed specimens

  10. Real-time monitoring of high-intensity focused ultrasound treatment using axial strain and axial-shear strain elastograms.

    Science.gov (United States)

    Xia, Rongmin; Thittai, Arun K

    2014-03-01

    Axial strain elastograms (ASEs) have been found to help visualize sonographically invisible thermal lesions. However, in most studies involving high-intensity focused ultrasound (HIFU)-induced thermal lesions, elastography imaging was performed separately later, after the lesion was formed. In this article, the feasibility of monitoring, in real time, tissue elasticity variation during HIFU treatment and immediately thereafter is explored using quasi-static elastography. Further, in addition to ASEs, we also explore the use of simultaneously acquired axial-shear strain elastograms (ASSEs) for HIFU lesion visualization. Experiments were performed on commercial porcine liver samples in vitro. The HIFU experiments were conducted at two applied acoustic power settings, 35 and 20 W. The experimental setup allowed us to interrupt the HIFU pulse momentarily several different times during treatment to perform elastographic compression and data acquisition. At the end of the experiments, the samples were cut along the imaging plane and photographed to compare size and location of the formed lesion with those visualized on ASEs and ASSEs. Single-lesion and multiple-lesion experiments were performed to assess the contribution of ASEs and ASSEs to lesion visualization and treatment monitoring tasks. At both power settings, ASEs and ASSEs provided accurate location information during HIFU treatment. At the low-power setting case, ASEs and ASSEs provide accurate lesion size in real-time monitoring. Lesion appearance in ASEs and ASSEs was affected by the cavitation bubbles produced at the high-power setting. The results further indicate that the cavitation bubbles influence lesion appearance more in ASEs than in ASSEs. Both ASEs and ASSEs provided accurate size information after a waiting period that allowed the cavitation bubbles to disappear. The results indicate that ASSEs not only improve lesion visualization and size measurement of a single lesion, but, under certain

  11. Reaching High-Yield Fusion with a Slow Plasma Liner Compressing a Magnetized Target

    Energy Technology Data Exchange (ETDEWEB)

    Ryutov, D D; Parks, P B

    2008-03-18

    Dynamics of the compression of a magnetized plasma target by a heavy liner made of partially ionized high high-Z material is discussed. A 'soft-landing' (shockless) mode of the liner deceleration is analyzed. Conclusion is drawn that such mode is possible for the liners whose thickness at the time of the first contact with the target is smaller than, roughly, 10% of the initial (un-compressed) target radius. A combination of the plasma liner with one or two glide cones allows for a direct access to the area near the center of the reactor chamber. One can then generate plasma target inside the plasma liner at the optimum time. The other advantage of the glide cones is that they can be used to deliver additional fuel to the center of the target near the point of a maximum compression and thereby increase the fusion yield.

  12. NGC: lossless and lossy compression of aligned high-throughput sequencing data.

    Science.gov (United States)

    Popitsch, Niko; von Haeseler, Arndt

    2013-01-01

    A major challenge of current high-throughput sequencing experiments is not only the generation of the sequencing data itself but also their processing, storage and transmission. The enormous size of these data motivates the development of data compression algorithms usable for the implementation of the various storage policies that are applied to the produced intermediate and final result files. In this article, we present NGC, a tool for the compression of mapped short read data stored in the wide-spread SAM format. NGC enables lossless and lossy compression and introduces the following two novel ideas: first, we present a way to reduce the number of required code words by exploiting common features of reads mapped to the same genomic positions; second, we present a highly configurable way for the quantization of per-base quality values, which takes their influence on downstream analyses into account. NGC, evaluated with several real-world data sets, saves 33-66% of disc space using lossless and up to 98% disc space using lossy compression. By applying two popular variant and genotype prediction tools to the decompressed data, we could show that the lossy compression modes preserve >99% of all called variants while outperforming comparable methods in some configurations.

  13. Subpicosecond pulse compression in nonlinear photonic crystal waveguides based on the formation of high-order optical solitons

    Institute of Scientific and Technical Information of China (English)

    Chen Xiong-Wen; Lin Xu-Sheng; Lan Sheng

    2005-01-01

    We investigate by numerical simulation the compression of subpicosecond pulses in two-dimensional nonlinear photonic crystal (PC) waveguides. The compression originates from the generation of high-order optical solitons through the interplay of the huge group-velocity dispersion and the enhanced self-phase modulation in nonlinear PC waveguides.Both the formation of Bragg grating solitons and gap solitons can lead to efficient pulse compression. The compression factors under different excitation power densities and the optimum length for subpicosecond pulse compression have been determined. As a compressor, the total length of the nonlinear PC waveguide is only ten micrometres and therefore can be easily incorporated into PC integrated circuits.

  14. Fabrication of high gradient insulators by stack compression

    Energy Technology Data Exchange (ETDEWEB)

    Harris, John Richardson; Sanders, Dave; Hawkins, Steven Anthony; Norona, Marcelo

    2014-04-29

    Individual layers of a high gradient insulator (HGI) are first pre-cut to their final dimensions. The pre-cut layers are then stacked to form an assembly that is subsequently pressed into an HGI unit with the desired dimension. The individual layers are stacked, and alignment is maintained, using a sacrificial alignment tube that is removed after the stack is hot pressed. The HGI's are used as high voltage vacuum insulators in energy storage and transmission structures or devices, e.g. in particle accelerators and pulsed power systems.

  15. Compression Enhanced Shear Yield Stress of Electrorheological Fluid

    Institute of Scientific and Technical Information of China (English)

    ZHANG Min-Liang; TIAN Yu; JIANG Ji-Le; ZHU Xu-Li; MENG Yong-Gang; WEN Shi-Zhu

    2009-01-01

    @@ Shear tests of an electrorheological fluid with pre-applied electric field and compression along the field direction are carried out. The results show that pre-compressions can increase the shear yield stress up to ten times. Under the same external electric field strength, a higher compressive strain corresponds to a larger shear yield stress enhancement but with slight current density decrease, which shows that the particle interaction potentials are not increased by compressions but the compression-induced chain aggregation dominates the shear yield stress improvement. This pre-compression technique might be useful [or developing high performance flexible ER or magnetorheological couplings.

  16. Study of High Strain Rate Response of Composites

    Science.gov (United States)

    Gilat, Amos

    2003-01-01

    The objective of the research was to continue the experimental study of the effect of strain rate on mechanical response (deformation and failure) of epoxy resins and carbon fibers/epoxy matrix composites, and to initiate a study of the effects of temperature by developing an elevated temperature test. The experimental data provide the information needed for NASA scientists for the development of a nonlinear, rate dependent deformation and strength models for composites that can subsequently be used in design. This year effort was directed into testing the epoxy resin. Three types of epoxy resins were tested in tension and shear at various strain rates that ranges from 5 x 10(exp -5), to 1000 per second. Pilot shear experiments were done at high strain rate and an elevated temperature of 80 C. The results show that all, the strain rate, the mode of loading, and temperature significantly affect the response of epoxy.

  17. Post-compression of high energy terawatt-level femtosecond pulses and application to high order harmonic generation

    CERN Document Server

    Hort, Ondřej; Cabasse, Amélie; Petit, Stéphane; Mével, Eric; Descamps, Dominique; Constant, Eric

    2015-01-01

    We perform a post-compression of high energy pulses by using optical-field ionization of low pressure helium gas in a guided geometry. We apply this approach to a TW chirped-pulse-amplification based Ti:Sapphire laser chain and show that spectral broadening can be controlled both with the input pulse energy and gas pressure. Under optimized conditions, we generate 10 fs pulses at TW level directly under vacuum and demonstrate a high stability of the post compressed pulse duration. These high energy post-compressed pulses are thereafter used to perform high harmonic generation in a loose focusing geometry. The XUV beam is characterized both spatially and spectrally on a single shot basis and structured continuous XUV spectra are observed.

  18. Uniaxial Compression of Cellular Materials at a 10-1 s-1 Strain Rate Simultaneously with Synchrotron X-ray Computed Tomographic Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Patterson, Brian M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-03-01

    The topic is presented as a series of slides. Motivation for the work included the following: X-ray tomography is a fantastic technique for characterizing a material’s starting structure as well as for non-destructive, in situ experiments to investigate material response; 3D X-ray tomography is needed to fully characterize the morphology of cellular materials; and synchrotron micro-CT can capture 3D images without pausing experiment. Among the conclusions reached are these: High-rate radiographic and tomographic imaging (0.25 s 3D frame rate) using synchrotron CT can capture full 3D images of hyper-elastic materials at a 10-2 strain rate; dynamic true in situ uniaxial loading can be accurately captured; the three stages of compression can be imaged: bending, buckling, and breaking; implementation of linear modeling is completed; meshes have been imported into LANL modeling codes--testing and validation is underway and direct comparison and validation between in situ data and modeled mechanical response is possible.

  19. Determination of Tensile Properties of Polymers at High Strain Rates

    Directory of Open Access Journals (Sweden)

    Major Z.

    2010-06-01

    Full Text Available In the field of high rate testing of polymers the measured properties are highly dependent on the applied methodology. Hence, the test setup as whole but in particular also the geometrical type of specimen plays a decisive role. The widely used standard for the determination of tensile properties of polymers (ISO527-2 was extended by a novel standard (ISO18872:2007, which is targeted on the determination of tensile properties at high strain rates. In this standard also a novel specimen shape is proposed. Hand in hand with the introduction of new specimen geometry the question of comparability arises. To point out the differences in stress-strain response of the ISO18872 specimen and the ISO527-2 multipurpose specimen tensile tests over a wide loading rate range were conducted in this paper. A digital image correlation system in combination with a high speed camera was used to characterize the local material behaviour. Different parameters like nominal stress, true stress, nominal strain, true strain as well as volumetric strain were determined and used to compare the two specimen geometries.

  20. High-Strain Rate Mechanical Response of Cured Epoxy Networks

    Science.gov (United States)

    Sirk, Timothy; Khare, Ketan; Karim, Mir; Lenhart, Joseph; Khare, Rajesh; Andzelm, Jan

    2013-03-01

    Chemically cross-linked polymer networks are increasingly common in high performance composites, adhesives and other applications involving high-impact loading conditions or ballistic collisions. The mechanical behavior of epoxy and other polymer networks exhibit a strong dependence on strain rate near the glass transition temperature (Tg); however, the elastic modulus at strain rates greater than 105 1/s is difficult to capture with experimental techniques. We present computational results of Di-Glycidyl Ether of Bisphenol A (DGEBA) and Jeffamine diamines (D230) from molecular dynamics simulation, which is intrinsically well-suited to model material deformation at high strain rates. Our results show that the experimental Tg can be reproduced from molecular dynamics, and the Williams-Landel-Ferry equation is useful in rationalizing the shift of Tg due to fast annealing and high strain rates. Temperature sweeps of elastic modulus show the glass-rubber transition to occur over a significantly wider temperature range compared with experimental measurements at low strain rates.

  1. Compressive Behavior and Mechanical Characteristics and Their Application to Stress-Strain Relationship of Steel Fiber-Reinforced Reactive Powder Concrete

    OpenAIRE

    Baek-Il Bae; Hyun-Ki Choi; Bong-Seop Lee; Chang-Hoon Bang

    2016-01-01

    Although mechanical properties of concrete under uniaxial compression are important to design concrete structure, current design codes or other empirical equations have clear limitation on the prediction of mechanical properties. Various types of fiber-reinforced reactive powder concrete matrix were tested for making more usable and accurate estimation equations for mechanical properties for ultra high strength concrete. Investigated matrix has compressive strength ranged from 30 MPa to 200 M...

  2. Compressive Behavior and Mechanical Characteristics and Their Application to Stress-Strain Relationship of Steel Fiber-Reinforced Reactive Powder Concrete

    OpenAIRE

    Baek-Il Bae; Hyun-Ki Choi; Bong-Seop Lee; Chang-Hoon Bang

    2016-01-01

    Although mechanical properties of concrete under uniaxial compression are important to design concrete structure, current design codes or other empirical equations have clear limitation on the prediction of mechanical properties. Various types of fiber-reinforced reactive powder concrete matrix were tested for making more usable and accurate estimation equations for mechanical properties for ultra high strength concrete. Investigated matrix has compressive strength ranged from 30 MPa to 200 M...

  3. High capacity image steganography method based on framelet and compressive sensing

    Science.gov (United States)

    Xiao, Moyan; He, Zhibiao

    2015-12-01

    To improve the capacity and imperceptibility of image steganography, a novel high capacity and imperceptibility image steganography method based on a combination of framelet and compressive sensing (CS) is put forward. Firstly, SVD (Singular Value Decomposition) transform to measurement values obtained by compressive sensing technique to the secret data. Then the singular values in turn embed into the low frequency coarse subbands of framelet transform to the blocks of the cover image which is divided into non-overlapping blocks. Finally, use inverse framelet transforms and combine to obtain the stego image. The experimental results show that the proposed steganography method has a good performance in hiding capacity, security and imperceptibility.

  4. Laser-driven magnetic-flux compression in high-energy-density plasmas.

    Science.gov (United States)

    Gotchev, O V; Chang, P Y; Knauer, J P; Meyerhofer, D D; Polomarov, O; Frenje, J; Li, C K; Manuel, M J-E; Petrasso, R D; Rygg, J R; Séguin, F H; Betti, R

    2009-11-20

    The demonstration of magnetic field compression to many tens of megagauss in cylindrical implosions of inertial confinement fusion targets is reported for the first time. The OMEGA laser [T. R. Boehly, Opt. Commun. 133, 495 (1997)10.1016/S0030-4018(96)00325-2] was used to implode cylindrical CH targets filled with deuterium gas and seeded with a strong external field (>50 kG) from a specially developed magnetic pulse generator. This seed field was trapped (frozen) in the shock-heated gas fill and compressed by the imploding shell at a high implosion velocity, minimizing the effect of resistive flux diffusion. The magnetic fields in the compressed core were probed via proton deflectrometry using the fusion products from an imploding D3He target. Line-averaged magnetic fields between 30 and 40 MG were observed.

  5. Edge Polynomial Fractal Compression Algorithm for High Quality Video Transmission. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Freddie

    1999-06-01

    In this final report, Physical Optics Corporation (POC) provides a review of its Edge Polynomial Autonomous Compression (EPAC) technology. This project was undertaken to meet the need for low bandwidth transmission of full-motion video images. In addition, this report offers a synopsis of the logical data representation study that was performed to compress still images and video. The mapping singularities and polynomial representation of 3-D surfaces were found to be ideal for very high image compression. Our efforts were then directed to extending the EPAC algorithm for the motion of singularities by tracking the 3-D coordinates of characteristic points and the development of system components. Finally, we describe the integration of the software with the hardware components. This process consists of acquiring and processing each separate camera view, combining the information from different cameras to calculate the location of an object in three dimensions, and tracking the information history and the behavior of the objects.

  6. A high capacity text steganography scheme based on LZW compression and color coding

    Directory of Open Access Journals (Sweden)

    Aruna Malik

    2017-02-01

    Full Text Available In this paper, capacity and security issues of text steganography have been considered by employing LZW compression technique and color coding based approach. The proposed technique uses the forward mail platform to hide the secret data. This algorithm first compresses secret data and then hides the compressed secret data into the email addresses and also in the cover message of the email. The secret data bits are embedded in the message (or cover text by making it colored using a color coding table. Experimental results show that the proposed method not only produces a high embedding capacity but also reduces computational complexity. Moreover, the security of the proposed method is significantly improved by employing stego keys. The superiority of the proposed method has been experimentally verified by comparing with recently developed existing techniques.

  7. Vascular compression in glossopharyngeal neuralgia: demonstration by high-resolution MRI at 3 tesla

    Energy Technology Data Exchange (ETDEWEB)

    Fischbach, F.; Ricke, J.; Bruhn, H. [Department of Radiology, Charite, Campus Virchow Klinikum, Humboldt-University, Augustenburger Platz 1, 13352, Berlin (Germany); Lehmann, T.N. [Department of Neurosurgery, Charite, Campus Virchow Klinikum, Humboldt-University, Augustenberger Platz 1, 13353, Berlin (Germany)

    2003-11-01

    We report a case of glossopharyngeal neuralgia with vascular compression. High-resolution MRI at 3 tesla demonstrated the posterior inferior cerebellar artery to be closely related to the rootlets of the left glossopharyngeal nerve in a patient who suffered attacks of burning sensation in the left side of the throat. The MRI findings were confirmed at curative surgery. (orig.)

  8. Sugar Determination in Foods with a Radially Compressed High Performance Liquid Chromatography Column.

    Science.gov (United States)

    Ondrus, Martin G.; And Others

    1983-01-01

    Advocates use of Waters Associates Radial Compression Separation System for high performance liquid chromatography. Discusses instrumentation and reagents, outlining procedure for analyzing various foods and discussing typical student data. Points out potential problems due to impurities and pump seal life. Suggests use of ribose as internal…

  9. On the development of high temperature ammonia-water hybrid absorption-compression heat pumps

    DEFF Research Database (Denmark)

    Jensen, Jonas Kjær; Markussen, Wiebke Brix; Reinholdt, Lars

    2015-01-01

    Ammonia-water hybrid absorption-compression heat pumps (HACHP) are a promising technology for development of ecient high temperature industrial heat pumps. Using 28 bar components HACHPs up to 100 °C are commercially available. Components developed for 50 bar and 140 bar show that these pressure...

  10. Comparison of high order algorithms in Aerosol and Aghora for compressible flows

    Directory of Open Access Journals (Sweden)

    Mbengoue D. A.

    2013-12-01

    Full Text Available This article summarizes the work done within the Colargol project during CEMRACS 2012. The aim of this project is to compare the implementations of high order finite element methods for compressible flows that have been developed at ONERA and at INRIA for about one year, within the Aghora and Aerosol libraries.

  11. 3D organization of high-speed compressible jets by tomographic PIV

    NARCIS (Netherlands)

    Violato, D.; Ceglia, G.; Tuinstra, M.; Scarano, F.

    2013-01-01

    This work investigates the three dimensional organization of compressible jets at high-speed regime by tomographic particle image velocimetry (TOMO PIV). Experiments are conducted at Mach numbers 0.3, 0.9 and 1.1 (underexpanded regime) across the end of the potential core within a large cylindrica

  12. In-situ strain observation in high power laser cladding

    OpenAIRE

    Ocelik, V.; Bosgra, J.; De Hosson, J. Th. M.

    2009-01-01

    The modern experimental technique - so called Digital Image Correlation - is applied during high power laser surface treatments for in-situ observation of displacements and strains near the processing area during and a short time after laser processing. An experimental setup has been designed and tested to measure in-situ the strain during treatment with a high power 2 kW CW Nd:YAG laser, i.e. laser hardening, surface remelting, and laser cladding with Nanosteel, Eutroloy 16012 and MicroMelt ...

  13. Raman-strain relations in highly strained Ge: Uniaxial ⟨100⟩, ⟨110⟩ and biaxial (001) stress

    Science.gov (United States)

    Gassenq, A.; Tardif, S.; Guilloy, K.; Duchemin, I.; Pauc, N.; Hartmann, J. M.; Rouchon, D.; Widiez, J.; Niquet, Y. M.; Milord, L.; Zabel, T.; Sigg, H.; Faist, J.; Chelnokov, A.; Rieutord, F.; Reboud, V.; Calvo, V.

    2017-02-01

    The application of high values of strain to Ge considerably improves its light emission properties and can even turn it into a direct band gap semiconductor. Raman spectroscopy is routinely used for strain measurements. Typical Raman-strain relationships that are used for Ge were defined up to ˜1% strain using phonon deformation potential theory. In this work, we have studied this relationship at higher strain levels by calculating and measuring the Raman spectral shift-strain relations in several different strain configurations. Since differences were shown between the usual phonon deformation potential theory and ab-initio calculations, we highlight the need for experimental calibrations. We have then measured the strain in highly strained Ge micro-bridges and micro-crosses using Raman spectroscopy performed in tandem with synchrotron based micro-diffraction. High values of strain are reported, which enable the calibration of the Raman-strain relations up to 1.8% of in plane strain for the (001) biaxial stress, 4.8% strain along ⟨100⟩, and 3.8% strain along ⟨110⟩. For Ge micro-bridges, oriented along ⟨100⟩, the nonlinearity of the Raman shift-strain relation is confirmed. For the ⟨110⟩ orientation, we have shown that an unexpected non-linearity in the Raman-strain relationship has also to be taken into account for high stress induction. This work demonstrates an unprecedented level of strain measurement for the ⟨110⟩ uniaxial stress and gives a better understanding of the Raman-strain relations in Ge.

  14. High-rate Plastic Deformation of Nanocrystalline Tantalum to Large Strains: Molecular Dynamics Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Rudd, R E

    2009-02-05

    Recent advances in the ability to generate extremes of pressure and temperature in dynamic experiments and to probe the response of materials has motivated the need for special materials optimized for those conditions as well as a need for a much deeper understanding of the behavior of materials subjected to high pressure and/or temperature. Of particular importance is the understanding of rate effects at the extremely high rates encountered in those experiments, especially with the next generation of laser drives such as at the National Ignition Facility. Here we use large-scale molecular dynamics (MD) simulations of the high-rate deformation of nanocrystalline tantalum to investigate the processes associated with plastic deformation for strains up to 100%. We use initial atomic configurations that were produced through simulations of solidification in the work of Streitz et al [Phys. Rev. Lett. 96, (2006) 225701]. These 3D polycrystalline systems have typical grain sizes of 10-20 nm. We also study a rapidly quenched liquid (amorphous solid) tantalum. We apply a constant volume (isochoric), constant temperature (isothermal) shear deformation over a range of strain rates, and compute the resulting stress-strain curves to large strains for both uniaxial and biaxial compression. We study the rate dependence and identify plastic deformation mechanisms. The identification of the mechanisms is facilitated through a novel technique that computes the local grain orientation, returning it as a quaternion for each atom. This analysis technique is robust and fast, and has been used to compute the orientations on the fly during our parallel MD simulations on supercomputers. We find both dislocation and twinning processes are important, and they interact in the weak strain hardening in these extremely fine-grained microstructures.

  15. High Strain Rate Behavior of Polymer Matrix Composites Analyzed

    Science.gov (United States)

    Goldberg, Robert K.; Roberts, Gary D.

    2001-01-01

    Procedures for modeling the high-speed impact of composite materials are needed for designing reliable composite engine cases that are lighter than the metal cases in current use. The types of polymer matrix composites that are likely to be used in such an application have a deformation response that is nonlinear and that varies with strain rate. To characterize and validate material models that could be used in the design of impactresistant engine cases, researchers must obtain material data over a wide variety of strain rates. An experimental program has been carried out through a university grant with the Ohio State University to obtain deformation data for a representative polymer matrix composite for strain rates ranging from quasi-static to high rates of several hundred per second. This information has been used to characterize and validate a constitutive model that was developed at the NASA Glenn Research Center.

  16. Finite element stress analysis of polymers at high strains

    Science.gov (United States)

    Durand, M.; Jankovich, E.

    1973-01-01

    A numerical analysis is presented for the problem of a flat rectangular rubber membrane with a circular rigid inclusion undergoing high strains due to the action of an axial load. The neo-hookean constitutive equations are introduced into the general purpose TITUS program by means of equivalent hookean constants and initial strains. The convergence is achieved after a few iterations. The method is not limited to any specific program. The results are in good agreement with those of a company sponsored photoelastic stress analysis. The theoretical and experimental deformed shapes also agree very closely with one another. For high strains it is demonstrated that using the conventional HOOKE law the stress concentration factor obtained is unreliable in the case of rubberlike material.

  17. Optical absorption in highly strained Ge/SiGe quantum wells: The role of Γ→ Δ scattering

    Science.gov (United States)

    Lever, L.; Ikonić, Z.; Valavanis, A.; Kelsall, R. W.; Myronov, M.; Leadley, D. R.; Hu, Y.; Owens, N.; Gardes, F. Y.; Reed, G. T.

    2012-12-01

    We report the observation of the quantum-confined Stark effect in Ge/SiGe multiple quantum well heterostructures grown on Si0.22Ge0.78 virtual substrates. The large compressive strain in the Ge quantum well layers caused by the lattice mismatch with the virtual substrate results in a blue shift of the direct absorption edge, as well as a reduction in the Γ-valley scattering lifetime because of strain-induced splittings of the conduction band valleys. We investigate theoretically the Γ-valley carrier lifetimes by evaluating the Γ →L and Γ →Δ scattering rates in strained Ge/SiGe semiconductor heterostructures. These scattering rates are used to determine the lifetime broadening of excitonic peaks and the indirect absorption in simulated absorption spectra, which are compared with measured absorption spectra for quantum well structures with systematically varied dimensions. We find that Γ →Δ scattering is significant in compressively strained Ge quantum wells and that the Γ-valley electron lifetime is less than 50 fs in the highly strained structures reported here, where Γ →Δ scattering accounted for approximately half of the total scattering rate.

  18. High-Power Multimode X-Band RF Pulse Compression System for Future Linear Colliders

    Energy Technology Data Exchange (ETDEWEB)

    Tantawi, S.G.; Nantista, C.D.; Dolgashev, V.A.; Pearson, C.; Nelson, J.; Jobe, K.; Chan, J.; Fant, K.; Frisch, J.; /SLAC; Atkinson, D.; /LLNL, Livermore

    2005-08-10

    We present a multimode X-band rf pulse compression system suitable for a TeV-scale electron-positron linear collider such as the Next Linear Collider (NLC). The NLC main linac operating frequency is 11.424 GHz. A single NLC rf unit is required to produce 400 ns pulses with 475 MW of peak power. Each rf unit should power approximately 5 m of accelerator structures. The rf unit design consists of two 75 MW klystrons and a dual-moded resonant-delay-line pulse compression system that produces a flat output pulse. The pulse compression system components are all overmoded, and most components are designed to operate with two modes. This approach allows high-power-handling capability while maintaining a compact, inexpensive system. We detail the design of this system and present experimental cold test results. We describe the design and performance of various components. The high-power testing of the system is verified using four 50 MW solenoid-focused klystrons run off a common 400 kV solid-state modulator. The system has produced 400 ns rf pulses of greater than 500 MW. We present the layout of our system, which includes a dual-moded transmission waveguide system and a dual-moded resonant line (SLED-II) pulse compression system. We also present data on the processing and operation of this system, which has set high-power records in coherent and phase controlled pulsed rf.

  19. Highly tensile-strained Ge/InAlAs nanocomposites

    Science.gov (United States)

    Jung, Daehwan; Faucher, Joseph; Mukherjee, Samik; Akey, Austin; Ironside, Daniel J.; Cabral, Matthew; Sang, Xiahan; Lebeau, James; Bank, Seth R.; Buonassisi, Tonio; Moutanabbir, Oussama; Lee, Minjoo Larry

    2017-01-01

    Self-assembled nanocomposites have been extensively investigated due to the novel properties that can emerge when multiple material phases are combined. Growth of epitaxial nanocomposites using lattice-mismatched constituents also enables strain-engineering, which can be used to further enhance material properties. Here, we report self-assembled growth of highly tensile-strained Ge/In0.52Al0.48As (InAlAs) nanocomposites by using spontaneous phase separation. Transmission electron microscopy shows a high density of single-crystalline germanium nanostructures coherently embedded in InAlAs without extended defects, and Raman spectroscopy reveals a 3.8% biaxial tensile strain in the germanium nanostructures. We also show that the strain in the germanium nanostructures can be tuned to 5.3% by altering the lattice constant of the matrix material, illustrating the versatility of epitaxial nanocomposites for strain engineering. Photoluminescence and electroluminescence results are then discussed to illustrate the potential for realizing devices based on this nanocomposite material. PMID:28128282

  20. Compressive mechanical compatibility of anisotropic porous Ti6Al4V alloys in the range of physiological strain rate for cortical bone implant applications.

    Science.gov (United States)

    Li, Fuping; Li, Jinshan; Kou, Hongchao; Huang, Tingting; Zhou, Lian

    2015-09-01

    Porous titanium and its alloys are believed to be promising materials for bone implant applications, since they can reduce the "stress shielding" effect by tailoring porosity and improve fixation of implant through bone ingrowth. In the present work, porous Ti6Al4V alloys for biomedical application were fabricated by diffusion bonding of alloy meshes. Compressive mechanical behavior and compatibility in the range of physiological strain rate were studied under quasi-static and dynamic conditions. The results show that porous Ti6Al4V alloys possess anisotropic structure with elongated pores in the out-of-plane direction. For porous Ti6Al4V alloys with 60-70 % porosity, more than 40 % pores are in the range of 200-500 μm which is the optimum pore size suited for bone ingrowth. Quasi-static Young's modulus and yield stress of porous Ti6Al4V alloys with 30-70 % relative density are in the range of 6-40 GPa and 100-500 MPa, respectively. Quasi-static compressive properties can be quantitatively tailored by porosity to match those of cortical bone. Strain rate sensitivity of porous Ti6Al4V alloys is related to porosity. Porous Ti6Al4V alloys with porosity higher than 50 % show enhanced strain rate sensitivity, which is originated from that of base materials and micro-inertia effect. Porous Ti6Al4V alloys with 60-70 % porosity show superior compressive mechanical compatibility in the range of physiological strain rate for cortical bone implant applications.

