WorldWideScience

Sample records for high combustion temperature

  1. Low NOx combustion technologies for high-temperature natural gas combustion

    International Nuclear Information System (INIS)

    Flamme, Michael

    1999-01-01

    Because of the high process temperature which is required for some processes like glass melting and the high temperature to which the combustion air is preheated, NOx emission are extremely high. Even at these high temperatures, NOx emissions could be reduced drastically by using advanced combustion techniques such as staged combustion or flame-less oxidation, as experimental work has shown. In the case of oxy-fuel combustion, the NOx emission are also very high if conventional burners are used. The new combustion techniques achieve similar NOx reductions. (author)

  2. Materials for High-Temperature Catalytic Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Ersson, Anders

    2003-04-01

    Catalytic combustion is an environmentally friendly technique to combust fuels in e.g. gas turbines. Introducing a catalyst into the combustion chamber of a gas turbine allows combustion outside the normal flammability limits. Hence, the adiabatic flame temperature may be lowered below the threshold temperature for thermal NO{sub X} formation while maintaining a stable combustion. However, several challenges are connected to the application of catalytic combustion in gas turbines. The first part of this thesis reviews the use of catalytic combustion in gas turbines. The influence of the fuel has been studied and compared over different catalyst materials. The material section is divided into two parts. The first concerns bimetallic palladium catalysts. These catalysts showed a more stable activity compared to their pure palladium counterparts for methane combustion. This was verified both by using an annular reactor at ambient pressure and a pilot-scale reactor at elevated pressures and flows closely resembling the ones found in a gas turbine combustor. The second part concerns high-temperature materials, which may be used either as active or washcoat materials. A novel group of materials for catalysis, i.e. garnets, has been synthesised and tested in combustion of methane, a low-heating value gas and diesel fuel. The garnets showed some interesting abilities especially for combustion of low-heating value, LHV, gas. Two other materials were also studied, i.e. spinels and hexa aluminates, both showed very promising thermal stability and the substituted hexa aluminates also showed a good catalytic activity. Finally, deactivation of the catalyst materials was studied. In this part the sulphur poisoning of palladium, platinum and the above-mentioned complex metal oxides has been studied for combustion of a LHV gas. Platinum and surprisingly the garnet were least deactivated. Palladium was severely affected for methane combustion while the other washcoat materials were

  3. High temperature combustion facility: present capabilities and future prospects

    International Nuclear Information System (INIS)

    Boccio, J.L.; Ginsberg, T.; Ciccarelli, G.

    1995-01-01

    The high-temperature combustion facility constructed and operated by the Department of Advanced Technology of Brookhaven National Laboratory to support and promote research in the area of hydrogen combustion phenomena in mixtures prototypical to light-water reactor containment atmospheres under potential severe accident conditions is reported. The facility can accommodate combustion research activities encompassing the fields of detonation physics, flame acceleration, and low-speed deflagration in a wide range of combustible gas mixtures at initial temperatures up to 700 K and post-combustion pressures up to 100 atmospheres. Some preliminary test results are presented that provide further evidence that the effect of temperature is to increase the sensitivity of hydrogen-air-steam mixtures to undergo detonation [ru

  4. NEDO project reports. High performance industrial furnace development project - High temperature air combustion

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-21

    For the purpose of reducing energy consumption, a NEDO project 'Developmental research on high efficiency industrial furnaces' was carried out from FY 1993 to FY 1999 by The Japan Industrial Furnaces Manufacturers Association, and the paper outlined the details of the project. Industrial furnaces handled in this R and D can bring 30% reduction of the energy consumption and approximately 50% NOx reduction, and were given the 9th Nikkei global environmental technology prize. In the study of combustion phenomena of high temperature air combustion, the paper arranged characteristics of flame, the base of gaseous fuel flame, the base of liquid fuel flame, the base of solid fuel flame, etc. Concerning high temperature air combustion models for simulation, fluid dynamics and heat transfer models, and reaction and NOx models, etc. As to impacts of high temperature air combustion on performance of industrial furnaces, energy conservation, lowering of pollution, etc. In relation to a guide for the design of high efficiency industrial furnaces, flow charts, conceptual design, evaluation method for heat balance and efficiency using charts, combustion control system, applicability of high efficiency industrial furnaces, etc. (NEDO)

  5. NEDO project reports. High performance industrial furnace development project - High temperature air combustion

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-21

    For the purpose of reducing energy consumption, a NEDO project 'Developmental research on high efficiency industrial furnaces' was carried out from FY 1993 to FY 1999 by The Japan Industrial Furnaces Manufacturers Association, and the paper outlined the details of the project. Industrial furnaces handled in this R and D can bring 30% reduction of the energy consumption and approximately 50% NOx reduction, and were given the 9th Nikkei global environmental technology prize. In the study of combustion phenomena of high temperature air combustion, the paper arranged characteristics of flame, the base of gaseous fuel flame, the base of liquid fuel flame, the base of solid fuel flame, etc. Concerning high temperature air combustion models for simulation, fluid dynamics and heat transfer models, and reaction and NOx models, etc. As to impacts of high temperature air combustion on performance of industrial furnaces, energy conservation, lowering of pollution, etc. In relation to a guide for the design of high efficiency industrial furnaces, flow charts, conceptual design, evaluation method for heat balance and efficiency using charts, combustion control system, applicability of high efficiency industrial furnaces, etc. (NEDO)

  6. Soot measurements for diesel and biodiesel spray combustion under high temperature highly diluted ambient conditions

    KAUST Repository

    Zhang, Ji

    2014-11-01

    This paper presents the soot temperature and KL factor for biodiesel, namely fatty acid methyl ester (FAME) and diesel fuel combustion in a constant volume chamber using a two-color technique. The KL factor is a parameter for soot concentration, where K is an absorption coefficient and proportional to the number density of soot particles, L is the geometric thickness of the flame along the optical detection axis, and KL factor is proportional to soot volume fraction. The main objective is to explore a combustion regime called high-temperature and highly-diluted combustion (HTHDC) and compare it with the conventional and low-temperature combustion (LTC) modes. The three different combustion regimes are implemented under different ambient temperatures (800 K, 1000 K, and 1400 K) and ambient oxygen concentrations (10%, 15%, and 21%). Results are presented in terms of soot temperature and KL factor images, time-resolved pixel-averaged soot temperature, KL factor, and spatially integrated KL factor over the soot area. The time-averaged results for these three regimes are compared for both diesel and biodiesel fuels. Results show complex combined effects of the ambient temperature and oxygen concentration, and that two-color temperature for the HTHDC mode at the 10% oxygen level can actually be lower than the conventional mode. Increasing ambient oxygen and temperature increases soot temperature. Diesel fuel results in higher soot temperature than biodiesel for all three regimes. Results also show that diesel and biodiesel fuels have very different burning and sooting behavior under the three different combustion regimes. For diesel fuel, the HTHDC regime offers better results in terms of lower soot than the conventional and LTC regimes, and the 10% O2, 1400 K ambient condition shows the lowest soot concentration while maintaining a moderate two-color temperature. For biodiesel, the 15% O2, 800 K ambient condition shows some advantages in terms of reducing soot

  7. Characterization of biomass combustion at high temperatures based on an upgraded single particle model

    International Nuclear Information System (INIS)

    Li, Jun; Paul, Manosh C.; Younger, Paul L.; Watson, Ian; Hossain, Mamdud; Welch, Stephen

    2015-01-01

    Highlights: • High temperature rapid biomass combustion is studied based on single particle model. • Particle size changes in devolatilization and char oxidation models are addressed. • Time scales of various thermal sub-processes are compared and discussed. • Potential solutions are suggested to achieve better biomass co-firing performances. - Abstract: Biomass co-firing is becoming a promising solution to reduce CO 2 emissions, due to its renewability and carbon neutrality. Biomass normally has high moisture and volatile contents, complicating its combustion behavior, which is significantly different from that of coal. A computational fluid dynamics (CFD) combustion model of a single biomass particle is employed to study high-temperature rapid biomass combustion. The two-competing-rate model and kinetics/diffusion model are used to model biomass devolatilization reaction and char burnout process, respectively, in which the apparent kinetics used for those two models were from high temperatures and high heating rates tests. The particle size changes during the devolatilization and char burnout are also considered. The mass loss properties and temperature profile during the biomass devolatilization and combustion processes are predicted; and the timescales of particle heating up, drying, devolatilization, and char burnout are compared and discussed. Finally, the results shed light on the effects of particle size on the combustion behavior of biomass particle

  8. Hydrogen detonation and detonation transition data from the High-Temperature Combustion Facility

    International Nuclear Information System (INIS)

    Ciccarelli, G.; Boccio, J.L.; Ginsberg, T.; Finfrock, C.; Gerlach, L.; Malliakos, A.

    1995-01-01

    The BNL High-Temperature Combustion Facility (HTCF) is an experimental research tool capable of investigating the effects of initial thermodynamic state on the high-speed combustion characteristic of reactive gas mixtures. The overall experimental program has been designed to provide data to help characterize the influence of elevated gas-mixture temperature (and pressure) on the inherent sensitivity of hydrogen-air-steam mixtures to undergo detonation, on the potential for flames accelerating in these mixtures to transition into detonations, on the effects of gas venting on the flame-accelerating process, on the phenomena of initiation of detonations in these mixtures by jets of hot reactant product,s and on the capability of detonations within a confined space to transmit into another, larger confined space. This paper presents results obtained from the completion of two of the overall test series that was designed to characterize high-speed combustion phenomena in initially high-temperature gas mixtures. These two test series are the intrinsic detonability test series and the deflagration-to-detonation (DDT) test series. A brief description of the facility is provided below

  9. Hydrogen detonation and detonation transition data from the High-Temperature Combustion Facility

    International Nuclear Information System (INIS)

    Ciccarelli, G.; Boccio, J.L.; Ginsberg, T.; Finfrock, C.

    1996-01-01

    The BNL High-Temperature Combustion Facility (HTCF) is an experimental research tool capable of investigating the effects of initial thermodynamic state on the high-speed combustion characteristic of reactive gas mixtures. The overall experimental program has been designed to provide data to help characterize the influence of elevated gas-mixture temperature (and pressure) on the inherent sensitivity of hydrogen-air-steam mixtures to undergo detonation, on the potential for flames accelerating in these mixtures to transition into detonations, on the effects of gas venting on the flame-accelerating process, on the phenomena of initiation of detonations in these mixtures by jets of hot reactant products, and on the capability of detonations within a confined space to transmit into another, larger confined space. This paper presents results obtained from the completion of two of the overall test series that was designed to characterize high-speed combustion phenomena in initially high-temperature gas mixtures. These two test series are the intrinsic detonability test series and the deflagration-to-detonation (DDT) test series. A brief description of the facility is provided below

  10. High Combustion Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — At NETL's High-Pressure Combustion Research Facility in Morgantown, WV, researchers can investigate new high-pressure, high-temperature hydrogen turbine combustion...

  11. Low Temperature Combustion Demonstrator for High Efficiency Clean Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Ojeda, William de

    2010-07-31

    The project which extended from November 2005 to May of 2010 demonstrated the application of Low Temperature Combustion (LTC) with engine out NOx levels of 0.2 g/bhp-hr throughout the program target load of 12.6bar BMEP. The project showed that the range of loads could be extended to 16.5bar BMEP, therefore matching the reference lug line of the base 2007 MY Navistar 6.4L V8 engine. Results showed that the application of LTC provided a dramatic improvement over engine out emissions when compared to the base engine. Furthermore LTC improved thermal efficiency by over 5% from the base production engine when using the steady state 13 mode composite test as a benchmark. The key enablers included improvements in the air, fuel injection, and cooling systems made in Phases I and II. The outcome was the product of a careful integration of each component under an intelligent control system. The engine hardware provided the conditions to support LTC and the controller provided the necessary robustness for a stable combustion. Phase III provided a detailed account on the injection strategy used to meet the high load requirements. During this phase, the control strategy was implemented in a production automotive grade ECU to perform cycle-by-cycle combustion feedback on each of the engine cylinders. The control interacted on a cycle base with the injection system and with the Turbo-EGR systems according to their respective time constants. The result was a unique system that could, first, help optimize the combustion system and maintain high efficiency, and secondly, extend the steady state results to the transient mode of operation. The engine was upgraded in Phase IV with a Variable Valve Actuation system and a hybrid EGR loop. The impact of the more versatile EGR loop did not provide significant advantages, however the application of VVA proved to be an enabler to further extend the operation of LTC and gain considerable benefits in fuel economy and soot reduction. Finally

  12. Maximal combustion temperature estimation

    International Nuclear Information System (INIS)

    Golodova, E; Shchepakina, E

    2006-01-01

    This work is concerned with the phenomenon of delayed loss of stability and the estimation of the maximal temperature of safe combustion. Using the qualitative theory of singular perturbations and canard techniques we determine the maximal temperature on the trajectories located in the transition region between the slow combustion regime and the explosive one. This approach is used to estimate the maximal temperature of safe combustion in multi-phase combustion models

  13. Low-Temperature Combustion of High Octane Fuels in a Gasoline Compression Ignition Engine

    Directory of Open Access Journals (Sweden)

    Khanh Duc Cung

    2017-12-01

    at low EGR conditions. Soot/temperature profiles indicated only the high-temperature combustion period, while cylinder pressure-based heat release rate showed a two-stage combustion phenomenon.

  14. Optical diagnostics of diesel spray injections and combustion in a high-pressure high-temperature cell

    NARCIS (Netherlands)

    Bougie, H.J.T.; Tulej, M.; Dreier, T.; Dam, N.J.; Meulen, J.J. ter; Gerber, T.

    2005-01-01

    We report on spatially and temporally resolved optical diagnostic measurements of propagation and combustion of diesel sprays introduced through a single-hole fuel injector into a constant volume, high-temperature, high-pressure cell. From shadowgraphy images in non-reacting environments of pure

  15. Comparison of Diesel Spray Combustion in Different High-temperature, High-pressure Facilities

    DEFF Research Database (Denmark)

    Pickett, Lyle M.; Genzale, Caroline L.; Bruneaux, Gilles

    2010-01-01

    Diesel spray experimentation at controlled high-temperature and high-pressure conditions is intended to provide a more fundamental understanding of diesel combustion than can be achieved in engine experiments. This level of understanding is needed to develop the high-fidelity multi-scale CFD models...... participants in the ECN. Thus, in addition to the presentation of a comparative study, this paper demonstrates steps that are needed for other interested groups to participate in ECN spray research. We expect that this collaborative effort will generate a high-quality dataset to be used for advanced...

  16. High-temperature CO / HC gas sensors to optimize firewood combustion in low-power fireplaces

    Directory of Open Access Journals (Sweden)

    B. Ojha

    2017-06-01

    Full Text Available In order to optimize firewood combustion in low-power firewood-fuelled fireplaces, a novel combustion airstream control concept based on the signals of in situ sensors for combustion temperature, residual oxygen concentration and residual un-combusted or partly combusted pyrolysis gas components (CO and HC has been introduced. A comparison of firing experiments with hand-driven and automated airstream-controlled furnaces of the same type showed that the average CO emissions in the high-temperature phase of the batch combustion can be reduced by about 80 % with the new control concept. Further, the performance of different types of high-temperature CO / HC sensors (mixed-potential and metal oxide types, with reference to simultaneous exhaust gas analysis by a high-temperature FTIR analysis system, was investigated over 20 batch firing experiments (∼ 80 h. The distinctive sensing behaviour with respect to the characteristically varying flue gas composition over a batch firing process is discussed. The calculation of the Pearson correlation coefficients reveals that mixed-potential sensor signals correlate more with CO and CH4; however, different metal oxide sensitive layers correlate with different gas species: 1 % Pt / SnO2 designates the presence of CO and 2 % ZnO / SnO2 designates the presence of hydrocarbons. In the case of a TGS823 sensor element, there was no specific correlation with one of the flue gas components observed. The stability of the sensor signals was evaluated through repeated exposure to mixtures of CO, N2 and synthetic air after certain numbers of firing experiments and exhibited diverse long-term signal instabilities.

  17. Appraisal of possible combustion hazards associated with a high-temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Palmer, H.B.; Sibulkin, M.; Strehlow, R.A.; Yang, C.H.

    1978-03-01

    The report presents a study of combustion hazards that may be associated with the High Temperature Gas Cooled Reactor (HTGR) in the event of a primary coolant circuit depressurization followed by water or air ingress into the prestressed concrete reactor vessel (PCRV). Reactions between graphite and steam or air produce the combustible gases H 2 and/or CO. When these gases are mixed with air in the containment vessel (CV), flammable mixtures may be formed. Various modes of combustion including diffusion or premixed flames and possibly detonation may be exhibited by these mixtures. These combustion processes may create high over-pressure, pressure waves, and very hot gases within the CV and hence may threaten the structural integrity of the CV or damage the instrumentation and control system installations within it. Possible circumstances leading to these hazards and the physical characteristics related to them are delineated and studied in the report

  18. Numerical investigation of high temperature synthesis gas premixed combustion via ANSYS Fluent

    Directory of Open Access Journals (Sweden)

    Pashchenko Dmitry

    2018-01-01

    Full Text Available A numerical model of the synthesis gas pre-mixed combustion is developed. The research was carried out via ANSYS Fluent software. Verification of the numerical results was carried out using experimental data. A visual comparison of the flame contours that obtained by the synthesis gas combustion for Re = 600; 800; 1000 was performed. A comparison of the wall temperature of the combustion chamber, obtained with the help of the developed model, with the results of a physical experiment was also presented. For all cases, good convergence of the results is observed. It is established that a change in the temperature of the syngas/air mixture at the inlet to the combustion chamber does not significantly affect the temperature of the combustion products due to the dissipation of the H2O and CO2 molecules. The obtained results are of practical importance for the design of heat engineering plants with thermochemical heat recovery.

  19. Ash deposition and high temperature corrosion at combustion of aggressive fuels

    Energy Technology Data Exchange (ETDEWEB)

    Hede Larsen, O [I/S Fynsvaerket, Faelleskemikerne, Odense (Denmark); Henriksen, N [Elsamprojekt A/S, Faelleskemikerne, Fredericia (Denmark)

    1996-12-01

    In order to reduce CO{sub 2} emission, ELSAM is investigating the possibilities of using biomass - mainly straw - for combustion in high efficiency power plants. As straw has very high contents of chlorine and potassium, a fuel with high corrosion and ash deposition propensities has been introduced. ELSAM has investigated 3 ultra supercritical boiler concepts for combustion of straw alone or together with coal: (1) PF boilers with a relatively low share of straw, (2) CFB boilers with low to high share of straw and (3) vibrating grate boilers with 100% straw. These investigations has mainly been full-scale tests with straw fed into existing boilers. Corrosion tests have been performed in these boilers using temperature regulated probes and in-plant test tubes in existing superheaters. The corrosion has been determined by detailed measurements of wall thickness reduction and light optical microscopic measurements of the material degradation due to high temperature corrosion. Corrosion mechanisms have been evaluated using SEM/EDX together with thermodynamical considerations based on measurements of the chemical environment in the flue gas. Ash deposition is problematic in CFB boilers and in straw fired boilers, especially in years with high potassium and chlorine content of the straw. This ash deposition also is related to condensation of KCl and can probably only be handled by improved cleaning devices. (EG)

  20. Development of High Efficiency and Low Emission Low Temperature Combustion Diesel Engine with Direct EGR Injection

    Science.gov (United States)

    Ho, R. J.; Kumaran, P.; Yusoff, M. Z.

    2016-03-01

    Focus on energy and environmental sustainability policy has put automotive research & development directed to developing high efficiency and low pollutant power train. Diffused flame controlled diesel combustion has reach its limitation and has driven R&D to explore other modes of combustions. Known effective mode of combustion to reduce emission are Low temperature combustion (LTC) and homogeneous charge combustion ignition by suppressing Nitrogen Oxide(NOx) and Particulate Matter (PM) formation. The key control to meet this requirement are chemical composition and distribution of fuel and gas during a combustion process. Most research to accomplish this goal is done by manipulating injected mass flow rate and varying indirect EGR through intake manifold. This research paper shows viable alternative direct combustion control via co-axial direct EGR injection with fuel injection process. A simulation study with OpenFOAM is conducted by varying EGR injection velocity and direct EGR injector diameter performed with under two conditions with non-combustion and combustion. n-heptane (C7H16) is used as surrogate fuel together with 57 species 290 semi-detailed chemical kinetic model developed by Chalmers University is used for combustion simulation. Simulation result indicates viability of co-axial EGR injection as a method for low temperature combustion control.

  1. Spectroscopy and kinetics of combustion gases at high temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Hanson, R.K.; Bowman, C.T. [Stanford Univ., CA (United States)

    1993-12-01

    This program involves two complementary activities: (1) development and application of cw ring dye laser absorption methods for sensitive detection of radical species and measurement of fundamental spectroscopic parameters at high temperatures; and (2) shock tube studies of reaction kinetics relevant to combustion. Species currently under investigation in the spectroscopic portion of the research include NO and CH{sub 3}; this has necessitated the continued operated at wavelengths in the range 210-230 nm. Shock tube studies of reaction kinetics currently are focussed on reactions involving CH{sub 3} radicals.

  2. DETERMINING THE COMPOSITION OF HIGH TEMPERATURE COMBUSTION PRODUCTS OF FOSSIL FUEL BASED ON VARIATIONAL PRINCIPLES AND GEOMETRIC PROGRAMMING

    Directory of Open Access Journals (Sweden)

    Velibor V Vujović

    2011-01-01

    Full Text Available This paper presents the algorithm and results of a computer program for calculation of complex equilibrium composition for the high temperature fossil fuel combustion products. The method of determining the composition of high temperatures combustion products at the temperatures appearing in the open cycle MHD power generation is given. The determination of combustion product composition is based on minimization of the Gibbs free energy. The number of equations to be solved is reduced by using variational principles and a method of geometric programming and is equal to the sum of the numbers of elements and phases. A short description of the computer program for the calculation of the composition and an example of the results are also given.

  3. Theoretical Adiabatic Temperature and Chemical Composition of Sodium Combustion Flame

    International Nuclear Information System (INIS)

    Okano, Yasushi; Yamaguchi, Akira

    2003-01-01

    Sodium fire safety analysis requires fundamental combustion properties, e.g., heat of combustion, flame temperature, and composition. We developed the GENESYS code for a theoretical investigation of sodium combustion flame.Our principle conclusions on sodium combustion under atmospheric air conditions are (a) the maximum theoretical flame temperature is 1950 K, and it is not affected by the presence of moisture; the uppermost limiting factor is the chemical instability of the condensed sodium-oxide products under high temperature; (b) the main combustion product is liquid Na 2 O in dry air condition and liquid Na 2 O with gaseous NaOH in moist air; and (c) the chemical equilibrium prediction of the residual gaseous reactants in the flame is indispensable for sodium combustion modeling

  4. High temperature piezoresistive {beta}-SiC-on-SOI pressure sensor for combustion engines

    Energy Technology Data Exchange (ETDEWEB)

    Berg, J. von; Ziermann, R.; Reichert, W.; Obermeier, E. [Tech. Univ. Berlin (Germany). Microsensor and Actuator Technol. Center; Eickhoff, M.; Kroetz, G. [Daimler Benz AG, Munich (Germany); Thoma, U.; Boltshauser, T.; Cavalloni, C. [Kistler Instrumente AG, Winterthur (Switzerland); Nendza, J.P. [TRW Deutschland GmbH, Barsinghausen (Germany)

    1998-08-01

    For measuring the cylinder pressure in combustion engines of automobiles a high temperature pressure sensor has been developed. The sensor is made of a membrane based piezoresistive {beta}-SiC-on-SOI (SiCOI) sensor chip and a specially designed housing. The SiCOI sensor was characterized under static pressures of up to 200 bar in the temperature range between room temperature and 300 C. The sensitivity of the sensor at room temperature is approximately 0.19 mV/bar and decreases to about 0.12 mV/bar at 300 C. For monitoring the dynamic cylinder pressure the sensor was placed into the combustion chamber of a gasoline engine. The measurements were performed at 1500 rpm under different loads, and for comparison a quartz pressure transducer from Kistler AG was used as a reference. The maximum pressure at partial load operation amounts to about 15 bar. The difference between the calibrated SiCOI sensor and the reference sensor is significantly less than 1 bar during the whole operation. (orig.) 8 refs.

  5. AUTOMATIC CONTROL SYSTEM FOR REGULATED HIGH TEMPERATURE MAIN COMBUSTION CHAMBER OF MANEUVERABLE AIRCRAFT MULTIMODE GAS TURBINE ENGINE

    Directory of Open Access Journals (Sweden)

    T. V. Gras’Ko

    2014-01-01

    Full Text Available The paper describes choosing and substantiating the control laws, forming the appearance the automatic control system for regulated high temperature main combustion chamber of maneuverable aircraft multimode gas turbine engine aimed at sustainable and effective functioning of main combustion chamber within a broad operation range.

  6. Motion of water droplets in the counter flow of high-temperature combustion products

    Science.gov (United States)

    Volkov, R. S.; Strizhak, P. A.

    2018-01-01

    This paper presents the experimental studies of the deceleration, reversal, and entrainment of water droplets sprayed in counter current flow to a rising stream of high-temperature (1100 K) combustion gases. The initial droplets velocities 0.5-2.5 m/s, radii 10-230 μm, relative volume concentrations 0.2·10-4-1.8·10-4 (m3 of water)/(m3 of gas) vary in the ranges corresponding to promising high-temperature (over 1000 K) gas-vapor-droplet applications (for example, polydisperse fire extinguishing using water mist, fog, or appropriate water vapor-droplet veils, thermal or flame treatment of liquids in the flow of combustion products or high-temperature air; creating coolants based on flue gas, vapor and water droplets; unfreezing of granular media and processing of the drossed surfaces of thermal-power equipment; ignition of liquid and slurry fuel droplets). A hardware-software cross-correlation complex, high-speed (up to 105 fps) video recording tools, panoramic optical techniques (Particle Image Velocimetry, Particle Tracking Velocimetry, Interferometric Particle Imagine, Shadow Photography), and the Tema Automotive software with the function of continuous monitoring have been applied to examine the characteristics of the processes under study. The scale of the influence of initial droplets concentration in the gas flow on the conditions and features of their entrainment by high-temperature gases has been specified. The dependencies Red = f(Reg) and Red' = f(Reg) have been obtained to predict the characteristics of the deceleration of droplets by gases at different droplets concentrations.

  7. On the high-temperature combustion of n-butanol: Shock tube data and an improved kinetic model

    KAUST Repository

    Vasu, Subith S.

    2013-11-21

    The combustion of n-butanol has received significant interest in recent years, because of its potential use in transportation applications. Researchers have extensively studied its combustion chemistry, using both experimental and theoretical methods; however, additional work is needed under specific conditions to improve our understanding of n-butanol combustion. In this study, we report new OH time-history data during the high-temperature oxidation of n-butanol behind reflected shock waves over the temperature range of 1300-1550 K and at pressures near 2 atm. These data were obtained at Stanford University, using narrow-line-width ring dye laser absorption of the R1(5) line of OH near 306.7 nm. Measured OH time histories were modeled using comprehensive n-butanol literature mechanisms. It was found that n-butanol unimolecular decomposition rate constants commonly used in chemical kinetic models, as well as those determined from theoretical studies, are unable to predict the data presented herein. Therefore, an improved high-temperature mechanism is presented here, which incorporates recently reported rate constants measured in a single pulse shock tube [C. M. Rosado-Reyes and W. Tsang, J. Phys. Chem. A 2012, 116, 9825-9831]. Discussions are presented on the validity of the proposed mechanism against other literature shock tube experiments. © 2013 American Chemical Society.

  8. Soot temperature and KL factor for biodiesel and diesel spray combustion in a constant volume combustion chamber

    KAUST Repository

    Zhang, Ji

    2013-07-01

    This paper presents measurements of the soot temperature and KL factor for biodiesel and diesel combustion in a constant volume chamber using a two-color technique. This technique uses a high-speed camera coupled with two narrowband filters (550. nm and 650. nm, 10. nm FWHM). After calibration, statistical analysis shows that the uncertainty of the two-color temperature is less than 5%, while it is about 50% for the KL factor. This technique is then applied to the spray combustion of biodiesel and diesel fuels under an ambient oxygen concentration of 21% and ambient temperatures of 800, 1000 and 1200. K. The heat release result shows higher energy utilization efficiency for biodiesel compared to diesel under all conditions; meanwhile, diesel shows a higher pressure increase due to its higher heating value. Biodiesel yields a lower temperature inside the flame area, a longer soot lift-off length, and a smaller soot area compared to diesel. Both the KL factor and the total soot with biodiesel are lower than with diesel throughout the entire combustion process, and this difference becomes larger as the ambient temperature decreases. Biodiesel shows approximately 50-100. K lower temperatures than diesel at the quasi-steady stage for 1000 and 1200. K ambient temperature, while diesel shows a lower temperature than biodiesel at 800. K ambient. This result may raise the question of how important the flame temperature is in explaining the higher NO. x emissions often observed during biodiesel combustion. Other factors may also play an important role in controlling NO. x emissions. Both biodiesel and diesel temperature measurements show a monotonic dependence on the ambient temperature. However, the ambient temperature appears to have a more significant effect on the soot formation and oxidation in diesel combustion, while biodiesel combustion soot characteristics shows relative insensitivity to the ambient temperature. © 2013 Elsevier Ltd.

  9. Apparatus and method for temperature mapping a turbine component in a high temperature combustion environment

    Science.gov (United States)

    Baleine, Erwan; Sheldon, Danny M

    2014-06-10

    Method and system for calibrating a thermal radiance map of a turbine component in a combustion environment. At least one spot (18) of material is disposed on a surface of the component. An infrared (IR) imager (14) is arranged so that the spot is within a field of view of the imager to acquire imaging data of the spot. A processor (30) is configured to process the imaging data to generate a sequence of images as a temperature of the combustion environment is increased. A monitor (42, 44) may be coupled to the processor to monitor the sequence of images of to determine an occurrence of a physical change of the spot as the temperature is increased. A calibration module (46) may be configured to assign a first temperature value to the surface of the turbine component when the occurrence of the physical change of the spot is determined.

  10. Conjugated heat transfer and temperature distributions in a gas turbine combustion liner under base-load operation

    International Nuclear Information System (INIS)

    Kim, Kyung Min; Yun, Nam Geon; Jeon, Yun Heung; Lee, Dong Hyun; Cho, Yung Hee

    2010-01-01

    Prediction of temperature distributions on hot components is important in development of a gas turbine combustion liner. The present study investigated conjugated heat transfer to obtain temperature distributions in a combustion liner with six combustion nozzles. 3D numerical simulations using FVM commercial codes, Fluent and CFX were performed to calculate combustion and heat transfer distributions. The temperature distributions in the combustor liner were calculated by conjugation of conduction and convection (heat transfer coefficients) obtained by combustion and cooling flow analysis. The wall temperature was the highest on the attachment points of the combustion gas from combustion nozzles, but the temperature gradient was high at the after shell section with low wall temperature

  11. Combustion Chemistry of Fuels: Quantitative Speciation Data Obtained from an Atmospheric High-temperature Flow Reactor with Coupled Molecular-beam Mass Spectrometer.

    Science.gov (United States)

    Köhler, Markus; Oßwald, Patrick; Krueger, Dominik; Whitside, Ryan

    2018-02-19

    This manuscript describes a high-temperature flow reactor experiment coupled to the powerful molecular beam mass spectrometry (MBMS) technique. This flexible tool offers a detailed observation of chemical gas-phase kinetics in reacting flows under well-controlled conditions. The vast range of operating conditions available in a laminar flow reactor enables access to extraordinary combustion applications that are typically not achievable by flame experiments. These include rich conditions at high temperatures relevant for gasification processes, the peroxy chemistry governing the low temperature oxidation regime or investigations of complex technical fuels. The presented setup allows measurements of quantitative speciation data for reaction model validation of combustion, gasification and pyrolysis processes, while enabling a systematic general understanding of the reaction chemistry. Validation of kinetic reaction models is generally performed by investigating combustion processes of pure compounds. The flow reactor has been enhanced to be suitable for technical fuels (e.g. multi-component mixtures like Jet A-1) to allow for phenomenological analysis of occurring combustion intermediates like soot precursors or pollutants. The controlled and comparable boundary conditions provided by the experimental design allow for predictions of pollutant formation tendencies. Cold reactants are fed premixed into the reactor that are highly diluted (in around 99 vol% in Ar) in order to suppress self-sustaining combustion reactions. The laminar flowing reactant mixture passes through a known temperature field, while the gas composition is determined at the reactors exhaust as a function of the oven temperature. The flow reactor is operated at atmospheric pressures with temperatures up to 1,800 K. The measurements themselves are performed by decreasing the temperature monotonically at a rate of -200 K/h. With the sensitive MBMS technique, detailed speciation data is acquired and

  12. Trend and future of diesel engine: Development of high efficiency and low emission low temperature combustion diesel engine

    International Nuclear Information System (INIS)

    Ho, R J; Yusoff, M Z; Palanisamy, K

    2013-01-01

    Stringent emission policy has put automotive research and development on developing high efficiency and low pollutant power train. Conventional direct injection diesel engine with diffused flame has reached its limitation and has driven R and D to explore other field of combustion. Low temperature combustion (LTC) and homogeneous charge combustion ignition has been proven to be effective methods in decreasing combustion pollutant emission. Nitrogen Oxide (NO x ) and Particulate Matter (PM) formation from combustion can be greatly suppressed. A review on each of method is covered to identify the condition and processes that result in these reductions. The critical parameters that allow such combustion to take place will be highlighted and serves as emphasis to the direction of developing future diesel engine system. This paper is written to explore potential of present numerical and experimental methods in optimizing diesel engine design through adoption of the new combustion technology.

  13. Trend and future of diesel engine: Development of high efficiency and low emission low temperature combustion diesel engine

    Science.gov (United States)

    Ho, R. J.; Yusoff, M. Z.; Palanisamy, K.

    2013-06-01

    Stringent emission policy has put automotive research & development on developing high efficiency and low pollutant power train. Conventional direct injection diesel engine with diffused flame has reached its limitation and has driven R&D to explore other field of combustion. Low temperature combustion (LTC) and homogeneous charge combustion ignition has been proven to be effective methods in decreasing combustion pollutant emission. Nitrogen Oxide (NOx) and Particulate Matter (PM) formation from combustion can be greatly suppressed. A review on each of method is covered to identify the condition and processes that result in these reductions. The critical parameters that allow such combustion to take place will be highlighted and serves as emphasis to the direction of developing future diesel engine system. This paper is written to explore potential of present numerical and experimental methods in optimizing diesel engine design through adoption of the new combustion technology.

  14. High speed analysis of high pressure combustion in a constant volume cell

    NARCIS (Netherlands)

    Frijters, P.J.M.; Klein-Douwel, R.J.H.; Manski, S.S.; Somers, L.M.T.; Baert, R.S.G.; Dias, V.

    2005-01-01

    A combustion process with N2, O2 and C2H4 as fuel used in an opticallyaccessible, high pressure, high temperature, constant volume cell forresearch on diesel fuel spray formation, is studied. The flame frontspeed Vf,HS is determined using high speed imaging. The pressure traceof the combustion

  15. Adiabatic flame temperature of sodium combustion and sodium-water reaction

    International Nuclear Information System (INIS)

    Okano, Y.; Yamaguchi, A.

    2001-01-01

    In this paper, background information of sodium fire and sodium-water reaction accidents of LMFBR (liquid metal fast breeder reactor) is mentioned at first. Next, numerical analysis method of GENESYS is described in detail. Next, adiabatic flame temperature and composition of sodium combustion are analyzed, and affect of reactant composition, such oxygen and moisture, is discussed. Finally, adiabatic reaction zone temperature and composition of sodium-water reaction are calculated, and affects of reactant composition, sodium vaporization, and pressure are stated. Chemical equilibrium calculation program for generic chemical system (GENESYS) is developed in this study for the research on adiabatic flame temperature of sodium combustion and adiabatic reaction zone temperature of sodium-water reaction. The maximum flame temperature of the sodium combustion is 1,950 K at the standard atmospheric condition, and is not affected by the existence of moisture. The main reaction product is Na 2 O (l) , and in combustion in moist air, with NaOH (g) . The maximum reaction zone temperature of the sodium-water reaction is 1,600 K, and increases with the system pressure. The main products are NaOH (g) , NaOH (l) and H2 (g) . Sodium evaporation should be considered in the cases of sodium-rich and high pressure above 10 bar

  16. An atmospheric pressure high-temperature laminar flow reactor for investigation of combustion and related gas phase reaction systems.

    Science.gov (United States)

    Oßwald, Patrick; Köhler, Markus

    2015-10-01

    A new high-temperature flow reactor experiment utilizing the powerful molecular beam mass spectrometry (MBMS) technique for detailed observation of gas phase kinetics in reacting flows is presented. The reactor design provides a consequent extension of the experimental portfolio of validation experiments for combustion reaction kinetics. Temperatures up to 1800 K are applicable by three individually controlled temperature zones with this atmospheric pressure flow reactor. Detailed speciation data are obtained using the sensitive MBMS technique, providing in situ access to almost all chemical species involved in the combustion process, including highly reactive species such as radicals. Strategies for quantifying the experimental data are presented alongside a careful analysis of the characterization of the experimental boundary conditions to enable precise numeric reproduction of the experimental results. The general capabilities of this new analytical tool for the investigation of reacting flows are demonstrated for a selected range of conditions, fuels, and applications. A detailed dataset for the well-known gaseous fuels, methane and ethylene, is provided and used to verify the experimental approach. Furthermore, application for liquid fuels and fuel components important for technical combustors like gas turbines and engines is demonstrated. Besides the detailed investigation of novel fuels and fuel components, the wide range of operation conditions gives access to extended combustion topics, such as super rich conditions at high temperature important for gasification processes, or the peroxy chemistry governing the low temperature oxidation regime. These demonstrations are accompanied by a first kinetic modeling approach, examining the opportunities for model validation purposes.

  17. An atmospheric pressure high-temperature laminar flow reactor for investigation of combustion and related gas phase reaction systems

    Energy Technology Data Exchange (ETDEWEB)

    Oßwald, Patrick; Köhler, Markus [Institute of Combustion Technology, German Aerospace Center (DLR), Pfaffenwaldring 38-40, D-70569 Stuttgart (Germany)

    2015-10-15

    A new high-temperature flow reactor experiment utilizing the powerful molecular beam mass spectrometry (MBMS) technique for detailed observation of gas phase kinetics in reacting flows is presented. The reactor design provides a consequent extension of the experimental portfolio of validation experiments for combustion reaction kinetics. Temperatures up to 1800 K are applicable by three individually controlled temperature zones with this atmospheric pressure flow reactor. Detailed speciation data are obtained using the sensitive MBMS technique, providing in situ access to almost all chemical species involved in the combustion process, including highly reactive species such as radicals. Strategies for quantifying the experimental data are presented alongside a careful analysis of the characterization of the experimental boundary conditions to enable precise numeric reproduction of the experimental results. The general capabilities of this new analytical tool for the investigation of reacting flows are demonstrated for a selected range of conditions, fuels, and applications. A detailed dataset for the well-known gaseous fuels, methane and ethylene, is provided and used to verify the experimental approach. Furthermore, application for liquid fuels and fuel components important for technical combustors like gas turbines and engines is demonstrated. Besides the detailed investigation of novel fuels and fuel components, the wide range of operation conditions gives access to extended combustion topics, such as super rich conditions at high temperature important for gasification processes, or the peroxy chemistry governing the low temperature oxidation regime. These demonstrations are accompanied by a first kinetic modeling approach, examining the opportunities for model validation purposes.

  18. Distillation of combustibles at temperatures below fusion

    Energy Technology Data Exchange (ETDEWEB)

    Dalin, D

    1946-09-26

    A process is described for combustion and distillation for dry fuels, such as bituminous shales, below the temperature of fusion of the ash, for the production of heat, in which the temperature in the charge of fuel forming a vertical column is maintained beneath the temperature of fusion of the ash by a withdrawal of the heat from the combustible charge by means of a fluid absorbing this heat. This fluid being constituted, for example, by water in a suitable form, so that it can be circulated through a convenient cooling system, extending through the different parts of the charge. The fluid circulating also through the desired parts of the charge and absorbing the heat, the quantity of fluid or the surface of absorption increasing with the intensity of the combustion in the part of the combustible charge traversed by the fluid.

  19. Detonation cell size measurements in high-temperature hydrogen-air-steam mixtures at the BNL high-temperature combustion facility

    International Nuclear Information System (INIS)

    Ciccarelli, G.; Ginsberg, T.; Boccio, J.L.

    1997-11-01

    The High-Temperature Combustion Facility (HTCF) was designed and constructed with the objective of studying detonation phenomena in mixtures of hydrogen-air-steam at initially high temperatures. The central element of the HTCF is a 27-cm inner-diameter, 21.3-m long cylindrical test vessel capable of being heating to 700K ± 14K. A unique feature of the HTCF is the 'diaphragmless' acetylene-oxygen gas driver which is used to initiate the detonation in the test gas. Cell size measurements have shown that for any hydrogen-air-steam mixture, increasing the initial mixture temperature, in the range of 300K to 650K, while maintaining the initial pressure of 0.1 MPa, decreases the cell size and thus makes the mixture more detonable. The effect of steam dilution on cell size was tested in stoichiometric and off-stoichiometric (e.g., equivalence ratio of 0.5) hydrogen-air mixtures. Increasing the steam dilution in hydrogen-air mixtures at 0.1 MPa initial pressure increases the cell size, irrespective of initial temperature. It is also observed that the desensitizing effect of steam diminished with increased initial temperature. A 1-dimensional, steady-state Zel'dovich, von Neumann, Doring (ZND) model, with full chemical kinetics, has been used to predict cell size for hydrogen-air-steam mixtures at different initial conditions. Qualitatively the model predicts the overall trends observed in the measured cell size versus mixture composition and initial temperature and pressure. It was found that the proportionality constant used to predict detonation cell size from the calculated ZND model reaction zone varies between 10 and 100 depending on the mixture composition and initial temperature. 32 refs., 35 figs

  20. Thermal effects from the release of selenium from a coal combustion during high-temperature processing: a review.

    Science.gov (United States)

    Hu, Jianjun; Sun, Qiang; He, Huan

    2018-04-11

    The release of selenium (Se) during coal combustion can have serious impacts on the ecological environment and human health. Therefore, it is very important to study the factors that concern the release of Se from coal combustion. In this paper, the characteristics of the release of Se from coal combustion, pyrolysis, and gasification of different coal species under different conditions are studied. The results show that the amount of released Se increases at higher combustion temperatures. There are obvious increases in the amount of released Se especially in the temperature range of 300 to 800 °C. In addition, more Se is released from the coal gasification than coal combustion process, but more Se is released from coal combustion than pyrolysis. The type of coal, rate of heating, type of mineral ions, and combustion atmosphere have different effects on the released percentage of Se. Therefore, having a good understanding of the factors that surround the release of Se during coal combustion, and then establishing the combustion conditions can reduce the impacts of this toxic element to humans and the environment.

  1. Combustion of fuels with low sintering temperature

    Energy Technology Data Exchange (ETDEWEB)

    Dalin, D

    1950-08-16

    A furnace for the combustion of low sintering temperature fuel consists of a vertical fuel shaft arranged to be charged from above and supplied with combustion air from below and containing a system of tube coils extending through the fuel bed and serving the circulation of a heat-absorbing fluid, such as water or steam. The tube-coil system has portions of different heat-absorbing capacity which are so related to the intensity of combustion in the zones of the fuel shaft in which they are located as to keep all parts of the fuel charge below sintering temperature.

  2. Soot measurements for diesel and biodiesel spray combustion under high temperature highly diluted ambient conditions

    KAUST Repository

    Zhang, Ji; Jing, Wei; Roberts, William L.; Fang, Tiegang

    2014-01-01

    This paper presents the soot temperature and KL factor for biodiesel, namely fatty acid methyl ester (FAME) and diesel fuel combustion in a constant volume chamber using a two-color technique. The KL factor is a parameter for soot concentration

  3. High temperature high velocity direct power extraction using an open-cycle oxy-combustion system

    Energy Technology Data Exchange (ETDEWEB)

    Love, Norman [Univ. of Texas, El Paso, TX (United States)

    2017-09-29

    The implementation of oxy-fuel technology in fossil-fuel power plants may contribute to increased system efficiencies and a reduction of pollutant emissions. One technology that has potential to utilize the temperature of undiluted oxy-combustion flames is open-cycle magnetohydrodynamic (MHD) power generators. These systems can be configured as a topping cycle and provide high enthalpy, electrically conductive flows for direct conversion of electricity. This report presents the design and modeling strategies of a MHD combustor operating at temperatures exceeding 3000 K. Throughout the study, computational fluid dynamics (CFD) models were extensively used as a design and optimization tool. A lab-scale 60 kWth model was designed, manufactured and tested as part of this project. A fully-coupled numerical method was developed in ANSYS FLUENT to characterize the heat transfer in the system. This study revealed that nozzle heat transfer may be predicted through a 40% reduction of the semi-empirical Bartz correlation. Experimental results showed good agreement with the numerical evaluation, with the combustor exhibiting a favorable performance when tested during extended time periods. A transient numerical method was employed to analyze fuel injector geometries for the 60-kW combustor. The ANSYS FLUENT study revealed that counter-swirl inlets achieve a uniform pressure and velocity ratio when the ports of the injector length to diameter ratio (L/D) is 4. An angle of 115 degrees was found to increase distribution efficiency. The findings show that this oxy-combustion concept is capable of providing a high-enthalpy environment for seeding, in order to render the flow to be conductive. Based on previous findings, temperatures in the range of 2800-3000 K may enable magnetohydrodynamic power extraction. The heat loss fraction in this oxy-combustion system, based on CFD and analytical calculations, at optimal operating conditions, was estimated to be less than 10 percent

  4. High temperature magnetic properties of Co(FeY){sub 2}O{sub 4} synthesized by combustion reaction

    Energy Technology Data Exchange (ETDEWEB)

    Alves, Thiago Eduardo Pereira, E-mail: thiago.ifgo@gmail.com [Instituto Federal de Educacao, Ciencia e Tecnologia de Goias (IFGO), Goiania (Brazil); Franco Junior, Adolfo [Universidade Federal de Goias (UFG), Goiania (Brazil)

    2016-07-01

    Full text: Cobalt ferrite is widely studied due to its interesting magnetic behavior at room temperature. However, many technical applications require temperatures that are above that. Thus, it is necessary to understand how some magnetic properties, such as saturation magnetization (Ms), remanent magnetization (Mr), and coercivity (Hc), may behave at high temperatures [1]. Among several methods to synthesize cobalt ferrites, combustion reaction method is intensively used because it is inexpensive, fast and has good control on the stoichiometry. This method is based on the chemistry of propellants and explosives [2]. Therefore, we have prepared a series of nanoparticles of CoFe{sub (2-x)}Y{sub x}O{sub 4}, with x ranging from 0.00 to 0.04, by combustion reaction method. The crystal structure and morphology were characterized by X-ray diffraction (XRD) using Rietveld refinement and transmission electron microscopy (TEM), respectively. Nanocrystalline particles structures in the typical phase of spinel were observed on diffractograms. Micrographies showed high crystalline powders for the particles and particles size within nanoscale range. The magnetic properties were measured by vibrating sample magnetometry (VSM) in broad range of temperature (300-850K). Saturation magnetization (Ms) decreases with Y doping increase, while Hc increases, being about 1.8 higher than the undoped sample. Furthermore, Curie temperature increases with Y doping increase. These magnetic properties were discussed in terms of the particle interactions induced by the thermal fluctuations, cation distribution, and ions exchange between yttrium and cobalt atoms in A-B sites in the cubic structure [3]. References: [1] A. Franco, Jr. and F. C. e Silva, Applied Physics Letters 96, 172505, (2010). 525 [2] S.R. Jain, et al, Combustion and flame 40, 71-79, (1981). [3] A. Franco Jr. et al. Journal of Alloys and Compounds 680, 198-205, (2016). (author)

  5. Staged, High-Pressure Oxy-Combustion Technology: Development and Scale-Up

    Energy Technology Data Exchange (ETDEWEB)

    Axelbaum, Richard; Xia, Fei; Gopan, Akshay; Kumfer, Benjamin

    2014-09-30

    Washington University in St. Louis and its project partners are developing a unique pressurized oxy-combustion process that aims to improve efficiency and costs by reducing the recycling of flue gas to near zero. Normally, in the absence of recycled flue gas or another inert gas, combustion of fuel and oxygen results in a dramatic increase in temperature of the combustion products and radiant energy, as compared to combustion in air. High heat flux to the boiler tubes may result in a tube surface temperatures that exceed safe operating limits. In the Staged Pressurized Oxy-Combustion (SPOC) process, this problem is addressed by staging the delivery of fuel and by novel combustion design that allows control of heat flux. In addition, the main mode of heat transfer to the steam cycle is by radiation, as opposed to convection. Therefore, the requirement for recycling large amounts of flue gas, for temperature control or to improve convective heat transfer, is eliminated, resulting in a reduction in auxiliary loads. The following report contains a detailed summary of scientific findings and accomplishments for the period of Oct. 1, 2013 to Sept 30, 2014. Results of ASPEN process and CFD modelling activities aimed at improving the SPOC process and boiler design are presented. The effects of combustion pressure and fuel moisture on the plant efficiency are discussed. Combustor pressure is found to have only a minor impact beyond 16 bar. For fuels with moisture content greater than approx 30%, e.g. coal/water slurries, the amount of latent heat of condensation exceeds that which can be utilized in the steam cycle and plant efficiency is reduced significantly. An improved boiler design is presented that achieves a more uniform heat flux profile. In addition, a fundamental study of radiation in high-temperature, high-pressure, particle-laden flows is summarized which provides a more complete understanding of heat transfer in these unusual conditions and to allow for

  6. Combustion in a High-Speed Compression-Ignition Engine

    Science.gov (United States)

    Rothrock, A M

    1933-01-01

    An investigation conducted to determine the factors which control the combustion in a high-speed compression-ignition engine is presented. Indicator cards were taken with the Farnboro indicator and analyzed according to the tangent method devised by Schweitzer. The analysis show that in a quiescent combustion chamber increasing the time lag of auto-ignition increases the maximum rate of combustion. Increasing the maximum rate of combustion increases the tendency for detonation to occur. The results show that by increasing the air temperature during injection the start of combustion can be forced to take place during injection and so prevent detonation from occurring. It is shown that the rate of fuel injection does not in itself control the rate of combustion.

  7. Mathematical modelling of NO emissions from high-temperature air combustion with nitrous oxide mechanism

    International Nuclear Information System (INIS)

    Yang, Weihong; Blasiak, Wlodzimierz

    2005-01-01

    A study of the mathematical modelling of NO formation and emissions in a gas-fired regenerative furnace with high-preheated air was performed. The model of NO formation via N 2 O-intermediate mechanism was proposed because of the lower flame temperature in this case. The reaction rates of this new model were calculated basing on the eddy-dissipation-concept. This model accompanied with thermal-NO, prompt-NO and NO reburning models were used to predict NO emissions and formations. The sensitivity of the furnace temperature and the oxygen availability on NO generation rate has been investigated. The predicted results were compared with experimental values. The results show that NO emission formed by N 2 O-intermediate mechanism is of outstanding importance during the high-temperature air combustion (HiTAC) condition. Furthermore, it shows that NO models with N 2 O-route model can give more reasonable profile of NO formation. Additionally, increasing excess air ratio leads to increasing of NO emission in the regenerative furnace. (author)

  8. Experimental study of slight temperature rise combustion in trapped vortex combustors for gas turbines

    International Nuclear Information System (INIS)

    Zhang, R.C.; Fan, W.J.; Xing, F.; Song, S.W.; Shi, Q.; Tian, G.H.; Tan, W.L.

    2015-01-01

    Interstage turbine combustion used for improving efficiency of gas turbine was a new type of combustion mode. Operating conditions and technical requirements for this type of combustor were different from those of traditional combustor. It was expected to achieve engineering application in both ground-based and aviation gas turbine in the near future. In this study, a number of modifications in a base design were applied and examined experimentally. The trapped-vortex combustion technology was adopted for flame stability under high velocity conditions, and the preheating-fuel injection technology was used to improve the atomization and evaporation performance of liquid fuel. The experimental results indicated that stable and efficient combustion with slight temperature-rise can be achieved under the high velocity conditions of combustor inlet. Under all experimental conditions, the excess air coefficients of ignition and lean blow-out were larger than 7 and 20, respectively; pollutant emission index of NO x and the maximum wall temperature were below 2.5 g/(kg fuel) and 1050 K, respectively. Moreover, the effects of fuel injection and overall configuration on the combustion characteristics were analyzed in detail. The number increase, area increase and depth increase of fuel injectors had different influences on the stability, combustion characteristic and temperature distribution. - Highlights: • The combustion mode of slight temperature-rise (200 K) was achieved. • Effect of fuel and air injection on stability characteristic was investigated. • Impact of overall configuration on combustion performance was analyzed. • The feasibility of scheme was determined.

  9. FY 1999 Report on research and development project. Research and development of high-temperature air combustion technology; 1999 nendo koon kuki nensho seigyo gijutsu kenkyu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    The high-temperature air combustion technology recently developed greatly advances combustion technology. The technology, when applied to the other areas, may expand its applicable areas and contribute to environmental preservation, e.g., abatement of CO2 emissions. This is the motivation for promotion of this project. The combustion technology, developed by improving functions of industrial furnaces, cannot be directly applied to the other combustion heaters. This project is aimed at extraction of the problems involved, finding out the solutions, and thereby smoothly transferring the technology to commercialization. This project covers boilers firing finely pulverized coal, waste incineration processes and high-temperature chemical reaction processes, to which the new technology is applied. It is also aimed at establishment of advanced combustion control basic technology, required when the high-temperature air combustion technology is applied to these processes. In addition to application R and D efforts for each area, the basic phenomena characteristic of each combustion heater type are elucidated using microgravity and the like, to support the application R and D efforts from the basic side. This project also surveys reduction of environmental pollutants, e.g., NOx and dioxins. This report presents the results obtained in the first year. (NEDO)

  10. Characterization of ash melting behaviour at high temperatures under conditions simulating combustible solid waste gasification.

    Science.gov (United States)

    Niu, Miaomiao; Dong, Qing; Huang, Yaji; Jin, Baosheng; Wang, Hongyan; Gu, Haiming

    2018-05-01

    To achieve high-temperature gasification-melting of combustible solid waste, ash melting behaviour under conditions simulating high-temperature gasification were studied. Raw ash (RA) and gasified ash (GA) were prepared respectively by waste ashing and fluidized bed gasification. Results of microstructure and composition of the two-ash indicated that GA showed a more porous structure and higher content of alkali and alkali earth metals among metallic elements. Higher temperature promoted GA melting and could reach a complete flowing state at about 1250°C. The order of melting rate of GA under different atmospheres was reducing condition > inert condition > oxidizing condition, which might be related to different existing forms of iron during melting and different flux content with atmosphere. Compared to RA, GA showed lower melting activity at the same condition due to the existence of an unconverted carbon and hollow structure. The melting temperature for sufficient melting and separation of GA should be at least 1250°C in this work.

  11. Performance of candidate gas turbine abradeable seal materials in high temperature combustion atmospheres

    Energy Technology Data Exchange (ETDEWEB)

    Simms, N.J. [Cranfield University, Power Generation Technology Centre, Cranfield, Beds, MK43 0AL (United Kingdom); Norton, J.F. [Cranfield University, Power Generation Technology Centre, Cranfield, Beds, MK43 0AL (United Kingdom); Consultant in Corrosion Science and Technology, Hemel Hempstead, Herts HP1 1SR (United Kingdom); McColvin, G. [Siemens Industrial Turbines Ltd., Lincoln, LN5 7FD (United Kingdom)

    2005-11-01

    The development of abradeable gas turbine seals for higher temperature duties has been the target of an EU-funded R and D project, ADSEALS, with the aim of moving towards seals that can withstand surface temperatures as high as {proportional_to} 1100 C for periods of at least 24,000 h. The ADSEALS project has investigated the manufacturing and performance of a number of alternative materials for the traditional honeycomb seal design and novel alternative designs. This paper reports results from two series of exposure tests carried out to evaluate the oxidation performance of the seal structures in combustion gases and under thermal cycling conditions. These investigations formed one part of the evaluation of seal materials that has been carried out within the ADSEALS project. The first series of three tests, carried out for screening purposes, exposed candidate abradeable seal materials to a simulated natural gas combustion environment at temperatures within the range 1050-1150 C in controlled atmosphere furnaces for periods of up to {proportional_to} 2,500 h with fifteen thermal cycles. The samples were thermally cycled to room temperature on a weekly basis to enable the progress of the degradation to be monitored by mass change and visual observation, as well as allowing samples to be exchanged at planned intervals. The honeycombs were manufactured from PM2000 and Haynes 214. The backing plates for the seal constructions were manufactured from Haynes 214. Some seals contained fillers or had been surface treated (e.g. aluminised). The second series of three tests were carried out in a natural gas fired ribbon furnace facility that allowed up to sixty samples of candidate seal structures (including honeycombs, hollow sphere structures and porous ceramics manufactured from an extended range of materials including Aluchrom YHf, PM2Hf, Haynes 230, IN738LC and MarM247) to be exposed simultaneously to a stream of hot combustion gas. In this case the samples were cooled

  12. A University Consortium on Low Temperature Combustion for High Efficiency, Ultra-Low Emission Engines

    Energy Technology Data Exchange (ETDEWEB)

    Assanis, Dennis N. [Univ. of Michigan, Ann Arbor, MI (United States); Atreya, Arvind [Univ. of Michigan, Ann Arbor, MI (United States); Chen, Jyh-Yuan [Univ. of California, Berkeley, CA (United States); Cheng, Wai K. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Dibble, Robert W. [Univ. of California, Berkeley, CA (United States); Edwards, Chris [Stanford Univ., CA (United States); Filipi, Zoran S. [Univ. of Michigan, Ann Arbor, MI (United States); Gerdes, Christian [Stanford Univ., CA (United States); Im, Hong [Univ. of Michigan, Ann Arbor, MI (United States); Lavoie, George A. [Univ. of Michigan, Ann Arbor, MI (United States); Wooldridge, Margaret S. [Univ. of Michigan, Ann Arbor, MI (United States)

    2009-12-31

    The objective of the University consortium was to investigate the fundamental processes that determine the practical boundaries of Low Temperature Combustion (LTC) engines and develop methods to extend those boundaries to improve the fuel economy of these engines, while operating with ultra low emissions. This work involved studies of thermal effects, thermal transients and engine management, internal mixing and stratification, and direct injection strategies for affecting combustion stability. This work also examined spark-assisted Homogenous Charge Compression Ignition (HCCI) and exhaust after-treatment so as to extend the range and maximize the benefit of Homogenous Charge Compression Ignition (HCCI)/ Partially Premixed Compression Ignition (PPCI) operation. In summary the overall goals were; Investigate the fundamental processes that determine the practical boundaries of Low Temperature Combustion (LTC) engines; Develop methods to extend LTC boundaries to improve the fuel economy of HCCI engines fueled on gasoline and alternative blends, while operating with ultra low emissions; and Investigate alternate fuels, ignition and after-treatment for LTC and Partially Premixed compression Ignition (PPCI) engines.

  13. Effects of air jet duration and timing on the combustion characteristics of high-pressure air jet controlled compression ignition combustion mode in a hybrid pneumatic engine

    International Nuclear Information System (INIS)

    Long, Wuqiang; Meng, Xiangyu; Tian, Jiangping; Tian, Hua; Cui, Jingchen; Feng, Liyan

    2016-01-01

    Highlights: • A 3-D CFD model of the power cylinder in HPE was developed. • High-pressure air JCCI combustion mode includes two-stage high-temperature reaction. • The combustion phasing of the pre-mixture is controllable via the SOJ timing. • There exists an optimum SOJ timing for obtaining the highest combustion efficiency and shortest burning duration. - Abstract: The high-pressure air jet controlled compression ignition (JCCI) combustion mode was employed to control the premixed diesel compression ignition combustion phasing by using the compound thermodynamic cycle under all operating conditions, which is accomplished in a hybrid pneumatic engine (HPE). A three-dimensional computational fluid dynamics (CFD) numerical simulation coupled with reduced n-heptane chemical kinetics mechanism has been applied to investigate the effects of high-pressure air jet duration and the start of jet (SOJ) timing on the combustion characteristics in the power cylinder of HPE. By sweeping the high-pressure air jet durations from 6 to 14 °CA and SOJ timings from −12 °CA ATDC to the top dead center (TDC) under the air jet temperatures of 400 and 500 K, respectively, the low- and high-temperature reactions, combustion efficiency, as well as the combustion phasing and burning duration have been analyzed in detail. The results illustrated that a longer air jet duration results in a higher peak in the first-stage high-temperature reaction, and the short air jet duration of 6 °CA can lead to a higher combustion efficiency. The SOJ timing sweep results showed that there exists an optimum timing for obtaining the highest combustion efficiency and shortest burning duration.

  14. Large eddy simulation of the low temperature ignition and combustion processes on spray flame with the linear eddy model

    Science.gov (United States)

    Wei, Haiqiao; Zhao, Wanhui; Zhou, Lei; Chen, Ceyuan; Shu, Gequn

    2018-03-01

    Large eddy simulation coupled with the linear eddy model (LEM) is employed for the simulation of n-heptane spray flames to investigate the low temperature ignition and combustion process in a constant-volume combustion vessel under diesel-engine relevant conditions. Parametric studies are performed to give a comprehensive understanding of the ignition processes. The non-reacting case is firstly carried out to validate the present model by comparing the predicted results with the experimental data from the Engine Combustion Network (ECN). Good agreements are observed in terms of liquid and vapour penetration length, as well as the mixture fraction distributions at different times and different axial locations. For the reacting cases, the flame index was introduced to distinguish between the premixed and non-premixed combustion. A reaction region (RR) parameter is used to investigate the ignition and combustion characteristics, and to distinguish the different combustion stages. Results show that the two-stage combustion process can be identified in spray flames, and different ignition positions in the mixture fraction versus RR space are well described at low and high initial ambient temperatures. At an initial condition of 850 K, the first-stage ignition is initiated at the fuel-lean region, followed by the reactions in fuel-rich regions. Then high-temperature reaction occurs mainly at the places with mixture concentration around stoichiometric mixture fraction. While at an initial temperature of 1000 K, the first-stage ignition occurs at the fuel-rich region first, then it moves towards fuel-richer region. Afterwards, the high-temperature reactions move back to the stoichiometric mixture fraction region. For all of the initial temperatures considered, high-temperature ignition kernels are initiated at the regions richer than stoichiometric mixture fraction. By increasing the initial ambient temperature, the high-temperature ignition kernels move towards richer

  15. Tailoring a High Temperature Corrosion Resistant FeNiCrAl for Oxy-Combustion Application by Thermal Spray Coating and HIP

    Directory of Open Access Journals (Sweden)

    Jarkko Metsäjoki

    2015-10-01

    Full Text Available Oxy-fuel combustion combined with CCS (carbon capture and storage aims to decrease CO2 emissions in energy production using fossil fuels. Oxygen firing changes power plant boiler conditions compared to conventional firing. Higher material temperatures and harsher and more variable environmental conditions cause new degradation processes that are inadequately understood at the moment. In this study, an Fe-Ni-Cr-Al alloy was developed based on thermodynamic simulations. The chosen composition was manufactured as powder by gas atomization. The powder was sieved into two fractions: The finer was used to produce thermal spray coatings by high velocity oxy-fuel (HVOF and the coarser to manufacture bulk specimens by hot isostatic pressing (HIP. The high temperature corrosion properties of the manufactured FeNiCrAl coating and bulk material were tested in laboratory conditions simulating oxy-combustion. The manufacturing methods and the results of high temperature corrosion performance are presented. The corrosion performance of the coating was on average between the bulk steel references Sanicro 25 and TP347HFG.

  16. Soot temperature and KL factor for biodiesel and diesel spray combustion in a constant volume combustion chamber

    KAUST Repository

    Zhang, Ji; Jing, Wei; Roberts, William L.; Fang, Tiegang

    2013-01-01

    This paper presents measurements of the soot temperature and KL factor for biodiesel and diesel combustion in a constant volume chamber using a two-color technique. This technique uses a high-speed camera coupled with two narrowband filters (550. nm

  17. High temperature cogeneration with thermionic burners

    International Nuclear Information System (INIS)

    Fitzpatrick, G.O.; Britt, E.J.; Dick, R.S.

    1981-01-01

    The thermionic cogeneration combustor was conceived to meet industrial requirements for high-temperature direct heat, typically in the form of gas at temperatures from 800 to 1900 K, while at the same time supplying electricity. The thermionic combustor is entirely self-contained, with heat from the combustion region absorbed by the emitters of thermionic converters to be converted to electric power and the high-temperature reject heat from the converters used to preheat the air used for combustion. Depending on the temperature of the process gas produced, energy savings of around 10% with respect to that used to produce the same amount of electricity and heat without cogeneration are possible with present technology, and savings of up to 20% may be possible with advanced converters. Possible thermionic combustor designs currently under investigation include a configuration in which heat is collected by heat pipes lining the periphery of the combustion region, and a fire-tube converter in which combustion occurs within the cylindrical emitter of each converter. Preliminary component tests of these designs have been encouraging

  18. High temperature cogeneration with thermionic burners

    Science.gov (United States)

    Fitzpatrick, G. O.; Britt, E. J.; Dick, R. S.

    The thermionic cogeneration combustor was conceived to meet industrial requirements for high-temperature direct heat, typically in the form of gas at temperatures from 800 to 1900 K, while at the same time supplying electricity. The thermionic combustor is entirely self-contained, with heat from the combustion region absorbed by the emitters of thermionic converters to be converted to electric power and the high-temperature reject heat from the converters used to preheat the air used for combustion. Depending on the temperature of the process gas produced, energy savings of around 10% with respect to that used to produce the same amount of electricity and heat without cogeneration are possible with present technology, and savings of up to 20% may be possible with advanced converters. Possible thermionic combustor designs currently under investigation include a configuration in which heat is collected by heat pipes lining the periphery of the combustion region, and a fire-tube converter in which combustion occurs within the cylindrical emitter of each converter. Preliminary component tests of these designs have been encouraging.

  19. Low and High Temperature Combustion Chemistry of Butanol Isomers in Premixed Flames and Autoignition Systems

    Energy Technology Data Exchange (ETDEWEB)

    Sarathy, S M; Pitz, W J; Westbrook, C K; Mehl, M; Yasunaga, K; Curran, H J; Tsujimura, T; Osswald, P; Kohse-Hoinghaus, K

    2010-12-12

    Butanol is a fuel that has been proposed as a bio-derived alternative to conventional petroleum derived fuels. The structural isomer in traditional 'bio-butanol' fuel is n-butanol, but newer conversion technologies produce iso-butanol as a fuel. In order to better understand the combustion chemistry of bio-butanol, this study presents a comprehensive chemical kinetic model for all the four isomers of butanol (e.g., 1-, 2-, iso- and tert-butanol). The proposed model includes detailed high temperature and low temperature reaction pathways. In this study, the primary experimental validation target for the model is premixed flat low-pressure flame species profiles obtained using molecular beam mass spectrometry (MBMS). The model is also validated against previously published data for premixed flame velocity and n-butanol rapid compression machine and shock tube ignition delay. The agreement with these data sets is reasonably good. The dominant reaction pathways at the various pressures and temperatures studied are elucidated. At low temperature conditions, we found that the reaction of alphahydroxybutyl with O{sub 2} was important in controlling the reactivity of the system, and for correctly predicting C{sub 4} aldehyde profiles in low pressure premixed flames. Enol-keto isomerization reactions assisted by HO{sub 2} were also found to be important in converting enols to aldehydes and ketones in the low pressure premixed flames. In the paper, we describe how the structural features of the four different butanol isomers lead to differences in the combustion properties of each isomer.

  20. Effects of inlet distortion on gas turbine combustion chamber exit temperature profiles

    Science.gov (United States)

    Maqsood, Omar Shahzada

    Damage to a nozzle guide vane or blade, caused by non-uniform temperature distributions at the combustion chamber exit, is deleterious to turbine performance and can lead to expensive and time consuming overhaul and repair. A test rig was designed and constructed for the Allison 250-C20B combustion chamber to investigate the effects of inlet air distortion on the combustion chamber's exit temperature fields. The rig made use of the engine's diffuser tubes, combustion case, combustion liner, and first stage nozzle guide vane shield. Rig operating conditions simulated engine cruise conditions, matching the quasi-non-dimensional Mach number, equivalence ratio and Sauter mean diameter. The combustion chamber was tested with an even distribution of inlet air and a 4% difference in airflow at either side. An even distribution of inlet air to the combustion chamber did not create a uniform temperature profile and varying the inlet distribution of air exacerbated the profile's non-uniformity. The design of the combustion liner promoted the formation of an oval-shaped toroidal vortex inside the chamber, creating localized hot and cool sections separated by 90° that appeared in the exhaust. Uneven inlet air distributions skewed the oval vortex, increasing the temperature of the hot section nearest the side with the most mass flow rate and decreasing the temperature of the hot section on the opposite side. Keywords: Allison 250, Combustion, Dual-Entry, Exit Temperature Profile, Gas Turbine, Pattern Factor, Reverse Flow.

  1. Ethanol-fueled low temperature combustion: A pathway to clean and efficient diesel engine cycles

    International Nuclear Information System (INIS)

    Asad, Usman; Kumar, Raj; Zheng, Ming; Tjong, Jimi

    2015-01-01

    Highlights: • Concept of ethanol–diesel fueled Premixed Pilot Assisted Combustion (PPAC). • Ultra-low NOx and soot with diesel-like thermal efficiency across the load range. • Close to TDC pilot injection timing for direct combustion phasing control. • Minimum pilot quantity (15% of total energy input) for clean, stable operation. • Defined heat release profile distribution (HRPD) to optimize pilot-ethanol ratio. - Abstract: Low temperature combustion (LTC) in diesel engines offers the benefits of ultra-low NOx and smoke emissions but suffers from lowered energy efficiency due to the high reactivity and low volatility of diesel fuel. Ethanol from renewable biomass provides a viable alternate to the petroleum based transportation fuels. The high resistance to auto-ignition (low reactivity) and its high volatility make ethanol a suitable fuel for low temperature combustion (LTC) in compression-ignition engines. In this work, a Premixed Pilot Assisted Combustion (PPAC) strategy comprising of the port fuel injection of ethanol, ignited with a single diesel pilot injection near the top dead centre has been investigated on a single-cylinder high compression ratio diesel engine. The impact of the diesel pilot injection timing, ethanol to diesel quantity ratio and exhaust gas recirculation on the emissions and efficiency are studied at 10 bar IMEP. With the lessons learnt, successful ethanol–diesel PPAC has been demonstrated up to a load of 18 bar IMEP with ultra-low NOx and soot emissions across the full load range. The main challenge of PPAC is the reduced combustion efficiency especially at low loads; therefore, the authors have presented a combustion control strategy to allow high efficiency, clean combustion across the load range. This work entails to provide a detailed framework for the ethanol-fueled PPAC to be successfully implemented.

  2. Numerical Modeling of MILD Combustion at High Pressure to Predict the Optimal Operating Conditions

    KAUST Repository

    Vanteru, Mahendra Reddy

    2017-02-01

    This Chapter presents numerical simulation on MILD combustion operating at high pressure. Influence of preheat and dilution of oxidizer and operating pressure on stabilization of MILD combustion are presented. Three different preheat temperatures (1100, 1300 and 1500 K) and three different dilution levels (3, 6 and 9% O2) are simulated over an operating pressure variation from 1 atm to 16 atm. A classical jet in hot coflow burner is considered for this study. Total of 45 cases are simulated and analyzed. Essential characteristics of MILD combustion, i.e., maximum temperature (Tmax), temperature rise (ΔT) and temperature distributions, are analyzed. The distribution of emissions OH and CO are also studied and presented. Well-stabilized MILD combustion is observed for all cases except for two cases with high preheated (1500 K). Peak temperature is observed to decrease with increasing operating pressure for a given level of preheat and dilution. OH mass faction is reduced with increasing pressure. The CO emissions show little sensitivity to operating pressure. However, CO mass fraction is slightly higher at 1 atm operating pressure as compared to 4 to 16 atm. Since the residence time of reactants increases as the operating pressure increases, well-stabilized MILD combustion is observed for all highly diluted and low temperature preheat cases (3% O2 and 1100 K).

  3. Numerical Modeling of MILD Combustion at High Pressure to Predict the Optimal Operating Conditions

    KAUST Repository

    Vanteru, Mahendra Reddy; Roberts, William L.

    2017-01-01

    This Chapter presents numerical simulation on MILD combustion operating at high pressure. Influence of preheat and dilution of oxidizer and operating pressure on stabilization of MILD combustion are presented. Three different preheat temperatures (1100, 1300 and 1500 K) and three different dilution levels (3, 6 and 9% O2) are simulated over an operating pressure variation from 1 atm to 16 atm. A classical jet in hot coflow burner is considered for this study. Total of 45 cases are simulated and analyzed. Essential characteristics of MILD combustion, i.e., maximum temperature (Tmax), temperature rise (ΔT) and temperature distributions, are analyzed. The distribution of emissions OH and CO are also studied and presented. Well-stabilized MILD combustion is observed for all cases except for two cases with high preheated (1500 K). Peak temperature is observed to decrease with increasing operating pressure for a given level of preheat and dilution. OH mass faction is reduced with increasing pressure. The CO emissions show little sensitivity to operating pressure. However, CO mass fraction is slightly higher at 1 atm operating pressure as compared to 4 to 16 atm. Since the residence time of reactants increases as the operating pressure increases, well-stabilized MILD combustion is observed for all highly diluted and low temperature preheat cases (3% O2 and 1100 K).

  4. High pressure combustion of liquid fuels. [alcohol and n-paraffin fuels

    Science.gov (United States)

    Canada, G. S.

    1974-01-01

    Measurements were made of the burning rates and liquid surface temperatures for a number of alcohol and n-paraffin fuels under natural and forced convection conditions. Porous spheres ranging in size from 0.64-1.9 cm O.D. were emloyed to simulate the fuel droplets. The natural convection cold gas tests considered the combustion in air of methanol, ethanol, propanol-1, n-pentane, n-heptane, and n-decane droplets at pressures up to 78 atmospheres. The pressure levels of the natural convection tests were high enough so that near critical combustion was observed for methanol and ethanol vaporization rates and liquid surface temperature measurements were made of droplets burning in a simulated combustion chamber environment. Ambient oxygen molar concentrations included 13%, 9.5% and pure evaporation. Fuels used in the forced convection atmospheric tests included those listed above for the natural convection tests. The ambient gas temperature ranged from 600 to 1500 K and the Reynolds number varied from 30 to 300. The high pressure forced convection tests employed ethanol and n-heptane as fuels over a pressure range of one to 40 atmospheres. The ambient gas temperature was 1145 K for the two combustion cases and 1255 K for the evaporation case.

