Sample records for high combustion temperature

  1. Materials for High-Temperature Catalytic Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Ersson, Anders


    Catalytic combustion is an environmentally friendly technique to combust fuels in e.g. gas turbines. Introducing a catalyst into the combustion chamber of a gas turbine allows combustion outside the normal flammability limits. Hence, the adiabatic flame temperature may be lowered below the threshold temperature for thermal NO{sub X} formation while maintaining a stable combustion. However, several challenges are connected to the application of catalytic combustion in gas turbines. The first part of this thesis reviews the use of catalytic combustion in gas turbines. The influence of the fuel has been studied and compared over different catalyst materials. The material section is divided into two parts. The first concerns bimetallic palladium catalysts. These catalysts showed a more stable activity compared to their pure palladium counterparts for methane combustion. This was verified both by using an annular reactor at ambient pressure and a pilot-scale reactor at elevated pressures and flows closely resembling the ones found in a gas turbine combustor. The second part concerns high-temperature materials, which may be used either as active or washcoat materials. A novel group of materials for catalysis, i.e. garnets, has been synthesised and tested in combustion of methane, a low-heating value gas and diesel fuel. The garnets showed some interesting abilities especially for combustion of low-heating value, LHV, gas. Two other materials were also studied, i.e. spinels and hexa aluminates, both showed very promising thermal stability and the substituted hexa aluminates also showed a good catalytic activity. Finally, deactivation of the catalyst materials was studied. In this part the sulphur poisoning of palladium, platinum and the above-mentioned complex metal oxides has been studied for combustion of a LHV gas. Platinum and surprisingly the garnet were least deactivated. Palladium was severely affected for methane combustion while the other washcoat materials were

  2. Low Temperature Combustion Demonstrator for High Efficiency Clean Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Ojeda, William de


    The project which extended from November 2005 to May of 2010 demonstrated the application of Low Temperature Combustion (LTC) with engine out NOx levels of 0.2 g/bhp-hr throughout the program target load of 12.6bar BMEP. The project showed that the range of loads could be extended to 16.5bar BMEP, therefore matching the reference lug line of the base 2007 MY Navistar 6.4L V8 engine. Results showed that the application of LTC provided a dramatic improvement over engine out emissions when compared to the base engine. Furthermore LTC improved thermal efficiency by over 5% from the base production engine when using the steady state 13 mode composite test as a benchmark. The key enablers included improvements in the air, fuel injection, and cooling systems made in Phases I and II. The outcome was the product of a careful integration of each component under an intelligent control system. The engine hardware provided the conditions to support LTC and the controller provided the necessary robustness for a stable combustion. Phase III provided a detailed account on the injection strategy used to meet the high load requirements. During this phase, the control strategy was implemented in a production automotive grade ECU to perform cycle-by-cycle combustion feedback on each of the engine cylinders. The control interacted on a cycle base with the injection system and with the Turbo-EGR systems according to their respective time constants. The result was a unique system that could, first, help optimize the combustion system and maintain high efficiency, and secondly, extend the steady state results to the transient mode of operation. The engine was upgraded in Phase IV with a Variable Valve Actuation system and a hybrid EGR loop. The impact of the more versatile EGR loop did not provide significant advantages, however the application of VVA proved to be an enabler to further extend the operation of LTC and gain considerable benefits in fuel economy and soot reduction. Finally

  3. Combustion Characteristics of Polyethylene and Coal Powder at High Temperature

    Institute of Scientific and Technical Information of China (English)

    LONG Shi-gang; CAO Feng; WANG Si-wei; SUN Liu-heng; PANG Jian-ming; SUN Yu-ping


    To study the combustion characteristics of the polyethylene (PE) particle and coal powder at blast temperature of the blast furnace, the contents of CO and CO2 of off-gas during the combustion of PE particle and coal powder at the 1 200 ℃ and 1 250 ℃ were measured using carbon monoxide and carbon dioxide infrared analyzer, and then the corresponding combustion ratio was calculated. The results showed that when the temperature is high, the combustion speed of PE and coal powder is high and the corresponding combustion ratio is high. Whereas, the combustion speed and ratio of PE are much higher than those of coal powder.

  4. Catalytic combustion over high temperature stable metal oxides

    Energy Technology Data Exchange (ETDEWEB)

    Berg, M. [TPS Termiska Processer AB, Nykoeping (Sweden)


    This thesis presents a study of the catalytic effects of two interesting high temperature stable metal oxides - magnesium oxide and manganese substituted barium hexa-aluminate (BMA) - both of which can be used in the development of new monolithic catalysts for such applications. In the first part of the thesis, the development of catalytic combustion for gas turbine applications is reviewed, with special attention to alternative fuels such as low-BTU gas, e.g. produced in an air blown gasifier. When catalytic combustion is applied for such a fuel, the primary advantage is the possibility of decreasing the conversion of fuel nitrogen to NO{sub x}, and achieving flame stability. In the experimental work, MgO was shown to have a significant activity for the catalytic combustion of methane, lowering the temperature needed to achieve 10 percent conversion by 270 deg C compared with homogeneous combustion.The reaction kinetics for methane combustion over MgO was also studied. It was shown that the heterogeneous catalytic reactions were dominant but that the catalytically initiated homogeneous gas phase reactions were also important, specially at high temperatures. MgO and BMA were compared. The latter showed a higher catalytic activity, even when the differences in activity decreased with increasing calcination temperature. For BMA, CO{sub 2} was the only product detected, but for MgO significant amounts of CO and C{sub 2}-hydrocarbons were formed. BMA needed a much lower temperature to achieve total conversion of other fuels, e.g. CO and hydrogen, compared to the temperature for total conversion of methane. This shows that BMA-like catalysts are interesting for combustion of fuel mixtures with high CO and H{sub 2} content, e.g. gas produced from gasification of biomass. 74 refs

  5. High Temperature Chemical Kinetic Combustion Modeling of Lightly Methylated Alkanes

    Energy Technology Data Exchange (ETDEWEB)

    Sarathy, S M; Westbrook, C K; Pitz, W J; Mehl, M


    Conventional petroleum jet and diesel fuels, as well as alternative Fischer-Tropsch (FT) fuels and hydrotreated renewable jet (HRJ) fuels, contain high molecular weight lightly branched alkanes (i.e., methylalkanes) and straight chain alkanes (n-alkanes). Improving the combustion of these fuels in practical applications requires a fundamental understanding of large hydrocarbon combustion chemistry. This research project presents a detailed high temperature chemical kinetic mechanism for n-octane and three lightly branched isomers octane (i.e., 2-methylheptane, 3-methylheptane, and 2,5-dimethylhexane). The model is validated against experimental data from a variety of fundamental combustion devices. This new model is used to show how the location and number of methyl branches affects fuel reactivity including laminar flame speed and species formation.

  6. High Combustion Research Facility (United States)

    Federal Laboratory Consortium — At NETL's High-Pressure Combustion Research Facility in Morgantown, WV, researchers can investigate new high-pressure, high-temperature hydrogen turbine combustion...

  7. Combustion and Plasma Synthesis of High-Temperature Materials (United States)

    Munir, Z. A.; Holt, J. B.


    KEYNOTE ADDRESS. Self-Propagating High-Temperature Synthesis: Twenty Years of Search and Findings (A. Merzhanov). SOLID-STATE COMBUSTION SYNTHESIS. Recent Progress in Combustion Synthesis of High-Performance Materials in Japan (M. Koizumi & Y. Miyamoto). Modeling and Numerical Computation of a Nonsteady SHS Process (A. Bayliss & B. Matkowsky). New Models of Quasiperiodic Burning in Combustion Synthesis (S. Margolis, et al.). Modeling of SHS Operations (V. Hlavacek, et al.). Combustion Theory for Sandwiches of Alloyable Materials (R. Armstrong & M. Koszykowski). Observations on the Combustion Reaction Between Thin Foils of Ni and Al (U. Anselmi-Tamburini & Z. Munir). Combustion Synthesis of Intermetallic Compounds (Y. Kaieda, et al.). Combustion Synthesis of Nickel Aluminides (B. Rabin, et al.). Self-Propagating High-Temperature Synthesis of NiTi Intermetallics (H. Yi & J. Moore). Shock-Induced Chemical Synthesis of Intermetallic Compounds (S. Work, et al.). Advanced Ceramics Via SHS (T. DeAngelis & D. Weiss). In-Situ Formation of SiC and SiC-C Blocked Solids by Self-Combustion Synthesis (S. Ikeda, et al.). Powder Purity and Morphology Effects in Combustion-Synthesis Reactions (L. Kecskes, et al.). Simultaneous Synthesis and Densification of Ceramic Components Under Gas Pressure by SHS (Y. Miyamoto & M. Koizumi). The Use of Self-Propagating High-Temperature Synthesis of High-Density Titanium Diboride (P. Zavitsanos, et al.). Metal--Ceramic Composite Pipes Produced by a Centrifugal-Thermit Process (O. Odawara). Simultaneous Combustion Synthesis and Densification of AIN (S. Dunmead, et al.). Fabrication of a Functionally Gradient Material by Using a Self-Propagating Reaction Process (N. Sata, et al.). Combustion Synthesis of Oxide-Carbide Composites (L. Wang, et al.). Heterogeneous Reaction Mechanisms in the Si-C System Under Conditions of Solid Combustion (R. Pampuch, et al.). Experimental Modeling of Particle-Particle Interactions During SHS of TiB2 -Al2O3 (K. Logan

  8. Spectroscopy and kinetics of combustion gases at high temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Hanson, R.K.; Bowman, C.T. [Stanford Univ., CA (United States)


    This program involves two complementary activities: (1) development and application of cw ring dye laser absorption methods for sensitive detection of radical species and measurement of fundamental spectroscopic parameters at high temperatures; and (2) shock tube studies of reaction kinetics relevant to combustion. Species currently under investigation in the spectroscopic portion of the research include NO and CH{sub 3}; this has necessitated the continued operated at wavelengths in the range 210-230 nm. Shock tube studies of reaction kinetics currently are focussed on reactions involving CH{sub 3} radicals.

  9. Comparison of Diesel Spray Combustion in Different High-temperature, High-pressure Facilities

    DEFF Research Database (Denmark)

    Pickett, Lyle M.; Genzale, Caroline L.; Bruneaux, Gilles


    Diesel spray experimentation at controlled high-temperature and high-pressure conditions is intended to provide a more fundamental understanding of diesel combustion than can be achieved in engine experiments. This level of understanding is needed to develop the high-fidelity multi-scale CFD mode...

  10. Development of High Efficiency and Low Emission Low Temperature Combustion Diesel Engine with Direct EGR Injection (United States)

    Ho, R. J.; Kumaran, P.; Yusoff, M. Z.


    Focus on energy and environmental sustainability policy has put automotive research & development directed to developing high efficiency and low pollutant power train. Diffused flame controlled diesel combustion has reach its limitation and has driven R&D to explore other modes of combustions. Known effective mode of combustion to reduce emission are Low temperature combustion (LTC) and homogeneous charge combustion ignition by suppressing Nitrogen Oxide(NOx) and Particulate Matter (PM) formation. The key control to meet this requirement are chemical composition and distribution of fuel and gas during a combustion process. Most research to accomplish this goal is done by manipulating injected mass flow rate and varying indirect EGR through intake manifold. This research paper shows viable alternative direct combustion control via co-axial direct EGR injection with fuel injection process. A simulation study with OpenFOAM is conducted by varying EGR injection velocity and direct EGR injector diameter performed with under two conditions with non-combustion and combustion. n-heptane (C7H16) is used as surrogate fuel together with 57 species 290 semi-detailed chemical kinetic model developed by Chalmers University is used for combustion simulation. Simulation result indicates viability of co-axial EGR injection as a method for low temperature combustion control.

  11. Soot measurements for diesel and biodiesel spray combustion under high temperature highly diluted ambient conditions

    KAUST Repository

    Zhang, Ji


    This paper presents the soot temperature and KL factor for biodiesel, namely fatty acid methyl ester (FAME) and diesel fuel combustion in a constant volume chamber using a two-color technique. The KL factor is a parameter for soot concentration, where K is an absorption coefficient and proportional to the number density of soot particles, L is the geometric thickness of the flame along the optical detection axis, and KL factor is proportional to soot volume fraction. The main objective is to explore a combustion regime called high-temperature and highly-diluted combustion (HTHDC) and compare it with the conventional and low-temperature combustion (LTC) modes. The three different combustion regimes are implemented under different ambient temperatures (800 K, 1000 K, and 1400 K) and ambient oxygen concentrations (10%, 15%, and 21%). Results are presented in terms of soot temperature and KL factor images, time-resolved pixel-averaged soot temperature, KL factor, and spatially integrated KL factor over the soot area. The time-averaged results for these three regimes are compared for both diesel and biodiesel fuels. Results show complex combined effects of the ambient temperature and oxygen concentration, and that two-color temperature for the HTHDC mode at the 10% oxygen level can actually be lower than the conventional mode. Increasing ambient oxygen and temperature increases soot temperature. Diesel fuel results in higher soot temperature than biodiesel for all three regimes. Results also show that diesel and biodiesel fuels have very different burning and sooting behavior under the three different combustion regimes. For diesel fuel, the HTHDC regime offers better results in terms of lower soot than the conventional and LTC regimes, and the 10% O2, 1400 K ambient condition shows the lowest soot concentration while maintaining a moderate two-color temperature. For biodiesel, the 15% O2, 800 K ambient condition shows some advantages in terms of reducing soot

  12. An Experimental Study on High Temperature and Low Oxygen Air Combustion

    Institute of Scientific and Technical Information of China (English)

    W.B.Kim; D.H.Chung; 等


    High temperature preheated and diluted air combustion has been confirmed as the technolgy,mainly applied to industrial furnaces and kilns,to realize higher thermal efficiency and lower emissions.The purpose of this study was to investigate fundamental aspects of the above-mentioned combustion experimentally and to compare with those in ordinary hydrocarbon combustion with room temperature air.The test items were exhaust gas components of CO,NOx,flame shape and raidcal components of CH,OH and C2,which were measured with gas analyser,camera and ICCD(Intersified Charged-Coupled Device) camera.Many phenomena as results appeared in combustion with the oxidizer,low oxygen concentation and extremely high temperature air,such as expansion of the flammable limits,increased flame propagation speed,it looked so strange as compared with those in existing combustion technology,we confirmed that such extraordinary phenomena were believable through the hot-test experiment.

  13. High sensitivity of diesel soot morphological and optical properties to combustion temperature in a shock tube. (United States)

    Qiu, Chong; Khalizov, Alexei F; Hogan, Brian; Petersen, Eric L; Zhang, Renyi


    Carbonaceous particles produced from combustion of fossil fuels have strong impacts on air quality and climate, yet quantitative relationships between particle characteristics and combustion conditions remain inadequately understood. We have used a shock tube to study the formation and properties of diesel combustion soot, including particle size distributions, effective density, elemental carbon (EC) mass fraction, mass-mobility scaling exponent, hygroscopicity, and light absorption and scattering. These properties are found to be strongly dependent on the combustion temperature and fuel equivalence ratio. Whereas combustion at higher temperatures (∼2000 K) yields fractal particles of a larger size and high EC content (90 wt %), at lower temperatures (∼1400 K) smaller particles of a higher organic content (up to 65 wt %) are produced. Single scattering albedo of soot particles depends largely on their organic content, increasing drastically from 0.3 to 0.8 when the particle EC mass fraction decreases from 0.9 to 0.3. The mass absorption cross-section of diesel soot increases with combustion temperature, being the highest for particles with a higher EC content. Our results reveal that combustion conditions, especially the temperature, may have significant impacts on the direct and indirect climate forcing of atmospheric soot aerosols.

  14. Spectroscopy and Kinetics of Combustion Gases at High Temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Hanson, Ronald [Stanford Univ., CA (United States); Bowman, Craig [Stanford Univ., CA (United States)


    This report describes our research program that involves two complementary activities: (1) development and application of cw laser absorption methods for the measurement of concentration time-histories and fundamental spectroscopic parameters for species of interest in combustion; and (2) shock tube studies of reaction kinetics relevant to combustion. This first part of this report covers research during the final three-year support period, i.e. March 2012 – November 2015. The later part of this report summarizes research conducted over multiple-year periods between March 1988 to March 2012. Publications supported by DOE for each period are summarized at the end of that report section.

  15. Combustion of Gaseous Fuels with High Temperature Air in Normal- and Micro-gravity Conditions (United States)

    Wang, Y.; Gupta, A. K.


    The objective of this study is determine the effect of air preheat temperature on flame characteristics in normal and microgravity conditions. We have obtained qualitative (global flame features) and some quantitative information on the features of flames using high temperature combustion air under normal gravity conditions with propane and methane as the fuels. This data will be compared with the data under microgravity conditions. The specific focus under normal gravity conditions has been on determining the global flame features as well as the spatial distribution of OH, CH, and C2 from flames using high temperature combustion air at different equivalence ratio.

  16. High temperature corrosion investigation in an oxyfuel combustion test rig

    DEFF Research Database (Denmark)

    Montgomery, Melanie; Bjurman, M.; Hjörnhede, A


    (perhaps carburized) zone was used as a measure of corrosion rates. The lowest alloyed steel had the highest corrosion rate, and the other austenitic and nickel alloys had much lower corrosion rates. Precipitates in the alloy adjacent the corrosion front were revealed for both Sanicro 28 and C‐276. However...... constructed by Brandenburg Technical University to gain understanding into oxyfuel firing. Two air‐cooled corrosion probes were exposed in this oxyfuel combustion chamber where the fuel was lignite. Gas composition was measured at the location of testing. Various alloys from a 2½ Cr steel, austenitic steels...

  17. Apparatus and method for temperature mapping a turbine component in a high temperature combustion environment (United States)

    Baleine, Erwan; Sheldon, Danny M


    Method and system for calibrating a thermal radiance map of a turbine component in a combustion environment. At least one spot (18) of material is disposed on a surface of the component. An infrared (IR) imager (14) is arranged so that the spot is within a field of view of the imager to acquire imaging data of the spot. A processor (30) is configured to process the imaging data to generate a sequence of images as a temperature of the combustion environment is increased. A monitor (42, 44) may be coupled to the processor to monitor the sequence of images of to determine an occurrence of a physical change of the spot as the temperature is increased. A calibration module (46) may be configured to assign a first temperature value to the surface of the turbine component when the occurrence of the physical change of the spot is determined.

  18. Combustion and Plasma Synthesis of High Temperature Materials (United States)


    examined. The transformacion temperatures (As. Af. Ms, Mf) of each wire were measured by differential scanning calorimetry (DSC) and electrical resistance...fields. To avoid these problems, it is necessary to capture selected video frames in digital memory while the recorder is in play mode. Time encoding...and time code reading capability is needed to identify and freeze a selected field. The digital freeze frame unit converts the intensity record back

  19. High temperature corrosion by combustion gases produced by burning liquid fuels containing sulphur, sodium and vanadium.


    Khan, Fazlur Rahman


    High temperature corrosion, at 730° C, by combustion gases produced by burning liquid fuels in a laboratory combustor has been investigated. A selected range of steels and alloys (mild steel, stainless steel type 347, Nimonic N90, N105, and IN657) have been tested in the combustion gases using fuels containing varying amounts of impurities in the range of 0 - 6% sulphur, 0 - 60 ppm sodium, and 0 - 300 ppm vanadium. On the basis of the comprehensive results a computer programme was written t...

  20. Hydrogen detonation and detonation transition data from the High-Temperature Combustion Facility

    Energy Technology Data Exchange (ETDEWEB)

    Ciccarelli, G.; Boccio, J.L.; Ginsberg, T.; Finfrock, C. [Brookhaven National Lab., Upton, NY (United States)] [and others


    The BNL High-Temperature Combustion Facility (HTCF) is an experimental research tool capable of investigating the effects of initial thermodynamic state on the high-speed combustion characteristic of reactive gas mixtures. The overall experimental program has been designed to provide data to help characterize the influence of elevated gas-mixture temperature (and pressure) on the inherent sensitivity of hydrogen-air-steam mixtures to undergo detonation, on the potential for flames accelerating in these mixtures to transition into detonations, on the effects of gas venting on the flame-accelerating process, on the phenomena of initiation of detonations in these mixtures by jets of hot reactant products, and on the capability of detonations within a confined space to transmit into another, larger confined space. This paper presents results obtained from the completion of two of the overall test series that was designed to characterize high-speed combustion phenomena in initially high-temperature gas mixtures. These two test series are the intrinsic detonability test series and the deflagration-to-detonation (DDT) test series. A brief description of the facility is provided below.

  1. Dual phase high-temperature membranes for CO2 separation - performance assessment in post- and pre-combustion processes. (United States)

    Anantharaman, Rahul; Peters, Thijs; Xing, Wen; Fontaine, Marie-Laure; Bredesen, Rune


    Dual phase membranes are highly CO2-selective membranes with an operating temperature above 400 °C. The focus of this work is to quantify the potential of dual phase membranes in pre- and post-combustion CO2 capture processes. The process evaluations show that the dual phase membranes integrated with an NGCC power plant for CO2 capture are not competitive with the MEA process for post-combustion capture. However, dual phase membrane concepts outperform the reference Selexol technology for pre-combustion CO2 capture in an IGCC process. The two processes evaluated in this work, post-combustion NGCC and pre-combustion IGCC, represent extremes in CO2 partial pressure fed to the separation unit. Based on the evaluations it is expected that dual phase membranes could be competitive for post-combustion capture from a pulverized coal fired power plant (PCC) and pre-combustion capture from an Integrated Reforming Cycle (IRCC).

  2. Research on temperature distribution of combustion flames based on high dynamic range imaging (United States)

    Zhao, Hui; Feng, Huajun; Xu, Zhihai; Li, Qi


    The imaging-based three-color method is widely used in the field of non-contact temperature measurement of combustion flames. In this paper, by analyzing the imaging process of a combustion flame in detail, we re-derivate the three-color method by adopting a theory of high dynamic range imaging. Instead of using white balanced, gamma calibrated or other algorithms applied 8-bit pixel values, we use irradiance values on the image plane; these values are obtained by combining two differently exposed raw images into one high dynamic range irradiance map with the help of the imaging system's response function. An instrumentation system is presented and a series of experiments have been carried out, the results of which are satisfactory.

  3. Ash deposition and high temperature corrosion at combustion of aggressive fuels

    Energy Technology Data Exchange (ETDEWEB)

    Hede Larsen, O. [I/S Fynsvaerket, Faelleskemikerne, Odense (Denmark); Henriksen, N. [Elsamprojekt A/S, Faelleskemikerne, Fredericia (Denmark)


    In order to reduce CO{sub 2} emission, ELSAM is investigating the possibilities of using biomass - mainly straw - for combustion in high efficiency power plants. As straw has very high contents of chlorine and potassium, a fuel with high corrosion and ash deposition propensities has been introduced. ELSAM has investigated 3 ultra supercritical boiler concepts for combustion of straw alone or together with coal: (1) PF boilers with a relatively low share of straw, (2) CFB boilers with low to high share of straw and (3) vibrating grate boilers with 100% straw. These investigations has mainly been full-scale tests with straw fed into existing boilers. Corrosion tests have been performed in these boilers using temperature regulated probes and in-plant test tubes in existing superheaters. The corrosion has been determined by detailed measurements of wall thickness reduction and light optical microscopic measurements of the material degradation due to high temperature corrosion. Corrosion mechanisms have been evaluated using SEM/EDX together with thermodynamical considerations based on measurements of the chemical environment in the flue gas. Ash deposition is problematic in CFB boilers and in straw fired boilers, especially in years with high potassium and chlorine content of the straw. This ash deposition also is related to condensation of KCl and can probably only be handled by improved cleaning devices. (EG)

  4. Velocity measurement in life combustion systems with high temperature anemometer - HTA

    Energy Technology Data Exchange (ETDEWEB)

    Staudinger, G.; Mory, A.; Pilz, R.; Zimmel, M. [Technische Universitaet Graz, Graz (Austria). Inst. fuer Verfahrenstechnik, Abt. fuer Apparatebau und Mechanische Verfahrenstechnik


    An anemometer was developed which allows to measure velocities in dusty atmospheres at temperatures up to 1200{degree}C in a range between 1 and 40 m/s. The most important features of this vane-anemometer are its frictionless aerostatic bearing and the internal air cooling. The frequency of rotation is detected with a high temperature resistant optical fibre. In the project velocities and velocity-fields were measured in the combustion chambers of a 300 MW{sub el} power plant, a 27 MW{sub th} waste incinerator and in different pilot- and semi-industrial plants. The fuels used were coal, biomass, and municipal waste. 11 figs., 2 tabs.

  5. Low and High Temperature Combustion Chemistry of Butanol Isomers in Premixed Flames and Autoignition Systems

    Energy Technology Data Exchange (ETDEWEB)

    Sarathy, S M; Pitz, W J; Westbrook, C K; Mehl, M; Yasunaga, K; Curran, H J; Tsujimura, T; Osswald, P; Kohse-Hoinghaus, K


    Butanol is a fuel that has been proposed as a bio-derived alternative to conventional petroleum derived fuels. The structural isomer in traditional 'bio-butanol' fuel is n-butanol, but newer conversion technologies produce iso-butanol as a fuel. In order to better understand the combustion chemistry of bio-butanol, this study presents a comprehensive chemical kinetic model for all the four isomers of butanol (e.g., 1-, 2-, iso- and tert-butanol). The proposed model includes detailed high temperature and low temperature reaction pathways. In this study, the primary experimental validation target for the model is premixed flat low-pressure flame species profiles obtained using molecular beam mass spectrometry (MBMS). The model is also validated against previously published data for premixed flame velocity and n-butanol rapid compression machine and shock tube ignition delay. The agreement with these data sets is reasonably good. The dominant reaction pathways at the various pressures and temperatures studied are elucidated. At low temperature conditions, we found that the reaction of alphahydroxybutyl with O{sub 2} was important in controlling the reactivity of the system, and for correctly predicting C{sub 4} aldehyde profiles in low pressure premixed flames. Enol-keto isomerization reactions assisted by HO{sub 2} were also found to be important in converting enols to aldehydes and ketones in the low pressure premixed flames. In the paper, we describe how the structural features of the four different butanol isomers lead to differences in the combustion properties of each isomer.

  6. A secular carbon debt from atmospheric high temperature combustion of stem wood?

    DEFF Research Database (Denmark)

    Czeskleba-Dupont, Rolf


    ' approach for smokestack emissions that was propagated within the Kyoto process, the first phase of which is terminating in 2012. Otherwise, it is tolerated that the substitution of wood pellets for coal or other fossil fuels creates long lasting extra emissions of carbon dioxide – a mistake of climate......Basically, combustion of woody biomass in high temperature processes that react with atmospheric air results in a long lasting addition of carbon dioxide to the atmosphere. When harvesting large extra amounts of stem tree for energetic use, a global as well as secular time frame is needed to assess...... overall consequences with due attention given to biosphere processes, including the complex productivity of whole ecosystems. Analytically, a time dependent variable of carbon neutralization can be traced by a simple carbon neutrality or CN factor. Using the forgotten Marland approach, project managers...


    Directory of Open Access Journals (Sweden)

    Velibor V Vujović


    Full Text Available This paper presents the algorithm and results of a computer program for calculation of complex equilibrium composition for the high temperature fossil fuel combustion products. The method of determining the composition of high temperatures combustion products at the temperatures appearing in the open cycle MHD power generation is given. The determination of combustion product composition is based on minimization of the Gibbs free energy. The number of equations to be solved is reduced by using variational principles and a method of geometric programming and is equal to the sum of the numbers of elements and phases. A short description of the computer program for the calculation of the composition and an example of the results are also given.

  8. Intrinsic and metal-doped gallium oxide based high-temperature oxygen sensors for combustion processes (United States)

    Rubio, Ernesto Javier

    Currently, there is enormous interest in research, development and optimization of the combustion processes for energy harvesting. Recent statistical and economic analyses estimated that by improving the coal-based firing/combustion processes in the power plants, savings up to $450-500 million yearly can be achieved. Advanced sensors and controls capable of withstanding extreme environments such as high temperatures, highly corrosive atmospheres, and high pressures are critical to such efficiency enhancement and cost savings. For instance, optimization of the combustion processes in power generation systems can be achieved by sensing, monitoring and control of oxygen, which is a measure of the completeness of the process and can lead to enhanced efficiency and reduced greenhouse gas emissions. However, despite the fact that there exists a very high demand for advanced sensors, the existing technologies suffer from poor 'response and recovery times' and 'long-term stability.' Motivated by the aforementioned technological challenges, the present work was focused on high-temperature (≥700 °C) oxygen sensors for application in power generation systems. The objective of the present work is to investigate nanostructured gallium oxide (2O3) based sensors for oxygen sensing, where we propose to conduct in-depth exploration of the role of refractory metal (tungsten, W, in this case) doping into 2O 3 to enhance the sensitivity, selectivity, stability ("3S" criteria) and reliability of such sensors while keeping cost economical. Tungsten (W) doped gallium oxide (2O3) thin films were deposited via rf-magnetron co-sputtering of W-metal and Ga2O3-ceramic targets. Films were produced by varying the sputtering power applied to the W-target in order to achieve variable W content into 2O3 films while substrate temperature was kept constant at 500 °C. Chemical composition, chemical valence states, microstructure and crystal structure of as-grown and post-annealed W-doped 2O3

  9. High-temperature CO / HC gas sensors to optimize firewood combustion in low-power fireplaces

    Directory of Open Access Journals (Sweden)

    B. Ojha


    Full Text Available In order to optimize firewood combustion in low-power firewood-fuelled fireplaces, a novel combustion airstream control concept based on the signals of in situ sensors for combustion temperature, residual oxygen concentration and residual un-combusted or partly combusted pyrolysis gas components (CO and HC has been introduced. A comparison of firing experiments with hand-driven and automated airstream-controlled furnaces of the same type showed that the average CO emissions in the high-temperature phase of the batch combustion can be reduced by about 80 % with the new control concept. Further, the performance of different types of high-temperature CO / HC sensors (mixed-potential and metal oxide types, with reference to simultaneous exhaust gas analysis by a high-temperature FTIR analysis system, was investigated over 20 batch firing experiments (∼ 80 h. The distinctive sensing behaviour with respect to the characteristically varying flue gas composition over a batch firing process is discussed. The calculation of the Pearson correlation coefficients reveals that mixed-potential sensor signals correlate more with CO and CH4; however, different metal oxide sensitive layers correlate with different gas species: 1 % Pt / SnO2 designates the presence of CO and 2 % ZnO / SnO2 designates the presence of hydrocarbons. In the case of a TGS823 sensor element, there was no specific correlation with one of the flue gas components observed. The stability of the sensor signals was evaluated through repeated exposure to mixtures of CO, N2 and synthetic air after certain numbers of firing experiments and exhibited diverse long-term signal instabilities.

  10. Kinetics of the high-temperature combustion reactions of dibutylether using composite computational methods

    KAUST Repository

    Rachidi, Mariam El


    This paper investigates the high-temperature combustion kinetics of n-dibutyl ether (n-DBE), including unimolecular decomposition, H-abstraction by H, H-migration, and C{single bond}C/C{single bond}O β-scission reactions of the DBE radicals. The energetics of H-abstraction by OH radicals is also studied. All rates are determined computationally using the CBS-QB3 and G4 composite methods in conjunction with conventional transition state theory. The B3LYP/6-311++G(2df,2pd) method is used to optimize the geometries and calculate the frequencies of all reactive species and transition states for use in ChemRate. Some of the rates calculated in this study vary markedly from those obtained for similar reactions of alcohols or alkanes, particularly those pertaining to unimolecular decomposition and β-scission at the α-β C{single bond}C bond. These variations show that analogies to alkanes and alcohols are, in some cases, inappropriate means of estimating the reaction rates of ethers. This emphasizes the need to establish valid rates through computation or experimentation. Such studies are especially important given that ethers exhibit promising biofuel and fuel additive characteristics. © 2014.

  11. A University Consortium on Low Temperature Combustion for High Efficiency, Ultra-Low Emission Engines

    Energy Technology Data Exchange (ETDEWEB)

    Assanis, Dennis N. [Univ. of Michigan, Ann Arbor, MI (United States); Atreya, Arvind [Univ. of Michigan, Ann Arbor, MI (United States); Chen, Jyh-Yuan [Univ. of California, Berkeley, CA (United States); Cheng, Wai K. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Dibble, Robert W. [Univ. of California, Berkeley, CA (United States); Edwards, Chris [Stanford Univ., CA (United States); Filipi, Zoran S. [Univ. of Michigan, Ann Arbor, MI (United States); Gerdes, Christian [Stanford Univ., CA (United States); Im, Hong [Univ. of Michigan, Ann Arbor, MI (United States); Lavoie, George A. [Univ. of Michigan, Ann Arbor, MI (United States); Wooldridge, Margaret S. [Univ. of Michigan, Ann Arbor, MI (United States)


    The objective of the University consortium was to investigate the fundamental processes that determine the practical boundaries of Low Temperature Combustion (LTC) engines and develop methods to extend those boundaries to improve the fuel economy of these engines, while operating with ultra low emissions. This work involved studies of thermal effects, thermal transients and engine management, internal mixing and stratification, and direct injection strategies for affecting combustion stability. This work also examined spark-assisted Homogenous Charge Compression Ignition (HCCI) and exhaust after-treatment so as to extend the range and maximize the benefit of Homogenous Charge Compression Ignition (HCCI)/ Partially Premixed Compression Ignition (PPCI) operation. In summary the overall goals were; Investigate the fundamental processes that determine the practical boundaries of Low Temperature Combustion (LTC) engines; Develop methods to extend LTC boundaries to improve the fuel economy of HCCI engines fueled on gasoline and alternative blends, while operating with ultra low emissions; and Investigate alternate fuels, ignition and after-treatment for LTC and Partially Premixed compression Ignition (PPCI) engines.

  12. An atmospheric pressure high-temperature laminar flow reactor for investigation of combustion and related gas phase reaction systems

    Energy Technology Data Exchange (ETDEWEB)

    Oßwald, Patrick; Köhler, Markus [Institute of Combustion Technology, German Aerospace Center (DLR), Pfaffenwaldring 38-40, D-70569 Stuttgart (Germany)


    A new high-temperature flow reactor experiment utilizing the powerful molecular beam mass spectrometry (MBMS) technique for detailed observation of gas phase kinetics in reacting flows is presented. The reactor design provides a consequent extension of the experimental portfolio of validation experiments for combustion reaction kinetics. Temperatures up to 1800 K are applicable by three individually controlled temperature zones with this atmospheric pressure flow reactor. Detailed speciation data are obtained using the sensitive MBMS technique, providing in situ access to almost all chemical species involved in the combustion process, including highly reactive species such as radicals. Strategies for quantifying the experimental data are presented alongside a careful analysis of the characterization of the experimental boundary conditions to enable precise numeric reproduction of the experimental results. The general capabilities of this new analytical tool for the investigation of reacting flows are demonstrated for a selected range of conditions, fuels, and applications. A detailed dataset for the well-known gaseous fuels, methane and ethylene, is provided and used to verify the experimental approach. Furthermore, application for liquid fuels and fuel components important for technical combustors like gas turbines and engines is demonstrated. Besides the detailed investigation of novel fuels and fuel components, the wide range of operation conditions gives access to extended combustion topics, such as super rich conditions at high temperature important for gasification processes, or the peroxy chemistry governing the low temperature oxidation regime. These demonstrations are accompanied by a first kinetic modeling approach, examining the opportunities for model validation purposes.

  13. An investigation of the retention sulfur during briquette combustion at high temperature

    Energy Technology Data Exchange (ETDEWEB)

    Wang Li; Yu Hongguan; Wu Junqing; Zhang Jun [Shandong Institute of Mining and Technology, Jinan (China). Jinan Branch, Dept. of Chemical Engineering


    Two high sulphur coals from China, one high in organic sulphur, the other high in non-organic sulphur, were combusted as briquettes, and their sulphur retention analysed. Using calcium oxide as an additive reduced sulphur emissions. Sulphur retention was best with inorganic sulphur coal. Adding calcium carbide slag to the briquette mixture improved sulphur retention, but led to vast numbers of other impurities which weakened the briquettes. Further investigation is needed of coal briquette composition to reduce sulphur emissions. 3 refs., 6 figs., 2 tabs.

  14. On the high-temperature combustion of n-butanol: Shock tube data and an improved kinetic model

    KAUST Repository

    Vasu, Subith S.


    The combustion of n-butanol has received significant interest in recent years, because of its potential use in transportation applications. Researchers have extensively studied its combustion chemistry, using both experimental and theoretical methods; however, additional work is needed under specific conditions to improve our understanding of n-butanol combustion. In this study, we report new OH time-history data during the high-temperature oxidation of n-butanol behind reflected shock waves over the temperature range of 1300-1550 K and at pressures near 2 atm. These data were obtained at Stanford University, using narrow-line-width ring dye laser absorption of the R1(5) line of OH near 306.7 nm. Measured OH time histories were modeled using comprehensive n-butanol literature mechanisms. It was found that n-butanol unimolecular decomposition rate constants commonly used in chemical kinetic models, as well as those determined from theoretical studies, are unable to predict the data presented herein. Therefore, an improved high-temperature mechanism is presented here, which incorporates recently reported rate constants measured in a single pulse shock tube [C. M. Rosado-Reyes and W. Tsang, J. Phys. Chem. A 2012, 116, 9825-9831]. Discussions are presented on the validity of the proposed mechanism against other literature shock tube experiments. © 2013 American Chemical Society.

  15. Development and application of a high-temperature sampling probe for burning chamber conditions of fluidized-bed combustion; Korkean laempoetilan naeytteenottosondin kehittaeminen ja soveltaminen leijukerrospolton tulipesaeolosuhteisiin

    Energy Technology Data Exchange (ETDEWEB)

    Larjava, K.; Paerkkae, M.; Jormanainen, P.; Roine, J.; Paakkinen, K. [VTT Chemistry, Espoo (Finland); Linna, V. [VTT Energy, Jyvaeskylae (Finland)


    A sampling probe for the burning chamber conditions of fluidized-bed combustion will be developed in this project. The probe will be suitable for sampling vaporous heavy and alkali metals and other condensing compounds (e.g. chlorides) as well combustion gases and alternatively also flue gas particles at high temperatures. The knowledge gained with the probe will help understanding, developing and modeling combustion processes and will thus aid the manufacturers of the boilers. (author)

  16. Theoretical Study on Auto-Oscillating Combustion in Self-propagating High Temperature Synthesis

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jin-yong; FU Zheng-yi; WANG Wei-min; ZHANG Qing-jie


    Oscillating combustion is one of classic phenomenon in SHS. But the cause of its formation in a set of complex processes is unclear yet. With a two-step chemical reaction assumption and effects of other thermal dynamic factors, an auto- oscillating combustion hes been gained in a solid SHS process on the macro- humogenous and micro- heterogonous model. Numerical solution shows that the change of chemical reaction is the main cause of the oscillating combustion.

  17. Fundamental phenomena affecting low temperature combustion and HCCI engines, high load limits and strategies for extending these limits

    KAUST Repository

    Saxena, Samveg


    Low temperature combustion (LTC) engines are an emerging engine technology that offers an alternative to spark-ignited and diesel engines. One type of LTC engine, the homogeneous charge compression ignition (HCCI) engine, uses a well-mixed fuel–air charge like spark-ignited engines and relies on compression ignition like diesel engines. Similar to diesel engines, the use of high compression ratios and removal of the throttling valve in HCCI allow for high efficiency operation, thereby allowing lower CO2 emissions per unit of work delivered by the engine. The use of a highly diluted well-mixed fuel–air charge allows for low emissions of nitrogen oxides, soot and particulate matters, and the use of oxidation catalysts can allow low emissions of unburned hydrocarbons and carbon monoxide. As a result, HCCI offers the ability to achieve high efficiencies comparable with diesel while also allowing clean emissions while using relatively inexpensive aftertreatment technologies. HCCI is not, however, without its challenges. Traditionally, two important problems prohibiting market penetration of HCCI are 1) inability to achieve high load, and 2) difficulty in controlling combustion timing. Recent research has significantly mitigated these challenges, and thus HCCI has a promising future for automotive and power generation applications. This article begins by providing a comprehensive review of the physical phenomena governing HCCI operation, with particular emphasis on high load conditions. Emissions characteristics are then discussed, with suggestions on how to inexpensively enable low emissions of all regulated emissions. The operating limits that govern the high load conditions are discussed in detail, and finally a review of recent research which expands the high load limits of HCCI is discussed. Although this article focuses on the fundamental phenomena governing HCCI operation, it is also useful for understanding the fundamental phenomena in reactivity controlled

  18. Sulfur Recovery from Acid Gas Using the Claus Process and High Temperature Air Combustion (HiTAC Technology

    Directory of Open Access Journals (Sweden)

    Mohamed Sassi


    Full Text Available Sulfur-bearing compounds are very detrimental to the environment and to industrial process equipment. They are often obtained or formed as a by-product of separation and thermal processing of fuels containing sulfur, such as coal, crude oil and natural gas. The two sulfur compounds, which need special attention, are: hydrogen sulfide (H2S and sulfur dioxide (SO2. H2S is a highly corrosive gas with a foul smell. SO2 is a toxic gas responsible for acid rain formation and equipment corrosion. Various methods of reducing pollutants containing sulfur are described in this paper, with a focus on the modified Claus process, enhanced by the use of High Temperature Air Combustion (HiTAC technology in the Claus furnace. The Claus process has been known and used in the industry for over 100 years. It involves thermal oxidation of hydrogen sulfide and its reaction with sulfur dioxide to form sulfur and water vapor. This process is equilibrium-limited and usually achieves efficiencies in the range of 94-97%, which have been regarded as acceptable in the past years. Nowadays strict air pollution regulations regarding hydrogen sulfide and sulfur dioxide emissions call for nearly 100% efficiency, which can only be achieved with process modifications. High temperature air combustion technology or otherwise called flameless (or colorless combustion is proposed here for application in Claus furnaces, especially those employing lean acid gas streams, which cannot be burned without the use of auxiliary fuel or oxygen enrichment under standard conditions. With the use of HiTAC it has been shown, however, that fuel-lean, Low Calorific Value (LCV fuels can be burned with very uniform thermal fields without the need for fuel enrichment or oxygen addition. The uniform temperature distribution favors clean and efficient burning with an additional advantage of significant reduction of NOx, CO and hydrocarbon emission.


    Energy Technology Data Exchange (ETDEWEB)

    Kwang Y. Lee; Stuart S. Yin; Andre Boheman


    The objective of the proposed work is to develop an intelligent distributed fiber optical sensor system for real-time monitoring of high temperature in a boiler furnace in power plants. Of particular interest is the estimation of spatial and temporal distributions of high temperatures within a boiler furnace, which will be essential in assessing and controlling the mechanisms that form and remove pollutants at the source, such as NOx. The basic approach in developing the proposed sensor system is three fold: (1) development of high temperature distributed fiber optical sensor capable of measuring temperatures greater than 2000 C degree with spatial resolution of less than 1 cm; (2) development of distributed parameter system (DPS) models to map the three-dimensional (3D) temperature distribution for the furnace; and (3) development of an intelligent monitoring system for real-time monitoring of the 3D boiler temperature distribution. Under Task 1, improvement was made on the performance of in-fiber grating fabricated in single crystal sapphire fibers, test was performed on the grating performance of single crystal sapphire fiber with new fabrication methods, and the fabricated grating was applied to high temperature sensor. Under Task 2, models obtained from 3-D modeling of the Demonstration Boiler were used to study relationships between temperature and NOx, as the multi-dimensionality of such systems are most comparable with real-life boiler systems. Studies show that in boiler systems with no swirl, the distributed temperature sensor may provide information sufficient to predict trends of NOx at the boiler exit. Under Task 3, we investigate a mathematical approach to extrapolation of the temperature distribution within a power plant boiler facility, using a combination of a modified neural network architecture and semigroup theory. The 3D temperature data is furnished by the Penn State Energy Institute using FLUENT. Given a set of empirical data with no analytic

  20. Intelligent Monitoring System With High Temperature Distributed Fiberoptic Sensor For Power Plant Combustion Processes

    Energy Technology Data Exchange (ETDEWEB)

    Kwang Y. Lee; Stuart S. Yin; Andre Boheman


    The objective of the proposed work is to develop an intelligent distributed fiber optical sensor system for real-time monitoring of high temperature in a boiler furnace in power plants. Of particular interest is the estimation of spatial and temporal distributions of high temperatures within a boiler furnace, which will be essential in assessing and controlling the mechanisms that form and remove pollutants at the source, such as NOx. The basic approach in developing the proposed sensor system is three fold: (1) development of high temperature distributed fiber optical sensor capable of measuring temperatures greater than 2000 C degree with spatial resolution of less than 1 cm; (2) development of distributed parameter system (DPS) models to map the three-dimensional (3D) temperature distribution for the furnace; and (3) development of an intelligent monitoring system for real-time monitoring of the 3D boiler temperature distribution. Under Task 1, we set up a dedicated high power, ultrafast laser system for fabricating in-fiber gratings in harsh environment optical fibers, successfully fabricated gratings in single crystal sapphire fibers by the high power laser system, and developed highly sensitive long period gratings (lpg) by electric arc. Under Task 2, relevant mathematical modeling studies of NOx formation in practical combustors. Studies show that in boiler systems with no swirl, the distributed temperature sensor may provide information sufficient to predict trends of NOx at the boiler exit. Under Task 3, we investigate a mathematical approach to extrapolation of the temperature distribution within a power plant boiler facility, using a combination of a modified neural network architecture and semigroup theory. The 3D temperature data is furnished by the Penn State Energy Institute using FLUENT. Given a set of empirical data with no analytic expression, we first develop an analytic description and then extend that model along a single axis. Extrapolation

  1. Intelligent Monitoring System with High Temperature Distributed Fiberoptic Sensor for Power Plant Combustion Processes

    Energy Technology Data Exchange (ETDEWEB)

    Kwang Y. Lee; Stuart S. Yin; Andre Boehman


    The objective of the proposed work is to develop an intelligent distributed fiber optical sensor system for real-time monitoring of high temperature in a boiler furnace in power plants. Of particular interest is the estimation of spatial and temporal distributions of high temperatures within a boiler furnace, which will be essential in assessing and controlling the mechanisms that form and remove pollutants at the source, such as NOx. The basic approach in developing the proposed sensor system is three fold: (1) development of high temperature distributed fiber optical sensor capable of measuring temperatures greater than 2000 C degree with spatial resolution of less than 1 cm; (2) development of distributed parameter system (DPS) models to map the three-dimensional (3D) temperature distribution for the furnace; and (3) development of an intelligent monitoring system for real-time monitoring of the 3D boiler temperature distribution. Under Task 1, we have set up a dedicated high power, ultrafast laser system for fabricating in-fiber gratings in harsh environment optical fibers, successfully fabricated gratings in single crystal sapphire fibers by the high power laser system, and developed highly sensitive long period gratings (lpg) by electric arc. Under Task 2, relevant mathematical modeling studies of NOx formation in practical combustors have been completed. Studies show that in boiler systems with no swirl, the distributed temperature sensor may provide information sufficient to predict trends of NOx at the boiler exit. Under Task 3, we have investigated a mathematical approach to extrapolation of the temperature distribution within a power plant boiler facility, using a combination of a modified neural network architecture and semigroup theory. Given a set of empirical data with no analytic expression, we first developed an analytic description and then extended that model along a single axis.

  2. High-temperature-oxidation-induced ordered structure in Inconel 939 superalloy exposed to oxy-combustion environments

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Jingxi; Wise, Adam; Nuhfer, Thomas; Holcomb, Gordon R; Jablonski, Paul D; Sridhar, Seetharaman; Laughlin, David E


    In the integrated oxy-fuel combustion and turbine power generation system, turbine alloys are exposed to high temperature and an atmosphere comprised of steam, CO2 and O2. While surface and internal oxidation of the alloy takes place, the microstructure in the subsurface region also changes due to oxidation that results in the loss of the strengthening precipitates. In an earlier study of the oxidation of Inconel 939 Ni-based superalloy exposed to oxy-fuel combustion environment for up to 1000 hours, a high-temperature-oxidation-induced phase transformation in the sub-surface region was noticed and a two-phase region formed at the expense of strengthening γ' phase. While one of the two phases was identified as the Ni-matrix (γ solid solution, face-center-cubic) phase, the other product phase remained unidentified. In this study, the crystal structure of the unknown phase and its orientation relationship with the parent Ni-matrix phase was investigated through electron diffraction and high-resolution transmission electron microscopy. It was determined that the crystal structure of the unknown phase could be modeled as a ternary derivative of the ordered η-Ni3Ti phase (D024) structure with lattice parameters of a = 0.5092 nm and c = 0.8336 nm, α = 90º, β = 90º and γ = 120º.

  3. Detonation cell size measurements in high-temperature hydrogen-air-steam mixtures at the BNL high-temperature combustion facility

    Energy Technology Data Exchange (ETDEWEB)

    Ciccarelli, G.; Ginsberg, T.; Boccio, J.L. [and others


    The High-Temperature Combustion Facility (HTCF) was designed and constructed with the objective of studying detonation phenomena in mixtures of hydrogen-air-steam at initially high temperatures. The central element of the HTCF is a 27-cm inner-diameter, 21.3-m long cylindrical test vessel capable of being heating to 700K {+-} 14K. A unique feature of the HTCF is the {open_quotes}diaphragmless{close_quotes} acetylene-oxygen gas driver which is used to initiate the detonation in the test gas. Cell size measurements have shown that for any hydrogen-air-steam mixture, increasing the initial mixture temperature, in the range of 300K to 650K, while maintaining the initial pressure of 0.1 MPa, decreases the cell size and thus makes the mixture more detonable. The effect of steam dilution on cell size was tested in stoichiometric and off-stoichiometric (e.g., equivalence ratio of 0.5) hydrogen-air mixtures. Increasing the steam dilution in hydrogen-air mixtures at 0.1 MPa initial pressure increases the cell size, irrespective of initial temperature. It is also observed that the desensitizing effect of steam diminished with increased initial temperature. A 1-dimensional, steady-state Zel`dovich, von Neumann, Doring (ZND) model, with full chemical kinetics, has been used to predict cell size for hydrogen-air-steam mixtures at different initial conditions. Qualitatively the model predicts the overall trends observed in the measured cell size versus mixture composition and initial temperature and pressure. It was found that the proportionality constant used to predict detonation cell size from the calculated ZND model reaction zone varies between 10 and 100 depending on the mixture composition and initial temperature. 32 refs., 35 figs.


    Energy Technology Data Exchange (ETDEWEB)

    Kwang Y. Lee; Stuart S. Yin; Andre Boheman


    The objective of the proposed work is to develop an intelligent distributed fiber optical sensor system for real-time monitoring of high temperature in a boiler furnace in power plants. Of particular interest is the estimation of spatial and temporal distributions of high temperatures within a boiler furnace, which will be essential in assessing and controlling the mechanisms that form and remove pollutants at the source, such as NOx. The basic approach in developing the proposed sensor system is three fold: (1) development of high temperature distributed fiber optical sensor capable of measuring temperatures greater than 2000 C degree with spatial resolution of less than 1 cm; (2) development of distributed parameter system (DPS) models to map the three-dimensional (3D) temperature distribution for the furnace; and (3) development of an intelligent monitoring system for real-time monitoring of the 3D boiler temperature distribution. Under Task 1, the efforts focused on developing an innovative high temperature distributed fiber optic sensor by fabricating in-fiber gratings in single crystal sapphire fibers. So far, our major accomplishments include: Successfully grown alumina cladding layers on single crystal sapphire fibers, successfully fabricated in-fiber gratings in single crystal sapphire fibers, and successfully developed a high temperature distributed fiber optic sensor. Under Task 2, the emphasis has been on putting into place a computational capability for simulation of combustors. A PC workstation was acquired with dual Xeon processors and sufficient memory to support 3-D calculations. An existing license for Fluent software was expanded to include two PC processes, where the existing license was for a Unix workstation. Under Task 3, intelligent state estimation theory is being developed which will map the set of 1D (located judiciously within a 3D environment) measurement data into a 3D temperature profile. This theory presents a semigroup

  5. Investigation and analysis of high temperature corrosion and degradation of marine boiler combustion swirler (United States)

    Virdi, R. S.; Thakur, D. G.


    The present paper investigated and analyzed swirler material consisting of mild steel which was subjected to service for the period of one year in a 30 MW marine boiler. Due to the presence of high temperatures in the furnace coupled with the corrosive marine environment swirler material showed accelerated degradation and material wastage. An investigation into the feasibility of manufacturing the existing swirler with an alternate material or coating the swirler material with a thermal barrier coating was undertaken. Based on their properties and performance, SS 304 and SS 316 were proposed as the replacement materials for the swirler. The other alternative of coating the existing swirlers with a form thermal barrier coating to observe for any improvement in their performance at elevated temperatures was also tested. Stellite, which is a Ni-Co based coating, was carried out on the MS samples and the same were exposed to same temperatures mentioned above. The performance of the available options was evaluated with respect to the grain structure of the material, the hardness value of the materials and deterioration at elevated temperatures. Investigation showed the proposed materials/coatings like SS 304, SS 316 and Stellite coating revealed that SS 316 is the material best suited for high temperature application.

  6. Investigation and Analysis of High Temperature Corrosion and Degradation of Marine Boiler Combustion Swirler

    Institute of Scientific and Technical Information of China (English)

    RS Virdi; DG Thakur


    The present paper investigated and analyzed swirler material consisting of mild steel which was subjected to service for the period of one year in a 30 MW marine boiler. Due to the presence of high temperatures in the furnace coupled with the corrosive marine environment swirler material showed accelerated degradation and material wastage. An investigation into the feasibility of manufacturing the existing swirler with an alternate material or coating the swirler material with a thermal barrier coating was undertaken. Based on their properties and performance, SS 304 and SS 316 were proposed as the replacement materials for the swirler. The other alternative of coating the existing swirlers with a form thermal barrier coating to observe for any improvement in their performance at elevated temperatures was also tested. Stellite, which is a Ni-Co based coating, was carried out on the MS samples and the same were exposed to same temperatures mentioned above. The performance of the available options was evaluated with respect to the grain structure of the material, the hardness value of the materials and deterioration at elevated temperatures. Investigation showed the proposed materials/ coatings like SS 304, SS 316 and Stellite coating revealed that SS 316 is the material best suited for high temperature application.

  7. Combustion char morphology related to combustion temperature and coal petrography

    Energy Technology Data Exchange (ETDEWEB)

    Rosenberg, P.; Petersen, H.I.; Thomsen, E. [Geological Survey of Denmark, Copenhagen (Denmark)


    Chars produced from different reactors were found to lack consistency of morphological charactersitics. Therefore, the morphology of chars sampled from various laboratory-scale reactors operating at temperatures from 800 to {gt} 1400{degree}C, together with chars collected directly in the flame zone in a full-scale pulverised fuel combustion experiment, was examined. A coal and coal blend dominated by vitrinite-rich microlithotypes together with four coals dominated by inertinite-rich microlithotypes were used to produce the combustion chars. Char samples produced at temperatures above {approximately} 1300{degree}C have a morphotype composition very similar to the composition of the full-scale char samples, whereas the morphotype compositions of those produced at {approximately} 1550{degree}C or lower are significantly different. Correlation between coal petrography and char morphology and determination of char reactivity should thus be attempted only using chars produced at temperatures comparable with those for the intended use of the coal. A clear distinction between the high-temperature char samples (burnout 50-60wt% daf) emerges which is related mainly to the parent coal petrography and probably secondarily to the rank. Vitrite, clarite and vitrinertie V may be correlated with the porous tenuisphere and crassisphere morphotypes, whereas inertite, durite, vitrinertite I, duroclarite and charodurite may be correlated with the crassinetwork-mixed-network-mixed morphotype group. 29 refs., 7 figs., 7 tabs.

  8. Wireless power-receiving assembly for a telemetry system in a high-temperature environment of a combustion turbine engine (United States)

    Bevly, III, Alex J.; McConkey, Joshua S.


    In a telemetry system (100) in a high-temperature environment of a combustion turbine engine (10), a wireless power-receiving coil assembly (116) may be affixed to a movable component (104) of the turbine engine. Power-receiving coil assembly (116) may include a radio-frequency transparent housing (130) having an opening (132). A lid (134) may be provided to close the opening of the housing. Lid (134) may be positioned to provide support against a surface (120) of the movable component. An induction coil (133) is disposed in the housing distally away from the lid and encased between a first layer (136) and a last layer (140) of a potting adhesive. Lid (134) is arranged to provide vibrational buffering between the surface (120) of the movable component (104) and the layers encasing the induction coil.

  9. Determination of total sulfur in fertilizers by high temperature combustion: single-laboratory validation. (United States)

    Bernius, Jean; Kraus, Sabine; Hughes, Sandra; Margraf, Dominik; Bartos, James; Newlon, Natalie; Sieper, Hans-Peter


    Asingle-laboratory validation study was conducted for the determination of total sulfur (S) in a variety of common, inorganic fertilizers by combustion. The procedure involves conversion of S species into SO2 through combustion at 1150 degrees C, absorption then desorption from a purge and trap column, followed by measurement by a thermal conductivity detector. Eleven different validation materials were selected for study, which included four commercial fertilizer products, five fertilizers from the Magruder Check Sample Program, one reagent grade product, and one certified organic reference material. S content ranged between 1.47 and 91% as sulfate, thiosulfate, and elemental and organically bound S. Determinations of check samples were performed on 3 different days with four replicates/day. Determinations for non-Magruder samples were performed on 2 different days. Recoveries ranged from 94.3 to 125.9%. ABS SL absolute SD among runs ranged from 0.038 to 0.487%. Based on the accuracy and precision demonstrated here, it is recommended that this method be collaboratively studied for the determination of total S in fertilizers.

  10. The desulfurization behavior of mineral matter in ash during coal combustion at high temperature

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Tian-hua; Li, Run-dong; Li, Yan-ji; Zhou, Jun-huz; Cen, Ke-fa [Shenyang Institute of Aeronautical Engineering, Shenyang (China)


    In allusion to the desulfurization characteristic of coal ash, the desulfurization of the ash and CaO, Al{sub 2}O{sub 3} added to Changguang coal with different proportions at high temperature was studied. Sulphoaluminate as the main desulfurization product was analyzed by X-ray diffraction and SEM visualization. Experimental results indicate that higher proportion of ash added can improve the desulfurization efficiency. The sulphoaluminate content in residue increases with increasing the addition of ash. The desulfurization efficiency of the additive CaO and Al{sub 2}O{sub 3} is up to 24% at 1300{sup o}C, at the same time the sulphoaluminate is detected in the residue. 6 refs., 10 figs., 2 tabs.

  11. The features of heterogeneous water droplet evaporation in high-temperature combustion products of typical flammable liquids

    Directory of Open Access Journals (Sweden)

    Piskunov Maxim V.


    Full Text Available This paper presents the experimental results on heating and evaporation features of heterogeneous (with opaque solid particles – the size of 0.05-0.5 mm, relative mass concentration 0-1% water droplets (the initial size – radius 1-3 mm during their motion through high-temperature (500-1800 K gases. A significant increase in the integral characteristics of evaporation by introducing opaque inclusions into droplets was observed. The influence of energy accumulation on the conditions of droplet evaporation at the internal solid/liquid interfaces was established. For proportioned inclusions, the conditions of intensive vaporization (leading to the explosive disintegration of droplets at internal inclusion/liquid interfaces was set. To summarize research results, experiments were conducted with the combustion products of kerosene, gasoline, industrial alcohol, acetone, and oil. The particles of graphite, carbon, and aluminum as solid inclusions were used. The investigation compared integral characteristics of heterogeneous droplet evaporation under the conditions of non-stationary (gas temperature varied from 1800 K to 500 K over the length of channel and nearly stationary (gas temperature was maintained at about 1100 K heating.

  12. Time evolution of the high temperature region formed by laser induced breakdown and of the development of the flame kernel in the constant volume combustion vessel (United States)

    Hayashi, J.; Nakatsuka, N.; Morimoto, I.; Akamatsu, F.


    The lean combustion is one of the key techniques for the advanced internal combustion systems due to the requirement of the higher thermal efficiency. Since the successful ignition must be guaranteed even in the lean combustion, advanced ignition systems have been developed in this decade. Laser ignition is one of the advanced ignition systems which have the profits of the flexibility in the position and the timing of ignition. To develop this ignition system for the actual combustion system, it is required to reveal the underlying physics of the laser ignition. Particularly, the time evolution of high temperature region formed by laser induced breakdown should be discussed. In this study, therefore, the time evolution of the high temperature region formed by the laser induced breakdown and the development of flame kernel were observed by using high-speed imaging. The ignition trials of methane/air lean premixed mixture were carried out in the constant volume combustion vessel to obtain minimum laser pulse energy for ignition (MPE). Results showed that the light emission from plasma formed by laser induced breakdown remained at least in several tens nano-seconds. In addition, there were large differences between the breakdown threshold and the MPE, which meant that the breakdown threshold did not determine the minimum pulse energy for ignition.

  13. A highly combustible composite solid fuel

    Energy Technology Data Exchange (ETDEWEB)

    Sonetaka, K.; Iketani, Y.; Nisino, A.; Takeuti, Y.


    To increase the combustibility, the briqueted solid fuel is coated with an auxiliary fuel which is characterized by high flamability. The composition ofthe basic fuel includes a solid fuel with a high combustion temperature and seeming density (mineral coal, activated charcoal, coke, graphite and a carbonized product), a desulfurizing agent (CaCO3 or MgO), a combustion promotor (Ca(CO3)2, KNO3, sodium acetate, iron oxalate) and forming additives (bentonite, clay or talc) or a binder (pitch, tar, methylcellulose or cement). The auxiliary fuel has the very same composition, but is characterized by a low ignition temperature and density (for instance, due to the addition of sawdust). The obtained two layer composite fuel is characterized by improved ignitibility and combustibility.

