WorldWideScience

Sample records for high color purity

  1. On The Generation of Interferometric Colors in High Purity and Technical Grade Aluminum: An Alternative Green Process for Metal Finishing Industry

    International Nuclear Information System (INIS)

    Chen, Yuting; Santos, Abel; Ho, Daena; Wang, Ye; Kumeria, Tushar; Li, Junsheng; Wang, Changhai; Losic, Dusan

    2015-01-01

    Graphical abstract: Toward green processes in metal finishing industry by rationally designed electrochemical anodization. Biomimetic photonic films based on nanoporous anodic alumina produced in high purity and technical grade aluminum foils display vivid colors that can be precisely tuned across the visible spectrum. The presented method is a solid rationale aimed toward green processes for metal finishing industry. - Highlights: • Environmentally friendly approach to color aluminum through biomimetic photonic films. • Nanoporous anodic alumina distributed Bragg Reflectors (NAA-DBRs). • Rationally designed galvanostatic pulse anodization approach. • Macroscopic and microscopic differences in high purity and technical grade aluminum. • Substitute method for conventional coloring processes in metal finishing industry. - Abstract: Metal finishing industry is one of the leading pollutants worldwide and green approaches are urgently needed in order to address health and environmental issues associated with this industrial activity. Herein, we present an environmentally friendly approach aimed to overcome some of these issues by coloring aluminum through biomimetic photonic films based on nanoporous anodic alumina distributed Bragg Reflectors (NAA-DBRs). Our study aims to compare the macroscopic and microscopic differences between the resulting photonic films produced in high purity and technical grade aluminum in terms of color features, appearance, electrochemical behavior and internal nanoporous structure in order to establish a solid rationale toward optimal fabrication processes that can be readily incorporated into industrial methodologies. The obtained results reveal that our approach, based on a rational galvanostatic pulse anodization approach, makes it possible to precisely generate a complete palette of colors in both types of aluminum substrates. As a result of its versatility, this method could become a promising alternative to substitute

  2. Enhanced color purity of blue OLEDs based on well-design structure

    Science.gov (United States)

    Du, Qianqian; Wang, Wenjun; Li, Shuhong; Wang, Qingru; Xia, Shuzhen; Zhang, Bingyuan; Wang, Minghong; Fan, Quli

    2016-09-01

    We have fabricated blue organic light-emitting devices (OLEDs) with higher color purity and stability by optimizing the structure of the Glass/ITO/NPB(50 nm)/ BCzVBi (30 nm)/ TPBi (x nm)/Alq3(20 nm)/LiF/Al. The results show that the introducing of hole blocking layer(HBL) TPBi greatly can improve not only the color purity but the color stability, which owe to its higher the Highest Occupied Molecular Orbital (HOMO) energy levels of 6.2 eV. We expect our work will be useful to optimizing the blue OLEDs structure to enhancing the color property.

  3. A novel high color purity blue-emitting phosphor: CaBi{sub 2}B{sub 2}O{sub 7}:Tm{sup 3+}

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jiangong, E-mail: lijiangong01@gmail.com [Department of Electronic Science and Engineering, Huanghuai University, Zhumadian 463000 (China); Yan, Huifang [Department of Foreign Languages and Literature, Huanghuai University, Zhumadian 463000 (China); Yan, Fengmei [Department of Chemistry and Chemical Engineering, Huanghuai University, Zhumadian 463000 (China)

    2016-07-15

    Graphical abstract: - Highlights: • A series of Tm{sup 3+}-doped CaBi{sub 2}B{sub 2}O{sub 7} blue-emitting phosphors were prepared. • The optimum doping content of Tm{sup 3+} ions was found. • The critical distance and concentration quenching mechanism was discussed. • The color purity of as prepared sample was analyzed and compared. - Abstract: A series of Tm{sup 3+}-doped CaBi{sub 2−x}B{sub 2}O{sub 7}:xTm{sup 3+} (0.02 ≤ x ≤ 0.12) blue-emitting phosphors with high color purity were prepared by solid-state reaction method. The crystal structure and luminescence properties of the as-prepared phosphors were studied. This phosphor shows a satisfactory blue performance (peak at 453 nm) due to the {sup 1}D{sub 2} → {sup 3}F{sub 4} transition of Tm{sup 3+} excited by 357 nm light. Investigation of Tm{sup 3+} content dependent emission spectra indicates that x = 0.04 is the optimum doping content of Tm{sup 3+} ions in the CaBi{sub 2}B{sub 2}O{sub 7} host. The critical distance and the concentration quenching mechanism were also investigated. In particular, the color purity of as prepared sample was analyzed and the result shows that the color purity of CaBi{sub 2}B{sub 2}O{sub 7}:Tm{sup 3+} is higher than the commercial blue phosphor BaMgAl{sub 10}O{sub 17}:Eu{sup 2+} (BAM:Eu{sup 2+}) and the latest reported Tm{sup 3+} doped blue phosphors. The present work suggests that the CaBi{sub 2}B{sub 2}O{sub 7}:Tm{sup 3+} phosphor is a potential blue-emitting candidate for the application in the near-UV WLEDs.

  4. Blue and green emissions with high color purity from nanocrystalline Ca2Gd8Si6O26:Ln (Ln = Tm or Er) phosphors

    International Nuclear Information System (INIS)

    Seeta Rama Raju, G.; Park, Jin Young; Jung, Hong Chae; Pavitra, E.; Moon, Byung Kee; Jeong, Jung Hyun; Yu, Jae Su; Kim, Jung Hwan; Choi, Haeyoung

    2011-01-01

    Graphical abstract: Highlights: → Nanocrystalline Ca 2 Gd 8 Si 6 O 26 (CGS):Tm 3+ and CGS:Er 3+ phosphors were prepared by solvothermal reaction method. → The visible luminescence properties of phosphors were investigated by exciting with ultraviolet (UV) or near-UV light and low voltage electron beam (0.5-5 kV). → The photoluminescence spectra of CGS:Tm 3+ under 359 nm excitation and CGS:Er 3+ under 380 nm excitation showed the strong blue ( 1 D 2 → 3 F 4 at 456 nm) and green ( 4 S 3/2 → 4 I 15/2 at 550 nm) colors with the color purity 87% and 96%, respectively → The low accelerating voltage cathodoluminescence spectra of CGS:Tm 3+ and CGS:Er 3+ showed the strong blue and green emissions with the high color purity 95% and 96%, respectively. → The obtained results are hint at the promising applications to produce high quality LEDs and FED devices. - Abstract: Blue and green light emissive nanocrystalline Ca 2 Gd 8 Si 6 O 26 (CGS):Tm 3+ and CGS:Er 3+ phosphors with high color purity were prepared by solvothermal reaction method. The structural and morphological properties of these phosphors were evaluated by the powder X-ray diffraction (XRD) and scanning electron microscopy, respectively. From the XRD results, Tm 3+ :CGS and Er 3+ :CGS phosphors had the characteristic peaks of oxyapatite in the hexagonal lattice structure. The visible luminescence properties of phosphors were obtained by ultraviolet (UV) or near-UV light and low voltage electron beam (0.5-5 kV) excitation. The photoluminescence and cathodoluminescence properties were investigated by changing the variation of Tm 3+ or Er 3+ concentrations and the acceleration voltage, respectively. The CGS:Tm 3+ phosphors exhibited the blue emission due to 1 D 2 → 3 F 4 transition, while the CGS:Er 3+ phosphors showed the green emission due to 4 S 3/2 → 4 I 15/2 transition. The color purity and chromaticity coordinates of the fabricated phosphors are comparable to or better than those of standard

  5. Using cuttlefish ink as an additive to produce -non-iridescent structural colors of high color visibility.

    Science.gov (United States)

    Zhang, Yafeng; Dong, Biqin; Chen, Ang; Liu, Xiaohan; Shi, Lei; Zi, Jian

    2015-08-26

    Non-iridescent structural colors of high color visibility are produced by amorphous photonic structures, in which -natural cuttlefish ink is used as an additive to break down the long-range order of the structures. The color hue and its spectral purity can be tuned by adjusting the diameter of the polystyrene (PS) spheres and the proportion of ink particles. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Thermal conductivity of high purity vanadium

    International Nuclear Information System (INIS)

    Jung, W.D.

    1975-01-01

    The thermal conductivity, Seebeck coefficient, and electrical resistivity of four high-purity vanadium samples were measured over the temperature range 5 to 300 0 K. The highest purity sample had a resistance ratio (rho 273 /rho 4 . 2 ) of 1524. The highest purity sample had a thermal conductivity maximum of 920 W/mK at 9 0 K and had a thermal conductivity of 35 W/mK at room temperature. At low temperatures, the thermal resistivity was limited by the scattering of electrons by impurities and phonons. The thermal resistivity of vanadium departed from Matthiessen's rule at low temperatures. The electrical resistivity and Seebeck coefficient of high purity vanadium showed no anomalous behavior above 130 0 K. The intrinsic electrical resistivity at low temperatures was due primarily to interband scattering of electrons. The Seebeck coefficient was positive from 10 to 240 0 K and had a maximum which was dependent upon sample purity

  7. Effect of relative nanohole position on colour purity of ultrathin plasmonic subtractive colour filters

    International Nuclear Information System (INIS)

    Sun, L B; Hu, X L; Zhang, D X; Zeng, Beibei; Wang, L S; Yang, S M; Tai, R Z; Fecht, H J; Jiang, J Z

    2015-01-01

    Plasmonic subtractive color filters through patterning periodic nanostructures on ultrathin Ag films deposited on a glass substrate, exhibiting good durability, simple fabrication, and flexible color tunability, have attracted considerable attention due to their tremendous potential applications. While previous studies have mainly focused on their extraordinary physical mechanisms, color purity, which is another key parameter for high quality imaging applications, has been much less investigated. In this work, we demonstrate that the relative position of nanoholes patterned on ultrathin Ag films can largely affect the color purity of plasmonic subtractive color filters. The calculated results agree reasonably well with the experimental data, revealing that the purity of subtractive colors can be improved by changing the nanohole arrays from square lattice to triangular lattice without reducing transmission at visible frequencies. In addition, underlying mechanisms are clarified by systematically analyzing the dominant valley in transmission spectra. (paper)

  8. Improved color purity and efficiency by a coguest emitter system in doped red light-emitting devices

    Energy Technology Data Exchange (ETDEWEB)

    Chen Jiangshan [State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Graduate School of Chinese Academy of Sciences, Changchun 130022 (China); Ma Dongge [State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Graduate School of Chinese Academy of Sciences, Changchun 130022 (China)]. E-mail: mdg1014@ciac.jl.cn

    2007-01-15

    We demonstrate red organic light-emitting diodes (OLEDs) with improved color purity and electroluminescence (EL) efficiency by codoping a green fluorescent sensitizer 10-(2-benzothiazolyl)-2,3,6,7-tetrahydro-1,1,7,7-tetramethyl-1H,5H,11H -(1)-benzopyropyrano(6,7-8-i,j)quinolizin-11-one (C545T) as the second dopant and a red fluorescent dye 4-(dicyanomethylene)-2-t-butyl-6(1,1,7,7-tetramethyljulolidyl-9-enyl) -4H-pyran (DCJTB) as the lumophore into tris(8-hydroquinoline) aluminum (Alq{sub 3}) host. It was found that the C545T dopant did not by itself emit but assisted the carrier trapping from the host Alq{sub 3} to the red emitting dopant. The red OLEDs realized by this approach not only kept the purity of the emission color, but also significantly improved the EL efficiency. The current efficiency and power efficiency, respectively, reached 12cd/A at a current density of 0.3mA/cm{sup 2} and 10lm/W at a current density of 0.02mA/cm{sup 2}, which are enhanced by 1.4 and 2.6 times compared with devices where the emissive layer is composed of the DCJTB doped Alq{sub 3}, and a stable red emission (chromaticity coordinates: x=0.64, y=0.36) was obtained in a wide range of voltage. Our results indicate that the coguest system is a promising method for obtaining high-efficiency red OLEDs.

  9. High-purity aluminium creep under high hydrostatic pressure

    International Nuclear Information System (INIS)

    Zajtsev, V.I.; Lyafer, E.I.; Tokij, V.V.

    1977-01-01

    The effect of the hydrostatic pressure on the rate of steady-state creep of high-purity aluminium was investigated. It is shown that the hydrostatic pressure inhibits the creep. The activation volume of the creep is independent of the direction in the range of (4.7-6.2) kg/mm 2 and of the pressure in the range of (1-7.8000) atm. It is concluded that self-diffusion does not control the creep of high-purity aluminium at room temperature in the investigated stress and pressure range

  10. Production of high purity granular metals: cadmium, zinc, lead

    Directory of Open Access Journals (Sweden)

    Shcherban A. P.

    2017-04-01

    Full Text Available Cadmium, zinc and lead are constituent components of many semiconductor compounds. The obtained high purity distillates and ingots are large-size elements, which is not always convenient to use, and thus require additional grinding, which does not always allow maintaining the purity of the original materials. For the growth of semiconductor and scintillation single crystals it is advisable to use "friable" granular high-purity distillates, which can be processed without the risk of contamination. For example, the European low-background experiment LUCIFER required more than 20 kg of high-purity granulated zinc, which was agreed to be supplied by NSC KIPT. This task was then extended to cadmium and lead. Motivated by these tasks, the authors of this paper propose complex processes of deep refining of cadmium, zinc and lead by vacuum distillation. A device producing granules has been developed. The process of granulation of high-purity metals is explored. The purity of produced granules for cadmium and zinc is >99,9999, and >99,9995% for lead granules. To prevent oxidation of metal granules during exposition to air, chemical methods of surface passivation were used. Organic solvent based on dimethylformamide used as a coolant improves the resistance of granules to atmospheric corrosion during the granulation of high purity Cd, Zn and Pb.

  11. Batch extractive distillation for high purity methanol

    International Nuclear Information System (INIS)

    Zhang Weijiang; Ma Sisi

    2006-01-01

    In this paper, the application in chemical industry and microelectronic industry, market status and the present situation of production of high purity methanol at home and abroad were introduced firstly. Purification of industrial methanol for high purity methanol is feasible in china. Batch extractive distillation is the best separation technique for purification of industrial methanol. Dimethyl sulfoxide was better as an extractant. (authors)

  12. High-Purity Glasses Based on Arsenic Chalcogenides

    Science.gov (United States)

    2001-06-01

    Chemical interaction of chalcogenides and some impurities (CS 2, TeO2 ) with the quartz glass at high temperature leads to the thin layers formation...UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADPO1 1523 TITLE: High-Purity Glasses Based on Arsenic Chalcogenides...Materials Vol. 3, No. 2, June 2001, p. 341 - 349 HIGH-PURITY GLASSES BASED ON ARSENIC CHALCOGENIDES M. F. Churbanov, I. V. Scripachev, G. E. Snopatin, V. S

  13. High-purity germanium crystal growing

    International Nuclear Information System (INIS)

    Hansen, W.L.; Haller, E.E.

    1982-10-01

    The germanium crystals used for the fabrication of nuclear radiation detectors are required to have a purity and crystalline perfection which is unsurpassed by any other solid material. These crystals should not have a net electrically active impurity concentration greater than 10 10 cm - 3 and be essentially free of charge trapping defects. Such perfect crystals of germanium can be grown only because of the highly favorable chemical and physical properties of this element. However, ten years of laboratory scale and commercial experience has still not made the production of such crystals routine. The origin and control of many impurities and electrically active defect complexes is now fairly well understood but regular production is often interrupted for long periods due to the difficulty of achieving the required high purity or to charge trapping in detectors made from crystals seemingly grown under the required conditions. The compromises involved in the selection of zone refining and crystal grower parts and ambients is discussed and the difficulty in controlling the purity of key elements in the process is emphasized. The consequences of growing in a hydrogen ambient are discussed in detail and it is shown how complexes of neutral defects produce electrically active centers

  14. Improving efficiency and color purity of poly(9,9-dioctylfluorene) through addition of a high boiling-point solvent of 1-chloronaphthalene.

    Science.gov (United States)

    Liang, Junfei; Yu, Lei; Sen Zhao; Ying, Lei; Liu, Feng; Yang, Wei; Peng, Junbiao; Cao, Yong

    2016-07-15

    In this work, the β-phase of poly(9,9-dioctylfluorene) (PFO) was used as a probe to study the effects of the addition of a high boiling-point solvent of 1-chloronaphthalene on the nanostructures and electroluminescence of PFO films. Both absorption and photoluminescence spectra showed that the content of the β-phase in PFO film was obviously enhanced as a result of the addition of a small amount of 1-chloronaphthalene into the processing solvent of p-xylenes. Apparently rougher morphology associated with the effectively enhanced ordering of polymer chains across the entire film was observed for films processed from p-xylene solutions consisting of a certain amount of 1-chloronaphthalene, as revealed by atomic force microscopy and grazing incidence x-ray diffraction measurements. In addition to the effects on the nanostructures of films, of particular interest is that the performance and color purity of polymer light-emitting devices can be noticeably enhanced upon the addition of 1-chloronaphthalene. These observations highlight the importance of controlling the nanostructures of the emissive layer, and demonstrate that the addition of a low volume ratio of high boiling-point additive can be a promising strategy to attain high-performance polymer light-emitting diodes.

  15. Method of high purity silane preparation

    Science.gov (United States)

    Tsuo, Y. Simon; Belov, Eugene P.; Gerlivanov, Vadim G.; Zadde, Vitali V.; Kleschevnikova, Solomonida I.; Korneev, Nikolai N.; Lebedev, Eugene N.; Pinov, Akhsarbek B.; Ryabenko, Eugene A.; Strebkov, Dmitry S.; Chernyshev, Eugene A.

    2000-01-01

    A process for the preparation of high purity silane, suitable for forming thin layer silicon structures in various semiconductor devices and high purity poly- and single crystal silicon for a variety of applications, is provided. Synthesis of high-purity silane starts with a temperature assisted reaction of metallurgical silicon with alcohol in the presence of a catalyst. Alcoxysilanes formed in the silicon-alcohol reaction are separated from other products and purified. Simultaneous reduction and oxidation of alcoxysilanes produces gaseous silane and liquid secondary products, including, active part of a catalyst, tetra-alcoxysilanes, and impurity compounds having silicon-hydrogen bonds. Silane is purified by an impurity adsorption technique. Unreacted alcohol is extracted and returned to the reaction with silicon. Concentrated mixture of alcoxysilanes undergoes simultaneous oxidation and reduction in the presence of a catalyst at the temperature -20.degree. C. to +40.degree. C. during 1 to 50 hours. Tetra-alcoxysilane extracted from liquid products of simultaneous oxidation and reduction reaction is directed to a complete hydrolysis. Complete hydrolysis of tetra-alcoxysilane results in formation of industrial silica sol and alcohol. Alcohol is dehydrated by tetra-alcoxysilane and returned to the reaction with silicon.