  1. Adaptive uniform grayscale coded aperture design for high dynamic range compressive spectral imaging

    Science.gov (United States)

    Diaz, Nelson; Rueda, Hoover; Arguello, Henry

    2016-05-01

    Imaging spectroscopy is an important area with many applications in surveillance, agriculture and medicine. The disadvantage of conventional spectroscopy techniques is that they collect the whole datacube. In contrast, compressive spectral imaging systems capture snapshot compressive projections, which are the input of reconstruction algorithms to yield the underlying datacube. Common compressive spectral imagers use coded apertures to perform the coded projections. The coded apertures are the key elements in these imagers since they define the sensing matrix of the system. The proper design of the coded aperture entries leads to a good quality in the reconstruction. In addition, the compressive measurements are prone to saturation due to the limited dynamic range of the sensor, hence the design of coded apertures must consider saturation. The saturation errors in compressive measurements are unbounded and compressive sensing recovery algorithms only provide solutions for bounded noise or bounded with high probability. In this paper it is proposed the design of uniform adaptive grayscale coded apertures (UAGCA) to improve the dynamic range of the estimated spectral images by reducing the saturation levels. The saturation is attenuated between snapshots using an adaptive filter which updates the entries of the grayscale coded aperture based on the previous snapshots. The coded apertures are optimized in terms of transmittance and number of grayscale levels. The advantage of the proposed method is the efficient use of the dynamic range of the image sensor. Extensive simulations show improvements in the image reconstruction of the proposed method compared with grayscale coded apertures (UGCA) and adaptive block-unblock coded apertures (ABCA) in up to 10 dB.

  2. Reconstructing the highly virulent Classical Swine Fever Virus strain Koslov

    DEFF Research Database (Denmark)

    Fahnøe, Ulrik; Pedersen, Anders Gorm; Nielsen, Jens

    Classical swine fever virus (CSFV) may be highly virulent in pigs with a mortality rate close to 100%. The CSFV “Koslov strain” is known to be one of the most virulent CSFV, but so far a functional cloned cDNA of this strain has not been described. We suggest that this may be due to the error...

  3. In-situ strain observation in high power laser cladding

    NARCIS (Netherlands)

    Ocelik, V.; Bosgra, J.; de Hosson, J. Th. M.

    2009-01-01

    The modern experimental technique - so called Digital Image Correlation - is applied during high power laser surface treatments for in-situ observation of displacements and strains near the processing area during and a short time after laser processing. An experimental setup has been designed and

  4. In-situ strain observation in high power laser cladding

    NARCIS (Netherlands)

    Ocelik, V.; Bosgra, J.; de Hosson, J. Th. M.

    2009-01-01

    The modern experimental technique - so called Digital Image Correlation - is applied during high power laser surface treatments for in-situ observation of displacements and strains near the processing area during and a short time after laser processing. An experimental setup has been designed and te

  5. In-situ strain observation in high power laser cladding

    NARCIS (Netherlands)

    Ocelik, V.; Bosgra, J.; de Hosson, J. Th. M.

    2009-01-01

    The modern experimental technique - so called Digital Image Correlation - is applied during high power laser surface treatments for in-situ observation of displacements and strains near the processing area during and a short time after laser processing. An experimental setup has been designed and te

  6. Influence of high-strain rate and temperature on the mechanical behavior of Nl-, Fe-, and Ti- based aluminides

    Energy Technology Data Exchange (ETDEWEB)

    Gray, G.T. III

    1996-09-01

    The majority of the strength characterization studies on ordered intermetallics have concentrated on the assessment of strength and work-hardening at conventional strain rates. Although the influence of strain rate on the structure/property relationships of pure nickel, iron, and titanium and a variety of their alloys have been extensively studied, the effect of strain rate on the stress-strain response of Ni-, Fe-, and Ti-based aluminides remains poorly understood. Dynamic constitutive behavior is however relevant to high speed impact performance of these materials such as during foreign object damage in aerospace applications, high-rate forging, and localized deformation behavior during machining. The influence of strain rate, varied between 0.001 and 10{sup 4} s{sup -1}, and temperatures, between 77 & 800K, on the compressive mechanical behavior of Ni{sub 3}A1, NiAl, Fe{sub 3}Al, Fe-40Al-0.1B, Ti-24Al-11Nb, and Ti-48Al-2Cr-2Nb will be presented. In this paper the influence of strain rate on the anomalous temperature dependency of the flow stresses in these aluminides will be reviewed and compared between aluminides. The rate sensitivity and work hardening of each aluminide will be discussed as a function of strain rate and temperature and contrasted to each other and to the values typical for their respective disordered base metals. 66 refs., 16 figs., 2 tabs.

  7. High power microwave system based on power combining and pulse compression of conventional klystrons

    CERN Document Server

    Xiong, Zheng-Feng; Cheng, Cheng; Ning, Hui; Tang, Chuan-Xiang

    2015-01-01

    A high power microwave system based on power combining and pulse compression of conventional klystrons is introduced in this paper. This system mainly consists of pulse modulator, power combiner, driving source of klystrons and pulse compressor. A solid state induction modulator and pulse transformer were used to drive two 50 MW S-band klystrons with pulse widths 4 {\\mu}s in parallel, after power combining and pulse compression, the tested peak power had reached about 210 MW with pulse widths nearly 400 ns at 25 Hz, while the experimental maximum output power was just limited by the power capacity of loads. This type of high power microwave system has widely application prospect in RF system of large scale particle accelerators, high power radar transmitters and high level electromagnetic environment generators.

  8. The influence of the scale effect and high temperatures on the strength and strains of high performance concrete

    Directory of Open Access Journals (Sweden)

    Korsun Vladimyr Ivanovych

    2014-03-01

    Full Text Available The most effective way to reduce the structure mass, labor input and expenses for its construction is to use modern high-performance concrete of the classes С50/60… С90/105, which possess high physical and mathematic characteristics. One of the constraints for their implementation in mass construction in Ukraine is that in design standards there are no experimental data on the physical and mathematic properties of concrete of the classes more than С50/60. Also there are no exact statements on calculating reinforced concrete structures made of high-performance concretes.The authors present the results of experimental research of the scale effect and short-term and long-term heating up to +200 ° C influence on temperature and shrinkage strain, on strength and strain characteristics under compression and tensioning of high-strength modified concrete of class C70/85. The application of high performance concretes is challenging in the process of constructing buildings aimed at operating in high technological temperatures: smoke pipes, coolers, basins, nuclear power plants' protective shells, etc. Reducing cross-sections can lead to reducing temperature drops and thermal stresses in the structures.

  9. Dynamic behaviour and shock-induced martensite transformation in near-beta Ti-5553 alloy under high strain rate loading

    Directory of Open Access Journals (Sweden)

    Wang Lin

    2015-01-01

    Full Text Available Ti-5553 alloy is a near-beta titanium alloy with high strength and high fracture toughness. In this paper, the dynamic behaviour and shock-induced martensite phase transformation of Ti-5553 alloy with alpha/beta phases were investigated. Split Hopkinson Pressure Bar was employed to investigate the dynamic properties. Microstructure evolutions were characterized by Scanning Electronic Microscopy and Transmission Electron Microscope. The experimental results have demonstrated that Ti-5553 alloy with alpha/beta phases exhibits various strain rate hardening effects, both failure through adiabatic shear band. Ti-5553 alloy with Widmannstatten microstructure exhibit more obvious strain rate hardening effect, lower critical strain rate for ASB nucleation, compared with the alloy with Bimodal microstructures. Under dynamic compression, shock-induced beta to alpha” martensite transformation occurs.

  10. Constitutive Equation for 3104 Alloy at High Temperatures in Consideration of Strain

    Science.gov (United States)

    Zhen, Fuqiang; Sun, Jianlin; Li, Jian

    2016-06-01

    The flow behavior of 3104 aluminum alloy was investigated at temperatures ranging from 250°C to 500°C, and strain rates from 0.01 to 10 s-1 by isothermal compression tests. The true stress-strain curves were obtained from the measured load-stroke data and then modified by friction and temperature correction. The effects of temperature and strain rate on hot deformation behavior were represented by Zener-Hollomon parameter including Arrhenius term. Additionally, the influence of strain was incorporated considering the effect of strain on material constants. The derived constitution equation was applied to the finite element analysis of hot compression. The results show that the simulated force is consistent with the measured one. Consequently, the developed constitution equation is valid and feasible for numerical simulation in hot deformation process of 3104 alloy.

  11. Dynamic Range Enhancement of High-Speed Electrical Signal Data via Non-Linear Compression

    Science.gov (United States)

    Laun, Matthew C. (Inventor)

    2016-01-01

    Systems and methods for high-speed compression of dynamic electrical signal waveforms to extend the measuring capabilities of conventional measuring devices such as oscilloscopes and high-speed data acquisition systems are discussed. Transfer function components and algorithmic transfer functions can be used to accurately measure signals that are within the frequency bandwidth but beyond the voltage range and voltage resolution capabilities of the measuring device.

  12. Nonlinear optical compression of high-power 10-μm CO2 laser pulses in gases and semiconductors

    Science.gov (United States)

    Pigeon, Jeremy; Tochitsky, Sergei; Joshi, Chan

    2017-03-01

    We review a series of experiments on nonlinear optical compression of high-power, picosecond, 10-µm CO2 laser pulses. Presented schemes include self-phase modulation in a Xe-filled hollow glass waveguide, self-phase modulation in GaAs followed by compression, and multiple four-wave mixing compression of a laser beat-wave in GaAs. The novel nonlinear optics and technical challenges uncovered through these experiments are discussed.

  13. Effects of high-frequency emphasis and compression time constants on speech intelligibility in noise.

    Science.gov (United States)

    van Toor, Thijs; Verschuure, Hans

    2002-10-01

    The objectives of the study were to evaluate the effect of different settings with regard to speech intelligibility in noise both objectively and subjectively and thus determine a favoured setting of compression time parameters, pre-set program (high-frequency emphasis) or combination for each individual user in a prospective study. Another objective was to evaluate the relationship between patient characteristics (e.g. slope of hearing loss) and favoured settings. In total, 38 subjects divided over five audiological centres were fitted with the Philips Spaceline D71-40 BTE digital hearing aid. Subjects were asked to compare three predefined compression algorithms with different time constants, slow (indicated by the manufacturer as AVC), intermediate (NORMAL) and fast (SYLLABIC) over two 4-week periods using the intermediate setting in both comparisons and randomizing over the fast and slow conditions. A randomization determined whether a subject started with the comfort-oriented pre-set program (AUTO) or the speech intelligibility-oriented setting with high-frequency emphasis (SPIN). In a third 4-week period, the pre-sets AUTO and SPIN were compared using the setting of the compression time constants that gave the best results during the first two periods. Comparisons were made using a standard speech-in-noise test with three types of noise: continuous speaker noise, modulated ICRA-4 noise, and car noise. The patients were also asked to fill in a Dutch translation and adaptation of the APHAB questionnaire to indicate their impression of performance. The results indicate that no compression algorithm, pre-set or combination is favoured overall. The largest improvement in speech-in-noise scores was found with syllabic compression. The advantageous effect of high-frequency emphasis after optimization of compression timing is small. The APHAB showed that users tend to prefer the SPIN setting. We found no relationship between favoured compression or pre-set and the

  14. Dynamic behavior and microstructural evolution during moderate to high strain rate hot deformation of a Fe-Ni-Cr alloy (alloy 800H)

    Science.gov (United States)

    Cao, Yu; Di, Hongshuang; Zhang, Jiecen; Yang, Yaohua

    2015-01-01

    The objective of the study is to fundamentally understand the dynamic behavior of alloy 800H at moderate to high strain rate using hot compression tests and propose nucleation mechanism associated with dynamic crystallization (DRX). We firstly investigated the dynamic behavior of alloy 800H with industrial scale strain rates using hot compression tests and adiabatic correction was performed to correct as-measured flow curves. Secondly, a Johnson-Cook model was established by using the corrected data and could give a precise prediction of elevated temperature flow stress for the studied alloy. Finally, the nucleation mechanism of DRX grains at high strain rates was studied. The results showed that the predominant nucleation mechanism for DRX is the formation of "bulge" at parent grain boundary. Additionally, the fragmentation of original grain at low deformation temperatures and the twinning near the bulged regions at high deformation temperatures also accelerate the DRX process.

  15. Compressed Sensing Imaging Algorithm for High-squint SAR Based on NCS Operator

    Directory of Open Access Journals (Sweden)

    Gu Fufei

    2016-02-01

    Full Text Available A novel compressed sensing imaging algorithm for high-squint Synthetic Aperture Radar (SAR based on a Nonlinear Chirp-Scaling (NCS operator is proposed. First, the echo signal of high-squint SAR is analyzed, and a novel imaging method based on the Nyquist-sampled echo signal is proposed. With the proposed method, the range migration is corrected and the coupling problem in the range and azimuth directions is solved. Then, to solve the problem of high-squint SAR imaging using undersampled echo signals, the NCS operator and compressed sensing algorithm based on this operator are constructed. Imaging results are obtained by solving an optimization problem. The proposed method can recover a sparse scene using undersampled echo data. Furthermore, it can recover a nonsparse scene using fully sampled data. Finally, simulations show the effectiveness of the proposed method.

  16. A high-efficiency power cycle in which hydrogen is compressed by absorption in metal hydrides.

    Science.gov (United States)

    Powell, J R; Salzano, F J; Yu, W S; Milau, J S

    1976-07-23

    A high-efficiency power cycle is proposed in which molecular hydrogen gas is used as a working fluid in a regenerative closed Brayton cycle. The hydrogen gas is compressed by an absorption-desorption cycle on metal hydride (FeTiH(x)) beds. Low-temperature solar or geothermal heat (temperature about 100 degrees C) is used for the compression process, and high-temperature fossil fuel or nuclear heat (temperature about 700 degrees C) supplies the expansion work in the turbine. Typically, about 90 percent of the high-temperature heat input is converted to electricity, while about 3 kilowatts of low-temperature heat is required per kilowatt of electrical output.

  17. On positivity-preserving high order discontinuous Galerkin schemes for compressible Navier-Stokes equations

    Science.gov (United States)

    Zhang, Xiangxiong

    2017-01-01

    We construct a local Lax-Friedrichs type positivity-preserving flux for compressible Navier-Stokes equations, which can be easily extended to multiple dimensions for generic forms of equations of state, shear stress tensor and heat flux. With this positivity-preserving flux, any finite volume type schemes including discontinuous Galerkin (DG) schemes with strong stability preserving Runge-Kutta time discretizations satisfy a weak positivity property. With a simple and efficient positivity-preserving limiter, high order explicit Runge-Kutta DG schemes are rendered preserving the positivity of density and internal energy without losing local conservation or high order accuracy. Numerical tests suggest that the positivity-preserving flux and the positivity-preserving limiter do not induce excessive artificial viscosity, and the high order positivity-preserving DG schemes without other limiters can produce satisfying non-oscillatory solutions when the nonlinear diffusion in compressible Navier-Stokes equations is accurately resolved.

  18. High-energy synchrotron X-ray radiography of shock-compressed materials

    Science.gov (United States)

    Rutherford, Michael E.; Chapman, David J.; Collinson, Mark A.; Jones, David R.; Music, Jasmina; Stafford, Samuel J. P.; Tear, Gareth R.; White, Thomas G.; Winters, John B. R.; Drakopoulos, Michael; Eakins, Daniel E.

    2015-06-01

    This presentation will discuss the development and application of a high-energy (50 to 250 keV) synchrotron X-ray imaging method to study shock-compressed, high-Z samples at Beamline I12 at the Diamond Light Source synchrotron (Rutherford-Appleton Laboratory, UK). Shock waves are driven into materials using a portable, single-stage gas gun designed by the Institute of Shock Physics. Following plate impact, material deformation is probed in-situ by white-beam X-ray radiography and complimentary velocimetry diagnostics. The high energies, large beam size (13 x 13 mm), and appreciable sample volumes (~ 1 cm3) viable for study at Beamline I12 compliment existing in-house pulsed X-ray capabilities and studies at the Dynamic Compression Sector. The authors gratefully acknowledge the ongoing support of Imperial College London, EPSRC, STFC and the Diamond Light Source, and AWE Plc.

  19. Formation of compressed flat electron beams with high transverse-emittance ratios

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, J. [Fermilab; Institute of Fluid Physics, CAEP, China; Piot, P. [Northern Illinois University; Fermilab; Mihalcea, D. [Northern Illinois University; Prokop, C. R. [Northern Illinois University

    2014-08-01

    Flat beams—beams with asymmetric transverse emittances—have important applications in novel light-source concepts and advanced-acceleration schemes and could possibly alleviate the need for damping rings in lepton colliders. Over the last decade, a flat beam generation technique based on the conversion of an angular-momentum-dominated beam was proposed and experimentally tested. In this paper we explore the production of compressed flat beams. We especially investigate and optimize the flat beam transformation for beams with substantial fractional energy spread. We use as a simulation example the photoinjector of Fermilab’s Advanced Superconducting Test Accelerator. The optimizations of the flat beam generation and compression at Advanced Superconducting Test Accelerator were done via start-to-end numerical simulations for bunch charges of 3.2 nC, 1.0 nC, and 20 pC at ~37 MeV. The optimized emittances of flat beams with different bunch charges were found to be 0.25 μm (emittance ratio is ~400), 0.13 μm, 15 nm before compression, and 0.41 μm, 0.20 μm, 16 nm after full compression, respectively, with peak currents as high as 5.5 kA for a 3.2-nC flat beam. These parameters are consistent with requirements needed to excite wakefields in asymmetric dielectric-lined waveguides or produce significant photon flux using small-gap micro-undulators.

  20. High-power rf pulse compression with SLED-II at SLAC

    Energy Technology Data Exchange (ETDEWEB)

    Nantista, C. [California Univ., Los Angeles, CA (United States). Dept. of Physics; Kroll, N.M. [California Univ., San Diego, La Jolla, CA (United States). Dept. of Physics; Farkas, Z.D.; Lavine, T.L.; Menegat, A.; Ruth, R.D.; Tantawi, S.G.; Vlieks, A.E.; Wilson, P.B. [Stanford Linear Accelerator Center, Menlo Park, CA (United States)

    1993-04-01

    Increasing the peak rf power available from X-band microwave tubes by means of rf pulse compression is envisioned as a way of achieving the few-hundred-megawatt power levels needed to drive a next-generation linear collider with 50--100 MW klystrons. SLED-II is a method of pulse compression similar in principal to the SLED method currently in use on the SLC and the LEP injector linac. It utilizes low-los resonant delay lines in place of the storage cavities of the latter. This produces the added benefit of a flat-topped output pulse. At SLAC, we have designed and constructed a prototype SLED-II pulse-compression system which operates in the circular TE{sub 01} mode. It includes a circular-guide 3-dB coupler and other novel components. Low-power and initial high-power tests have been made, yielding a peak power multiplication of 4.8 at an efficiency of 40%. The system will be used in providing power for structure tests in the ASTA (Accelerator Structures Test Area) bunker. An upgraded second prototype will have improved efficiency and will serve as a model for the pulse compression system of the NLCTA (Next Linear Collider Test Accelerator).

  1. Generation of high energy, 30 fs pulses at 527 nm by hollow-fiber compression technique.

    Science.gov (United States)

    Xia, J; Altucci, C; Amoruso, S; Bruzzese, R; Velotta, R; Wang, X

    2008-03-17

    The compression of 300-fs-long, chirp-free laser pulses at 527 nm down to 30 fs is reported. The laser pulses, originated from a frequency-doubled, mode-locked Nd:glass laser, were compressed by a 0.7-m-long, 150-microm-bore-diameter, argon-filled hollow fiber, and a pair of SF10 prisms with a final energy of 160 microJ. These are the shortest, high energy pulses ever produced by direct pulse compression at the central wavelength of 527 nm. The spectral broadening of the pulses propagating inside the hollow fiber was experimentally examined for various filling-gas pressures and input pulse energies. The spectral width of the pulses was broadened up to 25 nm, and 27 nm for argon- and krypton-filled hollow fiber, respectively, at a gas pressure lower than 2 bar. The physical limitations of the hollow-fiber pulse compression technique applied in the visible range are also studied.

  2. DSP accelerator for the wavelet compression/decompression of high- resolution images

    Energy Technology Data Exchange (ETDEWEB)

    Hunt, M.A.; Gleason, S.S.; Jatko, W.B.

    1993-07-23

    A Texas Instruments (TI) TMS320C30-based S-Bus digital signal processing (DSP) module was used to accelerate a wavelet-based compression and decompression algorithm applied to high-resolution fingerprint images. The law enforcement community, together with the National Institute of Standards and Technology (NISI), is adopting a standard based on the wavelet transform for the compression, transmission, and decompression of scanned fingerprint images. A two-dimensional wavelet transform of the input image is computed. Then spatial/frequency regions are automatically analyzed for information content and quantized for subsequent Huffman encoding. Compression ratios range from 10:1 to 30:1 while maintaining the level of image quality necessary for identification. Several prototype systems were developed using SUN SPARCstation 2 with a 1280 {times} 1024 8-bit display, 64-Mbyte random access memory (RAM), Tiber distributed data interface (FDDI), and Spirit-30 S-Bus DSP-accelerators from Sonitech. The final implementation of the DSP-accelerated algorithm performed the compression or decompression operation in 3.5 s per print. Further increases in system throughput were obtained by adding several DSP accelerators operating in parallel.

  3. High-power rf pulse compression with SLED-II at SLAC

    Energy Technology Data Exchange (ETDEWEB)

    Nantista, C. [California Univ., Los Angeles, CA (United States). Dept. of Physics; Kroll, N.M. [California Univ., San Diego, La Jolla, CA (United States). Dept. of Physics; Farkas, Z.D.; Lavine, T.L.; Menegat, A.; Ruth, R.D.; Tantawi, S.G.; Vlieks, A.E.; Wilson, P.B. [Stanford Linear Accelerator Center, Menlo Park, CA (United States)

    1993-04-01

    Increasing the peak rf power available from X-band microwave tubes by means of rf pulse compression is envisioned as a way of achieving the few-hundred-megawatt power levels needed to drive a next-generation linear collider with 50--100 MW klystrons. SLED-II is a method of pulse compression similar in principal to the SLED method currently in use on the SLC and the LEP injector linac. It utilizes low-los resonant delay lines in place of the storage cavities of the latter. This produces the added benefit of a flat-topped output pulse. At SLAC, we have designed and constructed a prototype SLED-II pulse-compression system which operates in the circular TE{sub 01} mode. It includes a circular-guide 3-dB coupler and other novel components. Low-power and initial high-power tests have been made, yielding a peak power multiplication of 4.8 at an efficiency of 40%. The system will be used in providing power for structure tests in the ASTA (Accelerator Structures Test Area) bunker. An upgraded second prototype will have improved efficiency and will serve as a model for the pulse compression system of the NLCTA (Next Linear Collider Test Accelerator).

  4. High temperature tension-compression fatigue behavior of a tungsten copper composite

    Science.gov (United States)

    Verrilli, Michael J.; Gabb, Timothy P.

    1990-01-01

    The high temperature fatigue of a (O)12 tungsten fiber reinforced copper matrix composite was investigated. Specimens having fiber volume percentages of 10 and 36 were fatigued under fully-reversed, strain-controlled conditions at both 260 and 560 C. The fatigue life was found to be independent of fiber volume fraction because fatigue damage preferentially occurred in the matrix. Also, the composite fatigue lives were shorter at 560 C as compared to 260 C due to changes in mode of matrix failure. On a total strain basis, the fatigue life of the composite at 560 C was the same as the life of unreinforced copper, indicating that the presence of the fibers did not degrade the fatigue resistance of the copper matrix in this composite system. Comparison of strain-controlled fatigue data to previously-generated load-controlled data revealed that the strain-controlled fatigue lives were longer because of mean strain and mean stress effects.

  5. Direct angle resolved photoelectron spectroscopy (DARPES) on high-T{sub c} films: doping, strains, Fermi surface topology and superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Pavuna, D; Ariosa, D; Cancellieri, C; Cloetta, D; Abrecht, M [Institute of Physics of Complex Matter, FSB, Ecole Polytechnique Federale de Lausanne (EPFL), CH-1015 Lausanne (Switzerland)], E-mail: davor.pavuna@epfl.ch

    2008-03-15

    Since 1997 we systematically perform Direct ARPES ( = DARPES) on in-situ grown, non-cleaved, ultra-thin (<25nm) cuprate films. Specifically, we probe low energy electronic structure and properties of high-T{sub c} films under different degree of epitaxial (compressive vs tensile) strain. In overdoped in-plane compressed La{sub 2-x}Sr{sub x}CuO{sub 4} (LSCO) thin films we double T{sub c} from 20K to 40K, yet the Fermi surface (FS) remains essentially 2-dimensional (2D). In contrast, tensile strained films show 3-dimensional (3D) dispersion, while T{sub c} is drastically reduced. It seems that the in-plane compressive strain tends to push the apical oxygen far away from the CuO{sub 2} plane, enhances the 2D character of the dispersion and increases T{sub c}, while the tensile strain seems to act exactly in the opposite direction and the resulting dispersion is 3D. We have the FS topology for both cases. As the actual lattice of cuprates is 'Napoleon-cake' -like i.e. rigid CuO{sub 2} planes alternate with softer 'reservoir' (that strains distort differently) our results tend to rule out 2D rigid lattice mean field models. Finally, we briefly discuss recent successful determination of the FS topology from the observed wavevector quantization by DARPES in cuprate films thinner than 18 units cells (<24nm). Such an approach is of broader interest as it can be extended to other similar confined (ultra-thin) functional oxide systems.

  6. High Strain Rate Deformation Modeling of a Polymer Matrix Composite. Part 1; Matrix Constitutive Equations

    Science.gov (United States)

    Goldberg, Robert K.; Stouffer, Donald C.

    1998-01-01

    Recently applications have exposed polymer matrix composite materials to very high strain rate loading conditions, requiring an ability to understand and predict the material behavior under these extreme conditions. In this first paper of a two part report, background information is presented, along with the constitutive equations which will be used to model the rate dependent nonlinear deformation response of the polymer matrix. Strain rate dependent inelastic constitutive models which were originally developed to model the viscoplastic deformation of metals have been adapted to model the nonlinear viscoelastic deformation of polymers. The modified equations were correlated by analyzing the tensile/ compressive response of both 977-2 toughened epoxy matrix and PEEK thermoplastic matrix over a variety of strain rates. For the cases examined, the modified constitutive equations appear to do an adequate job of modeling the polymer deformation response. A second follow-up paper will describe the implementation of the polymer deformation model into a composite micromechanical model, to allow for the modeling of the nonlinear, rate dependent deformation response of polymer matrix composites.

  7. Strain engineered high reflectivity DBRs in the deep UV

    Science.gov (United States)

    Franke, A.; Hoffmann, M. P.; Hernandez-Balderrama, L.; Kaess, F.; Bryan, I.; Washiyama, S.; Bobea, M.; Tweedie, J.; Kirste, R.; Gerhold, M.; Collazo, R.; Sitar, Z.

    2016-02-01

    The maximum achievable reflectivity of current III-nitride Bragg reflectors in the UV-C spectral range is limited due to plastic relaxation of thick multilayer structures. Cracking due to a large mismatch of the thermal expansion and lattice constants between AlxGa1-xN/AlyGa1-yN alloys of different composition and the substrate at the heterointerface is the common failure mode. Strain engineering and strain relaxation concepts by the growth on a strain reduced Al0.85Ga0.15N template and the implementation of low temperature interlayers is demonstrated. A significant enhancement of the maximum reflectivity above 97% at a resonance wavelength of 270 nm due to an increase of the critical thickness of our AlN/Al0.65Ga0.35N DBRs to 1.45 μm (25.5 pairs) prove their potential. By comparing the growth of identical Bragg reflectors on different pseudo-templates, the accumulated mismatch strain energy in the DBR, not the dislocation density provided by the template/substrate, was identified to limit the critical thickness. To further enhance the reflectivity low temperature interlays were implemented into the DBR to partially relief the misfit strain. Relaxation is enabled by the nucleation of small surface domains facilitating misfit dislocation injection and glide. Detailed structural and optical investigations will be conducted to prove the influence of the LT-AlN interlayers on the strain state, structural integrity and reflectivity properties. Coherent growth and no structural and optical degradation of the Bragg mirror properties was observed proving the fully applicability of the relaxation concept to fabricate thick high reflectivity DBR and vertical cavity laser structures.

  8. Online Pattern Recognition for the ALICE High Level Trigger (tracking and compression techniques)

    CERN Document Server

    INSPIRE-00171460; Loizides, C.; Rohrich, D.; Skaali, B.; Steinbeck, T.; Stock, R.; Tilsner, H.; Ullaland, K.; Vestbo, A.; Vik, T.