  14. High Gravity (g) Combustion (United States)


    required thrust-to-weight ratio goals. Shorter residence times in the combustion chamber may reduce the NOx emissions, but the CO and UHC emissions then...Emissions analyzing equipment is available to detect CO, CO2, NOx, O2, and total unburned hydrocarbons ( UHC ) at the combustor exit plane. Emissions... UHC ) emissions along with the CO data, as seen in Fig. 24, shows that Configuration 1 had much higher UHC levels. The reactions from hydrocarbons to

  15. Development and application of a high-temperature sampling probe for burning chamber conditions in fluidized-bed combustion; Korkean laempoetilan naeytteenottosondin kehittaeminen ja soveltaminen leijukerrospolton tulipesaeolosuhteisiin

    Energy Technology Data Exchange (ETDEWEB)

    Larjava, K.; Paerkkae, M. [VTT Chemical Technology, Espoo (Finland); Linna, V. [VTT Energy, Jyvaeskylae (Finland). Environmental Technology


    Determination of heavy and alkali metals and other condensing compounds (e.g. chlorides) in combustion chamber conditions is limited by the poor suitability of traditional methods for sampling at high temperatures. IFRF has developed a high-temperature sampling probe for sampling HCN and NH{sub 3}, which has been tested for sampling of NH{sub 3} by Chalmers University of Technology in Sweden. VTT Chemical Technology and Chalmers University of Technology have in their preliminary experiments determined contents of vaporous heavy metals in the combustion chamber of a 12 MW circulating fluidized-bed boiler using this probe. According to the results, the modified probe is suitable for heavy metal determination in combustion chamber. Based on this series of experiments, modification of the probe has been started on the own financing of VTT Chemical Technology and a field measurement was performed in November 1994 to test the present version of the probe. Based on the results of that measurement, the probe has been modified further on as a part of this LIEKKI 2 project. Similar kind of a principle has been applied in the probe which has been developed by VTT Energy during 1994. The probe is built for determination of gas composition of fluidized bed in full-scale boilers. The purpose of this project is to develop and test a sampling probe for fluidized bed combustion. The main advantage of the probe is that condensation losses in sampling due to high temperature gradients can be avoided. Thus, the probe is very suitable for sampling vaporous heavy and alkali metals and other condensing species as well as burning gases and alternatively also solids at high temperatures

  16. Factors Influencing Temperature Fields during Combustion Reactions (United States)


    PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORTDATE(DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To) New Reprint - 4. TITLE AND...Aluminum Rich Al-Ti Mechanical Alloys in Air, Combust. Flame 2006, 144, 688. [27] Z. Zhang, B. Tsai, G. Machin, Radiometric Temperature Measure- ments

  17. Vapor-phase combustion and heat and mass transfer during the interaction of a high-temperature gas flow with a solid

    Energy Technology Data Exchange (ETDEWEB)

    Pushkin, V.N.; Sukhov, G.S.; Iarin, L.P.


    The problem of the combustion of a solid in incoming gas flow containing an oxidizer is solved by using an analytical model allowing for phase transitions and chemical transformations and assuming a quasi-equilibrium state on the free surface and diffusion combustion at the flame front. The hydrodynamic, temperature, and concentration fields are investigated for the case of flow past a body with a spherical nose. The principal combustion characteristics are determined as a function of the incoming flow intensity. 6 references.

  18. [Combustion temperature measurement of solid propellant and the effect of organic compound on combustion temperature]. (United States)

    Zhou, Xue-tie; Li, Yan; Chen, Zuo-ru; Wang, Jun-de


    The FTIR emission spectra in the spectral range of 4,500-300 cm-1 for the solid propellants were measured by a remote sensing FTIR system. The P-branch of fine structure of HCl fundamental band lying at 3.46 microns was used for precise combustion temperature measurement of the solid propellant. The effect of the organic compound in the solid propellant on the combustion temperature was discussed.

  19. Tailoring a High Temperature Corrosion Resistant FeNiCrAl for Oxy-Combustion Application by Thermal Spray Coating and HIP

    Directory of Open Access Journals (Sweden)

    Jarkko Metsäjoki


    Full Text Available Oxy-fuel combustion combined with CCS (carbon capture and storage aims to decrease CO2 emissions in energy production using fossil fuels. Oxygen firing changes power plant boiler conditions compared to conventional firing. Higher material temperatures and harsher and more variable environmental conditions cause new degradation processes that are inadequately understood at the moment. In this study, an Fe-Ni-Cr-Al alloy was developed based on thermodynamic simulations. The chosen composition was manufactured as powder by gas atomization. The powder was sieved into two fractions: The finer was used to produce thermal spray coatings by high velocity oxy-fuel (HVOF and the coarser to manufacture bulk specimens by hot isostatic pressing (HIP. The high temperature corrosion properties of the manufactured FeNiCrAl coating and bulk material were tested in laboratory conditions simulating oxy-combustion. The manufacturing methods and the results of high temperature corrosion performance are presented. The corrosion performance of the coating was on average between the bulk steel references Sanicro 25 and TP347HFG.

  20. On the Experimental and Theoretical Investigations of Lean Partially Premixed Combustion, Burning Speed, Flame Instability and Plasma Formation of Alternative Fuels at High Temperatures and Pressures (United States)

    Askari, Omid

    This dissertation investigates the combustion and injection fundamental characteristics of different alternative fuels both experimentally and theoretically. The subjects such as lean partially premixed combustion of methane/hydrogen/air/diluent, methane high pressure direct-injection, thermal plasma formation, thermodynamic properties of hydrocarbon/air mixtures at high temperatures, laminar flames and flame morphology of synthetic gas (syngas) and Gas-to-Liquid (GTL) fuels were extensively studied in this work. These subjects will be summarized in three following paragraphs. The fundamentals of spray and partially premixed combustion characteristics of directly injected methane in a constant volume combustion chamber have been experimentally studied. The injected fuel jet generates turbulence in the vessel and forms a turbulent heterogeneous fuel-air mixture in the vessel, similar to that in a Compressed Natural Gas (CNG) Direct-Injection (DI) engines. The effect of different characteristics parameters such as spark delay time, stratification ratio, turbulence intensity, fuel injection pressure, chamber pressure, chamber temperature, Exhaust Gas recirculation (EGR) addition, hydrogen addition and equivalence ratio on flame propagation and emission concentrations were analyzed. As a part of this work and for the purpose of control and calibration of high pressure injector, spray development and characteristics including spray tip penetration, spray cone angle and overall equivalence ratio were evaluated under a wide range of fuel injection pressures of 30 to 90 atm and different chamber pressures of 1 to 5 atm. Thermodynamic properties of hydrocarbon/air plasma mixtures at ultra-high temperatures must be precisely calculated due to important influence on the flame kernel formation and propagation in combusting flows and spark discharge applications. A new algorithm based on the statistical thermodynamics was developed to calculate the ultra-high temperature plasma

  1. Combustion

    CERN Document Server

    Glassman, Irvin


    Combustion, Second Edition focuses on the underlying principles of combustion and covers topics ranging from chemical thermodynamics and flame temperatures to chemical kinetics, detonation, ignition, and oxidation characteristics of fuels. Diffusion flames, flame phenomena in premixed combustible gases, and combustion of nonvolatile fuels are also discussed. This book consists of nine chapters and begins by introducing the reader to heats of reaction and formation, free energy and the equilibrium constants, and flame temperature calculations. The next chapter explores the rates of reactio

  2. 高温贫氧燃烧技术的研究与应用%Study and Application of High Temperature Air Combustion Technology

    Institute of Scientific and Technical Information of China (English)

    马宪国; 郑国耀; 李道林


    高温贫氧燃烧技术是90年代初在西方工业发达国家发展起来的一种新型燃烧技术,其特点是不存 在传统燃烧过程中出现的局部高温高氮区,炉膛传热效率显著提高,NOx的生成受到抑制。另外,还介绍了国 外在高温贫氧燃烧技术的最新实验室研究成果。图11参4%High temperature air combustion (HTAC) is a new burring technology developed in indus trial countries in recent years which can evidently enhance heat transfer in the chamber of a furnace and reduce NOx emission. A great deal of study has been done on the basic research and industrial ap plication of the HTAC technology. This paper gives a brief introduction on experimental studies of high temperature air combustion in developed countries. Figs 11 and refs 4.

  3. 高温低氧燃烧技术及其高效低污染特性分析%High temperature air combustion and its performance analysis

    Institute of Scientific and Technical Information of China (English)

    蒋绍坚; 艾元方; 彭好义; 萧泽强; 周孑民; 汪洋洋; 熊家政


    研究了一种高温低氧燃烧新技术,即采用蓄热室,预热助燃剂使其温度达到800℃以上;采用分级燃烧及炉内部分烟气回流的方法,使燃烧区氧体积分数降低至15%以下.分析结果表明:该燃烧技术具有显著的节能、低污染特性,与未采取任何废热回收措施的传统燃烧技术相比,可实现节能60%以上,CO2排放量减少60%以上,NOx排放浓度低于30~50g/t.%The high temperature air combustion technology is introduced in this paper. The air is preheated over 800℃by regenerator and oxygen concentration is decreased to less than 15% by graded combustion and a part of exhaust gas isrecycled in furnace. Analyses show that, the technology can save energy efficiently up to 60% and reduce pollution. Forexample, the discharge of CO2 can be reduced by 60%, and the discharging concentration of NOx is less than 30~50 g/t compared with traditional combustion technology without provision of any waste heat recovery means.

  4. High pressure optical combustion probe

    Energy Technology Data Exchange (ETDEWEB)

    Woodruff, S.D.; Richards, G.A.


    The Department of Energy`s Morgantown Energy Technology Center has developed a combustion probe for monitoring flame presence and heat release. The technology involved is a compact optical detector of the OH radical`s UV fluorescence. The OH Monitor/Probe is designed to determine the flame presence and provide a qualitative signal proportional to the flame intensity. The probe can be adjusted to monitor a specific volume in the combustion zone to track spatial fluctuations in the flame. The probe is capable of nanosecond time response and is usually slowed electronically to fit the flame characteristics. The probe is a sapphire rod in a stainless steel tube which may be inserted into the combustion chamber and pointed at the flame zone. The end of the sapphire rod is retracted into the SS tube to define a narrow optical collection cone. The collection cone may be adjusted to fit the experiment. The fluorescence signal is collected by the sapphire rod and transmitted through a UV transmitting, fused silica, fiber optic to the detector assembly. The detector is a side window photomultiplier (PMT) with a 310 run line filter. A Hamamatsu photomultiplier base combined with a integral high voltage power supply permits this to be a low voltage device. Electronic connections include: a power lead from a modular DC power supply for 15 VDC; a control lead for 0-1 volts to control the high voltage level (and therefore gain); and a lead out for the actual signal. All low voltage connections make this a safe and easy to use device while still delivering the sensitivity required.

  5. Neutron analysis of the fuel of high temperature nuclear reactors; Analisis neutronico del combustible de reactores nucleares de alta temperatura

    Energy Technology Data Exchange (ETDEWEB)

    Bastida O, G. E.; Francois L, J. L., E-mail: [UNAM, Facultad de Ingenieria, Departamento de Sistemas Energeticos, Paseo Cuauhnahuac 8532, 62550 Jiutepec, Morelos (Mexico)


    In this work a neutron analysis of the fuel of some high temperature nuclear reactors is presented, studying its main features, besides some alternatives of compound fuel by uranium and plutonium, and of coolant: sodium and helium. For this study was necessary the use of a code able to carry out a reliable calculation of the main parameters of the fuel. The use of the Monte Carlo method was convenient to simulate the neutrons transport in the reactor core, which is the base of the Serpent code, with which the calculations will be made for the analysis. (Author)

  6. [Combustion temperature measurement of solid propellant by remote sensing FTIR]. (United States)

    Li, Yan; Wang, Jun-De; Sun, Xiu-Yun; Zhou, Xue-Tie


    The combustion temperature of solid propellant was measured in this paper. Emission spectra of the combustion flame were collected with remote sensing FTIR at the resolution of 4 cm(-1). The combustion temperatures with the burning time were calculated from the maximum spectral line intensity and the molecular rotation-vibration spectra of HF molecule, respectively. Combustion temperatures at each time were all 1 788.8 K from the maximum spectral line intensity method. For comparison, the temperatures calculated from the molecular rotation-vibration spectra were 1 859.7, 1 848. 3, 1 804.0 and 1 782.7 K, respectively. Results show that the two methods are all dependable in measuring combustion temperature of solid propellant. But the maximum spectral line intensity method is more convenient and rapid than the other when the combustion is relatively stable.

  7. Use of filtered combustion light and backlit high-speed images in combustion stability studies (United States)

    Pomeroy, B.; Wierman, M.; Anderson, W. E.


    The measurement of the heat release is a key part of characterizing the combustion instability, but it is extremely difficult to directly measure in a rocket combustion chamber due to high temperatures and pressures, as well as the complexity of the turbulent reacting flowfield, which can often have more than one phase. Measuring the light emission from excited species during a combustion is a nonintrusive method to approximate a global heat release in combustion chambers. CH∗ and OH∗ are the most often measured species. This paper outlines methods of using a filtered combustion light to obtain a better understanding of the physical mechanisms active in the combustion instability, and to provide partial validation data for predictive models of the combustion instability. Methods that are discussed include Rayleigh index, phase-angle plots, a proper orthogonal decomposition (POD), and a simultaneous imaging of combustion light and backlit flow structures. The methods are applied to an experiment that studies the effects of imposed transverse oscillations on a gas-centered, swirl-coaxial injector element.

  8. Densitometry and temperature measurement of combustion gas by X-ray Compton scattering

    Energy Technology Data Exchange (ETDEWEB)

    Sakurai, Hiroshi, E-mail: [Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515 (Japan); Kawahara, Nobuyuki [Okayama University, Tsushima-Naka 3, Okayama 700-8530 (Japan); Itou, Masayoshi [Japan Synchrotron Radiation Research Institute (JASRI), 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan); Tomita, Eiji [Okayama University, Tsushima-Naka 3, Okayama 700-8530 (Japan); Suzuki, Kosuke [Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515 (Japan); Sakurai, Yoshiharu [Japan Synchrotron Radiation Research Institute (JASRI), 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan)


    Measurement of combustion gas by high-energy X-ray Compton scattering is reported. Measurement of combustion gas by high-energy X-ray Compton scattering is reported. The intensity of Compton-scattered X-rays has shown a position dependence across the flame of the combustion gas, allowing us to estimate the temperature distribution of the combustion flame. The energy spectra of Compton-scattered X-rays have revealed a significant difference across the combustion reaction zone, which enables us to detect the combustion reaction. These results demonstrate that high-energy X-ray Compton scattering can be employed as an in situ technique to probe inside a combustion reaction.

  9. Organic emissions in coal combustion in relation to coal structure and combustion temperature

    Energy Technology Data Exchange (ETDEWEB)

    Bruinsma, O.S.L.; Verhagen, E.J.H.; Moulijn, J.A.


    The pulsed combustion of coal has been studied in a small fluidized-bed reactor. The effect of combustion temperature and coal rank on the organic composition of the off-gas was investigated. Results are presented for the combustion of an anthracite, a medium-volatile bituminous coal and a high-volatile bituminous coal at 700, 800 and 900 C. The analytical techniques used include on-line FT-IR, O2 monitoring, FID and off-line GC-MS using Tenax as adsorbent. About 120 hydrocarbons were found, of which over 80% have been identified. Overall combustion characteristics such as oxygen consumption, total amount of unburned hydrocarbons and swelling properties of the coal have been related to the composition of the organic substances in the off-gas. The distribution of the polycyclic aromatics, from benzene to chrysene, and of alkylated derivatives is discussed in detail. Oxygen-containing compounds have also been analysed, although detailed discussion would be premature. 20 references.

  10. Soot temperature and KL factor for biodiesel and diesel spray combustion in a constant volume combustion chamber

    KAUST Repository

    Zhang, Ji


    This paper presents measurements of the soot temperature and KL factor for biodiesel and diesel combustion in a constant volume chamber using a two-color technique. This technique uses a high-speed camera coupled with two narrowband filters (550. nm and 650. nm, 10. nm FWHM). After calibration, statistical analysis shows that the uncertainty of the two-color temperature is less than 5%, while it is about 50% for the KL factor. This technique is then applied to the spray combustion of biodiesel and diesel fuels under an ambient oxygen concentration of 21% and ambient temperatures of 800, 1000 and 1200. K. The heat release result shows higher energy utilization efficiency for biodiesel compared to diesel under all conditions; meanwhile, diesel shows a higher pressure increase due to its higher heating value. Biodiesel yields a lower temperature inside the flame area, a longer soot lift-off length, and a smaller soot area compared to diesel. Both the KL factor and the total soot with biodiesel are lower than with diesel throughout the entire combustion process, and this difference becomes larger as the ambient temperature decreases. Biodiesel shows approximately 50-100. K lower temperatures than diesel at the quasi-steady stage for 1000 and 1200. K ambient temperature, while diesel shows a lower temperature than biodiesel at 800. K ambient. This result may raise the question of how important the flame temperature is in explaining the higher NO. x emissions often observed during biodiesel combustion. Other factors may also play an important role in controlling NO. x emissions. Both biodiesel and diesel temperature measurements show a monotonic dependence on the ambient temperature. However, the ambient temperature appears to have a more significant effect on the soot formation and oxidation in diesel combustion, while biodiesel combustion soot characteristics shows relative insensitivity to the ambient temperature. © 2013 Elsevier Ltd.

  11. Distributed Low Temperature Combustion: Fundamental Understanding of Combustion Regime Transitions (United States)


    Excellent optical access for laser- based diagnostic measurements ; (ii) Accurate experimental control of boundary conditions; (iii) Aerodynamic flame...potential to extend methods based on bimodal approximations, such as the BML [21] framework , by permitting inter- mediate fluid states, which is of...identify the impact of the major chemical pathways on combustion mode transitions. The conceptual multifluid approach of Spalding can be used to avoid

  12. Metallurgical and mechanical behaviours of PWR fuel cladding tube oxidised at high temperature; Comportements metallurqigue et mecanique des materiaux de gainage du combustible REP oxydes a haute temperature

    Energy Technology Data Exchange (ETDEWEB)

    Stern, A


    Zirconium alloys are used as cladding materials in Pressurized Water Reactors (PWR). As they are submitted to very extreme conditions, it is necessary to check their behaviour and especially to make sure they meet the safety criteria. They are therefore studied under typical in service-loadings but also under accidental loadings. In one of these accidental scenarios, called Loss of Coolant Accident (LOCA) the cladding temperature may increase above 800 C, in a steam environment, and decrease before a final quench of the cladding. During this temperature transient, the cladding is heavily oxidised, and the metallurgical changes lead to a decrease of the post quench mechanical properties. It is then necessary to correlate this drop in residual ductility to the metallurgical evolutions. This is the problem we want to address in this study: the oxidation of PWR cladding materials at high temperature in a steam environment and its consequences on post quench mechanical properties. As oxygen goes massively into the metallic part - a zirconia layer grows at the same time - during the high temperature oxidation, the claddings tubes microstructure shows three different phases that are the outer oxide layer (zirconia) and the inner metallic phases ({alpha}(O) and 'ex {beta}') - with various mechanical properties. In order to reproduce the behaviour of this multilayered material, the first part of this study consisted in creating samples with different - but homogeneous in thickness - oxygen contents, similar to those observed in the different phases of the real cladding. The study was especially focused on the {beta}-->{alpha} phase transformation upon cooling and on the resulting microstructures. A mechanism was proposed to describe this phase transformation. For instance, we conclude that for our oxygen enriched samples, the phase transformation kinetics upon cooling are ruled by the oxygen partitioning between the two allotropic phases. Then, these materials

  13. DNS of High Pressure Supercritical Combustion (United States)

    Chong, Shao Teng; Raman, Venkatramanan


    Supercritical flows have always been important to rocket motors, and more recently to aircraft engines and stationary gas turbines. The purpose of the present study is to understand effects of differential diffusion on reacting scalars using supercritical isotropic turbulence. Focus is on fuel and oxidant reacting in the transcritical region where density, heat capacity and transport properties are highly sensitive to variations in temperature and pressure. Reynolds and Damkohler number vary as a result and although it is common to neglect differential diffusion effects if Re is sufficiently large, this large variation in temperature with heat release can accentuate molecular transport differences. Direct numerical simulations (DNS) for one step chemistry reaction between fuel and oxidizer are used to examine the differential diffusion effects. A key issue investigated in this paper is if the flamelet progress variable approach, where the Lewis number is usually assumed to be unity and constant for all species, can be accurately applied to simulate supercritical combustion.

  14. Laser-based temperature diagnostics in practical combustion systems


    Kronemayer, Helmut


    Today’s energy supply relies on the combustion of fossil fuels. This results in emissions of toxic pollutants and green-house gases that most likely influence the global climate. Hence, there is a large need for developing efficient combustion processes with low emissions. In order to achieve this, quantitative measurement techniques are required that allow accurate probing of important quantities, such as e.g. the gas temperature, in practical combustion devices. Diagnostic techniques: Ther...

  15. Luminescence study and dosimetry approach of Ce on an α-Sr2 P2 O7 phosphor synthesized by a high-temperature combustion method. (United States)

    Patel, Nimesh P; Srinivas, M; Modi, Dhaval; Vishwnath, Verma; Murthy, K V R


    We report synthesis of a cerium-activated strontium pyrophosphate (Sr2 P2 O7 ) phosphor using a high-temperature combustion method. Samples were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), photoluminescence (PL) and thermoluminescence (TL). The XRD pattern reveals that Sr2 P2 O7 has an α-phase with crystallization in the orthorhombic space group of Pnam. The IR spectrum of α-Sr2 P2 O7 displays characteristic bands at 746 and 1190 cm(-1) corresponding to the absorption of (P2 O7 )(-4) . PL emission spectra exhibit a broad emission band around 376 nm in the near-UV region due to the allowed 5d-4f transition of cerium and suggest its applications in a UV light-emitting diode (LED) source. PL also reveals that the emission originates from 5d-4f transition of Ce(3+) and intensity increases with doping concentration. TL measurements made after X-ray irradiation, manifest a single intense glow peak at around 192°C, which suggests that this is an outstanding candidate for dosimetry applications. The kinetic parameters, activation energy and frequency factor of the glow curve were calculated using different analysis methods. Copyright © 2014 John Wiley & Sons, Ltd.

  16. Small details of big importance: Carbon mass determination in the invasive cladoceran Cercopagis pengoi (Ostroumov, 1891 by the high temperature combustion method

    Directory of Open Access Journals (Sweden)

    Irena V. Telesh


    Full Text Available Carbon mass of the non-indigenous predatory fishhook water flea Cercopagis pengoi (Ostroumov, 1891 from the eastern Gulf of Finland, the Baltic Sea, was for the first time measured using the high temperature combustion method. Prior to the analysis, individual dry weight of Cercopagis was determined; altogether ca. 500 organisms were examined. Mean individual dry weight of C. pengoi for July-September was estimated as 34.0 µg; carbon mass averaged 15.8 µg; carbon content, calculated as percent of dry weight, averaged 43.4%. Those values varied over months, mainly because of different population structure of C. pengoi and variation in their diet due to seasonal dynamics of the food objects. However, relations between carbon mass and dry weight for different months did not differ statistically (p<0.001. Therefore, the general polynomial regressions (k=2, describing carbon mass-to-dry weight and carbon content-to-dry weight relationships, were calculated for the entire dataset of individual measurements of C. pengoi body metrics. These data will contribute to adequate evaluation of food web structure and ecosystem alterations in various water bodies invaded by C. pengoi which has got a strong potential to pelagic food web transformations that may impact the overall energy balance and decrease the size of fish stocks.

  17. Regenerative process for desulfurization of high temperature combustion and fuel gases. Quarterly progress report No. 9, April 1--June 30, 1978

    Energy Technology Data Exchange (ETDEWEB)

    Steinberg, M.; Yang, R. T.


    Thermodynamic calculations showed that all the calcium silicates are capable of sorption of SO/sub 2/ from coal combustion gases to meet the standard of 0.2 lb S/10/sup 6/ Btu at below 900/sup 0/C. Temperature limits for the di- and tricalcium silicates are higher than 900/sup 0/C. The silicates are thermodynamically more regenerative from their sulfated states than CaO. Kinetic studies were performed on sulfation and regeneration of various calcium silicate samples. Except for two samples, the silicates showed higher overall rates and, more important, higher capacities for sulfation, compared with CaO on a molar basis. The rates of regeneration of the silicates were much higher than that of CaO; more specifically, the rates of thermal decomposition of the sulfated mono- and dicalcium silicates were about 15 times higher than that of the CaSO/sub 4/, which indicated the relative bond strengths between SO/sub 3/ and the sorbents. X-ray diffraction and infrared analyses of the reaction products are discussed. Rates of sulfation and regeneration were measured for SiO/sub 2/-supported CaO. CaO was precipitated on a high surface area granular SiO/sub 2/ from aqueous solutions of calcium salts followed by a heat treatment. Compared with the Al/sub 2/O/sub 3/-supported CaO, which were actually calcium aluminates on the surface of Al/sub 2/O/sub 3/, the sulfation rates were about the same, but the regeneration rates were definitely higher for the SiO/sub 2/-supported sample. A kinetic study has been performed of the apparent solid--solid reaction between CaS and CaSO/sub 4/ with a rotary kiln reactor. The experimental conditions were within the range for regeneration of the lime-based sorbents for fluidized-bed combustion. The kinetic parameters of the chemical reaction extracted from the data compared favorably with those obtained directly and independently with a fixed-bed thermogravimetric reactor. Promising results were obtained on the utilization of coal ash as a

  18. High Frequency Combustion Instabilities of LOx/CH4 Spray Flames in Rocket Engine Combustion Chambers

    NARCIS (Netherlands)

    Sliphorst, M.


    Ever since the early stages of space transportation in the 1940’s, and the related liquid propellant rocket engine development, combustion instability has been a major issue. High frequency combustion instability (HFCI) is the interaction between combustion and the acoustic field in the combustion c

  19. High Frequency Combustion Instabilities of LOx/CH4 Spray Flames in Rocket Engine Combustion Chambers

    NARCIS (Netherlands)

    Sliphorst, M.


    Ever since the early stages of space transportation in the 1940’s, and the related liquid propellant rocket engine development, combustion instability has been a major issue. High frequency combustion instability (HFCI) is the interaction between combustion and the acoustic field in the combustion c

  20. A Low-Temperature, Solution-Processable, Cu-Doped Nickel Oxide Hole-Transporting Layer via the Combustion Method for High-Performance Thin-Film Perovskite Solar Cells. (United States)

    Jung, Jae Woong; Chueh, Chu-Chen; Jen, Alex K-Y


    Low-temperature, solution-processable Cu-doped NiOX (Cu:NiOx ), prepared via combustion chemistry, is demonstrated as an excellent hole-transporting layer (HTL) for thin-film perovskite solar cells (PVSCs). Its good crystallinity, conductivity, and hole-extraction properties enable the derived PVSC to have a high power conversion efficiency (PCE) of 17.74%. Its general applicability for various elecrode materials is also revealed.

  1. Degradation of permeability resistance of high strength concrete after combustion

    Institute of Scientific and Technical Information of China (English)

    Min LI; Hongtao KAO; Chunxiang QIAN


    To evaluate the remaining durability of con-crete materials after combustion, the permeability of high strength concrete (HSC) after combustion was studied. The transport behavior of chloride ion, water and air in concrete after combustion and the effect of temperature, strength grade, and aggregation on the permeability of HSC after combustion are investigated by chloride ion permeability coefficient (Dc), water permeability coef-ficient (Dw) and air permeability coefficient (Da). The experiment results show that all three permeability coeffi-cients commendably reflect changes of permeability. The permeability coefficient increases with the evaluation tem-perature. After the same temperature, the permeability coefficient of HSC is lower than that of normal strength concrete (NSC). However, the degree of degradation of permeability coefficient of HSC is greater than that of NSC. The permeability resistance of HSC containing limestone is better than that of HSC containing basalt. Combining changes of compressive strength and per-meability, the remaining durability of concrete materials after combustion is appropriately evaluated.

  2. Low temperature catalytic combustion of natural gas - hydrogen - air mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Newson, E.; Roth, F. von; Hottinger, P.; Truong, T.B. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)


    The low temperature catalytic combustion of natural gas - air mixtures would allow the development of no-NO{sub x} burners for heating and power applications. Using commercially available catalysts, the room temperature ignition of methane-propane-air mixtures has been shown in laboratory reactors with combustion efficiencies over 95% and maximum temperatures less than 700{sup o}C. After a 500 hour stability test, severe deactivation of both methane and propane oxidation functions was observed. In cooperation with industrial partners, scaleup to 3 kW is being investigated together with startup dynamics and catalyst stability. (author) 3 figs., 3 refs.

  3. Corrosion Resistant Coatings for High Temperature Applications

    Energy Technology Data Exchange (ETDEWEB)

    Besman, T.M.; Cooley, K.M.; Haynes, J.A.; Lee, W.Y.; Vaubert, V.M.


    Efforts to increase efficiency of energy conversion devices have required their operation at ever higher temperatures. This will force the substitution of higher-temperature structural ceramics for lower temperature materials, largely metals. Yet, many of these ceramics will require protection from high temperature corrosion caused by combustion gases, atmospheric contaminants, or the operating medium. This paper discusses examples of the initial development of such coatings and materials for potential application in combustion, aluminum smelting, and other harsh environments.

  4. Comprehensive study of biodiesel fuel for HSDI engines in conventional and low temperature combustion conditions

    Energy Technology Data Exchange (ETDEWEB)

    Tormos, Bernardo; Novella, Ricardo; Garcia, Antonio; Gargar, Kevin [CMT-Motores Termicos, Universidad Politecnica de Valencia, Valencia, ES, Campus de Vera, s/n, Edificio 6D. Camino de Vera s/n, 46022 Valencia (Spain)


    In this research, an experimental investigation has been performed to give insight into the potential of biodiesel as an alternative fuel for High Speed Direct Injection (HSDI) diesel engines. The scope of this work has been broadened by comparing the combustion characteristics of diesel and biodiesel fuels in a wide range of engine loads and EGR conditions, including the high EGR rates expected for future diesel engines operating in the low temperature combustion (LTC) regime. The experimental work has been carried out in a single-cylinder engine running alternatively with diesel and biodiesel fuels. Conventional diesel fuel and neat biodiesel have been compared in terms of their combustion performance through a new methodology designed for isolating the actual effects of each fuel on diesel combustion, aside from their intrinsic differences in chemical composition. The analysis of the results has been sequentially divided into two progressive and complementary steps. Initially, the overall combustion performance of each fuel has been critically evaluated based on a set of parameters used as tracers of the combustion quality, such as the combustion duration or the indicated efficiency. With the knowledge obtained from this previous overview, the analysis focuses on the detailed influence of biodiesel on the different diesel combustion stages known ignition delay, premixed combustion and mixing controlled combustion, considering also the impact on CO and UHC (unburn-hydrocarbons) pollutant emissions. The results of this research explain why the biodiesel fuel accelerates the diesel combustion process in all engine loads and EGR rates, even in those corresponding with LTC conditions, increasing its possibilities as alternative fuel for future DI diesel engines. (author)

  5. High Frequency Combustion Instabilities of LOx/CH4 Spray Flames in Rocket Engine Combustion Chambers


    Sliphorst, M.


    Ever since the early stages of space transportation in the 1940’s, and the related liquid propellant rocket engine development, combustion instability has been a major issue. High frequency combustion instability (HFCI) is the interaction between combustion and the acoustic field in the combustion chamber. It destroys the thermal boundary layer wall increasing heat transfer and could lead to compromised performance, and ultimately to destruction of the engine and mission loss. The main object...

  6. Final Report - Low Temperature Combustion Chemistry And Fuel Component Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Wooldridge, Margaret [Univ. of Michigan, Ann Arbor, MI (United States)


    Recent research into combustion chemistry has shown that reactions at “low temperatures” (700 – 1100 K) have a dramatic influence on ignition and combustion of fuels in virtually every practical combustion system. A powerful class of laboratory-scale experimental facilities that can focus on fuel chemistry in this temperature range is the rapid compression facility (RCF), which has proven to be a versatile tool to examine the details of fuel chemistry in this important regime. An RCF was used in this project to advance our understanding of low temperature chemistry of important fuel compounds. We show how factors including fuel molecular structure, the presence of unsaturated C=C bonds, and the presence of alkyl ester groups influence fuel auto-ignition and produce variable amounts of negative temperature coefficient behavior of fuel ignition. We report new discoveries of synergistic ignition interactions between alkane and alcohol fuels, with both experimental and kinetic modeling studies of these complex interactions. The results of this project quantify the effects of molecular structure on combustion chemistry including carbon bond saturation, through low temperature experimental studies of esters, alkanes, alkenes, and alcohols.

  7. The research and development of in situ non intrusive optical and temperature diagnostics in an internal combustion engine

    CERN Document Server

    Wilson, T S


    Novel instrumentation has been developed and evaluated in a low-cost, purpose built, single-cylinder internal combustion engine test facility designed to simulate many of the combustion features that are common between an internal combustion engine, a gas turbine combustor and a steel rolling furnace. High bandwidth in-cylinder surface temperature measurements are demonstrated with a new application of platinum thin film resistance thermometers. These gauges are exposed to the combustion gases and are mounted to both the cylinder head and piston. It is shown that calculation of flame speed, determination of heat flux levels and flame structure observation are possible. Fibre optic probes capable of high frequency spectral measurements of the combustion emission are presented. The spectral measurements are shown to complement the temperature measurement by being able to differentiate the flame front from the general combustion emission and hot by-products. Beyond this, other optical techniques have been explor...

  8. Decomposition of water into highly combustible hydroxyl gas used in ...

    African Journals Online (AJOL)

    Decomposition of water into highly combustible hydroxyl gas used in internal ... of alternative sources of energy that produce less amounts of carbon dioxide. ... The by-product obtained from combustion of this gas is water vapour and oxygen ...

  9. MHD-, ships-, jet engine unit consisting of electrochemical cells producing hydrogen, magneto-caloric hydrogen liquefier, liquid hydrogen-cooled high temperature superconductor-, MHD-, jet engine, liquid hydrogen internal combustion engine as high temperature-, superconductor-, generator-drive. High temperature superconductor coil and permanent magnet superconductor hollow cylinder as battery. MHD-Schiffs-Strahltriebwerks-Aggregat bestehend aus Wasserstoff-produzierenden elektrochemischen Solarzellen, magnetokalorischem Wasserstoffverfluessiger, Fluessigwasserstoff gekuehltem Hochtemperatur-Supraleiter-MHD-Strahltriebwerk, Fluessigwasserstoff-Verbrennungsmotor als Hochtemperatur-Supraleiter-Generator-Antrieb, Hochtemperatur-Supraleiter-Spule und permanentmagnetischem Supraleiter-Hohlzylinder als Akku

    Energy Technology Data Exchange (ETDEWEB)

    Berling, E.


    MHD-, ships-, jet engine-unit consisting of electrochemical cells producing hydrogen, magneto-caloric hydrogen liquifier, liquid hydrogen-cooled high temperature superconductor-, MHD-, jet engine, liquid hydrogen internal combustion engine as high temperature-, superconductor-, generator-drive. High temperature superconductor coil and permanent magnet superconductor hollow cylinder as battery. Ships water jet engines with magneto hydrodynamic (MHD) low temperature superconductor drive are known. The invention of the ceramic high temperature superconductor MHD drive, which is cooled with liquid hydrogen. The hydrogen is obtained electro-chemically directly from seawater, and is liquified magneto-calorically. The high temperature superconductor elements of the engine, liquifier, generator, storage coil, permanent magnet hollow cylinder store are coupled by a common liquid hydrogen cooling circuit. The internal combustion engine driving the generator is fuelled by the same liquid hydrogen by which the high temperature superconductor elements are cooled.

  10. Optical Pressure-Temperature Sensor for a Combustion Chamber (United States)

    Wiley, John; Korman, Valentin; Gregory, Don


    A compact sensor for measuring temperature and pressure in a combusti on chamber has been proposed. The proposed sensor would include two optically birefringent, transmissive crystalline wedges: one of sapph ire (Al2O3) and one of magnesium oxide (MgO), the optical properties of both of which vary with temperature and pressure. The wedges wou ld be separated by a vapor-deposited thin-film transducer, which wou ld be primarily temperaturesensitive (in contradistinction to pressur e- sensitive) when attached to a crystalline substrate. The sensor w ould be housed in a rugged probe to survive the extreme temperatures and pressures in a combustion chamber.

  11. Low temperature catalytic combustion of propane over Pt-based catalyst with inverse opal microstructure in a microchannel reactor. (United States)

    Guan, Guoqing; Zapf, Ralf; Kolb, Gunther; Men, Yong; Hessel, Volker; Loewe, Holger; Ye, Jianhui; Zentel, Rudolf


    A novel Pt-based catalyst with highly regular, periodic inverse opal microstructure was fabricated in a microchannel reactor, and catalytic testing revealed excellent conversion and stable activity for propane combustion at low temperatures.

  12. Low-Cost, High-Performance Combustion Chamber for LOX/CH4 Propulsion Project (United States)

    National Aeronautics and Space Administration — Ultramet will design and fabricate a lightweight, high temperature 5-lbf combustion chamber for use with cryogenic liquid oxygen/methane (LOX/CH4) propellant that...

  13. Historical Perspective and Contribution of U.S. Researchers Into the Field of Self-Propagating High-Temperature Synthesis (SHS)/Combustion Synthesis (CS): Personal Reflections (United States)


    Use of zirconium in thermal batteries. ............................................................................3 Figure 2. Combustion front...and (b) TEM images of Al and Ni nanoreactants, (c) reaction chamber, (d) SEM image of nanosize nickel aluminide-alumina composite prepared by...silicides, sulfides, phosphides, hydrides, and oxides of many elements as well as intermetallics, composites, nonstoichiometric compounds, and solid

  14. Combustion studies of coal derived solid fuels by thermogravimetric analysis. III. Correlation between burnout temperature and carbon combustion efficiency (United States)

    Rostam-Abadi, M.; DeBarr, J.A.; Chen, W.T.


    Burning profiles of 35-53 ??m size fractions of an Illinois coal and three partially devolatilized coals prepared from the original coal were obtained using a thermogravimetric analyzer. The burning profile burnout temperatures were higher for lower volatile fuels and correlated well with carbon combustion efficiencies of the fuels when burned in a laboratory-scale laminar flow reactor. Fuels with higher burnout temperatures had lower carbon combustion efficiencies under various time-temperature conditions in the laboratory-scale reactor. ?? 1990.

  15. Gasoline Ultra Efficient Fuel Vehicle with Advanced Low Temperature Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Confer, Keith [Delphi Automotive Systems, LLC, Troy, MI (United States)


    The objective of this program was to develop, implement and demonstrate fuel consumption reduction technologies which are focused on reduction of friction and parasitic losses and on the improvement of thermal efficiency from in-cylinder combustion. The program was executed in two phases. The conclusion of each phase was marked by an on-vehicle technology demonstration. Phase I concentrated on short term goals to achieve technologies to reduce friction and parasitic losses. The duration of Phase I was approximately two years and the target fuel economy improvement over the baseline was 20% for the Phase I demonstration. Phase II was focused on the development and demonstration of a breakthrough low temperature combustion process called Gasoline Direct- Injection Compression Ignition (GDCI). The duration of Phase II was approximately four years and the targeted fuel economy improvement was 35% over the baseline for the Phase II demonstration vehicle. The targeted tailpipe emissions for this demonstration were Tier 2 Bin 2 emissions standards.

  16. Gasoline Ultra Efficient Fuel Vehicle with Advanced Low Temperature Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Confer, Keith


    The objective of this program was to develop, implement and demonstrate fuel consumption reduction technologies which are focused on reduction of friction and parasitic losses and on the improvement of thermal efficiency from in-cylinder combustion. The program was executed in two phases. The conclusion of each phase was marked by an on-vehicle technology demonstration. Phase I concentrated on short term goals to achieve technologies to reduce friction and parasitic losses. The duration of Phase I was approximately two years and the target fuel economy improvement over the baseline was 20% for the Phase I demonstration. Phase II was focused on the development and demonstration of a breakthrough low temperature combustion process called Gasoline Direct- Injection Compression Ignition (GDCI). The duration of Phase II was approximately four years and the targeted fuel economy improvement was 35% over the baseline for the Phase II demonstration vehicle. The targeted tailpipe emissions for this demonstration were Tier 2 Bin 2 emissions standards.

  17. LES/FMDF of High Speed Spray Combustion (United States)

    Irannejad, Abolfazl; Jaberi, Farhad


    High speed evaporating and combusting sprays are computed with the hybrid two-phase large eddy simulation (LES)/filtered mass density function (FMDF) methodology. In this methodology, the resolved fluid velocity is obtained by solving the filtered form of the compressible Navier-Stokes equations with high-order finite difference schemes. The scalar (temperature and species mass fractions) field is obtained by solving the FMDF transport equation with a Lagrangian stochastic method. The spray is simulated with the Lagrangian droplets together with stochastic breakup and finite rate heat and mass transfer models. The liquid volume fraction is included in the LES/FMDF for denser spray regions. Simulations of high speed evaporating sprays with and without combustion for a range of gas and spray conditions indicate that the two-phase LES/FMDF results are consistent and compare well with the experimental results for global spray variables such as the spray penetration and flame lift-off lengths. The gas velocity and turbulence generated by the spray are found to be very significant in all simulated cases. A broad spectrum of droplet sizes is also found to be generated by the complex and coupled effects of the gas flow turbulence, droplet breakup, evaporation and combustion.

  18. Self-propagating high-temperature synthesis in Ti-W-C system

    Institute of Scientific and Technical Information of China (English)


    The effects of W content and preheat temperature on combustion temperature, combustion velocity and product components of self-propagating high-temperature synthesis(SHS) in Ti-W-C system were investigated. The results show that with decreasing W content and increasing preheat temperature, the combustion temperature and combustion velocity increases, the SHS reaction becomes complete and the particle size of product increases. There exist two combustion mechanisms. When Ti powder in combustion front was molten by high combustion temperature, SHS product was formed by melt-solution-precipitation mechanism. When the combustion temperature was not high enough to make Ti powder melt in combustion front, the product was formed through diffusion-solution-in-solid-state.

  19. Improvements on Calculation Model of Theoretical Combustion Temperature in a Blast Furnace

    Institute of Scientific and Technical Information of China (English)

    WU Sheng-li; LIU Cheng-song; FU Chang-liang; XU Jian; KOU Ming-yin


    On the basis of the existing originally modified calculation models of theoretical combustion temperature(TCT),some factors,such as the combustion ratio of pulverized coal injection(PCI),the decomposition heat of PCI and the heat consumption of SiO2 in ash reduced in high temperature environment,were amended and improved to put forward a more comprehensive model for calculating TCT.The influences of each improvement on TCT were studied and the results were analyzed compared with those of traditional model and originally modified model,which showed that the present model could reflect the thermal state of a hearth more effectively.

  20. Development of High Efficiency Clean Combustion Engine Designs for Spark-Ignition and Compression-Ignition Internal Combustion Engines

    Energy Technology Data Exchange (ETDEWEB)

    Marriott, Craig; Gonzalez, Manual; Russell, Durrett


    such as internal dilution level and charge temperature. As a result, HCCI combustion has limited robustness when variables exceed the required narrow ranges determined in this program. HCCI combustion is also not available for the entire range of production engine speeds and loads, (i.e., the dynamic range is limited). Thus, regular SI combustion must be employed for a majority of the full dynamic range of the engine. This degrades the potential fuel economy impact of HCCI combustion. Currently-available combustion control actuators for the simple valve train system engine do not have the authority for continuous air - fuel or torque control for managing the combustion mode transitions between SI and HCCI and thus, require further refinement to meet customer refinement expectations. HCCI combustion control sensors require further development to enable robust long-term HCCI combustion control. Finally, the added technologies required to effectively manage HCCI combustion such as electric cam phasers, central direct fuel injection, cylinder pressure sensing, high-flow exhaust gas recirculation system, etc. add excessive on-engine cost and complexity that erodes the production-viability business

  1. Fluidized bed combustion of high ash Singareni coal

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, M.K.; Biswas, R.R.; Mukherjee, S.K.; Talapatra, P.C.; Roy, R.U.; Rao, S.K.; Sen, M.M.


    Fluid bed combustion is comparatively a new technology for efficient combustion of high ash coals, which constitute the bulk of Indian coal resources. A 2-tonne equivalent steam per hour fluid bed combustion boiler was installed at the CPRI for experimentation with Indian coals and this paper discusses the salient features of tests conducted in the unit with minus 6 mm high ash Singareni coal of Andhra Pradesh. Data on combustion, heat transfer and heat utilization characteristics of the boiler under varying operating conditions show that high ash Singareni coal slacks can be burnt efficiently with high thermal efficiency, combustion efficiency and heat transfer rates from bed to surface in direct contact in a fluid bed combustion boiler. 3 refs., 5 figs., 4 tabs.

  2. Ignition and combustion temperatures determined by laser heating. [for metals deriving from failures in development of Space Shuttle Main Engine (United States)

    Bransford, J. W.


    A laser heating technique and facility have been developed to study metal ignition and combustion in high-pressure oxygen. The ignition and combustion temperatures, estimates of oxidation rates, and ignition and combustion morphology can be determined. This facility and the laser heating techniques are described. Examples of the type of data obtained are presented and discussed. The ignition temperature curves for an aluminum alloy - Unified Numbering System (UNS) A96061, a stainless steel - UNS S30200, and two nickel alloys - UNS N07718 and N04400 are given.

  3. Erosion-Corrosion of Iron and Nickel Alloys at Elevated Temperature in a Combustion Gas Environment

    Energy Technology Data Exchange (ETDEWEB)

    Tylczak, Joseph [NETL


    This paper reports on the results of a study that compares the erosion-corrosion behavior of a variety of alloys (Fe- 2¼Cr 1Mo, 304 SS, 310 SS, Incoloy 800, Haynes 230 and a Fe3Al) in a combustion environment. Advanced coal combustion environments, with higher temperatures, are driving re-examination of traditional and examination of new alloys in these hostile environments. In order to simulate conditions in advanced coal combustion boilers, a special erosion apparatus was used to allow for impingement of particles under a low abrasive flux in a gaseous environment comprised of 20 % CO2, 0.05 % HCl, 77 % N2, 3 % O2, and 0.1 % SO2. Tests were conducted at room temperature and 700 °C with ~ 270 μm silica, using an impact velocity of 20 m/s in both air and the simulated combustion gas environment. The erosion-corrosion behavior was characterized by gravimetric measurements and by examination of the degraded surfaces optically and by scanning electron microscopy (SEM). At room temperature most of the alloys had similar loss rates. Not surprisingly, at 700 °C the lower chrome-iron alloy had a very high loss rate. The nickel alloys tended to have higher loss rates than the high chrome austenitic alloys.

  4. Effects of high combustion chamber pressure on rocket noise environment (United States)

    Pao, S. P.


    The acoustical environment for a high combustion chamber pressure engine was examined in detail, using both conventional and advanced theoretical analysis. The influence of elevated chamber pressure on the rocket noise environment was established, based on increase in exit velocity and flame temperature, and changes in basic engine dimensions. Compared to large rocket engines, the overall sound power level is found to be 1.5 dB higher, if the thrust is the same. The peak Strouhal number shifted about one octave lower to a value near 0.01. Data on apparent sound source location and directivity patterns are also presented.

  5. High temperature vapors science and technology

    CERN Document Server

    Hastie, John


    High Temperature Vapors: Science and Technology focuses on the relationship of the basic science of high-temperature vapors to some areas of discernible practical importance in modern science and technology. The major high-temperature problem areas selected for discussion include chemical vapor transport and deposition; the vapor phase aspects of corrosion, combustion, and energy systems; and extraterrestrial high-temperature species. This book is comprised of seven chapters and begins with an introduction to the nature of the high-temperature vapor state, the scope and literature of high-temp

  6. HTP kinetics studies on isolated elementary combustion reactions over wide temperature ranges

    Energy Technology Data Exchange (ETDEWEB)

    Fontijn, A.; Adusei, G.Y.; Hranisavlevic, J.; Bajaj, P.N. [Rensselaer Polytechnic Institute, Troy, NY (United States)


    The goals of this project are to provide accurate data on the temperature dependence of the kinetics of elementary combustion reactions, (i) for use by combustion modelers, and (ii) to gain a better fundamental understanding of, and hence predictive ability for, the chemistry involved. Experimental measurements are made mainly by using the pseudo-static HTP (high-temperature photochemistry) technique. While continuing rate coefficient measurements, further aspects of kinetics research are being explored. Thus, starting from the data obtained, a method for predicting the temperature dependence of rate coefficients of oxygen-atom olefin experiment and confirms the underlying mechanistic assumptions. Mechanistic information of another sort, i.e. by product analysis, has recently become accessible with the inauguration of our heated flow tube mass spectrometer facility; early results are reported here. HTP experiments designed to lead to measurements of product channels by resonance fluorescence have started.

  7. High Temperature Materials Laboratory (United States)

    Federal Laboratory Consortium — The High Temperature Materials Lab provides the Navy and industry with affordable high temperature materials for advanced propulsion systems. Asset List: Arc Melter...

  8. Advanced Diagnostics for High Pressure Spray Combustion.

    Energy Technology Data Exchange (ETDEWEB)

    Skeen, Scott A.; Manin, Julien Luc; Pickett, Lyle M.


    The development of accurate predictive engine simulations requires experimental data to both inform and validate the models, but very limited information is presently available about the chemical structure of high pressure spray flames under engine- relevant conditions. Probing such flames for chemical information using non- intrusive optical methods or intrusive sampling techniques, however, is challenging because of the physical and optical harshness of the environment. This work details two new diagnostics that have been developed and deployed to obtain quantitative species concentrations and soot volume fractions from a high-pressure combusting spray. A high-speed, high-pressure sampling system was developed to extract gaseous species (including soot precursor species) from within the flame for offline analysis by time-of-flight mass spectrometry. A high-speed multi-wavelength optical extinction diagnostic was also developed to quantify transient and quasi-steady soot processes. High-pressure sampling and offline characterization of gas-phase species formed following the pre-burn event was accomplished as well as characterization of gas-phase species present in the lift-off region of a high-pressure n-dodecane spray flame. For the initial samples discussed in this work several species were identified, including polycyclic aromatic hydrocarbons (PAH); however, quantitative mole fractions were not determined. Nevertheless, the diagnostic developed here does have this capability. Quantitative, time-resolved measurements of soot extinction were also accomplished and the novel use of multiple incident wavelengths proved valuable toward characterizing changes in soot optical properties within different regions of the spray flame.

  9. Ignition and Combustion Characteristics of Diesel Spray in Premixed Methanol/Air Mixture with High Temperature%柴油在甲醇/空气高温热氛围中的着火和燃烧特性

    Institute of Scientific and Technical Information of China (English)

    姚春德; 代乾; 许汉君; 庄远; 杨广峰


    This paper reported the research on the ignition and combustion characteristics of diesel fuel in pure air premixed and methanol/air mixture in a constant volume combustion bomb, respectively. The experimental results showed that the ignition delay of diesel fuel was prolonged and the lift-off length of diesel fuel flame was extended in the premixed methanol ambient. Combustion of n-heptane and n-heptane mixed with methanol in zero-dimension model was simulated according to the reaction theory of n-heptane and methanol. The results showed that, with the addition of methanol, high temperature and low temperature exothermic reaction are delayed, ignition delay is prolonged, the peak value of low temperature exothermic reaction declined markedly without obvious negative temperature coefficient district, and the peak value of high temperature exothermic reaction is higher than that in the pure air. These phenomena are attributed to the effect of methanol which consumes hydroxyl radical and converts this active radical to inactive H2O2. So the reaction activity of the system before ignition is decreased. Both experiments and calculation illustrated that methanol plays a great important role in delaying the ignition of diesel.%在定容燃烧弹上进行了柴油分别在空气和在甲醇/空气预混均质混合气中着火燃烧的实验研究.结果表明,与空气热氛围相比,甲醇混合气热氛围延长了柴油的滞燃期和加长了火焰浮起高度.采用正庚烷-甲醇的详细化学反应机理,利用数值模拟的方法计算了零维模型中正庚烷及正庚烷加甲醇的燃烧反应过程和中间产物历程.其结果表明,甲醇的加入使得正庚烷的高低温放热反应开始时刻后移,滞燃期延长,低温放热反应峰值明显下降,且无明显的负温度系数区,高温反应放热峰值高于其在空气氛围中,归其原因在于甲醇大量消耗着火的OH自由基,并将其转化为低温氧化中不活跃的H2O2,使得

  10. Numerical Modeling of MILD Combustion at High Pressure to Predict the Optimal Operating Conditions

    KAUST Repository

    Vanteru, Mahendra Reddy


    This Chapter presents numerical simulation on MILD combustion operating at high pressure. Influence of preheat and dilution of oxidizer and operating pressure on stabilization of MILD combustion are presented. Three different preheat temperatures (1100, 1300 and 1500 K) and three different dilution levels (3, 6 and 9% O2) are simulated over an operating pressure variation from 1 atm to 16 atm. A classical jet in hot coflow burner is considered for this study. Total of 45 cases are simulated and analyzed. Essential characteristics of MILD combustion, i.e., maximum temperature $$ (T_{max} ) $$, temperature rise $$ (\\\\Delta T) $$ and temperature distributions, are analyzed. The distribution of emissions OH and CO are also studied and presented. Well-stabilized MILD combustion is observed for all cases except for two cases with high preheated (1500 K). Peak temperature is observed to decrease with increasing operating pressure for a given level of preheat and dilution. OH mass faction is reduced with increasing pressure. The CO emissions show little sensitivity to operating pressure. However, CO mass fraction is slightly higher at 1 atm operating pressure as compared to 4 to 16 atm. Since the residence time of reactants increases as the operating pressure increases, well-stabilized MILD combustion is observed for all highly diluted and low temperature preheat cases (3% O2 and 1100 K).

  11. Combustion performance of flame-ignited high-speed train seats via full-scale tests

    Directory of Open Access Journals (Sweden)

    Jie Zhu


    Full Text Available Determining the combustion characteristics of combustibles in high-speed trains is the foundation of evaluating the fire hazard on high-speed trains scientifically, and establishing effective active and passive fire precautions. In this study, the double seats in the compartments of CRH1 high-speed trains were used as the main research object. Under different test conditions, including the power of ignition sources and ventilation rates, full-scale furniture calorimeter tests were conducted to study important fire combustion characteristics such as the ignition characteristics of seats, heat release rate, mass loss rate, total heat release, temperature variation, and smoke release rate. The relationships among these parameters were analyzed and summarized into combustion behavior and characteristics, thus providing fundamental data and reference for the development of fire precautions and safety design of high-speed trains. The results in this test are as follows: (i The double seats of high-speed trains are relatively easy to ignite and susceptible to the fire ground environment. (ii The combustion temperature in the test apparatus exceeded 600 °C in only 2 min for the larger ignition source. (iii The heat release rate exceeded 800 kW. (iv The total heat release resulted mainly from flame combustion. (v The final mass loss rate was ∼30%. (vi The lowest light transmittance was <25%. (vii The change process of temperature with time has the same trend as the change process of heat release rate. (viii Suppressing flame combustion and controlling the smoke generated from the seat materials themselves played key roles in retarding the combustion of high-speed train seats.

  12. Effects of inlet distortion on gas turbine combustion chamber exit temperature profiles (United States)

    Maqsood, Omar Shahzada

    Damage to a nozzle guide vane or blade, caused by non-uniform temperature distributions at the combustion chamber exit, is deleterious to turbine performance and can lead to expensive and time consuming overhaul and repair. A test rig was designed and constructed for the Allison 250-C20B combustion chamber to investigate the effects of inlet air distortion on the combustion chamber's exit temperature fields. The rig made use of the engine's diffuser tubes, combustion case, combustion liner, and first stage nozzle guide vane shield. Rig operating conditions simulated engine cruise conditions, matching the quasi-non-dimensional Mach number, equivalence ratio and Sauter mean diameter. The combustion chamber was tested with an even distribution of inlet air and a 4% difference in airflow at either side. An even distribution of inlet air to the combustion chamber did not create a uniform temperature profile and varying the inlet distribution of air exacerbated the profile's non-uniformity. The design of the combustion liner promoted the formation of an oval-shaped toroidal vortex inside the chamber, creating localized hot and cool sections separated by 90° that appeared in the exhaust. Uneven inlet air distributions skewed the oval vortex, increasing the temperature of the hot section nearest the side with the most mass flow rate and decreasing the temperature of the hot section on the opposite side. Keywords: Allison 250, Combustion, Dual-Entry, Exit Temperature Profile, Gas Turbine, Pattern Factor, Reverse Flow.

  13. Effects of ambient temperature and oxygen concentration on diesel spray combustion using a single-nozzle injector in a constant volume combustion chamber

    KAUST Repository

    Jing, Wei


    This work investigates the effects of ambient conditions on diesel spray combustion in an optically accessible, constant volume chamber using a single-nozzle fuel injector. The ambient O2 concentration was varied between five discrete values from 10% to 21% and three different ambient temperatures (800 K, 1000 K, and 1200 K). These conditions simulate different exhaust gas recirculation (EGR) levels and ambient temperatures in diesel engines. Both conventional diesel combustion and low temperature combustion (LTC) modes were observed under these conditions. A transient analysis and a quasi-steady state analysis are employed in this article. The transient analysis focuses on the flame development from beginning to the end, illustrating how the flame structure changes during this process; the quasi-steady state analysis focuses on the stable flame structure. The transient analysis was conducted using high-speed imaging of both OH* chemiluminescence and natural luminosity (NL). In addition, three different images were acquired using an ICCD camera, corresponding to OH* chemiluminescence, narrow-band flame emission at 430 nm (Band A) and at 470 nm (Band B), and were used to investigate the quasi-steady state combustion process. From the transient analysis, it was found that the NL signal becomes stronger and confined to narrow regions when the temperature and O2 concentration increase during the development of flame. The OH* intensity is much lower for the 10% ambient O2 and 800 K conditions compared to the higher temperatures and O2 levels. This implies the occurrence of LTC under these conditions. Results from the quasi-steady combustion stage indicate that high-temperature reactions effectively oxidize the soot in the downstream locations where only OH* signal is observed. In addition, an area was calculated for each spectral region, and results show that the area of Band A and Band B emissions in these images is larger than the area of OH* emissions at the lower O2

  14. Numerical study on combustion characteristics of nitrogen diluted hydrogen-rich syngas at high pressures

    Institute of Scientific and Technical Information of China (English)

    FU Zhongguang∗; LU Ke; ZHOU Yang; ZHU Yiming; LIU Xueqi


    Aiming at investigating the micro-mixing combustion characteristics of nitrogen diluted hydrogen-rich syngas at high pressures,the combustion model corrected at atmospheric pressure was adopted to ana-lyze the temperature field,flame shape and pollution emissions under conditions with different pressures, powers and equivalent ratios.The results show that,with an increase in pressure,the flame temperature and outlet temperature of the burner rose first and then dropped slightly;the flame width decreased gradu-ally while its height grew;the NOx emission indexes increased and tended to be smooth when the pressure increased to higher than 1 4 MPa.

  15. On Developing a Spectroscopic System for Fast Gas Temperature Measurements in Combustion Environments

    DEFF Research Database (Denmark)

    Evseev, Vadim; Clausen, Sønnik


    Fourier Transform Infra Red (FTIR) spectroscopy techniques are known to provide reliable results for gas temperature measurements and can be comparatively easily performed on an industrial scale such as a boiler on a power plant or an exhaust of a ship engine cylinder. However temporal resolution...... is not high enough to trace fast temperature variations which are of great importance for complete combustion diagnostics. To eliminate the above mentioned shortcoming, a new IR spectroscopic-imaging system has been developed at Risø DTU. The schematic of the system is presented. Results on lab and industrial...

  16. High temperature thermoelectric properties of Ca3Co4O9+δ by auto-combustion synthesis and spark plasma sintering

    DEFF Research Database (Denmark)

    Wu, NingYu; Holgate, Tim; Van Nong, Ngo


    of a wet chemical synthesis, such as morphological and compositional homogeneity, and fine, well-defined particle sizes comingfrom the controlled nature of the auto-combustion. Optimized spark plasma sintering (SPS) processing conditions were determined and used tofabricate dense and highly c-axis oriented...

  17. A VUV Photoionization Study of the Combustion-Relevant Reaction of the Phenyl Radical (C6H5) with Propylene (C3H6) in a High Temperature Chemical Reactor

    Energy Technology Data Exchange (ETDEWEB)

    University of Hawaii at Manoa; Sandia National Laboratories; Zhang, Fangtong; Kaiser, Ralf I.; Golan, Amir; Ahmed, Musahid; Hansen, Nils


    We studied the reaction of phenyl radicals (C6H5) with propylene (C3H6) exploiting a high temperature chemical reactor under combustion-like conditions (300 Torr, 1,200-1,500 K). The reaction products were probed in a supersonic beam by utilizing tunable vacuum ultraviolet (VUV) radiation from the Advanced Light Source and recording the photoionization efficiency (PIE) curves at mass-to-charge ratios of m/z = 118 (C9H10+) and m/z = 104 (C8H8+). Our results suggest that the methyl and atomic hydrogen losses are the two major reaction pathways with branching ratios of 86 10 percent and 14 10 percent. The isomer distributions were probed by fitting the recorded PIE curves with a linear combination of the PIE curves of the individual C9H10 and C8H8 isomers. Styrene (C6H5C2H3) was found to be the exclusive product contributing to m/z = 104 (C8H8+), whereas 3-phenylpropene, cis-1-phenylpropene, and 2-phenylpropene with branching ratios of 96 4 percent, 3 3 percent, and 1 1 percent could account for signal at m/z = 118 (C9H10+). Although searched for carefully, no evidence of the bicyclic indane molecule could be provided. The reaction mechanisms and branching ratios are explained in terms of electronic structure calculations nicely agreeing with a recent crossed molecular beam study on this system.

  18. A VUV photoionization study of the combustion-relevant reaction of the phenyl radical (C6H5) with propylene (C3H6) in a high temperature chemical reactor. (United States)

    Zhang, Fangtong; Kaiser, Ralf I; Golan, Amir; Ahmed, Musahid; Hansen, Nils


    We studied the reaction of phenyl radicals (C(6)H(5)) with propylene (C(3)H(6)) exploiting a high temperature chemical reactor under combustion-like conditions (300 Torr, 1200-1500 K). The reaction products were probed in a supersonic beam by utilizing tunable vacuum ultraviolet (VUV) radiation from the Advanced Light Source and recording the photoionization efficiency (PIE) curves at mass-to-charge ratios of m/z = 118 (C(9)H(10)(+)) and m/z = 104 (C(8)H(8)(+)). Our results suggest that the methyl and atomic hydrogen losses are the two major reaction pathways with branching ratios of 86 ± 10% and 14 ± 10%. The isomer distributions were probed by fitting the recorded PIE curves with a linear combination of the PIE curves of the individual C(9)H(10) and C(8)H(8) isomers. Styrene (C(6)H(5)C(2)H(3)) was found to be the exclusive product contributing to m/z = 104 (C(8)H(8)(+)), whereas 3-phenylpropene, cis-1-phenylpropene, and 2-phenylpropene with branching ratios of 96 ± 4%, 3 ± 3%, and 1 ± 1% could account for the signal at m/z = 118 (C(9)H(10)(+)). Although searched for carefully, no evidence of the bicyclic indane molecule could be provided. The reaction mechanisms and branching ratios are explained in terms of electronic structure calculations nicely agreeing with a recent crossed molecular beam study on this system.