  16. High-temperature mechanical properties of high-purity 70 mass% Cr-Fe alloy

    Energy Technology Data Exchange (ETDEWEB)

    Asahina, M.; Harima, N.; Takaki, S.; Abiko, K. [Tohoku Univ., Sendai (Japan). Inst. for Materials Research

    2002-01-16

    An ingot of high-purity 70 mass% Cr-Fe alloy was prepared by high-frequency induction melting in a high-purity argon atmosphere using a cold copper crucible. Its tensile properties such as hot-ductility and tensile strength were measured, and compared with the results for a high-purity 50 mass% Cr-Fe alloy, a high-purity 60 mass% Cr-Fe alloy and a Ni-based super-alloy. The formation of {sigma}-phase was also examined. The purity of a 70Cr-Fe alloy (70 mass% Cr-Fe alloy) ingot is more than 99.98 mass% and the total amount of gaseous impurities (C, N, O, S, H) in the 70Cr-Fe alloy is 69.9 mass ppm. The strength of the 70Cr-Fe alloy is higher than those of the 60Cr-Fe alloy and the 50Cr-Fe alloy at the temperatures between 293 and 1573 K, without decrease in ductility with increasing Cr content. The 70Cr-Fe alloy also possesses excellent high-temperature ductility. The {sigma}-phase was not observed after aging of 3.6 Ms at 873 K. Consequently, the 70Cr-Fe alloy is an excellent alloy as the base of super heat-resistant alloys. (orig.)

  17. Effect of phosphorus on hot ductility of high purity iron

    International Nuclear Information System (INIS)

    Abiko, K.; Liu, C.M.; Ichikawa, M..; Suenaga, H.; Tanino, M.

    1995-01-01

    Tensile tests on high purity Fe-P alloys with 0, 0.05 and 0.1 mass%P were carried out at temperatures between 300 K and 1073 K to clarify the intrinsic effect of phosphorus on the mechanical properties of iron at elevated temperatures. Microstructures of as-quenched, interrupted and ruptured specimens were observed. Experimental results show that the addition of phosphorus causes a remarkable increase in proof stress of high purity iron at 300 K, but the increase in proof stress by phosphorus decreases with increasing test temperature. The strengthening effect of phosphorus reduces to zero at 1073 K. High purity iron and Fe-P alloys rupture at almost 100% reduction in area at the whole test temperatures. However, Fe-P alloys show much larger elongation at test temperatures above 773 K than high purity iron. The increased elongation of high purity iron by addition of phosphorus was shown to be related to the effect of phosphorus on dynamic recovery and recrystallization of iron as its intrinsic effect. (orig.)

  18. Fabrication of high quality anodic aluminum oxide (AAO) on low purity aluminum—A comparative study with the AAO produced on high purity aluminum

    International Nuclear Information System (INIS)

    Michalska-Domańska, Marta; Norek, Małgorzata; Stępniowski, Wojciech J.; Budner, Bogusław

    2013-01-01

    Highlights: • Nanoporous alumina was fabricated by anodization in sulfuric acid solution with glycol. • The AAO manufacturing on low- and high-purity Al was compared. • The pores size was ranging between 30 and 50 nm. • No difference in the quality of the AAO fabricated on both Al types was observed. • The current vs. anodization time curves were recorded. -- Abstract: In this work the quality, arrangement, composition, and regularity of nanoporous AAO formed on the low-purity (AA1050) and high-purity aluminum during two-step anodization in a mixture of sulfuric acid solution (0.3 M), water and glycol (3:2, v/v), at various voltages (15, 20, 25, 30, 35 V) and at temperature of −1 °C, are investigated. The electrochemical conditions have allowed to obtain pores with the size ranging from 30 to 50 nm, which are much larger than those usually obtained by anodization in a pure sulfuric acid solution (<20 nm). The mechanism of the AAO growth is discussed. It was found that with the increase of applied anodizing voltage a number of incorporated sulfate ions in the aluminum oxide matrix increases, which was connected with the appearance of an unusual area in the current vs. time curves. On the surface of anodizing low- and high-purity aluminum, the formation of hillocks was observed, which was associated with the sulfate ions incorporation. The sulfate ions are replacing the oxygen atom/atoms in the AAO amorphous crystal structure and, consequently, the AAO template swells, the oxide cracks and uplifts causing the formation of hillocks. The same mechanism occurs for both low- and high-purity aluminum. Nanoporous AAO characterized by a very high regularity, not registered previously for low purity aluminum, was obtained. Furthermore, no significant difference in the regularity ratio between the AAO obtained on low- and high-purity aluminum, was observed. The electrochemical conditions applied in this study can be, thus, used for the fabrication of high quality

  19. Color display and encryption with a plasmonic polarizing metamirror

    Directory of Open Access Journals (Sweden)

    Song Maowen

    2018-01-01

    Full Text Available Structural colors emerge when a particular wavelength range is filtered out from a broadband light source. It is regarded as a valuable platform for color display and digital imaging due to the benefits of environmental friendliness, higher visibility, and durability. However, current devices capable of generating colors are all based on direct transmission or reflection. Material loss, thick configuration, and the lack of tunability hinder their transition to practical applications. In this paper, a novel mechanism that generates high-purity colors by photon spin restoration on ultrashallow plasmonic grating is proposed. We fabricated the sample by interference lithography and experimentally observed full color display, tunable color logo imaging, and chromatic sensing. The unique combination of high efficiency, high-purity colors, tunable chromatic display, ultrathin structure, and friendliness for fabrication makes this design an easy way to bridge the gap between theoretical investigations and daily-life applications.

  20. Preparation of high-purity cerium nitrate

    International Nuclear Information System (INIS)

    Avila, Daniela Moraes; Silva Queiroz, Carlos Alberto da; Santos Mucillo, Eliana Navarro dos

    1995-01-01

    The preparation of high-purity cerium nitrate has been carried out Cerium oxide has been prepared by fractioned precipitation and ionic exchange techniques, using a concentrate with approximately 85% of cerium oxide from NUCLEMON as raw material. Five sequential ion-exchange columns with a retention capacity of 170 g each have been used. The ethylenediamine-tetraacetic acid (EDTA) was used as eluent. The cerium content has been determined by gravimetry and iodometry techniques. The resulting cerium oxide has a purity > 99%. This material was transformed in cerium nitrate to be used as precursor for the preparation of Zirconia-ceria ceramics by the coprecipitation technique. (author)

  1. Low-cost high purity production

    Science.gov (United States)

    Kapur, V. K.

    1978-01-01

    Economical process produces high-purity silicon crystals suitable for use in solar cells. Reaction is strongly exothermic and can be initiated at relatively low temperature, making it potentially suitable for development into low-cost commercial process. Important advantages include exothermic character and comparatively low process temperatures. These could lead to significant savings in equipment and energy costs.

  2. Improving the color purity and efficiency of blue organic light-emitting diodes (BOLED) by adding hole-blocking layer

    International Nuclear Information System (INIS)

    Huang, C.J.; Kang, C.C.; Lee, T.C.; Chen, W.R.; Meen, T.H.

    2009-01-01

    This work demonstrates the fabrication of a bright blue organic light-emitting diode (BOLED) with good color purity using 4,4'-bis(2,2-diphenylvinyl)-1,1'-biphenyl (DPVBi) and bathocuproine (BCP) as the emitting layer (EML) and the hole-blocking layer (HBL), respectively. Devices were prepared by vacuum deposition on indium tin oxide (ITO)-glass substrates. The thickness of DPVBi used in the OLED has an important effect on color and efficiency. The blue luminescence is maximal at 7670 cd/m 2 when 13 V is applied and the BCP thickness is 2 nm. The CIE coordinate at a luminance of 7670 cd/m 2 is (0.165, 0.173). Furthermore, the current efficiency is maximum at 4.25 cd/A when 9 V is applied.

  3. Purity and adulterant analysis of crack seizures in Brazil.

    Science.gov (United States)

    Fukushima, André R; Carvalho, Virginia M; Carvalho, Débora G; Diaz, Ernesto; Bustillos, Jose Oscar William Vega; Spinosa, Helenice de S; Chasin, Alice A M

    2014-10-01

    Cocaine represents a serious problem to society. Smoked cocaine is very addictive and it is frequently associated with violence and health issues. Knowledge of the purity and adulterants present in seized cocaine, as well as variations in drug characteristics are useful to identify drug source and estimate health impact. No data are available regarding smoked cocaine composition in most countries, and the smoked form is increasing in the Brazilian market. The purpose of the present study is to contribute to the current knowledge on the status of crack cocaine seized samples on the illicit market by the police of São Paulo. Thus, 404 samples obtained from street seizures conducted by the police were examined. The specimens were macroscopically characterized by color, form, odor, purity, and adulterant type, as well as smoke composition. Samples were screened for cocaine using modified Scott test and thin-layer chromatographic (TLC) technique. Analyses of purity and adulterants were performed with gas chromatography equipped with flame ionization detector (GC-FID). Additionally, smoke composition was analyzed by GC-mass spectrometry (MS), after samples burning. Samples showed different colors and forms, the majority of which is yellow (74.0%) or white (20.0%). Samples free of adulterants represented 76.3% of the total. Mean purity of the analyzed drug was 71.3%. Crack cocaine presented no correlations between macroscopic characteristics and purity. Smoke analysis showed compounds found also in the degradation of diesel and gasoline. Therefore, the drug marketed as crack cocaine in São Paulo has similar characteristics to coca paste. High purity can represent a greater risk of dependency and smoke compounds are possibly worsening drug health impact. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  4. Recovery of high-purity hydrogen from COG

    Energy Technology Data Exchange (ETDEWEB)

    Tsukiyama, Y

    1982-01-01

    A general account of the latest trends in the recovery of high-purity hydrogen from coke oven gas (COG), the article being based on both Japanese and overseas literature: 1) Deep-freeze separation: impurities are liquefied and removed. This method make use of the fact that hydrogen is hard to liquefy. 2) The PSA method: high-purity hydrogen is recovered by the adsorption of other constituents at high pressures. This technique makes use of the fact that the adsorption capacity of an adsorbent varies with the partial pressure of the substances being adsorbed. 3) Membrane separation: a permeation separation method that uses a functional polymer separation membrane, and that depends on the fact that hydrogen has a low molecular weight in comparison with the other constituents. (19 refs.) (In Japanese)

  5. Establishing comparability and compatibility in the purity assessment of high purity zinc as demonstrated by the CCQM-P149 intercomparison

    Science.gov (United States)

    Vogl, Jochen; Kipphardt, Heinrich; Richter, Silke; Bremser, Wolfram; del Rocío Arvizu Torres, María; Manzano, Judith Velina Lara; Buzoianu, Mirella; Hill, Sarah; Petrov, Panayot; Goenaga-Infante, Heidi; Sargent, Mike; Fisicaro, Paola; Labarraque, Guillaume; Zhou, Tao; Turk, Gregory C.; Winchester, Michael; Miura, Tsutomu; Methven, Brad; Sturgeon, Ralph; Jährling, Reinhard; Rienitz, Olaf; Mariassy, Michal; Hankova, Zuzana; Sobina, Egor; Ivanovich Krylov, Anatoly; Anatolievich Kustikov, Yuri; Vladimirovich Smirnov, Vadim

    2018-04-01

    For the first time, an international comparison was conducted on the determination of the purity of a high purity element. Participants were free to choose any analytical approach appropriate for their institute’s applications and services. The material tested was a high purity zinc, which had earlier been assessed for homogeneity and previously used in CCQM-K72 for the determination of six defined metallic impurities. Either a direct metal assay of the Zn mass fraction was undertaken by EDTA titrimetry, or an indirect approach was used wherein all impurities, or at least the major ones, were determined and their sum subtracted from ideal purity of 100%, or 1 kg kg-1. Impurity assessment techniques included glow discharge mass spectrometry, inductively coupled plasma mass spectrometry and carrier gas hot extraction/combustion analysis. Up to 91 elemental impurities covering metals, non-metals and semi-metals/metalloids were quantified. Due to the lack of internal experience or experimental capabilities, some participants contracted external laboratories for specific analytical tasks, mainly for the analysis of non-metals. The reported purity, expressed as zinc mass fraction in the high purity zinc material, showed excellent agreement for all participants, with a relative standard deviation of 0.011%. The calculated reference value, w(Zn)  =  0.999 873 kg kg-1, was assigned an asymmetric combined uncertainty of  +0.000 025 kg kg-1 and  -0.000 028 kg kg-1. Comparability amongst participating metrology institutes is thus demonstrated for the purity determination of high purity metals which have no particular difficulties with their decomposition/dissolution process when solution-based analytical methods are used, or which do not have specific difficulties when direct analysis approaches are used. Nevertheless, further development is required in terms of uncertainty assessment, quantification of non-metals and the determination of purity

  6. Growth of high purity semiconductor epitaxial layers by liquid phase ...

    Indian Academy of Sciences (India)

    Unknown

    semiconductor materials in high purity form by liquid phase epitaxy (LPE) technique. Various possible sources of impurities in such ... reference to the growth of GaAs layers. The technique of growing very high purity layers ... the inner walls of the gas lines and (e) the containers for storing, handling and cleaning of the mate-.

  7. Improving the color purity and efficiency of blue organic light-emitting diodes (BOLED) by adding hole-blocking layer

    Energy Technology Data Exchange (ETDEWEB)

    Huang, C.J., E-mail: chien@nuk.edu.t [Department of Applied Physics, National University of Kaohsiung, 700 Kaohsiung University Road, Nan-Tzu, Kaohsiung, Taiwan (China); Kang, C.C. [Department of Electro-Optical Engineering, Southern Taiwan University of Technology, 1 Nan-Tai St., Yung-Kang City, Tainan, Taiwan (China); Lee, T.C. [Department of Electrical Engineering, Southern Taiwan University of Technology, 1 Nan-Tai St., Yung-Kang City, Tainan, Taiwan (China); Chen, W.R.; Meen, T.H. [Department of Electronic Engineering, National Formosa University, 64 Wen-Hwa Road, Hu-Wei, Yunlin, Taiwan (China)

    2009-11-15

    This work demonstrates the fabrication of a bright blue organic light-emitting diode (BOLED) with good color purity using 4,4'-bis(2,2-diphenylvinyl)-1,1'-biphenyl (DPVBi) and bathocuproine (BCP) as the emitting layer (EML) and the hole-blocking layer (HBL), respectively. Devices were prepared by vacuum deposition on indium tin oxide (ITO)-glass substrates. The thickness of DPVBi used in the OLED has an important effect on color and efficiency. The blue luminescence is maximal at 7670 cd/m{sup 2} when 13 V is applied and the BCP thickness is 2 nm. The CIE coordinate at a luminance of 7670 cd/m{sup 2} is (0.165, 0.173). Furthermore, the current efficiency is maximum at 4.25 cd/A when 9 V is applied.

  8. Thermal and electrical conductivities of high purity tantalum

    International Nuclear Information System (INIS)

    Archer, S.L.

    1978-01-01

    The electrical resistivity and thermal conductivity of three high purity tantalum samples have been measured as functions of temperature over a temperature range of 5K to 65K. Sample purities ranged up to a resistivity ratio of 1714. The highest purity sample had a residual resistivity of .76 x 10 -10 OMEGA-m. The intrinsic resistivity varied as T 3 . 9 from 10K to 31K. The thermal conductivity of the purest sample had a maximum of 840 W/mK at 9.8K. The intrinsic thermal resistivity varied as T 2 . 4 from 10K to 35K. At low temperatures electrons were scattered primarily by impurities and by phonons with both interband and intraband transitions observed. The electrical and thermal resistivity is departed from Matthiessen's rule at low temperatures

  9. Development of high purity niobium material for superconducting cavities

    International Nuclear Information System (INIS)

    Umezawa, Hiroaki; Takeuchi, Koichi; Sakita, Kohei; Suzuki, Takafusa; Saito, Kenji; Noguchi, Shuichi.

    1993-01-01

    For the superconducting niobium cavities, issues of thermal quench and field emission have to be solved to achieve a high field gradient (>25MV/m) for TESLA (TeV Energy Superconducting Linear Accelerator). In order to overcome the quench, upgrading of thermal conductivity of niobium material at the low temperature is very important. On the reduction of the field emission not only dust particles but also defect, impurity and inhomogeneity should be considered. Therefore development of high purity niobium material is very important to solve these issues. This paper describes the our latest R and D for high purity niobium material. (author)

  10. Production of high purity radiothallium

    International Nuclear Information System (INIS)

    Lebowitz, E.; Greene, M.W.

    1976-01-01

    The method of producing high-purity thallium-201 for use as a myocardial scanning agent comprises the steps of irradiating a thallium target with protons to give the reaction 203 Tl(p,3n) 201 Pb, separating in ion exchange columns the lead from the thallium isotopes, permitting the lead to decay, and then purifying the thallium solution and converting the thallium present to thallous form in which it can be used

  11. Zero- and two-dimensional hybrid carbon phosphors for high colorimetric purity white light-emission.

    Science.gov (United States)

    Ding, Yamei; Chang, Qing; Xiu, Fei; Chen, Yingying; Liu, Zhengdong; Ban, Chaoyi; Cheng, Shuai; Liu, Juqing; Huang, Wei

    2018-03-01

    Carbon nanomaterials are promising phosphors for white light emission. A facile single-step synthesis method has been developed to prepare zero- and two-dimensional hybrid carbon phosphors for the first time. Zero-dimensional carbon dots (C-dots) emit bright blue luminescence under 365 nm UV light and two-dimensional nanoplates improve the dispersity and film forming ability of C-dots. As a proof-of-concept application, the as-prepared hybrid carbon phosphors emit bright white luminescence in the solid state, and the phosphor-coated blue LEDs exhibit high colorimetric purity white light-emission with a color coordinate of (0.3308, 0.3312), potentially enabling the successful application of white emitting phosphors in the LED field.

  12. The Research about Preparation of High Purity Hexachlorodisilane

    Science.gov (United States)

    Wan, Ye; Zhao, Xiong; Yan, Dazhou; Zhao, Yu; Guo, Shuhu; Wang, Lei; Yang, Dian

    2017-12-01

    This article demonstrated a technology for producing high purity hexachlorodisilane what is one raw material of Semiconductor industry, which using the method of combination adsorption with rectification, whose material was from polysilicon residues of polysilicon company. This technology could remove most high boiling points chloro-silicane impurities and metal impurities effectively. The purity of Si2Cl6 produced by this technology can be up to 99.9%, the content of metal impurities can be low at 4ppb, which can meet the requirement of industy using completely. The technology extends the routes of Si2Cl6 in localization, having the advantages of simple process, continuous operation, and large capacity and so on.

  13. Analytical monitoring of systems for the production of high-purity, desalinated water

    International Nuclear Information System (INIS)

    Kunert, I.