    2004-01-01

    The ALICE High Level Trigger has to process data online, in order to select interesting (sub)events, or to compress data efficiently by modeling techniques. Focusing on the main data source, the Time Projection Chamber (TPC), we present two pattern recognition methods under investigation: a sequential approach (cluster finder and track follower) and an iterative approach (track candidate finder and cluster deconvoluter). We show, that the former is suited for pp and low multiplicity PbPb collisions, whereas the latter might be applicable for high multiplicity PbPb collisions of dN/dy>3000. Based on the developed tracking schemes we show that using modeling techniques a compression factor of around 10 might be achievable.

  9. ADAPTIVE DELAUNAY TRIANGULATION WITH MULTIDIMENSIONAL DISSIPATION SCHEME FOR HIGH-SPEED COMPRESSIBLE FLOW ANALYSIS

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Adaptive Delaunay triangulation is combined with the cell-centered upwinding algorithm to analyze inviscid high-speed compressible flow problems. The multidimensional dissipation scheme was developed and included in the upwinding algorithm for unstructured triangular meshes to improve the computed shock wave resolution. The solution accuracy is further improved by coupling an error estimation procedure to a remeshing algorithm that generates small elements in regions with large change of solution gradients, and at the same time, larger elements in other regions. The proposed scheme is further extended to achieve higher-order spatial and temporal solution accuracy. Efficiency of the combined procedure is evaluated by analyzing supersonic shocks and shock propagation behaviors for both the steady and unsteady high-speed compressible flows.

  10. Structure and compressibility of the high-pressure molecular phase II of carbon dioxide

    Science.gov (United States)

    Datchi, Frédéric; Mallick, Bidyut; Salamat, Ashkan; Rousse, Gwenaëlle; Ninet, Sandra; Garbarino, Gaston; Bouvier, Pierre; Mezouar, Mohamed

    2014-04-01

    The structure and equation of state of the crystalline molecular phase II of carbon dioxide have been investigated at room temperature from 15.5 to 57.5 GPa using synchrotron x-ray diffraction methods. The CO2 samples were embedded in neon pressure medium in order to provide quasihydrostatic conditions. The x-ray diffraction patterns of phase II are best described by a tetragonal structure, with space group P42/mnm and 2 molecules per unit cell, in accordance with a previous study [Yoo et al., Phys. Rev. B 65, 104103 (2002), 10.1103/PhysRevB.65.104103]. There is however a large (15%) difference in the intramolecular C=O bond length between the present study, 1.14(3) Å, and the latter work (1.329-1.366 Å). The present value is similar to that of the free molecule and is in very good agreement with predictions based on density functional theory. The compressibility of CO2-II determined here also disagrees with the previous study: our value for the zero-pressure bulk modulus, B0=8.5(3) GPa [with B0'=(∂B/∂P)0=6.29], is 15.5 times smaller. These findings oppose the view that CO2-II is an intermediate state between the low-pressure molecular phases and the high-pressure nonmolecular forms, consistent with our previous results for phase IV [Datchi et al., Phys. Rev. Lett. 103, 185701 (2009), 10.1103/PhysRevLett.103.185701]. The x-ray diffraction patterns of CO2-II above 15 GPa indicate the presence of a large orthorhombic microstrain. Carrying out density functional theory calculations of the elastic tensor and stress-strain relation, we interpret this as due to the softness of the crystal against deviatoric stress in the [110] and symmetry-related directions. Unlike the other dioxides of the group-14 elements, there is however no mechanical or dynamical instability of the P42/mnm structure in CO2 up to 57.5 GPa at 295 K, and therefore no symmetry lowering to Pnnm.

  11. Dynamic Grain Growth in Forsterite Aggregates Experimentally Deformed to High Strain

    Science.gov (United States)

    Kellermann Slotemaker, A.; de Bresser, H.; Spiers, C.; Drury, M.

    2004-12-01

    The dynamics of the outer Earth are largely controlled by olivine rheology. From previous work it has become clear that if olivine rocks are deformed to high strain, substantial weakening may occur before steady state mechanical behaviour is approached. This weakening appears directly related to progressive modification of the grain size distribution through competing effects of dynamic recrystallization and syn-deformational grain growth. However, most of our understanding of these processes in olivine comes from tests on coarse-grained materials that were reduced in grain size during straining by grain size insensitive (dislocation) creep mechanisms. The aim of the present study was to investigate microstructure evolution of fine-grained olivine rocks that coarsen in grain size while deforming by grain size sensitive (GSS) creep. We used fine-grained (~1 μ m) olivine aggregates (i.e., forsterite/Mg2SiO4), containing ~0.5 wt% water and 10 vol% enstatite (MgSiO3). Two types of experiments were carried out: 1) Hot isostatic pressing (HIP) followed by axial compression to varying strains up to a maximum of ~45%, at 600 MPa confining pressure and a temperature of 950°C, 2) HIP treatment without axial deformation. Microstructures were characterized by analyzing full grain size distributions and texture using SEM/EBSD. Our stress-strain curves showed continuous hardening. When samples were temporally unloaded for short time intervals, no difference in flow stress was observed before and after the interruption in straining. Strain rate sensitivity analysis showed a low value of ~1.5 for the stress exponent n. Measured grain sizes show an increase with strain up to a value twice that of the starting value. HIP-only samples showed only minor increase in grain size. A random LPO combined with the low n ~1.5 suggests dominant GSS creep controlled by grain boundary sliding. These results indicate that dynamic grain growth occurs in forsterite aggregates deforming by GSS

  12. A numerical and experimental study of temperature effects on deformation behavior of carbon steels at high strain rates

    Science.gov (United States)

    Pouya, M.; Winter, S.; Fritsch, S.; F-X Wagner, M.

    2017-03-01

    Both in research and in the light of industrial applications, there is a growing interest in methods to characterize the mechanical behavior of materials at high strain rates. This is particularly true for steels (the most important structural materials), where often the strain rate-dependent material behavior also needs to be characterized in a wide temperature range. In this study, we use the Finite Element Method (FEM), first, to model the compressive deformation behavior of carbon steels under quasi-static loading conditions. The results are then compared to experimental data (for a simple C75 steel) at room temperature, and up to testing temperatures of 1000 °C. Second, an explicit FEM model that captures wave propagation phenomena during dynamic loading is developed to closely reflect the complex loading conditions in a Split-Hopkinson Pressure Bar (SHPB) – an experimental setup that allows loading of compression samples with strain rates up to 104 s-1 The dynamic simulations provide a useful basis for an accurate analysis of dynamically measured experimental data, which considers reflected elastic waves. By combining numerical and experimental investigations, we derive material parameters that capture the strain rate- and temperature-dependent behavior of the C75 steel from room temperature to 1000 °C, and from quasi-static to dynamic loading.

  13. Investigation of non-uniform airflow signal oscillation during high frequency chest compression

    OpenAIRE

    Lee Jongwon; Lee Yong W; Warwick Warren J; Sohn Kiwon; Holte James E

    2005-01-01

    Abstract Background High frequency chest compression (HFCC) is a useful and popular therapy for clearing bronchial airways of excessive or thicker mucus. Our observation of respiratory airflow of a subject during use of HFCC showed the airflow oscillation by HFCC was strongly influenced by the nonlinearity of the respiratory system. We used a computational model-based approach to analyse the respiratory airflow during use of HFCC. Methods The computational model, which is based on previous ph...

  14. Theoretical and numerical study of strain localization under high strain rate solicitation

    Science.gov (United States)

    Ranc, N.; Raynal, R.; Taravella, L.; Pina, V.; Hervé, P.

    2006-08-01

    Our study deals with the dynamic behavior of metallic materials and in particular of titanium alloy TA6V. For high strain rates, we can notice the occurrence of a phenomenon called adiabatic shearing. This phenomenon is about a plastic instability, which results in the appearance of a strain localization in narrow bands. In this paper we developed a thermo mechanical model to reproduce the formation and the propagation of adiabatic shear bands. A Johnson Cook thermo visco plastic behavior law was chosen for the titanium alloy TA6V. The law parameters were identified from static and dynamic torsion tests at various temperatures between ambient and 350circC. A 2D numerical simulation of torsion test was performed with the explicit finite elements code Abaqus. The thermo mechanical coupling and the heat conduction are taken into account. A roughness defect was inserted in the centre of a torsion specimen. The results showed that the strain of localization and the shear band speed increase when the amplitude and the size of the defect decrease.

  15. On the response of rubbers at high strain rates.

    Energy Technology Data Exchange (ETDEWEB)

    Niemczura, Johnathan Greenberg (University of Texas-Austin)

    2010-02-01

    In this report, we examine the propagation of tensile waves of finite deformation in rubbers through experiments and analysis. Attention is focused on the propagation of one-dimensional dispersive and shock waves in strips of latex and nitrile rubber. Tensile wave propagation experiments were conducted at high strain-rates by holding one end fixed and displacing the other end at a constant velocity. A high-speed video camera was used to monitor the motion and to determine the evolution of strain and particle velocity in the rubber strips. Analysis of the response through the theory of finite waves and quantitative matching between the experimental observations and analytical predictions was used to determine an appropriate instantaneous elastic response for the rubbers. This analysis also yields the tensile shock adiabat for rubber. Dispersive waves as well as shock waves are also observed in free-retraction experiments; these are used to quantify hysteretic effects in rubber.

  16. CO2 laser scribe of chemically strengthened glass with high surface compressive stress

    Science.gov (United States)

    Li, Xinghua; Vaddi, Butchi R.

    2011-03-01

    Chemically strengthened glass is finding increasing use in handheld, IT and TV cover glass applications. Chemically strengthened glass, particularly with high (>600MPa) compressive stress (CS) and deeper depth of layer (DOL), enable to retain higher strength after damage than non-strengthened glass when its surface is abraded. Corning Gorilla® Glass has particularly proven to be advantageous over competition in this attribute. However, due to high compressive stress (CS) and Central Tension (CT) cutting ion-exchanged glass is extremely difficult and often unmanageable where ever the applications require dicing the chemically strengthened mother glass into smaller parts. We at Corning have developed a CO2 laser scribe and break method (LSB) to separate a single chemically strengthened glass sheet into plurality of devices. Furthermore, CO2 laser scribe and break method enables debris-free separation of glass with high edge strength due to its mirror-like edge finish. We have investigated laser scribe and break of chemically strengthened glass with surface compressive stress greater than 600 MPa. In this paper we present the results of CO2 scribe and break method and underlying laser scribing mechanisms. We demonstrated cross-scribe repetitively on GEN 2 size chemically strengthened glass substrates. Specimens for edge strength measurements of different thickness and CS/DOL glass were prepared using the laser scribe and break technique. The specimens were tested using the standard 4-point bend method and the results are presented.

  17. Reversible interframe compression of high-quality color images of paintings

    Science.gov (United States)

    Abrardo, Andrea; Alparone, Luciano; Bartolini, Franco; Guarnieri, P.

    1996-09-01

    Reversible compression of color images is gaining the ever- increasing attention of multimedia publishing industries for collections of works-of-art. In fact, the availability of high-resolution high-quality multispectral scanners demands robust and efficient coding techniques capable to capture inter-band redundancy without destroying the underlying intra-band correlation. Although DPCM schemes (e.g., lossless JPEG) are employed for reversible compression, their straightforward extension to true-color (e.g., RGB, XYZ) image data usually leads to a negligible coding gain or even to a performance penalty with respect to individual coding of each color component. Previous closest neighbor (PCN) prediction has been recently proposed for lossless data compression of multispectral images, in order to take advantage of inter-band data correlation. The basic idea to predict the value of the current pixel in the current band on the basis of the best zero-order predictor on the previously coded band has been applied by extending the set of predictors to those adopted by lossless JPEG. On a variety of color images, one of which acquired directly from a painting by the VASARI Scanner at the Uffizi Gallery with a very high resolution (20 pel/mm, 8 MSB for each of the XYZ color components), experimental results show that the method is suitable for inter-frame decorrelation and outperforms lossless JPEG and, to a lesser extent, PCN.

  18. Influence of strain amount on stabilization of {omega}-phase in pure Ti by severe plastic deformation under high-pressure torsion

    Energy Technology Data Exchange (ETDEWEB)

    Todaka, Y; Azuma, H; Ohnishi, Y; Umemoto, M [Department of Production Systems Engineering, Toyohashi University of Technology, Hibarigaoka 1-1, Tempaku, Toyohashi, Aichi 441-8580 (Japan); Suzuki, H, E-mail: todaka@martens.pse.tut.ac.j [Quantum Beam Science Directorate, Japan Atomic Energy Agency, Shirakata-Shirane 2-4, Tokai, Naka, Ibaraki 319-1195 (Japan)

    2010-07-01

    In pure Ti, the influence of shear deformation on the {alpha} to {omega} transformation and the development of texture in the {omega}-phase under high-pressure torsion (HPT) straining were investigated by means of X-ray and neutron diffractions. The fraction of {omega}-phase increased with strain in the {omega}-phase state. Bulk submicrocrystalline {omega}-Ti was fabricated by HPT-straining under the compressive pressure P = 5 GPa with the equivalent strain {epsilon}{sub eq} > 110 at the rotation speed of 3.3 x 10{sup -3} rev. per sec. (0.2 rev. per min.) at room temperature. The texture of {omega}-phase evolved by HPT-straining with the prismatic planes parallel to the shear direction of HPT-straining and the basal planes perpendicular to it.

  19. [Agrobacterium rubi strains from blueberry plants are highly diverse].

    Science.gov (United States)

    Abrahamovich, Eliana; López, Ana C; Alippi, Adriana M

    2014-01-01

    The diversity of a collection of Agrobacterium rubi strains isolated from blueberries from different regions of Argentina was studied by conventional microbiological tests and molecular techniques. Results from biochemical and physiological reactions, as well as from rep-PCR and RFLP analysis of PCR-amplified 23S rDNA showed high phenotypic and genotypic intraspecific variation. Copyright © 2014 Asociación Argentina de Microbiología. Publicado por Elsevier España. All rights reserved.

  20. High Sensitivity MEMS Strain Sensor: Design and Simulation

    Directory of Open Access Journals (Sweden)

    Edmond Lou

    2008-04-01

    Full Text Available In this article, we report on the new design of a miniaturized strain microsensor. The proposed sensor utilizes the piezoresistive properties of doped single crystal silicon. Employing the Micro Electro Mechanical Systems (MEMS technology, high sensor sensitivities and resolutions have been achieved. The current sensor design employs different levels of signal amplifications. These amplifications include geometric, material and electronic levels. The sensor and the electronic circuits can be integrated on a single chip, and packaged as a small functional unit. The sensor converts input strain to resistance change, which can be transformed to bridge imbalance voltage. An analog output that demonstrates high sensitivity (0.03mV/me, high absolute resolution (1μe and low power consumption (100μA with a maximum range of ±4000μe has been reported. These performance characteristics have been achieved with high signal stability over a wide temperature range (±50oC, which introduces the proposed MEMS strain sensor as a strong candidate for wireless strain sensing applications under harsh environmental conditions. Moreover, this sensor has been designed, verified and can be easily modified to measure other values such as force, torque…etc. In this work, the sensor design is achieved using Finite Element Method (FEM with the application of the piezoresistivity theory. This design process and the microfabrication process flow to prototype the design have been presented.

  1. High Temperature Tension-compression Asymmetry of As-cast AZ31 Alloy%铸态AZ31镁合金高温拉-压不对称性研究

    Institute of Scientific and Technical Information of China (English)

    官磊; 成波

    2012-01-01

    利用Gleeble-1500在250~500℃和应变速率0.001~1 s-1对铸态AZ31镁合金进行热压缩及热拉伸试验,对热变形过程中拉-压不对称性进行研究;基于Hollomon公式,分析了铸态AZ31镁合金热拉伸-压缩过程中应变硬化指数的变化规律.结果表明:铸态镁合金在热拉伸-压缩过程中,存在明显拉-压不对称性,热拉伸应变硬化指数均比热压缩应变硬化指数大;升高形变温度及降低应变速率有利于减小铸态镁合金的拉-压不对称性.%The high temperature tension-compression asymmetry of as-cast AZ31 alloy was studied at 250-500℃ with various strain rates 0.001-ls-1 by Gleeble-1500 dynamic material testing machine. The strain hardening exponents during high temperature tension-compression asymmetry were analyzed by introducing Hollomon equation. The results indicate that during the high temperature tension-compression of as-cast AZ31 alloy, the tension-compression asymmetry is obvious, and the strain hardening exponent of tension is bigger than those of compression. The higher deformation temperature and slower strain rate can decrease the tension-compression asymmetry.

  2. High-power multimode X-band rf pulse compression system for future linear colliders

    Directory of Open Access Journals (Sweden)

    Sami G. Tantawi

    2005-04-01

    Full Text Available We present a multimode X-band rf pulse compression system suitable for a TeV-scale electron-positron linear collider such as the Next Linear Collider (NLC. The NLC main linac operating frequency is 11.424 GHz. A single NLC rf unit is required to produce 400 ns pulses with 475 MW of peak power. Each rf unit should power approximately 5 m of accelerator structures. The rf unit design consists of two 75 MW klystrons and a dual-moded resonant-delay-line pulse compression system that produces a flat output pulse. The pulse compression system components are all overmoded, and most components are designed to operate with two modes. This approach allows high-power-handling capability while maintaining a compact, inexpensive system. We detail the design of this system and present experimental cold test results. We describe the design and performance of various components. The high-power testing of the system is verified using four 50 MW solenoid-focused klystrons run off a common 400 kV solid-state modulator. The system has produced 400 ns rf pulses of greater than 500 MW. We present the layout of our system, which includes a dual-moded transmission waveguide system and a dual-moded resonant line (SLED-II pulse compression system. We also present data on the processing and operation of this system, which has set high-power records in coherent and phase controlled pulsed rf.

  3. Measurement of fracture properties of concrete at high strain rates

    Science.gov (United States)

    Rey-De-Pedraza, V.; Cendón, D. A.; Sánchez-Gálvez, V.; Gálvez, F.

    2017-01-01

    An analysis of the spalling technique of concrete bars using the modified Hopkinson bar was carried out. A new experimental configuration is proposed adding some variations to previous works. An increased length for concrete specimens was chosen and finite-element analysis was used for designing a conic projectile to obtain a suitable triangular impulse wave. The aim of this initial work is to establish an experimental framework which allows a simple and direct analysis of concrete subjected to high strain rates. The efforts and configuration of these primary tests, as well as the selected geometry and dimensions for the different elements, have been focused to achieve a simple way of identifying the fracture position and so the tensile strength of tested specimens. This dynamic tensile strength can be easily compared with previous values published in literature giving an idea of the accuracy of the method and technique proposed and the possibility to extend it in a near future to obtain other mechanical properties such as the fracture energy. The tests were instrumented with strain gauges, accelerometers and high-speed camera in order to validate the results by different ways. Results of the dynamic tensile strength of the tested concrete are presented. This article is part of the themed issue 'Experimental testing and modelling of brittle materials at high strain rates'.

  4. Atomistic simulations of high strain rate loading of nanocrystals

    Science.gov (United States)

    Bringa, E. M.; Tramontina, D.; Ruestes, C. J.; Tang, Y.; Meyers, M. A.; Gunkelmann, N.; Urbassek, H. M.

    2013-03-01

    Materials loaded at high strain rates can reach extreme temperature and pressure conditions. Most experiments on loading of simple materials use poly crystals, while most atomistic simulations of shock wave loading deal with single crystals, due to the higher computational cost of running polycrystal samples. Of course, atomistic simulations of polycrystals with micron-sized grains are beyond the capabilities of current supercomputers. On the other hand, nanocrystals (nc) with grain sizes below 50 nm can be obtained experimentally and modeled reasonably well at high strain rates, opening the possibility of nearly direct comparison between atomistic molecular dynamics (MD) simulations and experiments using high power lasers. We will discuss MD simulations and links to experiments for nc Cu and Ni, as model f.c.c. solids, and nc Ta and Fe, as model b.c.c. solids. In all cases, the microstructure resulting from loading depends strongly on grain size, strain rate and peak applied pressure. We will also discuss effects related to target porosity in nc's. E.M.B. thanks funding from PICT2008-1325.

  5. Measurement of fracture properties of concrete at high strain rates.

    Science.gov (United States)

    Rey-De-Pedraza, V; Cendón, D A; Sánchez-Gálvez, V; Gálvez, F

    2017-01-28

    An analysis of the spalling technique of concrete bars using the modified Hopkinson bar was carried out. A new experimental configuration is proposed adding some variations to previous works. An increased length for concrete specimens was chosen and finite-element analysis was used for designing a conic projectile to obtain a suitable triangular impulse wave. The aim of this initial work is to establish an experimental framework which allows a simple and direct analysis of concrete subjected to high strain rates. The efforts and configuration of these primary tests, as well as the selected geometry and dimensions for the different elements, have been focused to achieve a simple way of identifying the fracture position and so the tensile strength of tested specimens. This dynamic tensile strength can be easily compared with previous values published in literature giving an idea of the accuracy of the method and technique proposed and the possibility to extend it in a near future to obtain other mechanical properties such as the fracture energy. The tests were instrumented with strain gauges, accelerometers and high-speed camera in order to validate the results by different ways. Results of the dynamic tensile strength of the tested concrete are presented.This article is part of the themed issue 'Experimental testing and modelling of brittle materials at high strain rates'.

  6. Investigation of compressive membrane action in ultra high performance concrete slab strips

    Science.gov (United States)

    Foust, Bradley Wade

    Reinforced concrete slabs are found in very common structural systems in both civilian and military applications. The boundary conditions that support the slab play an important role in the response to a particular load. Specifically, the amount of lateral and rotational restraint dictates how a slab responds to a particular load. Compressive membrane (i.e., in-plane) forces are present in slabs when the boundaries are sufficiently stiff, therefore restricting the slab from both lateral translations and rotations. Advancements have been made to account for the additional capacity due to compressive membrane forces in conventional strength concrete. In today's world, concrete performance is improving because of increasing compressive strengths and additional ductility present in concrete members. As a result of this current improvement, there is an urgent need to investigate compressive membrane theory in ultra-high-performance concrete (UHPC) slabs to better understand their behavior. Existing compressive membrane theory should be revisited to determine if current theory is applicable, or if it is not, what modifications should be made. This study will provide insight into the validity of existing theory that is currently used to predict the ultimate capacity in conventional-strength concrete slabs and attempt to modify the existing equations to account for high-strength concrete materials. A matrix of 14 normal-strength concrete (NSC) and 13 UHPC slabs was tested both statically and dynamically to better understand the behavior of each material set and the effects that boundary conditions have on slab response. The results from these experiments were then compared to response calculations made from existing theory as well as finite element analyses. Valuable data sets on rigidly restrained UHPC slab response were obtained through an experimental research program. The experiments helped to validate the associated numerical analysis that was performed. It was

  7. New experimental capabilities and theoretical insights of high pressure compression waves

    Energy Technology Data Exchange (ETDEWEB)

    Orlikowski, D; Nguyen, J; Patterson, J R; Minich, R; Martin, L P; Holmes, N

    2007-07-20

    Currently there are three platforms that offer quasi-isentropic compression or ramp-wave compression (RWC): light-gas gun, magnetic flux (Z-pinch), and laser. We focus here on the light-gas gun technique and on some current theoretical insights from experimental data. A gradient impedance through the length of the impactor provides the pressure pulse upon impactor to the subject material. Applications and results are given concerning high-pressure strength and liquid to solid, phase transition of water plus its associated phase fraction history. We also introduce the Korteweg-deVries-Burgers equation as a means to understand the evolution these RWC waves that propagate through the thickness of the subject material. This equation has the necessary competition between non-linear, dispersion, and dissipation processes, which is shown through observed structures that are manifested in the experimental particle velocity histories. Such methodology points towards a possible quantifiable dissipation, through which RWC experiments may be analyzed.

  8. Compressibility and Structural Properties of Jadeite, NaAlSi2O6 at High Pressure

    Institute of Scientific and Technical Information of China (English)

    Xiuling Wu; Xiaoyu Fan; Fei Qin; Dawei Meng; Xiaoling Zhang; Long Chen; Weiping Liu; Jianping Zheng

    2013-01-01

    The structural properties of jadeite at high pressures (0.000 1-30 GPa) are investigated using plane-wave pseudopotential density functional theory method.As a function of pressure,the monoclinic cell parameters were calculated and the compressibility coefficients are 0.0026,0.0023 and 0.0026 GPa-1,respectively.The bond length,bond angle and distortion variation were studied in order to obtain the information of polyhedral compression.The pressure-volume equation of state was considered in order to obtain the bulk modulus K0.Comparison between the calculated K0 values and the experimental data suggested that the model provides reasonable insights into crystallographic and physical properties of jadeite.

  9. Compressive Sensing in High-resolution 3D SAR Tomography of Urban Scenarios

    Directory of Open Access Journals (Sweden)

    Liao Ming-sheng

    2015-04-01

    Full Text Available In modern high resolution SAR data, due to the intrinsic side-looking geometry of SAR sensors, layover and foreshortening issues inevitably arise, especially in dense urban areas. SAR tomography provides a new way of overcoming these problems by exploiting the back-scattering property for each pixel. However, traditional non-parametric spectral estimators, e.g. Truncated Singular Value Decomposition (TSVD, are limited by their poor elevation resolution, which is not comparable to the azimuth and slant-range resolution. In this paper, the Compressive Sensing (CS approach using Basis Pursuit (BP and TWo-step Iterative Shrinkage/Thresholding (TWIST are introduced. Experimental studies with real spotlight-mode TerraSAR-X dataset are carried out using both BP and TWIST, to demonstrate the merits of compressive sensing approaches in terms of robustness, computational efficiency, and super-resolution capability.

  10. High-contrast linear optical pulse compression using a temporal hologram.

    Science.gov (United States)

    Li, Bo; Fernández-Ruiz, Maria R; Lou, Shuqin; Azaña, José

    2015-03-01

    Temporal holograms can be realized by temporal amplitude-only modulation devices and used for generation and processing of complex (amplitude and phase) time-domain signals. Based on the temporal hologram concept, we numerically and experimentally demonstrate a novel design for linear optical pulse compression using temporal modulation of continuous-wave light combined with dispersion. The newly introduced scheme overcomes the undesired background problem that is intrinsic to designs based on temporal zone plates, while also offering an energy efficiency of ~25%. This pulse compression scheme can ideally provide an arbitrarily high time-bandwidth product using a low peak-power modulation driving signal, though in practice it is limited by the achievable modulation bandwidth and dispersion amount.

  11. Efficient High-Dimensional Entanglement Imaging with a Compressive-Sensing Double-Pixel Camera

    Directory of Open Access Journals (Sweden)

    Gregory A. Howland

    2013-02-01

    Full Text Available We implement a double-pixel compressive-sensing camera to efficiently characterize, at high resolution, the spatially entangled fields that are produced by spontaneous parametric down-conversion. This technique leverages sparsity in spatial correlations between entangled photons to improve acquisition times over raster scanning by a scaling factor up to n^{2}/log⁡(n for n-dimensional images. We image at resolutions up to 1024 dimensions per detector and demonstrate a channel capacity of 8.4 bits per photon. By comparing the entangled photons’ classical mutual information in conjugate bases, we violate an entropic Einstein-Podolsky-Rosen separability criterion for all measured resolutions. More broadly, our result indicates that compressive sensing can be especially effective for higher-order measurements on correlated systems.

  12. Accelerated high-frame-rate mouse heart cine-MRI using compressed sensing reconstruction.

    Science.gov (United States)

    Motaal, Abdallah G; Coolen, Bram F; Abdurrachim, Desiree; Castro, Rui M; Prompers, Jeanine J; Florack, Luc M J; Nicolay, Klaas; Strijkers, Gustav J

    2013-04-01

    We introduce a new protocol to obtain very high-frame-rate cinematographic (Cine) MRI movies of the beating mouse heart within a reasonable measurement time. The method is based on a self-gated accelerated fast low-angle shot (FLASH) acquisition and compressed sensing reconstruction. Key to our approach is that we exploit the stochastic nature of the retrospective triggering acquisition scheme to produce an undersampled and random k-t space filling that allows for compressed sensing reconstruction and acceleration. As a standard, a self-gated FLASH sequence with a total acquisition time of 10 min was used to produce single-slice Cine movies of seven mouse hearts with 90 frames per cardiac cycle. Two times (2×) and three times (3×) k-t space undersampled Cine movies were produced from 2.5- and 1.5-min data acquisitions, respectively. The accelerated 90-frame Cine movies of mouse hearts were successfully reconstructed with a compressed sensing algorithm. The movies had high image quality and the undersampling artifacts were effectively removed. Left ventricular functional parameters, i.e. end-systolic and end-diastolic lumen surface areas and early-to-late filling rate ratio as a parameter to evaluate diastolic function, derived from the standard and accelerated Cine movies, were nearly identical. Copyright © 2012 John Wiley & Sons, Ltd.