  19. High Temperature Behavior of Ferro-Silicon Nitride Prepared by Flash Combustion Synthesis at Reducing Atmosphere%还原气氛下闪速燃烧合成氮化硅铁的高温行为

    Institute of Scientific and Technical Information of China (English)

    宋文; 陈俊红; 李勇; 孙加林


    为模拟闪速燃烧合成氮化硅铁在工作环境中的高温行为,研究了高温还原气氛下氮化硅铁的存在状态。根据热力学计算,采用在空气气氛中埋碳升温的方法,控制氧气分压在较低水平,将氮化硅铁样品分别升温至1 300℃及1 500℃,保温300 min后迅速水冷,以保存高温下样品的微观结构。采用X射线衍射和扫描电子显微镜表征样品的物相组成和微观结构。结果表明:室温下氮化硅铁的物相组成为α-Si3N4、β-Si3N4、SiO2和Fe3Si。在高温还原条件下,α-Si3N4转变为β-Si3N4,二氧化硅逐渐分解,而Fe3Si相未%This paper focused on the behaviors of ferro–silicon nitride at high temperature and reducing atmosphere to simulate the service environment of ferro–silicon nitride prepared by flash combustion synthesis.The specimen was sintered surrounded by the carbon in air to control partial pressure of oxygen at a low level on the basis of thermodynamic calculation.Ferro–silicon nitride was sintered at 1 300 ℃ and 1 500 ℃ separately and insulated for 300 min then got rapid hydrocooling to keep the microstructure at high temperature.Phase composition and microstructure of the specimens were studied by X-ray diffraction and scanning electron micro-scope.Results show that ferro–silicon nitride contained α-Si3N4,β-Si3N4,SiO2 and Fe3Si at room temperature.α-Si3N4 converted into β-Si3N4 and SiO2 decomposed at high temperature in reducing atmosphere,while Fe3Si was stable.Silicon nitride was decomposed into small grains with bigger specific surface area and reaction activity.And Si2N2O formed on the surface of silicon nitride.

  20. A novel high-temperature combustion based system for stable isotope analysis of dissolved organic carbon in aqueous samples. : II optimization and assessment of analytical performance

    NARCIS (Netherlands)

    Kirkels, F. M. S. A.; Cerli, C.; Federherr, E.; Gao, J.; Kalbitz, K.


    RATIONALE: Dissolved organic carbon (DOC) plays an important role in carbon cycling, making precise and routine measurement of delta C-13 values and DOC concentration highly desirable. A new promising system has been developed for this purpose. However, broad-scale application of this new technique

  1. Staged, High-Pressure Oxy-Combustion Technology: Development and Scale-Up

    Energy Technology Data Exchange (ETDEWEB)

    Axelbaum, Richard; Xia, Fei; Gopan, Akshay; Kumfer, Benjamin


    Washington University in St. Louis and its project partners are developing a unique pressurized oxy-combustion process that aims to improve efficiency and costs by reducing the recycling of flue gas to near zero. Normally, in the absence of recycled flue gas or another inert gas, combustion of fuel and oxygen results in a dramatic increase in temperature of the combustion products and radiant energy, as compared to combustion in air. High heat flux to the boiler tubes may result in a tube surface temperatures that exceed safe operating limits. In the Staged Pressurized Oxy-Combustion (SPOC) process, this problem is addressed by staging the delivery of fuel and by novel combustion design that allows control of heat flux. In addition, the main mode of heat transfer to the steam cycle is by radiation, as opposed to convection. Therefore, the requirement for recycling large amounts of flue gas, for temperature control or to improve convective heat transfer, is eliminated, resulting in a reduction in auxiliary loads. The following report contains a detailed summary of scientific findings and accomplishments for the period of Oct. 1, 2013 to Sept 30, 2014. Results of ASPEN process and CFD modelling activities aimed at improving the SPOC process and boiler design are presented. The effects of combustion pressure and fuel moisture on the plant efficiency are discussed. Combustor pressure is found to have only a minor impact beyond 16 bar. For fuels with moisture content greater than approx 30%, e.g. coal/water slurries, the amount of latent heat of condensation exceeds that which can be utilized in the steam cycle and plant efficiency is reduced significantly. An improved boiler design is presented that achieves a more uniform heat flux profile. In addition, a fundamental study of radiation in high-temperature, high-pressure, particle-laden flows is summarized which provides a more complete understanding of heat transfer in these unusual conditions and to allow for

  2. Low-Cost, High-Performance Combustion Chamber for LOX/CH4 Propulsion, Phase II Project (United States)

    National Aeronautics and Space Administration — In this project, Ultramet is designing and fabricating a lightweight, high temperature combustion chamber for use with cryogenic liquid oxygen/methane (LOX/CH4)...

  3. High Impact Technology Compact Combustion (HITCC) Compact Core Technologies (United States)


    the CO and CO2 net reaction rates from the FGM. This, in turn, provides another benefit . That is, the source term in YC is not just now dependent on...AFRL-RQ-WP-TR-2016-0010 HIGH IMPACT TECHNOLOGY COMPACT COMBUSTION (HITCC) COMPACT CORE TECHNOLOGIES Andrew W. Caswell Combustion...information exchange, and its publication does not constitute the Government’s approval or disapproval of its ideas or findings. *Disseminated

  4. Temperature Estimation in the Combustion Chamber of an Internal Combustion Engine



    The mathematical model of heat transfer phenomena is considered at the combustion chamber wall in an internal combustion (IC) engine. The mathematical model of proposed phenomena is established with respect to the crank angle. An inverse heat conduction problem is derived at the cylinder wall, and this problem is investigated numerically using Alifanov's regularization method. This problem studied as an optimization problem in which a squared residual functional is minimized with the conjugat...

  5. Intelligent Detector of Internal Combustion Engine Cylinder Pressure and Sensitivity Temperature Coefficient Compensation

    Directory of Open Access Journals (Sweden)

    Beirong Zheng


    Full Text Available The detecting device based on mechanical mechanism is far from the measurement of internal combustion engine cylinder explosion and compression pressure. This pressure detection is under the environment of pulsed gas (over 500 times per one minute and mechanical impactive vibration. Piezoresistive detection with silicon on insulator (SOI strain gauges to pressure seems to be a good solution to meet such special applications. In this work, separation by implanted oxygen (SIMOX wafer was used to fabricate the high temperature pressure sensor chip. For high accuracy and wide temperature range application, this paper also presents a novel pressure sensitivity temperature coefficient (TCS compensation method, using integrated constant current network. A quantitative compensation formula is introduced in mathematics. During experiments, the absolute value of the compensated TCS is easy to be 10 × 10−6/°C~100 × 10−6/°C by individual adjustment and calibration of each device’s temperature compensation. Therefore, the feasibility and practicability of this technology are tested. Again, the disadvantages are discussed after the research of the experiment data and the improvement methods are also given in the designing period. This technology exhibits the great potential practical value of internal combustion engine cylinder pressure with volume manufacturing.

  6. Combustion Temperature Effect of Diesel Engine Convert to Compressed Natural Gas Engine


    Semin; Abdul R. Ismail; Rosli A. Bakar


    Effect of combustion temperature in the engine cylinder of diesel engine convert to Compressed Natural Gas (CNG) engine was presents in this study. The objective of this study was to investigate the engine cylinder combustion temperature effect of diesel engine convert to CNG engine on variation engine speed. Problem statement: The hypothesis was that the lower performance of CNG engine was caused by the effect of lower in engine cylinder temperature. Are the CNG engine is lower cylinder temp...

  7. Oxy-combustion of high water content fuels (United States)

    Yi, Fei

    As the issues of global warming and the energy crisis arouse extensive concern, more and more research is focused on maximizing energy efficiency and capturing CO2 in power generation. To achieve this, in this research, we propose an unconventional concept of combustion - direct combustion of high water content fuels. Due to the high water content in the fuels, they may not burn under air-fired conditions. Therefore, oxy-combustion is applied. Three applications of this concept in power generation are proposed - direct steam generation for the turbine cycle, staged oxy-combustion with zero flue gas recycle, and oxy-combustion in a low speed diesel-type engine. The proposed processes could provide alternative approaches to directly utilize fuels which intrinsically have high water content. A large amount of energy to remove the water, when the fuels are utilized in a conventional approach, is saved. The properties and difficulty in dewatering high water content fuels (e.g. bioethanol, microalgae and fine coal) are summarized. These fuels include both renewable and fossil fuels. In addition, the technique can also allow for low-cost carbon capture due to oxy-combustion. When renewable fuel is utilized, the whole process can be carbon negative. To validate and evaluate this concept, the research focused on the investigation of the flame stability and characteristics for high water content fuels. My study has demonstrated the feasibility of burning fuels that have been heavily diluted with water in a swirl-stabilized burner. Ethanol and 1-propanol were first tested as the fuels and the flame stability maps were obtained. Flame stability, as characterized by the blow-off limit -- the lowest O2 concentration when a flame could exist under a given oxidizer flow rate, was determined as a function of total oxidizer flow rate, fuel concentration and nozzle type. Furthermore, both the gas temperature contour and the overall ethanol concentration in the droplets along the

  8. Alumina Volatility in Water Vapor at Elevated Temperatures: Application to Combustion Environments (United States)

    Opila, Elizabeth J.; Myers, Dwight L.


    The volatility of alumina in high temperature water vapor was determined by measuring weight loss of sapphire coupons at temperatures between 1250 and 1500 C, water vapor partial pressures between 0.15 and 0.68 atm in oxygen, at one atmosphere total pressure, and a gas velocity of 4.4 centimeters per second. The variation of the volatility with water vapor partial pressure was consistent with Al(OH)3(g) formation. The enthalpy of reaction to form Al(OH)3(g) from alumina and water vapor was found to be 210 plus or minus 20 kJ/mol. Surface rearrangement of ground sapphire surfaces increased with water vapor partial pressure, temperature and volatility rate. Recession rates of alumina due to volatility were determined as a function of water vapor partial pressure and temperature to evaluate limits for use of alumina in long term applications in combustion environments.

  9. Asymptotic approximation of long-time solution for low-temperature filtration combustion

    NARCIS (Netherlands)

    Chapiro, G.; Mallybaev, A.A.; De Souza, A.J.; Marchesin, D.; Bruining, J.


    There is a renewed interest in using combustion for the recovery of medium viscosity oil. We consider the combustion process when air is injected into the porous medium containing some fuel and inert gas. Commonly the reaction rate is negligible at low temperatures, hence the possibility of oxygen b

  10. Diode laser supported in situ detection of O{sub 2} and alkali atoms for optimization of high-temperature combustion of coal dust and toxic waste as well as fire extinction; Diodenlaser-gestuetzter in-situ-Nachweis von O{sub 2} und Alkaliatomen zur Optimierung der Hochtemperaturkohlenstaub- und Sondermuellverbrennung sowie der Brandbekaempfung

    Energy Technology Data Exchange (ETDEWEB)

    Schlosser, E.


    The author investigated sensitive in situ detection using TDLAS of high-reactive alkali atoms and molecular oxygen in the conditions of industrial combustion processes (high dust concentrations, high pressure, high temperature) and in the optically difficult conditions of fire extinction, i.e. two cases in which it is impossible to take samples. [German] Ziel dieser Arbeit war der empfindliche In-situ-Nachweis mit TDLAS (direkte Absorptionsspektroskopie mit abstimmbaren Diodenlasern) von hochreaktiven Alkaliatomen sowie molekularem Sauerstoff unter den Bedingungen von industriellen Verbrennungsprozessen (hoher Staubgehalt, Druck und Temperatur) sowie unter den optisch anspruchsvollen Bedingungen einer Feuerloeschung. In beiden Faellen ist es nicht moeglich, die gesuchte Konzentration durch eine Probenahme zu ermitteln. (orig.)

  11. Experimental determination of temperatures of the inner wall of a boiler combustion chamber for the purpose of verification of a CFD model

    Directory of Open Access Journals (Sweden)

    Petr Trávníček


    Full Text Available The paper focuses on the non-destructive method of determination of temperatures in the boiler combustion chamber. This method proves to be significant mainly as regards CFD (Computational Fluid Dynamics simulations of combustion processes, in case of which it is subsequently advisable to verify the data calculated using CFD software application with the actually measured data. Verification of the method was based on usage of reference combustion equipment (130 kW which performs combustion of a mixture of waste sawdust and shavings originating in the course of production of wooden furniture. Measuring of temperatures inside the combustion chamber is – considering mainly the high temperature values – highly demanding and requires a special type of temperature sensors. Furthermore, as regards standard operation, it is not possible to install such sensors without performing structural alterations of the boiler. Therefore, for the purpose of determination of these temperatures a special experimental device was constructed while exploiting a thermal imaging system used for monitoring of the surface temperature of outer wall of the reference boiler. Temperatures on the wall of the boiler combustion chamber were determined on the basis of data measured using the experimental device as well as data from the thermal imaging system. These values might serve for verification of the respective CFD model of combustion equipment.


    Institute of Scientific and Technical Information of China (English)

    Xu Longxiang; Zhang Jinyu; Schweitzer Gerhard


    A high temperature displacement sensor based on the principle of eddy-current is investigated. A new temperature compensation technique by using eddy-current effect is presented to satisfy the special requirement at high temperature up to 550℃. The experiment shows that the temperature compensation technique leads to good temperature stability for the sensors. The variation of the sensitivity as well as the temperature drift of the sensor with temperature compensation technique is only about 7.4% and 90~350 mV at 550℃ compared with that at room temperature, and that of the sensor without temperature compensation technique is about 31.2% and 2~3 V at 550℃ compared with that at room temperature. A new dynamic calibration method for the eddy-current displacement sensor is presented, which is very easy to be realized especially in high frequency and at high temperatures. The high temperature displacement sensors developed are successfully used at temperature up to 550℃ in a magnetic bearing system for more than 100 h.

  13. Effects of intake air temperature on homogenous charge compression ignition combustion and emissions with gasoline and n-heptane

    Directory of Open Access Journals (Sweden)

    Zhang Jianyong


    Full Text Available In a port fuel injection engine, Optimized kinetic process (OKP technology is implemented to realize HCCI combustion with dual-fuel injection. The effects of intake air temperature on HCCI combustion and emissions are investigated. The results show that dual-fuel control prolongs HCCI combustion duration and improves combustion stability. Dual-fuel HCCI combustion needs lower intake air temperature than gasoline HCCI combustion, which reduces the requirements on heat management system. As intake air temperature decreases, air charge increases and maximum pressure rising rate decreases. When intake air temperature is about 55ºC, HCCI combustion becomes worse and misfire happens. In fixed dual fuel content condition, HC and CO emission decreases as intake air temperature increases. The combination of dual-fuel injection and intake air temperature control can expand operation range of HCCI combustion.

  14. Combustion synthesis of molybdenum silicides and borosilicides for ultrahigh-temperature structural applications (United States)

    Alam, Mohammad Shafiul

    Molybdenum silicides and borosilicides are promising structural materials for gas-turbine power plants. A major challenge, however, is to simultaneously achieve high oxidation resistance and acceptable mechanical properties at high temperatures. For example, molybdenum disilicide (MoSi2) has excellent oxidation resistance and poor mechanical properties, while Mo-rich silicides such as Mo5Si3 (called T 1) have much better mechanical properties but poor oxidation resistance. One approach is based on the fabrication of MoSi2-T 1 composites that combine high oxidation resistance of MoSi2 and good mechanical properties of T1. Another approach involves the addition of boron to Mo-rich silicides for improving their oxidation resistance through the formation of a borosilicate surface layer. In particular, Mo 5SiB2 (called T2) phase is considered as an attractive material. In the thesis, MoSi2-T1 composites and materials based on T2 phase are obtained by mechanically activated SHS. Use of SHS compaction (quasi-isostatic pressing) significantly improves oxidation resistance of the obtained MoSi2-T1 composites. Combustion of Mo-Si-B mixtures for the formation of T2 phase becomes possible if the composition is designed for the addition of more exothermic reactions leading to the formation of molybdenum boride. These mixtures exhibit spin combustion, the characteristics of which are in good agreement with the spin combustion theory. Oxidation resistance of the obtained Mo-Si-B materials is independent on the concentration of Mo phase in the products so that the materials with a higher Mo content are preferable because of better mechanical properties. Also, T2 phase has been obtained by the chemical oven combustion synthesis technique.

  15. Effect of char preparation temperature on the evolution of nitrogen-containing species during char oxidation at fluidized bed combustion

    Energy Technology Data Exchange (ETDEWEB)

    Ren, W.; Lu, J.; Yue, G. [Tsinghua Univ., Beijing (China). Dept. of Thermal Engineering; Beer, J.M. [Massachusetts Inst. of Technology, Boston, MA (United States). Dept. of Chemical and Fuel Engineering; Molina, A.; Sarofim, A.F. [Utah Univ., Salt Lake City, UT (United States). Dept. of Chemical and Fuels Engineering


    Fluidized bed combustion is gaining popularity as a means to burn coal and waste fuels because the low temperatures of fluidized bed combustors generally result in low thermal nitric oxide (NO) production. However, nitrous oxide (N{sub 2}O) emissions can be relativity high and strategies must be developed to reduce emissions of this greenhouse gas. This paper presents the results of a laboratory study that examined the effect of pyrolysis temperature on the conversion of char-N to N{sub 2}O, NO and hydrogen cyanide (HCN) in fluidized bed combustion. When anthracite coal was used, an increase in the pyrolysis temperature resulted in reduced conversion of char-N to N{sub 2}O and HCN. However, the conversion to NO increased. This observation may be due to the lower hydrogen content of the chars produced at higher temperature and their lower reactivity. Other possibilities may be that the lower char reactivity for chars produced at high pyrolysis temperature may affect the reactions occurring in the boundary layer. Chars of lower reactivity in particular, may react at lower particle temperature and under high transient oxygen concentrations. A simplified char combustion representation was used to examine the effect of temperature and equivalence ratio on HCN oxidation. A reduction of equivalence ratio could explain some of the observed variations in product distribution with increased pyrolysis temperature. 19 refs., 1 tab., 5 figs.

  16. High-Temperature Superconductivity (United States)

    Tanaka, Shoji


    A general review on high-temperature superconductivity was made. After prehistoric view and the process of discovery were stated, the special features of high-temperature superconductors were explained from the materials side and the physical properties side. The present status on applications of high-temperature superconductors were explained on superconducting tapes, electric power cables, magnets for maglev trains, electric motors, superconducting quantum interference device (SQUID) and single flux quantum (SFQ) devices and circuits.

  17. Temperature Estimation in the Combustion Chamber of an Internal Combustion Engine

    Directory of Open Access Journals (Sweden)

    Gholam Reza Safakish


    Full Text Available The mathematical model of heat transfer phenomena is considered at the combustion chamber wall in an internal combustion (IC engine. The mathematical model of proposed phenomena is established with respect to the crank angle. An inverse heat conduction problem is derived at the cylinder wall, and this problem is investigated numerically using Alifanov's regularization method. This problem studied as an optimization problem in which a squared residual functional is minimized with the conjugate gradient method. To show the ability of the proposed method, some test problems are considered.

  18. High efficiency stoichiometric internal combustion engine system (United States)

    Winsor, Richard Edward; Chase, Scott Allen


    A power system including a stoichiometric compression ignition engine in which a roots blower is positioned in the air intake for the engine to control air flow. Air flow is decreased during part power conditions to maintain the air-fuel ratio in the combustion chamber of the engine at stoichiometric, thus enabling the use of inexpensive three-way catalyst to reduce oxides of nitrogen. The roots blower is connected to a motor generator so that when air flow is reduced, electrical energy is stored which is made available either to the roots blower to temporarily increase air flow or to the system electrical load and thus recapture energy that would otherwise be lost in reducing air flow.

  19. Spatially Resolved Temperature and Water Vapor Concentration Distributions in Supersonic Combustion Facilities by TDLAT (United States)

    Busa, K. M.; McDaniel J. C.; Diskin, G. S.; DePiro, M. J.; Capriotti, D. P.; Gaffney, R. L.


    Detailed knowledge of the internal structure of high-enthalpy flows can provide valuable insight to the performance of scramjet combustors. Tunable Diode Laser Absorption Spectroscopy (TDLAS) is often employed to measure temperature and species concentration. However, TDLAS is a path-integrated line-of-sight (LOS) measurement, and thus does not produce spatially resolved distributions. Tunable Diode Laser Absorption Tomography (TDLAT) is a non-intrusive measurement technique for determining two-dimensional spatially resolved distributions of temperature and species concentration in high enthalpy flows. TDLAT combines TDLAS with tomographic image reconstruction. More than 2500 separate line-of-sight TDLAS measurements are analyzed in order to produce highly resolved temperature and species concentration distributions. Measurements have been collected at the University of Virginia's Supersonic Combustion Facility (UVaSCF) as well as at the NASA Langley Direct-Connect Supersonic Combustion Test Facility (DCSCTF). Due to the UVaSCF s unique electrical heating and ability for vitiate addition, measurements collected at the UVaSCF are presented as a calibration of the technique. Measurements collected at the DCSCTF required significant modifications to system hardware and software designs due to its larger measurement area and shorter test duration. Tomographic temperature and water vapor concentration distributions are presented from experimentation on the UVaSCF operating at a high temperature non-reacting case for water vitiation level of 12%. Initial LOS measurements from the NASA Langley DCSCTF operating at an equivalence ratio of 0.5 are also presented. Results show the capability of TDLAT to adapt to several experimental setups and test parameters.

  20. Highly efficient high temperature electrolysis

    DEFF Research Database (Denmark)

    Hauch, Anne; Ebbesen, Sune; Jensen, Søren Højgaard;


    High temperature electrolysis of water and steam may provide an efficient, cost effective and environmentally friendly production of H-2 Using electricity produced from sustainable, non-fossil energy sources. To achieve cost competitive electrolysis cells that are both high performing i.e. minimum...... internal resistance of the cell, and long-term stable, it is critical to develop electrode materials that are optimal for steam electrolysis. In this article electrolysis cells for electrolysis of water or steam at temperatures above 200 degrees C for production of H-2 are reviewed. High temperature...... electrolysis is favourable from a thermodynamic point of view, because a part of the required energy can be supplied as thermal heat, and the activation barrier is lowered increasing the H-2 production rate. Only two types of cells operating at high temperature (above 200 degrees C) have been described...

  1. Faraday imaging at high temperatures (United States)

    Hackel, Lloyd A.; Reichert, Patrick


    A Faraday filter rejects background light from self-luminous thermal objects, but transmits laser light at the passband wavelength, thus providing an ultra-narrow optical bandpass filter. The filter preserves images so a camera looking through a Faraday filter at a hot target illuminated by a laser will not see the thermal radiation but will see the laser radiation. Faraday filters are useful for monitoring or inspecting the uranium separator chamber in an atomic vapor laser isotope separation process. Other uses include viewing welds, furnaces, plasma jets, combustion chambers, and other high temperature objects. These filters are can be produced at many discrete wavelengths. A Faraday filter consists of a pair of crossed polarizers on either side of a heated vapor cell mounted inside a solenoid.

  2. Low-Cost, High-Performance Combustion Chamber (United States)

    Fortini, Arthur J.


    Ultramet designed and fabricated a lightweight, high-temperature combustion chamber for use with cryogenic LOX/CH4 propellants that can deliver a specific impulse of approx.355 seconds. This increase over the current 320-second baseline of nitrogen tetroxide/monomethylhydrazine (NTO/MMH) will result in a propellant mass decrease of 55 lb for a typical lunar mission. The material system was based on Ultramet's proven oxide-iridium/rhenium architecture, which has been hot-fire tested with stoichiometric oxygen/hydrogen for hours. Instead of rhenium, however, the structural material was a niobium or tantalum alloy that has excellent yield strength at both ambient and elevated temperatures. Phase I demonstrated alloys with yield strength-to-weight ratios more than three times that of rhenium, which will significantly reduce chamber weight. The starting materials were also two orders of magnitude less expensive than rhenium and were less expensive than the C103 niobium alloy commonly used in low-performance engines. Phase II focused on the design, fabrication, and hot-fire testing of a 12-lbf thrust class chamber with LOX/CH4, and a 100-lbf chamber for LOX/CH4. A 5-lbf chamber for NTO/MMH also was designed and fabricated.

  3. Processing Th C{sub 2} - UC{sub 2} fuel extracted from high temperature reactors HTGCR; Etude du traitement des combustibles Th C{sub 2} - UC{sub 2} issus de reacteurs a haute temperature

    Energy Technology Data Exchange (ETDEWEB)

    Derrien, C.; Lessart, P.; Pianezza, E.; Verry, C.; Villain, G. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires


    The object of this investigation is solubilisation head-end (from crushing and grinding phase to non included first purification phase) of pulverulent ({sup 233}U/{sup 232}Th)C{sub 2} (200 - 500 microns diameter) contained in a graphite matrix extracted from a 4.10{sup 13}{sup -2}.s{sup -1} thermalized neutrons average flux with an irradiation of 80000 MWjT{sup -1} HTGCR reactor. After having succinctly described different bibliographic processes we have chosen the burn - leach of reactor fuel and graphite matrix containing it. The technology of burner is original in nuclear field and still more by utilizing ultra-sounds to intensify burning reaction and to minimize the weight of unburnables. The mixture of ThO{sub 2}, U{sub 3}O{sub 8}, and fission products oxides is solubilized by boiling HNO{sub 3} 13 M + HF 0.05 M. This process is profit-learning in a thorium recuperation and reprocessing point of view. In the contrary-case it would be interesting to consider a dry-process which would permit to separate solid ThF{sub 4} from gaseous UF{sub 6}. (authors) [French] Cette etude a pour objet le traitement initial de mise en solution ou 'head-end' (allant de la phase broyag-concassage a la phase de premiere purification exclue) d'un combustible ({sup 233}U/{sup 232}Th)C{sub 2} pulverulent (de 200 a 500 {mu} de diametre) contenu dans une matrice de graphite issu d'un reacteur HTGCR surgenerateur a neutrons thermiques de flux moyen 4. l0{sup 13}{sup -2}.s{sup -1} et taux d'irradiation 80000 MWjT{sup -1}. Apres exposition succincte des differents procedes bibliographiques decrits, nous avons finalement choisi le traitement par combustion-attaque ('Burn-Leach') du combustible et de la matrice etanche graphite qui le contient. La technologie du bruleur est originale dans le domaine nucleaire d'autant qu'elle utilise les ultra-sons pour ameliorer le rendement de la reaction de combustion et reduire au minimum le poids

  4. Development of a 2D temperature measurement technique for combustion diagnostics using 2-line atomic fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Engstroem, Johan


    The present thesis is concerned with the development and application of a novel planar laser-induced fluorescence (PLIF) technique for temperature measurements in a variety of combusting flows. Accurate measurement of temperature is an essential task in combustion diagnostics, since temperature is one of the most fundamental quantities for the characterization of combustion processes. The technique is based on two-line atomic fluorescence (TLAF) from small quantities of atomic indium (In) seeded into the fuel. It has been developed from small-scale experiments in laboratory flames to the point where practical combustion systems can be studied. The technique is conceptually simple and reveals temperature information in the post-flame regions. The viability of the technique has been tested in three extreme measurement situations: in spark ignition engine combustion, in ultra-lean combustion situations such as lean burning aero-engine concepts and, finally, in fuel-rich combustion. TLAF was successfully applied in an optical Sl engine using isooctane as fuel. The wide temperature sensitivity, 700 - 3000 K, of the technique using indium atoms allowed measurements over the entire combustion cycle in the engine to be performed. In applications in lean combustion a potential problem caused by the strong oxidation processes of indium atoms was encountered. This limits measurement times due to deposits of absorbing indium oxide on measurement windows. The seeding requirement is a disadvantage of the technique and can be a limitation in some applications. The results from experiments performed in sooting flames are very promising for thermometry measurements in such environments. Absorption by hydrocarbons and other native species was found to be negligible. Since low laser energies and low seeding concentrations could be used, the technique did not, unlike most other incoherent optical thermometry techniques, suffer interferences from LII of soot particles or LIF from PAH

  5. Low temperature combustion of organic coal-water fuel droplets containing petrochemicals while soaring in a combustion chamber model

    Directory of Open Access Journals (Sweden)

    Valiullin Timur R.


    Full Text Available The paper examines the integral characteristics (minimum temperature, ignition delay times of stable combustion initiation of organic coal-water fuel droplets (initial radius is 0.3-1.5 mm in the oxidizer flow (the temperature and velocity varied in ranges 500-900 K, 0.5-3 m/s. The main components of organic coal-water fuel were: brown coal particles, filter-cakes obtained in coal processing, waste engine, and turbine oils. The different modes of soaring and ignition of organic coal-water fuel have been established. The conditions have been set under which it is possible to implement the sustainable soaring and ignition of organic coal-water fuel droplets. We have compared the ignition characteristics with those defined in the traditional approach (based on placing the droplets on a low-inertia thermocouple junction into the combustion chamber. The paper shows the scale of the influence of heat sink over the thermocouple junction on ignition inertia. An original technique for releasing organic coal-water fuel droplets to the combustion chamber was proposed and tested. The limitations of this technique and the prospects of experimental results for the optimization of energy equipment operation were also formulated.

  6. High temperature battery. Hochtemperaturbatterie

    Energy Technology Data Exchange (ETDEWEB)

    Bulling, M.


    To prevent heat losses of a high temperature battery, it is proposed to make the incoming current leads in the area of their penetration through the double-walled insulating housing as thermal throttle, particularly spiral ones.

  7. Computational modeling of high pressure combustion mechanism in scram accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Choi, J.Y. [Pusan Nat. Univ. (Korea); Lee, B.J. [Pusan Nat. Univ. (Korea); Agency for Defense Development, Taejon (Korea); Jeung, I.S. [Pusan Nat. Univ. (Korea); Seoul National Univ. (Korea). Dept. of Aerospace Engineering


    A computational study was carried out to analyze a high-pressure combustion in scram accelerator. Fluid dynamic modeling was based on RANS equations for reactive flows, which were solved in a fully coupled manner using a fully implicit-upwind TVD scheme. For the accurate simulation of high-pressure combustion in ram accelerator, 9-species, 25-step fully detailed reaction mechanism was incorporated with the existing CFD code previously used for the ram accelerator studies. The mechanism is based on GRI-Mech. 2.11 that includes pressure-dependent reaction rate formulations indispensable for the correct prediction of induction time in high-pressure environment. A real gas equation of state was also included to account for molecular interactions and real gas effects of high-pressure gases. The present combustion modeling is compared with previous 8-step and 19-step mechanisms with ideal gas assumption. The result shows that mixture ignition characteristics are very sensitive to the combustion mechanisms, and different mechanism results in different reactive flow-field characteristics that have a significant relevance to the operation mode and the performance of scram accelerator. (orig.)

  8. Experimental simulation and numerical analysis of coal spontaneous combustion process at low temperature

    Institute of Scientific and Technical Information of China (English)

    文虎; 徐精彩; 葛岭梅


    The characteristic of coal spontaneous, combustion includes oxidative property and exothermic capacity. It can really simulate the process of coal spontaneous combustion to use the large-scale experimental unit loading coal ! 000 kg. According to the field change of gas concentration and coal temperature determined through experiment of coal self-ignite at low temperature stage, and on the basis of hydromechanics and heat-transfer theory, some parameters can be calculated at different low temperature stage, such as, oxygen consumption rate, heat liberation intensity. It offers a theoretic criterion for quantitatively analyzing characteristic of coal self-ignite and forecasting coal spontaneous combustion. According to coal exothermic capability and its thermal storage surroundings, thermal equilibrium is applied to deduce the computational method of limit parameter of coal self-ignite. It offers a quantitative theoretic criterion for coal self-ignite forecasting and preventing. According to the measurement and test of spontaneous combustion of Haibei coal, some token parameter of Haibei coal,spontaneous combustion is quantitatively analyzed, such as, spontaneous combustion period of coal, critical temperature, oxygen consumption rate, heat liberation intensity, and limit parameter of coal self-ignite.

  9. Experimental simulation and numerical analysis of coal spontaneous combustion process at low temperature*

    Institute of Scientific and Technical Information of China (English)

    WEN Hu; XU Jing-cai; GE Ling-mei


    The characteristic of coal spontaneous combustion includes oxidative p roperty and exothermic capacity. It can really simulate the process of coal spon taneous combustion to use the large-scale experimental unit loading coal 1 000 kg. According to the field change of gas concentration and coal temperature determi ned through experiment of coal self-ignite at low temperature stage, and on the basis of hydromechanics and heat-transfer theory, some parameters can be calcul at ed at different low temperature stage, such as, oxygen consumption rate, heat li beration intensity. It offers a theoretic criterion for quantitatively analyzing characteristic of coal self-ignite and forecasting coal spontaneous combustion . According to coal exothermic capability and its thermal storage surroundings, t hermal equilibrium is applied to deduce the computational method of limit parame ter of coal self-ignite. It offers a quantitative theoretic criterion for coal s elf-ignite forecasting and preventing. According to the measurement and test of spontaneous combustion of Haibei coal, some token parameter of Haibei coal spont aneous combustion is quantitatively analyzed, such as, spontaneous combustion pe riod of coal, critical temperature, oxygen consumption rate, heat liberation int ensity, and limit parameter of coal self-ignite.

  10. High Temperature Capacitor Development

    Energy Technology Data Exchange (ETDEWEB)

    John Kosek


    The absence of high-temperature electronics is an obstacle to the development of untapped energy resources (deep oil, gas and geothermal). US natural gas consumption is projected to grow from 22 trillion cubic feet per year (tcf) in 1999 to 34 tcf in 2020. Cumulatively this is 607 tcf of consumption by 2020, while recoverable reserves using current technology are 177 tcf. A significant portion of this shortfall may be met by tapping deep gas reservoirs. Tapping these reservoirs represents a significant technical challenge. At these depths, temperatures and pressures are very high and may require penetrating very hard rock. Logistics of supporting 6.1 km (20,000 ft) drill strings and the drilling processes are complex and expensive. At these depths up to 50% of the total drilling cost may be in the last 10% of the well depth. Thus, as wells go deeper it is increasingly important that drillers are able to monitor conditions down-hole such as temperature, pressure, heading, etc. Commercial off-the-shelf electronics are not specified to meet these operating conditions. This is due to problems associated with all aspects of the electronics including the resistors and capacitors. With respect to capacitors, increasing temperature often significantly changes capacitance because of the strong temperature dependence of the dielectric constant. Higher temperatures also affect the equivalent series resistance (ESR). High-temperature capacitors usually have low capacitance values because of these dielectric effects and because packages are kept small to prevent mechanical breakage caused by thermal stresses. Electrolytic capacitors do not operate at temperatures above 150oC due to dielectric breakdown. The development of high-temperature capacitors to be used in a high-pressure high-temperature (HPHT) drilling environment was investigated. These capacitors were based on a previously developed high-voltage hybridized capacitor developed at Giner, Inc. in conjunction with a

  11. High-temperature superconductors

    CERN Document Server

    Saxena, Ajay Kumar


    The present book aims at describing the phenomenon of superconductivity and high-temperature superconductors discovered by Bednorz and Muller in 1986. The book covers the superconductivity phenomenon, structure of high-Tc superconductors, critical currents, synthesis routes for high Tc materials, superconductivity in cuprates, the proximity effect and SQUIDs, theories of superconductivity and applications of superconductors.

  12. High Temperature ESP Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Jack Booker; Brindesh Dhruva


    The objective of the High Temperature ESP Monitoring project was to develop a downhole monitoring system to be used in wells with bottom hole well temperatures up to 300°C for measuring motor temperature, formation pressure, and formation temperature. These measurements are used to monitor the health of the ESP motor, to track the downhole operating conditions, and to optimize the pump operation. A 220 ºC based High Temperature ESP Monitoring system was commercially released for sale with Schlumberger ESP motors April of 2011 and a 250 ºC system with will be commercially released at the end of Q2 2011. The measurement system is now fully qualified, except for the sensor, at 300 °C.

  13. High Temperature Electrolysis

    DEFF Research Database (Denmark)

    Elder, Rachael; Cumming, Denis; Mogensen, Mogens Bjerg


    High temperature electrolysis of carbon dioxide, or co-electrolysis of carbon dioxide and steam, has a great potential for carbon dioxide utilisation. A solid oxide electrolysis cell (SOEC), operating between 500 and 900. °C, is used to reduce carbon dioxide to carbon monoxide. If steam is also...... input to the cell then hydrogen is produced giving syngas. This syngas can then be further reacted to form hydrocarbon fuels and chemicals. Operating at high temperature gives much higher efficiencies than can be achieved with low temperature electrolysis. Current state of the art SOECs utilise a dense...

  14. Temperature Distribution of Biodiesel Blends Combustion in Boiler using CFD-Fluent

    Directory of Open Access Journals (Sweden)

    Lia Cundari


    Full Text Available The use of biodiesel have been tested on some combustion devices extensively, including on the boiler. Biodiesel blends use in boiler is possibly affected the behaviour of combustion. It can be evaluated by analysing the exhaust gas composition and temperature. This study is conducted to show the distribution of temperature in the combustion chamber and boiler stack’s using Computational Fluid Dynamic (CFD software Fluent. Experimentally, the tests carried out on the fire tube boiler vertical type cylinder with pressure of 3 bar. Temperature measurement is performed at three points in the combustion chamber and boilers’ stack using optional thermocouple and gas analyzer IMR 1400. The biodiesel used in the tests is palm oil based with blending portion varies from 5-25%. The results show that in the higher blend of biodiesel, the temperature of combustion chamber tend to be lower but the exhaust gas temperature at the end of the chimney was likely to increase. On the other hand, the simulation using FLUENT showed the pattern of temperature distribution was relatively equal between the use of biodiesel in the blends under 25% compared to the use of diesel (B0.

  15. Optimization and simulation of low-temperature combustion and heat transfer in an Uhde carbonization furnace (United States)

    Liu, Jun; Zhang, Yongfa; Wang, Ying; Chen, Lei; Liu, Gaihuan


    The temperature distribution inside a low-temperature combustion chamber with circuited flame path during the low temperature pyrolysis of lignite was simulated using the computational fluid dynamics software FLUENT. The temperature distribution in the Uhde combustion chamber showed that the temperature is very non-uniform and could therefore not meet the requirements for industrial heat transfer. After optimizing the furnace, by adding a self-made gas-guide structure to the heat transfer section as well as adjusting the gas flow size in the flame path, the temperature distribution became uniform, and the average temperature (550-650 °C) became suitable for industrial low-temperature pyrolysis. The Realizable k-epsilon model, P-1 model, and the Non-premixed model were used to calculate the temperature distribution for the combustion of coke-oven gas and air inside the combustion chamber. Our simulation is consistent with our experimental results within an error range of 40-80 °C. The one-dimensional unsteady state heat conduction differential equation ρ nolimits_{coal} Cnolimits_{coal} partial T/partial t = partial /partial x(λ partial T/partial x) can be used to calculate the heat transfer process. Our results can serve as a first theoretical base and may enable technological advances with regard to lignite pyrolysis.

  16. Experimental investigations and CFD study of temperature distribution during oscillating combustion in a crucible furnace

    Directory of Open Access Journals (Sweden)

    J. Govardhan, G.V.S. Rao, J. Narasaiah


    Full Text Available As part of an investigation few experiments were conducted to study the enhanced heat transfer rate and increased furnace efficiency in a diesel fired crucible furnace with oscillating combustion. The results of experimental investigations of temperature distribution inside the crucible furnace during oscillating combustion are validated with the numerical simulation CFD code. At first pragmatic study of temperature distribution inside a furnace was carried out with conventional mode of combustion at certain conditions and later transient behavior similar to that is conducted with oscillating combustion mode with the same conditions. There found to be enhanced heat transfer rate, reduced processing time and increased furnace efficiency with visibly clean emissions during the oscillating combustion mode than the conventional combustion mode. In the present paper the temperatures inside the furnace at few designated points measured by suitable K type thermo-couples are compared with the CFD code. The geometric models were created in ANSYS and the configuration was an asymmetric one for computational reason. The experimental and numerical investigations produce similar acceptable results. The presented results show that the 3D transient model appeared to be an effective numerical tool for the simulation of the crucible furnace for melting processes.

  17. High-Speed Visualisation of Combustion in Modern Gasoline Engines (United States)

    Sauter, W.; Nauwerck, A.; Han, K.-M.; Pfeil, J.; Velji, A.; Spicher, U.


    Today research and development in the field of gasoline engines have to face a double challenge: on the one hand, fuel consumption has to be reduced, while on the other hand, ever more stringent emission standards have to be fulfilled. The development of engines with its complexity of in-cylinder processes requires modern development tools to exploit the full potential in order to reduce fuel consumption. Especially optical, non-intrusive measurement techniques will help to get a better understanding of the processes. With the presented high-speed visualisation system the electromagnetic radiation from combustion in the UV range is collected by an endoscope and transmitted to a visualisation system by 10, 000 optical fibres. The signal is projected to 1, 920 photomultipliers, which convert the optical into electric signals with a maximum temporal resolution of 200 kHz. This paper shows the systematic application of flame diagnostics in modern combustion systems. For this purpose, a single-cylinder SI engine has been modified for a spray guided combustion strategy as well as for HCCI. The characteristics of flame propagation in both combustion modes were recorded and correlated with thermodynamic analyses. In case of the spray guided GDI engine, high pressure fuel injection was applied and evaluated.

  18. High Temperature Piezoelectric Drill (United States)

    Bao, Xiaoqi; Scott, James; Boudreau, Kate; Bar-Cohen, Yoseph; Sherrit, Stewart; Badescu, Mircea; Shrout, Tom; Zhang, Shujun


    The current NASA Decadal mission planning effort has identified Venus as a significant scientific target for a surface in-situ sampling/analyzing mission. The Venus environment represents several extremes including high temperature (460 deg C), high pressure (9 MPa), and potentially corrosive (condensed sulfuric acid droplets that adhere to surfaces during entry) environments. This technology challenge requires new rock sampling tools for these extreme conditions. Piezoelectric materials can potentially operate over a wide temperature range. Single crystals, like LiNbO3, have a Curie temperature that is higher than 1000 deg C and the piezoelectric ceramics Bismuth Titanate higher than 600 deg C. A study of the feasibility of producing piezoelectric drills that can operate in the temperature range up to 500 deg C was conducted. The study includes the high temperature properties investigations of engineering materials and piezoelectric ceramics with different formulas and doping. The drilling performances of a prototype Ultrasonic/Sonic Drill/Corer (USDC) using high temperate piezoelectric ceramics and single crystal were tested at temperature up to 500 deg C. The detailed results of our study and a discussion of the future work on performance improvements are presented in this paper.

  19. Minimum secure speed of fully mechanized coal face based on critical temperature of coal spontaneous combustion

    Institute of Scientific and Technical Information of China (English)

    Wei LIU; Yue-Ping QIN; Yong-Jiang HAO; Tian-Zhu GUI; Jing-Yan JIA


    The critical temperature theory of spontaneous combustion of coal and the numerical simulation method are used to explore the minimum secure speed of fully mechanized coal face to prevent the spontaneous combustion in goaf.Combined with the actual situation of workface 31005 in a coal mine,the highest temperatures in goaf at different advancing speeds were obtained by the numerical simulation of spontaneous combustion in goaf,and then a power function equation between the highest temperature and the advancing speed was achieved by regression analysis.The advancing speed corresponding to the critical temperature value was taken as the minimum safe speed of workface based on the equation.Finally,the accuracy and reliability of the speed were verified by the actual advancing process of workface 31005.The results of this research show that the new judgment method of the minimum safety speed has a higher value to be applied in the field.

  20. Influence of increasing combustion temperature on the AMS 14C dating of modern crop phytoliths (United States)

    Yin, Jinhui; Yang, Xue; Zheng, Yonggang


    Several attempts have been made to directly date phytoliths, but most 14C results are not consistent with other independent chronologies. Due to the limited dataset, there is not a clear explanation for these discrepancies. Herein, we report the 14C ages of phytolith-occluded carbon (PhytOC) from contemporary rice and millet crops that were combusted at different temperatures to investigate the relationship between the combustion temperature and resulting 14C age. Our results show that the 14C age of PhytOC increases directly with combustion temperature (up to 1100°C) and results in age overestimations of hundreds of years. Considerably older ages are observed at higher temperatures, suggesting that it may be possible to distinguish between two fractions of organic carbon in phytoliths: labile and recalcitrant carbon. These findings challenge the assumption that PhytOC is homogeneous, an assumption made by those who have previously attempted to directly date phytoliths using 14C.

  1. Quantitative Thermochemical Measurements in High-Pressure Gaseous Combustion (United States)

    Kojima, Jun J.; Fischer, David G.


    We present our strategic experiment and thermochemical analyses on combustion flow using a subframe burst gating (SBG) Raman spectroscopy. This unconventional laser diagnostic technique has promising ability to enhance accuracy of the quantitative scalar measurements in a point-wise single-shot fashion. In the presentation, we briefly describe an experimental methodology that generates transferable calibration standard for the routine implementation of the diagnostics in hydrocarbon flames. The diagnostic technology was applied to simultaneous measurements of temperature and chemical species in a swirl-stabilized turbulent flame with gaseous methane fuel at elevated pressure (17 atm). Statistical analyses of the space-/time-resolved thermochemical data provide insights into the nature of the mixing process and it impact on the subsequent combustion process in the model combustor.

  2. Strangeness at high temperatures

    CERN Document Server

    Schmidt, Christian


    We use up to fourth order cumulants of net strangeness fluctuations and their correlations with net baryon number fluctuations to extract information on the strange meson and baryon contribution to the low temperature hadron resonance gas, the dissolution of strange hadronic states in the crossover region of the QCD transition and the quasi-particle nature of strange quark contributions to the high temperature quark-gluon plasma phase.

  3. Temperature Trends in Coal Char Combustion under Oxy-fuel Conditions for the Determination of Kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Iqbal, Samira [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hecht, Ethan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)


    Oxy-fuel combustion technology with carbon capture and storage could significantly reduce global CO2 emissions, a greenhouse gas. Implementation can be aided by computational fluid dynamics (CFD) simulations, which require an accurate understanding of coal particle kinetics as they go through combustion in a range of environments. To understand the kinetics of pulverized coal char combustion, a heated flow reactor was operated under a wide range of experimental conditions. We varied the environment for combustion by modifying the diluent gas, oxygen concentration, gas flow rate, and temperature of the reactor/reacting gases. Measurements of reacting particle temperatures were made for a sub-bituminous and bituminous coal char, in environments with CO2 or N2 as the diluent gas, with 12, 24, and 36 vol-% oxygen concentration, at 50, 80, 100, and 200 standard liters per minute flowing through the reactor, reactor temperatures of 1200, 1400 K, at pressures slightly above atmospheric. The data shows consistent increasing particle temperature with increased oxygen concentration, reactor temperature and higher particle temperatures for N2 diluent than CO2. We also see the effects of CO2 gasification when different ranks of coal are used, and how the reduction in the temperature due to the CO2 diluent is greater for the coal char that has higher reactivity. Quantitative measurements for temperature are not yet complete due to ongoing calibration of detection systems.

  4. Hydroxyapatite foam as a catalyst for formaldehyde combustion at room temperature. (United States)

    Xu, Jing; White, Tim; Li, Ping; He, Chongheng; Han, Yi-Fan


    The excellent performance of hydroxyapatite, a novel non-precious metal catalyst, for formaldehyde (HCHO) combustion at room temperature is reported. Temperature-programmed surface reaction results indicated that hydroxyl groups bonded with the channel Ca(2+) may be responsible for adsorption/activation of HCHO.

  5. Investigation of Bio-Diesel Fueled Engines under Low-Temperature Combustion Strategies

    Energy Technology Data Exchange (ETDEWEB)

    Chia-fon F. Lee; Alan C. Hansen


    In accordance with meeting DOE technical targets this research was aimed at developing and optimizing new fuel injection technologies and strategies for the combustion of clean burning renewable fuels in diesel engines. In addition a simultaneous minimum 20% improvement in fuel economy was targeted with the aid of this novel advanced combustion system. Biodiesel and other renewable fuels have unique properties that can be leveraged to reduce emissions and increase engine efficiency. This research is an investigation into the combustion characteristics of biodiesel and its impacts on the performance of a Low Temperature Combustion (LTC) engine, which is a novel engine configuration that incorporates technologies and strategies for simultaneously reducing NOx and particulate emissions while increasing engine efficiency. Generating fundamental knowledge about the properties of biodiesel and blends with petroleum-derived diesel and their impact on in-cylinder fuel atomization and combustion processes was an important initial step to being able to optimize fuel injection strategies as well as introduce new technologies. With the benefit of this knowledge experiments were performed on both optical and metal LTC engines in which combustion and emissions could be observed and measured under realistic conditions. With the aid these experiments and detailed combustion models strategies were identified and applied in order to improve fuel economy and simultaneously reduce emissions.

  6. Influence of intake air temperature on internal combustion engine operation (United States)

    Birtok-Băneasă, C.; Raţiu, S.; Hepuţ, T.


    This paper presents three methods for reduce thermal losses in the intake system with improvement of airflow and thermal protection. In the experiment are involved two patented devices conceived by the author and one PhD theme device: 1- Dynamic device for air transfer, 2-Integrated thermal deflector, and, 3-Advanced thermal protection. The tests were carried on different vehicle running in real traffic and in the Internal Combustion Engines Laboratory, within the specialization “Road vehicle” belonging to the Faculty of Engineering Hunedoara, component of Politehnica University of Timişoara. The results have been processed and compared whit the ones obtained without these devices.

  7. Low Temperature Combustion with Thermo-Chemical Recuperation to Maximize In-Use Engine Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Nigel N. Clark; Francisco Posada; Clinton Bedick; John Pratapas; Aleksandr Kozlov; Martin Linck; Dmitri Boulanov


    The key to overcome Low Temperature Combustion (LTC) load range limitations in reciprocating engines is based on proper control over the thermo-chemical properties of the in-cylinder charge. The studied alternative to achieve the required control of LTC is the use of two separate fuel streams to regulate timing and heat release at specific operational points, where the secondary fuel is a reformed product of the primary fuel in the tank. It is proposed in this report that the secondary fuel can be produced using exhaust heat and Thermo-Chemical Recuperation (TCR). TCR for reciprocating engines is a system that employs high efficiency recovery of sensible heat from engine exhaust gas and uses this energy to transform fuel composition. The recuperated sensible heat is returned to the engine as chemical energy. Chemical conversions are accomplished through catalytic and endothermic reactions in a specially designed reforming reactor. An equilibrium model developed by Gas Technology Institute (GTI) for heptane steam reforming was applied to estimate reformed fuel composition at different reforming temperatures. Laboratory results, at a steam/heptane mole ratio less than 2:1, confirm that low temperature reforming reactions, in the range of 550 K to 650 K, can produce 10-30% hydrogen (by volume, wet) in the product stream. Also, the effect of trading low mean effective pressure for displacement to achieve power output and energy efficiency has been explored by WVU. A zerodimensional model of LTC using heptane as fuel and a diesel Compression Ignition (CI) combustion model were employed to estimate pressure, temperature and total heat release as inputs for a mechanical and thermal loss model. The model results show that the total cooling burden on an LTC engine with lower power density and higher displacement was 14.3% lower than the diesel engine for the same amount of energy addition in the case of high load (43.57mg fuel/cycle). These preliminary modeling and

  8. Development of a generally valid model for calculating combustion chamber wall temperatures in internal combustion engines. Wall temperature model - final report; Entwicklung eines allgemeingueltigen Modells zur Berechnung der Brennraumwandtemperaturen bei Verbrennungsmotoren. Wandtemperaturmodell - Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Manz, P. [Volkswagen AG, Wolfsburg (Germany); Bargende, M.; Sargenti, R. [Stuttgart Univ. (DE). Inst. fuer Verbrennungsmotoren und Kraftfahrwesen (IVK)


    Starting from the literature research in the FVV-Project 722, the objective of this project was set on the development of a universally valid model for the calculation of wall temperatures in combustion engines. To reach this target, intensive research work was necessary to improve the simple zero-dimensional modeling of the in-cylinder processes. For this reason, a 2.3 l Otto-engine was fitted with thermocouples in a manner to permit accurate measurements of wall temperatures of both cylinder liner wall and cylinder head. To allow for the calculation of the thermodynamic boundary conditions of the gas phase using a pressure history analysis, the engine was indicated in all four cylinders. The parameters cooling liquid temperature and oil temperature were highly varied to examine their influence on the wall temperature. Simultaneous to the test bench measurements, the components for the numerical calculation of the wall temperature were programmed and analyzed. The modular description of the combustion chamber enables modelling of an arbitrary combustion engine. For the calculation of the influence of the gas phase heat, the working process analyses was performed by an external simulation program. The wall temperature model can be used as an independent tool as well as an integrated part of a coupled simulation. In a pressure history analysis the wall temperatures needed for the calculation of the wall heat can be determined precisely. In case of a coupling with a one-dimensional simulation tool, the wall temperature model is used for an iterative calculation of the wall temperatures and the wall heat fluxes. Due to the possibility of an arbitrary discretisation of the cylinder liner, this model can also be applied to a three-dimensional simulation for the initial calculation of the boundary conditions. (orig.)

  9. High temperature storage loop :

    Energy Technology Data Exchange (ETDEWEB)

    Gill, David Dennis; Kolb, William J.


    A three year plan for thermal energy storage (TES) research was created at Sandia National Laboratories in the spring of 2012. This plan included a strategic goal of providing test capability for Sandia and for the nation in which to evaluate high temperature storage (>650ÀC) technology. The plan was to scope, design, and build a flow loop that would be compatible with a multitude of high temperature heat transfer/storage fluids. The High Temperature Storage Loop (HTSL) would be reconfigurable so that it was useful for not only storage testing, but also for high temperature receiver testing and high efficiency power cycle testing as well. In that way, HTSL was part of a much larger strategy for Sandia to provide a research and testing platform that would be integral for the evaluation of individual technologies funded under the SunShot program. DOEs SunShot program seeks to reduce the price of solar technologies to 6/kWhr to be cost competitive with carbon-based fuels. The HTSL project sought to provide evaluation capability for these SunShot supported technologies. This report includes the scoping, design, and budgetary costing aspects of this effort

  10. High temperature storage loop :

    Energy Technology Data Exchange (ETDEWEB)

    Gill, David Dennis; Kolb, William J.


    A three year plan for thermal energy storage (TES) research was created at Sandia National Laboratories in the spring of 2012. This plan included a strategic goal of providing test capability for Sandia and for the nation in which to evaluate high temperature storage (>650ÀC) technology. The plan was to scope, design, and build a flow loop that would be compatible with a multitude of high temperature heat transfer/storage fluids. The High Temperature Storage Loop (HTSL) would be reconfigurable so that it was useful for not only storage testing, but also for high temperature receiver testing and high efficiency power cycle testing as well. In that way, HTSL was part of a much larger strategy for Sandia to provide a research and testing platform that would be integral for the evaluation of individual technologies funded under the SunShot program. DOEs SunShot program seeks to reduce the price of solar technologies to 6/kWhr to be cost competitive with carbon-based fuels. The HTSL project sought to provide evaluation capability for these SunShot supported technologies. This report includes the scoping, design, and budgetary costing aspects of this effort

  11. Lightweight Ultrahigh Temperature CMC-Lined C/C Combustion Chambers, Phase II Project (United States)

    National Aeronautics and Space Administration — NASA and DoD are seeking high-performance, lightweight liquid rocket combustion chambers with future performance goals that cannot be achieved using state-of-the-art...

  12. CARS Diagnostics of High Pressure Combustion. (United States)


    single pulse spontaneous Raman scattering. Furthermore. in this ture increases, the band broadens as the rotational population distri- sooting flame , laser... sooting flame with height above the burner. S cm- the fine structure shown in Fig. 2 is lost, but the spectra Recently, the feasibility of CARS for...under adverse conditions, measurements in a highly important in such devices as gas turbines, internal sooting flame will be described (Ref. 3). BOXCARS

  13. Desulfurization at high temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Panula-Nikkilae, E.; Kurkela, E.; Mojtahedi, W.


    Two high-temperature desulfurization methods, furnace injection and gasification-desulfurization are presented. In furnace injection, the efficiency of desulfurization is 50-60%, but this method is applied in energy production plants, where flue gas desulfurization cannot be used. Ca-based sorbents are used as desulfurization material. Factors affecting desulfurization and the effect of injection on the boiler and ash handling are discussed. In energy production based on gasification, very low sulfur emissions can be achieved by conventional low-temperature cleanup. However, high-temperature gas cleaning leads to higher efficiency and can be applied to smaller size classes. Ca-, Fe-, or Zn-based sorbents or mixed metals can be used for desulfurization. Most of the methods under development are based on the use of regenerative sorbents in a cleanup reactor located outside the gasifier. So far, only calcium compounds have been used for desulfurization inside the gasifier.

  14. Barium ferrite nanoparticles prepared by self-propagating low-temperature combustion method and its characterization

    Indian Academy of Sciences (India)

    P M Prithviraj Swamy; S Basavaraja; Vijayanand Havanoor; N V Srinivas Rao; R Nijagunappa; A Venkataraman


    The barium ferrite particles were prepared using a self-propagating low-temperature combustion method using polyethylene glycol (PEG) as a fuel. The process was investigated with simultaneous thermogravimetric-differential thermal analysis (TG–DTA). The crystalline structure, morphology and the magnetic properties of the barium ferrite particles were studied by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and SQUID susceptometer. The results show that the ignition temperature of PEG is lower compared with other combustion methods and gives nanocrystalline barium ferrite.

  15. [Real time diagnostics of instantaneous temperature of combustion and explosion process by modern spectroscopy]. (United States)

    Zhou, Xue-tie; Wang, Jun-de; Li, Yan; Liu, Da-bing


    The combustion temperature is one of the important parameters to express flame combustion and explosion characteristics. It will effectively guide the design and manufacture of new model explosives, industrial explosive materials, and weapons. The recent developments and applications of real time diagnostics of instantaneous temperature of combustion and explosion processes by modern spectroscopic methods, such as atomic absorption-emission method, atomic emission two-line spectroscopy, atomic emission multiline spectroscopy, molecular rotation-vibration spectroscopy, coherent anti-stokes Raman scattering (CARS) and plane laser-induced fluorescence (PLIF), were reviewed in this paper. The maximum time resolution of atomic absorption-emission method is 25 microseconds. The time resolution of atomic emission two-line spectroscopy can reach 0.1 microsecond. These two methods can completely suit the need of real time and instantaneous temperature diagnostics of violent explosion and flame combustion. Other methods will also provide new effective research methods for the processes and characteristics of combustion, flame and explosion.

  16. A high-order immersed boundary method for high-fidelity turbulent combustion simulations (United States)

    Minamoto, Yuki; Aoki, Kozo; Osawa, Kosuke; Shi, Tuo; Prodan, Alexandru; Tanahashi, Mamoru


    Direct numerical simulations (DNS) have played important roles in the research of turbulent combustion. With the recent advancement in high-performance computing, DNS of slightly complicated configurations such as V-, various jet and swirl flames have been performed, and such DNS will further our understanding on the physics of turbulent combustion. Since these configurations include walls that do not necessarily conform with the preferred mesh coordinates for combustion DNS, most of these simulations use presumed profiles for inflow/near-wall flows as boundary conditions. A high-order immersed boundary method suited for parallel computation is one way to improve these simulations. The present research implements such a boundary technique in a combustion DNS code, and simulations are performed to confirm its accuracy and performance. This work was partly supported by Council for Science, Technology and Innovation, Cross-ministerial Strategic Innovation Promotion Program (SIP), "Innovative Combustion Technology" (Funding agency: JST).

  17. Monitoring temperatures in coal conversion and combustion processes via ultrasound. [Ultrasonic thermometry proposal

    Energy Technology Data Exchange (ETDEWEB)

    Gopalsami, N.; Raptis, A. C.; Mulcahey, T. P.


    A study of the state-of-the-art of instrumentation for monitoring temperatures in coal conversion and combustion systems has been carried out. The instrumentation types studied include Thermocouples, Radiation Pyrometers, and Acoustical Thermometers. The capabilities and limitations of each type are reviewed. The study determined that ultrasonic thermometry has the potential of providing viable instrumentation. Consequently, a feasibility study of the ultrasonic thermometry was undertaken. A mathematical model of a pulse-echo ultrasonic temperature measurement system is developed using linear system theory. The mathematical model lends itself to the adaptation of generalized correlation techniques for the estimation of propagation delays. Computer simulations are made to test the efficacy of the signal processing techniques for noise-free as well as noisy signals. Based on the theoretical study, acoustic techniques to measure temperature in reactors and combustors are feasible. To experimentally verify the technique it is needed (a) to test the available sensor materials at high temperatures under erosive and corrosive conditions and (b) upon the selection of the appropriate sensor material to validate the proposed signal processing technique. The base for the applicability of this technique will be the frequency of operation, which will determine the length of the sensor and the noise background at the frequency of interest. It is, however, believed that the proposed technique will provide reliable estimates under the noise background.

  18. The Combustion Synthesis Process of Al-Ti-C System in an Elevated-temperature Al-melt

    Institute of Scientific and Technical Information of China (English)


    One of the main disadvantages of combustion synthesis of ceramic/metal composite materials is the relatively high level of porosity present in the products.To synthesize TiC/Al composites with a dense structure,this paper proposes a novel application of an elevated-temperature Al-melt to directly ignite and simultaneously infiltrate Al-Ti-C preform dipped in the melt.The emphasis was placed on the combustion synthesis process and microstructural evalution of the preform in the melt,by a liquid quenching test combined with the measurement of the temperature history of the dipped preform.The results show that the combustion synthesis process of the preform in the elevated-temperature melt involves a series of reactions,and that higher temperature of the melt is favourable for the formation of TiC.The synthesized TiC/Al composites exhibit a dense structure,which is attributed to the infiltration of the melt into the preform.

  19. Magneto-structural properties of Ni–Zn nanoferrites synthesized by the low-temperature auto-combustion method

    Indian Academy of Sciences (India)

    C O Ehi-Eromosele; B I Ita; E Ej Iweala; S A Adalikwu; P A L Anawe


    Using nickel, zinc and ferric nitrates, and glycine in a fuel-rich composition, Ni1–ZnFe2O4 nanoparticles were prepared by a simple low-temperature auto-combustion method without further sintering at high temperatures. The auto-combusted powders obtained were characterized by X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy, energy-dispersive X-ray (EDAX) analysis and vibrating scanning magnetometer measurements. XRD confirms the formation of pure nanocrystalline spinel phases with an average diameter of about 55 nm. Raman spectra show tetrahedral and octahedral sites in the structure of Ni1–ZnFe2O4 and also imply the doping of Zn2+ and displacement of Fe3+ ions from the tetrahedral site. EDAX showed that the samples were close to the nominal compositions. The magnetic measurement shows that the saturation magnetization and remanence magnetization decreases with the increase in the zinc content.

  20. Modeling of scalar dissipation rates in flamelet models for low temperature combustion engine simulations

    CERN Document Server

    Gupta, Saurabh; Pal, Pinaki; Im, Hong G


    The flamelet approach offers a viable framework for combustion modeling of homogeneous charge compression ignition (HCCI) engines under stratified mixture conditions. Scalar dissipation rate acts as a key parameter in flamelet-based combustion models which connects the physical mixing space to the reactive space. The aim of this paper is to gain fundamental insights into turbulent mixing in low temperature combustion (LTC) engines and investigate the modeling of scalar dissipation rate. Three direct numerical simulation (DNS) test cases of two-dimensional turbulent auto-ignition of a hydrogen-air mixture with different correlations of temperature and mixture fraction are considered, which are representative of different ignition regimes. The existing models of mean and conditional scalar dissipation rates, and probability density functions (PDFs) of mixture fraction and total enthalpy are a priori validated against the DNS data.