    1988-01-01

    The purity requirements to be met by high-purity water currently push the most sensitive analytical methods to their utmost limits of sensitivity. The required degree of purity of the water at present can only be achieved by application of membrane processes, and pre-purification of the feedwater to a quality corresponding to that of the raw water source. The contribution in hand discusses the analytical monitoring of the raw water treatment plant, the water treatment prior to the treatment by reverse osmosis, monitoring and control of the modules for reverse osmosis, and the monitoring of high-purity water production for the microelectronics industry. (orig./RB) [de

  14. Characterisation of two AGATA asymmetric high purity germanium capsules

    International Nuclear Information System (INIS)

    Colosimo, S.J.; Moon, S.; Boston, A.J.; Boston, H.C.; Cresswell, J.R.; Harkness-Brennan, L.; Judson, D.S.; Lazarus, I.H.; Nolan, P.J.; Simpson, J.; Unsworth, C.

    2015-01-01

    The AGATA spectrometer is an array of highly segmented high purity germanium detectors. The spectrometer uses pulse shape analysis in order to track Compton scattered γ-rays to increase the efficiency of nuclear spectroscopy studies. The characterisation of two high purity germanium detector capsules for AGATA of the same A-type has been performed at the University of Liverpool. This work will examine the uniformity of performance of the two capsules, including a comparison of the resolution and efficiency as well as a study of charge collection. The performance of the capsules shows good agreement, which is essential for the efficient operation of the γ-ray tracking array

  15. Characterisation of two AGATA asymmetric high purity germanium capsules

    Energy Technology Data Exchange (ETDEWEB)

    Colosimo, S.J., E-mail: sjc@ns.ph.liv.ac.uk [Department of Physics, Oliver Lodge Laboratory, University of Liverpool, Liverpool L69 7ZE (United Kingdom); Moon, S.; Boston, A.J.; Boston, H.C.; Cresswell, J.R.; Harkness-Brennan, L.; Judson, D.S. [Department of Physics, Oliver Lodge Laboratory, University of Liverpool, Liverpool L69 7ZE (United Kingdom); Lazarus, I.H. [STFC Daresbury, Daresbury, Warrington WA4 4AD (United Kingdom); Nolan, P.J. [Department of Physics, Oliver Lodge Laboratory, University of Liverpool, Liverpool L69 7ZE (United Kingdom); Simpson, J. [STFC Daresbury, Daresbury, Warrington WA4 4AD (United Kingdom); Unsworth, C. [Department of Physics, Oliver Lodge Laboratory, University of Liverpool, Liverpool L69 7ZE (United Kingdom)

    2015-02-11

    The AGATA spectrometer is an array of highly segmented high purity germanium detectors. The spectrometer uses pulse shape analysis in order to track Compton scattered γ-rays to increase the efficiency of nuclear spectroscopy studies. The characterisation of two high purity germanium detector capsules for AGATA of the same A-type has been performed at the University of Liverpool. This work will examine the uniformity of performance of the two capsules, including a comparison of the resolution and efficiency as well as a study of charge collection. The performance of the capsules shows good agreement, which is essential for the efficient operation of the γ-ray tracking array.

  16. High purity in steels as a criterion for materials development

    International Nuclear Information System (INIS)

    Jacobi, H.

    1995-01-01

    This summarizing report discusses the materials and application prospects for higher purity in steels, which will make possible further advances in materials behaviour and workability. Improvements in purity and homogeneity permit in particular more rational production of thin foils and wire, one-piece shaping of complicated bodywork components and the drawing, wall-ironing and flanging of two-piece beverage cans. Welded designs in plant and mechanical engineering can be fabricated with less effort and less weight. Difficult component geometries and shaping processes can be more easily mastered. Steels with optimized fracture toughness can be exposed to more extreme loads at even lower temperatures: applications worthy of mention include offshore engineering and large-diameter linepipes for use in arctic regions and at great underwater depths. Liquefied-gas transport vessels can be made more resistant to brittle rupture. The bending fatigue strength and service-life of valve-spring and rolling-bearing steels can be significantly increased. High-purity surfaces on piston rods and cylinders guarantee reliability in hydraulic systems, and high-purity calendering rolls permit defect-free embossing of paper surfaces. (orig.)

  17. Growth and characterization of high-purity SiC single crystals

    Science.gov (United States)

    Augustine, G.; Balakrishna, V.; Brandt, C. D.

    2000-04-01

    High-purity SiC single crystals with diameter up to 50 mm have been grown by the physical vapor transport method. Finite element analysis was used for thermal modeling of the crystal growth cavity in order to reduce stress in the grown crystal. Crystals are grown in high-purity growth ambient using purified graphite furniture and high-purity SiC sublimation sources. Undoped crystals up to 50 mm in diameter with micropipe density less than 100 cm -2 have been grown using this method. These undoped crystals exhibit resistivities in the 10 3 Ω cm range and are p-type due to the presence of residual acceptor impurities, mainly boron. Semi-insulating SiC material is obtained by doping the crystal with vanadium. Vanadium has a deep donor level located near the middle of the band gap, which compensates the residual acceptor resulting in semi-insulating behavior.

  18. Confined recrystallization of high-purity aluminium during accumulative roll bonding of aluminium laminates

    International Nuclear Information System (INIS)

    Chekhonin, Paul; Beausir, Benoît; Scharnweber, Juliane; Oertel, Carl-Georg; Hausöl, Tina; Höppel, Heinz Werner; Brokmeier, Heinz-Günter; Skrotzki, Werner

    2012-01-01

    Aluminium laminates consisting of high-purity aluminium and commercially pure aluminium have been produced by accumulative roll bonding (ARB) at ambient temperature for up to 10 cycles. To study the microstructure and texture development of the high-purity aluminium layers with regard to the shrinking layer thickness during ARB, microstructure and texture investigations were carried out by electron backscatter diffraction and neutron and X-ray diffraction, respectively. While the commercially pure aluminium layers develop an ultrafine-grained microstructure, partial discontinuous recrystallization occurs in the high-purity layers. The texture of the high-purity layers mainly consists of Cube and “Tilted Cube” (tilted with respect to the transverse direction) components. The experimental results are discussed with respect to confined recrystallization in the ARB aluminium laminates.

  19. Perspectives of data-driven LPV modeling of high-purity distillation columns

    NARCIS (Netherlands)

    Bachnas, A.A.; Toth, R.; Mesbah, A.; Ludlage, J.H.A.

    2013-01-01

    Abstract—This paper investigates data-driven, Linear- Parameter-Varying (LPV) modeling of a high-purity distillation column. Two LPV modeling approaches are studied: a local approach, corresponding to the interpolation of Linear Time- Invariant (LTI) models identified at steady-state purity levels,

  20. Activation analysis of high purity metals and application to study on physical properties

    International Nuclear Information System (INIS)

    Ueda, Yoshitake; Hashimoto, Eiji; Matsushita, Rokuji.

    1994-01-01

    In order to determine the true characteristics of matters, the utmost reduction of impurities is indispensable. By the heightening of the purity of aluminum, that of 99.9999% purity has been obtained, but efforts have been exerted to further heighten the purity. For the purpose, it is important to know the behavior of trace impurities during refining, and the quantitative research by neutron activation analysis for various impurities has been carried out. The research on the electron condition of trace impurity atoms in refined aluminum is also important. The band refining of high purity aluminum is explained. By repeating the refining 10 times, the sample of RRR exceeding 30000 was obtained. The impurities contributing to the resistivity are Sc, Ti, V and Cr. Based on the results, the heightening of aluminum purity was attempted by devising the new procedure. As for the electric properties of solute elements in high purity metals, those of transition elements and rare earth elements in aluminum are reported. As the result of measuring the remaining resistance, the sample having the RRR exceeding 45000 after the correction for size effect was done has been obtained. At present, the efforts toward further high purity are continued. (K.I.)

  1. Preparative separation and identification of novel subsidiary colors of the color additive D&C Red No. 33 (Acid Red 33) using spiral high-speed counter-current chromatography.

    Science.gov (United States)

    Weisz, Adrian; Ridge, Clark D; Mazzola, Eugene P; Ito, Yoichiro

    2015-02-06

    Three low-level subsidiary color impurities (A, B, and C) often present in batches of the color additive D&C Red No. 33 (R33, Acid Red 33, Colour Index No. 17200) were separated from a portion of R33 by spiral high-speed counter-current chromatography (HSCCC). The separation involved use of a very polar solvent system, 1-BuOH/5mM aq. (NH4)2SO4. Addition of ammonium sulfate to the lower phase forced partition of the components into the upper phase, thereby eliminating the need to add a hydrophobic counterion as was previously required for separations of components from sulfonated dyes. The very polar solvent system used would not have been retained in a conventional multi-layer coil HSCCC instrument, but the spiral configuration enabled retention of the stationary phase, and thus, the separation was possible. A 1g portion of R33 enriched in A, B, and C was separated using the upper phase of the solvent system as the mobile phase. The retention of the stationary phase was 38.1%, and the separation resulted in 4.8 mg of A of >90% purity, 18.3mg of B of >85% purity, and 91 mg of C of 65-72% purity. A second separation of a portion of the C mixture resulted in 7 mg of C of >94% purity. The separated impurities were identified by high-resolution mass spectrometry and NMR spectroscopic techniques as follows: 5-amino-3-biphenyl-3-ylazo-4-hydroxy-naphthalene-2,7-disulfonic acid, A; 5-amino-4-hydroxy-6-phenyl-3-phenylazo-naphthalene-2,7-disulfonic acid, B; and 5-amino-4-hydroxy-3,6-bis-phenylazo-naphthalene-2,7-disulfonic acid, C. The isomers A and B are compounds reported for the first time. Application of the spiral HSCCC method resulted in the additional benefit of yielding 930 mg of the main component of R33, 5-amino-4-hydroxy-3-phenylazo-naphthalene-2,7-disulfonic acid, of >97% purity. Published by Elsevier B.V.

  2. Zone refining high-purity germanium

    International Nuclear Information System (INIS)

    Hubbard, G.S.; Haller, E.E.; Hansen, W.L.

    1977-10-01

    The effects of various parameters on germanium purification by zone refining have been examined. These parameters include the germanium container and container coatings, ambient gas and other operating conditions. Four methods of refining are presented which reproducibly yield 3.5 kg germanium ingots from which high purity (vertical barN/sub A/ - N/sub D/vertical bar less than or equal to2 x 10 10 cm -3 ) single crystals can be grown. A qualitative model involving binary and ternary complexes of Si, O, B, and Al is shown to account for the behavior of impurities at these low concentrations

  3. Preserving high-purity 233U

    International Nuclear Information System (INIS)

    Krichinsky, Alan; Giaquinto, Joe; Canaan, Doug

    2016-01-01

    The MARC X Conference hosted a workshop for the scientific community to communicate needs for high-purity 233 U and its by-products in order to preserve critical items otherwise slated for downblending and disposal. Currently, only small portions of the U.S. holdings of separated 233 U are being preserved. However, many additional kilograms of 233 U (>97 % pure) still are destined to be disposed, and it is unlikely that this material will ever be replaced due to a lack of operating production capability. Summaries of information conveyed at the workshop and feedback obtained from the scientific community are presented herein. (author)

  4. Pressure-assisted sintering of high purity barium titanate

    NARCIS (Netherlands)

    van den Cruijsem, S.; Varst, van der P.G.T.; With, de G.; Bortzmeyer, D.; Boussuge, M.; Chartier, Th.; Hausonne, J.M.; Mocellin, A.; Rousset, A.; Thevenot, F.

    1997-01-01

    The dielectric behaviour of High Purity Barium titanate (HPB) ceramics is strongly dependent on the grain size and porosity. For applications, control of grain size and porosity is required. Pressure-assisted sintering techniques at relatively low temperatures meet these requirements. In this study,

  5. Surface passivation of high purity granular metals: zinc, cadmium, lead

    Directory of Open Access Journals (Sweden)

    Pirozhenko L. A.

    2017-10-01

    Full Text Available For the high purity metals (99.9999%, such as zinc, cadmium, and lead, which are widely used as initial components in growing semiconductor and scintillation crystals (CdTe, CdZnTe, ZnSe, (Cd, Zn, Pb WO4, (Cd, Zn, Pb MoO4 et al., it is very important to ensure reliable protection of the surface from oxidation and adsorption of impurities from the atmosphere. The specific features of surface passivation of high purity cadmium, lead and zinc are not sufficiently studied and require specific methodologies for further studies. The use of organic solutions in the schemes of chemical passivation of the investigated metals avoids hydrolysis of the obtained protective films. The use of organic solvents with pure cation and anion composition as the washing liquid prevents chemisorption of ions present in the conventionally used distilled water. This keeps the original purity of the granular metals. Novel compositions of etchants and etching scheme providing simultaneous polishing and passivation of high purity granular Zn, Cd and Pb are developed. Chemical passivation allows storing metals in the normal atmospheric conditions for more than half a year for Zn and Cd and up to 30 days for Pb without changing the state of the surface. The use of the glycerol-DMF solution in the processes for obtaining Pb granules provides self-passivation of metal surfaces and eliminates the additional chemical processing while maintaining the quality of corrosion protection.

  6. Event timing in high purity germanium coaxial detectors

    International Nuclear Information System (INIS)

    El-Ibiary, M.Y.

    1979-08-01

    The timing of gamma ray radiation in systems using high purity coaxial germanium detectors is analyzed and compared to that of systems using Ge(Li) detectors. The analysis takes into account the effect of the residual impurities on the electric field distribution, and hence on the rate of rise of the electrical pulses delivered to the timing module. Conditions under which the electric field distribution could lead to an improvement in timing performance, are identified. The results of the analysis confirm the experimental results published elsewhere and when compared with those for Ge(Li) detectors, which usually operate under conditions of charge carrier velocity saturation, confirm that high purity germanium detectors need not have inferior timing characteristics. A chart is given to provide a quantitative basis on which the trade off between the radius of the detector and its time resolution may be made

  7. Evaluation of purity with its uncertainty value in high purity lead stick by conventional and electro-gravimetric methods.

    Science.gov (United States)

    Singh, Nahar; Singh, Niranjan; Tripathy, S Swarupa; Soni, Daya; Singh, Khem; Gupta, Prabhat K

    2013-06-26

    A conventional gravimetry and electro-gravimetry study has been carried out for the precise and accurate purity determination of lead (Pb) in high purity lead stick and for preparation of reference standard. Reference materials are standards containing a known amount of an analyte and provide a reference value to determine unknown concentrations or to calibrate analytical instruments. A stock solution of approximate 2 kg has been prepared after dissolving approximate 2 g of Pb stick in 5% ultra pure nitric acid. From the stock solution five replicates of approximate 50 g have been taken for determination of purity by each method. The Pb has been determined as PbSO4 by conventional gravimetry, as PbO2 by electro gravimetry. The percentage purity of the metallic Pb was calculated accordingly from PbSO4 and PbO2. On the basis of experimental observations it has been concluded that by conventional gravimetry and electro-gravimetry the purity of Pb was found to be 99.98 ± 0.24 and 99.97 ± 0.27 g/100 g and on the basis of Pb purity the concentration of reference standard solutions were found to be 1000.88 ± 2.44 and 1000.81 ± 2.68 mg kg-1 respectively with 95% confidence level (k = 2). The uncertainty evaluation has also been carried out in Pb determination following EURACHEM/GUM guidelines. The final analytical results quantifying uncertainty fulfills this requirement and gives a measure of the confidence level of the concerned laboratory. Gravimetry is the most reliable technique in comparison to titremetry and instrumental method and the results of gravimetry are directly traceable to SI unit. Gravimetric analysis, if methods are followed carefully, provides for exceedingly precise analysis. In classical gravimetry the major uncertainties are due to repeatability but in electro-gravimetry several other factors also affect the final results.

  8. Synthesis of High Purity Nonsymmetric Dialkylphosphinic Acid Extractants.

    Science.gov (United States)

    Wang, Junlian; Xie, Meiying; Liu, Xinyu; Xu, Shengming

    2017-10-19

    We present the synthesis of (2,3-dimethylbutyl)(2,4,4'-trimethylpentyl)phosphinic acid as an example to demonstrate a method for the synthesis of high purity nonsymmetric dialkylphosphinic acid extractants. Low toxic sodium hypophosphite was chosen as the phosphorus source to react with olefin A (2,3-dimethyl-1-butene) to generate a monoalkylphosphinic acid intermediate. Amantadine was adopted to remove the dialkylphosphinic acid byproduct, as only the monoalkylphosphinic acid can react with amantadine to form an amantadine∙mono-alkylphosphinic acid salt, while the dialkylphosphinic acid cannot react with amantadine due to its large steric hindrance. The purified monoalkylphosphinic acid was then reacted with olefin B (diisobutylene) to yield nonsymmetric dialkylphosphinic acid (NSDAPA). The unreacted monoalkylphosphinic acid can be easily removed by a simple base-acid post-treatment and other organic impurities can be separated out through the precipitation of the cobalt salt. The structure of the (2,3-dimethylbutyl)(2,4,4'-trimethylpentyl)phosphinic acid was confirmed by 31 P NMR, 1 H NMR, ESI-MS, and FT-IR. The purity was determined by a potentiometric titration method, and the results indicate that the purity can exceed 96%.

  9. High purity materials as targets for radioisotope production: Needs ...

    Indian Academy of Sciences (India)

    Unknown

    lity of high purity target materials, natural or enriched, are crucial for any successful radioisotope pro- gramme. Selection ... and blockages detection in buried pipelines are rendered ..... from reputed international suppliers with analysis report.

  10. High purity radioactive beams at the bevalac

    International Nuclear Information System (INIS)

    Alonso, J.R.; Chatterjee, A.; Tobias, C.A.

    1979-03-01

    Peripheral nuclear fragmentation reactions of primary Bevalac heavy ion beams are used to produce secondary beams of radioactive nuclei. The large cross section and small deflection of the projectile fragments lead to high production and delivery efficiency for these beams. Dispersive beam transport allows good separation and purification of the desired secondary beams. 11 C and 19 Ne beams of high purity and good intensity (almost 0.2% of the primary beam current) are presently being used for biomedical experiments

  11. A High-Purity Alumina for Use in Studies of Shock Loaded Samples

    Science.gov (United States)

    Lacina, David; Neel, Christopher

    2017-06-01

    We report the results of plate impact experiments on a potential new ``standard'' material, Coorstek Plasmapure-UC (99.9% purity) polycrystalline alumina, for use in non-conduction, impact environment, shock loading studies. This work was motivated by a desire to find a 99.9% purity alumina to replace the now unavailable Coors Vistal (99.9%) alumina, as it was hoped the Hugoniot elastic limit (HEL) of the new standard would match the 9-11 GPa value of Vistal. Shock response data, including the HEL, Hugoniot particle velocities, Hugoniot shock velocities, stress vs volume, and release wave speeds, was obtained up to 14 GPa. This data will be compared with Hugoniot curve data for other high purity alumina to contrast differences in the shock response, and is intended to be useful in impedance matching calculations. We will show that the HEL of Plasmapure-UC alumina is 5.5 GPa and speculate on causes for this lower than expected value. We will also explore why the elastic-plastic response for Plasmapure-UC alumina differs from what has been observed from other high purity alumina. The final result of this work is to recommend a well-characterized, lower purity alumina (Coorstek AD-995) as a potential new ``standard'' material.