  13. Reconstructing high-dimensional two-photon entangled states via compressive sensing.

    Science.gov (United States)

    Tonolini, Francesco; Chan, Susan; Agnew, Megan; Lindsay, Alan; Leach, Jonathan

    2014-10-13

    Accurately establishing the state of large-scale quantum systems is an important tool in quantum information science; however, the large number of unknown parameters hinders the rapid characterisation of such states, and reconstruction procedures can become prohibitively time-consuming. Compressive sensing, a procedure for solving inverse problems by incorporating prior knowledge about the form of the solution, provides an attractive alternative to the problem of high-dimensional quantum state characterisation. Using a modified version of compressive sensing that incorporates the principles of singular value thresholding, we reconstruct the density matrix of a high-dimensional two-photon entangled system. The dimension of each photon is equal to d = 17, corresponding to a system of 83521 unknown real parameters. Accurate reconstruction is achieved with approximately 2500 measurements, only 3% of the total number of unknown parameters in the state. The algorithm we develop is fast, computationally inexpensive, and applicable to a wide range of quantum states, thus demonstrating compressive sensing as an effective technique for measuring the state of large-scale quantum systems.

  14. Improving a DWT-based compression algorithm for high image-quality requirement of satellite images

    Science.gov (United States)

    Thiebaut, Carole; Latry, Christophe; Camarero, Roberto; Cazanave, Grégory

    2011-10-01

    Past and current optical Earth observation systems designed by CNES are using a fixed-rate data compression processing performed at a high-rate in a pushbroom mode (also called scan-based mode). This process generates fixed-length data to the mass memory and data downlink is performed at a fixed rate too. Because of on-board memory limitations and high data rate processing needs, the rate allocation procedure is performed over a small image area called a "segment". For both PLEIADES compression algorithm and CCSDS Image Data Compression recommendation, this rate allocation is realised by truncating to the desired rate a hierarchical bitstream of coded and quantized wavelet coefficients for each segment. Because the quantisation induced by truncation of the bit planes description is the same for the whole segment, some parts of the segment have a poor image quality. These artefacts generally occur in low energy areas within a segment of higher level of energy. In order to locally correct these areas, CNES has studied "exceptional processing" targeted for DWT-based compression algorithms. According to a criteria computed for each part of the segment (called block), the wavelet coefficients can be amplified before bit-plane encoding. As usual Region of Interest handling, these multiplied coefficients will be processed earlier by the encoder than in the nominal case (without exceptional processing). The image quality improvement brought by the exceptional processing has been confirmed by visual image analysis and fidelity criteria. The complexity of the proposed improvement for on-board application has also been analysed.

  15. Compressive Sensing Over Networks

    CERN Document Server

    Feizi, Soheil; Effros, Michelle

    2010-01-01

    In this paper, we demonstrate some applications of compressive sensing over networks. We make a connection between compressive sensing and traditional information theoretic techniques in source coding and channel coding. Our results provide an explicit trade-off between the rate and the decoding complexity. The key difference of compressive sensing and traditional information theoretic approaches is at their decoding side. Although optimal decoders to recover the original signal, compressed by source coding have high complexity, the compressive sensing decoder is a linear or convex optimization. First, we investigate applications of compressive sensing on distributed compression of correlated sources. Here, by using compressive sensing, we propose a compression scheme for a family of correlated sources with a modularized decoder, providing a trade-off between the compression rate and the decoding complexity. We call this scheme Sparse Distributed Compression. We use this compression scheme for a general multi...

  16. High-temperature strain measurement techniques: Current developments and challenges

    Science.gov (United States)

    Lemcoe, M. M.

    1992-01-01

    Since 1987, a very substantial amount of R&D has been conducted in an attempt to develop reliable strain sensors for the measurements of structural strains during ground testing and hypersonic flight, at temperatures up to at least 2000 deg F. Much of the effort has been focused on requirements of the NASP Program. This presentation is limited to the current sensor development work and characterization studies carried out within that program. It is basically an assessment as to where we are now and what remains to be done in the way of technical accomplishments to meet the technical challenges posed by the requirements and constraints established for the NASP Program. The approach for meeting those requirements and constraints has been multi-disciplinary in nature. It was recognized early on that no one sensor could meet all these requirements and constraints, largely because of the large temperature range (cryogenic to at least 2000 deg F) and many other factors, including the most challenging requirement that the sensor system be capable of obtaining valid 'first cycle data'. Present candidate alloys for resistance-type strain gages include Fe-Cr-Al and Pd-Cr. Although they have superior properties regarding withstanding very high temperatures, they exhibit large apparent strains that must either be accounted for or cancelled out by various techniques, including the use of a dual-element, half-bridge dummy gage, or electrical compensation networks. A significant effort is being devoted to developing, refining, and evaluating the effectiveness of those techniques over a broad range in temperature and time. In the quest to obtain first-cycle data, ways must be found to eliminate the need to prestabilize or precondition the strain gage, before it is attached to the test article. It should be noted that present NASP constraints do not permit prestabilization of the sensor, in situ. Gages are currently being 'heat treated' during manufacture in both the wire- and foil

  17. Thin Film Ceramic Strain Sensor Development for High Temperature Environments

    Science.gov (United States)

    Wrbanek, John D.; Fralick, Gustave C.; Gonzalez, Jose M.; Laster, Kimala L.

    2008-01-01

    The need for sensors to operate in harsh environments is illustrated by the need for measurements in the turbine engine hot section. The degradation and damage that develops over time in hot section components can lead to catastrophic failure. At present, the degradation processes that occur in the harsh hot section environment are poorly characterized, which hinders development of more durable components, and since it is so difficult to model turbine blade temperatures, strains, etc, actual measurements are needed. The need to consider ceramic sensing elements is brought about by the temperature limits of metal thin film sensors in harsh environments. The effort at the NASA Glenn Research Center (GRC) to develop high temperature thin film ceramic static strain gauges for application in turbine engines is described, first in the fan and compressor modules, and then in the hot section. The near-term goal of this research effort was to identify candidate thin film ceramic sensor materials and provide a list of possible thin film ceramic sensor materials and corresponding properties to test for viability. A thorough literature search was conducted for ceramics that have the potential for application as high temperature thin film strain gauges chemically and physically compatible with the NASA GRCs microfabrication procedures and substrate materials. Test results are given for tantalum, titanium and zirconium-based nitride and oxynitride ceramic films.

  18. Single chain stochastic polymer modeling at high strain rates.

    Energy Technology Data Exchange (ETDEWEB)

    Harstad, E. N. (Eric N.); Harlow, Francis Harvey,; Schreyer, H. L.

    2001-01-01

    Our goal is to develop constitutive relations for the behavior of a solid polymer during high-strain-rate deformations. In contrast to the classic thermodynamic techniques for deriving stress-strain response in static (equilibrium) circumstances, we employ a statistical-mechanics approach, in which we evolve a probability distribution function (PDF) for the velocity fluctuations of the repeating units of the chain. We use a Langevin description for the dynamics of a single repeating unit and a Lioville equation to describe the variations of the PDF. Moments of the PDF give the conservation equations for a single polymer chain embedded in other similar chains. To extract single-chain analytical constitutive relations these equations have been solved for representative loading paths. By this process we discover that a measure of nonuniform chain link displacement serves this purpose very well. We then derive an evolution equation for the descriptor function, with the result being a history-dependent constitutive relation.

  19. Direct Generation of Intense Compression Waves in Molten Metals by Using a High Static Magnetic Field and Their Application

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Compression waves propagating through molten metals are contributed to degassing, accelerating reaction rate,removing exclusions from molten metals and refining solidification structures during metallurgical processing of ma-terials. In the present study, two electromagnetic methods are proposed to generate intense compression wavesdirectly in liquid metals. One is the simultaneous imposition of a high frequency electrical current field and a staticmagnetic field; the other is that of a high frequency magnetic field and a static magnetic field. A mathematical modelbased on compressible fluid dynamics and electromagnetic fields theory has been developed to derive pressure distri-butions of the generated waves in a metal. It shows that the intensity of compression waves is proportional to thatof the high frequency electromagnetic force. And the frequency is the same as that of the imposed electromagneticforce. On the basis of theoretical analyses, pressure change in liquid gallium was examined by a pressure transducerunder various conditions. The observed results approximately agreed with the predictions derived from the theoreticalanalyses and calculations. Moreover, the effect of the generated waves on improvement of solidification structureswas also examined. It shows that the generated compression waves can refine solidification structures when they wereapplied to solidification process of Sn-Pb alloy. This study indicates a new method to generate compression wavesby imposing high frequency electromagnetic force locally on molten metals and this kind of compression waves canprobably overcome the difficulties when waves are excited by mechanical vibration in high temperature environments.

  20. High Strain Rate Testing of Rocks using a Split-Hopkinson-Pressure Bar

    Science.gov (United States)

    Zwiessler, Ruprecht; Kenkmann, Thomas; Poelchau, Michael; Nau, Siegfried; Hess, Sebastian

    2016-04-01

    Dynamic mechanical testing of rocks is important to define the onset of rate dependency of brittle failure. The strain rate dependency occurs through the propagation velocity limit (Rayleigh wave speed) of cracks and their reduced ability to coalesce, which, in turn, significantly increases the strength of the rock. We use a newly developed pressurized air driven Split-Hopkinson-Pressure Bar (SHPB), that is specifically designed for the investigation of high strain rate testing of rocks, consisting of several 10 to 50 cm long strikers and bar components of 50 mm in diameter and 2.5 meters in length each. The whole set up, composed of striker, incident- and transmission bar is available in aluminum, titanium and maraging steel to minimize the acoustic impedance contrast, determined by the change of density and speed of sound, to the specific rock of investigation. Dynamic mechanical parameters are obtained in compression as well as in spallation configuration, covering a wide spectrum from intermediate to high strain rates (100-103 s-1). In SHPB experiments [1] one-dimensional longitudinal compressive pulses of diverse shapes and lengths - formed with pulse shapers - are used to generate a variety of loading histories under 1D states of stress in cylindrical rock samples, in order to measure the respective stress-strain response at specific strain rates. Subsequent microstructural analysis of the deformed samples is aimed at quantification fracture orientation, fracture pattern, fracture density, and fracture surface properties as a function of the loading rate. Linking mechanical and microstructural data to natural dynamic deformation processes has relevance for the understanding of earthquakes, landslides, impacts, and has several rock engineering applications. For instance, experiments on dynamic fragmentation help to unravel super-shear rupture events that pervasively pulverize rocks up to several hundred meters from the fault core [2, 3, 4]. The dynamic, strain

  1. Computation of compressible flows with high density ratio and pressure ratio

    Institute of Scientific and Technical Information of China (English)

    CHEN Rong-san

    2008-01-01

    The WENO method, RKDG method, RKDG method with original ghost fluid method, and RKDG method with modified ghost fluid method are applied to single-medium and two-medium air-air, air-liquid compressible flows with high density and pressure ratios. We also provide a numerical comparison and analysis for the above methods. Numerical results show that, compared with the other methods, the RKDG method with modified ghost fluid method can obtain high resolution results and the correct position of the shock, and the computed solutions are converged to the physical solutions as the mesh is refined.

  2. A high-resolution DNS study of compressible flow past an LPT blade in a cascade

    CERN Document Server

    Ranjan, Rajesh; Narasimha, Roddam

    2016-01-01

    Flow past a low pressure turbine blade in a cascade at $Re \\approx 52000$ and angle of incidence $\\alpha = 45.5^{0}$ is solved using a code developed in-house for solving 3D compressible Navier-Stokes equations. This code, named ANUROOP, has been developed in the finite volume framework using kinetic energy preserving second order central differencing scheme for calculating fluxes, and is compatible with hybrid grids. ANUROOP was verified and validated against several test cases with Mach numbers ranging from 0.1 (Taylor-Green vortex) to 1.5 (compressible turbulent channel flow). The code was found to be robust and stable, and the kinetic energy decay obeys the compressible Navier-Stokes equations. A hybrid grid, with a high resolution hexahedral orthogonal mesh in the boundary layer and unstructured (also hexahedral) elements in the rest of the domain, is used for the turbine blade simulation. Total grid size (160 million) is approximately an order of magnitude higher than in previous simulations for the sam...

  3. Anomalous compressibility effects and superconductivity of EuFe2As2 under high pressures

    Energy Technology Data Exchange (ETDEWEB)

    Uhoya, Walter [University of Alabama, Birmingham; Tsoi, Georgiy [University of Alabama, Birmingham; Vohra, Y. K. [University of Alabama, Birmingham; McGuire, Michael A [ORNL; Sefat, A. S. [Oak Ridge National Laboratory (ORNL); Sales, Brian C [ORNL; Mandrus, David [ORNL; Weir, S. T. [Lawrence Livermore National Laboratory (LLNL)

    2010-01-01

    The crystal structure and electrical resistance of structurally layered EuFe{sub 2}As{sub 2} have been studied up to 70 GPa and down to a temperature of 10 K, using a synchrotron x-ray source and designer diamond anvils. The room temperature compression of the tetragonal phase of EuFe{sub 2}As{sub 2} (I4/mmm) results in an increase in the a-axis length and a rapid decrease in the c-axis length with increasing pressure. This anomalous compression reaches a maximum at 8 GPa and the tetragonal lattice behaves normally above 10 GPa, with a nearly constant c/a axial ratio. The rapid rise in the superconducting transition temperature (T{sub c}) to 41 K with increasing pressure is correlated with this anomalous compression, and a decrease in T{sub c} is observed above 10 GPa. We present P-V data or the equation of state for EuFe{sub 2}As{sub 2} both in the ambient tetragonal phase and in the high pressure collapsed tetragonal phase up to 70 GPa.

  4. Adaptive reshaper for high dynamic range and wide color gamut video compression

    Science.gov (United States)

    Lu, Taoran; Pu, Fangjun; Yin, Peng; Pytlarz, Jaclyn; Chen, Tao; Husak, Walt

    2016-09-01

    High Dynamic Range (HDR) and Wider Color Gamut (WCG) content represents a greater range of luminance levels and a more complete reproduction of colors found in real-world scenes. The characteristics of HDR/WCG content are very different from the SDR content. It poses a challenge to the compression system which is originally designed for SDR content. Recently in MPEG/VCEG, two directions have been taken to improve compression performances for HDR/WCG video using HEVC Main10 codec. The first direction is to improve HDR-10 using encoder optimization. The second direction is to modify the video signal in pre/post processing to better fit compression system. The process therefore is out of coding loop and does not involve changes to the HEVC specification. Among many proposals in the second direction, reshaper is identified to be the key component. In this paper, a novel luma reshaper is presented which re-allocates the codewords to help codec improve subjective quality. In addition, encoder optimization can be performed jointly with reshaping. Experiments are conducted with ICtCp color difference signal. Simulation results show that if both joint optimization of reshaper and encoder are carried out, there is evidence that improvement over the HDR-10 anchor can be achieved.

  5. Influences of Soil Parameters on Bifurcation Analysis of Normally Consolidated Cohesive Soil under Plane Strain Undrained Compression Loading

    OpenAIRE

    2000-01-01

    This paper describes the influences of soil parameters on bifurcation analysis,using a non-coaxial Camclay model of normally consolidated cohesive soils during undrained shear under plane strain condition. The soil parameters are estmated from plasticity index. The soils exhibited a wide range in plasticity index,from lO−50. The results indicate that bifurcation behavior using a soil with lower plasticity index occurs at a larger stress ratio and a smaller strain compared to soils with ...

  6. Simulations of in situ x-ray diffraction from uniaxially compressed highly textured polycrystalline targets

    Energy Technology Data Exchange (ETDEWEB)

    McGonegle, David, E-mail: d.mcgonegle1@physics.ox.ac.uk; Wark, Justin S.; Higginbotham, Andrew [Department of Physics, Clarendon Laboratory University of Oxford, Parks Road, Oxford OX1 3PU (United Kingdom); Milathianaki, Despina [Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Remington, Bruce A. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

    2015-08-14

    A growing number of shock compression experiments, especially those involving laser compression, are taking advantage of in situ x-ray diffraction as a tool to interrogate structure and microstructure evolution. Although these experiments are becoming increasingly sophisticated, there has been little work on exploiting the textured nature of polycrystalline targets to gain information on sample response. Here, we describe how to generate simulated x-ray diffraction patterns from materials with an arbitrary texture function subject to a general deformation gradient. We will present simulations of Debye-Scherrer x-ray diffraction from highly textured polycrystalline targets that have been subjected to uniaxial compression, as may occur under planar shock conditions. In particular, we study samples with a fibre texture, and find that the azimuthal dependence of the diffraction patterns contains information that, in principle, affords discrimination between a number of similar shock-deformation mechanisms. For certain cases, we compare our method with results obtained by taking the Fourier transform of the atomic positions calculated by classical molecular dynamics simulations. Illustrative results are presented for the shock-induced α–ϵ phase transition in iron, the α–ω transition in titanium and deformation due to twinning in tantalum that is initially preferentially textured along [001] and [011]. The simulations are relevant to experiments that can now be performed using 4th generation light sources, where single-shot x-ray diffraction patterns from crystals compressed via laser-ablation can be obtained on timescales shorter than a phonon period.

  7. A pulse-compression-ring circuit for high-efficiency electric propulsion.

    Science.gov (United States)

    Owens, Thomas L

    2008-03-01

    A highly efficient, highly reliable pulsed-power system has been developed for use in high power, repetitively pulsed inductive plasma thrusters. The pulsed inductive thruster ejects plasma propellant at a high velocity using a Lorentz force developed through inductive coupling to the plasma. Having greatly increased propellant-utilization efficiency compared to chemical rockets, this type of electric propulsion system may one day propel spacecraft on long-duration deep-space missions. High system reliability and electrical efficiency are extremely important for these extended missions. In the prototype pulsed-power system described here, exceptional reliability is achieved using a pulse-compression circuit driven by both active solid-state switching and passive magnetic switching. High efficiency is achieved using a novel ring architecture that recovers unused energy in a pulse-compression system with minimal circuit loss after each impulse. As an added benefit, voltage reversal is eliminated in the ring topology, resulting in long lifetimes for energy-storage capacitors. System tests were performed using an adjustable inductive load at a voltage level of 3.3 kV, a peak current of 20 kA, and a current switching rate of 15 kA/micros.

  8. The nonlinear anomalous lattice elasticity associated with the high-pressure phase transition in spodumene: A high precission static compression study

    CERN Document Server

    Ullrich, A; Miletich, R; 10.1007/s00269-009-0300-8

    2010-01-01

    The high-pressure behavior of the lattice elasticity of spodumene, LiAlSi2O6, was studied by static compression in a diamond-anvil cell up to 9.3 GPa. Investigations by means of single-crystal XRD and Raman spectroscopy within the hydrostatic limits of the pressure medium focus on the pressure ranges around similar to 3.2 and similar to 7.7 GPa, which have been reported previously to comprise two independent structural phase transitions. While our measurements confirm the well-established first-order C2/c-P2(1)/c transformation at 3.19 GPa (with 1.2% volume discontinuity and a hysteresis between 0.02 and 0.06 GPa), both unit-cell dimensions and the spectral changes observed in high-pressure Raman spectra give no evidence for structural changes related to a second phase transition. Monoclinic lattice parameters and unit-cell volumes at in total 59 different pressure points have been used to re-calculate the lattice-related properties of spontaneous strain, volume strain, and the bulk moduli as a function of pr...

  9. Shear jamming in highly strained granular system without shear banding

    Science.gov (United States)

    Zhao, Yiqiu; Barés, Jonathan; Zheng, Hu; Behringer, Robert

    2016-11-01

    Bi et al. have shown that, if sheared, a granular material can jam even if its packing fraction (ϕ) is lower than the critical isotropic jamming point ϕJ. They have introduced a new critical packing fraction value ϕS such that for ϕSjams if sheared. Nevertheless, the value of ϕS as a function of the shear profile or the strain necessary to observe jamming remain poorly understood because of the experimental complexity to access high strain without shear band. We present a novel 2D periodic shear apparatus made of 21 independent, aligned and mirrored glass rings. Each ring can be moved independently which permits us to impose any desired shear profile. The circular geometry allows access to any strain value. The forces between grains are measured using reflective photoelasticity. By performing different shear profiles for different packing fractions we explored the details of jamming diagram including the location of the yield surface. This work is supported by NSF No.DMR1206351, NASA No.NNX15AD38G and W. M. Keck Foundation.

  10. High-performance data and video recorder with real-time lossless compression

    Science.gov (United States)

    Beckstead, Jeffrey A.; Aceto, Steven C.; Conerty, Michelle D.; Nordhauser, Steven

    1997-01-01

    Over the last decade, the video camera has become a common diagnostic/tool for many scientific, industrial and medical applications. The amount of data collected by video capture systems can be enormous. For example, standard NTSC video requires 5 MBytes/sec, with many groups wanting higher resolution either in bit-depth, spatial resolution and/or frame speed. Despite great advances in video capture systems developed for the mass media and teleconferencing markets, the smaller markets of scientific and industrial applications have been ignored. This is primarily due to their need to maintain the independent nature of each camera system and to maintain the high quality of the video data. Many of the commercial systems are capable of digitizing a single camera (B/W or color) or multiple synchronized B/W cameras using an RGB color video capture chip set. In addition, most manufacturers utilize lossy compression to reduce the bandwidth before storing the data to disk. To address the needs of the scientific community, a high- performance data and video recorder has been developed. This system utilizes field programmable gate arrays (FPGAs) to control the analog and digital signals and to perform real- time lossless compression on the incoming data streams. Due to the flexibility inherent in the system, it is able to be configured for a variety of camera resolutions, frame rates and compression algorithms. In addition, alternative general purpose data acquisition modules are also being incorporated into the design. The modular design of the video/data recorder allows the carrier components to be easily adapted to new bus technology as it becomes available or the data acquisition components to be tailored to a specific application. Details of the recorder architecture are presented along with examples applied to thermonuclear fusion experiments. A lossless compression ratio of 3:1 has been obtained on fusion plasma images, with further reductions expected, allowing the

  11. The strain-rate sensitivity of high-strength high-toughness steels.

    Energy Technology Data Exchange (ETDEWEB)

    Dilmore, M.F. (AFRL/MNMW, Eglin AFB, FL); Crenshaw, Thomas B.; Boyce, Brad Lee

    2006-01-01

    The present study examines the strain-rate sensitivity of four high strength, high-toughness alloys at strain rates ranging from 0.0002 s-1 to 200 s-1: Aermet 100, a modified 4340, modified HP9-4-20, and a recently developed Eglin AFB steel alloy, ES-1c. A refined dynamic servohydraulic method was used to perform tensile tests over this entire range. Each of these alloys exhibit only modest strain-rate sensitivity. Specifically, the strain-rate sensitivity exponent m, is found to be in the range of 0.004-0.007 depending on the alloy. This corresponds to a {approx}10% increase in the yield strength over the 7-orders of magnitude change in strain-rate. Interestingly, while three of the alloys showed a concominant {approx}3-10% drop in their ductility with increasing strain-rate, the ES1-c alloy actually exhibited a 25% increase in ductility with increasing strain-rate. Fractography suggests the possibility that at higher strain-rates ES-1c evolves towards a more ductile dimple fracture mode associated with microvoid coalescence.

  12. Numerical Modelling of the Compressive and Tensile Response of Glass and Ceramic under High Pressure Dynamic Loading

    Science.gov (United States)

    Clegg, Richard A.; Hayhurst, Colin J.

    1999-06-01

    Ceramic materials, including glass, are commonly used as ballistic protection materials. The response of a ceramic to impact, perforation and penetration is complex and difficult and/or expensive to instrument for obtaining detailed physical data. This paper demonstrates how a hydrocode, such as AUTODYN, can be used to aid in the understanding of the response of brittle materials to high pressure impact loading and thus promote an efficient and cost effective design process. Hydrocode simulations cannot be made without appropriate characterisation of the material. Because of the complexitiy of the response of ceramic materials this often requires a number of complex material tests. Here we present a methodology for using the results of flyer plate tests, in conjunction with numerical simulations, to derive input to the Johnson-Holmquist material model for ceramics. Most of the research effort in relation to the development of hydrocode material models for ceramics has concentrated on the material behaviour under compression and shear. While the penetration process is dominated by these aspects of the material response, the final damaged state of the material can be significantly influenced by the tensile behaviour. Modelling of the final damage state is important since this is often the only physical information which is available. In this paper we present a unique implementation, in a hydrocode, for improved modelling of brittle materials in the tensile regime. Tensile failure initiation is based on any combination of principal stress or strain while the post-failure tensile response of the material is controlled through a Rankine plasticity damaging failure surface. The tensile failure surface can be combined with any of the traditional plasticity and/or compressive damage models. Finally, the models and data are applied in both traditional grid based Lagrangian and Eulerian solution techniques and the relativley new SPH (Smooth Particle Hydrodynamics) meshless

  13. Mucus transport mechanisms in relation to the effect of high frequency chest compression (HFCC) on mucus clearance.

    Science.gov (United States)

    Hansen, L G; Warwick, W J; Hansen, K L

    1994-02-01

    High frequency chest compression (HFCC) appears promising as a form of chest physiotherapy. Studies published by several clinical centers support its efficacy, and further clinical data are expected to become available.

  14. Effects of High Frequency Chest Compression on Respiratory System Mechanics in Normal Subjects and Cystic Fibrosis Patients

    Directory of Open Access Journals (Sweden)

    Richard L Jones

    1995-01-01

    Full Text Available OBJECTIVE: To investigate the short term effects of high frequency chest compression (HFCC on several indices of respiratory system mechanics in normal subjects and patients with cystic fibrosis (CF.

  15. Characteristics of neurovascular compression in facial neuralgia patients by 3D high-resolution MRI and fusion technology

    National Research Council Canada - National Science Library

    Zi-Yi Guo Jing Chen Guang Yang Qian-Yu Tang Cai-Xiang Chen Shui-Xi Fu Dan Yu

    2012-01-01

    <正>Objective:To evaluate the anatomical characteristics and patterns of neurovascular compression in patients suffering trigeminal neuralgia,using 3D high-resolution magnetic resonance imaging methods and fusion...

  16. Tensile Properties of TWIP Steel at High Strain Rate

    Institute of Scientific and Technical Information of China (English)

    XIONG Rong-gang; FU Ren-yu; SU Yu; LI Qian; WEI Xi-cheng; LI Lin

    2009-01-01

    Tensile tests of TWIP steels of two compositions are performed in the strain rate range of 10-5 -103 s-1.Results indicate that steel 1# does not exhibit TWIP effect but deformation-induced martensitic transformation appears only.There exists TWIP effect in steel 3#.Tensile properties at room temperature are sensitive to strain rate in the studied strain rate ranges.Analysis on the relationship between strain-hardening exponent and strain rates shows that strain-induced martensitic transformation and formation of twins during deformation have significant influence on their strain-hardening behavior.

  17. Quality ratings of frequency-compressed speech by participants with extensive high-frequency dead regions in the cochlea.

    Science.gov (United States)

    Salorio-Corbetto, Marina; Baer, Thomas; Moore, Brian C J

    2017-02-01

    The objective was to assess the degradation of speech sound quality produced by frequency compression for listeners with extensive high-frequency dead regions (DRs). Quality ratings were obtained using values of the starting frequency (Sf) of the frequency compression both below and above the estimated edge frequency, fe, of each DR. Thus, the value of Sf often fell below the lowest value currently used in clinical practice. Several compression ratios were used for each value of Sf. Stimuli were sentences processed via a prototype hearing aid based on Phonak Exélia Art P. Five participants (eight ears) with extensive high-frequency DRs were tested. Reductions of sound-quality produced by frequency compression were small to moderate. Ratings decreased significantly with decreasing Sf and increasing CR. The mean ratings were lowest for the lowest Sf and highest CR. Ratings varied across participants, with one participant rating frequency compression lower than no frequency compression even when Sf was above fe. Frequency compression degraded sound quality somewhat for this small group of participants with extensive high-frequency DRs. The degradation was greater for lower values of Sf relative to fe, and for greater values of CR. Results varied across participants.

  18. Composite Strain Hardening Properties of High Performance Hybrid Fibre Reinforced Concrete

    Directory of Open Access Journals (Sweden)

    Vikram Jothi Jayakumar

    2014-01-01

    Full Text Available Hybrid fibres addition in concrete proved to be a promising method to improve the composite mechanical properties of the cementitious system. Fibre combinations involving different fibre lengths and moduli were added in high strength slag based concrete to evaluate the strain hardening properties. Influence of hybrid fibres consisting of steel and polypropylene fibres added in slag based cementitious system (50% CRL was explored. Effects of hybrid fibre addition at optimum volume fraction of 2% of steel fibres and 0.5% of PP fibres (long and short steel fibre combinations were observed in improving the postcrack strength properties of concrete. Test results also indicated that the hybrid steel fibre additions in slag based concrete consisting of short steel and polypropylene (PP fibres exhibited a the highest compressive strength of 48.56 MPa. Comparative analysis on the performance of monofibre concrete consisting of steel and PP fibres had shown lower residual strength compared to hybrid fibre combinations. Hybrid fibres consisting of long steel-PP fibres potentially improved the absolute and residual toughness properties of concrete composite up to a maximum of 94.38% compared to monofibre concrete. In addition, the relative performance levels of different hybrid fibres in improving the matrix strain hardening, postcrack toughness, and residual strength capacity of slag based concretes were evaluated systematically.