  1. Effects of ambient oxygen concentration on soot temperature and concentration for biodiesel and diesel spray combustion

    KAUST Repository

    Zhang, Ji


    Ambient oxygen concentration, a key variable directly related to exhaust gas recirculation (EGR) levels in diesel engines, plays a significant role in particulate matter (PM) and nitrogen oxides (NOx) emissions. The utilization of biodiesel in diesel engines has been investigated over the last decades for its renewable characteristics and lower emissions compared to diesel. In an earlier work, we demonstrated that the soot temperature and concentration of biodiesel were lower than diesel under regular diesel engine conditions without EGR. Soot concentration was quantified by a parameter called KL factor. As a continuous effort, this paper presents an experimental investigation of the ambient oxygen concentration on soot temperature and KL factor during biodiesel and diesel spray combustion. The experiment was implemented in a constant volume chamber system, where the ambient oxygen concentration varied from 21 to 10% and the ambient temperature was kept to 1,000 K. A high speed two-color pyrometry technique was used to measure transient soot temperature and the KL factor of the spray flame. The soot temperature of biodiesel is found to be lower than that of diesel under the same conditions, which follows the same trend from our previous results found when the ambient temperature changes to 21% oxygen conditions. A reduction in ambient oxygen concentration generally reduces the soot temperature for both fuels. However, this is a complicated effect on soot processes as the change of oxygen concentration greatly affects the balance between soot formation and oxidation. The KL factor is observed to be the highest at 12% O2 for diesel and 18% O2 for biodiesel, respectively. On the other hand, the 10% O2 condition shows the lowest KL factor for both fuels. These results can provide quantitative experimental evidences to optimize the ambient oxygen concentration for diesel engines using different fuels for better emissions characteristics. © 2014 American Society of

  2. Aluminum flame temperature measurements in solid propellant combustion. (United States)

    Parigger, Christian G; Woods, Alexander C; Surmick, David M; Donaldson, A B; Height, Jonathan L


    The temperature in an aluminized propellant is determined as a function of height and plume depth from diatomic AlO and thermal emission spectra. Higher in the plume, 305 and 508 mm from the burning surface, measured AlO emission spectra show an average temperature with 1σ errors of 2980 ± 80 K. Lower in the plume, 152 mm from the burning surface, an average AlO emission temperature of 2450 ± 100 K is inferred. The thermal emission analysis yields higher temperatures when using constant emissivity. Particle size effects along the plume are investigated using wavelength-dependent emissivity models.

  3. Combustion of coffee husks

    Energy Technology Data Exchange (ETDEWEB)

    Saenger, M.; Hartge, E.-U.; Werther, J. [Technical Univ. Hamburg-Harburg, Chemical Engineering 1, Hamburg (Germany); Ogada, T.; Siagi, Z. [Moi Univ., Dept. of Production Engineering, Eldoret (Kenya)


    Combustion mechanisms of two types of coffee husks have been studied using single particle combustion techniques as well as combustion in a pilot-scale fluidized bed facility (FBC), 150 mm in diameter and 9 m high. Through measurements of weight-loss and particle temperatures, the processes of drying, devolatilization and combustion of coffee husks were studied. Axial temperature profiles in the FBC were also measured during stationary combustion conditions to analyse the location of volatile release and combustion as a function of fuel feeding mode. Finally the problems of ash sintering were analysed. The results showed that devolatilization of coffee husks (65-72% volatile matter, raw mass) starts at a low temperature range of 170-200degC and takes place rapidly. During fuel feeding using a non water-cooled system, pyrolysis of the husks took place in the feeder tube leading to blockage and non-uniform fuel flow. Measurements of axial temperature profiles showed that during under-bed feeding, the bed and freeboard temperatures were more or less the same, whereas for over-bed feeding, freeboard temperatures were much higher, indicating significant combustion of the volatiles in the freeboard. A major problem observed during the combustion of coffee husks was ash sintering and bed agglomeration. This is due to the low melting temperature of the ash, which is attributed to the high contents of K{sub 2}O (36-38%) of the coffee husks. (Author)

  4. Large Eddy Simulation of High-Speed, Premixed Ethylene Combustion (United States)

    Ramesh, Kiran; Edwards, Jack R.; Chelliah, Harsha; Goyne, Christopher; McDaniel, James; Rockwell, Robert; Kirik, Justin; Cutler, Andrew; Danehy, Paul


    A large-eddy simulation / Reynolds-averaged Navier-Stokes (LES/RANS) methodology is used to simulate premixed ethylene-air combustion in a model scramjet designed for dual mode operation and equipped with a cavity for flameholding. A 22-species reduced mechanism for ethylene-air combustion is employed, and the calculations are performed on a mesh containing 93 million cells. Fuel plumes injected at the isolator entrance are processed by the isolator shock train, yielding a premixed fuel-air mixture at an equivalence ratio of 0.42 at the cavity entrance plane. A premixed flame is anchored within the cavity and propagates toward the opposite wall. Near complete combustion of ethylene is obtained. The combustor is highly dynamic, exhibiting a large-scale oscillation in global heat release and mass flow rate with a period of about 2.8 ms. Maximum heat release occurs when the flame front reaches its most downstream extent, as the flame surface area is larger. Minimum heat release is associated with flame propagation toward the cavity and occurs through a reduction in core flow velocity that is correlated with an upstream movement of the shock train. Reasonable agreement between simulation results and available wall pressure, particle image velocimetry, and OH-PLIF data is obtained, but it is not yet clear whether the system-level oscillations seen in the calculations are actually present in the experiment.

  5. Evaluating metal-organic frameworks for post-combustion carbon dioxide capture via temperature swing adsorption

    NARCIS (Netherlands)

    Mason, J.A.; Sumida, K.; Herm, Z.R.; Krishna, R.; Long, J.R.


    Two representative metal-organic frameworks, Zn4O(BTB)2 (BTB3− = 1,3,5-benzenetribenzoate; MOF-177) and Mg2(dobdc) (dobdc4− = 1,4-dioxido-2,5-benzenedicarboxylate; Mg-MOF-74, CPO-27-Mg), are evaluated in detail for their potential use in post-combustion CO2 capture via temperature swing adsorption

  6. Modeling the temperature in coal char particle during fluidized bed combustion

    Energy Technology Data Exchange (ETDEWEB)

    Vasilije Manovic; Mirko Komatina; Simeon Oka [University of Belgrade, Belgrade (Serbia)


    The temperatures of a coal char particle in hot bubbling fluidized bed (FB) were analyzed by a model of combustion. The unsteady model includes phenomena of heat and mass transfer through a porous char particle, as well as heterogeneous reaction at the interior char surface and homogeneous reaction in the pores. The parametric analysis of the model has shown that above 550{sup o}C combustion occurs under the regime limited by diffusion. The experimental results of temperature measurements by thermocouple in the particle center during FB combustion at temperatures in the range 590-710{sup o}C were compared with the model predictions. Two coals of different rank were used: lignite and brown coal, with particle size in the range 5-10 mm. The comparisons have shown that the model can adequately predict the histories of temperatures in char particles during combustion in FB. In the first order, the model predicts the influence of the particle size, coal rank (via porosity), and oxygen concentration in its surroundings. 53 refs., 6 figs., 2 tabs.

  7. Oxy-fuel combustion of millimeter-sized coal char: Particle temperatures and NO formation

    DEFF Research Database (Denmark)

    Brix, Jacob; Navascués, Leyre Gómez; Nielsen, Joachim Bachmann;


    In this work, differences in particle temperature and NO yield during char oxidation in O2/N2 and O2/CO2 atmospheres, respectively, have been examined. A laboratory scale fixed bed reactor, operated isothermally at 1073 K, was used for combustion of millimeter-sized lignite and bituminous coal ch...

  8. High temperature superconducting compounds (United States)

    Goldman, Allen M.


    The major accomplishment of this grant has been to develop techniques for the in situ preparation of high-Tc superconducting films involving the use of ozone-assisted molecular beam epitaxy. The techniques are generalizable to the growth of trilayer and multilayer structures. Films of both the DyBa2Cu3O(7-x) and YBa2Cu3O(7-x) compounds as well as the La(2-x)Sr(x)CuO4 compound have been grown on the usual substrates, SrTiO3, YSZ, MgO, and LaAlO3, as well as on Si substrates without any buffer layer. A bolometer has been fabricated on a thermally isolated SiN substrate coated with YSZ, an effort carried out in collaboration with Honeywell Inc. The deposition process facilitates the fabrication of very thin and transparent films creating new opportunities for the study of superconductor-insulator transitions and the investigation of photo-doping with carriers of high temperature superconductors. In addition to a thin film technology, a patterning technology has been developed. Trilayer structures have been developed for FET devices and tunneling junctions. Other work includes the measurement of the magnetic properties of bulk single crystal high temperature superconductors, and in collaboration with Argonne National Laboratory, measurement of electric transport properties of T1-based high-Tc films.

  9. Numerical study of laminar nonpremixed methane flames in coflow jets: Autoignited lifted flames with tribrachial edges and MILD combustion at elevated temperatures

    KAUST Repository

    M. Al-Noman, Saeed


    Autoignition characteristics of laminar nonpremixed methane jet flames in high-temperature coflow air are studied numerically. Several flame configurations are investigated by varying the initial temperature and fuel mole fraction. At a relatively low initial temperature, a non-autoignited nozzle-attached flame is simulated at relatively low jet velocity. When the initial temperature is higher than that required for autoignition, two regimes are investigated: an autoignited lifted flame with tribrachial edge structure and an autoignited lifted flame with Mild combustion. The autoignited lifted flame with tribrachial edge exhibited three branches: lean and rich premixed flame wings and a trailing diffusion flame. Characteristics of kinetic structure for autoignited lifted flames are discussed based on the kinetic structures of homogeneous autoignition and flame propagation of stoichiometric mixture. Results showed that a transition from autoignition to flame propagation modes occurs for reasonably stoichiometric mixtures. The autoignited lifted flame with Mild combustion occurs when methane fuel is highly diluted with nitrogen. The kinetic structure analysis shows that the characteristics of Mild combustion can be treated as an autoignited lean premixed lifted flame. Transition behavior from Mild combustion to nozzle-attached flame was investigated by increasing the fuel mole fraction. As the maximum flame temperature increases with decreasing liftoff height, the kinetic structure showed a transition behavior from autoignition to flame propagation of a lean premixed flame. © 2016 The Combustion Institute

  10. High Temperature Piezoelectric Drill (United States)

    Bao, Xiaoqi; Bar-Cohen, Yoseph; Sherrit, Stewart; Badescu, Mircea; Shrout, Tom


    Venus is one of the planets in the solar systems that are considered for potential future exploration missions. It has extreme environment where the average temperature is 460 deg C and its ambient pressure is about 90 atm. Since the existing actuation technology cannot maintain functionality under the harsh conditions of Venus, it is a challenge to perform sampling and other tasks that require the use of moving parts. Specifically, the currently available electromagnetic actuators are limited in their ability to produce sufficiently high stroke, torque, or force. In contrast, advances in developing electro-mechanical materials (such as piezoelectric and electrostrictive) have enabled potential actuation capabilities that can be used to support such missions. Taking advantage of these materials, we developed a piezoelectric actuated drill that operates at the temperature range up to 500 deg C and the mechanism is based on the Ultrasonic/Sonic Drill/Corer (USDC) configuration. The detailed results of our study are presented in this paper

  11. High temperature materials and mechanisms

    CERN Document Server


    The use of high-temperature materials in current and future applications, including silicone materials for handling hot foods and metal alloys for developing high-speed aircraft and spacecraft systems, has generated a growing interest in high-temperature technologies. High Temperature Materials and Mechanisms explores a broad range of issues related to high-temperature materials and mechanisms that operate in harsh conditions. While some applications involve the use of materials at high temperatures, others require materials processed at high temperatures for use at room temperature. High-temperature materials must also be resistant to related causes of damage, such as oxidation and corrosion, which are accelerated with increased temperatures. This book examines high-temperature materials and mechanisms from many angles. It covers the topics of processes, materials characterization methods, and the nondestructive evaluation and health monitoring of high-temperature materials and structures. It describes the ...

  12. Effect of wall temperature and random distribution of micro organic dust particles on their combustion parameters

    Institute of Scientific and Technical Information of China (English)

    M. Bidabadi; E. Yaghoubi; M. Harati; Gh. Shahryari; B. Akhoondian


    The effect of wall temperature on the characteristics of random combustion of micro organic particles with recirculation was investigated. The effect of recirculating in micro-combustors is noticeable, hence it is necessary to present a model to describe the combustion process in these technologies. Recirculation phenomenon is evaluated by entering the exhausted heat from the post flam zone into the preheat zone. In this work, for modeling of random situation at the flame front, the source term in the equation of energy was modeled considering random situation for volatizing of particles in preheat zone. The comparison of obtained results from the proposed model by experimental data regards that the random model has a better agreement with experimental data than non-random model. Also, according to the results obtained by this model, wall temperature affects the amount of heat recirculation directly and higher values of wall temperature will lead to higher amounts of burning velocity and flame temperature.

  13. High temperature superconductors

    CERN Document Server

    Paranthaman, Parans


    This essential reference provides the most comprehensive presentation of the state of the art in the field of high temperature superconductors. This growing field of research and applications is currently being supported by numerous governmental and industrial initiatives in the United States, Asia and Europe to overcome grid energy distribution issues. The technology is particularly intended for densely populated areas. It is now being commercialized for power-delivery devices, such as power transmission lines and cables, motors and generators. Applications in electric utilities include current limiters, long transmission lines and energy-storage devices that will help industries avoid dips in electric power.

  14. Investigations into High Temperature Components and Packaging

    Energy Technology Data Exchange (ETDEWEB)

    Marlino, L.D.; Seiber, L.E.; Scudiere, M.B.; M.S. Chinthavali, M.S.; McCluskey, F.P.


    The purpose of this report is to document the work that was performed at the Oak Ridge National Laboratory (ORNL) in support of the development of high temperature power electronics and components with monies remaining from the Semikron High Temperature Inverter Project managed by the National Energy Technology Laboratory (NETL). High temperature electronic components are needed to allow inverters to operate in more extreme operating conditions as required in advanced traction drive applications. The trend to try to eliminate secondary cooling loops and utilize the internal combustion (IC) cooling system, which operates with approximately 105 C water/ethylene glycol coolant at the output of the radiator, is necessary to further reduce vehicle costs and weight. The activity documented in this report includes development and testing of high temperature components, activities in support of high temperature testing, an assessment of several component packaging methods, and how elevated operating temperatures would impact their reliability. This report is organized with testing of new high temperature capacitors in Section 2 and testing of new 150 C junction temperature trench insulated gate bipolar transistor (IGBTs) in Section 3. Section 4 addresses some operational OPAL-GT information, which was necessary for developing module level tests. Section 5 summarizes calibration of equipment needed for the high temperature testing. Section 6 details some additional work that was funded on silicon carbide (SiC) device testing for high temperature use, and Section 7 is the complete text of a report funded from this effort summarizing packaging methods and their reliability issues for use in high temperature power electronics. Components were tested to evaluate the performance characteristics of the component at different operating temperatures. The temperature of the component is determined by the ambient temperature (i.e., temperature surrounding the device) plus the

  15. Validation of a Grid Independent Spray Model and Fuel Chemistry Mechanism for Low Temperature Diesel Combustion

    Directory of Open Access Journals (Sweden)

    Takeshi Yoshikawa


    Full Text Available Spray and combustion submodels used in a Computational Fluid Dynamics (CFD code, KIVACHEMKIN, were validated for Low Temperature Combustion (LTC in a diesel engine by comparing measured and model predicted fuel spray penetrations, and in-cylinder distributions of OH and soot. The conditions considered were long ignition delay, early and late fuel injection cases. It was found that use of a grid independent spray model, called the GASJET model, with an improved n-heptane chemistry mechanism can well predict the heat release rate, not only of the main combustion stage, but also of the cool flame stage. Additionally, the GASJET model appropriately predicts the distributions of OH and soot in the cylinder even when the resolution of the computational mesh is decreased by half, which significantly reduces the required computational time.

  16. A Review on Homogeneous Charge Compression Ignition and Low Temperature Combustion by Optical Diagnostics

    Directory of Open Access Journals (Sweden)

    Chao Jin


    Full Text Available Optical diagnostics is an effective method to understand the physical and chemical reaction processes in homogeneous charge compression ignition (HCCI and low temperature combustion (LTC modes. Based on optical diagnostics, the true process on mixing, combustion, and emissions can be seen directly. In this paper, the mixing process by port-injection and direct-injection are reviewed firstly. Then, the combustion chemical reaction mechanism is reviewed based on chemiluminescence, natural-luminosity, and laser diagnostics. After, the evolution of pollutant emissions measured by different laser diagnostic methods is reviewed and the measured species including NO, soot, UHC, and CO. Finally, a summary and the future directions on HCCI and LTC used optical diagnostics are presented.

  17. Research of power fuel low-temperature vortex combustion in industrial boiler based on numerical modelling

    Directory of Open Access Journals (Sweden)

    Orlova K.Y.


    Full Text Available The goal of the presented research is to perform numerical modelling of fuel low-temperature vortex combustion in once-through industrial steam boiler. Full size and scaled-down furnace model created with FIRE 3D software and was used for the research. All geometrical features were observed. The baseline information for the low-temperature vortex furnace process are velocity and temperature of low, upper and burner blast, air-fuel ratio, fuel consumption, coal dust size range. The obtained results are: temperature and velocity three dimensional fields, furnace gases and solid fuel ash particles concentration.

  18. Experimental determination of the retention time of reduced temperature of gas-vapor mixture in trace of water droplets moving in counterflow of combustion products (United States)

    Volkov, R. S.; Kuznetsov, G. V.; Strizhak, P. A.


    We have experimentally studied temporal variation of the temperature of gas-vapor mixture in the trace of water droplets moving in the counterflow of high-temperature combustion products. The initial gas temperature was within 500-950 K. The water droplet radius in the aerosol flow varied from 40 to 400 μm. The motion of water droplets in the counterflow of combustion products in a 1-m-high hollow quartz cylinder with an internal diameter of 20 cm was visualized by optical flow imaging techniques (interferometric particle imaging, shadow photography, particle tracking velocimetry, and particle image velocimetry) with the aid of a cross-correlation complex setup. The scale of temperature decrease in the mixture of combustion products and water droplets was determined for a pulsed (within 1 s) and continuous supply of aerosol with various droplet sizes. Retention times of reduced temperature (relative to the initial level) in trace of water droplets (aerosol temperature trace) are determined. A hypothesis concerning factors responsible for the variation of temperature in the trace of droplets moving in the counterflow of combustion products is experimentally verified.

  19. High Temperature Aquifer Storage (United States)

    Ueckert, Martina; Niessner, Reinhard; Baumann, Thomas


    Combined heat and power generation (CHP) is highly efficient because excess heat is used for heating and/or process energy. However, the demand of heat energy varies considerably throughout the year while the demand for electrical energy is rather constant. It seems economically and ecologically highly beneficial for municipalities and large power consumers such as manufacturing plants to store excess heat in groundwater aquifers and to recuperate this energy at times of higher demand. Within the project High Temperature Aquifer Storage, scientists investigate storage and recuperation of excess heat energy into the bavarian Malm aquifer. Apart from high transmissivity and favorable pressure gradients, the hydrochemical conditions are crucial for long-term operation. An enormous technical challenge is the disruption of the carbonate equilibrium - modeling results indicated a carbonate precipitation of 10 - 50 kg/d in the heat exchangers. The test included five injection pulses of hot water (60 °C up to 110 °C) and four tracer pulses, each consisting of a reactive and a conservative fluorescent dye, into a depth of about 300 m b.s.l. resp. 470 m b.s.l. Injection and production rates were 15 L/s. To achieve the desired water temperatures, about 4 TJ of heat energy were necessary. Electrical conductivity, pH and temperature were recorded at a bypass where also samples were taken. A laboratory container at the drilling site was equipped for analysing the concentration of the dyes and the major cations at sampling intervals of down to 15 minutes. Additional water samples were taken and analysed in the laboratory. The disassembled heat exchanger prooved that precipitation was successfully prevented by adding CO2 to the water before heating. Nevertheless, hydrochemical data proved both, dissolution and precipitation processes in the aquifer. This was also suggested by the hydrochemical modelling with PhreeqC and is traced back to mixture dissolution and changing

  20. High temperature interface superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Gozar, A., E-mail: [Yale University, New Haven, CT 06511 (United States); Bozovic, I. [Yale University, New Haven, CT 06511 (United States); Brookhaven National Laboratory, Upton, NY 11973 (United States)


    Highlight: • This review article covers the topic of high temperature interface superconductivity. • New materials and techniques used for achieving interface superconductivity are discussed. • We emphasize the role played by the differences in structure and electronic properties at the interface with respect to the bulk of the constituents. - Abstract: High-T{sub c} superconductivity at interfaces has a history of more than a couple of decades. In this review we focus our attention on copper-oxide based heterostructures and multi-layers. We first discuss the technique, atomic layer-by-layer molecular beam epitaxy (ALL-MBE) engineering, that enabled High-T{sub c} Interface Superconductivity (HT-IS), and the challenges associated with the realization of high quality interfaces. Then we turn our attention to the experiments which shed light on the structure and properties of interfacial layers, allowing comparison to those of single-phase films and bulk crystals. Both ‘passive’ hetero-structures as well as surface-induced effects by external gating are discussed. We conclude by comparing HT-IS in cuprates and in other classes of materials, especially Fe-based superconductors, and by examining the grand challenges currently laying ahead for the field.

  1. High Temperature Acoustic Noise Reduction Materials Project (United States)

    National Aeronautics and Space Administration — The proposed innovation is to use combustion synthesis techniques to manufacture ceramic-based acoustic liners capable of withstanding temperatures up to 2500?C....

  2. Fuel Flexible Combustion Systems for High-Efficiency Utilization of Opportunity Fuels in Gas Turbines

    Energy Technology Data Exchange (ETDEWEB)

    Venkatesan, Krishna


    The purpose of this program was to develop low-emissions, efficient fuel-flexible combustion technology which enables operation of a given gas turbine on a wider range of opportunity fuels that lie outside of current natural gas-centered fuel specifications. The program encompasses a selection of important, representative fuels of opportunity for gas turbines with widely varying fundamental properties of combustion. The research program covers conceptual and detailed combustor design, fabrication, and testing of retrofitable and/or novel fuel-flexible gas turbine combustor hardware, specifically advanced fuel nozzle technology, at full-scale gas turbine combustor conditions. This project was performed over the period of October 2008 through September 2011 under Cooperative Agreement DE-FC26-08NT05868 for the U.S. Department of Energy/National Energy Technology Laboratory (USDOE/NETL) entitled "Fuel Flexible Combustion Systems for High-Efficiency Utilization of Opportunity Fuels in Gas Turbines". The overall objective of this program was met with great success. GE was able to successfully demonstrate the operability of two fuel-flexible combustion nozzles over a wide range of opportunity fuels at heavy-duty gas turbine conditions while meeting emissions goals. The GE MS6000B ("6B") gas turbine engine was chosen as the target platform for new fuel-flexible premixer development. Comprehensive conceptual design and analysis of new fuel-flexible premixing nozzles were undertaken. Gas turbine cycle models and detailed flow network models of the combustor provide the premixer conditions (temperature, pressure, pressure drops, velocities, and air flow splits) and illustrate the impact of widely varying fuel flow rates on the combustor. Detailed chemical kinetic mechanisms were employed to compare some fundamental combustion characteristics of the target fuels, including flame speeds and lean blow-out behavior. Perfectly premixed combustion experiments were conducted to

  3. Statistical model for combustion of high-metal magnesium-based hydro-reactive fuel

    Institute of Scientific and Technical Information of China (English)

    Hu Jian-Xin; Han Chao; Xia Zhi-Xun; Huang Li-Ya; Huang Xu


    We investigate experimentally and analytically the combustion behavior of a high-metal magnesium-based hydro-reactive fuel under high temperature gaseous atmosphere.The fuel studied in this paper contains 73% magnesium powders.An experimental system is designed and experimeuts are carried out in both argon and water vapor atmospheres.It is found that the burning surface temperature of the fuel is higher in water vapor than that in argon and both of them are higher than the melting point of magnesium,which indicates the molten state of magnesium particles in the burning surface of the fuel.Based on physical considerations and experimental results,a mathematical one-dimensional model is formulated to describe the combustion behavior of the high-metal magnesium-based hydro-reactive fuel.The model enables the evaluation of the burning surface temperature,the burning rate and the flame standoff distance each as a function of chamber pressure and water vapor concentration.The results predicted by the model show that the burning rate and the surface temperature increase when the chamber pressure and the water vapor concentration increase,which are in agreement with the observed experimental trends.

  4. Combustion Mode Design with High Efficiency and Low Emissions Controlled by Mixtures Stratification and Fuel Reactivity

    Directory of Open Access Journals (Sweden)

    Hu eWang


    Full Text Available This paper presents a review on the combustion mode design with high efficiency and low emissions controlled by fuel reactivity and mixture stratification that have been conducted in the authors’ group, including the charge reactivity controlled homogeneous charge compression ignition (HCCI combustion, stratification controlled premixed charge compression ignition (PCCI combustion, and dual-fuel combustion concepts controlled by both fuel reactivity and mixture stratification. The review starts with the charge reactivity controlled HCCI combustion, and the works on HCCI fuelled with both high cetane number fuels, such as DME and n-heptane, and high octane number fuels, such as methanol, natural gas, gasoline and mixtures of gasoline/alcohols, are reviewed and discussed. Since single fuel cannot meet the reactivity requirements under different loads to control the combustion process, the studies related to concentration stratification and dual-fuel charge reactivity controlled HCCI combustion are then presented, which have been shown to have the potential to achieve effective combustion control. The efforts of using both mixture and thermal stratifications to achieve the auto-ignition and combustion control are also discussed. Thereafter, both charge reactivity and mixture stratification are then applied to control the combustion process. The potential and capability of thermal-atmosphere controlled compound combustion mode and dual-fuel reactivity controlled compression ignition (RCCI/highly premixed charge combustion (HPCC mode to achieve clean and high efficiency combustion are then presented and discussed. Based on these results and discussions, combustion mode design with high efficiency and low emissions controlled by fuel reactivity and mixtures stratification in the whole operating range is proposed.

  5. Low temperature complete combustion of dilute propane over Mn-doped ZrO2 (cubic) catalysts

    Indian Academy of Sciences (India)

    Vasant R Choudhary; Subhabrata Banerjee; Suryakant G Pataskar


    Combustion of dilute propane (0.9 mol %) over Mn-doped ZrO2 catalysts prepared using different precipitating agents (viz. TMAOH, TEAOH, TPAOH, TBAOH and NH4OH), having different Mn/Zr ratios (0.05 - 0.67) and calcined at different temperatures (500-800°C), has been thoroughly investigated at different temperatures (300-500°C) and space velocities (25,000-100,000 cm3 g-1 h-1) for controlling propane emissions from LPG-fuelled vehicles. Mn-doped ZrO2 catalyst shows high propane combustion activity, particularly when its ZrO2 is in the cubic form, when its Mn/Zr ratio is close to 0.2 and when it is prepared using TMAOH as a precipitating agent and calcined at 500-600°C. Pulse reaction of propane in the absence of free-O2 over Mn-doped ZrO2 (cubic) and Mn-impregnated ZrO2 (monoclinic) catalysts has also been investigated for studying the relative reactivity and mobility of the lattice oxygen of the two catalysts. Both reactivity and mobility of the lattice oxygen of Mn-doped ZrO2 are found to be much higher than that of Mnimpregnated ZrO2. Propane combustion over Mn-doped ZrO2 catalyst involves a redox mechanism.

  6. High temperature interfacial superconductivity (United States)

    Bozovic, Ivan [Mount Sinai, NY; Logvenov, Gennady [Port Jefferson Station, NY; Gozar, Adrian Mihai [Port Jefferson, NY


    High-temperature superconductivity confined to nanometer-scale interfaces has been a long standing goal because of potential applications in electronic devices. The spontaneous formation of a superconducting interface in bilayers consisting of an insulator (La.sub.2CuO.sub.4) and a metal (La.sub.1-xSr.sub.xCuO.sub.4), neither of which is superconducting per se, is described. Depending upon the layering sequence of the bilayers, T.sub.c may be either .about.15 K or .about.30 K. This highly robust phenomenon is confined to within 2-3 nm around the interface. After exposing the bilayer to ozone, T.sub.c exceeds 50 K and this enhanced superconductivity is also shown to originate from a 1 to 2 unit cell thick interfacial layer. The results demonstrate that engineering artificial heterostructures provides a novel, unconventional way to fabricate stable, quasi two-dimensional high T.sub.c phases and to significantly enhance superconducting properties in other superconductors. The superconducting interface may be implemented, for example, in SIS tunnel junctions or a SuFET.

  7. Characteristics of flame spread over the surface of charring solid combustibles at high altitude

    Institute of Scientific and Technical Information of China (English)

    LI Jie; JI Jie; ZHANG Ying; SUN JinHua


    To explore the characteristics of flame spread over the surface of charring solid combustibles at high altitude, the whitewood with uniform texture was chosen to conduct a series of experiments in Lhasa and Hefei, with altitude of 3658 m and 50 m respectively. Several parameters, including the flame height, flame spread rate, flame temperature, surface temperature, were measured on samples with different width and inclinations. A quantitative analysis of flame spread characteristics over sample surface at high altitude was performed. Results showed that, in the environment of lower pressure and oxygen concentration at high altitude, the flame height and flame spread rate over sample surface decreased, but the flame temperature increased slightly. However, with increasing of sample width, the relative difference between the flame spread rates at different altitudes decreased.

  8. Research on Measurements for Temperature and Stress of Pistons in Internal Combustion Engine

    Institute of Scientific and Technical Information of China (English)

    DONG Xiao-rui; TAN Jian-song


    In both numerical simulation and experimental research for the piston of internal combustion engine, the verification foundations are always insufficient. The reason is the measurements for its transient temperature and stress under actual operation conditions are very difficult. A multi-channel measurement-storage technology is used in the engine bench experiment to measure the piston temperature and stress in real time. The temperature and stress changes in the engine operation process are obtained. They provide reliable instructive criteria for numerical analysis and experiment of the piston working state.


    Institute of Scientific and Technical Information of China (English)

    Xin-ting Zhang; Lung-an Ying


    We study the dependence of qualitative behavior of the numerical solutions (obtained by a projective and upwind finite difference scheme) on the ignition temperature for a combustion model problem with general initial condition. Convergence to weak solution is proved under the Courant-Friedrichs-Lewy condition. Some condition on the ignition temperature is given to guarantee the solution containing a strong detonation wave or a weak detonation wave. Finally, we give some numerical examples which show that a strong detonation wave can be transformed to a weak detonation wave under some well-chosen ignition temperature.

  10. Thermo-Mechanical Characterization of Silicon Carbide-Silicon Carbide Composites at Elevated Temperatures Using a Unique Combustion Facility (United States)



  11. Fast pyrolysis of biomass at high temperatures

    DEFF Research Database (Denmark)

    Trubetskaya, Anna

    This Ph.D. thesis describes experimental and modeling investigations of fast high temperature pyrolysis of biomass. Suspension firing of biomass is widely used for power generation and has been considered as an important step in reduction of greenhouse gas emissions by using less fossil fuels. Fast...... pyrolysis at high temperatures plays a significant role in the overall combustion process since the biomass type, the reaction kinetics and heat transfer rates during pyrolysis influence the volatile gas release. The solid residue yield and its properties in suspension firing, including particle size...... and shape, composition, reactivity and burnout depend significantly on the operating conditions of the fast pyrolysis. Biomass fast pyrolysis experiments were performed in a laboratory-scale wire mesh reactor and bench scale atmospheric pressure drop tube / entrained flow reactors with the aim...

  12. High Thermal Conductivity NARloy-Z-Diamond Composite Combustion Chamber Liner For Advanced Rocket Engines (United States)

    Bhat, Biliyar N.; Ellis, David; Singh, Jogender


    Advanced high thermal conductivity materials research conducted at NASA Marshall Space Flight Center (MSFC) with state of the art combustion chamber liner material NARloy-Z showed that its thermal conductivity can be increased significantly by adding diamond particles and sintering it at high temperatures. For instance, NARloy-Z containing 40 vol. percent diamond particles, sintered at 975C to full density by using the Field assisted Sintering Technology (FAST) showed 69 percent higher thermal conductivity than baseline NARloy-Z. Furthermore, NARloy-Z-40vol. percent D is 30 percent lighter than NARloy-Z and hence the density normalized thermal conductivity is 140 percent better. These attributes will improve the performance and life of the advanced rocket engines significantly. By one estimate, increased thermal conductivity will directly translate into increased turbopump power up to 2X and increased chamber pressure for improved thrust and ISP, resulting in an expected 20 percent improvement in engine performance. Follow on research is now being conducted to demonstrate the benefits of this high thermal conductivity NARloy-Z-D composite for combustion chamber liner applications in advanced rocket engines. The work consists of a) Optimizing the chemistry and heat treatment for NARloy-Z-D composite, b) Developing design properties (thermal and mechanical) for the optimized NARloy-Z-D, c) Fabrication of net shape subscale combustion chamber liner, and d) Hot fire testing of the liner for performance. FAST is used for consolidating and sintering NARlo-Z-D. The subscale cylindrical liner with built in channels for coolant flow is also fabricated near net shape using the FAST process. The liner will be assembled into a test rig and hot fire tested in the MSFC test facility to determine performance. This paper describes the development of this novel high thermal conductivity NARloy-Z-D composite material, and the advanced net shape technology to fabricate the combustion


    Directory of Open Access Journals (Sweden)

    E. D. Chertov


    Full Text Available The work is devoted to the creation of a new type of mixer to produce homogeneous mixtures of dissimilar materials applied to recycling of housing and communal services waste. The article describes the design of a dual-chamber device of the original high-temperature vacuum mixer, there investigated the processes occurring in the chambers of such devices. The results of theoretical and experimental research of the process of mixing recycled polyethylene with a mixture of "grinded food waste – Eco wool” are presented. The problem of the optimum choice of bending the curvilinear blades in the working volume of the seal, which is achieved by setting their profile in the form of involute arc of several circles of different radii, is examined . The dependences, allowing to define the limits of the changes of the main mode parameters the angular velocity of rotation of the working body of the mixer using two ways of setting the profile of the curvilinear blade mixer are obtained. Represented design of the mixer is proposed to use for a wide range of tasks associated with the mixing of the components with a strongly pronounced difference of physic al chemical properties and, in particular, in the production of composites out of housing and communal services waste.

  14. Emission and combustion characteristics of multiple stage diesel combustion; Nidan nensho ni yoru diesel kikan no nensho to haishutsubutsu tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Hashizume, T.; Miyamoto, T.; Tsujimura, K. [New A.C.E. Institute Co. Ltd., Tokyo (Japan); Kobayashi, S.; Shimizu, K. [Japan Automobile Research Institute, Tsukuba (Japan)


    A new concept of multiple stage diesel combustion was studied by means of engine test, combustion observation and numerical simulation, in order to reduce NOx emissions at high load conditions. With this concept, the premixed combustion occurs under the fuel lean conditions and the diffusion combustion occurs under the high temperature conditions. As seen in the result of combustion observation, a first stage combustion occurs with no luminous flame. A second stage combustion occurs with a luminous flame after very short ignition delay period. However the luminous flame is disappeared immediately. Because cylinder temperature is high, and hence soot oxidizes immediately. 5 refs., 11 figs., 1 tab.

  15. A high-pressure plug flow reactor for combustion chemistry investigations (United States)

    Lu, Zhewen; Cochet, Julien; Leplat, Nicolas; Yang, Yi; Brear, Michael J.


    A plug flow reactor (PFR) is built for investigating the oxidation chemistry of fuels at up to 50 bar and 1000 K. These conditions include those corresponding to the low temperature combustion (i.e. the autoignition) that commonly occurs in internal combustion engines. Turbulent flow that approximates ideal, plug flow conditions is established in a quartz tube reactor. The reacting mixture is highly diluted by excess air to reduce the reaction rates for kinetic investigations. A novel mixer design is used to achieve fast mixing of the preheated air and fuel vapour at the reactor entrance, reducing the issue of reaction initialization in kinetic modelling. A water-cooled probe moves along the reactor extracting gases for further analysis. Measurement of the sampled gas temperature uses an extended form of a three-thermocouple method that corrects for radiative heat losses from the thermocouples to the enclosed PFR environment. Investigation of the PFR’s operation is first conducted using non-reacting flows, and then with isooctane oxidation at 900 K and 10 bar. Mixing of the non-reacting temperature and species fields is shown to be rapid. The measured fuel consumption and CO formation are then closely reproduced by kinetic modelling using an extensively validated iso-octane mechanism from the literature and the corrected gas temperature. Together, these results demonstrate the PFR’s utility for chemical kinetic investigations.

  16. Advances in high temperature chemistry

    CERN Document Server

    Eyring, Leroy


    Advances in High Temperature Chemistry, Volume 2 covers the advances in the knowledge of the high temperature behavior of materials and the complex and unfamiliar characteristics of matter at high temperature. The book discusses the dissociation energies and free energy functions of gaseous monoxides; the matrix-isolation technique applied to high temperature molecules; and the main features, the techniques for the production, detection, and diagnosis, and the applications of molecular beams in high temperatures. The text also describes the chemical research in streaming thermal plasmas, as w

  17. Modelling of flame temperature of solution combustion synthesis of nanocrystalline calcium hydroxyapatite material and its parametric optimization

    Indian Academy of Sciences (India)

    Samir K Ghosh; Sukhomay Pal; Sujit K Roy; Surjya K Pal; Debabrata Basu


    Hydroxyapatite (HAp), an important bio-ceramic was successfully synthesized by combustion in the aqueous system containing calcium nitrate-di-ammonium hydrogen orthophosphate-urea. The combustion flame temperature of solution combustion reaction depends on various process parameters, and it plays a significant role in the phase formation, phase stability and physical characteristics of calcium hydroxyapatite powder. In this work, an attempt has been made to evaluate the influence of each selected process parameters on the flame temperature as well as physical characteristics of powder, and to select an optimal parameters setting using Taguchi method. A regression model has also been developed to correlate the input parameters, viz. batch size, diluents, fuel to oxidizer ratio and initial furnace temperature, with flame temperature of the solution combustion reaction. The adequacy of the developed model has been checked using analysis of variance technique.

  18. Ultra-High Temperature Gratings

    Institute of Scientific and Technical Information of China (English)

    John Canning; Somnath Bandyopadhyay; Michael Stevenson; Kevin Cook


    Regenerated gratings seeded by type-Ⅰ gratings are shown to withstand temperatures beyond 1000 ℃. The method of regeneration offers a new approach to increasing temperature resistance of stable fibre Bragg and other gratings. These ultra-high temperature (UHT) gratings extend the applicability of silicate based components to high temperature applications such as monitoring of smelters and vehicle and aircraft engines to high power fibre lasers.

  19. High temperature nanoplasmonics (United States)

    Alabastri, Alessandro; Toma, Andrea; Malerba, Mario; De Angelis, Francesco; Proietti Zaccaria, Remo


    Metallic nanostructures can be utilized as heat nano-sources which can find application in different areas such as photocatalysis, nanochemistry or sensor devices. Here we show how the optical response of plasmonic structures is affected by the increase of temperature. In particular we apply a temperature dependent dielectric function model to different nanoparticles finding that the optical responses are strongly dependent on shape and aspect-ratio. The idea is that when metallic structures interact with an electromagnetic field they heat up due to Joule effect. The corresponding temperature increase modifies the optical response of the particle and thus the heating process. The key finding is that, depending on the structures geometry, absorption efficiency can either increase or decrease with temperature. Since absorption relates to thermal energy dissipation and thus to temperature increase, the mechanism leads to positive or negative loops. Consequently, not only an error would be made by neglecting temperature but it would be not even possible to know, a priori, if the error is towards higher or lower values.

  20. Pyrolysis and combustion behaviour of wood: temperature profiles and solid conversion

    Energy Technology Data Exchange (ETDEWEB)

    Ceamanos, J.; Bilbao, R.; Aldea, M.E.; Betran, M.; Mastral, J.F. [University of Zaragoza (Spain)


    The development of techniques for the production of electricity by pyrolysis and combustion of biomass must take into account the behaviour of large particles under very different experimental conditions. In this work the influences of the variable heat flux, the moisture content of the sample and the atmosphere surrounding the particle have been studied. The mathematical model developed takes into account variable thermal properties, variation of temperature and enthalpy of water vaporization with water content, and thermal decomposition kinetics previously obtained by thermogravimetry. It predicts temperature and moisture profiles inside the solid as well as the global conversion. The results obtained agree with the experimental results for most conditions. (author)

  1. Reconstruction of combustion temperature and gas concentration distributions using line-of-sight tunable diode laser absorption spectroscopy (United States)

    Zhang, Zhirong; Sun, Pengshuai; Pang, Tao; Xia, Hua; Cui, Xiaojuan; Li, Zhe; Han, Luo; Wu, Bian; Wang, Yu; Sigrist, Markus W.; Dong, Fengzhong


    Spatial temperature and gas concentration distributions are crucial for combustion studies to characterize the combustion position and to evaluate the combustion regime and the released heat quantity. Optical computer tomography (CT) enables the reconstruction of temperature and gas concentration fields in a flame on the basis of line-of-sight tunable diode laser absorption spectroscopy (LOS-TDLAS). A pair of H2O absorption lines at wavelengths 1395.51 and 1395.69 nm is selected. Temperature and H2O concentration distributions for a flat flame furnace are calculated by superimposing two absorption peaks with a discrete algebraic iterative algorithm and a mathematical fitting algorithm. By comparison, direct absorption spectroscopy measurements agree well with the thermocouple measurements and yield a good correlation. The CT reconstruction data of different air-to-fuel ratio combustion conditions (incomplete combustion and full combustion) and three different types of burners (one, two, and three flat flame furnaces) demonstrate that TDLAS has the potential of short response time and enables real-time temperature and gas concentration distribution measurements for combustion diagnosis.

  2. Analysis of the high-temperature particulate collection problem

    Energy Technology Data Exchange (ETDEWEB)

    Razgaitis, R.


    Particulate agglomeration and separation at high temperatures and pressures are examined, with particular emphasis on the unique features of the direct-cycle application of fluidized-bed combustion. The basic long-range mechanisms of aerosol separation are examined, and the effects of high temperature and high pressure on usable collection techniques are assessed. Primary emphasis is placed on those avenues that are not currently attracting widespread research. The high-temperature, particulate-collection problem is surveyed, together with the peculiar requirements associated with operation of turbines with particulate-bearing gas streams. 238 references.

  3. Effect of inner oxidant on self-propagating high-temperature synthesis of MnZn-ferrite powder

    Institute of Scientific and Technical Information of China (English)

    YANG Ke; GUO Zhimeng; AKHTAR Farid; ZHANG Bin; TU Yifan


    Using KClO3 as an inner oxidant, MnZn-ferrite powder was synthesized by a self-propagating high-temperature synthesis (SHS) process in normal air atmosphere. The effects of the inner oxidant on combustion temperature, combustion velocity, microstructure and the phase of the product were investigated by XRD and SEM,respectively. The results show that a highly ferritized powder can be obtained as well as the highest combustion temperature and the highest combustion velocity when the inner oxidant content m equals 5/4( k -1/6).

  4. Investigation of reactions and species dominating low temperature combustion - Final report

    Energy Technology Data Exchange (ETDEWEB)

    Radi, P.; Knopp, G.; Johnson, M.; Boedi, A.; Gerber, T.


    This report for the Swiss Federal Office of Energy (SFOE) presents the results of work done at the Paul Scherrer Institute (PSI) in Switzerland. The project 'Investigation of reactions and species dominating low temperature combustion' involves the characterisation of species that govern ignition. A base established for the spectroscopic investigation of peroxy radicals is discussed. The two-fold aim of this project is discussed which includes the measurement of molecular features such as binding energies and dissociation patterns of well-studied and spectroscopically accessible molecules and radicals as well as the application of the measurement techniques to alkyl peroxy radicals. This was done in order to improve the database of a class of molecules playing a dominant role in combustion and atmospheric chemistry. Several experimental techniques that are to be developed to achieve these aims are looked at. Achievements made are discussed and future work to be carried out is noted.

  5. Study of high temperature phase of sulphoaluminate for desulfuration

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, J.; Yang, T.; Cheng, J.; Cao, X.; Cen, K. [Zhejiang University, Hangzhou (China). National Key Lab of MOE Clean Energy and Environment Engineering


    This paper has studied systematically the formation mechanism of the high temperature stable phase of sulphoaluminate. The effect on high temperature sulfur fixation by factors such as the combustion temperature, retention period, the mixing ratio of the compound and additives was systematically investigated and the formation mechanism was analysed. The experimental results indicate that the largest amount of sulphoaluminate was produced at a temperature of 1300{sup o}C and with a mixing ratio of 3:3:1. 6 refs., 7 figs.

  6. High-Temperature Piezoelectric Sensing

    Directory of Open Access Journals (Sweden)

    Xiaoning Jiang


    Full Text Available Piezoelectric sensing is of increasing interest for high-temperature applications in aerospace, automotive, power plants and material processing due to its low cost, compact sensor size and simple signal conditioning, in comparison with other high-temperature sensing techniques. This paper presented an overview of high-temperature piezoelectric sensing techniques. Firstly, different types of high-temperature piezoelectric single crystals, electrode materials, and their pros and cons are discussed. Secondly, recent work on high-temperature piezoelectric sensors including accelerometer, surface acoustic wave sensor, ultrasound transducer, acoustic emission sensor, gas sensor, and pressure sensor for temperatures up to 1,250 °C were reviewed. Finally, discussions of existing challenges and future work for high-temperature piezoelectric sensing are presented.

  7. Fuels and Combustion

    KAUST Repository

    Johansson, Bengt


    This chapter discusses the combustion processes and the link to the fuel properties that are suitable for them. It describes the basic three concepts, including spark ignition (SI) and compression ignition (CI), and homogeneous charge compression ignition (HCCI). The fuel used in a CI engine is vastly different from that in an SI engine. In an SI engine, the fuel should sustain high pressure and temperature without autoignition. Apart from the dominating SI and CI engines, it is also possible to operate with a type of combustion: autoignition. With HCCI, the fuel and air are fully premixed before combustion as in the SI engine, but combustion is started by the increased pressure and temperature during the compression stroke. Apart from the three combustion processes, there are also a few combined or intermediate concepts, such as Spark-Assisted Compression Ignition (SACI). Those concepts are discussed in terms of the requirements of fuel properties.

  8. An Experimental Study on Axial Temperature Distribution of Combustion of Dewatered Poultry Sludge in Fluidized bed combustor

    Directory of Open Access Journals (Sweden)

    Abbas A.H.


    Full Text Available A laboratory scale bubbling fluidized bed combustor was designed and fabricated to study the combustion of dewatered poultry sludge at different operational parameters. This paper present a study on the influence of equivalent ratio, secondary to primary air ratio and the fuel feed rate on the temperature distribution along the combustor. The equivalent ratio has been changed between 0.8 to 1.4% under poultry sludge feed rate of 10 kg/h and from 0.8 to 1 under poultry sludge feed rate of 15 kg/h. The secondary to primary air ratio was varied from 0.1 to 0.5 at 0.65 m injection height and 1.25 equivalent ratio. The results showed that these factors had a significant influence on the combustion characteristics of poultry sludge. The temperature distribution along the combustor was found to be strongly dependent on the fuel feed rate and the equivalent ratio and it increased when these two factors increased. However, the secondary air ratio increased the temperature in the lower region of the combustor while no significant effect was observed at the upper region of the combustor. The results suggested that the poultry sludge can be used as a fuel with high thermal combustor efficiency.

  9. High temperature superconductor accelerator magnets

    NARCIS (Netherlands)

    van Nugteren, J.


    For future particle accelerators bending dipoles are considered with magnetic fields exceeding 20T. This can only be achieved using high temperature superconductors (HTS). These exhibit different properties from classical low temperature superconductors and still require significant research and dev

  10. Electrochemical high-temperature gas sensors (United States)

    Saruhan, B.; Stranzenbach, M.; Yüce, A.; Gönüllü, Y.


    Combustion produced common air pollutant, NOx associates with greenhouse effects. Its high temperature detection is essential for protection of nature. Component-integration capable high-temperature sensors enable the control of combustion products. The requirements are quantitative detection of total NOx and high selectivity at temperatures above 500°C. This study reports various approaches to detect NO and NO2 selectively under lean and humid conditions at temperatures from 300°C to 800°C. All tested electrochemical sensors were fabricated in planar design to enable componentintegration. We suggest first an impedance-metric gas sensor for total NOx-detection consisting of NiO- or NiCr2O4-SE and PYSZ-electrolyte. The electrolyte-layer is about 200μm thickness and constructed of quasi-single crystalline columns. The sensing-electrode (SE) is magnetron sputtered thin-layers of NiO or NiCr2O4. Sensor sensitivity for detection of total NOx has been measured by applying impedance analysis. The cross-sensitivity to other emission gases such as CO, CO2, CH4 and oxygen (5 vol.%) has been determined under 0-1000ppm NO. Sensor maintains its high sensitivity at temperatures up to 550°C and 600°C, depending on the sensing-electrode. NiO-SE yields better selectivity to NO in the presence of oxygen and have shorter response times comparing to NiCr2O4-SE. For higher temperature NO2-sensing capability, a resistive DC-sensor having Al-doped TiO2-sensing layers has been employed. Sensor-sensitivity towards NO2 and cross-sensitivity to CO has been determined in the presence of H2O at temperatures 600°C and 800°C. NO2 concentrations varying from 25 to 100ppm and CO concentrations from 25 to 75ppm can be detected. By nano-tubular structuring of TiO2, NO2 sensitivity of the sensor was increased.

  11. Thermogravimetric Analysis of Effects of High-Content Limstone Addition on Combustion Characteristics of Taixi Anthracite

    Institute of Scientific and Technical Information of China (English)

    ZHANG Hong; LI Mei; SUN Min; WEI Xian-yong


    Combustion characteristics of Taixi anthracite admixed with high content of limestone addition were investigated with thermogravimetric analysis. The results show that limestone addition has a little promoting effect on the ignition of raw coals as a whole. The addition of limestone is found to significantly accelerate the combustion and burnout of raw coals. The higher the sample mass is, the more significant the effect will be. The results also show that the change of limestone proportion between 45%-80% has little effect on ignition temperatures of coal in the blended samples. Increasing limestone content lowers the temperature corresponding to the maximum weight loss. Although higher maximum mass loss rates are observed with higher limestone content, the effect is found not ascribed to changing limestone addition, but to the decrease of absolute coal mass in the sample. The change of limestone proportion has little effect on its burnout temperature. Mechanism analysis indicates that these phenomena result mainly from improved heat conduction due to limestone addition.

  12. Facile Preparation of Highly Conductive Metal Oxides by Self-Combustion for Solution-Processed Thermoelectric Generators. (United States)

    Kang, Young Hun; Jang, Kwang-Suk; Lee, Changjin; Cho, Song Yun


    Highly conductive indium zinc oxide (IZO) thin films were successfully fabricated via a self-combustion reaction for application in solution-processed thermoelectric devices. Self-combustion efficiently facilitates the conversion of soluble precursors into metal oxides by lowering the required annealing temperature of oxide films, which leads to considerable enhancement of the electrical conductivity of IZO thin films. Such enhanced electrical conductivity induced by exothermic heat from a combustion reaction consequently yields high performance IZO thermoelectric films. In addition, the effect of the composition ratio of In to Zn precursors on the electrical and thermoelectric properties of the IZO thin films was investigated. IZO thin films with a composition ratio of In:Zn = 6:2 at the low annealing temperature of 350 °C showed an enhanced electrical conductivity, Seebeck coefficient, and power factor of 327 S cm(-1), 50.6 μV K(-1), and 83.8 μW m(-1) K(-2), respectively. Moreover, the IZO thin film prepared at an even lower temperature of 300 °C retained a large power factor of 78.7 μW m(-1) K(-2) with an electrical conductivity of 168 S cm(-1). Using the combustive IZO precursor, a thermoelectric generator consisting of 15 legs was fabricated by a printing process. The thermoelectric array generated a thermoelectric voltage of 4.95 mV at a low temperature difference (5 °C). We suggest that the highly conductive IZO thin films by self-combustion may be utilized for fabricating n-type flexible printed thermoelectric devices.

  13. Novel Salt-Assisted Combustion Synthesis of High Surface Area Ceria Nanopowders by An Ethylene Glycol-Nitrate Combustion Process

    Institute of Scientific and Technical Information of China (English)


    A novel salt-assisted combustion process with ethylene glycol as a fuel and nitrate as an oxidant to synthesize high surface area ceria nanopowders was reported. The effects of various tunable conditions, such as fuel-to-oxidant ratio, type of salts, and amount of added salts, on the characteristics of the as-prepared powders were investigated by X-ray diffraction, transmission electron microscopy and BET surface area measurement. A mechanism scheme was proposed to illustrate the possible formation processes of well-dispersed ceria nanoparticles in the salt-assisted combustion synthesis. It was verified that the simple introduction of leachable inert inorganic salts as an excellent agglomeration inhibitor into the redox mixture precursor leads to the formation of well-dispersed ceria particles with particle size in the range of 4~6 nm and a drastic increase in the surface area. The presence of KCl results in an over ten-fold increment in specific surface area from 14.10 m2·g-1 for the produced ceria powders via the conventional combustion synthesis process to 156.74 m2·g-1 for the product by the salt-assisted combustion synthesis process at the same molar ratio of ethylene glycol-nitrate.

  14. Development of a neutronic model for the fuel of a high temperature gas reactor type PBMR; Desarrollo de un modelo neutronico para el combustible de un reactor de gas de alta temperatura tipo PBMR

    Energy Technology Data Exchange (ETDEWEB)

    Oropeza C, I.; Carmona H, R.; Francois L, J. L. [UNAM, Facultad de Ingenieria, Departamento de Sistemas Energeticos, Paseo Cuauhnahuac 8532, Jiutepec, Morelos 62550 (Mexico)]. e-mail:


    In this work was developed the neutronic model of a fuel sphere of a nuclear reactor of gas of high temperature to modulate of bed of spheres (PBMR), using the Monte Carlo method with the MCNPx code. In order to be able to verify the fuel model constructed in this investigation, it is used a case of reference, based on an international exercise {sup b}enchmark{sup .} The benchmark report contains the results sent by different international participants for five phases with respect to the high temperature gas reactor (HTR), fed with uranium, plutonium and thorium. In particular, in first stage of benchmark an infinite adjustment of uranium compound fuel spheres is considered unique, with which our results were compared. This first stage considers two cases: cell calculations with spherical external frontier and cell calculations with cubic external frontier. The objective is to identify any increase in the uncertainty, related to the uranium fuel, that is associated with the plutonium and thorium fuels. In order to validate our results, the values of the neutron multiplication factor were taken in account, in cold and in the heat of the moment from the participants who sent their results obtained with Monte Carlo and deterministic calculations. The model of the fuel sphere developed in this work considers a regular distribution of 15000 Triso particles, in a cubic mesh centered within the sphere. For it was necessary to define the step firstly or {sup p}itch{sup o}f the cubic mesh. Generally, the results obtained by the participants of benchmark and those of this investigation present good agreement, nevertheless, appear some discrepancies, attributed to factors like different libraries of cross sections used, the nature of the solution: Monte Carlo or deterministic, and the difficulty of some participants to model the external frontier condition of reflection. (Author)

  15. High temperature materials; Materiaux a hautes temperatures

    Energy Technology Data Exchange (ETDEWEB)



    The aim of this workshop is to share the needs of high temperature and nuclear fuel materials for future nuclear systems, to take stock of the status of researches in this domain and to propose some cooperation works between the different research organisations. The future nuclear systems are the very high temperature (850 to 1200 deg. C) gas cooled reactors (GCR) and the molten salt reactors (MSR). These systems include not only the reactor but also the fabrication and reprocessing of the spent fuel. This document brings together the transparencies of 13 communications among the 25 given at the workshop: 1) characteristics and needs of future systems: specifications, materials and fuel needs for fast spectrum GCR and very high temperature GCR; 2) high temperature materials out of neutron flux: thermal barriers: materials, resistance, lifetimes; nickel-base metal alloys: status of knowledge, mechanical behaviour, possible applications; corrosion linked with the gas coolant: knowledge and problems to be solved; super-alloys for turbines: alloys for blades and discs; corrosion linked with MSR: knowledge and problems to be solved; 3) materials for reactor core structure: nuclear graphite and carbon; fuel assembly structure materials of the GCR with fast neutron spectrum: status of knowledge and ceramics and cermets needs; silicon carbide as fuel confinement material, study of irradiation induced defects; migration of fission products, I and Cs in SiC; 4) materials for hydrogen production: status of the knowledge and needs for the thermochemical cycle; 5) technologies: GCR components and the associated material needs: compact exchangers, pumps, turbines; MSR components: valves, exchangers, pumps. (J.S.)

  16. Advanced Materials and Manufacturing for Low-Cost, High-Performance Liquid Rocket Combustion Chambers (United States)

    Williams, Brian E.; Arrieta, Victor M.


    A document describes the low-cost manufacturing of C103 niobium alloy combustion chambers, and the use of a high-temperature, oxidation-resistant coating that is superior to the standard silicide coating. The manufacturing process involved low-temperature spray deposition of C103 on removable plastic mandrels produced by rapid prototyping. Thin, vapor-deposited platinum-indium coatings were shown to substantially improve oxidation resistance relative to the standard silicide coating. Development of different low-cost plastic thrust chamber mandrel materials and prototyping processes (selective laser sintering and stereolithography) yielded mandrels with good dimensional accuracy (within a couple of mils) for this stage of development. The feasibility of using the kinetic metallization cold-spray process for fabrication of free-standing C1O3 thrusters on removable plastic mandrels was also demonstrated. The ambient and elevated temperature mechanical properties of the material were shown to be reasonably good relative to conventionally processed C103, but the greatest potential benefit is that coldsprayed chambers require minimal post-process machining, resulting in substantially lower machining and material costs. The platinum-iridium coating was shown to provide greatly increased oxidation resistance over the silicide when evaluated through oxyacetylene torch testing to as high as 300 F (= 150 C). The iridium component minimizes reaction with the niobium alloy chamber at high temperatures, and provides the high-temperature oxidation resistance needed at the throat.

  17. High Temperature Superconductor Machine Prototype

    DEFF Research Database (Denmark)

    Mijatovic, Nenad; Jensen, Bogi Bech; Træholt, Chresten


    A versatile testing platform for a High Temperature Superconductor (HTS) machine has been constructed. The stationary HTS field winding can carry up to 10 coils and it is operated at a temperature of 77K. The rotating armature is at room temperature. Test results and performance for the HTS field...

  18. Realization of Low-Temperature Premixed Combustion with Diesel TR Combustion System%柴油机TR燃烧系统实现低温预混合燃烧的研究

    Institute of Scientific and Technical Information of China (English)

    杨德胜; 高希彦; 张松涛; 周文彬; 何旭; 刘瑞祥


    为了验证TR燃烧系统降低发动机排放、实现低温预混合燃烧的能力,在一台经过改造的单缸135柴油机上进行了降低压缩比、燃用柴油-乙醇混合燃料和推迟供油的试验研究.结果表明,压缩比ε降低后,着火推迟,最大放热率增加,缸内最高压力和最高温度降低,NOx排放也降低.但是中高负荷时燃烧速率降低,有效油耗率增加.当燃用乙醇体积含量20%的乙醇-柴油混合燃料时,与燃用柴油燃料相比,着火延迟期延长,烟度大幅度降低.小负荷时缸内最高压力、最高温度、最大放热率和燃烧速率都降低,NOx降低较多;中高负荷时最大放热率高于后者,燃烧速率提高,NOx降低得较少.当供油定时从15°CA BT-DC推迟到13°CA BTDC后,烟度基本不变.%To clarify the ability of TR (Three-rapidity) combustion system for reducing emissions and realizing low-temperature premixed combustion, a series of tests were carried out in a modified 135 single-cylinder diesel engine, including lowering compression ratio, using diesel-ethanol blend and delaying injection timing. The results show that the decreas of compression ratio results in ignition delay, the increase in maximum rate of heat release and maximum cylinder pressure, the decrease in maximum mean gas temperature and NOx. However, at the medium and high loads the combustion rate would decrease and the brake specific fuel consumption would increase. Compared to diesel combustion, ethanol-diesel combustion prolongs ignition delay period and remarkably lowers the exaust smoke. The maximum cylinder pressure, maximum gas temperature, maximum heat release rate and combustion rate will be decreased somewhat under low load, while under medium and high loads, a higher heat release rate and quicker combustion rate present with little decreas of NOx. In addition, delaying of fuel delivery advance angle from 15° CA BTDC to 13° CA BTDC leads to little variation in smoke at all.

  19. Numerical investigation of spray combustion towards HITAC conditions

    NARCIS (Netherlands)

    Zhu, Shanglong


    The features of High Temperature Air Combustion (HiTAC), i.e. high-efficiency combustion processes creating a uniform temperature distribution with low NOX and CO emissions, lend itself ideally for the combustion of all sorts of "difficult” fuels, ranging from low-calorific gases such as waste-gases

  20. Investigation of wood combustion in the high-enthalpy oxidizer flow (United States)

    Reshetnikov, S. M.; Zyryanov, I. A.; Budin, A. G.; Pozolotin, A. P.


    The experimental data of wood combustion in the high-enthalpy oxidizer flowresearch is presented. Combustion laws of two wood species (pine and birch) in a hybrid rocket engine (HRE) are obtained. Heat flows from the flame to the condensed phase surface are defined. The prospects of the wood use in the HRE (based on thrust characteristics) are shown.

  1. Low temperature synthesis of nanocrystalline scandia-stabilized zirconia by aqueous combustion method and its characterizations

    Indian Academy of Sciences (India)

    Quazi Arif Islam; Mir Wasim Raja; Chiranjib Satra; Rajendra Nath Basu


    Zirconia stabilized with 11 mol% scandia (11ScSZ) has been successfully synthesized by novel alanine-assisted soft chemical aqueous combustion method. The reaction kinetics during combustion synthesis has been studied in detail by analysing thermal behaviour of different metal–alanine complexes. A single phase 11ScSZ powder is achieved at significantly low calcination temperature of 500° C. Field emission scanning electron micrograph reveals an agglomerated morphology with particle size ranging from 80 to 100 nm. The thermal expansion coefficient is found to be 11.03 × 10−6 °C−1 in the temperature range between room temperature and 1000° C. Optical bandgap of 5.19 eV has been determined using UV–Vis spectroscopy and results are compared with the help of theoretical density of states. The total electrical conductivity of sintered pellet is found to be 7.3 × 10−3 S cm−1 at 700° C as measured by impedance spectroscopy.