  12. Tests of ball bearing used in high-temperature and high-purity water

    International Nuclear Information System (INIS)

    Leng Chengmu; Hao Shouxin.

    1987-01-01

    According to the particular conditions and the operation environments in high-temperature and high-purity water, the test content and the measurement instrumentation for the ball bearing were defined. Through various tests, operational performances of the bearing have preliminarily been understood. It provided some useful information for the engineering application of the bearing

  13. Radiochemical purity of Mo and Tc solution obtained after irradiation and dissolution of Mo-100-enriched and ultra-high-purity natural Mo disks

    Energy Technology Data Exchange (ETDEWEB)

    Tkac, Peter [Argonne National Lab. (ANL), Argonne, IL (United States); Gromov, Roman [Argonne National Lab. (ANL), Argonne, IL (United States); Chemerisov, Sergey D. [Argonne National Lab. (ANL), Argonne, IL (United States); Rotsch, David A. [Argonne National Lab. (ANL), Argonne, IL (United States); Vandegrift, George F. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-09-01

    Four irradiations of ultra-high-purity natural Mo targets and one irradiation using 97.4% Mo-100-enriched material were performed. The purpose of these irradiations was to determine whether the presence of Sn stabilizer in the H2O2 used for the dissolution of sintered Mo disks can affect the radiochemical purity of the final K2MoO4 in 5M KOH solution. Results from radiochemical purity tests performed using thin-layer paper chromatography show that even 2– 3× excess of Sn-stabilized H2O2 typically used for dissolution of sintered Mo disks did not affect the radiochemical purity of the final product.

  14. Fused salt processing of impure plutonium dioxide to high-purity plutonium metal

    International Nuclear Information System (INIS)

    Mullins, L.J.; Christensen, D.C.; Babcock, B.R.

    1982-01-01

    A process for converting impure plutonium dioxide (approx. 96% pure) to high-purity plutonium metal (>99.9%) was developed. The process consists of reducing the oxide to an impure plutonium metal intermediate with calcium metal in molten calcium chloride. The impure intermediate metal is cast into an anode and electrorefined to produce high-purity plutonium metal. The oxide reduction step is being done now on a 0.6-kg scale with the resulting yield being >99.5%. The electrorefining is being done on a 4.0-kg scale with the resulting yield being 80 to 85%. The purity of the product, which averages 99.98%, is essentially insensitive to the purity of the feed metal. The yield, however, is directly dependent on the chemical composition of the feed. To date, approximately 250 kg of impure oxide has been converted to pure metal by this processing sequence. The availability of impure plutonium dioxide, together with the need for pure plutonium metal, makes this sequence a valuable plutonium processing tool

  15. Analysis technique of impurity in high purity deuterium by cryogenic gas-chromatography

    International Nuclear Information System (INIS)

    Zhou Junbo; Gao Liping

    2007-01-01

    A veracious and applicable quantitative analysis method of O 2 , N 2 and H 2 , HD in high purity deuterium by the chromatogram columniation filled with 5A molecular sieve and alumina was researched and constituted at natural temperature and 77 K, respectively. Minimum detecting limit of the present method is (150-200) x 10 -6 for H 2 and HD, and it can meet the need of quantitative analysis of the impurity during high purity deuterium preparation. (authors)

  16. Hydrogen concentration and distribution in high-purity germanium crystals

    International Nuclear Information System (INIS)

    Hansen, W.L.; Haller, E.E.; Luke, P.N.

    1981-10-01

    High-purity germanium crystals used for making nuclear radiation detectors are usually grown in a hydrogen ambient from a melt contained in a high-purity silica crucible. The benefits and problems encountered in using a hydrogen ambient are reviewed. A hydrogen concentration of about 2 x 10 15 cm -3 has been determined by growing crystals in hydrogen spiked with tritium and counting the tritium β-decays in detectors made from these crystals. Annealing studies show that the hydrogen is strongly bound, either to defects or as H 2 with a dissociation energy > 3 eV. This is lowered to 1.8 eV when copper is present. Etching defects in dislocation-free crystals grown in hydrogen have been found by etch stripping to have a density of about 1 x 10 7 cm -3 and are estimated to contain 10 8 H atoms each

  17. Some aspects of ICP-AES analysis of high purity rare earths

    International Nuclear Information System (INIS)

    Murty, P.S.; Biswas, S.S.

    1991-01-01

    Inductively coupled plasma atomic emission spectrometry (ICP-AES) is a technique capable of giving high sensitivity in trace elemental analysis. While the technique possesses high sensitivity, it lacks high selectivity. Selectivity is important where substances emitting complex spectra are to be analysed for trace elements. Rare earths emit highly complex spectra in a plasma source and the determination of adjacent rare earths in a high purity rare earth matrix, with high sensitivity, is not possible due to the inadequate selectivity of ICP-AES. One approach that has yielded reasonably good spectral selectivity in the high purity rare earth analysis by ICP-AES is by employing a combination of wavelength modulation techniques and high resolution echelle grating. However, it was found that by using a high resolution monochromator senstitivities either comparable to or better than those reported by the wavelength modulation technique could be obtained. (author). 2 refs., 2 figs., 2 tabs

  18. Color of Cultures of Staphylococcus epidermidis Determined by Spectral Reflectance Colorimetry

    Science.gov (United States)

    Brown, Richard W.

    1966-01-01

    Brown, Richard W. (National Animal Disease Laboratory, Ames, Iowa). Color of cultures of Staphylococcus epidermidis determined by spectral reflectance colorimetry. J. Bacteriol. 91:911–918. 1966.—A colorimeter with a reflectance attachment was used to study pigment production by Staphylococcus epidermidis strains grown on a medium containing Trypticase Soy Agar (BBL) and cream. The color of each culture was first characterized by reflectance colorimetry for dominant wavelength, purity, and luminous reflectance (Y) and was then classified visually into 1 of 10 color grades. There was not complete agreement in grading colors by the two methods, inasmuch as cultures that were considered more pigmented in relation to other cultures by the reflectance method were sometimes graded visually as less pigmented, and vice versa. Nevertheless, when the cultures were visually graded as being more pigmented, there was a concomitant increase in the average values of dominant wavelength and purity with a decrease in Y for the cultures in each higher grade. Thus, the nonpigmented cultures had the lowest dominant wavelength and purity values but the highest Y (brightness) values, whereas the most pigmented cultures had the highest dominant wavelength and purity values, but the lowest Y values. These results indicated that the cultures did not produce pigments of different hues (greenish-yellow, yellow, yellowish-orange) each with high, medium, and low degrees of purity and brightness. The value (1 − z), where the chromaticity coordinate z = Z/(X + Y + Z), was found to be proportional to the purity value. An inverse relationship between the tristimulus Z and purity values was also demonstrated. All cultures tested by the reflectance method were also classified according to the type of spectral absorption curve obtained with pigments extracted from the cultures with methanol. A comparison of these methods indicated that determining the type of spectral absorption curve would be

  19. Isolation of high purity americium metal via distillation

    Science.gov (United States)

    Squires, Leah N.; King, James A.; Fielding, Randall S.; Lessing, Paul

    2018-03-01

    Pure americium metal is a crucial component for the fabrication of transmutation fuels. Unfortunately, americium in pure metal form is not available; however, a number of mixed metals and mixed oxides that include americium are available. In this manuscript a method is described to obtain high purity americium metal from a mixture of americium and neptunium metals with lead impurity via distillation.

  20. Ion-exchange preparation of high-purity vanadium acid from industrial liquors

    International Nuclear Information System (INIS)

    Sajdakhmedov, U.A.; Arslanov, Sh.S.; Vulikh, A.I.

    1994-01-01

    The results of investigations on production of special-purity vanadium acid and vanadium oxide directly from process solutions (technical grade liquors) using ionites are presented. Potentiality of thorough purification of vanadium(5) oxide, when producing vanadium acid on the KU-2 cationite with subsequent purification on anionite, is shown. On the basis of the results obtained a principle flowsheet of ion-exchange production of high-purity vanadium(5) oxide from industrial liquors has been developed. 2 refs.; 1 fig.; 4 tabs

  1. Corrosion of high purity Fe-Cr-Ni alloys in 13 N boiling nitric acid

    International Nuclear Information System (INIS)

    Ohta, Joji; Mayuzumi, Masami; Kusanagi, Hideo; Takaku, Hiroshi

    1998-01-01

    Corrosion in boiling nitric acid was investigated for high purity Fe-18%Cr-12%Ni alloys and type 304L stainless steels (SS). Owing to very low impurity concentration, the solution treated high purity alloys show almost no intergranular corrosion while the type 304L SS show severe intergranular corrosion. Both in the high purity alloys and type 304L SS, aging treatments ranging from 873 K to 1073 K for 1 h enhance intergranular corrosion. During the aging treatments, impurities should be segregated to the grain boundaries. The corrosion behaviors were discussed from a standpoint of impurity segregation to grain boundaries. This study is of importance for purex reprocessing of spent fuels

  2. TIGRESS highly-segmented high-purity germanium clover detector

    Science.gov (United States)

    Scraggs, H. C.; Pearson, C. J.; Hackman, G.; Smith, M. B.; Austin, R. A. E.; Ball, G. C.; Boston, A. J.; Bricault, P.; Chakrawarthy, R. S.; Churchman, R.; Cowan, N.; Cronkhite, G.; Cunningham, E. S.; Drake, T. E.; Finlay, P.; Garrett, P. E.; Grinyer, G. F.; Hyland, B.; Jones, B.; Leslie, J. R.; Martin, J.-P.; Morris, D.; Morton, A. C.; Phillips, A. A.; Sarazin, F.; Schumaker, M. A.; Svensson, C. E.; Valiente-Dobón, J. J.; Waddington, J. C.; Watters, L. M.; Zimmerman, L.

    2005-05-01

    The TRIUMF-ISAC Gamma-Ray Escape-Suppressed Spectrometer (TIGRESS) will consist of twelve units of four high-purity germanium (HPGe) crystals in a common cryostat. The outer contacts of each crystal will be divided into four quadrants and two lateral segments for a total of eight outer contacts. The performance of a prototype HPGe four-crystal unit has been investigated. Integrated noise spectra for all contacts were measured. Energy resolutions, relative efficiencies for both individual crystals and for the entire unit, and peak-to-total ratios were measured with point-like sources. Position-dependent performance was measured by moving a collimated source across the face of the detector.

  3. High purity neodymium acetate from mixed rare earth carbonates

    International Nuclear Information System (INIS)

    Queiroz, Carlos A. da Silva; Rocha, Soraya M. Rizzo da; Vasconcellos, Mari E. de; Lobo, Raquel M.; Seneda, Jose A.; Pedreira, Walter dos R.

    2011-01-01

    A simple and economical chemical process for obtaining high purity neodymium acetate is discussed. The raw material in the form rare earth carbonate is produced industrially from the chemical treatment of Brazilian monazite. Ion exchange chromatography technique with a strong cationic resin, proper to water treatment, and without the use of retention ions was used for the fractionating of the rare earth elements (REE). In this way, it was possible to obtain 99.9% pure Nd 2 O 3 in yields greater than or equal 80%, with the elution of the REE using ammonium salt of ethylenediaminetetraacetic acid (EDTA) solution in pH controlled. The complex of EDTA-neodymium was transformed into neodymium oxide, which was subsequently dissolved in acetic acid to obtain the neodymium acetates. Molecular absorption spectrophotometry was used to monitor the neodymium content during the process and sector field inductively coupled plasma mass spectrometry was used to certify the purity of the neodymium acetates. The typical neodymium acetates obtained contain the followings contaminants in μg g -1 : Sc(5.1); Y (0.9); La (1.0); Ce (6.1); Pr (34,4); Sm (12.8); Eu (1.1); Gd (15.4); Tb (29.3); Dy (5.2), Ho(7.4); Er (14.6); Tm (0.3); Yb (2.5); Lu (1.0). The high purity neodymium acetates obtained from this procedure have been applied, replacing the imported product, in research and development area on rare earth catalysts. (author)

  4. Scalable preparation of high purity rutin fatty acid esters following enzymatic synthesis

    DEFF Research Database (Denmark)

    Lue, Bena-Marie; Guo, Zheng; Xu, Xuebing

    2010-01-01

    Investigations into expanded uses of modified flavonoids are often limited by the availability of these high purity compounds. As such, a simple, effective and relatively fast method for isolation of gram quantities of both long and medium chain fatty acid esters of rutin following scaled......-up biosynthesis reactions was established. Acylation reactions of rutin and palmitic or lauric acids were efficient in systems containing dried acetone and molecular sieves, yielding from 70–77% bioconversion after 96 h. Thereafter, high purity isolates (>97%) were easily obtained in significant quantities...

  5. Demands made on high-purity copper for special purposes

    International Nuclear Information System (INIS)

    Roettges, D.

    1977-01-01

    The properties (electrical resistivity, residual impurities) of high-purity copper produced on a technical scale are reported as well as its practical applications. The paper discusses a high-oxygen copper (SV) with low residual resistivity at low temperatures and an oxygen-free (hydrogen-stable) copper (BE electronic) with low gas content. The SV quality has been specially developed for use as stabilizer in superconductors while the BE quality is used in high and ultrahigh vacuum. (GSC) [de

  6. Control of Emission Color of High Quantum Yield CH3NH3PbBr3 Perovskite Quantum Dots by Precipitation Temperature.

    Science.gov (United States)

    Huang, He; Susha, Andrei S; Kershaw, Stephen V; Hung, Tak Fu; Rogach, Andrey L

    2015-09-01

    Emission color controlled, high quantum yield CH 3 NH 3 PbBr 3 perovskite quantum dots are obtained by changing the temperature of a bad solvent during synthesis. The products for temperatures between 0 and 60 °C have good spectral purity with narrow emission line widths of 28-36 nm, high absolute emission quantum yields of 74% to 93%, and short radiative lifetimes of 13-27 ns.

  7. Neutron activation analysis of high purity substances

    International Nuclear Information System (INIS)

    Gil'bert, Eh.N.

    1987-01-01

    Peculiarities of neutron-activation analysis (NAA) of high purity substances are considered. Simultaneous determination of a wide series of elements, high sensitivity (the lower bound of determined contents 10 -9 -10 -10 %), high selectivity and accuracy (Sr=0.10-0.15, and may be decreased up to 0.001), possibility of analysis of the samples from several micrograms to hundreds of grams, simplicity of calibration may be thought NAA advantages. Questions of accounting of NAA systematic errors associated with the neutron flux screening by the analysed matrix and with production of radionuclides of determined elements from accompanying elements according to concurrent nuclear reactions, as well as accounting of errors due to self-absorption of recorded radiation by compact samples, are considered

  8. Simple LED spectrophotometer for analysis of color information.

    Science.gov (United States)

    Kim, Ji-Sun; Kim, A-Hee; Oh, Han-Byeol; Goh, Bong-Jun; Lee, Eun-Suk; Kim, Jun-Sik; Jung, Gu-In; Baek, Jin-Young; Jun, Jae-Hoon

    2015-01-01

    A spectrophotometer is the basic measuring equipment essential to most research activity fields requiring samples to be measured, such as physics, biotechnology and food engineering. This paper proposes a system that is able to detect sample concentration and color information by using LED and color sensor. Purity and wavelength information can be detected by CIE diagram, and the concentration can be estimated with purity information. This method is more economical and efficient than existing spectrophotometry, and can also be used by ordinary persons. This contribution is applicable to a number of fields because it can be used as a colorimeter to detect the wavelength and purity of samples.

  9. High-power laser diodes with high polarization purity

    Science.gov (United States)

    Rosenkrantz, Etai; Yanson, Dan; Peleg, Ophir; Blonder, Moshe; Rappaport, Noam; Klumel, Genady

    2017-02-01

    Fiber-coupled laser diode modules employ power scaling of single emitters for fiber laser pumping. To this end, techniques such as geometrical, spectral and polarization beam combining (PBC) are used. For PBC, linear polarization with high degree of purity is important, as any non-perfectly polarized light leads to losses and heating. Furthermore, PBC is typically performed in a collimated portion of the beams, which also cancels the angular dependence of the PBC element, e.g., beam-splitter. However, we discovered that single emitters have variable degrees of polarization, which depends both on the operating current and far-field divergence. We present data to show angle-resolved polarization measurements that correlate with the ignition of high-order modes in the slow-axis emission of the emitter. We demonstrate that the ultimate laser brightness includes not only the standard parameters such as power, emitting area and beam divergence, but also the degree of polarization (DoP), which is a strong function of the latter. Improved slow-axis divergence, therefore, contributes not only to high brightness but also high beam combining efficiency through polarization.

  10. Preparation of high-purity zirconium dioxide from baddeleyite

    International Nuclear Information System (INIS)

    Voskobojnikov, N.B.; Skiba, G.S.

    1996-01-01

    Interaction of baddeleyite concentrate with calcium oxide and calcium chloride in the process of caking is studied. The influence of grain size on calcium zirconate formation is tested. Conditions for cake leaching by hydrochloric acid and zirconium(4) oxychloride purification from calcium and silicon compounds by recrystallization are reported. Zirconium dioxide corresponding to specifications (6-2 special purity) is obtained with a high (more than 90%) chemical yield. 9 refs., 1 tab

  11. A subjective evaluation of high-chroma color with wide color-gamut display

    Science.gov (United States)

    Kishimoto, Junko; Yamaguchi, Masahiro; Ohyama, Nagaaki

    2009-01-01

    Displays tends to expand its color gamut, such as multi-primary color display, Adobe RGB and so on. Therefore displays got possible to display high chroma colors. However sometimes, we feel unnatural some for the image which only expanded chroma. Appropriate gamut mapping method to expand color gamut is not proposed very much. We are attempting preferred expanded color reproduction on wide color gamut display utilizing high chroma colors effectively. As a first step, we have conducted an experiment to investigate the psychological effect of color schemes including highly saturated colors. We used the six-primary-color projector that we have developed for the presentation of test colors. The six-primary-color projector's gamut volume in CIELAB space is about 1.8 times larger than the normal RGB projector. We conducted a subjective evaluation experiment using the SD (Semantic Differential) technique to find the quantitative psychological effect of high chroma colors.

  12. Spectroscopic Determination of Trace Contaminants in High Purity Oxygen

    Science.gov (United States)

    Hornung, Steven D.