  5. Prediction of flame formation in highly preheated air combustion

    International Nuclear Information System (INIS)

    Yang, Jang Sik; Choi, Gyung Min; Kim, Duck Jool; Katsuki, Masashi

    2008-01-01

    Fundamental information about the ignition position and shape of a flame in highly preheated air combustion was obtained, and the suitability of the suggested reduced kinetic mechanism that reflects the characteristics of the highly preheated air combustion was demonstrated. Flame lift height and flame length with variations of premixed air temperature and oxygen concentration were measured by CH chemiluminescence intensity, and were computed with a reduced kinetic mechanism. Flame attached near a fuel nozzle started to lift when preheated air temperature became close to auto-ignition temperature and/or oxygen concentration reduced. The flame lift height increased but the flame length decreased with decreasing preheated air temperature and flame length reversed after a minimum value. Calculated results showed good agreement with those of experiment within tolerable error. Flame shape shifted from diffusion flame shape to partial premixed flame shape with increasing lift height and this tendency was also observed in the computation results

  6. Prediction of flame formation in highly preheated air combustion

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jang Sik; Choi, Gyung Min; Kim, Duck Jool [Pusan National University, Busan (Korea, Republic of); Katsuki, Masashi [Osaka University, Osaka (Japan)

    2008-11-15

    Fundamental information about the ignition position and shape of a flame in highly preheated air combustion was obtained, and the suitability of the suggested reduced kinetic mechanism that reflects the characteristics of the highly preheated air combustion was demonstrated. Flame lift height and flame length with variations of premixed air temperature and oxygen concentration were measured by CH chemiluminescence intensity, and were computed with a reduced kinetic mechanism. Flame attached near a fuel nozzle started to lift when preheated air temperature became close to auto-ignition temperature and/or oxygen concentration reduced. The flame lift height increased but the flame length decreased with decreasing preheated air temperature and flame length reversed after a minimum value. Calculated results showed good agreement with those of experiment within tolerable error. Flame shape shifted from diffusion flame shape to partial premixed flame shape with increasing lift height and this tendency was also observed in the computation results

  7. Application of C/C composites to the combustion chamber of rocket engines. Part 1: Heating tests of C/C composites with high temperature combustion gases

    Science.gov (United States)

    Tadano, Makoto; Sato, Masahiro; Kuroda, Yukio; Kusaka, Kazuo; Ueda, Shuichi; Suemitsu, Takeshi; Hasegawa, Satoshi; Kude, Yukinori

    1995-04-01

    Carbon fiber reinforced carbon composite (C/C composite) has various superior properties, such as high specific strength, specific modulus, and fracture strength at high temperatures of more than 1800 K. Therefore, C/C composite is expected to be useful for many structural applications, such as combustion chambers of rocket engines and nose-cones of space-planes, but C/C composite lacks oxidation resistivity in high temperature environments. To meet the lifespan requirement for thermal barrier coatings, a ceramic coating has been employed in the hot-gas side wall. However, the main drawback to the use of C/C composite is the tendency for delamination to occur between the coating layer on the hot-gas side and the base materials on the cooling side during repeated thermal heating loads. To improve the thermal properties of the thermal barrier coating, five different types of 30-mm diameter C/C composite specimens constructed with functionally gradient materials (FGM's) and a modified matrix coating layer were fabricated. In this test, these specimens were exposed to the combustion gases of the rocket engine using nitrogen tetroxide (NTO) / monomethyl hydrazine (MMH) to evaluate the properties of thermal and erosive resistance on the thermal barrier coating after the heating test. It was observed that modified matrix and coating with FGM's are effective in improving the thermal properties of C/C composite.

  8. Development and application of a high-temperature sampling probe for burning chamber conditions of fluidized-bed combustion; Korkean laempoetilan naeytteenottosondin kehittaeminen ja soveltaminen leijukerrospolton tulipesaeolosuhteisiin

    Energy Technology Data Exchange (ETDEWEB)

    Larjava, K.; Paerkkae, M.; Jormanainen, P.; Roine, J.; Paakkinen, K. [VTT Chemistry, Espoo (Finland); Linna, V. [VTT Energy, Jyvaeskylae (Finland)

    1996-12-01

    A sampling probe for the burning chamber conditions of fluidized-bed combustion will be developed in this project. The probe will be suitable for sampling vaporous heavy and alkali metals and other condensing compounds (e.g. chlorides) as well combustion gases and alternatively also flue gas particles at high temperatures. The knowledge gained with the probe will help understanding, developing and modeling combustion processes and will thus aid the manufacturers of the boilers. (author)

  9. In situ high-temperature gas sensors: continuous monitoring of the combustion quality of different wood combustion systems and optimization of combustion process

    Directory of Open Access Journals (Sweden)

    H. Kohler

    2018-03-01

    Full Text Available The sensing characteristics and long-term stability of different kinds of CO ∕ HC gas sensors (non-Nernstian mixed potential type during in situ operation in flue gas from different types of low-power combustion systems (wood-log- and wood-chip-fuelled were investigated. The sensors showed representative but individual sensing behaviour with respect to characteristically varying flue gas composition over the combustion process. The long-term sensor signal stability evaluated by repeated exposure to CO ∕ H2 ∕ N2 ∕ synthetic air mixtures showed no sensitivity loss after operation in the flue gas. Particularly for one of the sensors (Heraeus GmbH, this high signal stability was observed in a field test experiment even during continuous operation in the flue gas of the wood-chip firing system over 4 months. Furthermore, it was experimentally shown that the signals of these CO ∕ HC sensing elements yield important additional information about the wood combustion process. This was demonstrated by the adaptation of an advanced combustion airstream control algorithm on a wood-log-fed fireplace and by the development of a combustion quality monitoring system for wood-chip-fed central heaters.

  10. The thermodynamic characteristics of high efficiency, internal-combustion engines

    International Nuclear Information System (INIS)

    Caton, Jerald A.

    2012-01-01

    Highlights: ► The thermodynamics of an automotive engine are determined using a cycle simulation. ► The net indicated thermal efficiency increased from 37.0% to 53.9%. ► High compression ratio, lean mixtures and high EGR were the important features. ► Efficiency increased due to lower heat losses, and increased work conversion. ► The nitric oxides were essentially zero due to the low combustion temperatures. - Abstract: Recent advancements have demonstrated new combustion modes for internal combustion engines that exhibit low nitric oxide emissions and high thermal efficiencies. These new combustion modes involve various combinations of stratification, lean mixtures, high levels of EGR, multiple injections, variable valve timings, two fuels, and other such features. Although the exact combination of these features that provides the best design is not yet clear, the results (low emissions with high efficiencies) are of major interest. The current work is directed at determining some of the fundamental thermodynamic reasons for the relatively high efficiencies and to quantify these factors. Both the first and second laws are used in this assessment. An automotive engine (5.7 l) which included some of the features mentioned above (e.g., high compression ratios, lean mixtures, and high EGR) was evaluated using a thermodynamic cycle simulation. These features were examined for a moderate load (bmep = 900 kPa), moderate speed (2000 rpm) condition. By the use of lean operation, high EGR levels, high compression ratio and other features, the net indicated thermal efficiency increased from 37.0% to 53.9%. These increases are explained in a step-by-step fashion. The major reasons for these improvements include the higher compression ratio and the dilute charge (lean mixture, high EGR). The dilute charge resulted in lower temperatures which in turn resulted in lower heat loss. In addition, the lower temperatures resulted in higher ratios of the specific heats which

  11. A secular carbon debt from atmospheric high temperature combustion of stem wood?

    DEFF Research Database (Denmark)

    Czeskleba-Dupont, Rolf

    2012-01-01

    ' approach for smokestack emissions that was propagated within the Kyoto process, the first phase of which is terminating in 2012. Otherwise, it is tolerated that the substitution of wood pellets for coal or other fossil fuels creates long lasting extra emissions of carbon dioxide – a mistake of climate......Basically, combustion of woody biomass in high temperature processes that react with atmospheric air results in a long lasting addition of carbon dioxide to the atmosphere. When harvesting large extra amounts of stem tree for energetic use, a global as well as secular time frame is needed to assess...... overall consequences with due attention given to biosphere processes, including the complex productivity of whole ecosystems. Analytically, a time dependent variable of carbon neutralization can be traced by a simple carbon neutrality or CN factor. Using the forgotten Marland approach, project managers...

  12. Fundamental phenomena affecting low temperature combustion and HCCI engines, high load limits and strategies for extending these limits

    KAUST Repository

    Saxena, Samveg; Bedoya, Ivá n D.

    2013-01-01

    Low temperature combustion (LTC) engines are an emerging engine technology that offers an alternative to spark-ignited and diesel engines. One type of LTC engine, the homogeneous charge compression ignition (HCCI) engine, uses a well-mixed fuel–air charge like spark-ignited engines and relies on compression ignition like diesel engines. Similar to diesel engines, the use of high compression ratios and removal of the throttling valve in HCCI allow for high efficiency operation, thereby allowing lower CO2 emissions per unit of work delivered by the engine. The use of a highly diluted well-mixed fuel–air charge allows for low emissions of nitrogen oxides, soot and particulate matters, and the use of oxidation catalysts can allow low emissions of unburned hydrocarbons and carbon monoxide. As a result, HCCI offers the ability to achieve high efficiencies comparable with diesel while also allowing clean emissions while using relatively inexpensive aftertreatment technologies. HCCI is not, however, without its challenges. Traditionally, two important problems prohibiting market penetration of HCCI are 1) inability to achieve high load, and 2) difficulty in controlling combustion timing. Recent research has significantly mitigated these challenges, and thus HCCI has a promising future for automotive and power generation applications. This article begins by providing a comprehensive review of the physical phenomena governing HCCI operation, with particular emphasis on high load conditions. Emissions characteristics are then discussed, with suggestions on how to inexpensively enable low emissions of all regulated emissions. The operating limits that govern the high load conditions are discussed in detail, and finally a review of recent research which expands the high load limits of HCCI is discussed. Although this article focuses on the fundamental phenomena governing HCCI operation, it is also useful for understanding the fundamental phenomena in reactivity controlled

  13. Fundamental phenomena affecting low temperature combustion and HCCI engines, high load limits and strategies for extending these limits

    KAUST Repository

    Saxena, Samveg

    2013-10-01

    Low temperature combustion (LTC) engines are an emerging engine technology that offers an alternative to spark-ignited and diesel engines. One type of LTC engine, the homogeneous charge compression ignition (HCCI) engine, uses a well-mixed fuel–air charge like spark-ignited engines and relies on compression ignition like diesel engines. Similar to diesel engines, the use of high compression ratios and removal of the throttling valve in HCCI allow for high efficiency operation, thereby allowing lower CO2 emissions per unit of work delivered by the engine. The use of a highly diluted well-mixed fuel–air charge allows for low emissions of nitrogen oxides, soot and particulate matters, and the use of oxidation catalysts can allow low emissions of unburned hydrocarbons and carbon monoxide. As a result, HCCI offers the ability to achieve high efficiencies comparable with diesel while also allowing clean emissions while using relatively inexpensive aftertreatment technologies. HCCI is not, however, without its challenges. Traditionally, two important problems prohibiting market penetration of HCCI are 1) inability to achieve high load, and 2) difficulty in controlling combustion timing. Recent research has significantly mitigated these challenges, and thus HCCI has a promising future for automotive and power generation applications. This article begins by providing a comprehensive review of the physical phenomena governing HCCI operation, with particular emphasis on high load conditions. Emissions characteristics are then discussed, with suggestions on how to inexpensively enable low emissions of all regulated emissions. The operating limits that govern the high load conditions are discussed in detail, and finally a review of recent research which expands the high load limits of HCCI is discussed. Although this article focuses on the fundamental phenomena governing HCCI operation, it is also useful for understanding the fundamental phenomena in reactivity controlled

  14. Some Factors Affecting Combustion in an Internal-Combustion Engine

    Science.gov (United States)

    Rothrock, A M; Cohn, Mildred

    1936-01-01

    An investigation of the combustion of gasoline, safety, and diesel fuels was made in the NACA combustion apparatus under conditions of temperature that permitted ignition by spark with direct fuel injection, in spite of the compression ratio of 12.7 employed. The influence of such variables as injection advance angle, jacket temperature, engine speed, and spark position was studied. The most pronounced effect was that an increase in the injection advance angle (beyond a certain minimum value) caused a decrease in the extent and rate of combustion. In almost all cases combustion improved with increased temperature. The results show that at low air temperatures the rates of combustion vary with the volatility of the fuel, but that at high temperatures this relationship does not exist and the rates depend to a greater extent on the chemical nature of the fuel.

  15. Corrosion Resistant Coatings for High Temperature Applications

    Energy Technology Data Exchange (ETDEWEB)

    Besman, T.M.; Cooley, K.M.; Haynes, J.A.; Lee, W.Y.; Vaubert, V.M.

    1998-12-01

    Efforts to increase efficiency of energy conversion devices have required their operation at ever higher temperatures. This will force the substitution of higher-temperature structural ceramics for lower temperature materials, largely metals. Yet, many of these ceramics will require protection from high temperature corrosion caused by combustion gases, atmospheric contaminants, or the operating medium. This paper discusses examples of the initial development of such coatings and materials for potential application in combustion, aluminum smelting, and other harsh environments.

  16. Effects of ambient temperature and oxygen concentration on diesel spray combustion using a single-nozzle injector in a constant volume combustion chamber

    KAUST Repository

    Jing, Wei

    2013-09-02

    This work investigates the effects of ambient conditions on diesel spray combustion in an optically accessible, constant volume chamber using a single-nozzle fuel injector. The ambient O2 concentration was varied between five discrete values from 10% to 21% and three different ambient temperatures (800 K, 1000 K, and 1200 K). These conditions simulate different exhaust gas recirculation (EGR) levels and ambient temperatures in diesel engines. Both conventional diesel combustion and low temperature combustion (LTC) modes were observed under these conditions. A transient analysis and a quasi-steady state analysis are employed in this article. The transient analysis focuses on the flame development from beginning to the end, illustrating how the flame structure changes during this process; the quasi-steady state analysis focuses on the stable flame structure. The transient analysis was conducted using high-speed imaging of both OH* chemiluminescence and natural luminosity (NL). In addition, three different images were acquired using an ICCD camera, corresponding to OH* chemiluminescence, narrow-band flame emission at 430 nm (Band A) and at 470 nm (Band B), and were used to investigate the quasi-steady state combustion process. From the transient analysis, it was found that the NL signal becomes stronger and confined to narrow regions when the temperature and O2 concentration increase during the development of flame. The OH* intensity is much lower for the 10% ambient O2 and 800 K conditions compared to the higher temperatures and O2 levels. This implies the occurrence of LTC under these conditions. Results from the quasi-steady combustion stage indicate that high-temperature reactions effectively oxidize the soot in the downstream locations where only OH* signal is observed. In addition, an area was calculated for each spectral region, and results show that the area of Band A and Band B emissions in these images is larger than the area of OH* emissions at the lower O2

  17. Effects of ambient temperature and oxygen concentration on diesel spray combustion using a single-nozzle injector in a constant volume combustion chamber

    KAUST Repository

    Jing, Wei; Roberts, William L.; Fang, Tiegang

    2013-01-01

    This work investigates the effects of ambient conditions on diesel spray combustion in an optically accessible, constant volume chamber using a single-nozzle fuel injector. The ambient O2 concentration was varied between five discrete values from 10% to 21% and three different ambient temperatures (800 K, 1000 K, and 1200 K). These conditions simulate different exhaust gas recirculation (EGR) levels and ambient temperatures in diesel engines. Both conventional diesel combustion and low temperature combustion (LTC) modes were observed under these conditions. A transient analysis and a quasi-steady state analysis are employed in this article. The transient analysis focuses on the flame development from beginning to the end, illustrating how the flame structure changes during this process; the quasi-steady state analysis focuses on the stable flame structure. The transient analysis was conducted using high-speed imaging of both OH* chemiluminescence and natural luminosity (NL). In addition, three different images were acquired using an ICCD camera, corresponding to OH* chemiluminescence, narrow-band flame emission at 430 nm (Band A) and at 470 nm (Band B), and were used to investigate the quasi-steady state combustion process. From the transient analysis, it was found that the NL signal becomes stronger and confined to narrow regions when the temperature and O2 concentration increase during the development of flame. The OH* intensity is much lower for the 10% ambient O2 and 800 K conditions compared to the higher temperatures and O2 levels. This implies the occurrence of LTC under these conditions. Results from the quasi-steady combustion stage indicate that high-temperature reactions effectively oxidize the soot in the downstream locations where only OH* signal is observed. In addition, an area was calculated for each spectral region, and results show that the area of Band A and Band B emissions in these images is larger than the area of OH* emissions at the lower O2

  18. Establishment of Combustion Model for Isooctane HCCI Marine Diesel Engine and Research on the Combustion Characteristic

    Directory of Open Access Journals (Sweden)

    Li Biao

    2016-01-01

    Full Text Available The homogeneous charge compression ignition (HCCI combustion mode applied in marine diesel engine is expected to be one of alternative technologies to decrease nitrogen oxide (NOX emission and improve energy utilization rate. Applying the chemical-looping combustion (CLC mechanism inside the cylinder, a numerical study on the HCCI combustion process is performed taking a marine diesel engine as application object. The characteristic feature of combustion process is displayed. On this basis, the formation and emission of NOX are analyzed and discussed. The results indicate that the HCCI combustion mode always exhibit two combustion releasing heats: low-temperature reaction and high-temperature reaction. The combustion phase is divided into low-temperature reaction zone, high-temperature reaction zone and negative temperature coefficient (NTC zone. The operating conditions of the high compression ratio, high intake air temperature, low inlet pressure and small excess air coefficient would cause the high in-cylinder pressure which often leads engine detonation. The low compression ratio, low intake air temperature and big excess air coefficient would cause the low combustor temperature which is conducive to reduce NOX emissions. These technological means and operating conditions are expected to meet the NOX emissions limits in MARPOL73/78 Convention-Annex VI Amendment.

  19. Development and application of a high-temperature sampling probe for burning chamber conditions in fluidized-bed combustion; Korkean laempoetilan naeytteenottosondin kehittaeminen ja soveltaminen leijukerrospolton tulipesaeolosuhteisiin

    Energy Technology Data Exchange (ETDEWEB)

    Larjava, K.; Paerkkae, M. [VTT Chemical Technology, Espoo (Finland); Linna, V. [VTT Energy, Jyvaeskylae (Finland). Environmental Technology

    1997-10-01

    Determination of heavy and alkali metals and other condensing compounds (e.g. chlorides) in combustion chamber conditions is limited by the poor suitability of traditional methods for sampling at high temperatures. IFRF has developed a high-temperature sampling probe for sampling HCN and NH{sub 3}, which has been tested for sampling of NH{sub 3} by Chalmers University of Technology in Sweden. VTT Chemical Technology and Chalmers University of Technology have in their preliminary experiments determined contents of vaporous heavy metals in the combustion chamber of a 12 MW circulating fluidized-bed boiler using this probe. According to the results, the modified probe is suitable for heavy metal determination in combustion chamber. Based on this series of experiments, modification of the probe has been started on the own financing of VTT Chemical Technology and a field measurement was performed in November 1994 to test the present version of the probe. Based on the results of that measurement, the probe has been modified further on as a part of this LIEKKI 2 project. Similar kind of a principle has been applied in the probe which has been developed by VTT Energy during 1994. The probe is built for determination of gas composition of fluidized bed in full-scale boilers. The purpose of this project is to develop and test a sampling probe for fluidized bed combustion. The main advantage of the probe is that condensation losses in sampling due to high temperature gradients can be avoided. Thus, the probe is very suitable for sampling vaporous heavy and alkali metals and other condensing species as well as burning gases and alternatively also solids at high temperatures

  20. Carbohydrate-Assisted Combustion Synthesis To Realize High-Performance Oxide Transistors.

    Science.gov (United States)

    Wang, Binghao; Zeng, Li; Huang, Wei; Melkonyan, Ferdinand S; Sheets, William C; Chi, Lifeng; Bedzyk, Michael J; Marks, Tobin J; Facchetti, Antonio

    2016-06-08

    Owing to high carrier mobilities, good environmental/thermal stability, excellent optical transparency, and compatibility with solution processing, thin-film transistors (TFTs) based on amorphous metal oxide semiconductors (AOSs) are promising alternatives to those based on amorphous silicon (a-Si:H) and low-temperature (IGZO) TFTs suffer from low carrier mobilities and/or inferior bias-stress stability versus their sputtered counterparts. Here we report that three types of environmentally benign carbohydrates (sorbitol, sucrose, and glucose) serve as especially efficient fuels for IGZO film combustion synthesis to yield high-performance TFTs. The results indicate that these carbohydrates assist the combustion process by lowering the ignition threshold temperature and, for optimal stoichiometries, enhancing the reaction enthalpy. IGZO TFT mobilities are increased to >8 cm(2) V(-1) s(-1) on SiO2/Si gate dielectrics with significantly improved bias-stress stability. The first correlations between precursor combustion enthalpy and a-MO densification/charge transport are established.

  1. Uncertainties in hydrogen combustion

    International Nuclear Information System (INIS)

    Stamps, D.W.; Wong, C.C.; Nelson, L.S.

    1988-01-01

    Three important areas of hydrogen combustion with uncertainties are identified: high-temperature combustion, flame acceleration and deflagration-to-detonation transition, and aerosol resuspension during hydrogen combustion. The uncertainties associated with high-temperature combustion may affect at least three different accident scenarios: the in-cavity oxidation of combustible gases produced by core-concrete interactions, the direct containment heating hydrogen problem, and the possibility of local detonations. How these uncertainties may affect the sequence of various accident scenarios is discussed and recommendations are made to reduce these uncertainties. 40 references

  2. Final Report - Low Temperature Combustion Chemistry And Fuel Component Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Wooldridge, Margaret [Univ. of Michigan, Ann Arbor, MI (United States)

    2017-02-24

    Recent research into combustion chemistry has shown that reactions at “low temperatures” (700 – 1100 K) have a dramatic influence on ignition and combustion of fuels in virtually every practical combustion system. A powerful class of laboratory-scale experimental facilities that can focus on fuel chemistry in this temperature range is the rapid compression facility (RCF), which has proven to be a versatile tool to examine the details of fuel chemistry in this important regime. An RCF was used in this project to advance our understanding of low temperature chemistry of important fuel compounds. We show how factors including fuel molecular structure, the presence of unsaturated C=C bonds, and the presence of alkyl ester groups influence fuel auto-ignition and produce variable amounts of negative temperature coefficient behavior of fuel ignition. We report new discoveries of synergistic ignition interactions between alkane and alcohol fuels, with both experimental and kinetic modeling studies of these complex interactions. The results of this project quantify the effects of molecular structure on combustion chemistry including carbon bond saturation, through low temperature experimental studies of esters, alkanes, alkenes, and alcohols.

  3. Effect of air preheat temperature on the MILD combustion of syngas

    International Nuclear Information System (INIS)

    Huang, Mingming; Zhang, Zhedian; Shao, Weiwei; Xiong, Yan; Liu, Yan; Lei, Fulin; Xiao, Yunhan

    2014-01-01

    Highlights: • MILD combustion is achieved with reaction zone covering the entire combustion chamber. • Critical equivalence ratio for the occurrence of MILD combustion is identified. • MILD regime can be established for syngas fuel under air preheating conditions. - Abstract: The effect of air preheat temperature on MILD (Moderate or Intense Low-oxygen Dilution) combustion of coal-derived syngas was examined in parallel jet forward flow combustor. The results were presented on flow field using numerical simulations and on global flame signatures, OH ∗ radicals distribution and exhaust emissions using experiments. The discrete and high speed air/fuel injections into the combustor is necessary for the establishment of MILD conditions, because they cause strong gas recirculation and form large mixing region between the air and fuel jets. The critical equivalence ratio above which MILD combustion occurred was identified. The MILD regime was established for syngas fuel under air preheating conditions with lean operational limit and suppressed NO x and CO emissions. In the MILD combustion regime, the air preheating resulted in higher NO x but lower CO emissions, while the increase of equivalence ratio led to the increase of NO x and the decrease of CO emissions

  4. Study of the degradation of power generation combustion components at elevated temperature

    International Nuclear Information System (INIS)

    Castrejon, J.; Serna, S.; Wong-Moreno, A.; Fragiel, A.; Lopez-Lopez, D.

    2006-01-01

    Elevated temperature combustion of fuel oil that contains large amounts of vanadium, asphaltenes and mostly sulfur, presents a major challenge for materials selection and design of combustion components for the electric power generation. The combustion system, which consists of air nozzles and air swirlers, plays a key role in the performance of electric power plants. Air nozzles and air swirlers, which were operated for one year in a 350 MW boiler, were analyzed, presenting accelerated degradation. The particular features of corrosion behavior of these components made by stainless steels: 304, 446 and HH, are presented. The results obtained after optical, metallographic, and microprobe analysis revealed that the components flame contact at very high operating temperature promoted all materials degradation mechanisms. Under this scenario, it is very difficult to find a material resistant to such accelerated wastage conditions. So, the solution of the problem must be oriented to re-design and improve the efficiency of the flame contact with these components

  5. Study of the degradation of power generation combustion components at elevated temperature

    Energy Technology Data Exchange (ETDEWEB)

    Castrejon, J. [Centro de Investigacion en Ingenieria y Ciencias Aplicadas-UAEM, Av. Universidad 1001, C.P. 62209, Cuernavaca, Mor., Mexico (Mexico); Serna, S. [Centro de Investigacion en Ingenieria y Ciencias Aplicadas-UAEM, Av. Universidad 1001, C.P. 62209, Cuernavaca, Mor., Mexico (Mexico)]. E-mail: aserna@uaem.mx; Wong-Moreno, A. [Instituto Mexicano del Petroleo, Eje Central No. 152, Col. San. Bartolo Atepehuacan, C.P. 07730, Mexico, DF (Mexico); Fragiel, A. [Centro de Ciencias de la Materia Condensada-UNAM, Km 7 Carretera Tijuana-Ensenada, C.P. 22800, Ensenada, Baja California (Mexico); Lopez-Lopez, D. [Instituto Mexicano del Petroleo, Eje Central No. 152, Col. San. Bartolo Atepehuacan, C.P. 07730, Mexico, DF (Mexico)

    2006-01-15

    Elevated temperature combustion of fuel oil that contains large amounts of vanadium, asphaltenes and mostly sulfur, presents a major challenge for materials selection and design of combustion components for the electric power generation. The combustion system, which consists of air nozzles and air swirlers, plays a key role in the performance of electric power plants. Air nozzles and air swirlers, which were operated for one year in a 350 MW boiler, were analyzed, presenting accelerated degradation. The particular features of corrosion behavior of these components made by stainless steels: 304, 446 and HH, are presented. The results obtained after optical, metallographic, and microprobe analysis revealed that the components flame contact at very high operating temperature promoted all materials degradation mechanisms. Under this scenario, it is very difficult to find a material resistant to such accelerated wastage conditions. So, the solution of the problem must be oriented to re-design and improve the efficiency of the flame contact with these components.

  6. High temperature vapors science and technology

    CERN Document Server

    Hastie, John

    2012-01-01

    High Temperature Vapors: Science and Technology focuses on the relationship of the basic science of high-temperature vapors to some areas of discernible practical importance in modern science and technology. The major high-temperature problem areas selected for discussion include chemical vapor transport and deposition; the vapor phase aspects of corrosion, combustion, and energy systems; and extraterrestrial high-temperature species. This book is comprised of seven chapters and begins with an introduction to the nature of the high-temperature vapor state, the scope and literature of high-temp

  7. Aluminum metal combustion in water revealed by high-speed microphotography

    Science.gov (United States)

    Tao, William C.; Frank, Alan M.; Clements, Rochelle E.; Shepherd, Joseph E.

    1991-01-01

    In high explosives designed for air blast cratering fragmentation and underwater applications metallic additives chemically react with the oxidizer and are used to tailor the rate of energy delivery by the expansion medium. Although the specific mechanism for sustained metal combustion in the dense detonation medium remains in question it is generally accepted that the fragmentation of the molten particle and disruption of its oxide layer are a necessity. In this study we use high speed microphotography to examine the ignition and combustion of small 25-76 jim diameter and 23 mm long aluminum wires rapidly heated by a capacitor discharge system in water. Streak and framing photographs detailing the combustion phenomenon and the fragmentation of the molten aluminum were obtained over periods of 100 nsec - 100 j. tsec with a spatial resolution of 2 . im. The wire temperature was determined as a function of time by integrating the circuit equation together with the energy equation for an adiabatic wire and incorporating known aluminum electrical resistivity and temperature functions of energy density in the integration. In order for the aluminum to sustain a rapid chemical reaction with the water we found that the wire temperature has to be raised above the melting temperature of aluminum oxide. The triggering mechanism for this rapid reaction appears to be the fragmentation of the molten aluminum from the collapse of a vapor blanket about

  8. Self-propagating high temperature synthesis and magnetic

    Indian Academy of Sciences (India)

    Ni–Zn ferrite powders were synthesized by self-propagating high temperature synthesis (SHS) method. X-ray diffraction, TEM and vibrating sample magnetometry (VSM) were used to characterize the phase composition, microstructure and magnetic properties of the combustion products. The effect of the combustion ...

  9. Numerical investigation of biogas flameless combustion

    International Nuclear Information System (INIS)

    Hosseini, Seyed Ehsan; Bagheri, Ghobad; Wahid, Mazlan Abdul

    2014-01-01

    Highlights: • Fuel consumption decreases from 3.24 g/s in biogas conventional combustion to 1.07 g/s in flameless mode. • The differences between reactants and products temperature intensifies irreversibility in traditional combustion. • The temperature inside the chamber is uniform in biogas flameless mode and exergy loss decreases in this technique. • Low O 2 concentration in the flameless mode confirms a complete and quick combustion process in flameless regime. - Abstract: The purpose of this investigation is to analyze combustion characteristics of biogas flameless mode based on clean technology development strategies. A three dimensional (3D) computational fluid dynamic (CFD) study has been performed to illustrate various priorities of biogas flameless combustion compared to the conventional mode. The effects of preheated temperature and wall temperature, reaction zone and pollutant formation are observed and the impacts of combustion and turbulence models on numerical results are discussed. Although preheated conventional combustion could be effective in terms of fuel consumption reduction, NO x formation increases. It has been found that biogas is not eligible to be applied in furnace heat up due to its low calorific value (LCV) and it is necessary to utilize a high calorific value fuel to preheat the furnace. The required enthalpy for biogas auto-ignition temperature is supplied by enthalpy of preheated oxidizer. In biogas flameless combustion, the mean temperature of the furnace is lower than traditional combustion throughout the chamber. Compared to the biogas flameless combustion with uniform temperature, very high and fluctuated temperatures are recorded in conventional combustion. Since high entropy generation intensifies irreversibility, exergy loss is higher in biogas conventional combustion compared to the biogas flameless regime. Entropy generation minimization in flameless mode is attributed to the uniform temperature inside the chamber

  10. Experimental determination of temperatures of the inner wall of a boiler combustion chamber for the purpose of verification of a CFD model

    Directory of Open Access Journals (Sweden)

    Petr Trávníček

    2011-01-01

    Full Text Available The paper focuses on the non-destructive method of determination of temperatures in the boiler combustion chamber. This method proves to be significant mainly as regards CFD (Computational Fluid Dynamics simulations of combustion processes, in case of which it is subsequently advisable to verify the data calculated using CFD software application with the actually measured data. Verification of the method was based on usage of reference combustion equipment (130 kW which performs combustion of a mixture of waste sawdust and shavings originating in the course of production of wooden furniture. Measuring of temperatures inside the combustion chamber is – considering mainly the high temperature values – highly demanding and requires a special type of temperature sensors. Furthermore, as regards standard operation, it is not possible to install such sensors without performing structural alterations of the boiler. Therefore, for the purpose of determination of these temperatures a special experimental device was constructed while exploiting a thermal imaging system used for monitoring of the surface temperature of outer wall of the reference boiler. Temperatures on the wall of the boiler combustion chamber were determined on the basis of data measured using the experimental device as well as data from the thermal imaging system. These values might serve for verification of the respective CFD model of combustion equipment.

  11. HTP kinetics studies on isolated elementary combustion reactions over wide temperature ranges

    Energy Technology Data Exchange (ETDEWEB)

    Fontijn, A.; Adusei, G.Y.; Hranisavlevic, J.; Bajaj, P.N. [Rensselaer Polytechnic Institute, Troy, NY (United States)

    1993-12-01

    The goals of this project are to provide accurate data on the temperature dependence of the kinetics of elementary combustion reactions, (i) for use by combustion modelers, and (ii) to gain a better fundamental understanding of, and hence predictive ability for, the chemistry involved. Experimental measurements are made mainly by using the pseudo-static HTP (high-temperature photochemistry) technique. While continuing rate coefficient measurements, further aspects of kinetics research are being explored. Thus, starting from the data obtained, a method for predicting the temperature dependence of rate coefficients of oxygen-atom olefin experiment and confirms the underlying mechanistic assumptions. Mechanistic information of another sort, i.e. by product analysis, has recently become accessible with the inauguration of our heated flow tube mass spectrometer facility; early results are reported here. HTP experiments designed to lead to measurements of product channels by resonance fluorescence have started.

  12. Catalytic Palladium Film Deposited by Scalable Low-Temperature Aqueous Combustion.

    Science.gov (United States)

    Voskanyan, Albert A; Li, Chi-Ying Vanessa; Chan, Kwong-Yu

    2017-09-27

    This article describes a novel method for depositing a dense, high quality palladium thin film via a one-step aqueous combustion process which can be easily scaled up. Film deposition of Pd from aqueous solutions by conventional chemical or electrochemical methods is inhibited by hydrogen embrittlement, thus resulting in a brittle palladium film. The method outlined in this work allows a direct aqueous solution deposition of a mirror-bright, durable Pd film on substrates including glass and glassy carbon. This simple procedure has many advantages including a very high deposition rate (>10 cm 2 min -1 ) and a relatively low deposition temperature (250 °C), which makes it suitable for large-scale industrial applications. Although preparation of various high-quality oxide films has been successfully accomplished via solution combustion synthesis (SCS) before, this article presents the first report on direct SCS production of a metallic film. The mechanism of Pd film formation is discussed with the identification of a complex formed between palladium nitrate and glycine at low temperature. The catalytic properties and stability of films are successfully tested in alcohol electrooxidation and electrochemical oxygen reduction reaction. It was observed that combustion deposited Pd film on a glassy carbon electrode showed excellent catalytic activity in ethanol oxidation without using any binder or additive. We also report for the first time the concept of a reusable "catalytic flask" as illustrated by the Suzuki-Miyaura cross-coupling reaction. The Pd film uniformly covers the inner walls of the flask and eliminates the catalyst separation step. We believe the innovative concept of a reusable catalytic flask is very promising and has the required features to become a commercial product in the future.

  13. Low temperature catalytic combustion of natural gas - hydrogen - air mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Newson, E; Roth, F von; Hottinger, P; Truong, T B [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    The low temperature catalytic combustion of natural gas - air mixtures would allow the development of no-NO{sub x} burners for heating and power applications. Using commercially available catalysts, the room temperature ignition of methane-propane-air mixtures has been shown in laboratory reactors with combustion efficiencies over 95% and maximum temperatures less than 700{sup o}C. After a 500 hour stability test, severe deactivation of both methane and propane oxidation functions was observed. In cooperation with industrial partners, scaleup to 3 kW is being investigated together with startup dynamics and catalyst stability. (author) 3 figs., 3 refs.

  14. Low temperature oxidation and spontaneous combustion characteristics of upgraded low rank coal

    Energy Technology Data Exchange (ETDEWEB)

    Choi, H.K.; Kim, S.D.; Yoo, J.H.; Chun, D.H.; Rhim, Y.J.; Lee, S.H. [Korea Institute of Energy Research, Daejeon (Korea, Republic of)

    2013-07-01

    The low temperature oxidation and spontaneous combustion characteristics of dried coal produced from low rank coal using the upgraded brown coal (UBC) process were investigated. To this end, proximate properties, crossing-point temperature (CPT), and isothermal oxidation characteristics of the coal were analyzed. The isothermal oxidation characteristics were estimated by considering the formation rates of CO and CO{sub 2} at low temperatures. The upgraded low rank coal had higher heating values than the raw coal. It also had less susceptibility to low temperature oxidation and spontaneous combustion. This seemed to result from the coating of the asphalt on the surface of the coal, which suppressed the active functional groups from reacting with oxygen in the air. The increasing upgrading pressure negatively affected the low temperature oxidation and spontaneous combustion.

  15. Combustion studies of coal derived solid fuels by thermogravimetric analysis. III. Correlation between burnout temperature and carbon combustion efficiency

    Science.gov (United States)

    Rostam-Abadi, M.; DeBarr, J.A.; Chen, W.T.

    1990-01-01

    Burning profiles of 35-53 ??m size fractions of an Illinois coal and three partially devolatilized coals prepared from the original coal were obtained using a thermogravimetric analyzer. The burning profile burnout temperatures were higher for lower volatile fuels and correlated well with carbon combustion efficiencies of the fuels when burned in a laboratory-scale laminar flow reactor. Fuels with higher burnout temperatures had lower carbon combustion efficiencies under various time-temperature conditions in the laboratory-scale reactor. ?? 1990.

  16. Low temperature spray combustion of acetone–butanol–ethanol (ABE) and diesel blends

    International Nuclear Information System (INIS)

    Zhou, Nan; Huo, Ming; Wu, Han; Nithyanandan, Karthik; Lee, Chia-fon F.; Wang, Qingnian

    2014-01-01

    Highlights: • Combustion characteristics of acetone–butanol–ethanol (ABE) and diesel blends. • Feasibility of ABE to be blended directly with diesel in engine. • Conventional and low temperature combustion in constant volume chamber. • ABE–diesel blends can suppress the soot formation and achieve better combustion. - Abstract: The combustion characteristics of acetone–butanol–ethanol (ABE) and diesel blends were studied in a constant volume chamber under both conventional diesel combustion and low temperature combustion (LTC) conditions. In this work, 20 vol.% ABE without water (ABE20) was mixed with diesel and the vol.% of acetone, butanol and ethanol were kept at 30%, 60% and 10% respectively. The advantageous combustion characteristics of ABE-diesel include higher oxygen content which promotes soot oxidation compared to pure diesel; longer ignition delay and soot lift-off length allowing more air entrainment upstream of the spray jet thus providing better air–fuel mixing. Based on the analysis, it is found that at low ambient temperature of 800 K and ambient oxygen of 11%, ABE20 presented close-to-zero soot luminosity with better combustion efficiency compared to D100 suggesting that ABE, an intermediate product during ABE fermentation, is a very promising alternative fuel to be directly used in diesel engines especially under LTC conditions. Meanwhile, ABE–diesel blends contain multiple components possessing drastically different volatilities, which greatly favor the occurrence of micro-explosion. This feature may result in better atomization and air–fuel mixing enhancement, which all contribute to the better combustion performance of ABE20 at LTC conditions

  17. High-speed combustion diagnostics in a rapid compression machine by broadband supercontinuum absorption spectroscopy.

    Science.gov (United States)

    Werblinski, Thomas; Fendt, Peter; Zigan, Lars; Will, Stefan

    2017-05-20

    The first results under fired internal combustion engine conditions based on a supercontinuum absorption spectrometer are presented and discussed. Temperature, pressure, and water mole fraction are inferred simultaneously from broadband H 2 O absorbance spectra ranging from 1340 nm to 1440 nm. The auto-ignition combustion process is monitored for two premixed n-heptane/air mixtures with 10 kHz in a rapid compression machine. Pressure and temperature levels during combustion exceed 65 bar and 1900 K, respectively. To allow for combustion measurements, the robustness of the spectrometer against beam steering has been improved compared to its previous version. Additionally, the detectable wavelength range has been extended further into the infrared region to allow for the acquisition of distinct high-temperature water transitions located in the P-branch above 1410 nm. Based on a theoretical study, line-of-sight (LOS) effects introduced by temperature stratification on the broadband fitting algorithm in the complete range from 1340 nm to 1440 nm are discussed. In this context, the recorded spectra during combustion were evaluated only within a narrower spectral region exhibiting almost no interference from low-temperature molecules (here, P-branch from 1410 nm to 1440 nm). It is shown that this strategy mitigates almost all of the LOS effects introduced by cold molecules and the evaluation of the spectrum in the entirely recorded wavelength range at engine combustion conditions.

  18. Experimental investigations of the minimum ignition energy and the minimum ignition temperature of inert and combustible dust cloud mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Addai, Emmanuel Kwasi, E-mail: emmanueladdai41@yahoo.com; Gabel, Dieter; Krause, Ulrich

    2016-04-15

    Highlights: • Ignition sensitivity of a highly flammable dust decreases upon addition of inert dust. • Minimum ignition temperature of a highly flammable dust increases when inert concentration increase. • Minimum ignition energy of a highly flammable dust increases when inert concentration increase. • The permissible range for the inert mixture to minimize the ignition risk lies between 60 to 80%. - Abstract: The risks associated with dust explosions still exist in industries that either process or handle combustible dust. This explosion risk could be prevented or mitigated by applying the principle of inherent safety (moderation). This is achieved by adding an inert material to a highly combustible material in order to decrease the ignition sensitivity of the combustible dust. The presented paper deals with the experimental investigation of the influence of adding an inert dust on the minimum ignition energy and the minimum ignition temperature of the combustible/inert dust mixtures. The experimental investigation was done in two laboratory scale equipment: the Hartmann apparatus and the Godbert-Greenwald furnace for the minimum ignition energy and the minimum ignition temperature test respectively. This was achieved by mixing various amounts of three inert materials (magnesium oxide, ammonium sulphate and sand) and six combustible dusts (brown coal, lycopodium, toner, niacin, corn starch and high density polyethylene). Generally, increasing the inert materials concentration increases the minimum ignition energy as well as the minimum ignition temperatures until a threshold is reached where no ignition was obtained. The permissible range for the inert mixture to minimize the ignition risk lies between 60 to 80%.

  19. Experimental investigations of the minimum ignition energy and the minimum ignition temperature of inert and combustible dust cloud mixtures

    International Nuclear Information System (INIS)

    Addai, Emmanuel Kwasi; Gabel, Dieter; Krause, Ulrich

    2016-01-01

    Highlights: • Ignition sensitivity of a highly flammable dust decreases upon addition of inert dust. • Minimum ignition temperature of a highly flammable dust increases when inert concentration increase. • Minimum ignition energy of a highly flammable dust increases when inert concentration increase. • The permissible range for the inert mixture to minimize the ignition risk lies between 60 to 80%. - Abstract: The risks associated with dust explosions still exist in industries that either process or handle combustible dust. This explosion risk could be prevented or mitigated by applying the principle of inherent safety (moderation). This is achieved by adding an inert material to a highly combustible material in order to decrease the ignition sensitivity of the combustible dust. The presented paper deals with the experimental investigation of the influence of adding an inert dust on the minimum ignition energy and the minimum ignition temperature of the combustible/inert dust mixtures. The experimental investigation was done in two laboratory scale equipment: the Hartmann apparatus and the Godbert-Greenwald furnace for the minimum ignition energy and the minimum ignition temperature test respectively. This was achieved by mixing various amounts of three inert materials (magnesium oxide, ammonium sulphate and sand) and six combustible dusts (brown coal, lycopodium, toner, niacin, corn starch and high density polyethylene). Generally, increasing the inert materials concentration increases the minimum ignition energy as well as the minimum ignition temperatures until a threshold is reached where no ignition was obtained. The permissible range for the inert mixture to minimize the ignition risk lies between 60 to 80%.

  20. Combustion Stratification for Naphtha from CI Combustion to PPC

    KAUST Repository

    Vallinayagam, R.

    2017-03-28

    This study demonstrates the combustion stratification from conventional compression ignition (CI) combustion to partially premixed combustion (PPC). Experiments are performed in an optical CI engine at a speed of 1200 rpm for diesel and naphtha (RON = 46). The motored pressure at TDC is maintained at 35 bar and fuelMEP is kept constant at 5.1 bar to account for the difference in fuel properties between naphtha and diesel. Single injection strategy is employed and the fuel is injected at a pressure of 800 bar. Photron FASTCAM SA4 that captures in-cylinder combustion at the rate of 10000 frames per second is employed. The captured high speed video is processed to study the combustion homogeneity based on an algorithm reported in previous studies. Starting from late fuel injection timings, combustion stratification is investigated by advancing the fuel injection timings. For late start of injection (SOI), a direct link between SOI and combustion phasing is noticed. At early SOI, combustion phasing depends on both intake air temperature and SOI. In order to match the combustion phasing (CA50) of diesel, the intake air temperature is increased to 90°C for naphtha. The combustion stratification from CI to PPC is also investigated for various level of dilution by displacing oxygen with nitrogen in the intake. The start of combustion (SOC) was delayed with the increase in dilution and to compensate for this, the intake air temperature is increased. The mixture homogeneity is enhanced for higher dilution due to longer ignition delay. The results show that high speed image is initially blue and then turned yellow, indicating soot formation and oxidation. The luminosity of combustion images decreases with early SOI and increased dilution. The images are processed to generate the level of stratification based on the image intensity. The level of stratification is same for diesel and naphtha at various SOI. When O concentration in the intake is decreased to 17.7% and 14

  1. Impacts of Combustion Conditions and Photochemical Processing on the Light Absorption of Biomass Combustion Aerosol.

    Science.gov (United States)

    Martinsson, J; Eriksson, A C; Nielsen, I Elbæk; Malmborg, V Berg; Ahlberg, E; Andersen, C; Lindgren, R; Nyström, R; Nordin, E Z; Brune, W H; Svenningsson, B; Swietlicki, E; Boman, C; Pagels, J H

    2015-12-15

    The aim was to identify relationships between combustion conditions, particle characteristics, and optical properties of fresh and photochemically processed emissions from biomass combustion. The combustion conditions included nominal and high burn rate operation and individual combustion phases from a conventional wood stove. Low temperature pyrolysis upon fuel addition resulted in "tar-ball" type particles dominated by organic aerosol with an absorption Ångström exponent (AAE) of 2.5-2.7 and estimated Brown Carbon contributions of 50-70% to absorption at the climate relevant aethalometer-wavelength (520 nm). High temperature combustion during the intermediate (flaming) phase was dominated by soot agglomerates with AAE 1.0-1.2 and 85-100% of absorption at 520 nm attributed to Black Carbon. Intense photochemical processing of high burn rate flaming combustion emissions in an oxidation flow reactor led to strong formation of Secondary Organic Aerosol, with no or weak absorption. PM1 mass emission factors (mg/kg) of fresh emissions were about an order of magnitude higher for low temperature pyrolysis compared to high temperature combustion. However, emission factors describing the absorption cross section emitted per kg of fuel consumed (m(2)/kg) were of similar magnitude at 520 nm for the diverse combustion conditions investigated in this study. These results provide a link between biomass combustion conditions, emitted particle types, and their optical properties in fresh and processed plumes which can be of value for source apportionment and balanced mitigation of biomass combustion emissions from a climate and health perspective.

  2. Coherent anti-Stokes Raman spectroscopy temperature measurements in an internal combustion engine

    Science.gov (United States)

    Ball, Don; Driver, H. Steve T.; Hutcheon, Richard J.; Lockett, Russel J.; Robertson, Gerald N.

    1994-09-01

    Part of a project to investigate the physics and chemistry of alternative fuels in internal combustion engines is reported. Coherent anti-Stokes Raman spectroscopy (CARS) is used to probe the fuel-air mixture in the cylinder of a Richardo E6 variable compression ratio research engine. The laser system comprises a passively Q- switched single-longitudinal-mode frequency-doubled Nd:YAG laser and a broadband dye laser, both with a pulse length of 15 ns. A crankshaft encoder and electronic delay are used to fire the lasers at specified times during the engine cycle, and CARS spectra are acquired using a 0.75 m spectrometer and a 1024 optical multichannel analyzer. Because of the uncertainties associated with collisional narrowing in the theoretical modeling of high-pressure CARS spectra, temperatures are determined by comparing the engine spectra with a library of experimental CARS spectra from a calibrated high-pressure, high- temperature cell. This purely experimental technique is shown to be superior to two theoretical models under the considered conditions, giving temperatures during the compression stroke of the engine with standard deviations of typically 10 K and a possible systematic error of 15 K. Together with pressure records, this information is used as input data for chemical kinetic modeling of the combustion process.

  3. Effect of hydrothermal carbonization temperature on combustion behavior of hydrochar fuel from paper sludge

    International Nuclear Information System (INIS)

    Lin, Yousheng; Ma, Xiaoqian; Peng, Xiaowei; Hu, Shanchao; Yu, Zhaosheng; Fang, Shiwen

    2015-01-01

    Different temperatures in the range of 180–300 °C were applied to evaluate the effect of hydrothermal carbonization (HTC) temperature on hydrochar fuel characteristics and thermal behavior. The hydrochar produced at 210 °C had the maximum heating value (9763 kJ/kg) with the highest energetic recovery efficiency (90.12%). Therefore, 210 °C could be the optimum temperature for HTC of paper sludge. With raising the temperature, noticeable decreases in nitrogen and sulfur contents with lower oxygen/carbon and hydrogen/carbon atomic ratios were observed. In addition, the slagging and fouling problems were dramatically mitigated due to efficiently remove of major ash forming contents, especially for chlorine, sodium and potassium. Finally, thermal gravimetric analysis showed that HTC temperature had a significant impact on combustion behavior and activation energy of hydrochars. The first combustion decomposition peak of hydrochars treated at 180, 210 and 240 °C, were much higher that other samples, leading to a better combustion performance. - Highlights: • Higher heating value was increased by all hydrochars tests by up to 8%. • Hydrochars showed lower N, S contents and higher fuel ratio. • High removal rates of Cl, Na and K contents were achieved during HTC process. • The optimal temperature of HTC was approximately 210 °C to make clean solid fuel.

  4. Study of combustion properties of a solid propellant by highly time-resolved passive FTIR

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Liming; Zhang, Lin; Li, Yan; Liu, Bingping; Wang, Junde [Laboratory of Advanced Spectroscopy, Nanjing University of Science and Technology, Nanjing 210014 (China)

    2006-10-15

    With a time resolution of 0.125 s and a spectral resolution of 4 cm{sup -1}, emission spectra of the combustion process of a solid propellant were recorded by highly time-resolved passive FTIR. Some gaseous combustion products, such as H{sub 2}O, CO, CO{sub 2}, NO and HCl, were distinguished by the characteristic emission band of each molecule. The equation for flame temperature calculation based on the diatomic molecule emission fine structure theory was improved through judicious utilization of the spectral running number 'm' which makes the temperature measurement simpler and faster. Some combustion information of the solid propellant had been given including the characteristic spectral profile, the distribution of the absolute spectral energy, the distribution of the combustion flame temperature, and the concentration distributions of HCl and NO versus burning time. The results will provide theoretical and experimental bases for improving the formula and raising combustion efficiency of solid propellant, and developing the design of rocket motor, infrared guidance and antiguidance systems. (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  5. High temperature corrosion investigation in an oxyfuel combustion test rig

    DEFF Research Database (Denmark)

    Montgomery, Melanie; Bjurman, M.; Hjörnhede, A

    2014-01-01

    Oxyfuel firing and subsequent capture of CO2 is a way to reduce CO2 emissions from coal‐fired boilers. Literature is summarized highlighting results which may contribute to understanding of the corrosion processes in an oxyfuel boiler.Tests were conducted in a 500 kWth oxyfuel test facility...... constructed by Brandenburg Technical University to gain understanding into oxyfuel firing. Two air‐cooled corrosion probes were exposed in this oxyfuel combustion chamber where the fuel was lignite. Gas composition was measured at the location of testing. Various alloys from a 2½ Cr steel, austenitic steels...... to nickel alloys were exposed at set metal temperatures of 570 and 630 °C for 287 h. The specimens were investigated using light optical and scanning electron microscopy and X‐ray diffraction.The deposit on the probe contained predominantly CaSO4 and Fe2O3. Oxide thickness and depth of the precipitated...

  6. Combustion Temperature Effect of Diesel Engine Convert to Compressed Natural Gas Engine

    OpenAIRE

    Semin; Abdul R. Ismail; Rosli A. Bakar

    2009-01-01

    Effect of combustion temperature in the engine cylinder of diesel engine convert to Compressed Natural Gas (CNG) engine was presents in this study. The objective of this study was to investigate the engine cylinder combustion temperature effect of diesel engine convert to CNG engine on variation engine speed. Problem statement: The hypothesis was that the lower performance of CNG engine was caused by the effect of lower in engine cylinder temperature. Are the CNG engine is lower cylinder temp...

  7. Spectroscopy and Kinetics of Combustion Gases at High Temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Hanson, Ronald [Stanford Univ., CA (United States); Bowman, Craig [Stanford Univ., CA (United States)

    2016-02-01

    This report describes our research program that involves two complementary activities: (1) development and application of cw laser absorption methods for the measurement of concentration time-histories and fundamental spectroscopic parameters for species of interest in combustion; and (2) shock tube studies of reaction kinetics relevant to combustion. This first part of this report covers research during the final three-year support period, i.e. March 2012 – November 2015. The later part of this report summarizes research conducted over multiple-year periods between March 1988 to March 2012. Publications supported by DOE for each period are summarized at the end of that report section.

  8. Simulation of low temperature combustion mechanism of different combustion-supporting agents in close-coupled DOC and DPF system.

    Science.gov (United States)

    Jiao, Penghao; Li, Zhijun; Li, Qiang; Zhang, Wen; He, Li; Wu, Yue

    2018-07-01

    In the coupled Diesel Oxidation Catalyst (DOC) and Diesel Particular Filter (DPF) system, soot cannot be completely removed by only using the passive regeneration. And DPF active regeneration is necessary. The research method in this paper is to spray different kinds of combustion-supporting agents to the DOC in the front of the DPF. Therefore, the low temperature combustion mechanism of different kinds of combustion-supporting agents in DOC was studied, in order to grasp the law of combustion in DOC, and the influence of follow-up emission on DPF removal of soot. During the study, CH 4 H 2 mixture and diesel (n-heptane + toluene) were used as combustion-supporting agents respectively. The simplified mechanisms of two kinds of gas mixtures used as the combustion-supporting agents in DPF have been constructed and testified in the paper. In this paper, the combustion and emission conditions of the two combustion-supporting agents were analyzed so as to meet the practical requirements of different working conditions. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  9. Emission and combustion characteristics of multiple stage diesel combustion; Nidan nensho ni yoru diesel kikan no nensho to haishutsubutsu tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Hashizume, T; Miyamoto, T; Tsujimura, K [New A.C.E. Institute Co. Ltd., Tokyo (Japan); Kobayashi, S; Shimizu, K [Japan Automobile Research Institute, Tsukuba (Japan)

    1997-10-01

    A new concept of multiple stage diesel combustion was studied by means of engine test, combustion observation and numerical simulation, in order to reduce NOx emissions at high load conditions. With this concept, the premixed combustion occurs under the fuel lean conditions and the diffusion combustion occurs under the high temperature conditions. As seen in the result of combustion observation, a first stage combustion occurs with no luminous flame. A second stage combustion occurs with a luminous flame after very short ignition delay period. However the luminous flame is disappeared immediately. Because cylinder temperature is high, and hence soot oxidizes immediately. 5 refs., 11 figs., 1 tab.

  10. Numerical simulation of combustion and soot under partially premixed combustion of low-octane gasoline

    KAUST Repository

    An, Yanzhao

    2017-09-23

    In-cylinder combustion visualization and engine-out soot particle emissions were investigated in an optical diesel engine fueled with low octane gasoline. Single injection strategy with an early injection timing (−30 CAD aTDC) was employed to achieve partially premixed combustion (PPC) condition. A high-speed color camera was used to record the combustion images for 150 cycles. The regulated emission of carbon dioxide, carbon monoxide, nitrogen oxides and soot mass concentration were measured experimentally. Full cycle engine simulations were performed using CONVERGE™ and the simulation results matched with the experimental results. The in-cylinder soot particle evolution was performed by coupling a reduced toluene reference fuel mechanism including the PAHs formation/oxidation reactions with particulate size mimic model. The results showed that PPC presents typical stratified combustion characteristics, which is significantly different from the conventional diesel spray-driven combustion. The in-cylinder temperature and equivalence ratio overlaid with soot-NO formation regime revealed that PPC operating condition under study mostly avoided the main sooting conditions throughout the entire combustion. The evaluation of temperature distribution showed formaldehyde could be regarded as an indicator for low temperature reactions, while hydroxyl group represents the high temperature reactions. Soot evolution happened during the combustion process, hydroxyl radicals promoted the soot oxidation.

  11. Numerical simulation of combustion and soot under partially premixed combustion of low-octane gasoline

    KAUST Repository

    An, Yanzhao; Jaasim, Mohammed; Vallinayagam, R.; Vedharaj, S.; Im, Hong G.; Johansson, Bengt.

    2017-01-01

    In-cylinder combustion visualization and engine-out soot particle emissions were investigated in an optical diesel engine fueled with low octane gasoline. Single injection strategy with an early injection timing (−30 CAD aTDC) was employed to achieve partially premixed combustion (PPC) condition. A high-speed color camera was used to record the combustion images for 150 cycles. The regulated emission of carbon dioxide, carbon monoxide, nitrogen oxides and soot mass concentration were measured experimentally. Full cycle engine simulations were performed using CONVERGE™ and the simulation results matched with the experimental results. The in-cylinder soot particle evolution was performed by coupling a reduced toluene reference fuel mechanism including the PAHs formation/oxidation reactions with particulate size mimic model. The results showed that PPC presents typical stratified combustion characteristics, which is significantly different from the conventional diesel spray-driven combustion. The in-cylinder temperature and equivalence ratio overlaid with soot-NO formation regime revealed that PPC operating condition under study mostly avoided the main sooting conditions throughout the entire combustion. The evaluation of temperature distribution showed formaldehyde could be regarded as an indicator for low temperature reactions, while hydroxyl group represents the high temperature reactions. Soot evolution happened during the combustion process, hydroxyl radicals promoted the soot oxidation.

  12. Numerical investigation of spray combustion towards HITAC conditions

    NARCIS (Netherlands)

    Zhu, Shanglong

    2017-01-01

    The features of High Temperature Air Combustion (HiTAC), i.e. high-efficiency combustion processes creating a uniform temperature distribution with low NOX and CO emissions, lend itself ideally for the combustion of all sorts of "difficult” fuels, ranging from low-calorific gases such as

  13. Experimental investigations of the minimum ignition energy and the minimum ignition temperature of inert and combustible dust cloud mixtures.

    Science.gov (United States)

    Addai, Emmanuel Kwasi; Gabel, Dieter; Krause, Ulrich

    2016-04-15

    The risks associated with dust explosions still exist in industries that either process or handle combustible dust. This explosion risk could be prevented or mitigated by applying the principle of inherent safety (moderation). This is achieved by adding an inert material to a highly combustible material in order to decrease the ignition sensitivity of the combustible dust. The presented paper deals with the experimental investigation of the influence of adding an inert dust on the minimum ignition energy and the minimum ignition temperature of the combustible/inert dust mixtures. The experimental investigation was done in two laboratory scale equipment: the Hartmann apparatus and the Godbert-Greenwald furnace for the minimum ignition energy and the minimum ignition temperature test respectively. This was achieved by mixing various amounts of three inert materials (magnesium oxide, ammonium sulphate and sand) and six combustible dusts (brown coal, lycopodium, toner, niacin, corn starch and high density polyethylene). Generally, increasing the inert materials concentration increases the minimum ignition energy as well as the minimum ignition temperatures until a threshold is reached where no ignition was obtained. The permissible range for the inert mixture to minimize the ignition risk lies between 60 to 80%. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. An Assessment of Combustion Dynamics in a Low-Nox, Second-Generation Swirl-Venturi Lean Direct Injection Combustion Concept

    Science.gov (United States)

    Tacina, K. M.; Chang, C. T.; Lee, P.; Mongia, H.; Podboy, D. P.; Dam, B.

    2015-01-01

    Dynamic pressure measurements were taken during flame-tube emissions testing of three second-generation swirl-venturi lean direct injection (SV-LDI) combustor configurations. These measurements show that combustion dynamics were typically small. However, a small number of points showed high combustion dynamics, with peak-to-peak dynamic pressure fluctuations above 0.5 psi. High combustion dynamics occurred at low inlet temperatures in all three SV-LDI configurations, so combustion dynamics were explored further at low temperature conditions. A point with greater than 1.5 psi peak-to-peak dynamic pressure fluctuations was identified at an inlet temperature of 450!F, a pressure of 100 psia, an air pressure drop of 3%, and an overall equivalence ratio of 0.35. This is an off design condition: the temperature and pressure are typical of 7% power conditions, but the equivalence ratio is high. At this condition, the combustion dynamics depended strongly on the fuel staging. Combustion dynamics could be reduced significantly without changing the overall equivalence ratio by shifting the fuel distribution between stages. Shifting the fuel distribution also decreased NOx emissions.

  15. [Real time diagnostics of instantaneous temperature of combustion and explosion process by modern spectroscopy].

    Science.gov (United States)

    Zhou, Xue-tie; Wang, Jun-de; Li, Yan; Liu, Da-bing

    2003-04-01

    The combustion temperature is one of the important parameters to express flame combustion and explosion characteristics. It will effectively guide the design and manufacture of new model explosives, industrial explosive materials, and weapons. The recent developments and applications of real time diagnostics of instantaneous temperature of combustion and explosion processes by modern spectroscopic methods, such as atomic absorption-emission method, atomic emission two-line spectroscopy, atomic emission multiline spectroscopy, molecular rotation-vibration spectroscopy, coherent anti-stokes Raman scattering (CARS) and plane laser-induced fluorescence (PLIF), were reviewed in this paper. The maximum time resolution of atomic absorption-emission method is 25 microseconds. The time resolution of atomic emission two-line spectroscopy can reach 0.1 microsecond. These two methods can completely suit the need of real time and instantaneous temperature diagnostics of violent explosion and flame combustion. Other methods will also provide new effective research methods for the processes and characteristics of combustion, flame and explosion.

  16. Mechanically activated combustion synthesis of molybdenum borosilicides for ultrahigh-temperature structural applications

    Energy Technology Data Exchange (ETDEWEB)

    Esparza, Alan A.; Shafirovich, Evgeny, E-mail: eshafirovich2@utep.edu

    2016-06-15

    The thermal efficiency of gas-turbine power plants could be dramatically increased by the development of new structural materials based on molybdenum silicides and borosilicides, which can operate at temperatures higher than 1300 °C with no need for cooling. A major challenge, however, is to simultaneously achieve high oxidation resistance and acceptable mechanical properties at high temperatures. Materials based on Mo{sub 5}SiB{sub 2} (called T{sub 2}) phase are promising materials that offer favorable combinations of high temperature mechanical properties and oxidation resistance. In the present paper, T{sub 2} phase based materials have been obtained using mechanically activated self-propagating high-temperature synthesis (MASHS). Upon ignition, Mo/Si/B/Ti mixtures exhibited a self-sustained propagation of a spinning combustion wave, but the products were porous, contained undesired secondary phases, and had low oxidation resistance. The “chemical oven” technique has been successfully employed to fabricate denser and stronger Mo{sub 5}SiB{sub 2}–TiC, Mo{sub 5}SiB{sub 2}–TiB{sub 2}, and Mo–Mo{sub 5}SiB{sub 2}–Mo{sub 3}Si materials. Among them, Mo{sub 5}SiB{sub 2}–TiB{sub 2} material exhibits the best oxidation resistance at temperatures up to 1500 °C. - Highlights: • Mechanical activation has enabled combustion synthesis of Mo{sub 5}SiB{sub 2} based materials. • For the first time, the fabrication of Mo{sub 5}SiB{sub 2}–TiB{sub 2} material has been reported. • Among the obtained materials, Mo{sub 5}SiB{sub 2}–TiB{sub 2} exhibits the best oxidation resistance.

  17. Comprehensive study of biodiesel fuel for HSDI engines in conventional and low temperature combustion conditions

    Energy Technology Data Exchange (ETDEWEB)

    Tormos, Bernardo; Novella, Ricardo; Garcia, Antonio; Gargar, Kevin [CMT-Motores Termicos, Universidad Politecnica de Valencia, Valencia, ES, Campus de Vera, s/n, Edificio 6D. Camino de Vera s/n, 46022 Valencia (Spain)

    2010-02-15

    In this research, an experimental investigation has been performed to give insight into the potential of biodiesel as an alternative fuel for High Speed Direct Injection (HSDI) diesel engines. The scope of this work has been broadened by comparing the combustion characteristics of diesel and biodiesel fuels in a wide range of engine loads and EGR conditions, including the high EGR rates expected for future diesel engines operating in the low temperature combustion (LTC) regime. The experimental work has been carried out in a single-cylinder engine running alternatively with diesel and biodiesel fuels. Conventional diesel fuel and neat biodiesel have been compared in terms of their combustion performance through a new methodology designed for isolating the actual effects of each fuel on diesel combustion, aside from their intrinsic differences in chemical composition. The analysis of the results has been sequentially divided into two progressive and complementary steps. Initially, the overall combustion performance of each fuel has been critically evaluated based on a set of parameters used as tracers of the combustion quality, such as the combustion duration or the indicated efficiency. With the knowledge obtained from this previous overview, the analysis focuses on the detailed influence of biodiesel on the different diesel combustion stages known ignition delay, premixed combustion and mixing controlled combustion, considering also the impact on CO and UHC (unburn-hydrocarbons) pollutant emissions. The results of this research explain why the biodiesel fuel accelerates the diesel combustion process in all engine loads and EGR rates, even in those corresponding with LTC conditions, increasing its possibilities as alternative fuel for future DI diesel engines. (author)

  18. On the Experimental and Theoretical Investigations of Lean Partially Premixed Combustion, Burning Speed, Flame Instability and Plasma Formation of Alternative Fuels at High Temperatures and Pressures

    Science.gov (United States)

    Askari, Omid

    This dissertation investigates the combustion and injection fundamental characteristics of different alternative fuels both experimentally and theoretically. The subjects such as lean partially premixed combustion of methane/hydrogen/air/diluent, methane high pressure direct-injection, thermal plasma formation, thermodynamic properties of hydrocarbon/air mixtures at high temperatures, laminar flames and flame morphology of synthetic gas (syngas) and Gas-to-Liquid (GTL) fuels were extensively studied in this work. These subjects will be summarized in three following paragraphs. The fundamentals of spray and partially premixed combustion characteristics of directly injected methane in a constant volume combustion chamber have been experimentally studied. The injected fuel jet generates turbulence in the vessel and forms a turbulent heterogeneous fuel-air mixture in the vessel, similar to that in a Compressed Natural Gas (CNG) Direct-Injection (DI) engines. The effect of different characteristics parameters such as spark delay time, stratification ratio, turbulence intensity, fuel injection pressure, chamber pressure, chamber temperature, Exhaust Gas recirculation (EGR) addition, hydrogen addition and equivalence ratio on flame propagation and emission concentrations were analyzed. As a part of this work and for the purpose of control and calibration of high pressure injector, spray development and characteristics including spray tip penetration, spray cone angle and overall equivalence ratio were evaluated under a wide range of fuel injection pressures of 30 to 90 atm and different chamber pressures of 1 to 5 atm. Thermodynamic properties of hydrocarbon/air plasma mixtures at ultra-high temperatures must be precisely calculated due to important influence on the flame kernel formation and propagation in combusting flows and spark discharge applications. A new algorithm based on the statistical thermodynamics was developed to calculate the ultra-high temperature plasma

  19. Large-eddy simulation of ethanol spray combustion using a finite-rate combustion model

    Energy Technology Data Exchange (ETDEWEB)

    Li, K.; Zhou, L.X. [Tsinghua Univ., Beijing (China). Dept. of Engineering Mechanics; Chan, C.K. [Hong Kong Polytechnic Univ. (China). Dept. of Applied Mathematics

    2013-07-01

    Large-eddy simulation of spray combustion is under its rapid development, but the combustion models are less validated by detailed experimental data. In this paper, large-eddy simulation of ethanol-air spray combustion was made using an Eulerian-Lagrangian approach, a subgrid-scale kinetic energy stress model, and a finite-rate combustion model. The simulation results are validated in detail by experiments. The LES obtained statistically averaged temperature is in agreement with the experimental results in most regions. The instantaneous LES results show the coherent structures of the shear region near the high-temperature flame zone and the fuel vapor concentration map, indicating the droplets are concentrated in this shear region. The droplet sizes are found to be in the range of 20-100{mu}m. The instantaneous temperature map shows the close interaction between the coherent structures and the combustion reaction.

  20. Low Temperature Combustion in a Heavy Duty Diesel Engine

    Energy Technology Data Exchange (ETDEWEB)

    Ehleskog, Malin

    2012-07-01

    In recent years, there have been major efforts to reduce engine emissions and fuel consumption. The studies described in this thesis were conducted with the aim of identifying methods for reducing harmful engine-out emissions of soot and nitrogen oxides (NOx) under high load without increasing fuel consumption. The first part of the project focused on low temperature combustion using very high levels of EGR. It was found that very low soot and NOx emissions could be achieved at low loads. Unfortunately, these conditions resulted in high fuel consumption as well as high emissions of HC and CO. The increased emissions could be mitigated by optimising the timing of the SOI and increasing the injection pressure, but the high fuel consumption remained problematic. Intermediate levels of EGR can be used to increase the ignition delay and thereby achieve partially premixed combustion. When soot and NOx emissions are plotted against the amount of EGR, there is an intersection point at which the soot emissions are just beginning to increase but the recirculated exhaust gas has greatly reduced the NOx emissions. At this point, the HC and CO emissions and the fuel consumption remain acceptably low. If the onset of the increased soot emissions could be shifted to a higher EGR level or if the peak soot emissions could be reduced in magnitude, the tradeoff between soot and NOx emissions at intermediate EGR levels could be improved. By increasing the charge air pressure, the size of the soot bump is reduced and the point of intersection between the soot and NOx curves is shifted to a higher EGR percentage. The soot-NOx tradeoff can also be improved by increasing the injection pressure to reduce the soot peak while using EGR levels that are high enough to suppress NOx formation. To further investigate the potential of partially premixed combustion, the effects of varying the timing of late inlet valve closure were investigated. The results show that reducing the effective

  1. Development of High Efficiency Clean Combustion Engine Designs for Spark-Ignition and Compression-Ignition Internal Combustion Engines

    Energy Technology Data Exchange (ETDEWEB)

    Marriott, Craig; Gonzalez, Manual; Russell, Durrett

    2011-06-30

    such as internal dilution level and charge temperature. As a result, HCCI combustion has limited robustness when variables exceed the required narrow ranges determined in this program. HCCI combustion is also not available for the entire range of production engine speeds and loads, (i.e., the dynamic range is limited). Thus, regular SI combustion must be employed for a majority of the full dynamic range of the engine. This degrades the potential fuel economy impact of HCCI combustion. Currently-available combustion control actuators for the simple valve train system engine do not have the authority for continuous air - fuel or torque control for managing the combustion mode transitions between SI and HCCI and thus, require further refinement to meet customer refinement expectations. HCCI combustion control sensors require further development to enable robust long-term HCCI combustion control. Finally, the added technologies required to effectively manage HCCI combustion such as electric cam phasers, central direct fuel injection, cylinder pressure sensing, high-flow exhaust gas recirculation system, etc. add excessive on-engine cost and complexity that erodes the production-viability business

  2. Effects of stepwise gas combustion on NOx generation

    International Nuclear Information System (INIS)

    Woperane Seredi, A.; Szepesi, E.

    1999-01-01

    To decrease NO x emission from gas boilers, the combustion process of gas has been modified from continuous combustion to step-wise combustion. In this process the combustion temperature, the temperature peaks in the flame, the residence time of combustion products in the high-temperature zone and the oxygen partial pressure are changed advantageously. Experiments were performed using multistage burners, and the NO x emission was recorded. It was found that the air factor of the primary combustion space has a determining effect on the NO x reduction. (R.P.)

  3. Evaporation and Ignition Characteristics of Water Emulsified Diesel under Conventional and Low Temperature Combustion Conditions

    Directory of Open Access Journals (Sweden)

    Zhaowen Wang

    2017-07-01

    Full Text Available The combination of emulsified diesel and low temperature combustion (LTC technology has great potential in reducing engine emissions. A visualization study on the spray and combustion characteristics of water emulsified diesel was conducted experimentally in a constant volume chamber under conventional and LTC conditions. The effects of ambient temperature on the evaporation, ignition and combustion characteristics of water emulsified diesel were studied under cold, evaporating and combustion conditions. Experimental results showed that the ambient temperature had little effect on the spray structures, in terms of the liquid core length, the spray shape and the spray area. However, higher ambient temperature slightly reduced the Sauter Mean Diameter (SMD of the spray droplets. The auto-ignition delay time increased significantly with the decrease of the ambient temperature. The ignition process always occurred at the entrainment region near the front periphery of the liquid core. This entrainment region was evolved from the early injected fuel droplets which were heated and mixed by the continuous entrainment until the local temperature and equivalence ratio reached the ignition condition. The maximum value of integrated natural flame luminosity (INFL reduced by 60% when the ambient temperature dropped from 1000 to 800 K, indicating a significant decrease of the soot emissions could be achieved by LTC combustion mode than the conventional diesel engines.

  4. Numerical study of laminar nonpremixed methane flames in coflow jets: Autoignited lifted flames with tribrachial edges and MILD combustion at elevated temperatures

    KAUST Repository

    M. Al-Noman, Saeed

    2016-07-07

    Autoignition characteristics of laminar nonpremixed methane jet flames in high-temperature coflow air are studied numerically. Several flame configurations are investigated by varying the initial temperature and fuel mole fraction. At a relatively low initial temperature, a non-autoignited nozzle-attached flame is simulated at relatively low jet velocity. When the initial temperature is higher than that required for autoignition, two regimes are investigated: an autoignited lifted flame with tribrachial edge structure and an autoignited lifted flame with Mild combustion. The autoignited lifted flame with tribrachial edge exhibited three branches: lean and rich premixed flame wings and a trailing diffusion flame. Characteristics of kinetic structure for autoignited lifted flames are discussed based on the kinetic structures of homogeneous autoignition and flame propagation of stoichiometric mixture. Results showed that a transition from autoignition to flame propagation modes occurs for reasonably stoichiometric mixtures. The autoignited lifted flame with Mild combustion occurs when methane fuel is highly diluted with nitrogen. The kinetic structure analysis shows that the characteristics of Mild combustion can be treated as an autoignited lean premixed lifted flame. Transition behavior from Mild combustion to nozzle-attached flame was investigated by increasing the fuel mole fraction. As the maximum flame temperature increases with decreasing liftoff height, the kinetic structure showed a transition behavior from autoignition to flame propagation of a lean premixed flame. © 2016 The Combustion Institute

  5. Spatially Resolved Temperature and Water Vapor Concentration Distributions in Supersonic Combustion Facilities by TDLAT

    Science.gov (United States)

    Busa, K. M.; McDaniel J. C.; Diskin, G. S.; DePiro, M. J.; Capriotti, D. P.; Gaffney, R. L.

    2012-01-01

    Detailed knowledge of the internal structure of high-enthalpy flows can provide valuable insight to the performance of scramjet combustors. Tunable Diode Laser Absorption Spectroscopy (TDLAS) is often employed to measure temperature and species concentration. However, TDLAS is a path-integrated line-of-sight (LOS) measurement, and thus does not produce spatially resolved distributions. Tunable Diode Laser Absorption Tomography (TDLAT) is a non-intrusive measurement technique for determining two-dimensional spatially resolved distributions of temperature and species concentration in high enthalpy flows. TDLAT combines TDLAS with tomographic image reconstruction. More than 2500 separate line-of-sight TDLAS measurements are analyzed in order to produce highly resolved temperature and species concentration distributions. Measurements have been collected at the University of Virginia's Supersonic Combustion Facility (UVaSCF) as well as at the NASA Langley Direct-Connect Supersonic Combustion Test Facility (DCSCTF). Due to the UVaSCF s unique electrical heating and ability for vitiate addition, measurements collected at the UVaSCF are presented as a calibration of the technique. Measurements collected at the DCSCTF required significant modifications to system hardware and software designs due to its larger measurement area and shorter test duration. Tomographic temperature and water vapor concentration distributions are presented from experimentation on the UVaSCF operating at a high temperature non-reacting case for water vitiation level of 12%. Initial LOS measurements from the NASA Langley DCSCTF operating at an equivalence ratio of 0.5 are also presented. Results show the capability of TDLAT to adapt to several experimental setups and test parameters.