  19. A Study of the Efficiency of High-strength, Steel, Cellular-core Sandwich Plates in Compression

    Science.gov (United States)

    Johnson, Aldie E , Jr; Semonian, Joseph W

    1956-01-01

    Structural efficiency curves are presented for high-strength, stainless-steel, cellular-core sandwich plates of various proportions subjected to compressive end loads for temperatures of 80 F and 600 F. Optimum proportions of sandwich plates for any value of the compressive loading intensity can be determined from the curves. The efficiency of steel sandwich plates of optimum proportions is compared with the efficiency of solid plates of high-strength steel and aluminum and titanium alloys at the two temperatures.

  20. Axial and transverse stress-strain characterization of the EU dipole high current density Nb{sub 3}Sn strand

    Energy Technology Data Exchange (ETDEWEB)

    Nijhuis, A; Ilyin, Y; Abbas, W [Faculty of Science and Technology, Low Temperature Division, University of Twente, PO Box 217, 7500 AE Enschede (Netherlands)], E-mail: a.nijhuis@tnw.utwente.nl

    2008-06-15

    We have measured the critical current (I{sub c}) of a high current density Nb{sub 3}Sn strand subjected to spatial periodic bending, periodic contact stress and uniaxial strain. The strand is destined for the cable-in-conduit conductors (CICC) of the European dipole (EDIPO) 12.5 T superconducting magnet test facility. The spatial periodic bending was applied on the strand, using the bending wavelengths from 5 to 10 mm with a peak bending strain of 1.5%, a periodic contact stress with a periodicity of 4.7 mm and a stress level exceeding 250 MPa. For the uniaxial strain characterization, the voltage-current characteristics were measured with an applied axial strain from -0.9% to +0.3%, with a magnetic field from 6 to 14 T, temperature from 4.2 to 10 K and currents up to almost 900 A. In addition the axial stiffness was determined by a tensile axial stress-strain test. The characterization of the strand is essential for understanding the behaviour of the strand under mainly axial thermal stress variation during cool down and transverse electromagnetic forces during charging, which is essential for the design of the CICC for the dipole magnet. The strand appears to be fully reversible in the compressive regime during the axial strain testing, while in the tensile regime, the behaviour is already irreversibly degraded when reaching the maximum in the critical current versus strain characteristic. The degradation is accentuated by an immediate decrease of the n value by a factor of 2. The parameters for the improved deviatoric strain description are derived from the I{sub c} data, giving the accuracy of the scaling with a standard deviation of 4 A, which is by far within the expected deviation for the large scale strand production of such a high J{sub c} strand. The I{sub c} versus the applied bending strain follows the low resistivity limit, indicative of full interfilament current transfer, while a strong decrease is observed at a peak bending strain of {approx}0

  1. Compression limits in cascaded quadratic soliton compression

    DEFF Research Database (Denmark)

    Bache, Morten; Bang, Ole; Krolikowski, Wieslaw;

    2008-01-01

    Cascaded quadratic soliton compressors generate under optimal conditions few-cycle pulses. Using theory and numerical simulations in a nonlinear crystal suitable for high-energy pulse compression, we address the limits to the compression quality and efficiency.......Cascaded quadratic soliton compressors generate under optimal conditions few-cycle pulses. Using theory and numerical simulations in a nonlinear crystal suitable for high-energy pulse compression, we address the limits to the compression quality and efficiency....

  2. High-resolution MRI of spinal cords by compressive sensing parallel imaging.

    Science.gov (United States)

    Peng Li; Xiangdong Yu; Griffin, Jay; Levine, Jonathan M; Jim Ji

    2015-08-01

    Spinal Cord Injury (SCI) is a common injury due to diseases or accidents. Noninvasive imaging methods play a critical role in diagnosing SCI and monitoring the response to therapy. Magnetic Resonance Imaging (MRI), by the virtue of providing excellent soft tissue contrast, is the most promising imaging method for this application. However, spinal cord has a very small cross-section, which needs high-resolution images for better visualization and diagnosis. Acquiring high-resolution spinal cord MRI images requires long acquisition time due to the physical and physiological constraints. Moreover, long acquisition time makes MRI more susceptible to motion artifacts. In this paper, we studied the application of compressive sensing (CS) and parallel imaging to achieve high-resolution imaging from sparsely sampled and reduced k-space data acquired by parallel receive arrays. In particular, the studies are limited to the effects of 2D Cartesian sampling with different subsampling schemes and reduction factors. The results show that compressive sensing parallel MRI has the potential to provide high-resolution images of the spinal cord in 1/3 of the acquisition time required by the conventional methods.

  3. Dynamic compressive behavior of foamed polyethylene film

    Directory of Open Access Journals (Sweden)

    Tateyama Kohei

    2015-01-01

    Full Text Available The foamed film as the shock absorption material has attracted much attention because it is thin (100 μm ∼ 400 μm and has a closed cell structure. However, the dynamic mechanical properties have not been reported in the foamed film. The purpose of this study is to elucidate the compressive behavior of the foamed polyethylene film at the wide strain rate range. First, the new compressive test apparatus for the dynamic strain rate, the drop-weight testing machine with opposed load cell, was developed, which can be also evaluated the dynamic stress equilibrium of the specimen. It is confirmed that the compressive flow stress increased with increasing the strain rate, regardless of the film thickness. The foamed polyethylene film has the high strain rate sensitivity in the quasi-static deformation. On the other hand, there is almost no change of the strain rate sensitivity in the dynamic and the impact deformation. In order to investigate the mechanism of strain rate dependence, the foamed polyethylene film was observed by X-ray computed tomography scanner before and after compressive test. The fracture of the closed cell only occurred in the quasi-static deformation. It was clarified that the strain rate sensitivity of the foamed film depends strongly on that of the construction material, polyethylene.

  4. Combinatorial and high-throughput screening approaches for strain engineering.

    Science.gov (United States)

    Liu, Wenshan; Jiang, Rongrong

    2015-03-01

    Microbes have long been used in the industry to produce valuable biochemicals. Combinatorial engineering approaches, new strain engineering tools derived from inverse metabolic engineering, have started to attract attention in recent years, including genome shuffling, error-prone DNA polymerase, global transcription machinery engineering (gTME), random knockout/overexpression libraries, ribosome engineering, multiplex automated genome engineering (MAGE), customized optimization of metabolic pathways by combinatorial transcriptional engineering (COMPACTER), and library construction of "tunable intergenic regions" (TIGR). Since combinatorial approaches and high-throughput screening methods are fundamentally interconnected, color/fluorescence-based, growth-based, and biosensor-based high-throughput screening methods have been reviewed. We believe that with the help of metabolic engineering tools and new combinatorial approaches, plus effective high-throughput screening methods, researchers will be able to achieve better results on improving microorganism performance under stress or enhancing biochemical yield.

  5. High Compact, High Quality Single Longitudinal Mode Hundred Picoseconds Laser Based on Stimulated Brillouin Scattering Pulse Compression

    Directory of Open Access Journals (Sweden)

    Zhenxu Bai

    2016-01-01

    Full Text Available A high beam quality hundred picoseconds single-longitudinal-mode (SLM laser is demonstrated based on stimulated Brillouin scattering (SBS pulse compression and aberration compensation. Flash-lamp-pumped Q-switched Nd3+:Y3Al5O12 (Nd:YAG SLM laser with Cr4+:Y3Al5O12 (Cr4+:YAG as a saturable absorber is used as the seed source. By combining master-oscillator-power-amplifier (MOPA, a compact single-cell with FC-770 as working medium is generated as pulse compressor. The 7.8 ns SLM laser is temporally compressed to about 450 ps, and 200 mJ energy is obtained at 1064 nm without optical damage. The energy stability is better than 3% with beam quality factor M2 less than 1.8, which makes this laser system an attractive source for scientific and industrial applications.

  6. Full-field mapping of internal strain distribution in red sandstone specimen under compression using digital volumetric speckle photography and X-ray computed tomography

    Directory of Open Access Journals (Sweden)

    Lingtao Mao

    2015-04-01

    Full Text Available It is always desirable to know the interior deformation pattern when a rock is subjected to mechanical load. Few experimental techniques exist that can represent full-field three-dimensional (3D strain distribution inside a rock specimen. And yet it is crucial that this information is available for fully understanding the failure mechanism of rocks or other geomaterials. In this study, by using the newly developed digital volumetric speckle photography (DVSP technique in conjunction with X-ray computed tomography (CT and taking advantage of natural 3D speckles formed inside the rock due to material impurities and voids, we can probe the interior of a rock to map its deformation pattern under load and shed light on its failure mechanism. We apply this technique to the analysis of a red sandstone specimen under increasing uniaxial compressive load applied incrementally. The full-field 3D displacement fields are obtained in the specimen as a function of the load, from which both the volumetric and the deviatoric strain fields are calculated. Strain localization zones which lead to the eventual failure of the rock are identified. The results indicate that both shear and tension are contributing factors to the failure mechanism.

  7. Prediction of crack growth direction by Strain Energy Sih's Theory on specimens SEN under tension-compression biaxial loading employing Genetic Algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez-MartInez R; Lugo-Gonzalez E; Urriolagoitia-Calderon G; Urriolagoitia-Sosa G; Hernandez-Gomez L H; Romero-Angeles B; Torres-San Miguel Ch, E-mail: rrodriguezm@ipn.mx, E-mail: urrio332@hotmail.com, E-mail: guiurri@hotmail.com, E-mail: luishector56@hotmail.com, E-mail: romerobeatriz98@hotmail.com, E-mail: napor@hotmail.com [INSTITUTO POLITECNICO NACIONAL Seccion de Estudios de Posgrado e Investigacion (SEPI), Escuela Superior de Ingenieria Mecanica y Electrica (ESIME), Edificio 5. 2do Piso, Unidad Profesional Adolfo Lopez Mateos ' Zacatenco' Col. Lindavista, C.P. 07738, Mexico, D.F. (Mexico)

    2011-07-19

    Crack growth direction has been studied in many ways. Particularly Sih's strain energy theory predicts that a fracture under a three-dimensional state of stress spreads in direction of the minimum strain energy density. In this work a study for angle of fracture growth was made, considering a biaxial stress state at the crack tip on SEN specimens. The stress state applied on a tension-compression SEN specimen is biaxial one on crack tip, as it can observed in figure 1. A solution method proposed to obtain a mathematical model considering genetic algorithms, which have demonstrated great capacity for the solution of many engineering problems. From the model given by Sih one can deduce the density of strain energy stored for unit of volume at the crack tip as dW = [1/2E({sigma}{sup 2}{sub x} + {sigma}{sup 2}{sub y}) - {nu}/E({sigma}{sub x}{sigma}{sub y})]dV (1). From equation (1) a mathematical deduction to solve in terms of {theta} of this case was developed employing Genetic Algorithms, where {theta} is a crack propagation direction in plane x-y. Steel and aluminium mechanical properties to modelled specimens were employed, because they are two of materials but used in engineering design. Obtained results show stable zones of fracture propagation but only in a range of applied loading.

  8. Behavior of High Water-cement Ratio Concrete under Biaxial Compression after Freeze-thaw Cycles

    Institute of Scientific and Technical Information of China (English)

    SHANG Huaishuai; SONG Yupu; OU Jinping

    2008-01-01

    The high water-cement ratio concrete specimens under biaxial compression that completed in a triaxial testing machine were experimentally studied.Strength and deformations of plain concrete specimens after 0,25,50 cycles of freeze-thaw.Influences of freeze-thaw cycles and stress ratio on the peak stress and deformation of this point were analyzed aecording to the experimental results.Based on the test data,the failure criterion expressed in terms of principal stress after difierent cycles of freeze-thaw,and the failure criterion with consideration of the influence of freeze-thaw cycle and sffess ratio were proposed respectively.

  9. On the development of high temperature ammonia-water hybrid absorption-compression heat pumps

    DEFF Research Database (Denmark)

    Jensen, Jonas Kjær; Markussen, Wiebke Brix; Reinholdt, Lars;

    2015-01-01

    Ammonia-water hybrid absorption-compression heat pumps (HACHP) are a promising technology for development of ecient high temperature industrial heat pumps. Using 28 bar components HACHPs up to 100 °C are commercially available. Components developed for 50 bar and 140 bar show that these pressure ......, and 140 bar up to 147 °C. If the compressor discharge temperature limit is increased to 250 °C and the vapour water content constraint is removed, this becomes: 182 °C, 193 °C and 223 °C....

  10. High Resolution Pulse Compression Imaging Using Super Resolution FM-Chirp Correlation Method (SCM)

    Science.gov (United States)

    Fujiwara, M.; Okubo, K.; Tagawa, N.

    This study addresses the issue of the super-resolution pulse compression technique (PCT) for ultrasound imaging. Time resolution of multiple ultrasonic echoes using the FM-Chirp PCT is limited by the bandwidth of the sweep-frequency. That is, the resolution depends on the sharpness of auto-correlation function. We propose the Super resolution FM-Chirp correlation Method (SCM) and evaluate its performance. This method is based on the multiple signal classification (MUSIC) algorithm. Our simulations were made for the model assuming multiple signals reflected from some scatterers. We confirmed that SCM detects time delay of complicated reflected signals successfully with high resolution.

  11. Strain-induced microstructural rearrangement in ultra-high molecular weight polyethylene for hip joints: A comparison between conventional and vitamin E-infused highly-crosslinked liners.

    Science.gov (United States)

    Takahashi, Yasuhito; Yamamoto, Kengo; Shishido, Takaaki; Masaoka, Toshinori; Tateiwa, Toshiyuki; Puppulin, Leonardo; Pezzotti, Giuseppe

    2014-03-01

    Infusion of vitamin E (α-tocopherol) in highly crosslinked ultra-high molecular weight polyethylene (UHMWPE) liners has been conceived to achieve superior oxidation stability while preserving enhanced mechanical properties as compared to post-irradiation remelted liners. However, the presence of an antioxidant in the material microstructure brings an issue of concern in whether a "foreign substance" might reduce radiation crosslinking efficiency and/or change microstructural characteristics by diffusing into UHMWPE. The key to clarify this fundamental issue resides in performing a quantitative evaluation of the obtained material structure and its polymeric chain mobility on the molecular scale. In this paper, a Raman spectroscopic examination is presented of molecular orientation and phase fractions in as-processed vitamin E-infused UHMWPE acetabular liners in comparison with a model (undoped and unirradiated/uncrosslinked) and a conventional (undoped and 33kGy-sterilized by gamma-irradiation) UHMWPE liners. The microstructural responses of structurally different liners to externally applied compressive strain were also monitored. The main results of the spectroscopic analyses can be summarized as follows: (i) preliminary gamma irradiation reduced the fraction of amorphous phase and increased the degree of molecular alignment, the vitamin E-infused liner preserving the crystallinity level achieved by the 100-kGy irradiation injected before infusion; (ii) the presence of vitamin E significantly promoted orientational randomness, which increased with increasing compressive strain magnitude, a phenomenon beneficial to minimize strain-softening-assisted wear phenomena.

  12. 混凝土高温动态压缩力学性能实验%Experimental investigation on dynamic compression mechanical performance of concrete at high temperature

    Institute of Scientific and Technical Information of China (English)

    陶俊林; 秦李波; 李奎; 刘丹; 贾彬; 陈小伟; 陈刚

    2011-01-01

    利用一种新的快速加热混凝土的方法和SHPB实验系统对自制混凝土进行了不同温度下的动态压缩初步实验,发现了混凝土在高温下的动态压缩力学性能的规律性:在高温动态压缩条件下,温度变化是影响混凝土力学性能的主要因素,应变率的影响是次要因素.另外,该混凝土高温动态压缩破坏可以分为2种模式(裂纹模式和破碎模式).%An experimental setup was developed for rapid heating up concrete based on the principle of microwave heating and concrete specimens were manufactured. Dynamic compression experiments were conducted for the manufactured concrete specimens by using a split Hopkinson pressure bar system at different temperatures. The experimental results show that temperature is the primary factor for influencing the dynamic compression mechanical performance of concrete at high temperature and strain rate is the minor factor. Under dynamic compression, the concrete damage at high temperature can be divided into crack and fracture modes.

  13. Compressive strain-dependent bending strength property of Al{sub 2}O{sub 3}-ZrO{sub 2} (1.5 mol% Y{sub 2}O{sub 3}) composites performance by HIP

    Energy Technology Data Exchange (ETDEWEB)

    Reyes-Rojas, A. [Centro de Investigacion en Materiales Avanzados S.C. (CIMAV), Miguel de Cervantes 120, Complejo Industrial Chihuahua, Cd. de Chihuahua, Chihuahua (Mexico)], E-mail: armando_reyesmx@yahoo.com.mx; Esparza-Ponce, H. [Centro de Investigacion en Materiales Avanzados S.C. (CIMAV), Miguel de Cervantes 120, Complejo Industrial Chihuahua, Cd. de Chihuahua, Chihuahua (Mexico); De la Torre, S.D. [Centro de Investigacion e Innovacion Tecnologica (CIITEC)-IPN, D.F. Mexico (Mexico); Torres-Moye, E. [Centro de Investigacion en Materiales Avanzados S.C. (CIMAV), Miguel de Cervantes 120, Complejo Industrial Chihuahua, Cd. de Chihuahua, Chihuahua (Mexico)

    2009-04-15

    Nanometric powders and sintered ceramics of Al{sub 2}O{sub 3}-ZrO{sub 2} (1.5 mol% Y{sub 2}O{sub 3}) prepared by hot isostatic pressing HIP have been studied. A detailed crystallographic study has been performed through X-ray diffraction, Williamson-Hall method, Rietveld method and high-resolution electron microscopy HREM analysis. The crystallographic structure data, such as domain size, lattice parameters, wt% phase, and micro-strain direction have been obtained using Rietveld refinement and Williamson-Hall methods. The results revealed that the compressive strain ({epsilon}) increased from 0.56 to 1.18 (10{sup -3}) as the t-ZrO{sub 2} content increased too. The HREM interface study conducted along the [0 0 0 1]Al{sub 2}O{sub 3}||[0 0 1]ZrO{sub 2} zone axis revealed a micro-strain lattice distortion accumulated at the grain boundary due to the ZrO{sub 2} martensitic phase transformation on cooling, t-ZrO{sub 2} grains coalescence and to the grain growth of {alpha}-Al{sub 2}O{sub 3} which cause elongated tetragonal crystals. Micro-strain lattice distortion is adjusted by the shear displacements of the planes (1 1 0) and (11-bar0) along [1-bar10] and [1-bar1-bar0] crystallographic directions, respectively; these planes are arrested by the (101-bar0) alumina plane. In this case, semi-coherent interfaces were observed along the grain boundary. It is verified that the bending strength increased in connection with the strain accumulation and amount of tetragonal structure.

  14. HIGH-ORDER I-STABLE CENTERED DIFFERENCE SCHEMES FOR VISCOUS COMPRESSIBLE FLOWS

    Institute of Scientific and Technical Information of China (English)

    Weizhu Bao; Shi Jin

    2003-01-01

    In this paper we present high-order I-stable centered difference schemes for the numer-ical simulation of viscous compressible flows. Here I-stability refers to time discretizationswhose linear stability regions contain part of the imaginary axis. This class of schemeshas a numerical stability independent of the cell-Reynolds number Rc, thus allows one tosimulate high Reynolds number flows with relatively larger Rc, or coarser grids for a fixedRc. On the other hand, Rc cannot be arbitrarily large if one tries to obtain adequatenumerical resolution of the viscous behavior. We investigate the behavior of high-orderI-stable schemes for Burgers' equation and the compressible Navier-Stokes equations. Wedemonstrate that, for the second order scheme, Rc ≤ 3 is an appropriate constraint for nu-merical resolution of the viscous profile, while for the fourth-order schemes the constraintcan be relaxed to Rc ≤ 6. Our study indicates that the fourth order scheme is preferable:better accuracy, higher resolution, and larger cell-Reynolds numbers.

  15. Development of ultra-lightweight slurries with high compressive strength for use in oil wells

    Energy Technology Data Exchange (ETDEWEB)

    Suzart, J. Walter P. [Halliburton Company, Houston, TX (United States); Farias, A.C. [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil); Ribeiro, Danilo; Fernandes, Thiago; Santos, Reened [Halliburton Energy Services Aberdeen, Scotland (United Kingdom)

    2008-07-01

    Formations with low fracture gradients or depleted reservoirs often lead to difficult oil well cementing operations. Commonly employed cement slurries (14.0 to 15.8 lb/gal), generate an equivalent circulating density (ECD) higher than the fracture gradient and ultimately lead to formation damage, lost circulation and a decreased top of cement. Given the high price of oil, companies are investing in those and other wells that are difficult to explore. Naturally, lightweight cement slurries are used to reduce the ECD (10.0 to 14.0 lb/gal), using additives to trap water and stabilize the slurry. However, when the density reaches 11.0 lb/gal, the increase in water content may cause a change in characteristics. The focus of this study is extreme cases where it is necessary to employ ultra-lightweight cement slurries (5.5 to 10.0 lb/gal). Foamed slurries have been widely used, and the objective is to set an alternative by developing cement slurries containing uncompressible microspheres, aiming for a density of 7.5 lb/gal as well as high compressive strength. Another benefit in contrast to preparing foamed cement slurries is that there is no requirement for special equipment in the field. Routine laboratory tests such as fluid-loss control, sedimentation, thickening time, free water, compressive strength, and rheology (at room and high temperatures) were performed. Thus, it was concluded that the proposed cement slurries can be used in oil wells. (author)

  16. Visualizing fast electron energy transport into laser-compressed high-density fast-ignition targets

    Science.gov (United States)

    Jarrott, L. C.; Wei, M. S.; McGuffey, C.; Solodov, A. A.; Theobald, W.; Qiao, B.; Stoeckl, C.; Betti, R.; Chen, H.; Delettrez, J.; Döppner, T.; Giraldez, E. M.; Glebov, V. Y.; Habara, H.; Iwawaki, T.; Key, M. H.; Luo, R. W.; Marshall, F. J.; McLean, H. S.; Mileham, C.; Patel, P. K.; Santos, J. J.; Sawada, H.; Stephens, R. B.; Yabuuchi, T.; Beg, F. N.

    2016-05-01

    Recent progress in kilojoule-scale high-intensity lasers has opened up new areas of research in radiography, laboratory astrophysics, high-energy-density physics, and fast-ignition (FI) laser fusion. FI requires efficient heating of pre-compressed high-density fuel by an intense relativistic electron beam produced from laser-matter interaction. Understanding the details of electron beam generation and transport is crucial for FI. Here we report on the first visualization of fast electron spatial energy deposition in a laser-compressed cone-in-shell FI target, facilitated by doping the shell with copper and imaging the K-shell radiation. Multi-scale simulations accompanying the experiments clearly show the location of fast electrons and reveal key parameters affecting energy coupling. The approach provides a more direct way to infer energy coupling and guide experimental designs that significantly improve the laser-to-core coupling to 7%. Our findings lay the groundwork for further improving efficiency, with 15% energy coupling predicted in FI experiments using an existing megajoule-scale laser driver.

  17. Microscopic Strain Mapping in Nanostructured and Microstructured Alumina-Titania Coatings Under 4-point Compressive and Tensile Bending

    Science.gov (United States)

    2010-06-01

    resistance, including resistance to build-up of deposits from sea salts; - Mechanical wear resistance; - Spallation / cracking / chipping resistance...indentation crack resistance, adhesion strength, spallation resistance against bend- and cut test, abrasive wear resistance, sliding wear resistance. XRD...this area are explicitly destructive and involve theoretical modeling of the strain fields accompanying material removal (e.g. hole drilling and

  18. High-energy-throughput pulse compression by off-axis group-delay compensation in a laser-induced filament

    Energy Technology Data Exchange (ETDEWEB)

    Voronin, A. A. [Physics Department, International Laser Center, M. V. Lomonosov Moscow State University, Moscow 119992 (Russian Federation); Alisauskas, S.; Muecke, O. D.; Pugzlys, A.; Baltuska, A. [Photonics Institute, Vienna University of Technology, Gusshausstrasse 27-387, 1040 Vienna (Austria); Zheltikov, A. M. [Physics Department, International Laser Center, M. V. Lomonosov Moscow State University, Moscow 119992 (Russian Federation); Department of Physics and Astronomy, Texas A and M University, College Station, Texas 77843-3257 (United States)

    2011-08-15

    Off-axial beam dynamics of ultrashort laser pulses in a filament enable a radical energy-throughput improvement for filamentation-assisted pulse compression. We identify regimes where a weakly diverging wave, produced on the trailing edge of the pulse, catches up with a strongly diverging component, arising in the central part of the pulse, allowing sub-100-fs millijoule infrared laser pulses to be compressed to 20-25-fs pulse widths with energy throughputs in excess of 70%. Theoretical predictions have been verified by experimental results on filamentation-assisted compression of 70-fs, 1.5-{mu}m laser pulses in high-pressure argon.

  19. Compression of fiber supercontinuum pulses to the Fourier-limit in a high-numerical-aperture focus

    DEFF Research Database (Denmark)

    Tu, Haohua; Liu, Yuan; Turchinovich, Dmitry

    2011-01-01

    A multiphoton intrapulse interference phase scan (MIIPS) adaptively and automatically compensates the combined phase distortion from a fiber supercontinuum source, a spatial light modulator pulse shaper, and a high-NA microscope objective, allowing Fourier-transform-limited compression...... of the supercontinuum pulses at the focus of the objective. A second-harmonic-generation-based method is employed to independently validate the transform-limited compression. The compressed pulses at the focus of the objective have a tunable duration of 10:8–38:9 fs (FWHM), a central wavelength of ∼1020nm, an average...

  20. Thermal behavior of Nickel deformed to ultra-high strain by high pressure torsion

    DEFF Research Database (Denmark)

    Zhang, Hongwang; Huang, Xiaoxu; Pippan, Richard

    2012-01-01

    Polycrystalline Ni (99.5 %) has been deformed to an ultra-high strain of εvM=100 (εvM, von Mises strain) by high pressure torsion (HPT) at room temperature. The deformed sample is nanostructured with an average boundary spacing of 90 nm, a high density of dislocations of >1015m-2 and a large....... The isochronal annealing leads to a hardness drop in three stages: a relatively small decrease at low temperatures (recovery) followed by a rapid decrease at intermediate temperatures (discontinuous recrystallization) and a slow decrease at high temperatures (grain growth). Due to the presence of a small amount...

  1. Growth strains and stress relaxation in alumina scales during high temperature oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Hou, P.Y.; Paulikas, A.P.; Veal, B.W.

    2004-03-23

    A novel X-ray technique was used, exploiting synchrotron radiation at the Advanced Photon Source at Argonne National Laboratory, to investigate the growth stresses in {alpha}-Al{sub 2}O{sub 3}. In-situ measurements of Debye-Scherrer diffraction patterns from the scale were recorded during oxidation and cooling, and the elliptical distortion of the diffraction rings was analyzed to yield the in-plane strain. Fe-28Al, Fe-40Al, Fe-40Al-0.2Hf, Fe-20Cr-10Al and Ni-50Al (at. %) were studied. Data were acquired in air at temperatures between 950-1100 C and during cool down. In all cases, the steady stage growth strain was relatively low (<0.1%) and was either tensile or compressive depending on the alloy. A higher tensile strain often existed during the initial oxidation period when transition alumina was present. Thermal stresses imposed on NiAl by reducing the sample temperature to 950 C for a period of time showed noticeable stress relaxation by creep. Different degrees of relaxation were also found during cooling depending on alloy composition and scale microstructure. On all Fe-based alloys, the first formed {alpha}-Al{sub 2}O{sub 3} was highly textured with the degree of texture decreasing with further oxidation. The relationships between stress development, scale wrinkling, oxide phase changes, and the effect of reactive element addition on growth stresses are discussed. Results are compared with other reports of growth stresses in Al{sub 2}O{sub 3} scales.

  2. Using Omega and NIF to Advance Theories of High-Pressure, High-Strain-Rate Tantalum Plastic Flow

    Science.gov (United States)

    Rudd, R. E.; Arsenlis, A.; Barton, N. R.; Cavallo, R. M.; Huntington, C. M.; McNaney, J. M.; Orlikowski, D. A.; Park, H.-S.; Prisbrey, S. T.; Remington, B. A.; Wehrenberg, C. E.

    2015-11-01

    Precisely controlled plasmas are playing an important role as both pump and probe in experiments to understand the strength of solid metals at high energy density (HED) conditions. In concert with theory, these experiments have enabled a predictive capability to model material strength at Mbar pressures and high strain rates. Here we describe multiscale strength models developed for tantalum and vanadium starting with atomic bonding and extending up through the mobility of individual dislocations, the evolution of dislocation networks and so on up to full scale. High-energy laser platforms such as the NIF and the Omega laser probe ramp-compressed strength to 1-5 Mbar. The predictions of the multiscale model agree well with the 1 Mbar experiments without tuning. The combination of experiment and theory has shown that solid metals can behave significantly differently at HED conditions; for example, the familiar strengthening of metals as the grain size is reduced has been shown not to occur in the high pressure experiments. Work performed under the auspices of the U.S. Dept. of Energy by Lawrence Livermore National Lab under contract DE-AC52-07NA273.

  3. Engineering the periodontal ligament in hyaluronan-gelatin-type I collagen constructs: upregulation of apoptosis and alterations in gene expression by cyclic compressive strain.