    2011-01-01

    Oxygen used for extravehicular activities (EVA) must be free of contaminants because a difference in a few tenths of a percent of argon or nitrogen content can mean significant reduction in available EVA time. These inert gases build up in the extravehicular mobility unit because they are not metabolized or scrubbed from the atmosphere. Measurement of oxygen purity above 99.5% is problematic, and currently only complex instruments such as gas chromatographs or mass spectrometers are used for these determinations. Because liquid oxygen boil-off from the space shuttle will no longer be available to supply oxygen for EVA use, other concepts are being developed to produce and validate high purity oxygen from cabin air aboard the International Space Station. A prototype optical emission technique capable of detecting argon and nitrogen below 0.1% in oxygen was developed at White Sands Test Facility. This instrument uses a glow discharge in reduced pressure gas to produce atomic emission from the species present. Because the atomic emission lines from oxygen, nitrogen, and argon are discrete and in many cases well-separated, trace amounts of argon and nitrogen can be detected in the ultraviolet and visible spectrum. This is a straightforward, direct measurement of the target contaminants and may lend itself to a device capable of on-orbit verification of oxygen purity. System design and optimized measurement parameters are presented.

  13. High-purity Cu nanocrystal synthesis by a dynamic decomposition method

    Science.gov (United States)

    Jian, Xian; Cao, Yu; Chen, Guozhang; Wang, Chao; Tang, Hui; Yin, Liangjun; Luan, Chunhong; Liang, Yinglin; Jiang, Jing; Wu, Sixin; Zeng, Qing; Wang, Fei; Zhang, Chengui

    2014-12-01

    Cu nanocrystals are applied extensively in several fields, particularly in the microelectron, sensor, and catalysis. The catalytic behavior of Cu nanocrystals depends mainly on the structure and particle size. In this work, formation of high-purity Cu nanocrystals is studied using a common chemical vapor deposition precursor of cupric tartrate. This process is investigated through a combined experimental and computational approach. The decomposition kinetics is researched via differential scanning calorimetry and thermogravimetric analysis using Flynn-Wall-Ozawa, Kissinger, and Starink methods. The growth was found to be influenced by the factors of reaction temperature, protective gas, and time. And microstructural and thermal characterizations were performed by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and differential scanning calorimetry. Decomposition of cupric tartrate at different temperatures was simulated by density functional theory calculations under the generalized gradient approximation. High crystalline Cu nanocrystals without floccules were obtained from thermal decomposition of cupric tartrate at 271°C for 8 h under Ar. This general approach paves a way to controllable synthesis of Cu nanocrystals with high purity.

  14. Characterization of a high-purity germanium detector for small-animal SPECT.

    Science.gov (United States)

    Johnson, Lindsay C; Campbell, Desmond L; Hull, Ethan L; Peterson, Todd E

    2011-09-21

    We present an initial evaluation of a mechanically cooled, high-purity germanium double-sided strip detector as a potential gamma camera for small-animal SPECT. It is 90 mm in diameter and 10 mm thick with two sets of 16 orthogonal strips that have a 4.5 mm width with a 5 mm pitch. We found an energy resolution of 0.96% at 140 keV, an intrinsic efficiency of 43.3% at 122 keV and a FWHM spatial resolution of approximately 1.5 mm. We demonstrated depth-of-interaction estimation capability through comparison of pinhole acquisitions with a point source on and off axes. Finally, a flood-corrected flood image exhibited a strip-level uniformity of less than 1%. This high-purity germanium offers many desirable properties for small-animal SPECT.

  15. Fabrication of Ultra-thin Color Films with Highly Absorbing Media Using Oblique Angle Deposition.

    Science.gov (United States)

    Yoo, Young Jin; Lee, Gil Ju; Jang, Kyung-In; Song, Young Min

    2017-08-29

    Ultra-thin film structures have been studied extensively for use as optical coatings, but performance and fabrication challenges remain.  We present an advanced method for fabricating ultra-thin color films with improved characteristics. The proposed process addresses several fabrication issues, including large area processing. Specifically, the protocol describes a process for fabricating ultra-thin color films using an electron beam evaporator for oblique angle deposition of germanium (Ge) and gold (Au) on silicon (Si) substrates.  Film porosity produced by the oblique angle deposition induces color changes in the ultra-thin film. The degree of color change depends on factors such as deposition angle and film thickness. Fabricated samples of the ultra-thin color films showed improved color tunability and color purity. In addition, the measured reflectance of the fabricated samples was converted into chromatic values and analyzed in terms of color. Our ultra-thin film fabricating method is expected to be used for various ultra-thin film applications such as flexible color electrodes, thin film solar cells, and optical filters. Also, the process developed here for analyzing the color of the fabricated samples is broadly useful for studying various color structures.

  16. Wet routes of high purity BaTiO3 nanopowders

    International Nuclear Information System (INIS)

    Wang Liqiu; Liu Liang; Xue Dongfeng; Kang Hongmin; Liu Changhou

    2007-01-01

    High purity BaTiO 3 nanopowders were prepared in wet routes through stearic acid gel (SAG) and acetic acid gel (AAG) techniques, respectively. BaTiO 3 samples were characterized by X-ray diffraction, transmission electron microscope, Fourier transform infrared spectrometry, X-ray fluorescence spectrometry, and thermal gravimetric analysis. The present results indicate that both methods have a similar reaction process during calcination, while BaTiO 3 crystallites were initially formed at 550 deg. C by SAG and 800 deg. C by AAG. Both methods could produce BaTiO 3 powders with a cubic perovskite structure, while they had different grain size distributions within 25-50 nm for SAG and 50-80 nm for AAG. BaTiO 3 samples prepared by SAG had a lower agglomeration than those by AAG. SAG has shown many distinctive advantages in the preparation of high purity BaTiO 3 nanopowders, without Ba and Ti losses and hazardous wastes

  17. Development of high purity large forgings for nuclear power plants

    International Nuclear Information System (INIS)

    Tanaka, Yasuhiko; Sato, Ikuo

    2011-01-01

    The recent increase in the size of energy plants has been supported by the development of manufacturing technology for high purity large forgings for the key components of the plant. To assure the reliability and performance of the large forgings, refining technology to make high purity steels, casting technology for gigantic ingots, forging technology to homogenize the material and consolidate porosity are essential, together with the required heat treatment and machining technologies. To meet these needs, the double degassing method to reduce impurities, multi-pouring methods to cast the gigantic ingots, vacuum carbon deoxidization, the warm forging process and related technologies have been developed and further improved. Furthermore, melting facilities including vacuum induction melting and electro slag re-melting furnaces have been installed. By using these technologies and equipment, large forgings have been manufactured and shipped to customers. These technologies have also been applied to the manufacture of austenitic steel vessel components of the fast breeder reactors and components for fusion experiments.

  18. Development of high purity large forgings for nuclear power plants

    Science.gov (United States)

    Tanaka, Yasuhiko; Sato, Ikuo

    2011-10-01

    The recent increase in the size of energy plants has been supported by the development of manufacturing technology for high purity large forgings for the key components of the plant. To assure the reliability and performance of the large forgings, refining technology to make high purity steels, casting technology for gigantic ingots, forging technology to homogenize the material and consolidate porosity are essential, together with the required heat treatment and machining technologies. To meet these needs, the double degassing method to reduce impurities, multi-pouring methods to cast the gigantic ingots, vacuum carbon deoxidization, the warm forging process and related technologies have been developed and further improved. Furthermore, melting facilities including vacuum induction melting and electro slag re-melting furnaces have been installed. By using these technologies and equipment, large forgings have been manufactured and shipped to customers. These technologies have also been applied to the manufacture of austenitic steel vessel components of the fast breeder reactors and components for fusion experiments.

  19. Process for the production of high purity deuterium

    International Nuclear Information System (INIS)

    Arrathoon, R.

    1977-01-01

    A process for the electrolysis of heavy water which results in the production of high purity deuterium without periodic replenishment of the electrolyte with additional deuterated compounds is defined. Electrolysis is effected through the use of an inexpensive cation-action permselective membrane which is essentially a solid polymer electrolyte and which is capable of automatically separating the evolved deuterium and oxygen gas. This cation-active permselective membrane does not introduce any intrinsic impurities or tritium contamination in the generated deuterium gas, does not require periodic revitalization with deuterated compounds or other chemical compounds, and is characterized by an unusually high electrical efficiency

  20. Corrosion behavior of high purity Fe-Cr-Ni alloys in trans-passive condition

    International Nuclear Information System (INIS)

    Mayuzumi, Masami; Ohta, Jyoji; Kako, Kenji

    1998-01-01

    The corrosion behavior of high-purity (99.99%) Fe-Cr-Ni alloys was investigated in 13 N nitric acid with/without Ce 4+ ions to clarify the effect of impurities on the trans-passive corrosion of stainless steel. The following results were obtained. (1) Almost no intergranular corrosion was observed in the high-purity alloys, although the corrosion rate of the matrix region was nearly the same as that of a commercial stainless steel with the same Cr and Ni content. (2) Due to the improved intergranular corrosion resistance, the effect of the purification became significant in the corrosion condition with the grain-separation being predominant. (3) The high-purity alloys showed higher susceptivility to intergranular corrosion with aging treatment between 873 K and 1073 K. Although the sulfuric acid/copper sulfate test suggested the formation of Cr-depleted zones, a grain boundary micro-analysis using a FETEM with an EDX did not reveal any change in Cr content or impurity segregain along the grain boundaries. The mechanism of corrosion enhancement resulting from the aging treatment remains nuclear. (author)

  1. The European Expression Of Interest For High Purity U-233 Materials

    Energy Technology Data Exchange (ETDEWEB)

    Giaquinto, Joseph M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Younkin, James R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-04-01

    The purpose of this letter report is to document the response for an Expression of Interest (EOI) sent to the European Safeguards and research and development (R&D) scientific communities for the distribution of small amounts of high purity 233U materials for use in safeguards, nonproliferation, and basic R&D in the nuclear disciplines. The intent for the EOI was to gauge the level of international interest for these materials from government and research institutions with programmatic missions in the nuclear security or nuclear R&D arena. The information contained herein is intended to provide information to assist key decision makers in DOE as to the ultimate disposition path for the high purity materials currently being recovered at Oak Ridge National Laboratory (ORNL) and only those items for which there is no United States (U.S.) sponsor identified.

  2. Preparation of uranium-plutonium mixed nitride pellets with high purity

    International Nuclear Information System (INIS)

    Arai, Yasuo; Shiozawa, Ken-ichi; Ohmichi, Toshihiko

    1992-01-01

    Uranium-plutonium mixed nitride pellets have been prepared in the gloveboxes with high purity Ar gas atmosphere. Carbothermic reduction of the oxides in N 2 -H 2 mixed gas stream was adopted for synthesizing mixed nitride. Sintering was carried out in various conditions and the effect on the pellet characteristics was investigated. (author)

  3. Neutron activation analysis of high purity tellurium

    International Nuclear Information System (INIS)

    Gil'bert, Eh.N.; Verevkin, G.V.; Obrazovskij, E.G.; Shatskaya, S.S.

    1980-01-01

    A scheme of neutron activation analysis of high purity tellurium is developed. Weighed amount of Te (0.5 g) is irradiated for 20-40 hr in the flux of 2x10 13 neutron/(cm 2 xs). After decomposition of the sample impurities of gold and palladium are determined by the extraction with organic sulphides. Tellurium separation from the remaining impurities is carried out by the extraction with monothiobenzoic acid from weakly acidic HCl solutions in the presence of iodide-ions, suppressing silver extraction. Remaining impurity elements in the refined product are determined γ-spectrometrically. The method allows to determine 34 impurities with determination limits 10 -6 -10 -11 g

  4. Neutron activation analysis of high-purity zinc

    International Nuclear Information System (INIS)

    Khodzhamberdyeva, A.A.; Usmanova, M.M.; Gil'bert, Eh.N.; Ivanov, I.M.; Yankovskaya, T.A.; Kholyavko, E.P.

    1987-01-01

    The methods of neutron activation analysis of high-purity zinc with preliminary separation of the zinc base using extraction by trialkylbenzylammonium rhodanide in carbon tetrachloride from 0.5-2.0 M nitric acid solutions is developed. Only rhenium is quantitatively extracted together with zinc. Gold, iridium and molybdenum are extracted to 50-60%, and selenium - to 20%. The Na, K, La, Cr, Sc, Co, Cs, Rb, Fe, Zr, Sn, Te, As, Cd, Hf, W, Sb, Sm impurities remain in the aqueous phase. The methods permits to determine the impurities above with detection limits from 1x10 -6 to 4x10 -11 g

  5. Creating high-purity angular-momentum-state Rydberg atoms by a pair of unipolar laser pulses

    Science.gov (United States)

    Xin, PeiPei; Cheng, Hong; Zhang, ShanShan; Wang, HanMu; Xu, ZiShan; Liu, HongPing

    2018-04-01

    We propose a method of producing high-purity angular-momentum-state Rydberg atoms by a pair of unipolar laser pulses. The first positive-polarity optical half-cycle pulse is used to prepare an excited-state wave packet while the second one is less intense, but with opposite polarity and time delayed, and is employed to drag back the escaping free electron and clip the shape of the bound Rydberg wave packet, selectively increasing or decreasing a fraction of the angular-momentum components. An intelligent choice of laser parameters such as phase and amplitude helps us to control the orbital-angular-momentum composition of an electron wave packet with more facility; thus, a specified angular-momentum state with high purity can be achieved. This scheme of producing high-purity angular-momentum-state Rydberg atoms has significant application in quantum-information processing.

  6. Effect of the microstructure on electrical properties of high-purity germanium

    Science.gov (United States)

    Podkopaev, O. I.; Shimanskii, A. F.; Molotkovskaya, N. O.; Kulakovskaya, T. V.

    2013-05-01

    The interrelation between the electrical properties and the microstructure of high-purity germanium crystals has been revealed. The electrical conductivity of polycrystalline samples increases and the life-time of nonequilibrium charge carriers in them decreases with a decrease in the crystallite sizes.

  7. High-precision efficiency calibration of a high-purity co-axial germanium detector

    Energy Technology Data Exchange (ETDEWEB)

    Blank, B., E-mail: blank@cenbg.in2p3.fr [Centre d' Etudes Nucléaires de Bordeaux Gradignan, UMR 5797, CNRS/IN2P3, Université de Bordeaux, Chemin du Solarium, BP 120, 33175 Gradignan Cedex (France); Souin, J.; Ascher, P.; Audirac, L.; Canchel, G.; Gerbaux, M.; Grévy, S.; Giovinazzo, J.; Guérin, H.; Nieto, T. Kurtukian; Matea, I. [Centre d' Etudes Nucléaires de Bordeaux Gradignan, UMR 5797, CNRS/IN2P3, Université de Bordeaux, Chemin du Solarium, BP 120, 33175 Gradignan Cedex (France); Bouzomita, H.; Delahaye, P.; Grinyer, G.F.; Thomas, J.C. [Grand Accélérateur National d' Ions Lourds, CEA/DSM, CNRS/IN2P3, Bvd Henri Becquerel, BP 55027, F-14076 CAEN Cedex 5 (France)

    2015-03-11

    A high-purity co-axial germanium detector has been calibrated in efficiency to a precision of about 0.15% over a wide energy range. High-precision scans of the detector crystal and γ-ray source measurements have been compared to Monte-Carlo simulations to adjust the dimensions of a detector model. For this purpose, standard calibration sources and short-lived online sources have been used. The resulting efficiency calibration reaches the precision needed e.g. for branching ratio measurements of super-allowed β decays for tests of the weak-interaction standard model.

  8. High purity liquid phase epitaxial gallium arsenide nuclear radiation detector

    International Nuclear Information System (INIS)

    Alexiev, D.; Butcher, K.S.A.

    1991-11-01

    Surface barrier radiation detector made from high purity liquid phase epitaxial gallium arsenide wafers have been operated as X- and γ-ray detectors at various operating temperatures. Low energy isotopes are resolved including 241 Am at 40 deg C. and the higher gamma energies of 235 U at -80 deg C. 15 refs., 1 tab., 6 figs

  9. Native oxidation of ultra high purity Cu bulk and thin films

    International Nuclear Information System (INIS)

    Iijima, J.; Lim, J.-W.; Hong, S.-H.; Suzuki, S.; Mimura, K.; Isshiki, M.

    2006-01-01

    The effect of microstructure and purity on the native oxidation of Cu was studied by using angle-resolved X-ray photoelectron spectroscopy (AR-XPS) and spectroscopic ellipsometry (SE). A high quality copper film prepared by ion beam deposition under a substrate bias voltage of -50 V (IBD Cu film at V s = -50 V) showed an oxidation resistance as high as an ultra high purity copper (UHP Cu) bulk, whereas a Cu film deposited without substrate bias voltage (IBD Cu film at V s = 0 V) showed lower oxidation resistance. The growth of Cu 2 O layer on the UHP Cu bulk and both types of the films obeyed in principle a logarithmic rate law. However, the growth of oxide layer on the IBD Cu films at V s = 0 and -50 V deviated upward from the logarithmic rate law after the exposure time of 320 and 800 h, respectively. The deviation from the logarithmic law is due to the formation of CuO on the Cu 2 O layer after a critical time

  10. Deuterium permeation and diffusion in high-purity beryllium

    International Nuclear Information System (INIS)

    Abramov, E.; Riehm, M.P.; Thompson, D.A.; Smeltzer, W.W.

    1990-01-01

    The permeation rate of deuterium through high-purity beryllium membranes was measured using the gas-driven permeation technique. The time-dependent and the steady-state deuterium flux data were analyzed and the effective diffusivities of the samples were determined. Using multilayer permeation theory the effects of surface oxide were eliminated and the diffusion coefficients of the bulk beryllium determined. The diffusion parameters obtained for the extra-grade beryllium samples (99.8%) are D 0 =6.7x10 -9 m 2 /s and E D =28.4 kJ/mol. For the high-grade beryllium samples (99%) the parameters are D 0 =8.0x10 -9 m 2 /s and E D =35.1 kJ/mol. (orig.)

  11. State-of-the-art in analytical characterization of high purity solid ...

    Indian Academy of Sciences (India)

    Facilities and some results of several spectroscopic methods which have potential applications in the field of analysis of solid high purity substances and which have been elaborated in Russia, will be discussed in this paper. Laser nondispersive atomic fluorescence method with glow discharge cathode sputtering atomiser, ...

  12. Fabrication of novel cryomill for synthesis of high purity metallic nanoparticles

    Science.gov (United States)

    Kumar, Nirmal; Biswas, Krishanu

    2015-08-01

    The successful preparation of free standing metal nanoparticles with high purity in bulk quantity is the pre-requisite for any potential application. This is possible by using ball milling at cryogenic temperature. However, the most of ball mills available in the market do not allow preparing high purity metal nanoparticles by this route. In addition, it is not possible to carry out in situ measurements of process parameters as well as diagnostic of the process. In the present investigation, we present a detailed study on the fabrication of a cryomill, which is capable of avoiding contaminations in the product. It also provides in situ measurements and diagnostic of the low temperature milling process. Online monitoring of the milling temperature and observation of ball motion are the important aspects in the newly designed mill. The nanoparticles prepared using this fabricated mill have been found to be free standing and also free from contaminations.