  6. Investigation on the Potential of High Efficiency for Internal Combustion Engines

    Directory of Open Access Journals (Sweden)

    Haifeng Liu

    2018-02-01

    Full Text Available The current brake thermal efficiency of advanced internal combustion engines is limited to 50%, and how to further improve the efficiency is a challenge. In this study, a theoretical investigation on engine thermal efficiency was carried out using one-dimension simulations based on the first law of thermodynamics. The energy balance was evaluated by varying parameters such as compression ratio (CR; heat transfer coefficient; intake charge properties; and combustion phasing etc.—their influences on the efficiency limits were demonstrated. Results show that for a given heat transfer coefficient, an optimal CR exists to obtain the peak efficiency. The optimal CR decreases with the increase of heat transfer coefficient, and high CR with a low heat-transfer coefficient can achieve a significantly high efficiency. A higher density and specific heat ratio of intake charge, as well as a shorter combustion duration with a proper CA50 (crank angle at 50% of total heat release, can increase efficiency significantly. Methanol shows an excellent ability in decreasing the peak in-cylinder temperature; and the peak indicated efficiency is relatively higher than other tested fuels. The displacement has few effects on the indicated efficiency, while it shows a strong effect on the energy distribution between heat transfer and exhaust energy. All these strategies with high CR result in high in-cylinder pressure and temperature; which means a breakthrough of material is needed in the future.

  7. Development of a 2D temperature measurement technique for combustion diagnostics using 2-line atomic fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Engstroem, Johan

    2001-01-01

    The present thesis is concerned with the development and application of a novel planar laser-induced fluorescence (PLIF) technique for temperature measurements in a variety of combusting flows. Accurate measurement of temperature is an essential task in combustion diagnostics, since temperature is one of the most fundamental quantities for the characterization of combustion processes. The technique is based on two-line atomic fluorescence (TLAF) from small quantities of atomic indium (In) seeded into the fuel. It has been developed from small-scale experiments in laboratory flames to the point where practical combustion systems can be studied. The technique is conceptually simple and reveals temperature information in the post-flame regions. The viability of the technique has been tested in three extreme measurement situations: in spark ignition engine combustion, in ultra-lean combustion situations such as lean burning aero-engine concepts and, finally, in fuel-rich combustion. TLAF was successfully applied in an optical Sl engine using isooctane as fuel. The wide temperature sensitivity, 700 - 3000 K, of the technique using indium atoms allowed measurements over the entire combustion cycle in the engine to be performed. In applications in lean combustion a potential problem caused by the strong oxidation processes of indium atoms was encountered. This limits measurement times due to deposits of absorbing indium oxide on measurement windows. The seeding requirement is a disadvantage of the technique and can be a limitation in some applications. The results from experiments performed in sooting flames are very promising for thermometry measurements in such environments. Absorption by hydrocarbons and other native species was found to be negligible. Since low laser energies and low seeding concentrations could be used, the technique did not, unlike most other incoherent optical thermometry techniques, suffer interferences from LII of soot particles or LIF from PAH

  8. Low temperature catalytic combustion of propane over Pt-based catalyst with inverse opal microstructure in microchannel reactor

    NARCIS (Netherlands)

    Guan, G.; Zapf, R.; Kolb, G.A.; Men, Y.; Hessel, V.; Löwe, H.; Ye, J.; Zentel, R.

    2007-01-01

    novel Pt-based catalyst with highly regular, periodic inverse opal microstructure was fabricated in a microchannel reactor, and catalytic testing revealed excellent conversion and stable activity for propane combustion at low temperatures

  9. Kinetics of the high-temperature combustion reactions of dibutylether using composite computational methods

    KAUST Repository

    Rachidi, Mariam El

    2015-01-01

    This paper investigates the high-temperature combustion kinetics of n-dibutyl ether (n-DBE), including unimolecular decomposition, H-abstraction by H, H-migration, and C{single bond}C/C{single bond}O β-scission reactions of the DBE radicals. The energetics of H-abstraction by OH radicals is also studied. All rates are determined computationally using the CBS-QB3 and G4 composite methods in conjunction with conventional transition state theory. The B3LYP/6-311++G(2df,2pd) method is used to optimize the geometries and calculate the frequencies of all reactive species and transition states for use in ChemRate. Some of the rates calculated in this study vary markedly from those obtained for similar reactions of alcohols or alkanes, particularly those pertaining to unimolecular decomposition and β-scission at the α-β C{single bond}C bond. These variations show that analogies to alkanes and alcohols are, in some cases, inappropriate means of estimating the reaction rates of ethers. This emphasizes the need to establish valid rates through computation or experimentation. Such studies are especially important given that ethers exhibit promising biofuel and fuel additive characteristics. © 2014.

  10. High temperature metallic recuperator

    Science.gov (United States)

    Ward, M. E.; Solmon, N. G.; Smeltzer, C. E.

    1981-06-01

    An industrial 4.5 MM Btu/hr axial counterflow recuperator, fabricated to deliver 1600 F combustion air, was designed to handle rapid cyclic loading, a long life, acceptable costs, and a low maintenance requirement. A cost benefit anlysis of a high temperature waste heat recovery system utilizing the recurperator and components capable of 1600 F combustion air preheat shows that this system would have a payback period of less than two years. Fifteen companies and industrial associations were interviewed and expressed great interest in recuperation in large energy consuming industries. Determination of long term environmental effects on candidate recuperator tubing alloys was completed. Alloys found to be acceptable in the 2200 F flue gas environment of a steel billet reheat furnace, were identified.

  11. Effects of ambient oxygen concentration on soot temperature and concentration for biodiesel and diesel spray combustion

    KAUST Repository

    Zhang, Ji; Jing, Wei; Roberts, William L.; Fang, Tiegang

    2015-01-01

    during biodiesel and diesel spray combustion. The experiment was implemented in a constant volume chamber system, where the ambient oxygen concentration varied from 21 to 10% and the ambient temperature was kept to 1,000 K. A high speed two-color

  12. Optical Pressure-Temperature Sensor for a Combustion Chamber

    Science.gov (United States)

    Wiley, John; Korman, Valentin; Gregory, Don

    2008-01-01

    A compact sensor for measuring temperature and pressure in a combusti on chamber has been proposed. The proposed sensor would include two optically birefringent, transmissive crystalline wedges: one of sapph ire (Al2O3) and one of magnesium oxide (MgO), the optical properties of both of which vary with temperature and pressure. The wedges wou ld be separated by a vapor-deposited thin-film transducer, which wou ld be primarily temperaturesensitive (in contradistinction to pressur e- sensitive) when attached to a crystalline substrate. The sensor w ould be housed in a rugged probe to survive the extreme temperatures and pressures in a combustion chamber.

  13. High Frequency Combustion Instabilities of LOx/CH4 Spray Flames in Rocket Engine Combustion Chambers

    NARCIS (Netherlands)

    Sliphorst, M.

    2011-01-01

    Ever since the early stages of space transportation in the 1940’s, and the related liquid propellant rocket engine development, combustion instability has been a major issue. High frequency combustion instability (HFCI) is the interaction between combustion and the acoustic field in the combustion

  14. Combustion

    CERN Document Server

    Glassman, Irvin

    1987-01-01

    Combustion, Second Edition focuses on the underlying principles of combustion and covers topics ranging from chemical thermodynamics and flame temperatures to chemical kinetics, detonation, ignition, and oxidation characteristics of fuels. Diffusion flames, flame phenomena in premixed combustible gases, and combustion of nonvolatile fuels are also discussed. This book consists of nine chapters and begins by introducing the reader to heats of reaction and formation, free energy and the equilibrium constants, and flame temperature calculations. The next chapter explores the rates of reactio

  15. Fuels and Combustion

    KAUST Repository

    Johansson, Bengt

    2016-08-17

    This chapter discusses the combustion processes and the link to the fuel properties that are suitable for them. It describes the basic three concepts, including spark ignition (SI) and compression ignition (CI), and homogeneous charge compression ignition (HCCI). The fuel used in a CI engine is vastly different from that in an SI engine. In an SI engine, the fuel should sustain high pressure and temperature without autoignition. Apart from the dominating SI and CI engines, it is also possible to operate with a type of combustion: autoignition. With HCCI, the fuel and air are fully premixed before combustion as in the SI engine, but combustion is started by the increased pressure and temperature during the compression stroke. Apart from the three combustion processes, there are also a few combined or intermediate concepts, such as Spark-Assisted Compression Ignition (SACI). Those concepts are discussed in terms of the requirements of fuel properties.

  16. Fuels and Combustion

    KAUST Repository

    Johansson, Bengt

    2016-01-01

    This chapter discusses the combustion processes and the link to the fuel properties that are suitable for them. It describes the basic three concepts, including spark ignition (SI) and compression ignition (CI), and homogeneous charge compression ignition (HCCI). The fuel used in a CI engine is vastly different from that in an SI engine. In an SI engine, the fuel should sustain high pressure and temperature without autoignition. Apart from the dominating SI and CI engines, it is also possible to operate with a type of combustion: autoignition. With HCCI, the fuel and air are fully premixed before combustion as in the SI engine, but combustion is started by the increased pressure and temperature during the compression stroke. Apart from the three combustion processes, there are also a few combined or intermediate concepts, such as Spark-Assisted Compression Ignition (SACI). Those concepts are discussed in terms of the requirements of fuel properties.

  17. New class of combustion processes

    International Nuclear Information System (INIS)

    Merzhanov, A.G.; Borovinskaya, I.P.

    1975-01-01

    A short review is given of the results of work carried out since 1967 on studying the combustion processes caused by the interaction of chemical elements in the condensed phase and leading to the formation of refractory compounds. New phenomena and processes are described which are revealed when investigating the combustion of the systems of this class, viz solid-phase combustion, fast combustion in the condensed phase, filtering combustion, combustion in liquid nitrogen, spinning combustion, self-oscillating combustion, and repeated combustion. A new direction in employment of combustion processes is discussed, viz. a self-propagating high-temperature synthesis of refractory nitrides, carbides, borides, silicides and other compounds

  18. MSW oxy-enriched incineration technology applied in China: combustion temperature, flue gas loss and economic considerations.

    Science.gov (United States)

    Fu, Zhe; Zhang, Shihong; Li, Xiangpeng; Shao, Jingai; Wang, Ke; Chen, Hanping

    2015-04-01

    To investigate the application prospect of MSW oxy-enriched incineration technology in China, the technical and economical analyses of a municipal solid waste (MSW) grate furnace with oxy-fuel incineration technology in comparison to co-incineration with coal are performed. The rated capacity of the grate furnace is 350 tonnes MSW per day. When raw MSW is burned, the amount of pure oxygen injected should be about 14.5 wt.% under 25% O2 oxy-fuel combustion conditions with the mode of oxygen supply determined by the actual situation. According to the isothermal combustion temperature (Ta), the combustion effect of 25% O2 oxy-enriched incineration (α = 1.43) is identical with that of MSW co-incineration with 20% mass ratio of coal (α = 1.91). However, the former is better than the latter in terms of plant cost, flue gas loss, and environmental impact. Despite the lower costs of MSW co-incineration with mass ratio of 5% and 10% coal (α = 1.91), 25% O2 oxy-enriched incineration (α = 1.43) is far more advantageous in combustion and pollutant control. Conventional combustion flue gas loss (q2) for co-incineration with 0% coal, 20% coal, 10% coal, 5% coal are around 17%, 13%, 14% and 15%, respectively, while that under the condition of 25% O2 oxy-enriched combustion is approximately 12% (α = 1.43). Clearly, q2 of oxy-enriched incineration is less than other methods under the same combustion conditions. High moisture content presents challenges for MSW incineration, therefore it is necessary to dry MSW prior to incineration, and making oxy-enriched incineration technology achieves higher combustion temperature and lower flue gas loss. In conclusion, based on technical and economical analysis, MSW oxy-enriched incineration retains obvious advantages and demonstrates great future prospects for MSW incineration in China. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Formation of brominated pollutants during the pyrolysis and combustion of tetrabromobisphenol A at different temperatures

    International Nuclear Information System (INIS)

    Ortuño, Nuria; Moltó, Julia; Conesa, Juan A.; Font, Rafael

    2014-01-01

    Tetrabromobisphenol A (TBBPA) is the most widely used brominated flame retardant worldwide. A detailed examination of the degradation products emitted during thermal decomposition of TBBPA is presented in the study. Runs were performed in a laboratory furnace at different temperatures (650 and 800 °C) and in different atmospheres (nitrogen and air). More than one hundred semivolatile compounds have been identified by GC/MS, with special interest in brominated ones. Presence of HBr and brominated light hydrocarbons increased with temperature and in the presence of oxygen. Maximum formation of PAHs is observed at pyrolytic condition at the higher temperature. High levels of 2,4-, 2,6- and 2,4,6- bromophenols were found. The levels of polybrominated dibenzo-p-dioxins and furans have been detected in the ppm range. The most abundant isomers are 2,4,6,8-TeBDF in pyrolysis and 1,2,3,7,8-PeBDF in combustion. These results should be considered in the assessment of thermal treatment of materials containing brominated flame retardants. - Highlights: • Decomposition of a brominated flame retardant is performed in a laboratory furnace. • Both pyrolysis and combustion at two different temperatures are studied. • Brominated organic compounds such as Br-dioxins and furans are analysed. • Main product of decomposition is HBr, accounting for ca. 50%. • Very high and dangerous levels of PBDD/Fs and precursors (bromophenols) are detected. - TBBPA mainly decomposes to give HBr and brominated hydrocarbons at high temperature, but high levels of bromophenols and polybrominated dibenzo-p-dioxins and furans are also produced

  20. Shale oil combustion

    International Nuclear Information System (INIS)

    Al-dabbas, M.A.

    1992-05-01

    A 'coutant' carbon steel combustion chamber cooled by water jacket was conslructed to burn diesel fuel and mixlure of shale oil and diesel fuels. During experimental work nir fuel ratio was determined, temperaturces were measured using Chromel/ Almel thermocouple, finally the gasous combustion product analysis was carricd out using gas chromatograph technique. The constructed combustion chamber was operating salisfactory for several hours of continous work. According to the measurements it was found that: the flame temperature of a mixture of diesel and shale oil fuels was greater than the flame temperature of diesel fuel. and the sulfer emissious of a mixture of diesel and shale oil fuels was higher than that of diesel fuel. Calculation indicated that the dry gas energy loss was very high and the incomplete combustion energy loss very small. (author). 23 refs., 35 figs

  1. Shale oil combustion

    Energy Technology Data Exchange (ETDEWEB)

    Al-dabbas, M A

    1992-05-01

    A `coutant` carbon steel combustion chamber cooled by water jacket was conslructed to burn diesel fuel and mixlure of shale oil and diesel fuels. During experimental work nir fuel ratio was determined, temperaturces were measured using Chromel/ Almel thermocouple, finally the gasous combustion product analysis was carricd out using gas chromatograph technique. The constructed combustion chamber was operating salisfactory for several hours of continous work. According to the measurements it was found that: the flame temperature of a mixture of diesel and shale oil fuels was greater than the flame temperature of diesel fuel. and the sulfer emissious of a mixture of diesel and shale oil fuels was higher than that of diesel fuel. Calculation indicated that the dry gas energy loss was very high and the incomplete combustion energy loss very small. (author). 23 refs., 35 figs.

  2. Investigation of Bio-Diesel Fueled Engines under Low-Temperature Combustion Strategies

    Energy Technology Data Exchange (ETDEWEB)

    Chia-fon F. Lee; Alan C. Hansen

    2010-09-30

    In accordance with meeting DOE technical targets this research was aimed at developing and optimizing new fuel injection technologies and strategies for the combustion of clean burning renewable fuels in diesel engines. In addition a simultaneous minimum 20% improvement in fuel economy was targeted with the aid of this novel advanced combustion system. Biodiesel and other renewable fuels have unique properties that can be leveraged to reduce emissions and increase engine efficiency. This research is an investigation into the combustion characteristics of biodiesel and its impacts on the performance of a Low Temperature Combustion (LTC) engine, which is a novel engine configuration that incorporates technologies and strategies for simultaneously reducing NOx and particulate emissions while increasing engine efficiency. Generating fundamental knowledge about the properties of biodiesel and blends with petroleum-derived diesel and their impact on in-cylinder fuel atomization and combustion processes was an important initial step to being able to optimize fuel injection strategies as well as introduce new technologies. With the benefit of this knowledge experiments were performed on both optical and metal LTC engines in which combustion and emissions could be observed and measured under realistic conditions. With the aid these experiments and detailed combustion models strategies were identified and applied in order to improve fuel economy and simultaneously reduce emissions.

  3. Low temperature combustion of organic coal-water fuel droplets containing petrochemicals while soaring in a combustion chamber model

    Directory of Open Access Journals (Sweden)

    Valiullin Timur R.

    2017-01-01

    Full Text Available The paper examines the integral characteristics (minimum temperature, ignition delay times of stable combustion initiation of organic coal-water fuel droplets (initial radius is 0.3-1.5 mm in the oxidizer flow (the temperature and velocity varied in ranges 500-900 K, 0.5-3 m/s. The main components of organic coal-water fuel were: brown coal particles, filter-cakes obtained in coal processing, waste engine, and turbine oils. The different modes of soaring and ignition of organic coal-water fuel have been established. The conditions have been set under which it is possible to implement the sustainable soaring and ignition of organic coal-water fuel droplets. We have compared the ignition characteristics with those defined in the traditional approach (based on placing the droplets on a low-inertia thermocouple junction into the combustion chamber. The paper shows the scale of the influence of heat sink over the thermocouple junction on ignition inertia. An original technique for releasing organic coal-water fuel droplets to the combustion chamber was proposed and tested. The limitations of this technique and the prospects of experimental results for the optimization of energy equipment operation were also formulated.

  4. Impact of higher n-butanol addition on combustion and performance of GDI engine in stoichiometric combustion

    International Nuclear Information System (INIS)

    Chen, Zheng; Yang, Feng; Xue, Shuo; Wu, Zhenkuo; Liu, Jingping

    2015-01-01

    Highlights: • Effects of 0–50% n-butanol addition on GDI engine are experimentally studied. • Higher n-butanol fractions increase combustion pressure and fasten burning rate. • Higher n-butanol fractions increase BSFC but improve BTE. • Higher n-butanol fractions enhance combustion stability but increase knock intensity. • Higher n-butanol fractions reduce exhaust temperature and NOx emissions. - Abstract: An experimental study was carried out on a turbocharged gasoline direct injection (GDI) engine fueled by n-butanol/gasoline blends. Effects of n-butanol percents (15%, 30%, and 50%) on combustion and performance of the engine operating on stoichiometric combustion condition were discussed and also compared with pure gasoline in this paper. The results indicate that n-butanol/gasoline blends increase combustion pressure and pressure rise rate, fasten burning rate, and shorten ignition delay and combustion duration, as compared to pure gasoline. Moreover, these trends are impacted more evidently with increased n-butanol fraction in the blends. In addition, higher n-butanol percent of gasoline blends increase combustion temperature but decrease the temperature in the later stage of expansion stroke, which contributes to the control of exhaust temperature at high-load. With regards to engine performance, higher n-butanol percent in the blends results in increased brake specific fuel consumption (BSFC) and higher brake thermal efficiency (BTE). However, higher n-butanol addition helps to improve combustion stability but shows slightly higher knock possibility in high-load. In that case, the knock trend could be weakened by retarding ignition timing. Moreover, higher n-butanol addition significantly decreases NOx emissions, but it increases CO emissions obviously.

  5. Fuel Vaporization and Its Effect on Combustion in a High-Speed Compression-Ignition Engine

    Science.gov (United States)

    Rothrock, A M; Waldron, C D

    1933-01-01

    The tests discussed in this report were conducted to determine whether or not there is appreciable vaporization of the fuel injected into a high-speed compression-ignition engine during the time available for injection and combustion. The effects of injection advance angle and fuel boiling temperature were investigated. The results show that an appreciable amount of the fuel is vaporized during injection even though the temperature and pressure conditions in the engine are not sufficient to cause ignition either during or after injection, and that when the conditions are such as to cause ignition the vaporization process affects the combustion. The results are compared with those of several other investigators in the same field.

  6. Internal and surface phenomena in metal combustion

    Science.gov (United States)

    Dreizin, Edward L.; Molodetsky, Irina E.; Law, Chung K.

    1995-01-01

    Combustion of metals has been widely studied in the past, primarily because of their high oxidation enthalpies. A general understanding of metal combustion has been developed based on the recognition of the existence of both vapor-phase and surface reactions and involvement of the reaction products in the ensuing heterogeneous combustion. However, distinct features often observed in metal particle combustion, such as brightness oscillations and jumps (spearpoints), disruptive burning, and non-symmetric flames are not currently understood. Recent metal combustion experiments using uniform high-temperature metal droplets produced by a novel micro-arc technique have indicated that oxygen dissolves in the interior of burning particles of certain metals and that the subsequent transformations of the metal-oxygen solutions into stoichiometric oxides are accompanied with sufficient heat release to cause observed brightness and temperature jumps. Similar oxygen dissolution has been observed in recent experiments on bulk iron combustion but has not been associated with such dramatic effects. This research addresses heterogeneous metal droplet combustion, specifically focusing on oxygen penetration into the burning metal droplets, and its influence on the metal combustion rate, temperature history, and disruptive burning. A unique feature of the experimental approach is the combination of the microgravity environment with a novel micro-arc Generator of Monodispersed Metal Droplets (GEMMED), ensuring repeatable formation and ignition of uniform metal droplets with controllable initial temperature and velocity. The droplet initial temperatures can be adjusted within a wide range from just above the metal melting point, which provides means to ignite droplets instantly upon entering an oxygen containing environment. Initial droplet velocity will be set equal to zero allowing one to organize metal combustion microgravity experiments in a fashion similar to usual microgravity

  7. A high-pressure plug flow reactor for combustion chemistry investigations

    Science.gov (United States)

    Lu, Zhewen; Cochet, Julien; Leplat, Nicolas; Yang, Yi; Brear, Michael J.

    2017-10-01

    A plug flow reactor (PFR) is built for investigating the oxidation chemistry of fuels at up to 50 bar and 1000 K. These conditions include those corresponding to the low temperature combustion (i.e. the autoignition) that commonly occurs in internal combustion engines. Turbulent flow that approximates ideal, plug flow conditions is established in a quartz tube reactor. The reacting mixture is highly diluted by excess air to reduce the reaction rates for kinetic investigations. A novel mixer design is used to achieve fast mixing of the preheated air and fuel vapour at the reactor entrance, reducing the issue of reaction initialization in kinetic modelling. A water-cooled probe moves along the reactor extracting gases for further analysis. Measurement of the sampled gas temperature uses an extended form of a three-thermocouple method that corrects for radiative heat losses from the thermocouples to the enclosed PFR environment. Investigation of the PFR’s operation is first conducted using non-reacting flows, and then with isooctane oxidation at 900 K and 10 bar. Mixing of the non-reacting temperature and species fields is shown to be rapid. The measured fuel consumption and CO formation are then closely reproduced by kinetic modelling using an extensively validated iso-octane mechanism from the literature and the corrected gas temperature. Together, these results demonstrate the PFR’s utility for chemical kinetic investigations.

  8. A high-pressure plug flow reactor for combustion chemistry investigations

    International Nuclear Information System (INIS)

    Lu, Zhewen; Cochet, Julien; Leplat, Nicolas; Yang, Yi; Brear, Michael J

    2017-01-01

    A plug flow reactor (PFR) is built for investigating the oxidation chemistry of fuels at up to 50 bar and 1000 K. These conditions include those corresponding to the low temperature combustion (i.e. the autoignition) that commonly occurs in internal combustion engines. Turbulent flow that approximates ideal, plug flow conditions is established in a quartz tube reactor. The reacting mixture is highly diluted by excess air to reduce the reaction rates for kinetic investigations. A novel mixer design is used to achieve fast mixing of the preheated air and fuel vapour at the reactor entrance, reducing the issue of reaction initialization in kinetic modelling. A water-cooled probe moves along the reactor extracting gases for further analysis. Measurement of the sampled gas temperature uses an extended form of a three-thermocouple method that corrects for radiative heat losses from the thermocouples to the enclosed PFR environment. Investigation of the PFR’s operation is first conducted using non-reacting flows, and then with isooctane oxidation at 900 K and 10 bar. Mixing of the non-reacting temperature and species fields is shown to be rapid. The measured fuel consumption and CO formation are then closely reproduced by kinetic modelling using an extensively validated iso-octane mechanism from the literature and the corrected gas temperature. Together, these results demonstrate the PFR’s utility for chemical kinetic investigations. (paper)

  9. Effect of Pilot Injection Timings on the Combustion Temperature Distribution in a Single-Cylinder CI Engine Fueled with DME and ULSD

    Directory of Open Access Journals (Sweden)

    Jeon Joonho

    2016-01-01

    Full Text Available Many studies of DiMethyl Ether (DME as an alternative fuel in Compression-Ignition (CI engines have been performed. Although diverse DME engine research has been conducted, the investigation of combustion behavior and temperature distribution in the combustion engine has not progressed due to the fact that there is no sooting flame in DME combustion. In order to investigate the combustion characteristics in this study, the KIVA-3 V code was implemented to research various pilot injection strategies on a single-cylinder CI engines with DME and Ultra-Low-Sulfur Diesel (ULSD fuels. The combustion distribution results obtained from the numerical investigation were validated when compared with the measurement of flame temperature behaviors in the experimental approach. This study showed that long intervals between two injection timings enhanced pilot combustion by increasing the ambient pressure and temperature before the start of the main combustion. Different atomization properties between DME and ULSD fuels contributed to the formation of a fuel-air mixture at the nozzle tip and piston lip regions, separately, which strongly affected the temperature distribution of the two fuels. In addition, the pilot injection timing played a vital role in regard to ignition delay and peak combustion temperatures. Exhaust emissions, such as NOx and soot, are related to the local equivalence ratio and temperature in the combustion chamber, also illustrated by the contrary result on a Φ (equivalence ratio – T (temperature map.

  10. Printed indium gallium zinc oxide transistors. Self-assembled nanodielectric effects on low-temperature combustion growth and carrier mobility.

    Science.gov (United States)

    Everaerts, Ken; Zeng, Li; Hennek, Jonathan W; Camacho, Diana I; Jariwala, Deep; Bedzyk, Michael J; Hersam, Mark C; Marks, Tobin J

    2013-11-27

    Solution-processed amorphous oxide semiconductors (AOSs) are emerging as important electronic materials for displays and transparent electronics. We report here on the fabrication, microstructure, and performance characteristics of inkjet-printed, low-temperature combustion-processed, amorphous indium gallium zinc oxide (a-IGZO) thin-film transistors (TFTs) grown on solution-processed hafnia self-assembled nanodielectrics (Hf-SANDs). TFT performance for devices processed below 300 °C includes >4× enhancement in electron mobility (μFE) on Hf-SAND versus SiO2 or ALD-HfO2 gate dielectrics, while other metrics such as subthreshold swing (SS), current on:off ratio (ION:IOFF), threshold voltage (Vth), and gate leakage current (Ig) are unchanged or enhanced. Thus, low voltage IGZO/SAND TFT operation (IGZO combustion processing leaves the underlying Hf-SAND microstructure and capacitance intact. This work establishes the compatibility and advantages of all-solution, low-temperature fabrication of inkjet-printed, combustion-derived high-mobility IGZO TFTs integrated with self-assembled hybrid organic-inorganic nanodielectrics.

  11. Straw combustion on slow-moving grates

    DEFF Research Database (Denmark)

    Kær, Søren Knudsen

    2005-01-01

    Combustion of straw in grate-based boilers is often associated with high emission levels and relatively poor fuel burnout. A numerical grate combustion model was developed to assist in improving the combustion performance of these boilers. The model is based on a one-dimensional ‘‘walking......-column’’ approach and includes the energy equations for both the fuel and the gas accounting for heat transfer between the two phases. The model gives important insight into the combustion process and provides inlet conditions for a computational fluid dynamics analysis of the freeboard. The model predictions...... indicate the existence of two distinct combustion modes. Combustion air temperature and mass flow-rate are the two parameters determining the mode. There is a significant difference in reaction rates (ignition velocity) and temperature levels between the two modes. Model predictions were compared...

  12. Combustion synthesis and structural characterization of Li–Ti mixed ...

    Indian Academy of Sciences (India)

    pared by combustion method at lower temperatures compared to the conventional high temperature sintering for ... Li–Ti mixed ferrites; combustion synthesis; hysteresis. 1. ... Quantum model - VSM 6000) at an applied field of ±10 kOe.

  13. Oxy-combustion of high water content fuels

    Science.gov (United States)

    Yi, Fei

    As the issues of global warming and the energy crisis arouse extensive concern, more and more research is focused on maximizing energy efficiency and capturing CO2 in power generation. To achieve this, in this research, we propose an unconventional concept of combustion - direct combustion of high water content fuels. Due to the high water content in the fuels, they may not burn under air-fired conditions. Therefore, oxy-combustion is applied. Three applications of this concept in power generation are proposed - direct steam generation for the turbine cycle, staged oxy-combustion with zero flue gas recycle, and oxy-combustion in a low speed diesel-type engine. The proposed processes could provide alternative approaches to directly utilize fuels which intrinsically have high water content. A large amount of energy to remove the water, when the fuels are utilized in a conventional approach, is saved. The properties and difficulty in dewatering high water content fuels (e.g. bioethanol, microalgae and fine coal) are summarized. These fuels include both renewable and fossil fuels. In addition, the technique can also allow for low-cost carbon capture due to oxy-combustion. When renewable fuel is utilized, the whole process can be carbon negative. To validate and evaluate this concept, the research focused on the investigation of the flame stability and characteristics for high water content fuels. My study has demonstrated the feasibility of burning fuels that have been heavily diluted with water in a swirl-stabilized burner. Ethanol and 1-propanol were first tested as the fuels and the flame stability maps were obtained. Flame stability, as characterized by the blow-off limit -- the lowest O2 concentration when a flame could exist under a given oxidizer flow rate, was determined as a function of total oxidizer flow rate, fuel concentration and nozzle type. Furthermore, both the gas temperature contour and the overall ethanol concentration in the droplets along the

  14. Experimental study of a single fuel jet in conditions of highly preheated air combustion

    Energy Technology Data Exchange (ETDEWEB)

    Lille, Simon; Blasiak, W. [Royal Inst. of Tech., Stockholm (Sweden). Dept. of Metallurgy

    2000-04-01

    Highly Preheated Air Combustion (HPAC) is a technique to reduce consumption of fuel and decrease NO{sub x} formation in furnaces. The main change that occur in the furnace chamber is that the flow pattern of flue gases changes dramatically resulting in a more uniform heat transfer. The usefulness of regenerative combustion is very clear, but the advantages have so far been accompanied by high levels of pollutants, such as NO{sub x}. The combination of the regeneration technique and internal flue gas recirculation, thus decreasing NO{sub x} and keeping the other advantages, has made HPAC a very attractive combustion technology with application to heat treatment reheating and melting processes. This work gives an introduction to regenerative combustion with diluted air, including theory on flame stabilization. Furthermore, a description of a new test furnace is given with results from a parametric study and from tests using schlieren color visualization, direct photography, and laser Doppler anemometry. In the parametric study NO{sub x}-emission, CO-emission, lift-off, fluctuations, and some flame characteristics are related to nozzle diameter, oxygen concentration, and preheat temperature. For the schlieren technique and direct photography, both still and high-speed cameras were used.

  15. Heat exchangers and recuperators for high temperature waste gases

    Science.gov (United States)

    Meunier, H.

    General considerations on high temperature waste heat recovery are presented. Internal heat recovery through combustion air preheating and external heat recovery are addressed. Heat transfer and pressure drop in heat exchanger design are discussed.

  16. Spray-combustion synthesis: efficient solution route to high-performance oxide transistors.

    Science.gov (United States)

    Yu, Xinge; Smith, Jeremy; Zhou, Nanjia; Zeng, Li; Guo, Peijun; Xia, Yu; Alvarez, Ana; Aghion, Stefano; Lin, Hui; Yu, Junsheng; Chang, Robert P H; Bedzyk, Michael J; Ferragut, Rafael; Marks, Tobin J; Facchetti, Antonio

    2015-03-17

    Metal-oxide (MO) semiconductors have emerged as enabling materials for next generation thin-film electronics owing to their high carrier mobilities, even in the amorphous state, large-area uniformity, low cost, and optical transparency, which are applicable to flat-panel displays, flexible circuitry, and photovoltaic cells. Impressive progress in solution-processed MO electronics has been achieved using methodologies such as sol gel, deep-UV irradiation, preformed nanostructures, and combustion synthesis. Nevertheless, because of incomplete lattice condensation and film densification, high-quality solution-processed MO films having technologically relevant thicknesses achievable in a single step have yet to be shown. Here, we report a low-temperature, thickness-controlled coating process to create high-performance, solution-processed MO electronics: spray-combustion synthesis (SCS). We also report for the first time, to our knowledge, indium-gallium-zinc-oxide (IGZO) transistors having densification, nanoporosity, electron mobility, trap densities, bias stability, and film transport approaching those of sputtered films and compatible with conventional fabrication (FAB) operations.

  17. Optimal thermionic energy conversion with established electrodes for high-temperature topping and process heating. [coal combustion product environments

    Science.gov (United States)

    Morris, J. F.

    1980-01-01

    Applied research-and-technology (ART) work reveals that optimal thermionic energy conversion (TEC) with approximately 1000 K to approximately 1100 K collectors is possible using well established tungsten electrodes. Such TEC with 1800 K emitters could approach 26.6% efficiency at 27.4 W/sq cm with approximately 1000 K collectors and 21.7% at 22.6 W/sq cm with approximately 1100 K collectors. These performances require 1.5 and 1.7 eV collector work functions (not the 1 eV ultimate) with nearly negligible interelectrode losses. Such collectors correspond to tungsten electrode systems in approximately 0.9 to approximately 6 torr cesium pressures with 1600 K to 1900 K emitters. Because higher heat-rejection temperatures for TEC allow greater collector work functions, interelectrode loss reduction becomes an increasingly important target for applications aimed at elevated temperatures. Studies of intragap modifications and new electrodes that will allow better electron emission and collection with lower cesium pressures are among the TEC-ART approaches to reduced interelectrode losses. These solutions will provide very effective TEC to serve directly in coal-combustion products for high-temperature topping and process heating. In turn this will help to use coal and to use it well.

  18. Pulsating combustion - Combustion characteristics and reduction of emissions

    Energy Technology Data Exchange (ETDEWEB)

    Lindholm, Annika

    1999-11-01

    In the search for high efficiency combustion systems pulsating combustion has been identified as one of the technologies that potentially can meet the objectives of clean combustion and good fuel economy. Pulsating combustion offers low emissions of pollutants, high heat transfer and efficient combustion. Although it is an old technology, the interest in pulsating combustion has been renewed in recent years, due to its unique features. Various applications of pulsating combustion can be found, mainly as drying and heating devices, of which the latter also have had commercial success. It is, however, in the design process of a pulse combustor, difficult to predict the operating frequency, the heat release etc., due to the lack of a well founded theory of the phenomenon. Research concerning control over the combustion process is essential for developing high efficiency pulse combustors with low emissions. Natural gas fired Helmholtz type pulse combustors have been the experimental objects of this study. In order to investigate the interaction between the fluid dynamics and the chemistry in pulse combustors, laser based measuring techniques as well as other conventional measuring techniques have been used. The experimental results shows the possibilities to control the combustion characteristics of pulsating combustion. It is shown that the time scales in the large vortices created at the inlet to the combustion chamber are very important for the operation of the pulse combustor. By increasing/decreasing the time scale for the large scale mixing the timing of the heat release is changed and the operating characteristics of the pulse combustor changes. Three different means for NO{sub x} reduction in Helmholtz type pulse combustors have been investigated. These include exhaust gas recirculation, alteration of air/fuel ratio and changed inlet geometry in the combustion chamber. All used methods achieved less than 10 ppm NO{sub x} emitted (referred to stoichiometric

  19. Diesel Combustion and Emission Using High Boost and High Injection Pressure in a Single Cylinder Engine

    Science.gov (United States)

    Aoyagi, Yuzo; Kunishima, Eiji; Asaumi, Yasuo; Aihara, Yoshiaki; Odaka, Matsuo; Goto, Yuichi

    Heavy-duty diesel engines have adopted numerous technologies for clean emissions and low fuel consumption. Some are direct fuel injection combined with high injection pressure and adequate in-cylinder air motion, turbo-intercooler systems, and strong steel pistons. Using these technologies, diesel engines have achieved an extremely low CO2 emission as a prime mover. However, heavy-duty diesel engines with even lower NOx and PM emission levels are anticipated. This study achieved high-boost and lean diesel combustion using a single cylinder engine that provides good engine performance and clean exhaust emission. The experiment was done under conditions of intake air quantity up to five times that of a naturally aspirated (NA) engine and 200MPa injection pressure. The adopted pressure booster is an external supercharger that can control intake air temperature. In this engine, the maximum cylinder pressure was increased and new technologies were adopted, including a monotherm piston for endurance of Pmax =30MPa. Moreover, every engine part is newly designed. As the boost pressure increases, the rate of heat release resembles the injection rate and becomes sharper. The combustion and brake thermal efficiency are improved. This high boost and lean diesel combustion creates little smoke; ISCO and ISTHC without the ISNOx increase. It also yields good thermal efficiency.

  20. CARS Temperature Measurements in a Combustion-Heated Supersonic Jet

    Science.gov (United States)

    Tedder, S. A.; Danehy, P. M.; Magnotti, G.; Cutler, A. D.

    2009-01-01

    Measurements were made in a combustion-heated supersonic axi-symmetric free jet from a nozzle with a diameter of 6.35 cm using dual-pump Coherent Anti-Stokes Raman Spectroscopy (CARS). The resulting mean and standard deviation temperature maps are presented. The temperature results show that the gas temperature on the centerline remains constant for approximately 5 nozzle diameters. As the heated gas mixes with the ambient air further downstream the mean temperature decreases. The standard deviation map shows evidence of the increase of turbulence in the shear layer as the jet proceeds downstream and mixes with the ambient air. The challenges of collecting data in a harsh environment are discussed along with influences to the data. The yield of the data collected is presented and possible improvements to the yield is presented are discussed.

  1. Oxy-Combustion Burner and Integrated Pollutant Removal Research and Development Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    Mark Schoenfield; Manny Menendez; Thomas Ochs; Rigel Woodside; Danylo Oryshchyn

    2012-09-30

    A high flame temperature oxy-combustion test facility consisting of a 5 MWe equivalent test boiler facility and 20 KWe equivalent IPR® was constructed at the Hammond, Indiana manufacturing site. The test facility was operated natural gas and coal fuels and parametric studies were performed to determine the optimal performance conditions and generated the necessary technical data required to demonstrate the technologies are viable for technical and economic scale-up. Flame temperatures between 4930-6120F were achieved with high flame temperature oxy-natural gas combustion depending on whether additional recirculated flue gases are added to balance the heat transfer. For high flame temperature oxy-coal combustion, flame temperatures in excess of 4500F were achieved and demonstrated to be consistent with computational fluid dynamic modeling of the burner system. The project demonstrated feasibility and effectiveness of the Jupiter Oxygen high flame temperature oxy-combustion process with Integrated Pollutant Removal process for CCS and CCUS. With these technologies total parasitic power requirements for both oxygen production and carbon capture currently are in the range of 20% of the gross power output. The Jupiter Oxygen high flame temperature oxy-combustion process has been demonstrated at a Technology Readiness Level of 6 and is ready for commencement of a demonstration project.

  2. High-throughput approach to the catalytic combustion of diesel soot

    Energy Technology Data Exchange (ETDEWEB)

    Iojoiu, Eduard Emil; Bassou, Badr; Guilhaume, Nolven; Farrusseng, David; Desmartin-Chomel, Arnold; Bianchi, Daniel; Mirodatos, Claude [Institut de recherches sur la catalyse et l' environnement de Lyon IRCELYON, UMR5256 CNRS Universite Lyon 1, 2 avenue Albert Einstein, F-69626 Villeurbanne Cedex (France); Lombaert, Karine [Renault, Diesel Innovative Catalytic Materials, Direction de l' Ingenierie Materiaux, 1 Allee Cornuel, 91510 Lardy (France)

    2008-08-30

    A methodology for the evaluation of diesel soot oxidation catalysts by high-throughput (HT) screening was developed. The optimal experimental conditions (soot amount, catalyst/soot ratio, type of contact, composition and flow rate of gas reactants) ensuring a reliable and reproducible detection of light-off temperatures in a 16 parallel channels reactor were set up. The temperature profile measured in the catalyst/soot bed under TPO conditions when the exothermic combustion of soot takes place was shown to provide an accurate measurement of the ignition. Its reproducibility and relevance were checked. The results obtained with a reference noble metal free catalyst (La{sub 0.8}Cr{sub 0.8}Li{sub 0.2}O{sub 3} perovskite) agree very well with literature data. Qualitative mechanistic features could be derived from these experiments, stressing the likely limiting step of oxygen transfer from catalyst surface to soot particulates to ignite the soot combustion. Ceria material was shown to be more appropriate than perovskite one. From an HT screening of a large diverse library (over 100 mixed oxides catalysts) under optimized conditions, about 10 new formulations were found to perform better than selected noble metal free reference materials. (author)

  3. High-resolution transmission electron microscopy studies of graphite materials prepared by high-temperature treatment of unburned carbon concentrates from combustion fly ashes

    Energy Technology Data Exchange (ETDEWEB)

    Miguel Cabielles; Jean-Nol Rouzaud; Ana B. Garcia [Instituto Nacional del Carbn (INCAR), Oviedo (Spain)

    2009-01-15

    High-resolution transmission electron microscopy (HRTEM) has been used in this work to study the microstructural (structure and microtexture) changes occurring during the high-temperature treatment of the unburned carbon concentrates from coal combustion fly ashes. Emphasis was placed on two aspects: (i) the development of graphitic carbon structures and (ii) the disordered carbon forms remaining in the graphitized samples. In addition, by coupling HRTEM with energy-dispersive spectroscopy, the transformations with the temperature of the inorganic matter (mainly iron- and silicon-based phases) of the unburned carbon concentrates were evidenced. The HRTEM results were compared to the averaged structural order of the materials as evaluated by X-ray diffraction (XRD) and Raman spectroscopy. As indicated by XRD and Raman parameters, more-ordered materials were obtained from the unburned carbon concentrates with higher mineral/inorganic matter, thus inferring the catalytic effect of some of their components. However, the average character of the information provided by these instrumental techniques seems to be inconclusive in discriminating between carbon structures with different degrees of order (stricto sensu graphite, graphitic, turbostratic, etc.) in a given graphitized unburned carbon. Unlike XRD and Raman, HRTEM is a useful tool for imaging directly the profile of the polyaromatic layers (graphene planes), thus allowing the sample heterogeneity to be looked at, specifically the presence of disordered carbon phases. 49 refs., 9 figs., 3 tabs.

  4. Gasoline Engine HCCI Combustion - Extending the high load limit

    Energy Technology Data Exchange (ETDEWEB)

    Dahl, Daniel

    2012-07-01

    -way catalyst to reduce the excess NOX. Intake air boosting was also experimented on and is discussed as an alternative method or as a method to use in combination with charge stratification. During the project, experiments have been conducted with a productionlike multi-cylinder engine and a single-cylinder research engine to investigate the potential of various strategies for raising the high load limit of HCCI when using gasoline or gasoline-like fuels. To explain observed phenomena, optical experiments were conducted in which high-speed video was used to capture light from the combustion and the residuals. A method was developed to extract pressure oscillations from these measurements and to correlate them to the combustion. Laser-based experiments were further used to analyse fuel and temperature distributions before the combustion to investigate their effects on combustion and pressure oscillations. Based on the acquired data, plausible reasons why charge stratification can reduce ringing, and the circumstances in which it can do so, are presented. The thesis also shows the extent to which the load can be increased using the strategy, and the resulting efficiency penalties, observed in both the production-like gasoline engine and single-cylinder research engine. Finally, the various strategies for load extension using combinations of charge stratification, EGR and boosting were compared to operating the engine in two-stroke HCCI mode. Although two-stroke operation was investigated very briefly, in an engine not designed for it, indications were obtained that this might be a much better alternative, since it provided higher loads, more stable combustion, less ringing, low NOX levels and higher efficiency than any of the other tested load extension strategies.

  5. Combustive management of oil spills

    International Nuclear Information System (INIS)

    1992-01-01

    Extensive experiments with in situ incineration were performed on a desert site at the University of Arizona with very striking results. The largest incinerator, 6 feet in diameter with a 30 foot chimney, developed combustion temperatures of 3000, F, and attendant soot production approximately 1000 times less than that produced by conventional in situ burning. This soot production, in fact, is approximately 30 times less than current allowable EPA standards for incinerators and internal combustion engines. Furthermore, as a consequence of the high temperature combustion, the bum rate was established at a very high 3400 gallons per hour for this particular 6 foot diameter structure. The rudimentary design studies we have carried out relative to a seagoing 8 foot diameter incinerator have predicted that a continuous burn rate of 7000 gallons per hour is realistic. This structure was taken as a basis for operational design because it is compatible with C130 flyability, and will be inexpensive enough ($120,000 per copy) to be stored at those seaside depots throughout the US coast line in which the requisite ancillary equipments (booms, service tugs, etc.) are already deployed. The LOX experiments verified our expectations with respect to combustion of debris and various highly weathered or emulsified oils. We have concluded, however, that the use of liquid oxygen in actual beach clean up is not promising because the very high temperatures associated with this combustion are almost certain to produce environmentally deleterious effects on the beach surface and its immediately sublying structures. However, the use of liquid oxygen augmentation for shore based and flyable incinerators may still play an important role in handing the problem of accumulated debris

  6. Experimental study of combustion and emission characteristics of ethanol fuelled port injected homogeneous charge compression ignition (HCCI) combustion engine

    Energy Technology Data Exchange (ETDEWEB)

    Maurya, Rakesh Kumar; Agarwal, Avinash Kumar [Engine Research Laboratory, Department of Mechanical Engineering, Indian Institute of Technology Kanpur, Kanpur 208 016 (India)

    2011-04-15

    The homogeneous charge compression ignition (HCCI) is an alternative combustion concept for in reciprocating engines. The HCCI combustion engine offers significant benefits in terms of its high efficiency and ultra low emissions. In this investigation, port injection technique is used for preparing homogeneous charge. The combustion and emission characteristics of a HCCI engine fuelled with ethanol were investigated on a modified two-cylinder, four-stroke engine. The experiment is conducted with varying intake air temperature (120-150 C) and at different air-fuel ratios, for which stable HCCI combustion is achieved. In-cylinder pressure, heat release analysis and exhaust emission measurements were employed for combustion diagnostics. In this study, effect of intake air temperature on combustion parameters, thermal efficiency, combustion efficiency and emissions in HCCI combustion engine is analyzed and discussed in detail. The experimental results indicate that the air-fuel ratio and intake air temperature have significant effect on the maximum in-cylinder pressure and its position, gas exchange efficiency, thermal efficiency, combustion efficiency, maximum rate of pressure rise and the heat release rate. Results show that for all stable operation points, NO{sub x} emissions are lower than 10 ppm however HC and CO emissions are higher. (author)

  7. Effect of Metal Additives on the Combustion Characteristics of High-Energy Materials

    Directory of Open Access Journals (Sweden)

    Korotkikh Alexander

    2016-01-01

    Full Text Available Thermodynamic calculation of combustion parameters and equilibrium composition of HEMs combustion products showed, that at the increase of aluminum powder dispersity the specific impulse and combustion temperature of solid propellants are reduced due to the decrease of the mass fraction of active aluminum in particles. Partial or complete replacement of aluminum by metal powder (B, Mg, AlB2, Al\\Mg alloy, Fe, Ti and Zr in HEMs composition leads to the reduce of the specific impulse and combustion temperature. Replacement of aluminum powder by boron and magnesium in HEM reduces the mass fraction of condensed products in the combustion chamber of solid rocket motor. So, for compositions HEMs with boron and aluminum boride the mass fraction in chamber is reduced by 24 and 36 %, respectively, with respect to the composition HEMs with Al powder. But the mass fraction of CCPs in the nozzle exit increases by 13 % for HEMs with aluminum boride due to the formation of boron oxide in the condensed combustion products. Partial replacement of 2 wt. % aluminum powder by iron and copper additives in HEM leads to the reduce of CCPs mass fraction in chamber by 4–10 % depending on the aluminum powder dispersity duo to these metals are not formed condensed products at the HEMs combustion in chamber.

  8. High temperature slagging incinerator for TRU-waste treatment

    International Nuclear Information System (INIS)

    Van De Voorde, N.; Hennart, D.; Gijbels, J.; Mergan, L.

    1984-01-01

    Since 1974 the Belgian Nuclear Study Center (SCK/CEN) at Mol, with the support of the European Communities, has developed an ''integral'' system for the treatment and the conditioning of radioactive contaminated wastes. The system converts directly, at high temperature (1500 0 C), mixtures of combustibles (paper, plastics, rubber etc.) and non-combustibles (metals, soil, sludge, concrete.) contaminated with transuranium elements as well as beta-gamma emitting isotopes, into a chemically inert and physically stable slag. More than 4000 hours of successful operation, with wide variety of simulated waste composition as well as real waste, have confirmed the safe operability of the high temperature sl'Gging incinerator and the connected installations, such as sorting cells, waste shredder, off-gas purification train, slag extraction system, remoted control, and the alpha-containment building. During the fall of 1983, a final confirmation of the performance of the installation was given by the successful accomplishment of an incineration campaign of 16 to 17 tons of simulated solid plutonium contaminated wastes

  9. Reducing emissions from diesel combustion

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This paper contains information dealing with engine design to reduce emissions and improve or maintain fuel economy. Topics include: Observation of High Pressure Fuel Spray with Laser Light Sheet Method; Determination of Engine Cylinder Pressures from Crankshaft Speed Fluctuations; Combustion Similarity for Different Size Diesel Engines: Theoretical Prediction and Experimental Results; Prediction of Diesel Engine Particulate Emission During Transient Cycles; Characteristics and Combustibility of Particulate Matter; Dual-Fuel Diesel Engine Using Butane; Measurement of Flame Temperature Distribution in D.I. Diesel Engine with High Pressure Fuel Injection: and Combustion in a Small DI Diesel Engine at Starting

  10. Self-sustained high-temperature reactions : Initiation, propagation and synthesis

    NARCIS (Netherlands)

    Martinez Pacheco, M.

    2007-01-01

    Self-Propagating High-Temperature Synthesis (SHS), also called combustion synthesis is an exothermic and self-sustained reaction between the constituents, which has assumed significance for the production of ceramics and ceramic-metallic materials (cermets), because it is a very rapid processing

  11. Novel approaches in advanced combustion characterization of fuels for advanced pressurized combustion

    Energy Technology Data Exchange (ETDEWEB)

    Aho, M.; Haemaelaeinen, J. [VTT Energy (Finland); Joutsenoja, T. [Tampere Univ. of Technology (Finland)

    1996-12-01

    This project is a part of the EU Joule 2 (extension) programme. The objective of the research of Technical Research Centre of Finland (VTT) is to produce experimental results of the effects of pressure and other important parameters on the combustion of pulverized coals and their char derivates. The results can be utilized in modelling of pressurized combustion and in planning pilot-scale reactors. The coals to be studied are Polish hvb coal, French lignite (Gardanne), German anthracite (Niederberg) and German (Goettelbom) hvb coal. The samples are combusted in an electrically heated, pressurized entrained flow reactor (PEFR), where the experimental conditions are controlled with a high precision. The particle size of the fuel can vary between 100 and 300 {mu}m. The studied things are combustion rates, temperatures and sizes of burning single coal and char particles. The latter measurements are performed with a method developed by Tampere University of Technology, Finland. In some of the experiments, mass loss and elemental composition of the char residue are studied in more details as the function of time to find out the combustion mechanism. Combustion rate of pulverized (140-180 {mu}m) Gardanne lignite and Niederberg anthracite were measured and compared with the data obtained earlier with Polish hvb coal at various pressures, gas temperatures, oxygen partial pressures and partial pressures of carbon dioxide in the second working period. In addition, particle temperatures were measured with anthracite. The experimental results were treated with multivariable partial least squares (PLS) method to find regression equation between the measured things and the experimental variables. (author)

  12. High temperature slagging incinerator for alpha contaminated wastes

    International Nuclear Information System (INIS)

    Van de Voorde, N.

    1985-01-01

    This report describes the experiences collected by the treatment of plutonium-contaminated wastes, in the High Temperature Slagging Incinerator at the C.E.N./S.C.K. at Mol, with the support of the Commission of the European Communities. The major objective of the exercise is to demonstrate the operability of this facility for the treatment of mixed transuranic (TRU) and beta-gamma solid waste material. The process will substantially reduce the TRU waste volume by burning the combustibles and converting the non-combustibles into a chemically inert and physically stable basalt-like slag product, suitable for safe transport and final disposal. (Auth.)

  13. Self-propagating high temperature synthesis and magnetic ...

    Indian Academy of Sciences (India)

    Unknown

    phase composition, microstructure and magnetic properties of the combustion products. The effect ... The size and shapes of the ... Figure 3 shows the effect of combustion temperature on ... ducts at 1200°C are too hard to be ground easily and.

  14. Effect of Metal Additives on the Combustion Characteristics of High-Energy Materials

    OpenAIRE

    Korotkikh, Aleksandr Gennadievich; Glotov, Oleg; Sorokin, Ivan

    2016-01-01

    Thermodynamic calculation of combustion parameters and equilibrium composition of HEMs combustion products showed, that at the increase of aluminum powder dispersity the specific impulse and combustion temperature of solid propellants are reduced due to the decrease of the mass fraction of active aluminum in particles. Partial or complete replacement of aluminum by metal powder (B, Mg, AlB[2], Al\\Mg alloy, Fe, Ti and Zr) in HEMs composition leads to the reduce of the specific impulse and comb...

  15. Multi-stage combustion using nitrogen-enriched air

    Science.gov (United States)

    Fischer, Larry E.; Anderson, Brian L.

    2004-09-14

    Multi-stage combustion technology combined with nitrogen-enriched air technology for controlling the combustion temperature and products to extend the maintenance and lifetime cycles of materials in contact with combustion products and to reduce pollutants while maintaining relatively high combustion and thermal cycle efficiencies. The first stage of combustion operates fuel rich where most of the heat of combustion is released by burning it with nitrogen-enriched air. Part of the energy in the combustion gases is used to perform work or to provide heat. The cooled combustion gases are reheated by additional stages of combustion until the last stage is at or near stoichiometric conditions. Additional energy is extracted from each stage to result in relatively high thermal cycle efficiency. The air is enriched with nitrogen using air separation technologies such as diffusion, permeable membrane, absorption, and cryogenics. The combustion method is applicable to many types of combustion equipment, including: boilers, burners, turbines, internal combustion engines, and many types of fuel including hydrogen and carbon-based fuels including methane and coal.

  16. High fidelity chemistry and radiation modeling for oxy -- combustion scenarios

    Science.gov (United States)

    Abdul Sater, Hassan A.

    To account for the thermal and chemical effects associated with the high CO2 concentrations in an oxy-combustion atmosphere, several refined gas-phase chemistry and radiative property models have been formulated for laminar to highly turbulent systems. This thesis examines the accuracies of several chemistry and radiative property models employed in computational fluid dynamic (CFD) simulations of laminar to transitional oxy-methane diffusion flames by comparing their predictions against experimental data. Literature review about chemistry and radiation modeling in oxy-combustion atmospheres considered turbulent systems where the predictions are impacted by the interplay and accuracies of the turbulence, radiation and chemistry models. Thus, by considering a laminar system we minimize the impact of turbulence and the uncertainties associated with turbulence models. In the first section of this thesis, an assessment and validation of gray and non-gray formulations of a recently proposed weighted-sum-of-gray gas model in oxy-combustion scenarios was undertaken. Predictions of gas, wall temperatures and flame lengths were in good agreement with experimental measurements. The temperature and flame length predictions were not sensitive to the radiative property model employed. However, there were significant variations between the gray and non-gray model radiant fraction predictions with the variations in general increasing with decrease in Reynolds numbers possibly attributed to shorter flames and steeper temperature gradients. The results of this section confirm that non-gray model predictions of radiative heat fluxes are more accurate than gray model predictions especially at steeper temperature gradients. In the second section, the accuracies of three gas-phase chemistry models were assessed by comparing their predictions against experimental measurements of temperature, species concentrations and flame lengths. The chemistry was modeled employing the Eddy

  17. Optical Tomography in Combustion

    DEFF Research Database (Denmark)

    Evseev, Vadim

    spectral measurements at several line-of-sights with a view to applications for tomographic measurements on full-scale industrial combustion systems. The system was successfully applied on industrial scale for simultaneous fast exhaust gas temperature measurements in the three optical ports of the exhaust......D project, it was also important to investigate the spectral properties of major combustion species such as carbon dioxide and carbon monoxide in the infrared range at high temperatures to provide the theoretical background for the development of the optical tomography methods. The new software....... JQSRT 113 (2012) 2222, 10.1016/j.jqsrt.2012.07.015] included in the PhD thesis as an attachment. The knowledge and experience gained in the PhD project is the first important step towards introducing the advanced optical tomography methods of combustion diagnostics developed in the project to future...

  18. Measurement of Soot Volume Fraction and Temperature for Oxygen-Enriched Ethylene Combustion Based on Flame Image Processing

    Directory of Open Access Journals (Sweden)

    Weijie Yan

    2017-05-01

    Full Text Available A method for simultaneously visualizing the two-dimensional distributions of temperature and soot volume fraction in an ethylene flame was presented. A single-color charge-coupled device (CCD camera was used to capture the flame image in the visible spectrum considering the broad-response spectrum of the R and G bands of the camera. The directional emissive power of the R and G bands were calibrated and used for measurement. Slightly increased temperatures and reduced soot concentration were predicted in the central flame without self-absorption effects considered, an iterative algorithm was used for eliminating the effect of self-absorption. Nine different cases were presented in the experiment to demonstrate the effects of fuel mass flow rate and oxygen concentration on temperature and soot concentration in three different atmospheres. For ethylene combustion in pure-air atmosphere, as the fuel mass flow rate increased, the maximum temperature slightly decreased, and the maximum soot volume fraction slightly increased. For oxygen fractions of 30%, 40%, and 50% combustion in O2/N2 oxygen-enhanced atmospheres, the maximum flame temperatures were 2276, 2451, and 2678 K, whereas combustion in O2/CO2 atmospheres were 1916, 2322, and 2535 K. The maximum soot volume fractions were 4.5, 7.0, and 9.5 ppm in oxygen-enriched O2/N2 atmosphere and 13.6, 15.3, and 14.8 ppm in oxygen-enriched O2/CO2 atmosphere. Compared with the O2/CO2 atmosphere, combustion in the oxygen-enriched O2/N2 atmosphere produced higher flame temperature and larger soot volume fraction. Preliminary results indicated that this technique is reliable and can be used for combustion diagnosis.

  19. High Pressure Combustion Experimental Facility(HPCEF) for Studies on Combustion in Reactive Flows

    Science.gov (United States)

    2017-12-13

    SECURITY CLASSIFICATION OF: 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND SUBTITLE 13. SUPPLEMENTARY NOTES 12. DISTRIBUTION AVAILIBILITY STATEMENT 6...Report: High Pressure Combustion Experimental Facility (HPCEF) for Studies on Combustion in Reactive Flows The views, opinions and/or findings... contained in this report are those of the author(s) and should not contrued as an official Department of the Army position, policy or decision, unless so

  20. Effects of Temperature and Residence Time on the Emissions of PIC and Fine Particles during Fixed Bed Combustion of Conifer Stemwood Pellets

    Energy Technology Data Exchange (ETDEWEB)

    Boman, Christoffer; Lindmark, Fredrik; Oehman, Marcus; Nordin, Anders [Umeaa Univ. (Sweden). Energy Technology and Thermal Process Chemistry; Pettersson, Esbjoern [Energy Technology Centre, Piteaa (Sweden); Westerholm, Roger [Stockholm Univ., Arrhenius Laboratory (Sweden). Dept. of Analytical Chemistry

    2006-07-15

    The use of wood fuel Pellets has proved to be well suited for the small-scale market enabling controlled and efficient combustion with low emission of products of incomplete combustion (PIC). Still a potential for further emission reduction exists and a thorough understanding of the influence of combustion conditions on the emission characteristics of air pollutants like PAH and particulate matter (PM) is important. The objective was to determine the effects of temperature and residence time on the emission performance and characteristics with focus on hydrocarbons and PM during combustion of conifer stemwood Pellets in a laboratory fixed bed reactor (<5 kW). Temperature and residence time after the bed section were varied according to statistical experimental designs (650-970 deg C and 0.5-3.5 s) with the emission responses; CO, organic gaseous carbon, NO, 20 VOC compounds, 43 PAH compounds, PM{sub tot}, fine particle mass/count median diameter (MMD and CMD) and number concentration. Temperature was negatively correlated with the emissions of all studied PIC with limited effects of residence time. The PM{sub tot} emissions of 15-20 mg/MJ was in all cases dominated by fine (<1 {mu}m) particles of K, Na, S, Cl, C, O and Zn. Increased residence time resulted in increased fine particle sizes (i.e. MMD and CMD) and decreased number concentrations. The importance of high temperature (>850 deg C) in the bed zone with intensive, air rich and well mixed isothermal conditions for 0.5-1.0 s in the post combustion zone was illustrated for wood Pellets combustion with almost a total depletion of all studied PIC. The results emphasize the need for further verification studies and technology development work.

  1. Open-cycle magnetohydrodynamic power plant based upon direct-contact closed-loop high-temperature heat exchanger

    Science.gov (United States)

    Berry, G.F.; Minkov, V.; Petrick, M.

    1981-11-02

    A magnetohydrodynamic (MHD) power generating system is described in which ionized combustion gases with slag and seed are discharged from an MHD combustor and pressurized high temperature inlet air is introduced into the combustor for supporting fuel combustion at high temperatures necessary to ionize the combustion gases, and including a heat exchanger in the form of a continuous loop with a circulating heat transfer liquid such as copper oxide. The heat exchanger has an upper horizontal channel for providing direct contact between the heat transfer liquid and the combustion gases to cool the gases and condense the slag which thereupon floats on the heat transfer liquid and can be removed from the channel, and a lower horizontal channel for providing direct contact between the heat transfer liquid and pressurized air for preheating the inlet air. The system further includes a seed separator downstream of the heat exchanger.

  2. Monitoring temperatures in coal conversion and combustion processes via ultrasound

    Science.gov (United States)

    Gopalsami, N.; Raptis, A. C.; Mulcahey, T. P.

    1980-02-01

    The state of the art of instrumentation for monitoring temperatures in coal conversion and combustion systems is examined. The instrumentation types studied include thermocouples, radiation pyrometers, and acoustical thermometers. The capabilities and limitations of each type are reviewed. A feasibility study of the ultrasonic thermometry is described. A mathematical model of a pulse-echo ultrasonic temperature measurement system is developed using linear system theory. The mathematical model lends itself to the adaptation of generalized correlation techniques for the estimation of propagation delays. Computer simulations are made to test the efficacy of the signal processing techniques for noise-free as well as noisy signals. Based on the theoretical study, acoustic techniques to measure temperature in reactors and combustors are feasible.

  3. Determining Role of the Chain Mechanism in the Temperature Dependence of the Gas-Phase Rate of Combustion Reactions

    Science.gov (United States)

    Azatyan, V. V.; Bolod'yan, I. A.; Kopylov, N. P.; Kopylov, S. N.; Prokopenko, V. M.; Shebeko, Yu. N.

    2018-05-01

    It is shown that the strong dependence of the rate of gas-phase combustion reactions on temperature is determined by the high values of the reaction rate constants of free atoms and radicals. It is established that with a branched chain mechanism, a special role in the reaction rate temperature dependence is played by positive feedback between the concentrations of active intermediate species and the rate of their change. The role of the chemical mechanism in the temperature dependence of the process rate with and without inhibitors is considered.

  4. Ignition and wave processes in combustion of solids

    CERN Document Server

    Rubtsov, Nickolai M; Alymov, Michail I

    2017-01-01

    This book focuses on the application of classical combustion theory to ignition and flame propagation in solid-solid and gas-solid systems. It presents experimental investigations in the areas of local ignition, filtration combustion, self-propagating high temperature synthesis and nanopowders protection. The authors highlight analytical formulas used in different areas of combustion in solids and propose an approach based on classical combustion theory. The book attempts to analyze the basic approaches to understanding of solid-solid and solid - gas combustion presented in contemporary literature in a unified approach based on classical combustion theory. .

  5. Advanced high temperature materials for the energy efficient automotive Stirling engine

    International Nuclear Information System (INIS)

    Titran, R.H.; Stephens, J.R.

    1984-01-01

    The Stirling engine is under investigation jointly by the Department of Energy and NASA Lewis as an alternative to the internal combustion engine for automotive applications. The Stirling engine is an external combustion engine that offers the advantage of high fuel economy, low emissions, low noise, and low vibrations compared to current internal combustion automotive engines. The most critical component from a materials viewpoint is the heater head consisting of the cylinders, heating tubes, and regenerator housing. Materials requirements for the heater head include compatibility with hydrogen, resistance to hydrogen permeation, high temperature oxidation/corrosion resistance, and high temperature creep-rupture and fatigue properties. A continuing supporting materials research and technology program has identified the wrought alloys CG-27 and 12RN72, and the cast alloys XF-818 and NASAUT 4G-A1 as candidate replacements for the cobalt containing alloys used in current prototype engines. Based on the materials research program in support of the automotive Stirling engine it is concluded that manufacture of the engine is feasible from low cost iron-base alloys rather than the cobalt alloys used in prototype engines. This paper presents results of research that led to this conclusion

  6. Computational fluid dynamic on the temperature simulation of air preheat effect combustion in propane turbulent flame

    Science.gov (United States)

    Elwina; Yunardi; Bindar, Yazid

    2018-04-01

    this paper presents results obtained from the application of a computational fluid dynamics (CFD) code Fluent 6.3 to modelling of temperature in propane flames with and without air preheat. The study focuses to investigate the effect of air preheat temperature on the temperature of the flame. A standard k-ε model and Eddy Dissipation model are utilized to represent the flow field and combustion of the flame being investigated, respectively. The results of calculations are compared with experimental data of propane flame taken from literature. The results of the study show that a combination of the standard k-ε turbulence model and eddy dissipation model is capable of producing reasonable predictions of temperature, particularly in axial profile of all three flames. Both experimental works and numerical simulation showed that increasing the temperature of the combustion air significantly increases the flame temperature.

  7. Thermogravimetric Analysis of Effects of High-Content Limstone Addition on Combustion Characteristics of Taixi Anthracite

    Institute of Scientific and Technical Information of China (English)

    ZHANG Hong; LI Mei; SUN Min; WEI Xian-yong

    2004-01-01

    Combustion characteristics of Taixi anthracite admixed with high content of limestone addition were investigated with thermogravimetric analysis. The results show that limestone addition has a little promoting effect on the ignition of raw coals as a whole. The addition of limestone is found to significantly accelerate the combustion and burnout of raw coals. The higher the sample mass is, the more significant the effect will be. The results also show that the change of limestone proportion between 45%-80% has little effect on ignition temperatures of coal in the blended samples. Increasing limestone content lowers the temperature corresponding to the maximum weight loss. Although higher maximum mass loss rates are observed with higher limestone content, the effect is found not ascribed to changing limestone addition, but to the decrease of absolute coal mass in the sample. The change of limestone proportion has little effect on its burnout temperature. Mechanism analysis indicates that these phenomena result mainly from improved heat conduction due to limestone addition.

  8. A hybrid solar chemical looping combustion system with a high solar share

    International Nuclear Information System (INIS)

    Jafarian, Mehdi; Arjomandi, Maziar; Nathan, Graham J.

    2014-01-01

    Highlights: • A novel hybrid solar chemical looping combustion system is presented. • This hybrid CLC system integrates a CLC plant with a solar thermal energy plant. • The oxygen carrier particles are used for chemical and sensible thermal energy storage. • A solar cavity reactor is proposed for fuel reactor. • The calculations show a total solar share of around 60% can be achieved. - Abstract: A novel hybrid solar chemical looping combustion (Hy-Sol-CLC) is presented, in which the oxygen carrier particles in a CLC system are employed to provide thermal energy storage for concentrated solar thermal energy. This hybrid aims to take advantage of key features of a chemical looping combustion (CLC) system that are desirable for solar energy systems, notably their inherent chemical and sensible energy storage systems, the relatively low temperature of the “fuel” reactor (to which the concentrated solar thermal energy is added in a hybrid) relative to that of the final temperature of the product gas and the potential to operate the fuel reactor at a different pressure to the heated gas stream. By this approach, it is aimed to achieve high efficiency of the solar energy, infrastructure sharing, economic synergy, base load power generation and a high solar fraction of the total energy. In the proposed Hy-Sol-CLC system, a cavity solar receiver has been chosen for fuel reactor while for the storage of the oxygen carrier particles two reservoirs have been added to a conventional CLC. A heat exchanger is also proposed to provide independent control of the temperatures of the storage reservoirs from those of solar fuel and air reactors. The system is simulated using Aspen Plus software for the average diurnal profile of normal irradiance for Port Augusta, South Australia. The operating temperature of the fuel reactor, solar absorption efficiency, solar share, fraction of the solar thermal energy stored within the solar reactor, the fractions of sensible and

  9. Effect of radiative transfer of heat released from combustion reaction on temperature distribution: A numerical study for a 2-D system

    International Nuclear Information System (INIS)

    Zhou Huaichun; Ai Yuhua

    2006-01-01

    Both light and heat are produced during a chemical reaction in a combustion process, but traditionally all the energy released is taken as to be transformed into the internal energy of the combustion medium. So the temperature of the medium increases, and then the thermal radiation emitted from it increases too. Chemiluminescence is generated during a chemical reaction and independent of the temperature, and has been used widely for combustion diagnostics. It was assumed in this paper that the total energy released in a combustion reaction is divided into two parts, one part is a self-absorbed heat, and the other is a directly emitted heat. The former is absorbed immediately by the products, becomes the internal energy and then increases the temperature of the products as treated in the traditional way. The latter is emitted directly as radiation into the combustion domain and should be included in the radiation transfer equation (RTE) as a part of radiation source. For a simple, 2-D, gray, emitting-absorbing, rectangular system, the numerical study showed that the temperatures in reaction zones depended on the fraction of the directly emitted energy, and the smaller the gas absorption coefficient was, the more strong the dependence appeared. Because the effect of the fraction of the directly emitted heat on the temperature distribution in the reacting zones for gas combustion is significant, it is required to conduct experimental measurements to determine the fraction of self-absorbed heat for different combustion processes

  10. An Assessment on Temperature Profile of Jet-A/Biodiesel Mixture in a Simple Combustion Chamber with Plain Orifice Atomiser

    Science.gov (United States)

    Ng, W. X.; Mazlan, N. M.; Ismail, M. A.; Rajendran, P.

    2018-05-01

    The preliminary study to evaluate influence of biodiesel/kerosene mixtures on combustion temperature profile is explored. A simple cylindrical combustion chamber configuration with plain orifice atomiser is used for the evaluation. The evaluation is performed under stoichiometric air to fuel ratio. Six samples of fuels are used: 100BD (pure biodiesel), 100KE (pure Jet-A), 20KE80BD (20% Jet-A/80% Biodiesel), 40KE60BD (40% Jet-A/60% Biodiesel), 60KE40BD (60% Jet-A/40% Biodiesel), and 80KE20BD (80% Jet-A/20% Biodiesel). Results showed that the oxygen content, viscosity, and lower heating value are key parameters in affecting the temperature profile inside the chamber. Biodiesel is known to have higher energy content, higher viscosity and lower heating value compared to kerosene. Mixing biodiesel with kerosene improves viscosity and caloric value but reduces oxygen content of the fuel. High oxygen content of the biodiesel resulted to the highest flame temperature. However the flame temperature reduce as the percentage of biodiesel in the fuel mixture reduces.

  11. Experimental research on combustion fluorine retention using calcium-based sorbents during coal combustion (II)

    Energy Technology Data Exchange (ETDEWEB)

    Qi, Q.; Ma, X.; Liu, J.; Wu, X.; Zhou, J.; Cen, K. [Liaoning Technical University, Fuxin (China). College of Resource and Environment Engineering

    2008-12-15

    Fluoride pollution produced by coal burning can be controlled with the calcium-based sorbent combustion fluorine technique in which calcium-based sorbents are mixed with the coal or sprayed into the combustion chamber. In a fixed bed tube furnace combustion experiment using one calcium-based natural mineral, limestone and one calcium-based building material, it was shown that the calcium-based sorbent particle grain size and pore structure have a big influence on the combustion fluorine retention effect. Reducing the calcium-based sorbent particle grain size and improving the calcium sorbent structure characteristics at very high temperature to enhance the fluorine retention effect is the important approach to the fluorine retention agent development. 8 refs., 1 fig., 5 tabs.

  12. Evaluation of catalytic combustion of actual coal-derived gas

    Science.gov (United States)

    Blanton, J. C.; Shisler, R. A.

    1982-01-01

    The combustion characteristics of a Pt-Pl catalytic reactor burning coal-derived, low-Btu gas were investigated. A large matrix of test conditions was explored involving variations in fuel/air inlet temperature and velocity, reactor pressure, and combustor exit temperature. Other data recorded included fuel gas composition, reactor temperatures, and exhaust emissions. Operating experience with the reactor was satisfactory. Combustion efficiencies were quite high (over 95 percent) over most of the operating range. Emissions of NOx were quite high (up to 500 ppm V and greater), owing to the high ammonia content of the fuel gas.

  13. Experimental and Numerical Studies on Self-Propagating High-Temperature Synthesis of Ta5Si3 Intermetallics

    Directory of Open Access Journals (Sweden)

    Chun-Liang Yeh

    2015-09-01

    Full Text Available Formation of Ta5Si3 by self-propagating high-temperature synthesis (SHS from elemental powder compacts of Ta:Si = 5:3 was experimentally and numerically studied. Experimental evidence showed that the increase of either sample density or preheating temperature led to the increase of combustion wave velocity and reaction temperature. The apparent activation energy, Ea ≈ 108 kJ/mol, was determined for the synthesis reaction. Based upon numerical simulation, the Arrhenius factor of the rate function, K0 = 2.5 × 107 s−1, was obtained for the 5Ta + 3Si combustion system. In addition, the influence of sample density on combustion wave kinetics was correlated with the effective thermal conductivity (keff of the powder compact. By adopting 0.005 ≤ keff/kbulk ≤ 0.016 in the computation model, the calculated combustion velocity and temperature were in good agreement with experimental data of the samples with compaction densities between 35% and 45% theoretical maximum density (TMD.

  14. Decomposition of water into highly combustible hydroxyl gas used in ...

    African Journals Online (AJOL)

    The method proposed involves the decomposition of water into highly combustible hydroxyl gas via electrolysis, which is used in internal combustion engines of electrical generators for electricity generation. The by-product obtained from combustion of this gas is water vapour and oxygen to replenish the atmosphere.

  15. Catalytic combustion for the elimination of methane, BTEX and other VOC : IV

    International Nuclear Information System (INIS)

    Hayes, R.E.; Wanke, S.E.