    Science.gov (United States)

    Saminathan, Aarthi; Sriram, Gopu; Vinoth, Jayasaleen Kumar; Cao, Tong; Meikle, Murray C

    2015-02-01

    To engineer constructs of the periodontal ligament (PDL), human PDL cells were incorporated into a matrix of hyaluronan, gelatin, and type I collagen (COLI) in sample holders (13×1 mm) of six-well Biopress culture plates. The loading dynamics of the PDL were mimicked by applying a cyclic compressive strain of 33.4 kPa (340.6 gm/cm(2)) to the constructs for 1.0 s every 60 s, for 6, 12, and 24 h in a Flexercell FX-4000C Strain Unit. Compression significantly increased the number of nonviable cells and increased the expression of several apoptosis-related genes, including initiator and executioner caspases. Of the 15 extracellular matrix genes screened, most were upregulated at some point after 6-12 h deformation, but all were downregulated at 24 h, except for MMPs1-3 and CTGF. In culture supernatants, matrix metalloproteinase-1 (MMP-1) and tissue inhibitor of metalloproteinases-1 (TIMP-1) protein levels were upregulated at 24 h; receptor activator of nuclear kappa factor B (RANKL), osteoprotegerin (OPG) and fibroblast growth factor-2 (FGF-2) were unchanged; and connective tissue growth factor (CTGF) not detected. The low modulus of elasticity of the constructs was a disadvantage-future mechanobiology studies and tissue engineering applications will require constructs with much higher stiffness. Since the major structural protein of the PDL is COLI, a more rational approach would be to permeabilize preformed COLI scaffolds with PDL-populated matrices.

  4. Prediction of compression strength of high performance concrete using artificial neural networks

    Science.gov (United States)

    Torre, A.; Garcia, F.; Moromi, I.; Espinoza, P.; Acuña, L.

    2015-01-01

    High-strength concrete is undoubtedly one of the most innovative materials in construction. Its manufacture is simple and is carried out starting from essential components (water, cement, fine and aggregates) and a number of additives. Their proportions have a high influence on the final strength of the product. This relations do not seem to follow a mathematical formula and yet their knowledge is crucial to optimize the quantities of raw materials used in the manufacture of concrete. Of all mechanical properties, concrete compressive strength at 28 days is most often used for quality control. Therefore, it would be important to have a tool to numerically model such relationships, even before processing. In this aspect, artificial neural networks have proven to be a powerful modeling tool especially when obtaining a result with higher reliability than knowledge of the relationships between the variables involved in the process. This research has designed an artificial neural network to model the compressive strength of concrete based on their manufacturing parameters, obtaining correlations of the order of 0.94.

  5. Environmentally friendly drive for gas compression applications: enhanced design of high-speed induction motors

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, Karina Velloso; Pradurat, Jean Francois; Mercier, Jean Charles [Institut National Polytechncique, Lorrain (France). Converteam Motors Div.; Truchot, Patrick [Nancy Universite (France). Equipe de Recherche sur les Processus Innovatifs (ERPI)

    2008-07-01

    Taking into account the key issues faced by gas compressors users, this paper aims to help optimize the choice of the drive equipment as well as the driven equipment, in function of the cost of the whole installation life cycle. The design of the enhanced high-speed induction motor (MGV-Moteuer a Grande Vitesse) represents a technological breakthrough for the industry, it allows the direct coupling to the compressor, without using a gearbox making the system more efficient and reliable. From both micro and macro-economic viewpoints, the high-speed electric driver becomes a more efficient use of natural gas energy resources. This new technology associated with the electric option offers challenging and rewarding work to those responsible for the operation and maintenance of the compressor station. The electric option is not only conceptually viable but has a proven track record that justifies serious consideration as an alternative for reliably powering. Once an operator becomes comfortable with the prospects of motor-driven compression, the analysis of machine options requires only a few new approaches to fairly evaluate the alternatives. The application of this reasoning in projects using compression units is especially opportune, in view of the great variations of operational conditions and environmental issues. (author)

  6. Single stock dynamics on high-frequency data: from a compressed coding perspective.

    Directory of Open Access Journals (Sweden)

    Hsieh Fushing

    Full Text Available High-frequency return, trading volume and transaction number are digitally coded via a nonparametric computing algorithm, called hierarchical factor segmentation (HFS, and then are coupled together to reveal a single stock dynamics without global state-space structural assumptions. The base-8 digital coding sequence, which is capable of revealing contrasting aggregation against sparsity of extreme events, is further compressed into a shortened sequence of state transitions. This compressed digital code sequence vividly demonstrates that the aggregation of large absolute returns is the primary driving force for stimulating both the aggregations of large trading volumes and transaction numbers. The state of system-wise synchrony is manifested with very frequent recurrence in the stock dynamics. And this data-driven dynamic mechanism is seen to correspondingly vary as the global market transiting in and out of contraction-expansion cycles. These results not only elaborate the stock dynamics of interest to a fuller extent, but also contradict some classical theories in finance. Overall this version of stock dynamics is potentially more coherent and realistic, especially when the current financial market is increasingly powered by high-frequency trading via computer algorithms, rather than by individual investors.

  7. Single stock dynamics on high-frequency data: from a compressed coding perspective.

    Science.gov (United States)

    Fushing, Hsieh; Chen, Shu-Chun; Hwang, Chii-Ruey

    2014-01-01

    High-frequency return, trading volume and transaction number are digitally coded via a nonparametric computing algorithm, called hierarchical factor segmentation (HFS), and then are coupled together to reveal a single stock dynamics without global state-space structural assumptions. The base-8 digital coding sequence, which is capable of revealing contrasting aggregation against sparsity of extreme events, is further compressed into a shortened sequence of state transitions. This compressed digital code sequence vividly demonstrates that the aggregation of large absolute returns is the primary driving force for stimulating both the aggregations of large trading volumes and transaction numbers. The state of system-wise synchrony is manifested with very frequent recurrence in the stock dynamics. And this data-driven dynamic mechanism is seen to correspondingly vary as the global market transiting in and out of contraction-expansion cycles. These results not only elaborate the stock dynamics of interest to a fuller extent, but also contradict some classical theories in finance. Overall this version of stock dynamics is potentially more coherent and realistic, especially when the current financial market is increasingly powered by high-frequency trading via computer algorithms, rather than by individual investors.

  8. Two-dimensional lattice Boltzmann model for compressible flows with high Mach number

    Science.gov (United States)

    Gan, Yanbiao; Xu, Aiguo; Zhang, Guangcai; Yu, Xijun; Li, Yingjun

    2008-03-01

    In this paper we present an improved lattice Boltzmann model for compressible Navier-Stokes system with high Mach number. The model is composed of three components: (i) the discrete-velocity-model by M. Watari and M. Tsutahara [Phys. Rev. E 67 (2003) 036306], (ii) a modified Lax-Wendroff finite difference scheme where reasonable dissipation and dispersion are naturally included, (iii) artificial viscosity. The improved model is convenient to compromise the high accuracy and stability. The included dispersion term can effectively reduce the numerical oscillation at discontinuity. The added artificial viscosity helps the scheme to satisfy the von Neumann stability condition. Shock tubes and shock reflections are used to validate the new scheme. In our numerical tests the Mach numbers are successfully increased up to 20 or higher. The flexibility of the new model makes it suitable for tracking shock waves with high accuracy and for investigating nonlinear nonequilibrium complex systems.

  9. A high-compression electron gun for C6+ production: concept, simulations and mechanical design

    Science.gov (United States)

    Mertzig, Robert; Breitenfeldt, M.; Mathot, S.; Pitters, J.; Shornikov, A.; Wenander, F.

    2017-07-01

    In this paper we report on simulations and the mechanical design of a high-compression electron gun for an Electron Beam Ion Source (EBIS) dedicated for production of high intensity and high repetition rate pulses of bare carbon ions for injection into linac-based hadron therapy facilities. The gun is presently under construction at CERN to be retrofitted into the TwinEBIS test bench for experimental studies. We describe the design constraints, show results of numeric simulations and report on the mechanical design featuring several novel ideas. The reported design makes use of combined-function units with reduced number of mechanical joints that were carefully controlled and tuned during the manufacturing phase. The simulations addressed a wide range of topics including the influence of thermal effects, focusing optics, symmetry-breaking misalignments and injection into a full 5 T field.

  10. Identification of high shears and compressive discontinuities in the inner heliosphere

    Energy Technology Data Exchange (ETDEWEB)

    Greco, A.; Perri, S. [Dipartimento di Fisica, Universitá della Calabria, I-87036 Rende (CS) (Italy)

    2014-04-01

    Two techniques, the Partial Variance of Increments (PVI) and the Local Intermittency Measure (LIM), have been applied and compared using MESSENGER magnetic field data in the solar wind at a heliocentric distance of about 0.3 AU. The spatial properties of the turbulent field at different scales, spanning the whole inertial range of magnetic turbulence down toward the proton scales have been studied. LIM and PVI methodologies allow us to identify portions of an entire time series where magnetic energy is mostly accumulated, and regions of intermittent bursts in the magnetic field vector increments, respectively. A statistical analysis has revealed that at small time scales and for high level of the threshold, the bursts present in the PVI and the LIM series correspond to regions of high shear stress and high magnetic field compressibility.

  11. A Compressible High-Order Unstructured Spectral Difference Code for Stratified Convection in Rotating Spherical Shells

    CERN Document Server

    Wang, Junfeng; Miesch, Mark S

    2015-01-01

    We present a novel and powerful Compressible High-ORder Unstructured Spectral-difference (CHORUS) code for simulating thermal convection and related fluid dynamics in the interiors of stars and planets. The computational geometries are treated as rotating spherical shells filled with stratified gas. The hydrodynamic equations are discretized by a robust and efficient high-order Spectral Difference Method (SDM) on unstructured meshes. The computational stencil of the spectral difference method is compact and advantageous for parallel processing. CHORUS demonstrates excellent parallel performance for all test cases reported in this paper, scaling up to 12,000 cores on the Yellowstone High-Performance Computing cluster at NCAR. The code is verified by defining two benchmark cases for global convection in Jupiter and the Sun. CHORUS results are compared with results from the ASH code and good agreement is found. The CHORUS code creates new opportunities for simulating such varied phenomena as multi-scale solar co...

  12. In-Situ Welding Carbon Nanotubes into a Porous Solid with Super-High Compressive Strength and Fatigue Resistance

    OpenAIRE

    2015-01-01

    Carbon nanotube (CNT) and graphene-based sponges and aerogels have an isotropic porous structure and their mechanical strength and stability are relatively lower. Here, we present a junction-welding approach to fabricate porous CNT solids in which all CNTs are coated and welded in situ by an amorphous carbon layer, forming an integral three-dimensional scaffold with fixed joints. The resulting CNT solids are robust, yet still highly porous and compressible, with compressive strengths up to 72...

  13. The high strain-rate behaviour of selected tissue analogues.

    Science.gov (United States)

    Appleby-Thomas, G J; Hazell, P J; Sheldon, R P; Stennett, C; Hameed, A; Wilgeroth, J M

    2014-05-01

    The high strain-rate response of four readily available tissue simulants has been investigated via plate-impact experiments. Comparison of the shock response of gelatin, ballistic soap (both sub-dermal tissue simulants), lard (adipose layers) and Sylgard(®) (a potential brain simulant) allowed interrogation of the applicability of such monolithic tissue surrogates in the ballistic regime. The gelatin and lard exhibited classic linear Hugoniot equations-of-state in the US-uP plane; while for the ballistic soap and Sylgard(®) a polymer-like non-linear response was observed. In the P/σX-v/v0 plane there was evidence of separation of the simulant materials into distinct groups, suggesting that a single tissue simulant is inadequate to ensure a high-fidelity description of the high strain-rate response of complex mammalian tissue. Gelatin appeared to behave broadly hydrodynamically, while soap, lard and Sylgard(®) were observed to strengthen in a material-dependent manner under specific loading conditions at elevated shock loading pressures/stresses. This strengthening behaviour was tentatively attributed to a further polymeric-like response in the form of a re-arrangement of the molecular chains under loading (a steric effect). In addition, investigation of lateral stress data from the literature showed evidence of operation of a material-independent strengthening mechanism when these materials were stressed above 2.5-3.0GPa, tentatively linked to the generically polymeric-like underlying microstructure of the simulants under consideration.

  14. Constitutive modeling and understanding of the hot compressive deformation of Mg-9.5Zn-2.0Y magnesium alloy with reduced number of strain-dependent constitutive parameters

    Science.gov (United States)

    Kim, Woo Jin; Kwak, Tae Yang

    2017-07-01

    The hot compressive flow behavior of the cast Mg-9.5Zn-2.0Y alloy as a function of strain was analyzed, and the degree of dependence of the parameters ( A: material constant, n 2: stress exponent, Q c: activation energy for plastic flow and α: stress multiplier) of the constitutive equation (\\dot ɛ = A{[ {sinh ( {α σ } )} ]^{{n_2}}}\\exp ( {{ - {Q_c}}/{RT}} )) upon the strain was examined in a systematic manner. This is to explore the possibility of representing the hot compressive deformation behavior of metallic alloys in a simple way by using a reduced number of strain-dependent constitutive parameters. The analysis results for several different cases can be interpreted as follows: (1) Q c can be treated as being strain-independent, which is physically sensible; (2) while only the microstructure changes as a function of strain at low flow stresses, as the flow stress increases, the power-law creep deformation and power-law breakdown mechanisms change; (3) the regime where only A is strain dependent expanded to higher strain rates and lower temperatures as the strain increased, suggesting that the number of the strain-dependent parameters decreases as the initial microstructure is refined by dynamic recrystallization, and the microstructure approaches a steady state.

  15. Laser-engraved carbon nanotube paper for instilling high sensitivity, high stretchability, and high linearity in strain sensors

    KAUST Repository

    Xin, Yangyang

    2017-06-29

    There is an increasing demand for strain sensors with high sensitivity and high stretchability for new applications such as robotics or wearable electronics. However, for the available technologies, the sensitivity of the sensors varies widely. These sensors are also highly nonlinear, making reliable measurement challenging. Here we introduce a new family of sensors composed of a laser-engraved carbon nanotube paper embedded in an elastomer. A roll-to-roll pressing of these sensors activates a pre-defined fragmentation process, which results in a well-controlled, fragmented microstructure. Such sensors are reproducible and durable and can attain ultrahigh sensitivity and high stretchability (with a gauge factor of over 4.2 × 10(4) at 150% strain). Moreover, they can attain high linearity from 0% to 15% and from 22% to 150% strain. They are good candidates for stretchable electronic applications that require high sensitivity and linearity at large strains.

  16. Assessment of homogeneity of the shear-strain pattern in Al–7 wt%Si casting alloy processed by high-pressure torsion

    Energy Technology Data Exchange (ETDEWEB)

    Cepeda-Jiménez, C.M., E-mail: carmen.cepeda@imdea.org [Department of Physical Metallurgy, CENIM, CSIC, Av. Gregorio del Amo 8, 28040 Madrid (Spain); Orozco-Caballero, A.; García-Infanta, J.M. [Department of Physical Metallurgy, CENIM, CSIC, Av. Gregorio del Amo 8, 28040 Madrid (Spain); Zhilyaev, A.P. [Institute for Metals Superplasticity Problems, Russian Academy of Science, 39 Khalturina, 450001 Ufa (Russian Federation); Ruano, O.A.; Carreño, F. [Department of Physical Metallurgy, CENIM, CSIC, Av. Gregorio del Amo 8, 28040 Madrid (Spain)

    2014-03-01

    An as-cast Al–7 wt%Si alloy was subjected to processing by high-pressure torsion (HPT) at room temperature, through 1/4, 1/2, 1 and 5 turns at a pressure of 6 GPa and two rotation speeds, 0.1 and 1 rpm. Vickers microhardness was measured along diameters of HPT disk surfaces. The final hardness values were higher than in the initial as-cast condition and, unexpectedly, nearly constant under all different processing conditions, and along the disk diameter. The microstructure was characterised by optical and scanning electron microscopy. The as-cast microstructure comprises equiaxed primary α dendrite cells embedded in the Al–Si eutectic constituent. The morphology and distribution of the eutectic constituent in the HPT processed materials is used to delineate the shear strain, which was analysed in the cross-section planes of the disks. A high degree of homogeneity in the imposed shear strain throughout the samples was observed, being congruent with the ideal rigid-body torsion. In addition, the high compressive pressure applied, causing compressive strain prior to the torsional strain, is responsible for the deformation-induced precipitation of small Si particles and for the (sub)grain refinement in the primary Al constituent. The role of torsional strain is that of increasing monothonically the redistribution of the eutectic silicon and the misorientation of the (sub)grains.

  17. High strain rate superplastic aluminium alloys: the way forward?

    Energy Technology Data Exchange (ETDEWEB)

    Grimes, R.; Dashwood, R.J.; Flower, H.M. [Imperial Coll. of Science, Technology and Medicine, London (United Kingdom). Dept. of Materials

    2001-07-01

    The technical and commercial barriers to the development and successful exploitation of a high strain rate superplastically deformable aluminium alloy for use in the automotive industry are considered in this paper. Batch processing routes, such as mechanical alloying or equal channel angular extrusion, employed to deliver appropriate chemistry and structure, are inherently costly and unlikely to deliver either the quantity or the size of strip required commercially. There is evidence that there is still scope for development of conventional casting and rolling routes, but a particulate casting route combined with roll consolidation offers the prospect of a commercially viable Al-Mg-Zr product. The use of alloying additions, including zirconium, is also discussed and comparative costs are presented: on this basis the use of scandium appears economically prohibitive. (orig.)

  18. DEVELOPMENT FOR HIGH PRECISION SIX COMPONENT STRAIN GAUGE BALANCE

    Institute of Scientific and Technical Information of China (English)

    ZHANGZhao-ming; HANBu-zhang

    2004-01-01

    The measurement accuracy of a wind tunnel balance is the key factor to improve the measurement accuracy for a test model in the wind tunnel. In order to improve the measurement accuracy of the wind tunnel balance, a great deal of investigation is carried out in China. This paper summarizes a program to improve the measurement accuracy of wind tunnel balances. In the program, the investigation is carried out in three aspects (1) designing a drag component of the balance in low interactions (2) choosing high quality foil strain gauges with temperature self-compensation (3) choosing the excellent gauges and mounting them meticulously. As an example, these research achievements are applied in a φ18 six component balance. The measurement accuracy of a GB-04 standard model in a transonic wind tunnel with the φ18 six component balance comes up to the advanced world standard.

  19. Influence of curing regimes on compressive strength of ultra high performance concrete

    Indian Academy of Sciences (India)

    Prabhat Ranjan Prem; B H Bharatkumar; Nagesh R Iyer

    2013-12-01

    The present paper is aimed to identify an efficient curing regime for ultra high performance concrete (UHPC), to achieve a target compressive strength more than 150 MPa, using indigenous materials. The thermal regime plays a vital role due to the limited fineness of ingredients and low water/binder ratio. By activation of the reaction kinetics, the effectiveness of the binder is enhanced which leads to improvements in mechanical as well as durability properties. The curing cycle employed are ambient air curing, water curing and hot air curing. The specimens were exposed to thermal regime at (90°C/150°C/200°C) for duration of 24, 48 or 72 hours at the age of 3rd and 7th day followed with air curing or water curing till 28 days. The results showed a marked difference in compressive strength ranging from 217 to 142 MPa with change in curing regimes. The samples when thermally cured at the age of 3rd and 7th day produced an average ultimate strength of 217–152 MPa and 196–150 MPa, respectively.

  20. Prediction of mechanical properties of compacted binary mixtures containing high-dose poorly compressible drug.

    Science.gov (United States)

    Patel, Sarsvatkumar; Bansal, Arvind Kumar

    2011-01-17

    The aim of the study was to develop, compare and validate predictive model for mechanical property of binary systems. The mechanical properties of binary mixtures of ibuprofen (IBN) a poorly compressible high dose drug, were studied in presence of different excipients. The tensile strength of tablets of individual components viz. IBN, microcrystalline cellulose (MCC), and dicalcium phosphate dihydrate (DCP) and binary mixtures of IBN with excipients was measured at various relative densities. Prediction of the mechanical property of binary mixtures, from that of single components, was attempted using Ryshkewitch-Duckworth (R-D) and Percolation theory, by assuming a linear mixing rule or a power law mixing rule. The models were compared, and the best model was proposed based on the distribution of residuals and the Akaike's information criterion. Good predictions were obtained with the power law combined with linear mixing rule, using R-D and Percolation models. The results indicated that the proposed model can well predict the mechanical properties of binary system containing predominantly poorly compressible drug candidate. The predictions of these models and conclusions can be systematically generalized to other pharmaceutical powders.

  1. Fast implementation for compressive recovery of highly accelerated cardiac cine MRI using the balanced sparse model.

    Science.gov (United States)

    Ting, Samuel T; Ahmad, Rizwan; Jin, Ning; Craft, Jason; Serafim da Silveira, Juliana; Xue, Hui; Simonetti, Orlando P

    2017-04-01

    Sparsity-promoting regularizers can enable stable recovery of highly undersampled magnetic resonance imaging (MRI), promising to improve the clinical utility of challenging applications. However, lengthy computation time limits the clinical use of these methods, especially for dynamic MRI with its large corpus of spatiotemporal data. Here, we present a holistic framework that utilizes the balanced sparse model for compressive sensing and parallel computing to reduce the computation time of cardiac MRI recovery methods. We propose a fast, iterative soft-thresholding method to solve the resulting ℓ1-regularized least squares problem. In addition, our approach utilizes a parallel computing environment that is fully integrated with the MRI acquisition software. The methodology is applied to two formulations of the multichannel MRI problem: image-based recovery and k-space-based recovery. Using measured MRI data, we show that, for a 224 × 144 image series with 48 frames, the proposed k-space-based approach achieves a mean reconstruction time of 2.35 min, a 24-fold improvement compared a reconstruction time of 55.5 min for the nonlinear conjugate gradient method, and the proposed image-based approach achieves a mean reconstruction time of 13.8 s. Our approach can be utilized to achieve fast reconstruction of large MRI datasets, thereby increasing the clinical utility of reconstruction techniques based on compressed sensing. Magn Reson Med 77:1505-1515, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  2. Compressive inverse scattering: I. High-frequency SIMO/MISO and MIMO measurements

    Science.gov (United States)

    Fannjiang, Albert C.

    2010-03-01

    Inverse scattering from discrete targets with the single-input-multiple-output (SIMO), multiple-input-single-output (MISO) or multiple-input-multiple-output (MIMO) measurements is analyzed by compressed sensing theory with and without the Born approximation. High-frequency analysis of (probabilistic) recoverability by the L1-based minimization/regularization principles is presented. In the absence of noise, it is shown that the L1-based solution can recover exactly the target of sparsity up to the dimension of the data either with the MIMO measurement for the Born scattering or with the SIMO/MISO measurement for the exact scattering. The stability with respect to noisy data is proved for weak or widely separated scatterers. Reciprocity between the SIMO and MISO measurements is analyzed. Finally a coherence bound (and the resulting recoverability) is proved for diffraction tomography with high-frequency, few-view and limited-angle SIMO/MISO measurements.

  3. Compressibility anomaly in the superconducting material Nb{sub 3}Al under high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Z.H., E-mail: zhenhaiuy@gmail.com [Department of Physics, Harbin Institute of Technology, Harbin 150080 (China); XSD, Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439 (United States); Li, C.Y. [Department of Physics, Harbin Institute of Technology, Harbin 150080 (China); Photon Sciences Directorate, Brookhaven National Laboratory, Upton, NY 11973 (United States); Liu, H.Z. [Natural Science Research Center, Harbin Institute of Technology, Harbin 150080 (China)

    2012-09-01

    Nb{sub 3}Al, which is widely used in high field magnets, was studied under a range of pressures up to 39.5 GPa using diamond anvil cell. The Nb{sub 3}Al superconductor is structurally stable up to the highest pressure of the present investigation from previous reports. However, an anomaly of the compressibility beyond 19.2 GPa was detected in the pressure versus volume plot. The curve of volume versus pressure shows the existence of a plateau around 18.0 GPa as seen in several other highly correlated electrons systems, The observed pressure-induced isostructural phase transition was accomplished with a volume inclination without any symmetrical change (space group, Wyckoff position). The physical mechanism behind this isostructural phase transition is the interesting issue for further studies.

  4. Compression and strong rarefaction in high power impulse magnetron sputtering discharges

    Energy Technology Data Exchange (ETDEWEB)

    Horwat, David; Anders, Andre

    2010-11-11

    Gas compression and strong rarefaction have been observed for high power impulse magnetron sputtering (HIPIMS) discharges using a copper target in argon. Time-resolved ion saturation currents of 35 probes were simultaneously recorded for HIPIMS discharges operating far above the self-sputtering runaway threshold. The argon background pressure was a parameter for the evaluation of the spatial and temporal development of the plasma density distribution. The data can be interpreted by a massive onset of the sputtering flux (sputter wind) that causes a transient densification of the gas, followed by rarefaction and the replacement of gas plasma by the metal plasma of sustained self-sputtering. The plasma density pulse follows closely the power pulse at low pressure. At high pressure, the relatively remote probes recorded a density peak only after the discharge pulse, indicative for slow, diffusive ion transport.

  5. Impact of compression on gas transport in non-woven gas diffusion layers of high temperature polymer electrolyte fuel cells

    Science.gov (United States)

    Froning, Dieter; Yu, Junliang; Gaiselmann, Gerd; Reimer, Uwe; Manke, Ingo; Schmidt, Volker; Lehnert, Werner

    2016-06-01

    Gas transport in non-woven gas diffusion layers of a high-temperature polymer electrolyte fuel cell was calculated with the Lattice Boltzmann method. The underlying micro structure was taken from two sources. A real micro structure was analyzed in the synchrotron under the impact of a compression mask mimicking the channel/rib structure of a flow field. Furthermore a stochastic geometry model based on synchrotron X-ray tomography studies was applied. The effect of compression is included in the stochastic model. Gas transport in these micro structures was simulated and the impact of compression was analyzed. Fiber bundles overlaying the micro structure were identified which affect the homogeneity of the gas flow. There are significant deviations between the impact of compression on effective material properties for this type of gas diffusion layers and the Kozeny-Carman equation.

  6. Structure, compressibility factor, and dynamics of highly size-asymmetric binary hard-disk liquids.

    Science.gov (United States)

    Xu, Wen-Sheng; Sun, Zhao-Yan; An, Li-Jia

    2012-09-14

    By using event-driven molecular dynamics simulation, we investigate effects of varying the area fraction of the smaller component on structure, compressibility factor, and dynamics of the highly size-asymmetric binary hard-disk liquids. We find that the static pair correlations of the large disks are only weakly perturbed by adding small disks. The higher-order static correlations of the large disks, by contrast, can be strongly affected. Accordingly, the static correlation length deduced from the bond-orientation correlation functions first decreases significantly and then tends to reach a plateau as the area fraction of the small disks increases. The compressibility factor of the system first decreases and then increases upon increasing the area fraction of the small disks and separating different contributions to it allows to rationalize this non-monotonic phenomenon. Furthermore, adding small disks can influence dynamics of the system in quantitative and qualitative ways. For the large disks, the structural relaxation time increases monotonically with increasing the area fraction of the small disks at low and moderate area fractions of the large disks. In particular, "reentrant" behavior appears at sufficiently high area fractions of the large disks, strongly resembling the reentrant glass transition in short-ranged attractive colloids and the inverted glass transition in binary hard spheres with large size disparity. By tuning the area fraction of the small disks, relaxation process for the small disks shows concave-to-convex crossover and logarithmic decay behavior, as found in other binary mixtures with large size disparity. Moreover, diffusion of both species is suppressed by adding small disks. Long-time diffusion for the small disks shows power-law-like behavior at sufficiently high area fractions of the small disks, which implies precursors of a glass transition for the large disks and a localization transition for the small disks. Therefore, our results

  7. The entropy of the rotational conformations of (poly)isoprene molecules and its relationship to rubber elasticity and temperature increase for moderate tensile or compressive strains

    Science.gov (United States)

    Hanson, David E.; Barber, John L.; Subramanian, Gopinath

    2013-12-01

    Molecular networks comprised of crosslinked cis-1,4 polyisoprene, often referred to as "natural rubber," are one of the most common systems for the study of rubber elasticity. Under moderate tensile or compressive strain, network chains begin to assume straighter paths, as local molecular kinks are removed. Isoprene units along the chain backbone are mechanically forced from their equilibrium distributions of 18 possible rotational states into a smaller subset of states, restricted to more linear conformations with the greatest end-to-end distances. There are two consequences to this change: both the configurational entropy and average internal energy decrease. We find that the change in entropy, and resulting change in free energy, gives rise to an elastic force. We derive an expression for a chain extension force constant that we have incorporated in an explicit, three-dimensional meso-scale network simulation code. Using this force model, our simulations predict a macroscopic stress-strain relationship that closely matches published experimental values. We also predict a slight increase in temperature resulting from the change in average internal energy in the affected isoprene units that is consistent with experiments.