  13. High purity zirconium obtainment through the iodine compounds transport method

    International Nuclear Information System (INIS)

    Bolcich, J.C.; Zuzek, E.; Dutrus, S.M.; Corso, H.L.

    1987-01-01

    This paper describes the experimental method and the equipment designed, constructed and actually applied for the high purity zirconium obtainment from a zirconium sponge of the nuclear type. The mechanism of purification is based on the impure metal attack with gaseous iodine (at 200 deg C) to obtain zirconium tetra iodine as main product which is then transformed into a pure zirconium base (at 1000-1300 deg C), precipitating the metallic zirconium and releasing the gaseous iodine. From the first experiences carried out, pure zirconium has been obtained from an initial filament of 0.5 mm of diameter as well as wires up to 2.5 mm of diameter. This work presents the results from the studies and analysis made to characterize the material obtained. Finally, the refining methods to which the zirconium produced may be submitted so as to optimize the final purity are discussed. (Author)

  14. Recycling of high purity selenium from CIGS solar cell waste materials

    Energy Technology Data Exchange (ETDEWEB)

    Gustafsson, Anna M.K., E-mail: anna.gustafsson@chalmers.se; Foreman, Mark R.StJ.; Ekberg, Christian

    2014-10-15

    Highlights: • A new method for recycling of selenium from CIGS solar cell materials is presented. • Separation of selenium as selenium dioxide after heating in oxygen atmosphere. • Complete selenium separation after oxidation of <63 μm particles at 800 °C for 1 h. • After reduction of selenium dioxide the selenium purity was higher than 99.999 wt%. - Abstract: Copper indium gallium diselenide (CIGS) is a promising material in thin film solar cell production. To make CIGS solar cells more competitive, both economically and environmentally, in comparison to other energy sources, methods for recycling are needed. In addition to the generally high price of the material, significant amounts of the metals are lost in the manufacturing process. The feasibility of recycling selenium from CIGS through oxidation at elevated temperatures was therefore examined. During oxidation gaseous selenium dioxide was formed and could be separated from the other elements, which remained in solid state. Upon cooling, the selenium dioxide sublimes and can be collected as crystals. After oxidation for 1 h at 800 °C all of the selenium was separated from the CIGS material. Two different reduction methods for reduction of the selenium dioxide to selenium were tested. In the first reduction method an organic molecule was used as the reducing agent in a Riley reaction. In the second reduction method sulphur dioxide gas was used. Both methods resulted in high purity selenium. This proves that the studied selenium separation method could be the first step in a recycling process aimed at the complete separation and recovery of high purity elements from CIGS.

  15. Variations of color with alloying elements in Pd-free Au-Pt-based high noble dental alloys

    International Nuclear Information System (INIS)

    Shiraishi, Takanobu; Takuma, Yasuko; Miura, Eri; Fujita, Takeshi; Hisatsune, Kunihiro

    2007-01-01

    The effects of alloying addition of a small amount of base metals (In, Sn, Fe, Zn) on color variations in Pd-free Au-Pt-based high noble dental alloys were investigated in terms of rectilinear and polar color coordinates. The ternary Au-Pt-X (X = In, Sn, Fe, Zn) and quaternary Au-Pt-In-Y (Y = Sn, Fe, Zn) alloys were prepared from high purity component metals. The amount of alloying base metals, X and Y, were restricted up to 2 at.%. The alloying addition of a small amount of Fe, In, Sn, to a binary Au-10 at.% Pt alloy (referred to as AP10) effectively increased chroma, C *. On the other hand, the addition of Zn to the parent alloy AP10 did not change color coordinates greatly. The increase in chroma in the present Au-Pt-based high noble alloys was attributed to the increase in the slope of spectral reflectance curve at its absorption edge near 515 nm. It was found that the addition of a small amount of Fe to the parent alloy AP10 markedly increased lightness, L *, and the addition of Sn gave a very light tint of red to the parent alloy. Although red-green chromaticity index a * contributed to chroma to some extent, contribution of yellow-blue chromaticity index b * was much greater in determining chroma in this Pd-free Au-Pt-based multi-component alloys. The present results are expected to be valuable in case color is to be taken into account in designing Pd-free Au-Pt-based high noble dental alloys

  16. Variations of color with alloying elements in Pd-free Au-Pt-based high noble dental alloys

    Energy Technology Data Exchange (ETDEWEB)

    Shiraishi, Takanobu [Department of Dental and Biomedical Materials Science, Unit of Basic Medical Sciences, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki 852-8588 (Japan)]. E-mail: siraisi@nagasaki-u.ac.jp; Takuma, Yasuko [Department of Dental and Biomedical Materials Science, Unit of Basic Medical Sciences, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki 852-8588 (Japan); Miura, Eri [Department of Dental and Biomedical Materials Science, Unit of Basic Medical Sciences, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki 852-8588 (Japan); Fujita, Takeshi [Department of Dental and Biomedical Materials Science, Unit of Basic Medical Sciences, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki 852-8588 (Japan); Hisatsune, Kunihiro [Department of Dental and Biomedical Materials Science, Unit of Basic Medical Sciences, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki 852-8588 (Japan)

    2007-06-15

    The effects of alloying addition of a small amount of base metals (In, Sn, Fe, Zn) on color variations in Pd-free Au-Pt-based high noble dental alloys were investigated in terms of rectilinear and polar color coordinates. The ternary Au-Pt-X (X = In, Sn, Fe, Zn) and quaternary Au-Pt-In-Y (Y = Sn, Fe, Zn) alloys were prepared from high purity component metals. The amount of alloying base metals, X and Y, were restricted up to 2 at.%. The alloying addition of a small amount of Fe, In, Sn, to a binary Au-10 at.% Pt alloy (referred to as AP10) effectively increased chroma, C *. On the other hand, the addition of Zn to the parent alloy AP10 did not change color coordinates greatly. The increase in chroma in the present Au-Pt-based high noble alloys was attributed to the increase in the slope of spectral reflectance curve at its absorption edge near 515 nm. It was found that the addition of a small amount of Fe to the parent alloy AP10 markedly increased lightness, L *, and the addition of Sn gave a very light tint of red to the parent alloy. Although red-green chromaticity index a * contributed to chroma to some extent, contribution of yellow-blue chromaticity index b * was much greater in determining chroma in this Pd-free Au-Pt-based multi-component alloys. The present results are expected to be valuable in case color is to be taken into account in designing Pd-free Au-Pt-based high noble dental alloys.

  17. Color design model of high color rendering index white-light LED module.

    Science.gov (United States)

    Ying, Shang-Ping; Fu, Han-Kuei; Hsieh, Hsin-Hsin; Hsieh, Kun-Yang

    2017-05-10

    The traditional white-light light-emitting diode (LED) is packaged with a single chip and a single phosphor but has a poor color rendering index (CRI). The next-generation package comprises two chips and a single phosphor, has a high CRI, and retains high luminous efficacy. This study employs two chips and two phosphors to improve the diode's color tunability with various proportions of two phosphors and various densities of phosphor in the silicone used. A color design model is established for color fine-tuning of the white-light LED module. The maximum difference between the measured and color-design-model simulated CIE 1931 color coordinates is approximately 0.0063 around a correlated color temperature (CCT) of 2500 K. This study provides a rapid method to obtain the color fine-tuning of a white-light LED module with a high CRI and luminous efficacy.

  18. An ICP AES method for determination of dysprosium and terbium in high purity yttrium oxide

    International Nuclear Information System (INIS)

    Rupawate, V.H.; Hareendran, K.N.; Roy, S.B.

    2011-01-01

    High purity yttrium finds interesting application in astronavigation, luminescence, nuclear energy and metallurgical industries. Most of these applications require yttrium oxide of highest purity. Consequently there is a need for production of high purity yttrium oxide. Separation and purification of yttrium from other rare earths is a challenging task due to their close chemical properties. Liquid-liquid extraction and ion exchange have been widely used in the production of yttrium oxide of highest purity. Determination of impurities, especially other rare earths, in ppm level is required for process development and chemical characterization of the high purity Y 2 O 3 . Many methods have been described in literature. However since the advent of ICP AES much work in this area has been carried out by this technique. This paper describes the work done for determination of dysprosium (Dy) and terbium (Tb) in yttrium oxide using a high resolution sequential ICP AES. Emission spectra of rare earth elements are very complex and due to this complexity it is important to select spectral interference free analyte lines for determination of rare earths in rare earth matrix. For the determination of Dy and Tb in Y 2 O 3 , sensitive lines of Dy and Tb are selected from the instrument wavelength table and spectral interference free emission lines for the determination is selected by scanning around the selected wavelengths using 5 g/L Y solution and 5 mg/L standard solutions of Dy and Tb prepared in 4% nitric acid. It is found 353.170 nm line of Dy and 350.917 nm line Tb is suitable for quantitative determination. The signal to background ratio increases with increase in matrix concentration, i.e. from 1 to 5 mg/L. The optimum forward power is determined and it is found to be 1100W for Dy and 1000W for Tb. The instrument is calibrated using matrix matched standards containing 5g/L of Y matrix. Samples are dissolved in nitric acid and Y concentration is maintained at 5g/L. Two

  19. Void swelling in fast reactor irradiated high purity binary iron-chromium alloys

    International Nuclear Information System (INIS)

    Little, E.A.; Stow, D.A.

    The void swelling characteristics of a series of high purity binary iron-chromium alloys containing 0 - 615 0 C. The void swelling behaviour can be qualitatively rationalized in terms of point defect trapping and precipitation processes involving chromium atoms

  20. High purity samarium oxide from mixed rare earth carbonates

    International Nuclear Information System (INIS)

    Queiroz, Carlos A. da S.; Seneda, Jose A.; Vasconcellos, Mari E. de; Pedreira Filho, Walter dos R.

    2013-01-01

    A simple and economical chemical process for the production of highly pure samarium oxides is discussed. The raw material, which was used in the form of rare earth carbonates was produced industrially from the chemical treatment of Brazilian monazite. Ion exchange chromatography was performed using a strong cationic resin that is typically employed in water treatment processes to fractionate rare earth elements (REE) without the use of retention ions. Under these conditions, 99.9% pure Sm 2 O 3 was eluted using the ammonium salt of ethylenediaminetetraacetic acid (EDTA) at a controlled pH. The EDTA-samarium complex was separated from EDTA and then precipitated as oxalate and fired to samarium oxide. Molecular absorption spectrophotometry was used to monitor the samarium content during the proposed process, and sector field inductively coupled plasma mass spectrometry was used to certify the purity of the samarium oxide. Typical samarium oxide obtained from the proposed procedure contained the following contaminants in micrograms per gram: Sc (20.90); Y (11.80); La (8.4); Ce (4.3); Pr (2.5); Nd (5.1); Eu (94); Gd (114); Tb (3.6); Dy (2.5), Ho (2.3); Er (3.0); Tm (2.3); Yb (38,2); Lu (25.6). The high-purity samarium oxides produced in the present study can be used as an alternative to imported products in research and development applications. (author)

  1. Deuterium permeation and diffusion in high purity beryllium

    International Nuclear Information System (INIS)

    Abramov, E.

    1990-05-01

    The permeation rate of deuterium through high-purity beryllium membranes was measured using the gas-driven permeation technique. The time-dependent and the steady-state deuterium flux data were analyzed and the effective diffusivities of the samples were determined. A multilayer permeation theory was used in order to eliminate the surface oxide effects and the diffusion coefficients of the bulk beryllium were determined. The diffusion parameters obtained for the extra-grade beryllium samples (99.8%) are D 0 = 6.7 x 10 -9 [m 2 /s] and E D = 28.4 [KJ/mol]; and for the high-grade beryllium samples (99%) the parameters are D 0 = 8.0 x 10 -9 [m 2 /s] and E D = 35.1 [KJ/mol

  2. Preparative separation of two subsidiary colors of FD&C Yellow No. 5 (Tartrazine) using spiral high-speed counter-current chromatography.

    Science.gov (United States)

    Weisz, Adrian; Ridge, Clark D; Roque, Jose A; Mazzola, Eugene P; Ito, Yoichiro

    2014-05-23

    Specifications in the U.S. Code of Federal Regulations for the color additive FD&C Yellow No. 5 (Color Index No. 19140) limit the level of the tetrasodium salt of 4-[(4',5-disulfo[1,1'-biphenyl]-2-yl)hydrazono]-4,5-dihydro-5-oxo-1-(4-sulfophenyl)-1H-pyrazole-3-carboxylic acid and that of the trisodium salt of 4,4'-[4,5-dihydro-5-oxo-4-[(4-sulfophenyl)hydrazono]-1H-pyrazol-1,3-diyl]bis[benzenesulfonic acid], which are subsidiary colors abbreviated as Pk5 and Pk7, respectively. Small amounts of Pk5 and Pk7 are needed by the U.S. Food and Drug Administration for confirmatory analyses and for development of analytical methods. The present study describes the use of spiral high-speed counter-current chromatography (HSCCC) to separate the closely related minor components Pk5 and Pk7 from a sample of FD&C Yellow No. 5 containing ∼3.5% Pk5 and ∼0.7% Pk7. The separations were performed with highly polar organic/high-ionic strength aqueous two-phase solvent systems that were chosen by applying the recently introduced method known as graphic optimization of partition coefficients (Zeng et al., 2013). Multiple ∼1.0g portions of FD&C Yellow No. 5 (totaling 6.4g dye) were separated, using the upper phase of the solvent system 1-butanol/abs. ethanol/saturated ammonium sulfate/water, 1.7:0.3:1:1, v/v/v/v, as the mobile phase. After removing the ammonium sulfate from the HSCCC-collected fractions, these separations resulted in an enriched dye mixture (∼160mg) of which Pk5 represented ∼46% and Pk7, ∼21%. Separation of the enriched mixture, this time using the lower phase of that solvent system as the mobile phase, resulted in ∼61mg of Pk5 collected in fractions whose purity ranged from 88.0% to 92.7%. Pk7 (20.7mg, ∼83% purity) was recovered from the upper phase of the column contents. Application of this procedure also resulted in purifying the major component of FD&C Yellow No. 5 to >99% purity. The separated compounds were characterized by high-resolution mass

  3. Recovery of high-purity metallic Pd from Pd(II)-sorbed biosorbents by incineration.

    Science.gov (United States)

    Won, Sung Wook; Lim, Areum; Yun, Yeoung-Sang

    2013-06-01

    This work reports a direct way to recover metallic palladium with high purity from Pd(II)-sorbed polyethylenimine-modified Corynebacterium glutamicum biosorbent using a combined method of biosorption and incineration. This study is focused on the incineration part which affects the purity of recovered Pd. The incineration temperature and the amount of Pd loaded on the biosorbent were considered as major factors in the incineration process, and their effects were examined. The results showed that both factors significantly affected the enhancement of the recovery efficiency and purity of the recovered Pd. SEM-EDX and XRD analyses were used to confirm that Pd phase existed in the ash. As a result, the recovered Pd was changed from PdO to zero-valent Pd as the incineration temperature was increased from 600 to 900°C. Almost 100% pure metallic Pd was recovered with recovery efficiency above 99.0% under the conditions of 900°C and 136.9 mg/g. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. High-purity Cu nanocrystal synthesis by a dynamic decomposition method

    OpenAIRE

    Jian, Xian; Cao, Yu; Chen, Guozhang; Wang, Chao; Tang, Hui; Yin, Liangjun; Luan, Chunhong; Liang, Yinglin; Jiang, Jing; Wu, Sixin; Zeng, Qing; Wang, Fei; Zhang, Chengui

    2014-01-01

    Cu nanocrystals are applied extensively in several fields, particularly in the microelectron, sensor, and catalysis. The catalytic behavior of Cu nanocrystals depends mainly on the structure and particle size. In this work, formation of high-purity Cu nanocrystals is studied using a common chemical vapor deposition precursor of cupric tartrate. This process is investigated through a combined experimental and computational approach. The decomposition kinetics is researched via differential sca...

  5. Simultaneous determination of dysprosium, holmium and erbium in high purity rare earth oxides by second order derivative spectrophotometry

    International Nuclear Information System (INIS)

    Anbu, M.; Prasada Rao, T.; Iyer, C. S. P.; Damodaran, A. D.

    1996-01-01

    High purity individual rare earth oxides are increasingly used as major components in lasers (Y 2 O 3 ), phosphors (YVO 3 , Eu 2 O 3 ), magnetic bubble memory films (Gd 2 O 3 ) and refractive-index lenses and fibre optics (La 2 O 3 ). The determination of individual lanthanides in high purity rare earth oxides is a more important and difficult task. This paper reports the utilization of higher order derivative spectrophotometry for the simultaneous determination of dysprosium, holmium and erbium in high purity rare earth oxides. The developed procedure is simple, reliable and allows the determination of 0.001 to 0.2% of dysprosium, holmium and erbium in several rare earth. (author). 9 refs, 2 figs, 2 tabs

  6. Dissolution of high-purity lead and subsequent crystal growth during the preparation of corrosion coupons

    Energy Technology Data Exchange (ETDEWEB)

    McGarvey, G.B. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada); McDougall, T.E.; Owen, D.G. [Atomic Energy of Canada Limited, Pinawa, Manitoba (Canada)

    1997-07-01

    High-purity lead discs were prepared using several combinations of polishing, rinsing and ultrasonic treatment. Physical degradation of the lead surface and the premature generation and deposition of oxides on the surface were observed for certain combinations of preparation steps. Ultrasonic treatment of the discs was found to be particularly detrimental as it induced significant crystal growth and, in several instances, deterioration of the polished surface. Simple air drying of freshly rinsed discs also led to oxide formation on the surface after as short a time as 1 min. An effective method for preparing discs from high-purity lead is described. (author)

  7. Dissolution of high-purity lead and subsequent crystal growth during the preparation of corrosion coupons

    International Nuclear Information System (INIS)

    McGarvey, G.B.; McDougall, T.E.; Owen, D.G.

    1997-01-01

    High-purity lead discs were prepared using several combinations of polishing, rinsing and ultrasonic treatment. Physical degradation of the lead surface and the premature generation and deposition of oxides on the surface were observed for certain combinations of preparation steps. Ultrasonic treatment of the discs was found to be particularly detrimental as it induced significant crystal growth and, in several instances, deterioration of the polished surface. Simple air drying of freshly rinsed discs also led to oxide formation on the surface after as short a time as 1 min. An effective method for preparing discs from high-purity lead is described. (author)

  8. Release characteristics of tritium from high-purity lithium oxide

    International Nuclear Information System (INIS)

    O'Kula, K.R.; Vogelsang, W.F.

    1985-01-01

    Rates of tritium release from neutronirradiated lithium oxide were determined from isothermal release experiments. High-purity, monocrystalline lithium oxide was purged ex-reactor with helium and helium-hydrogen gas streams. Overall release was found to be controlled by solid-phase diffusion, and was predominantly in the form of condensible species. The result of an independent concentration profile analysis at 923 K was in agreement with the gas release diffusion coefficient. Sweeping the Li 2 O with hydrogen-containing gas was found to enhance tritium removal during the early stage of each run

  9. Novel red phosphors KBaEu(XO4)3 (X = Mo, W) show high color purity and high thermostability from a disordered chained structure.