    2008-01-01

    Options for volatile organic compound combustion include homogeneous combustion (flaring) or catalytic combustion involving a flameless combustion process that uses a solid catalyst to promote the combustion reaction. This presentation discussed relative reactivity testing for volatile organic compounds (VOCs) over commercial catalysts. Several commercial pad catalysts were tested, as well as other powders. The relative reactivity of methane as well as benzene, toluene, ethylbenzene, and xylene (BTEX) were investigated. The purpose of the project was to evaluate combustion of concentrated methane streams that contained BTEX compounds; evaluate catalytic combustion using a counter diffusive radiant heater; develop mathematical models for the reactor to enhance design and understanding; improve the catalyst for BTEX combustion; and target application-dehydrator units. Topics that were addressed in the presentation included methane and benzene conversion; catalytic radiant heaters; small industrial and commercial units; measured temperature distribution; fuel slippage, methane conversion; the effect of water and hydrocarbons; the effect of water-liquid injection; and water addition as vapour. Several observations were offered, including that high percentages of injected liquid water can reduce reactor operating temperature; combustion of BTEX remained highly efficient, however liquid injection could also cause temperature reductions and ultimately the reactor would extinguish; and pre-heating the feed can eliminate the temperature drop and pad wetness problem. It was concluded that BTEX compounds are reactive, and the technology appears promising. 19 figs

  16. Catalytic combustion for the elimination of methane, BTEX and other VOC : IV

    Energy Technology Data Exchange (ETDEWEB)

    Hayes, R.E.; Wanke, S.E. [Alberta Univ., Edmonton, AB (Canada). Dept. of Chemical and Materials Engineering

    2008-07-01

    Options for volatile organic compound combustion include homogeneous combustion (flaring) or catalytic combustion involving a flameless combustion process that uses a solid catalyst to promote the combustion reaction. This presentation discussed relative reactivity testing for volatile organic compounds (VOCs) over commercial catalysts. Several commercial pad catalysts were tested, as well as other powders. The relative reactivity of methane as well as benzene, toluene, ethylbenzene, and xylene (BTEX) were investigated. The purpose of the project was to evaluate combustion of concentrated methane streams that contained BTEX compounds; evaluate catalytic combustion using a counter diffusive radiant heater; develop mathematical models for the reactor to enhance design and understanding; improve the catalyst for BTEX combustion; and target application-dehydrator units. Topics that were addressed in the presentation included methane and benzene conversion; catalytic radiant heaters; small industrial and commercial units; measured temperature distribution; fuel slippage, methane conversion; the effect of water and hydrocarbons; the effect of water-liquid injection; and water addition as vapour. Several observations were offered, including that high percentages of injected liquid water can reduce reactor operating temperature; combustion of BTEX remained highly efficient, however liquid injection could also cause temperature reductions and ultimately the reactor would extinguish; and pre-heating the feed can eliminate the temperature drop and pad wetness problem. It was concluded that BTEX compounds are reactive, and the technology appears promising. 19 figs.

  17. Enhancement of exergy efficiency in combustion systems using flameless mode

    International Nuclear Information System (INIS)

    Hosseini, Seyed Ehsan; Wahid, Mazlan Abdul

    2014-01-01

    Highlights: • Exergy efficiency in flameless combustion mode is 13% more than conventional combustion. • The maximum exergy efficiency in flameless combustion mode is achieved when oxidizer contains 10% oxygen. • Exergy destruction of flameless combustion is maximized when CO 2 is used for dilution of oxidizer. - Abstract: An exergitic-based analysis of methane (CH 4 ) conventional and flameless combustion in a lab-scale furnace is performed to determine the rate of pollutant formation and the effective potential of a given amount of fuel in the various combustion modes. The effects of inlet air temperature on exergy efficiency and pollutant formation of conventional combustion in various equivalence ratios are analyzed. The rate of exergy destruction in different conditions of flameless combustion (various equivalence ratios, oxygen concentration in the oxidizer and the effects of diluent) are computed using three-dimensional (3D) computational fluid dynamic (CFD). Fuel consumption reduction and exergy efficiency augmentation are the main positive consequences of using preheated air temperature in conventional combustion, however pollutants especially NO x formation increases dramatically. Low and moderate temperature inside the chamber conducts the flameless combustion system to low level pollutant formation. Fuel consumption and exergy destruction reduce drastically in flameless mode in comparison with conventional combustion. Exergy efficiency of conventional and flameless mode is 75% and 88% respectively in stoichiometric combustion. When CO 2 is used for dilution of oxidizer, chemical exergy increases due to high CO 2 concentration in the combustion products and exergy efficiency reduces around 2% compared to dilution with nitrogen (N 2 ). Since the rate of irreversibilities in combustion systems is very high in combined heat and power (CHP) generation and other industries, application of flameless combustion could be effective in terms of pollutant

  18. Impact of low temperature combustion attaining strategies on diesel engine emissions for diesel and biodiesels: A review

    International Nuclear Information System (INIS)

    Imtenan, S.; Varman, M.; Masjuki, H.H.; Kalam, M.A.; Sajjad, H.; Arbab, M.I.; Rizwanul Fattah, I.M.

    2014-01-01

    Highlights: • Various low-temperature combustion strategies have been discussed briefly. • Effect on emissions has been discussed under low temperature combustion strategies. • Low-temperature combustion reduces NO x and PM simultaneously. • Higher CO, HC emissions with lower performance are the demerits of these strategies. • Biodiesels are also potential to attain low temperature combustion conditions. - Abstract: Simultaneous reduction of particulate matter (PM) and nitrogen oxides (NO x ) emissions from diesel exhaust is the key to current research activities. Although various technologies have been introduced to reduce emissions from diesel engines, the in-cylinder reduction techniques of PM and NO x like low temperature combustion (LTC) will continue to be an important field in research and development of modern diesel engines. Furthermore, increasing prices and question over the availability of diesel fuel derived from crude oil have introduced a growing interest. Hence it is most likely that future diesel engines will be operated on pure biodiesel and/or blends of biodiesel and crude oil-based diesel. Being a significant technology to reduce emissions, LTC deserves a critical analysis of emission characteristics for both diesel and biodiesel. This paper critically investigates both petroleum diesel and biodiesel emissions from the view point of LTC attaining strategies. Due to a number of differences of physical and chemical properties, petroleum diesel and biodiesel emission characteristics differ a bit under LTC strategies. LTC strategies decrease NO x and PM simultaneously but increase HC and CO emissions. Recent attempts to attain LTC by biodiesel have created a hope for reduced HC and CO emissions. Decreased performance issue during LTC is also being taken care of by latest ideas. However, this paper highlights the emissions separately and analyzes the effects of significant factors thoroughly under LTC regime

  19. Effect of Variant End of Injection Period on Combustion Process of Biodiesel Combustion

    Directory of Open Access Journals (Sweden)

    Khalid Amir

    2016-01-01

    Full Text Available Biodiesel is an alternative fuel as a replacement to the standard diesel fuel in combustion diesel engine. The biodiesel fuel has a significantly influences throughout the combustion process and exhaust emission. The purpose of this research is to investigate the combustion process behavior during the End of Injection (EOI period and operates under variant conditions using Rapid Compression Machine (RCM. Experimental of RCM is used to simulate a combustion process and combustion characteristics of diesel engine combustion. Three types of biodiesel blend which are B5, B10 and B15 were tested at several injection pressures of 80 MPa, 90 MPa and 130 MPa under different ambient temperatures, 750 K to 1100 K. The results of this study showed that the ignition delay slightly reduced with increasing the content of biodiesel blends from B5, B10 and B15 and became more shorten as the injection pressure been enhanced. As the injection pressure increased, the behavior of combustion pressure at end of injection is reduced, radically increased the NOX emission. It is noted that the process of combustion at the end of injection increased as the ambient temperature is rising. In fact, higher initial ambient temperature improved the fuel atomization and mixing process. Under the biodiesel combustion with higher ambient temperature condition, the exhaust emission of CO, O2, and HC became less but increased in NOX emission. Besides, increased in blends of biodiesel ratio are found to enhance the combustion process, resulted a decreased in HC emissions.

  20. Efficient low-temperature soot combustion by bimetallic Ag-Cu/SBA-15 catalysts.

    Science.gov (United States)

    Wen, Zhaojun; Duan, Xinping; Hu, Menglin; Cao, Yanning; Ye, Linmin; Jiang, Lilong; Yuan, Youzhu

    2018-02-01

    In this study, the effects of copper (Cu) additive on the catalytic performance of Ag/SBA-15 in complete soot combustion were investigated. The soot combustion performance of bimetallic Ag-Cu/SBA-15 catalysts was higher than that of monometallic Ag and Cu catalysts. The optimum catalytic performance was acquired with the 5Ag 1 -Cu 0.1 /SBA-15 catalyst, on which the soot combustion starts at T ig =225°C with a T 50 =285°C. The temperature for 50% of soot combustion was lower than that of conventional Ag-based catalysts to more than 50°C (Aneggi et al., 2009). Physicochemical characterizations of the catalysts indicated that addition of Cu into Ag could form smaller bimetallic Ag-Cu nanolloy particles, downsizing the mean particle size from 3.7nm in monometallic catalyst to 2.6nm in bimetallic Ag-Cu catalyst. Further experiments revealed that Ag and Cu species elicited synergistic effects, subsequently increasing the content of surface active oxygen species. As a result, the structure modifications of Ag by the addition of Cu strongly intensified the catalytic performance. Copyright © 2017. Published by Elsevier B.V.

  1. A Review on Homogeneous Charge Compression Ignition and Low Temperature Combustion by Optical Diagnostics

    Directory of Open Access Journals (Sweden)

    Chao Jin

    2015-01-01

    Full Text Available Optical diagnostics is an effective method to understand the physical and chemical reaction processes in homogeneous charge compression ignition (HCCI and low temperature combustion (LTC modes. Based on optical diagnostics, the true process on mixing, combustion, and emissions can be seen directly. In this paper, the mixing process by port-injection and direct-injection are reviewed firstly. Then, the combustion chemical reaction mechanism is reviewed based on chemiluminescence, natural-luminosity, and laser diagnostics. After, the evolution of pollutant emissions measured by different laser diagnostic methods is reviewed and the measured species including NO, soot, UHC, and CO. Finally, a summary and the future directions on HCCI and LTC used optical diagnostics are presented.

  2. Cycle-by-cycle exhaust temperature monitoring for detection of misfiring and combustion instability in reciprocating natural gas engines

    Energy Technology Data Exchange (ETDEWEB)

    Gardiner, D.P. [Nexum Research Corp., Kingston, ON (Canada); Bardon, M.F. [Royal Military Coll. of Canada, Kingston, ON (Canada). Dept. of Mechanical Engineering

    2007-07-01

    The effectiveness of a cycle-by-cycle exhaust temperature monitoring system on engines operating at or near their fully rate load capacity was examined. Tests were conducted on stationary industrial natural gas engines. The study evaluated the monitoring system's ability to detect isolated single misfires, as well as combustion instability during misfire-free operations when the air/fuel ratio of the engine was adjusted to progressively lower settings. The combustion instability level of the engines was quantified by determining the relative variability of the groups of consecutive cycles. The coefficient of variation of indicated mean effective pressure (COV of IMEP) was used to examine cyclic variability. A combustion instability index was used to quantify cyclic variability with cycle-by-cycle exhaust temperature monitoring. Two engines were tested, notably a Cummins QSK 19G turbocharged natural gas engine; and a Waukesha VHP L5790G industrial natural gas engine. The tests demonstrated that cycle-by-cycle exhaust temperature monitoring system was capable of detecting misfiring and combustion instabilities in natural gas engines. 6 refs., 9 figs.

  3. Effect of combustion characteristics on wall radiative heat flux in a 100 MWe oxy-coal combustion plant

    Energy Technology Data Exchange (ETDEWEB)

    Park, S.; Ryu, C. [Sungkyunkwan Univ., Suwon (Korea, Republic of). School of Mechanical Engineering; Chae, T.Y. [Sungkyunkwan Univ., Suwon (Korea, Republic of). School of Mechanical Engineering; Korea Institute of Industrial Technology, Cheonan (Korea, Republic of). Energy System R and D Group; Yang, W. [Korea Institute of Industrial Technology, Cheonan (Korea, Republic of). Energy System R and D Group; Kim, Y.; Lee, S.; Seo, S. [Korea Electric Power Research Institute (KEPRI), Daejeon (Korea, Republic of). Power Generation Lab.

    2013-07-01

    Oxy-coal combustion exhibits different reaction, flow and heat transfer characteristics from air-coal combustion due to different properties of oxidizer and flue gas composition. This study investigated the wall radiative heat flux (WRHF) of air- and oxy-coal combustion in a simple hexahedral furnace and in a 100 MWe single-wall-fired boiler using computational modeling. The hexahedral furnace had similar operation conditions with the boiler, but the coal combustion was ignored by prescribing the gas properties after complete combustion at the inlet. The concentrations of O{sub 2} in the oxidizers ranging between 26 and 30% and different flue gas recirculation (FGR) methods were considered in the furnace. In the hexahedral furnace, the oxy-coal case with 28% of O{sub 2} and wet FGR had a similar value of T{sub af} with the air-coal combustion case, but its WRHF was 12% higher. The mixed FGR case with about 27% O{sub 2} in the oxidizer exhibited the WRHF similar to the air-coal case. During the actual combustion in the 100 MWe boiler using mixed FGR, the reduced volumetric flow rates in the oxy-coal cases lowered the swirl strength of the burners. This stretched the flames and moved the high temperature region farther to the downstream. Due to this reason, the case with 30% O{sub 2} in the oxidizers achieved a WRHF close to that of air-coal combustion, although its adiabatic flame temperature (T{sub af}) and WHRF predicted in the simplified hexahedral furnace was 103 K and 10% higher, respectively. Therefore, the combustion characteristics and temperature distribution significantly influences the WRHF, which should be assessed to determine the ideal operating conditions of oxy- coal combustion. The choice of the weighted sum of gray gases model (WSGGM) was not critical in the large coal-fired boiler.

  4. Effect of air-excess on blends of RON70 partially premixed combustion

    NARCIS (Netherlands)

    Wang, S.; Bakker, P.C.; Somers, L.M.T.; de Goey, L.P.H.

    Partially Premixed Combustion (PPC) is a combustion concept that aims to provide combustion with low smoke and NOx emissions and a high thermal efficiency. Extending the ignition delay to enhance premixing, avoiding spray-driven combustion, and controlling temperature at an optimum level through use

  5. Combustion engineering

    CERN Document Server

    Ragland, Kenneth W

    2011-01-01

    Introduction to Combustion Engineering The Nature of Combustion Combustion Emissions Global Climate Change Sustainability World Energy Production Structure of the Book   Section I: Basic Concepts Fuels Gaseous Fuels Liquid Fuels Solid Fuels Problems Thermodynamics of Combustion Review of First Law Concepts Properties of Mixtures Combustion StoichiometryChemical EnergyChemical EquilibriumAdiabatic Flame TemperatureChemical Kinetics of CombustionElementary ReactionsChain ReactionsGlobal ReactionsNitric Oxide KineticsReactions at a Solid SurfaceProblemsReferences  Section II: Combustion of Gaseous and Vaporized FuelsFlamesLaminar Premixed FlamesLaminar Flame TheoryTurbulent Premixed FlamesExplosion LimitsDiffusion FlamesGas-Fired Furnaces and BoilersEnergy Balance and EfficiencyFuel SubstitutionResidential Gas BurnersIndustrial Gas BurnersUtility Gas BurnersLow Swirl Gas BurnersPremixed-Charge Engine CombustionIntroduction to the Spark Ignition EngineEngine EfficiencyOne-Zone Model of Combustion in a Piston-...

  6. Quantitative Thermochemical Measurements in High-Pressure Gaseous Combustion

    Science.gov (United States)

    Kojima, Jun J.; Fischer, David G.

    2012-01-01

    We present our strategic experiment and thermochemical analyses on combustion flow using a subframe burst gating (SBG) Raman spectroscopy. This unconventional laser diagnostic technique has promising ability to enhance accuracy of the quantitative scalar measurements in a point-wise single-shot fashion. In the presentation, we briefly describe an experimental methodology that generates transferable calibration standard for the routine implementation of the diagnostics in hydrocarbon flames. The diagnostic technology was applied to simultaneous measurements of temperature and chemical species in a swirl-stabilized turbulent flame with gaseous methane fuel at elevated pressure (17 atm). Statistical analyses of the space-/time-resolved thermochemical data provide insights into the nature of the mixing process and it impact on the subsequent combustion process in the model combustor.

  7. High-Temperature Electronics: Status and Future Prospects in the 21st Century

    OpenAIRE

    F. Touati; F. Mnif; A. Lawati

    2006-01-01

    This paper reviews the state of current electronics and states the drive toward high-temperature electronics. The problems specific to high-temperature effects on conventional electronics and prospects of alternative technologies like silicon-on-insulator, silicon carbide, and diamond are discussed. Improving petroleum recovery from oil wells with hightemperature coverage of downhole electronics, making combustion processes more efficient utilizing embedded electronics, programs for More Elec...

  8. Experimental study on oxidation and combustion characteristics of sodium droplets

    International Nuclear Information System (INIS)

    Zhang Zhigang; Sun Shubin; Liu Chongchong; Tang Yexin

    2015-01-01

    In the operation of the sodium-cooled fast reactor, the accident caused by the leakage and combustion of liquid sodium is common and frequent. In this paper, the oxidation and combustion characteristics of sodium droplets were studied by carrying out the experiments of the oxidation and combustion under different conditions of initial temperatures (140-370℃) of the sodium droplets and oxygen concentrations (4%-21%). The oxidation and combustion behaviors were visualized by a set of combustion apparatus of sodium droplet and a high speed camera. The experiment results show that the columnar oxides grow longer as the initial temperature of sodium droplet and oxygen concentration become lower. Under the same oxygen concentration condition, the sodium droplet with the higher initial temperature is easier to ignite and burn. When the initial temperature of sodium droplet is below 200℃, it is very difficult to ignite. If there is a turbulence damaging the oxide layer on the surface, the sodium droplet will also burn gradually. When the initial temperature ranges from 140℃ to 370℃ and the oxygen fraction is equal to or higher than 12%, the sodium droplet could burn completely and the maximum combustion temperature could roughly reach 600-800℃. When the oxygen concentration is below 12%, the sodium droplet could not burn completely and the highest combustion temperature is below 600℃. The results are helpful to the research on the columnar flow and spray sodium fire. (authors)

  9. Fabrication of Titanium Diboride-Cu Composite by Self-High Temperature Synthesis plus Quick Press

    Institute of Scientific and Technical Information of China (English)

    Jinyong ZHANG; Zhengyi FU; Weimin WANG

    2005-01-01

    Titanium diboride based composites, good candidates for contact materials, have high hardness, Young's modulus,high temperature stability, and excellent electrical, thermal conductivity. However a good interface of TiB2/Cu is very difficult to achieve for oxidation of TiB2. To avoid this oxidation behavior, the in situ combusting synthesis technology, SHS, was used to prepare TiB2/Cu composite. Thecharacters of Ti-B-xCu SHS were studied in detail,such as combustion temperature, products phases and grain size. Based on the experimental results a proper technology way of self-high temperature synthesis plus quick press (SHS/QP) was determined and compact TiB2/Cu composites with relative density over than 97 pct of the theoretical were fabricated by this method. The properties and microstructures of these TiB2 based composites were also investigated.

  10. On the high-temperature combustion of n-butanol: Shock tube data and an improved kinetic model

    KAUST Repository

    Vasu, Subith S.; Sarathy, Mani

    2013-01-01

    The combustion of n-butanol has received significant interest in recent years, because of its potential use in transportation applications. Researchers have extensively studied its combustion chemistry, using both experimental and theoretical

  11. High resolution real time capable combustion chamber simulation; Zeitlich hochaufloesende echtzeitfaehige Brennraumsimulation

    Energy Technology Data Exchange (ETDEWEB)

    Piewek, J. [Volkswagen AG, Wolfsburg (Germany)

    2008-07-01

    The article describes a zero-dimensional model for the real time capable combustion chamber pressure calculation with analogue pressure sensor output. The closed-loop-operation of an Engine Control Unit is shown at the hardware-in-the-loop-simulator (HiL simulator) for a 4-cylinder common rail diesel engine. The presentation of the model focuses on the simulation of the load variation which does not depend on the injection system and thus the simulated heat release rate. Particular attention is paid to the simulation and the resulting test possibilities regarding to full-variable valve gears. It is shown that black box models consisting in the HiL mean value model for the aspirated gas mass, the exhaust gas temperature after the outlet valve and the mean indicated pressure can be replaced by calculations from the high-resolution combustion chamber model. (orig.)

  12. Superheated fuel injection for combustion of liquid-solid slurries

    Science.gov (United States)

    Robben, F.A.

    1984-10-19

    A method and device are claimed for obtaining, upon injection, flash evaporation of a liquid in a slurry fuel to aid in ignition and combustion. The device is particularly beneficial for use of coal-water slurry fuels in internal combustion engines such as diesel engines and gas turbines, and in external combustion devices such as boilers and furnaces. The slurry fuel is heated under pressure to near critical temperature in an injector accumulator, where the pressure is sufficiently high to prevent boiling. After injection into a combustion chamber, the water temperature will be well above boiling point at a reduced pressure in the combustion chamber, and flash boiling will preferentially take place at solid-liquid surfaces, resulting in the shattering of water droplets and the subsequent separation of the water from coal particles. This prevents the agglomeration of the coal particles during the subsequent ignition and combustion process, and reduces the energy required to evaporate the water and to heat the coal particles to ignition temperature. The overall effect will be to accelerate the ignition and combustion rates, and to reduce the size of the ash particles formed from the coal. 2 figs., 2 tabs.

  13. Combustion phasing for maximum efficiency for conventional and high efficiency engines

    International Nuclear Information System (INIS)

    Caton, Jerald A.

    2014-01-01

    Highlights: • Combustion phasing for max efficiency is a function of engine parameters. • Combustion phasing is most affected by heat transfer, compression ratio, burn duration. • Combustion phasing is less affected by speed, load, equivalence ratio and EGR. • Combustion phasing for a high efficiency engine was more advanced. • Exergy destruction during combustion as functions of combustion phasing is reported. - Abstract: The importance of the phasing of the combustion event for internal-combustion engines is well appreciated, but quantitative details are sparse. The objective of the current work was to examine the optimum combustion phasing (based on maximum bmep) as functions of engine design and operating variables. A thermodynamic, engine cycle simulation was used to complete this assessment. As metrics for the combustion phasing, both the crank angle for 50% fuel mass burned (CA 50 ) and the crank angle for peak pressure (CA pp ) are reported as functions of the engine variables. In contrast to common statements in the literature, the optimum CA 50 and CA pp vary depending on the design and operating variables. Optimum, as used in this paper, refers to the combustion timing that provides the maximum bmep and brake thermal efficiency (MBT timing). For this work, the variables with the greatest influence on the optimum CA 50 and CA pp were the heat transfer level, the burn duration and the compression ratio. Other variables such as equivalence ratio, EGR level, engine speed and engine load had a much smaller impact on the optimum CA 50 and CA pp . For the conventional engine, for the conditions examined, the optimum CA 50 varied between about 5 and 11°aTDC, and the optimum CA pp varied between about 9 and 16°aTDC. For a high efficiency engine (high dilution, high compression ratio), the optimum CA 50 was 2.5°aTDC, and the optimum CA pp was 7.8°aTDC. These more advanced values for the optimum CA 50 and CA pp for the high efficiency engine were

  14. Chemical effects of a high CO2 concentration in oxy-fuel combustion of methane

    DEFF Research Database (Denmark)

    Glarborg, Peter; Bentzen, L.L.B.

    2008-01-01

    The oxidation of methane in an atmospheric-pres sure flow reactor has been studied experimentally under highly diluted conditions in N-2 and CO2, respectively. The stoichiometry was varied from fuel-lean to fuel-rich, and the temperatures covered the range 1200-1800 K. The results were interpreted...... CO2. The high local CO levels may have implications for near-burner corrosion and stagging, but increased problems with CO emission in oxy-fuel combustion are not anticipated....

  15. Experimental evaluation of main emissions during coal processing waste combustion.

    Science.gov (United States)

    Dmitrienko, Margarita A; Legros, Jean C; Strizhak, Pavel A

    2018-02-01

    The total volume of the coal processing wastes (filter cakes) produced by Russia, China, and India is as high as dozens of millions of tons per year. The concentrations of CO and CO 2 in the emissions from the combustion of filter cakes have been measured directly for the first time. They are the biggest volume of coal processing wastes. There have been many discussions about using these wastes as primary or secondary components of coal-water slurries (CWS) and coal-water slurries containing petrochemicals (CWSP). Boilers have already been operationally tested in Russia for the combustion of CWSP based on filter cakes. In this work, the concentrations of hazardous emissions have been measured at temperatures ranging from 500 to 1000°С. The produced CO and CO 2 concentrations are shown to be practically constant at high temperatures (over 900°С) for all the coal processing wastes under study. Experiments have shown the feasibility to lowering the combustion temperatures of coal processing wastes down to 750-850°С. This provides sustainable combustion and reduces the CO and CO 2 emissions 1.2-1.7 times. These relatively low temperatures ensure satisfactory environmental and energy performance of combustion. Using CWS and CWSP instead of conventional solid fuels significantly reduces NO x and SO x emissions but leaves CO and CO 2 emissions practically at the same level as coal powder combustion. Therefore, the environmentally friendly future (in terms of all the main atmospheric emissions: CO, CO 2 , NO x , and SO x ) of both CWS and CWSP technologies relies on low-temperature combustion. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Characteristics of fundamental combustion and NOx emission using various rank coals.

    Science.gov (United States)

    Kim, Sung Su; Kang, Youn Suk; Lee, Hyun Dong; Kim, Jae-Kwan; Hong, Sung Chang

    2011-03-01

    Eight types of coals of different rank were selected and their fundamental combustion characteristics were examined along with the conversion of volatile nitrogen (N) to nitrogen oxides (NOx)/fuel N to NOx. The activation energy, onset temperature, and burnout temperature were obtained from the differential thermogravimetry curve and Arrhenius plot, which were derived through thermo-gravimetric analysis. In addition, to derive the combustion of volatile N to NOx/fuel N to NOx, the coal sample, which was pretreated at various temperatures, was burned, and the results were compared with previously derived fundamental combustion characteristics. The authors' experimental results confirmed that coal rank was highly correlated with the combustion of volatile N to NOx/fuel N to NOx.

  17. Lab-scale investigation of Middle-Bosnia coals to achieve high-efficient and clean combustion technology

    Directory of Open Access Journals (Sweden)

    Smajevic Izet

    2014-01-01

    Full Text Available This paper describes full lab-scale investigation of Middle-Bosnia coals launched to support selection an appropriate combustion technology and to support optimization of the boiler design. Tested mix of Middle-Bosnia brown coals is projected coal for new co-generation power plant Kakanj Unit 8 (300-450 MWe, EP B&H electricity utility. The basic coal blend consisting of the coals Kakanj: Breza: Zenica at approximate mass ratio of 70:20:10 is low grade brown coal with very high percentage of ash - over 40%. Testing that coal in circulated fluidized bed combustion technique, performed at Ruhr-University Bohum and Doosan Lentjes GmbH, has shown its inconveniency for fluidized bed combustion technology, primarily due to the agglomeration problems. Tests of these coals in PFC (pulverized fuel combustion technology have been performed in referent laboratory at Faculty of Mechanical Engineering of Sarajevo University, on a lab-scale PFC furnace, to provide reliable data for further analysis. The PFC tests results are fitted well with previously obtained results of the burning similar Bosnian coal blends in the PFC dry bottom furnace technique. Combination of the coals shares, the process temperature and the air combustion distribution for the lowest NOx and SO2 emissions was found in this work, provided that combustion efficiency and CO emissions are within very strict criteria, considering specific settlement of lab-scale furnace. Sustainability assessment based on calculation economic and environmental indicators, in combination with Low Cost Planning method, is used for optimization the power plant design. The results of the full lab-scale investigation will help in selection optimal Boiler design, to achieve sustainable energy system with high-efficient and clean combustion technology applied for given coals.

  18. Room temperature ferromagnetism in Eu-doped ZnO nanoparticulate powders prepared by combustion reaction method

    International Nuclear Information System (INIS)

    Franco, A.; Pessoni, H.V.S.; Soares, M.P.

    2014-01-01

    Nanoparticulate powders of Eu-doped ZnO with 1.0, 1.5, 2.0 and 3.0 at% Eu were synthesized by combustion reaction method using zinc nitrate, europium nitrate and urea as fuel without subsequent heat treatments. X-ray diffraction patterns (XRD) of all samples showed broad peaks consistent with the ZnO wurtzite structure. The absence of extra reflections in the diffraction patterns ensures the phase purity, except for x=0.03 that exhibits small reflection corresponding to Eu 2 O 3 phase. The average crystallite size determined from the most prominent (1 0 1) peak of the diffraction using Scherrer's equation was in good agreement with those determined by transmission electron microscopy (TEM); being ∼26 nm. The magnetic properties measurements were performed using a vibrating sample magnetometer (VSM) in magnetic fields up to 2.0 kOe at room temperature. The hysteresis loops, typical of magnetic behaviors, indicating that the presence of an ordered magnetic structure can exist in the Eu-doped ZnO wurtzite structure at room temperature. The room temperature ferromagnetism behavior increases with the Eu 3+ doping concentration. All samples exhibited the same Curie temperature (T C ) around ∼726 K, except for x=0.01; T C ∼643 K. High resolution transmission electron microscopy (HRTEM) images revealed defects/strain in the lattice and grain boundaries of Eu-doped ZnO nanoparticulate powders. The origin of room temperature ferromagnetism in Eu-doped ZnO nanoparticulate powders was discussed in terms of these defects, which increase with the Eu 3+ doping concentration. - Highlights: • Room-temperature ferromagnetism. • Structural and magnetic properties of nanoparticulate powders of Zn 1−x Eu x O. • Combustion reaction method

  19. Method and device for the combustion of pulverised coal

    Energy Technology Data Exchange (ETDEWEB)

    Schoppe, F

    1977-01-13

    Until now, high combustion space loadings in pulverised coal firing were only obtained with melting combustion, where the ash is fluid. The disadvantage of this is that part of the heating surface is covered by liquid slack, and this type of combustion cannot operate in 'on-off operation', as the slack solidifies when the boiler is switched off. According to the invention, however, pulverised coal, which is reluctant to react, can be burnt at high combustion space loadings of over 2000 Mcal/cu. metre. hour. atm. with dry ash extraction, so that its use is possible for the combustion in central heating plants in detached houses and blocks of flats, with 'on-off operation'. For this purpose, the pulverised coal is heated under excess pressure in an atmosphere with a maximum of 10% of oxygen with a speed of heating of 1000/sup 0/C/sec up to 100 to 150/sup 0/C above its ignition temperature, and can be blown into the combustion air. Tangentially to the flame jet, a cold gas flow is guided so that burning particles thrown out at the sides are cooled below the ash melting temperature, before they reach the walls. The burning flame jet is accelerated, by using the excess pressure, via an injector, into a zone at less than the ash melting temperature, so that dry ash extraction is guaranteed.

  20. High temperature and high pressure gas cell for quantitative spectroscopic measurements

    International Nuclear Information System (INIS)

    Christiansen, Caspar; Stolberg-Rohr, Thomine; Fateev, Alexander; Clausen, Sønnik

    2016-01-01

    A high temperature and high pressure gas cell (HTPGC) has been manufactured for quantitative spectroscopic measurements in the pressure range 1–200 bar and temperature range 300–1300 K. In the present work the cell was employed at up to 100 bar and 1000 K, and measured absorption coefficients of a CO_2–N_2 mixture at 100 bar and 1000 K are revealed for the first time, exceeding the high temperature and pressure combinations previously reported. This paper discusses the design considerations involved in the construction of the cell and presents validation measurements compared against simulated spectra, as well as published experimental data. - Highlights: • A ceramic gas cell designed for gas measurements up to 1300 K and 200 bar. • The first recorded absorption spectrum of CO_2 at 1000 K and 101 bar is presented. • Voigt profiles might suffice in the modeling of radiation from CO_2 in combustion.

  1. Control of the low-load region in partially premixed combustion

    Science.gov (United States)

    Ingesson, Gabriel; Yin, Lianhao; Johansson, Rolf; Tunestal, Per

    2016-09-01

    Partially premixed combustion (PPC) is a low temperature, direct-injection combustion concept that has shown to give promising emission levels and efficiencies over a wide operating range. In this concept, high EGR ratios, high octane-number fuels and early injection timings are used to slow down the auto-ignition reactions and to enhance the fuel and are mixing before the start of combustion. A drawback with this concept is the combustion stability in the low-load region where a high octane-number fuel might cause misfire and low combustion efficiency. This paper investigates the problem of low-load PPC controller design for increased engine efficiency. First, low-load PPC data, obtained from a multi-cylinder heavy- duty engine is presented. The data shows that combustion efficiency could be increased by using a pilot injection and that there is a non-linearity in the relation between injection and combustion timing. Furthermore, intake conditions should be set in order to avoid operating points with unfavourable global equivalence ratio and in-cylinder temperature combinations. Model predictive control simulations were used together with a calibrated engine model to find a gas-system controller that fulfilled this task. The findings are then summarized in a suggested engine controller design. Finally, an experimental performance evaluation of the suggested controller is presented.

  2. Spray combustion of Jet-A and diesel fuels in a constant volume combustion chamber

    KAUST Repository

    Jing, Wei

    2015-01-01

    This work investigates the spray combustion of Jet-A fuel in an optical constant-volume combustion chamber under different ambient initial conditions. Ambient temperature was varied at 800 K, 1000 K, and 1200 K and five different ambient O2 concentrations were used, spanning 10-21%. These ambient conditions can be used to mimic practical diesel engine working conditions under different fuel injection timings and exhaust gas recirculation (EGR) levels. Both transient and quasi-steady state analyses were conducted. The transient analysis focused on the flame development from the beginning to the end of the combustion process, illustrating how the flame structure evolves with time. The quasi-steady state analysis concentrated on the stable flame structure and compared the flame emissions in terms of spatially integrated intensity, flame effective area, and intensity per pixel. The transient analysis was based on measurements using high-speed imaging of both OH∗ chemiluminescence and broadband natural luminosity (NL). For the quasi-steady state analysis, three flame narrow-band emissions (OH∗ at 310 nm, Band A at 430 nm and Band B at 470 nm) were captured using an ICCD camera. Based on the current Jet-A data and diesel data obtained from previous experiments, a comparison between Jet-A and diesel was made in terms of flame development during the transient state and spatially integrated intensity, flame effective area, and intensity per pixel during the quasi-steady state. For the transient results, Jet-A shares a similar flame development trend to diesel, but featuring a narrower region of NL and a wider region of OH∗ with the increase of ambient temperature and O2 concentration. The soot cloud is oxidized more quickly for Jet-A than diesel at the end of combustion, evident by comparing the area of NL, especially under high O2 concentration. The quasi-steady state results suggest that soot is oxidized effectively under high O2 concentration conditions by the

  3. Gasoline Ultra Efficient Fuel Vehicle with Advanced Low Temperature Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Confer, Keith [Delphi Automotive Systems, LLC, Troy, MI (United States)

    2014-12-18

    The objective of this program was to develop, implement and demonstrate fuel consumption reduction technologies which are focused on reduction of friction and parasitic losses and on the improvement of thermal efficiency from in-cylinder combustion. The program was executed in two phases. The conclusion of each phase was marked by an on-vehicle technology demonstration. Phase I concentrated on short term goals to achieve technologies to reduce friction and parasitic losses. The duration of Phase I was approximately two years and the target fuel economy improvement over the baseline was 20% for the Phase I demonstration. Phase II was focused on the development and demonstration of a breakthrough low temperature combustion process called Gasoline Direct- Injection Compression Ignition (GDCI). The duration of Phase II was approximately four years and the targeted fuel economy improvement was 35% over the baseline for the Phase II demonstration vehicle. The targeted tailpipe emissions for this demonstration were Tier 2 Bin 2 emissions standards.

  4. Experimental study of rapid brown coal pyrolysis at high temperature

    Energy Technology Data Exchange (ETDEWEB)

    Qian, Lin; Sun, Shaozeng; Meng, Shun; Meng, Xianyu; Guo, Yangzhou [Harbin Institute of Technology, Harbin (China). Combustion Engineering Research Inst.

    2013-07-01

    Rapid coal pyrolysis is a very important step in the early stage of combustion. Rapid pyrolysis experiments of a brown coal at high temperature have been studied on a laminar drop tube furnace. The volatile mass release measured in this study is high for low rank coal. The activation energy and pre-exponential factor of pyrolysis are 19901.22 kJ/mol and 102.71, respectively. The nitrogen distribution between volatile and char is 0.54. With the increase of temperature, the yields of NH{sub 3} decreases, while those of HCN increases, leading the value of HCN/NH{sub 3} to become larger. At high temperature, the main nitrogen- containing species of pyrolysis in volatile is HCN.

  5. Specifics of phytomass combustion in small experimental device

    Science.gov (United States)

    Lenhard, Richard; Mičieta, Jozef; Jandačka, Jozef; Gavlas, Stanislav

    2015-05-01

    A wood pellet combustion carries out with high efficiency and comfort in modern pellet boilers. These facts help to increase the amount of installed pellet boilers in households. The combustion process quality depends besides the combustion conditions also on the fuel quality. The wood pellets, which don`t contain the bark and branches represent the highest quality. Because of growing pellet demand, an herbal biomass (phytomass), which is usually an agricultural by-product becomes economically attractive for pellet production. Although the phytomass has the net calorific value relatively slightly lower than the wood biomass, it is often significantly worse in view of the combustion process and an emission production. The combustion of phytomass pellets causes various difficulties in small heat sources, mainly due to a sintering of fuel residues. We want to avoid the ash sintering by a lowering of temperature in the combustion chamber below the ash sintering temperature of phytomass via the modification of a burner design. For research of the phytomass combustion process in the small boilers is constructed the experimental combustion device. There will investigate the impact of cooling intensity of the combustion chamber on the combustion process and emissions. Arising specific requirements from the measurement will be the basis for the design of the pellet burner and for the setting of operating parameters to the trouble-free phytomass combustion was guaranteed.

  6. Specifics of phytomass combustion in small experimental device

    Directory of Open Access Journals (Sweden)

    Lenhard Richard

    2015-01-01

    Full Text Available A wood pellet combustion carries out with high efficiency and comfort in modern pellet boilers. These facts help to increase the amount of installed pellet boilers in households. The combustion process quality depends besides the combustion conditions also on the fuel quality. The wood pellets, which don`t contain the bark and branches represent the highest quality. Because of growing pellet demand, an herbal biomass (phytomass, which is usually an agricultural by-product becomes economically attractive for pellet production. Although the phytomass has the net calorific value relatively slightly lower than the wood biomass, it is often significantly worse in view of the combustion process and an emission production. The combustion of phytomass pellets causes various difficulties in small heat sources, mainly due to a sintering of fuel residues. We want to avoid the ash sintering by a lowering of temperature in the combustion chamber below the ash sintering temperature of phytomass via the modification of a burner design. For research of the phytomass combustion process in the small boilers is constructed the experimental combustion device. There will investigate the impact of cooling intensity of the combustion chamber on the combustion process and emissions. Arising specific requirements from the measurement will be the basis for the design of the pellet burner and for the setting of operating parameters to the trouble-free phytomass combustion was guaranteed.

  7. Evaluation of a high-temperature burner-duct-recuperator system

    Science.gov (United States)

    1990-07-01

    The U.S. Department of Energy's (DOE) Office of Industrial Technologies (OIT) sponsors research and development (R and D) to improve the energy efficiency of American industry and to provide for fuel flexibility. OIT has funded a multiyear R and D project by the Babcock and Wilcox Company (B and W) to design, fabricate, field test, and evaluate a high-temperature burner-duct-recuperator (HTBDR) system. This ceramic-based recuperator system recovers waste heat from the corrosive, high-temperature (2170 F) flue gas stream of a steel soaking pit to preheat combustion air to as high as 1700 F. The preheated air is supplied to a high-temperature burner. The B and W R and D program, which is now complete, involved several activities, including selecting and evaluating ceramic materials, designing the system, and developing and evaluating the prototype. In addition, a full-scale unit was tested at a B and W steel soaking pit. The full-scale system consisted of a modular single-stage ceramic recuperator, a conventional two-pass metallic recuperator, a high-temperature burner, fans, insulated ducting, and associated controls and instrumentation. The metallic recuperator preheated combustion air to about 750 F before it passed to the ceramic module. This technical case study describes the DOE/B and W recuperator project and highlights the field tests of the full-scale recuperator system. The document makes results of field tests and data analysis available to other researchers and private industry. It discusses project status, summarizes field tests, and reviews the potential effects the technology will have on energy use and system economics.

  8. An experimental investigation into combustion and performance characteristics of an HCCI gasoline engine fueled with n-heptane, isopropanol and n-butanol fuel blends at different inlet air temperatures

    International Nuclear Information System (INIS)

    Uyumaz, Ahmet

    2015-01-01

    Highlights: • Combustion was retarded with the increase of the amount of isopropanol and n-butanol in the test fuels. • Combustion was advanced with the increase of air inlet temperature on HCCI combustion. • Isopropanol seems more suitable fuel due to controlling the HCCI combustion and preventing knocking. • Almost zero NO emissions were measured when alcohol used except for n-heptane and B20 test fuels. - Abstract: An experimental study was conducted in a single cylinder, four stroke port injection Ricardo Hydra test engine in order to determine the effects of pure n-heptane, the blends of n-heptane and n-butanol fuels B20, B30, B40 (including 20%, 30%, 40% n-butanol and 80%, 70%, 60% n-heptane by vol. respectively) and the blends of n-heptane and isopropanol fuels P20, P30, P40 (including 20%, 30%, 40% isopropanol and 80%, 70%, 60% n-heptane by vol. respectively) on HCCI combustion. Combustion and performance characteristics of n-heptane, n-butanol and isopropanol were investigated at constant engine speed of 1500 rpm and λ = 2 in a HCCI engine. The effects of inlet air temperature were also examined on HCCI combustion. The test results showed that the start of combustion was advanced with the increasing of inlet air temperature for all test fuels. Start of combustion delayed with increasing percentage of n-butanol and isopropanol in the test fuels. Knocking combustion was seen with B20 and n-heptane test fuels. Minimum combustion duration was observed in case of using B40. Almost zero NO emissions were measured with test fuels apart from n-heptane and B20. The test results also showed that CO and HC emissions decreased with the increase of inlet air temperature for all test fuels. Isopropanol showed stronger resistance for knocking compared to n-butanol in HCCI combustion due to its higher octane number. It was determined that n-butanol was more advantageous according to isopropanol as thermal efficiency. As a result it was found that the HCCI

  9. Modeling of Plasma Assisted Combustion

    Science.gov (United States)

    Akashi, Haruaki

    2012-10-01

    Recently, many experimental study of plasma-assisted combustion has been done. However, numerous complex reactions in combustion of hydrocarbons are preventing from theoritical study for clarifying inside the plasma-assisted combustion, and the effect of plasma-assist is still not understood. Shinohara and Sasaki [1,2] have reported that the shortening of flame length by irradiating microwave without increase of gas temperature. And they also reported that the same phenomena would occur when applying dielectric barrier discharges to the flame using simple hydrocarbon, methane. It is suggested that these phenomena may result by the electron heating. To clarify this phenomena, electron behavior under microwave and DBD was examined. For the first step of DBD plasma-assisted combustion simulation, electron Monte Carlo simulation in methane, oxygen and argon mixture gas(0.05:0.14:0.81) [2] has been done. Electron swarm parameters are sampled and electron energy distribution function (EEDF)s are also determined. In the combustion, gas temperature is higher(>1700K), so reduced electric field E/N becomes relatively high(>10V/cm/Torr). The electrons are accelerated to around 14 eV. This result agree with the optical emission from argon obtained by the experiment of reference [2]. Dissociation frequency of methane and oxygens are obtained in high. This might be one of the effect of plasma-assist. And it is suggested that the electrons should be high enough to dissociate methane, but plasma is not needed.[4pt] [1] K. Shinohara et al, J. Phys. D:Appl. Phys., 42, 182008 (1-7) (2009).[0pt] [2] K. Sasaki, 64th Annual Gaseous Electronic Conference, 56, 15 CT3.00001(2011).

  10. Application of macro-cellular SiC reactor to diesel engine-like injection and combustion conditions

    Science.gov (United States)

    Cypris, Weclas, M.; Greil, P.; Schlier, L. M.; Travitzky, N.; Zhang, W.

    2012-05-01

    One of novel combustion technologies for low emissions and highly efficient internal combustion engines is combustion in porous reactors (PM). The heat release process inside combustion reactor is homogeneous and flameless resulting in a nearly zero emissions level. Such combustion process, however is non-stationary, is performed under high pressure with requirement of mixture formation directly inside the combustion reactor (high pressure fuel injection). Reactor heat capacity resulting in lowering of combustion temperature as well as internal heat recuperation during the engine cycle changes the thermodynamic conditions of the process as compared to conventional engine. For the present investigations a macro-cellular lattice structure based on silicon carbide (non-foam structure) with 600 vertical cylindrical struts was fabricated and applied to engine-like combustion conditions (combustion chamber). The lattice design with a high porosity > 80% was shaped by indirect three-dimensional printing of a SiC powder mixed with a dextrin binder which also serves as a carbon precursor. In order to perform detailed investigations on low-and high-temperature oxidation processes in porous reactors under engine-like conditions, a special combustion chamber has been built and equipped with a Diesel common-rail injection system. This system simulates the thermodynamic conditions at the time instance of injection onset (corresponding to the nearly TDC of compression in a real engine). Overall analysis of oxidation processes (for variable initial pressure, temperature and air excess ratio) for free Diesel spray combustion and for combustion in porous reactor allows selection of three regions representing different characteristics of the oxidation process represented by a single-step and multi-step reactions Another characteristic feature of investigated processes is reaction delay time. There are five characteristic regions to be selected according to the delay time (t) duration

  11. Environmental optimisation of waste combustion

    Energy Technology Data Exchange (ETDEWEB)

    Schuster, Robert [AaF Energikonsult, Stockholm (Sweden); Berge, Niclas; Stroemberg, Birgitta [TPS Termiska Processer AB, Nykoeping (Sweden)

    2000-12-01

    The regulations concerning waste combustion evolve through R and D and a strive to get better and common regulations for the European countries. This study discusses if these rules of today concerning oxygen concentration, minimum temperature and residence time in the furnace and the use of stand-by burners are needed, are possible to monitor, are the optimum from an environmental point of view or could be improved. No evidence from well controlled laboratory experiments validate that 850 deg C in 6 % oxygen content in general is the best lower limit. A lower excess air level increase the temperature, which has a significant effect on the destruction of hydrocarbons, favourably increases the residence time, increases the thermal efficiency and the efficiency of the precipitators. Low oxygen content is also necessary to achieve low NO{sub x}-emissions. The conclusion is that the demands on the accuracy of the measurement devices and methods are too high, if they are to be used inside the furnace to control the combustion process. The big problem is however to find representative locations to measure temperature, oxygen content and residence time in the furnace. Another major problem is that the monitoring of the operation conditions today do not secure a good combustion. It can lead to a false security. The reason is that it is very hard to find boilers without stratifications. These stratifications (stream lines) has each a different history of residence time, mixing time, oxygen and combustible gas levels and temperature, when they reach the convection area. The combustion result is the sum of all these different histories. The hydrocarbons emission is in general not produced at a steady level. Small clouds of unburnt hydrocarbons travels along the stream lines showing up as peaks on a THC measurement device. High amplitude peaks has a tendency to contain higher ratio of heavy hydrocarbons than lower peaks. The good correlation between some easily detected

  12. An Experimental Study on Axial Temperature Distribution of Combustion of Dewatered Poultry Sludge in Fluidized bed combustor

    Directory of Open Access Journals (Sweden)

    Abbas A.H.

    2016-01-01

    Full Text Available A laboratory scale bubbling fluidized bed combustor was designed and fabricated to study the combustion of dewatered poultry sludge at different operational parameters. This paper present a study on the influence of equivalent ratio, secondary to primary air ratio and the fuel feed rate on the temperature distribution along the combustor. The equivalent ratio has been changed between 0.8 to 1.4% under poultry sludge feed rate of 10 kg/h and from 0.8 to 1 under poultry sludge feed rate of 15 kg/h. The secondary to primary air ratio was varied from 0.1 to 0.5 at 0.65 m injection height and 1.25 equivalent ratio. The results showed that these factors had a significant influence on the combustion characteristics of poultry sludge. The temperature distribution along the combustor was found to be strongly dependent on the fuel feed rate and the equivalent ratio and it increased when these two factors increased. However, the secondary air ratio increased the temperature in the lower region of the combustor while no significant effect was observed at the upper region of the combustor. The results suggested that the poultry sludge can be used as a fuel with high thermal combustor efficiency.

  13. Determination of surface temperatures in combustion environments using thermographic phosphors; Wandtemperaturmessungen in Verbrennungsumgebungen mithilfe thermographischer Phosphore

    Energy Technology Data Exchange (ETDEWEB)

    Bruebach, J.; Kissel, T. [TU Darmstadt (Germany). FG Energie- und Kraftwerkstechnik; Dreizler, A. [TU Darmstadt (Germany). FG Reaktive Stroemungen und Messtechnik

    2009-07-01

    A phosphor thermometry system was characterised with regard to all sources of systematic errors. Exemplary, the point measurement of a surface temperature and the determination of wall-normal temperature gradients within an optically accessible combustion chamber are outlined. Furthermore, the temporal temperature characteristic at the quartz ring of an optically accessible engine is presented. (orig.)

  14. Study on the effect of distance between the two nozzle holes on interaction of high pressure combustion-gas jets with liquid

    International Nuclear Information System (INIS)

    Xue, Xiaochun; Yu, Yonggang; Zhang, Qi

    2014-01-01

    Highlights: • We design a five-stage cylindrical stepped-wall chamber to study twin combustion-gas jets. • We observe mixing processes of twin combustion-gases and liquid by high speed photographic system. • We discuss the influence of multiple parameters on expansion shape of the Taylor cavities. • The three-dimensional mathematics model is established to simulate the energy release process. • We obtain distribution characteristics of parameters under different nozzle distances. - Abstract: The combustion-gas generator and cylindrical stepped-wall observation chambers with five stages are designed to study the expansion characteristic of twin combustion-gas jets in liquid working medium under high temperature and high pressure. The expansion processes of Taylor cavities formed by combustion-gas jets and the mixing characteristics of gas–liquid are studied by means of high-speed digital camera system. The effects of the distance between the two nozzle holes, injection pressure and nozzle diameter on jet expansion processes are discussed. The experimental results indicate that, the velocity differences exist on the gas–liquid interface during expansion processes of twin combustion-gas jets, and the effect of Taylor–Helmholtz instability is intense, so interfaces between gas and liquid show turbulent folds and randomness. The strong turbulent mixing of gas and liquid leads to release of combustion-gas energy with the temperature decreasing. Moreover, the mixing effectiveness is obviously enhanced on the corners of each step of the cylindrical stepped-wall structure, forming radial expansion phenomenon. The reasonable matching of multi-parameter can restrain the jet instability and make the combustion-gas energy orderly release. Based on the experiments, the three-dimensional unsteady mathematical model of interaction of twin combustion-gas jets and liquid working medium is established to obtain the density, pressure, velocity and temperature

  15. Hydrodynamic and thermal mechanisms of filtration combustion inclinational instability based on non-uniform distribution of initial preheating temperature

    Science.gov (United States)

    Xia, Yongfang; Shi, Junrui; Xu, Youning; Ma, Rui

    2018-03-01

    Filtration combustion (FC) is one style of porous media combustion with inert matrix, in which the combustion wave front propagates, only downstream or reciprocally. In this paper, we investigate the FC flame front inclinational instability of lean methane/air mixtures flowing through a packed bed as a combustion wave front perturbation of the initial preheating temperature non-uniformity is assumed. The predicted results show that the growth rate of the flame front inclinational angle is proportional to the magnitude of the initial preheating temperature difference. Additionally, depending on gas inlet gas velocity and equivalence ratio, it is demonstrated that increase of gas inlet gas velocity accelerates the FC wave front deformation, and the inclinational instability evolves faster at lower equivalence ratio. The development of the flame front inclinational angle may be regarded as a two-staged evolution, which includes rapid increase, and approaching maximum value of inclinational angle due to the quasi-steady condition of the combustion system. The hydrodynamic and thermal mechanisms of the FC inclinational instability are analyzed. Consequently, the local propagation velocity of the FC wave front is non-uniform to result in the development of inclinational angle at the first stage of rapid increase.

  16. Low emission turbulent technology for fuel combustion

    International Nuclear Information System (INIS)

    Finker, F. Z.; Kubyshkin, I. B.; Zakharov, B. Yu.; Akhmedov, D. B.; Sobchuk, Ch.

    1997-01-01

    The company 'POLITEKHENERGO' in co-operation and the Russian-Poland firm 'EnergoVIR' have performed investigations for modernization of the current existing boilers. A low emission turbulent technology has been used for the modernization of 10 industrial boilers. The reduction of NO x emissions is based on the following processes: 1) multistage combustion assured by two counter-deviated fluxes; 2) Some of the combustion facilities have an abrupt slope and a reduced air supply which leads to an intense separation of the fuel in the bottom part and a creation of a low-temperature combustion zone where the active restoration of the NO x takes part; 3) The influence of the top high-temperature zone on the NO x formation is small. Thus the 'sandwich' consisting of 'cold' and'hot' combustion layers provides a full rate combustion. This technique permits to: decrease of the NO x and CO x down to the European standard values;increase of the efficiency in 1-2%; obtain a stable coal combustion up to 97-98%; assure the large loading range (30 -100%); modernize and use the old boilers

  17. Demonstration of high temperature thermoelectric waste heat recovery from exhaust gases of a combustion engine

    Energy Technology Data Exchange (ETDEWEB)

    Trottmann, Matthias; Weidenkaff, Anke; Populoh, Sascha; Brunko, Oliver; Veziridis, Angelika; Bach, Christian; Cabalzar, Urs [Empa, Duebendorf (Switzerland)

    2011-07-01

    The energy efficiency of passenger cars becomes increasingly important due to a growing awareness in terms of climate change and shortages of resources associated with rising fuel prices. In addition to the efforts towards the optimization of the engine's internal efficiency, waste heat recovery is the main objective. In this respect, thermoelectric (TE) devices seem to be suited as heat recuperation systems. Thermoelectric generators allow for direct transformation of thermal into electrical energy. In order to thoroughly investigate this type of recovery system a TE demonstrator was mounted on the muffler of a VW Touran and tested. The waste heat of the exhaust gas was converted into electricity with a conversion rate of {proportional_to}. 3.5%. The limiting factor was the low thermal stability of the commercial modules used in this pre-study to elaborate reference values. Thermoelectric modules based on sustainable and temperature-stable materials are being developed to improve the measured values. A thermoelectric test generator with perovskite-type oxide modules was constructed confirm the function and stability at elevated temperatures. Despite all the advantages of this material class, the TE performance is still to be improved. A quantitative measure of a material's TE performance is the temperature-independent Figure of Merit ZT. ZT increases with decreasing thermal and increasing electrical conductivity. An approach to thermal conductivity reduction is nanostructuring of the material. The Ultrasonic Spray Combustion (USC) technique allows to produce powders with a grain size on the nanoscale and was tested in this study. (orig.)

  18. Combustion and emissions characteristics of high n-butanol/diesel ratio blend in a heavy-duty diesel engine and EGR impact

    International Nuclear Information System (INIS)

    Chen, Zheng; Wu, Zhenkuo; Liu, Jingping; Lee, Chiafon

    2014-01-01

    Highlights: • Effects of EGR on high n-butanol/diesel ratio blend (Bu40) were investigated and compared with neat diesel (Bu00). • Bu40 has higher NOx due to wider combustion high-temperature region. • Bu40 has lower soot due to local lower equivalence ratio distribution. • Bu40 has higher CO due to lower gas temperature in the late expansion process. • For Bu40, EGR reduces NOx emissions dramatically with no obvious influence on soot. - Abstract: In this work, the combustion and emission fundamentals of high n-butanol/diesel ratio blend with 40% butanol (i.e., Bu40) in a heavy-duty diesel engine were investigated by experiment and simulation at constant engine speed of 1400 rpm and an IMEP of 1.0 MPa. Additionally, the impact of EGR was evaluated experimentally and compared with neat diesel fuel (i.e., Bu00). The results show that Bu40 has higher cylinder pressure, longer ignition delay, and faster burning rate than Bu00. Compared with Bu00, moreover, Bu40 has higher NOx due to wider combustion high-temperature region, lower soot due to local lower equivalence ratio distribution, and higher CO due to lower gas temperature in the late expansion process. For Bu40, EGR reduces NOx emissions dramatically with no obvious influence on soot. Meanwhile, there is no significant change in HC and CO emissions and indicated thermal efficiency (ITE) with EGR until EGR threshold is reached. When EGR rate exceeds the threshold level, HC and CO emissions increase dramatically, and ITE decreases markedly. Compared with Bu00, the threshold of Bu40 appears at lower EGR rate. Consequently, combining high butanol/diesel ratio blend with medium EGR has the potential to achieve ultra-low NOx and soot emissions simultaneously while maintaining high thermal efficiency level

  19. Investigation of bluff-body micro-flameless combustion

    International Nuclear Information System (INIS)

    Hosseini, Seyed Ehsan; Wahid, Mazlan Abdul

    2014-01-01

    Highlights: • The temperature uniformity of the micro-flameless combustion increases when a triangular bluff-body is applied. • The velocity and temperature of exhaust gases are higher in micro-flameless combustion compared to the conventional mode. • The rate of fuel–oxidizer consumption in micro-flameless mode is lower than conventional micro-combustion. - Abstract: Characteristics of lean premixed conventional micro-combustion and lean non-premixed flameless regime of methane/air are investigated in this paper by solving three-dimensional governing equations. At moderate equivalence ratio (∅ = 0.5), standard k–ε and the eddy-dissipation concept are employed to simulate temperature distribution and combustion stability of these models. The effect of bluff-body on the temperature distribution of both conventional and flameless mode is developed. The results show that in the premixed conventional micro-combustion the stability of the flame is increased when a triangular bluff-body is applied. Moreover, micro-flameless combustion is more stable when bluff-body is used. Micro-flameless mode with bluff-body and 7% O 2 concentration (when N 2 is used as diluent) illustrated better performance than other cases. The maximum temperature in premixed conventional micro-combustion and micro-flameless combustion was recorded 2200 K and 1520 K respectively. Indeed, the flue gas temperature of conventional mode and flameless combustion was 1300 K and 1500 K respectively. The fluctuation of temperature in the conventional micro-combustor wall has negative effects on the combustor and reduces the lifetime of micro-combustor. However, in the micro-flameless mode, the wall temperature is moderate and uniform. The rate of fuel–oxidizer consumption in micro-flameless mode takes longer time and the period of cylinders recharging is prolonged

  20. Highly time-resolved imaging of combustion and pyrolysis product concentrations in solid fuel combustion: NO formation in a burning cigarette.

    Science.gov (United States)

    Zimmermann, Ralf; Hertz-Schünemann, Romy; Ehlert, Sven; Liu, Chuan; McAdam, Kevin; Baker, Richard; Streibel, Thorsten

    2015-02-03

    The highly dynamic, heterogeneous combustion process within a burning cigarette was investigated by a miniaturized extractive sampling probe (microprobe) coupled to photoionization mass spectrometry using soft laser single photon ionization (SPI) for online real-time detection of molecular ions of combustion and pyrolysis products. Research cigarettes smoked by a smoking machine are used as a reproducible model system for solid-state biomass combustion, which up to now is not addressable by current combustion-diagnostic tools. By combining repetitively recorded online measurement sequences from different sampling locations in an imaging approach, highly time- and space-resolved quantitative distribution maps of, e.g., nitrogen monoxide, benzene, and oxygen concentrations were obtained at a near microscopic level. The obtained quantitative distribution maps represent a time-resolved, movie-like imaging of the respective compound's formation and destruction zones in the various combustion and pyrolysis regions of a cigarette during puffing. Furthermore, spatially resolved kinetic data were ascertainable. The here demonstrated methodology can also be applied to various heterogenic combustion/pyrolysis or reaction model systems, such as fossil- or biomass-fuel pellet combustion or to a positional resolved analysis of heterogenic catalytic reactions.

  1. Spray combustion of biomass-based renewable diesel fuel using multiple injection strategy in a constant volume combustion chamber

    KAUST Repository

    Jing, Wei

    2016-05-26

    Effect of a two-injection strategy associated with a pilot injection on the spray combustion process was investigated under conventional diesel combustion conditions (1000 K and 21% O2 concentration) for a biomass-based renewable diesel fuel, i.e., biomass to liquid (BTL), and a regular No. 2 diesel in a constant volume combustion chamber using multiband flame measurement and two-color pyrometry. The spray combustion flame structure was visualized by using multiband flame measurement to show features of soot formation, high temperature and low temperature reactions, which can be characterized by the narrow-band emissions of radicals or intermediate species such as OH, HCHO, and CH. The objective of this study was to identify the details of multiple injection combustion, including a pilot and a main injection, and to provide further insights on how the two injections interact. For comparison, three injection strategies were considered for both fuels including a two-injection strategy (Case TI), single injection strategy A (Case SA), and single injection strategy B (Case SB). Multiband flame results show a strong interaction, indicated by OH emissions between the pilot injection and the main injection for Case TI while very weak connection is found for the narrow-band emissions acquired through filters with centerlines of 430 nm and 470 nm. A faster flame development is found for the main injection of Case TI compared to Cases SA and SB, which could be due to the high temperature environment and large air entrainment from the pilot injection. A lower soot level is observed for the BTL flame compared to the diesel flame for all three injection types. Case TI has a lower soot level compared to Cases SA and SB for the BTL fuel, while the diesel fuel maintains a similar soot level among all three injection strategies. Soot temperature of Case TI is lower for both fuels, especially for diesel. Based on these results, it is expected that the two-injection strategy could be

  2. Experimental Investigation and High Resolution Simulation of In-Situ Combustion Processes

    Energy Technology Data Exchange (ETDEWEB)

    Margot Gerritsen; Tony Kovscek

    2008-04-30

    This final technical report describes work performed for the project 'Experimental Investigation and High Resolution Numerical Simulator of In-Situ Combustion Processes', DE-FC26-03NT15405. In summary, this work improved our understanding of in-situ combustion (ISC) process physics and oil recovery. This understanding was translated into improved conceptual models and a suite of software algorithms that extended predictive capabilities. We pursued experimental, theoretical, and numerical tasks during the performance period. The specific project objectives were (i) identification, experimentally, of chemical additives/injectants that improve combustion performance and delineation of the physics of improved performance, (ii) establishment of a benchmark one-dimensional, experimental data set for verification of in-situ combustion dynamics computed by simulators, (iii) develop improved numerical methods that can be used to describe in-situ combustion more accurately, and (iv) to lay the underpinnings of a highly efficient, 3D, in-situ combustion simulator using adaptive mesh refinement techniques and parallelization. We believe that project goals were met and exceeded as discussed.

  3. Simulation of lean premixed turbulent combustion

    International Nuclear Information System (INIS)

    Bell, J; Day, M; Almgren, A; Lijewski, M; Rendleman, C; Cheng, R; Shepherd, I

    2006-01-01

    There is considerable technological interest in developing new fuel-flexible combustion systems that can burn fuels such as hydrogen or syngas. Lean premixed systems have the potential to burn these types of fuels with high efficiency and low NOx emissions due to reduced burnt gas temperatures. Although traditional Scientific approaches based on theory and laboratory experiment have played essential roles in developing our current understanding of premixed combustion, they are unable to meet the challenges of designing fuel-flexible lean premixed combustion devices. Computation, with its ability to deal with complexity and its unlimited access to data, has the potential for addressing these challenges. Realizing this potential requires the ability to perform high fidelity simulations of turbulent lean premixed flames under realistic conditions. In this paper, we examine the specialized mathematical structure of these combustion problems and discuss simulation approaches that exploit this structure. Using these ideas we can dramatically reduce computational cost, making it possible to perform high-fidelity simulations of realistic flames. We illustrate this methodology by considering ultra-lean hydrogen flames and discuss how this type of simulation is changing the way researchers study combustion

  4. Reducing NOx emissions from a biodiesel-fueled engine by use of low-temperature combustion.

    Science.gov (United States)

    Fang, Tiegang; Lin, Yuan-Chung; Foong, Tien Mun; Lee, Chia-Fon

    2008-12-01

    Biodiesel is popularly discussed in many countries due to increased environmental awareness and the limited supply of petroleum. One of the main factors impacting general replacement of diesel by biodiesel is NOx (nitrogen oxides) emissions. Previous studies have shown higher NOx emissions relative to petroleum diesel in traditional direct-injection (DI) diesel engines. In this study, effects of injection timing and different biodiesel blends are studied for low load [2 bar IMEP (indicated mean effective pressure)] conditions. The results show that maximum heat release rate can be reduced by retarding fuel injection. Ignition and peak heat release rate are both delayed for fuels containing more biodiesel. Retarding the injection to post-TDC (top dead center) lowers the peak heat release and flattens the heat release curve. It is observed that low-temperature combustion effectively reduces NOx emissions because less thermal NOx is formed. Although biodiesel combustion produces more NOx for both conventional and late-injection strategies, with the latter leading to a low-temperature combustion mode, the levels of NOx of B20 (20 vol % soy biodiesel and 80 vol % European low-sulfur diesel), B50, and B100 all with post-TDC injection are 68.1%, 66.7%, and 64.4%, respectively, lower than pure European low-sulfur diesel in the conventional injection scenario.

  5. An experimental investigation of concentrated slop combustion characteristics in cyclone furnace

    Science.gov (United States)

    Panpokha, Suphaopich; Wongwuttanasatian, Tanakorn; Tangchaichit, Kiatfa

    2018-02-01

    Slop is a by-product in alcoholic industries requiring costly waste management. An idea of using slop as a fuel in a boiler for the industries was proposed. Due to high content of ash, a cyclone furnace was designed to combust the slop. This study aims to examine the concentrated slop combustion in a designed cyclone furnace, consisting of combustion temperature and exhaust gases. The tests were carried out under 4 different air-fuel ratios. Fuels injected into the furnace were 3 g/s of concentrated slop and 1 g/s of diesel. The air-fuel ratios were corresponding to 100, 120, 140 and 160 percent theoretical air. The results demonstrated that combustion of concentrated slop can gave temperature of 800-1000°C and a suitable theoretical air was 100%-120%, because the combustion temperature was higher than that of other cases. In cyclone combustion, excess air is not recommended because it affects a reduction in overall temperature inside the cyclone furnace. It is expected that utilization of the concentrated slop (by-product) will be beneficial in the development of green and zero waste factory.

  6. Experimental study on combustion and slagging characteristics of tannery sludge

    International Nuclear Information System (INIS)

    Li, Chunyu; Jiang, Xuguang; Fei, Zhenwei; Chi, Yong; Yan, Jianhua

    2010-01-01

    Incineration is the most reasonable technique for tannery sludge disposal. The combustion and gaseous products emission characteristics of tannery sludge were investigated in this study. Tendency of slagging for combustion residue was also investigated based on the composition and microscopic scanning analysis. The high content of volatile matters and ash in tannery sludge was discovered. It was shown that the thermal decomposition and combustion of tannery sludge mainly occurs in a temperature frame between 150 degree Celsius and 780 degree Celsius. Organic acid was determined as the most important gaseous pollutant at low temperature combustion. The combustion residue from a specially designed furnace was analyzed by X-ray diffractometer (XRD) and energy dispersion spectroscopy (EDS) microprobe coupled in a scanning electron micro-scope (SEM). There is large amount of Ca in the combustion residue, and CaO was the main inorganic composition in these residues. The tannery sludge studied in this paper has a strong tendency of slagging, and the fusion of the residue began at 900 degree Celsius in combustion. It was further discovered that almost all the zinc (Zn) in tannery sludge is volatilized at 900 degree Celsius. The degree of volatilization for heavy metals at 900 degree Celsius followed the order of Zn > Cd >Cu > Mn > Pb > Cr. Most of Cr in tannery sludge is enriched in the residue during combustion. The present study reveals that it is critical to control the combustion temperature for optimal combustion efficiency and minimization of pollutants emission. (author)

  7. Experience with high-temperature filtration of incinerator flue gases

    International Nuclear Information System (INIS)

    Carpentier, S.; de Tassigny, C.

    1990-01-01

    It is always preferable to filter incinerator flue gases as close as possible to their origin, i.e. in a high-temperature zone, and means must be provided to destroy the other organic parts of the flyash resulting from these gases by in-filter combustion. The filter also traps a mineral part of the flyash, which eventually causes clogging and requires replacement or regeneration. Such filtration systems are available and can be operated on an industrial scale. They include candles made of micro-expanded refractory alloys supporting filtering media, porous ceramic candles and other devices. Research and subsequent pilot facility testing have enabled development of alumina fiber filter cartridges that offer more advantages than other equipment employed to date. Specifically, these advantages are: ultralight weight, which enables construction of systems that are relatively unaffected by creep and high-temperature deformations; excellent refractory qualities, which permit a use above 1000 degrees C; insensitivity to thermal shocks and in-situ carbon fines combustion capability; anti-acid quality of the material, which enables high-temperature filtration of acidic flue gases (chlorine and hydrochloric acid, SO x , etc.); low initial pressure drop of the cartridges; dimensional stability of the cartridges, which can be machined to a given tolerance with specific contours after casting and drying. This paper reports the results obtained during the last filtration system test campaign. Details are given for operating conditions, grain sizes and real-time monitoring of various parameters

  8. Numerical investigation of liquid methanol evaporation and oxy-combustion inside a button-cell ITM reactor

    International Nuclear Information System (INIS)

    Nemitallah, Medhat A.; Habib, Mohamed A.

    2017-01-01

    Highlights: • Analysis of liquid methanol evaporation and oxy-combustion in an ITM reactor. • A semi-empirical model is applied after fitting with the available LNO membrane data. • Influences of inlet fuel fraction, inlet gas temperature and inlet sweep flux are studied. • High combustion efficiency is encountered at moderate inlet gas temperatures. • High fuel concentration at low inlet sweep flow resulted in high oxygen flux. - Abstract: A numerical study is conducted to investigate the performance of a button-cell LNO-ITM reactor utilizing the soot-free oxygenated liquid methanol under oxy-combustion condition. The Euler-Lagrange approach is utilized to solve discrete phase model. Taylor analogy breakup (TAB) model is used due to its convenience with the cases of low injection speed. A plain orifice atomizer is used for fuel atomization and CO_2 is used as sweep gas. A semi-empirical oxygen permeation model (ABn model) is validated with the available experimental data and is, then, applied in the present model. Over a wide range of inlet fuel concentrations, the results showed increase in oxygen permeation flux of about five times in cases of reacting conditions as compared to the cases of non-reacting cases. The results showed high oxygen permeation flux at low inlet fuel concentrations due to the improvement in the oxygen to fuel ratio toward the stoichiometric conditions. At inlet gas temperatures of 1223 K, 1123 K, 1023 K and 923 K, the combustion temperature approached 1423 K, 1347 K, 1284 K and 1231 K, respectively, indicating an average combustion efficiency of 43% at moderate inlet gas temperatures. High fuel concentration at low inlet sweep flow resulted in high oxygen flux and high combustion temperature.

  9. Spray combustion of Jet-A and diesel fuels in a constant volume combustion chamber

    International Nuclear Information System (INIS)

    Jing, Wei; Roberts, William L.; Fang, Tiegang

    2015-01-01

    This work investigates the spray combustion of Jet-A fuel in an optical constant-volume combustion chamber under different ambient initial conditions. Ambient temperature was varied at 800 K, 1000 K, and 1200 K and five different ambient O 2 concentrations were used, spanning 10–21%. These ambient conditions can be used to mimic practical diesel engine working conditions under different fuel injection timings and exhaust gas recirculation (EGR) levels. Both transient and quasi-steady state analyses were conducted. The transient analysis focused on the flame development from the beginning to the end of the combustion process, illustrating how the flame structure evolves with time. The quasi-steady state analysis concentrated on the stable flame structure and compared the flame emissions in terms of spatially integrated intensity, flame effective area, and intensity per pixel. The transient analysis was based on measurements using high-speed imaging of both OH ∗ chemiluminescence and broadband natural luminosity (NL). For the quasi-steady state analysis, three flame narrow-band emissions (OH ∗ at 310 nm, Band A at 430 nm and Band B at 470 nm) were captured using an ICCD camera. Based on the current Jet-A data and diesel data obtained from previous experiments, a comparison between Jet-A and diesel was made in terms of flame development during the transient state and spatially integrated intensity, flame effective area, and intensity per pixel during the quasi-steady state. For the transient results, Jet-A shares a similar flame development trend to diesel, but featuring a narrower region of NL and a wider region of OH ∗ with the increase of ambient temperature and O 2 concentration. The soot cloud is oxidized more quickly for Jet-A than diesel at the end of combustion, evident by comparing the area of NL, especially under high O 2 concentration. The quasi-steady state results suggest that soot is oxidized effectively under high O 2 concentration conditions by

  10. Steady state HNG combustion modeling

    Energy Technology Data Exchange (ETDEWEB)

    Louwers, J.; Gadiot, G.M.H.J.L. [TNO Prins Maurits Lab., Rijswijk (Netherlands); Brewster, M.Q. [Univ. of Illinois, Urbana, IL (United States); Son, S.F. [Los Alamos National Lab., NM (United States); Parr, T.; Hanson-Parr, D. [Naval Air Warfare Center, China Lake, CA (United States)

    1998-04-01

    Two simplified modeling approaches are used to model the combustion of Hydrazinium Nitroformate (HNF, N{sub 2}H{sub 5}-C(NO{sub 2}){sub 3}). The condensed phase is treated by high activation energy asymptotics. The gas phase is treated by two limit cases: the classical high activation energy, and the recently introduced low activation energy approach. This results in simplification of the gas phase energy equation, making an (approximate) analytical solution possible. The results of both models are compared with experimental results of HNF combustion. It is shown that the low activation energy approach yields better agreement with experimental observations (e.g. regression rate and temperature sensitivity), than the high activation energy approach.