  2. Effects of Fuel Temperature on Injection Process and Combustion of Dimethyl Ether Engine. (United States)

    Guangxin, Gao; Zhulin, Yuan; Apeng, Zhou; Shenghua, Liu; Yanju, Wei


    To investigate the effects of fuel temperature on the injection process in the fuel-injection pipe and the combustion characteristics of compression ignition (CI) engine, tests on a four stroke, direct injection dimethyl ether (DME) engine were conducted. Experimental results show that as the fuel temperature increases from 20 to 40 °C, the sound speed is decreased by 12.2%, the peak line pressure at pump and nozzle sides are decreased by 7.2% and 5.6%, respectively. Meanwhile, the injection timing is retarded by 2.2 °CA and the injection duration is extended by 0.8 °CA. Accordingly, the ignition delay and the combustion duration are extended by 0.7 °CA and 4.0 °CA, respectively. The cylinder peak pressure is decreased by 5.4%. As a result, the effective thermal efficiency is decreased, especially for temperature above 40 °C. Before beginning an experiment, the fuel properties of DME, including the density, the bulk modulus, and the sound speed were calculated by "ThermoData." The calculated result of sound speed is consistent with the experimental results.

  3. Numerical investigation of high-pressure combustion in rocket engines using Flamelet/Progress-variable models

    CERN Document Server

    Coclite, A; De Palma, P; Pascazio, G


    The present paper deals with the numerical study of high pressure LOx/H2 or LOx/hydrocarbon combustion for propulsion systems. The present research effort is driven by the continued interest in achieving low cost, reliable access to space and more recently, by the renewed interest in hypersonic transportation systems capable of reducing time-to-destination. Moreover, combustion at high pressure has been assumed as a key issue to achieve better propulsive performance and lower environmental impact, as long as the replacement of hydrogen with a hydrocarbon, to reduce the costs related to ground operations and increase flexibility. The current work provides a model for the numerical simulation of high- pressure turbulent combustion employing detailed chemistry description, embedded in a RANS equations solver with a Low Reynolds number k-omega turbulence model. The model used to study such a combustion phenomenon is an extension of the standard flamelet-progress-variable (FPV) turbulent combustion model combined ...

  4. Analytical approximations for temperature dependent thermophysical properties of supercritical diesel fuel surrogates used in combustion modeling (United States)

    Kumar, Abhinav; Saini, Vishnu; Dondapati, Raja Sekhar; Usurumarti, Preeti Rao


    Supercritical fluid technology is introduced to combat the critical challenges related with emissions, incomplete and clean diesel fuel combustion. The chemical kinetics of diesel fuel is a strong function of temperature. As surrogate fuels have a potential to represent a real diesel fuel, thermophysical properties of such fuels have been studied in this present work as a function of temperature. Further, two diesel surrogate fuels which have been identified as the components of actual diesel fuel for jet engines are studied and thermophysical properties of these two surrogates are evaluated as a function of temperature at critical pressure. In addition, the accuracy and reliability of the developed correlations is estimated using two statistical parameters such as Absolute Average of Relative Error (AARE) and Sum of Average Residues (SAR). Results show an excellent agreement between the standard data and the correlated property values.

  5. Effect of Metal Additives on the Combustion Characteristics of High-Energy Materials

    Directory of Open Access Journals (Sweden)

    Korotkikh Alexander


    Full Text Available Thermodynamic calculation of combustion parameters and equilibrium composition of HEMs combustion products showed, that at the increase of aluminum powder dispersity the specific impulse and combustion temperature of solid propellants are reduced due to the decrease of the mass fraction of active aluminum in particles. Partial or complete replacement of aluminum by metal powder (B, Mg, AlB2, Al\\Mg alloy, Fe, Ti and Zr in HEMs composition leads to the reduce of the specific impulse and combustion temperature. Replacement of aluminum powder by boron and magnesium in HEM reduces the mass fraction of condensed products in the combustion chamber of solid rocket motor. So, for compositions HEMs with boron and aluminum boride the mass fraction in chamber is reduced by 24 and 36 %, respectively, with respect to the composition HEMs with Al powder. But the mass fraction of CCPs in the nozzle exit increases by 13 % for HEMs with aluminum boride due to the formation of boron oxide in the condensed combustion products. Partial replacement of 2 wt. % aluminum powder by iron and copper additives in HEM leads to the reduce of CCPs mass fraction in chamber by 4–10 % depending on the aluminum powder dispersity duo to these metals are not formed condensed products at the HEMs combustion in chamber.

  6. High Temperature Electrostrictive Ceramics Project (United States)

    National Aeronautics and Space Administration — TRS Technologies proposes to develop high temperature electrostrictors from bismuth-based ferroelectrics. These materials will exhibit high strain and low loss in...

  7. Application and Comparison of Different Combustion Models of High Pressure LOX/CH4 Jet Flames


    Maria Grazia De Giorgi; Aldebara Sciolti; Antonio Ficarella


    The present work focuses on the numerical modeling of combustion in liquid-propellant rocket engines. Pressure and temperature are well above thermodynamic critical points of both the propellants and then the reactants show liquid-like characteristics of density and gas-like characteristics for diffusivity. The aim of the work is an efficient numerical description of the phenomena and RANS simulations were performed for this purpose. Hence, in the present work different kinetics, combustion ...

  8. Modeling of time-resolved laser-induced incandescence transients for particle sizing in high-pressure spray combustion environments : a comparative study

    NARCIS (Netherlands)

    Dreier, T.; Bougie, B.; Dam, N.J.; Gerber, T.


    In this study experimental single-pulse, time-resolved laser-induced incandescence (TIRE-LII) signal intensity profiles acquired during transient Diesel combustion events at high pressure were processed. Experiments were performed between 0.6 and 7 MPa using a high-temperature high-pressure constant

  9. Polycyclic aromatic hydrocarbon and particulate emissions from two-stage combustion of polystyrene: the effect of the primary furnace temperature. (United States)

    Wang, J; Levendis, Y A; Richter, H; Howard, J B; Carlson, J


    A study is presented on laboratory-scale combustion of polystyrene (PS) to identify staged-combustion conditions that minimize emissions. Batch combustion of shredded PS was conducted in fixed beds placed in a bench-scale electrically heated horizontal muffle furnace. In most cases, combustion of the samples occurred by forming gaseous diffusion flames in atmospheric pressure air. The combustion effluent was mixed with additional air, and it was channeled to a second muffle furnace (afterburner) placed in series. Further reactions took place in the secondary furnace at a residence time of 0.7 s. The gas temperature of the primary furnace was varied in the range of 500-1,000 degrees C, while that of the secondary furnace was kept fixed at 1,000 degrees C. Sampling for CO, CO2, O2, soot, and unburned hydrocarbon emissions (volatile and semivolatile, by GC-MS) was performed at the exits of the two furnaces. Results showed that the temperature of the primary furnace, where PS gasifies, is of paramount importance to the formation and subsequent emissions of organic species and soot. Atthe lowesttemperatures explored, mostly styrene oligomers were identified at the outlet of the primary furnace, but they did not survive the treatment in the secondary furnace. The formation and emission of polycyclic aromatic hydrocarbons (PAH) and soot were suppressed. As the temperature in the first furnace was raised, increasing amounts of a wide range of both unsubstituted and substituted PAH containing up to at least seven condensed aromatic rings were detected. A similar trend was observed for total particulate yields. The secondary furnace treatment reduced the yields of total PAH, but it had an ambiguous effect on individual species. While most low molecular mass PAH were reduced in the secondary furnace, concentrations of some larger PAH increased under certain conditions. Thus, care in the selection of operating conditions of both the primary furnace (gasifier/ burner) and the

  10. Flameless Combustion for Gas Turbines (United States)

    Gutmark, Ephraim; Li, Guoqiang; Overman, Nick; Cornwell, Michael; Stankovic, Dragan; Fuchs, Laszlo; Milosavljevic, Vladimir


    An experimental study of a novel flameless combustor for gas turbine engines is presented. Flameless combustion is characterized by distributed flame and even temperature distribution for high preheat air temperature and large amount of recirculating low oxygen exhaust gases. Extremely low emissions of NOx, CO, and UHC are reported. Measurements of the flame chemiluminescence, CO and NOx emissions, acoustic pressure, temperature and velocity fields as a function of the preheat temperature, inlet air mass flow rate, exhaust nozzle contraction ratio, and combustor chamber diameter are described. The data indicate that larger pressure drop promotes flameless combustion and low NOx emissions at the same flame temperature. High preheated temperature and flow rates also help in forming stable combustion and therefore are favorable for flameless combustion.

  11. Combustion synthesis and structural analysis of nanocrystalline nickel ferrite at low temperature regime

    Energy Technology Data Exchange (ETDEWEB)

    Shanmugavel, T., E-mail:, E-mail: [Department of Physics, Anna University of Technology, Coimbatore-641 047 (India); Raj, S. Gokul, E-mail:, E-mail: [Department of Physics, Vel tech University, Avadi, Chennai-600062 India (India); Rajarajan, G. [Department of Physics, Selvam College of Technology, Namakkal-637005 India (India); Kumar, G. Ramesh [Department of Physics, University College of Engineering, Anna University Chennai, Arni 632317 (India); Boopathi, G. [Department of Physics, Presidency College (Autonomous), Chennai - 600005 (India)


    Combustion synthesis of single phase Nickel ferrite was successfully achieved at low temperature regime. The obtained powders were calcinated to increase the crystallinity and their characterization change due to calcinations is investigated in detail. Citric acid used as a chelating agent for the synthesis of nickel ferrite. Pure single phase nickel ferrites were found at this low temperature. The average crystalline sizes were measured by using powder XRD measurements. Surface morphology was investigated through Transmission Electron Microscope (TEM). Particle size calculated in XRD is compared with TEM results. Magnetic behaviour of the samples is analyzed by using Vibrating Sample Magnetometer (VSM). Saturation magnetization, coercivity and retentivity are measured and their results are discussed in detail.

  12. Fuel/oxidizer-rich high-pressure preburners. [staged-combustion rocket engine (United States)

    Schoenman, L.


    The analyses, designs, fabrication, and cold-flow acceptance testing of LOX/RP-1 preburner components required for a high-pressure staged-combustion rocket engine are discussed. Separate designs of injectors, combustion chambers, turbine simulators, and hot-gas mixing devices are provided for fuel-rich and oxidizer-rich operation. The fuel-rich design addresses the problem of non-equilibrium LOX/RP-1 combustion. The development and use of a pseudo-kinetic combustion model for predicting operating efficiency, physical properties of the combustion products, and the potential for generating solid carbon is presented. The oxygen-rich design addresses the design criteria for the prevention of metal ignition. This is accomplished by the selection of materials and the generation of well-mixed gases. The combining of unique propellant injector element designs with secondary mixing devices is predicted to be the best approach.

  13. Apparatus and method for removing particulate deposits from high temperature filters (United States)

    Nakaishi, Curtis V.; Holcombe, Norman T.; Micheli, Paul L.


    A combustion of a fuel-air mixture is used to provide a high-temperature and high-pressure pulse of gaseous combustion products for the back-flush cleaning of ceramic filter elements contained in a barrier filter system and utilized to separate particulates from particulate-laden process gases at high temperature and high pressure. The volume of gaseous combustion products provided by the combustion of the fuel-air mixture is preferably divided into a plurality of streams each passing through a sonic orifice and conveyed to the open end of each filter element as a high pressure pulse which passes through the filter elements and dislodges dust cake supported on a surface of the filter element.


    DEFF Research Database (Denmark)

    Jensen, Jens Oluf; Qingfeng, Li; He, Ronghuan


    This paper will report recent results from our group on polymer fuel cells (PEMFC) based on the temperature resistant polymer polybenzimidazole (PBI), which allow working temperatures up to 200°C. The membrane has a water drag number near zero and need no water management at all. The high working...

  15. High Temperature Bell Motor Project (United States)

    National Aeronautics and Space Administration — The National Research Council (NRC) has identified the need for motors and actuators that can operate in extreme high and low temperature environments as a technical...

  16. High Temperature Materials Laboratory (HTML) (United States)

    Federal Laboratory Consortium — The six user centers in the High Temperature Materials Laboratory (HTML), a DOE User Facility, are dedicated to solving materials problems that limit the efficiency...

  17. Characterization of single coal particle combustion within oxygen-enriched environments using high-speed OH-PLIF (United States)

    Köser, J.; Becker, L. G.; Vorobiev, N.; Schiemann, M.; Scherer, V.; Böhm, B.; Dreizler, A.


    This work presents first-of-its-kind high-speed planar laser-induced fluorescence measurements of the hydroxyl radical in the boundary layer of single coal particles. Experiments were performed in a laminar flow reactor providing an oxygen-enriched exhaust gas environment at elevated temperatures. Single coal particles in a sieve fraction of 90-125 µm and a significant amount of volatiles (36 wt%) were injected along the burner's centerline. Coherent anti-Stokes Raman spectroscopy measurements were taken to characterize the gas-phase temperature. Time-resolved imaging of the OH distribution at 10 kHz allowed identifying reaction and post-flame zones and gave access to the temporal evolution of burning coal particles. During volatile combustion, a symmetric diffusion flame was observed around the particle starting from a distance of ~150 µm from the particle surface. For subsequent char combustion, this distance decreased and the highest OH signals appeared close to the particle surface.

  18. A back analysis of the temperature field in the combustion volume space during underground coal gasification

    Institute of Scientific and Technical Information of China (English)

    Chen Liang; Hou Chaohu; Chen Jiansheng; Xu Jiting


    The exact shape and size of the gasification channel during underground coal gasification (UGC) are of vital importance for the safety and stability of the upper parts of the geological formation.In practice existing geological measurements are insufficient to obtain such information because the coal seam is typically deeply buried and the geological conditions are often complex.This paper introduces a cylindrical model for the gasification channel.The rock and soil masses are assumed to be homogeneous and isotropic and the effect of seepage on the temperature field was neglected.The theory of heat conduction was used to write the equation predicting the temperature field around the gasification channel.The idea of an excess temperature was introduced to solve the equations.Applying this model to UCG in the field for an influence radius,r,of 70 m gave the model parameters,u1,2.3..,of 2.4,5.5,8.7...By adjusting the radius (2,4,or 6 m) reasonable temperatures of the gasification channel were found for 4 m.The temperature distribution in the vertical direction,and the combustion volume,were also calculated.Comparison to field measurements shows that the results obtained from the proposed model are very close to practice.

  19. Abnormal combustion caused by lubricating oil in high BMEP gas engines

    Energy Technology Data Exchange (ETDEWEB)

    Yasueda, Shinji [Kyushu Univ. (Japan). GDEC Gas and Diesel Engine; Takasaki, Koji; Tajima, Hiroshi [Kyushu Univ. (Japan). Lab. of Engine and Combustion (ECO)


    In recent years, abnormal combustion with high peak firing pressure has been experienced on gas engines with high brake mean effective pressures. The abnormality is detected not as pre-ignition but as knocking. Research, including visualisation tests on a single-cylinder engine, has confirmed the phenomenon to be pre-ignition caused by the auto-ignition of in-cylinder lubricant, causing cyclical variations of peak firing pressure on premix combustion gas engines. (orig.)

  20. Low-temperature metal-oxide thin-film transistors formed by directly photopatternable and combustible solution synthesis. (United States)

    Rim, You Seung; Lim, Hyun Soo; Kim, Hyun Jae


    We investigated the formation of ultraviolet (UV)-assisted directly patternable solution-processed oxide semiconductor films and successfully fabricated thin-film transistors (TFTs) based on these films. An InGaZnO (IGZO) solution that was modified chemically with benzoylacetone (BzAc), whose chelate rings decomposed via a π-π* transition as result of UV irradiation, was used for the direct patterning. A TFT was fabricated using the directly patterned IGZO film, and it had better electrical characteristics than those of conventional photoresist (PR)-patterned TFTs. In addition, the nitric acid (HNO3) and acetylacetone (AcAc) modified In2O3 (NAc-In2O3) solution exhibited both strong UV absorption and high exothermic reaction. This method not only resulted in the formation of a low-energy path because of the combustion of the chemically modified metal-oxide solution but also allowed for photoreaction-induced direct patterning at low temperatures.

  1. Modified Flamelet-Based Model for Non-Premixed High Speed Combustion (United States)

    Lou, Zhipeng; Ladeinde, Foluso; Li, Wenhai


    The influence of static pressure and the use of Troe's model on flamelet solutions in supersonic combustion are studied. With various values of the background static pressure, we have observed significant effects on the flamelet solutions in such quantities as the quenching stoichiometric scalar dissipation rate, reaction rate of species and progress variable, heat release rate, and the temperature profile. In addition, the Troe's model shows opposite effects for low and high pressure conditions. The baseline flamelet table has been constructed with respect to mixture fraction and its stoichiometric scalar dissipation rate, where the information on both the stable and unstable flamelet solutions have been included. We have also experimented with the addition of pressure as an independent variable in the table, toward modeling compressibility and/or pressure-sensitive properties and the variable quenching conditions in real dual-mode scramjet operations.

  2. Multi-zone modelling of partially premixed low-temperature combustion in pilot-ignited natural-gas engines

    Energy Technology Data Exchange (ETDEWEB)

    Krishnan, S. R.; inivasan, K. K.


    Detailed results from a multi-zone phenomenological simulation of partially premixed advanced-injection low-pilot-ignited natural-gas low-temperature combustion are presented with a focus on early injection timings (the beginning of (pilot) injection (BOI)) and very small diesel quantities (2-3 per cent of total fuel energy). Combining several aspects of diesel and spark ignition engine combustion models, the closed-cycle simulation accounted for diesel autoignition, diesel spray combustion, and natural-gas combustion by premixed turbulent flame propagation. The cylinder contents were divided into an unburned zone, several pilot fuel zones (or 'packets') that modelled diesel evaporation and ignition, a flame zone for natural-gas combustion, and a burned zone. The simulation predicted the onset of ignition, cylinder pressures, and heat release rate profiles satisfactorily over a wide range of BOIs (20-60° before top dead centre (before TDC)) but especially well at early BOIs. Strong coupling was observed between pilot spray combustion in the packets and premixed turbulent combustion in the flame zone and, therefore, the number of ignition centres (packets) profoundly affected flame combustion. The highest local peak temperatures (greater than 2000 K) were observed in the packets, while the flame zone was much cooler (about 1650 K), indicating that pilot diesel spray combustion is probably the dominant source of engine-out emissions of nitrogen oxide (NOx). Further, the 60° before TDC BOI yielded the lowest average peak packet temperatures (about 1720 K) compared with the 20° before TDC BOI (about 2480 K) and 40° before TDC BOI (about 2700 K). These trends support experimental NOx trends, which showed the lowest NOx emissions for the 60°, 20°, and 40° before TDC BOIs in that order. Parametric studies showed that increasing the intake charge temperature, pilot quantity, and natural-gas equivalence ratio all led to

  3. Ultra-High Efficiency and Low-Emissions Combustion Technology for Manufacturing Industries

    Energy Technology Data Exchange (ETDEWEB)

    Atreya, Arvind


    The purpose of this research was to develop and test a transformational combustion technology for high temperature furnaces to reduce the energy intensity and carbon footprint of U.S. manufacturing industries such as steel, aluminum, glass, metal casting, and petroleum refining. A new technology based on internal and/or external Flue Gas Recirculation (FGR) along with significant enhancement in flame radiation was developed. It produces "Radiative Flameless Combustion (RFC)" and offers tremendous energy efficiency and pollutant reduction benefits over and above the now popular "flameless combustion." It will reduce the energy intensity (or fuel consumption per unit system output) by more than 50% and double the furnace productivity while significantly reducing pollutants and greenhouse gas emissions (10^3 times reduction in NOx and 10 times reduction in CO & hydrocarbons and 3 times reduction in CO2). Product quality improvements are also expected due to uniform radiation, as well as, reduction in scale/dross formation is expected because of non-oxidative atmosphere. RFC is inexpensive, easy to implement, and it was successfully tested in a laboratory-scale furnace at the University of Michigan during the course of this work. A first-ever theory with gas and particulate radiation was also developed. Numerical programs were also written to design an industrial-scale furnace. Nine papers were published (or are in the process of publication). We believe that this early stage research adequately proves the concept through laboratory experiments, modeling and computational models. All this work is presented in the published papers. Important conclusions of this work are: (1) It was proved through experimental measurements that RFC is not only feasible but a very beneficial technology. (2) Theoretical analysis of RFC was done in (a) spatially uniform strain field and (b) a planar momentum jet where the strain rate is neither prescribed nor uniform. Four important non

  4. High-Efficiency, High-Capacity, Low-NOx Aluminum Melting Using Oxygen-Enhanced Combustion

    Energy Technology Data Exchange (ETDEWEB)

    D' Agostini, M.D.


    This report describes the development and application of a novel oxygen enhanced combustion system with an integrated vacuum swing adsorption (VSA) oxygen supply providing efficient, low NOx melting in secondary aluminum furnaces. The mainstay of the combustion system is a novel air-oxy-natural gas burner that achieves high productivity and energy efficiency with low NOx emissions through advanced mixing concepts and the use of separate high- and low-purity oxidizer streams. The technology was installed on a reverberatory, secondary aluminum melting plant at the Wabash Aluminum Alloy's Syracuse, N.Y. plant, where it is currently in operation. Field testing gave evidence that the new burner technology meets the stringent NOx emissions target of 0.323 lb NO2/ton aluminum, thus complying with regulations promulgated by Southern California's South Coast Air Quality Management District (SCAQMD). Test results also indicated that the burner technology exceeded fuel efficiency and melting capacity goals. Economic modeling showed that the novel air-oxy-fuel (ADF) combustion technology provides a substantial increase in furnace profitability relative to air-fuel operation. Model results also suggest favorable economics for the air-oxy-fuel technology relative to a full oxy-fuel conversion of the furnace.

  5. A Computational and Experimental Study of Ignition Behavior of Gasoline Surrogate Fuels Under Low-Temperature Combustion Conditions (United States)

    Han, J.; Haworth, D. C.; Kalaskar, V. B.; Boehman, A. L.


    One strategy for next-generation engines is low-temperature compression ignition of gasoline. Reaction pathways that are not relevant for high-temperature flame propagation are activated under these conditions, and the ignition behavior of these fuels under low-temperature conditions has not been widely explored. Here the ignition behavior of gasoline and two- and three-component surrogates has been studied experimentally and computationally over a range of operating conditions of interest for low-temperature engine combustion. Experiments were performed in a single-cylinder research engine. For each fuel blend, the critical compression ratio (lowest compression ratio at which the main ignition occurs) was determined over a range of operating conditions, by varying one parameter at a time with all other parameters held fixed. A simplified CFD model that considers detailed chemical kinetics was used to simulate the experiment. The focus of the study is to determine which surrogate fuel mixtures and chemical mechanisms are able to capture the ignition behavior of gasoline under these conditions. For example, different ignition behavior is found for different surrogate mixtures that all have the same Research Octane Number, and it is important to capture this behavior in CFD models.

  6. Synthesis of Neodymium-Doped Yttrium Aluminum Garnet (Nd∶YAG) Nano-Sized Powders by Low Temperature Combustion

    Institute of Scientific and Technical Information of China (English)

    Zhang Huashan; Su Chunhui; Han Hui; Hou Zhaoxia


    The homogeneously dispersed, less agglomerated (Nd0.01Y0.99)3Al5O12 nano-sized powders were synthesized by the low temperature combustion (LCS), using Nd2O3, Y2O3, Al(NO3)3·9H2O, ammonia water and citric acid as starting materials. This method effectively solves the problems caused by solid-state reaction at high temperature and hard agglomerates brought by the chemical precipitation method. The powders were characterized by TG-DTA, XRD, FT-IR, TEM respectively and the photoluminescence (PL) spectra of (Nd0.01Y0.99)3Al5O12 green and sintered ceramic disks were measured. The results show that the forming temperature of YAG crystal phase is 850 ℃ and YAP crystal phase appearing during the calcinations transforms to pure YAG at 1050 ℃. The particle size of the powders synthesized by the LCS is in a range of 20~50 nm depending on the thermal treatment temperatures. The effectively induced cross section (σin) with the value 4.03×10-19 cm2 of (Nd0.01Y0.99)3Al5O12 ceramics is about 44% higher than that of single crystal.

  7. Effect of Pilot Injection Timings on the Combustion Temperature Distribution in a Single-Cylinder CI Engine Fueled with DME and ULSD

    Directory of Open Access Journals (Sweden)

    Jeon Joonho


    Full Text Available Many studies of DiMethyl Ether (DME as an alternative fuel in Compression-Ignition (CI engines have been performed. Although diverse DME engine research has been conducted, the investigation of combustion behavior and temperature distribution in the combustion engine has not progressed due to the fact that there is no sooting flame in DME combustion. In order to investigate the combustion characteristics in this study, the KIVA-3 V code was implemented to research various pilot injection strategies on a single-cylinder CI engines with DME and Ultra-Low-Sulfur Diesel (ULSD fuels. The combustion distribution results obtained from the numerical investigation were validated when compared with the measurement of flame temperature behaviors in the experimental approach. This study showed that long intervals between two injection timings enhanced pilot combustion by increasing the ambient pressure and temperature before the start of the main combustion. Different atomization properties between DME and ULSD fuels contributed to the formation of a fuel-air mixture at the nozzle tip and piston lip regions, separately, which strongly affected the temperature distribution of the two fuels. In addition, the pilot injection timing played a vital role in regard to ignition delay and peak combustion temperatures. Exhaust emissions, such as NOx and soot, are related to the local equivalence ratio and temperature in the combustion chamber, also illustrated by the contrary result on a Φ (equivalence ratio – T (temperature map.

  8. Gallium phosphide high temperature diodes (United States)

    Chaffin, R. J.; Dawson, L. R.


    High temperature (300 C) diodes for geothermal and other energy applications were developed. A comparison of reverse leakage currents of Si, GaAs, and GaP was made. Diodes made from GaP should be usable to 500 C. A Liquid Phase Epitaxy (LPE) process for producing high quality, grown junction GaP diodes is described. This process uses low vapor pressure Mg as a dopant which allows multiple boat growth in the same LPE run. These LPE wafers were cut into die and metallized to make the diodes. These diodes produce leakage currents below ten to the -9th power A/sq cm at 400 C while exhibiting good high temperature rectification characteristics. High temperature life test data is presented which shows exceptional stability of the V-I characteristics.

  9. RPC operation at high temperature

    CERN Document Server

    Aielli, G; Cardarelli, R; Di Ciaccio, A; Di Stante, L; Liberti, B; Paoloni, A; Pastori, E; Santonico, R


    The resistive electrodes of RPCs utilised in several current experiments (ATLAS, CMS, ALICE, BABAR and ARGO) are made of phenolic /melaminic polymers, with room temperature resistivities ranging from 10**1**0 Omega cm, for high rate operation in avalanche mode, to 5 multiplied by 10**1**1 Omega cm, for streamer mode operation at low rate. The resistivity has however a strong temperature dependence, decreasing exponentially with increasing temperature. We have tested several RPCs with different electrode resistivities in avalanche as well as in streamer mode operation. The behaviours of the operating current and of the counting rate have been studied at different temperatures. Long-term operation has also been studied at T = 45 degree C and 35 degree C, respectively, for high and low resistivity electrodes RPCs.

  10. Temperature optimization of high con

    Directory of Open Access Journals (Sweden)

    M. Sabry


    Full Text Available Active cooling is essential for solar cells operating under high optical concentration ratios. A system comprises four solar cells that are in thermal contact on top of a copper tube is proposed. Water is flowing inside the tube in order to reduce solar cells temperature for increasing their performance. Computational Fluid Dynamics (CFD simulation of such system has been performed in order to investigate the effect of water flow rate, tube internal diameter, and convective heat transfer coefficient on the temperature of the solar cells. It is found that increasing convective heat transfer coefficient has a significant effect on reducing solar cells temperatures operating at low flow rates and high optical concentration ratios. Also, a further increase of water flow rate has no effect on reducing cells temperatures.

  11. Simulation on an optimal combustion control strategy for 3-D temperature distributions in tangentially pc-fired utility boiler furnaces

    Institute of Scientific and Technical Information of China (English)

    WANG Xi-fen; ZHOU Huai-chun


    The control of 3-D temperature distribution in a utility boiler furnace is essential for the safe, economic and clean operation of pcfired furnace with multi-burner system. The development of the visualization of 3-D temperature distributions in pc-fired furnaces makes it possible for a new combustion control strategy directly with the fumacs temperature as its goal to improve the control quality for the combustion processes. Studied in this paper is such a new strategy that the whole furnace is divided into several parts in the vertical direction, and the average temperature and its bias from the center in every cross section can be extracted from the visualization results of the 3-D temperature distributions. In the simulation stage, a computational fluid dynamics (CFD) code served to calculate the 3-D temperature distributions in a furnace, then a linear model was set up to relate the features of the temperature distributions with the input of the combustion processes, such as the flow rates of fuel and air fed into the furnaces through all the burners. The adaptive genetic algorithm was adopted to find the optimal combination of the whole input parameters which ensure to form an optimal 3-D temperature field in the furnace desired for the operation of boiler. Simulation results showed that the strategy could soon find the factors making the temperature distribution apart from the optimal state and give correct adjusting suggestions.

  12. Fabrication of High Thermal Conductivity NARloy-Z-Diamond Composite Combustion Chamber Liner for Advanced Rocket Engines (United States)

    Bhat, Biliyar N.; Greene, Sandra E.; Singh, Jogender


    NARloy-Z alloy (Cu-3 percent, Ag-0.5 percent, Zr) is a state of the art alloy currently used for fabricating rocket engine combustion chamber liners. Research conducted at NASA-MSFC and Penn State – Applied Research Laboratory has shown that thermal conductivity of NARloy-Z can be increased significantly by adding diamonds to form a composite (NARloy-Z-D). NARloy-Z-D is also lighter than NARloy-Z. These attributes make this advanced composite material an ideal candidate for fabricating combustion chamber liner for an advanced rocket engine. Increased thermal conductivity will directly translate into increased turbopump power and increased chamber pressure for improved thrust and specific impulse. This paper describes the process development for fabricating a subscale high thermal conductivity NARloy-Z-D combustion chamber liner using Field Assisted Sintering Technology (FAST). The FAST process uses a mixture of NARloy-Z and diamond powders which is sintered under pressure at elevated temperatures. Several challenges were encountered, i.e., segregation of diamonds, machining the super hard NARloy-Z-D composite, net shape fabrication and nondestructive examination. The paper describes how these challenges were addressed. Diamonds coated with copper (CuD) appear to give the best results. A near net shape subscale combustion chamber liner is being fabricated by diffusion bonding cylindrical rings of NARloy-Z-CuD using the FAST process.

  13. HIgh Temperature Photocatalysis over Semiconductors (United States)

    Westrich, Thomas A.

    Due in large part to in prevalence of solar energy, increasing demand of energy production (from all sources), and the uncertain future of petroleum energy feedstocks, solar energy harvesting and other photochemical systems will play a major role in the developing energy market. This dissertation focuses on a novel photochemical reaction process: high temperature photocatalysis (i.e., photocatalysis conducted above ambient temperatures, T ≥ 100°C). The overarching hypothesis of this process is that photo-generated charge carriers are able to constructively participate in thermo-catalytic chemical reactions, thereby increasing catalytic rates at one temperature, or maintaining catalytic rates at lower temperatures. The photocatalytic oxidation of carbon deposits in an operational hydrocarbon reformer is one envisioned application of high temperature photocatalysis. Carbon build-up during hydrocarbon reforming results in catalyst deactivation, in the worst cases, this was shown to happen in a period of minutes with a liquid hydrocarbon. In the presence of steam, oxygen, and above-ambient temperatures, carbonaceous deposits were photocatalytically oxidized over very long periods (t ≥ 24 hours). This initial experiment exemplified the necessity of a fundamental assessment of high temperature photocatalytic activity. Fundamental understanding of the mechanisms that affect photocatalytic activity as a function of temperatures was achieved using an ethylene photocatalytic oxidation probe reaction. Maximum ethylene photocatalytic oxidation rates were observed between 100 °C and 200 °C; the maximum photocatalytic rates were approximately a factor of 2 larger than photocatalytic rates at ambient temperatures. The loss of photocatalytic activity at temperatures above 200 °C is due to a non-radiative multi-phonon recombination mechanism. Further, it was shown that the fundamental rate of recombination (as a function of temperature) can be effectively modeled as a


    DEFF Research Database (Denmark)

    Jensen, Jens Oluf; Qingfeng, Li; He, Ronghuan


    This paper will report recent results from our group on polymer fuel cells (PEMFC) based on the temperature resistant polymer polybenzimidazole (PBI), which allow working temperatures up to 200°C. The membrane has a water drag number near zero and need no water management at all. The high working...... temperature allows for utilization of the excess heat for fuel processing. Moreover, it provides an excellent CO tolerance of several percent, and the system needs no purification of hydrogen from a reformer. Continuous service for over 6 months at 150°C has been demonstrated....

  15. Interface high-temperature superconductivity (United States)

    Wang, Lili; Ma, Xucun; Xue, Qi-Kun


    Cuprate high-temperature superconductors consist of two quasi-two-dimensional (2D) substructures: CuO2 superconducting layers and charge reservoir layers. The superconductivity is realized by charge transfer from the charge reservoir layers into the superconducting layers without chemical dopants and defects being introduced into the latter, similar to modulation-doping in the semiconductor superlattices of AlGaAs/GaAs. Inspired by this scheme, we have been searching for high-temperature superconductivity in ultra-thin films of superconductors epitaxially grown on semiconductor/oxide substrates since 2008. We have observed interface-enhanced superconductivity in both conventional and unconventional superconducting films, including single atomic layer films of Pb and In on Si substrates and single unit cell (UC) films of FeSe on SrTiO3 (STO) substrates. The discovery of high-temperature superconductivity with a superconducting gap of ∼20 meV in 1UC-FeSe/STO has stimulated tremendous interest in the superconductivity community, for it opens a new avenue for both raising superconducting transition temperature and understanding the pairing mechanism of unconventional high-temperature superconductivity. Here, we review mainly the experimental progress on interface-enhanced superconductivity in the three systems mentioned above with emphasis on 1UC-FeSe/STO, studied by scanning tunneling microscopy/spectroscopy, angle-resolved photoemission spectroscopy and transport experiments. We discuss the roles of interfaces and a possible pairing mechanism inferred from these studies.

  16. High-Temperature Optical Sensor (United States)

    Adamovsky, Grigory; Juergens, Jeffrey R.; Varga, Donald J.; Floyd, Bertram M.


    A high-temperature optical sensor (see Figure 1) has been developed that can operate at temperatures up to 1,000 C. The sensor development process consists of two parts: packaging of a fiber Bragg grating into a housing that allows a more sturdy thermally stable device, and a technological process to which the device is subjected to in order to meet environmental requirements of several hundred C. This technology uses a newly discovered phenomenon of the formation of thermally stable secondary Bragg gratings in communication-grade fibers at high temperatures to construct robust, optical, high-temperature sensors. Testing and performance evaluation (see Figure 2) of packaged sensors demonstrated operability of the devices at 1,000 C for several hundred hours, and during numerous thermal cycling from 400 to 800 C with different heating rates. The technology significantly extends applicability of optical sensors to high-temperature environments including ground testing of engines, flight propulsion control, thermal protection monitoring of launch vehicles, etc. It may also find applications in such non-aerospace arenas as monitoring of nuclear reactors, furnaces, chemical processes, and other hightemperature environments where other measurement techniques are either unreliable, dangerous, undesirable, or unavailable.

  17. High temperature superconductor current leads

    Energy Technology Data Exchange (ETDEWEB)

    Hull, John R. (Hinsdale, IL); Poeppel, Roger B. (Glen Ellyn, IL)


    An electrical lead having one end for connection to an apparatus in a cryogenic environment and the other end for connection to an apparatus outside the cryogenic environment. The electrical lead includes a high temperature superconductor wire and an electrically conductive material distributed therein, where the conductive material is present at the one end of the lead at a concentration in the range of from 0 to about 3% by volume, and at the other end of the lead at a concentration of less than about 20% by volume. Various embodiments are shown for groups of high temperature superconductor wires and sheaths.

  18. High temperature polymer matrix composites (United States)

    Serafini, Tito T. (Editor)


    These are the proceedings of the High Temperature Polymer Matrix Composites Conference held at the NASA Lewis Research Center on March 16 to 18, 1983. The purpose of the conference is to provide scientists and engineers working in the field of high temperature polymer matrix composites an opportunity to review, exchange, and assess the latest developments in this rapidly expanding area of materials technology. Technical papers are presented in the following areas: (1) matrix development; (2) adhesive development; (3) Characterization; (4) environmental effects; and (5) applications.

  19. High temperature corrosion in gasifiers

    Directory of Open Access Journals (Sweden)

    Bakker Wate


    Full Text Available Several commercial scale coal gasification combined cycle power plants have been built and successfully operated during the last 5-10 years. Supporting research on materials of construction has been carried out for the last 20 years by EPRI and others. Emphasis was on metallic alloys for heat exchangers and other components in contact with hot corrosive gases at high temperatures. In this paper major high temperature corrosion mechanisms, materials performance in presently operating gasifiers and future research needs will be discussed.

  20. Measurement of Soot Volume Fraction and Temperature for Oxygen-Enriched Ethylene Combustion Based on Flame Image Processing

    Directory of Open Access Journals (Sweden)

    Weijie Yan


    Full Text Available A method for simultaneously visualizing the two-dimensional distributions of temperature and soot volume fraction in an ethylene flame was presented. A single-color charge-coupled device (CCD camera was used to capture the flame image in the visible spectrum considering the broad-response spectrum of the R and G bands of the camera. The directional emissive power of the R and G bands were calibrated and used for measurement. Slightly increased temperatures and reduced soot concentration were predicted in the central flame without self-absorption effects considered, an iterative algorithm was used for eliminating the effect of self-absorption. Nine different cases were presented in the experiment to demonstrate the effects of fuel mass flow rate and oxygen concentration on temperature and soot concentration in three different atmospheres. For ethylene combustion in pure-air atmosphere, as the fuel mass flow rate increased, the maximum temperature slightly decreased, and the maximum soot volume fraction slightly increased. For oxygen fractions of 30%, 40%, and 50% combustion in O2/N2 oxygen-enhanced atmospheres, the maximum flame temperatures were 2276, 2451, and 2678 K, whereas combustion in O2/CO2 atmospheres were 1916, 2322, and 2535 K. The maximum soot volume fractions were 4.5, 7.0, and 9.5 ppm in oxygen-enriched O2/N2 atmosphere and 13.6, 15.3, and 14.8 ppm in oxygen-enriched O2/CO2 atmosphere. Compared with the O2/CO2 atmosphere, combustion in the oxygen-enriched O2/N2 atmosphere produced higher flame temperature and larger soot volume fraction. Preliminary results indicated that this technique is reliable and can be used for combustion diagnosis.

  1. Nonlinear plasmonics at high temperatures

    CERN Document Server

    Sivan, Yonatan


    We solve the Maxwell and heat equations self-consistently for metal nanoparticles under intense continuous wave (CW) illumination. Unlike previous studies, we rely on {\\em experimentally}-measured data for the metal permittivity for increasing temperature and for the visible spectral range. We show that the thermal nonlinearity of the metal can lead to substantial deviations from the predictions of the linear model for the temperature and field distribution, and thus, can explain qualitatively the strong nonlinear scattering from such configurations observed experimentally. We also show that the incompleteness of existing data of the temperature dependence of the thermal properties of the system prevents reaching a quantitative agreement between the measured and calculated scattering data. This modelling approach is essential for the identification of the underlying physical mechanism responsible for the thermo-optical nonlinearity of the metal and should be adopted in all applications of high temperature non...

  2. Nonlinear plasmonics at high temperatures

    Directory of Open Access Journals (Sweden)

    Sivan Yonatan


    Full Text Available We solve the Maxwell and heat equations self-consistently for metal nanoparticles under intense continuous wave (CW illumination. Unlike previous studies, we rely on experimentally-measured data for metal permittivity for increasing temperature and for the visible spectral range. We show that the thermal nonlinearity of the metal can lead to substantial deviations from the predictions of the linear model for the temperature and field distribution and, thus, can explain qualitatively the strong nonlinear scattering from such configurations observed experimentally. We also show that the incompleteness of existing data of the temperature dependence of the thermal properties of the system prevents reaching a quantitative agreement between the measured and calculated scattering data. This modeling approach is essential for the identification of the underlying physical mechanism responsible for the thermo-optical nonlinearity of the metal and should be adopted in all applications of high-temperature nonlinear plasmonics, especially for refractory metals, for both CW and pulsed illumination.

  3. Nonlinear plasmonics at high temperatures (United States)

    Sivan, Yonatan; Chu, Shi-Wei


    We solve the Maxwell and heat equations self-consistently for metal nanoparticles under intense continuous wave (CW) illumination. Unlike previous studies, we rely on experimentally-measured data for metal permittivity for increasing temperature and for the visible spectral range. We show that the thermal nonlinearity of the metal can lead to substantial deviations from the predictions of the linear model for the temperature and field distribution and, thus, can explain qualitatively the strong nonlinear scattering from such configurations observed experimentally. We also show that the incompleteness of existing data of the temperature dependence of the thermal properties of the system prevents reaching a quantitative agreement between the measured and calculated scattering data. This modeling approach is essential for the identification of the underlying physical mechanism responsible for the thermo-optical nonlinearity of the metal and should be adopted in all applications of high-temperature nonlinear plasmonics, especially for refractory metals, for both CW and pulsed illumination.

  4. High-temperature Titanium Alloys

    Directory of Open Access Journals (Sweden)

    A.K. Gogia


    Full Text Available The development of high-temperature titanium alloys has contributed significantly to the spectacular progress in thrust-to-weight ratio of the aero gas turbines. This paper presents anoverview on the development of high-temperature titanium alloys used in aero engines and potential futuristic materials based on titanium aluminides and composites. The role of alloychemistry, processing, and microstructure, in determining the mechanical properties of titanium alloys is discussed. While phase equilibria and microstructural stability consideration haverestricted the use of conventional titanium alloys up to about 600 "C, alloys based on TiPl (or,, E,AINb (0, TiAl (y, and titaniumltitanium aluminides-based composites offer a possibility ofquantum jump in the temperature capability of titanium alloys.


    Institute of Scientific and Technical Information of China (English)

    许礼干; 马桂祥


    This paper introduces two design plans of burning BFG(BlastFurnace Gas)on walking-beam heating furnace of steel-rolling by using H.R.S(High-Cycle Regenerative System)and some suggestions are given.%分析了合钢小型连轧步进式加热炉,采用蓄热式燃烧技术改烧高炉煤气的两种设计方案,并提出几点建议。

  6. Highly time-resolved imaging of combustion and pyrolysis product concentrations in solid fuel combustion: NO formation in a burning cigarette. (United States)

    Zimmermann, Ralf; Hertz-Schünemann, Romy; Ehlert, Sven; Liu, Chuan; McAdam, Kevin; Baker, Richard; Streibel, Thorsten


    The highly dynamic, heterogeneous combustion process within a burning cigarette was investigated by a miniaturized extractive sampling probe (microprobe) coupled to photoionization mass spectrometry using soft laser single photon ionization (SPI) for online real-time detection of molecular ions of combustion and pyrolysis products. Research cigarettes smoked by a smoking machine are used as a reproducible model system for solid-state biomass combustion, which up to now is not addressable by current combustion-diagnostic tools. By combining repetitively recorded online measurement sequences from different sampling locations in an imaging approach, highly time- and space-resolved quantitative distribution maps of, e.g., nitrogen monoxide, benzene, and oxygen concentrations were obtained at a near microscopic level. The obtained quantitative distribution maps represent a time-resolved, movie-like imaging of the respective compound's formation and destruction zones in the various combustion and pyrolysis regions of a cigarette during puffing. Furthermore, spatially resolved kinetic data were ascertainable. The here demonstrated methodology can also be applied to various heterogenic combustion/pyrolysis or reaction model systems, such as fossil- or biomass-fuel pellet combustion or to a positional resolved analysis of heterogenic catalytic reactions.

  7. Experimental Investigation and High Resolution Simulation of In-Situ Combustion Processes

    Energy Technology Data Exchange (ETDEWEB)

    Margot Gerritsen; Tony Kovscek


    This final technical report describes work performed for the project 'Experimental Investigation and High Resolution Numerical Simulator of In-Situ Combustion Processes', DE-FC26-03NT15405. In summary, this work improved our understanding of in-situ combustion (ISC) process physics and oil recovery. This understanding was translated into improved conceptual models and a suite of software algorithms that extended predictive capabilities. We pursued experimental, theoretical, and numerical tasks during the performance period. The specific project objectives were (i) identification, experimentally, of chemical additives/injectants that improve combustion performance and delineation of the physics of improved performance, (ii) establishment of a benchmark one-dimensional, experimental data set for verification of in-situ combustion dynamics computed by simulators, (iii) develop improved numerical methods that can be used to describe in-situ combustion more accurately, and (iv) to lay the underpinnings of a highly efficient, 3D, in-situ combustion simulator using adaptive mesh refinement techniques and parallelization. We believe that project goals were met and exceeded as discussed.

  8. Chemistry of high temperature superconductors

    CERN Document Server


    This review volume contains the most up-to-date articles on the chemical aspects of high temperature oxide superconductors. These articles are written by some of the leading scientists in the field and includes a comprehensive list of references. This is an essential volume for researchers working in the fields of ceramics, materials science and chemistry.

  9. Properties of high temperature SQUIDS

    Energy Technology Data Exchange (ETDEWEB)

    Falco, C. M.; Wu, C. T.


    A review is given of the present status of weak links and dc and rf biased SQUIDs made with high temperature superconductors. A method for producing reliable, reproducible devices using Nb/sub 3/Sn is outlined, and comments are made on directions future work should take.

  10. Combustion Ratio of Waste Tire Particle, PC and Mixture at Blast Temperature of BF

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jian-liang; REN Shan; SU Bu-xin; LIN Yin-he; LONG Shi-gang


    In order to study the combustion characteristics of waste tire particle (WTP), pulverized coal (PC) and their mixture, the contents of CO, CO2 and O2 of off-gas during the combustion of WTP, PC and mixture under the condition of rich oxygen by 0--4% in blast and at 1 250℃ were measured simultaneously using synthetically infrared analyzer, and then the corresponding combustion ratio was calculated and compared. The results showed that the burning rate of WTP reached approximately 57%, which is much higher than that of PC (only about 18%) in the in- itial 650 s in fresh air, and then the increase of combustion rate of PC is faster than that of WTP; the combustion rate of PC improved remarkably with the addition of WTP. Meanwhile, the combustion rates of all these materials improved with the increase of oxygen content.

  11. A comprehensive fractal char combustion model☆

    Institute of Scientific and Technical Information of China (English)

    Yuting Liu; Rong He


    The char combustion mechanisms were analyzed and a comprehensive fractal char combustion model was developed to give a better understanding and better predictions of the char combustion characteristics. Most of the complex factors affecting the char combustion were included, such as the coupling effects between the pore diffusion and the chemical reactions, the evolution of the char pore structures and the variation of the apparent reaction order during combustion, the CO/CO2 ratio in the combustion products and the correction for oxy-char combustion. Eleven different chars were then combusted in two drop tube furnaces with the conversions of the partly burned char samples measured by thermogravimetric analysis. The combustion processes of these chars were simulated with the predicted char conversions matching very well with the measured data which shows that this char combustion model has good accuracy. The apparent reaction order of the char combustion decreases, stabilizes and then increases during the combustion process. The combustion rates in the oxy-mode are general y slower than in the air-mode and the effect of the char-CO2 gasification reac-tion becomes obvious only when the temperature is relatively high and the O2 concentration is relatively low.

  12. High temperature, high power piezoelectric composite transducers. (United States)

    Lee, Hyeong Jae; Zhang, Shujun; Bar-Cohen, Yoseph; Sherrit, Stewart


    Piezoelectric composites are a class of functional materials consisting of piezoelectric active materials and non-piezoelectric passive polymers, mechanically attached together to form different connectivities. These composites have several advantages compared to conventional piezoelectric ceramics and polymers, including improved electromechanical properties, mechanical flexibility and the ability to tailor properties by using several different connectivity patterns. These advantages have led to the improvement of overall transducer performance, such as transducer sensitivity and bandwidth, resulting in rapid implementation of piezoelectric composites in medical imaging ultrasounds and other acoustic transducers. Recently, new piezoelectric composite transducers have been developed with optimized composite components that have improved thermal stability and mechanical quality factors, making them promising candidates for high temperature, high power transducer applications, such as therapeutic ultrasound, high power ultrasonic wirebonding, high temperature non-destructive testing, and downhole energy harvesting. This paper will present recent developments of piezoelectric composite technology for high temperature and high power applications. The concerns and limitations of using piezoelectric composites will also be discussed, and the expected future research directions will be outlined.

  13. High Temperature, High Power Piezoelectric Composite Transducers

    Directory of Open Access Journals (Sweden)

    Hyeong Jae Lee


    Full Text Available Piezoelectric composites are a class of functional materials consisting of piezoelectric active materials and non-piezoelectric passive polymers, mechanically attached together to form different connectivities. These composites have several advantages compared to conventional piezoelectric ceramics and polymers, including improved electromechanical properties, mechanical flexibility and the ability to tailor properties by using several different connectivity patterns. These advantages have led to the improvement of overall transducer performance, such as transducer sensitivity and bandwidth, resulting in rapid implementation of piezoelectric composites in medical imaging ultrasounds and other acoustic transducers. Recently, new piezoelectric composite transducers have been developed with optimized composite components that have improved thermal stability and mechanical quality factors, making them promising candidates for high temperature, high power transducer applications, such as therapeutic ultrasound, high power ultrasonic wirebonding, high temperature non-destructive testing, and downhole energy harvesting. This paper will present recent developments of piezoelectric composite technology for high temperature and high power applications. The concerns and limitations of using piezoelectric composites will also be discussed, and the expected future research directions will be outlined.

  14. High Temperature Sorbents for Oxygen (United States)

    Sharma, Pramod K. (Inventor)


    A sorbent capable of removing trace amounts of oxygen (ppt) from a gas stream at a high temperature above 200 C is introduced. The sorbent comprises a porous alumina silicate support such as zeolite containing from 1 to 10 percent by weight of ion exchanged transition metal such as copper or cobalt ions and 0.05 to 1.0 percent by weight of an activator selected from a platinum group metal such as platinum. The activation temperature, oxygen sorption and reducibility are all improved by the presence of the platinum activator.

  15. High-Temperature Performance of Ferritic Steels in Fireside Corrosion Regimes: Temperature and Deposits (United States)

    Dudziak, T.; Hussain, T.; Simms, N. J.


    The paper reports high temperature resistance of ferritic steels in fireside corrosion regime in terms of temperature and deposits aggressiveness. Four candidate power plant steels: 15Mo3, T22, T23 and T91 were exposed under simulated air-fired combustion environment for 1000 h. The tests were conducted at 600, 650 and 700 °C according to deposit-recoat test method. Post-exposed samples were examined via dimensional metrology (the main route to quantify metal loss), and mass change data were recorded to perform the study of kinetic behavior at elevated temperatures. Microstructural investigations using ESEM-EDX were performed in order to investigate corrosion degradation and thickness of the scales. The ranking of the steels from most to the least damage was 15Mo3 > T22 > T23 > T91 in all three temperatures. The highest rate of corrosion in all temperatures occurred under the screening deposit.

  16. Expansion characteristics of twin combustion gas jets with high pressure in cylindrical filling liquid chamber

    Institute of Scientific and Technical Information of China (English)

    薛晓春; 余永刚; 张琦


    To deal with the problem of how to control the interior ballistic stability in the bulk-loaded liquid propellant gun, the expansion and mixing process of the twin combustion-gas jets with high temperature and pressure in a liquid medium is studied in the cylindrical filling liquid chamber. A series of the jet expansion shapes is obtained by using a high-speed photographic system. The influences of the jet pressure on the jet expansion shape are discussed. Based on the experiments, the three-dimensional mathematical model is established. The expansion processes of the twin gas jets in the liquid medium are simulated by means of fluent to get the pressure, density, temperature, velocity contours and evolutionary process of vortices. Results show that the jet external outline and tops are all irregular. The Kelvin-Helmholtz instability is shown in the whole expansion process. The numerical simulation results of the axial displacement of the twin gas jets in liquid agree well with the experiment.

  17. Combustion Characteristics and Performance of Low-Swirl Injectors with Natural Gas and Alternative Fuels At Elevated Pressures and Temperatures (United States)

    Beerer, David Joseph

    Stationary power-generating gas turbines in the United States have historically been fueled with natural gas, but due to its increasing price and the need to reduce carbon emissions, interest in alternative fuels is increasing. In order to effectively operate engines with these fuels their combustion characteristics need be well understood, especially at elevated pressures and temperatures. In this dissertation, the performance of blends of natural gas / methane with hydrogen and carbon dioxide, to simulate syngas and biogas, are evaluated in a model low-swirl stabilized combustor inside an optically accessible high-pressure vessel. The flashback and lean blow out limits, along with pollutant emissions, flow field, and turbulent displacement flame speeds, are measured as a function of fuel composition, pressure, inlet temperature, firing temperature, and flow rate in the range from 1 to 8 atm, 294 to 600K, 1350 to 1950K, and 20 to 60 m/s, respectively. These properties are quantified as a function of the inlet parameters. The lean blow-out limits are independent of pressure and inlet temperature but are weakly dependent on velocity. NOX emissions for both fuels were found to be exponentially dependent upon firing temperature, but emissions for the high-hydrogen flames were consistently higher than those of natural gas flames. The flashback limits for a 90%/10% (by volume) hydrogen/methane mixture increase with velocity and inlet temperature, but decrease with pressure. Correspondingly, the flame position progresses toward the combustor nozzle with increasing pressure and flame temperature, but away with increasing inlet temperature and velocity. Flashback occurred when the leading edge of the flame entered the nozzle. Local displacement turbulent flame speeds scale linearly with the turbulent fluctuating velocities, u', at the leading edge of the flame. Turbulent flame speeds for high-hydrogen fuels are twice that of natural gas for the same inlet conditions. The

  18. High-temperature beryllium embrittlement

    Energy Technology Data Exchange (ETDEWEB)

    Pokrovsky, A.S. [Scientific Research Inst. of Atomic Reactors, Dimitrovgrad (Russian Federation); Fabritsiev, S.A. [D.V. Efremov Scientific Research Institute, 189631 St. Petersburg (Russian Federation); Bagautdinov, R.M. [Scientific Research Inst. of Atomic Reactors, Dimitrovgrad (Russian Federation); Goncharenko, Yu.D. [Scientific Research Inst. of Atomic Reactors, Dimitrovgrad (Russian Federation)


    The neutron irradiation effect on the mechanical properties, swelling and fracture surface structure of various beryllium grades was studied in the BOR-60 reactor at 340 to 350 C up to a fluence of 7.2 x 10{sup 21} n/cm{sup 2}. At a mechanical testing temperature of 400 C there was observed a strong anisotropy of plastic beryllium deformation depending on the direction of sample cutting relative to the pressing direction. An increase of the testing temperature up to 700 C resulted in an abrupt embrittlement of all irradiated samples. In the most part of the surface structure the intercrystallite fracture along the grain boundaries was covered entirely with large pores, 1 to 4 {mu}m in size. It was suggested that the increased rate of pore formation along the grain boundaries resulted from a high-temperature embrittlement under irradiation. (orig.).

  19. Application and Comparison of Different Combustion Models of High Pressure LOX/CH4 Jet Flames

    Directory of Open Access Journals (Sweden)

    Maria Grazia De Giorgi


    Full Text Available The present work focuses on the numerical modeling of combustion in liquid-propellant rocket engines. Pressure and temperature are well above thermodynamic critical points of both the propellants and then the reactants show liquid-like characteristics of density and gas-like characteristics for diffusivity. The aim of the work is an efficient numerical description of the phenomena and RANS simulations were performed for this purpose. Hence, in the present work different kinetics, combustion models and thermodynamic approaches were used for combustion modeling first in a trans-critical environment, then in the sub-critical state. For phases treatment the pure Eulerian single phase approach was compared with the Lagrangian/Eulerian description. For modeling combustion, the Probability Density Function (PDF equilibrium and flamelet approaches and the Eddy Dissipation approach, with two different chemical kinetic mechanisms (the Jones-Lindstedt and the Skeletal model, were used. Real Gas (Soave-Redlich-Kwong and Peng-Robinson equations were applied. To estimate the suitability of different strategies in phenomenon description, a comparison with experimental data from the literature was performed, using the results for different operative conditions of the Mascotte test bench: trans-critical and subcritical condition for oxygen injection. The main result of this study is the individuation of the DPM approach of the most versatile methods to reproduce cryogenic combustion adapted for different operating conditions and producing good results.

  20. Influence of the Calcination Temperature on the Combustion Synthesized Perovskite LaMnO3 Compound

    Directory of Open Access Journals (Sweden)

    A.R. Shelke


    Full Text Available A simple combustion method based on principles of propellent chemistry in which Polyvinyl alcohol (PVA as fuel and nitrates as oxidizer were used for synthesizing the perovskite like LaMnO3 powders. The oxidizer to fuel ratio was maintained at 5 : 1. The darkish black powder obtained was calcined at 800 °C and 1000 °C for 5 hour. The combustion and thermal decomposition of the precursor were investigated using the TG-DTA and Fourier Transform Infra-Red (FT-IR techniques. The X-ray diffraction (XRD pattern of all three samples i.e., un-heated LaMnO3 powder (LMO-UH, calcined at 800 °C (LMO-800 and at 1000 °C (LMO-1000 were carried out. The single phase orthorhombic crystal structure was revealed to crystallize at LMO-800 and LMO-1000 with elevation in the crystalline size. A small impurity peak at 28.7° was seen of Mn3O4 for LMO-UH, which vanished after calcining it. The strong absorption in FT-IR spectra found at around 615 cm – 1 was due to the formation of metal-oxygen (M-O bond. Moreover a small shift in this M-O bond with increase in calcination temperature suggested the strained LaMnO3 compound. Elemental analysis using the energy dispersive X-ray fluorescence spectrometer (EDXRF indicated the presence of La and Mn with increase in the Mn contents after calcinations. The oxygen, nitrogen and hydrogen content in the sample were determined from the ONH analysis indicating a decrease in the oxygen content for LMO-800. Well defined porous-foam like morphology of the sample was achieved from scanning electron microscopic (SEM study, which become compact with calcination process. Magnetic properties were found to transform from the ferromagnetic-to-paramagnetic phase for LMO-UH sample, while reduction in magnetization values and coercivity at low temperatures was obtained for LMO-800 and LMO-1000 samples.

  1. High temperature structural sandwich panels (United States)

    Papakonstantinou, Christos G.

    High strength composites are being used for making lightweight structural panels that are being employed in aerospace, naval and automotive structures. Recently, there is renewed interest in use of these panels. The major problem of most commercial available sandwich panels is the fire resistance. A recently developed inorganic matrix is investigated for use in cases where fire and high temperature resistance are necessary. The focus of this dissertation is the development of a fireproof composite structural system. Sandwich panels made with polysialate matrices have an excellent potential for use in applications where exposure to high temperatures or fire is a concern. Commercial available sandwich panels will soften and lose nearly all of their compressive strength temperatures lower than 400°C. This dissertation consists of the state of the art, the experimental investigation and the analytical modeling. The state of the art covers the performance of existing high temperature composites, sandwich panels and reinforced concrete beams strengthened with Fiber Reinforced Polymers (FRP). The experimental part consists of four major components: (i) Development of a fireproof syntactic foam with maximum specific strength, (ii) Development of a lightweight syntactic foam based on polystyrene spheres, (iii) Development of the composite system for the skins. The variables are the skin thickness, modulus of elasticity of skin and high temperature resistance, and (iv) Experimental evaluation of the flexural behavior of sandwich panels. Analytical modeling consists of a model for the flexural behavior of lightweight sandwich panels, and a model for deflection calculations of reinforced concrete beams strengthened with FRP subjected to fatigue loading. The experimental and analytical results show that sandwich panels made with polysialate matrices and ceramic spheres do not lose their load bearing capability during severe fire exposure, where temperatures reach several

  2. Kinetics of combustion related processes at high temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Kiefer, J.H. [Univ. of Illinois, Chicago (United States)


    This past year has seen an excursion into perhalomethane dissociation using the laser-schlieren (LS) technique, with work on CCl{sub 4} already published and on CF{sub 3}Cl under analysis. However, the author`s emphasis has again been on the study of relaxation and dissociation of large molecules using the converging/diverging nozzle method to generate very weak (low pressure) shock waves.

  3. High Temperature Heat Exchanger Project

    Energy Technology Data Exchange (ETDEWEB)

    Anthony E. Hechanova, Ph.D.


    The UNLV Research Foundation assembled a research consortium for high temperature heat exchanger design and materials compatibility and performance comprised of university and private industry partners under the auspices of the US DOE-NE Nuclear Hydrogen Initiative in October 2003. The objectives of the consortium were to conduct investigations of candidate materials for high temperature heat exchanger componets in hydrogen production processes and design and perform prototypical testing of heat exchangers. The initial research of the consortium focused on the intermediate heat exchanger (located between the nuclear reactor and hydrogen production plan) and the components for the hydrogen iodine decomposition process and sulfuric acid decomposition process. These heat exchanger components were deemed the most challenging from a materials performance and compatibility perspective

  4. Motor for High Temperature Applications (United States)

    Roopnarine (Inventor)


    A high temperature motor has a stator with poles formed by wire windings, and a rotor with magnetic poles on a rotor shaft positioned coaxially within the stator. The stator and rotor are built up from stacks of magnetic-alloy laminations. The stator windings are made of high temperature magnet wire insulated with a vitreous enamel film, and the wire windings are bonded together with ceramic binder. A thin-walled cylinder is positioned coaxially between the rotor and the stator to prevent debris from the stator windings from reaching the rotor. The stator windings are wound on wire spools made of ceramic, thereby avoiding need for mica insulation and epoxy/adhesive. The stator and rotor are encased in a stator housing with rear and front end caps, and rear and front bearings for the rotor shaft are mounted on external sides of the end caps to keep debris from the motor migrating into the bearings' races.

  5. High temperature catalytic membrane reactors

    Energy Technology Data Exchange (ETDEWEB)


    Current state-of-the-art inorganic oxide membranes offer the potential of being modified to yield catalytic properties. The resulting modules may be configured to simultaneously induce catalytic reactions with product concentration and separation in a single processing step. Processes utilizing such catalytically active membrane reactors have the potential for dramatically increasing yield reactions which are currently limited by either thermodynamic equilibria, product inhibition, or kinetic selectivity. Examples of commercial interest include hydrogenation, dehydrogenation, partial and selective oxidation, hydrations, hydrocarbon cracking, olefin metathesis, hydroformylation, and olefin polymerization. A large portion of the most significant reactions fall into the category of high temperature, gas phase chemical and petrochemical processes. Microporous oxide membranes are well suited for these applications. A program is proposed to investigate selected model reactions of commercial interest (i.e. dehydrogenation of ethylbenzene to styrene and dehydrogenation of butane to butadiene) using a high temperature catalytic membrane reactor. Membranes will be developed, reaction dynamics characterized, and production processes developed, culminating in laboratory-scale demonstration of technical and economic feasibility. As a result, the anticipated increased yield per reactor pass economic incentives are envisioned. First, a large decrease in the temperature required to obtain high yield should be possible because of the reduced driving force requirement. Significantly higher conversion per pass implies a reduced recycle ratio, as well as reduced reactor size. Both factors result in reduced capital costs, as well as savings in cost of reactants and energy.