    Science.gov (United States)

    Wang, G Q; Gong, X H; Chen, Y J; Huang, J H; Lin, Y F; Luo, Z D; Huang, Y D

    2017-05-23

    Two novel red phosphors KBaEu(XO 4 ) 3 (X = Mo, W) have been synthesized by high-temperature solid-state reactions and the crystal structures were determined for the first time. Single-crystal X-ray diffraction data reveal that their space groups are C2/c. The crystalline structure is constituted of K/BaO 8 distorted square antiprisms and distorted EuO 8 polyhedra which form chains lying along the c-axis and two kinds of distorted XO 4 tetrahedra. This high disorder of K/Ba which might lower the crystal field symmetry around Eu 3+ results in the high purity of red emission around 615 nm originating from 5 D 0 → 7 F 2 transition under near-ultraviolet (NUV) excitation. With increasing temperature, the luminescence of KBaEu(XO 4 ) 3 (X = Mo, W) phosphors decreases almost linearly with subtle alteration for the CIE coordinate. As the temperature reaches 550 K, the red emission intensity decreases to 37.3% and 50.7% of that at 300 K for KBaEu(MoO 4 ) 3 and KBaEu(WO 4 ) 3 , respectively. The analysis of the decay curves of the 5 D 0 → 7 F 2 emission at variable temperatures indicates the weak cross relaxation and non-radiative energy transfer between Eu 3+ ions. These results demonstrate that the investigated phosphors are attractive for application in high power NUV excited white LEDs.

  10. Trace elements in high purity materials for advanced technology: contribution of neutron activation analysis and radioanalytical technique

    International Nuclear Information System (INIS)

    Gallorini, M.; Pietra, R.; Sabbioni, E.

    1991-01-01

    Neutron activation analysis and radioanalytical techniques have been employed to investigate problems related to trace elements and high purity technology materials. Applications of these techniques are overviewed: semiconductor technology as in the case of As and In ion implantation in high purity silicon; problems related to trace elements impurities in thermometric measurements; coating materials to prevent trace elements contamination in biological sampling and metals release from human prostheses. (author) 8 refs.; 2 figs.; 8 tabs

  11. Process for producing high purity isoolefins and dimers thereof by dissociation of ethers

    Science.gov (United States)

    Smith, L.A. Jr.; Jones, E.M. Jr.; Hearn, D.

    1984-05-08

    Alkyl tertiary butyl ether or alkyl tertiary amyl ether is dissociated by vapor phase contact with a cation acidic exchange resin at temperatures in the range of 150 to 250 F at LHSV of 0.1 to 20 to produce a stream consisting of unreacted ether, isobutene or isoamylene and an alcohol corresponding to the alkyl radical. After the alcohol is removed, the ether/isoolefin stream may be fractionated to obtain a high purity isoolefin (99+%) or the ether/isoolefin stream can be contacted in liquid phase with a cation acidic exchange resin to selectively dimerize the isoolefin in a highly exothermic reaction, followed by fractionation of the dimerization product to produce high purity diisoolefin (97+%). In the case where the alkyl is C[sub 3] to C[sub 6] and the corresponding alcohol is produced on dissociation of the ether, combined dissociation-distillation may be carried out such that isoolefin is the overhead product and alcohol the bottom. 2 figs.

  12. Preparation of High Purity CdTe for Nuclear Detector: Electrical and Nuclear Characterization

    Science.gov (United States)

    Zaiour, A.; Ayoub, M.; Hamié, A.; Fawaz, A.; Hage-ali, M.

    High purity crystal with controllable electrical properties, however, control of the electrical properties of CdTe has not yet been fully achieved. Using the refined Cd and Te as starting materials, extremely high-purity CdTe single crystals were prepared by the traditional vertical THM. The nature of the defects involved in the transitions was studied by analyzing the position of the energy levels by TSC method. The resolution of 4.2 keV (FWHM) confirms the high quality and stability of the detectors: TSC spectrum was in coherence with detectors spectrum with a horizontal plate between 0.2 and 0.6 eV. The enhancement in resolution of detectors with a full width at half- maximum (less than 0.31 meV), lead to confirm that the combination of vacuum distillation and zone refining was very effective to obtain more purified CdTe single crystals for photovoltaic or nuclear detectors with better physical properties.

  13. High-Purity Fe3S4 Greigite Microcrystals for Magnetic and Electrochemical Performance

    NARCIS (Netherlands)

    Li, Guowei; Zhang, Baomin; Yu, Feng; Novakova, Alla A.; Krivenkov, Maxim S.; Kiseleva, Tatiana Y.; Chang, Liao; Rao, Jiancun; Polyakov, Alexey O.; Blake, Graeme R.; de Groot, Robert A.; Palstra, Thomas T. M.

    2014-01-01

    High-purity Fe3S4 (greigite) microcrystals with octahedral shape were synthesized via a simple hydrothermal method using a surfactant. The as-prepared samples have the inverse spinel structure with high crystallinity. The saturation magnetization (M-s) reaches 3.74 mu(B) at 5 K and 3.51 mu(B) at

  14. Approaches to the accurate characterization of high purity metal fluorides and fluoride glasses

    Science.gov (United States)

    Beary, E. S.; Paulsen, P. J.; Rains, T. C.; Ewing, K. J.; Jaganathan, J.; Aggarwal, I.

    1990-11-01

    The analytical challenges posed by the measurement of trace contaminants in high purity metal fluorides require that innovative chemical preparation procedures be used to enhance existing instrumental techniques. The instrumental techniques used to analyze these difficult matrices must be sensitive enough to detect extremely low levels of trace impurities, and the background interferences derived from the matrix (metal fluoride or glass) must be minimized. A survey of analytical techniques that have the necessary characteristics to analyze these materials will be given. In addition, means of controlling the chemical blank will be presented. Mass and atomic spectrometric techniques will be discussed, specifically graphite furnace atomic absorption spectrometry (GFAAS) and inductively coupled plasma-mass spectrometry (ICP-MS). Analytical procedures using GFAAS and ICP-MS have been developed to determine sub ppb (part per billion) levels of contaminants in high purity fluoride materials.

  15. Recent developments in high purity niobium metal production at CBMM

    International Nuclear Information System (INIS)

    Abdo, Gustavo Giovanni Ribeiro; Sousa, Clovis Antonio de Faria; Guimarães, Rogério Contato; Ribas, Rogério Marques; Vieira, Alaércio Salvador Martins; Menezes, Andréia Duarte; Fridman, Daniel Pallos; Cruz, Edmundo Burgos

    2015-01-01

    CBMM is a global supplier of high quality niobium products including pure niobium, the focus of this paper. CBMM’s position has been consolidated over three decades of producing high purity niobium metal ingots. The company supplies, among other products, commercial and reactor grade niobium ingots. One of the main uses of CBMM’s ingots is for the manufacture of particle accelerators (superconducting radio frequency – SRF – cavities), where the purity and homogeneity of niobium metal is essentially important for good performance. CBMM constantly strives to improve process controls and product quality, and is currently implementing innovations in production, research and development to further improve ingot quality. The main aim is to reduce the content of interstitial elements, such as nitrogen (N), oxygen (O), carbon (C), and hydrogen (H), starting with the raw materials through the final step of ingot production. CBMM held the first trial to produce the world’s largest-diameter niobium ingot (as cast 535 mm). The results of this initial trial presented very low levels of interstitial impurities (N, O, C, H), allowing the achievement of residual resistivity ratio (RRR) values very close to 300 in a six-melt process in an electron beam furnace. These values were reached with 850 ppm of tantalum. SRF cavities will be produced with this material in order to study the effect of low impurities and high RRR on the Q factor and accelerating gradient

  16. High purity heavy water production: need for total organic carbon determination in process water streams

    International Nuclear Information System (INIS)

    Ayushi; Kumar, Sangita D.; Reddy, A.V.R.; Vithal, G.K.

    2009-01-01

    In recent times, demand for high purity heavy water (99.98% pure) in industries and laboratories has grown by manifold. Its application started in nuclear industry with the design of CANDU reactor, which uses natural uranium as fuel. In this reactor the purest grade of heavy water is used as the moderator and the primary coolant. Diverse industrial applications like fibre optics, medicine, semiconductors etc. use high purity heavy water extensively to achieve better performance of the specific material. In all these applications there is a stringent requirement that the total organic carbon content (TOC) of high purity heavy water should be very low. This is because the presence of TOC can lead to adverse interactions in different applications. To minimize the TOC content in the final product there is a need to monitor and control the TOC content at each and every stage of heavy water production. Hence a simple, rapid and accurate method was developed for the determination of TOC content in process water samples. The paper summarizes the results obtained for the TOC content in the water samples collected from process streams of heavy water production plant. (author)

  17. Charge collection performance of a segmented planar high-purity germanium detector

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, R.J. [Department of Physics, The University of Liverpool, Oliver Lodge Laboratory, Liverpool Merseyside L69 7ZE (United Kingdom)], E-mail: R.Cooper@liverpool.ac.uk; Boston, A.J.; Boston, H.C.; Cresswell, J.R.; Grint, A.N.; Harkness, L.J.; Nolan, P.J.; Oxley, D.C.; Scraggs, D.P. [Department of Physics, The University of Liverpool, Oliver Lodge Laboratory, Liverpool Merseyside L69 7ZE (United Kingdom); Lazarus, I.; Simpson, J. [STFC Daresbury Laboratory, Warrington, Cheshire WA4 4AD (United Kingdom); Dobson, J. [Rosemere Cancer Centre, Royal Preston Hospital, Preston PR2 9HT (United Kingdom)

    2008-10-01

    High-precision scans of a segmented planar high-purity germanium (HPGe) detector have been performed with a range of finely collimated gamma ray beams allowing the response as a function of gamma ray interaction position to be quantified. This has allowed the development of parametric pulse shape analysis (PSA) techniques and algorithms for the correction of imperfections in performance. In this paper we report on the performance of this detector, designed for use in a positron emission tomography (PET) development system.

  18. Amplitude dependent damping in single crystalline high purity molybdenum

    International Nuclear Information System (INIS)

    Zelada-Lambri, G.I; Lambri, O.A; Garcia, J.A; Lomer, J.N

    2004-01-01

    Amplitude dependent damping measurements were performed on high purity single crystalline molybdenum at several different constant temperatures between room temperature and 1273K. The employed samples were single crystals with the orientation, having a residual resistivity ratio of about 8000. Previously to the amplitude dependent damping tests, the samples were subjected to different thermomechanical histories. Amplitude dependent damping effects appear only during the first heating run in temperature where the samples have the thermomechanical state of the deformation process at room temperature. In the subsequent run-ups in temperature, i.e, after subsequent annealings, amplitude dependent damping effects were not detected (au)

  19. A COLOR THAT COMMUNICATES WITHOUT A WORD – "WHITE"

    OpenAIRE

    Shivani Sharma; Vandana Bharti

    2017-01-01

    The meaning of color white is purity, innocence, wholeness and completeness. It is the color produced by the combination of all the colors of visible spectrum.The color white belongs to ancient history. During the Paleolithic age, the artists used calcite and in chalk in their paintings. Egyptians connected it with their goddess Isis,who only dressed in white linen and hence used to wrap mummies.White was often associated with mother’s milk, in Greek mythology .White is the color of the human...

  20. Comparison of Deformation in High-Purity Single/Large Grain and Polycrystalline Niobium Superconducting Cavities

    International Nuclear Information System (INIS)

    Ganapati Rao Myneni; Peter Kneisel

    2005-01-01

    The current approach for the fabrication of superconducting radio frequency (SRF) cavities is to roll and deep draw sheets of polycrystalline high-purity niobium. Recently, a new technique was developed at Jefferson Laboratory that enables the fabrication of single-crystal high-purity Nb SRF cavities. To better understand the differences between SRF cavities fabricated out of fine-grained polycrystalline sheet in the standard manner and single crystal cavities fabricated by the new technique, two half-cells were produced according to the two different procedures and compared using a variety of analytical techniques including optical microscopy, scanning laser confocal microscopy, profilometry, and X-ray diffraction. Crystallographic orientations, texture, and residual stresses were determined in the samples before and after forming and this poster presents the results of this ongoing study

  1. Human parvovirus B19 infection in hemophiliacs first infused with two high-purity, virally attenuated factor VIII concentrates.

    Science.gov (United States)

    Azzi, A; Ciappi, S; Zakvrzewska, K; Morfini, M; Mariani, G; Mannucci, P M

    1992-03-01

    Human parvovirus B19 can be transmitted by coagulation factor concentrates and is highly resistant to virucidal methods. To evaluate whether the additional removal of virus by chromatographic methods during the manufacture of high-purity concentrates reduces the risk of B19 transmission, we have prospectively evaluated the rate of anti-B19 seroconversion in two groups of susceptible (anti-B19 negative) hemophiliacs infused with high-purity, heated (pasteurized) or solvent-detergent-treated factor VIII concentrates. Both products infected a relatively high proportion of patients (nine of 20).

  2. High purity and semi-insulating 4H-SiC crystals grown by physical vapor transport

    Energy Technology Data Exchange (ETDEWEB)

    Augustine, G.; Hobgood, H.McD.; Balakrishna, V.; Dunne, G.T.; Hopkins, R.H.; Thomas, R.N. [Northrop Grumman Corp., Pittsburgh, PA (United States). Science and Technology Center; Doolittle, W.A.; Rohatgi, A. [Georgia Inst. of Tech., Atlanta, GA (United States). School of Electrical and Computer Engineering

    1998-06-01

    High purity undoped and semi-insulating vanadium doped 4H-SiC single crystals with diameters up to 50 mm were grown by the physical vapor transport method. Undoped crystals exhibiting resistivities in the 10{sup 2} to 10{sup 3} {Omega}-cm range and photoconductive decay (PCD) lifetimes in the 2 to 9 {mu}s range, were grown from high purity SiC sublimation sources. The crystals were p-type due to the presence of residual acceptor impurities, mainly boron. The semi-insulating behavior of the vanadium doped crystals is attributed to compensation of residual acceptors by the deep level vanadium donor located near the middle of the band gap. (orig.) 6 refs.

  3. Preparative separation of two subsidiary colors of FD&C Yellow No. 5 (Tartrazine) using spiral high-speed counter-current chromatography◊

    Science.gov (United States)

    Roque, Jose A.; Mazzola, Eugene P.; Ito, Yoichiro

    2014-01-01

    Specifications in the U.S. Code of Federal Regulations for the color additive FD&C Yellow No. 5 (Colour Index No. 19140) limit the level of the tetrasodium salt of 4-[(4',5-disulfo[1,1'-biphenyl]-2-yl)hydrazono]-4,5-dihydro-5-oxo-1-(4-sulfophenyl)-1H-pyrazole-3-carboxylic acid and that of the trisodium salt of 4,4'-[4,5-dihydro-5-oxo-4-[(4-sulfophenyl)hydrazono]-1H-pyrazol-1,3-diyl]bis[benzenesulfonic acid], which are subsidiary colors abbreviated as Pk5 and Pk7, respectively. Small amounts of Pk5 and Pk7 are needed by the U.S. Food and Drug Administration for confirmatory analyses and for development of analytical methods. The present study describes the use of spiral high-speed counter-current chromatography (HSCCC) with the recently introduced highly polar organic/high-ionic strength aqueous solvent systems to separate Pk5 and Pk7 from a sample of FD&C Yellow No. 5 containing ~3.5% Pk5 and ~0.7% Pk7. Multiple ~1.0 g portions of FD&C Yellow No. 5 (totaling 6.4 g dye) were separated, using the upper phase of the solvent system 1-BuOH/EtOHabs/saturated ammonium sulfate/water, 1.7:0.3:1:1, v/v/v/v, as the mobile phase. After applying a specially developed method for removing the ammonium sulfate from the HSCCC-collected fractions, these separations resulted in an enriched mixture (~160 mg) of Pk5 and Pk7 (~46% and ~21%, respectively). Separation of the enriched mixture, this time using the lower phase of that solvent system as the mobile phase, resulted in ~ 61 mg of Pk5 collected in fractions whose purity ranged from 88.0% to 92.7% (by HPLC at 254 nm). Pk7 (20.7 mg, ~83% purity) was recovered from the upper phase of the column content. Application of this procedure also resulted in purifying the major component of FD&C Yellow No. 5 to >99% purity. The separated compounds were characterized by high-resolution mass spectrometry and several 1H and 13C nuclear magnetic resonance spectroscopic techniques (COSY, NOESY, HSQC, and HMBC). PMID:24755184

  4. Preparation of high-purity cerium nitrate; Preparacao de nitrato de cerio de alta pureza

    Energy Technology Data Exchange (ETDEWEB)

    Avila, Daniela Moraes; Silva Queiroz, Carlos Alberto da; Santos Mucillo, Eliana Navarro dos [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil)

    1995-12-31

    The preparation of high-purity cerium nitrate has been carried out Cerium oxide has been prepared by fractioned precipitation and ionic exchange techniques, using a concentrate with approximately 85% of cerium oxide from NUCLEMON as raw material. Five sequential ion-exchange columns with a retention capacity of 170 g each have been used. The ethylenediamine-tetraacetic acid (EDTA) was used as eluent. The cerium content has been determined by gravimetry and iodometry techniques. The resulting cerium oxide has a purity > 99%. This material was transformed in cerium nitrate to be used as precursor for the preparation of Zirconia-ceria ceramics by the coprecipitation technique. (author) 2 tabs.

  5. Rare earth impurities in high purity lanthanum oxide determined by neutron activation analysis

    International Nuclear Information System (INIS)

    Nguyen Van Suc; Desai, H.B.; Parthasarathy, R.; Gangadharan, S.

    1992-01-01

    Individual rare earth impurities in high purity La 2 O 3 (≥99.9%) have been determined by NAA after pre-separation of the matrix (La). The separation is carried out on an anion exchanger (Dowex 1x8) using different mixtures of methanol/nitric acid as eluants. The rare earth elements from Dy to Lu are eluted quantitatively using a 10% 1M HNO 3 - 90% methanol mixture, while the light rare earths from Ce to Gd are eluted quantitatively using a 10% 0.05M HNO 3 - 90% methanol mixture. La, which is retained on the column, is eluted using 0.1M HNO 3 . The recoveries of the various rare earth elements have been checked using radiotracers and also by spiking the sample with known amount of elements, and the recoveries are found to be quantitative. Results obtained on a typical high purity lanthanum oxide are reported here. (author) 5 refs.; 1 fig

  6. Radiochemical neutron activation analysis based multi-elemental analysis of high purity gallium

    International Nuclear Information System (INIS)

    Tashimova, F.A.; Sadikov, I.I; Salimov, M.I.; Zinov'ev, V.G.