  11. Basic study on the generation of RF plasmas in premixed oxy-combustion with methane

    International Nuclear Information System (INIS)

    Osaka, Yugo; Razzak, M.A.; Kobayashi, Noriyuki; Ohno, Noriyasu; Takamura, Shuichi; Uesugi, Yoshihiko

    2010-01-01

    Oxy-combustion generates a high temperature field (above 3000 K), which is applied to next generation power plants and high temperature industrial technologies because of N 2 free processes. However, the combustion temperature is so high that the furnace wall may be fatally damaged. In addition, it is very difficult to control the heat flux and chemical species' concentrations because of rapid chemical reactions. We have developed a new method for controlling the flame by electromagnetic force on this field. In this paper, we experimentally investigated the power coupling between the premixed oxy-combustion with methane and radio frequency (RF) power through the induction coil. By optimizing the power coupling, we observed that the flame can absorb RF power up to 1.5 kW. Spectroscopic measurements also showed an increase in the emission intensity from OH radicals in the flame, indicating improved combustibility. (author)

  12. Mechanisms and kinetics of granulated sewage sludge combustion.

    Science.gov (United States)

    Kijo-Kleczkowska, Agnieszka; Środa, Katarzyna; Kosowska-Golachowska, Monika; Musiał, Tomasz; Wolski, Krzysztof

    2015-12-01

    This paper investigates sewage sludge disposal methods with particular emphasis on combustion as the priority disposal method. Sewage sludge incineration is an attractive option because it minimizes odour, significantly reduces the volume of the starting material and thermally destroys organic and toxic components of the off pads. Additionally, it is possible that ashes could be used. Currently, as many as 11 plants use sewage sludge as fuel in Poland; thus, this technology must be further developed in Poland while considering the benefits of co-combustion with other fuels. This paper presents the results of experimental studies aimed at determining the mechanisms (defining the fuel combustion region by studying the effects of process parameters, including the size of the fuel sample, temperature in the combustion chamber and air velocity, on combustion) and kinetics (measurement of fuel temperature and mass changes) of fuel combustion in an air stream under different thermal conditions and flow rates. The combustion of the sludge samples during air flow between temperatures of 800 and 900°C is a kinetic-diffusion process. This process determines the sample size, temperature of its environment, and air velocity. The adopted process parameters, the time and ignition temperature of the fuel by volatiles, combustion time of the volatiles, time to reach the maximum temperature of the fuel surface, maximum temperature of the fuel surface, char combustion time, and the total process time, had significant impacts. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. High Temperature Chemistry of Aromatic Hydrocarbons. Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Scott, Lawrence T. [Boston College, Chestnut Hill, MA (United States). Merkert Chemistry Center, Dept. of Chemistry

    2017-05-15

    The primary goal of this research was to uncover the principal reaction channels available to polycyclic aromatic hydrocarbons (PAHs) at high temperatures in the gas phase and to establish the factors that determine which channels will be followed in varying circumstances. New structure-property relationships for PAHs were also studied. The efficient production of clean energy from fossil fuels will remain a major component of the DOE mission until alternative sources of energy eventually displace coal and petroleum. Hydrocarbons constitute the most basic class of compounds in all of organic chemistry, and as the dominant species in fossil fuels, they figure prominently into the programs of the DOE. Much is already known about the normal chemistry of hydrocarbons under ambient conditions, but far less is known about their intrinsic chemistry at temperatures close to those reached during combustion. An understanding of the fundamental molecular transformations, rearrangements, and interconversions of PAHs at high temperatures in the gas phase, as revealed by careful studies on small, well-designed, molecular systems, provides insights into the underlying chemistry of many important processes that are more complex, such as the generation of energy by the combustion of fossil fuels, the uncatalyzed gasification and liquefaction of coal, the production of fullerenes in fuel-rich flames, and the formation of soot and carcinogenic pollutants in smoke (e.g., benzo[a]pyrene). The rational control of any of these processes, whether it be the optimization of a desirable process or the minimization of an undesirable one, requires a clear knowledge of the basic chemistry that governs the fate of the species involved. Advances in chemistry at the most fundamental level come about primarily from the discovery of new reactions and from new insights into how reactions occur. Harnessing that knowledge is the key to new technologies. The recent commercialization of a combustion

  14. Intelligent Monitoring System with High Temperature Distributed Fiberoptic Sensor for Power Plant Combustion Processes

    Energy Technology Data Exchange (ETDEWEB)

    Kwang Y. Lee; Stuart S. Yin; Andre Boehman

    2006-09-26

    The objective of the proposed work is to develop an intelligent distributed fiber optical sensor system for real-time monitoring of high temperature in a boiler furnace in power plants. Of particular interest is the estimation of spatial and temporal distributions of high temperatures within a boiler furnace, which will be essential in assessing and controlling the mechanisms that form and remove pollutants at the source, such as NOx. The basic approach in developing the proposed sensor system is three fold: (1) development of high temperature distributed fiber optical sensor capable of measuring temperatures greater than 2000 C degree with spatial resolution of less than 1 cm; (2) development of distributed parameter system (DPS) models to map the three-dimensional (3D) temperature distribution for the furnace; and (3) development of an intelligent monitoring system for real-time monitoring of the 3D boiler temperature distribution. Under Task 1, we have set up a dedicated high power, ultrafast laser system for fabricating in-fiber gratings in harsh environment optical fibers, successfully fabricated gratings in single crystal sapphire fibers by the high power laser system, and developed highly sensitive long period gratings (lpg) by electric arc. Under Task 2, relevant mathematical modeling studies of NOx formation in practical combustors have been completed. Studies show that in boiler systems with no swirl, the distributed temperature sensor may provide information sufficient to predict trends of NOx at the boiler exit. Under Task 3, we have investigated a mathematical approach to extrapolation of the temperature distribution within a power plant boiler facility, using a combination of a modified neural network architecture and semigroup theory. Given a set of empirical data with no analytic expression, we first developed an analytic description and then extended that model along a single axis.

  15. Characteristics of Flameless Combustion in 3D Highly Porous Reactors under Diesel Injection Conditions

    Directory of Open Access Journals (Sweden)

    M. Weclas

    2013-01-01

    Full Text Available The heat release process in a free volume combustion chamber and in porous reactors has been analyzed under Diesel engine-like conditions. The process has been investigated in a wide range of initial pressures and temperatures simulating engine conditions at the moment when fuel injection starts. The resulting pressure history in both porous reactors and in free volumes significantly depends on the initial pressure and temperature. At lower initial temperatures, the process in porous reactors is accelerated. Combustion in a porous reactor is characterized by heat accumulation in the solid phase of the porous structure and results in reduced pressure peaks and lowered combustion temperature. This depends on reactor heat capacity, pore density, specific surface area, pore structure, and heat transport properties. Characteristic modes of a heat release process in a two-dimensional field of initial pressure and temperature have been selected. There are three characteristic regions represented by a single- and multistep oxidation process (with two or three slopes in the reaction curve and characteristic delay time distribution has been selected in five characteristic ranges. There is a clear qualitative similarity of characteristic modes of the heat release process in a free volume and in porous reactors. A quantitative influence of porous reactor features (heat capacity, pore density, pore structure, specific surface area, and fuel distribution in the reactor volume has been clearly indicated.

  16. COMBUSTION OF BIOMASS AND CHARCOAL MADE FROM BABASSU NUTSHELL

    Directory of Open Access Journals (Sweden)

    Thiago de Paula Protásio

    2017-03-01

    Full Text Available In recent years, studies have examined the use of lignocellulosic wastes for energy generation. However, there is a lack of information on the combustibility of the residual biomass, especially the bark and charcoal of babassu nut. In this study, thermogravimetric analysis (TGA, differential thermal analysis (DTA and differential scanning calorimetry (DSC were used to achieve the following objectives: to evaluate the combustion of the residual biomass from the babassu nut; to evaluate the combustion of charcoal produced from this biomass, considering different final carbonization temperatures; and to determine the effect of the final carbonization temperature on the thermal stability of charcoal and on its performance in combustion. Thermal analyses were performed in synthetic air. In order to evaluate the characteristics of charcoal combustion and fresh biomass, the ignition temperature (Ti, the burnout temperature (Tf, characteristic combustion index (S, ignition index (Di, time corresponding to the maximum combustion rate (tp, and ignition time (tig were considered. The combustion of the babassu nutshell occurred in three phases and it was observed that this lignocellulosic material is suitable for the direct generation of heat. The increase in the final carbonization temperature caused an increase in the ignition temperature, as well as in the burnout temperature, the ignition time and the time corresponding to the maximum combustion rate. The results indicate that the increase in the carbonization temperature causes a decrease in combustion reactivity and, consequently, the charcoals produced at lower temperatures are easier to ignite and exhibit better performance in ignition.

  17. Emissions from carpet combustion in a pilot-scale rotary kiln: comparison with coal and particle-board combustion

    Energy Technology Data Exchange (ETDEWEB)

    Stephanie Lucero Konopa; James A. Mulholland; Matthew J. Realff; Paul M. Lemieux [Georgia Institute of Technology, Atlanta, GA (United States). School of Civil and Environmental Engineering

    2008-08-15

    The use of post-consumer carpet as a potential fuel substitute in cement kilns and other high-temperature processes is being considered to address the problem of huge volumes of carpet waste and the opportunity of waste-to-energy recovery. Carpet represents a high volume waste stream, provides high energy value, and contains other recoverable materials for the production of cement. This research studied the emission characteristics of burning 0.46-kg charges of chopped nylon carpet squares, pulverized coal, and particle-board pellets in a pilot-scale natural gas-fired rotary kiln. Carpet was tested with different amounts of water added. Emissions of oxygen, carbon dioxide, nitric oxide (NO), sulfur dioxide (SO{sub 2}), carbon monoxide (CO), and total hydrocarbons and temperatures were continuously monitored. It was found that carpet burned faster and more completely than coal and particle board, with a rapid volatile release that resulted in large and variable transient emission peaks. NO emissions from carpet combustion ranged from 0.06 to 0.15 g/MJ and were inversely related to CO emissions. Carpet combustion yielded higher NO emissions than coal and particleboard combustion, consistent with its higher nitrogen content. S{sub 2} emissions were highest for coal combustion, consistent with its higher sulfur content than carpet or particle board. Adding water to carpet slowed its burn time and reduced variability in the emission transients, reducing the CO peak but increasing NO emissions. Results of this study indicate that carpet waste can be used as an effective alternative fuel, with the caveats that it might be necessary to wet carpet or chop it finely to avoid excessive transient puff emissions due to its high volatility compared with other solid fuels, and that controlled mixing of combustion air might be used to control NO emissions from nylon carpet. 13 refs., 5 figs., 1 tab.

  18. Investigation of reactions and species dominating low temperature combustion - Final report

    Energy Technology Data Exchange (ETDEWEB)

    Radi, P.; Knopp, G.; Johnson, M.; Boedi, A.; Gerber, T.

    2009-12-15

    This report for the Swiss Federal Office of Energy (SFOE) presents the results of work done at the Paul Scherrer Institute (PSI) in Switzerland. The project 'Investigation of reactions and species dominating low temperature combustion' involves the characterisation of species that govern ignition. A base established for the spectroscopic investigation of peroxy radicals is discussed. The two-fold aim of this project is discussed which includes the measurement of molecular features such as binding energies and dissociation patterns of well-studied and spectroscopically accessible molecules and radicals as well as the application of the measurement techniques to alkyl peroxy radicals. This was done in order to improve the database of a class of molecules playing a dominant role in combustion and atmospheric chemistry. Several experimental techniques that are to be developed to achieve these aims are looked at. Achievements made are discussed and future work to be carried out is noted.

  19. FY 1999 Report on research results. Research and development of high-temperature air combustion technology (Attachments); 1999 nendo koon kuki nensho seigyo gijutsu kenkyu kaihatsu seika hokokusho. Shiryoshu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    This project surveys the actual conditions of dioxins emissions discharged from the waste incinerators in commercial service, in order to establish the database for evaluating the effects when the (high-temperature air combustion technology) is applied to waste incinerators. The survey covers 1018 totally continuous incinerators and 724 quasi-continuous incinerators in service in Japan, and the data are analyzed by incinerator types and items for correlating each element with one another, based on The Waste Incinerator Register issued by The Wastes Research Foundation and Dioxins Concentrations in Flue Gases from General Waste Incinerators issued by Health and Welfare Ministry. For 1105 mechanized batch type combustion furnaces and 159 stationary batch type combustion furnaces, only discharged dioxins concentrations are analyzed by incineration capacity. The attachments include (1) report on the survey results of the actual conditions of dioxins emissions, (2) report on the survey results of the actual conditions of dioxins concentrations in flue gases discharged from general waste incinerators, (3) report on the survey results of the actual conditions of NO emissions discharged from sewer sludge incinerators, and (4) and (5) report on the survey results of the actual conditions of NO emissions discharged from fluidized bed type general waste incinerators. (NEDO)

  20. Infrared monitoring of combustion

    International Nuclear Information System (INIS)

    Bates, S.C.; Morrison, P.W. Jr.; Solomon, P.R.

    1991-01-01

    In this paper, the use of Fourier Transform Infrared (FT-IR) spectroscopy for combustion monitoring is described. A combination of emission, transmission, and reflection FT-IR spectroscopy yields data on the temperature and composition of the gases, surfaces and suspended particles in the combustion environment. Detection sensitivity of such trace exhaust gases as CO, CO 2 , SO 2 , NO x , and unburned hydrocarbons is at the ppm level. Tomographic reconstruction converts line-of-sight measurements into spatially resolved temperature and concentration data. Examples from various combustion processes are used to demonstrate the capabilities of the technique. Industrial measurements are described that have been performed directly in the combustion zone and in the exhaust duct of a large chemical recovery boiler. Other measurements of hot slag show how FT-IR spectroscopy can determine the temperature and optical properties of surfaces. In addition, experiments with water droplets show that transmission FT-IR data yield spectra that characterize particle size and number density

  1. Investigating co-combustion characteristics of bamboo and wood.

    Science.gov (United States)

    Liang, Fang; Wang, Ruijuan; Jiang, Changle; Yang, Xiaomeng; Zhang, Tao; Hu, Wanhe; Mi, Bingbing; Liu, Zhijia

    2017-11-01

    To investigate co-combustion characteristics of bamboo and wood, moso bamboo and masson pine were torrefied and mixed with different blend ratios. The combustion process was examined by thermogravimetric analyzer (TGA). The results showed the combustion process of samples included volatile emission and oxidation combustion as well as char combustion. The main mass loss of biomass blends occurred at volatile emission and oxidation combustion stage, while that of torrefied biomass occurred at char combustion stage. With the increase of bamboo content, characteristic temperatures decreased. Compared with untreated biomass, torrefied biomass had a higher initial and burnout temperature. With the increase of heating rates, combustion process of samples shifted to higher temperatures. Compared with non-isothermal models, activation energy obtained from isothermal model was lower. The result is helpful to promote development of co-combustion of bamboo and masson pine wastes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Fluidized-bed calciner with combustion nozzle and shroud

    International Nuclear Information System (INIS)

    Wielang, J.A.; Palmer, W.B.; Kerr, W.B.

    1977-01-01

    A nozzle employed as a burner within a fluidized bed is coaxially enclosed within a tubular shroud that extends beyond the nozzle length into the fluidized bed. The open-ended shroud portion beyond the nozzle end provides an antechamber for mixture and combustion of atomized fuel with an oxygen-containing gas. The arrangement provides improved combustion efficiency and excludes bed particles from the high-velocity, high-temperature portions of the flame to reduce particle attrition. 4 claims, 2 figures

  3. Experimental study of biogas combustion in an HCCI engine for power generation with high indicated efficiency and ultra-low NOx emissions

    International Nuclear Information System (INIS)

    Bedoya, Iván D.; Saxena, Samveg; Cadavid, Francisco J.; Dibble, Robert W.; Wissink, Martin

    2012-01-01

    Highlights: ► In this paper, we study biogas combustion in an HCCI engine operating at 1800 rpm. ► At low loads, slight changes in inlet conditions strongly affect cyclic variations. ► At high loads, slight changes in inlet conditions strongly affect ringing intensity. ► Indicated efficiency at high loads is close to 45% and IMEP g is close to 7.5 bar. ► NO x emissions are below the US-2010 limit of 0.27 g/kW h. - Abstract: Combustion parameters and the main exhaust emissions from a biogas fueled HCCI engine are investigated in this study. The study was conducted on a 4-cylinder, 1.9L Volkswagen TDI Diesel engine, which was modified to run in HCCI mode with biogas by means of inlet charge temperature control, boosted intake pressure, and a sonic flow device upstream of the inlet manifold to control biogas composition and the equivalence ratio. For simulating typical power generation conditions, the engine was coupled to an AC motor generator operating at 1800 rpm. In the startup process, gasoline was used in HCCI mode for all cylinders. During the tests, biogas was used in cylinders 2 and 3, and gasoline was used in cylinders 1 and 4 to allow for more stable engine coolant and oil temperatures. The tests were performed through an experimental factorial design to evaluate the effect of inlet charge temperature, boost pressures, and the equivalence ratio of the biogas–air mixture on HCCI combustion parameters and emissions. For biogas at lower equivalence ratios, slight increases in inlet charge temperature and boost pressures enhanced combustion parameters and reduced CO and HC emissions. For biogas at higher equivalence ratios, the effects of inlet charge conditions on HCCI combustion and CO and HC emissions were attenuated; however, ringing intensities and NO x emissions were increased with higher inlet charge temperature and higher boosted pressures. The maximum gross indicated mean effective pressure was 7.4 bar, the maximum gross indicated

  4. Combustion Mode Design with High Efficiency and Low Emissions Controlled by Mixtures Stratification and Fuel Reactivity

    Directory of Open Access Journals (Sweden)

    Hu eWang

    2015-08-01

    Full Text Available This paper presents a review on the combustion mode design with high efficiency and low emissions controlled by fuel reactivity and mixture stratification that have been conducted in the authors’ group, including the charge reactivity controlled homogeneous charge compression ignition (HCCI combustion, stratification controlled premixed charge compression ignition (PCCI combustion, and dual-fuel combustion concepts controlled by both fuel reactivity and mixture stratification. The review starts with the charge reactivity controlled HCCI combustion, and the works on HCCI fuelled with both high cetane number fuels, such as DME and n-heptane, and high octane number fuels, such as methanol, natural gas, gasoline and mixtures of gasoline/alcohols, are reviewed and discussed. Since single fuel cannot meet the reactivity requirements under different loads to control the combustion process, the studies related to concentration stratification and dual-fuel charge reactivity controlled HCCI combustion are then presented, which have been shown to have the potential to achieve effective combustion control. The efforts of using both mixture and thermal stratifications to achieve the auto-ignition and combustion control are also discussed. Thereafter, both charge reactivity and mixture stratification are then applied to control the combustion process. The potential and capability of thermal-atmosphere controlled compound combustion mode and dual-fuel reactivity controlled compression ignition (RCCI/highly premixed charge combustion (HPCC mode to achieve clean and high efficiency combustion are then presented and discussed. Based on these results and discussions, combustion mode design with high efficiency and low emissions controlled by fuel reactivity and mixtures stratification in the whole operating range is proposed.

  5. A comprehensive experimental and modeling study of 2-methylbutanol combustion

    KAUST Repository

    Park, Sungwoo

    2015-05-01

    2-Methylbutanol (2-methyl-1-butanol) is one of several next-generation biofuels that can be used as an alternative fuel or blending component for combustion engines. This paper presents new experimental data for 2-methylbutanol, including ignition delay times in a high-pressure shock tube and premixed laminar flame speeds in a constant volume combustion vessel. Shock tube ignition delay times were measured for 2-methylbutanol/air mixtures at three equivalence ratios, temperatures ranging from 750 to 1250. K, and at nominal pressures near 20 and 40. bar. Laminar flame speed data were obtained using the spherically propagating premixed flame configuration at pressures of 1, 2, and 5. bar. A detailed chemical kinetic model for 2-methylbutanol oxidation was developed including high- and low-temperature chemistry based on previous modeling studies on butanol and pentanol isomers. The proposed model was tested against new and existing experimental data at pressures of 1-40. atm, temperatures of 740-1636. K, equivalence ratios of 0.25-2.0. Reaction path and sensitivity analyses were conducted for identifying key reactions at various combustion conditions, and to obtain better understanding of the combustion characteristics of larger alcohols.

  6. Thermal Behavior of Coal Used in Rotary Kiln and Its Combustion Intensification

    Directory of Open Access Journals (Sweden)

    Qiang Zhong

    2018-04-01

    Full Text Available Pyrolysis and combustion behaviors of three coals (A, B, and C coals were investigated and their combustion kinetics were calculated by the Freeman–Carroll method to obtain quantitative insight into their combustion behaviors. Moreover, the effects of coal size, air flow, oxygen content, and heating rate on coal combustion behaviors were analyzed. Results showed that the three coals have a similar trend of pyrolysis that occurs at about 670 K and this process continuously proceeds along with their combustion. Combustion characteristics and kinetic parameters can be applied to analyze coal combustion behaviors. Three coals having combustion characteristics of suitable ignition temperature (745–761 K, DTGmax (14.20–15.72%/min, and burnout time (7.45–8.10 min were analyzed in a rotary kiln. Combustion kinetic parameters provide quantitative insights into coal combustion behavior. The suitable particle size for coal combustion in a kiln is that the content of less than 74 μm is 60% to 80%. Low activation energy and reaction order make coal, especially C coal, have a simple combustion mechanism, great reactivity, be easily ignited, and a low peak temperature in the combustion state. Oxygen-enrichment and high heating rates enhance coal combustion, increasing combustion intensity and peak value, thus shortening burnout time.

  7. High-Temperature Electronics: Status and Future Prospects in the 21st Century

    Directory of Open Access Journals (Sweden)

    F. Touati

    2006-12-01

    Full Text Available This paper reviews the state of current electronics and states the drive toward high-temperature electronics. The problems specific to high-temperature effects on conventional electronics and prospects of alternative technologies like silicon-on-insulator, silicon carbide, and diamond are discussed. Improving petroleum recovery from oil wells with hightemperature coverage of downhole electronics, making combustion processes more efficient utilizing embedded electronics, programs for More Electric Aircraft and Vehicles necessitating distributed control systems, and environmental protection issues stress the need to use and develop high-temperature electronics. This makes high-temperature electronics a key-enabling technology in the 21st century. Actual applications using high-temperature electronics are discussed in some details. Also information and guidelines are included about supporting electronics needed to make a complete high-temperature system. The technology has been making major advancements and is expected to account for 20% of the electronics market by 2010. However, many technical challenges have to be solved.

  8. Improvement in devices for carbonization at low temperature of solid combustibles

    Energy Technology Data Exchange (ETDEWEB)

    1947-07-07

    A complete device is described for the carbonization at low temperature of solid combustibles, characterized by the fact that the pyrogenation furnace proper is constructed in such a way as to permit pyrolysis by external heating in a thin layer with an ultra rapid evacuation of the gases and of the vapors of pyrolysis at the moment of their formation, and comprising means of mechaniccal agitation to promote the transmission of heat from the heating gases and the material to be pyrolized.

  9. Heat exchangers for high-temperature thermodynamic cycles

    International Nuclear Information System (INIS)

    Fraas, A.P.

    1975-01-01

    The special requirements of heat exchangers for high temperature thermodynamic cycles are outlined and discussed with particular emphasis on cost and thermal stress problems. Typical approaches that have been taken to a comprehensive solution intended to meet all of the many boundary conditions are then considered by examining seven typical designs including liquid-to-liquid heat exchangers for nuclear plants, a heater for a closed cycle gas turbine coupled to a fluidized bed coal combustion chamber, steam generators for nuclear plants, a fossil fuel-fired potassium boiler, and a potassium condenser-steam generator. (auth)

  10. Prediction of temperature-insensitive molecular absorption lines in laser-assisted combustion diagnostics

    International Nuclear Information System (INIS)

    Walewski, Joachim W.; Elmqvist, Anders

    2005-01-01

    In laser-assisted combustion diagnostics it is a recurring task to predict molecular transitions whose signal strength depends only weakly on variations in temperature. The signal strength is proportional to the Boltzmann fraction of the level probed and the amplitude of the absorption line profile. In the past investigations have been presented in which this task was attack by detailed numerical calculations of the temperature dependence of pertinent physical properties of the molecule. Another widely applied approach relies on an analytical formula for the Boltzmann fraction of hetero-nuclear diatomic molecules and the neglect of line shape effects. The analytical approach experiences a continuing popularity in laser-assisted combustion diagnostics, which is why we compared both approaches with each other. The objective of this comparison was to assess the accuracy of the analytical approach and to reveal its potential pitfalls. Our comparison revealed that the analytical approach suffers from mediocre accuracy, which makes it unfit for practical applications. One cause is the neglect of higher lying vibrational levels, which show a non-negligible population for typical flame temperatures. Another reason is the neglect of fine structure splitting in molecules with non-zero orbit angular momentum in the ground state. Another reason for the observed inaccuracy is the neglect of line shape effects quenching, which were found to have a significant effect on the temperature sensitivity of a line. Because of its insufficient accuracy due to both oversimplified models of the molecular energy levels and the neglect of line shape effects and quenching we discourage from applying the analytical approach and recommend the use of detailed numerical approaches that are free of the above limitations

  11. An experimental and modeling study of n-octanol combustion

    KAUST Repository

    Cai, Liming

    2015-01-01

    This study presents the first investigation on the combustion chemistry of n-octanol, a long chain alcohol. Ignition delay times were determined experimentally in a high-pressure shock tube, and stable species concentration profiles were obtained in a jet stirred reactor for a range of initial conditions. A detailed kinetic model was developed to describe the oxidation of n-octanol at both low and high temperatures, and the model shows good agreement with the present dataset. The fuel\\'s combustion characteristics are compared to those of n-alkanes and to short chain alcohols to illustrate the effects of the hydroxyl moiety and the carbon chain length on important combustion properties. Finally, the results are discussed in detail. © 2014 The Combustion Institute.

  12. Analysis of Turbulent Combustion in Simplified Stratified Charge Conditions

    Science.gov (United States)

    Moriyoshi, Yasuo; Morikawa, Hideaki; Komatsu, Eiji

    The stratified charge combustion system has been widely studied due to the significant potentials for low fuel consumption rate and low exhaust gas emissions. The fuel-air mixture formation process in a direct-injection stratified charge engine is influenced by various parameters, such as atomization, evaporation, and in-cylinder gas motion at high temperature and high pressure conditions. It is difficult to observe the in-cylinder phenomena in such conditions and also challenging to analyze the following stratified charge combustion. Therefore, the combustion phenomena in simplified stratified charge conditions aiming to analyze the fundamental stratified charge combustion are examined. That is, an experimental apparatus which can control the mixture distribution and the gas motion at ignition timing was developed, and the effects of turbulence intensity, mixture concentration distribution, and mixture composition on stratified charge combustion were examined. As a result, the effects of fuel, charge stratification, and turbulence on combustion characteristics were clarified.

  13. Comparative sinterability of combustion synthesized and commercial titanium carbides

    International Nuclear Information System (INIS)

    Manley, B.W.

    1984-11-01

    The influence of various parameters on the sinterability of combustion synthesized titanium carbide was investigaged. Titanium carbide powders, prepared by the combustion synthesis process, were sintered in the temperature range 1150 to 1600 0 C. Incomplete combustion and high oxygen contents were found to be the cause of reduced shrinkage during sintering of the combustion syntheized powders when compared to the shrinkage of commercial TiC. Free carbon was shown to inhibit shrinkage. The activation energy for sintering was found to depend on stoichiometry (C/Ti). With decreasing C/Ti, the rate of sintering increased. 29 references, 16 figures, 13 tables

  14. Combustion Characteristics of C5 Alcohols and a Skeletal Mechanism for Homogeneous Charge Compression Ignition Combustion Simulation

    KAUST Repository

    Park, Sungwoo

    2015-10-27

    C5 alcohols are considered alternative fuels because they emit less greenhouse gases and fewer harmful pollutants. In this study, the combustion characteristics of 2-methylbutanol (2-methyl-1-butanol) and isopentanol (3-methyl-1-butanol) and their mixtures with primary reference fuels (PRFs) were studied using a detailed chemical kinetic model obtained from merging previously published mechanisms. Ignition delay times of the C5 alcohol/air mixtures were compared to PRFs at 20 and 40 atm. Reaction path analyses were conducted at intermediate and high temperatures to identify the most influential reactions controlling ignition of C5 alcohols. The direct relation graph with expert knowledge methodology was used to eliminate unimportant species and reactions in the detailed mechanism, and the resulting skeletal mechanism was tested at various homogeneous charge compression ignition (HCCI) engine combustion conditions. These simulations were used to investigate the heat release characteristics of the methyl-substituted C5 alcohols, and the results show relatively strong reactions at intermediate temperatures prior to hot ignition. C5 alcohol blending in PRF75 in HCCI combustion leads to a significant decrease of low-temperature heat release (LTHR) and a delay of the main combustion. The heat release features demonstrated by C5 alcohols can be used to improve the design and operation of advanced engine technologies.

  15. Spectroscopy for Industrial Applications: High-Temperature Processes

    DEFF Research Database (Denmark)

    Fateev, Alexander; Grosch, Helge; Clausen, Sønnik

    -dependent spectral absorption features gases of interest fora specic instrument can in principle be calculated by knowing only the gas temperature and pressure in the process under investigation/monitoring. The latest HITRAN-2012 database contains IR/UV spectral data for 47 molecules and it is still growing. However...... use of HITRAN is limited to low-temperature processes (available. Only a few molecules CO2, H2O, CO and NO are those of interest for e.......g. various combustion and astronomical applications are included. In the recent few years, several efforts towards a developmentof hot line lists have been made; those have been implemented in the latest HITRAN-2012 database. High-resolution absorption measurements of NH3 (IR, 0.1 cm-1) and phenol (UV,0...

  16. SELECTION OF SUSTAINABLE TECHNOLOGIES FOR COMBUSTION OF BOSNIAN COALS

    Directory of Open Access Journals (Sweden)

    Anes Kazagić

    2010-01-01

    Full Text Available This paper deals with optimization of coal combustion conditions to support selection a sustainable combustion technology and an optimal furnace and boiler design. A methodology for optimization of coal combustion conditions is proposed and demonstrated on the example of Bosnian coals. The properties of Bosnian coals vary widely from one coal basin to the next, even between coal mines within the same basin. Very high percentage of ash (particularly in Bosnian brown coal makes clear certain differences between Bosnian coal types and other world coal types, providing a strong argument for investigating specific problems related to the combustion of Bosnian coals, as well as ways to improve their combustion behaviour. In this work, options of the referent energy system (boiler with different process temperatures, corresponding to the different combustion technologies; pulverised fuel combustion (slag tap or dry bottom furnace and fluidized bed combustion, are under consideration for the coals tested. Sustainability assessment, based on calculation economic and environment indicators, in combination with common low cost planning method, is used for the optimization. The total costs in the lifetime are presented by General index of total costs, calculated on the base of agglomeration of basic economic indicators and the economic indicators derived from environmental indicators. So, proposed methodology is based on identification of those combustion technologies and combustion conditions for coals tested for which the total costs in lifetime of the system under consideration are lowest, provided that all environmental issues of the energy system is fulfilled during the lifetime. Inputs for calculation of the sustainability indicators are provided by the measurements on an experimental furnace with possibility of infinite variation of process temperature, supported by good praxis from the power plants which use the fuels tested and by thermal

  17. Direct numerical simulations of ignition of a lean n-heptane/air mixture with temperature and composition inhomogeneities relevant to HCCI and SCCI combustion

    KAUST Repository

    Luong, Minh Bau

    2015-12-01

    The effects of temperature and composition stratifications on the ignition of a lean n-heptane/air mixture at three initial mean temperatures under elevated pressure are investigated using direct numerical simulations (DNSs) with a 58-species reduced mechanism. Two-dimensional DNSs are performed by varying several key parameters: initial mean temperature, T0, and the variance of temperature and equivalence ratio (T\\' and φ\\') with different T-φcorrelations. It is found that for cases with φ\\' only, the overall combustion occurs more quickly and the mean heat release rate (HRR) increases more slowly with increasing φ\\' regardless of T0. For cases with T\\' only, however, the overall combustion is retarded/advanced in time with increasing T\\' for low/high T0 relative to the negative-temperature coefficient (NTC) regime resulting from a longer/shorter overall ignition delay of the mixture. For cases with uncorrelated T-φfields, the mean HRR is more distributed over time compared to the corresponding cases with T\\' or φ\\' only. For negatively-correlated cases, however, the temporal evolution of the overall combustion exhibits quite non-monotonic behavior with increasing T\\' and φ\\' depending on T0. All of these characteristics are found to be primarily related to the 0-D ignition delays of initial mixtures, the relative timescales between 0-D ignition delay and turbulence, and the dominance of the deflagration mode during the ignition. These results suggest that an appropriate combination of T\\' and φ\\' together with a well-prepared T-φdistribution can alleviate an excessive pressure-rise rate (PRR) and control ignition-timing in homogeneous charge compression-ignition (HCCI) combustion. In addition, critical species and reactions for the ignition of n-heptane/air mixture through the whole ignition process are estimated by comparing the temporal evolution of the mean mass fractions of important species with the overall reaction pathways of n

  18. Numerical simulations of turbulent jet ignition and combustion

    Science.gov (United States)

    Validi, Abdoulahad; Irannejad, Abolfazl; Jaberi, Farhad

    2013-11-01

    The ignition and combustion of a homogeneous lean hydrogen-air mixture by a turbulent jet flow of hot combustion products injected into a colder gas mixture are studied by a high fidelity numerical model. Turbulent jet ignition can be considered as an efficient method for starting and controlling the reaction in homogeneously charged combustion systems used in advanced internal combustion and gas turbine engines. In this work, we study in details the physics of turbulent jet ignition in a fundamental flow configuration. The flow and combustion are modeled with the hybrid large eddy simulation/filtered mass density function (LES/FMDF) approach, in which the filtered form the compressible Navier-Stokes equations are solved with a high-order finite difference scheme for the turbulent velocity and the FMDF transport equations are solved with a Lagrangian stochastic method to obtain the scalar (temperature and species mass fractions) field. The hydrogen oxidation is described by a detailed reaction mechanism with 37 elementary reactions and 9 species.

  19. Combustion of a high-velocity hydrogen microjet effluxing in air

    Science.gov (United States)

    Kozlov, V. V.; Grek, G. R.; Korobeinichev, O. P.; Litvinenko, Yu. A.; Shmakov, A. G.

    2016-09-01

    This study is devoted to experimental investigation of hydrogen-combustion modes and the structure of a diffusion flame formed at a high-velocity efflux of hydrogen in air through round apertures of various diameters. The efflux-velocity range of the hydrogen jet and the diameters of nozzle apertures at which the flame is divided in two zones with laminar and turbulent flow are found. The zone with the laminar flow is a stabilizer of combustion of the flame as a whole, and in the zone with the turbulent flow the intense mixing of fuel with an oxidizer takes place. Combustion in these two zones can occur independently from each other, but the steadiest mode is observed only at the existence of the flame in the laminar-flow zone. The knowledge obtained makes it possible to understand more deeply the features of modes of microjet combustion of hydrogen promising for various combustion devices.

  20. Aspects of alkali chloride chemistry on deposit formation and high temperature corrosion in biomass and waste fired boilers

    OpenAIRE

    Broström, Markus

    2010-01-01

    Combustion of biomass and waste has several environmental, economical and political advantages over the use of fossil fuels for the generation of heat and electricity. However, these fuels often have a significantly different composition and the combustion is therefore associated with additional operational problems. A high content of chlorine and alkali metals (potassium and sodium) often causes problems with deposit formation and high temperature corrosion. Some different aspects of these i...

  1. High Gravity (g) Combustion

    Science.gov (United States)

    2006-02-01

    UNICORN (Unsteady Ignition and Combustion with Reactions) code10. Flame propagation in a tube that is 50-mm wide and 1000-mm long (similar to that...turbine engine manufacturers, estimating the primary zone space heating rate. Both combustion systems, from Company A and Company B, required a much...MBTU/atm-hr-ft3) Te m pe ra tu re R is e (K ) dP/P = 2% dP/P = 2.5% dP/P = 3% dP/P = 3.5% dP/P = 4% Company A Company B Figure 13: Heat Release Rate

  2. Lightweight Ultrahigh Temperature CMC-Lined C/C Combustion Chambers, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA and DoD are seeking high-performance, lightweight liquid rocket combustion chambers with future performance goals that cannot be achieved using state-of-the-art...

  3. Fabrication of a Combustion-Reacted High-Performance ZnO Electron Transport Layer with Silver Nanowire Electrodes for Organic Solar Cells.

    Science.gov (United States)

    Park, Minkyu; Lee, Sang-Hoon; Kim, Donghyuk; Kang, Juhoon; Lee, Jung-Yong; Han, Seung Min

    2018-02-28

    Herein, a new methodology for solution-processed ZnO fabrication on Ag nanowire network electrode via combustion reaction is reported, where the amount of heat emitted during combustion was minimized by controlling the reaction temperature to avoid damaging the underlying Ag nanowires. The degree of participation of acetylacetones, which are volatile fuels in the combustion reaction, was found to vary with the reaction temperature, as revealed by thermogravimetric and compositional analyses. An optimized processing temperature of 180 °C was chosen to successfully fabricate a combustion-reacted ZnO and Ag nanowire hybrid electrode with a sheet resistance of 30 Ω/sq and transmittance of 87%. A combustion-reacted ZnO on Ag nanowire hybrid structure was demonstrated as an efficient transparent electrode and electron transport layer for the PTB7-Th-based polymer solar cells. The superior electrical conductivity of combustion-reacted ZnO, compared to that of conventional sol-gel ZnO, increased the external quantum efficiency over the entire absorption range, whereas a unique light scattering effect due to the presence of nanopores in the combustion-derived ZnO further enhanced the external quantum efficiency in the 450-550 nm wavelength range. A power conversion efficiency of 8.48% was demonstrated for the PTB7-Th-based polymer solar cell with the use of a combustion-reacted ZnO/Ag NW hybrid transparent electrode.

  4. Influence of the microwave irradiation dewatering on the combustion characteristics of Chinese brown coals

    Science.gov (United States)

    Ge, Lichao; Feng, Hongcui; Xu, Chang; Zhang, Yanwei; Wang, Zhihua

    2018-02-01

    This study investigates the influence of microwave irradiation on coal composition, pore structure, coal rank, and combustion characteristics of typical brown coals in China. Results show that the upgrading process significantly decreased the inherent moisture, and increased calorific value and fixed carbon content. After upgrading, pore distribution extended to micropore region, oxygen functional groups were reduced and destroyed, and the apparent aromaticity increased suggesting an improvement in the coal rank. Based on thermogravimetric analysis, the combustion processes of upgraded coals were delayed toward the high temperature region, and the temperatures of ignition, peak and burnout increased. Based on the average combustion rate and comprehensive combustion parameter, the upgraded coals performed better compared with raw brown coals and a high rank coal. In ignition and burnout segments, the activation energy increased but exhibited a decrease in the combustion stage.

  5. Combustion behaviors and kinetics of sewage sludge blended with pulverized coal: With and without catalysts.

    Science.gov (United States)

    Wang, Zhiqiang; Hong, Chen; Xing, Yi; Li, Yifei; Feng, Lihui; Jia, Mengmeng

    2018-04-01

    The combustion behaviors of sewage sludge (SS), pulverized coal (PC), and their blends were studied using a thermogravimetric analyzer. The effect of the mass ratio of SS to PC on the co-combustion characteristics was analyzed. The experiments showed that the ignition performance of the blends improved significantly as the mass percentage of SS increased, but its combustion intensity decreased. The burnout temperature (T b ) and comprehensive combustibility index (S) of the blends were almost unchanged when the mass percentage of SS was less than 10%. However, a high mass percentage of SS (>10%) resulted in a great increase in T b and a notable decrease in S. Subsequently, the effects of different catalysts (CaO, CeO 2 , MnO 2 , and Fe 2 O 3 ) on the combustion characteristics and activation energy of the SS/PC blend were investigated. The four catalysts promoted the release and combustion of volatile matters in the blended fuels and shifted their combustion profiles to a low temperature. In addition, their peak separating tendencies were obvious at 350-550 C, resulting in high peak widths. All the catalysts improved combustion activity of the blended fuel and accelerated fixed carbon combustion, which decreased the ignition temperature and burnout temperature of the fuels. CeO 2 had the best catalytic effects in terms of the comprehensive combustion performance and activation energy, followed closely by Fe 2 O 3 . However, the rare-earth compounds are expensive to be applied in the catalytic combustion process of SS/PC blend at present. Based on both catalytic effects and economy, Fe 2 O 3 was potentially an optimal option for catalytic combustion among the tested catalysts. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Reduced NOX combustion method

    International Nuclear Information System (INIS)

    Delano, M.A.

    1991-01-01

    This patent describes a method for combusting fuel and oxidant to achieve reduced formation of nitrogen oxides. It comprises: It comprises: heating a combustion zone to a temperature at least equal to 1500 degrees F.; injecting into the heated combustion zone a stream of oxidant at a velocity within the range of from 200 to 1070 feet per second; injecting into the combustion zone, spaced from the oxidant stream, a fuel stream at a velocity such that the ratio of oxidant stream velocity to fuel stream velocity does not exceed 20; aspirating combustion gases into the oxidant stream and thereafter intermixing the aspirated oxidant stream and fuel stream to form a combustible mixture; combusting the combustible mixture to produce combustion gases for the aspiration; and maintaining the fuel stream substantially free from contact with oxidant prior to the intermixture with aspirated oxidant

  7. Development of a high-pressure compaction system for non-combustible solid waste

    International Nuclear Information System (INIS)

    Yogo, S.; Hata, T.; Torita, K.; Yamamoto, K.; Karita, Y.

    1989-01-01

    In recent years, nuclear power plants in Japan have been in search of a means to reduce the volume of non-combustible solid wastes and therefore the application of a high-pressure compaction system has been in demand. Most non-combustible solid wastes have been packed in 200-litre drums for storage and the situation requires a high-pressure compaction system designed exclusively for 200-litre drums. The authors have developed a high-pressure compaction system which compresses 200-litre drums filled with non-combustible solid wastes and packs them into new woo-litre drums efficiently. This paper reports the outline of this high-pressure compaction system and the results of the full-scale verification tests

  8. Investigations into High Temperature Components and Packaging

    Energy Technology Data Exchange (ETDEWEB)

    Marlino, L.D.; Seiber, L.E.; Scudiere, M.B.; M.S. Chinthavali, M.S.; McCluskey, F.P.

    2007-12-31

    The purpose of this report is to document the work that was performed at the Oak Ridge National Laboratory (ORNL) in support of the development of high temperature power electronics and components with monies remaining from the Semikron High Temperature Inverter Project managed by the National Energy Technology Laboratory (NETL). High temperature electronic components are needed to allow inverters to operate in more extreme operating conditions as required in advanced traction drive applications. The trend to try to eliminate secondary cooling loops and utilize the internal combustion (IC) cooling system, which operates with approximately 105 C water/ethylene glycol coolant at the output of the radiator, is necessary to further reduce vehicle costs and weight. The activity documented in this report includes development and testing of high temperature components, activities in support of high temperature testing, an assessment of several component packaging methods, and how elevated operating temperatures would impact their reliability. This report is organized with testing of new high temperature capacitors in Section 2 and testing of new 150 C junction temperature trench insulated gate bipolar transistor (IGBTs) in Section 3. Section 4 addresses some operational OPAL-GT information, which was necessary for developing module level tests. Section 5 summarizes calibration of equipment needed for the high temperature testing. Section 6 details some additional work that was funded on silicon carbide (SiC) device testing for high temperature use, and Section 7 is the complete text of a report funded from this effort summarizing packaging methods and their reliability issues for use in high temperature power electronics. Components were tested to evaluate the performance characteristics of the component at different operating temperatures. The temperature of the component is determined by the ambient temperature (i.e., temperature surrounding the device) plus the

  9. Report on research achievement in relation with developing fundamental combustion control technologies in fiscal 1998. Research and development of high-performance industrial furnaces; 1998 nendo nensho seigyo kiban gijutsu no kaihatsu ni kansuru kenkyu seika hokokusho. Koseino kogyoro nado ni kansuru kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    Development is intended to be made on fundamental combustion control technologies applicable to high-performance industrial furnaces that can reduce energy consumption and respond to environment preservation requirements. With an intention to achieve reduction in combustion exhaust gases such as carbon dioxide and nitrogen oxides, fundamental studies will be made on factors to decide flame shapes as represented by high-temperature combustion and flame shape control by utilizing microgravity environment, and researches will be made on combustion systems. Devices required for the experiments were fabricated to evaluate critical combustion characteristics of flames in furnaces including industrial furnaces, analyze and evaluate flame control parameters, and study low-pollution combustion technologies. Experimental methods acquired by 1997 were used for the experiments under the microgravity environment. Evaluation experiments were performed on flame shape control technologies and flame radiation characteristics, and basic experiments on the low-pollution combustion technologies. With these experiments, elucidation of the combustion mechanisms was launched by analyzing and evaluating the acquired data. A flame experimenting device for high-temperature preheated air completed by fiscal 1997 was used to acquire such combustion characteristics data as NOx discharge characteristics when the high-temperature preheated air is used. Based on the result thereof, verification was carried out on simulation models. (NEDO)

  10. Research of power fuel low-temperature vortex combustion in industrial boiler based on numerical modelling

    Directory of Open Access Journals (Sweden)

    Orlova K.Y.

    2017-01-01

    Full Text Available The goal of the presented research is to perform numerical modelling of fuel low-temperature vortex combustion in once-through industrial steam boiler. Full size and scaled-down furnace model created with FIRE 3D software and was used for the research. All geometrical features were observed. The baseline information for the low-temperature vortex furnace process are velocity and temperature of low, upper and burner blast, air-fuel ratio, fuel consumption, coal dust size range. The obtained results are: temperature and velocity three dimensional fields, furnace gases and solid fuel ash particles concentration.

  11. Combustion of alternative fuels in vortex trapped combustor

    International Nuclear Information System (INIS)

    Ghenai, Chaouki; Zbeeb, Khaled; Janajreh, Isam

    2013-01-01

    Highlights: ► We model the combustion of alternative fuels in trapped vortex combustor (TVC). ► We test syngas and hydrogen/hydrocarbon mixture fuels. ► We examine the change in combustion performance and emissions of TVC combustor. ► Increasing the hydrogen content of the fuel will increase the temperature and NO x emissions. ► A high combustor efficiency is obtained for fuels with different compositions and LHV. - Abstract: Trapped vortex combustor represents an efficient and compact combustor for flame stability. Combustion stability is achieved through the use of cavities in which recirculation zones of hot products generated by the direct injection of fuel and air are created and acting as a continuous source of ignition for the incoming main fuel–air stream. Computational Fluid Dynamics analysis was performed in this study to test the combustion performance and emissions from the vortex trapped combustor when natural gas fuel (methane) is replaced with renewable and alternative fuels such as hydrogen and synthetic gas (syngas). The flame temperature, the flow field, and species concentrations inside the Vortex Trapped Combustor were obtained. The results show that hydrogen enriched hydrocarbon fuels combustion will result in more energy, higher temperature (14% increase when methane is replaced with hydrogen fuels) and NO x emissions, and lower CO 2 emissions (50% decrease when methane is replaced with methane/hydrogen mixture with 75% hydrogen fraction). The NO x emission increases when the fraction of hydrogen increases for methane/hydrogen fuel mixture. The results also show that the flame for methane combustion fuel is located in the primary vortex region but it is shifted to the secondary vortex region for hydrogen combustion.

  12. Combustion characteristics of crude jatropha oil droplets using rhodium liquid as a homogeneous combustion catalyst

    Science.gov (United States)

    Nanlohy, Hendry Y.; Wardana, I. N. G.; Hamidi, N.; Yuliati, L.

    2018-01-01

    Combustion characteristics of crude jatropha oil droplet at room temperature with and without catalyst have been studied experimentally. Its combustion characteristics have been observed by igniting the oil droplet on a junction of a thermocouple, and the combustion characteristics of oil droplets are observed using a high-speed camera. The results show that the uniqueness of crude jatropha oil as alternative fuel is evidenced by the different stages of combustion caused by thermal cracking in burning droplets. The results also show that the role of the catalyst is not only an accelerator agent, but there are other unique functions and roles as a stabilizer. Moreover, the results also found that the catalyst was able to shorten the ignition timing and burnout time. This phenomenon proves that the presence of catalysts alters and weakens the structure of the triglyceride geometry so that the viscosity and flash point is reduced, the fuel absorbs heat well and flammable.

  13. High Thermal Conductivity NARloy-Z-Diamond Composite Combustion Chamber Liner For Advanced Rocket Engines

    Science.gov (United States)

    Bhat, Biliyar N.; Ellis, David; Singh, Jogender

    2014-01-01

    Advanced high thermal conductivity materials research conducted at NASA Marshall Space Flight Center (MSFC) with state of the art combustion chamber liner material NARloy-Z showed that its thermal conductivity can be increased significantly by adding diamond particles and sintering it at high temperatures. For instance, NARloy-Z containing 40 vol. percent diamond particles, sintered at 975C to full density by using the Field assisted Sintering Technology (FAST) showed 69 percent higher thermal conductivity than baseline NARloy-Z. Furthermore, NARloy-Z-40vol. percent D is 30 percent lighter than NARloy-Z and hence the density normalized thermal conductivity is 140 percent better. These attributes will improve the performance and life of the advanced rocket engines significantly. By one estimate, increased thermal conductivity will directly translate into increased turbopump power up to 2X and increased chamber pressure for improved thrust and ISP, resulting in an expected 20 percent improvement in engine performance. Follow on research is now being conducted to demonstrate the benefits of this high thermal conductivity NARloy-Z-D composite for combustion chamber liner applications in advanced rocket engines. The work consists of a) Optimizing the chemistry and heat treatment for NARloy-Z-D composite, b) Developing design properties (thermal and mechanical) for the optimized NARloy-Z-D, c) Fabrication of net shape subscale combustion chamber liner, and d) Hot fire testing of the liner for performance. FAST is used for consolidating and sintering NARlo-Z-D. The subscale cylindrical liner with built in channels for coolant flow is also fabricated near net shape using the FAST process. The liner will be assembled into a test rig and hot fire tested in the MSFC test facility to determine performance. This paper describes the development of this novel high thermal conductivity NARloy-Z-D composite material, and the advanced net shape technology to fabricate the combustion

  14. Preliminary assessment of combustion modes for internal combustion wave rotors

    Science.gov (United States)

    Nalim, M. Razi

    1995-01-01

    Combustion within the channels of a wave rotor is examined as a means of obtaining pressure gain during heat addition in a gas turbine engine. Several modes of combustion are considered and the factors that determine the applicability of three modes are evaluated in detail; premixed autoignition/detonation, premixed deflagration, and non-premixed compression ignition. The last two will require strong turbulence for completion of combustion in a reasonable time in the wave rotor. The compression/autoignition modes will require inlet temperatures in excess of 1500 R for reliable ignition with most hydrocarbon fuels; otherwise, a supplementary ignition method must be provided. Examples of combustion mode selection are presented for two core engine applications that had been previously designed with equivalent 4-port wave rotor topping cycles using external combustion.

  15. High temperature corrosion of advanced ceramic materials for hot gas filters. Topical report for part 1 of high temperature corrosion of advanced ceramic materials for hot gas filters and heat exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Spear, K.E.; Crossland, C.E.; Shelleman, D.L.; Tressler, R.E. [Pennsylvania State Univ., University Park, PA (United States). Dept. of Materials Science and Engineering

    1997-12-11

    This program consists of two separate research areas. Part 1, for which this report is written, studied the high temperature corrosion of advanced ceramic hot gas filters, while Part 2 studied the long-term durability of ceramic heat exchangers to coal combustion environments. The objectives of Part 1 were to select two candidate ceramic filter materials for flow-through hot corrosion studies and subsequent corrosion and mechanical properties characterization. In addition, a thermodynamic database was developed so that thermochemical modeling studies could be performed to simulate operating conditions of laboratory reactors and existing coal combustion power plants, and to predict the reactions of new filter materials with coal combustion environments. The latter would make it possible to gain insight into problems that could develop during actual operation of filters in coal combustion power plants so that potential problems could be addressed before they arise.

  16. Effects of pilot injection parameters on low temperature combustion diesel engines equipped with solenoid injectors featuring conventional and rate-shaped main injection

    International Nuclear Information System (INIS)

    D’Ambrosio, S.; Ferrari, A.

    2016-01-01

    Highlights: • The influence of the principal pilot injection parameters is discussed for low-temperature combustion systems. • Swirl-sweep and dwell-time sweep results are combined to analyze soot emissions. • The pilot injection effects are investigated in injection profiles featuring rate-shaped main injections. - Abstract: The potential of pilot injection has been assessed on a low-temperature combustion diesel engine for automotive applications, which was characterized by a reduced compression-ratio, high EGR rates and postponed main injection timings. Dwell time sweeps have been carried out for pilot injections with distinct energizing times under different representative steady-state working conditions of the medium load and speed area of the New European Driving Cycle. The results of in-cylinder analyses of the pressure, heat-release rate, temperature and emissions are presented. Combustion noise has been shown to decrease significantly when the pilot injected mass increases, while it is scarcely affected by the dwell time between the pilot and main injections. The HC, CO and fuel consumption trends, with respect to both the pilot injection dwell time and mass, are in line with those of conventional combustion systems, and in particular decreasing trends occur as the pilot injection energizing time is increased. Furthermore, a reduced sensitivity of NO_x emissions to both dwell time and pilot injected mass has been found, compared to conventional combustion systems. Finally, it has been observed that soot emissions diminish as the energizing time is shortened, and their dependence on dwell time is influenced to a great extent by the presence of local zones with reduced air-to-fuel ratios within the cylinder. A combined analysis of the results of swirl sweeps and dwell time sweeps is here proposed as a methodology for the detection of any possible interference between pilot combustion burned gases and the main injected fuel. The effect of pilot

  17. Impact of ignition temperature on particle size and magnetic properties of CoFe{sub 2}O{sub 4} nanoparticles prepared by self-propagated MILD combustion technique

    Energy Technology Data Exchange (ETDEWEB)

    Kaliyamoorthy, Venkatesan; Rajan Babu, D., E-mail: drajanbabu@vit.ac.in; Saminathan, Madeswaran

    2016-11-15

    We prepared nanocrystalline CoFe{sub 2}O{sub 4} by changing its ignition temperatures, using moderate and intense low-oxygen dilution (MILD) combustion technique. The effect of ignition temperature on the particle size and its magnetic behavior was investigated by HR-TEM and VSM respectively. We observed a vast change in the structural behavior and the magnetic properties of the prepared samples. X-ray diffraction studies revealed that the resultant samples had single phase with different grain sizes from 23±5 nm to 16±5 nm, which was understood by observing the growth of the grains through heat released from the combustion reaction. FE-SEM analysis showed high porosity with heterogeneous distribution of the pore size based on the adiabatic temperature and EPMA analysis, which confirmed the elemental compositions of the prepared samples. The saturation magnetization values measured at room temperature, employing vibrating sample magnetometer (VSM) decreased gradually from 50 to 34 emu/g when the ignition temperature was increased from 243 °C to 400 °C. Some of Fe ions on the B sites moved periodically to the A sites because of quenching treatment. The presence of Fe{sup 2+} ions in the existing ferrite structure ruled the magnetic behavior of the sample, as confirmed by the Mössbauer analysis. - Highlights: • CoFe{sub 2}O{sub 4} magnetic nanoparticles were prepared by MILD combustion technique. • Structural behavior and magnetic properties were changed by ignition temperature. • Formation of ferrite complex was confirmed by using FT-IR spectroscopy. • FE-SEM image confirmed the combustion nature by exhibiting the pores and voids. • The cationic distributions were investigated by the Mössbauer analysis.

  18. The rheodynamics and combustion of coal-water mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Burdukov, A.P.; Popov, V.I.; Tomilov, V.G.; Fedosenko, V.D. [Russian Academy of Science, Novosibirsk (Russian Federation). Inst. of Thermophysics (Siberian Branch, Russian Academy of Science)

    2002-05-01

    Investigation methods for characteristics of movement along the tubes, combustion dynamics and gasification of separate drops were developed for the coal-water mixtures (CWM). The following parameters were determined on the basis of laser heating: thermometric, pyrometric and concentration dynamics of single-drop combustion, complete combustion times, duration of temperature phases of combustion, as well as the moment and temperature of ignition. Information on the combustion mass velocity and gasification products was also obtained using laser heating. 6 refs., 13 figs., 1 tab.

  19. PDF Modeling of Turbulent Combustion

    National Research Council Canada - National Science Library

    Pope, Stephen B

    2006-01-01

    .... The PDF approach to turbulent combustion has the advantages of fully representing the turbulent fluctuations of species and temperature, and of allowing realistic combustion chemistry to be implemented...

  20. Chemical Kinetics of Hydrocarbon Ignition in Practical Combustion Systems

    International Nuclear Information System (INIS)

    Westbrook, C.K.

    2000-01-01

    Chemical kinetic factors of hydrocarbon oxidation are examined in a variety of ignition problems. Ignition is related to the presence of a dominant chain branching reaction mechanism that can drive a chemical system to completion in a very short period of time. Ignition in laboratory environments is studied for problems including shock tubes and rapid compression machines. Modeling of the laboratory systems are used to develop kinetic models that can be used to analyze ignition in practical systems. Two major chain branching regimes are identified, one consisting of high temperature ignition with a chain branching reaction mechanism based on the reaction between atomic hydrogen with molecular oxygen, and the second based on an intermediate temperature thermal decomposition of hydrogen peroxide. Kinetic models are then used to describe ignition in practical combustion environments, including detonations and pulse combustors for high temperature ignition, and engine knock and diesel ignition for intermediate temperature ignition. The final example of ignition in a practical environment is homogeneous charge, compression ignition (HCCI) which is shown to be a problem dominated by the kinetics intermediate temperature hydrocarbon ignition. Model results show why high hydrocarbon and CO emissions are inevitable in HCCI combustion. The conclusion of this study is that the kinetics of hydrocarbon ignition are actually quite simple, since only one or two elementary reactions are dominant. However, there are many combustion factors that can influence these two major reactions, and these are the features that vary from one practical system to another

  1. Combustion instability modeling and analysis

    Energy Technology Data Exchange (ETDEWEB)

    Santoro, R.J.; Yang, V.; Santavicca, D.A. [Pennsylvania State Univ., University Park, PA (United States); Sheppard, E.J. [Tuskeggee Univ., Tuskegee, AL (United States). Dept. of Aerospace Engineering

    1995-12-31

    It is well known that the two key elements for achieving low emissions and high performance in a gas turbine combustor are to simultaneously establish (1) a lean combustion zone for maintaining low NO{sub x} emissions and (2) rapid mixing for good ignition and flame stability. However, these requirements, when coupled with the short combustor lengths used to limit the residence time for NO formation typical of advanced gas turbine combustors, can lead to problems regarding unburned hydrocarbons (UHC) and carbon monoxide (CO) emissions, as well as the occurrence of combustion instabilities. The concurrent development of suitable analytical and numerical models that are validated with experimental studies is important for achieving this objective. A major benefit of the present research will be to provide for the first time an experimentally verified model of emissions and performance of gas turbine combustors. The present study represents a coordinated effort between industry, government and academia to investigate gas turbine combustion dynamics. Specific study areas include development of advanced diagnostics, definition of controlling phenomena, advancement of analytical and numerical modeling capabilities, and assessment of the current status of our ability to apply these tools to practical gas turbine combustors. The present work involves four tasks which address, respectively, (1) the development of a fiber-optic probe for fuel-air ratio measurements, (2) the study of combustion instability using laser-based diagnostics in a high pressure, high temperature flow reactor, (3) the development of analytical and numerical modeling capabilities for describing combustion instability which will be validated against experimental data, and (4) the preparation of a literature survey and establishment of a data base on practical experience with combustion instability.

  2. Trace species detection: Spectroscopy and molecular energy transfer at high temperature

    Energy Technology Data Exchange (ETDEWEB)

    Gray, J.A. [Sandia National Laboratories, Livermore, CA (United States)

    1993-12-01

    Monitoring the concentration of trace species such as atomic and molecular free radicals is essential in forming predictive models of combustion processes. LIF-based techniques have the necessary sensitivity for concentration and temperature measurements but have limited accuracy due to collisional quenching in combustion applications. The goal of this program is to use spectroscopic and kinetic measurements to quantify nonradiative and collisional effects on LIF signals and to develop new background-free alternatives to LIF. The authors have measured the natural linewidth of several OH A-X (3,0) rotational transitions to determine predissociation lifetimes in the upper state, which were presumed to be short compared to quenching lifetimes, and as a result, quantitative predictions about the applicability of predissociation fluorescence methods at high pressures are made. The authors are investigating collisional energy transfer in the A-state of NO. Quenching rates which enable direct corrections to NO LIF quantum yields at high temperature were calculations. These quenching rates are now being used in studies of turbulence/chemistry interactions. The authors have measured the electric dipole moment {mu} of excited-state NO using Stark quantum-beat spectroscopy. {mu} is an essential input to a harpoon model which predicts quenching efficiencies for NO (A) by a variety of combustion-related species. The authors are developing new coherent multiphoton techniques for measurements of atomic hydrogen concentration in laboratory flames to avoid the quenching problems associated with previous multiphoton LIF schemes.

  3. Faraday imaging at high temperatures

    Science.gov (United States)

    Hackel, Lloyd A.; Reichert, Patrick

    1997-01-01

    A Faraday filter rejects background light from self-luminous thermal objects, but transmits laser light at the passband wavelength, thus providing an ultra-narrow optical bandpass filter. The filter preserves images so a camera looking through a Faraday filter at a hot target illuminated by a laser will not see the thermal radiation but will see the laser radiation. Faraday filters are useful for monitoring or inspecting the uranium separator chamber in an atomic vapor laser isotope separation process. Other uses include viewing welds, furnaces, plasma jets, combustion chambers, and other high temperature objects. These filters are can be produced at many discrete wavelengths. A Faraday filter consists of a pair of crossed polarizers on either side of a heated vapor cell mounted inside a solenoid.

  4. Effects of preheated combustion air on laminar coflow diffusion flames under normal and microgravity conditions

    Science.gov (United States)

    Ghaderi Yeganeh, Mohammad

    Global energy consumption has been increasing around the world, owing to the rapid growth of industrialization and improvements in the standard of living. As a result, more carbon dioxide and nitrogen oxide are being released into the environment. Therefore, techniques for achieving combustion at reduced carbon dioxide and nitric oxide emission levels have drawn increased attention. Combustion with a highly preheated air and low-oxygen concentration has been shown to provide significant energy savings, reduce pollution and equipment size, and uniform thermal characteristics within the combustion chamber. However, the fundamental understanding of this technique is limited. The motivation of the present study is to identify the effects of preheated combustion air on laminar coflow diffusion flames. Combustion characteristics of laminar coflow diffusion flames are evaluated for the effects of preheated combustion air temperature under normal and low-gravity conditions. Experimental measurements are conducted using direct flame photography, particle image velocimetry (PIV) and optical emission spectroscopy diagnostics. Laminar coflow diffusion flames are examined under four experimental conditions: normal-temperature/normal-gravity (case I), preheated-temperature/normal gravity (case II), normal-temperature/low-gravity (case III), and preheated-temperature/low-gravity (case IV). Comparisons between these four cases yield significant insights. In our studies, increasing the combustion air temperature by 400 K (from 300 K to 700 K), causes a 37.1% reduction in the flame length and about a 25% increase in peak flame temperature. The results also show that a 400 K increase in the preheated air temperature increases CH concentration of the flame by about 83.3% (CH is a marker for the rate of chemical reaction), and also increases the C2 concentration by about 60% (C2 is a marker for the soot precursor). It can therefore be concluded that preheating the combustion air

  5. In-cylinder Combustion and Soot Evolution in the Transition from Conventional CI mode to PPC

    KAUST Repository

    An, Yanzhao

    2018-01-09

    The present study intends to explore the in-cylinder combustion and evolution of soot emission during the transition from conventional compression ignition (CI) combustion to partially premixed combustion (PPC) at low load conditions. In-cylinder combustion images and engine-out emissions were measured in an optical engine fueled with low octane heavy naphtha fuel (RON = 50). Full cycle engine simulations were performed using a three-dimensional computational fluid dynamics code CONVERGETM, coupled with gas phase chemical kinetics, turbulence, and particulate size mimic soot model. The simulations were performed under low load conditions (IMEP ~ 2 to 3 bar) at an engine speed of 1200 rpm. The start of injection (SOI) was advanced from late (-10 CAD aTDC) to early fuel injection timings (-40 CAD aTDC) to realize the combustion transition from CI combustion to PPC. The simulation results of combustion and emission are compared with the experimental results at both CI and PPC combustion modes. The results of the study show a typical low-temperature stratified lean combustion at PPC mode, while high-temperature spray-driven combustion is evident at CI mode. The in-cylinder small intermediates species such as acetylene (C2H2), propargyl (C3H3), cyclopentadienyl (C5H5) and polycyclic aromatic hydrocarbons (PAHs) were significantly suppressed at PPC mode. Nucleation reaction of PAHs collision contributed to main soot mass production. The distribution of soot mass and particle number density was consistent with the distribution of high-temperature zones at CI and PPC combustion modes.

  6. Characterization of ceramics and intermetallics fabricated by self-propagating high-temperature synthesis

    International Nuclear Information System (INIS)

    Hurst, J.B.

    1989-05-01

    Three efforts aimed at investigating the process of self-propagating high temperature synthesis (SHS) for the fabrication of structural ceramics and intermetallics are summarized. Of special interest was the influence of processing variables such as exothermic dopants, gravity, and green state morphology in materials produced by SHS. In the first effort directed toward the fabrication of SiC, exothermic dopants of yttrium and zirconium were added to SiO2 or SiO2 + NiO plus carbon powder mix and processed by SHS. This approach was unsuccessful since it did not produce the desired product of crystalline SiC. In the second effort, the influence of gravity was investigated by examining Ni-Al microstructures which were produced by SHS combustion waves traveling with and opposite the gravity direction. Although final composition and total porosities of the combusted Ni-Al compounds were found to be gravity independent, larger pores were created in those specimens which were combusted opposite to the gravity force direction. Finally, it was found that green microstructure has a significant effect on the appearance of the combusted piece. Severe pressing laminations were observed to arrest the combustion front for TiC samples

  7. Performance of a Novel Hydrophobic Mesoporous Material for High Temperature Catalytic Oxidation of Naphthalene

    Directory of Open Access Journals (Sweden)

    Guotao Zhao

    2014-01-01

    Full Text Available A high surface area, hydrophobic mesoporous material, MFS, has been successfully synthesized by a hydrothermal synthesis method using a perfluorinated surfactant, SURFLON S-386, as the single template. N2 adsorption and TEM were employed to characterize the pore structure and morphology of MFS. Static water adsorption test indicates that the hydrophobicity of MFS is significantly higher than that of MCM-41. XPS and Py-GC/MS analysis confirmed the existence of perfluoroalkyl groups in MFS which led to its high hydrophobicity. MFS was used as a support for CuO in experiments of catalytic combustion of naphthalene, where it showed a significant advantage over MCM-41 and ZSM-5. SEM was helpful in understanding why CuO-MFS performed so well in the catalytic combustion of naphthalene. Experimental results indicated that MFS was a suitable support for catalytic combustion of large molecular organic compounds, especially for some high temperature catalytic reactions when water vapor was present.

  8. High Temperature Corrosion in Biomass-Fired Boilers

    DEFF Research Database (Denmark)

    Henriksen, Niels; Montgomery, Melanie; Hede Larsen, Ole

    2002-01-01

    condense on superheater components. This gives rise to specific corrosion problems not previously encountered in coal-fired power plants. The type of corrosion attack can be directly ascribed to the composition of the deposit and the metal surface temperature. To avoid such high corrosion rates, woodchip...... has also been utilised as a fuel. Combustion of woodchip results in a smaller amount of ash, and potassium and chlorine are present in lesser amounts. However, significant corrosion rates were still seen. A case study of a woodchip fired boiler is described. The corrosion mechanisms in both straw-fired...... and woodchip fired boilers are discussed....

  9. Combustion characteristics and influential factors of isooctane active-thermal atmosphere combustion assisted by two-stage reaction of n-heptane

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Xingcai; Ji, Libin; Ma, Junjun; Zhou, Xiaoxin; Huang, Zhen [Key Lab. for Power Machinery and Engineering of MOE, Shanghai Jiao Tong University, 200240 Shanghai (China)

    2011-02-15

    This paper presents an experimental study on the isooctane active-thermal atmosphere combustion (ATAC) which is assisted by two-stage reaction of n-heptane. The active-thermal atmosphere is created by low- and high-temperature reactions of n-heptane which is injected at intake port, and isooctane is directly injected into combustion chamber near the top dead center. The effects of isooctane injection timing, active-thermal atmosphere intensity, overall equivalence ratio, and premixed ratio on combustion characteristics and emissions are investigated. The experimental results reveal that, the isooctane ignition and combustion can be classified to thermal atmosphere combustion, active atmosphere combustion, and active-thermal atmosphere combustion respectively according to the extent of n-heptane oxidation as well as effects of isooctane quenching and charge cooling. n-Heptane equivalence ratio, isooctane equivalence ratio and isooctane delivery advance angle are major control parameters. In one combustion cycle, the isooctane ignited and burned after those of n-heptane, and then this combustion phenomenon can also be named as dual-fuel sequential combustion (DFSC). The ignition timing of the overall combustion event is mainly determined by n-heptane equivalence ratio and can be controlled in flexibility by simultaneously adjusting isooctane equivalence ratio. The isooctane ignition regime, overall thermal efficiency, and NO{sub x} emissions show strong sensitivity to the fuel delivery advance angle between 20 CA BTDC and 25 CA BTDC. (author)

  10. Straw combustion on slow-moving grates - a comparison of model predictions with experimental data

    Energy Technology Data Exchange (ETDEWEB)

    Kaer, S.K. [Aalborg Univ. (Denmark). Inst. of Energy Technology

    2005-03-01

    Combustion of straw in grate-based boilers is often associated with high emission levels and relatively poor fuel burnout. A numerical grate combustion model was developed to assist in improving the combustion performance of these boilers. The model is based on a one-dimensional ''walking-column'' approach and includes the energy equations for both the fuel and the gas accounting for heat transfer between the two phases. The model gives important insight into the combustion process and provides inlet conditions for a computational fluid dynamics analysis of the freeboard. The model predictions indicate the existence of two distinct combustion modes. Combustion air temperature and mass flow-rate are the two parameters determining the mode. There is a significant difference in reaction rates (ignition velocity) and temperature levels between the two modes. Model predictions were compared to measurements in terms of ignition velocity and temperatures for five different combinations of air mass flow and temperature. In general, the degree of correspondence with the experimental data is favorable. The largest difference between measurements and predictions occurs when the combustion mode changes. The applicability to full-scale is demonstrated by predictions made for an existing straw-fired boiler located in Denmark. (author)

  11. Influence of the hydrothermal dewatering on the combustion characteristics of Chinese low-rank coals

    International Nuclear Information System (INIS)

    Ge, Lichao; Zhang, Yanwei; Xu, Chang; Wang, Zhihua; Zhou, Junhu; Cen, Kefa

    2015-01-01

    This study investigates the influence of hydrothermal dewatering performed at different temperatures on the combustion characteristics of Chinese low-rank coals with different coalification maturities. It was found that the upgrading process significantly decreased the inherent moisture and oxygen content, increased the calorific value and fixed carbon content, and promoted the damage of the hydrophilic oxygen functional groups. The results of oxygen/carbon atomic ratio indicated that the upgrading process converted the low-rank coals near to high-rank coals which can also be gained using the Fourier transform infrared spectroscopy. The thermogravimetric analysis showed that the combustion processes of upgraded coals were delayed toward the high temperature region, and the upgraded coals had higher ignition and burnout temperature. On the other hand, based on the higher average combustion rate and comprehensive combustion parameter, the upgraded coals performed better compared with raw brown coals and the Da Tong bituminous coal. In ignition segment, the activation energy increased after treatment but decreased in the combustion stage. The changes in coal compositions, microstructure, rank, and combustion characteristics were more notable as the temperature in hydrothermal dewatering increased from 250 to 300 °C or coals of lower ranks were used. - Highlights: • Typical Chinese lignites with various ranks are upgraded by hydrothermal dewatering. • Upgraded coals exhibit chemical compositions comparable with that of bituminous coal. • FTIR show the change of microstructure and improvement in coal rank after upgrading. • Upgraded coals exhibit difficulty in ignition but combust easily. • More evident effects are obtained for raw brown coal with relative lower rank.

  12. A comprehensive study of combustion products generated from pulverized peat combustion in the furnace of BKZ-210-140F steam boiler

    Science.gov (United States)

    Kuzmin, V. A.; Zagrai, I. A.

    2017-11-01

    The experimental and theoretical study of combustion products has been carried out for the conditions of pulverized peat combustion in BKZ-210-140F steam boiler. Sampling has been performed in different parts of the boiler system in order to determine the chemical composition, radiative properties and dispersity of slag and ash particles. The chemical composition of particles was determined using the method of x-ray fluorescence analysis. Shapes and sizes of the particles were determined by means of electron scanning microscopy. The histograms and the particle size distribution functions were computed. The calculation of components of the gaseous phase was based on the combustion characteristics of the original fuel. The software package of calculation of thermal radiation of combustion products from peat combustion was used to simulate emission characteristics (flux densities and emissivity factors). The dependence of emission characteristics on the temperature level and on the wavelength has been defined. On the basis of the analysis of emission characteristics the authors give some recommendations how to determine the temperature of peat combustion products in the furnace of BKZ-210-140F steam boiler. The findings can be used to measure the combustion products temperature, support temperature control in peat combustion and solve the problem of boiler furnace slagging.

  13. A predictive model of natural gas mixture combustion in internal combustion engines

    Directory of Open Access Journals (Sweden)

    Henry Espinoza

    2007-05-01

    Full Text Available This study shows the development of a predictive natural gas mixture combustion model for conventional com-bustion (ignition engines. The model was based on resolving two areas; one having unburned combustion mixture and another having combustion products. Energy and matter conservation equations were solved for each crankshaft turn angle for each area. Nonlinear differential equations for each phase’s energy (considering compression, combustion and expansion were solved by applying the fourth-order Runge-Kutta method. The model also enabled studying different natural gas components’ composition and evaluating combustion in the presence of dry and humid air. Validation results are shown with experimental data, demonstrating the software’s precision and accuracy in the results so produced. The results showed cylinder pressure, unburned and burned mixture temperature, burned mass fraction and combustion reaction heat for the engine being modelled using a natural gas mixture.

  14. Study on Waste Heat Utilization Device of High-Temperature Freshwater in the Modern Marine Diesel Engine

    Science.gov (United States)

    Wang, Shuaijun; Liu, Chentao; Zhou, Yao

    2018-01-01

    Based on using the waste heat recycling from high temperature freshwater in marine diesel engine to heat fuel oil tank, lubrication oil tank and settling tank and so on to achieve energy saving, improve fuel efficiency as the goal, study on waste heat utilization device of high-temperature freshwater in the modern marine diesel engine to make the combustion chamber effectively cooled by high-temperature freshwater and the inner liner freshwater temperature heat is effectively utilized and so on to improve the overall efficiency of the power plant of the ship and the diesel optimum working condition.

  15. Kinetics of in situ combustion. SUPRI TR 91

    Energy Technology Data Exchange (ETDEWEB)

    Mamora, D.D.; Ramey, H.J. Jr.; Brigham, W.E.; Castanier, L.M.

    1993-07-01

    Oxidation kinetic experiments with various crude oil types show two reaction peaks at about 250{degree}C (482{degree}F) and 400{degree}C (725{degree}F). These experiments lead to the conclusion that the fuel during high temperature oxidation is an oxygenated hydrocarbon. A new oxidation reaction model has been developed which includes two partially-overlapping reactions: namely, low-temperature oxidation followed by high-temperature oxidation. For the fuel oxidation reaction, the new model includes the effects of sand grain size and the atomic hydrogen-carbon (H/C) and oxygen-carbon (O/C) ratios of the fuel. Results based on the new model are in good agreement with the experimental data. Methods have been developed to calculate the atomic H/C and O/C ratios. These methods consider the oxygen in the oxygenated fuel, and enable a direct comparison of the atomic H/C ratios obtained from kinetic and combustion tube experiments. The finding that the fuel in kinetic tube experiments is an oxygenated hydrocarbon indicates that oxidation reactions are different in kinetic and combustion tube experiments. A new experimental technique or method of analysis will be required to obtain kinetic parameters for oxidation reactions encountered in combustion tube experiments and field operations.