  8. Strategies for high-performance resource-efficient compression of neural spike recordings.

    Science.gov (United States)

    Thorbergsson, Palmi Thor; Garwicz, Martin; Schouenborg, Jens; Johansson, Anders J

    2014-01-01

    Brain-machine interfaces (BMIs) based on extracellular recordings with microelectrodes provide means of observing the activities of neurons that orchestrate fundamental brain function, and are therefore powerful tools for exploring the function of the brain. Due to physical restrictions and risks for post-surgical complications, wired BMIs are not suitable for long-term studies in freely behaving animals. Wireless BMIs ideally solve these problems, but they call for low-complexity techniques for data compression that ensure maximum utilization of the wireless link and energy resources, as well as minimum heat dissipation in the surrounding tissues. In this paper, we analyze the performances of various system architectures that involve spike detection, spike alignment and spike compression. Performance is analyzed in terms of spike reconstruction and spike sorting performance after wireless transmission of the compressed spike waveforms. Compression is performed with transform coding, using five different compression bases, one of which we pay special attention to. That basis is a fixed basis derived, by singular value decomposition, from a large assembly of experimentally obtained spike waveforms, and therefore represents a generic basis specially suitable for compressing spike waveforms. Our results show that a compression factor of 99.8%, compared to transmitting the raw acquired data, can be achieved using the fixed generic compression basis without compromising performance in spike reconstruction and spike sorting. Besides illustrating the relative performances of various system architectures and compression bases, our findings show that compression of spikes with a fixed generic compression basis derived from spike data provides better performance than compression with downsampling or the Haar basis, given that no optimization procedures are implemented for compression coefficients, and the performance is similar to that obtained when the optimal SVD based

  9. Strategies for high-performance resource-efficient compression of neural spike recordings.

    Directory of Open Access Journals (Sweden)

    Palmi Thor Thorbergsson

    Full Text Available Brain-machine interfaces (BMIs based on extracellular recordings with microelectrodes provide means of observing the activities of neurons that orchestrate fundamental brain function, and are therefore powerful tools for exploring the function of the brain. Due to physical restrictions and risks for post-surgical complications, wired BMIs are not suitable for long-term studies in freely behaving animals. Wireless BMIs ideally solve these problems, but they call for low-complexity techniques for data compression that ensure maximum utilization of the wireless link and energy resources, as well as minimum heat dissipation in the surrounding tissues. In this paper, we analyze the performances of various system architectures that involve spike detection, spike alignment and spike compression. Performance is analyzed in terms of spike reconstruction and spike sorting performance after wireless transmission of the compressed spike waveforms. Compression is performed with transform coding, using five different compression bases, one of which we pay special attention to. That basis is a fixed basis derived, by singular value decomposition, from a large assembly of experimentally obtained spike waveforms, and therefore represents a generic basis specially suitable for compressing spike waveforms. Our results show that a compression factor of 99.8%, compared to transmitting the raw acquired data, can be achieved using the fixed generic compression basis without compromising performance in spike reconstruction and spike sorting. Besides illustrating the relative performances of various system architectures and compression bases, our findings show that compression of spikes with a fixed generic compression basis derived from spike data provides better performance than compression with downsampling or the Haar basis, given that no optimization procedures are implemented for compression coefficients, and the performance is similar to that obtained when the

  10. High temperature strain of metals and alloys. Physical fundamentals

    Energy Technology Data Exchange (ETDEWEB)

    Levitin, V. [National Technical Univ., Zaporozhye (Ukraine)

    2006-07-01

    The author shows how new in-situ X-ray investigations and transmission electron microscope studies lead to novel explanations of high-temperature deformation and creep in pure metals, solid solutions and super alloys. This approach is the first to find unequivocal and quantitative expressions for the macroscopic deformation rate by means of three groups of parameters: substructural characteristics, physical material constants and external conditions. Creep strength of the studied uptodate single crystal super alloys is greatly increased over conventional polycrystalline super alloys. The contents of this book include: macroscopic characteristics of strain at high temperatures; experimental equipment and technique of in situ X-ray investigations; experimental data and structural parameters in deformed metals; sub-boundaries as dislocation sources and obstacles; the physical mechanism of creep and the quantitative structural model; simulation of the parameters evolution; system of differential equations; high-temperature deformation of industrial super alloys; single crystals of super alloys; effect of composition, orientation and temperature on properties; and creep of some refractory metals.

  11. High frequency strain measurements with fiber Bragg grating sensors

    Science.gov (United States)

    Koch, J.; Angelmahr, M.; Schade, W.

    2015-05-01

    In recent years fiber Bragg grating sensors gained interest in structural health monitoring and concepts for smart structures. They are small, lightweight, and immune to electromagnetic interference. Using multiplexing techniques, several sensors can be addressed by a single fiber. Therefore, well-established structures and materials in industrial applications can be easily equipped with fiber optical sensors with marginal influence on their mechanical properties. In return, critical components can be monitored in real-time, leading to reduced maintenance intervals and a great reduction of costs. Beside of generally condition monitoring, the localization of failures in a structure is a desired feature of the condition monitoring system. Detecting the acoustic emission of a sudden event, its place of origin can be determined by analyzing the delay time of distributed sensor signals. To achieve high localization accuracies for the detection of cracks, breaks, and impacts high sampling rates combined with the simultaneous interrogation of several fiber Bragg grating sensors are required. In this article a fiber Bragg grating interrogator for high frequency measurements up to the megahertz range is presented. The interrogator is based on a passive wavelength to intensity conversion applying arrayed waveguide gratings. Light power fluctuations are suppressed by a differential data evaluation, leading to a reduced signal-to-noise ratio and a low strain detection limit. The measurement system is used to detect, inter alia, wire breaks in steel wire ropes for dockside cranes.

  12. Orientation Effects in Ballistic High-Strained P-type Si Nanowire FETs

    Directory of Open Access Journals (Sweden)

    Hong Yu

    2009-04-01

    Full Text Available In order to design and optimize high-sensitivity silicon nanowire-field-effect transistor (SiNW FET pressure sensors, this paper investigates the effects of channel orientations and the uniaxial stress on the ballistic hole transport properties of a strongly quantized SiNW FET placed near the high stress regions of the pressure sensors. A discrete stress-dependent six-band k.p method is used for subband structure calculation, coupled to a two-dimensional Poisson solver for electrostatics. A semi-classical ballistic FET model is then used to evaluate the ballistic current-voltage characteristics of SiNW FETs with and without strain. Our results presented here indicate that [110] is the optimum orientation for the p-type SiNW FETs and sensors. For the ultra-scaled 2.2 nm square SiNW, due to the limit of strong quantum confinement, the effect of the uniaxial stress on the magnitude of ballistic drive current is too small to be considered, except for the [100] orientation. However, for larger 5 nm square SiNW transistors with various transport orientations, the uniaxial tensile stress obviously alters the ballistic performance, while the uniaxial compressive stress slightly changes the ballistic hole current. Furthermore, the competition of injection velocity and carrier density related to the effective hole masses is found to play a critical role in determining the performance of the nanotransistors.

  13. High temperature static strain measurement with an electrical resistance strain gage

    Science.gov (United States)

    Lei, Jih-Fen

    1992-01-01

    An electrical resistance strain gage that can supply accurate static strain measurement for NASP application is being developed both in thin film and fine wire forms. This gage is designed to compensate for temperature effects on substrate materials with a wide range of thermal expansion coefficients. Some experimental results of the wire gage tested on one of the NASP structure materials, i.e., titanium matrix composites, are presented.

  14. High strain magnetostriction in a ferromagnet-polymer composite

    Science.gov (United States)

    Hamann, Aaron; Dahlberg, E. Dan

    2017-02-01

    A magnetostrictive composite material exhibiting the capacity for large magnetostrictive strains was created by suspending magnetic wires in a soft polymer matrix. Magnetostrictive strains as large as 20% were found in an applied field of 600 Oe for this proof of concept composite. Our analysis indicates that reversible strains of over 6% are reasonable for this specific composite. The large values of magnetostriction are due to the mechanical rotation of the wires in the polymer matrix.

  15. Treating osteoporotic vertebral compression fractures with intraosseous vacuum phenomena using high-viscosity bone cement via bilateral percutaneous vertebroplasty.

    Science.gov (United States)

    Guo, Dan; Cai, Jun; Zhang, Shengfei; Zhang, Liang; Feng, Xinmin

    2017-04-01

    Osteoporotic vertebral compression fractures with intraosseous vacuum phenomena could cause persistent back pains in patients, even after receiving conservative treatment. The aim of this study was to evaluate the efficacy of using high-viscosity bone cement via bilateral percutaneous vertebroplasty in treating patients who have osteoporotic vertebral compression fractures with intraosseous vacuum phenomena.Twenty osteoporotic vertebral compression fracture patients with intraosseous vacuum phenomena, who received at least 2 months of conservative treatment, were further treated by injecting high-viscosity bone cement via bilateral percutaneous vertebroplasty due to failure of conservative treatment. Treatment efficacy was evaluated by determining the anterior vertebral compression rates, visual analog scale (VAS) scores, and Oswestry disability index (ODI) scores at 1 day before the operation, on the first day of postoperation, at 1-month postoperation, and at 1-year postoperation.Three of 20 patients had asymptomatic bone cement leakage when treated via percutaneous vertebroplasty; however, no serious complications related to these treatments were observed during the 1-year follow-up period. A statistically significant improvement on the anterior vertebral compression rates, VAS scores, and ODI scores were achieved after percutaneous vertebroplasty. However, differences in the anterior vertebral compression rate, VAS score, and ODI score in the different time points during the 1-year follow-up period was not statistically significant (P > 0.05).Within the limitations of this study, the injection of high-viscosity bone cement via bilateral percutaneous vertebroplasty for patients who have osteoporotic vertebral compression fractures with intraosseous vacuum phenomena significantly relieved their back pains and improved their daily life activities shortly after the operation, thereby improving their life quality. In this study, the use of high-viscosity bone

  16. Statistical Tensile Strength for High Strain Rate of Aramid and UHMWPE Fibers

    Institute of Scientific and Technical Information of China (English)

    YANG Bin; XIONG Tao; XIONG Jie

    2006-01-01

    Dynamic tensile impact properties of aramid (Technora(R)) and UHMWPE (DC851) fiber bundles were studied at two high strain rates by means of reflecting type Split Hopkinson Bar, and stress-strain curves of fiber yarns at different strain rates were obtained. Experimental results show that the initial elastic modulus, failure strength and unstable strain of aramid fiber yarns are strain rate insensitive, whereas the initial elastic modulus and unstable strain of UHMWPE fiber yarns are strain rate sensitive. A fiber-bundle statistical constitutive equation was used to describe the tensile behavior of aramid and UHMWPE fiber bundles at high strain rates. The good consistency between the simulated results and experimental data indicates that the modified double Weibull function can represent the tensile strength distribution of aramid and UHMWPE fibers and the method of extracting Weibull parameters from fiber bundles stress-strain data is valid.

  17. On the compressibility effects in mixing layers

    Directory of Open Access Journals (Sweden)

    Khlifi Hechmi

    2016-01-01

    Full Text Available Previous studies of compressible flows carried out in the past few years have shown that the pressure-strain is the main indicator of the structural compressibility effects. Undoubtedly, this terms plays a key role toward strongly changing magnitude of the turbulent Reynolds stress anisotropy. On the other hand, the incompressible models of the pressure-strain correlation have not correctly predicted compressible turbulence at high speed shear flow. Consequently, a correction of these models is needed for precise prediction of compressibility effects. In the present work, a compressibility correction of the widely used incompressible Launder Reece and Rodi model making their standard coefficients dependent on the turbulent and convective Mach numbers is proposed. The ability of the model to predict the developed mixing layers in different cases from experiments of Goebel and Dutton is examined. The predicted results with the proposed model are compared with DNS and experimental data and those obtained by the compressible model of Adumitroiae et al. and the original LRR model. The results show that the essential compressibility effects on mixing layers are well captured by the proposed model.

  18. A practical discrete-adjoint method for high-fidelity compressible turbulence simulations

    Energy Technology Data Exchange (ETDEWEB)

    Vishnampet, Ramanathan [Department of Mechanical Science and Engineering, University of Illinois at Urbana–Champaign, Urbana, IL 61801 (United States); Bodony, Daniel J. [Department of Aerospace Engineering, University of Illinois at Urbana–Champaign, Urbana, IL 61801 (United States); Freund, Jonathan B., E-mail: jbfreund@illinois.edu [Department of Mechanical Science and Engineering, University of Illinois at Urbana–Champaign, Urbana, IL 61801 (United States); Department of Aerospace Engineering, University of Illinois at Urbana–Champaign, Urbana, IL 61801 (United States)

    2015-03-15

    Methods and computing hardware advances have enabled accurate predictions of complex compressible turbulence phenomena, such as the generation of jet noise that motivates the present effort. However, limited understanding of underlying physical mechanisms restricts the utility of such predictions since they do not, by themselves, indicate a route to design improvements. Gradient-based optimization using adjoints can circumvent the flow complexity to guide designs, though this is predicated on the availability of a sufficiently accurate solution of the forward and adjoint systems. These are challenging to obtain, since both the chaotic character of the turbulence and the typical use of discretizations near their resolution limits in order to efficiently represent its smaller scales will amplify any approximation errors made in the adjoint formulation. Formulating a practical exact adjoint that avoids such errors is especially challenging if it is to be compatible with state-of-the-art simulation methods used for the turbulent flow itself. Automatic differentiation (AD) can provide code to calculate a nominally exact adjoint, but existing general-purpose AD codes are inefficient to the point of being prohibitive for large-scale turbulence simulations. Here, we analyze the compressible flow equations as discretized using the same high-order workhorse methods used for many high-fidelity compressible turbulence simulations, and formulate a practical space–time discrete-adjoint method without changing the basic discretization. A key step is the definition of a particular discrete analog of the continuous norm that defines our cost functional; our selection leads directly to an efficient Runge–Kutta-like scheme, though it would be just first-order accurate if used outside the adjoint formulation for time integration, with finite-difference spatial operators for the adjoint system. Its computational cost only modestly exceeds that of the flow equations. We confirm that

  19. A high-performance lossless compression scheme for EEG signals using wavelet transform and neural network predictors.

    Science.gov (United States)

    Sriraam, N

    2012-01-01

    Developments of new classes of efficient compression algorithms, software systems, and hardware for data intensive applications in today's digital health care systems provide timely and meaningful solutions in response to exponentially growing patient information data complexity and associated analysis requirements. Of the different 1D medical signals, electroencephalography (EEG) data is of great importance to the neurologist for detecting brain-related disorders. The volume of digitized EEG data generated and preserved for future reference exceeds the capacity of recent developments in digital storage and communication media and hence there is a need for an efficient compression system. This paper presents a new and efficient high performance lossless EEG compression using wavelet transform and neural network predictors. The coefficients generated from the EEG signal by integer wavelet transform are used to train the neural network predictors. The error residues are further encoded using a combinational entropy encoder, Lempel-Ziv-arithmetic encoder. Also a new context-based error modeling is also investigated to improve the compression efficiency. A compression ratio of 2.99 (with compression efficiency of 67%) is achieved with the proposed scheme with less encoding time thereby providing diagnostic reliability for lossless transmission as well as recovery of EEG signals for telemedicine applications.

  20. A wearable, highly stable, strain and bending sensor based on high aspect ratio graphite nanobelts

    Science.gov (United States)

    Alaferdov, A. V.; Savu, R.; Rackauskas, T. A.; Rackauskas, S.; Canesqui, M. A.; de Lara, D. S.; Setti, G. O.; Joanni, E.; de Trindade, G. M.; Lima, U. B.; de Souza, A. S.; Moshkalev, S. A.

    2016-09-01

    A simple and scalable method was developed for the fabrication of wearable strain and bending sensors, based on high aspect ratio (length/thickness ˜103) graphite nanobelt thin films deposited by a modified Langmuir-Blodgett technique onto flexible polymer substrates. The sensing mechanism is based on the changes in contact resistance between individual nanobelts upon substrate deformation. Very high sensor response stability for more than 5000 strain-release cycles and a device power consumption as low as 1 nW were achieved. The device maximum stretchability is limited by the metal electrodes and the polymer substrate; the maximum strain that could be applied to the polymer used in this work was 40%. Bending tests carried out for various radii of curvature demonstrated distinct sensor responses for positive and negative curvatures. The graphite nanobelt thin flexible films were successfully tested for acoustic vibration and heartbeat sensing.

  1. Review of Fluorescence-Based Velocimetry Techniques to Study High-Speed Compressible Flows

    Science.gov (United States)

    Bathel, Brett F.; Johansen, Criag; Inman, Jennifer A.; Jones, Stephen B.; Danehy, Paul M.

    2013-01-01

    This paper reviews five laser-induced fluorescence-based velocimetry techniques that have been used to study high-speed compressible flows at NASA Langley Research Center. The techniques discussed in this paper include nitric oxide (NO) molecular tagging velocimetry (MTV), nitrogen dioxide photodissociation (NO2-to-NO) MTV, and NO and atomic oxygen (O-atom) Doppler-shift-based velocimetry. Measurements of both single-component and two-component velocity have been performed using these techniques. This paper details the specific application and experiment for which each technique has been used, the facility in which the experiment was performed, the experimental setup, sample results, and a discussion of the lessons learned from each experiment.

  2. Two models of high frequency chest compression therapy: interaction of jacket pressure and mouth airflow.

    Science.gov (United States)

    Lee, Yong Wan; Lee, Jongwon; Warwick, Warren J

    2007-01-01

    High frequency chest compression (HFCC) therapy assists clearing the secretions in the lung. This paper presents two mathematical models: 1) HFCC jacket function model (JFM) and 2) respiratory function model (RFM). JFM predicts the variation of the jacket pressure (Pj) from the respiratory pattern of mouth airflow (Fm). RFM predicts the HFCC induced mouth airflow (Fm) from the HFCC pulse pressures at the jacket (Pj). Fm and Pj were measured from a healthy subject during HFCC therapy. JFM, which was implemented with 2nd order system using prediction error method, shows the existence of breathing pattern at Pj. RFM, which was implemented with amplitude modulation technique, shows how the HFCC pulses affects to the Fm. JFM calculations match 78% of the measured respiratory pattern of Pj>. RFM calculations match 90% of measured HFCC induced Fm. These models can be used to test new breathing patterns before designing studies on patients having chronic obstructive pulmonary diseases.

  3. High Speed and Area Efficient 2D DWT Processor based Image Compression" Signal & Image Processing

    CERN Document Server

    Kaur, Sugreev

    2011-01-01

    This paper presents a high speed and area efficient DWT processor based design for Image Compression applications. In this proposed design, pipelined partially serial architecture has been used to enhance the speed along with optimal utilization and resources available on target FPGA. The proposed model has been designed and simulated using Simulink and System Generator blocks, synthesized with Xilinx Synthesis tool (XST) and implemented on Spartan 2 and 3 based XC2S100-5tq144 and XC3S500E-4fg320 target device. The results show that proposed design can operate at maximum frequency 231 MHz in case of Spartan 3 by consuming power of 117mW at 28 degree/c junction temperature. The result comparison has shown an improvement of 15% in speed.

  4. High-resolution mesoscopic fluorescence molecular tomography based on compressive sensing.

    Science.gov (United States)

    Yang, Fugang; Ozturk, Mehmet S; Zhao, Lingling; Cong, Wenxiang; Wang, Ge; Intes, Xavier

    2015-01-01

    Mesoscopic fluorescence molecular tomography (MFMT) is new imaging modality aiming at 3-D imaging of molecular probes in a few millimeter thick biological samples with high-spatial resolution. In this paper, we develop a compressive sensing-based reconstruction method with l1-norm regularization for MFMT with the goal of improving spatial resolution and stability of the optical inverse problem. Three-dimensional numerical simulations of anatomically accurate microvasculature and real data obtained from phantom experiments are employed to evaluate the merits of the proposed method. Experimental results show that the proposed method can achieve 80 μm spatial resolution for a biological sample of 3 mm thickness and more accurate quantifications of concentrations and locations for the fluorophore distribution than those of the conventional methods.

  5. Revisiting the Fundamentals and Capabilities of the Stack Compression Test

    DEFF Research Database (Denmark)

    Alves, L.M.; Nielsen, Chris Valentin; Martin, P.A.F.

    2011-01-01

    of understanding for the stack compression test and to evaluate its capability for constructing the flow curves of metal sheets under high strains across the useful range of material testing conditions. The presentation draws from the fundamentals of the stack compression test to the assessment of its overall...... performance by comparing the flow curves obtained from its utilisation with those determined by means of compressive testing carried out on solid cylinder specimens of the same material. Results show that mechanical testing of materials by means of the stack compression test is capable of meeting...

  6. Compressed sensing cine imaging with high spatial or high temporal resolution for analysis of left ventricular function.

    Science.gov (United States)

    Goebel, Juliane; Nensa, Felix; Schemuth, Haemi P; Maderwald, Stefan; Gratz, Marcel; Quick, Harald H; Schlosser, Thomas; Nassenstein, Kai

    2016-08-01

    To assess two compressed sensing cine magnetic resonance imaging (MRI) sequences with high spatial or high temporal resolution in comparison to a reference steady-state free precession cine (SSFP) sequence for reliable quantification of left ventricular (LV) volumes. LV short axis stacks of two compressed sensing breath-hold cine sequences with high spatial resolution (SPARSE-SENSE HS: temporal resolution: 40 msec, in-plane resolution: 1.0 × 1.0 mm(2) ) and high temporal resolution (SPARSE-SENSE HT: temporal resolution: 11 msec, in-plane resolution: 1.7 × 1.7 mm(2) ) and of a reference cine SSFP sequence (standard SSFP: temporal resolution: 40 msec, in-plane resolution: 1.7 × 1.7 mm(2) ) were acquired in 16 healthy volunteers on a 1.5T MR system. LV parameters were analyzed semiautomatically twice by one reader and once by a second reader. The volumetric agreement between sequences was analyzed using paired t-test, Bland-Altman plots, and Passing-Bablock regression. Small differences were observed between standard SSFP and SPARSE-SENSE HS for stroke volume (SV; -7 ± 11 ml; P = 0.024), ejection fraction (EF; -2 ± 3%; P = 0.019), and myocardial mass (9 ± 9 g; P = 0.001), but not for end-diastolic volume (EDV; P = 0.079) and end-systolic volume (ESV; P = 0.266). No significant differences were observed between standard SSFP and SPARSE-SENSE HT regarding EDV (P = 0.956), SV (P = 0.088), and EF (P = 0.103), but for ESV (3 ± 5 ml; P = 0.039) and myocardial mass (8 ± 10 ml; P = 0.007). Bland-Altman analysis showed good agreement between the sequences (maximum bias ≤ -8%). Two compressed sensing cine sequences, one with high spatial resolution and one with high temporal resolution, showed good agreement with standard SSFP for LV volume assessment. J. Magn. Reson. Imaging 2016;44:366-374. © 2016 Wiley Periodicals, Inc.

  7. Highly hydrolytic reuteransucrase from probiotic Lactobacillus reuteri strain ATCC 55730

    NARCIS (Netherlands)

    Kralj, S.; Stripling, E.; Sanders, P.; Geel-Schutten, G.H. van; Dijkhuizen, L.

    2005-01-01

    Lactobacillus reuteri strain ATCC 55730 (LB BIO) was isolated as a pure culture from a Reuteri tablet purchased from the BioGaia company. This probiotic strain produces a soluble glucan (reuteran), in which the majority of the linkages are of the α-(1→4) glucosidic type (∼70%). This reuteran also co

  8. Wellhead compression

    Energy Technology Data Exchange (ETDEWEB)

    Harrington, Joe [Sertco Industries, Inc., Okemah, OK (United States); Vazquez, Daniel [Hoerbiger Service Latin America Inc., Deerfield Beach, FL (United States); Jacobs, Denis Richard [Hoerbiger do Brasil Industria de Equipamentos, Cajamar, SP (Brazil)

    2012-07-01

    Over time, all wells experience a natural decline in oil and gas production. In gas wells, the major problems are liquid loading and low downhole differential pressures which negatively impact total gas production. As a form of artificial lift, wellhead compressors help reduce the tubing pressure resulting in gas velocities above the critical velocity needed to surface water, oil and condensate regaining lost production and increasing recoverable reserves. Best results come from reservoirs with high porosity, high permeability, high initial flow rates, low decline rates and high total cumulative production. In oil wells, excessive annulus gas pressure tends to inhibit both oil and gas production. Wellhead compression packages can provide a cost effective solution to these problems by reducing the system pressure in the tubing or annulus, allowing for an immediate increase in production rates. Wells furthest from the gathering compressor typically benefit the most from wellhead compression due to system pressure drops. Downstream compressors also benefit from higher suction pressures reducing overall compression horsepower requirements. Special care must be taken in selecting the best equipment for these applications. The successful implementation of wellhead compression from an economical standpoint hinges on the testing, installation and operation of the equipment. Key challenges and suggested equipment features designed to combat those challenges and successful case histories throughout Latin America are discussed below.(author)

  9. Properties of a Ni(sub 19.5)Pd(sub 30)Ti(sub 50.5) high-temperature shape memory alloy in tension and compression

    Science.gov (United States)

    Noebe, Ronald; Padula, Santo, II; Bigelow, Glen; Rios, Orlando; Garg, Anita; Lerch, Brad

    2006-01-01

    Potential applications involving high-temperature shape memory alloys have been growing in recent years. Even in those cases where promising new alloys have been identified, the knowledge base for such materials contains gaps crucial to their maturation and implementation in actuator and other applications. We begin to address this issue by characterizing the mechanical behavior of a Ni19.5Pd30Ti50.5 high-temperature shape memory alloy in both uniaxial tension and compression at various temperatures. Differences in the isothermal uniaxial deformation behavior were most notable at test temperatures below the martensite finish temperature. The elastic modulus of the material was very dependent on strain level; therefore, dynamic Young#s Modulus was determined as a function of temperature by an impulse excitation technique. More importantly, the performance of a thermally activated actuator material is dependent on the work output of the alloy. Consequently, the strain-temperature response of the Ni19.5Pd30Ti50.5 alloy under various loads was determined in both tension and compression and the specific work output calculated and compared in both loading conditions. It was found that the transformation strain and thus, the specific work output were similar regardless of the loading condition. Also, in both tension and compression, the strain-temperature loops determined under constant load conditions did not close due to the fact that the transformation strain during cooling was always larger than the transformation strain during heating. This was apparently the result of permanent plastic deformation of the martensite phase with each cycle. Consequently, before this alloy can be used under cyclic actuation conditions, modification of the microstructure or composition would be required to increase the resistance of the alloy to plastic deformation by slip.

  10. TRP 9904 - Constitutive Behavior of High Strength Multiphase Sheel Steel Under High Strain Rate Deformation

    Energy Technology Data Exchange (ETDEWEB)

    David Matlock; John Speer

    2005-03-31

    The focus of the research project was to systematically assess the strain rate dependence of strengthening mechanisms in new advanced high strength sheet steels. Data were obtained on specially designed and produced Duel Phase and TRIP steels and compared to the properties of automotive steels currently in use.

  11. Correlation Between Microstructure and Corrosion Resistance of Magnesium Alloys Prepared by High Strain Rate Rolling

    Science.gov (United States)

    Chen, Jihua; Chen, Guanqing; Yan, Hongge; Su, Bin; Gong, Xiaole; Zhou, Bo

    2017-09-01

    Microstructure and corrosion resistance in Hank's solution of four magnesium alloys (pure Mg, ZK60, Mg-4Zn and Mg-4Zn-0.3Ca) prepared by high strain rate rolling (HSRR) and conventional rolling (CR) are comparatively investigated. The HSRR alloy exhibits better bio-corrosion resistance than the CR alloy. The HSRR ZK60 alloy has finer grains, higher dynamic recrystallization (DRX) extent, lower twin fraction, coarser residual second-phase particles, finer and denser nanometer β 1 precipitates, lower residual compressive stress and stronger basal texture than the CR alloy. The average corrosion rate of the HSRR ZK60 sheet after 90-day immersion in Hank's solution is 0.17 mg cm-2 d-1, about 19% lower than that of the CR sheet. Its corrosion current density is 30.9 μA/cm2, about 45% lower than that of the CR sheet. Bio-corrosion resistance enhancement by HSRR can be mainly ascribe to the reduced grain size, the relatively adequate DRX, non-twinning, the coarser residual second-phase particles, the finer and denser nanometer precipitates and the slightly stronger (0001) texture.