  6. Very High Temperature Sound Absorption Coating Project (United States)

    National Aeronautics and Space Administration — Phase I demonstrated experimentally a very high temperature acoustically absorbing coating for ducted acoustics applications. High temperature survivability at 3500...

  7. The development of an optically accessible, high-power combustion test rig. (United States)

    Slabaugh, Carson D; Pratt, Andrew C; Lucht, Robert P; Meyer, Scott E; Benjamin, Michael; Lyle, Kent; Kelsey, Mark


    This work summarizes the development of a gas turbine combustion experiment which will allow advanced optical measurements to be made at realistic engine conditions. Facility requirements are addressed, including instrumentation and control needs for remote operation when working with high energy flows. The methodology employed in the design of the optically accessible combustion chamber is elucidated, including window considerations and thermal management of the experimental hardware under extremely high heat loads. Experimental uncertainties are also quantified. The stable operation of the experiment is validated using multiple techniques and the boundary conditions are verified. The successful prediction of operating conditions by the design analysis is documented and preliminary data are shown to demonstrate the capability of the experiment to produce high-fidelity datasets for advanced combustion research.

  8. Report on the combustion research contractors' meeting

    Energy Technology Data Exchange (ETDEWEB)

    Klemm, R.B.; Muckerman, J.T. (eds.)


    A total of 46 short papers or abstracts are included, arranged into sessions dealing with general and NSLS status, theory of reactivity and chemical dynamics in combustion, kinetics of combustion reactions, (two sessions), and laser diagnostics for high temperature and combustion systems. (DLC)

  9. Direct numerical simulations of ignition of a lean n-heptane/air mixture with temperature and composition inhomogeneities relevant to HCCI and SCCI combustion

    KAUST Repository

    Luong, Minh Bau


    The effects of temperature and composition stratifications on the ignition of a lean n-heptane/air mixture at three initial mean temperatures under elevated pressure are investigated using direct numerical simulations (DNSs) with a 58-species reduced mechanism. Two-dimensional DNSs are performed by varying several key parameters: initial mean temperature, T0, and the variance of temperature and equivalence ratio (T\\' and φ\\') with different T-φcorrelations. It is found that for cases with φ\\' only, the overall combustion occurs more quickly and the mean heat release rate (HRR) increases more slowly with increasing φ\\' regardless of T0. For cases with T\\' only, however, the overall combustion is retarded/advanced in time with increasing T\\' for low/high T0 relative to the negative-temperature coefficient (NTC) regime resulting from a longer/shorter overall ignition delay of the mixture. For cases with uncorrelated T-φfields, the mean HRR is more distributed over time compared to the corresponding cases with T\\' or φ\\' only. For negatively-correlated cases, however, the temporal evolution of the overall combustion exhibits quite non-monotonic behavior with increasing T\\' and φ\\' depending on T0. All of these characteristics are found to be primarily related to the 0-D ignition delays of initial mixtures, the relative timescales between 0-D ignition delay and turbulence, and the dominance of the deflagration mode during the ignition. These results suggest that an appropriate combination of T\\' and φ\\' together with a well-prepared T-φdistribution can alleviate an excessive pressure-rise rate (PRR) and control ignition-timing in homogeneous charge compression-ignition (HCCI) combustion. In addition, critical species and reactions for the ignition of n-heptane/air mixture through the whole ignition process are estimated by comparing the temporal evolution of the mean mass fractions of important species with the overall reaction pathways of n

  10. A high temperature granulation process for ecological ash recirculation

    Energy Technology Data Exchange (ETDEWEB)

    Sundqvist, Thomas


    This thesis is a summary of three papers dealing with new technologies for facilitating ecological biomass ash recirculation back to forest and farm lands. The present outtake of biomass for paper and energy production may be incompatible with a sustainable forestry. The cycle of nutrients contained in the biomass extracted must be closed by ash recirculation in an environmental compatible way. This implies stabilization of the loose ashes/rest-products to a product with low heavy metal contents, controlled leaching properties and a high spreadability. In the present work, two different techniques were evaluated for the possibilities to separate heavy metals from the nutrient elements by utilizing high process temperatures to vaporize the unwanted metals from the condensed bulk materials. The results indicated that direct in-situ separation in fluidized bed combustion systems is possible, but requires too high process temperatures to be practically attractive. On the other hand, the new proposed high temperature treatment method for granulated raw materials was found to significantly separate As, Cd and Pb, with separation efficiencies exceeding 90 % at optimal operating conditions. In addition, the results indicated that the treatment method could be used to significantly delay and control the leaching characteristics, as well as the content of products of incomplete combustion of the produced granules.

  11. Combustion of Shock-Dispersed Flake Aluminum - High-Speed Visualization

    Energy Technology Data Exchange (ETDEWEB)

    Neuwald, P; Reichenbach, H; Kuhl, A


    Charges of 0.5 g PETN were used to disperse 1 g of flake aluminum in a rectangular test chamber of 4 liter inner volume and inner dimensions of approximately 10 cm x 10 cm x 40 cm. The subsequent combustion of the flake aluminum with the ambient air in the chamber gave rise to a highly luminous flame. The evolution of the luminous region was studied by means of high-speed cinematography. The high-speed camera is responsive to a broad spectral range in the visible and near infra-red. For a number of tests this response range was narrowed down by means of a band-pass filter with a center wavelength of 488 nm and a half-width of 23 nm. The corresponding images were expected to have a stronger temperature dependence than images obtained without the filter, thus providing better capability to highlight hot-spots. Emission in the range of the pass-band of the filter can be due to continuous thermal radiation from hot Al and Al{sub 2}O{sub 3} particles or to molecular band emission from gaseous AlO. A time-resolving spectrometer was improvised to inspect this topic. The results suggest that AlO emission occurs, but that the continuous spectrum is the dominating effect in our experiments.

  12. High-Temperature Thermal Simulator. (United States)


    Mechanism Virtually all the information about the combustion mechanisms of these metals derives from experiments with single particles and small-diameter... information on these parameters for molten oxides. There are however data on total and spectral emissivities of solid oxides, including those of...wave length range of interest, one to two microns. As an example, Figure 17, shows this behavoir for aluminum oxide. On the other hand it Is notable

  13. Temperature dependent structural and magnetic properties of Cerium substituted Co–Cr ferrite prepared by auto-combustion method

    Energy Technology Data Exchange (ETDEWEB)

    Mustafa, Ghulam, E-mail: [Department of Physics, Bahauddin Zakariya University, Multan 60800 (Pakistan); Islam, M.U. [Department of Physics, Bahauddin Zakariya University, Multan 60800 (Pakistan); Zhang, Wenli [State Key Laboratory of Electronic Thin Films and Integrated Devices, UESTC, Chengdu 610054 (China); Jamil, Yasir [Department of Physics, University of Agriculture, Faisalabad 38040 (Pakistan); Asif Iqbal, M.; Hussain, Mudassar [Department of Physics, Bahauddin Zakariya University, Multan 60800 (Pakistan); Ahmad, Mukhtar, E-mail: [Department of Physics, COMSATS Institute of Information Technology, Islamabad 44000 (Pakistan)


    The effects of heat treatment on a nano-crystalline spinel ferrite with chemical formula CoCr{sub 0.04}Ce{sub x}F{sub e1.96−x}O{sub 4} (x=0.06) were investigated in the present work. The sample was prepared by the auto-combustion method and then heat treated at 700–1200 °C for 8 h. The sample heat treated at these temperatures was investigated using thermo-gravimetric analyses and differential scanning calorimetry, X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy and vibrating sample magnetometery. The XRD patterns and IR spectra confirmed that the synthesized materials were of single phase at and above 900 °C. The average particle size was found to be in the range of 30.8–63.8 nm estimated by the Scherer formula. IR studies confirm two main absorption bands in the frequency range of 400–800 cm{sup −1} arising due to the tetrahedral (A-site) and octahedral (B-site) stretching vibrations. The average grain size increased with the increase of temperature while distribution of particles became homogeneous as observed by scanning electron microscope. The saturation magnetization was increased gradually from 7.4 to 59.6 emu/g with the increase of temperature. The coercivity lies in the range of 248–811 Oe as a function of temperature. The obtained results suggest that the investigated materials may be potential candidates for high density recording media applications. - Highlights: • Effects of temperature on structural and magnetic parameters of spinel ferrite are studied. • The XRD patterns confirms that the materials are of single phase at and above 900 °C. • The M{sub s} was increased gradually from 7.4–59.6 emu/g with the increase of temperature. • The values of coercivity lie in the range of 248–811 Oe as a function of temperature. • The results show that materials may have a potential for high density recording media.

  14. Impact of ignition temperature on particle size and magnetic properties of CoFe2O4 nanoparticles prepared by self-propagated MILD combustion technique (United States)

    Kaliyamoorthy, Venkatesan; Rajan Babu, D.; Saminathan, Madeswaran


    We prepared nanocrystalline CoFe2O4 by changing its ignition temperatures, using moderate and intense low-oxygen dilution (MILD) combustion technique. The effect of ignition temperature on the particle size and its magnetic behavior was investigated by HR-TEM and VSM respectively. We observed a vast change in the structural behavior and the magnetic properties of the prepared samples. X-ray diffraction studies revealed that the resultant samples had single phase with different grain sizes from 23±5 nm to 16±5 nm, which was understood by observing the growth of the grains through heat released from the combustion reaction. FE-SEM analysis showed high porosity with heterogeneous distribution of the pore size based on the adiabatic temperature and EPMA analysis, which confirmed the elemental compositions of the prepared samples. The saturation magnetization values measured at room temperature, employing vibrating sample magnetometer (VSM) decreased gradually from 50 to 34 emu/g when the ignition temperature was increased from 243 °C to 400 °C. Some of Fe ions on the B sites moved periodically to the A sites because of quenching treatment. The presence of Fe2+ ions in the existing ferrite structure ruled the magnetic behavior of the sample, as confirmed by the Mössbauer analysis.

  15. High temperature material developments in fossil energy applications

    Energy Technology Data Exchange (ETDEWEB)

    Marriott, J.B. (Commission of the European Communities, Petten (Netherlands). Joint Nuclear Research Center)


    Two major application areas of fossil energy are: - petrochemical processing, - electrical power production. In both of them, there are important common features in the field high temperature, though there are different controlling factors. Furthermore, since they are both concerned with the combustion of carbonaceous fuels, questions of emissions are relevant to both. However, the trend in petrochemical plants has been to use a refined fuel to heat the chemical reactors and this reduces both gaseous and particulate emissions. A major driving force in both areas has always been the attainment of higher efficiencies which implies the use of higher process temperatures. This normally involves higher temperatures for the constructional material. Ideally, the increased temperature capability should be achieved without loss of strength, corrosion resistance, feasibility or reliability. Furthermore, the relative cost of the finished component should not be increased. Clearly, this ideal is seldom attained and an optimization between the competing factors has to be made. 16 refs., 15 figs.

  16. Emissivities of ceramic fibre linings for high-temperature furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Fletcher, J.D.; Williams, A.


    Measurements have been made of the emissivities of ceramic fibre linings of the type used for low thermal mass high-temperature furnaces. The apparatus used consisted of a circular ceramic fibre lined combustion chamber heated by a natural gas burner. The surface temperature of the rear wall was monitored by a number of thermocouples mounted near the surface. The radiant flux from this wall was measured over the temperature range of 700-1400 K and by comparison with emission from a black body, the emissivities of the surface were determined. It was found that the emissivity varied with the type of surface and with temperature. The stack-bonded Kaowool ceramic fibres had a higher emissivity than parallel-bonded fibres, the values at 1400 K being 0.66 and 0.5 respectively; 'damaged' stack-bonded fibres had an intermediate value.

  17. Temperature uniformity mapping in a high pressure high temperature reactor using a temperature sensitive indicator

    NARCIS (Netherlands)

    Grauwet, T.; Plancken, van der I.; Vervoort, L.; Matser, A.M.; Hendrickx, M.; Loey, van A.


    Recently, the first prototype ovomucoid-based pressure–temperature–time indicator (pTTI) for high pressure high temperature (HPHT) processing was described. However, for temperature uniformity mapping of high pressure (HP) vessels under HPHT sterilization conditions, this prototype needs to be optim

  18. Effect of diluted and preheated oxidizer on the emission of methane flameless combustion (United States)

    Hosseini, Seyed Ehsan; Salehirad, Saber; Wahid, M. A.; Sies, Mohsin Mohd; Saat, Aminuddin


    In combustion process, reduction of emissions often accompanies with output efficiency reduction. It means, by using current combustion technique it is difficult to obtainlow pollution and high level of efficiency in the same time. In new combustion system, low NOxengines and burners are studied particularly. Recently flameless or Moderate and Intensive Low oxygen Dilution (MILD) combustion has received special attention in terms of low harmful emissions and low energy consumption. Behavior of combustion with highly preheated air was analyzed to study the change of combustion regime and the reason for the compatibility of high performance and low NOx production. Sustainability of combustion under low oxygen concentration was examined when; the combustion air temperature was above the self-ignition temperature of the fuel. This paper purposes to analyze the NOx emission quantity in conventional combustion and flameless combustion by Chemical Equilibrium with Applications (CEA) software.

  19. Influence of engine speed and the course of the fuel injection characteristics on forming the average combustion temperature in the cylinder of turbo diesel engine

    Directory of Open Access Journals (Sweden)

    Piotr GUSTOF


    Full Text Available Average combustion temperatures inside a turbo diesel engine for the same load and the same total doze of fuel for two rotational speeds: 2004 [rpm] and 4250 [rpm] are presented in this paper. The aim of this work is also the evaluation of the influence of the temporary course of the fuel injection characteristics on forming temperature in theengine cylinder space for these temperatures. The calculations were carried out by means of two zone combustion model.

  20. Solution combustion synthesis: Effect of calcination and sintering temperature on structural, dielectric and ferroelectric properties of five layer Aurivillius oxides (United States)

    Dubey, Shivangi; Subohi, Oroosa; Kurchania, Rajnish


    The effect of calcination temperature on phase formation and sintering temperature on structural, dielectric, electrical and ferroelectric properties of Ba2Bi4Ti5O18 (BBT), Pb2Bi4Ti5O18 (PBT) and Sr2Bi4Ti5O18 (SBT) ceramics prepared by solution combustion route using glycine as a fuel are investigated in this paper. Calcination temperature was optimized at 650 °C for BBT and 750 °C for SBT and PBT, at which these compounds showed pure phase formation. It was observed that density and grain size of the sintered pellets increases with increasing sintering temperature. The dielectric constant was found to be dependent on grain size and density. Transition temperature, activation energy and remnant polarization were found to increase with an increase in sintering temperature. Porosity and conductivity decreases with an increase in the sintering temperature. Thus improving the dielectric, electrical and ferroelectric properties of five layered Aurivillius oxides.

  1. Combustion Stratification for Naphtha from CI Combustion to PPC

    KAUST Repository

    Vallinayagam, R.


    This study demonstrates the combustion stratification from conventional compression ignition (CI) combustion to partially premixed combustion (PPC). Experiments are performed in an optical CI engine at a speed of 1200 rpm for diesel and naphtha (RON = 46). The motored pressure at TDC is maintained at 35 bar and fuelMEP is kept constant at 5.1 bar to account for the difference in fuel properties between naphtha and diesel. Single injection strategy is employed and the fuel is injected at a pressure of 800 bar. Photron FASTCAM SA4 that captures in-cylinder combustion at the rate of 10000 frames per second is employed. The captured high speed video is processed to study the combustion homogeneity based on an algorithm reported in previous studies. Starting from late fuel injection timings, combustion stratification is investigated by advancing the fuel injection timings. For late start of injection (SOI), a direct link between SOI and combustion phasing is noticed. At early SOI, combustion phasing depends on both intake air temperature and SOI. In order to match the combustion phasing (CA50) of diesel, the intake air temperature is increased to 90°C for naphtha. The combustion stratification from CI to PPC is also investigated for various level of dilution by displacing oxygen with nitrogen in the intake. The start of combustion (SOC) was delayed with the increase in dilution and to compensate for this, the intake air temperature is increased. The mixture homogeneity is enhanced for higher dilution due to longer ignition delay. The results show that high speed image is initially blue and then turned yellow, indicating soot formation and oxidation. The luminosity of combustion images decreases with early SOI and increased dilution. The images are processed to generate the level of stratification based on the image intensity. The level of stratification is same for diesel and naphtha at various SOI. When O concentration in the intake is decreased to 17.7% and 14

  2. Thermal diffusivity measurement of the porous pyrocarbon layer of a high temperature reactor fuel particulate by photothermal microscopy; Mesure de la diffusivite thermique de la couche de pyrocarbone poreux d'une particule de combustible pour reacteur a haute temperature par microscopie photothermique

    Energy Technology Data Exchange (ETDEWEB)

    Le Meur, G.; Rochais, D.; Domingues, G. [CEA Centre d' Etudes du Ripault (SRCC/LMC), 37 - Tours (France); Basini, V. [CEA Cadarache (DEC/SPUA/LMPC), 13 - Saint-Paul-lez-Durance (France). Dept. d' Etudes des Combustibles


    This work presents the results of a measurements campaign of the thermal diffusivity of the porous pyrocarbon layer (90 {mu}m thickness) of a HTR (high temperature reactor) fuel particulate. The photo-reflectance microscopy technique is used and allows to characterize the microscopic skeleton of the layer. The effective thermal diffusivity of the layer is estimated using a numerical homogenization technique which integrates the properties of gases confined inside the porosities. (J.S.)

  3. Ignition and wave processes in combustion of solids

    CERN Document Server

    Rubtsov, Nickolai M; Alymov, Michail I


    This book focuses on the application of classical combustion theory to ignition and flame propagation in solid-solid and gas-solid systems. It presents experimental investigations in the areas of local ignition, filtration combustion, self-propagating high temperature synthesis and nanopowders protection. The authors highlight analytical formulas used in different areas of combustion in solids and propose an approach based on classical combustion theory. The book attempts to analyze the basic approaches to understanding of solid-solid and solid - gas combustion presented in contemporary literature in a unified approach based on classical combustion theory. .

  4. Microstructure, Processing, Performance Relationships for High Temperature Coatings

    Energy Technology Data Exchange (ETDEWEB)

    Thomas M. Lillo


    This work evaluates the suitability of iron aluminide coatings for use in high temperature fossil fuel combustion environments, such as boiler applications. The coatings are applied using High Velocity Oxy-Fuel (HVOF) thermal spray techniques. Iron aluminide coatings, with the nominal composition of Fe3Al, were applied to various high temperature structural materials (316 Stainless Steel, 9Cr-1Mo steel and Inconel 600) that typically lack inherent resistance to environmental degradation found in fossil fuel combustion atmospheres. Coating/substrate combinations were subjected to thermal cycling to evaluate the effect of HVOF parameters, coating thickness, substrate material and substrate surface roughness on the resistance to coating delamination and cracking. It was found that substrate surface roughness had a profound influence on the performance of a given substrate/coating system and that surface preparation techniques will need to be tailored to the specific substrate material. Also, higher particle velocity during HVOF thermal spray deposition of the iron aluminide coatings tended to result in better-performing coating/substrate systems with less delamination at the coating/substrate interface. Some combinations of HVOF parameters, coating thickness and substrate materials were found to perform extremely well even at temperatures up to 900oC. However, in some cases, substantial reactions at the interface were observed.

  5. Passivation of high temperature superconductors (United States)

    Vasquez, Richard P. (Inventor)


    The surface of high temperature superconductors such as YBa2Cu3O(7-x) are passivated by reacting the native Y, Ba and Cu metal ions with an anion such as sulfate or oxalate to form a surface film that is impervious to water and has a solubility in water of no more than 10(exp -3) M. The passivating treatment is preferably conducted by immersing the surface in dilute aqueous acid solution since more soluble species dissolve into the solution. The treatment does not degrade the superconducting properties of the bulk material.

  6. The influence of changes of combustion gas temperature during flow around the horizontal cylinder on local Nu number

    Directory of Open Access Journals (Sweden)

    M. Górska


    Full Text Available The article the influence of changes of combustion gas temperature during flow around of horizontal cylinder on local Nu number was presented. In order to test an influence of effect waste gas temperature cycle of experimental investigations were conducted. Experimental tests were carried out on a properly designed measuring cylinder furnished with a number of thermocouples embedded along the cylinder perimeter. The cylinder was made from stainless steel of known thermal conductivity, and was cooled on the outer side through a water cooling system. The cylinder was placed horizontally in a heating chamber equipped with an axially positioned gas burner fired with natural gas. Gas and air feeds were regulated with control valves, based on combustion gas analyzer data.

  7. Characterization of Pr-CeO2 Nano-crystallites Prepared by Low-temperature Combustion & Hydrothermal Synthesis

    Institute of Scientific and Technical Information of China (English)

    ZHU Zhen-Feng; WANG Bao-Li; MA Jian-Zhong


    Pr-CeO2 Nano-crystalline red pigments were prepared by low-temperature combustion with a later hydrothermal treatment using Ce(NO3)3·6H2O and Pr6O11 as raw materials. The phase composition, coloring mechanism and morphology of pigments were analyzed by XRD, SEM,EDS and XPS. Results showed that Pr-CeO2 solid solution with a fluorite structure was obtained by the diffusion of Pr+3 into CeO2 crystal lattice during the synthesis process. XPS analysis indicated that Pr+3 substitutes Ce+4 in CeO2 and is compensated by oxygen vacancies. Compared with low-temperature combustion synthesis, the Pr-CeO2 pigments prepared with a subsequent hydrothermal treatment have an average grain size of about 16.70 nm, and the crystallinity and red tonality are improved.

  8. Operation related on-line measurements of low temperature fire side corrosion during co-combustion of biomass and oil; Driftrelaterad direktmaetning av laagtemperaturkorrosion i en braensleeldad kraftvaermeanlaeggning

    Energy Technology Data Exchange (ETDEWEB)

    Eriksson, Thomas [Studsvik Nuclear AB, Nykoeping (Sweden)


    A number of combustion plants have experienced corrosion attack on air preheaters and economisers when fired with biomass fuels. In certain plants the problems are great and reconstruction has been performed so that exposed components can be exchanged during operation. The electrochemical techniques offer on-line measurements of the changes in corrosion rate in the low temperature region in a waste incinerator. The purpose with this study was to evaluate the technique in a biomass fired boiler where the corrosion rate is considerable lower compared to a waste incinerator. Experiments were performed at the Haesselby plant, boiler 3, which was fired with pure biomass as well as a mixture of biomass and oil during the test period. It was found that the electrochemical technique is a useful tool for on-line measurements of the changes in corrosion rate in biomass fired utilities. Since the corrosion rate in the low temperature region is dependent on the boiler construction, electrochemical measurements give valuable information on the corrosion rate during optimisation of the fuel mixture, SNCR and temperature or the low temperature components. This is of special importance when introducing new fuels or fuel mixtures. Soot blowing is of prime importance for the total corrosion. During a few minutes an individual soot blower can initiate such a high corrosion rate that it represents the total corrosion. The material temperature is another important parameter. Above a certain temperature the corrosion rate is negligible. During co-combustion this temperature was found to be in the region 65-85 deg C. The influence of the SNCR with ammonia, with respect to corrosion, is dependent on the fuel mixture used. In utilities where acidic combustion products are formed, ammonia has a neutralising effect e.g. in Hoegdalen. At the Haesselby plant this neutralising effect was not found. During cocombustion with oil the ammonia forms ammoniahydrosulphate which increases the corrosion

  9. Effect of Simulated High Hydrogen Content Combustion Environments on Abradable Properties of Ceramic Turbine Coatings (United States)

    Basu Majumder, Madhura

    Air plasma sprayed (APS) abradable coatings are used in the turbine hot section to reduce the stator-rotor gap, minimizing gas leakage. These coatings are designed to exhibit controlled removal of material in thin layers when the turbine blades sweep through the coating, which protects the mechanical integrity of the turbine blade. In an effort to lower CO2 emissions, high H2 content fuel is being explored. This change in chemical composition of the fuel may affect the microstructure, abradability and durability of the coatings at turbine operational temperatures. The presence of high water vapor in the combustion chamber leads to accelerated degradation of the sacrificial coating materials. In this work, zirconia based composite materials with a machinable phase and varied porosity have been used to study microstructural evolution, thermal and chemical stability of the phases and abradable characteristics of baseline coating systems in both humid and dry environments. Investigation of the mechanisms that control the removal of materials and performance of abradable coatings through thermo-mechanical tests will be discussed.

  10. Time-Dependent Temperature Measurements in Post-Detonation Combustion: Current State-of-the-Art Methods and Emerging Technologies (United States)


    methods for measuring temperatures during post-detonation combustion, compares the chief advantages and disadvantages of these methods, and identifies any... account , the meaning of the “temperature” derived from a measurement is often non-trivial. 2.4.1 Spectral interferences Thermal emission from measurements using fiber optics to collect light from points inside the interior [10]. 3.2 ADVANTAGES AND CHALLENGES OF SPECIFIC

  11. Highly Turbulent Counterflow Flames: A Laboratory Scale Benchmark for Practical Combustion Systems (United States)

    Gomez, Alessandro


    Since the pioneering work of Weinberg's group at Imperial College in the `60s, the counterflow system has been the workhorse of laminar flame studies. Recent developments have shown that it is also a promising benchmark for highly turbulent (Ret ~ 1000) nonpremixed and premixed flames of direct relevance to gasturbine combustion. Case studies will demonstrate the versatility of the system in mimicking real flame effects, such as heat loss and flame stratification in premixed flames, and the compactness of the combustion region. The system may offer significant advantages from a computational viewpoint, including: a) aerodynamic flame stabilization near the interface between the two opposed jets, with ensuing simplifications in the prescription of boundary conditions; b) a fiftyfold reduction of the domain of interest as compared to conventional nonpremixed jet flames at the same Reynolds number; and c) millisecond mean residence times, which is particularly useful for DNS/LES computational modeling, and for soot suppression in the combustion of practical fuels.

  12. High Temperature Corrosion in Biomass-Fired Boilers

    DEFF Research Database (Denmark)

    Henriksen, Niels; Montgomery, Melanie; Hede Larsen, Ole


    condense on superheater components. This gives rise to specific corrosion problems not previously encountered in coal-fired power plants. The type of corrosion attack can be directly ascribed to the composition of the deposit and the metal surface temperature. To avoid such high corrosion rates, woodchip...... has also been utilised as a fuel. Combustion of woodchip results in a smaller amount of ash, and potassium and chlorine are present in lesser amounts. However, significant corrosion rates were still seen. A case study of a woodchip fired boiler is described. The corrosion mechanisms in both straw...


    Energy Technology Data Exchange (ETDEWEB)

    Palitha Jayaweera


    SRI is developing ceramic-based microsensors for detection of exhaust gases such as NO, NO{sub 2}, and CO in advanced combustion and gasification systems. The sensors detect the electrochemical activity of the exhaust gas species on catalytic electrodes and are designed to operate at high temperatures, elevated pressures, and corrosive environments typical of large power generation exhausts. Under this research project we are developing sensors for multiple gas detection in a single package along with data acquisition and control software and hardware. The sensor package can be easily integrated into online monitoring systems for active emission control. This report details the research activities performed from October 2003 to April 2004.

  14. Plasma Assisted Ignition and Combustion at Low Initial Gas Temperatures: Development of Kinetic Mechanism (United States)


    Argon (left) and Oxygen (right) atoms from their respec- tive ground states. The proximity of the fluorescence wavelengths ensures a more precise...Varying Repetition Rate and Pulse Width of Nanosecond Discharges on Premixed Lean Methane-Air Combustion Journal of Combustion 2012 137653 [16] Rethmel...International Journal of Flow Control 3 213-32 [17] Takashima K, Adamovich I V, Xiong Zh, Kushner M J, Starikovskaia S M, Czar- netzki U and Luggenhoelscher

  15. High Temperature Radio Frequency Loads

    CERN Document Server

    Federmann, S; Grudiev, A; Montesinos, E; Syratchev, I


    In the context of energy saving and recovery requirements the design of reliable and robust RF power loads which permit a high outlet temperature and high pressure of the cooling water is desirable. Cooling water arriving at the outlet withmore than 150 ◦C and high pressure has a higher value than water with 50 ◦C under low pressure. Conventional RF power loads containing dielectric and magnetic materials as well as sensitive ceramic windows usually do not permit going much higher than 90 ◦C. Here we present and discuss several design concepts for "metal only" RF high power loads. One concept is the application of magnetic steel corrugated waveguides near cutoff – this concept could find practical use above several GHz. Another solution are resonant structures made of steel to be installed in large waveguides for frequencies of 500 MHz or lower. Similar resonant structures above 100 MHz taking advantage of the rather high losses of normal steel may also be used in coaxial line geometries with large di...

  16. Influence of low-temperature combustion and dimethyl ether-diesel blends on performance, combustion, and emission characteristics of common rail diesel engine: a CFD study. (United States)

    Lamani, Venkatesh Tavareppa; Yadav, Ajay Kumar; Narayanappa, Kumar Gottekere


    Due to presence of more oxygen, absence of carbon-carbon (C-C) bond in chemical structure, and high cetane number of dimethyl ether (DME), pollution from DME operated engine is less compared to diesel engine. Hence, the DME can be a promising alternative fuel for diesel engine. The present study emphasizes the effect of various exhaust gas recirculation (EGR) rates (0-20%) and DME/Diesel blends (0-20%) on combustion characteristics and exhaust emissions of common rail direct injection (CRDI) engine using three-dimensional computational fluid dynamics (CFD) simulation. Extended coherent flame model-3 zone (ECFM-3Z) is implemented to carry out combustion analysis, and k-ξ-f model is employed for turbulence modeling. Results show that in-cylinder pressure marginally decreases with employing EGR compared to without EGR case. As EGR rate increases, nitrogen oxide (NO) formation decreases, whereas soot increases marginally. Due to better combustion characteristics of DME, indicated thermal efficiency (ITE) increases with the increases in DME/diesel blend ratio. Adverse effect of EGR on efficiency for blends is less compared to neat diesel, because the anoxygenated region created due to EGR is compensated by extra oxygen present in DME. The trade-off among NO, soot, carbon monoxide (CO) formation, and efficiency is studied by normalizing the parameters. Optimum operating condition is found at 10% EGR rate and 20% DME/diesel blend. The maximum indicated thermal efficiency was observed for DME/diesel ratio of 20% in the present range of study. Obtained results are validated with published experimental data and found good agreement.

  17. CFD Studies of Combustion in Direct Injection Single Cylinder Diesel Engine Using Non-Premixed Combustion Model

    Directory of Open Access Journals (Sweden)

    S Gavudhama Karunanidhi


    Full Text Available In this study the simulation process of non-premixed combustion in a direct injection single cylinder diesel engine has been described. Direct injection diesel engines are used both in heavy duty vehicles and light duty vehicles. The fuel is injected directly into the combustion chamber. The fuel mixes with the high pressure air in the combustion chamber and combustion occurs. Due to the non-premixed nature of the combustion occurring in such engines, non-premixed combustion model of ANSYS FLUENT 14.5 can be used to simulate the combustion process. A 4-stroke diesel engine corresponds to one fuel injector hole without considering valves was modeled and combustion simulation process was studied. Here two types of combustion chambers were compared. Combustion studies of both chambers:- shallow depth and hemispherical combustion chambers were carried out. Emission characteristics of both combustion chambers had also been carried out. The obtained results are compared. It has been found that hemispherical combustion chamber is more efficient as it produces higher pressure and temperature compared to that of shallow depth combustion chamber. As the temperature increases the formation of NOx emissions and soot formation also get increased.

  18. Straw combustion on slow-moving grates

    DEFF Research Database (Denmark)

    Kær, Søren Knudsen


    Combustion of straw in grate-based boilers is often associated with high emission levels and relatively poor fuel burnout. A numerical grate combustion model was developed to assist in improving the combustion performance of these boilers. The model is based on a one-dimensional ‘‘walking......-column’’ approach and includes the energy equations for both the fuel and the gas accounting for heat transfer between the two phases. The model gives important insight into the combustion process and provides inlet conditions for a computational fluid dynamics analysis of the freeboard. The model predictions...... indicate the existence of two distinct combustion modes. Combustion air temperature and mass flow-rate are the two parameters determining the mode. There is a significant difference in reaction rates (ignition velocity) and temperature levels between the two modes. Model predictions were compared...

  19. Investigation of reactions and species dominating low temperature combustion - Final report

    Energy Technology Data Exchange (ETDEWEB)

    Gerber, T.; Radi, P.; Knopp, G.; Tulej, M.


    This final report for the Swiss Federal Office of Energy (SFOE), reports on work done in 2007 at the Paul Scherrer Institute PSI in Switzerland on the quantitative description of ignition. processes and the influence of peroxy radicals that determine ignition and speciation of the intermediates initially present and, thereby, the progress of subsequent reactions. The authors note that for the preparation of peroxy radicals, a dedicated molecular beam apparatus has been built by the PSI's 'Molecular Dynamics' group. A novel radical source is operational. In many cases, specific radicals can be prepared with high selectivity. A description of flame chemistry is being worked on that can reliably predict the speciation of intermediate products during ignition. Laser-based measurement techniques are being applied at PSI to measure the static and dynamic properties of alkyl peroxy radicals in order to accurately describe their reaction behaviour in combustion processes. A dedicated synchrotron beam line is installed at the Swiss Light Source (SLS) that extends the available range of spectroscopic measurements into the VUV (vacuum-ultraviolet) wavelength domain. The results obtained are presented and discussed.

  20. Investigation of reactions and species dominating low temperature combustion - Final report

    Energy Technology Data Exchange (ETDEWEB)

    Gerber, T.; Radi, P.; Knopp, G.; Tulej, M.


    This final report for the Swiss Federal Office of Energy (SFOE), reports on work done in 2007 at the Paul Scherrer Institute PSI in Switzerland on the quantitative description of ignition. processes and the influence of peroxy radicals that determine ignition and speciation of the intermediates initially present and, thereby, the progress of subsequent reactions. The authors note that for the preparation of peroxy radicals, a dedicated molecular beam apparatus has been built by the PSI's 'Molecular Dynamics' group. A novel radical source is operational. In many cases, specific radicals can be prepared with high selectivity. A description of flame chemistry is being worked on that can reliably predict the speciation of intermediate products during ignition. Laser-based measurement techniques are being applied at PSI to measure the static and dynamic properties of alkyl peroxy radicals in order to accurately describe their reaction behaviour in combustion processes. A dedicated synchrotron beam line is installed at the Swiss Light Source (SLS) that extends the available range of spectroscopic measurements into the VUV (vacuum-ultraviolet) wavelength domain. The results obtained are presented and discussed.

  1. Pulsating combustion - Combustion characteristics and reduction of emissions

    Energy Technology Data Exchange (ETDEWEB)

    Lindholm, Annika


    In the search for high efficiency combustion systems pulsating combustion has been identified as one of the technologies that potentially can meet the objectives of clean combustion and good fuel economy. Pulsating combustion offers low emissions of pollutants, high heat transfer and efficient combustion. Although it is an old technology, the interest in pulsating combustion has been renewed in recent years, due to its unique features. Various applications of pulsating combustion can be found, mainly as drying and heating devices, of which the latter also have had commercial success. It is, however, in the design process of a pulse combustor, difficult to predict the operating frequency, the heat release etc., due to the lack of a well founded theory of the phenomenon. Research concerning control over the combustion process is essential for developing high efficiency pulse combustors with low emissions. Natural gas fired Helmholtz type pulse combustors have been the experimental objects of this study. In order to investigate the interaction between the fluid dynamics and the chemistry in pulse combustors, laser based measuring techniques as well as other conventional measuring techniques have been used. The experimental results shows the possibilities to control the combustion characteristics of pulsating combustion. It is shown that the time scales in the large vortices created at the inlet to the combustion chamber are very important for the operation of the pulse combustor. By increasing/decreasing the time scale for the large scale mixing the timing of the heat release is changed and the operating characteristics of the pulse combustor changes. Three different means for NO{sub x} reduction in Helmholtz type pulse combustors have been investigated. These include exhaust gas recirculation, alteration of air/fuel ratio and changed inlet geometry in the combustion chamber. All used methods achieved less than 10 ppm NO{sub x} emitted (referred to stoichiometric

  2. High Temperature Superconductor Accelerator Magnets

    CERN Document Server

    AUTHOR|(CDS)2079328; de Rijk, Gijs; Dhalle, Marc


    For future particle accelerators bending dipoles are considered with magnetic fields exceeding $20T$. This can only be achieved using high temperature superconductors (HTS). These exhibit different properties from classical low temperature superconductors and still require significant research and development before they can be applied in a practical accelerator magnet. In order to study HTS in detail, a five tesla demonstrator magnet named Feather-M2 is designed and constructed. The magnet is based on ReBCO coated conductor, which is assembled into a $10kA$ class Roebel cable. A new and optimized Aligned Block layout is used, which takes advantage of the anisotropy of the conductor. This is achieved by providing local alignment of the Roebel cable in the coil windings with the magnetic field lines. A new Network Model capable of analyzing transient electro-magnetic and thermal phenomena in coated conductor cables and coils is developed. This model is necessary to solve critical issues in coated conductor ac...

  3. Chemical effects of a high CO2 concentration in oxy-fuel combustion of methane

    DEFF Research Database (Denmark)

    Glarborg, Peter; Bentzen, L.L.B.


    in terms of a detailed chemical kinetic mechanism for hydrocarbon oxidation. On the basis of results of the present study, it can be expected that oxy-fuel combustion will lead to strongly increased CO concentrations in the near-burner region. The CO2 present will compete with O-2 for atomic hydrogen......The oxidation of methane in an atmospheric-pres sure flow reactor has been studied experimentally under highly diluted conditions in N-2 and CO2, respectively. The stoichiometry was varied from fuel-lean to fuel-rich, and the temperatures covered the range 1200-1800 K. The results were interpreted...... and lead to formation of CO through the reaction CO2 + H reversible arrow CO + OH. Reactions of CO2 with hydrocarbon radicals may also contribute to CO formation. The most important steps are those of singlet and triplet CH2 with CO2, while other radicals such as CH3 and CH are less important for consuming...

  4. Evaluation of the Sealed-tube Low-temperature Combustion Method for the 13C/12C and 2H/1H Ratio Determinations of Cellulose Nitrate

    Institute of Scientific and Technical Information of China (English)



    Traditionalluy+suggested combusion time of 1 h at 550℃ withthe sealed-tube combustion method for deternining the 13C/12C ratio of cellulose nitrate or other nitrogen-containing components could produce large negative deviation up to 1%o.Three types of cellulose are used to ascertain possible causes.The presence of nitrous oxide (N2O) formed during combus tion is most likely responsible for this deviation. Prolongation of the combustion time (at least 5 h at 550℃) and intimate coatact between copper oxide and organic matter can greatly improve the analysis precision and effectively reduce this devi ation to an acceptable level. Regardless of scattered carbon isotope data, hydrogen isotope data are all reproducible within 2‰ when this method is coupled with the high temperaure uranium reduction method. Thus, care should be taken for deternining carbon and nitrogen isotope com,positions of nitrogen-conaining substances using the low temperature sealedtube combustion method.

  5. High-temperature coal-syngas plasma characteristics for advanced MHD power generation

    Energy Technology Data Exchange (ETDEWEB)

    Mikheev, A.V.; Kayukawa, N.; Okinaka, N.; Kamada, Y.; Yatsu, S. [Hokkaido University, Hokkaido (Japan)


    Properties of magnetohydrodynamic (MHD) plasma based on syngas (CO, H{sub 2}) combustion products were investigated experimentally with shock tube facility. The experiments were carried out under various MHD generator load and shock tube operation conditions. Important characteristics of syngas plasma such as temperature, electric field, conductivity, and total output power were directly measured and evaluated. Special attention was paid to the influence of syngas composition (CO : H{sub 2} : O{sub 2} ratio). The results show that syngas combustion can provide high plasma ionization and attainable plasma electrical conductivity has an order of 60-80 S/m at gas temperature 3100-3300 K.

  6. Establishment of Combustion Model for Isooctane HCCI Marine Diesel Engine and Research on the Combustion Characteristic

    Directory of Open Access Journals (Sweden)

    Li Biao


    Full Text Available The homogeneous charge compression ignition (HCCI combustion mode applied in marine diesel engine is expected to be one of alternative technologies to decrease nitrogen oxide (NOX emission and improve energy utilization rate. Applying the chemical-looping combustion (CLC mechanism inside the cylinder, a numerical study on the HCCI combustion process is performed taking a marine diesel engine as application object. The characteristic feature of combustion process is displayed. On this basis, the formation and emission of NOX are analyzed and discussed. The results indicate that the HCCI combustion mode always exhibit two combustion releasing heats: low-temperature reaction and high-temperature reaction. The combustion phase is divided into low-temperature reaction zone, high-temperature reaction zone and negative temperature coefficient (NTC zone. The operating conditions of the high compression ratio, high intake air temperature, low inlet pressure and small excess air coefficient would cause the high in-cylinder pressure which often leads engine detonation. The low compression ratio, low intake air temperature and big excess air coefficient would cause the low combustor temperature which is conducive to reduce NOX emissions. These technological means and operating conditions are expected to meet the NOX emissions limits in MARPOL73/78 Convention-Annex VI Amendment.

  7. High-frequency combustion instability control through acoustic modulation at the inlet boundary for liquid rocket engine applications (United States)

    Bennewitz, John William

    This research investigation encompasses experimental tests demonstrating the control of a high-frequency combustion instability by acoustically modulating the propellant flow. A model rocket combustor burned gaseous oxygen and methane using a single-element, pentad-style injector. Flow conditions were established that spontaneously excited a 2430 Hz first longitudinal combustion oscillation at an amplitude up to p'/pc ≈ 6%. An acoustic speaker was placed at the base of the oxidizer supply to modulate the flow and alter the oscillatory behavior of the combustor. Two speaker modulation approaches were investigated: (1) Bands of white noise and (2) Pure sinusoidal tones. The first approach adjusted 500 Hz bands of white noise ranging from 0-500 Hz to 2000-2500 Hz, while the second implemented single-frequency signals with arbitrary phase swept from 500-2500 Hz. The results showed that above a modulation signal amplitude threshold, both approaches suppressed 95+% of the spontaneous combustion oscillation. By increasing the applied signal amplitude, a wider frequency range of instability suppression became present for these two acoustic modulation approaches. Complimentary to these experiments, a linear modal analysis was undertaken to investigate the effects of acoustic modulation at the inlet boundary on the longitudinal instability modes of a dump combustor. The modal analysis employed acoustically consistent matching conditions with a specific impedance boundary condition at the inlet to represent the acoustic modulation. From the modal analysis, a naturally unstable first longitudinal mode was predicted in the absence of acoustic modulation, consistent with the spontaneously excited 2430 Hz instability observed experimentally. Subsequently, a detailed investigation involving variation of the modulation signal from 0-2500 Hz and mean combustor temperature from 1248-1685 K demonstrated the unstable to stable transition of a 2300-2500 Hz first longitudinal mode. The

  8. High temperature control rod assembly

    Energy Technology Data Exchange (ETDEWEB)

    Vollman, Russell E. (Solana Beach, CA)


    A high temperature nuclear control rod assembly comprises a plurality of substantially cylindrical segments flexibly joined together in succession by ball joints. The segments are made of a high temperature graphite or carbon-carbon composite. The segment includes a hollow cylindrical sleeve which has an opening for receiving neutron-absorbing material in the form of pellets or compacted rings. The sleeve has a threaded sleeve bore and outer threaded surface. A cylindrical support post has a threaded shaft at one end which is threadably engaged with the sleeve bore to rigidly couple the support post to the sleeve. The other end of the post is formed with a ball portion. A hollow cylindrical collar has an inner threaded surface engageable with the outer threaded surface of the sleeve to rigidly couple the collar to the sleeve. the collar also has a socket portion which cooperates with the ball portion to flexibly connect segments together to form a ball and socket-type joint. In another embodiment, the segment comprises a support member which has a threaded shaft portion and a ball surface portion. The threaded shaft portion is engageable with an inner threaded surface of a ring for rigidly coupling the support member to the ring. The ring in turn has an outer surface at one end which is threadably engageably with a hollow cylindrical sleeve. The other end of the sleeve is formed with a socket portion for engagement with a ball portion of the support member. In yet another embodiment, a secondary rod is slidably inserted in a hollow channel through the center of the segment to provide additional strength. A method for controlling a nuclear reactor utilizing the control rod assembly is also included.

  9. High temperature autoclave vacuum seals (United States)

    Hoffman, J. R.; Simpson, W. G.; Walker, H. M.


    Aluminum sheet forms effective sealing film at temperatures up to 728 K. Soft aluminum wire rings provide positive seal between foil and platen. For applications at temperatures above aluminum's service temperature, stainless steel is used as film material and copper wire as sealant.

  10. Preparation of YAG: Ce3+ phosphor by sol-gel low temperature combustion method and its luminescent properties

    Institute of Scientific and Technical Information of China (English)

    YAN Xing-huang; ZHENG Song-sheng; YU Rui-min; CAI Jing; XU Zhi-wei; LIU Chun-jia; LUO Xue-tao


    YAG:Ce3+ phosphor was prepared by sol-gel low-temperature combustion method.The effects of the precursor properties and calcining temperature on the crystallization process,microscopic morphology and luminescent properties of phosphor were studied.The results indicate that the pure phase of YAG can be obtained at 800℃ by sol-gel low temperature combustion method,using citric acid as complexing agent.When the molar ratio of metal ion to citric acid is 2.0 and pH value is 2,the crystallinity increases and the phosphor particle size grows up gradually with the increase of the calcining temperature.The powders were characterized through thermal analysis,X-ray diffraction analysis and scanning electron microscope analysis.The excitation spectra of YAG: Ce3+ phosphor take on a double peak structure,and the peak value of the main excitation spectra occurs at 460nm and that of the emission spectra is near 530nm.With the gradual increase of the calcining temperature,the peak position of excitation and emission spectra remains basically unchanged,but its relative intensity increases gradually.

  11. Temperature Dependent Residual Stress Models for Ultra-High-Temperature Ceramics on High Temperature Oxidation (United States)

    Wang, Ruzhuan; Li, Weiguo


    The strength of SiC-depleted layer of ultra-high-temperature ceramics on high temperature oxidation degrades seriously. The research for residual stresses developed within the SiC-depleted layer is important and necessary. In this work, the residual stress evolutions in the SiC-depleted layer and the unoxidized substrate in various stages of oxidation are studied by using the characterization models. The temperature and oxidation time dependent mechanical/thermal properties of each phase in SiC-depleted layer are considered in the models. The study shows that the SiC-depleted layer would suffer from large tensile stresses due to the great temperature changes and the formation of pores on high temperature oxidation. The stresses may lead to the cracking and even the delamination of the oxidation layer.

  12. Temperature Dependent Residual Stress Models for Ultra-High-Temperature Ceramics on High Temperature Oxidation (United States)

    Wang, Ruzhuan; Li, Weiguo


    The strength of SiC-depleted layer of ultra-high-temperature ceramics on high temperature oxidation degrades seriously. The research for residual stresses developed within the SiC-depleted layer is important and necessary. In this work, the residual stress evolutions in the SiC-depleted layer and the unoxidized substrate in various stages of oxidation are studied by using the characterization models. The temperature and oxidation time dependent mechanical/thermal properties of each phase in SiC-depleted layer are considered in the models. The study shows that the SiC-depleted layer would suffer from large tensile stresses due to the great temperature changes and the formation of pores on high temperature oxidation. The stresses may lead to the cracking and even the delamination of the oxidation layer.

  13. Chemical kinetics of low and high temperature oxidation of reference fuels and of some additives at up to 40 bars; Cinetique chimique de l`oxydation de basse et haute temperature de combustibles de reference et de certains additifs jusqu`a 40 bars

    Energy Technology Data Exchange (ETDEWEB)

    Cathonnet, M.; Dagaut, Ph.; Reuillon, M.; Voisin, D. [Centre National de la Recherche Scientifique (CNRS), 45 - Orleans-la-Source (France). Laboratoire de Combustion et Systemes Reactifs


    A study of the oxidation of reference fuels for controlled ignition engines (n-heptane and iso-octane) and for turbojet engines (n-decane and TR0 kerosene) has been carried out in a self-agitated engine using gas jets at 1 to 40 bars and 550 to 1250 deg. K. Experimental results obtained have been used to propose a detailed kinetics mechanism for kerosene combustion. The study of the oxidation of oxygenated additives used in petrol (MTBE, ETBE, TAME, DIPE) and of the oxidation of a diesel substitute (DME) has been carried out in a self-agitated engine using gas jets at 1 to 10 bars and 800 to 1275 deg. K. These studies indicate that the oxidation of ether-type additives (MTBE, ETBE, TAME, DIPE) produces important oxygenated intermediates which are potential pollutants: formaldehyde, acetaldehyde, acrolein, and meth-acrolein. Butadiene and isoprene concentrations have been measured too. However, DME does not produce higher compounds but formaldehyde is one of its main oxidation intermediates. Chemical mechanisms leading to the formation of these pollutants are included in the proposed combustion models. (J.S.)

  14. Temperature-dependent high resolution absorption cross sections of propane (United States)

    Beale, Christopher A.; Hargreaves, Robert J.; Bernath, Peter F.


    High resolution (0.005 cm-1) absorption cross sections have been measured for pure propane (C3H8). These cross sections cover the 2550-3500 cm-1 region at five temperatures (from 296 to 700 K) and were measured using a Fourier transform spectrometer and a quartz cell heated by a tube furnace. Calibrations were made by comparison to the integrated cross sections of propane from the Pacific Northwest National Laboratory. These are the first high resolution absorption cross sections of propane for the 3 μm region at elevated temperatures. The cross sections provided may be used to monitor propane in combustion environments and in astronomical sources such as the auroral regions of Jupiter, brown dwarfs and exoplanets.

  15. Rational design of temperature swing adsorption cycles for post-combustion CO2 capture

    NARCIS (Netherlands)

    Joss, Lisa; Gazzani, Matteo|info:eu-repo/dai/nl/412517361; Mazzotti, Marco


    The design of temperature swing adsorption (TSA) cycles aimed at recovering the heavy product at high purity is investigated by model-based design and applied to the capture of CO2 from flue gases. This model based design strategy and an extensive parametric analysis enables gaining an understanding

  16. A Phenomenological Model for Prediction Auto-Ignition and Soot Formation of Turbulent Diffusion Combustion in a High Pressure Common Rail Diesel Engine

    Directory of Open Access Journals (Sweden)

    Qinghui Zhou


    Full Text Available A new phenomenological model, the TP (Temperature Phase model, is presented to carry out optimization calculations for turbulent diffusion combustion in a high-pressure common rail diesel engine. Temperature is the most important parameter in the TP model, which includes two parts: an auto-ignition and a soot model. In the auto-ignition phase, different reaction mechanisms are built for different zones. For the soot model, different methods are used for different temperatures. The TP model is then implemented in KIVA code instead of original model to carry out optimization. The results of cylinder pressures, the corresponding heat release rates, and soot with variation of injection time, variation of rail pressure and variation of speed among TP model, KIVA standard model and experimental data are analyzed. The results indicate that the TP model can carry out optimization and CFD (computational fluid dynamics and can be a useful tool to study turbulent diffusion combustion.

  17. Droplet evaporation in water jet at the motion through high temperature gases

    Directory of Open Access Journals (Sweden)

    Strizhak Pavel A.


    Full Text Available Heat and mass transfer model for the numerical investigation of the evaporation process of a single droplet in water jet when moving through high temperature gases was developed. The integral characteristics of the process under investigation were calculated. The macroscopic regularities of water droplet evaporation, as elements of jet, in the high temperature gas mixture (as exemplified by combustion products of typical condensed substances were determined.

  18. The Combustion of HMX. [burning rate at high pressures (United States)

    Boggs, T. L.; Price, C. F.; Atwood, A. I.; Zurn, D. E.; Eisel, J. L.


    The burn rate of HMX was measured at high pressures (p more than 1000 psi). The self deflagration rate of HMX was determined from 1 atmosphere to 50,000 psi. The burning rate shows no significant slope breaks.

  19. Self-sustained high-temperature reactions: initiation, propagation and synthesis

    NARCIS (Netherlands)

    Martinez Pacheco, M.


    Self-Propagating High-Temperature Synthesis (SHS), also called combustion synthesis is an exothermic and self-sustained reaction between the constituents, which has assumed significance for the production of ceramics and ceramic-metallic materials (cermets), because it is a very rapid processing tec

  20. Terascale High-Fidelity Simulations of Turbulent Combustion with Detailed Chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Im, Hong G [University of Michigan; Trouve, Arnaud [University of Maryland; Rutland, Christopher J [University of Wisconsin; Chen, Jacqueline H [Sandia National Laboratories


    The TSTC project is a multi-university collaborative effort to develop a high-fidelity turbulent reacting flow simulation capability utilizing terascale, massively parallel computer technology. The main paradigm of our approach is direct numerical simulation (DNS) featuring highest temporal and spatial accuracy, allowing quantitative observations of the fine-scale physics found in turbulent reacting flows as well as providing a useful tool for development of sub-models needed in device-level simulations. The code named S3D, developed and shared with Chen and coworkers at Sandia National Laboratories, has been enhanced with new numerical algorithms and physical models to provide predictive capabilities for spray dynamics, combustion, and pollutant formation processes in turbulent combustion. Major accomplishments include improved characteristic boundary conditions, fundamental studies of auto-ignition in turbulent stratified reactant mixtures, flame-wall interaction, and turbulent flame extinction by water spray. The overarching scientific issue in our recent investigations is to characterize criticality phenomena (ignition/extinction) in turbulent combustion, thereby developing unified criteria to identify ignition and extinction conditions. The computational development under TSTC has enabled the recent large-scale 3D turbulent combustion simulations conducted at Sandia National Laboratories.

  1. High-temperature thermocouples and related methods (United States)

    Rempe, Joy L.; Knudson, Darrell L.; Condie, Keith G.; Wilkins, S. Curt


    A high-temperature thermocouple and methods for fabricating a thermocouple capable of long-term operation in high-temperature, hostile environments without significant signal degradation or shortened thermocouple lifetime due to heat induced brittleness.

  2. High Temperature Superconducting Underground Cable

    Energy Technology Data Exchange (ETDEWEB)

    Farrell, Roger, A.


    The purpose of this Project was to design, build, install and demonstrate the technical feasibility of an underground high temperature superconducting (HTS) power cable installed between two utility substations. In the first phase two HTS cables, 320 m and 30 m in length, were constructed using 1st generation BSCCO wire. The two 34.5 kV, 800 Arms, 48 MVA sections were connected together using a superconducting joint in an underground vault. In the second phase the 30 m BSCCO cable was replaced by one constructed with 2nd generation YBCO wire. 2nd generation wire is needed for commercialization because of inherent cost and performance benefits. Primary objectives of the Project were to build and operate an HTS cable system which demonstrates significant progress towards commercial progress and addresses real world utility concerns such as installation, maintenance, reliability and compatibility with the existing grid. Four key technical areas addressed were the HTS cable and terminations (where the cable connects to the grid), cryogenic refrigeration system, underground cable-to-cable joint (needed for replacement of cable sections) and cost-effective 2nd generation HTS wire. This was the world’s first installation and operation of an HTS cable underground, between two utility substations as well as the first to demonstrate a cable-to-cable joint, remote monitoring system and 2nd generation HTS.

  3. High temperature suppression of dioxins. (United States)

    Zhan, Ming-Xiu; Chen, Tong; Fu, Jian-Ying; Lin, Xiao-Qing; Lu, Sheng-Yong; Li, Xiao-Dong; Yan, Jian-Hua; Buekens, Alfons


    Combined Sulphur-Nitrogen inhibitors, such as sewage sludge decomposition gases (SDG), thiourea and amidosulphonic acid have been observed to suppress the de novo synthesis of dioxins effectively. In this study, the inhibition of PCDD/Fs formation from model fly ash was investigated at unusually high temperatures (650 °C and 850 °C), well above the usual range of de novo tests (250-400 °C). At 650 °C it was found that SDG evolving from dried sewage sludge could suppress the formation of 2,3,7,8-substituted PCDD/Fs with high efficiency (90%), both in weight units and in I-TEQ units. Additionally, at 850 °C, three kinds of sulphur-amine or sulphur-ammonium compounds were tested to inhibit dioxins formation during laboratory-scale tests, simulating municipal solid waste incineration. The suppression efficiencies of PCDD/Fs formed through homogeneous gas phase reactions were all above 85% when 3 wt. % of thiourea (98.7%), aminosulphonic acid (96.0%) or ammonium thiosulphate (87.3%) was added. Differences in the ratio of PCDFs/PCDDs, in weight average chlorination level and in the congener distribution of the 17 toxic PCDD/Fs indicated that the three inhibitors tested followed distinct suppression pathways, possibly in relation to their different functional groups of nitrogen. Furthermore, thiourea reduced the (weight) average chlorinated level. In addition, the thermal decomposition of TUA was studied by means of thermogravimetry-fourier transform infrared spectroscopy (TG-FTIR) and the presence of SO2, SO3, NH3 and nitriles (N≡C bonds) was shown in the decomposition gases; these gaseous inhibitors might be the primary dioxins suppressants.

  4. Filtration combustion: Smoldering and SHS (United States)

    Matkowsky, Bernard J.


    Smolder waves and SHS (self-propagating high-temperature synthesis) waves are both examples of combustion waves propagating in porous media. When delivery of reactants through the pores to the reaction site is an important aspect of the process, it is referred to as filtration combustion. The two types of filtration combustion have a similar mathematical formulation, describing the ignition, propagation and extinction of combustion waves in porous media. The goal in each case, however, is different. In smoldering the desired goal is to prevent propagation, whereas in SHS the goal is to insure propagation of the combustion wave, leading to the synthesis of desired products. In addition, the scales in the two areas of application may well differ. For example, smoldering generally occurs at a relatively low temperature and with a smaller propagation velocity than SHS filtration combustion waves. Nevertheless, the two areas of application have much in common, so that mechanisms learned about in one application can be used to advantage in the other. In this paper we discuss recent results in the areas of filtration combustion.

  5. Development of a Pulsed Combustion Actuator For High-Speed Flow Control (United States)

    Cutler, Andrew D.; Beck, B. Terry; Wilkes, Jennifer A.; Drummond, J. Philip; Alderfer, David W.; Danehy, Paul M.


    This paper describes the flow within a prototype actuator, energized by pulsed combustion or detonations, that provides a pulsed jet suitable for flow control in high-speed applications. A high-speed valve, capable of delivering a pulsed stream of reactants a mixture of H2 and air at rates of up to 1500 pulses per second, has been constructed. The reactants burn in a resonant chamber, and the products exit the device as a pulsed jet. High frequency pressure transducers have been used to monitor the pressure fluctuations in the device at various reactant injection frequencies, including both resonant and off-resonant conditions. The combustion chamber has been constructed with windows, and the flow inside it has been visualized using Planar Laser-Induced Fluorescence (PLIF). The pulsed jet at the exit of the device has been observed using schlieren.

  6. High temperature power electronics for space (United States)

    Hammoud, Ahmad N.; Baumann, Eric D.; Myers, Ira T.; Overton, Eric


    A high temperature electronics program at NASA Lewis Research Center focuses on dielectric and insulating materials research, development and testing of high temperature power components, and integration of the developed components and devices into a demonstrable 200 C power system, such as inverter. An overview of the program and a description of the in-house high temperature facilities along with experimental data obtained on high temperature materials are presented.

  7. Boron nitride: A high potential support for combustion catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Postole, G. [Institut de Recherches sur la Catalyse, CNRS, 69626 Villeurbanne Cedex (France); ' I.G.Murgulescu' Institute of Physical Chemistry of the Romanian Academy Spl. Independentei 202, 060041 Bucharest (Romania); Caldararu, M. [' I.G.Murgulescu' Institute of Physical Chemistry of the Romanian Academy Spl. Independentei 202, 060041 Bucharest (Romania); Ionescu, N.I. [' I.G.Murgulescu' Institute of Physical Chemistry of the Romanian Academy Spl. Independentei 202, 060041 Bucharest (Romania); Bonnetot, B. [Laboratoire des Multimateriaux et Interfaces, UMR CNRS 5615, bat Berthollet, UCB Lyon I, 69622 Villeurbanne Cedex (France); Auroux, A. [Institut de Recherches sur la Catalyse, CNRS, 69626 Villeurbanne Cedex (France)]. E-mail:; Guimon, C. [LCPM, 2 Av. President Angot, 64053 Pau Cedex 9 (France)


    High surface area BN powders have been prepared from different precursors to be used as supports for noble metal catalysts. The more suitable boron nitride powders were obtained using polytrichoroborazine, pTCB, as precursor, leading to a surface area higher than 150 m{sup 2}/g. The BN powders were characterized by XRD, XPS, TG, SEM and adsorption microcalorimetry measurements (aniline and ammonia). The preliminary results showed a remarkable stability of the BN supports, even in the presence of moisture. Palladium impregnation of the BN powders was performed using a classical method and the obtained catalysts exhibited a high dispersion with Pd particles of about 4 nm.

  8. A novel high-heat transfer low-NO{sub x} natural gas combustion system. Phase 1 final report

    Energy Technology Data Exchange (ETDEWEB)

    Rue, D.M. [Institute of Gas Technology, Des Plaines, IL (United States); Fridman, A. [Univ. of Illinois, Chicago (United States); Viskanta, R. [Purdue Univ. (United States); Neff, D. [Cumbustion Tec, Inc. (United States)


    Phase I of the project focused on acquiring the market needs, modeling, design, and test plan information for a novel high-heat transfer low-NO{sub x} natural gas combustion system. All goals and objectives were achieved. The key component of the system is an innovative burner technology which combines high temperature natural gas preheating with soot formation and subsequent soot burnout in the flame, increases the system`s energy efficiency and furnace throughput, while minimizing the furnace air emissions, all without external parasitic systems. Work has included identifying industry`s needs and constraints, modeling the high luminosity burner system, designing the prototype burner for initial laboratory-scale testing, defining the test plan, adapting the burner technology to meet the industry`s needs and constraints, and outlining the Industrial Adoption Plan.

  9. High Fidelity Tool for Turbulent Combustion in Liquid Launch Propulsion Systems Based on Spray-Flamelet Methodology Project (United States)

    National Aeronautics and Space Administration — The innovation proposed here is a high-performance, high-fidelity simulation capability for simulating liquid rocket spray combustion based on a novel spray-flamelet...

  10. Time-resolved temperature and O atom measurements in nanosecond pulse discharges in combustible mixtures (United States)

    Lanier, Suzanne; Bowman, Sherrie; Burnette, David; Adamovich, Igor V.; Lempert, Walter R.