  16. Combustion characterization of rape seed meal and suggestions for optimal use in combustion appliances; Foerbraenningskarakterisering av rapsmjoel och foerslag till optimalt nyttjande i olika foerbraenningsanlaeggningar

    Energy Technology Data Exchange (ETDEWEB)

    Eriksson, Gunnar; Hedman, Henry; Oehman, Marcus; Bostroem, Dan; Pettersson, Esbjoern; Pommer, Linda; Lindstroem, Erica; Backman, Rainer; Oehman, Rikard

    2007-12-15

    When rape oil is chemically extracted, rape seed meal, a solid residue remains. Currently, it is used as animal feed. Several plants for the production of rape methyl ester (RME, biodiesel) are in operation or under construction. Combustion properties have been studied for rape seed meal produced as a by product to rape-methyl esther (RME, biodiesel). Composition of the material has been measured, using proximate and ultimate analysis. The lower heating value was 18.2 +- 0.3 MJ/kg d.w. and the ash content was 7-8 percent d.w. The material is rich in nitrogen and sulphur. Concentrations of K, P, Ca and Mg are high in the fuel. Rape seed meal was mixed with bark and pelletised. Bark pellets were also used as a reference fuel. Pellets with 10 and 30 percent rape seed meal were produced. Material with 80 percent rape seed meal and 20 percent planer shavings was also pelletised. Wood had to be added to provide enough friction in the pelletising process, with adapted equipment rape seed meal could probably be easily pelletised). The material was studied using Thermo-Gravimetric Analysis (TGA), and compared with data from tests with wood powder. The pyrolysis of the rape seed meal has a characteristic temperature of 320 deg C. Devolatilisation starts at 150 deg C (at a lower temperature than for wood powder), and proceeds within a rather wide temperature range. The probable cause is the difference in organic content, in particular protein content. The result does not suggest that the material will be difficult to ignite. Experiments in a bench-scale fluidised bed (5 kW) showed that pellets containing only bark, and the mixture rape seed meal/wood had a bed agglomeration temperature well over the normal operational bed temperature. For the fuel mixtures rape seed meal and bark, the agglomeration temperature was slightly over the operational temperature. Particle emissions from fluidised bed combustion and grate combustion were, the latter simulated using a commercial

  17. Modelling NO[sub x] formation in coal particle combustion at high temperature: an investigation of the devolatilisation kinetic factors

    Energy Technology Data Exchange (ETDEWEB)

    Jones, J.M.; Patterson, P.M.; Pourkashanian, M.; Williams, A.; Arenillas, A.; Rubiera, F.; Pis, J.J. (University of Leeds, Leeds (United Kingdom). Dept. of Fuel and Energy)

    1999-08-01

    Coal combustion computational fluid dynamic (CFD) models are a powerful predictive tool in combustion research. In existing coal combustion CFD models, the process is described by three kinetic rates: coal devolatilizaton, volatile combustion and char combustion. A general, representative devolatilisation rate for coal is a matter of some contention, and measured rates depend upon the type of experimental system employed in their determination. Thus the reported rates vary considerably, causing difficulties in the choice of rate expression for CFD modelling applications. In this investigation, a laminar flow CFD model of a drop-tube furnace was used to assess the influence of global devolatilisation rates on overall combustion behaviour, and in particular, NOx emissions. The rates chosen include some of the common expressions employed by researchers in the field. Analysis, and comparison of the modelling results with those of the experimental indicated that a single-step devolatilisation rate can give satisfactory profiles. This rate can be calculated from the tar release rate using a network model such as FG-DVC (functional group, depolymerisation, vaporisation and cross-linking) together with the nitrogen partitioning between gas and char during pyrolysis. The use of these single-step models result in good predictions of NOx, and the inclusion of soot/NOx interactions can improve the mode significantly to give an excellent agreement with experimental results. 2 refs., 4 figs., 3 tabs.

  18. Operation related on-line measurements of low temperature fire side corrosion during co-combustion of biomass and oil; Driftrelaterad direktmaetning av laagtemperaturkorrosion i en braensleeldad kraftvaermeanlaeggning

    Energy Technology Data Exchange (ETDEWEB)

    Eriksson, Thomas [Studsvik Nuclear AB, Nykoeping (Sweden)

    2000-05-01

    A number of combustion plants have experienced corrosion attack on air preheaters and economisers when fired with biomass fuels. In certain plants the problems are great and reconstruction has been performed so that exposed components can be exchanged during operation. The electrochemical techniques offer on-line measurements of the changes in corrosion rate in the low temperature region in a waste incinerator. The purpose with this study was to evaluate the technique in a biomass fired boiler where the corrosion rate is considerable lower compared to a waste incinerator. Experiments were performed at the Haesselby plant, boiler 3, which was fired with pure biomass as well as a mixture of biomass and oil during the test period. It was found that the electrochemical technique is a useful tool for on-line measurements of the changes in corrosion rate in biomass fired utilities. Since the corrosion rate in the low temperature region is dependent on the boiler construction, electrochemical measurements give valuable information on the corrosion rate during optimisation of the fuel mixture, SNCR and temperature or the low temperature components. This is of special importance when introducing new fuels or fuel mixtures. Soot blowing is of prime importance for the total corrosion. During a few minutes an individual soot blower can initiate such a high corrosion rate that it represents the total corrosion. The material temperature is another important parameter. Above a certain temperature the corrosion rate is negligible. During co-combustion this temperature was found to be in the region 65-85 deg C. The influence of the SNCR with ammonia, with respect to corrosion, is dependent on the fuel mixture used. In utilities where acidic combustion products are formed, ammonia has a neutralising effect e.g. in Hoegdalen. At the Haesselby plant this neutralising effect was not found. During cocombustion with oil the ammonia forms ammoniahydrosulphate which increases the corrosion

  19. Formation of fuel NOx during black-liquor combustion

    International Nuclear Information System (INIS)

    Nichols, K.M.; Lien, S.J.

    1993-01-01

    Fuel NOx and thermal NOx were measured in combustion gases from black liquors in two laboratory furnaces. Combustion at 950 C in air (8% O 2 ) produced NOx concentrations of 40-80ppm. Combustion at 950 C in synthetic air containing no nitrogen (21% 0 2 in Ar) produced the same result, demonstrating that all of the NOx produced during combustion at 950 C was fuel NOx. Formation of fuel NOx increased moderately with increasing temperature in the range of 800-1,000 C, but temperature sensitivity of fuel NOx was much less than that of thermal NOx. The results imply that the major source of NOx in recovery furnace emissions is the fuel NOx in recovery furnace formed by conversion of liquor-bound nitrogen during combustion. This is consistent with thermal NOx theory, which postulates that black-liquor combustion temperatures are too low to generate significant amounts of thermal NOx

  20. Mechanism of influence water vapor on combustion characteristics of propane-air mixture

    Science.gov (United States)

    Larionov, V. M.; Mitrofanov, G. A.; Sachovskii, A. V.; Kozar, N. K.

    2016-01-01

    The article discusses the results of an experimental study of the effect of water vapor at the flame temperature. Propane-butane mixture with air is burning on a modified Bunsen burner. Steam temperature was varied from 180 to 260 degrees. Combustion parameters changed by steam temperature and its proportion in the mixture with the fuel. The fuel-air mixture is burned in the excess air ratio of 0.1. It has been established that the injection of steam changes the characteristics of combustion fuel-air mixture and increase the combustion temperature. The concentration of CO in the combustion products is substantially reduced. Raising the temperature in the combustion zone is associated with increased enthalpy of the fuel by the added steam enthalpy. Reducing the concentration of CO is caused by decrease in the average temperature in the combustion zone by applying steam. Concentration of active hydrogen radicals and oxygen increases in the combustion zone. That has a positive effect on the process of combustion.

  1. Novel room-temperature-setting phosphate ceramics for stabilizing combustion products and low-level mixed wastes

    International Nuclear Information System (INIS)

    Wagh, A.S.; Singh, D.

    1994-01-01

    Argonne National Laboratory, with support from the Office of Technology in the US Department of Energy (DOE), has developed a new process employing novel, chemically bonded ceramic materials to stabilize secondary waste streams. Such waste streams result from the thermal processes used to stabilize low-level, mixed wastes. The process will help the electric power industry treat its combustion and low-level mixed wastes. The ceramic materials are strong, dense, leach-resistant, and inexpensive to fabricate. The room-temperature-setting process allows stabilization of volatile components containing lead, mercury, cadmium, chromium, and nickel. The process also provides effective stabilization of fossil fuel combustion products. It is most suitable for treating fly and bottom ashes

  2. Biomass downdraft gasifier with internal cyclonic combustion chamber: design, construction, and experimental results.

    Science.gov (United States)

    Patil, Krushna; Bhoi, Prakash; Huhnke, Raymond; Bellmer, Danielle

    2011-05-01

    An exploratory downdraft gasifier design with unique biomass pyrolysis and tar cracking mechanism is evolved at Oklahoma State University. This design has an internal separate combustion section where turbulent, swirling high-temperature combustion flows are generated. A series of research trials were conducted using wood shavings as the gasifier feedstock. Maximum tar cracking temperatures were above 1100°C. Average volumetric concentration levels of major combustible components in the product gas were 22% CO and 11% H(2). Hot and cold gas efficiencies were 72% and 66%, respectively. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Faraday imaging at high temperatures

    International Nuclear Information System (INIS)

    Hackel, L.A.; Reichert, P.

    1997-01-01

    A Faraday filter rejects background light from self-luminous thermal objects, but transmits laser light at the passband wavelength, thus providing an ultra-narrow optical bandpass filter. The filter preserves images so a camera looking through a Faraday filter at a hot target illuminated by a laser will not see the thermal radiation but will see the laser radiation. Faraday filters are useful for monitoring or inspecting the uranium separator chamber in an atomic vapor laser isotope separation process. Other uses include viewing welds, furnaces, plasma jets, combustion chambers, and other high temperature objects. These filters are can be produced at many discrete wavelengths. A Faraday filter consists of a pair of crossed polarizers on either side of a heated vapor cell mounted inside a solenoid. 3 figs

  4. Combustion of Metals in Reduced-Gravity and Extra Terrestrial Environments

    Science.gov (United States)

    Branch, M.C.; Abbud-Madrid, A.; Daily, J. W.

    1999-01-01

    The combustion of metals is a field with important practical applications in rocket propellants, high-temperature flames, and material synthesis. Also, the safe operation of metal containers in high-pressure oxygen systems and with cryogenic fuels and oxidizers remains an important concern in industry. The increasing use of metallic components in spacecraft and space structures has also raised concerns about their flammability properties and fire suppression mechanisms. In addition, recent efforts to embark on unmanned and manned planetary exploration, such as on Mars, have also renewed the interest in metal/carbon-dioxide combustion as an effective in situ resource utilization technology. In spite of these practical applications, the understanding of the combustion properties of metals remains far behind that of the most commonly used fuels such as hydrocarbons. The lack of understanding is due to the many problems unique to metal- oxidizer reactions such as: low-temperature surface oxidation prior to ignition, heterogeneous reactions, very high combustion temperatures, product condensation, high emissivity of products, and multi-phase interactions. Very few analytical models (all neglecting the influence of gravity) have been developed to predict the burning characteristics and the flame structure details. Several experimental studies attempting to validate these models have used small metal particles to recreate gravity-free conditions. The high emissivity of the flames, rapid reaction, and intermittent explosions experienced by these particles have made the gathering of any useful information on burning rates and flame structure very difficult. The use of a reduced gravity environment is needed to clarify some of the complex interactions among the phenomena described above. First, the elimination of the intrusive buoyant flows that plague all combustion phenomena is of paramount importance in metal reactions due to the much higher temperatures reached during

  5. Direct numerical simulations of the ignition of a lean biodiesel/air mixture with temperature and composition inhomogeneities at high pressure and intermediate temperature

    KAUST Repository

    Luong, Minhbau

    2014-11-01

    The effects of the stratifications of temperature, T, and equivalence ratio, φ{symbol}, on the ignition characteristics of a lean homogeneous biodiesel/air mixture at high pressure and intermediate temperature are investigated using direct numerical simulations (DNSs). 2-D DNSs are performed at a constant volume with the variance of temperature and equivalence ratio (T′ and φ{symbol}′) together with a 2-D isotropic velocity spectrum superimposed on the initial scalar fields. In addition, three different T s(-) φ{symbol} correlations are investigated: (1) baseline cases with T′ only or φ{symbol}′ only, (2) uncorrelated T s(-) φ{symbol} distribution, and (3) negatively-correlated T s(-) φ{symbol} distribution. It is found that the overall combustion is more advanced and the mean heat release rate is more distributed over time with increasing T′ and/or φ{symbol}′ for the baseline and uncorrelated T s(-) φ{symbol} cases. However, the temporal advancement and distribution of the overall combustion caused by T′ or φ{symbol}′ only are nearly annihilated by the negatively-correlated T s(-) φ{symbol} fields. The chemical explosive mode and Damköhler number analyses verify that for the baseline and uncorrelated T s(-) φ{symbol} cases, the deflagration mode is predominant at the reaction fronts for large T′ and/or φ{symbol}′. On the contrary, the spontaneous ignition mode prevails for cases with small T′ or φ{symbol}′, especially for cases with negative T s(-) φ{symbol} correlations, and hence, simultaneous auto-ignition occurs throughout the entire domain, resulting in an excessive rate of heat release. It is also found that turbulence with large intensity, u′, and a short time scale can effectively smooth out initial thermal and compositional fluctuations such that the overall combustion is induced primarily by spontaneous ignition. Based on the present DNS results, the generalization of the effects of T′, φ{symbol}′, and u

  6. Gradual combustion - method for nitrogen oxide suppression during brown coal combustion

    Energy Technology Data Exchange (ETDEWEB)

    Kotler, V.P.; Verzakov, V.N.; Lobov, T.V.

    1990-10-01

    Discusses combustion of brown coal in BKZ-500-140-1 boilers and factors that influence emission of nitrogen oxides. Temperature distribution in the furnace was evaluated. Effects of burner position, burner number and burner type as well as air excess ratio on chemical reactions during brown coal combustion, formation of nitrogen oxides and their emission were comparatively evaluated. Analyses showed that by optimum arrangement of burners and selecting the optimum air excess ratio a part of nitrogen oxides formed during the initial phase of combustion was reduced to molecular nitrogen in the second phase. On the basis of evaluations the following recommendations for furnace design are made: use of straight-flow burners characterized by a reduced mixing ratio with secondary air, parallel arrangement of burners which guarantees mixing of the combustion products from the burners with stable and unstable combustion (products of incomplete coal combustion), reducing the air excess ratio to below 1.0. 5 refs.

  7. Spray combustion of Jet-A and diesel fuels in a constant volume combustion chamber

    KAUST Repository

    Jing, Wei; Roberts, William L.; Fang, Tiegang

    2015-01-01

    This work investigates the spray combustion of Jet-A fuel in an optical constant-volume combustion chamber under different ambient initial conditions. Ambient temperature was varied at 800 K, 1000 K, and 1200 K and five different ambient O2

  8. Quantitative Detection of Combustion Species using Ultra-Violet Diode Lasers

    Science.gov (United States)

    Pilgrim, J. S.; Peterson, K. A.

    2001-01-01

    Southwest Sciences is developing a new microgravity combustion diagnostic based on UV diode lasers. The instrument will allow absolute concentration measurements of combustion species on a variety of microgravity combustion platforms including the Space Station. Our approach uses newly available room temperature UV diode lasers, thereby keeping the instrument compact, rugged and energy efficient. The feasibility of the technique was demonstrated by measurement of CH radicals in laboratory flames. Further progress in fabrication technology of UV diode lasers at shorter wavelengths and higher power will result in detection of transient species in the deeper UV. High sensitivity detection of combustion radicals is provided with wavelength modulation absorption spectroscopy.

  9. High temperature turbine engine structure

    Energy Technology Data Exchange (ETDEWEB)

    Carruthers, W.D.; Boyd, G.L.

    1993-07-20

    A hybrid ceramic/metallic gas turbine is described comprising; a housing defining an inlet, an outlet, and a flow path communicating the inlet with the outlet for conveying a flow of fluid through the housing, a rotor member journaled by the housing in the flow path, the rotor member including a compressor rotor portion rotatively inducting ambient air via the inlet and delivering this air pressurized to the flow path downstream of the compressor rotor, a combustor disposed in the flow path downstream of the compressor receiving the pressurized air along with a supply of fuel to maintain combustion providing a flow of high temperature pressurized combustion products in the flow path downstream thereof, the rotor member including a turbine rotor portion disposed in the flow path downstream of the combustor and rotatively expanding the combustion products toward ambient for flow from the turbine engine via the outlet, the turbine rotor portion providing shaft power driving the compressor rotor portion and an output shaft portion of the rotor member, a disk-like metallic housing portion journaling the rotor member to define a rotational axis therefore, and a disk-like annular ceramic turbine shroud member bounding the flow path downstream of the combustor and circumscribing the turbine rotor portion to define a running clearance therewith, the disk-like ceramic turbine shroud member having a reference axis coaxial with the rotational axis and being spaced axially from the metallic housing portion in mutually parallel concentric relation therewith and a plurality of spacers disposed between ceramic disk-like shroud member and the metallic disk-like housing portion and circumferentially spaced apart, each of the spacers having a first and second end portion having an end surface adjacent the shroud member and the housing portion respectively, the end surfaces having a cylindrical curvature extending transversely relative to the shroud member and the housing portion.

  10. Investigation of combustion characteristics of methane-hydrogen fuels

    Science.gov (United States)

    Vetkin, A. V.; Suris, A. L.; Litvinova, O. A.

    2015-01-01

    Numerical investigations of combustion characteristics of methane-hydrogen fuel used at present in tube furnaces of some petroleum refineries are carried out and possible problems related to change-over of existing furnaces from natural gas to methane-hydrogen fuel are analyzed. The effect of the composition of the blended fuel, associated temperature and emissivity of combustion products, temperature of combustion chamber walls, mean beam length, and heat release on variation in the radiation heat flux is investigated. The methane concentration varied from 0 to 100%. The investigations were carried out both at arbitrary given gas temperatures and at effective temperatures determined based on solving a set of equations at various heat-release rates of the combustion chamber and depended on the adiabatic combustion temperature and the temperature at the chamber output. The approximation dependence for estimation of the radiation heat exchange rate in the radiant chamber of the furnace at change-over to fuel with a greater hydrogen content is obtained. Hottel data were applied in the present work in connection with the impossibility to use approximated formulas recommended by the normative method for heat calculation of boilers to determine the gas emissivity, which are limited by the relationship of partial pressures of water steam and carbon dioxide in combustion products . The effect of the methane-hydrogen fuel on the equilibrium concentration of nitrogen oxides is also investigated.

  11. Combustion

    CERN Document Server

    Glassman, Irvin

    2008-01-01

    Combustion Engineering, a topic generally taught at the upper undergraduate and graduate level in most mechanical engineering programs, and many chemical engineering programs, is the study of rapid energy and mass transfer usually through the common physical phenomena of flame oxidation. It covers the physics and chemistry of this process and the engineering applications-from the generation of power such as the internal combustion automobile engine to the gas turbine engine. Renewed concerns about energy efficiency and fuel costs, along with continued concerns over toxic and particulate emissions have kept the interest in this vital area of engineering high and brought about new developments in both fundamental knowledge of flame and combustion physics as well as new technologies for flame and fuel control. *New chapter on new combustion concepts and technologies, including discussion on nanotechnology as related to combustion, as well as microgravity combustion, microcombustion, and catalytic combustion-all ...

  12. Fuel Flexible Combustion Systems for High-Efficiency Utilization of Opportunity Fuels in Gas Turbines

    Energy Technology Data Exchange (ETDEWEB)

    Venkatesan, Krishna

    2011-11-30

    The purpose of this program was to develop low-emissions, efficient fuel-flexible combustion technology which enables operation of a given gas turbine on a wider range of opportunity fuels that lie outside of current natural gas-centered fuel specifications. The program encompasses a selection of important, representative fuels of opportunity for gas turbines with widely varying fundamental properties of combustion. The research program covers conceptual and detailed combustor design, fabrication, and testing of retrofitable and/or novel fuel-flexible gas turbine combustor hardware, specifically advanced fuel nozzle technology, at full-scale gas turbine combustor conditions. This project was performed over the period of October 2008 through September 2011 under Cooperative Agreement DE-FC26-08NT05868 for the U.S. Department of Energy/National Energy Technology Laboratory (USDOE/NETL) entitled "Fuel Flexible Combustion Systems for High-Efficiency Utilization of Opportunity Fuels in Gas Turbines". The overall objective of this program was met with great success. GE was able to successfully demonstrate the operability of two fuel-flexible combustion nozzles over a wide range of opportunity fuels at heavy-duty gas turbine conditions while meeting emissions goals. The GE MS6000B ("6B") gas turbine engine was chosen as the target platform for new fuel-flexible premixer development. Comprehensive conceptual design and analysis of new fuel-flexible premixing nozzles were undertaken. Gas turbine cycle models and detailed flow network models of the combustor provide the premixer conditions (temperature, pressure, pressure drops, velocities, and air flow splits) and illustrate the impact of widely varying fuel flow rates on the combustor. Detailed chemical kinetic mechanisms were employed to compare some fundamental combustion characteristics of the target fuels, including flame speeds and lean blow-out behavior. Perfectly premixed combustion experiments were conducted to

  13. Study of electrophysical processes during spontaneous combustion of gases and vapors of organic substances

    Energy Technology Data Exchange (ETDEWEB)

    Fialkov, B.S.; Shebeko, Yu.N.; Muravlev, V.K.; Il' in, A.B.

    Combustion of organic substances is accompanied by non-equilibrium ionization, the greatest degree of ionization being in the high temperature zone of the flame, although notable concentrations of ions have been observed in the earlier, low temperature stages of combustion. Since this phenomenon has been studied for only a small number of compounds, a study was undertaken of the electrophysical phenomena taking place during spontaneous combustion of a large variety of compounds, viz., ethanol, acetone, benzene, diethylamine, pentane, diethyl ether, A-72 gasoline, dibromotetrafluoroethane, dichloromethane, and three mixtures of ethanol with 1,2-dibromotetrafluoroethane. Relationships of temperature to passive sonde potential and conductivity current during the induction period were determined. The effective activation energy for the conductivity current-temperature relationship was found to be 230 kilojoules per mole, which agrees with that determined for the induction period in the spontaneous combustion of acetylene-air mixtures in shock waves. 14 references, 3 figures.

  14. Effect of oxidizer on grain size and low temperature DC electrical conductivity of tin oxide nanomaterial synthesized by gel combustion method

    International Nuclear Information System (INIS)

    Rajeeva, M. P.; Jayanna, H. S.; Ashok, R. L.; Naveen, C. S.; Bothla, V. Prasad

    2014-01-01

    Nanocrystalline Tin oxide material with different grain size was synthesized using gel combustion method by varying the fuel (C 6 H 8 O 7 ) to oxidizer (HNO 3 ) molar ratio by keeping the amount of fuel as constant. The prepared samples were characterized by using X-Ray Diffraction (XRD), Scanning Electron Microscope (SEM) and Energy Dispersive Analysis X-ray Spectroscopy (EDAX). The effect of fuel to oxidizer molar ratio in the gel combustion method was investigated by inspecting the grain size of nano SnO 2 powder. The grain size was found to be reduced with the amount of oxidizer increases from 0 to 6 moles in the step of 2. The X-ray diffraction patterns of the calcined product showed the formation of high purity tetragonal tin (IV) oxide with the grain size in the range of 12 to 31 nm which was calculated by Scherer's formula. Molar ratio and temperature dependence of DC electrical conductivity of SnO 2 nanomaterial was studied using Keithley source meter. DC electrical conductivity of SnO 2 nanomaterial increases with the temperature from 80K to 300K. From the study it was observed that the DC electrical conductivity of SnO 2 nanomaterial decreases with the grain size at constant temperature

  15. Fuel properties effect on the performance of a small high temperature rise combustor

    Science.gov (United States)

    Acosta, Waldo A.; Beckel, Stephen A.

    1989-01-01

    The performance of an advanced small high temperature rise combustor was experimentally determined at NASA-Lewis. The combustor was designed to meet the requirements of advanced high temperature, high pressure ratio turboshaft engines. The combustor featured an advanced fuel injector and an advanced segmented liner design. The full size combustor was evaluated at power conditions ranging from idle to maximum power. The effect of broad fuel properties was studied by evaluating the combustor with three different fuels. The fuels used were JP-5, a blend of Diesel Fuel Marine/Home Heating Oil, and a blend of Suntec C/Home Heating Oil. The fuel properties effect on the performance of the combustion in terms of pattern factor, liner temperatures, and exhaust emissions are documented.

  16. Advanced radiant combustion system. Final report, September 1989--September 1996

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, J.D.; Carswell, M.G.; Long, F.S.

    1996-09-01

    Results of the Advanced Radiant Combustion System (ARCS) project are presented in this report. This work was performed by Alzeta Corporation as prime contractor under a contract to the U.S. Department of Energy Office of Industrial Technologies as part of a larger DOE program entitled Research Program for Advanced Combustion Systems. The goals of the Alzeta ARCS project were to (a) Improve the high temperature performance characteristics of porous surface ceramic fiber burners, (b) Develop an Advanced Radiant Combustion System (ARCS) that combines combustion controls with an advanced radiant burner, and (c) Demonstrate the advanced burner and controls in an industrial application. Prior to the start of this project, Alzeta had developed and commercialized a porous surface radiant burner, the Pyrocore{trademark} burner. The product had been commercially available for approximately 5 years and had achieved commercial success in a number of applications ranging from small burners for commercial cooking equipment to large burners for low temperature industrial fluid heating applications. The burner was not recommended for use in applications with process temperatures above 1000{degrees}F, which prevented the burner from being used in intermediate to high temperature processes in the chemical and petroleum refining industries. The interest in increasing the maximum use temperature of the burner was motivated in part by a desire to expand the number of applications that could use the Pyrocore product, but also because many of the fluid sensitive heating applications of interest would benefit from the distributed flux characteristic of porous surface burners. Background information on porous surface radiant burners, and a discussion of advantages that would be provided by an improved product, are presented in Section 2.

  17. Experimental and computational investigation of temperature effects on soot mechanisms

    Directory of Open Access Journals (Sweden)

    Bi Xiaojie

    2014-01-01

    Full Text Available Effects of initial ambient temperatures on combustion and soot emission characteristics of diesel fuel were investigated through experiment conducted in optical constant volume chamber and simulation using phenomenological soot model. There are four difference initial ambient temperatures adopted in our research: 1000 K, 900 K, 800 K and 700 K. In order to obtain a better prediction of soot behavior, phenomenological soot model was revised to take into account the soot oxidation feedback on soot number density and good agreement was observed in the comparison of soot measurement and prediction. Results indicated that ignition delay prolonged with the decrease of initial ambient temperature. The heat release rate demonstrated the transition from mixing controlled combustion at high ambient temperature to premixed combustion mode at low ambient temperature. At lower ambient temperature, soot formation and oxidation mechanism were both suppressed. But finally soot mass concentration reduced with decreasing initial ambient temperature. Although the drop in ambient temperature did not cool the mean in-cylinder temperature during the combustion, it did shrink the total area of local high equivalence ratio, in which soot usually generated fast. At 700 K initial ambient temperature, soot emissions were almost negligible, which indicates that sootless combustion might be achieved at super low initial temperature operation conditions.

  18. Influence of engine speed and the course of the fuel injection characteristics on forming the average combustion temperature in the cylinder of turbo diesel engine

    Directory of Open Access Journals (Sweden)

    Piotr GUSTOF

    2007-01-01

    Full Text Available Average combustion temperatures inside a turbo diesel engine for the same load and the same total doze of fuel for two rotational speeds: 2004 [rpm] and 4250 [rpm] are presented in this paper. The aim of this work is also the evaluation of the influence of the temporary course of the fuel injection characteristics on forming temperature in theengine cylinder space for these temperatures. The calculations were carried out by means of two zone combustion model.

  19. Fundamental Study of Single Biomass Particle Combustion

    DEFF Research Database (Denmark)

    Momenikouchaksaraei, Maryam

    This thesis is a comprehensive study of single biomass particle combustion. The effect of particle shape and size and operating conditions on biomass conversion characteristics were investigated experimentally and theoretically. The experimental samples were divided in two groups: particles...... well-defined conditions, and the complete combustion processes were recorded as video sequences by a CCD camera installed in the set-up. One of the project objectives is to simulate conditions reasonably close to the conditions in a power plant boiler, i.e., reasonably high temperatures (up to 1600°C...

  20. Effects of combustion temperature on air emissions and support fuel consumption in full scale fluidized bed sludge incineration: with particular focus on nitrogen oxides and total organic carbon.

    Science.gov (United States)

    Löschau, Margit

    2018-04-01

    This article describes a pilot test at a sewage sludge incineration plant and shows its results considering the impacts of reducing the minimum combustion temperature from 850°C to 800°C. The lowering leads to an actual reduction of the average combustion temperature by 25 K and a significant reduction in the fuel oil consumption for support firing. The test shall be used for providing evidence that the changed combustion conditions do not result in higher air pollutant emissions. The analysis focusses on the effects of the combustion temperature on nitrogen oxides (NO x ) and total organic carbon emissions. The evaluation of all continuously monitored emissions shows reduced emission levels compared to the previous years, especially for NO x .

  1. Experimental Investigation into the Combustion Characteristics of Propane Hydrates in Porous Media

    Directory of Open Access Journals (Sweden)

    Xiang-Ru Chen

    2015-02-01

    Full Text Available The combustion characteristics of both pure propane hydrates and the mixtures of hydrates and quartz sands were investigated by combustion experiments. The flame propagation, flame appearance, burning time and temperature in different hydrate layers were studied. For pure propane hydrate combustion, the initial flame falls in the “premixed” category. The flame propagates very rapidly, mainly as a result of burnt gas expansion. The flame finally self-extinguishes with some proportion of hydrates remaining unburned. For the hydrate-sand mixture combustion, the flame takes the form of many tiny discontinuous flames appearing and disappearing at different locations. The burn lasts for a much shorter amount of time than pure hydrate combustion. High porosity and high hydrate saturation is beneficial to the combustion. The hydrate combustion is the combustion of propane gas resulting from the dissociation of the hydrates. In both combustion test scenarios, the hydrate-dissociated water plays a key role in the fire extinction, because it is the main resistance that restrains the heat transfer from the flame to the hydrates and that prevents the hydrate-dissociated gas from releasing into the combustion zone.

  2. Combustion char characterisation. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Rosenberg, P; Ingermann Petersen, H; Sund Soerensen, H; Thomsen, E; Guvad, C

    1996-06-01

    The aim was to correlate reactivity measures of raw coals and the maceral concentrates of the coals obtained in a previous project with the morphology of the produced chars by using a wire grid devolatilization method. Work involved determination of morphology, macroporosity and a detailed study by Scanning Electron Microscopy (SEM). Systematic variations in the texture of chars produced in different temperature domains and heating rates were demonstrated by using incident light microscopy on polished blocks and by SEM studies directly on the surfaces of untreated particles. Results suggest that work in the field of char reactivity estimates and correlations between char morphology and coal petrography can be accomplished only on chars produced under heating rates and temperatures comparable to those for the intended use of coal. A general correlation between the coals` petrography and the the morphology of high temperature chars was found. The SEM study of the chars revealed that during the devolatilization period the particles fuse and the macroporosity and thus the morphotypes are formed. After devolatilization ceases, secondary micropores are formed. These develop in number and size throughout the medium combustion interval. At the end of the combustion interval the macrostructure breaks down, caused by coalescence of the increased number of microspores. This can be observed as a change in the morphology and the macroporosity of the chars. Results indicate that char reactivity is a function of the macroporosity and thus the morphology of combustion chars. (AB) 34 refs.

  3. Naphtha vs. dieseline – The effect of fuel properties on combustion homogeneity in transition from CI combustion towards HCCI

    KAUST Repository

    Vallinayagam, R.

    2018-03-20

    The scope of this research study pertains to compare the combustion and emission behavior between naphtha and dieseline at different combustion modes. In this study, US dieseline (50% US diesel + 50% RON 91 gasoline) and EU dieseline (45% EU diesel + 55% RON 97 gasoline) with derived cetane number (DCN) of 36 are selected for experimentation in an optical engine. Besides naphtha and dieseline, PRF60 is also tested as a surrogate fuel for naphtha. For the reported fuel with same RON = 60, the effect of physical properties on combustion homogeneity when moving from homogenized charge compression ignition (HCCI) to compression ignition (CI) combustion is studied.The combustion phasing of naphtha at an intake air temperature of 95 °C is taken as the baseline data. The engine experimental results show that higher and lower intake air temperature is required for dieseline mixtures to have same combustion phasing as that of naphtha at HCCI and CI conditions due to the difference in the physical properties. Especially at HCCI mode, due to wider distillation range of dieseline, the evaporation of the fuel is affected so that the gas phase mixture becomes too lean to auto-ignite. However, at partially premixed combustion (PPC) conditions, all test fuels required almost same intake air temperature to match up with the combustion phasing of baseline naphtha. From the rate of heat release and combustion images, it was found that naphtha and PRF60 showed improved premixed combustion when compared dieseline mixtures. The stratification analysis shows that combustion is more stratified for dieseline whereas it is premixed for naphtha and PRF60. The level of stratification linked with soot emission showed that soot concentration is higher at stratified CI combustion whereas near zero soot emissions were noted at PPC mode.

  4. Fuel spray and combustion characteristics of butanol blends in a constant volume combustion chamber

    International Nuclear Information System (INIS)

    Liu, Yu; Li, Jun; Jin, Chao

    2015-01-01

    Highlights: • A sudden drop is observed in spray penetration for B10S10D80 fuel at 800 and 900 K. • With increasing of temperature, auto-ignition timings of fuels become unperceivable. • Low n-butanol addition has little effect on autoignition timings from 800 to 1200 K. • n-Butanol additive can reduce soot emissions at the near-wall regions. • Larger soot reduction is seen at higher ambient temperatures for n-butanol addition. - Abstract: The processes of spray penetrations, flame propagation and soot formation and oxidation fueling n-butanol/biodiesel/diesel blends were experimentally investigated in a constant volume combustion chamber with an optical access. B0S20D80 (0% n-butanol, 20% soybean biodiesel, and 80% diesel in volume) was prepared as the base fuel. n-Butanol was added into the base fuel by volumetric percent of 5% and 10%, denoted as B5S15D80 (5% n-butanol/15% soybean biodiesel/80% diesel) and B10S10D80 (10% n-butanol/10% soybean biodiesel/80% diesel). The ambient temperatures at the time of fuel injection were set to 800 K, 900 K, 1000 K, and 1200 K. Results indicate that the penetration length reduces with the increase of n-butanol volumes in blending fuels and ambient temperatures. The spray penetration presents a sudden drop as fueling B10S10D80 at 800 K and 900 K, which might be caused by micro-explosion. A larger premixed combustion process is observed at low ambient temperatures, while the heat release rate of high ambient temperatures presents mixing controlled diffusion combustion. With a lower ambient temperature, the auto-ignition delay becomes longer with increasing of n-butanol volume in blends. However, with increasing of ambient temperatures, the auto-ignition timing between three fuels becomes unperceivable. Generally, low n-butanol addition has a limited or no effect on the auto-ignition timing in the current conditions. Compared with the base fuel of B0S20D80, n-butanol additive with 5% or 10% in volume can reduce soot

  5. Diffusion Driven Combustion Waves in Porous Media

    Science.gov (United States)

    Aldushin, A. P.; Matkowsky, B. J.

    2000-01-01

    Filtration of gas containing oxidizer, to the reaction zone in a porous medium, due, e.g., to a buoyancy force or to an external pressure gradient, leads to the propagation of Filtration combustion (FC) waves. The exothermic reaction occurs between the fuel component of the solid matrix and the oxidizer. In this paper, we analyze the ability of a reaction wave to propagate in a porous medium without the aid of filtration. We find that one possible mechanism of propagation is that the wave is driven by diffusion of oxidizer from the environment. The solution of the combustion problem describing diffusion driven waves is similar to the solution of the Stefan problem describing the propagation of phase transition waves, in that the temperature on the interface between the burned and unburned regions is constant, the combustion wave is described by a similarity solution which is a function of the similarity variable x/square root of(t) and the wave velocity decays as 1/square root of(t). The difference between the two problems is that in the combustion problem the temperature is not prescribed, but rather, is determined as part of the solution. We will show that the length of samples in which such self-sustained combustion waves can occur, must exceed a critical value which strongly depends on the combustion temperature T(sub b). Smaller values of T(sub b) require longer sample lengths for diffusion driven combustion waves to exist. Because of their relatively small velocity, diffusion driven waves are considered to be relevant for the case of low heat losses, which occur for large diameter samples or in microgravity conditions, Another possible mechanism of porous medium combustion describes waves which propagate by consuming the oxidizer initially stored in the pores of the sample. This occurs for abnormally high pressure and gas density. In this case, uniformly propagating planar waves, which are kinetically controlled, can propagate, Diffusion of oxidizer decreases

  6. Investigations on oxy-fuel combustion in glass melting furnaces; Untersuchungen zur Oxy-Fuel-Feuerung in Glasschmelzwannen

    Energy Technology Data Exchange (ETDEWEB)

    Leicher, Joerg; Giese, Anne [Gaswaerme-Institut e.V., Essen (Germany)

    2011-12-15

    Glass melting requires process temperatures of more than 1600 C which are usually achieved using intensive air preheating and near-stoichiometric combustion. This often leads to high nitrous oxide emissions (NO{sub x}). Oxy-fuel technology offers an interesting alternative since high combustion temperatures can be achieved using pure oxygen as oxidizer while obtaining low NO{sub x} emissions. In the course of the AiF research project ''O2-Glaswanne'' (IGF-Nr.: 15987 N), Gaswaerme- Institut e.V. Essen investigates this combustion process by experimental and numerical means in order to determine potential optimization approaches for glass melting furnaces.

  7. Combustion Velocity of Benzine-Benzol-Air Mixtures in High-Speed Internal-Combustion Engines

    Science.gov (United States)

    Schnauffer, Kurt

    1932-01-01

    The present paper describes a device whereby rapid flame movement within an internal-combustion engine cylinder may be recorded and determined. By the aid of a simple cylindrical contact and an oscillograph the rate of combustion within the cylinder of an airplane engine during its normal operation may be measured for gas intake velocities of from 30 to 35 m/s and for velocities within the cylinder of from 20 to 25 m/s. With it the influence of mixture ratios, of turbulence, of compression ratio and kind of fuel on combustion velocity may be determined. Besides the determination of the influence of the above factors on combustion velocity, the degree of turbulence may also be determined. As a unit of reference in estimating the degree of turbulence, the intake velocity of the charge is chosen.

  8. Maglev system concept using 20-K high-temperature superconductors and hyperconductors

    Science.gov (United States)

    Hull, J. R.; He, Jianliang

    A magnetically levitated high-speed ground transportation concept is proposed that uses high-temperature superconductors or hyperconductors, cooled by liquid hydrogen at 20 K, to provide levitation. An on-board hydrogen-powered turbine/generator provides electricity for propulsion by linear induction motors. The liquid hydrogen is used to cool the superconductors and the windings of the generator and motors before combusting in the turbine. The principal advantage of this system is the potential to greatly reduce the cost of the guideway, which is completely passive.

  9. Catalytic Combustion of Gasified Waste

    Energy Technology Data Exchange (ETDEWEB)

    Kusar, Henrik

    2003-09-01

    This thesis concerns catalytic combustion for gas turbine application using a low heating-value (LHV) gas, derived from gasified waste. The main research in catalytic combustion focuses on methane as fuel, but an increasing interest is directed towards catalytic combustion of LHV fuels. This thesis shows that it is possible to catalytically combust a LHV gas and to oxidize fuel-bound nitrogen (NH{sub 3}) directly into N{sub 2} without forming NO{sub x} The first part of the thesis gives a background to the system. It defines waste, shortly describes gasification and more thoroughly catalytic combustion. The second part of the present thesis, paper I, concerns the development and testing of potential catalysts for catalytic combustion of LHV gases. The objective of this work was to investigate the possibility to use a stable metal oxide instead of noble metals as ignition catalyst and at the same time reduce the formation of NO{sub x} In paper II pilot-scale tests were carried out to prove the potential of catalytic combustion using real gasified waste and to compare with the results obtained in laboratory scale using a synthetic gas simulating gasified waste. In paper III, selective catalytic oxidation for decreasing the NO{sub x} formation from fuel-bound nitrogen was examined using two different approaches: fuel-lean and fuel-rich conditions. Finally, the last part of the thesis deals with deactivation of catalysts. The various deactivation processes which may affect high-temperature catalytic combustion are reviewed in paper IV. In paper V the poisoning effect of low amounts of sulfur was studied; various metal oxides as well as supported palladium and platinum catalysts were used as catalysts for combustion of a synthetic gas. In conclusion, with the results obtained in this thesis it would be possible to compose a working catalytic system for gas turbine application using a LHV gas.

  10. A survey of combustible metals, thermites, and intermetallics for pyrotechnic applications

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, S.H.; Grubelich, M.C.

    1996-08-01

    Thermite mixtures, intermetallic reactants, and metal fuels have long been used in pyrotechnics. Advantages include high energy density, impact insensitivity, high combustion temperature, and a wide range of gas production. They generally exhibit high temperature stability and possess insensitive ignition properties. This paper reviews the applications, benefits, and characteristics of thermite mixtures, intermetallic reactants, and metal fuels. 50 refs, tables.

  11. Verification of Conditions for use of Combustion Products‘ Heat

    Directory of Open Access Journals (Sweden)

    Kažimírová Viera

    2015-06-01

    Full Text Available Presented contribution deals with the verification of conditions for use of combustion products‘ heat, generated by combustion of wood in a fireplace used in a household. It is necessary to know the temperature behaviour of the fireplace to determine the adequacy of the technical solution for using combustion products‘ heat. The combustion products‘ temperature at the upper part of the chimney is 80-120 °C. The dew point value was established to be below 51 °C. The average observed value of combustion product velocity is 1.6 m s-1. The volume flow rate of combustion products is 12 m3 h-1. Measured values allow for effective solution of the use of combustion products‘ heat.

  12. Plasma assisted combustion of parafin mixture

    International Nuclear Information System (INIS)

    Nedybaliuk, O.A.; Chernyak, V.Ya.; Martysh, E.V.; Lisitchenko, T.E.; Vergun, O.Yu.; Orlovska, S.G.

    2013-01-01

    In this work the results of solid paraffin combustion with the aid of the plasma of transverse and rotational gliding arc studies are represented. The question of the additional activation of paraffin based solid fuels is examined. The mixture of n-paraffin and stearin in the solid state as the model of the solid paraffin based fuel is used. The plasma assisted combustion of this model is experimentally investigated. The voltage-current characteristics of discharge at the different regimes are measured. The population temperatures of excited rotational levels are determined. The flame temperature during the combustion of solid paraffin containing mixture is calculated

  13. Lump wood combustion process

    Science.gov (United States)

    Kubesa, Petr; Horák, Jiří; Branc, Michal; Krpec, Kamil; Hopan, František; Koloničný, Jan; Ochodek, Tadeáš; Drastichová, Vendula; Martiník, Lubomír; Malcho, Milan

    2014-08-01

    The article deals with the combustion process for lump wood in low-power fireplaces (units to dozens of kW). Such a combustion process is cyclical in its nature, and what combustion facility users are most interested in is the frequency, at which fuel needs to be stoked to the fireplace. The paper defines the basic terms such as burnout curve and burning rate curve, which are closely related to the stocking frequency. The fuel burning rate is directly dependent on the immediate thermal power of the fireplace. This is also related to the temperature achieved in the fireplace, magnitude of flue gas losses and the ability to generate conditions favouring the full burnout of the fuel's combustible component, which, at once ensures the minimum production of combustible pollutants. Another part of the paper describes experiments conducted in traditional fireplaces with a grate, at which well-dried lump wood was combusted.

  14. A Phenomenological Model for Prediction Auto-Ignition and Soot Formation of Turbulent Diffusion Combustion in a High Pressure Common Rail Diesel Engine

    Directory of Open Access Journals (Sweden)

    Qinghui Zhou

    2011-06-01

    Full Text Available A new phenomenological model, the TP (Temperature Phase model, is presented to carry out optimization calculations for turbulent diffusion combustion in a high-pressure common rail diesel engine. Temperature is the most important parameter in the TP model, which includes two parts: an auto-ignition and a soot model. In the auto-ignition phase, different reaction mechanisms are built for different zones. For the soot model, different methods are used for different temperatures. The TP model is then implemented in KIVA code instead of original model to carry out optimization. The results of cylinder pressures, the corresponding heat release rates, and soot with variation of injection time, variation of rail pressure and variation of speed among TP model, KIVA standard model and experimental data are analyzed. The results indicate that the TP model can carry out optimization and CFD (computational fluid dynamics and can be a useful tool to study turbulent diffusion combustion.

  15. Mixture of fuels for solution combustion synthesis of porous Fe3O4 powders

    Science.gov (United States)

    Parnianfar, H.; Masoudpanah, S. M.; Alamolhoda, S.; Fathi, H.

    2017-06-01

    The solution combustion synthesis of porous magnetite (Fe3O4) powders by a mixture of glycine and urea fuels was investigated concerning the thermodynamic aspects and powder characteristics. The adiabatic combustion temperature and combusted species were thermodynamically calculated as a function of the fuel to oxidant molar ratio (ϕ). The combustion behavior, phase evolution, porous structure and magnetic properties were characterized by thermal analysis, X-ray diffractometry, N2 adsorption-desorption, electron microscopy and vibrating sample magnetometry techniques. Nearly single phase Fe3O4 powders were synthesized by the mixture of fuels at ϕ values of 0.75 and 1. The as-combusted Fe3O4 powders at ϕ = 1 exhibited porous structure with the specific surface area of 83.4 m2/g. The highest saturation magnetization of 75.5 emu/g and the lowest coercivity of 84 Oe were achieved at ϕ = 1, due to the high purity and large crystallite size, inducing from the highest adiabatic combustion temperature.

  16. Catalytic combustion in small wood burning appliances

    Energy Technology Data Exchange (ETDEWEB)

    Oravainen, H [VTT Energy, Jyvaeskylae (Finland)

    1997-12-31

    There is over a million hand fired small heating appliances in Finland where about 5,4 million cubic meters of wood fuel is used. Combustion in such heating appliances is a batch-type process. In early stages of combustion when volatiles are burned, the formation of carbon monoxide (CO) and other combustible gases are difficult to avoid when using fuels that have high volatile matter content. Harmful emissions are formed mostly after each fuel adding but also during char burnout period. When the CO-content in flue gases is, say over 0.5 %, also other harmful emissions will be formed. Methane (CH{sub 4}) and other hydrocarbons are released and the amount of polycyclic aromatic hydrocarbons (PAH)-compounds can be remarkable. Some PAH-compounds are very carcinogenic. It has been estimated that in Finland even more than 90 % of hydrocarbon and PAH emissions are due to small scale wood combustion. Emissions from transportation is excluded from these figures. That is why wood combustion has a net effect on greenhouse gas phenomena. For example carbon monoxide emissions from small scale wood combustion are two fold compared to that of energy production in power plants. Methane emission is of the same order as emission from transportation and seven fold compared with those of energy production. Emissions from small heating appliances can be reduced by developing the combustion techniques, but also by using other means, for example catalytic converters. In certain stages of the batch combustion, temperature is not high enough, gas mixing is not good enough and residence time is too short for complete combustion. When placed to a suitable place inside a heating appliance, a catalytic converter can oxidize unburned gases in the flue gas into compounds that are not harmful to the environment. (3 refs.)

  17. Catalytic combustion in small wood burning appliances

    Energy Technology Data Exchange (ETDEWEB)

    Oravainen, H. [VTT Energy, Jyvaeskylae (Finland)

    1996-12-31

    There is over a million hand fired small heating appliances in Finland where about 5,4 million cubic meters of wood fuel is used. Combustion in such heating appliances is a batch-type process. In early stages of combustion when volatiles are burned, the formation of carbon monoxide (CO) and other combustible gases are difficult to avoid when using fuels that have high volatile matter content. Harmful emissions are formed mostly after each fuel adding but also during char burnout period. When the CO-content in flue gases is, say over 0.5 %, also other harmful emissions will be formed. Methane (CH{sub 4}) and other hydrocarbons are released and the amount of polycyclic aromatic hydrocarbons (PAH)-compounds can be remarkable. Some PAH-compounds are very carcinogenic. It has been estimated that in Finland even more than 90 % of hydrocarbon and PAH emissions are due to small scale wood combustion. Emissions from transportation is excluded from these figures. That is why wood combustion has a net effect on greenhouse gas phenomena. For example carbon monoxide emissions from small scale wood combustion are two fold compared to that of energy production in power plants. Methane emission is of the same order as emission from transportation and seven fold compared with those of energy production. Emissions from small heating appliances can be reduced by developing the combustion techniques, but also by using other means, for example catalytic converters. In certain stages of the batch combustion, temperature is not high enough, gas mixing is not good enough and residence time is too short for complete combustion. When placed to a suitable place inside a heating appliance, a catalytic converter can oxidize unburned gases in the flue gas into compounds that are not harmful to the environment. (3 refs.)

  18. Bioenergy originating from biomass combustion in a fluidized bed

    Energy Technology Data Exchange (ETDEWEB)

    Crujeira, T.; Gulyurtlu, I.; Lopes, H.; Abelha, P.; Cabrita, I. [INETI/DEECA, Lisboa (Portugal)

    2008-07-01

    Bioenergy could significantly contribute to reducing and controlling greenhouse emissions (GHG) and to replace fossil fuels in large power plants. Although the use of biomass, originating from forests, could be beneficial, particularly in preventing fires, there are obstacles to achieve a sustainable supply chain of biomass in most European countries. In addition, there are also technical barriers as requirements of biomass combustion may differ from those of coal, which could mean significant retrofitting of existing installations. The combustion behaviour of different biomass materials were studied on a pilot fluidised bed combustor, equipped with two cyclones for particulate matter removal. The gaseous pollutants leaving the stack were sampled under isokinetic conditions for particulate matter, chlorine compounds, heavy metals and dioxins and furans (PCDD/F). The results obtained indicated that the combustion of these materials did not present any operational problem, although for temperatures above 800{sup o}C, bed agglomeration could be observed for all biomass materials studied. Most of the combustion of biomass, contrary to what is observed for coal, takes place in the riser where the temperature was as much as 150{sup o}C above that of the bed. Stable combustion conditions were achieved as well as high combustion efficiency. When compared with the emissions of bituminous coal, the most used fossil fuel, the emissions of CO and SO2 were found to be lower and NOx emissions were similar to those of coal. HCl and PCDD/F could be considerable with biomasses containing high chlorine levels, as in the case of straw. It was observed that the nature of ash could give rise serious operating problems.

  19. Combustion Characterization of Bio-derived Fuels and Additives

    DEFF Research Database (Denmark)

    Hashemi, Hamid

    Climate change has become a serious concern nowadays. The main reason is believed to be the high emission of greenhouse gases, namely CO2 which is mainly produced from the combustion of fossil fuels. At the same time, energy demand has increased exponentially while the energy supply mainly depends...... on fossil fuels, especially for transportation. The practical strategy to address such problems in medium term is to increase the efficiency of combustion-propelled energy-production systems, as well as to reduce the net release of CO2 and other harmful pollutants, likely by using nonconventional fuels....... Modern internal combustion engines such as Homogeneous Charge Compression Ignition (HCCI) engines are more efficient and fuel-flexible compared to the conventional engines, making opportunities to reduce the release of greenhouse and other polluting gases to the environment. Combustion temperature...

  20. Distributed Low Temperature Combustion: Fundamental Understanding of Combustion Regime Transitions

    Science.gov (United States)

    2016-09-07

    behaviour as compared to ethanol. The latter fuel has also been considered along with methane. Work has also been performed on the further assessment of... behaviour as compared to ethanol. The latter fuel has also been considered along with methane. Work has also been performed on the further assess- ment of...identification of various combustion gas states. A range of Damköhler numbers (Da) from the conventional propagating flamelet regime well into the distributed

  1. Effect of pre-combustion characteristics in pulse detonation engine using shchelkin spiral

    Directory of Open Access Journals (Sweden)

    C. T. Dheeraj Kumar Singh

    2016-09-01

    Full Text Available Pulse detonation engines are the modern propulsive device which provides high thrust. They are unsteady propulsive devices which has multi cycle operations in it. In this multi cycle process for every cycle fuel and air are initiated and a shock wave is generated in combustion chamber in form of deflagration. Combustion chamber is maintained with high pressure and high temperature which leads to combustion of reactants. This deflagration transmits to detonation with high velocity and increasing Mach number. Deflagration propagates forward by taking all unburned species and products formed after combustion. Propagation of Deflagration – Detonation Transition (DDT shock wave studies is a pioneering research concept. In the present study, simulation of PDE with Shchelkin spiral geometry is considered with two mass flow inlets has been used in which one is for fuel inlet and other for oxidizer. Geometry and meshing has been done in Gambit. Fuel used is gaseous fuel hydrogen and oxidizer is air mixture of O2, N2 work has been performed for different mass flow rates of fuel and oxidizer. Energy equation, Species transport equation to be solved in Fluent. Comparison results of DDT in parameters of mach number, velocity, pressure and temperatures depending on different time steps have been observed

  2. Internal and Surface Phenomena in Heterogenous Metal Combustion

    Science.gov (United States)

    Dreizin, Edward L.

    1997-01-01

    The phenomenon of gas dissolution in burning metals was observed in recent metal combustion studies, but it could not be adequately explained by the traditional metal combustion models. The research reported here addresses heterogeneous metal combustion with emphasis on the processes of oxygen penetration inside burning metal and its influence on the metal combustion rate, temperature history, and disruptive burning. The unique feature of this work is the combination of the microgravity environment with a novel micro-arc generator of monodispersed metal droplets, ensuring repeatable formation and ignition of uniform metal droplets with a controllable initial temperature and velocity. Burning droplet temperature is measured in real time with a three wavelength pyrometer. In addition, particles are rapidly quenched at different combustion times, cross-sectioned, and examined using SEM-based techniques to retrieve the internal composition history of burning metal particles. When the initial velocity of a spherical particle is nearly zero, the microgravity environment makes it possible to study the flame structure, the development of flame nonsymmetry, and correlation of the flame shape with the heterogeneous combustion processes.

  3. Fuel and combustion stratification study of Partially Premixed Combustion

    OpenAIRE

    Izadi Najafabadi, M.; Dam, N.; Somers, B.; Johansson, B.

    2016-01-01

    Relatively high levels of stratification is one of the main advantages of Partially Premixed Combustion (PPC) over the Homogeneous Charge Compression Ignition (HCCI) concept. Fuel stratification smoothens heat release and improves controllability of this kind of combustion. However, the lack of a clear definition of “fuel and combustion stratifications” is obvious in literature. Hence, it is difficult to compare stratification levels of different PPC strategies or other combustion concepts. T...

  4. Combustion of diesel fuel from a toxicological perspective. I. Origin of incomplete combustion products.

    Science.gov (United States)

    Scheepers, P T; Bos, R P

    1992-01-01

    Since the use of diesel engines is still increasing, the contribution of their incomplete combustion products to air pollution is becoming ever more important. The presence of irritating and genotoxic substances in both the gas phase and the particulate phase constituents is considered to have significant health implications. The quantity of soot particles and the particle-associated organics emitted from the tail pipe of a diesel-powered vehicle depend primarily on the engine type and combustion conditions but also on fuel properties. The quantity of soot particles in the emissions is determined by the balance between the rate of formation and subsequent oxidation. Organics are absorbed onto carbon cores in the cylinder, in the exhaust system, in the atmosphere and even on the filter during sample collection. Diesel fuel contains polycyclic aromatic hydrocarbons (PAHs) and some alkyl derivatives. Both groups of compounds may survive the combustion process. PAHs are formed by the combustion of crankcase oil or may be resuspended from engine and/or exhaust deposits. The conversion of parent PAHs to oxygenated and nitrated PAHs in the combustion chamber or in the exhaust system is related to the vast amount of excess combustion air that is supplied to the engine and the high combustion temperature. Whether the occurrence of these derivatives is characteristic for the composition of diesel engine exhaust remains to be ascertained. After the emission of the particles, their properties may change because of atmospheric processes such as aging and resuspension. The particle-associated organics may also be subject to (photo)chemical conversions or the components may change during sampling and analysis. Measurement of emissions of incomplete combustion products as determined on a chassis dynamometer provides knowledge of the chemical composition of the particle-associated organics. This knowledge is useful as a basis for a toxicological evaluation of the health hazards of

  5. Ultra-High Efficiency and Low-Emissions Combustion Technology for Manufacturing Industries

    Energy Technology Data Exchange (ETDEWEB)

    Atreya, Arvind

    2013-04-15

    The purpose of this research was to develop and test a transformational combustion technology for high temperature furnaces to reduce the energy intensity and carbon footprint of U.S. manufacturing industries such as steel, aluminum, glass, metal casting, and petroleum refining. A new technology based on internal and/or external Flue Gas Recirculation (FGR) along with significant enhancement in flame radiation was developed. It produces "Radiative Flameless Combustion (RFC)" and offers tremendous energy efficiency and pollutant reduction benefits over and above the now popular "flameless combustion." It will reduce the energy intensity (or fuel consumption per unit system output) by more than 50% and double the furnace productivity while significantly reducing pollutants and greenhouse gas emissions (10^3 times reduction in NOx and 10 times reduction in CO & hydrocarbons and 3 times reduction in CO2). Product quality improvements are also expected due to uniform radiation, as well as, reduction in scale/dross formation is expected because of non-oxidative atmosphere. RFC is inexpensive, easy to implement, and it was successfully tested in a laboratory-scale furnace at the University of Michigan during the course of this work. A first-ever theory with gas and particulate radiation was also developed. Numerical programs were also written to design an industrial-scale furnace. Nine papers were published (or are in the process of publication). We believe that this early stage research adequately proves the concept through laboratory experiments, modeling and computational models. All this work is presented in the published papers. Important conclusions of this work are: (1) It was proved through experimental measurements that RFC is not only feasible but a very beneficial technology. (2) Theoretical analysis of RFC was done in (a) spatially uniform strain field and (b) a planar momentum jet where the strain rate is neither prescribed nor uniform. Four important non

  6. IEA combustion agreement : a collaborative task on alternative fuels in combustion

    International Nuclear Information System (INIS)

    Larmi, M.

    2009-01-01

    The focus of the alternative fuels in combustion task of the International Energy Agency is on high efficiency engine combustion, furnace combustion, and combustion chemistry. The objectives of the task are to develop optimum combustion for dedicated fuels by fully utilizing the physical and chemical properties of synthetic and renewable fuels; a significant reduction in carbon dioxide, NOx and particulate matter emissions; determine the minimum emission levels for dedicated fuels; and meet future emission standards of engines without or with minimum after-treatment. This presentation discussed the alternative fuels task and addressed issues such as synthetic fuel properties and benefits. The anticipated future roadmap was presented along with a list of the synthetic and renewable engine fuels to be studied, such as neat oxygenates like alcohols and ethers, biogas/methane and gas combustion, fuel blends, dual fuel combustion, high cetane number diesel fuels like synthetic Fischer-Tropsch diesel fuel and hydrogenated vegetable oil, and low CN number fuels. Implementation examples were also discussed, such as fuel spray studies in optical spray bombs; combustion research in optical engines and combustion chambers; studies on reaction kinetics of combustion and emission formation; studies on fuel properties and ignition behaviour; combustion studies on research engines; combustion optimization; implementing the optimum combustion in research engines; and emission measurements. Overall milestone examples and the overall schedule of participating countries were also presented. figs.

  7. Combustion technology developments in power generation in response to environmental challenges

    Energy Technology Data Exchange (ETDEWEB)

    BeerBeer, J.M. [Massachusetts Inst. of Technology, Dept. of Chemical Engineering, Cambridge, MA (United States)

    2000-07-01

    Combustion system development in power generation is discussed ranging from the pre-environmental era in which the objectives were complete combustion with a minimum of excess air and the capability of scale up to increased boiler unit performances, through the environmental era (1970-), in which reduction of combustion generated pollution was gaining increasing importance, to the present and near future in which a combination of clean combustion and high thermodynamic efficiency is considered to be necessary to satisfy demands for CO{sub 2} emissions mitigation. From the 1970's on, attention has increasingly turned towards emission control technologies for the reduction of oxides of nitrogen and sulfur, the so-called acid rain precursors. By a better understanding of the NO{sub x} formation and destruction mechanisms in flames, it has become possible to reduce significantly their emissions via combustion process modifications, e.g. by maintaining sequentially fuel-rich and fuel-lean combustion zones in a burner flame or in the combustion chamber, or by injecting a hydrocarbon rich fuel into the NO{sub x} bearing combustion products of a primary fuel such as coal. Sulfur capture in the combustion process proved to be more difficult because calcium sulfate, the reaction product of SO{sub 2} and additive lime, is unstable at the high temperature of pulverised coal combustion. It is possible to retain sulfur by the application of fluidised combustion in which coal burns at much reduced combustion temperatures. Fluidised bed combustion is, however, primarily intended for the utilisation of low grade, low volatile coals in smaller capacity units, which leaves the task of sulfur capture for the majority of coal fired boilers to flue gas desulfurisation. During the last decade, several new factors emerged which influenced the development of combustion for power generation. CO{sub 2} emission control is gaining increasing acceptance as a result of the international

  8. High Temperature Catalytic Combustion Suppports Final Report CRADA No. TSB-0841-94

    Energy Technology Data Exchange (ETDEWEB)

    Hair, Lucy [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Magno, Scott [Catalytic Combustion Systems, Inc., Mountain View, CA (United States)

    2018-01-19

    This Small Business CRADA between LLNL and Catalytica was executed on January 25, 1995. The total estimated cost of this project was 113K. LLNL's contribution was estimated at $50K funded under the DOE/Defense Program Small Business Initiative. Catalytica's in-kind contribution was estimated at 63K. Catalytic combusion catalyst systems operate at temperatures from 600°C to above 1300°C. Catalytica has developed technology that limits the catalyst temperature to below 1000°C. At temperatures in the range of 850 to 1000°C, the thermal stability of the catalyst is an important issue. Typical supports such as stabilized aluminas, hexaluminates, zirconia and stabilized zirconia supports are typically used but lack either thermal stability or other desirable properties. Catalytica had developed a new concept for thermally stable mixed oxide supports but this concept required the preparation of molecularly uniform precursors; that is, prior to high temperature treatment of these materials, the elements that make up the mixed oxide must be as nearly uniform as possible on a molecular level. The technique of sol gel processing appeared to be the preferred technique to make these molecularly uniform precursors, and a cooperative program with LLNL was established to prepare and test the proposed compounds. Catalytica proposed the composition and concentration levels for the materials to be prepared.

  9. Fundamental combustion characteristics of lean hydrogen mixtures; Suiso kihaku kongoki no kisoteki nensho tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Barat, D; Kido, H; Nakahara, M; Hashimoto, J [Kyushu University, Fukuoka (Japan)

    1997-10-01

    One of the excellent combustion characteristics of hydrogen-air mixture is that its emission is free of CO2, but the problem of NOx remains, mainly caused by the high combustion temperature. Using leaner mixture and carrying out EGR are supposed to be effective methods to reduce NOx. In this study, to examine the effectiveness of the two methods, fundamental combustion characteristics of nitrogen added lean hydrogen mixtures were investigated by chemical equilibrium calculations and measurements of turbulent combustion characteristics. It is suggested that nitrogen added mixtures can achieve lower NOx combustion than lean mixtures, taking the combustion efficiency into consideration. 7 refs., 7 figs., 1 tab.

  10. Reference modular High Temperature Gas-Cooled Reactor Plant: Concept description report

    International Nuclear Information System (INIS)

    1986-10-01

    This report provides a summary description of the Modular High Temperature Gas-Cooled Reactor (MHTGR) concept and interim results of assessments of costs, safety, constructibility, operability, maintainability, and availability. Conceptual design of this concept was initiated in October 1985 and is scheduled for completion in 1987. Participating industrial contractors are Bechtel National, Inc. (BNI), Stone and Webster Engineering Corporation (SWEC), GA Technologies, Inc. (GA), General Electric Co. (GE), and Combustion Engineering, Inc

  11. Reference modular High Temperature Gas-Cooled Reactor Plant: Concept description report

    Energy Technology Data Exchange (ETDEWEB)

    1986-10-01

    This report provides a summary description of the Modular High Temperature Gas-Cooled Reactor (MHTGR) concept and interim results of assessments of costs, safety, constructibility, operability, maintainability, and availability. Conceptual design of this concept was initiated in October 1985 and is scheduled for completion in 1987. Participating industrial contractors are Bechtel National, Inc. (BNI), Stone and Webster Engineering Corporation (SWEC), GA Technologies, Inc. (GA), General Electric Co. (GE), and Combustion Engineering, Inc. (C-E).

  12. Numerical Studies on Controlling Gaseous Fuel Combustion by Managing the Combustion Process of Diesel Pilot Dose in a Dual-Fuel Engine

    Directory of Open Access Journals (Sweden)

    Mikulski Maciej

    2015-06-01

    Full Text Available Protection of the environment and counteracting global warming require finding alternative sources of energy. One of the methods of generating energy from environmentally friendly sources is increasing the share of gaseous fuels in the total energy balance. The use of these fuels in compression-ignition (CI engines is difficult due to their relatively high autoignition temperature. One solution for using these fuels in CI engines is operating in a dualfuel mode, where the air and gas mixture is ignited with a liquid fuel dose. In this method, a series of relatively complex chemical processes occur in the engine's combustion chamber, related to the combustion of individual fuel fractions that interact with one another. Analysis of combustion of specific fuels in this type of fuel injection to the engine is difficult due to the fact that combustion of both fuel fractions takes place simultaneously. Simulation experiments can be used to analyse the impact of diesel fuel combustion on gaseous fuel combustion. In this paper, we discuss the results of simulation tests of combustion, based on the proprietary multiphase model of a dual-fuel engine. The results obtained from the simulation allow for analysis of the combustion process of individual fuels separately, which expands the knowledge obtained from experimental tests on the engine.

  13. Combustion of methane-oxygen and methane-oxygen-CFC mixtures initiated by a high-current slipping surface discharge

    International Nuclear Information System (INIS)

    Kossyi, I.A.; Silakov, V.P.; Tarasova, N.M.

    2001-01-01

    Results are presented from experimental studies of the destruction of chlorofluorocarbon (CF 2 Cl 2 ) molecules in a methane-oxygen (air) gas mixture whose combustion is initiated by a high-current slipping surface discharge. It is found that a three-component CH 4 + O 2 (air)+ CF 2 Cl 2 gas mixture (even with a considerable amount of the third component) demonstrates properties of explosive combustion involving chain reactions that are typical of two-component CH 4 + O 2 mixtures. Experiments show the high degree of destruction (almost complete decomposition) of chlorofluorocarbons contained in the mixture during one combustion event. The combustion dynamics is studied. It is shown that the combustion initiated by a slipping surface discharge has a number of characteristic features that make it impossible to identify the combustion dynamics with the formation of a combustion or detonation wave. The features of the effects observed can be related to intense UV radiation produced by a pulsed high-current surface discharge

  14. Effects of biomass on dynamics of combustion in circulating fluidized beds

    Directory of Open Access Journals (Sweden)

    Tourunen Antti

    2004-01-01

    Full Text Available Fluidized bed technology is very suitable for the combustion of biomass Nevertheless substitution of coal with biomass affects boiler operation and especially dynamics and controllability. Non-homogeneity of biomass and fuel feeding disturbances cause process instability, such as variations in temperatures and pressures, which reduce lifetime of equipment and structures. Because of process instability higher air coefficient must be used in order to avoid CO emissions, which is not economical. Combustion profiles for coal, wood and peat, measured at the VTT Processes Pilot circulating fluidized bed reactor, have been compared. Process stability and char inventories have been studied by the measurements and the model. Biofuel are usually very reactive and their combustion profiles are quite different compared to coals. Because of high reactivity and low char content combustion process with biofuel is very sensitive for fuel feeding. Also low char inventory effect on load changes combined with combustion profile that differs from coals. Because of different combustion profile heat transfer can be a limiting factor in load changes despite the high reactivity and fast oxygen response.

  15. Characterization of sapphire: For its material properties at high temperatures

    Science.gov (United States)

    Bal, Harman Singh

    There are numerous needs for sensing, one of which is in pressure sensing for high temperature application such as combustion related process and embedded in aircraft wings for reusable space vehicles. Currently, silicon based MEMS technology is used for pressure sensing. However, due to material properties the sensors have a limited range of approximately 600 °C which is capable of being pushed towards 1000 °C with active cooling. This can introduce reliability issues when you add more parts and high flow rates to remove large amounts of heat. To overcome this challenge, sapphire is investigated for optical based pressure transducers at temperatures approaching 1400 °C. Due to its hardness and chemical inertness, traditional cutting and etching methods used in MEMS technology are not applicable. A method that is being investigated as a possible alternative is laser machining using a picosecond laser. In this research, we study the material property changes that occur from laser machining and quantify the changes with the experimental results obtained by testing sapphire at high-temperature with a standard 4-point bending set-up.

  16. Comparison of different chemical kinetic mechanisms of methane combustion in an internal combustion engine configuration

    OpenAIRE

    Ennetta Ridha; Hamdi Mohamed; Said Rachid

    2008-01-01

    Three chemical kinetic mechanisms of methane combustion were tested and compared using the internal combustion engine model of Chemkin 4.02 [1]: one-step global reaction mechanism, four-step mechanism, and the standard detailed scheme GRIMECH 3.0. This study shows good concordances, especially between the four-step and the detailed mechanisms in the prediction of temperature and main species profiles. But reduced schemes were incapables to predict pollutant emissions in an internal combustion...

  17. Smoke reduction using multiple stage diesel combustion; Nidan nensho ni yoru diesel kikan no smoke teigen koka

    Energy Technology Data Exchange (ETDEWEB)

    Tsujimura, K. [Chiba Institute of Technology, Chiba (Japan); Hashizume, T.; Miyamoto, T.; Akagawa, H.

    1999-09-25

    A new diesel combustion concept termed MULDIC (MULtiple stage Diesel Combustion), which can reduce NO{sub x} emissions at high load conditions, was studied by means of engine test, combustion observation and numerical simulation. The engine test showed that simultaneous reduction of NO{sub x} and smoke could be obtained with MULDIC operation. In-cylinder combustion observation was carried out in order to clarify the cause of the smoke reduction of the MULDIC. In these photographs, a first stage combustion sins observed with nonluminous flame. In a second stage combustion, a highly sooting luminous flame was observed because the ignition delay was short. However this luminous flame disappeared quickly. Computational results showed that, oxygen is distributed evenly in the cylinder in later portion of the second stage combustion. Moreover, since cylinder temperature was very high, most of the soot oxidized rapidly. Thus, low smoke combustion was obtained. (author)

  18. Analysis of the chemical equilibrium of combustion at constant volume

    Directory of Open Access Journals (Sweden)

    Marius BREBENEL

    2014-04-01

    Full Text Available Determining the composition of a mixture of combustion gases at a given temperature is based on chemical equilibrium, when the equilibrium constants are calculated on the assumption of constant pressure and temperature. In this paper, an analysis of changes occurring when combustion takes place at constant volume is presented, deriving a specific formula of the equilibrium constant. The simple reaction of carbon combustion in pure oxygen in both cases (constant pressure and constant volume is next considered as example of application, observing the changes occurring in the composition of the combustion gases depending on temperature.

  19. Sensors Based Measurement Techniques of Fuel Injection and Ignition Characteristics of Diesel Sprays in DI Combustion System

    Directory of Open Access Journals (Sweden)

    S. Rehman

    2016-09-01

    Full Text Available Innovative sensor based measurement techniques like needle lift sensor, photo (optical sensor and piezoresistive pressure transmitter are introduced and used to measure the injection and combustion characteristics in direct injection combustion system. Present experimental study is carried out in the constant volume combustion chamber to study the ignition, combustion and injection characteristics of the solid cone diesel fuel sprays impinging on the hot surface. Hot surface ignition approach has been used to create variety of advanced combustion systems. In the present study, the hot surface temperatures were varied from 623 K to 723 K. The cylinder air pressures were 20, 30 and 40 bar and fuel injection pressures were 100, 200 and 300 bar. It is found that ignition delay of fuel sprays get reduced with the rise in injection pressure. The ignition characteristics of sprays much less affected at high fuel injection pressures and high surface temperatures. The fuel injection duration reduces with the increase in fuel injection pressures. The rate of heat release becomes high at high injection pressures and it decreases with the increase in injection duration. It is found that duration of burn/combustion decrease with the increase in injection pressure. The use of various sensors is quite effective, reliable and accurate in measuring the various fuel injection and combustion characteristics. The study simulates the effect of fuel injection system parameters on combustion performance in large heavy duty engines.

  20. Combustion synthesis and structural characterization of Li–Ti mixed

    Indian Academy of Sciences (India)

    Combustion synthesis and structural characterization of Li–Ti mixed nanoferrites ... were prepared by combustion method at lower temperatures compared to the ... first time at low temperatures, using PEG which acts as a new fuel and oxidant.

  1. Terascale High-Fidelity Simulations of Turbulent Combustion with Detailed Chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Hong G. Im; Arnaud Trouve; Christopher J. Rutland; Jacqueline H. Chen

    2009-02-02

    The TSTC project is a multi-university collaborative effort to develop a high-fidelity turbulent reacting flow simulation capability utilizing terascale, massively parallel computer technology. The main paradigm of our approach is direct numerical simulation (DNS) featuring highest temporal and spatial accuracy, allowing quantitative observations of the fine-scale physics found in turbulent reacting flows as well as providing a useful tool for development of sub-models needed in device-level simulations. The code named S3D, developed and shared with Chen and coworkers at Sandia National Laboratories, has been enhanced with new numerical algorithms and physical models to provide predictive capabilities for spray dynamics, combustion, and pollutant formation processes in turbulent combustion. Major accomplishments include improved characteristic boundary conditions, fundamental studies of auto-ignition in turbulent stratified reactant mixtures, flame-wall interaction, and turbulent flame extinction by water spray. The overarching scientific issue in our recent investigations is to characterize criticality phenomena (ignition/extinction) in turbulent combustion, thereby developing unified criteria to identify ignition and extinction conditions. The computational development under TSTC has enabled the recent large-scale 3D turbulent combustion simulations conducted at Sandia National Laboratories.

  2. Terascale High-Fidelity Simulations of Turbulent Combustion with Detailed Chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Im, Hong G [University of Michigan; Trouve, Arnaud [University of Maryland; Rutland, Christopher J [University of Wisconsin; Chen, Jacqueline H [Sandia National Laboratories

    2012-08-13

    The TSTC project is a multi-university collaborative effort to develop a high-fidelity turbulent reacting flow simulation capability utilizing terascale, massively parallel computer technology. The main paradigm of our approach is direct numerical simulation (DNS) featuring highest temporal and spatial accuracy, allowing quantitative observations of the fine-scale physics found in turbulent reacting flows as well as providing a useful tool for development of sub-models needed in device-level simulations. The code named S3D, developed and shared with Chen and coworkers at Sandia National Laboratories, has been enhanced with new numerical algorithms and physical models to provide predictive capabilities for spray dynamics, combustion, and pollutant formation processes in turbulent combustion. Major accomplishments include improved characteristic boundary conditions, fundamental studies of auto-ignition in turbulent stratified reactant mixtures, flame-wall interaction, and turbulent flame extinction by water spray. The overarching scientific issue in our recent investigations is to characterize criticality phenomena (ignition/extinction) in turbulent combustion, thereby developing unified criteria to identify ignition and extinction conditions. The computational development under TSTC has enabled the recent large-scale 3D turbulent combustion simulations conducted at Sandia National Laboratories.