  12. SURCARBUREX the knock-resistant exhaust gas mixer for high compression motors

    Energy Technology Data Exchange (ETDEWEB)

    1944-01-01

    This device was designed to be attached to both diesel and gasoline engines which were converted to use either substitute liquid fuels such as alcohols, or gases produced by gas generators. The advantages claimed in the prospectus include change-overs from replacement fuels to normal gasoline in a very short time. Also, increased power in mountainous areas was claimed. The unit's basic function was to strip exhaust gas after it left the manifold, and to re-cycle it through the carburetor to be mixed with new gas. In this way, the unburned hydrocarbons dilute the incoming air-fuel mixture. The prospectus claims that gasolines with low octane ratings, 55-65, run in engines equipped with the SURCARBUREX react as if using higher rated fuels. Power output, according to a chart, is improved with the exhaust mixture, and results in no knocking with 65-octane fuel. On the other hand, the same octane rating without the exhaust addition provides less power and produces a knock. A test conducted at the Technische Hochschule, Muenchen, basically agreed with information in the prospectus which indicates increased power and less engine wear. However, it appears that with use of 70-octane, the device creates little useful assist to an engine with lowered compression ratio, while the lower-octane seems satisfactory with a low compression ratio and exhaust gas mixture. Testing was carried out using a four-cylinder car motor and a heavy-duty diesel truck engine in both bench and on-the-road analysis by the Geneve firm. The technical school used test motors of one cylinder or small displacement. The general result was favorable, since it appeared to be rather economical to install, versatile, and spared using high-grade gasoline when other substitutes were not available. 5 figures, 6 graphs.

  13. The Development of the Electrically Controlled High Power RF Switch and Its Application to Active RF Pulse Compression Systems

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Jiquan [Stanford Univ., CA (United States)

    2008-12-01

    In the past decades, there has been increasing interest in pulsed high power RF sources for building high-gradient high-energy particle accelerators. Passive RF pulse compression systems have been used in many applications to match the available RF sources to the loads requiring higher RF power but a shorter pulse. Theoretically, an active RF pulse compression system has the advantage of higher efficiency and compactness over the passive system. However, the key component for such a system an element capable of switching hundreds of megawatts of RF power in a short time compared to the compressed pulse width is still an open problem. In this dissertation, we present a switch module composed of an active window based on the bulk effects in semiconductor, a circular waveguide three-port network and a movable short plane, with the capability to adjust the S-parameters before and after switching. The RF properties of the switch module were analyzed. We give the scaling laws of the multiple-element switch systems, which allow the expansion of the system to a higher power level. We present a novel overmoded design for the circular waveguide three-port network and the associated circular-to-rectangular mode-converter. We also detail the design and synthesis process of this novel mode-converter. We demonstrate an electrically controlled ultra-fast high power X-band RF active window built with PIN diodes on high resistivity silicon. The window is capable of handling multi-megawatt RF power and can switch in 2-300ns with a 1000A current driver. A low power active pulse compression experiment was carried out with the switch module and a 375ns resonant delay line, obtaining 8 times compression gain with a compression ratio of 20.

  14. Fatigue of concrete under compression: Database and proposal for high strength concrete

    NARCIS (Netherlands)

    Lantsoght, E.O.L.

    2014-01-01

    The compressive strength of concrete decreases as an element is subjected to cycles of loading. In a typical fatigue test for the concrete compressive strength, a concrete specimen (typically a cylinder) is loaded between a lower and upper stress limit. These limits are expressed as a fraction of th

  15. Fatigue of concrete under compression: Database and proposal for high strength concrete

    NARCIS (Netherlands)

    Lantsoght, E.O.L.

    2014-01-01

    The compressive strength of concrete decreases as an element is subjected to cycles of loading. In a typical fatigue test for the concrete compressive strength, a concrete specimen (typically a cylinder) is loaded between a lower and upper stress limit. These limits are expressed as a fraction of

  16. Nonlinear compression of high energy fiber amplifier pulses in air-filled hypocycloid-core Kagome fiber.

    Science.gov (United States)

    Guichard, Florent; Giree, Achut; Zaouter, Yoann; Hanna, Marc; Machinet, Guillaume; Debord, Benoît; Gérôme, Frédéric; Dupriez, Pascal; Druon, Frédéric; Hönninger, Clemens; Mottay, Eric; Benabid, Fetah; Georges, Patrick

    2015-03-23

    We report on the generation of 34 fs and 50 µJ pulses from a high energy fiber amplifier system with nonlinear compression in an air-filled hypocycloid-core Kagome fiber. The unique properties of such fibers allow bridging the gap between solid core fibers-based and hollow capillary-based post-compression setups, thereby operating with pulse energies obtained with current state-of-the-art fiber systems. The overall transmission of the compression setup is over 70%. Together with Yb-doped fiber amplifier technologies, Kagome fibers therefore appear as a promising tool for efficient generation of pulses with durations below 50 fs, energies ranging from 10 to several hundreds of µJ, and high average powers.

  17. Phase field simulations of plastic strain-induced phase transformations under high pressure and large shear

    Science.gov (United States)

    Javanbakht, Mahdi; Levitas, Valery I.

    2016-12-01

    Pressure and shear strain-induced phase transformations (PTs) in a nanograined bicrystal at the evolving dislocations pile-up have been studied utilizing a phase field approach (PFA). The complete system of PFA equations for coupled martensitic PT, dislocation evolution, and mechanics at large strains is presented and solved using the finite element method (FEM). The nucleation pressure for the high-pressure phase (HPP) under hydrostatic conditions near a single dislocation was determined to be 15.9 GPa. Under shear, a dislocation pile-up that appears in the left grain creates strong stress concentration near its tip and significantly increases the local thermodynamic driving force for PT, which causes nucleation of HPP even at zero pressure. At pressures of 1.59 and 5 GPa and shear, a major part of a grain transforms to HPP. When dislocations are considered in the transforming grain as well, they relax stresses and lead to a slightly smaller stationary HPP region than without dislocations. However, they strongly suppress nucleation of HPP and require larger shear. Unexpectedly, the stationary HPP morphology is governed by the simplest thermodynamic equilibrium conditions, which do not contain contributions from plasticity and surface energy. These equilibrium conditions are fulfilled either for the majority of points of phase interfaces or (approximately) in terms of stresses averaged over the HPP region or for the entire grain, despite the strong heterogeneity of stress fields. The major part of the driving force for PT in the stationary state is due to deviatoric stresses rather than pressure. While the least number of dislocations in a pile-up to nucleate HPP linearly decreases with increasing applied pressure, the least corresponding shear strain depends on pressure nonmonotonously. Surprisingly, the ratio of kinetic coefficients for PT and dislocations affect the stationary solution and the nanostructure. Consequently, there are multiple stationary solutions

  18. Development of High Speed Imaging and Analysis Techniques Compressible Dynamics Stall

    Science.gov (United States)

    Chandrasekhara, M. S.; Carr, L. W.; Wilder, M. C.; Davis, Sanford S. (Technical Monitor)

    1996-01-01

    Dynamic stall has limited the flight envelope of helicopters for many years. The problem has been studied in the laboratory as well as in flight, but most research, even in the laboratory, has been restricted to surface measurement techniques such as pressure transducers or skin friction gauges, except at low speed. From this research, it became apparent that flow visualization tests performed at Mach numbers representing actual flight conditions were needed if the complex physics associated with dynamic stall was to be properly understood. However, visualization of the flow field during compressible conditions required carefully aligned and meticulously reconstructed holographic interferometry. As part of a long-range effort focused on exposing of the physics of compressible dynamic stall, a research wind tunnel was developed at NASA Ames Research Center which permits visual access to the full flow field surrounding an oscillating airfoil during compressible dynamic stall. Initially, a stroboscopic schlieren technique was used for visualization of the stall process, but the primary research tool has been point diffraction interferometry(PDI), a technique carefully optimized for use in th is project. A review of the process of development of PDI will be presented in the full paper. One of the most valuable aspects of PDI is the fact that interferograms are produced in real time on a continuous basis. The use of a rapidly-pulsed laser makes this practical; a discussion of this approach will be presented in the full paper. This rapid pulsing(up to 40,000 pulses/sec) produces interferograms of the rapidly developing dynamic stall field in sufficient resolution(both in space and time) that the fluid physics of the compressible dynamic stall flowfield can be quantitatively determined, including the gradients of pressure in space and time. This permits analysis of the influence of the effect of pitch rate, Mach number, Reynolds number, amplitude of oscillation, and other

  19. Optimisation énergétique des chambres de combustion à haut taux de compression Energy Optimization of High-Compression-Ratio Combustion Chambers

    Directory of Open Access Journals (Sweden)

    Douaud A.

    2006-11-01

    Full Text Available Une synthèse des études entreprises à l'institut Français du Pétrole pour la compréhension des phénomènes de combustion, de transferts thermiques, de cliquetis et leur maîtrise pour l'optimisation du rendement de chambre à haut taux de compression conduit à proposer deux thèmes de réalisation : - chambre calme à double allumage; - chambre turbulente à effet de chasse. Les avantages de principe et les contraintes associés à la mise en oeuvre de chaque type de chambre sont examinés. A synthesis of research undertaken at the Institut Français du Pétrole on understanding combustion, heat-transfer and knock phenomena and on mastering them to optimize the efficiency of high-compression-ratio combustion chambers has led to the proposing of two topics of implementation:(a calm chamber with dual ignition;(b turbulent chamber with squish effect. The advantages of the principle and the constraints connected to the implementation of each type of chamber are examined.

  20. Deformation and Shear Band Development in an Ultrahigh Carbon Steel During High Strain Rate Deformation

    Energy Technology Data Exchange (ETDEWEB)

    Lesuer, D R; Syn, C K; Sherby, O D

    2004-07-06

    The mechanical response of a pearlitic UHCS-1.3C steel deformed at approximately 4000 s{sup -1} to large strains ({var_epsilon} = -0.9) has been studied. Failure, at both the macroscopic and the microscopic levels has been evaluated, and the ability of the material to absorb energy in compression has been examined. Failure occurred by the development of a shear band. However before failure, extensive buckling of the carbide plates was observed and the UHCS-1.3C material exhibited significant potential for compressive ductility and energy absorption due to the distributed buckling of these plates. Strain localization during adiabatic shear band development resulted in the formation of austenite. Subsequent cooling produced a divorced-eutectoid transformation with associated deformation, which resulted in a microstructure consisting of 50 to 100 nm sized grains. The stress-strain behavior within the shear band has also been determined. The results are used to critically evaluate the maximum shear stress criterion of shear band development. New criteria for the development of shear bands are developed based on a strain energy concept.

  1. Prediction of failure strain and burst pressure in high yield-to-tensile strength ratio linepipe

    Energy Technology Data Exchange (ETDEWEB)

    Law, M. [Institute of Materials and Engineering Science, Australian Nuclear Science and Technology Organisation (ANSTO), Lucas Heights, NSW (Australia)]. E-mail: mlx@ansto.gov.au; Bowie, G. [BlueScope Steel Ltd., Level 11, 120 Collins St, Melbourne, Victoria 3000 (Australia)

    2007-08-15

    Failure pressures and strains were predicted for a number of burst tests as part of a project to explore failure strain in high yield-to-tensile strength ratio linepipe. Twenty-three methods for predicting the burst pressure and six methods of predicting the failure strain are compared with test results. Several methods were identified which gave accurate and reliable estimates of burst pressure. No method of accurately predicting the failure strain was found, though the best was noted.

  2. An Efficient Framework for Compressed Sensing Reconstruction of Highly Accelerated Dynamic Cardiac MRI

    Science.gov (United States)

    Ting, Samuel T.

    other dynamic and static imaging techniques based on cardiac magnetic resonance. Conventional segmented techniques for cardiac cine imaging require breath-holding as well as regular cardiac rhythm, and can be time-consuming to acquire. Inadequate breath-holding or irregular cardiac rhythm can result in completely non-diagnostic images, limiting the utility of these techniques in a significant patient population. Real-time single-shot cardiac cine imaging enables free-breathing acquisition with significantly shortened imaging time and promises to significantly improve the utility of cine imaging for diagnosis and evaluation of cardiovascular disease. However, utility of real-time cine images depends heavily on the successful reconstruction of final cine images from undersampled data. Successful reconstruction of images from more highly undersampled data results directly in images exhibiting finer spatial and temporal resolution provided that image quality is sufficient. This work focuses primarily on the development, validation, and deployment of practical techniques for enabling the reconstruction of real-time cardiac cine images at the spatial and temporal resolutions and image quality needed for diagnostic utility. Particular emphasis is placed on the development of reconstruction approaches resulting in with short computation times that can be used in the clinical environment. Specifically, the use of compressed sensing signal recovery techniques is considered; such techniques show great promise in allowing successful reconstruction of highly undersampled data. The scope of this work concerns two primary topics related to signal recovery using compressed sensing: (1) long reconstruction times of these techniques, and (2) improved sparsity models for signal recovery from more highly undersampled data. Both of these aspects are relevant to the practical application of compressed sensing techniques in the context of improving image reconstruction of real-time cardiac

  3. High temperature strain gage technology for gas turbine engines

    Science.gov (United States)

    Fichtel, Edward J.; McDaniel, Amos D.

    1994-08-01

    This report summarizes the results of a six month study that addressed specific issues to transfer the Pd-13Cr static strain sensor to a gas turbine engine environment. The application issues that were addressed include: (1) evaluation of a miniature, variable potentiometer for use as the ballast resistor, in conjunction with a conventional strain gage signal conditioning unit; (2) evaluation of a metal sheathed, platinum conductor leadwire assembly for use with the three-wire sensor; and (3) subjecting the sensor to dynamic strain cyclic testing to determine fatigue characteristics. Results indicate a useful static strain gage system at all temperature levels up to 1350 F. The fatigue characteristics also appear to be very promising, indicating a potential use in dynamic strain measurement applications. The procedure, set-up, and data for all tests are presented in this report. This report also discusses the specific strain gage installation technique for the Pd-13Cr gage because of its potential impact on the quality of the output data.

  4. High-Temperature SAW Wireless Strain Sensor with Langasite.

    Science.gov (United States)

    Shu, Lin; Peng, Bin; Yang, Zhengbing; Wang, Rui; Deng, Senyang; Liu, Xingzhao

    2015-11-11

    Two Surface acoustic wave (SAW) resonators were fabricated on langasite substrates with Euler angle of (0°, 138.5°, 117°) and (0°, 138.5°, 27°). A dipole antenna was bonded to the prepared SAW resonator to form a wireless sensor. The characteristics of the SAW sensors were measured by wireless frequency domain interrogation methods from 20 °C to 600 °C. Different temperature behaviors of the sensors were observed. Strain sensing was achieved using a cantilever configuration. The sensors were measured under applied strain from 20 °C to 500 °C. The shift of the resonance frequency contributed merely by strain is extracted from the combined effects of temperature and strain. Both the strain factors of the two SAW sensors increase with rising ambient temperature, and the SAW sensor deposited on (0°, 138.5°, 117°) cut is more sensitive to applied strain. The measurement errors of the two sensors are also discussed. The relative errors of the two sensors are between 0.63% and 2.09%. Even at 500 °C, the hysteresis errors of the two sensors are less than 5%.

  5. High-Temperature SAW Wireless Strain Sensor with Langasite

    Directory of Open Access Journals (Sweden)

    Lin Shu

    2015-11-01

    Full Text Available Two Surface acoustic wave (SAW resonators were fabricated on langasite substrates with Euler angle of (0°, 138.5°, 117° and (0°, 138.5°, 27°. A dipole antenna was bonded to the prepared SAW resonator to form a wireless sensor. The characteristics of the SAW sensors were measured by wireless frequency domain interrogation methods from 20 °C to 600 °C. Different temperature behaviors of the sensors were observed. Strain sensing was achieved using a cantilever configuration. The sensors were measured under applied strain from 20 °C to 500 °C. The shift of the resonance frequency contributed merely by strain is extracted from the combined effects of temperature and strain. Both the strain factors of the two SAW sensors increase with rising ambient temperature, and the SAW sensor deposited on (0°, 138.5°, 117° cut is more sensitive to applied strain. The measurement errors of the two sensors are also discussed. The relative errors of the two sensors are between 0.63% and 2.09%. Even at 500 °C, the hysteresis errors of the two sensors are less than 5%.

  6. Dynamic compressive behavior and constitutive relations of lanthanum metal

    Institute of Scientific and Technical Information of China (English)

    WANG Huanran; CAI Canyua; CHEN Danian; MA Dongfang; DENG Gaotao

    2012-01-01

    The dynamic compressive behavior and constitutive relations of Lanthanum (La) metal was determined by using the first compression in split Hopkinson pressure bar (SHPB) tests at different strain rates and temperatures.The constitutive relation of La metal determined in a certain range of strains was employed and adjusted in numerically simulating large deformations of La metal spEcimens generated by multi-compression in SHPB tests and recorded by a high-speed camera.The dynamic compressive behavior and constitutive relations of La metal under multiple SHPB tests loading was also revealed.The results of scanning electron microscope (SEM) investigation of the recovered La metal specimens for typical tests showed that there was a variety of deformation microstructures depending on strain rate,temperature and stress state.

  7. GPU Lossless Hyperspectral Data Compression System

    Science.gov (United States)

    Aranki, Nazeeh I.; Keymeulen, Didier; Kiely, Aaron B.; Klimesh, Matthew A.

    2014-01-01

    Hyperspectral imaging systems onboard aircraft or spacecraft can acquire large amounts of data, putting a strain on limited downlink and storage resources. Onboard data compression can mitigate this problem but may require a system capable of a high throughput. In order to achieve a high throughput with a software compressor, a graphics processing unit (GPU) implementation of a compressor was developed targeting the current state-of-the-art GPUs from NVIDIA(R). The implementation is based on the fast lossless (FL) compression algorithm reported in "Fast Lossless Compression of Multispectral-Image Data" (NPO- 42517), NASA Tech Briefs, Vol. 30, No. 8 (August 2006), page 26, which operates on hyperspectral data and achieves excellent compression performance while having low complexity. The FL compressor uses an adaptive filtering method and achieves state-of-the-art performance in both compression effectiveness and low complexity. The new Consultative Committee for Space Data Systems (CCSDS) Standard for Lossless Multispectral & Hyperspectral image compression (CCSDS 123) is based on the FL compressor. The software makes use of the highly-parallel processing capability of GPUs to achieve a throughput at least six times higher than that of a software implementation running on a single-core CPU. This implementation provides a practical real-time solution for compression of data from airborne hyperspectral instruments.

  8. High-throughput screening of high Monascus pigment-producing strain based on digital image processing.

    Science.gov (United States)

    Xia, Meng-lei; Wang, Lan; Yang, Zhi-xia; Chen, Hong-zhang

    2016-04-01

    This work proposed a new method which applied image processing and support vector machine (SVM) for screening of mold strains. Taking Monascus as example, morphological characteristics of Monascus colony were quantified by image processing. And the association between the characteristics and pigment production capability was determined by SVM. On this basis, a highly automated screening strategy was achieved. The accuracy of the proposed strategy is 80.6 %, which is compatible with the existing methods (81.1 % for microplate and 85.4 % for flask). Meanwhile, the screening of 500 colonies only takes 20-30 min, which is the highest rate among all published results. By applying this automated method, 13 strains with high-predicted production were obtained and the best one produced as 2.8-fold (226 U/mL) of pigment and 1.9-fold (51 mg/L) of lovastatin compared with the parent strain. The current study provides us with an effective and promising method for strain improvement.

  9. Research on compressive strength of recycled cement mortar after high temperature

    Science.gov (United States)

    Zhang, Xianggang; Yang, Jianhui; Deng, Dapeng

    2017-01-01

    In order to study cube compressive strength of recycled fine aggregate cement mortar after different temperatures, with the affect parameters between replacement rate of recycled fine aggregate and temperature, 45 standard cube test blocks were designed and produced to carry out compressive strength test. The failure process and failure mode of test blocks were observed. Ultimate compressive strength of cube blocks were measured, the relations between cube compressive strength and the replacement rates of recycled fine aggregate under different temperatures as well as the relations between cube compressive strength and temperatures under different replacement rates were all analyzed, the influence change parameters made on cube compressive strength was discussed. The results showed: the failure process and the failure mode of recycled fine aggregate cement mortar and the failure process and the failure mode of nature is similar; when the temperature reached 400°C, the block has no burst phenomenon, but the colour of block into a dark pink; with the increase of recycled fine aggregate, the mass lose rate of block is increase; effect different temperature make on cube compressive strength of test block is not obvious when temperature keeps same for 3h.

  10. Study of Various Techniques for Improving Weak and Compressible Clay Soil under a High Earth Embankment

    Directory of Open Access Journals (Sweden)

    Zein A.K. M.

    2014-04-01

    Full Text Available This paper investigates the suitability of three soil improvement techniques for the construction of a high earth embankment on thick weak and highly compressible clay soil. The eastern approach embankment of Alhalfaya Bridge on the River Nile linking Khartoum North and Omdurman cities was chosen as a case study and a comprehensive site investigation program was carried out to determine the properties the subsurface soils. The study results showed that unless the subsurface soils have been improved they may fail or undergo excessively large settlements due to the embankment construction. Three ground improvement techniques based on the principles of the “staged construction method, SCM”, “vertical sand drain, VSD” and “sand compaction piles, SCP” of embankment foundation soil treatment are discussed and evaluated. Embankment design options based on applications of the above methods have been proposed for foundation treatment to adequately support embankment loads. A method performance evaluation based on the improvement of soil properties achieved; the time required for construction and compared estimated costs criteria was made to assess the effectiveness and expected overall performance. Adoption of any of the soil improvement techniques considered depends mainly on the most critical and decisive factor governing the embankment design. Based on the overall performance for the embankment case studied, the sand drains is considered as the most appropriate improvement method followed by the sand compaction piles technique whereas the staged construction method showed the poorest overall performance.

  11. Large scale dynamics in a turbulent compressible rotor/stator cavity flow at high Reynolds number

    Science.gov (United States)

    Lachize, C.; Verhille, G.; Le Gal, P.

    2016-08-01

    This paper reports an experimental investigation of a turbulent flow confined within a rotor/stator cavity of aspect ratio close to unity at high Reynolds number. The experiments have been driven by changing both the rotation rate of the disk and the thermodynamical properties of the working fluid. This fluid is sulfur hexafluoride (SF6) whose physical properties are adjusted by imposing the operating temperature and the absolute pressure in a pressurized vessel, especially near the critical point of SF6 reached for T c = 45.58 ◦C, P c = 37.55 bar. This original set-up allows to obtain Reynolds numbers as high as 2 × 107 together with compressibility effects as the Mach number can reach 0.5. Pressure measurements reveal that the resulting fully turbulent flow shows both a direct and an inverse cascade as observed in rotating turbulence and in accordance with Kraichnan conjecture for 2D-turbulence. The spectra are however dominated by low-frequency peaks, which are subharmonics of the rotating disk frequency, involving large scale structures at small azimuthal wavenumbers. These modes appear for a Reynolds number around 105 and experience a transition at a critical Reynolds number Re c ≈ 106. Moreover they show an unexpected nonlinear behavior that we understand with the help of a low dimensional amplitude equations.

  12. Modelling and design of high compression electron guns for EBIS/T charge breeders

    CERN Document Server

    AUTHOR|(CDS)2087190; Zschornack, G.; Lettry, J.; Wenander, F.

    In this thesis the optimization of the REXEBIS charge breeder at the ISOLDE facility is presented. REXEBIS in its current state provides a current density of 200A/cm² inside the trapping region at 2 T and will be optimized to the physical limit of its design. To overcome this limit a new electron gun, the HEC² gun, was designed in collaboration with the BNL and is in commission at TestEBIS. This electron gun promises a current density of >10 kA/cm², which decreases the charge breeding time significantly. This thesis presents novel simulation techniques supporting the commissioning phase by explaining the sources of occurring loss current and, in addition, evaluate the currently installed collector for compatibility with the HEC2 gun operating at its design limit. The experience gained from the commission of the HEC² gun and the established numerical techniques lead to the development of a smaller high-compression electron gun for medical purposes, the MEDeGUN. This electron gun should provide a high-quali...

  13. High-throughput Biological Cell Classification Featuring Real-time Optical Data Compression

    CERN Document Server

    Jalali, Bahram; Chen, Claire L

    2015-01-01

    High throughput real-time instruments are needed to acquire large data sets for detection and classification of rare events. Enabled by the photonic time stretch digitizer, a new class of instruments with record throughputs have led to the discovery of optical rogue waves [1], detection of rare cancer cells [2], and the highest analog-to-digital conversion performance ever achieved [3]. Featuring continuous operation at 100 million frames per second and shutter speed of less than a nanosecond, the time stretch camera is ideally suited for screening of blood and other biological samples. It has enabled detection of breast cancer cells in blood with record, one-in-a-million, sensitivity [2]. Owing to their high real-time throughput, instruments produce a torrent of data - equivalent to several 4K movies per second - that overwhelm data acquisition, storage, and processing operations. This predicament calls for technologies that compress images in optical domain and in real-time. An example of this, based on war...

  14. High-Order Entropy Compressed Bit Vectors with Rank/Select

    Directory of Open Access Journals (Sweden)

    Kai Beskers

    2014-11-01

    Full Text Available We design practical implementations of data structures for compressing bit-vectors to support efficient rank-queries (counting the number of ones up to a given point. Unlike previous approaches, which either store the bit vectors plainly, or focus on compressing bit-vectors with low densities of ones or zeros, we aim at low entropies of higher order, for example 101010...10. Our implementations achieve very good compression ratios, while showing only a modest increase in query time.

  15. The Compressive Strength of High-Performance Concrete and Ultrahigh-Performance

    Directory of Open Access Journals (Sweden)

    E. H. Kadri

    2012-01-01

    Full Text Available The compressive strength of silica fume concretes was investigated at low water-cementitious materials ratios with a naphthalene sulphonate superplasticizer. The results show that partial cement replacement up to 20% produce, higher compressive strengths than control concretes, nevertheless the strength gain is less than 15%. In this paper we propose a model to evaluate the compressive strength of silica fume concrete at any time. The model is related to the water-cementitious materials and silica-cement ratios. Taking into account the author's and other researchers’ experimental data, the accuracy of the proposed model is better than 5%.

  16. Characteristics of a compression wave propagating over porous plate wall in a high-speed railway tunnel

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    A pressure wave is generated ahead of a high-speed train, while entering a tunnel. This pressure wave propagates to the tunnel exit and spouts as a micro-pressure wave, which causes an exploding sound. From the fact that the ballast track tunnel has smaller noise than the slab track tunnel, we have suggested a new inner tunnel model to decrease the noise of the micro-pressure wave, using the ballast effect. Experimental and numerical investigations are carried out to clarify the attenuation and distortion of propagating compression wave over porous plate wall in a model tunnel. Data shows that the strength of the compression wave and a maximum pressure gradient of the compression wave was weakened. These data shows the possibility of the present a11eviative method using the porous plate wall in a tunnel

  17. The Effect of PFSA Membrane Compression on the Predicted Performance of a High Pressure PEM Electrolysis Cell

    DEFF Research Database (Denmark)

    Olesen, Anders Christian; Kær, Søren Knudsen

    of the water uptake model was chosen in order to account for interfacial transport kinetics between each fluid phase and the PFSA membrane. Besides modeling water uptake, the devised membrane model accounts for water transport through diffusion and electro-osmotic drag in the polymer phase, and hydraulic...... layer at the anode, to withstand the mechanical compression, a conventional perfluorinated sulfonic acid (PFSA) membrane can be used as the electrolyte. Although PFSA membranes like Nafion exhibit high thermo-mechanical stability, water uptake and transport properties are significantly affected...... permeation in the liquid phase. Charge transport and Butler-Volmer electrochemistry are likewise included. In order to investigate the effect of accounting for membrane compression, a parametric study is carried out with and without the compression corrected water uptake model by Kusoglu et al. [4...

  18. Microbunching and RF Compression

    Energy Technology Data Exchange (ETDEWEB)

    Venturini, M.; Migliorati, M.; Ronsivalle, C.; Ferrario, M.; Vaccarezza, C.

    2010-05-23

    Velocity bunching (or RF compression) represents a promising technique complementary to magnetic compression to achieve the high peak current required in the linac drivers for FELs. Here we report on recent progress aimed at characterizing the RF compression from the point of view of the microbunching instability. We emphasize the development of a linear theory for the gain function of the instability and its validation against macroparticle simulations that represents a useful tool in the evaluation of the compression schemes for FEL sources.

  19. High pressure investigations on hydrous magnesium silicate-phase A using first principles calculations: H---H repulsion and changes in hydrogen bond geometry with compression

    Science.gov (United States)

    Poswal, H. K.; Sharma, Surinder; Sikka, S. K.

    2009-09-01

    We have carried out first principles structural relaxation calculations on the hydrous magnesium silicate Phase A (Mg7Si2O8(OH)6) under high pressures. Our results show that phase A does not undergo any phase transition upto ~ 45 GPa. We find that non-bonded H--H distance reaches a limiting value of 1.85 angstrom at about 45 GPa. The H--H repulsive strain releasing mechanism in Phase A is found to be dramatically different from the hydrogen bond bending one that was proposed by Hofmeister et al1 for Phase B. It is based on the reduction of one of the O-H bond distances with compression.

  20. Low-latency video transmission over high-speed WPANs based on low-power video compression

    DEFF Research Database (Denmark)

    Belyaev, Eugeniy; Turlikov, Andrey; Ukhanova, Ann

    2010-01-01

    This paper presents latency-constrained video transmission over high-speed wireless personal area networks (WPANs). Low-power video compression is proposed as an alternative to uncompressed video transmission. A video source rate control based on MINMAX quality criteria is introduced. Practical...