    The paper presents results of time-resolved rotational temperature measurements, by pure rotational coherent anti-Stokes Raman spectroscopy and absolute O atom number density measurements, by two-photon absorption laser induced fluorescence. The experiments were conducted in nanosecond pulse discharges in H2-O2-Ar and C2H4-O2-Ar mixtures, initially at room temperature, operated at a high pulse repetition rate of 40 kHz, in a plane-to-plane double dielectric barrier geometry at a pressure of 40 Torr. Intensified charge-coupled device images show that O2-Ar and H2-O2-Ar plasmas remain diffuse and volume-filling during the entire burst. Images taken in C2H4-O2-Ar plasma demonstrate significant discharge filamentation and constriction along the center plane and in the corners of the test section. The experimental results demonstrate high accuracy of pure rotational psec CARS for thermometry measurements at low partial pressures of oxygen in nonequilibrium plasmas. The results are compared with kinetic modeling calculations, using two different H2-O2 chemistry and C2H4-O2 chemistry mechanisms. In H2-O2-Ar mixtures, the kinetic modeling predictions are in fairly good agreement with the data, predicting temperature rise and O atom accumulation in long discharge bursts, up to 450 pulses. The results show that adding hydrogen to the mixture results in an additional temperature rise, due to its partial oxidation by radicals generated in the plasma, essentially without chain branching. In C2H4-O2-Ar mixtures, the model consistently underpredicts both temperature and O atom number density. The most likely reason for the difference between the experimental data and model predictions is discharge filamentation developing when ethylene is added to the O2-Ar mixture, at fairly low temperatures.

  11. High Temperature Chemistry at NASA: Hot Topics (United States)

    Jacobson, Nathan S.


    High Temperature issues in aircraft engines Hot section: Ni and Co based Superalloys Oxidation and Corrosion (Durability) at high temperatures. Thermal protection system (TPS) and RCC (Reinforced Carbon-Carbon) on the Space Shuttle Orbiter. High temperatures in other worlds: Planets close to their stars.

  12. Performance Evaluation of a High Bandwidth Liquid Fuel Modulation Valve for Active Combustion Control (United States)

    Saus, Joseph R.; DeLaat, John C.; Chang, Clarence T.; Vrnak, Daniel R.


    At the NASA Glenn Research Center, a characterization rig was designed and constructed for the purpose of evaluating high bandwidth liquid fuel modulation devices to determine their suitability for active combustion control research. Incorporated into the rig s design are features that approximate conditions similar to those that would be encountered by a candidate device if it were installed on an actual combustion research rig. The characterized dynamic performance measures obtained through testing in the rig are planned to be accurate indicators of expected performance in an actual combustion testing environment. To evaluate how well the characterization rig predicts fuel modulator dynamic performance, characterization rig data was compared with performance data for a fuel modulator candidate when the candidate was in operation during combustion testing. Specifically, the nominal and off-nominal performance data for a magnetostrictive-actuated proportional fuel modulation valve is described. Valve performance data were collected with the characterization rig configured to emulate two different combustion rig fuel feed systems. Fuel mass flows and pressures, fuel feed line lengths, and fuel injector orifice size was approximated in the characterization rig. Valve performance data were also collected with the valve modulating the fuel into the two combustor rigs. Comparison of the predicted and actual valve performance data show that when the valve is operated near its design condition the characterization rig can appropriately predict the installed performance of the valve. Improvements to the characterization rig and accompanying modeling activities are underway to more accurately predict performance, especially for the devices under development to modulate fuel into the much smaller fuel injectors anticipated in future lean-burning low-emissions aircraft engine combustors.

  13. Preliminary Strength Measurements of High Temperature Ash Filter Deposits

    Energy Technology Data Exchange (ETDEWEB)

    Kang, B.S.; Johnson, E.K.; Mallela, R.; Barberio, J.F. [West Virginia Univ., Morgantown, WV (United States). Dept. of Mechanical and Aerospace Engineering


    The objective of this study is to develop and evaluate preliminary strength measurement techniques for high temperature candle filter ash deposits. The efficient performance of a high temperature gas filtering system is essential for many of the new thermal cycles being proposed for power plants of the future. These new cycles hold the promise of higher thermal efficiency and lower emissions of pollutants. Many of these cycles involve the combustion or gasification of coal to produce high temperature gases to eventually be used in gas turbines. These high temperature gases must be relatively free of particulates. Today, the candle filter appears to be the leading candidate for high temperature particulate removal. The performance of a candle filter depends on the ash deposits shattering into relatively large particles during the pulse cleaning (back flushing) of the filters. These relatively large particles fall into the ash hopper and are removed from the system. Therefore, these 1247 particles must be sufficiently large so that they will not be re-entrained by the gas flow. The shattering process is dictated by the strength characteristics of the ash deposits. Consequently, the objective of this research is to develop measurements for the desired strength characteristics of the ash deposits. Experimental procedures were developed to measure Young`s modulus of the ash deposit at room temperature and the failure tensile strain of ash deposits from room temperature to elevated temperatures. Preliminary data has been obtained for both soft and hard ash deposits. The qualifier ``preliminary`` is used to indicate that these measurements are a first for this material, and consequently, the measurement techniques are not perfected. In addition, the ash deposits tested are not necessarily uniform and further tests are needed in order to obtain meaningful average data.

  14. Open-cycle magnetohydrodynamic power plant based upon direct-contact closed-loop high-temperature heat exchanger (United States)

    Berry, Gregory F.; Minkov, Vladimir; Petrick, Michael


    A magnetohydrodynamic (MHD) power generating system in which ionized combustion gases with slag and seed are discharged from an MHD combustor and pressurized high temperature inlet air is introduced into the combustor for supporting fuel combustion at high temperatures necessary to ionize the combustion gases, and including a heat exchanger in the form of a continuous loop with a circulating heat transfer liquid such as copper oxide. The heat exchanger has an upper horizontal channel for providing direct contact between the heat transfer liquid and the combustion gases to cool the gases and condense the slag which thereupon floats on the heat transfer liquid and can be removed from the channel, and a lower horizontal channel for providing direct contact between the heat transfer liquid and pressurized air for preheating the inlet air. The system further includes a seed separator downstream of the heat exchanger.

  15. Development of Apparatus for Microgravity Experiments on Evaporation and Combustion of Palm Methyl Ester Droplet in High-Pressure Environments (United States)

    Suzuki, Masato; Nomura, Hiroshi; Hashimoto, Nozomu

    New apparatus for microgravity experiments was developed in order to obtain fundamental data of single droplet evaporation and combustion of palm methyl ester (PME) for understanding PME spray combustion in internal combustion engines. n-hexadecane droplet combustion and evaporation experiments were also performed to obtain single-component fuel data. Combustion experiments were performed at atmospheric pressure and room temperature. For droplet evaporation experiments, ambient temperature and pressure were varied from 473 to 873 K and 0.10 to 4.0 MPa, respectively. Microgravity conditions were employed for evaporation experiments to prevent natural convection. Droplet diameter history of a burning PME droplet is similar to that of n-hexadecane. Droplet diameter history of an evaporating PME droplet is different from that of n-hexadecane at low ambient temperatures. In the latest stage of PME droplet evaporation, temporal evaporation constant decreases remarkably. At ambient temperatures sufficiently above the boiling temperature of PME components, droplet diameter history of PME and n-hexadecane are similar to each other. Corrected evaporation lifetime τ of PME at 873 K as a function of ambient pressure was obtained at normal and microgravity. At normal gravity, τ monotonically decreases with ambient pressure. On the other hand, at microgravity, τ increases with ambient pressure, and then decreases.

  16. Performance of a Novel Hydrophobic Mesoporous Material for High Temperature Catalytic Oxidation of Naphthalene

    Directory of Open Access Journals (Sweden)

    Guotao Zhao


    Full Text Available A high surface area, hydrophobic mesoporous material, MFS, has been successfully synthesized by a hydrothermal synthesis method using a perfluorinated surfactant, SURFLON S-386, as the single template. N2 adsorption and TEM were employed to characterize the pore structure and morphology of MFS. Static water adsorption test indicates that the hydrophobicity of MFS is significantly higher than that of MCM-41. XPS and Py-GC/MS analysis confirmed the existence of perfluoroalkyl groups in MFS which led to its high hydrophobicity. MFS was used as a support for CuO in experiments of catalytic combustion of naphthalene, where it showed a significant advantage over MCM-41 and ZSM-5. SEM was helpful in understanding why CuO-MFS performed so well in the catalytic combustion of naphthalene. Experimental results indicated that MFS was a suitable support for catalytic combustion of large molecular organic compounds, especially for some high temperature catalytic reactions when water vapor was present.

  17. Shock wave reflection induced detonation (SWRID) under high pressure and temperature condition in closed cylinder (United States)

    Wang, Z.; Qi, Y.; Liu, H.; Zhang, P.; He, X.; Wang, J.


    Super-knock is one of the major obstacles for improving power density in advanced internal combustion engines (ICE). This work studied the mechanism of super-knock initiation using a rapid compression machine that simulated conditions relevant to ICEs and provided excellent optical accessibility. Based on the high-speed images and pressure traces of the stoichiometric iso-octane/oxygen/nitrogen combustion under high-temperature and high-pressure conditions, it was observed that detonation was first initiated in the near-wall region as a result of shock wave reflection. Before detonation was initiated, the speed of the combustion wave front was less than that of the Chapman-Jouguet (C-J) detonation speed (around 1840 m/s). In the immediate vicinity of the initiation, the detonation speed was much higher than that of the C-J detonation.

  18. Synthesis and characterization of zinc ferrite nanoparticles obtained by self-propagating low-temperature combustion method

    Indian Academy of Sciences (India)

    P M Prithviraj Swamy; S Basavaraja; Arunkumar Lagashetty; N V Srinivas Rao; R Nijagunappa; A Venkataraman


    The self-propagating low-temperature combustion method was used to produce nanocrystalline particles of zinc ferrite. The products were characterized for chemical and phase composition, morphology and magnetic properties. The results obtained showed the formation of single-phase zinc ferrite nanoparticles with an average particle size of about 40 nm. As-synthesized powder displayed good magnetic property. Due to the simplicity and low cost of this process, it could also become a valuable starting point for the generation of other mixed and complex ferrites.

  19. NO{sub x} formation in lean premixed combustion of methane at high pressures

    Energy Technology Data Exchange (ETDEWEB)

    Bengtsson, K.U.M.; Griebel, P.; Schaeren, R. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)


    High pressure experiments in a jet-stirred reactor have been performed to study the NO{sub x} formation in lean premixed combustion of methane/air mixtures. The experimental results are compared with numerical predictions using four well known reaction mechanisms and a model which consists of a series of two perfectly stirred reactors and a plug flow reactor. (author) 2 figs., 7 refs.

  20. Laser Brazing of High Temperature Braze Alloy (United States)

    Gao, Y. P.; Seaman, R. F.; McQuillan, T. J.; Martiens, R. F.


    The Space Shuttle Main Engine (SSME) consists of 1080 conical tubes, which are furnace brazed themselves, manifolds, and surrounding structural jacket making almost four miles of braze joints. Subsequent furnace braze cycles are performed due to localized braze voids between the coolant tubes. SSME nozzle experiences extremely high heat flux (180 mW/sq m) during hot fire. Braze voids between coolant tubes may result in hot combustion gas escape causing jacket bulges. The nozzle can be disqualified for flight or result in mission failure if the braze voids exceed the limits. Localized braze processes were considered to eliminate braze voids, however, damage to the parent materials often prohibited use of such process. Being the only manned flight reusable rocket engine, it has stringent requirement on the braze process. Poor braze quality or damage to the parent materials limits the nozzle service life. The objective of this study was to develop a laser brazing process to provide quality, localized braze joints without adverse affect on the parent materials. Gold (Au-Cu-Ni-Pd-Mn) based high temperature braze alloys were used in both powder and wire form. Thin section iron base superalloy A286 tube was used as substrate materials. Different Laser Systems including CO2 (10.6 micrometers, 1kW), ND:YAG (1.06 micrometers, 4kW). and direct diode laser (808nm. 150W) were investigated for brazing process. The laser process variables including wavelength. laser power, travel speed and angle of inclination were optimized according to bead geometry and braze alloy wetting at minimum heat input level, The properties of laser brazing were compared to that of furnace brazing. Microhardness profiles were used for braze joint property comparison between laser and furnace brazing. The cooling rate of laser brazing was compared to furnace brazing based on secondary dendritic arm spacing, Both optical and Scanning Electron Microscope (SEM) were used to evaluate the microstructures of

  1. Structure, provenance and residence time of terrestrial organic carbon: insights from Programmed temperature Pyrolysis-Combustion of river sediments (United States)

    Feng, X.; Galy, V.; Rosenheim, B. E.; Roe, K. M.; Williams, E. K.


    The terrestrial organic carbon (OC) represents one of the largest reservoirs of C on earth and thus plays a crucial role in the global C cycle, participating to the regulation of atmospheric chemistry. While degradation of sedimentary OC (petrogenic C) is a source of CO2 for the atmosphere, burial of biospheric C (e.g. plant debris and soil OC) is a long-term sequestration of atmospheric CO2. Over short timescales, the atmospheric CO2 level is also sensitive to variations of the residence time of carbon in continental reservoirs. Fluvial transport plays a crucial role in the organic carbon cycle, constituting the connection between the different reservoirs and promoting the transfer of C from one reservoir to the other. Moreover, thanks to the integrating effect of erosion, studying river sediments allows the spatial and temporal integration of organic carbon exchanges occurring in a given basin. OC transported by rivers (riverine OC) is known to be extremely heterogeneous in nature and reactivity, however; ranging from extremely refractory petrogenic C (e.g. graphite) to soil complex OC to labile vegetation debris. Here we use a recently developed method, a programmed-temperature pyrolysis-combustion system (PTP-CS) coupled to multiisotopic analysis, to determine the reactivity, age and nature of OC in river sediments. The method takes advantage of the wide range of reactivity and radiocarbon content of different components of riverine OC. We submitted to PTP-CS a set of river sediments from 1) the Ganges-Brahmputra river system and, 2) the lower Mississippi river. Preliminary results highlight the heterogeneous nature of riverine OC. Different components of the riverine OC pool decompose at different temperature and are characterized by extremely variable isotopic compositions. The decomposition of radiocarbon dead petrogenic C at very high temperature allows estimating the respective contribution of biospheric and petrogenic C. Moreover, biospheric OC appears to

  2. Sandia Combustion Research Program: Annual report, 1986

    Energy Technology Data Exchange (ETDEWEB)


    This report presents research results of the past year, divided thematically into some ten categories. Publications and presentations arising from this work are included in the appendix. Our highlighted accomplishment of the year is the announcement of the discovery and demonstration of the RAPRENOx process. This new mechanism for the elimination of nitrogen oxides from essentially all kinds of combustion exhausts shows promise for commercialization, and may eventually make a significant contribution to our nation's ability to control smog and acid rain. The sections of this volume describe the facility's laser and computer system, laser diagnostics of flames, combustion chemistry, reacting flows, liquid and solid propellant combustion, mathematical models of combustion, high-temperature material interfaces, studies of engine/furnace combustion, coal combustion, and the means of encouraging technology transfer. 182 refs., 170 figs., 12 tabs.

  3. Analysis regarding steam generator furnace's incident heat, temperature and composition of combustion gases; Analisis de calor incidente, temperatura y composicion de gases de combustion en hornos de generadores de vapor

    Energy Technology Data Exchange (ETDEWEB)

    Diego Marin, Antonio [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico)


    In order to obtain more precise evaluations of the combustion process in the furnace of a steam generator a suction pyrometer has been integrated to measure the temperature of the combustion gases; an ellipsoidal radiometer to measure the incident heat by thermal radiation in the water walls; a water cooled probe to determine the particle concentration, as well as a water cooled probe to determine the composition of the combustion gases present. This document clarifies the form of use of these instruments and their engineering specifications, simultaneously presenting an analysis that considers, unlike others, the internal conditions of the furnace to obtain a more precise evaluation of the efficiency that the combustion process presents and bases for the taking of preventive actions in specific zones of the furnace. Thus, the present work exhibits instruments and techniques of analysis to study the phenomena occurring within a steam generator. [Spanish] Con el fin de obtener evaluaciones mas precisas del proceso de combustion en el horno de un generador de vapor, se ha integrado un pirometro de succion para medir la temperatura de los gases de combustion; un radiometro elipsoidal para medir el calor incidente por radiacion termica en las paredes del agua; una sonda enfriada con agua para determinar la concentracion de particulas, asi como una sonda refrigerada con agua para determinar la composicion de los gases de combustion presentes. Este documento aclara la forma de uso de estos instrumentos y sus especificaciones tecnicas, a la vez que presenta un analisis que considera, a diferencia de otros, las condiciones internas del horno para obtener una evaluacion mas precisa sobre la eficiencia del proceso de combustion y bases para la toma de acciones preventivas en zonas especificas del horno. Asi, el presente trabajo exhibe instrumentos y tecnicas de analisis para estudiar los fenomenos que ocurren dentro de un generador de vapor.

  4. Calcium aluminate silicate Ca2Al2SiO7 single crystal applicable to piezoelectric sensors at high temperature (United States)

    Takeda, Hiroaki; Hagiwara, Manabu; Noguchi, Hiroaki; Hoshina, Takuya; Takahashi, Tomoko; Kodama, Nobuhiro; Tsurumi, Takaaki


    Ca2Al2SiO7 (CAS) bulk single crystals were grown by the Czochralski method. Material constants of the crystal were determined over the driving temperature range of a typical combustion pressure sensor. The electrical resistivity at 800 °C was found to be of the order of 108 Ωcm. We constructed a measurement system for the direct piezoelectric effect at high temperature, and characterized the crystals in a simulated engine cylinder combustion environment. Output charge signal against applied stress was detected at 700 °C. These observations suggest that CAS crystals are superior candidate materials for high temperature for stress sensing.

  5. Combustion Effects in Laser-oxygen Cutting: Basic Assumptions, Numerical Simulation and High Speed Visualization (United States)

    Zaitsev, Alexander V.; Ermolaev, Grigory V.

    Laser-oxygen cutting is very complicated for theoretical description technological process. Iron-oxygen combustion playing a leading role making it highly effective, able to cut thicker plates and, at the same time, producing special types of striations and other defects on the cut surface. In this paper results of numerical simulation based on elementary assumptions on iron-oxygen combustion are verified with high speed visualization of laser-oxygen cutting process. On a base of assumption that iron oxide lost its protective properties after melting simulation of striation formation due cycles of laser induced non self-sustained combustion is proposed. Assumption that reaction limiting factor is oxygen transport from the jet to cutting front allows to calculate reaction intensity by solving Navier - Stokes and diffusion system in gas phase. Influence of oxygen purity and pressure is studied theoretically. The results of numerical simulation are examined with high speed visualization of laser-oxygen cutting of 4-20 mm mild steel plates at cutting conditions close to industrial.

  6. Indicating the primary combustion situation by monitoring the top grate temperature; Indikation av foerbraenningssituationen i nedre del av eldstad genom temperaturmaetning paa rostens foersta del

    Energy Technology Data Exchange (ETDEWEB)

    Ramstroem, Erik; Larfeldt, Jenny [TPS Termiska Processer AB, Nykoeping (Sweden)


    In order to minimise the negative influence from varying fuel quality and irregular fuel distribution on the grate it is of interest to find early indicators on such 'disturbances' and, secondly, to develop a control strategy (air supply, grate movement and such) which minimises the effect of the disturbance. Here IR sensors were used to measure the fuel bed surface temperature as a possible indicator of the combustion situation in the lower part of the furnace. Four IR sensors were installed in boiler 3 at Tekniska Verken i Linkoeping where a mix of 60 % demolishion wood, 30 % bark and 10 % plastic is burnt. The surface temperature of the bed was found to be rather high already as the fuel reaches the grate. This was independent of the fuel moisture content. A possible explanation for this is a fast ignition of the plastic fraction in the fuel mix resulting in flames at the fuel bed surface. Fuel sampling have revealed that the moisture content in the fuel is not evenly distributed but varies between the fuel fractions. Thus high variations in moisture content occur as the fuel composition varies. A relation between the grate temperature in the first zone and the moisture content in the fuel was however found. It has been shown that the information given by the indicated temperatures on the fuel bed from IR sensors at the beginning of the grate in Linkoeping boiler 3 is not sufficient to control the grate. It remains to investigate if the performance of the IR sensors will improve for combustion of a more homogeneous fuel on a grate. There is a lack of knowledge about the complex phenomena occurring on a grate which prevents the development of prediction tools and control strategies. Continued work is required to find better indicators and improved theoretical descriptions as well as improved control strategies.

  7. Thermodynamics of High Temperature Plasmas

    Directory of Open Access Journals (Sweden)

    Ettore Minardi


    Full Text Available In this work we discuss how and to what extent the thermodynamic concepts and the thermodynamic formalism can be extended to the description of high temperature states of the plasma not necessarily associated with a Boltzmann distribution and with thermal equilibrium.The discussion is based on the “magnetic or electrostatic entropy concept”, an interpretative and predictive tool based on probability and information, defined in a suitably coarse-grained possibility space of all current density or of all electric charge density distributions under testable constraints, and whose variation properties are proven to be related under certain conditions to the equilibrium and the stability of the system. In the case of magnetic equilibrium the potentiality of the magnetic entropy concept is illustrated by comparing the predictions of the current density and pressure profiles with the observations in different tokamak machines and different tokamak regimes, as well as by showing how the equilibrium and the stability in devices as different as the reversed field pinch or the magnetic well are described by the variation properties of the same entropy functional applied to the different situations. In fact it emerges that the maximum of the entropy can be seen in these different cases as an optimization constraint for the minimum of the magnetic energy. The application of the entropy concept to the electrostatic processes shows in particular that the so-called reactive instabilities (non-dissipative, non-resonant instabilities with a marginal point admit a neighboring state with higher entropy and are therefore of special relevance from the point of view of the physical evolution of the system. In this case the thermodynamic formalism allows the introduction of the concept of “thermodynamic fluctuations” of the macroscopic charge density and provides a method for the calculation of the “thermodynamic” fluctuation levels both on the stable as

  8. High Temperature Chemistry of Aromatic Hydrocarbons. Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Scott, Lawrence T. [Boston College, Chestnut Hill, MA (United States). Merkert Chemistry Center, Dept. of Chemistry


    The primary goal of this research was to uncover the principal reaction channels available to polycyclic aromatic hydrocarbons (PAHs) at high temperatures in the gas phase and to establish the factors that determine which channels will be followed in varying circumstances. New structure-property relationships for PAHs were also studied. The efficient production of clean energy from fossil fuels will remain a major component of the DOE mission until alternative sources of energy eventually displace coal and petroleum. Hydrocarbons constitute the most basic class of compounds in all of organic chemistry, and as the dominant species in fossil fuels, they figure prominently into the programs of the DOE. Much is already known about the normal chemistry of hydrocarbons under ambient conditions, but far less is known about their intrinsic chemistry at temperatures close to those reached during combustion. An understanding of the fundamental molecular transformations, rearrangements, and interconversions of PAHs at high temperatures in the gas phase, as revealed by careful studies on small, well-designed, molecular systems, provides insights into the underlying chemistry of many important processes that are more complex, such as the generation of energy by the combustion of fossil fuels, the uncatalyzed gasification and liquefaction of coal, the production of fullerenes in fuel-rich flames, and the formation of soot and carcinogenic pollutants in smoke (e.g., benzo[a]pyrene). The rational control of any of these processes, whether it be the optimization of a desirable process or the minimization of an undesirable one, requires a clear knowledge of the basic chemistry that governs the fate of the species involved. Advances in chemistry at the most fundamental level come about primarily from the discovery of new reactions and from new insights into how reactions occur. Harnessing that knowledge is the key to new technologies. The recent commercialization of a combustion

  9. High temperature superconducting fault current limiter

    Energy Technology Data Exchange (ETDEWEB)

    Hull, John R. (Hinsdale, IL)


    A fault current limiter (10) for an electrical circuit (14). The fault current limiter (10) includes a high temperature superconductor (12) in the electrical circuit (14). The high temperature superconductor (12) is cooled below its critical temperature to maintain the superconducting electrical properties during operation as the fault current limiter (10).

  10. Experimental Investigation of Injection Strategies on Low Temperature Combustion Fuelled with Gasoline in a Compression Ignition Engine

    Directory of Open Access Journals (Sweden)

    Binbin Yang


    Full Text Available The present study focuses on the experimental investigation on the effect of fuel injection strategies on LTC with gasoline on a single-cylinder CI engine. Firstly, the engine performance and emissions have been explored by sweeping SOI1 and split percentage for the load of 0.9 MPa IMEP at an engine speed of 1500 rpm. Then, the double-injection strategy has been tested for load expansion compared with single-injection. The results indicate that, with the fixed CA50, the peak HRR is reduced by advancing SOI1 and increasing split percentage gradually. Higher indicated thermal efficiency, as well as lower MPRR and COV, can be achieved simultaneously with later SOI1 and higher split percentage. As split percentage increases, NOX emission decreases but soot emission increases. CO and THC emissions are increased by earlier SOI1, resulting in a slight decrease in combustion efficiency. Compared with single-injection, the double-injection strategy enables successful expansion of high-efficiency and clean combustion region, with increasing soot, CO, and THC emissions at high loads and slightly declining combustion efficiency and indicated thermal efficiency, however. MPRR and soot emission are considered to be the predominant constraints to the load expansion of gasoline LTC, and they are related to their trade-off relationship.

  11. A high-order public domain code for direct numerical simulations of turbulent combustion

    CERN Document Server

    Babkovskaia, N; Brandenburg, A


    A high-order scheme for direct numerical simulations of turbulent combustion is discussed. Its implementation in the massively parallel and publicly available Pencil Code is validated with the focus on hydrogen combustion. Ignition delay times (0D) and laminar flame velocities (1D) are calculated and compared with results from the commercially available Chemkin code. The scheme is verified to be fifth order in space. Upon doubling the resolution, a 32-fold increase in the accuracy of the flame front is demonstrated. Finally, also turbulent and spherical flame front velocities are calculated and the implementation of the non-reflecting so-called Navier-Stokes Characteristic Boundary Condition is validated in all three directions.

  12. (Krauss) at constant high temperatures

    African Journals Online (AJOL)

    the various physical and chemical factors that may affect freshwater snails. However ... order to assess the effect of temperature on the organism, it is essential to ..... of snails by parasites is of cardinal importance to shed light on the population ...

  13. Deep Trek High Temperature Electronics Project

    Energy Technology Data Exchange (ETDEWEB)

    Bruce Ohme


    This report summarizes technical progress achieved during the cooperative research agreement between Honeywell and U.S. Department of Energy to develop high-temperature electronics. Objects of this development included Silicon-on-Insulator (SOI) wafer process development for high temperature, supporting design tools and libraries, and high temperature integrated circuit component development including FPGA, EEPROM, high-resolution A-to-D converter, and a precision amplifier.

  14. A Novel High-Heat Transfer Low-NO{sub x} Natural Gas Combustion System. Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Abbasi, H.


    A novel high-heat transfer low NO(sub x) natural gas combustion system. The objectives of this program are to research, develop, test, and commercialize a novel high-heat transfer low-NO{sub x} natural gas combustion system for oxygen-, oxygen-enriched air, and air-fired furnaces. This technology will improve the process efficiency (productivity and product quality) and the energy efficiency of high-temperature industrial furnaces by at least 20%. GTI's high-heat transfer burner has applications in high-temperature air, oxygen-enriched air, and oxygen furnaces used in the glass, metals, cement, and other industries. Development work in this program is focused on using this burner to improve the energy efficiency and productivity of glass melting furnaces that are major industrial energy consumers. The following specific project objectives are defined to provide a means of achieving the overall project objectives. (1) Identify topics to be covered, problems requiring attention, equipment to be used in the program, and test plans to be followed in Phase II and Phase III. (2) Use existing codes to develop models of gas combustion and soot nucleation and growth as well as a thermodynamic and parametric description of furnace heat transfer issues. (3) Conduct a parametric study to confirm the increase in process and energy efficiency. (4) Design and fabricate a high-heat transfer low-NOx natural gas burners for laboratory, pilot- and demonstration-scale tests. (5) Test the high-heat transfer burner in one of GTI's laboratory-scale high-temperature furnaces. (6) Design and demonstrate the high-heat transfer burner on GTI's unique pilot-scale glass tank simulator. (7) Complete one long term demonstration test of this burner technology on an Owens Corning full-scale industrial glass melting furnace. (8) Prepare an Industrial Adoption Plan. This Plan will be updated in each program Phase as additional information becomes available. The Plan will include

  15. Nonluminous Spray Combustion in a Jet-Mixing-Type Combustor



    A new combustion system called a jet-mixing-type combustor was designed to obtain a nonluminous blue flame of a kerosene spray. A spray was injected by a conventional-type swirl atomizer into the combustor, and combustion air was introduced through a baffle plate with 16 inlet holes. The principle of this combustion method was revealed as a prompt mixing of the air and spray, which was achieved by high-speed air jets. The combustion characteristics such as combustion stability, temperature di...

  16. Quantitative Analysis of Spectral Interference of Spontaneous Raman Scattering in High-Pressure Fuel-Rich H2-Air Combustion (United States)

    Kojima, Jun; Nguyen, Quang-Viet


    We present a theoretical study of the spectral interferences in the spontaneous Raman scattering spectra of major combustion products in 30-atm fuel-rich hydrogen-air flames. An effective methodology is introduced to choose an appropriate line-shape model for simulating Raman spectra in high-pressure combustion environments. The Voigt profile with the additive approximation assumption was found to provide a reasonable model of the spectral line shape for the present analysis. The rotational/vibrational Raman spectra of H2, N2, and H2O were calculated using an anharmonic-oscillator model using the latest collisional broadening coefficients. The calculated spectra were validated with data obtained in a 10-atm fuel-rich H2-air flame and showed excellent agreement. Our quantitative spectral analysis for equivalence ratios ranging from 1.5 to 5.0 revealed substantial amounts of spectral cross-talk between the rotational H2 lines and the N2 O-/Q-branch; and between the vibrational H2O(0,3) line and the vibrational H2O spectrum. We also address the temperature dependence of the spectral cross-talk and extend our analysis to include a cross-talk compensation technique that removes the nterference arising from the H2 Raman spectra onto the N2, or H2O spectra.

  17. Optimizing Low Temperature Diesel Combustion (LTC-D) "FreedomCAR and Vehicle Technologies Program Solicitation for University Research and Graduate Automotice Technology Education (GATE) Centers of Excellence"

    Energy Technology Data Exchange (ETDEWEB)

    Rolf Reitz; P. Farrell; D. Foster; J. Ghandhi; C. Rutland; S. Sanders


    The engine industry is currently facing severe emissions mandates. Pollutant emissions from mobile sources are a major source of concern. For example, US EPA mandates require emissions of particulate and nitrogen oxides (NOx) from heavy-duty diesel engine exhaust to drop at least 90 percent between 1998 and 2010. Effective analysis of the combustion process is required to guide the selection of technologies for future development since exhaust after-treatment solutions are not currently available that can meet the required emission reduction goals. The goal of this project is to develop methods to optimize and control Low Temperature Combustion Diesel technologies (LTC-D) that offers the potential of nearly eliminating engine NOx and particulate emissions at reduced cost over traditional methods by controlling pollutant emissions in-cylinder. The work was divided into 5 Tasks, featuring experimental and modeling components: 1.) Fundamental understanding of LTC-D and advanced model development, 2.) Experimental investigation of LTC-D combustion control concepts, 3.) Application of detailed models for optimization of LTC-D combustion and emissions, 4.) Impact of heat transfer and spray impingement on LTC-D combustion, and 5.) Transient engine control with mixed-mode combustion. As described in the final report (December 2008), outcomes from the research included providing guidelines to the engine and energy industries for achieving optimal low temperature combustion operation through using advanced fuel injection strategies, and the potential to extend low temperature operation through manipulation of fuel characteristics. In addition, recommendations were made for improved combustion chamber geometries that are matched to injection sprays and that minimize wall fuel films. The role of fuel-air mixing, fuel characteristics, fuel spray/wall impingement and heat transfer on LTC-D engine control were revealed. Methods were proposed for transient engine operation during

  18. High Temperature and Pressure Alkaline Electrolysis

    DEFF Research Database (Denmark)

    Allebrod, Frank

    and oxygen with a new type of alkaline electrolysis cell at high temperatures and pressures. To perform measurements under high pressure and at elevated temperatures it was necessary to build a measurement system around an autoclave which could stand high temperatures up to 250 °C and pressures up to 200 bar...... as well as extremely caustic environments. Based on a literature study to identify resistant materials for these conditions, Inconel 600 was selected among the metals which are available for autoclave construction. An initial single atmosphere high temperature and pressure measurement setup was build...... comprising this autoclave. A second high temperature and pressure measurement setup was build based on experiences from the first setup in order to perform automatized measurements. The conductivity of aqueous KOH at elevated temperatures and high concentrations was investigated using the van der Pauw method...

  19. Combustible and Smokeless Tobacco Use Among High School Athletes - United States, 2001-2013. (United States)

    Agaku, Israel T; Singh, Tushar; Jones, Sherry Everett; King, Brian A; Jamal, Ahmed; Neff, Linda; Caraballo, Ralph S


    Athletes are not a typical at-risk group for smoking combustible tobacco products, because they are generally health conscious and desire to remain fit and optimize athletic performance (1). In contrast, smokeless tobacco use historically has been associated with certain sports, such as baseball (2). Athletes might be more likely to use certain tobacco products, such as smokeless tobacco, if they perceive them to be harmless (3); however, smokeless tobacco use is not safe and is associated with increased risk for pancreatic, esophageal, and oral cancers (4). Tobacco use among youth athletes is of particular concern, because most adult tobacco users first try tobacco before age 18 years (5). To examine prevalence and trends in current (≥1 day during the past 30 days) use of combustible tobacco (cigarettes, cigars) and smokeless tobacco (chewing tobacco, snuff, or dip [moist snuff]) products among athlete and nonathlete high school students, CDC analyzed data from the 2001–2013 National Youth Risk Behavior Surveys. Current use of any tobacco (combustible or smokeless tobacco) significantly declined from 33.9% in 2001 to 22.4% in 2013; however, current smokeless tobacco use significantly increased from 10.0% to 11.1% among athletes, and did not change (5.9%) among nonathletes. Furthermore, in 2013, compared with nonathletes, athletes had significantly higher odds of being current smokeless tobacco users (adjusted odds ratio [AOR] = 1.77, p<0.05), but significantly lower odds of being current combustible tobacco users (AOR = 0.80, p<0.05). These findings suggest that opportunities exist for development of stronger tobacco control and prevention measures targeting youth athletes regarding the health risks associated with all forms of tobacco use.

  20. Combustion characteristics of aluminium-iron oxidein SHS-gravitational process

    Institute of Scientific and Technical Information of China (English)


    In order to get high quality of products, the combustion of aluminium-iron oxide thermite in SHS-gravitational process must be under control. The effects of thermite filling density, hole in thermite and inclined angle of pipe on combustion rate were studied. It shows that the combustion rate decreases with the decrease of filling density. The thermite combusts downwards the pipe much more quickly if there are holes in the thermite. And the combustion rate increases with the increase of the inclined angle of pipe. The experiment results show that the combustion of thermite is predominantly controlled by gas phasereaction, which is attributed to the high temperature of the thermitecombustion.

  1. High-temperature protective coatings on superalloys

    Institute of Scientific and Technical Information of China (English)

    刘培生; 梁开明; 周宏余


    Protective coatings are essential for superalloys to serve as blades of gas turb ines at high temperatures, and they primarily include aluminide coating, MCrAlY overlay coating, thermal barrier coating and microcrystalline coating. In this paper, all these high-temperature coatings are reviewed as well as their preparing techniques. Based on the most application and the main failure way, the importance is then presented for further deepgoing study on the high-temperature oxidation law of aluminide coatings.

  2. High Temperature Heterojunction Bipolar Transistors (United States)


    2700 cmW/V-s at room temperature, a far higher value than ever found for GaN or AlGaN. Thus a GaN/ InGaN HEMT would be analogous to InP/InGaAs HEMTs...Spire’s ECR plasma source modif led as a crystal growth reactor. 8 The substrate for the film deposition is mounted on a sample holder which is...The three samples from the second growth run were also characterized. One sample was found to have a very even frosty white haze on it. The other

  3. A high temperature fuel element

    Energy Technology Data Exchange (ETDEWEB)

    Sekido, A.; Nakai, M.; Ninomiya, Y.


    A solid electrolyte which conducts electricity with heating by oxygen ions and operates at a temperature of 1,000C is used in the element. The cathode, besides the ionic conductivity in oxygen, has an electron conductivity. The anode has electron conductivity. Substances such as Bi203, into which oxides of alkaline earth metals are added, are used for making the cathode. The electrolyte consists of ZrO2 and Y2O3, to which CaO is added. WC, to which an H2 type fuel is fed, serves as the anode. The element has a long service life.

  4. Ultrasonic Sensors for High Temperature Applications (United States)

    Tittmann, Bernhard; Aslan, Mustafa


    Many processes take place under conditions other than ambient, and chief among these is high temperature. Examples of high temperature industrial processes are resin transfer molding, molten metal infiltration and rheocasting of composite metals alloys. The interaction of waves with viscous fluids is an additional complication adding to an already complicated problem of operating a sensor at high temperature for extended periods of time. This report attempts to provide an insight into the current state of the art of sensor techniques for in-situ high temperature monitoring.

  5. Advances in high temperature chemistry 1

    CERN Document Server

    Eyring, Leroy


    Advances in High Temperature Chemistry, Volume 1 describes the complexities and special and changing characteristics of high temperature chemistry. After providing a brief definition of high temperature chemistry, this nine-chapter book goes on describing the experiments and calculations of diatomic transition metal molecules, as well as the advances in applied wave mechanics that may contribute to an understanding of the bonding, structure, and spectra of the molecules of high temperature interest. The next chapter provides a summary of gaseous ternary compounds of the alkali metals used in

  6. High Temperature Capacitors for Venus Exploration Project (United States)

    National Aeronautics and Space Administration — In this SBIR program, TRS Technologies has developed several new dielectrics for high temperature applications including signal conditioning, filtering and energy...

  7. High temperature phase equilibria and phase diagrams

    CERN Document Server

    Kuo, Chu-Kun; Yan, Dong-Sheng


    High temperature phase equilibria studies play an increasingly important role in materials science and engineering. It is especially significant in the research into the properties of the material and the ways in which they can be improved. This is achieved by observing equilibrium and by examining the phase relationships at high temperature. The study of high temperature phase diagrams of nonmetallic systems began in the early 1900s when silica and mineral systems containing silica were focussed upon. Since then technical ceramics emerged and more emphasis has been placed on high temperature

  8. Highly-controlled, reproducible measurements of aerosol emissions from African biomass combustion (United States)

    Haslett, Sophie; Thomas, J. Chris; Morgan, William; Hadden, Rory; Liu, Dantong; Allan, James; Williams, Paul; Sekou, Keïta; Liousse, Catherine; Coe, Hugh


    Particulate emissions from biomass burning can alter the atmosphere's radiative balance and cause significant harm to human health. However, the relationship between these emissions and fundamental combustion processes is, to date, poorly characterised. In atmospheric models, aerosol emissions are represented by emission factors based on mass loss, which are averaged over an entire combustion event for each particulate species. This approach, however, masks huge variability in emissions during different phases of the combustion period. Laboratory tests have shown that even small changes to the burning environment can lead to huge variation in observed aerosol emission factors (Akagi et al., 2011). In order to address this gap in understanding, in this study, small wood samples sourced from Côte D'Ivoire were burned in a highly-controlled laboratory environment. The shape and mass of samples, available airflow and surrounding heat were carefully regulated. Organic aerosol and refractory black carbon emissions were measured in real-time using an Aerosol Mass Spectrometer and a Single Particle Soot Photometer, respectively. Both of these instruments are used regularly to measure aerosol concentrations in the field. This methodology produced remarkably repeatable results, allowing three different phases of combustion to be identified by their emissions. Black carbon was emitted predominantly during flaming combustion; organic aerosols were emitted during pyrolysis before ignition and from smouldering-dominated behaviour near the end of combustion. During the flaming period, there was a strong correlation between the emission of black carbon and the rate of mass loss, which suggests there is value in employing a mass-based emission factor for this species. However, very little correlation was seen between organic aerosol and mass loss throughout the tests. As such, results here suggest that emission factors averaged over an entire combustion event are unlikely to be

  9. Research and development on transonic compressor of high pressure ratio turbocharger for vehicle internal combustion engines

    Institute of Scientific and Technical Information of China (English)


    The pressure ratio required for a turbocharger centrifugal compressor increases with internal combustion engine power density. High pressure ratio causes a transonic flow field at the impeller inducer. Transonic flow narrows the stable flow range and de-teriorates stage efficiency. In this work, an advanced high pressure ratio transonic compressor was designed. The experimental results show that the maximum pressure ratio of this turbocharger is about 4.2, the maximum efficiency is above 80% and the stable flow range at the designed rotating speed is up to 34%. A turbocharger with this transonic compressor has been applied to some vehicle research actually, and improved power density by 40%.

  10. Alloys developed for high temperature applications (United States)

    Basuki, Eddy Agus; Prajitno, Djoko Hadi; Muhammad, Fadhli


    Alloys used for high temperatures applications require combinations of mechanical strength, microstructural stability and corrosion/oxidation resistance. Nickel base superalloys have been traditionally the prime materials utilized for hot section components of aircraft turbine engines. Nevertheless, due to their limited melting temperatures, alloys based on intermetallic compounds, such as TiAl base alloys, have emerged as high temperature materials and intensively developed with the main aim to replace nickel based superalloys. For applications in steam power plants operated at lower temperatures, ferritic high temperature alloys still attract high attention, and therefore, development of these alloys is in progress. This paper highlights the important metallurgical parameters of high temperature alloys and describes few efforts in the development of Fe-Ni-Al based alloys containing B2-(Fe,Ni)Al precipitates, oxide dispersion strengthening (ODS) ferritic steels and titanium aluminide based alloys include important protection system of aluminide coatings.

  11. Technical Report: Rayleigh Scattering Combustion Diagnostic

    Energy Technology Data Exchange (ETDEWEB)

    Adams, Wyatt [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Hecht, Ethan [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)


    A laser Rayleigh scattering (LRS) temperature diagnostic was developed over 8 weeks with the goal of studying oxy-combustion of pulverized coal char in high temperature reaction environments with high concentrations of carbon dioxide. Algorithms were developed to analyze data collected from the optical diagnostic system and convert the information to temperature measurements. When completed, the diagnostic will allow for the kinetic gasification rates of the oxy-combustion reaction to be obtained, which was previously not possible since the high concentrations of high temperature CO2 consumed thermocouples that were used to measure flame temperatures inside the flow reactor where the combustion and gasification reactions occur. These kinetic rates are important for studying oxycombustion processes suitable for application as sustainable energy solutions.

  12. High temperature skin friction measurement (United States)

    Tcheng, Ping; Holmes, Harlan K.; Supplee, Frank H., Jr.


    Skin friction measurement in the NASA Langley hypersonic propulsion facility is described. The sensor configuration utilized an existing balance, modified to provide thermal isolation and an increased standoff distance. For test run times of about 20 sec and ambient-air cooling of the test section and balance, the modified balance performed satisfactorily, even when it was subjected to acoustic and structural vibration. The balance is an inertially balanced closed-loop servo system where the current to a moving-coil motor needed to restore or null the output from the position sensor is a measure of the force or skin friction tending to displace the moving element. The accuracy of the sensor is directly affected by the position sensor in the feedback loop, in this case a linear-variable differential transformer which has proven to be influenced by temperature gradients.

  13. Measurement of CO2 concentration at high-temperature based on tunable diode laser absorption spectroscopy (United States)

    Chen, Jiuying; Li, Chuanrong; Zhou, Mei; Liu, Jianguo; Kan, Ruifeng; Xu, Zhenyu


    A diode laser sensor based on absorption spectroscopy has been developed for sensitive measurement of CO2 concentration at high-temperature. Measurement of CO2 can provide information about the extent of combustion and mix in a combustor that may be used to improve fuel efficiency. Most methods of in-situ combustion measurement of CO2 use the spectroscopic parameters taken from database like HITEMP which is mainly derived from the theoretical calculation and remains a high degree of uncertainty in the spectroscopic parameters. A fiber-coupled diode laser system for measurement of CO2 in combustion environment by use of the high-temperature spectroscopic parameters which are obtained by experiment was proposed. Survey spectra of the R(50) line of CO2 at 5007.787 cm-1 were recorded at high-temperature and various pressures to determine line intensities. The line intensities form the theoretical foundation for future applications of this diode laser sensor system. Survey spectra of four test gas mixtures containing 5.01%CO2, 10.01%CO2, 20.08%CO2, and 49.82%CO2 were measured to verify the accuracy of the diode laser sensor system. The measured results indicate that this sensor can measure CO2 concentration with 2% uncertainty in high temperatures.

  14. Thermo-acoustic instabilities of high-frequency combustion in rocket engines; Instabilites thermo-acoustiques de combustion haute-frequence dans les moteurs fusees

    Energy Technology Data Exchange (ETDEWEB)

    Cheuret, F.


    Rocket motors are confined environments where combustion occurs in extreme conditions. Combustion instabilities can occur at high frequencies; they are tied to the acoustic modes of the combustion chamber. A common research chamber, CRC, allows us to study the response of a turbulent two-phase flame to acoustic oscillations of low or high amplitudes. The chamber is characterised under cold conditions to obtain, in particular, the relative damping coefficient of acoustic oscillations. The structure and frequency of the modes are determined in the case where the chamber is coupled to a lateral cavity. We have used a powder gun to study the response to a forced acoustic excitation at high amplitude. The results guide us towards shorter flames. The injectors were then modified to study the combustion noise level as a function of injection conditions. The speed of the gas determines whether the flames are attached or lifted. The noise level of lifted flames is higher. That of attached flames is proportional to the Weber number. The shorter flames whose length is less than the radius of the CRC, necessary condition to obtain an effective coupling, are the most sensitive to acoustic perturbations. The use of a toothed wheel at different positions in the chamber allowed us to obtain informations on the origin of the thermo-acoustic coupling, main objective of this thesis. The flame is sensitive to pressure acoustic oscillations, with a quasi-zero response time. These observations suggest that under the conditions of the CRC, we observe essentially the response of chemical kinetics to pressure oscillations. (author)

  15. High-Temperature Passive Power Electronics (United States)


    In many future NASA missions - such as deep-space exploration, the National AeroSpace Plane, minisatellites, integrated engine electronics, and ion or arcjet thrusters - high-power electrical components and systems must operate reliably and efficiently in high-temperature environments. The high-temperature power electronics program at the NASA Lewis Research Center focuses on dielectric and insulating material research, the development and characterization of high-temperature components, and the integration of the developed components into a demonstrable 200 C power system - such as an inverter. NASA Lewis has developed high-temperature power components through collaborative efforts with the Air Force Wright Laboratory, Northrop Grumman, and the University of Wisconsin. Ceramic and film capacitors, molypermalloy powder inductors, and a coaxially wound transformer were designed, developed, and evaluated for high-temperature operation.

  16. High-Resolution Photoionization, Photoelectron and Photodissociation Studies. Determination of Accurate Energetic and Spectroscopic Database for Combustion Radicals and Molecules

    Energy Technology Data Exchange (ETDEWEB)

    Ng, Cheuk-Yiu [Univ. of California, Davis, CA (United States)


    The main goal of this research program was to obtain accurate thermochemical and spectroscopic data, such as ionization energies (IEs), 0 K bond dissociation energies, 0 K heats of formation, and spectroscopic constants for radicals and molecules and their ions of relevance to combustion chemistry. Two unique, generally applicable vacuum ultraviolet (VUV) laser photoion-photoelectron apparatuses have been developed in our group, which have used for high-resolution photoionization, photoelectron, and photodissociation studies for many small molecules of combustion relevance.

  17. Influence of Environmentally Friendly and High-Efficiency Composite Additives on Pulverized Coal Combustion in Cement Industry



    4 kinds of chemical reagents and 3 kinds of industrial wastes were selected as burning additives for 2 kinds of coals in cement industry. The work focused on the replacement of partial chemical reagents by industrial wastes, which not only reduced the cost and took full advantage of industrial wastes, but also guaranteed the high combustion efficiency and removed the NOX and SO2 simultaneously. The experiments were carried out in DTF. The combustion residues were analyzed by SEM and XRD. The ...

  18. High temperature auto-propagating synthesis of advanced ceramic materials

    Energy Technology Data Exchange (ETDEWEB)

    Cao, G.; Morbidelli, M. (Cagliari Univ. (Italy). Dip. di Ingegneria Chimica e Materiali)


    This paper analyzes the modelling and experimental aspects relative to the production of advanced ceramic materials (i.e., carbides, borides and silicides of suitable transition metals) by means of high temperature auto-propagating synthesis. This process is characterized by a reaction front which, once triggered, auto-propagates itself through the reagent mix in the form of a combustion wave, taking advantage of the strong exothermic nature of the reaction itself. The analysis in this paper includes an investigation of the capability of models to accurately simulate the synthesis process. The validity of one particular model is checked by comparison with experimental results reported in literature. In addition, non-linear parametric sensitivity analysis is used to define 'a priori' suitable operating conditions which would guarantee ignition of the reagent mix and contemporaneously allow the optimization of process energy consumption.


    Energy Technology Data Exchange (ETDEWEB)

    Palitha Jayaweera


    SRI is developing ceramic-based microsensors for detection of exhaust gases such as NO, NO{sub 2}, and CO in advanced combustion and gasification systems. The sensors detect the electrochemical activity of the exhaust gas species on catalytic electrodes and are designed to operate at high temperatures, elevated pressures, and corrosive environments typical of large power generation exhausts. Under this research project we are developing sensors for multiple gas detection in a single package along with data acquisition and control software and hardware. The sensor package can be easily integrated into online monitoring systems for active emission control. This report details the research activities performed from May 2004 to October 2004 including testing of catalytic materials, sensor design and fabrication, and software development.

  20. A Road Towards High Temperature Superconductors (United States)


    AFRL-AFOSR-UK-TR-2013-0040 A Road Towards High Temperature Superconductors Guy Deutscher Tel Aviv University Research... Superconductors 5a. CONTRACT NUMBER FA8655-10-1-3011 5b. GRANT NUMBER Grant 10-3011 5c. PROGRAM ELEMENT NUMBER 61102F 6. AUTHOR(S...issue in trying to make useful high temperature superconductors is obviously to discover superconductivity at higher temperatures. But there is also

  1. Catalytic Combustion of Gasified Waste

    Energy Technology Data Exchange (ETDEWEB)

    Kusar, Henrik


    This thesis concerns catalytic combustion for gas turbine application using a low heating-value (LHV) gas, derived from gasified waste. The main research in catalytic combustion focuses on methane as fuel, but an increasing interest is directed towards catalytic combustion of LHV fuels. This thesis shows that it is possible to catalytically combust a LHV gas and to oxidize fuel-bound nitrogen (NH{sub 3}) directly into N{sub 2} without forming NO{sub x} The first part of the thesis gives a background to the system. It defines waste, shortly describes gasification and more thoroughly catalytic combustion. The second part of the present thesis, paper I, concerns the development and testing of potential catalysts for catalytic combustion of LHV gases. The objective of this work was to investigate the possibility to use a stable metal oxide instead of noble metals as ignition catalyst and at the same time reduce the formation of NO{sub x} In paper II pilot-scale tests were carried out to prove the potential of catalytic combustion using real gasified waste and to compare with the results obtained in laboratory scale using a synthetic gas simulating gasified waste. In paper III, selective catalytic oxidation for decreasing the NO{sub x} formation from fuel-bound nitrogen was examined using two different approaches: fuel-lean and fuel-rich conditions. Finally, the last part of the thesis deals with deactivation of catalysts. The various deactivation processes which may affect high-temperature catalytic combustion are reviewed in paper IV. In paper V the poisoning effect of low amounts of sulfur was studied; various metal oxides as well as supported palladium and platinum catalysts were used as catalysts for combustion of a synthetic gas. In conclusion, with the results obtained in this thesis it would be possible to compose a working catalytic system for gas turbine application using a LHV gas.

  2. High Temperature Rechargeable Battery Development Project (United States)

    National Aeronautics and Space Administration — This small business innovation research is intended to develop and proof the concept of a highly efficient, high temperature rechargeable battery for supporting...

  3. Lightweight, High-Temperature Radiator Panels Project (United States)

    National Aeronautics and Space Administration — Lightweight, high-temperature radiators are needed for future, high-efficiency power conversion systems for Nuclear Electric Propulsion (NEP). Creare has developed...

  4. High Temperature Solid State Lithium Battery Project (United States)

    National Aeronautics and Space Administration — Reliable energy systems with high energy density capable of operating at high temperatures, pressures and radiation levels are needed for certain NASA missions....

  5. Lightweight, High-Temperature Radiator Panels Project (United States)

    National Aeronautics and Space Administration — Lightweight, high-temperature radiators are needed for future, high-efficiency power conversion systems for Nuclear Electric Propulsion (NEP). Creare has developed...

  6. Self-sustained high-temperature reactions: initiation, propagation and synthesis


    Martinez Pacheco, M.


    Self-Propagating High-Temperature Synthesis (SHS), also called combustion synthesis is an exothermic and self-sustained reaction between the constituents, which has assumed significance for the production of ceramics and ceramic-metallic materials (cermets), because it is a very rapid processing technique without the need of complex furnaces. However, one of the drawbacks of this route is the high porosity of the final product (typically 50%). This implies the need for a subsequent densificat...

  7. Impact of ignition temperature on particle size and magnetic properties of CoFe{sub 2}O{sub 4} nanoparticles prepared by self-propagated MILD combustion technique

    Energy Technology Data Exchange (ETDEWEB)

    Kaliyamoorthy, Venkatesan; Rajan Babu, D., E-mail:; Saminathan, Madeswaran


    We prepared nanocrystalline CoFe{sub 2}O{sub 4} by changing its ignition temperatures, using moderate and intense low-oxygen dilution (MILD) combustion technique. The effect of ignition temperature on the particle size and its magnetic behavior was investigated by HR-TEM and VSM respectively. We observed a vast change in the structural behavior and the magnetic properties of the prepared samples. X-ray diffraction studies revealed that the resultant samples had single phase with different grain sizes from 23±5 nm to 16±5 nm, which was understood by observing the growth of the grains through heat released from the combustion reaction. FE-SEM analysis showed high porosity with heterogeneous distribution of the pore size based on the adiabatic temperature and EPMA analysis, which confirmed the elemental compositions of the prepared samples. The saturation magnetization values measured at room temperature, employing vibrating sample magnetometer (VSM) decreased gradually from 50 to 34 emu/g when the ignition temperature was increased from 243 °C to 400 °C. Some of Fe ions on the B sites moved periodically to the A sites because of quenching treatment. The presence of Fe{sup 2+} ions in the existing ferrite structure ruled the magnetic behavior of the sample, as confirmed by the Mössbauer analysis. - Highlights: • CoFe{sub 2}O{sub 4} magnetic nanoparticles were prepared by MILD combustion technique. • Structural behavior and magnetic properties were changed by ignition temperature. • Formation of ferrite complex was confirmed by using FT-IR spectroscopy. • FE-SEM image confirmed the combustion nature by exhibiting the pores and voids. • The cationic distributions were investigated by the Mössbauer analysis.

  8. Ceramic fibres for high temperature insulation

    Energy Technology Data Exchange (ETDEWEB)

    Padgett, G.C.


    Traditionally, refractory linings for high temperature plant and furnaces have comprised either brick or some form of concrete. In recent years, energy conservation has encouraged the greater use of high temperature insulation which is also available in either brick or a lightweight concrete. As an alternative, insulation can also be achieved using fibrous products or fibres combining low heat transfer with low heat capacity.

  9. Self-propagating high temperature synthesis and magnetic properties of Ni0.35Zn0.65Fe2O4 powders

    Indian Academy of Sciences (India)

    Yao Li; Jiupeng Zhao; Jiecai Han


    Ni–Zn ferrite powders were synthesized by self-propagating high temperature synthesis (SHS) method. X-ray diffraction, TEM and vibrating sample magnetometry (VSM) were used to characterize the phase composition, microstructure and magnetic properties of the combustion products. The effect of the combustion temperature ($T_c$), the major parameter of the SHS process, on particle size, phase composition and magnetic properties of the products was also studied. The results showed that particle size grew with the increasing combustion temperature. The maximum saturation magnetization, $M_s$, increased with combustion temperature indicating the growth of grain size and high degree of ferritization, while residual magnetization, $M_r$, and coercive force, $H_c$, decreased. Compared with other methods, Ni0.35Zn0.65Fe2O4 ferrite powders with improved magnetic properties can be obtained by SHS at 1000°C.

  10. Analysis of Thermal and Chemical Effets on Negative Valve Overlap Period Energy Recovery for Low-Temperature Gasoline Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Ekoto, Dr Isaac [Sandia National Laboratories (SNL); Peterson, Dr. Brian [University of Edinburgh; Szybist, James P [ORNL; Northrop, Dr. William [University of Minnesota


    A central challenge for efficient auto-ignition controlled low-temperature gasoline combustion (LTGC) engines has been achieving the combustion phasing needed to reach stable performance over a wide operating regime. The negative valve overlap (NVO) strategy has been explored as a way to improve combustion stability through a combination of charge heating and altered reactivity via a recompression stroke with a pilot fuel injection. The study objective was to analyze the thermal and chemical effects on NVO-period energy recovery. The analysis leveraged experimental gas sampling results obtained from a single-cylinder LTGC engine along with cylinder pressure measurements and custom data reduction methods used to estimate period thermodynamic properties. The engine was fueled by either iso-octane or ethanol, and operated under sweeps of NVO-period oxygen concentration, injection timing, and fueling rate. Gas sampling at the end of the NVO period was performed via a custom dump-valve apparatus, with detailed sample speciation by in-house gas chromatography. The balance of NVO-period input and output energy flows was calculated in terms of fuel energy, work, heat loss, and change in sensible energy. Experiment results were complemented by detailed chemistry single-zone reactor simulations performed at relevant mixing and thermodynamic conditions, with results used to evaluate ignition behavior and expected energy recovery yields. For the intermediate bulk-gas temperatures present during the NVO period (900-1100 K), weak negative temperature coefficient behavior with iso-octane fueling significantly lengthened ignition delays relative to similar ethanol fueled conditions. Faster ethanol ignition chemistry led to lower recovered fuel intermediate yields relative to similar iso-octane fueled conditions due to more complete fuel oxidation. From the energy analysis it was found that increased NVO-period global equivalence ratio, either from lower NVOperiod oxygen

  11. CAD/CAM/CAI Application for High-Precision Machining of Internal Combustion Engine Pistons

    Directory of Open Access Journals (Sweden)

    V. V. Postnov


    Full Text Available CAD/CAM/CAI application solutions for internal combustion engine pistons machining was analyzed. Low-volume technology of internal combustion engine pistons production was proposed. Fixture for CNC turning center was designed.

  12. Smoldering Combustion Experiments in Microgravity (United States)

    Walther, David C.; Fernandez-Pello, A. Carlos; Urban, David L.


    The Microgravity Smoldering Combustion (MSC) experiment is part of a study of the smolder characteristics of porous combustible materials in a microgravity environment. Smoldering is a non-flaming form of combustion that takes place in the interior of porous materials and takes place in a number of processes ranging from smoldering of porous insulation materials to high temperature synthesis of metals. The objective of the study is to provide a better understanding of the controlling mechanisms of smolder, both in microgravity and normal-gravity. As with many forms of combustion, gravity affects the availability of oxidizer and transport of heat, and therefore the rate of combustion. Microgravity smolder experiments, in both a quiescent oxidizing environment, and in a forced oxidizing flow have been conducted aboard the NASA Space Shuttle (STS-69 and STS-77 missions) to determine the effect of the ambient oxygen concentration and oxidizer forced flow velocity on smolder combustion in microgravity. The experimental apparatus is contained within the NASA Get Away Special Canister (GAS-CAN) Payload. These two sets of experiments investigate the propagation of smolder along the polyurethane foam sample under both diffusion driven and forced flow driven smoldering. The results of the microgravity experiments are compared with identical ones carried out in normal gravity, and are used to verify present theories of smolder combustion. The results of this study will provide new insights into the smoldering combustion process. Thermocouple histories show that the microgravity smolder reaction temperatures (Ts) and propagation velocities (Us) lie between those of identical normal-gravity upward and downward tests. These observations indicate the effect of buoyancy on the transport of oxidizer to the reaction front.

  13. An Experimental and Chemical Kinetics Study of the Combustion of Syngas and High Hydrogen Content Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Santoro, Robers [Pennsylvania State Univ., State College, PA (United States); Dryer, Frederick [Princeton Univ., NJ (United States); Ju, Yiguang [Princeton Univ., NJ (United States)


    An integrated and collaborative effort involving experiments and complementary chemical kinetic modeling investigated the effects of significant concentrations of water and CO2 and minor contaminant species (methane [CH4], ethane [C2H6], NOX, etc.) on the ignition and combustion of HHC fuels. The research effort specifically addressed broadening the experimental data base for ignition delay, burning rate, and oxidation kinetics at high pressures, and further refinement of chemical kinetic models so as to develop compositional specifications related to the above major and minor species. The foundation for the chemical kinetic modeling was the well validated mechanism for hydrogen and carbon monoxide developed over the last 25 years by Professor Frederick Dryer and his co-workers at Princeton University. This research furthered advance the understanding needed to develop practical guidelines for realistic composition limits and operating characteristics for HHC fuels. A suite of experiments was utilized that that involved a high-pressure laminar flow reactor, a pressure-release type high-pressure combustion chamber and a high-pressure turbulent flow reactor.

  14. Making highly flammable liquid wastes of petrochemical works safe by combustion without burners

    Energy Technology Data Exchange (ETDEWEB)

    Shelygin, B.L.; Bakhirev, V.I.; Gudzyuk, V.L.


    At the V.I. Lenin Energy Institute in Ivanov a technological program was implementd for combustion of highly flammable bulk wastes (for example, piperylene fractions) of petrochemical enterprises, with a moisture content of under 10% and mechanical admixtures (particles of catalyst dust) of up to 5%, without the use of burners. In devising the program, the results of mathematical theoretical analysis of pre-igniting preparation of substances to make them safe were utilized as well as the experience acquired in burning petroleum sludge in furnaces with bubbling equipment.

  15. Experimental study on ignition characteristics of pulverized coal under high-temperature oxygen condition (United States)

    Liu, G. W.; Liu, Y. H.; Dong, P.


    The high-temperature oxygen ignition technology of pulverized coal, which can replace the oil gun and achieve oil-free pulverized coal ignition by mixing the high- temperature oxygen and the pulverized coal stream directly, was proposed and a relevant ignition experimental system was built. The ignition characteristics of pulverized coal under high-temperature oxygen condition were investigated: the ignition process was described and analyzed, the influence of relevant parameters on the pulverized coal stream ignition were obtained and analyzed. The results showed: when the oxygen heating temperature is over 750 °C, the pulverized coal stream could be ignited successfully by high-temperature oxygen; increasing the pulverized coal concentration, primary air temperature and oxygen volume flow rate or decreasing the primary air velocity is helpful for the ignition and combustion of the pulverized coal stream.