  3. Biogas utilization: Experimental investigation on biogas flameless combustion in lab-scale furnace

    International Nuclear Information System (INIS)

    Hosseini, Seyed Ehsan; Wahid, Mazlan Abdul

    2013-01-01

    Highlights: • High costs of biogas purification and low calorific value of biogas are the main obstacles of biogas utilization. • The energy of biogas can be extracted by flameless combustion without any modification in burner or combustion system. • The efficiency of biogas flameless combustion and conventional combustion were 53% and 32% respectively. • The temperature inside the biogas flameless chamber is uniform. • In biogas flameless combustion, NO x and CO 2 formation decrease drastically in comparison with traditional combustion. - Abstract: Biogas generated in the anaerobic digestion of biomass and organic wastes by micro-organisms can be applied for heating, transportation and power generation as a renewable energy source. However, low calorific value (LCV) of biogas is one the most important bottlenecks of biogas conversion into electrical or thermal energy. Indeed, the presence of corrosive gases such as H 2 S and water vapor in biogas components makes some dilemmas in biogas purification and utilization. In order to obtain the efficient biogas utilization method, different biogas resources, physical and chemical properties of biogas and biogas combustion characteristics should be considered. In this paper biogas was utilized in lab-scale flameless combustion furnace and the performance of flameless combustion chamber fueled by biogas has been presented. Results demonstrated that flameless combustion is one of the best feasible strategies for biogas utilization. Uniformity of temperature in the flameless furnace increases the durability of refractory and related equipment. Simplicity of the flameless burner, pollutant formation reduction and fuel consumption decreases are the main causes of biogas flameless combustion supremacy

  4. Development of coating technology for nuclear fuel by self-propagating high temperature synthesis

    International Nuclear Information System (INIS)

    Choi, Y.; Kim, Bong G.; Lee, Y. W.

    1997-01-01

    This paper presents experimental results of the preparation of silicon carbide and graphite layers on a nuclear fuel from silane and propane gases by a conventional chemical vapor deposition and combustion synthesis technologies. The direct reaction between silicon and pyrolytic carbon in a high temperature releases sufficient amount of energy to make a synthesis self-sustaining under the preheating of about 1200 deg C. During this high temperature process, lamellar structure with isotropic carbon synthesis. A full characterization of phase composition and final morphology of the coated layers by X-ray diffraction, SEM and AES is presented. (author). 6 refs., 1 tab., 11 figs

  5. TOPICAL REVIEW: Plasma assisted ignition and combustion

    Science.gov (United States)

    Starikovskaia, S. M.

    2006-08-01

    In recent decades particular interest in applications of nonequilibrium plasma for the problems of plasma-assisted ignition and plasma-assisted combustion has been observed. A great amount of experimental data has been accumulated during this period which provided the grounds for using low temperature plasma of nonequilibrium gas discharges for a number of applications at conditions of high speed flows and also at conditions similar to automotive engines. The paper is aimed at reviewing the data obtained and discusses their treatment. Basic possibilities of low temperature plasma to ignite gas mixtures are evaluated and historical references highlighting pioneering works in the area are presented. The first part of the review discusses plasmas applied to plasma-assisted ignition and combustion. The paper pays special attention to experimental and theoretical analysis of some plasma parameters, such as reduced electric field, electron density and energy branching for different gas discharges. Streamers, pulsed nanosecond discharges, dielectric barrier discharges, radio frequency discharges and atmospheric pressure glow discharges are considered. The second part depicts applications of discharges to reduce the ignition delay time of combustible mixtures, to ignite transonic and supersonic flows, to intensify ignition and to sustain combustion of lean mixtures. The results obtained by different authors are cited, and ways of numerical modelling are discussed. Finally, the paper draws some conclusions on the main achievements and prospects of future investigations in the field.

  6. Flame blowout and pollutant emissions in vitiated combustion of conventional and bio-derived fuels

    Science.gov (United States)

    Singh, Bhupinder

    The widening gap between the demand and supply of fossil fuels has catalyzed the exploration of alternative sources of energy. Interest in the power, water extraction and refrigeration (PoWER) cycle, proposed by the University of Florida, as well as the desirability of using biofuels in distributed generation systems, has motivated the exploration of biofuel vitiated combustion. The PoWER cycle is a novel engine cycle concept that utilizes vitiation of the air stream with externally-cooled recirculated exhaust gases at an intermediate pressure in a semi-closed cycle (SCC) loop, lowering the overall temperature of combustion. It has several advantages including fuel flexibility, reduced air flow, lower flame temperature, compactness, high efficiency at full and part load, and low emissions. Since the core engine air stream is vitiated with the externally cooled exhaust gas recirculation (EGR) stream, there is an inherent reduction in the combustion stability for a PoWER engine. The effect of EGR flow and temperature on combustion blowout stability and emissions during vitiated biofuel combustion has been characterized. The vitiated combustion performance of biofuels methyl butanoate, dimethyl ether, and ethanol have been compared with n-heptane, and varying compositions of syngas with methane fuel. In addition, at high levels of EGR a sharp reduction in the flame luminosity has been observed in our experimental tests, indicating the onset of flameless combustion. This drop in luminosity may be a result of inhibition of processes leading to the formation of radiative soot particles. One of the objectives of this study is finding the effect of EGR on soot formation, with the ultimate objective of being able to predict the boundaries of flameless combustion. Detailed chemical kinetic simulations were performed using a constant-pressure continuously stirred tank reactor (CSTR) network model developed using the Cantera combustion code, implemented in C++. Results have

  7. Power Modulation Investigation for High Temperature (175-200 degrees Celcius) Automotive Application

    Energy Technology Data Exchange (ETDEWEB)

    McCluskey, F. P.

    2007-04-30

    advancing has been the development of electronics that can operate in the high temperature environments present in hybrid vehicles. The temperatures under the hood for a gasoline-electric hybrid vehicle are comparable to those for traditional internal combustion engines. This is known to be a difficult environment with respect to commercial-grade electronics, as there are surface and ambient temperatures ranging from 125 C to 175 C. In addition, some hybrid drive electronics are placed in even harsher environments, such as on or near the brakes, where temperatures can reach 250 C. Furthermore, number of temperature cycles experienced by electronics in a hybrid vehicle is different from that experienced in a traditional vehicle. A traditional internal combustion vehicle will have the engine running for longer periods, whereas a mild or micro-hybrid engine will experience many more starts and stops.[3] This means that hybrid automotive electronics will undergo more cycles of a potential wider temperature cycle than standard automotive electronics, which in turn see temperature cycles of 2 to 3 times the magnitude of the {Delta}T = 50 C-75 C experienced by commercial-grade electronics. This study will discuss the effects of these harsh environments on the failure mechanisms and ultimate reliability of electronic systems developed for gasoline-electric hybrid vehicles. In addition, it will suggest technologies and components that can reasonably be expected to perform well in these environments. Finally, it will suggest areas where further research is needed or desirable. Areas for further research will be highlighted in bold, italic type. It should be noted that the first area where further research is desirable is in developing a clearer understanding of the actual hybrid automotive electronics environment and how to simulate it through accelerated testing, thus: Developing specific mission profiles and accelerated testing protocols for the underhood environment for hybrid

  8. A comprehensive combustion chemistry study of 2,5-dimethylhexane

    KAUST Repository

    Sarathy, Mani

    2014-06-01

    Iso-paraffinic molecular structures larger than seven carbon atoms in chain length are commonly found in conventional petroleum, Fischer-Tropsch (FT), and other alternative hydrocarbon fuels, but little research has been done on their combustion behavior. Recent studies have focused on either mono-methylated alkanes and/or highly branched compounds (e.g., 2,2,4-trimethylpentane). In order to better understand the combustion characteristics of real fuels, this study presents new experimental data for the oxidation of 2,5-dimethylhexane under a wide variety of temperature, pressure, and equivalence ratio conditions. This new dataset includes jet stirred reactor speciation, shock tube ignition delay, and rapid compression machine ignition delay, which builds upon recently published data for counterflow flame ignition, extinction, and speciation profiles. The low and high temperature oxidation of 2,5-dimethylhexane has been simulated with a comprehensive chemical kinetic model developed using established reaction rate rules. The agreement between the model and data is presented, along with suggestions for improving model predictions. The oxidation behavior of 2,5-dimethylhexane is compared with oxidation of other octane isomers to confirm the effects of branching on low and intermediate temperature fuel reactivity. The model is used to elucidate the structural features and reaction pathways responsible for inhibiting the reactivity of 2,5-dimethylhexane. © 2014 The Combustion Institute.

  9. A comprehensive combustion chemistry study of 2,5-dimethylhexane

    KAUST Repository

    Sarathy, Mani; Javed, Tamour; Karsenty, Florent; Heufer, Alexander; Wang, Weijing; Park, Sungwoo; Elwardani, Ahmed Elsaid; Farooq, Aamir; Westbrook, Charles K.; Pitz, William J.; Oehlschlaeger, Matthew A.; Dayma, Guillaume; Curran, Henry J.; Dagaut, P.

    2014-01-01

    Iso-paraffinic molecular structures larger than seven carbon atoms in chain length are commonly found in conventional petroleum, Fischer-Tropsch (FT), and other alternative hydrocarbon fuels, but little research has been done on their combustion behavior. Recent studies have focused on either mono-methylated alkanes and/or highly branched compounds (e.g., 2,2,4-trimethylpentane). In order to better understand the combustion characteristics of real fuels, this study presents new experimental data for the oxidation of 2,5-dimethylhexane under a wide variety of temperature, pressure, and equivalence ratio conditions. This new dataset includes jet stirred reactor speciation, shock tube ignition delay, and rapid compression machine ignition delay, which builds upon recently published data for counterflow flame ignition, extinction, and speciation profiles. The low and high temperature oxidation of 2,5-dimethylhexane has been simulated with a comprehensive chemical kinetic model developed using established reaction rate rules. The agreement between the model and data is presented, along with suggestions for improving model predictions. The oxidation behavior of 2,5-dimethylhexane is compared with oxidation of other octane isomers to confirm the effects of branching on low and intermediate temperature fuel reactivity. The model is used to elucidate the structural features and reaction pathways responsible for inhibiting the reactivity of 2,5-dimethylhexane. © 2014 The Combustion Institute.

  10. Structural, dielectric and magnetic properties of cobalt ferrite prepared using auto combustion and ceramic route

    International Nuclear Information System (INIS)

    Murugesan, C.; Perumal, M.; Chandrasekaran, G.

    2014-01-01

    Cobalt ferrite is synthesized by using low temperature auto combustion and high temperature ceramic methods. The prepared samples have values of lattice constant equal to 8.40 Å and 8.38 Å for auto combustion and ceramic methods respectively. The FTIR spectrum of samples of the auto combustion method shows a high frequency vibrational band at 580 cm −1 assigned to tetrahedral site and a low frequency vibrational band at 409 cm −1 assigned to octahedral site which are shifted to 590 cm −1 and 412 cm −1 for the ceramic method sample. SEM micrographs of samples show a substantial difference in surface morphology and size of the grains between the two methods. The frequency dependent dielectric constant and ac conductivity of the samples measured from 1 Hz to 2 MHz at room temperature are reported. The room temperature magnetic hysteresis parameters of the samples are measured using VSM. The measured values of saturation magnetization, coercivity and remanent magnetization are 42 emu/g, 1553 Oe, 18.5 emu/g for the auto combustion method, 66.7 emu/g, 379.6 Oe, and 17.3 emu/g for the ceramic method, respectively. The difference in preparation methods and size of the grains causes interesting changes in electrical and magnetic properties

  11. Effect of reaction temperature on the PM10 features during coal combustion

    International Nuclear Information System (INIS)

    Sui, J.C.; Du, Y.G.; Liu, Q.C.

    2008-01-01

    Coal-fired power plants produce fine fly ash consisting of particulate matter (PM). Particulate matter less than 10 micrometers in aerodynamic diameter (PM 1 0) is of significant concern because of its adverse environmental and health impacts. This paper studied the effect of reaction temperature on particulate matter (PM 1 0) emission and its chemical composition. The emission characteristics and elemental partition of PM 1 0 from coal combustion were investigated in a drop tube furnace. The paper discussed the experimental apparatus and conditions as well as the coal properties and sample analysis. Liupanshui (LPS) bituminous coal from China was used for the study. The fuel composition of LPS coal and the composition of low temperature ash of Chinese LPS coal were described. The paper also presented the results of the study with reference to particle size distribution and emission characteristic of PM 1 0; elemental partition within PM 1 0; and effect of the reaction temperature on elemental partition within PM 1 0. The PM mass size distribution was found to be bimodal. 14 refs., 2 tabs., 6 figs

  12. Combustion synthesis of CaSc2O4:Ce3+ nano-phosphors in a closed system

    International Nuclear Information System (INIS)

    Peng Wenfang; Zou Shaoyu; Liu Guanxi; Xiao Quanlan; Zhang Rui; Xie Lijuan; Cao Liwei; Meng Jianxin; Liu Yingliang

    2011-01-01

    Highlights: → CaSc 2 O 4 :Ce 3+ nano-phosphors can be prepared by a single-step combustion method. → The ignition temperature is the lowest in the combustion synthesis of Ce 3+ /Eu 2+ doped phosphors. → The as-prepared nano-phosphors give a uniform particle size in the range of 15-20 nm and have highly dispersity and fluorescence intensity. → It is a convenient method for preparation of monodispersed oxide nano-phosphors, especially those being sensitive to air at high temperature. - Abstract: The CaSc 2 O 4 :Ce 3+ nano-phosphors were successfully prepared by a single-step combustion method at an ignition temperature as low as 200 deg. C in a closed autoclave using glycine as a fuel and PEG4000 as a dispersant. The samples were characterized by X-ray diffraction (XRD), photoluminescence (PL) spectroscopy, scanning electron microscopy (SEM) and transmission electron microscope (TEM). The results revealed that CaSc 2 O 4 :Ce 3+ nano-phosphors can be conveniently prepared at an ignition temperature as low as 200 deg. C, which was much lower than that in the ordinary combustion methods. The optimized ignition temperature was 220 deg. C. The CaSc 2 O 4 :Ce 3+ nano-phosphors give a uniform particle size in the range of 15-20 nm. The low ignition temperature and the addition of PEG4000 dispersant play important roles in the formation of small sized nanoparticles. The as-prepared nano-phosphors were incompact aggregates, but highly dispersed nano-phosphors can be obtained after further ultrasonic treatment. The CaSc 2 O 4 :Ce 3+ nano-phosphors give satisfactory luminescence characteristic benefiting from the closed circumstance, in which cerium atoms can be isolated from the oxidizing atmosphere and non-fluorescent Ce 4+ ions can be ruled out. The present highly dispersed CaSc 2 O 4 :Ce 3+ nano-phosphors with efficient fluorescence are promising in the field of biological labeling, and the present low temperature combustion method is facile and convenient and can

  13. Effect of EGR on the exhaust gas temperature and exhaust opacity ...

    Indian Academy of Sciences (India)

    In diesel engines, NOx formation is a highly temperature-dependent phenomenon and takes place when the temperature in the combustion chamber exceeds 2000 K. Therefore, in order to reduce NOx emissions in the exhaust, it is necessary to keep peak combustion temperatures under control. One simple way of ...

  14. Testing fireproof materials in a combustion chamber

    Directory of Open Access Journals (Sweden)

    Kulhavy Petr

    2017-01-01

    Full Text Available This article deals with a prototype concept, real experiment and numerical simulation of a combustion chamber, designed for testing fire resistance some new insulating composite materials. This concept of a device used for testing various materials, providing possibility of monitoring temperatures during controlled gas combustion. As a fuel for the combustion process propane butane mixture has been used and also several kinds of burners with various conditions of inlet air (forced, free and fuel flows were tested. The tested samples were layered sandwich materials based on various materials or foams, used as fillers in fire shutters. The temperature distribution was measured by using thermocouples. A simulation of whole concept of experimental chamber has been carried out as the non-premixed combustion process in the commercial final volume sw Pyrosim. The result was to design chamber with a construction suitable, according to the international standards, achieve the required values (temperature in time. Model of the combustion based on a stoichiometric defined mixture of gas and the tested layered samples showed good conformity with experimental results – i.e. thermal distribution inside and heat release rate that has gone through the sample.

  15. Temperature profile and producer gas composition of high temperature air gasification of oil palm fronds

    International Nuclear Information System (INIS)

    Guangul, F M; Sulaiman, S A; Ramli, A

    2013-01-01

    Environmental pollution and scarcity of reliable energy source are the current pressing global problems which need a sustainable solution. Conversion of biomass to a producer gas through gasification process is one option to alleviate the aforementioned problems. In the current research the temperature profile and composition of the producer gas obtained from the gasification of oil palm fronds by using high temperature air were investigated and compared with unheated air. By preheating the gasifying air at 500°C the process temperature were improved and as a result the concentration of combustible gases and performance of the process were improved. The volumetric percentage of CO, CH4 and H2 were improved from 22.49, 1.98, and 9.67% to 24.98, to 2.48% and 13.58%, respectively. In addition, HHV, carbon conversion efficiency and cold gas efficiency were improver from 4.88 MJ/Nm3, 83.8% and 56.1% to 5.90 MJ/Nm3, 87.3% and 62.4%, respectively.

  16. Preliminary study on helium turbomachine for high temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Chen Yihua; Wang Jie; Zhang Zuoyi

    2003-01-01

    In the high temperature gas-cooled reactor (HTGR), gas turbine cycle is a new concept in the field of nuclear power. It combines two technologies of HTGR and gas turbine cycle, which represent the state-of-the-art technologies of nuclear power and fossil fuel generation respectively. This approach is expected to improve safety and economy of nuclear power plant significantly. So it is a potential scheme with competitiveness. The heat-recuperated cycle is the main stream of gas turbine cycle. In this cycle, the work medium is helium, which is very different from the air, so that the design features of the helium turbomachine and combustion gas turbomachine are different. The paper shows the basic design consideration for the heat-recuperated cycle as well as helium turbomachine and highlights its main design features compared with combustion gas turbomachine

  17. Catalysis in high-temperature fuel cells.

    Science.gov (United States)

    Föger, K; Ahmed, K

    2005-02-17

    Catalysis plays a critical role in solid oxide fuel cell systems. The electrochemical reactions within the cell--oxygen dissociation on the cathode and electrochemical fuel combustion on the anode--are catalytic reactions. The fuels used in high-temperature fuel cells, for example, natural gas, propane, or liquid hydrocarbons, need to be preprocessed to a form suitable for conversion on the anode-sulfur removal and pre-reforming. The unconverted fuel (economic fuel utilization around 85%) is commonly combusted using a catalytic burner. Ceramic Fuel Cells Ltd. has developed anodes that in addition to having electrochemical activity also are reactive for internal steam reforming of methane. This can simplify fuel preprocessing, but its main advantage is thermal management of the fuel cell stack by endothermic heat removal. Using this approach, the objective of fuel preprocessing is to produce a methane-rich fuel stream but with all higher hydrocarbons removed. Sulfur removal can be achieved by absorption or hydro-desulfurization (HDS). Depending on the system configuration, hydrogen is also required for start-up and shutdown. Reactor operating parameters are strongly tied to fuel cell operational regimes, thus often limiting optimization of the catalytic reactors. In this paper we discuss operation of an authothermal reforming reactor for hydrogen generation for HDS and start-up/shutdown, and development of a pre-reformer for converting propane to a methane-rich fuel stream.

  18. Experimental and numerical study of temperature fields and flows in flame during the diffusion combustion of certain liquid fuels

    Science.gov (United States)

    Loboda, E. L.; Matvienko, O. V.; Agafontsev, M. V.; Reyno, V. V.

    2017-11-01

    The paper represents experimental studying the pulsations of temperature fields and the structure of a flow in the flame formed during the combustion of certain fuels. Also, the paper provides the mathematical modeling of a flow in the flame formed during the combustion of diesel fuels, as well as the comparison with experimental data and the estimation of the scale for turbulent vortices in flame. The experimental results are in satisfactory agreement with numerical modeling, which confirms the hypothesis of similarity for the pulsations of hydrodynamic and thermodynamic parameters.

  19. Device for combusting spent car tyres made of rubber etc. Anlage zum Verbrennen von nicht mehr erneuerbaren Fahrzeugreifen aus Gummi u. dgl

    Energy Technology Data Exchange (ETDEWEB)

    Sprunck, H

    1980-09-11

    The combustion system for rubber tyres etc. consists of a trolley conveyor, an automatic throw-off unit, and an airlock leading to the combustion grate in the furnace. The furnace has a travelling grate which lowers from the airlock to the ash chamber and whose hydraulically moved rods have protruding cooling tongues and drilled holes to supply primary air or cooling air. At the ends of the grate, above the ash box, the combustion chamber is enclosed by a battered brick-and-mortar wall. There are two post-combustion chambers behind the combustion chamber. The ash is transported to the ashbox via spiral conveyors. The high temperature of the flue gases, i.e. 1000 to 1200/sup 0/C, is utilized by a boiler. With its high combustion temperatures (800 to 1400/sup 0/C), the plant assures complete combustion and a metal-containing slag.

  20. Characteristics of carbonized sludge for co-combustion in pulverized coal power plants

    International Nuclear Information System (INIS)

    Park, Sang-Woo; Jang, Cheol-Hyeon

    2011-01-01

    Co-combustion of sewage sludge can destabilize its combustion profile due to high volatility, which results in unstable flame. We carried out fuel reforming for sewage sludge by way of carbonization at pyrolysis temperature of 300-500 deg. C. Fuel characteristics of carbonized sludge at each temperature were analyzed. As carbonization temperature increased, fuel ratio increased, volatile content reduced, and atomic ratio relation of H/C and O/C was similar to that of lignite. The analysis result of FT-IR showed the decrease of aliphatic C-H bond and O-C bond in carbonization. In the analysis result of TG-DTG, the thermogravimetry reduction temperature of carbonized sludge (CS400) was proven to be higher than that of dried sludge, but lower than that of sub-bituminous coal. Hardgrove grindability index increased in proportion to fuel ratio increase, where the carbonized sludge value of 43-110 was similar or higher than the coal value of 49-63. As for ash deposits, slagging and fouling index were higher than that of coal. When carbonized sludge (CS400) and coal were co-combusted in 1-10% according to calorific value, slagging tendency was low in all conditions, and fouling tendency was medium or high according to the compositions of coal.

  1. Experimental study of a staged combustion system for stationary gas turbine applications

    Science.gov (United States)

    Lamont, Warren G.

    Two optically accessible experimental test rigs were designed and constructed to investigate a staged or distributed combustion system for stationary gas turbine applications. The test rigs were fuelled with natural gas and featured two combustion zones: the main combustion zone (MCZ) and the secondary combustion zone (SCZ). The MCZ is a swirl stabilized dump combustor and the SCZ, which is axially downstream from the MCZ, is formed by a transverse jet injecting a premixed fuel/air mixture into the vitiated stream. After installing and commissioning the test rig, an emission survey was conducted to investigate the SCZ conditions, equivalence ratio and momentum ratio, that produce low NOx emissions and give a higher temperature rise before a simulated high pressure turbine than firing only the MCZ. The emission survey found several operating conditions that show the benefit of combustion staging. These beneficial conditions had an SCZ equivalence ratio between 0.41 and 1.12. The data from the emission survey was then used to create an artificial neural network (ANN). The ANN used a multi-layer feed-forward network architecture and was trained with experimental data using the backpropagation training algorithm. The ANN was then used to create performance maps and optimum operational regions were sought. Lastly, optical diagnostics were used to obtain information on the nature of the SCZ reactive jet. The diagnostics included high speed CH* chemiluminescence, OH planar laser induced fluorescence (PLIF) and dual-pump coherent anti-Stokes Raman scattering (CARS). The chemiluminescence and PLIF were used to qualitatively determine the size and shape of the transverse jet reaction zone. Dual-pump CARS was used to quantitatively determine the temperature and H2/N2 concentration ratio profile at the mid-plane of the transverse jet. Dual-pump CARS data was collected for four operating conditions but only one is presented in this dissertation. For the condition presented, the

  2. Combustion of Shock-Dispersed Flake Aluminum - High-Speed Visualization

    Energy Technology Data Exchange (ETDEWEB)

    Neuwald, P; Reichenbach, H; Kuhl, A

    2006-06-19

    Charges of 0.5 g PETN were used to disperse 1 g of flake aluminum in a rectangular test chamber of 4 liter inner volume and inner dimensions of approximately 10 cm x 10 cm x 40 cm. The subsequent combustion of the flake aluminum with the ambient air in the chamber gave rise to a highly luminous flame. The evolution of the luminous region was studied by means of high-speed cinematography. The high-speed camera is responsive to a broad spectral range in the visible and near infra-red. For a number of tests this response range was narrowed down by means of a band-pass filter with a center wavelength of 488 nm and a half-width of 23 nm. The corresponding images were expected to have a stronger temperature dependence than images obtained without the filter, thus providing better capability to highlight hot-spots. Emission in the range of the pass-band of the filter can be due to continuous thermal radiation from hot Al and Al{sub 2}O{sub 3} particles or to molecular band emission from gaseous AlO. A time-resolving spectrometer was improvised to inspect this topic. The results suggest that AlO emission occurs, but that the continuous spectrum is the dominating effect in our experiments.

  3. Combustion of Sewage Sludge as Alternative Fuel for Cement Industry

    Institute of Scientific and Technical Information of China (English)

    LI Fuzhou; ZHANG Wei

    2011-01-01

    The combustion of sewage sludge and coal was studied by thermogravimetric analysis.Both differential scanning calorimetric analysis and derivative thermogravimetric profiles showed differences between combustion of sewage sludge and coal, and non-isothermal kinetics analysis method was applied to evaluate the combustion process. Based on Coats-Redfem integral method, some reaction models were tested,the mechanism and kinetics of the combustion reaction were discussed. The results show that the combustion of sewage sludge is mainly in the Iow temperature stage, meanwhile the ignition temperature and Arrhenius activation energy are lower than that of coal. The combustion of sewage sludge has the advantage over coal in some aspects, thus sewage sludge can partly replace coal used as cement industry fuel.

  4. Induction heating studies of combustion synthesized MgFe2O4 nanoparticles for hyperthermia applications

    International Nuclear Information System (INIS)

    Khot, V.M.; Salunkhe, A.B.; Thorat, N.D.; Phadatare, M.R.; Pawar, S.H.

    2013-01-01

    The structural, magnetic and ac magnetically induced heating characteristics of combustion synthesized MgFe 2 O 4 nanoparticles have been investigated for application in magnetic particle hyperthermia. As prepared nanoparticles showed ferrimagnetic behavior at room temperature with magnetization of about 33.83 emu/g at ±15 kOe. The solid state MgFe 2 O 4 nanoparticles exhibited specific absorption rate (SAR) of about 297 W/g at physiological safe range of frequency and amplitude. The increase in SAR and heating temperature in ac magnetic field was thought to be due to enhancement in magnetic hysteresis loss caused by dipole–dipole interactions in combustion synthesized MgFe 2 O 4 nanoparticles. - Highlights: ► Highly crystalline pure MgFe 2 O 4 nanoparticles were synthesized by low temperature combustion. ► Effect of ac magnetic field and nanoparticles concentration on heating characteristics of MgFe 2 O 4 nanoparticles was studied. ► Combustion synthesized MgFe 2 O 4 nanoparticles show highest specific absorption rate of 297 Wg −1 . ► The reported high value of specific absorption rate is advantageous for its use in magnetic particle hyperthermia

  5. Thermal analysis and kinetics of coal during oxy-fuel combustion

    Science.gov (United States)

    Kosowska-Golachowska, Monika

    2017-08-01

    The pyrolysis and oxy-fuel combustion characteristics of Polish bituminous coal were studied using non-isothermal thermogravimetric analysis. Pyrolysis tests showed that the mass loss profiles were almost similar up to 870°C in both N2 and CO2 atmospheres, while further mass loss occurred in CO2 atmosphere at higher temperatures due to char-CO2 gasification. Replacement of N2 in the combustion environment by CO2 delayed the combustion of bituminous coal. At elevated oxygen levels, TG/DTG profiles shifted through lower temperature zone, ignition and burnout temperatures decreased and mass loss rate significantly increased and complete combustion was achieved at lower temperatures and shorter times. Kinetic analysis for the tested coal was performed using Kissinger-Akahira-Sunose (KAS) method. The activation energies of bituminous coal combustion at the similar oxygen content in oxy-fuel with that of air were higher than that in air atmosphere. The results indicated that, with O2 concentration increasing, the activation energies decreased.

  6. Prediction of Non-Equilibrium Kinetics of Fuel-Rich Kerosene/LOX Combustion in Gas Generator

    International Nuclear Information System (INIS)

    Yu, Jung Min; Lee, Chang Jin

    2007-01-01

    Gas generator is the device to produce high enthalpy gases needed to drive turbo-pump system in liquid rocket engine. And, the combustion temperature in gas generator should be controlled below around 1,000K to avoid any possible thermal damages to turbine blade by using either fuel rich combustion or oxidizer rich combustion. Thus, nonequilibrium chemical reaction dominates in fuel-rich combustion of gas generator. Meanwhile, kerosene is a compounded fuel with various types of hydrocarbon elements and difficult to model the chemical kinetics. This study focuses on the prediction of the non-equilibrium reaction of fuel rich kerosene/LOX combustion with detailed kinetics developed by Dagaut using PSR (Perfectly Stirred Reactor) assumption. In Dagaut's surrogate model for kerosene, chemical kinetics of kerosene consists of 1,592 reaction steps with 207 chemical species. Also, droplet evaporation time is taken into account in the PSR calculation by changing the residence time of droplet in the gas generator. Frenklach's soot model was implemented along with detailed kinetics to calculate the gas properties of fuel rich combustion efflux. The results could provide very reliable and accurate numbers in the prediction of combustion gas temperature,species fraction and material properties

  7. Analysis of combustion behavior in DI diesel engine at low temperature; DI diesel engine ni okeru teionji no nensho kyodo kaiseki

    Energy Technology Data Exchange (ETDEWEB)

    Kuzuya, Y; Shibata, H [Nippon Soken, Inc., Tokyo (Japan); Aoki, S; Itatsu, T [Toyota Motor Corp., Aichi (Japan)

    1997-10-01

    For NOx reduction of a DI diesel engine, the retard of fuel injection timing is effective. However, it causes the white smoke at low temperature and low load. To analyze the mechanism of white smoke generation, a new visualizing system of fuel spray and flame behavior has been developed. This system can be also applied to a 4-valves per cylinder production engine by integrating two optical systems for image and lighting. From the visualization of the fuel spray and the flame behavior in the combustion chamber at low temperature, it has been proved that prompt fuel evaporation before reaching the wall surface of combustion chamber is required to reduce the white smoke. 6 refs., 10 figs., 3 tabs.

  8. Synthesis of nanocrystalline Gd doped ceria by combustion technique

    DEFF Research Database (Denmark)

    Jadhav, L. D.; Chourashiya, M. G.; Subhedar, K. M.

    2009-01-01

    chemical method of combustion where in the combustion of precursors results in the formation of nanoparticles relatively at lower processing temperature. The thermogravimetric study was carried out to understand the ignition temperature and optimize the fuel-to-oxidant ratio. The successful synthesis...

  9. Ceramic Matrix Composite Combustion Chamber for HAN-Based Monopropellants, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Ultramet will design and fabricate a lightweight, high temperature 5-lbf combustion chamber. The system will be designed for use with the AF-315 family of...

  10. Effects of combustion and operating conditions on PCDD/PCDF emissions from power boilers burning salt-laden wood waste.

    Science.gov (United States)

    Leclerc, Denys; Duo, Wen Li; Vessey, Michelle

    2006-04-01

    This paper discusses the effects of combustion conditions on PCDD/PCDF emissions from pulp and paper power boilers burning salt-laden wood waste. We found no correlation between PCDD/PCDF emissions and carbon monoxide emissions. A good correlation was, however, observed between PCDD/PCDF emissions and the concentration of stack polynuclear aromatic hydrocarbons (PAHs) in the absence of TDF addition. Thus, poor combustion conditions responsible for the formation of products of incomplete combustion (PICs), such as PAHs and PCDD/PCDF precursors, increase PCDD/PCDF emissions. PAH concentrations increased with higher boiler load and/or low oxygen concentrations at the boiler exit, probably because of lower available residence times and insufficient excess air. Our findings are consistent with the current understanding that high ash carbon content generally favours heterogeneous reactions leading to either de novo synthesis of PCDD/PCDFs or their direct formation from precursors. We also found that, in grate-fired boilers, a linear increase in the grate/lower furnace temperature produces an exponential decrease in PCDD/PCDF emissions. Although the extent of this effect appears to be mill-specific, particularly at low temperatures, the results indicate that increasing the combustion temperature may decrease PCDD/PCDF emissions. It must be noted, however, that there are other variables, such as elevated ESP and stack temperatures, a high hog salt content, the presence of large amounts of PICs and a high Cl/S ratio, which contribute to higher PCDD/PCDFs emissions. Therefore, higher combustion temperatures, by themselves, will not necessarily result in low PCDD/PCDFs emissions.

  11. Modeling and simulating combustion and generation of NOx

    International Nuclear Information System (INIS)

    Lazaroiu, Gheorghe

    2007-01-01

    This paper deals with the modeling and simulation of combustion processes and generation of NO x in a combustion chamber and boiler, with supplementary combustion in a gas turbine installation. The fuel burned in the combustion chamber was rich gas with a chemical composition more complex than natural gas. Pitcoal was used in the regenerative boiler. From the resulting combustion products, 17 compounds were retained, including nitrogen and sulphur compounds. Using the developed model, the simulation resulted in excess air for a temperature imposed at the combustion chamber exhaust. These simulations made it possible to determine the concentrations of combustion compounds with a variation in excess combustion. (author)

  12. Staged, High-Pressure Oxy-Combustion Technology: Development and Scale-Up

    Energy Technology Data Exchange (ETDEWEB)

    Axelbaum, Richard [Washington Univ., St. Louis, MO (United States); Kumfer, Benjamin [Washington Univ., St. Louis, MO (United States); Gopan, Akshay [Washington Univ., St. Louis, MO (United States); Yang, Zhiwei [Washington Univ., St. Louis, MO (United States); Phillips, Jeff [Electric Power Research Inst. (EPRI), Palo Alto, CA (United States); Pint, Bruce [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-12-29

    The immediate need for a high efficiency, low cost carbon capture process has prompted the recent development of pressurized oxy-combustion. With a greater combustion pressure the dew point of the flue gas is increased, allowing for effective integration of the latent heat of flue gas moisture into the Rankine cycle. This increases the net plant efficiency and reduces costs. A novel, transformational process, named Staged, Pressurized Oxy-Combustion (SPOC), achieves additional step changes in efficiency and cost reduction by significantly reducing the recycle of flue gas. The research and development activities conducted under Phases I and II of this project (FE0009702) include: SPOC power plant cost and performance modeling, CFD-assisted design of pressurized SPOC boilers, theoretical analysis of radiant heat transfer and ash deposition, boiler materials corrosion testing, construction of a 100 kWth POC test facility, and experimental testing. The results of this project have advanced the technology readiness level (TRL) of the SPOC technology from 1 to 5.

  13. Advanced coal combustion technologies and their environmental impact

    International Nuclear Information System (INIS)

    Bozicevic, Maja; Feretic, Danilo; Tomsic, Zeljko

    1997-01-01

    Estimations of world energy reserves show that coal will remain the leading primary energy source for electricity production in the foreseeable future. In order to comply with ever stricter environmental regulations and to achieve efficient use of limited energy resources, advanced combustion technologies are being developed. The most promising are the pressurised fluidized bed combustion (PFBC) and the integrated gasification combined cycle (IGCC). By injecting sorbent in the furnace, PFBC removes more than 90 percent of SO 2 in flue gases without additional emission control device. In addition, due to lower combustion temperature, NO x emissions are around 90 percent lower than those from pulverised coal (PC) plant. IGCC plant performance is even more environmentally expectable and its high efficiency is a result of a combined cycle usage. Technical, economic and environmental characteristics of mentioned combustion technologies will be presented in this paper. Comparison of PFBC, IGCC and PC power plants economics and air impact will also be given. (Author)

  14. Modification of combustion behaviour and NO emissions by coal blending

    Energy Technology Data Exchange (ETDEWEB)

    Rubiera, Fernando; Arenillas, Ana; Arias, Borja; Pis, Jose J. [Department of Energy and Environment, Instituto Nacional del Carbon, CSIC, Apartado 73, 33080 Oviedo (Spain)

    2002-06-20

    Combustion profiles determined by TGA and experiments in a laminar entrained flow reactor (EFR) were used in this work to assess the relative combustion reactivities of different rank coals and their binary coal blends. The combustion behaviour of coal blends in TGA was greatly influenced by coal rank and the proportion of each component in the blend. Higher volatile coals exerted more influence in the low-temperature region and less reactive coals in the char combustion zone. The results in the EFR indicated that coal blends burnout and NO emissions show additivity in the case of similar nature coals. When one of the components was a high-rank coal, the burnout of the blend exhibited, in some cases, positive synergistic effects, while a clear deviation from linearity was found in NO emissions.

  15. Theoretical energy release of thermites, intermetallics, and combustible metals

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, S.H.; Grubelich, M.C.

    1998-06-01

    Thermite (metal oxide) mixtures, intermetallic reactants, and metal fuels have long been used in pyrotechnic applications. Advantages of these systems typically include high energy density, impact insensitivity, high combustion temperature, and a wide range of gas production. They generally exhibit high temperature stability, and possess insensitive ignition properties. In this paper, the authors review the applications, benefits, and characteristics of thermite mixtures, intermetallic reactants, and metal fuels. Calculated values for reactant density, heat of reaction (per unit mass and per unit volume), and reaction temperature (without and with consideration of phase changes and the variation of specific heat values) are tabulated. These data are ranked in several ways, according to density, heat of reaction, reaction temperature, and gas production.

  16. High-gravity combustion synthesis and in situ melt infiltration: A new method for preparing cemented carbides

    International Nuclear Information System (INIS)

    Liu, Guanghua; Li, Jiangtao; Yang, Zengchao; Guo, Shibin; Chen, Yixiang

    2013-01-01

    A new method of high-gravity combustion synthesis and in situ melt infiltration is reported for preparing cemented carbides, where hot nickel melt is in situ synthesized from a highly exothermic combustion reaction and then infiltrated into tungsten carbide powder compacts. The as-prepared sample showed a homogeneous microstructure, and its relative density, hardness and flexural strength were 94.4%, 84 HRA and 1.49 GPa, respectively. Compared with conventional powder metallurgy approaches, high-gravity combustion synthesis offers a fast and furnace-free way to produce cemented carbides

  17. Fluidized bed combustion of single coal char particles at high CO{sub 2} concentration

    Energy Technology Data Exchange (ETDEWEB)

    Scala, F.; Chirone, R. [CNR, Naples (Italy)

    2010-12-15

    Combustion of single coal char particles was studied at 850{sup o}C in a lab-scale fluidized bed at high CO{sub 2} concentration, typical of oxyfiring conditions. The burning rate of the particles was followed as a function of time by continuously measuring the outlet CO and O{sub 2} concentrations. Some preliminary evaluations on the significance of homogeneous CO oxidation in the reactor and of carbon gasification by CO{sub 2} in the char were also carried out. Results showed that the carbon burning rate increases with oxygen concentration and char particle size. The particle temperature is approximately equal to that of the bed up to an oxygen concentration of 2%, but it is considerably higher for larger oxygen concentrations. Both CO{sub 2} gasification of char and homogeneous CO oxidation are not negligible. The gasification reaction rate is slow and it is likely to be controlled by intrinsic kinetics. During purely gasification conditions the extent of carbon loss due to particle attrition by abrasion (estimated from the carbon mass balance) appears to be much more important than under combustion conditions.

  18. Internal Heterogeneous Processes in Aluminum Combustion

    Science.gov (United States)

    Dreizin, E. L.

    1999-01-01

    This paper discusses the aluminum particle combustion mechanism which has been expanded by inclusion of gas dissolution processes and ensuing internal phase transformations. This mechanism is proposed based on recent normal and microgravity experiments with particles formed and ignited in a pulsed micro-arc. Recent experimental findings on the three stages observed in Al particle combustion in air and shows the burning particle radiation, trajectory (streak), smoke cloud shapes, and quenched particle interiors are summarized. During stage I, the radiation trace is smooth and the particle flame is spherically symmetric. The temperature measured using a three-color pyrometer is close to 3000 K. Because it exceeds the aluminum boiling point (2730 K), this temperature most likely characterizes the vapor phase flame zone rather than the aluminum surface. The dissolved oxygen content within particles quenched during stage I was below the detection sensitivity (about 1 atomic %) for Wavelength Dispersive Spectroscopy (WDS). After an increase in the radiation intensity (and simultaneous decrease in the measured color temperature from about 3000 to 2800 K) indicative of the transition to stage II combustion, the internal compositions of the quenched particles change. Both oxygen-rich (approx. 10 atomic %) and oxygen-lean (combustion behavior and the evolution of its internal composition, the change from the spherically symmetric to asymmetric flame shape occurring upon the transition from stage I to stage II combustion could not be understood based only on the fact that dissolved oxygen is detected in the particles. The connection between the two phenomena appeared even less significant because in earlier aluminum combustion studies carried in O2/Ar mixtures, flame asymmetry was not observed as opposed to experiments in air or O2/CO mixtures. It has been proposed that the presence of other gases, i.e., hydrogen, or nitrogen causes the change in the combustion regime.

  19. Computation and Analysis of EGR Mixing in Internal Combustion Engine Manifolds

    OpenAIRE

    Sakowitz, Alexander

    2013-01-01

    This thesis deals with turbulent mixing processes occurring in internal combustion engines, when applying exhaust gas recirculation (EGR). EGR is a very efficient way to reduce emissions of nitrogen oxides (NOx) in internal combustion engines. Exhaust gases are recirculated and mixed with the fresh intake air, reducing the oxygen con- centration of the combustion gas and thus the peak combustion temperatures. This temperature decrease results in a reduction of NOx emissions. When applying EGR...

  20. Super-adiabatic combustion in Al2O3 and SiC coated porous media for thermoelectric power conversion

    International Nuclear Information System (INIS)

    Mueller, Kyle T.; Waters, Oliver; Bubnovich, Valeri; Orlovskaya, Nina; Chen, Ruey-Hung

    2013-01-01

    The combustion of ultra-lean fuel/air mixtures provides an efficient way to convert the chemical energy of hydrocarbons and low-calorific fuels into useful power. Matrix-stabilized porous medium combustion is an advanced technique in which a solid porous medium within the combustion chamber conducts heat from the hot gaseous products in the upstream direction to preheat incoming reactants. This heat recirculation extends the standard flammability limits, allowing the burning of ultra-lean and low-calorific fuel mixtures and resulting a combustion temperature higher than the thermodynamic equilibrium temperature of the mixture (i.e., super-adiabatic combustion). The heat generated by this combustion process can be converted into electricity with thermoelectric generators, which is the goal of this study. The design of a porous media burner coupled with a thermoelectric generator and its testing are presented. The combustion zone media was a highly-porous alumina matrix interposed between upstream and downstream honeycomb structures with pore sizes smaller than the flame quenching distance, preventing the flame from propagating outside of the central section. Experimental results include temperature distributions inside the combustion chamber and across a thermoelectric generator; along with associated current, voltage and power output values. Measurements were obtained for a catalytically inert Al 2 O 3 medium and a SiC coated medium, which was tested for the ability to catalyze the super-adiabatic combustion. The combustion efficiency was obtained for stoichiometric and ultra-lean (near the lean flammability limit) mixtures of CH 4 and air. - Highlights: • Design of a porous burner coupled with a thermoelectric module. • Super-adiabatic combustion in a highly-porous ceramic matrix was investigated. • Both alumina and silicon carbide ceramic surfaces were used as porous media. • Catalytic properties of Al 2 O 3 and SiC ceramic surfaces were studied

  1. Experimental study on combustion of biomass micron fuel (BMF) in cyclone furnace

    International Nuclear Information System (INIS)

    Luo Siyi; Xiao Bo; Hu Zhiquan; Liu Shiming; He Maoyun

    2010-01-01

    Based on biomass micron fuel (BMF) with particle size less than 250 μm, a cyclone combustion concept was presented and a lab-scale cyclone furnace was designed to evaluate the feasibility. The influences of equivalence ration (ER) and particle size of BMF on combustion performance were studied, as well as temperature distribution in the combustion chamber. The results show that BMF combustion in the cyclone furnace is reliable, with rational temperature distribution inside furnace hearth, lower CO emission, soot concentration and C content in ashes. As ER being 1.2, the temperature in the chamber is maximized up to 1200 deg. C. Smaller particles results in better combustion performances.

  2. Gaseous emissions from sewage sludge combustion in a moving bed combustor.

    Science.gov (United States)

    Batistella, Luciane; Silva, Valdemar; Suzin, Renato C; Virmond, Elaine; Althoff, Chrtistine A; Moreira, Regina F P M; José, Humberto J

    2015-12-01

    Substantial increase in sewage sludge generation in recent years requires suitable destination for this residue. This study evaluated the gaseous emissions generated during combustion of an aerobic sewage sludge in a pilot scale moving bed reactor. To utilize the heat generated during combustion, the exhaust gas was applied to the raw sludge drying process. The gaseous emissions were analyzed both after the combustion and drying steps. The results of the sewage sludge characterization showed the energy potential of this residue (LHV equal to 14.5 MJ kg(-1), db) and low concentration of metals, polycyclic aromatic hydrocarbons (PAH), polychlorinated dibenzo-p-dioxins (PCDD) and polychlorinated dibenzofurans (PCDF). The concentration of CO, NOx, BTEX (benzene, toluene, ethylbenzene and xylenes) emitted from the sludge combustion process were lower than the legal limits. The overall sludge combustion and drying process showed low emissions of PCDD/PCDF (0.42 ng I-TEQ N m(-3)). BTEX and PAH emissions were not detected. Even with the high nitrogen concentration in the raw feed (5.88% db), the sludge combustion process presented NOx emissions below the legal limit, which results from the combination of appropriate feed rate (A/F ratio), excess air, and mainly the low temperature kept inside the combustion chamber. It was found that the level of CO emissions from the overall sludge process depends on the dryer operating conditions, such as the oxygen content and the drying temperature, which have to be controlled throughout the process in order to achieve low CO levels. The aerobic sewage sludge combustion process generated high SO2 concentration due to the high sulfur content (0.67 wt%, db) and low calcium concentration (22.99 g kg(-1)) found in the sludge. The high concentration of SO2 in the flue gas (4776.77 mg N m(-3)) is the main factor inhibiting PCDD/PCDF formation. Further changes are needed in the pilot plant scheme to reduce SO2 and particulate matter emissions

  3. A spectroscopy study of gasoline partially premixed compression ignition spark assisted combustion

    International Nuclear Information System (INIS)

    Pastor, J.V.; García-Oliver, J.M.; García, A.; Micó, C.; Durrett, R.

    2013-01-01

    Highlights: ► PPC combustion combined with spark assistance and gasoline fuel on a CI engine. ► Chemiluminescence of different chemical species describes the progress of combustion reaction. ► Spectra of a novel combustion mode under SACI conditions is described. ► UV–Visible spectrometry, high speed imaging and pressure diagnostic were employed for analysis. - Abstract: Nowadays many research efforts are focused on the study and development of new combustion modes, mainly based on the use of locally lean air–fuel mixtures. This characteristic, combined with exhaust gas recirculation, provides low combustion temperatures that reduces pollutant formation and increases efficiency. However these combustion concepts have some drawbacks, related to combustion phasing control, which must be overcome. In this way, the use of a spark plug has shown to be a good solution to improve phasing control in combination with lean low temperature combustion. Its performance is well reported on bibliography, however phenomena involving the combustion process are not completely described. The aim of the present work is to develop a detailed description of the spark assisted compression ignition mode by means of application of UV–Visible spectrometry, in order to improve insight on the combustion process. Tests have been performed in an optical engine by means of broadband radiation imaging and emission spectrometry. The engine hardware is typical of a compression ignition passenger car application. Gasoline was used as the fuel due to its low reactivity. Combining broadband luminosity images with pressure-derived heat-release rate and UV–Visible spectra, it was possible to identify different stages of the combustion reaction. After the spark discharge, a first flame kernel appears and starts growing as a premixed flame front, characterized by a low and constant heat-release rate in combination with the presence of remarkable OH radical radiation. Heat release increases

  4. Partially premixed prevalorized kerosene spray combustion in turbulent flow

    Energy Technology Data Exchange (ETDEWEB)

    Chrigui, M.; Ahmadi, W.; Sadiki, A.; Janicka, J. [Institute for Energy and Powerplant Technology, TU Darmstadt, Petersenstr. 30, 64287 Darmstadt (Germany); Moesl, K. [Lehrstuhl fuer Thermodynamik, TU Muenchen, Boltzmannstr. 15, D-85747 Garching (Germany)

    2010-04-15

    A detailed numerical simulation of kerosene spray combustion was carried out on a partially premixed, prevaporized, three-dimensional configuration. The focus was on the flame temperature profile dependency on the length of the pre-vaporization zone. The results were analyzed and compared to experimental data. A fundamental study was performed to observe the temperature variation and flame flashback. Changes were made to the droplet diameter, kerosene flammability limits, a combustion model parameter and the location of the combustion initialization. Investigations were performed for atmospheric pressure, inlet air temperature of 90 C and a global equivalence ratio of 0.7. The simulations were carried out using the Eulerian Lagrangian procedure under a fully two-way coupling. The Bray-Moss-Libby model was adjusted to account for the partially premixed combustion. (author)

  5. The Integration Of Process Heat Applications To High Temperature Gas Reactors

    International Nuclear Information System (INIS)

    McKellar, Michael G.

    2011-01-01

    A high temperature gas reactor, HTGR, can produce industrial process steam, high-temperature heat-transfer gases, and/or electricity. In conventional industrial processes, these products are generated by the combustion of fossil fuels such as coal and natural gas, resulting in significant emissions of greenhouse gases such as carbon dioxide. Heat or electricity produced in an HTGR could be used to supply process heat or electricity to conventional processes without generating any greenhouse gases. Process heat from a reactor needs to be transported by a gas to the industrial process. Two such gases were considered in this study: helium and steam. For this analysis, it was assumed that steam was delivered at 17 MPa and 540 C and helium was delivered at 7 MPa and at a variety of temperatures. The temperature of the gas returning from the industrial process and going to the HTGR must be within certain temperature ranges to maintain the correct reactor inlet temperature for a particular reactor outlet temperature. The returning gas may be below the reactor inlet temperature, ROT, but not above. The optimal return temperature produces the maximum process heat gas flow rate. For steam, the delivered pressure sets an optimal reactor outlet temperature based on the condensation temperature of the steam. ROTs greater than 769.7 C produce no additional advantage for the production of steam.

  6. Oxidation performance of high temperature materials under oxyfuel conditions

    Energy Technology Data Exchange (ETDEWEB)

    Tuurna, Satu; Pohjanne, Pekka; Yli-Olli, Sanni; Kinnunen, Tuomo [VTT Technical Research Centre of Finland, Espoo (Finland)

    2010-07-01

    Oxyfuel combustion is widely seen as a major option to facilitate carbon capture and storage (CCS) from future boiler plants utilizing clean coal technologies. Oxyfuel combustion can be expected to differ from combustion in air by e.g. modified distribution of fireside temperatures, much reduced NOx but increased levels of fireside CO{sub 2}, SO{sub 2} and water levels due to extensive flue gas recirculation. Modified flue gas chemistry results in higher gas emissivity that can increase the thermal stresses at the heat transfer surfaces of waterwalls and superheaters. In addition, increased flue gas recirculation can increase the concentration of a number of contaminants in the deposited ash and promote fouling and corrosion. There is relatively little experimental information available about the effects of oxyfuel combustion on the performance of boiler material. In this work, the oxidation performance of steels X20CrMoV11-1 and TP347HFG has been determined at 580 C/650 C under simulated oxyfuel firing conditions. The results are presented and compared to corresponding results from simulated air firing conditions. (orig.)

  7. Combustion 2000

    Energy Technology Data Exchange (ETDEWEB)

    A. Levasseur; S. Goodstine; J. Ruby; M. Nawaz; C. Senior; F. Robson; S. Lehman; W. Blecher; W. Fugard; A. Rao; A. Sarofim; P. Smith; D. Pershing; E. Eddings; M. Cremer; J. Hurley; G. Weber; M. Jones; M. Collings; D. Hajicek; A. Henderson; P. Klevan; D. Seery; B. Knight; R. Lessard; J. Sangiovanni; A. Dennis; C. Bird; W. Sutton; N. Bornstein; F. Cogswell; C. Randino; S. Gale; Mike Heap

    2001-06-30

    . To achieve these objectives requires a change from complete reliance of coal-fired systems on steam turbines (Rankine cycles) and moving forward to a combined cycle utilizing gas turbines (Brayton cycles) which offer the possibility of significantly greater efficiency. This is because gas turbine cycles operate at temperatures well beyond current steam cycles, allowing the working fluid (air) temperature to more closely approach that of the major energy source, the combustion of coal. In fact, a good figure of merit for a HIPPS design is just how much of the enthalpy from coal combustion is used by the gas turbine. The efficiency of a power cycle varies directly with the temperature of the working fluid and for contemporary gas turbines the optimal turbine inlet temperature is in the range of 2300-2500 F (1260-1371 C). These temperatures are beyond the working range of currently available alloys and are also in the range of the ash fusion temperature of most coals. These two sets of physical properties combine to produce the major engineering challenges for a HIPPS design. The UTRC team developed a design hierarchy to impose more rigor in our approach. Once the size of the plant had been determined by the choice of gas turbine and the matching steam turbine, the design process of the High Temperature Advanced Furnace (HITAF) moved ineluctably to a down-fired, slagging configuration. This design was based on two air heaters: one a high temperature slagging Radiative Air Heater (RAH) and a lower temperature, dry ash Convective Air Heater (CAH). The specific details of the air heaters are arrived at by an iterative sequence in the following order:-Starting from the overall Cycle requirements which set the limits for the combustion and heat transfer analysis-The available enthalpy determined the range of materials, ceramics or alloys, which could tolerate the temperatures-Structural Analysis of the designs proved to be the major limitation-Finally the commercialization

  8. Plasma-assisted ignition and combustion: nanosecond discharges and development of kinetic mechanisms

    Science.gov (United States)

    Starikovskaia, S. M.

    2014-09-01

    This review covers the results obtained in the period 2006-2014 in the field of plasma-assisted combustion, and in particular the results on ignition and combustion triggered or sustained by pulsed nanosecond discharges in different geometries. Some benefits of pulsed high voltage discharges for kinetic study and for applications are demonstrated. The necessity of and the possibility of building a particular kinetic mechanism of plasma-assisted ignition and combustion are discussed. The most sensitive regions of parameters for plasma-combustion kinetic mechanisms are selected. A map of the pressure and temperature parameters (P-T diagram) is suggested, to unify the available data on ignition delay times, ignition lengths and densities of intermediate species reported by different authors.

  9. Fluidized combustion of beds of large, dense particles in reprocessing HTGR fuel

    International Nuclear Information System (INIS)

    Young, D.T.

    1977-03-01

    Fluidized bed combustion of graphite fuel elements and carbon external to fuel particles is required in reprocessing high-temperature gas-cooled reactor (HTGR) cores for recovery of uranium. This burning process requires combustion of beds containing both large particles and very dense particles as well as combustion of fine graphite particles which elutriate from the bed. Equipment must be designed for optimum simplicity and reliability as ultimate operation will occur in a limited access ''hot cell'' environment. Results reported in this paper indicate that successful long-term operation of fuel element burning with complete combustion of all graphite fines leading to a fuel particle product containing <1% external carbon can be performed on equipment developed in this program

  10. Mascotte, a research test facility for high pressure combustion of cryogenic propellants; Mascotte, un banc d'essai de recherche pour la combustion a haute pression d'ergols cryogeniques

    Energy Technology Data Exchange (ETDEWEB)

    Vingert, L.; Habiballah, M.; Traineau, J.C. [Office National d' Etudes et de Recherches Aerospatiales (ONERA), 92 - Chatillon (France)

    2000-07-01

    Detailed experimental studies of cryogenic propellant combustion are needed to improve design and optimization of high performance liquid rocket engines. A research test facility called Mascotte has been built up by ONERA to study elementary processes that are involved in the combustion of liquid oxygen and gaseous hydrogen. Mascotte is aimed at feeding a single element combustor with actual propellants, and the third version in operation since mid 1998 allows to reach supercritical pressures in the combustor. A specific high pressure combustor was developed for this purpose. Research teams from different laboratories belonging to CNRS and ONERA, regrouped in a common research program managed by CNES and SNECMA division SEP, may run experiments on Mascotte, with several objectives: - improve the knowledge and the modeling of physical phenomena; - provide experimental results for computer code validation; - improve and assess diagnostic techniques (especially optical diagnostics). Following diagnostics for instance, were used on Mascotte from 1994 to 1999: - OH imaging (spontaneous emission and laser induced fluorescence ); - CARS temperature measurements (using the H{sub 2} and simultaneously the H{sub 2}O molecules); - High speed cinematography (with a copper vapor laser synchronized to a high speed camera); - O{sub 2} vapor imaging (laser induced fluorescence); - Particle sizing (by means of a Phase Doppler Particle Analyzer). (authors)

  11. Thermogravimetric analysis of the co-combustion of paper mill sludge and municipal solid waste

    International Nuclear Information System (INIS)

    Hu, Shanchao; Ma, Xiaoqian; Lin, Yousheng; Yu, Zhaosheng; Fang, Shiwen

    2015-01-01

    Highlights: • Thermogravimetric analysis of paper mill sludge and municipal solid waste were studied. • The combustion of paper mill sludge could be improved by blending municipal solid waste. • There existed significant interaction during co-combustion of the blends. • The OFW and Starink methods were used to obtain the activation energy. • The average activation energy was the lowest by blending 20% municipal solid waste. - Abstract: The thermal characteristics and kinetics of paper mill sludge (PMS), municipal solid waste (MSW) and their blends in the combustion process were investigated in this study. The mass percentages of PMS in the blends were 10%, 30%, 50%, 70% and 90%, respectively. The experiments were carried out at different heating rates (10 °C/min, 20 °C/min and 30 °C/min) and the temperature ranged from room temperature to 1000 °C in a thermogravimetric simultaneous thermal analyzer. The results suggested that the ignition temperature and burnout temperature of MSW were lower than that of PMS, and the mass loss rate of MSW was larger especially at low temperatures. There were only two mass loss peaks in the differential thermogravimetry (DTG) curve, while three mass loss peaks were observed when the blending ratios of PMS were 30%, 50%, 70%. The value of the comprehensive combustion characteristic index of the blends indicated a good combustibility when the percentage of PMS (PPMS) in the blends was less than 30%. There existed certain interaction between the combustion process of PMS and MSW, especially at high temperature stage. Activation energy (E) value obtained by the Ozawa–Flynn–Wall (OFW) method and the Starink method were very consistent. When the mass percentage of PMS in the blends was 80%, the E average value attained the minimum

  12. Non-combustible nuclear radiation shields with high hydrogen content

    International Nuclear Information System (INIS)

    Hall, W.C.; Peterson, J.M.

    1978-01-01

    The invention relates to compositions, methods of production, and uses of non-combustible nuclear radiation shields, with particular emphasis on those containing a high concentration of hydrogen atoms, especially effective for moderating neutron energy by elastic scatter, dispersed as a discontinuous phase in a continuous phase of a fire resistant matrix

  13. CHAR CRYSTALLINE TRANSFORMATIONS DURING COAL COMBUSTION AND THEIR IMPLICATIONS FOR CARBON BURNOUT

    Energy Technology Data Exchange (ETDEWEB)

    ROBERT H. HURT

    1998-09-08

    temperatures approaching 3000 o C. For the measurement of temperature histories an optical diagnostic is being developed that offers sufficient spatial resolution to distinguish the sample temperature from the substrate temperature. The optical diagnostic is based on a CID camera, a high-power lens, and movable mirrors to projecting multiple, filtered images onto a single chip. Oxidation kinetics are measured on the heat treated samples by a nonisothermal TGA technique. Task 2 Thermal deactivation kinetics. The goal of this task is to quantify thermal char deactivation as a function of temperature history and parent coal, with an emphasis on inert environments at temperatures and times found in combustion systems. The results are to be cast in the form of deactivation kinetics useful for incorporation in combustion models. Task 3 Crystal structure characterization. Crystal structure characterization provides important insight into the mechanisms of thermal char deactivation, and the degree of crystalline transformations has shown a strong correlation with reactivity changes in recent combustion studies [Davis et al., 1992, Beeley et al., 1996]. This task seeks to improve our understanding of char carbon crystalline transformations under combustion conditions by analyzing a large set of HRTEM fringe images for a series of flame-generated chars whose reactivities have been previously reported [Hurt et al., 1995, Beeley et al., 1996]. As a first step, a new technique is being developed for the quantitative analysis of fringe images, extending previous work to allow measurement of a complete set of crystal structure parameters including mean layer size, mean stacking height, interlayer spacing, layer curvature, amorphous fraction, and degree of anisotropy. The resulting database will revealing, at a very fundamental level, the basic differences in char crystal structure due to parent coal rank and to temperature history in the range of interest to combustion systems.

  14. Experimental investigation of wood combustion in a fixed bed with hot air

    Energy Technology Data Exchange (ETDEWEB)

    Markovic, Miladin, E-mail: m.markovic@utwente.nl; Bramer, Eddy A.; Brem, Gerrit

    2014-01-15

    Highlights: • Upward combustion is a new combustion concept with ignition by hot primary air. • Upward combustion has three stages: short drying, rapid devolatilization and char combustion. • Variation of fuel moisture and inert content have little influence on the combustion. • Experimental comparison between conventional and upward combustion is presented. - Abstract: Waste combustion on a grate with energy recovery is an important pillar of municipal solid waste (MSW) management in the Netherlands. In MSW incinerators fresh waste stacked on a grate enters the combustion chamber, heats up by radiation from the flame above the layer and ignition occurs. Typically, the reaction zone starts at the top of the waste layer and propagates downwards, producing heat for drying and devolatilization of the fresh waste below it until the ignition front reaches the grate. The control of this process is mainly based on empiricism. MSW is a highly inhomogeneous fuel with continuous fluctuating moisture content, heating value and chemical composition. The resulting process fluctuations may cause process control difficulties, fouling and corrosion issues, extra maintenance, and unplanned stops. In the new concept the fuel layer is ignited by means of preheated air (T > 220 °C) from below without any external ignition source. As a result a combustion front will be formed close to the grate and will propagate upwards. That is why this approach is denoted by upward combustion. Experimental research has been carried out in a batch reactor with height of 4.55 m, an inner diameter of 200 mm and a fuel layer height up to 1 m. Due to a high quality two-layer insulation adiabatic conditions can be assumed. The primary air can be preheated up to 350 °C, and the secondary air is distributed via nozzles above the waste layer. During the experiments, temperatures along the height of the reactor, gas composition and total weight decrease are continuously monitored. The influence of

  15. Combustion behavior of briquettes from oil palm's empty fruit bunch

    Energy Technology Data Exchange (ETDEWEB)

    Pratoto, A. [Andalas Univ., Padang (Indonesia). Dept. of Mechanical Engineering

    2006-07-01

    Empty fruit bunch (EFB) briquettes from palm plantations are now being considered as a renewable energy source in Indonesia. This paper provided details of a study that investigated the combustion behaviour of an EFB briquette. Thermogravimetry was used to study the briquettes under dynamic conditions at 50 degrees C in a muffle furnace. Thermal decomposition rates and phases were identified, and the effect of the briquette's size on the decomposition rate was evaluated by comparing the combustion behaviour of the briquette to that of loose EFB materials. Rates of devolatilization and char oxidation were also examined. Results of the derivative thermogravimetry (DTG) analysis showed that larger briquettes did not exhibit a sharp peak on the DTG curve. Results suggested that heat transfer was predominant over the kinetic reaction during combustion. The ignition temperature of the briquettes was comparable to typical lignocellulose biomass. Peak combustion temperatures for loose EFB were only slightly lower than other types of biomass. Maximum combustion rates decreased with the size of the fuel. It was concluded that small briquettes are suitable for applications where high rates of heat are required. 16 refs., 1 tab., 6 figs.

  16. Impact of aromaticity and cetane number on the soot-NOx trade-off in conventional and low temperature combustion

    NARCIS (Netherlands)

    Reijnders, J.J.E.; Boot, M.D.; de Goey, L.P.H.

    2016-01-01

    This paper investigates whether or not two persistent diesel dogmas, namely “the higher the cetane number (CN) the better” and “the lower the aromaticity the better”, still ring true when a compression ignition engine is operated in the low temperature combustion (LTC) regime. The transition from

  17. Modelling of Effects of Operating Conditions and Coal Reactivity on Temperature of Burning Particles in Fluidized Bed Combustion

    Czech Academy of Sciences Publication Activity Database

    Svoboda, Karel; Hartman, Miloslav; Pohořelý, Michael; Trnka, Otakar

    2004-01-01

    Roč. 1, č. 2 (2004), s. 261-274 ISSN 1211-1910 R&D Projects: GA AV ČR IAA4072201; GA AV ČR IAA4072001 Institutional research plan: CEZ:AV0Z4072921 Keywords : fluidized bed combustion * char temperature * modelling Subject RIV: DI - Air Pollution ; Quality

  18. Numerical investigation towards HiTAC conditions in laboratory-scale ethanol spray combustion

    NARCIS (Netherlands)

    Zhu, S.; Pozarlik, Artur; Roekaerts, D.J.E.M.; Correia Rodrigues, H.R.; van der Meer, Theo

    2018-01-01

    In the past 25 years high temperature air combustion (HiTAC) technology has been proved and utilized in industry as a promising way to increase thermal efficiency, create a relatively uniform temperature distribution, and reduce emissions of harmful pollutants such as NOX and CO.

  19. Numerical investigation towards HiTAC conditions in laboratory-scale ethanol spray combustion

    NARCIS (Netherlands)

    Zhu, Shanglong; Pozarlik, Artur; Roekaerts, Dirk; Rodrigues, Hugo Correia; van der Meer, Theo

    2018-01-01

    In the past 25 years high temperature air combustion (HiTAC) technology has been proved and utilized in industry as a promising way to increase thermal efficiency, create a relatively uniform temperature distribution, and reduce emissions of harmful pollutants such as NOX and CO. However, due to the

  20. An Experimental Investigation on the Combustion and Heat Release Characteristics of an Opposed-Piston Folded-Cranktrain Diesel Engine

    Directory of Open Access Journals (Sweden)

    Fukang Ma

    2015-06-01

    Full Text Available In opposed-piston folded-cranktrain diesel engines, the relative movement rules of opposed-pistons, combustion chamber components and injector position are different from those of conventional diesel engines. The combustion and heat release characteristics of an opposed-piston folded-cranktrain diesel engine under different operating conditions were investigated. Four phases: ignition delay, premixed combustion, diffusion combustion and after combustion are used to describe the heat release process of the engine. Load changing has a small effect on premixed combustion duration while it influences diffusion combustion duration significantly. The heat release process has more significant isochoric and isobaric combustion which differs from the conventional diesel engine situation, except at high exhaust pressure and temperature, due to its two-stroke and uniflow scavenging characteristics. Meanwhile, a relatively high-quality exhaust heat energy is produced in opposed-piston folded-cranktrain diesel engines.

  1. Thermodynamic evaluation of supercritical oxy-type power plant with high-temperature three-end membrane for air separation

    Directory of Open Access Journals (Sweden)

    Kotowicz Janusz

    2014-09-01

    Full Text Available Among the technologies which allow to reduce greenhouse gas emissions, mainly of carbon dioxide, special attention deserves the idea of ‘zero-emission’ technology based on boilers working in oxy-combustion technology. In the paper a thermodynamic analysis of supercritical power plant fed by lignite was made. Power plant consists of: 600 MW steam power unit with live steam parameters of 650 °C/30 MPa and reheated steam parameters of 670 °C/6 MPa; circulating fluidized bed boiler working in oxy-combustion technology; air separation unit and installation of the carbon dioxide compression. Air separation unit is based on high temperature membrane working in three-end technology. Models of steam cycle, circulation fluidized bed boiler, air separation unit and carbon capture installation were made using commercial software. After integration of these models the net electricity generation efficiency as a function of the degree of oxygen recovery in high temperature membrane was analyzed.

  2. Cálculo de la temperatura en el interior de la cámara de combustión en motores de combustión interna. // Calculation of temperature into combustion chamber of internal combustion engines.

    Directory of Open Access Journals (Sweden)

    F. Soto Pau

    2002-05-01

    Full Text Available El trabajo aquí presentado tiene como objetivo llegar a expresiones de cálculo de la temperatura en el interior de la cámarade combustión como vía de diagnostico de la combustión en motores térmicos. Este trabajo consiste en un modelo físicomatemático,el cual usa como herramientas fundamentalmente, los valores de presión medidos en el interior de la cámarade combustión, las características geométricas del motor y todos los valores normalmente medidos en el bancodinamométrico. El procesamiento teórico de este modelo consiste fundamentalmente en la determinación de la evoluciónde la combustión a partir de la curva de presión, basada en la Primera Ley de la Termodinámica, adoptando Modelo deGases Perfectos. A partir de la posición angular de cierre de la válvula de admisión es posible calcular la derivada de latemperatura en relación a la posición angular del cigüeñal para los gases quemados T&b y no quemados T&u . Teniendo estosvalores de T&u y T&b calculados, es posible integrar numéricamente las temperaturas utilizando el método de integración deEuler. Conociendo la composición química del combustible, es posible calcular la temperatura adiabática de llama, estesería el valor de temperatura inicial Tb que nos permitiría calcular un valor de entalpía específica de los gases quemados. Deigual forma con el valor de la temperatura inicial para los gases no quemados Tu se tiene el valor de temperatura inicial parael proceso de integración.Palabras claves: Proceso de combustión en motores térmicos, temperatura en el interior de la cámara decombustión, presión en el interior de la cámara de combustión.____________________________________________________________________________Abstract.This paper presents calculation expressions of the temperature inside the combustion chamber in order to diagnose thecombustion in termic engines. This analysis consists in a physical-mathematical model, which uses

  3. Transient flow combustion

    Science.gov (United States)

    Tacina, R. R.

    1984-01-01

    Non-steady combustion problems can result from engine sources such as accelerations, decelerations, nozzle adjustments, augmentor ignition, and air perturbations into and out of the compressor. Also non-steady combustion can be generated internally from combustion instability or self-induced oscillations. A premixed-prevaporized combustor would be particularly sensitive to flow transients because of its susceptability to flashback-autoignition and blowout. An experimental program, the Transient Flow Combustion Study is in progress to study the effects of air and fuel flow transients on a premixed-prevaporized combustor. Preliminary tests performed at an inlet air temperature of 600 K, a reference velocity of 30 m/s, and a pressure of 700 kPa. The airflow was reduced to 1/3 of its original value in a 40 ms ramp before flashback occurred. Ramping the airflow up has shown that blowout is more sensitive than flashback to flow transients. Blowout occurred with a 25 percent increase in airflow (at a constant fuel-air ratio) in a 20 ms ramp. Combustion resonance was found at some conditions and may be important in determining the effects of flow transients.

  4. High temperature corrosion of advanced ceramic materials for hot gas filters and heat exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Crossland, C.E.; Shelleman, D.L.; Spear, K.E. [Pennsylvania State Univ., University Park, PA (United States)] [and others

    1996-08-01

    A vertical flow-through furnace has been built to study the effect of corrosion on the morphology and mechanical properties of ceramic hot gas filters. Sections of 3M Type 203 and DuPont Lanxide SiC-SiC filter tubes were sealed at one end and suspended in the furnace while being subjected to a simulated coal combustion environment at 870{degrees}C. X-ray diffraction and electron microscopy is used to identify phase and morphology changes due to corrosion while burst testing determines the loss of mechanical strength after exposure to the combustion gases. Additionally, a thermodynamic database of gaseous silicon compounds is currently being established so that calculations can be made to predict important products of the reaction of the environment with the ceramics. These thermodynamic calculations provide useful information concerning the regimes where the ceramic may be degraded by material vaporization. To verify the durability and predict lifetime performance of ceramic heat exchangers in coal combustion environments, long-term exposure testing of stressed (internally pressurized) tubes must be performed in actual coal combustion environments. The authors have designed a system that will internally pressurize 2 inch OD by 48 inch long ceramic heat exchanger tubes to a maximum pressure of 200 psi while exposing the outer surface of the tubes to coal combustion gas at the Combustion and Environmental Research Facility (CERF) at the Pittsburgh Energy and Technology Center. Water-cooled, internal o-ring pressure seals were designed to accommodate the existing 6 inch by 6 inch access panels of the CERF. Tubes will be exposed for up to a maximum of 500 hours at temperatures of 2500 and 2600{degrees}F with an internal pressure of 200 psi. If the tubes survive, their retained strength will be measured using the high temperature tube burst test facility at Penn State University. Fractographic analysis will be performed to identify the failure source(s) for the tubes.

  5. Char crystalline transformations during coal combustion and their implications for carbon burnout

    Energy Technology Data Exchange (ETDEWEB)

    Hurt, R.H.

    1999-03-11

    Residual, or unburned carbon in fly ash affects many aspects of power plant performance and economy including boiler efficiency, electrostatic precipitator operation, and ash as a salable byproduct. There is a large concern in industry on the unburned carbon problem due to a variety of factors, including low-NOx combustion system and internationalization of the coal market. In recent work, it has been found that residual carbon extracted from fly ash is much less reactive than the laboratory chars on which the current kinetics are based. It has been suggested that thermal deactivation at the peak temperature in combustion is a likely phenomenon and that the structural ordering is one key mechanism. The general phenomenon of carbon thermal annealing is well known, but there is a critical need for more data on the temperature and time scale of interest to combustion. In addition, high resolution transmission electron microscopy (HRTEM) fringe imaging, which provides a wealth of information on the nature and degree of crystallinity in carbon materials such as coal chars, has become available. Motivated by these new developments, this University Coal Research project has been initiated with the following goals: to determine transient, high-temperature, thermal deactivation kinetics as a function of parent coal and temperature history; and to characterize the effect of this thermal treatment on carbon crystalline structure through high-resolution transmission electron microscopy and specialized, quantitative image analysis.

  6. Char crystalline transformations during coal combustion and their implications for carbon burnout

    Energy Technology Data Exchange (ETDEWEB)

    Hurt, R.H.

    1999-07-07

    Residual, or unburned carbon in fly ash affects many aspects of power plant performance and economy including boiler efficiency, electrostatic precipitator operation, and ash as a salable byproduct. There is a large concern in industry on the unburned carbon problem due to a variety of factors, including low-NOx combustion system and internationalization of the coal market. In recent work, it has been found that residual carbon extracted from fly ash is much less reactive than the laboratory chars on which the current kinetics are based. It has been suggested that thermal deactivation at the peak temperature in combustion is a likely phenomenon and that the structural ordering is one key mechanism. The general phenomenon of carbon thermal annealing is well known, but there is a critical need for more data on the temperature and time scale of interest to combustion. In addition, high resolution transmission electron microscopy (HRTEM) fringe imaging, which provides a wealth of information on the nature and degree of crystallinity in carbon materials such as coal chars, has become available. Motivated by these new developments, this University Coal Research project has been initiated with the following goals: (1) To determine transient, high-temperature, thermal deactivation kinetics as a function of parent coal and temperature history. (2) To characterize the effect of the thermal treatment on carbon crystalline structure through high-resolution transmission electron microscopy and specialized, quantitative image analysis.

  7. HERCULES Advanced Combustion Concepts Test Facility: Spray/Combustion Chamber

    Energy Technology Data Exchange (ETDEWEB)

    Herrmann, K. [Eidgenoessische Technische Hochschule (ETH), Labor fuer Aerothermochemie und Verbrennungssysteme, Zuerich (Switzerland)

    2004-07-01

    This yearly report for 2004 on behalf of the Swiss Federal Office of Energy (SFOE) at the Laboratory for Aero-thermochemistry and Combustion Systems at the Federal Institute of Technology ETH in Zurich, Switzerland, presents a review of work being done within the framework of HERCULES (High Efficiency R and D on Combustion with Ultra Low Emissions for Ships) - the international R and D project concerning new technologies for ships' diesels. The work involves the use and augmentation of simulation models. These are to be validated using experimental data. The report deals with the development of an experimental set-up that will simulate combustion in large two-stroke diesel engines and allow the generation of reference data. The main element of the test apparatus is a spray / combustion chamber with extensive possibilities for optical observation under variable flow conditions. The results of first simulations confirm concepts and shall help in further work on the project. The potential offered by high-speed camera systems was tested using the institute's existing HTDZ combustion chamber. Further work to be done is reviewed.

  8. Numerical Simulation of In Situ Combustion of Oil Shale

    Directory of Open Access Journals (Sweden)

    Huan Zheng

    2017-01-01

    Full Text Available This paper analyzes the process of in situ combustion of oil shale, taking into account the transport and chemical reaction of various components in porous reservoirs. The physical model is presented, including the mass and energy conservation equations and Darcy’s law. The oxidation reactions of oil shale combustion are expressed by adding source terms in the conservation equations. The reaction rate of oxidation satisfies the Arrhenius law. A numerical method is established for calculating in situ combustion, which is simulated numerically, and the results are compared with the available experiment. The profiles of temperature and volume fraction of a few components are presented. The temperature contours show the temperature variation in the combustion tube. It is found that as combustion reaction occurs in the tube, the concentration of oxygen decreases rapidly, while the concentration of carbon dioxide and carbon monoxide increases contrarily. Besides, the combustion front velocity is consistent with the experimental value. Effects of gas injection rate, permeability of the reservoir, initial oil content, and injected oxygen content on the ISC process were investigated in this study. Varying gas injection rate and oxygen content is important in the field test of ISC.

  9. A novel split cycle internal combustion engine with integral waste heat recovery

    International Nuclear Information System (INIS)

    Dong, Guangyu; Morgan, Robert; Heikal, Morgan

    2015-01-01

    Highlights: • A novel engine thermodynamic cycle is proposed. • Theoretical analysis is applied to identify the key parameters of the thermodynamic cycle. • The key stages of the split cycle are analysed via one-dimensional modelling work. • The effecting mechanism of the split cycle efficiency is analysed. - Abstract: To achieve a step improvement in engine efficiency, a novel split cycle engine concept is proposed. The engine has separate compression and combustion cylinders and waste heat is recovered between the two. Quasi-isothermal compression of the charge air is realised in the compression cylinder while isobaric combustion of the air/fuel mixture is achieved in the combustion cylinder. Exhaust heat recovery between the compression and combustion chamber enables highly efficient recovery of waste heat within the cycle. Based on cycle analysis and a one-dimensional engine model, the fundamentals and the performance of the split thermodynamic cycle is estimated. Compared to conventional engines, the compression work can be significantly reduced through the injection of a controlled quantity of water in the compression cylinder, lowering the gas temperature during compression. Thermal energy can then be effectively recovered from the engine exhaust in a recuperator between the cooled compressor cylinder discharge air and the exhaust gas. The resulting hot high pressure air is then injected into a combustor cylinder and mixed with fuel, where near isobaric combustion leads to a low combustion temperature and reduced heat transferred from the cylinder wall. Detailed cycle simulation indicates a 32% efficiency improvement can be expected compared to the conventional diesel engines.

  10. Study on Combustion Characteristics and Propelling Projectile Motion Process of Bulk-Loaded Liquid Propellant

    Science.gov (United States)

    Xue, Xiaochun; Yu, Yonggang; Mang, Shanshan

    2017-07-01

    Data are presented showing that the problem of gas-liquid interaction instability is an important subject in the combustion and the propellant projectile motion process of a bulk-loaded liquid propellant gun (BLPG). The instabilities themselves arise from the sources, including fluid motion, to form a combustion gas cavity called Taylor cavity, fluid turbulence and breakup caused by liquid motion relative to the combustion chamber walls, and liquid surface breakup arising from a velocity mismatch on the gas-liquid interface. Typically, small disturbances that arise early in the BLPG combustion interior ballistic cycle can become amplified in the absence of burn rate limiting characteristics. Herein, significant attention has been given to developing and emphasizing the need for better combustion repeatability in the BLPG. Based on this goal, the concept of using different geometries of the combustion chamber is introduced and the concept of using a stepped-wall structure on the combustion chamber itself as a useful means of exerting boundary control on the combustion evolution to thus restrain the combustion instability has been verified experimentally in this work. Moreover, based on this background, the numerical simulation is devoted to a special combustion issue under transient high-pressure and high-temperature conditions, namely, studying the combustion mechanism in a stepped-wall combustion chamber with full monopropellant on one end that is stationary and the other end can move at high speed. The numerical results also show that the burning surface of the liquid propellant can be defined geometrically and combustion is well behaved as ignition and combustion progressivity are in a suitable range during each stage in this combustion chamber with a stepped-wall structure.

  11. Combustion of pulverized fuel under oxycoal conditions at low oxygen concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Toporov D.; Foerster M.; Kneer R. [RWTH Aachen University, Aachen (Germany). Institute of Heat and Mass Transfer

    2007-07-01

    Oxycoal combustion followed by post-combustion CO{sub 2} sequestration has gained justified interest as an option for significant and relatively quick reduction of emissions from fossil fuel power generation, while taking advantage of the existing power plant infrastructure. Burning pulverised coal in a mixture of CO{sub 2}/O{sub 2} instead of air, however, will lead to modified distributions of temperature, species, and radiation fluxes inside the combustion chamber causing a retroaction on the homogeneous and heterogeneous reactions. Utilizing a burner design, which was optimised for coal combustion in air, for oxycoal combustion will lead to flame instability and poor burnout. Stabilisation of the combustion process can be obtained by: i) an increased oxygen concentration (more than 21% vol.) in the oxidiser mixture, thus achieving similar reaction rates and temperature levels to a pulverised fuel-air flame without significant changes to the flame aerodynamics. ii) modifications to the burner aerodynamics, as presented here. The results in this study are obtained in the frame of OXYCOAL-AC, the research project, having the aim to burn a pulverised coal in a CO{sub 2}/O{sub 2}-atmosphere with oxygen, produced from high-temperature ceramic membrane thus leading to higher efficiency of the whole oxycoal process. Numerical and experimental investigations of a stable oxycoal flame, obtained with {le} 21% oxygen concentration in the burning mixture at the RWTH test facility are reported. Two different burner designs are considered, conclusions concerning the achievement of a stable oxycoal flame at O{sub 2} volume concentrations equal and less to the one of oxygen in air are derived. 8 refs., 7 figs., 1 tab.

  12. Thermodynamic energy and exergy analysis of three different engine combustion regimes

    International Nuclear Information System (INIS)

    Li, Yaopeng; Jia, Ming; Chang, Yachao; Kokjohn, Sage L.; Reitz, Rolf D.

    2016-01-01

    Highlights: • Energy and exergy distributions of three different combustion regimes are studied. • CDC demonstrates the highest utilization efficiency of heat transfer and exhaust. • HCCI achieves the highest energy and exergy efficiencies over CDC and RCCI. • HCCI and RCCI demonstrate lower exergy destruction than CDC. • Combustion temperature, rate, duration and regime affect exergy destruction. - Abstract: Multi-dimensional models were coupled with a detailed chemical mechanism to investigate the energy and exergy distributions of three different combustion regimes in internal combustion engines. The results indicate that the 50% heat release point (CA50) considerably affects fuel efficiency and ringing intensity (RI), in which RI is used to quantify the knock level. Moreover, the burn duration from the 10% heat release point (CA10) to CA50 dominates RI, and the position of 90% heat release point (CA90) affects fuel efficiency. The heat transfer losses of conventional diesel combustion (CDC) strongly depend on the local temperature gradient, while it is closely related to the heat transfer area for homogeneous charge compression ignition (HCCI) and reactivity controlled compression ignition (RCCI). Among the three combustion regimes, CDC has the largest utilization efficiency for heat transfer and exhaust energy due to its higher temperature in the heat transfer layer and higher exhaust pressure and temperature. The utilization efficiency of heat transfer and exhaust in RCCI is less affected by the variation of CA50 compared to those in CDC and HCCI. Exergy destruction is closely related to the homogeneity of in-cylinder temperature and equivalence ratio during combustion process, the combustion temperature, the chemical reaction rate, and the combustion duration. Under the combined effect, HCCI and RCCI demonstrate lower exergy destruction than CDC at the same load. Overall, the variations of the exergy distribution for the three combustion regimes

  13. Combustion and agglomeration of aluminized high-energy compositions

    International Nuclear Information System (INIS)

    Korotkikh, A G; Slyusarskiy, K V; Arkhipov, V A; Glotov, O G

    2015-01-01

    The results of combustion study for high-energy compositions (HECs) based on ammonium perchlorate (AP), butadiene rubber and ultrafine powder (UFP) aluminum Alex, and agglomeration of metal particles on the burning surface and composition of condensed combustion products (CCPs) are presented. It was found that partial replacement 2 wt. % of Alex by iron UFP in HEC increases the burning rate 1.3—1.4 times at the range of nitrogen pressure 2.0-7.5 MPa and reduces the mean diameter of CCPs particles d 43 from 37.4 μm to 33.5 μm at pressure ∼ 4 MPa. Upon partial replacement 2 wt. % of Alex by boron UFP in HEC the recoil force of gasification products outflow from burning surface is increased by 9 % and the burning rate of HEC does not change in the above pressure range, while the mean diameter of CCPs particles is reduced to 32.6 μm at p ∼ 4 MPa. (paper)

  14. Solution combustion synthesis of strontium aluminate, SrAl2O4, powders: single-fuel versus fuel-mixture approach.

    Science.gov (United States)

    Ianoş, Robert; Istratie, Roxana; Păcurariu, Cornelia; Lazău, Radu

    2016-01-14

    The solution combustion synthesis of strontium aluminate, SrAl2O4, via the classic single-fuel approach and the modern fuel-mixture approach was investigated in relation to the synthesis conditions, powder properties and thermodynamic aspects. The single-fuel approach (urea or glycine) did not yield SrAl2O4 directly from the combustion reaction. The absence of SrAl2O4 was explained by the low amount of energy released during the combustion process, in spite of the highly negative values of the standard enthalpy of reaction and standard Gibbs free energy. In the case of single-fuel recipes, the maximum combustion temperatures measured by thermal imaging (482 °C - urea, 941 °C - glycine) were much lower than the calculated adiabatic temperatures (1864 °C - urea, 2147 °C - glycine). The fuel-mixture approach (urea and glycine) clearly represented a better option, since (α,β)-SrAl2O4 resulted directly from the combustion reaction. The maximum combustion temperature measured in the case of a urea and glycine fuel mixture was the highest one (1559 °C), which was relatively close to the calculated adiabatic temperature (1930 °C). The addition of a small amount of flux, such as H3BO3, enabled the formation of pure α-SrAl2O4 directly from the combustion reaction.

  15. Thermo-acoustic instabilities of high-frequency combustion in rocket engines; Instabilites thermo-acoustiques de combustion haute-frequence dans les moteurs fusees

    Energy Technology Data Exchange (ETDEWEB)

    Cheuret, F

    2005-10-15

    Rocket motors are confined environments where combustion occurs in extreme conditions. Combustion instabilities can occur at high frequencies; they are tied to the acoustic modes of the combustion chamber. A common research chamber, CRC, allows us to study the response of a turbulent two-phase flame to acoustic oscillations of low or high amplitudes. The chamber is characterised under cold conditions to obtain, in particular, the relative damping coefficient of acoustic oscillations. The structure and frequency of the modes are determined in the case where the chamber is coupled to a lateral cavity. We have used a powder gun to study the response to a forced acoustic excitation at high amplitude. The results guide us towards shorter flames. The injectors were then modified to study the combustion noise level as a function of injection conditions. The speed of the gas determines whether the flames are attached or lifted. The noise level of lifted flames is higher. That of attached flames is proportional to the Weber number. The shorter flames whose length is less than the radius of the CRC, necessary condition to obtain an effective coupling, are the most sensitive to acoustic perturbations. The use of a toothed wheel at different positions in the chamber allowed us to obtain informations on the origin of the thermo-acoustic coupling, main objective of this thesis. The flame is sensitive to pressure acoustic oscillations, with a quasi-zero response time. These observations suggest that under the conditions of the CRC, we observe essentially the response of chemical kinetics to pressure oscillations. (author)

  16. Microjet burners for molecular-beam sources and combustion studies

    Science.gov (United States)

    Groeger, Wolfgang; Fenn, John B.

    1988-09-01

    A novel microjet burner is described in which combustion is stabilized by a hot wall. The scale is so small that the entire burner flow can be passed through a nozzle only 0.2 mm or less in diameter into an evacuated chamber to form a supersonic free jet with expansion so rapid that all collisional processes in the jet gas are frozen in a microsecond or less. This burner can be used to provide high-temperature source gas for free jet expansion to produce intense beams of internally hot molecules. A more immediate use would seem to be in the analysis of combustion products and perhaps intermediates by various kinds of spectroscopies without some of the perturbation effects encountered in probe sampling of flames and other types of combustion devices. As an example of the latter application of this new tool, we present infrared emission spectra for jet gas obtained from the combustion of oxygen-hydrocarbon mixtures both fuel-rich and fuel-lean operation. In addition, we show results obtained by mass spectrometric analysis of the combustion products.

  17. Residential Electrostatic Precipitator - Performance at efficient and poor combustion conditions

    Energy Technology Data Exchange (ETDEWEB)

    Baefver, Linda; Yngvesson, Johan; Niklasson, Fredrik

    2012-07-01

    The performance of a pilot residential electrostatic precipitator R{sub E}SP (Applied Plasma Physics AS), was investigated at laboratory. Measurements of TSP (Total Suspended Particles), content of organic and elemental carbon, and mass size distribution of particles upstream and downstream of ESP were performed. Values for PM1 (particles < 1 {mu}m) were calculated from the particle size distributions. Concentrations and size distributions with respect to particle numbers were measured in separate tests. Gas concentrations, temperatures and boiler parameters were also measured. The TSP concentrations upstream of the R{sub E}SP were varied in range of 15-390 mg/m{sub N}{sup 3}. Up to concentrations of about 300 mg/m{sub N}{sup 3}, the TSP-concentrations out from the ESP were less than 20 mg/m{sub N}{sup 3}, which is well below the German emission limit for wood stoves. The removal efficiencies with respect to mass were about 87% at efficient combustion and 93% at poor combustion. Corresponding values with respect to number concentrations were about 97% at efficient combustion and almost 99% at poor combustion. The better performance at poor combustion may be explained by lower flue gas temperature, leading to longer residence time in the ESP. High removal efficiencies were also found with respect to particulate organic and elemental carbon.

  18. Low-temperature CO oxidation over Cu/Pt co-doped ZrO2 nanoparticles synthesized by solution combustion.

    Science.gov (United States)

    Singhania, Amit; Gupta, Shipra Mital

    2017-01-01

    Zirconia (ZrO 2 ) nanoparticles co-doped with Cu and Pt were applied as catalysts for carbon monoxide (CO) oxidation. These materials were prepared through solution combustion in order to obtain highly active and stable catalytic nanomaterials. This method allows Pt 2+ and Cu 2+ ions to dissolve into the ZrO 2 lattice and thus creates oxygen vacancies due to lattice distortion and charge imbalance. High-resolution transmission electron microscopy (HRTEM) results showed Cu/Pt co-doped ZrO 2 nanoparticles with a size of ca. 10 nm. X-ray diffraction (XRD) and Raman spectra confirmed cubic structure and larger oxygen vacancies. The nanoparticles showed excellent activity for CO oxidation. The temperature T 50 (the temperature at which 50% of CO are converted) was lowered by 175 °C in comparison to bare ZrO 2 . Further, they exhibited very high stability for CO reaction (time-on-stream ≈ 70 h). This is due to combined effect of smaller particle size, large oxygen vacancies, high specific surface area and better thermal stability of the Cu/Pt co-doped ZrO 2 nanoparticles. The apparent activation energy for CO oxidation is found to be 45.6 kJ·mol -1 . The CO conversion decreases with increase in gas hourly space velocity (GHSV) and initial CO concentration.

  19. Numerical study of heat transfer and combustion in IC engine with a porous media piston region

    International Nuclear Information System (INIS)

    Zhou, Lei; Xie, Mao-Zhao; Luo, Kai Hong

    2014-01-01

    Based on superadiabatic combustion in porous medium (PM), the porous medium engine as a new combustion concept is proposed to achieve high combustion efficiency and low emissions. In this paper, an axisymmetric model with detailed chemistry and two-temperature treatment is implemented into a variant of the KIVA-3V code to simulate the working process of the PM engine. Comparisons with the same engine but without PM are conducted. Temperature evolution of the PM and its effects are discussed in detail. Key factors affecting heat transfer, combustion and emissions of the PM engine, such as porosity, the initial PM temperature and equivalence ratio, are analyzed. The results show that the characteristics of heat transfer, emissions and combustion of the PM engine are superior to the engine without PM, providing valuable support for the PM engine concept. In particular, the PM engine is shown to sustain ultra lean combustion. - Graphical abstract: In the PM engine, a PM reactor is mounted on the piston head as shown in Fig. 1 which shows the schematic diagram of the computational domain. The heat exchange process between PM material and compressed air increases with upward motion of piston at compression stroke. At the TDC, almost all the air is compressed and closed to PM volume, meanwhile, the fuel is injected into PM chamber to achieve homogenization combustion. - Highlights: •Two-temperature treatment studies the working process of the PM engine. •Self-balancing temperature of the PM determines the continued and stable work. •Stronger heat exchange occurs between gas and PM with smaller porosity. •The PM engine can have lower levels of NO x , unburnt HC and CO emissions

  20. Optimization of combustion process for radiation-treated solid fuels in dust state

    International Nuclear Information System (INIS)

    Askarova, A.S.; Bajdullaeva, G.E.

    1997-01-01

    Computation experiment on combustion of solid radiation-treated fuel in burning chamber of boiler at Pavlodar thermal electric plant is carried out. Velocity, temperature distribution and concentration of combustion products by height of chamber are received. Analysis of received results shows that radiation treatment of fuels exerts substantial effect on egress parameters of thermal electric plant. It is shown, that radiation treatment allows to improve effectiveness of boiler device and reduce of harmful substances discharge in atmosphere. Results of conducted numerical experiments allow to create complete methods of solid fuel combustion with high moisture and ashiness

  1. Effect of oxy-fuel combustion with steam addition on coal ignition and burnout in an entrained flow reactor

    International Nuclear Information System (INIS)

    Riaza, J.; Alvarez, L.; Gil, M.V.; Pevida, C.; Pis, J.J.; Rubiera, F.

    2011-01-01

    The ignition temperature and burnout of a semi-anthracite and a high-volatile bituminous coal were studied under oxy-fuel combustion conditions in an entrained flow reactor (EFR). The results obtained under oxy-fuel atmospheres (21%O 2 -79%CO 2 , 30%O 2 -70% O 2 and 35%O 2 -65%CO 2 ) were compared with those attained in air. The replacement of CO 2 by 5, 10 and 20% of steam in the oxy-fuel combustion atmospheres was also evaluated in order to study the wet recirculation of flue gas. For the 21%O 2 -79%CO 2 atmosphere, the results indicated that the ignition temperature was higher and the coal burnout was lower than in air. However, when the O 2 concentration was increased to 30 and 35% in the oxy-fuel combustion atmosphere, the ignition temperature was lower and coal burnout was improved in comparison with air conditions. On the other hand, an increase in ignition temperature and a worsening of the coal burnout was observed when steam was added to the oxy-fuel combustion atmospheres though no relevant differences between the different steam concentrations were detected. -- Highlights: → The ignition temperature and the burnout of two thermal coals under oxy-fuel combustion conditions were determined. → The effect of the wet recirculation of flue gas on combustion behaviour was evaluated. → Addition of steam caused a worsening of the ignition temperature and coal burnout.

  2. Gasoline Combustion Fundamentals DOE FY17 Report

    Energy Technology Data Exchange (ETDEWEB)

    Ekoto, Isaac W. [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2017-11-01

    Advanced automotive gasoline engines that leverage a combination of reduced heat transfer, throttling, and mechanical losses; shorter combustion durations; and higher compression and mixture specific heat ratios are needed to meet aggressive DOE VTP fuel economy and pollutant emission targets. Central challenges include poor combustion stability at low-power conditions when large amounts of charge dilution are introduced and high sensitivity of conventional inductive coil ignition systems to elevated charge motion and density for boosted high-load operation. For conventional spark ignited operation, novel low-temperature plasma (LTP) or pre-chamber based ignition systems can improve dilution tolerances while maintaining good performance characteristics at elevated charge densities. Moreover, these igniters can improve the control of advanced compression ignition (ACI) strategies for gasoline at low to moderate loads. The overarching research objective of the Gasoline Combustion Fundamentals project is to investigate phenomenological aspects related to enhanced ignition. The objective is accomplished through targeted experiments performed in a single-cylinder optically accessible research engine or an in-house developed optically accessible spark calorimeter (OASC). In situ optical diagnostics and ex situ gas sampling measurements are performed to elucidate important details of ignition and combustion processes. Measurements are further used to develop and validate complementary high-fidelity ignition simulations. The primary project audience is automotive manufacturers, Tier 1 suppliers, and technology startups—close cooperation has resulted in the development and execution of project objectives that address crucial mid- to long-range research challenges.

  3. Characteristics of carbonized sludge for co-combustion in pulverized coal power plants.

    Science.gov (United States)

    Park, Sang-Woo; Jang, Cheol-Hyeon

    2011-03-01

    Co-combustion of sewage sludge can destabilize its combustion profile due to high volatility, which results in unstable flame. We carried out fuel reforming for sewage sludge by way of carbonization at pyrolysis temperature of 300-500°C. Fuel characteristics of carbonized sludge at each temperature were analyzed. As carbonization temperature increased, fuel ratio increased, volatile content reduced, and atomic ratio relation of H/C and O/C was similar to that of lignite. The analysis result of FT-IR showed the decrease of aliphatic C-H bond and O-C bond in carbonization. In the analysis result of TG-DTG, the thermogravimetry reduction temperature of carbonized sludge (CS400) was proven to be higher than that of dried sludge, but lower than that of sub-bituminous coal. Hardgrove grindability index increased in proportion to fuel ratio increase, where the carbonized sludge value of 43-110 was similar or higher than the coal value of 49-63. As for ash deposits, slagging and fouling index were higher than that of coal. When carbonized sludge (CS400) and coal were co-combusted in 1-10% according to calorific value, slagging tendency was low in all conditions, and fouling tendency was medium or high according to the compositions of coal. Copyright © 2010 Elsevier Ltd. All rights reserved.

  4. Numerical simulation of pulverized coal combustion to reduce pollutants

    International Nuclear Information System (INIS)

    Mohammad Bagher Ayani; Behnam Rahmanian

    2010-01-01

    Full text: In this research, the numerical simulation of pollutant reduction and in a pulverized coal combustion at 2D combustion chamber have been studied. Finite volume method using structured grid arrangement was utilized for modeling the pulverized coal combustion. The pressure base algorithm and implicit solver has been employed to simulate non-premix combustion model. The air was diluted by some participative gaseous such as whose percentages varied from 0 % to 20 %. Participative gases and air were preheated by a high-temperature gas generator, and the preheated oxidizer temperature could achieve. The combustion simulation with the generalized finite rate chemistry model, referred to as the Magnussen model and the reacting flow with the mixture fraction PDF/ equilibrium chemistry model, referred to as the PDF model are studied. Quick scheme was adopted for the discretization of all convective terms of the advective transport equations. So, as a result of addition participative gases into oxidizer the rate of formation of pollutants as well as NO x suppressed. The addition only a few percent of halogen components can make some systems nonflammable. The effects of addition halogen components and non-reaction gaseous such as Helium and Argon are fuel dilution and its acts as catalysts in reducing the H atom concentration necessary for the chain branching reaction sequence. Moreover, they act like surface and they make the increment of surface ratio versus volume. Because of this, the number of radical conflicts and hence destruction them will be increase. Furthermore, the rate of formation of pollutants will be decreased if the halogen components and non-reaction gaseous injection will be increased. However, as a result of this research, in the case of injection in pulverized coal combustion the flame temperature is lower than Steam, Argon and Helium. So, the emission levels of carbon dioxide is significantly lower than other participative gases, but in this

  5. Oxy-fuel combustion of solid fuels

    DEFF Research Database (Denmark)

    Toftegaard, Maja Bøg; Brix, Jacob; Jensen, Peter Arendt

    2010-01-01

    Oxy-fuel combustion is suggested as one of the possible, promising technologies for capturing CO2 from power plants. The concept of oxy-fuel combustion is removal of nitrogen from the oxidizer to carry out the combustion process in oxygen and, in most concepts, recycled flue gas to lower the flame...... provide additional options for improvement of process economics are however likewise investigated. Of particular interest is the change of the combustion process induced by the exchange of carbon dioxide and water vapor for nitrogen as diluent. This paper reviews the published knowledge on the oxy......-fuel process and focuses particularly on the combustion fundamentals, i.e. flame temperatures and heat transfer, ignition and burnout, emissions, and fly ash characteristics. Knowledge is currently available regarding both an entire oxy-fuel power plant and the combustion fundamentals. However, several...

  6. LES and RANS modeling of pulverized coal combustion in swirl burner for air and oxy-combustion technologies

    International Nuclear Information System (INIS)

    Warzecha, Piotr; Boguslawski, Andrzej

    2014-01-01

    Combustion of pulverized coal in oxy-combustion technology is one of the effective ways to reduce the emission of greenhouse gases into the atmosphere. The process of transition from conventional combustion in air to the oxy-combustion technology, however, requires a thorough investigations of the phenomena occurring during the combustion process, that can be greatly supported by numerical modeling. The paper presents the results of numerical simulations of pulverized coal combustion process in swirl burner using RANS (Reynolds-averaged Navier–Stokes equations) and LES (large Eddy simulation) methods for turbulent flow. Numerical simulations have been performed for the oxyfuel test facility located at the Institute of Heat and Mass Transfer at RWTH Aachen University. Detailed analysis of the flow field inside the combustion chamber for cold flow and for the flow with combustion using different numerical methods for turbulent flows have been done. Comparison of the air and oxy-coal combustion process for pulverized coal shows significant differences in temperature, especially close to the burner exit. Additionally the influence of the combustion model on the results has been shown for oxy-combustion test case. - Highlights: • Oxy-coal combustion has been modeled for test facility operating at low oxygen ratio. • Coal combustion process has been modeled with simplified combustion models. • Comparison of oxy and air combustion process of pulverized coal has been done. • RANS (Reynolds-averaged Navier–Stokes equations) and LES (large Eddy simulation) results for pulverized coal combustion process have been compared

  7. On ternary species mixing and combustion in isotropic turbulence at high pressure

    Science.gov (United States)

    Lou, Hong; Miller, Richard S.

    2004-05-01

    Effects of Soret and Dufour cross-diffusion, whereby both concentration and thermal diffusion occur in the presence of mass fraction, temperature, and pressure gradients, are investigated in the context of both binary and ternary species mixing and combustion in isotropic turbulence at large pressure. The compressible flow formulation is based on a cubic real-gas state equation, and includes generalized forms for heat and mass diffusion derived from nonequilibrium thermodynamics and fluctuation theory. A previously derived formulation of the generalized binary species heat and mass fluxes is first extended to the case of ternary species, and appropriate treatment of the thermal and mass diffusion factors is described. Direct numerical simulations (DNS) are then conducted for both binary and ternary species mixing and combustion in stationary isotropic turbulence. Mean flow temperatures and pressures of =700 K and =45 atm are considered to ensure that all species mixtures remain in the supercritical state such that phase changes do not occur. DNS of ternary species systems undergoing both pure mixing and a simple chemical reaction of the form O2+N2→2NO are then conducted. It is shown that stationary scalar states previously observed for binary mixing persist for the ternary species problem as well; however, the production and magnitude of the scalar variance is found to be altered for the intermediate molecular weight species as compared to the binary species case. The intermediate molecular weight species produces a substantially smaller scalar variance than the remaining species for all flows considered. For combustion of nonstoichiometric mixtures, a binary species mixture, characterized by stationary scalar states, results at long times after the lean reactant is depleted. The form of this final scalar distribution is observed to be similar to that found in the binary flow situation. A series of lower resolution simulations for a variety of species is then

  8. Low-temperature metal-oxide thin-film transistors formed by directly photopatternable and combustible solution synthesis.

    Science.gov (United States)

    Rim, You Seung; Lim, Hyun Soo; Kim, Hyun Jae

    2013-05-01

    We investigated the formation of ultraviolet (UV)-assisted directly patternable solution-processed oxide semiconductor films and successfully fabricated thin-film transistors (TFTs) based on these films. An InGaZnO (IGZO) solution that was modified chemically with benzoylacetone (BzAc), whose chelate rings decomposed via a π-π* transition as result of UV irradiation, was used for the direct patterning. A TFT was fabricated using the directly patterned IGZO film, and it had better electrical characteristics than those of conventional photoresist (PR)-patterned TFTs. In addition, the nitric acid (HNO3) and acetylacetone (AcAc) modified In2O3 (NAc-In2O3) solution exhibited both strong UV absorption and high exothermic reaction. This method not only resulted in the formation of a low-energy path because of the combustion of the chemically modified metal-oxide solution but also allowed for photoreaction-induced direct patterning at low temperatures.

  9. Exhaust Gas Temperature Measurements in Diagnostics of Turbocharged Marine Internal Combustion Engines Part I Standard Measurements

    Directory of Open Access Journals (Sweden)

    Korczewski Zbigniew

    2015-01-01

    Full Text Available The article discusses the problem of diagnostic informativeness of exhaust gas temperature measurements in turbocharged marine internal combustion engines. Theoretical principles of the process of exhaust gas flow in turbocharger inlet channels are analysed in its dynamic and energetic aspects. Diagnostic parameters are defined which enable to formulate general evaluation of technical condition of the engine based on standard online measurements of the exhaust gas temperature. A proposal is made to extend the parametric methods of diagnosing workspaces in turbocharged marine engines by analysing time-histories of enthalpy changes of the exhaust gas flowing to the turbocompressor turbine. Such a time-history can be worked out based on dynamic measurements of the exhaust gas temperature, performed using a specially designed sheathed thermocouple.

  10. Analysis regarding steam generator furnace's incident heat, temperature and composition of combustion gases; Analisis de calor incidente, temperatura y composicion de gases de combustion en hornos de generadores de vapor

    Energy Technology Data Exchange (ETDEWEB)

    Diego Marin, Antonio [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico)

    2006-07-01

    In order to obtain more precise evaluations of the combustion process in the furnace of a steam generator a suction pyrometer has been integrated to measure the temperature of the combustion gases; an ellipsoidal radiometer to measure the incident heat by thermal radiation in the water walls; a water cooled probe to determine the particle concentration, as well as a water cooled probe to determine the composition of the combustion gases present. This document clarifies the form of use of these instruments and their engineering specifications, simultaneously presenting an analysis that considers, unlike others, the internal conditions of the furnace to obtain a more precise evaluation of the efficiency that the combustion process presents and bases for the taking of preventive actions in specific zones of the furnace. Thus, the present work exhibits instruments and techniques of analysis to study the phenomena occurring within a steam generator. [Spanish] Con el fin de obtener evaluaciones mas precisas del proceso de combustion en el horno de un generador de vapor, se ha integrado un pirometro de succion para medir la temperatura de los gases de combustion; un radiometro elipsoidal para medir el calor incidente por radiacion termica en las paredes del agua; una sonda enfriada con agua para determinar la concentracion de particulas, asi como una sonda refrigerada con agua para determinar la composicion de los gases de combustion presentes. Este documento aclara la forma de uso de estos instrumentos y sus especificaciones tecnicas, a la vez que presenta un analisis que considera, a diferencia de otros, las condiciones internas del horno para obtener una evaluacion mas precisa sobre la eficiencia del proceso de combustion y bases para la toma de acciones preventivas en zonas especificas del horno. Asi, el presente trabajo exhibe instrumentos y tecnicas de analisis para estudiar los fenomenos que ocurren dentro de un generador de vapor.

  11. Fuel and combustion stratification study of Partially Premixed Combustion

    NARCIS (Netherlands)

    Izadi Najafabadi, M.; Dam, N.; Somers, B.; Johansson, B.

    2016-01-01

    Relatively high levels of stratification is one of the main advantages of Partially Premixed Combustion (PPC) over the Homogeneous Charge Compression Ignition (HCCI) concept. Fuel stratification smoothens heat release and improves controllability of this kind of combustion. However, the lack of a

  12. Investigation of combustion and thermodynamic performance of a lean burn catalytic combustion gas turbine system

    International Nuclear Information System (INIS)

    Yin Juan; Weng Yiwu

    2011-01-01

    The goals of this research were to investigate the combustion and thermodynamic performance of a lean burn catalytic combustion gas turbine. The characteristics of lean burn catalytic combustion were investigated by utilising 1D heterogeneous plug flow model which was validated by experiments. The effects of operating parameters on catalytic combustion were numerically analysed. The system models were built in ASPEN Plus and three independent design variables, i.e. compressor pressure ratio (PR), regenerator effectiveness (RE) and turbine inlet temperature (TIT) were selected to analyse the thermodynamic performance of the thermal cycle. The main results show that: simulations from 1D heterogeneous plug flow model can capture the trend of catalytic combustion and describe the behavior of the catalytic monolith in detail. Inlet temperature is the most significant parameter that impacts operation of the catalytic combustor. When TIT and RE are constant, the increase of PR results in lowering the inlet temperature of the catalytic combustor, which results in decreasing methane conversion. The peak thermal efficiency and the optimal PR at a constant TIT increase with the increase of TIT; and at the constant PR, the thermal efficiency increases with the increase of TIT. However, with lower TIT conditions, the optimal PR and the peak efficiency at a constant TIT of the LBCCGT cycle are relative low to that of the conventional cycle. When TIT and PR are constant, the decrease of RE may result in lower methane conversion. The influences of RE on the methane conversion and the thermal efficiency are more significant at higher PRs. The higher thermal efficiency for the lower RE is achieved at lower PR.

  13. Combustion visualization and experimental study on spark induced compression ignition (SICI) in gasoline HCCI engines

    International Nuclear Information System (INIS)

    Wang Zhi; He Xu; Wang Jianxin; Shuai Shijin; Xu Fan; Yang Dongbo

    2010-01-01

    Spark induced compression ignition (SICI) is a relatively new combustion control technology and a promising combustion mode in gasoline engines with high efficiency. SICI can be divided into two categories, SACI and SI-CI. This paper investigated the SICI combustion process using combustion visualization and engine experiment respectively. Ignition process of SICI was captured by high speed photography in an optical engine with different compression ratios. The results show that SICI is a combustion mode combined with partly flame propagation and main auto-ignition. The spark ignites the local mixture near spark electrodes and the flame propagation occurs before the homogeneous mixture is auto-ignited. The heat release from central burned zone due to the flame propagation increases the in-cylinder pressure and temperature, resulting in the unburned mixture auto-ignition. The SICI combustion process can be divided into three stages of the spark induced stage, the flame propagation stage and the compression ignition stage. The SICI combustion mode is different from the spark ignition (SI) knocking in terms of the combustion and emission characteristics. Furthermore, three typical combustion modes including HCCI, SICI, SI, were compared on a gasoline direct injection engine with higher compression ratio and switchable cam-profiles. The results show that SICI has an obvious combustion characteristic with two-stage heat release and lower pressure rise rate. The SICI combustion mode can be controlled by spark timings and EGR rates and utilized as an effective method for high load extension on the gasoline HCCI engine. The maximum IMEP of 0.82 MPa can be achieved with relatively low NO x emission and high thermal efficiency. The SICI combustion mode can be applied in medium-high load region for high efficiency gasoline engines.

  14. Combustion visualization and experimental study on spark induced compression ignition (SICI) in gasoline HCCI engines

    Energy Technology Data Exchange (ETDEWEB)

    Wang Zhi, E-mail: wangzhi@tsinghua.edu.c [State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing 100084 (China); He Xu; Wang Jianxin; Shuai Shijin; Xu Fan; Yang Dongbo [State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing 100084 (China)

    2010-05-15

    Spark induced compression ignition (SICI) is a relatively new combustion control technology and a promising combustion mode in gasoline engines with high efficiency. SICI can be divided into two categories, SACI and SI-CI. This paper investigated the SICI combustion process using combustion visualization and engine experiment respectively. Ignition process of SICI was captured by high speed photography in an optical engine with different compression ratios. The results show that SICI is a combustion mode combined with partly flame propagation and main auto-ignition. The spark ignites the local mixture near spark electrodes and the flame propagation occurs before the homogeneous mixture is auto-ignited. The heat release from central burned zone due to the flame propagation increases the in-cylinder pressure and temperature, resulting in the unburned mixture auto-ignition. The SICI combustion process can be divided into three stages of the spark induced stage, the flame propagation stage and the compression ignition stage. The SICI combustion mode is different from the spark ignition (SI) knocking in terms of the combustion and emission characteristics. Furthermore, three typical combustion modes including HCCI, SICI, SI, were compared on a gasoline direct injection engine with higher compression ratio and switchable cam-profiles. The results show that SICI has an obvious combustion characteristic with two-stage heat release and lower pressure rise rate. The SICI combustion mode can be controlled by spark timings and EGR rates and utilized as an effective method for high load extension on the gasoline HCCI engine. The maximum IMEP of 0.82 MPa can be achieved with relatively low NO{sub x} emission and high thermal efficiency. The SICI combustion mode can be applied in medium-high load region for high efficiency gasoline engines.

  15. Experimental investigation on the effect of intake air temperature and air-fuel ratio on cycle-to-cycle variations of HCCI combustion and performance parameters

    Energy Technology Data Exchange (ETDEWEB)

    Maurya, Rakesh Kumar; Agarwal, Avinash Kumar [Engine Research Laboratory, Department of Mechanical Engineering, Indian Institute of Technology Kanpur, Kanpur 208016 (India)

    2011-04-15

    Combustion in HCCI engines is a controlled auto ignition of well-mixed fuel, air and residual gas. Since onset of HCCI combustion depends on the auto ignition of fuel/air mixture, there is no direct control on the start of combustion process. Therefore, HCCI combustion becomes unstable rather easily, especially at lower and higher engine loads. In this study, cycle-to-cycle variations of a HCCI combustion engine fuelled with ethanol were investigated on a modified two-cylinder engine. Port injection technique is used for preparing homogeneous charge for HCCI combustion. The experiments were conducted at varying intake air temperatures and air-fuel ratios at constant engine speed of 1500 rpm and P-{theta} diagram of 100 consecutive combustion cycles for each test conditions at steady state operation were recorded. Consequently, cycle-to-cycle variations of the main combustion parameters and performance parameters were analyzed. To evaluate the cycle-to-cycle variations of HCCI combustion parameters, coefficient of variation (COV) of every parameter were calculated for every engine operating condition. The critical optimum parameters that can be used to define HCCI operating ranges are 'maximum rate of pressure rise' and 'COV of indicated mean effective pressure (IMEP)'. (author)

  16. Combustion of stratified hydrogen-air mixtures in the 10.7 m3 Combustion Test Facility cylinder

    International Nuclear Information System (INIS)

    Whitehouse, D.R.; Greig, D.R.; Koroll, G.W.

    1996-01-01

    This paper presents preliminary results from hydrogen concentration gradient combustion experiments in a 10.7 m 3 cylinder. These gradients, also referred to as stratified mixtures, were formed from dry mixtures of hydrogen and air at atmospheric temperature. Combustion pressures, burn fractions and flame speeds in concentration gradients were compared with combustion of well-mixed gases containing equivalent amounts of hydrogen. The studied variables included the quantity of hydrogen in the vessel, the steepness of the concentration gradient, the igniter location, and the initial concentration of hydrogen at the bottom of the vessel. Gradients of hydrogen and air with average concentrations of hydrogen below the downward propagation limit produced significantly greater combustion pressures when ignited at the top of the vessel than well-mixed gases with the same quantity of hydrogen. This was the result of considerably higher burn fractions in the gradients than in the well-mixed gas tests. Above the downward propagation limit, gradients of hydrogen ignited at the top of the vessel produced nearly the same combustion pressures as under well-mixed conditions; both gradients and well-mixed gases had high burn fractions. Much higher flame speeds were observed in the gradients than the well-mixed gases. Gradients and well-mixed gases containing up to 14% hydrogen ignited at the bottom of the vessel produced nearly the same combustion pressures. Above 14% hydrogen, gradients produced lower combustion pressures than well-mixed gases having the same quantity of hydrogen. This can be attributed to lower burn fractions of fuel from the gradients compared with well-mixed gases with similar quantities of hydrogen. When ignited at the bottom of the vessel, 90% of a gradient's gases remained unburned until several seconds after ignition. The remaining gases were then consumed at a very fast rate. (orig.)

  17. Catalytic reduction of emissions from small scale wood combustion. State of the art

    Energy Technology Data Exchange (ETDEWEB)

    Hargitai, T.; Silversand, F.A. [Katator AB, Lund (Sweden)

    1998-12-31

    Small-scale combustion of big-fuel often results in excessive emissions of volatile organic compounds (VOC), polyaromatic compounds (PAM) and carbon monoxide (CO). These compounds have a negative impact on human health and urban air quality. The predominant volatile organic compounds present in flue gases from big-fuel combustion are propylene, ethylene, butadiene, methanol, ethanol, methane, phenol and benzene. The poor combustion performance of some wood stoves has in certain cases led to legislation against small-scale combustion of big-fuel in urban areas. Catalytic cleaning is one very efficient way of decreasing the environmental impacts of big-fuel combustion. Several studies concerning catalytic purification of flue gases from big-fuel combustion have been presented over the years. Several problems must be addressed when designing a catalyst for this application: Clogging problems from deposition of ashes and particulates in the catalyst; Catalyst poisoning by sulphur, phosphorus, alkali metals etc.; Catalyst fouling due to deposition of ashes and particulates; Catalyst overheating at high flue-gas temperatures and Poor catalyst performance during start-up Most studies have been focused on monolith-type catalysts and- the conversion of CO, VOC and PAH typically is above 80 %. The observed problems are associated with increased pressure drop due to catalyst clogging and decreased catalyst performance due to fouling and poisoning. In most cases precious metals, preferably Pt. have been used as active combustion catalyst. Precious metals have a high activity for the combustion of CO and hydrocarbons and a fair stability against poisoning with compounds present in flue gases from big-fuel, e.g. sulphur and alkali metals. The majority of the studies on precious metals have been focused on Pt. Rh and Pd, which are especially active in catalytic combustion. Some metal oxides are used in catalytic combustion, especially at low temperatures (e.g. in VOC abatement

  18. Ammonia chemistry in oxy-fuel combustion of methane

    DEFF Research Database (Denmark)

    Mendiara, Teresa; Glarborg, Peter

    2009-01-01

    The oxidation of NH3 during oxy-fuel combustion of methane, i.e., at high [CO2], has been studied in a flow reactor. The experiments covered stoichiometries ranging from fuel rich to very fuel lean and temperatures from 973 to 1773 K. The results have been interpreted in terms of an updated detai...

  19. Investigation on the ignition, thermal acceleration and characteristic temperatures of coal char combustion

    International Nuclear Information System (INIS)

    Zhang, Bin; Fu, Peifang; Liu, Yang; Yue, Fang; Chen, Jing; Zhou, Huaichun; Zheng, Chuguang

    2017-01-01

    Highlights: • A new thermal model and measuring method for the ignition temperature are proposed. • Ignition occurs in a region but not a point with ambient conditions changing. • Ignition region is measured from the minimum to maximum ignition temperature. • T_i_g_,_m_a_x of coal char in TG-DSC is in line with the ignition temperature of EFR. - Abstract: Through using a new thermal analysis model and a method of coal/char combustion, the minimum ignition temperature and minimum ignition heat of three different ranks of pulverized coal char were measured by simultaneous Thermogravimetry and Differential Scanning Calorimetry (TG-DSC) experiments. The results show that the ignition of coal char occurs in the range between the minimum ignition temperature and the inflection-point temperature. The thermal acceleration and its gradient G_T increase with increasing heating rate and decrease with increasing coal char rank. The higher the G_T of the coal char, the more easily the ignition occurs and more rapidly the burning and burnout occur. The data show that the G_T of coal char of SLH lignite is 1.6 times more than that of coal char of ZCY bituminous and JWY anthracite in ignition zone, and 3.4 times in burning zone. The characteristic temperatures increase with increasing temperature of prepared char, heating rate and char rank. Moreover, the T_i_g_,_m_a_x calculated in DSC experiment is approximately in line with the ignition temperature obtained in the entrained flow reactor, which demonstrates the feasibility of the proposed theory.

  20. Emission characteristics of multiple stage diesel combustion. Effect of exhaust gas recirculation; Nidan nensho diesel kikan no haishutsubutsu tokusei. EGR no eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Hashizume, T.; Miyamoto, T.; Akagawa, H.; Tsujimura, K. [New A.C.E. Institute Co. Ltd., Tokyo (Japan)

    1998-05-01

    For an aim to reduce NOx emission from diesel engines, it has become possible to realize it with smoke emission maintained at low levels by taking the following steps: initial combustion is carried out as lean pre-mixed combustion by adopting early fuel injection; the fuel is injected again after completion of this combustion; and EGR is combined with two-stage combustion which performs diffusion combustion under high temperature atmosphere. When a large quantity of EGR is used, cylinder temperature drops to have ignition timing delayed in the first stage, serving for improving fuel consumption. The problem of increase in smoke generation is solved by optimizing the injection timing at the second stage to suppress smoke generation increase, resulting in realization of lower NOx emission. By completing the second-stage fuel injection before ignition of the first-stage injection, it was possible to realize further lower NOx emission. Smoke increase due to higher EGR ratio was suppressed by pre-mixing both fuels injected in the first and second stages, although this is a high load operation. In addition, oxygen concentration and cylinder temperature were reduced, the gas pre-mixture was homogenized, and combustion velocity was suppressed by delaying the angle of ignition timing. This made low smoke combustion at {lambda} = 1 possible even in compressed ignition combustion. 8 refs., 12 figs., 1 tab.

  1. Resistance of various coatings to high temperature corrosion in HCl and SO{sub 2} containing environments

    Energy Technology Data Exchange (ETDEWEB)

    Cizner, Josef; Mlnarik, Jakub; Hruska, Jan [SVUM a.s., Prague (Czech Republic). Lab. of High Temperature Corrosion

    2010-07-01

    For high efficiency of the steam turbines it is necessary to produce steam of temperature at least 400 C, which in conjunction with specific composition of combustion gases causes fireside corrosion problems. The combustion gases contain aggressive compounds ike HCl and SO{sub 2} and some other elements which can form deposits on heat exchanging surfaces e.g. calcium, potassium salts etc. Using of high-alloy steels or nickel-based alloys is very costly and also these materials could have lower thermal conductivity. A cheaper solution is to produce a coating on low (medium)-alloy steel. Common heat-resistant steels show very short lifetime under these conditions. The solution is then to use the appropriate coatings. Some types of coatings can be applied even inside older boilers. In this work we tested many coatings composition (nickel-based, aluminium-based etc. As well as with different processing method - arc sprayed coating, weld deposits, HVOF, etc.) on 16Mo3 steel. In particular their high temperature corrosion behaviour in model atmosphere containing SO{sub 2} and HCl and also under deposit of fly ash was studied. (orig.)

  2. An experimental study on suspended sodium droplet combustion

    International Nuclear Information System (INIS)

    Sato, Kenji

    2003-03-01

    As part of studies for phenomenological investigation of sodium droplet burning behavior, in our previous experimental studies, ignition process and succeeding combustion of suspended single sodium droplet had been investigated by using high speed movie camera, and a temperature measurement system feasible for the experiment had been developed. In the present study, by using 4 mm diam. suspended sodium droplet, combustion experiments were performed for the free-stream velocity of dry air flow of 20 to 60 cm/s, and for the initial droplet temperature of 280 to 400degC, and the effects of the free-stream velocity and initial droplet temperature on the ignition behavior and droplet temperature variation with time were examined by using high speed movie camera and sheath-type fine thermocouple. The experimental results are as follows: (1) When the initial droplet temperature is less than 290degC, before ignition the oxide film accompanied with vertical streak appeared and the droplet turned to teardrop shape. (2) The ignition delay time defined as the time to evolution of orange color light emission zone or flame zone decreases with the increase o the free-stream velocity or of initial droplet temperature. Examples of typical ignition time are 1.4 s at the free-stream velocity 20 cm/s and initial droplet temperature 300degC, and 0.65 s at 60 cm/s and 400degC. (3) the dependence of the ignition delay time on the free-stream velocity decreases as the free stream velocity increases. (4) The droplet temperatures at the moment of melting extending all over the surface and at the moment of ignition are around 460degC and 500 to 600degC (mostly around 575degC), respectively. These values are essentially independent of the free-stream velocity and initial droplet temperature. (5) The rate of temperature rise does not change through the moment of ignition. (6) The asymptotic droplet temperature at approaching to quasi-steady combustion state following ignition is independent of

  3. Combustion of Jordanian oil shale using circulating fluidized bed

    International Nuclear Information System (INIS)

    Hamdan, M.; Al-Azzam, S.

    1998-11-01

    this study re[resents design and manufacturing of a lab-scale circulating fluidized bed (C.F.B) to burn low grade fuel such as Jordanian oil shale. Hydrodynamic properties of C.F.B. were studied like minimum fluidization velocity, circulation flux and carryover rate. a hot run was firstly conducted by the combustion of L.P.G. to start up the combustion process. It proceeds until reaching the minimum burning temperature of oil shale particles, at which time the LPG supply was gradually reduced and oil shale feeding started. soon after reaching a self sustainable condition of oil shale particles, the LPG supply was cut off. The main combustion variables were investigated such as air to fuel ratios, temperature profiles across the bed, exhaust gas analysis and combustion efficiency. a combustion intensity of 859 kg/hr.m 2 and combustion efficiency of 96% were achieved. (authors). 19 refs., 9 tab., 18 fig

  4. Experiments and simulations of NOx formation in the combustion of hydroxylated fuels

    KAUST Repository

    Bohon, Myles

    2015-06-01

    This work investigates the influence of molecular structure in hydroxylated fuels (i.e. fuels with one or more hydroxyl groups), such as alcohols and polyols, on NOx formation. The fuels studied are three lower alcohols (methanol, ethanol, and n-propanol), two diols (1,2-ethanediol and 1,2-propanediol), and one triol (1,2,3-propanetriol); all of which are liquids at room temperature and span a wide range of thermophysical properties. Experimental stack emissions measurements of NO/NO2, CO, and CO2 and flame temperature profiles utilizing a rake of thermocouples were obtained in globally lean, swirling, liquid atomized spray flames inside a refractory-lined combustion chamber as a function of the atomizing air flow rate and swirl number. These experiments show significantly lower NOx formation with increasing fuel oxygen content despite similarities in the flame temperature profiles. By controlling the temperature profiles, the contribution to NOx formation through the thermal mechanism were matched, and variations in the contribution through non-thermal NOx formation pathways are observed. Simulations in a perfectly stirred reactor, at conditions representative of those measured within the combustion region, were conducted as a function of temperature and equivalence ratio. The simulations employed a detailed high temperature chemical kinetic model for NOx formation from hydroxylated fuels developed based on recent alcohol combustion models and extended to include polyol combustion chemistry. These simulations provide a qualitative comparison to the range of temperatures and equivalence ratios observed in complex swirling flows and provide insight into the influence of variations in the fuel decomposition pathways on NOx formation. It is observed that increasing the fuel bound oxygen concentration ultimately reduces the formation of NOx by increasing the proportion of fuel oxidized through formaldehyde, as opposed to acetylene or acetaldehyde. The subsequent

  5. Electrically heated 3D-macro cellular SiC structures for ignition and combustion application

    International Nuclear Information System (INIS)

    Falgenhauer, Ralf; Rambacher, Patrick; Schlier, Lorenz; Volkert, Jochen; Travitzky, Nahum; Greil, Peter; Weclas, Miroslaw

    2017-01-01

    Highlights: • 3D-printed macro cellular SiC structure. • Directly integrated electrically heated ignition element used in combustion reactor. • Experimental investigation of the ignition process. - Abstract: The paper describes different aspects of porous combustion reactor operation especially at cold start conditions. Under cold start conditions it is necessary to increase the internal energy of the combustion reactor, to accumulate enough energy inside its solid phase and to reach at least the ignition temperature on the reactors inner surface. The most practicable method to preheat a cold porous reactor is to use its surface as a flame holder and to apply free flame combustion as a heat source for the preheating process. This paper presents a new electrically heated ignition element, which gets integrated in a three dimensional macro-cellular SiSiC reactor structure. For the development of the ignition element it was assumed, that the element is made of the same material as the combustion reactor itself and is fully integrated within the three-dimensional macro-cellular structure of the combustion reactor. Additive manufacturing like three-dimensional (3D) printing permits the production of regular SiSiC structures with constant strut thickness and a defined current flow path. To get a controlled temperature distribution on the ignition element it is necessary to control the current density distribution in the three-dimensional macro-cellular reactor structure. The ignition element used is designed to be an electrical resistance in an electric current system, converting flowing current into heat with the goal to get the highest temperature in the ignition region (glow plug). First experiments show that the ignition element integrated in a combustion reactor exhibits high dynamics and can be heated to the temperatures much above 1000 °C in a very short time (approx. 800 ms) for current of I = 150 A.

  6. Investigating heat and temperature regime of the combustion chamber furnace screen of the TP 100A steam generator in the Varna thermal power plant

    Energy Technology Data Exchange (ETDEWEB)

    Mikhlevski, A; Buchinski, B; Dashkiev, Yu; Radzievski, V; Petkov, Kh [Kievski Politekhnicheski Institut (USSR)

    1988-01-01

    In the course of 10 year operation of six TP 100A steam generators 72 emergency operation interruptions occurred due to the piercing of screen pipes in the combustion chamber. According to investigations carried out by the NPO, CKT, VTI, KPI and Soyuzenergo institutes, the damage occurred mainly because of the destructive influence of external gas corrosion processes, overheating and fatigue of metallic pipes, as well as unstable heat and temperature regime in the combustion chamber. Large-scale measurements of the main thermodynamic parameters of the combustion chamber of the TP-100A steam generator were carried out in order to increase service life of screen pipes. It was found that the temperature of screen pipes increases 2.5 C/month because of deposition of sediments. Regular cleaning of screen pipes in intervals of 18 months is recommended as a very efficient means of prolonging their service life. 1 ref.

  7. Hybrid Combustion-Gasification Chemical Looping

    Energy Technology Data Exchange (ETDEWEB)

    Herbert Andrus; Gregory Burns; John Chiu; Gregory Lijedahl; Peter Stromberg; Paul Thibeault

    2009-01-07

    For the past several years Alstom Power Inc. (Alstom), a leading world-wide power system manufacturer and supplier, has been in the initial stages of developing an entirely new, ultra-clean, low cost, high efficiency power plant for the global power market. This new power plant concept is based on a hybrid combustion-gasification process utilizing high temperature chemical and thermal looping technology The process consists of the oxidation, reduction, carbonation, and calcination of calcium-based compounds, which chemically react with coal, biomass, or opportunity fuels in two chemical loops and one thermal loop. The chemical and thermal looping technology can be alternatively configured as (i) a combustion-based steam power plant with CO{sub 2} capture, (ii) a hybrid combustion-gasification process producing a syngas for gas turbines or fuel cells, or (iii) an integrated hybrid combustion-gasification process producing hydrogen for gas turbines, fuel cells or other hydrogen based applications while also producing a separate stream of CO{sub 2} for use or sequestration. In its most advanced configuration, this new concept offers the promise to become the technology link from today's Rankine cycle steam power plants to tomorrow's advanced energy plants. The objective of this work is to develop and verify the high temperature chemical and thermal looping process concept at a small-scale pilot facility in order to enable AL to design, construct and demonstrate a pre-commercial, prototype version of this advanced system. In support of this objective, Alstom and DOE started a multi-year program, under this contract. Before the contract started, in a preliminary phase (Phase 0) Alstom funded and built the required small-scale pilot facility (Process Development Unit, PDU) at its Power Plant Laboratories in Windsor, Connecticut. Construction was completed in calendar year 2003. The objective for Phase I was to develop the indirect combustion loop with CO{sub 2

  8. Effect of secondary air injection on the combustion efficiency of sawdust in a fluidized bed combustor

    Directory of Open Access Journals (Sweden)

    K. V. N. Srinivasa Rao

    2008-03-01

    Full Text Available Agricultural wastes like bagasse, paddy husks, sawdust and groundnut shells can be effectively used as fuels for fluidized bed combustion; otherwise these biomass fuels are difficult to handle due to high moisture and fines content. In the present work the possibility of using sawdust in the fluidized bed combustor, related combustion efficiencies and problems encountered in the combustion process are discussed. The temperature profiles for sawdust with an increase in fluidizing velocity along the vertical height above the distributor plate indicate that considerable burning of fuel particles is taking place in the freeboard zone rather than complete burning within the bed. Therefore, an enlarged disengagement section is provided to improve the combustion of fines. The temperature profiles along the bed height are observed at different feed rates. The feed rate of sawdust corresponding to the maximum possible temperature was observed to be 10.2 kg/h. It is observed that 50-60% excess air is optimal for reducing carbon loss during the burning of sawdust. The maximum possible combustion efficiency with sawdust is 99.2% and is observed with 65% excess air.

  9. THE COMBUSTION CHARACTERISTICS OF LIGNITE BLENDS

    Institute of Scientific and Technical Information of China (English)

    Cheng Jun; Zhou Junhu; Cao Xinyu; Cen Kefa

    2000-01-01

    The combustion characteristics of lignite blends were studied with a thermogravimetric analyzer (t.g.a.), at constant heating rate.The characteristic temperatures were determined from the burning profiles.It was found that the characteristic times of combustion reaction moved forward, the ignition temperature dropped and the burnout efficiency slightly changed when blending lignites.The characteristic parameters of blends could not be predicted as a linear function of the average values of the individual lignites.when blending with less reactive coal, the ignition and burnout characteristics of lignite turned worse.

  10. Modern State and Efficiency Analysis of Heat Recovery in Fuel Furnaces Using High Temperature Recuperators. Part 2

    Directory of Open Access Journals (Sweden)

    B. S. Soroka

    2013-01-01

    Full Text Available The paper analyzes various factors that affect upon heat transfer in high temperature recuperators, namely: heat transfer enhancement, heat exchange surface increase and rise of temperature head between primary and secondary heat transfer fluids. Comparison of experimental data with the results of mathematical and computational fluid dynamics (CFD modeling has been performed in the paper. The paper considers some new designs of high temperature heat recovery plants: tube recuperator equipped with internal inserts – secondary emitters inside tubes for metallurgical furnaces and high-efficient two-way radiative recuperators for machinery engineering furnaces.  Advantages of new recuperators in comparison with existing analogues have been estimated in the paper. These advantages are:  provision of additional fuel saving due to increase of preheating temperature of the combustion air and improvement of design stability by decrease of tube wall temperature.

  11. Analyzing of in-cylinder flow structures and cyclic variations of partially premixed combustion in a light duty engine

    NARCIS (Netherlands)

    Tanov, S.; Johansson, B,; Izadi Najafabadi, M.; Wang, H.

    2016-01-01

    Partially Premixed Combustion (PPC) strategy offers the potential for simultaneously reduction of NOx and soot emissions with high efficiency. This low temperature combustion strategy involves a proper mixing of fuel and air prior to auto-ignition. During ignition delay (ID) the exact amount of

  12. Thermal radiation transfer calculations in combustion fields using the SLW model coupled with a modified reference approach

    Science.gov (United States)

    Darbandi, Masoud; Abrar, Bagher

    2018-01-01

    The spectral-line weighted-sum-of-gray-gases (SLW) model is considered as a modern global model, which can be used in predicting the thermal radiation heat transfer within the combustion fields. The past SLW model users have mostly employed the reference approach to calculate the local values of gray gases' absorption coefficient. This classical reference approach assumes that the absorption spectra of gases at different thermodynamic conditions are scalable with the absorption spectrum of gas at a reference thermodynamic state in the domain. However, this assumption cannot be reasonable in combustion fields, where the gas temperature is very different from the reference temperature. Consequently, the results of SLW model incorporated with the classical reference approach, say the classical SLW method, are highly sensitive to the reference temperature magnitude in non-isothermal combustion fields. To lessen this sensitivity, the current work combines the SLW model with a modified reference approach, which is a particular one among the eight possible reference approach forms reported recently by Solovjov, et al. [DOI: 10.1016/j.jqsrt.2017.01.034, 2017]. The combination is called "modified SLW method". This work shows that the modified reference approach can provide more accurate total emissivity calculation than the classical reference approach if it is coupled with the SLW method. This would be particularly helpful for more accurate calculation of radiation transfer in highly non-isothermal combustion fields. To approve this, we use both the classical and modified SLW methods and calculate the radiation transfer in such fields. It is shown that the modified SLW method can almost eliminate the sensitivity of achieved results to the chosen reference temperature in treating highly non-isothermal combustion fields.

  13. Flash combustion synthesis and characterisation of nanosized proton conducting Yttria-doped barium cerate

    Energy Technology Data Exchange (ETDEWEB)

    Jacquin, M.; Jing, Y.; Essoumhi, A.; Taillades, G.; Jones, D.J.; Roziere, J. [Montpellier Univ., Montpellier (France). Lab. des Agregats Moleculaires et Materiaux Inorganiques

    2007-10-15

    The high conversion efficiency of proton ceramic fuel cells renders them a promising technology for electric power conversion. They also function in an intermediate temperature range (400 to 600 degrees C) where the problem of thermal ageing can be avoided. This paper presented a newly developed flash combustion method for the preparation of proton conducting yttrium-doped barium cerate nanopowders. This quick, safe and low cost route takes advantage of the exothermic and self-sustaining redox reaction between high oxygen content metal salts and a suitable fuel that acts as a reducing agent. The parameters that influence the reaction product are the type of fuel, the fuel to oxidizer ratio, and the ignition temperature. Use of suitable fuel in combustion syntheses ensures stability of the chemical composition and high quality of products, and produces non-toxic gases. In this study, the flash combustion synthesis method was used to ignite the mixture at 600 degrees C. The resulting fine powder was characterized by transmission and scanning electron microscopy, and X-ray diffraction. The resulting nano-sized crystallites allow for the preparation of fully densified materials with densities up to 98 per cent. Water uptake was examined in compressed and sintered samples of BaCe{sub 0.9}Y{sub 0.1}O{sub 2.95} (BCY10). Bulk and total conductivities were determined with impedance spectroscopy in the range 300 to 600 degrees C. Densified yttria doped barium cerate materials show a bulk conductivity of 2.3 x 10{sup -2} S/cm and a total conductivity of 1.2 x 10{sup -2} S/cm at 500 degrees C. The temperature dependence was close to that of the bulk. It was concluded that flash combustion is an interesting alternative method for preparing proton conducting oxides for intermediate temperature fuel cells. 28 refs., 1 tab., 10 figs.

  14. Effect of secondary fuels and combustor temperature on mercury speciation in pulverized fuel co-combustion: part 1

    Energy Technology Data Exchange (ETDEWEB)

    Shishir P. Sable; Wiebren de Jong; Ruud Meij; Hartmut Spliethoff [Delft University Technology, Delft (Netherlands). Section Energy Technology, Department of Process and Energy

    2007-08-15

    The present work mainly involves bench scale studies to investigate partitioning of mercury in pulverized fuel co-combustion at 1000 and 1300{sup o}C. High volatile bituminous coal is used as a reference case and chicken manure, olive residue, and B quality (demolition) wood are used as secondary fuels with 10 and 20% thermal shares. The combustion experiments are carried out in an entrained flow reactor with a fuel input of 7-8 kWth. Elemental and total gaseous mercury concentrations in the flue gas of the reactor are measured on-line, and ash is analyzed for particulate mercury along with other elemental and surface properties. Animal waste like chicken manure behaves very differently from plant waste. The higher chlorine contents of chicken manure cause higher ionic mercury concentrations whereas even with high unburnt carbon, particulate mercury reduces with increase in the chicken manure share. This might be a problem due to coarse fuel particles, low surface area, and iron contents. B-wood and olive residue cofiring reduces the emission of total gaseous mercury and increases particulate mercury capture due to unburnt carbon formed, fine particles, and iron contents of the ash. Calcium in chicken manure does not show any effect on particulate or gaseous mercury. It is probably due to a higher calcium sulfation rate in the presence of high sulfur and chlorine contents. However, in plant waste cofiring, calcium may have reacted with chlorine to reduce ionic mercury to its elemental form. According to thermodynamic predictions, almost 50% of the total ash is melted to form slag at 1300{sup o}C in cofiring because of high calcium, iron, and potassium and hence mercury and other remaining metals are concentrated in small amounts of ash and show an increase at higher temperatures. No slag formation was predicted at 1000{sup o}C. 24 refs., 8 figs., 4 tabs.

  15. Heavy-Duty Low-Temperature and Diesel Combustion & Heavy-Duty Combustion Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Musculus, Mark P. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-11-01

    Regulatory drivers and market demands for lower pollutant emissions, lower carbon dioxide emissions, and lower fuel consumption motivate the development of clean and fuel-efficient engine operating strategies. Most current production engines use a combination of both in-cylinder and exhaust emissions-control strategies to achieve these goals. The emissions and efficiency performance of in-cylinder strategies depend strongly on flow and mixing processes associated with fuel injection. Various diesel engine manufacturers have adopted close-coupled post-injection combustion strategies to both reduce pollutant emissions and to increase engine efficiency for heavy-duty applications, as well as for light- and medium-duty applications. Close-coupled post-injections are typically short injections that follow a larger main injection in the same cycle after a short dwell, such that the energy conversion efficiency of the post-injection is typical of diesel combustion. Of the various post-injection schedules that have been reported in the literature, effects on exhaust soot vary by roughly an order of magnitude in either direction of increasing or decreasing emissions relative to single injections (O’Connor et al., 2015). While several hypotheses have been offered in the literature to help explain these observations, no clear consensus has been established. For new engines to take full advantage of the benefits that post-injections can offer, the in-cylinder mechanisms that affect emissions and efficiency must be identified and described to provide guidance for engine design.

  16. Development of a syngas-fired catalytic combustion system for hybrid solar-thermal applications

    International Nuclear Information System (INIS)

    Gupta, Mayank; Pramanik, Santanu; Ravikrishna, R.V.

    2016-01-01

    Highlights: • Syngas-fired combustor concept as hybrid heat source for solar thermal application. • Experimental characterization of catalytic combustor under fuel-rich conditions. • Stable operation, quick startup, and high turn-down ratio demonstrated. • Reacting flow CFD simulations of single channel of catalytic monolith. - Abstract: This paper describes the development and operation of a catalytic combustion system for use with syngas as an important component of a hybrid heating source for solar-thermal power generation. The reactor consists of a cylindrical ceramic monolith with porous alumina washcoat in which platinum is distributed as the catalyst. Two fuel-rich equivalence ratios were studied over a range of flow rates. The fuel-rich conditions permit low temperature combustion without the problem of hotspots likely to occur under fuel-lean conditions with hydrogen-containing fuels. Experimental data of temperature and species concentration at the exit of the reactor have been reported for a maximum fuel thermal input of 34 kW. The system exhibited quick start-up with a light-off time of around 60 s and a steady-state time of around 200 s as determined from the transient temperature profiles. The experimental results have also been complemented with detailed two-dimensional numerical simulations for improved understanding of the combustion characteristics in the reactor. The simulations suggest that the combustion system can be operated at a turn-down ratios far in excess of 1.67, which is the maximum value that has been investigated in the present setup. Stable operation, quick startup, and high turn-down ratio are some of the key features that enable the proposed combustion system to accommodate the transients in solar-thermal applications.

  17. Sulfur Release from Cement Raw Materials during Solid Fuel Combustion

    DEFF Research Database (Denmark)

    Nielsen, Anders Rooma; Larsen, Morten B.; Glarborg, Peter

    2011-01-01

    During combustion of solid fuels in the material inlet end of cement rotary kilns, local reducing conditions can occur and cause decomposition of sulfates from cement raw materials. Decomposition of sulfates is problematic because it increases the gas-phase SO2 concentration, which may cause...... deposit formation in the kiln system. SO2 release from cement raw materials during combustion of solid fuels has been studied experimentally in a high temperature rotary drum. The fuels were tire rubber, pine wood, petcoke, sewage sludge, and polypropylene. The SO2 release from the raw materials...

  18. A comprehensive experimental and modeling study of iso-pentanol combustion

    KAUST Repository

    Sarathy, Mani

    2013-12-01

    Biofuels are considered as potentially attractive alternative fuels that can reduce greenhouse gas and pollutant emissions. iso-Pentanol is one of several next-generation biofuels that can be used as an alternative fuel in combustion engines. In the present study, new experimental data for iso-pentanol in shock tube, rapid compression machine, jet stirred reactor, and counterflow diffusion flame are presented. Shock tube ignition delay times were measured for iso-pentanol/air mixtures at three equivalence ratios, temperatures ranging from 819 to 1252. K, and at nominal pressures near 40 and 60. bar. Jet stirred reactor experiments are reported at 5. atm and five equivalence ratios. Rapid compression machine ignition delay data was obtained near 40. bar, for three equivalence ratios, and temperatures below 800. K. Laminar flame speed data and non-premixed extinction strain rates were obtained using the counterflow configuration. A detailed chemical kinetic model for iso-pentanol oxidation was developed including high- and low-temperature chemistry for a better understanding of the combustion characteristics of higher alcohols. First, bond dissociation energies were calculated using ab initio methods, and the proposed rate constants were based on a previously presented model for butanol isomers and n-pentanol. The model was validated against new and existing experimental data at pressures of 1-60. atm, temperatures of 650-1500. K, equivalence ratios of 0.25-4.0, and covering both premixed and non-premixed environments. The method of direct relation graph (DRG) with expert knowledge (DRGX) was employed to eliminate unimportant species and reactions in the detailed mechanism, and the resulting skeletal mechanism was used to predict non-premixed flames. In addition, reaction path and temperature A-factor sensitivity analyses were conducted for identifying key reactions at various combustion conditions. © 2013 The Combustion Institute.

  19. A comprehensive experimental and modeling study of iso-pentanol combustion

    KAUST Repository

    Sarathy, Mani; Park, Sungwoo; Weber, Bryan W.; Wang, Weijing; Veloo, Peter S.; Davis, Alexander C.; Togbé , Casimir; Westbrook, Charles K.; Park, Okjoo; Dayma, Guillaume; Luo, Zhaoyu; Oehlschlaeger, Matthew A.; Egolfopoulos, Fokion N.; Lu, Tianfeng; Pitz, William J.; Sung, Chihjen; Dagaut, P.

    2013-01-01

    Biofuels are considered as potentially attractive alternative fuels that can reduce greenhouse gas and pollutant emissions. iso-Pentanol is one of several next-generation biofuels that can be used as an alternative fuel in combustion engines. In the present study, new experimental data for iso-pentanol in shock tube, rapid compression machine, jet stirred reactor, and counterflow diffusion flame are presented. Shock tube ignition delay times were measured for iso-pentanol/air mixtures at three equivalence ratios, temperatures ranging from 819 to 1252. K, and at nominal pressures near 40 and 60. bar. Jet stirred reactor experiments are reported at 5. atm and five equivalence ratios. Rapid compression machine ignition delay data was obtained near 40. bar, for three equivalence ratios, and temperatures below 800. K. Laminar flame speed data and non-premixed extinction strain rates were obtained using the counterflow configuration. A detailed chemical kinetic model for iso-pentanol oxidation was developed including high- and low-temperature chemistry for a better understanding of the combustion characteristics of higher alcohols. First, bond dissociation energies were calculated using ab initio methods, and the proposed rate constants were based on a previously presented model for butanol isomers and n-pentanol. The model was validated against new and existing experimental data at pressures of 1-60. atm, temperatures of 650-1500. K, equivalence ratios of 0.25-4.0, and covering both premixed and non-premixed environments. The method of direct relation graph (DRG) with expert knowledge (DRGX) was employed to eliminate unimportant species and reactions in the detailed mechanism, and the resulting skeletal mechanism was used to predict non-premixed flames. In addition, reaction path and temperature A-factor sensitivity analyses were conducted for identifying key reactions at various combustion conditions. © 2013 The Combustion Institute.

  20. Development of Non-Metallic Fuel Elements for a High-Temperature Gas-Cooled Reactor; Mise au point d'elements combustibles non metalliques pour un reacteur a haute temperature, refroidi par un gaz; Razrabotka nemetallicheskikh teplovydelyashchikh ehlementov dlya vysokotemperaturnogo reaktora s gazovym okhlazhdeniem; Elementos combustibles no metalicos para un reactor de temperatura elevada refrigerado por gas

    Energy Technology Data Exchange (ETDEWEB)

    Liebmann, B.; Schafer, L.; Spener, G. [NUKEM, Nuklear-Chemie und -Metallurgie G.m.b.H., Wolfgang bei Hanau, Federal Republic of Germany (Germany)

    1963-11-15

    In connection with fuel element development work for the high-temperature gas-coolcd reactor of the Brown-Boveri/Krupp Reaktorbau G.m.b.H., two different fuel element concepts were considered and developed. In both cases the fuel element consists of a graphite ball of 6 cm in diam. which contains the fuel insert, a cylindrical pellet of about 20 mm in diam. and 16 mm in height. The two concepts differ in the type of the.fuel insert as well as in the preparation of the graphite ball. In the first concept the fuel insert consists of a mixture of UC{sub 2} and graphite which is prepared by blending U{sub 3}O{sub 8} and graphite, pressing them into pellets and reacting the two components in a vacuum furnace at 1800{sup o}C. The atomic ratio of U : C is 1:45. Since this type of fuel pellet does not retain the fission products completely the surrounding graphite sphere had to be made impervious to fission products by impregnation in order to obtain a fission-product retaining element. Permeabilities of the order of 10{sup -6}cm{sup 2}/s could be achieved. In the second concept the fuel insert consists of a solid solution of UC in ZrC and is coated with a layer of ZrC. The molar ratio of UC to ZrC is 1 : 20. The fuel pellet preparation was accomplished by the following procedure: UO{sub 2}, ZrO{sub 2}, and graphite were mixed and pressed into pellets. The pellets were reacted to the carbides. Ball milling of the carbides was followed by hot pressing at temperatures o f 2000{sup o}C. Densities of more than 95% of the theoretical density could be achieved. A full description of the preparation and of some physical properties of the fuel pellets is given in the paper. A sufficient fission gas retention behaviour of this type of fuel insert which allows it to be put into unimpregnated graphite balls is expected. Other advantages of this kind of fuel are discussed. (author) [French] Dans le cadre des etudes de combustibles destines au reacteur a haute temperature, refroidi par