  16. Quantitative Imaging of Turbulent Mixing Dynamics in High-Pressure Fuel Injection to Enable Predictive Simulations of Engine Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Frank, Jonathan H. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Reacting Flows Dept.; Pickett, Lyle M. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Engine Combustion Dept.; Bisson, Scott E. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Remote Sensing and Energetic Materials Dept.; Patterson, Brian D. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). combustion Chemistry Dept.; Ruggles, Adam J. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Reacting Flows Dept.; Skeen, Scott A. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Engine Combustion Dept.; Manin, Julien Luc [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Engine Combustion Dept.; Huang, Erxiong [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Reacting Flows Dept.; Cicone, Dave J. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Engine Combustion Dept.; Sphicas, Panos [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Engine Combustion Dept.


    In this LDRD project, we developed a capability for quantitative high - speed imaging measurements of high - pressure fuel injection dynamics to advance understanding of turbulent mixing in transcritical flows, ignition, and flame stabilization mechanisms, and to provide e ssential validation data for developing predictive tools for engine combustion simulations. Advanced, fuel - efficient engine technologies rely on fuel injection into a high - pressure, high - temperature environment for mixture preparation and com bustion. Howe ver, the dynamics of fuel injection are not well understood and pose significant experimental and modeling challenges. To address the need for quantitative high - speed measurements, we developed a Nd:YAG laser that provides a 5ms burst of pulses at 100 kHz o n a robust mobile platform . Using this laser, we demonstrated s patially and temporally resolved Rayleigh scattering imaging and particle image velocimetry measurements of turbulent mixing in high - pressure gas - phase flows and vaporizing sprays . Quantitativ e interpretation of high - pressure measurements was advanced by reducing and correcting interferences and imaging artifacts.

  17. Commercialization of NASA's High Strength Cast Aluminum Alloy for High Temperature Applications (United States)

    Lee, Jonathan A.


    In this paper, the commercialization of a new high strength cast aluminum alloy, invented by NASA-Marshall Space Flight Center, for high temperature applications will be presented. Originally developed to meet U.S. automotive legislation requiring low- exhaust emission, the novel NASA aluminum alloy offers dramatic improvement in tensile and fatigue strengths at elevated temperatures (450 F-750 F), which can lead to reducing part weight and cost as well as improving performance for automotive engine applications. It is an ideal low cost material for cast components such as pistons, cylinder heads, cylinder liners, connecting rods, turbo chargers, impellers, actuators, brake calipers and rotors. NASA alloy also offers greater wear resistance, dimensional stability, and lower thermal expansion compared to conventional aluminum alloys, and the new alloy can be produced economically from sand, permanent mold and investment casting. Since 2001, this technology was licensed to several companies for automotive and marine internal combustion engines applications.

  18. A High-Speed Motion-Picture Study of Normal Combustion, Knock and Preignition in a Spark-Ignition Engines (United States)

    Rothrock, A M; Spencer, R C; Miller, Cearcy D


    Combustion in a spark-ignition engine was investigated by means of the NACA high-speed motion-picture cameras. This camera is operated at a speed of 40,000 photographs a second and therefore makes possible the study of changes that take place in the intervals as short as 0.000025 second. When the motion pictures are projected at the normal speed of 16 frames a second, any rate of movement shown is slowed down 2500 times. Photographs are presented of normal combustion, of combustion from preignitions, and of knock both with and without preignition. The photographs of combustion show that knock may be preceded by a period of exothermic reaction in the end zone that persists for a time interval of as much as 0.0006 second. The knock takes place in 0.00005 second or less.

  19. Fundamental combustion characteristics of lean hydrogen mixtures; Suiso kihaku kongoki no kisoteki nensho tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Barat, D.; Kido, H.; Nakahara, M.; Hashimoto, J. [Kyushu University, Fukuoka (Japan)


    One of the excellent combustion characteristics of hydrogen-air mixture is that its emission is free of CO2, but the problem of NOx remains, mainly caused by the high combustion temperature. Using leaner mixture and carrying out EGR are supposed to be effective methods to reduce NOx. In this study, to examine the effectiveness of the two methods, fundamental combustion characteristics of nitrogen added lean hydrogen mixtures were investigated by chemical equilibrium calculations and measurements of turbulent combustion characteristics. It is suggested that nitrogen added mixtures can achieve lower NOx combustion than lean mixtures, taking the combustion efficiency into consideration. 7 refs., 7 figs., 1 tab.

  20. Specifics of phytomass combustion in small experimental device

    Directory of Open Access Journals (Sweden)

    Lenhard Richard


    Full Text Available A wood pellet combustion carries out with high efficiency and comfort in modern pellet boilers. These facts help to increase the amount of installed pellet boilers in households. The combustion process quality depends besides the combustion conditions also on the fuel quality. The wood pellets, which don`t contain the bark and branches represent the highest quality. Because of growing pellet demand, an herbal biomass (phytomass, which is usually an agricultural by-product becomes economically attractive for pellet production. Although the phytomass has the net calorific value relatively slightly lower than the wood biomass, it is often significantly worse in view of the combustion process and an emission production. The combustion of phytomass pellets causes various difficulties in small heat sources, mainly due to a sintering of fuel residues. We want to avoid the ash sintering by a lowering of temperature in the combustion chamber below the ash sintering temperature of phytomass via the modification of a burner design. For research of the phytomass combustion process in the small boilers is constructed the experimental combustion device. There will investigate the impact of cooling intensity of the combustion chamber on the combustion process and emissions. Arising specific requirements from the measurement will be the basis for the design of the pellet burner and for the setting of operating parameters to the trouble-free phytomass combustion was guaranteed.

  1. Mascotte, a research test facility for high pressure combustion of cryogenic propellants; Mascotte, un banc d'essai de recherche pour la combustion a haute pression d'ergols cryogeniques

    Energy Technology Data Exchange (ETDEWEB)

    Vingert, L.; Habiballah, M.; Traineau, J.C. [Office National d' Etudes et de Recherches Aerospatiales (ONERA), 92 - Chatillon (France)


    Detailed experimental studies of cryogenic propellant combustion are needed to improve design and optimization of high performance liquid rocket engines. A research test facility called Mascotte has been built up by ONERA to study elementary processes that are involved in the combustion of liquid oxygen and gaseous hydrogen. Mascotte is aimed at feeding a single element combustor with actual propellants, and the third version in operation since mid 1998 allows to reach supercritical pressures in the combustor. A specific high pressure combustor was developed for this purpose. Research teams from different laboratories belonging to CNRS and ONERA, regrouped in a common research program managed by CNES and SNECMA division SEP, may run experiments on Mascotte, with several objectives: - improve the knowledge and the modeling of physical phenomena; - provide experimental results for computer code validation; - improve and assess diagnostic techniques (especially optical diagnostics). Following diagnostics for instance, were used on Mascotte from 1994 to 1999: - OH imaging (spontaneous emission and laser induced fluorescence ); - CARS temperature measurements (using the H{sub 2} and simultaneously the H{sub 2}O molecules); - High speed cinematography (with a copper vapor laser synchronized to a high speed camera); - O{sub 2} vapor imaging (laser induced fluorescence); - Particle sizing (by means of a Phase Doppler Particle Analyzer). (authors)

  2. Optimisation énergétique des chambres de combustion à haut taux de compression Energy Optimization of High-Compression-Ratio Combustion Chambers

    Directory of Open Access Journals (Sweden)

    Douaud A.


    Full Text Available Une synthèse des études entreprises à l'institut Français du Pétrole pour la compréhension des phénomènes de combustion, de transferts thermiques, de cliquetis et leur maîtrise pour l'optimisation du rendement de chambre à haut taux de compression conduit à proposer deux thèmes de réalisation : - chambre calme à double allumage; - chambre turbulente à effet de chasse. Les avantages de principe et les contraintes associés à la mise en oeuvre de chaque type de chambre sont examinés. A synthesis of research undertaken at the Institut Français du Pétrole on understanding combustion, heat-transfer and knock phenomena and on mastering them to optimize the efficiency of high-compression-ratio combustion chambers has led to the proposing of two topics of implementation:(a calm chamber with dual ignition;(b turbulent chamber with squish effect. The advantages of the principle and the constraints connected to the implementation of each type of chamber are examined.

  3. Holey graphene frameworks for highly selective post-combustion carbon capture (United States)

    Chowdhury, Shamik; Balasubramanian, Rajasekhar


    Atmospheric CO2 concentrations continue to rise rapidly in response to increased combustion of fossil fuels, contributing to global climate change. In order to mitigate the effects of global warming, development of new materials for cost-effective and energy-efficient CO2 capture is critically important. Graphene-based porous materials are an emerging class of solid adsorbents for selectively removing CO2 from flue gases. Herein, we report a simple and scalable approach to produce three-dimensional holey graphene frameworks with tunable porosity and pore geometry, and demonstrate their application as high-performance CO2 adsorbents. These holey graphene macrostructures exhibit a significantly improved specific surface area and pore volume compared to their pristine counterparts, and can be effectively used in post-combustion CO2 adsorption systems because of their intrinsic hydrophobicity together with good gravimetric storage capacities, rapid removal capabilities, superior cycling stabilities, and moderate initial isosteric heats. In addition, an exceptionally high CO2 over N2 selectivity can be achieved under conditions relevant to capture from the dry exhaust gas stream of a coal burning power plant, suggesting the possibility of recovering highly pure CO2 for long-term sequestration and/or utilization for downstream applications.

  4. Printed indium gallium zinc oxide transistors. Self-assembled nanodielectric effects on low-temperature combustion growth and carrier mobility. (United States)

    Everaerts, Ken; Zeng, Li; Hennek, Jonathan W; Camacho, Diana I; Jariwala, Deep; Bedzyk, Michael J; Hersam, Mark C; Marks, Tobin J


    Solution-processed amorphous oxide semiconductors (AOSs) are emerging as important electronic materials for displays and transparent electronics. We report here on the fabrication, microstructure, and performance characteristics of inkjet-printed, low-temperature combustion-processed, amorphous indium gallium zinc oxide (a-IGZO) thin-film transistors (TFTs) grown on solution-processed hafnia self-assembled nanodielectrics (Hf-SANDs). TFT performance for devices processed below 300 °C includes >4× enhancement in electron mobility (μFE) on Hf-SAND versus SiO2 or ALD-HfO2 gate dielectrics, while other metrics such as subthreshold swing (SS), current on:off ratio (ION:IOFF), threshold voltage (Vth), and gate leakage current (Ig) are unchanged or enhanced. Thus, low voltage IGZO/SAND TFT operation (nanodielectrics.

  5. Transition duct system with metal liners for delivering hot-temperature gases in a combustion turbine engine

    Energy Technology Data Exchange (ETDEWEB)

    Wiebe, David J.


    A transition duct system (10) for delivering hot-temperature gases from a plurality of combustors in a combustion turbine engine is provided. The system includes an exit piece (16) for each combustor. The exit piece may include a straight path segment (26) and an arcuate connecting segment (36). A respective straight metal liner (92) and an arcuate metal liner (94) may be each inwardly disposed onto a metal outer shell (38) along the straight path segment and the arcuate connecting segment (36) of the exit piece. Structural arrangements are provided to securely attach the respective liners in the presence of substantial flow path pressurization. Cost-effective serviceability of the transition duct systems is realizable since the liners can be readily removed and replaced as needed.

  6. Microscopic evolution of dielectric nanoparticles at different calcination temperatures synthesized via sol-gel auto-combustion

    Energy Technology Data Exchange (ETDEWEB)

    Adil, Muhammad, E-mail:; Zaid, Hasnah Mohd, E-mail:; Chuan, Lee Kean, E-mail:; Latiff, Noor Rasyada Ahmad, E-mail: [Fundamental and Applied Sciences Department, Universiti Teknologi PETRONAS Bandar Seri Iskandar, 31750 Tronoh, Perak (Malaysia); Alta’ee, Ali F., E-mail: [Geoscience and Petroleum Engineering Department, Universiti Teknologi PETRONAS Bandar Seri Iskandar, 31750 Tronoh, Perak (Malaysia)


    Dielectric nano powder synthesis is carried by a simple and fast sol-gel auto-combustion method. The transformation of crystalline phases of as-synthesized nano powders is investigated through the detailed transmission electron microscopy (TEM), revealed the crystallographic alterations and morphological information even at lattice scale. From specific area electron diffraction (SAED) pattern, has specified the d-spacing and corresponding planes supported by the observed lattice fringes. The morphological characterization of nanoparticles is performed through field-emission scanning electron microscopy (FESEM), exhibiting the increment in particle size due to agglomeration with the increase in annealing temperature. Furthermore, EDX pattern has been used to verify the formation of nanoparticles by revealing the presence of required elements.

  7. Transition duct system with straight ceramic liner for delivering hot-temperature gases in a combustion turbine engine

    Energy Technology Data Exchange (ETDEWEB)

    Wiebe, David J.


    A transition duct system (10) for delivering hot-temperature gases from a plurality of combustors in a combustion turbine engine is provided. The system includes an exit piece (16) for each combustor. The exit piece may include a straight path segment (26) for receiving a gas flow from a respective combustor. A straight ceramic liner (40) may be inwardly disposed onto a metal outer shell (38) along the straight path segment of the exit piece. Structural arrangements are provided to securely attach the ceramic liner in the presence of substantial flow path pressurization. Cost-effective serviceability of the transition duct systems is realizable since the liner can be readily removed and replaced as needed.

  8. Application of High Temperature Superconductors to Accelerators

    CERN Document Server

    Ballarino, A


    Since the discovery of high temperature superconductivity, a large effort has been made by the scientific community to investigate this field towards a possible application of the new oxide superconductors to different devices like SMES, magnetic bearings, flywheels energy storage, magnetic shielding, transmission cables, fault current limiters, etc. However, all present day large scale applications using superconductivity in accelerator technology are based on conventional materials operating at liquid helium temperatures. Poor mechanical properties, low critical current density and sensitivity to the magnetic field at high temperature are the key parameters whose improvement is essential for a large scale application of high temperature superconductors to such devices. Current leads, used for transferring currents from the power converters, working at room temperature, into the liquid helium environment, where the magnets are operating, represent an immediate application of the emerging technology of high t...

  9. Combustion 2000

    Energy Technology Data Exchange (ETDEWEB)

    A. Levasseur; S. Goodstine; J. Ruby; M. Nawaz; C. Senior; F. Robson; S. Lehman; W. Blecher; W. Fugard; A. Rao; A. Sarofim; P. Smith; D. Pershing; E. Eddings; M. Cremer; J. Hurley; G. Weber; M. Jones; M. Collings; D. Hajicek; A. Henderson; P. Klevan; D. Seery; B. Knight; R. Lessard; J. Sangiovanni; A. Dennis; C. Bird; W. Sutton; N. Bornstein; F. Cogswell; C. Randino; S. Gale; Mike Heap


    . To achieve these objectives requires a change from complete reliance of coal-fired systems on steam turbines (Rankine cycles) and moving forward to a combined cycle utilizing gas turbines (Brayton cycles) which offer the possibility of significantly greater efficiency. This is because gas turbine cycles operate at temperatures well beyond current steam cycles, allowing the working fluid (air) temperature to more closely approach that of the major energy source, the combustion of coal. In fact, a good figure of merit for a HIPPS design is just how much of the enthalpy from coal combustion is used by the gas turbine. The efficiency of a power cycle varies directly with the temperature of the working fluid and for contemporary gas turbines the optimal turbine inlet temperature is in the range of 2300-2500 F (1260-1371 C). These temperatures are beyond the working range of currently available alloys and are also in the range of the ash fusion temperature of most coals. These two sets of physical properties combine to produce the major engineering challenges for a HIPPS design. The UTRC team developed a design hierarchy to impose more rigor in our approach. Once the size of the plant had been determined by the choice of gas turbine and the matching steam turbine, the design process of the High Temperature Advanced Furnace (HITAF) moved ineluctably to a down-fired, slagging configuration. This design was based on two air heaters: one a high temperature slagging Radiative Air Heater (RAH) and a lower temperature, dry ash Convective Air Heater (CAH). The specific details of the air heaters are arrived at by an iterative sequence in the following order:-Starting from the overall Cycle requirements which set the limits for the combustion and heat transfer analysis-The available enthalpy determined the range of materials, ceramics or alloys, which could tolerate the temperatures-Structural Analysis of the designs proved to be the major limitation-Finally the commercialization

  10. Combustion 2000

    Energy Technology Data Exchange (ETDEWEB)

    A. Levasseur; S. Goodstine; J. Ruby; M. Nawaz; C. Senior; F. Robson; S. Lehman; W. Blecher; W. Fugard; A. Rao; A. Sarofim; P. Smith; D. Pershing; E. Eddings; M. Cremer; J. Hurley; G. Weber; M. Jones; M. Collings; D. Hajicek; A. Henderson; P. Klevan; D. Seery; B. Knight; R. Lessard; J. Sangiovanni; A. Dennis; C. Bird; W. Sutton; N. Bornstein; F. Cogswell; C. Randino; S. Gale; Mike Heap


    . To achieve these objectives requires a change from complete reliance of coal-fired systems on steam turbines (Rankine cycles) and moving forward to a combined cycle utilizing gas turbines (Brayton cycles) which offer the possibility of significantly greater efficiency. This is because gas turbine cycles operate at temperatures well beyond current steam cycles, allowing the working fluid (air) temperature to more closely approach that of the major energy source, the combustion of coal. In fact, a good figure of merit for a HIPPS design is just how much of the enthalpy from coal combustion is used by the gas turbine. The efficiency of a power cycle varies directly with the temperature of the working fluid and for contemporary gas turbines the optimal turbine inlet temperature is in the range of 2300-2500 F (1260-1371 C). These temperatures are beyond the working range of currently available alloys and are also in the range of the ash fusion temperature of most coals. These two sets of physical properties combine to produce the major engineering challenges for a HIPPS design. The UTRC team developed a design hierarchy to impose more rigor in our approach. Once the size of the plant had been determined by the choice of gas turbine and the matching steam turbine, the design process of the High Temperature Advanced Furnace (HITAF) moved ineluctably to a down-fired, slagging configuration. This design was based on two air heaters: one a high temperature slagging Radiative Air Heater (RAH) and a lower temperature, dry ash Convective Air Heater (CAH). The specific details of the air heaters are arrived at by an iterative sequence in the following order:-Starting from the overall Cycle requirements which set the limits for the combustion and heat transfer analysis-The available enthalpy determined the range of materials, ceramics or alloys, which could tolerate the temperatures-Structural Analysis of the designs proved to be the major limitation-Finally the commercialization

  11. Method and apparatus for achieving hypergolic combustion by partial catalytic combustion

    Energy Technology Data Exchange (ETDEWEB)

    Hoppie, L.O.


    This patent describes an apparatus for pretreatment of a hydrocarbon fuel for hypergolic combustion in an oxidizing atmosphere in the combustion chamber of a combustion device comprising: a source of fuel; a source of oxidizing fluid; a mixing chamber for receiving oxidizer fluid from the source; means for directing fuel received from the fuel source into the oxidizer fluid in the mixing chamber so as to create a rich fuel-oxidizer fluid mixture therein substantially above the stoichiometric ratio; catalytic reactor means receiving the rich fuel-oxidizer fluid mixture from the mixture from the mixture chamber and partially catalytically combusting the mixture to form a high temperature, hydrogen-rich product gas at temperatures on the order of 1,000 degrees farenheit. It is thereby activated by the formation of a sufficient proportion of fuel molecules to enable hypergolic combustion thereof; means controllably directing the high temperature product gas in the activated state into the combustion chamber, whereby enabling hypergolic combustion therein as a result of the high temperature activated condition of the product gas.

  12. Low-temperature CO oxidation over Cu/Pt co-doped ZrO2 nanoparticles synthesized by solution combustion. (United States)

    Singhania, Amit; Gupta, Shipra Mital


    Zirconia (ZrO2) nanoparticles co-doped with Cu and Pt were applied as catalysts for carbon monoxide (CO) oxidation. These materials were prepared through solution combustion in order to obtain highly active and stable catalytic nanomaterials. This method allows Pt(2+) and Cu(2+) ions to dissolve into the ZrO2 lattice and thus creates oxygen vacancies due to lattice distortion and charge imbalance. High-resolution transmission electron microscopy (HRTEM) results showed Cu/Pt co-doped ZrO2 nanoparticles with a size of ca. 10 nm. X-ray diffraction (XRD) and Raman spectra confirmed cubic structure and larger oxygen vacancies. The nanoparticles showed excellent activity for CO oxidation. The temperature T50 (the temperature at which 50% of CO are converted) was lowered by 175 °C in comparison to bare ZrO2. Further, they exhibited very high stability for CO reaction (time-on-stream ≈ 70 h). This is due to combined effect of smaller particle size, large oxygen vacancies, high specific surface area and better thermal stability of the Cu/Pt co-doped ZrO2 nanoparticles. The apparent activation energy for CO oxidation is found to be 45.6 kJ·mol(-1). The CO conversion decreases with increase in gas hourly space velocity (GHSV) and initial CO concentration.

  13. Thermoelastic properties of minerals at high temperature

    Indian Academy of Sciences (India)

    Sanjay Upadhyay; Hem Chandra; Meenakashi Joshi; Deepika P Joshi


    The knowledge of elasticity of the minerals is useful for interpreting the structure and composition of the lower mantle and also in seismic studies. The purpose of the present study is to discuss a simple and straightforward method for evaluating thermoelastic properties of minerals at high temperatures. We have extended the Kumar’s formulation by taking into the account the concept of anharmonicity in minerals above the Debye temperature (D). In our present study, we have investigated the thermophysical properties of two minerals (pyrope-rich garnet and MgAl2O4) under high temperatures and calculated the second-order elastic constant () and bulk modulus (T) of the above minerals, in two cases first by taking Anderson–Gruneisen parameter (T) as temperature-independent and then by treating T as temperature-dependent parameter. The results obtained when T is temperature-dependent are in close agreement with experimental data.

  14. High temperature corrosion of advanced ceramic materials for hot gas filters and heat exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Crossland, C.E.; Shelleman, D.L.; Spear, K.E. [Pennsylvania State Univ., University Park, PA (United States)] [and others


    A vertical flow-through furnace has been built to study the effect of corrosion on the morphology and mechanical properties of ceramic hot gas filters. Sections of 3M Type 203 and DuPont Lanxide SiC-SiC filter tubes were sealed at one end and suspended in the furnace while being subjected to a simulated coal combustion environment at 870{degrees}C. X-ray diffraction and electron microscopy is used to identify phase and morphology changes due to corrosion while burst testing determines the loss of mechanical strength after exposure to the combustion gases. Additionally, a thermodynamic database of gaseous silicon compounds is currently being established so that calculations can be made to predict important products of the reaction of the environment with the ceramics. These thermodynamic calculations provide useful information concerning the regimes where the ceramic may be degraded by material vaporization. To verify the durability and predict lifetime performance of ceramic heat exchangers in coal combustion environments, long-term exposure testing of stressed (internally pressurized) tubes must be performed in actual coal combustion environments. The authors have designed a system that will internally pressurize 2 inch OD by 48 inch long ceramic heat exchanger tubes to a maximum pressure of 200 psi while exposing the outer surface of the tubes to coal combustion gas at the Combustion and Environmental Research Facility (CERF) at the Pittsburgh Energy and Technology Center. Water-cooled, internal o-ring pressure seals were designed to accommodate the existing 6 inch by 6 inch access panels of the CERF. Tubes will be exposed for up to a maximum of 500 hours at temperatures of 2500 and 2600{degrees}F with an internal pressure of 200 psi. If the tubes survive, their retained strength will be measured using the high temperature tube burst test facility at Penn State University. Fractographic analysis will be performed to identify the failure source(s) for the tubes.

  15. Low to high temperature energy conversion system (United States)

    Miller, C. G. (Inventor)


    A method for converting heat energy from low temperature heat sources to higher temperature was developed. It consists of a decomposition chamber in which ammonia is decomposed into hydrogen and nitrogen by absorbing heat of decomposition from a low temperature energy source. A recombination reaction then takes place which increases the temperature of a fluid significantly. The system is of use for the efficient operation of compact or low capital investment turbine driven electrical generators, or in other applications, to enable chemical reactions that have a critical lower temperature to be used. The system also recovers heat energy from low temperature heat sources, such as solar collectors or geothermal sources, and converts it to high temperatures.

  16. Sandia_HighTemperatureComponentEvaluation_2015

    Energy Technology Data Exchange (ETDEWEB)

    Cashion, Avery T. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)


    The objective of this project is to perform independent evaluation of high temperature components to determine their suitability for use in high temperature geothermal tools. Development of high temperature components has been increasing rapidly due to demand from the high temperature oil and gas exploration and aerospace industries. Many of these new components are at the late prototype or first production stage of development and could benefit from third party evaluation of functionality and lifetime at elevated temperatures. In addition to independent testing of new components, this project recognizes that there is a paucity of commercial-off-the-shelf COTS components rated for geothermal temperatures. As such, high-temperature circuit designers often must dedicate considerable time and resources to determine if a component exists that they may be able to knead performance out of to meet their requirements. This project aids tool developers by characterization of select COTS component performances beyond published temperature specifications. The process for selecting components includes public announcements of project intent (e.g., FedBizOps), direct discussions with candidate manufacturers,and coordination with other DOE funded programs.

  17. Dimensionality of high temperature superconductivity in oxides (United States)

    Chu, C. W.


    Many models have been proposed to account for the high temperature superconductivity observed in oxide systems. Almost all of these models proposed are based on the uncoupled low dimensional carrier Cu-O layers of the oxides. Results of several experiments are presented and discussed. They suggest that the high temperature superconductivity observed cannot be strictly two- or one-dimensional, and that the environment between the Cu-O layers and the interlayer coupling play an important role in the occurrence of such high temperature superconductivity. A comment on the very short coherence length reported is also made.

  18. Aeronautical applications of high-temperature superconductors (United States)

    Turney, George E.; Luidens, Roger W.; Uherka, Kenneth; Hull, John


    The successful development of high-temperature superconductors (HTS) could have a major impact on future aeronautical propulsion and aeronautical flight vehicle systems. A preliminary examination of the potential application of HTS for aeronautics indicates that significant benefits may be realized through the development and implementation of these newly discovered materials. Applications of high-temperature superconductors (currently substantiated at 95 k) were envisioned for several classes of aeronautical systems, including subsonic and supersonic transports, hypersonic aircraft, V/STOL aircraft, rotorcraft, and solar, microwave and laser powered aircraft. Introduced and described are the particular applications and potential benefits of high-temperature superconductors as related to aeronautics and/or aeronautical systems.

  19. Aeronautical applications of high-temperature superconductors (United States)

    Turney, George E.; Luidens, Roger W.; Uherka, Kenneth; Hull, John


    The successful development of high-temperature superconductors (HTS) could have a major impact on future aeronautical propulsion and aeronautical flight vehicle systems. A preliminary examination of the potential application of HTS for aeronautics indicates that significant benefits may be realized through the development and implementation of these newly discovered materials. Applications of high-temperature superconductors (currently substantiated at 95 K) were envisioned for several classes of aeronautical systems, including subsonic and supersonic transports, hypersonic aircraft, V/STOL aircraft, rotorcraft, and solar, microwave and laser powered aircraft. Introduced and described are the particular applications and potential benefits of high-temperature superconductors as related to aeronautics and/or aeronautical systems.

  20. High temperature and pressure alkaline electrolysis

    DEFF Research Database (Denmark)

    Allebrod, Frank; Chatzichristodoulou, Christodoulos; Mogensen, Mogens Bjerg


    the operational temperature and pressure to produce pressurized hydrogen at high rate (m3 H2·h-1·m-2 cell area) and high electrical efficiency. This work describes an exploratory technical study of the possibility to produce hydrogen and oxygen with a new type of alkaline electrolysis cell at high temperatures...... for immobilization of aqueous KOH solutions. Electrolysis cells with this electrolyte and metal foam based gas diffusion electrodes were successfully demonstrated at temperatures up to 250 °C at 40 bar. Different electro-catalysts were tested in order to reduce the oxygen and hydrogen overpotentials. Current...

  1. Symposium on high temperature and materials chemistry

    Energy Technology Data Exchange (ETDEWEB)


    This volume contains the written proceedings of the Symposium on High Temperature and Materials Chemistry held in Berkeley, California on October 24--25, 1989. The Symposium was sponsored by the Materials and Chemical Sciences Division of Lawrence Berkeley Laboratory and by the College of Chemistry of the University of California at Berkeley to discuss directions, trends, and accomplishments in the field of high temperature and materials chemistry. Its purpose was to provide a snapshot of high temperature and materials chemistry and, in so doing, to define status and directions.

  2. Silicon Carbide Nanotube Oxidation at High Temperatures (United States)

    Ahlborg, Nadia; Zhu, Dongming


    Silicon Carbide Nanotubes (SiCNTs) have high mechanical strength and also have many potential functional applications. In this study, SiCNTs were investigated for use in strengthening high temperature silicate and oxide materials for high performance ceramic nanocomposites and environmental barrier coating bond coats. The high · temperature oxidation behavior of the nanotubes was of particular interest. The SiCNTs were synthesized by a direct reactive conversion process of multiwall carbon nanotubes and silicon at high temperature. Thermogravimetric analysis (TGA) was used to study the oxidation kinetics of SiCNTs at temperatures ranging from 800degC to1300degC. The specific oxidation mechanisms were also investigated.

  3. Effect of High Injection Pressure of Algae and Jatropha Derived Biodiesel on Ignition Delay and Combustion Process (United States)

    Rahman, Nurdin; Khalid, Amir; Manshoor, Bukhari; Jaat, Norrizam; Zaman, Izzuddin; Sunar, Norshuhaila


    This paper presents the investigation of the effect of high injection pressure on the ignition delay period and emission characteristics. Few experiments were conducted in a rapid compression machine (RCM). Four types of fuels were tested inside a RCM which are standard diesel (SD), Algae biodiesel (A2), Palm Oil biodiesel (B5, B10, and B15) and Jatropha biodiesel (J5, J10, J15). The experiments were conducted at high injection pressure of 130 MPa. The ambient temperature of constant volume chamber at the time of fuel injection was set at 850 K. The results indicate that the combined factors of specific of ambient temperature and higher injection pressure produces shorter ignition delay time. B5 has the shortest ignition delay with 1.5 ms. Biodiesel has the shorter ignition delay which is prolonged with increasing biodiesel content in the blends. In terms of emissions, Carbon dioxide (CO2), Carbon monoxide (CO), hydrocarbon (HC) and smoke emissions decreased with all biodiesel-diesel blends. However, oxides of nitrogen (NOx) emission of the biodiesel was relatively higher than those of the diesel under all test conditions. In addition, the increase of blends in terms of biodiesel ratio was found to be significant in enhancing the combustion process.

  4. Development of high temperature capable piezoelectric sensors (United States)

    Suprock, Andrew D.; Tittmann, Bernhard R.


    The objective of the project was to investigate the influence of the temperature effect on ultrasonic transducers based on a comparison of the effects of high temperature conditions versus those of high temperature and irradiation on the transducer system. There was also a preliminary move towards the establishment of the means for optimizing the bulk single crystal transducer fabrication process in order to achieve peak efficiency and maximum effectiveness in both irradiated and non-irradiated high temperature applications. Optimization of the material components within the transducer will greatly increase non-destructive testing abilities for industry, structural health monitoring. Here is presented a progress report on the testing of several different piezoelectric materials under high temperature conditions. The viability of aluminum nitride (AlN) as a transducer material in high temperature conditions has been previously explored [1] and has been further tested to ensure reliability. Bistmuth Titanate (BiT) has also been tested and has displayed excellent effectiveness for high temperature application.

  5. Effects of Injection Timing on Fluid Flow Characteristics of Partially Premixed Combustion Based on High-Speed Particle Image Velocimetry

    KAUST Repository

    Izadi Najafabadi, Mohammad


    Partially Premixed Combustion (PPC) is a promising combustion concept ,based on judicious tuning of the charge stratification, to meet the increasing demands of emission legislation and to improve fuel efficiency. Longer ignition delays of PPC in comparison with conventional diesel combustion provide better fuel/air mixture which decreases soot and NO emissions. Moreover, a proper injection timing and strategy for PPC can improve the combustion stability as a result of a higher level of fuel stratification in comparison with the Homogeneous Charge Compression Ignition (HCCI) concept. Injection timing is the major parameter with which to affect the level of fuel and combustion stratification and to control the combustion phasing and the heat release behavior. The scope of the present study is to investigate the fluid flow characteristics of PPC at different injection timings. To this end, high-speed Particle Image Velocimetry (PIV) is implemented in a light-duty optical engine to measure fluid flow characteristics, including the flow fields, mean velocity and cycle-resolved turbulence, inside the piston bowl as well as the squish region with a temporal resolution of 1 crank angle degree at 800 rpm. Two injectors, having 5 and 7 holes, were compared to see their effects on fluid flow and heat release behavior for different injection timings. Reactive and non-reactive measurements were performed to distinguish injection-driven and combustion-driven turbulence. Formation of vortices and higher turbulence levels enhance the air/fuel interaction, changing the level of fuel stratification and combustion duration. Results demonstrate clearly how turbulence level correlates with heat release behavior, and provide a quantitative dataset for validation of numerical simulations.

  6. The influence of composition and final pyrolysis temperature variations on global kinetics of combustion of segregated municipal solid waste (United States)

    Pranoto; Himawanto, D. A.; Arifin, N. A.


    The combustion of segregated municipal solid waste (MSW) and the resulted char from the pyrolysis process were investigated in this research. The segregated MSW that was collected and used can be divided into organic and inorganic waste materials. The organic materials were bamboo and banana leaves and the inorganic materials were Styrofoam and snack wrappings. The composition ratio of the waste was based on the percentage of weight of each sample. The thermal behaviour of the segregated MSW was investigated by thermo gravimetric analysis. For the pyrolysis process the prepared samples of 200gram were heated from ambient temperature until a variance of final pyrolysis temperature of 550°C, 650°C and 750°C at a constant heating rate of 25°C/min. It was found that the highest activation energy of the raw materials is achieved from sample CC1 (Char with 100% inorganic materials). The activation energy of the raw materials is relatively lower than that of the char. The higher the final pyrolysis temperature, the lower the calorific value of char. The calorific value gradually increases with the amount of inorganic materials.

  7. Broadband, High-Temperature Ultrasonic Transducer (United States)

    Parker, F. Raymond; Winfree, William P.; Barrows, Danny A.


    Materials chosen for endurance at high temperatures and acoustic coupling and damping. Acoustic transducer designed to exhibit broad frequency response and to survive temperatures close to melting points of brazing alloys. Attached directly and continuously to hot object monitored ultrasonically: for example, it can be attached to relatively cool spot on workpiece during brazing for taking ultrasonic quality-control measurements.

  8. Potential of Porous-Media Combustion Technology as Applied to Internal Combustion Engines

    Directory of Open Access Journals (Sweden)

    Miroslaw Weclas


    Full Text Available The paper summarizes the knowledge concerning porous media combustion techniques as applied in engines. One of most important reasons of this review is to introduce this still not well known technology to researchers doing with internal combustion engine processes, thermal engines, reactor thermodynamics, combustion, and material science. The paper gives an overview of possible applications of a highly porous open cell structures to in-cylinder processes. This application means utilization of unique features of porous media for supporting engine processes, especially fuel distribution in space, vaporization, mixing with air, heat recuperation, ignition and combustion. There are three ways for applying porous medium technology to engines: support of individual processes, support of homogeneous combustion process (catalytic and non-catalytic with temperature control, and utilization of the porous structure as a heat capacitor only. In the first type of application, the porous structure may be utilized for fuel vaporization and improved fuel distribution in space making the mixture more homogeneous in the combustion chamber. Extension of these processes to mixture formation and ignition inside a combustion reactor allows the realization of a homogeneous and a nearly zero emissions level combustion characterized by a homogeneous temperature field at reduced temperature level.

  9. Combustion synthesis of advanced composite materials (United States)

    Moore, John J.


    Self-propagating high temperature (combustion) synthesis (SHS), has been investigated as a means of producing both dense and expanded (foamed) ceramic and ceramic-metal composites, ceramic powders and whiskers. Several model exothermic combustion synthesis reactions were used to establish the importance of certain reaction parameters, e.g., stoichiometry, green density, combustion mode, particle size, etc. on the control of the synthesis reaction, product morphology and properties. The use of an in situ liquid infiltration technique and the effect of varying the reactants and their stoichiometry to provide a range of reactant and product species i.e., solids, liquids and gases, with varying physical properties e.g., volatility and thermal conductivity, on the microstructure and morphology of synthesized composite materials is discussed. Conducting the combustion synthesis reaction in a reactive gas environment to take advantage of the synergistic effects of combustion synthesis and vapor phase transport is also examined.

  10. High-temperature corrosion of iron aluminides

    Energy Technology Data Exchange (ETDEWEB)

    Natesan, K. [Argonne National Lab., IL (United States); Cho, W.D. [Utah Univ., Salt Lake City, UT (United States)


    Iron aluminides are being developed for use as structural materials and/or cladding alloys in fossil energy systems. Extensive development has been in progress on Fe{sub 3}Al-based alloys to improve their engineering ductility. This paper describes results from an ongoing program to evaluate the corrosion performance of these alloys. The experimental program at Argonne involves thermogravimetric analyses of alloys exposed to environments that simulate coal gasification and coal combustion. Corrosion experiments were conducted to determine the effect of gas flow rate and different levels of HCl at a gas temperature of 650 C on three heats of aluminide material, namely, FA 61, FA 129, and FAX. In addition, specimens of Type 316 stainless steel with an overlay alloying of iron aluminide were prepared by electrospark deposition and tested for their corrosion resistance. Detailed microstructural evaluations of tested specimens were performed. Results are used to assess the corrosion resistance of various iron aluminides for service in fossil energy systems that utilize coal as a feedstock.

  11. Net Shape Manufacturing of Accelerator Components by High Pressure Combustion Driven Powder Compaction

    CERN Document Server

    Nagarathnam, Karthik


    We present an overview of the net shape and cost-effective manufacturing aspects of high density accelerator (normal and superconducting) components (e.g., NLC Copper disks) and materials behavior of copper, stainless steel, refractory materials (W, Mo and TZM), niobium and SiC by innovative high pressure Combustion Driven Compaction (CDC) technology. Some of the unique process advantages include high densities, net-shaping, improved surface finish/quality, suitability for simple/complex geometries, synthesis of single as well as multilayered materials, milliseconds of compaction process time, little or no post-machining, and process flexibility. Some of the key results of CDC fabricated sample geometries, process optimization, sintering responses and structure/property characteristics such as physical properties, surface roughness/quality, electrical conductivity, select microstructures and mechanical properties will be presented. Anticipated applications of CDC compaction include advanced x-ray targets, vac...

  12. Temperature profile and producer gas composition of high temperature air gasification of oil palm fronds (United States)

    Guangul, F. M.; Sulaiman, S. A.; Ramli, A.


    Environmental pollution and scarcity of reliable energy source are the current pressing global problems which need a sustainable solution. Conversion of biomass to a producer gas through gasification process is one option to alleviate the aforementioned problems. In the current research the temperature profile and composition of the producer gas obtained from the gasification of oil palm fronds by using high temperature air were investigated and compared with unheated air. By preheating the gasifying air at 500°C the process temperature were improved and as a result the concentration of combustible gases and performance of the process were improved. The volumetric percentage of CO, CH4 and H2 were improved from 22.49, 1.98, and 9.67% to 24.98, to 2.48% and 13.58%, respectively. In addition, HHV, carbon conversion efficiency and cold gas efficiency were improver from 4.88 MJ/Nm3, 83.8% and 56.1% to 5.90 MJ/Nm3, 87.3% and 62.4%, respectively.

  13. Numerical Simulation of 3—D Temperature Distribution of the Flame Tube of the Combustion Chamber with Air Film COoling

    Institute of Scientific and Technical Information of China (English)

    ChangHaiping; HuangTaiping; 等


    The wall temperature distribution of the flame tube of the combustion chamber is strongly affected by the combustion,radiation and flow.The interaction of these influential factors froms a coupling system.In this paper,a new method,which is different from the previous methods,has been developed for calcuating the temperature distribution of the flame tube wall together with the flow field inside and outside the flame tube,In the calculation.the combustion,heat radiation,cooling air film and injection stream mixing inside the flame tube as well as the secondary air flowing outside the flame tube have been simulated.The calculation,in this paper,uses the SIMPLE algorithm,the κ-εturbulence model and the auto-adjustable damping method .By using this method ,the 3-D temperature distribution of the floame tube wall of the combustion chamber of an aeroengine has been simulated successfully.The calculation results are compared to the experimetal data.The error of wall temperature is less than 10%.

  14. High Temperature Fiberoptic Thermal Imaging System Project (United States)

    National Aeronautics and Space Administration — The proposed Phase 1 program will fabricate and demonstrate a small diameter single fiber endoscope that can perform high temperature thermal imaging in a jet engine...

  15. High Temperature Self-Healing Metallic Composite (United States)

    Kutelia, E. R.; Bakhtiyarov, S. I.; Tsurtsumia, O. O.; Bakhtiyarov, A. S.; Eristavi, B.


    This work presents the possibility to realize the self healing mechanisms for heterogeneous architectural metal/ceramic high temperature sandwich thermal barrier coating systems on the surfaces refractory metals by analogy of wound healing in the skin.

  16. High Temperature Capacitors for Venus Exploration Project (United States)

    National Aeronautics and Space Administration — High temperature power electronics have become a vital aspect of future designs for power converters in spacecraft, battle zone electric power, satellite power...

  17. Panel report on high temperature ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Nolet, T C [ed.


    Fundamental research is reported concerning high temperature ceramics for application in turbines, engines, batteries, gasifiers, MHD, fuel cells, heat exchangers, and hot wall combustors. Ceramics microstructure and behavior are included. (FS)

  18. Application Fields of High-Temperature Superconductors


    Hott, Roland


    Potential application fields for cuprate high-temperature superconductors (HTS) and the status of respective projects are reviewed. The availability of a reliable and inexpensive cooling technique will be essential for a future broad acceptance of HTS applications.

  19. Measuring Moduli Of Elasticity At High Temperatures (United States)

    Wolfenden, Alan


    Shorter, squatter specimens and higher frequencies used in ultrasonic measurement technique. Improved version of piezo-electric ultrasonic composite oscillator technique used to measure moduli of elasticity of solid materials at high temperatures.

  20. Silicon carbide, an emerging high temperature semiconductor (United States)

    Matus, Lawrence G.; Powell, J. Anthony


    In recent years, the aerospace propulsion and space power communities have expressed a growing need for electronic devices that are capable of sustained high temperature operation. Applications for high temperature electronic devices include development instrumentation within engines, engine control, and condition monitoring systems, and power conditioning and control systems for space platforms and satellites. Other earth-based applications include deep-well drilling instrumentation, nuclear reactor instrumentation and control, and automotive sensors. To meet the needs of these applications, the High Temperature Electronics Program at the Lewis Research Center is developing silicon carbide (SiC) as a high temperature semiconductor material. Research is focussed on developing the crystal growth, characterization, and device fabrication technologies necessary to produce a family of silicon carbide electronic devices and integrated sensors. The progress made in developing silicon carbide is presented, and the challenges that lie ahead are discussed.

  1. Novel High Temperature Strain Gauge Project (United States)

    National Aeronautics and Space Administration — Advanced high-temperature sensor technology and bonding methods are of great interests in designing and developing advanced future aircraft. Current state-of-the-art...

  2. Coal combustion science. Quarterly progress report, April 1993--June 1993

    Energy Technology Data Exchange (ETDEWEB)

    Hardesty, D.R. [ed.


    This document is a quarterly status report of the Coal Combustion Science Project that is being conducted at the Combustion Research Facility, Sandia National Laboratories. The information reported is for Apr-Jun 1993. The objective of this work is to support the Office of Fossil Energy in executing research on coal combustion science. This project consists of basic research on coal combustion that supports both the PETC Direct Utilization Advanced Research and Technology Development Program, and the International Energy Agency Coal Combustion Science Project. The objective of the kinetics and mechanisms of pulverized coal char combustion task is to characterize the combustion behavior of selected US coals under conditions relevant to industrial pulverized coal-fired furnaces. Work is being done in four areas: kinetics of heterogeneous fuel particle populations; char combustion kinetics at high carbon conversion; the role of particle structure and the char formation process in combustion and; unification of the Sandia char combustion data base. This data base on the high temperature reactivities of chars from strategic US coals will permit identification of important fuel-specific trends and development of predictive capabilities for advanced coal combustion systems. The objective of the fate of inorganic material during coal combustion task is the establish a quantitative understanding of the mechanisms and rates of transformation, fragmentation, and deposition of inorganic material during coal combustion as a function of coal type, particle size and temperature, the initial forms and distribution of inorganic species in the unreacted coal, and the local gas temperature and composition. In addition, optical diagnostic capabilities are being developed for in situ, real-time detection of inorganic vapor species and surface species during ash deposition. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

  3. (DURIP 10) High Speed Intensified Imaging System For Studies Of Mixing And Combustion In Supersonic Flows And Hydrocarbon Flame Structure Measurements At Elevated Pressures (United States)



  4. Effect of calcination temperature on the structural and electrical properties of cobalt ferrite synthesized by combustion method

    Energy Technology Data Exchange (ETDEWEB)

    Khandekar, M.S. [Ferrite Materials Laboratory, Department of Physics, Solapur University, Solapur 413255, MS (India); Kambale, R.C. [Composite Materials Laboratory, Department of Physics, Shivaji University, Kolhapur 416004, MS (India); Patil, J.Y. [Ferrite Materials Laboratory, Department of Physics, Solapur University, Solapur 413255, MS (India); Kolekar, Y.D. [Department of Physics, University of Pune, Ganeshkhind, Pune 411007, MS (India); Suryavanshi, S.S., E-mail: [Ferrite Materials Laboratory, Department of Physics, Solapur University, Solapur 413255, MS (India)


    Research highlights: > The CoFe{sub 2}O{sub 4} nanoparticles were prepared by autocombustion method with hexamine as a fuel. > TGA measurements confirm the stable phase formation of the phase above 700 deg. C. > Effect of calcination temperature on the structural and electrical properties of cobalt ferrite was investigated. > The particle size strongly affects the electrical property. > ac conductivity measurement reveals the conduction in the present phase is of small polaron type. - Abstract: In this paper, the structural and electrical properties of cobalt ferrite synthesized by combustion route with hexamine as a fuel are reported for the first time. Thermogravemetric analysis (TGA) confirm the stable phase formation of the phase above 700 deg. C. Structural characterizations of all the samples were carried out by X-ray diffraction (XRD) technique. It reveals an increase in the particle size with the calcination temperature (i.e. 700, 800 and 900 deg. C). Infrared (IR) spectroscopy confirms the presence of tetrahedral and octahedral group complexes within the spinel lattice. DC resistivity as function of temperature indicates that all the samples obey the semiconducting behavior and it decreases with calcination temperature. The variation of dielectric constant ({epsilon}{sub r}) and ac conductivity ({sigma}{sub ac}), for all the samples have been studied as a function of applied frequency in the range from 20 Hz to 1 MHz. The dielectric constant increases with the calcination temperature and all the samples exhibit usual dielectric dispersion which is due to the Maxwell-Wagner-type interfacial polarization. The ac conductivity measurement suggests that the conduction is due to small polaron hopping.

  5. High temperature superconductors and other superfluids

    CERN Document Server

    Alexandrov, A S


    Written by eminent researchers in the field, this text describes the theory of superconductivity and superfluidity starting from liquid helium and a charged Bose-gas. It also discusses the modern bipolaron theory of strongly coupled superconductors, which explains the basic physical properties of high-temperature superconductors. This book will be of interest to fourth year graduate and postgraduate students, specialist libraries, information centres and chemists working in high-temperature superconductivity.

  6. PLA recycling by hydrolysis at high temperature (United States)

    Cristina, Annesini Maria; Rosaria, Augelletti; Sara, Frattari; Fausto, Gironi


    In this work the process of PLA hydrolysis at high temperature was studied, in order to evaluate the possibility of chemical recycling of this polymer bio-based. In particular, the possibility to obtain the monomer of lactic acid from PLA degradation was investigated. The results of some preliminary tests, performed in a laboratory batch reactor at high temperature, are presented: the experimental results show that the complete degradation of PLA can be obtained in relatively low reaction times.

  7. Recent developments in high temperature organic polymers (United States)

    Hergenrother, P. M.


    Developments in high temperature organic polymers during the last 5 years with major emphasis on polyimides and poly(arylene ether)s are discussed. Specific polymers or series of polymers have been selected to demonstrate unique properties or the effect chemical structure has upon certain properties. This article is not intended to be a comprehensive review of high temperature polymer advancements during the last 5 years.

  8. Finely tuning MOFs towards high-performance post-combustion CO2 capture materials. (United States)

    Wang, Qian; Bai, Junfeng; Lu, Zhiyong; Pan, Yi; You, Xiaozeng


    CO2 capture science and technology, particularly for the post-combustion CO2 capture, has become one of very important research fields, due to great concern of global warming. Metal-organic frameworks (MOFs) with a unique feature of structural fine-tunability, unlike the traditional porous solid materials, can provide many and powerful platforms to explore high-performance adsorbents for post-combustion CO2 capture. Until now, several strategies for finely tuning MOF structures have been developed, in which either the larger quadrupole moment and polarizability of CO2 are considered: metal ion change (I), functional groups attachment (II) and functional group insertion (III), vary the electronic nature of the pore surface; or targeting the smaller kinetic diameter of CO2 over N2 is focused on: framework interpenetration (IV), ligand shortening (V) and coordination site shifting (VI) contract the pore size of frameworks to improve their CO2 capture properties. In this review, from the viewpoint of synthetic materials scientists/chemists, we would like to introduce and summarize these strategies based upon recent work published by other groups and ourselves.

  9. Study on the combustion behavior of high impact polystyrene nanocomposites produced by different extrusion processes

    Directory of Open Access Journals (Sweden)


    Full Text Available The combustion behavior of a blend made of high impact polystyrene (HIPS with sodium montmorillonite (MMT-Na+ and triphenyl phosphite (TPP, as a halogen-free flame retardant, is analyzed in detail in this work. The blend is processed through various extrusion methods aimed to improve clay dispersion. The UL94 method in vertical position, oxygen index and cone calorimetric measurements assess HIPS blend behavior in combustion. TGA, FTIR, SEM and X-ray measurements, together with mechanical and rheological tests evaluate the thermal degradation, morphology, intercalation and degree of dispersion of particles. The use of a static-mixing die placed at the extreme of a single screw extruder improves clay platelets distribution and reduces the peak heat release rate better than employing a twin screw extrusion process. In addition, mechanical and rheological properties are affected substantially by changing the extrusion process. A correlation between clay dispersion and HIPS fire retardant properties is found, as the peak heat release rate decreases with good clay dispersion in cone calorimetric tests.

  10. Studying the Internal Ballistics of a Combustion Driven Potato Cannon using High-speed Video

    CERN Document Server

    Courtney, E D S


    A potato cannon was designed to accommodate several different experimental propellants and have a transparent barrel so the movement of the projectile could be recorded on high-speed video (at 2000 frames per second). Both combustion chamber and barrel were made of polyvinyl chloride (PVC). Five experimental propellants were tested: propane (C3H8), acetylene (C2H2), ethanol (C2H6O), methanol (CH4O), and butane (C4H10). The amount of each experimental propellant was calculated to approximate a stoichometric mixture and considering the Upper Flammability Limit (UFL) and the Lower Flammability Limit (LFL), which in turn were affected by the volume of the combustion chamber. Cylindrical projectiles were cut from raw potatoes so that there was an airtight fit, and each weighed 50 (+/- 0.5) grams. For each trial, position as a function of time was determined via frame by frame analysis. Five trials were taken for each experimental propellant and the results analyzed to compute velocity and acceleration as functions...

  11. Filtration Combustion in Smoldering and SHS (United States)

    Matkowsky, Bernard J.


    Smolder waves and SHS (self-propagating high-temperature synthesis) waves are both examples of filtration combustion waves propagating in porous media. Smoldering combustion is important for the study of fire safety. Smoldering itself can cause damage, its products are toxic and it can also lead to the more dangerous gas phase combustion which corresponds to faster propagation at higher temperatures. In SHS , a porous solid sample, consisting of a finely ground powder mixture of reactants, is ignited at one end. A high temperature thermal wave, having a frontal structure, then propagates through the sample converting reactants to products. The SHS technology appears to enjoy a number of advantages over the conventional technology, in which the sample is placed in a furnace and "baked" until it is "well done". The advantages include shorter synthesis times, greater economy, in that the internal energy of the reactions is employed rather than the costly external energy of the furnace, purer products, simpler equipment and no intrinsic limitation on the size of the sample to be synthesized as exists in the conventional technology. When delivery of reactants through the pores to the reaction site is an important aspect of the combustion process, it is referred to as filtration combustion. The two types of filtration combustion have a similar mathematical formulation, describing the ignition, propagation and extinction of combustion waves in porous media. The goal in each case, however, is different. In smoldering the desired goal is to prevent propagation, whereas in SHS the goal is to ensure propagation of the combustion wave, leading to the synthesis of desired products. In addition, the scales in the two areas of application differ. Smoldering generally occurs at lower temperatures and propagation velocities than in SHS nevertheless, the two applications have much in common so that what is learned fit make application can be used to advantage in the other. In porous

  12. High-temperature discontinuously reinforced aluminum (United States)

    Zedalis, M. S.; Bryant, J. D.; Gilman, P. S.; Das, S. K.


    High-temperature discontinuously reinforced aluminum (HTDRA) composites have been developed for elevated-temperature applications by incorporating SiC particulate reinforcement into a rapidly solidified, high-temperature Al-Fe-V-Si (alloy 8009) matrix. HTDRA combines the superior elevated-temperature strength, stability and corrosion resistance of the 8009 matrix with the excellent specific stiffness and abrasion resistance of the discontinuous SiC particulate reinforcement. On a specific stiffness basis, HTDRA is competitive with Ti-6-Al-4V and 17-4 PH stainless steel to temperatures approaching 480°C. Potential aerospace applications being considered for HTDRA include aircraft wing skins, missile bodies, and miscellaneous engine, spacecraft and hypersonic vehicle components.

  13. Insight into selected reactions in low-temperature dimethyl ether combustion from Born-Oppenheimer molecular dynamics. (United States)

    Andersen, Amity; Carter, Emily A


    Dimethyl ether is under consideration as an alternative diesel fuel. Its combustion chemistry is as yet ill-characterized. Here we use Born-Oppenheimer molecular dynamics (BOMD) based on DFT-B3LYP forces to investigate the short-time dynamics of selected features of the low-temperature dimethyl ether (DME) oxidation potential energy surface. Along the chain propagation pathway, we run BOMD simulations from the transition state involving the decomposition of (*)CH(2)OCH(2)OOH to two CH(2)=O and an (*)OH radical. We predict that formaldehyde C-O stretch overtones are excited, consistent with laser photolysis experiments. We also predict that O-H overtones are excited for the (*)OH formed from (*)CH(2)OCH(2)OOH dissociation. We also investigate short-time dynamics involved in chain branching. First, we examine the isomerization transition state of (*)OOCH(2)OCH(2)OOH --> HOOCH(2)OCHOOH. The latter species is predicted to be a short-lived metastable radical that decomposes within 500 fs to hydroperoxymethyl formate (HPMF; HOOCH(2)OC(=O)H) and the first (*)OH of chain branching. The dissociation of HOOCH(2)OCHOOH exhibits non-RRKM behavior in its lifetime profile, which may be due to conformational constraints or slow intramolecular vibrational energy transfer (IVR) from the nascent H-O bond to the opposite end of the radical, where O-O scission occurs to form HPMF and (*)OH. In a few trajectories, we see HOOCH(2)OCHOOH recross back to (*)OOCH(2)OCH(2)OOH because the isomerization is endothermic, with only an 8 kcal/mol barrier to recrossing. Therefore, some inhibition of chain-branching may be due to recrossing. Second, trajectories run from the transition state leading to the direct decomposition of HPMF (an important source of the second (*)OH radical in chain branching) to HCO, (*)OH, and HC(=O)OH show that these products can recombine to form many other possible products. These products include CH(2)OO + HC(=O)OH, H(2)O + CO + HC(=O)OH, HC(=O)OH + HC(=O)OH, and HC

  14. Laser Plasma Coupling for High Temperature Hohlraums

    Energy Technology Data Exchange (ETDEWEB)

    Kruer, W.


    Simple scaling models indicate that quite high radiation temperatures can be achieved in hohlraums driven with the National Ignition Facility. A scaling estimate for the radiation temperature versus pulse duration for different size NIF hohlraums is shown in Figure 1. Note that a radiation temperature of about 650 ev is projected for a so-called scale 1 hohlraum (length 2.6mm, diameter 1.6mm). With such high temperature hohlraums, for example, opacity experiments could be carried out using more relevant high Z materials rather than low Z surrogates. These projections of high temperature hohlraums are uncertain, since the scaling model does not allow for the very strongly-driven laser plasma coupling physics. Lasnex calculations have been carried out to estimate the plasma and irradiation conditions in a scale 1 hohlraum driven by NIF. Linear instability gains as high as exp(100) have been found for stimulated Brillouin scattering, and other laser-driven instabilities are also far above their thresholds. More understanding of the very strongly-driven coupling physics is clearly needed in order to more realistically assess and improve the prospects for high temperature hohlraums. Not surprisingly, this regime has been avoided for inertial fusion applications and so is relatively unexplored.

  15. Coal Combustion Science

    Energy Technology Data Exchange (ETDEWEB)

    Hardesty, D.R. (ed.); Fletcher, T.H.; Hurt, R.H.; Baxter, L.L. (Sandia National Labs., Livermore, CA (United States))


    The objective of this activity is to support the Office of Fossil Energy in executing research on coal combustion science. This activity consists of basic research on coal combustion that supports both the Pittsburgh Energy Technology Center Direct Utilization Advanced Research and Technology Development Program, and the International Energy Agency Coal Combustion Science Project. Specific tasks for this activity include: (1) coal devolatilization - the objective of this risk is to characterize the physical and chemical processes that constitute the early devolatilization phase of coal combustion as a function of coal type, heating rate, particle size and temperature, and gas phase temperature and oxidizer concentration; (2) coal char combustion -the objective of this task is to characterize the physical and chemical processes involved during coal char combustion as a function of coal type, particle size and temperature, and gas phase temperature and oxygen concentration; (3) fate of mineral matter during coal combustion - the objective of this task is to establish a quantitative understanding of the mechanisms and rates of transformation, fragmentation, and deposition of mineral matter in coal combustion environments as a function of coal type, particle size and temperature, the initial forms and distribution of mineral species in the unreacted coal, and the local gas temperature and composition.

  16. Relativistic QED Plasma at Extremely High Temperature

    CERN Document Server

    Masood, Samina S


    Renormalization scheme of QED (Quantum Electrodynamics) at high temperatures is used to calculate the effective parameters of relativistic plasma in the early universe. Renormalization constants of QED play role of effective parameters of the theory and can be used to determine the collective behavior of the medium. We explicitly show that the dielectric constant, magnetic reluctivity, Debye length and the plasma frequency depend on temperature in the early universe. Propagation speed, refractive index, plasma frequency and Debye shielding length of a QED plasma are computed at extremely high temperatures in the early universe. We also found the favorable conditions for the relativistic plasma from this calculations.

  17. Melt processed high-temperature superconductors

    CERN Document Server


    The achievement of large critical currents is critical to the applications of high-temperature superconductors. Recent developments have shown that melt processing is suitable for producing high J c oxide superconductors. Using magnetic forces between such high J c oxide superconductors and magnets, a person could be levitated.This book has grown largely out of research works on melt processing of high-temperature superconductors conducted at ISTEC Superconductivity Research Laboratory. The chapters build on melt processing, microstructural characterization, fundamentals of flux pinning, criti

  18. Performance of PAHs emission from bituminous coal combustion

    Institute of Scientific and Technical Information of China (English)

    严建华; 尤孝方; 李晓东; 倪明江; 尹雪峰; 岑可法


    Carcinogenic and mutagenic polycyclic aromatic hydrocarbons (PAHs) generated in coal combustion have caused great environmental health concern. Seventeen PAHs (16 high priority PAHs recommended by USEPA plus Benzo[e]pyrene) present in five raw bituminous coals and released during bituminous coal combustion were studied. The effects of combustion temperature, gas atmosphere, and chlorine content of raw coal on PAHs formation were investigated. Two additives (copper and cupric oxide) were added when the coal was burned. The results indicated that significant quantities of PAHs were produced from incomplete combustion of coal pyrolysis products at high temperature, and that temperature is an important causative factor of PAHs formation. PAHs concentrations decrease with the increase of chlorine content in oxygen or in nitrogen atmosphere. Copper and cupric oxide additives can promote PAHs formation (especially the multi-ring PAHs) during coal combustion.

  19. Pulse Combustor Driven Pressure Gain Combustion for High Efficiency Gas Turbine Engines

    KAUST Repository

    Lisanti, Joel


    The gas turbine engine is an essential component of the global energy infrastructure which accounts for a significant portion of the total fossil fuel consumption in transportation and electric power generation sectors. For this reason there is significant interest in further increasing the efficiency and reducing the pollutant emissions of these devices. Conventional approaches to this goal, which include increasing the compression ratio, turbine inlet temperature, and turbine/compressor efficiency, have brought modern gas turbine engines near the limits of what may be achieved with the conventionally applied Brayton cycle. If a significant future step increase in gas turbine efficiency is to be realized some deviation from this convention is necessary. The pressure gain gas turbine concept is a well established new combustion technology that promises to provide a dramatic increase in gas turbine efficiency by replacing the isobaric heat addition process found in conventional technology with an isochoric process. The thermodynamic benefit of even a small increase in stagnation pressure across a gas turbine combustor translates to a significant increase in cycle efficiency. To date there have been a variety of methods proposed for achieving stagnation pressure gains across a gas turbine combustor and these concepts have seen a broad spectrum of levels of success. The following chapter provides an introduction to one of the proposed pressure gain methods that may be most easily realized in a practical application. This approach, known as pulse combustor driven pressure gain combustion, utilizes an acoustically resonant pulse combustor to approximate isochoric heat release and thus produce a rise in stagnation pressure.

  20. High Temperature, Wireless Seismometer Sensor for Venus (United States)

    Ponchak, George E.; Scardelletti, Maximilian C.; Taylor, Brandt; Beard, Steve; Meredith, Roger D.; Beheim, Glenn M.; Hunter Gary W.; Kiefer, Walter S.


    Space agency mission plans state the need to measure the seismic activity on Venus. Because of the high temperature on Venus (462? C average surface temperature) and the difficulty in placing and wiring multiple sensors using robots, a high temperature, wireless sensor using a wide bandgap semiconductor is an attractive option. This paper presents the description and proof of concept measurements of a high temperature, wireless seismometer sensor for Venus. A variation in inductance of a coil caused by the movement of an aluminum probe held in the coil and attached to a balanced leaf-spring seismometer causes a variation of 700 Hz in the transmitted signal from the oscillator/sensor system at 426? C. This result indicates that the concept may be used on Venus.