    2006-01-01

    Full text: Gallium is one of the widely used materials in semiconductor and optoelectronics industry. Gallium is used to produce infrared detectors, piezoelectric sensors, high- and low-temperature transistors for space and defense technology. One of the most important requirements for semiconductor materials of gallium compounds is an excessive high purity for layers and films. Information on impurities (type of an impurity, concentration, character of distribution) is important as for better understanding of the physical and chemical processes taking place in formed semiconductor structures and for the 'know-how' of devices on their basis. The object of this work is to develop radiochemical neutron activation technique for analysis of high purity gallium. Irradiation of 0.1 g of gallium sample in neutron flux of 5·10 13 cm -2 s -1 for 5 hours will result in induced activity of more than 10 8 Bq, due to 72 Ga radionuclide, half-life of which is 14.1 hours. Therefore to perform instrumental NAA of gallium long period (10 day) cooling is required, and high sensitive determination of elements producing short- and long-lived radionuclides (T 1/2 72 Ga. We have studied the behavior of gallium in extraction-chromatographic system 'TBP-HCl'. The experiments have shown that higher factor of distribution (D) and capacity on gallium can be achieved when 'TBP-4M HCl' system is used. However more than 10 trace elements have high D and thus they cannot be separated from 72 Ga. To resolve the problem and increase the number of separated trace elements we have used preliminary satisfaction of chromatographic column with tellurium, which has D higher than the most of elements in 'TBP-4M HCl' system and thus suppresses extraction of elements. Distribution profile of gallium along the column and elution curve of 25 trace elements have been measured. Chemical yields of separated elements measured by using radiotracers are more than 93%. On the basis of the carried out researches

  7. Obtention of high purity silica from the flotation waste of itabiritic ore

    International Nuclear Information System (INIS)

    Martins, Polyana Fabricia Fernandes

    2016-01-01

    Banded iron formations are exploited as iron mineral in 'Quadrilatero Ferrifero' of Minas Gerais (MG) State, Brazil. About half of the amount of extracted material becomes tailings, which are stored in tailing dams or used for filling mining pits. Tens of thousands of tons are generated daily in operating mines in this region, causing concern about the environmental liabilities, and costs to manage the tailing dams. Miners are committed to finding uses for these wastes in other productive chains. This thesis aimed to obtain high purity silica from the flotation tailings of banded iron formations using classical techniques for ore processing, such as particle size classification and magnetic separation, followed by hydrometallurgical leaching, also alkaline fusion and chemical precipitation. The tailings samples was collected in the tailings dam of Peak Mine operated by Vale A.S., in Itabirito – MG. This sample had initially 33.4% by weight SiO 2 , 57.4% wt Fe 2 O 3 and 8.31% wt Al 2 O 3 . After desliming for disposal of the fine particles (-37μm) the composition was 68.0% SiO 2 , 31.4% Fe 2 O 3 and 0.50% Al 2 O 3 . After magnetic separation, the composition was 93.8% SiO 2 , 1.16% Fe 2 O 3 and 3.80% Al 2 O 3 . After acid leaching l or digestion to remove impurities, it was possible to obtain silica with 98% purity. The fusion with sodium hydroxide, followed by alkaline leaching of sodium silicate and silica precipitation gave purities of about 99.5%. Values even higher may be possible with optimization of the parameters of alkaline fusion or by repeating the process from the product with purity of 99.5%. The iron oxide content and the aluminum main contaminants were 0.01% and 0.07%, respectively. Amorphous silica was obtained with high specific surface (322 m 2 /g) and particle size less than 200 nm. Depending on the application, a control should be made for the impurities, such as phosphorus, potassium and boron. (author)

  8. Preparation of high purity yttrium single crystals by electrotransport

    International Nuclear Information System (INIS)

    Volkov, V.T.; Nikiforova, T.V.; Ionov, A.M.; Pustovit, A.N.; Sikharulidse, G.G.

    1981-01-01

    The possibility of obtaining yttrium crystals of high purity by the method of solid state electrotransport (SSE) was investigated in the present work. The behaviour of low contents of iron, aluminium, silicon, tantalum, copper, silver and vanadium as metallic impurities was studied using mass spectrometry. It is shown that all the impurities investigated, except copper, migrate to the anode. During electrotransfer a purification with respect to these impurities by a factor of 4 - 6 is obtained. It is proposed that the diffusion coefficients of the metallic impurities investigated are anomalously high and that the behaviour of the impurities during SSE in adapters necessitates further investigation. By using a three-stage process with intermediate removal of the anode end yttrium single crystals with a resistance ratio rho 293 /rhosub(4.2)=570 were produced. (Auth.)

  9. Investigation of sulphides in iron alloys of high purity

    International Nuclear Information System (INIS)

    Wyjadlowski, T.

    1973-01-01

    This research thesis reports the study of the morphology and composition of sulphides in iron alloys with respect to metal composition and to the nature of impurities. In order to understand the specific action of each addition on inclusion morphology, this work has started with high-purity alloys (binary alloys and then ternary alloys). The author studied whether solubility variations would entail either intergranular or intragranular or hybrid iron sulphide precipitation. He examined whether sulphide morphology is depending on thermal treatment, and whether equilibrium precipitates were different in terms of morphology and composition at high and room temperature. He studied the influence of addition elements on sulphide morphology and composition, an important issue as some elements may reduce brittleness. These elements are classified in terms of affinity with sulphur

  10. Germanium field-effect transistor made from a high-purity substrate

    International Nuclear Information System (INIS)

    Hansen, W.L.; Goulding, F.S.; Haller, E.E.

    1978-11-01

    Field effect transistors have been fabricated on high-purity germanium substrates using low-temperature technology. The aim of this work is to preserve the low density of trapping centers in high-quality starting material by low-temperature ( 0 C) processing. The use of germanium promises to eliminate some of the traps which cause generation-recombination noise in silicon field-effect transistors (FET's) at low temperatures. Typically, the transconductance (g/sub m/) in the germanium FET's is 10 mA/V and the gate leakage can be less than 10 -12 A. Present devices exhibit a large 1/f noise component and most of this noise must be eliminated if they are to be competitive with silicon FET's commonly used in high-resolution nuclear spectrometers

  11. The ion-exchange obtaining of high purity samarium oxide

    International Nuclear Information System (INIS)

    Brzyska, W.; Soltysiak, I.; Cygan, J.

    1987-01-01

    The use of lactic acid - EDTA mixture as an eluent for the obtaining of high purity samarium oxide was studied. The studies were carried out at room temperature on cation exchange resin Wofatit KPS X 8. The best results were obtained for lactic acid (0,26 mol/dm 3 ) - EDTA (0,013 mol/dm 3 ) mixture at pH 3,3. As the result of 57% samarium concentrate elution with column load 1:3 and flow rate 0,4 cm/min, over 99% pure samarium oxide with 73% yield has been obtained. The yield of spectrally pure Sm 2 O 3 exceeded 45%. (author)

  12. Improved procedure for high purity gaseous peroxyacyl nitrate production: use of heavy lipid solvents

    Energy Technology Data Exchange (ETDEWEB)

    Gaffney, J S; Fajer, R; Senum, G I

    1984-01-01

    An improved procedure is described for the production of peroxyacyl nitrates (PAN's) in the gas phase. The method of Nielsen et al. (1982) has been modified to yield PAN's of high purity with no further chromatographic purification required. Extraction of PAN's from the nitration of the peracids is accomplished by use of a heavy lipid solvent (n-tridecane). This solvent's low vapor pressure allows the simple separation and preparation of high purity gaseous PAN's (>98%) as determined by Fourier transform infrared spectroscopy (FTIR). Using this method infrared integrated band strengths are reported for peroxyacetyl nitrate (PAN) perdeutero-peroxyacetyl nitrate (PAN-D/sub 3/) and peroxyproprionyl nitrate (PPN). The method allows facile production of large amounts of gaseous PAN's for smog chamber and laboratory studies, toxicological and health effects research, as well as for calibration of PAN analyses.

  13. Shock loading influence on mechanical behavior of high purity iron

    International Nuclear Information System (INIS)

    Buy, Francois; Voltz, Christophe

    2004-01-01

    This paper proposes the analysis of shock wave effects for high purity iron. The method developed is based on the characterization of the mechanical behavior of as received and shocked material. Shock effect is generated through plate impact tests performed in the range of 4 GPa to 39 GPa on a single stage light gas gun or a powder gun. Therefore, as-received and impacted materials are characterized. A formalism proposed by J.R.Klepaczko and based on physical relations has been adopted to describe stress strain curves

  14. Tests of models of color reconnection and a search for glueballs using gluon jets with a rapidity gap

    CERN Document Server

    Abbiendi, G.; Akesson, P.F.; Alexander, G.; Allison, John; Amaral, P.; Anagnostou, G.; Anderson, K.J.; Arcelli, S.; Asai, S.; Axen, D.; Azuelos, G.; Bailey, I.; Barberio, E.; Barlow, R.J.; Batley, R.J.; Bechtle, P.; Behnke, T.; Bell, Kenneth Watson; Bell, P.J.; Bella, G.; Bellerive, A.; Benelli, G.; Bethke, S.; Biebel, O.; Boeriu, O.; Bock, P.; Boutemeur, M.; Braibant, S.; Brigliadori, L.; Brown, Robert M.; Buesser, K.; Burckhart, H.J.; Campana, S.; Carnegie, R.K.; Caron, B.; Carter, A.A.; Carter, J.R.; Chang, C.Y.; Charlton, David G.; Csilling, A.; Cuffiani, M.; Dado, S.; De Roeck, A.; De Wolf, E.A.; Desch, K.; Dienes, B.; Donkers, M.; Dubbert, J.; Duchovni, E.; Duckeck, G.; Duerdoth, I.P.; Etzion, E.; Fabbri, F.; Feld, L.; Ferrari, P.; Fiedler, F.; Fleck, I.; Ford, M.; Frey, A.; Furtjes, A.; Gagnon, P.; Gary, John William; Gaycken, G.; Geich-Gimbel, C.; Giacomelli, G.; Giacomelli, P.; Giunta, Marina; Goldberg, J.; Gross, E.; Grunhaus, J.; Gruwe, M.; Gunther, P.O.; Gupta, A.; Hajdu, C.; Hamann, M.; Hanson, G.G.; Harder, K.; Harel, A.; Harin-Dirac, M.; Hauschild, M.; Hawkes, C.M.; Hawkings, R.; Hemingway, R.J.; Hensel, C.; Herten, G.; Heuer, R.D.; Hill, J.C.; Hoffman, Kara Dion; Horvath, D.; Igo-Kemenes, P.; Ishii, K.; Jeremie, H.; Jovanovic, P.; Junk, T.R.; Kanaya, N.; Kanzaki, J.; Karapetian, G.; Karlen, D.; Kawagoe, K.; Kawamoto, T.; Keeler, R.K.; Kellogg, R.G.; Kennedy, B.W.; Kim, D.H.; Klein, K.; Klier, A.; Kluth, S.; Kobayashi, T.; Kobel, M.; Komamiya, S.; Kormos, Laura L.; Kramer, T.; Krieger, P.; von Krogh, J.; Kruger, K.; Kuhl, T.; Kupper, M.; Lafferty, G.D.; Landsman, H.; Lanske, D.; Layter, J.G.; Leins, A.; Lellouch, D.; Lettso, J.; Levinson, L.; Lillich, J.; Lloyd, S.L.; Loebinger, F.K.; Lu, J.; Ludwig, J.; Macpherson, A.; Mader, W.; Marcellini, S.; Martin, A.J.; Masetti, G.; Mashimo, T.; Mattig, Peter; McDonald, W.J.; McKenna, J.; McMahon, T.J.; McPherson, R.A.; Meijers, F.; Menges, W.; Merritt, F.S.; Mes, H.; Michelini, A.; Mihara, S.; Mikenberg, G.; Miller, D.J.; Moed, S.; Mohr, W.; Mori, T.; Mutter, A.; Nagai, K.; Nakamura, I.; Nanjo, H.; Neal, H.A.; Nisius, R.; O'Neale, S.W.; Oh, A.; Okpara, A.; Oreglia, M.J.; Orito, S.; Pahl, C.; Pasztor, G.; Pater, J.R.; Patrick, G.N.; Pilcher, J.E.; Pinfold, J.; Plane, David E.; Poli, B.; Polok, J.; Pooth, O.; Przybycien, M.; Quadt, A.; Rabbertz, K.; Rembser, C.; Renkel, P.; Roney, J.M.; Rosati, S.; Rozen, Y.; Runge, K.; Sachs, K.; Saeki, T.; Sarkisyan, E.K.G.; Schaile, A.D.; Schaile, O.; Scharff-Hansen, P.; Schieck, J.; Schoerner-Sadenius, Thomas; Schroder, Matthias; Schumacher, M.; Schwick, C.; Scott, W.G.; Seuster, R.; Shears, T.G.; Shen, B.C.; Sherwood, P.; Siroli, G.; Skuja, A.; Smith, A.M.; Sobie, R.; Soldner-Rembold, S.; Spano, F.; Stahl, A.; Stephens, K.; Strom, David M.; Strohmer, R.; Tarem, S.; Tasevsky, M.; Taylor, R.J.; Teuscher, R.; Thomson, M.A.; Torrence, E.; Toya, D.; Tran, P.; Trigger, I.; Trocsanyi, Z.; Tsur, E.; Turner-Watson, M.F.; Ueda, I.; Ujvari, B.; Vollmer, C.F.; Vannerem, P.; Vertesi, R.; Verzocchi, M.; Voss, H.; Vossebeld, J.; Waller, D.; Ward, C.P.; Ward, D.R.; Watkins, P.M.; Watson, A.T.; Watson, N.K.; Wells, P.S.; Wengler, T.; Wermes, N.; Wetterling, D.; Wilson, G.W.; Wilson, J.A.; Wolf, G.; Wyatt, T.R.; Yamashita, S.; Zer-Zion, D.; Zivkovic, Lidija

    2004-01-01

    Gluon jets with a mean energy of 22 GeV and purity of 95% are selected from hadronic Z0 decay events produced in e+e- annihilations. A subsample of these jets is identified which exhibits a large gap in the rapidity distribution of particles within the jet. After imposing the requirement of a rapidity gap, the gluon jet purity is 86%. These jets are observed to demonstrate a high degree of sensitivity to the presence of color reconnection, i.e. higher order QCD processes affecting the underlying color structure. We use our data to test three QCD models which include a simulation of color reconnection: one in the Ariadne Monte Carlo, one in the Herwig Monte Carlo, and the other by Rathsman in the Pythia Monte Carlo. We find the Rathsman and Ariadne color reconnection models can describe our gluon jet measurements only if very large values are used for the cutoff parameters which serve to terminate the parton showers, and that the description of inclusive Z0 data is significantly degraded in this case. We concl...

  15. In vitro characterization of high purity factor IX concentrates for the treatment of hemophilia B.

    Science.gov (United States)

    Limentani, S A; Gowell, K P; Deitcher, S R

    1995-04-01

    This study employed sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis and immunoblotting to assess the purity of seven high purity factor IX concentrates: Aimafix (Aima), AlphaNine-SD (Alpha Therapeutic), Factor IX VHP (Biotransfusion), Immunine (Immuno), Mononine (Armour Pharmaceutical), Nanotiv (Kabi Pharmacia), and 9MC (Blood Products Laboratory). The mean specific activity of these products ranged from 68 U factor IX/mg (Aimafix) to 246 U factor IX/mg (Mononine). SDS-PAGE analysis showed that the highest purity product, Mononine, had a single contaminating band under non-reducing conditions. Two additional bands were detected when this product was analyzed under reducing conditions. All other products had multiple contaminating bands that were more apparent under reducing than non-reducing conditions. The immunoblot for factor IX showed a dominant factor IX band for all products. In addition, visible light chain of factor IX was detected for AlphaNine-SD, Factor IX VHP, Immunine, Mononine, Nanotiv, and 9MC, suggesting that the factor IX in these products had undergone partial activation to factor IXa. Another contaminating band was visible at 49,500 for all of the products except 9MC. In addition to this band, high molecular weight contaminants were apparent for some products, most notably AlphaNine-SD. The identity of these bands is unknown. Immunoblotting failed to demonstrate factor VII as a contaminant of any of the high purity products, although factor VIIa could be detected in some lots of Immunine, Nanotiv, and 9MC by a clot-based assay. Factor X contaminated Aimafix, AlphaNine-SD, Factor IX VHP, Immunine, Nanotiv, and 9MC, but activation products of factor X were not detected.(ABSTRACT TRUNCATED AT 250 WORDS)

  16. Methods to improve and understand the sensitivity of high purity germanium detectors for searches of rare events

    International Nuclear Information System (INIS)

    Volynets, Oleksandr

    2012-01-01

    Observation of neutrinoless double beta-decay could answer fundamental questions on the nature of neutrinos. High purity germanium detectors are well suited to search for this rare process in germanium. Successful operation of such experiments requires a good understanding of the detectors and the sources of background. Possible background sources not considered before in the presently running GERDA high purity germanium detector experiment were studied. Pulse shape analysis using artificial neural networks was used to distinguish between signal-like and background-like events. Pulse shape simulation was used to investigate systematic effects influencing the efficiency of the method. Possibilities to localize the origin of unwanted radiation using Compton back-tracking in a granular detector system were examined. Systematic effects in high purity germanium detectors influencing their performance have been further investigated using segmented detectors. The behavior of the detector response at different operational temperatures was studied. The anisotropy effects due to the crystallographic structure of germanium were facilitated in a novel way to determine the orientation of the crystallographic axes.

  17. Methods to improve and understand the sensitivity of high purity germanium detectors for searches of rare events

    Energy Technology Data Exchange (ETDEWEB)

    Volynets, Oleksandr

    2012-07-27

    Observation of neutrinoless double beta-decay could answer fundamental questions on the nature of neutrinos. High purity germanium detectors are well suited to search for this rare process in germanium. Successful operation of such experiments requires a good understanding of the detectors and the sources of background. Possible background sources not considered before in the presently running GERDA high purity germanium detector experiment were studied. Pulse shape analysis using artificial neural networks was used to distinguish between signal-like and background-like events. Pulse shape simulation was used to investigate systematic effects influencing the efficiency of the method. Possibilities to localize the origin of unwanted radiation using Compton back-tracking in a granular detector system were examined. Systematic effects in high purity germanium detectors influencing their performance have been further investigated using segmented detectors. The behavior of the detector response at different operational temperatures was studied. The anisotropy effects due to the crystallographic structure of germanium were facilitated in a novel way to determine the orientation of the crystallographic axes.

  18. Room temperature synthesis of ultra-small, near-unity single-sized lead halide perovskite quantum dots with wide color emission tunability, high color purity and high brightness

    Science.gov (United States)

    Peng, Lucheng; Geng, Jing; Ai, Lisha; Zhang, Ying; Xie, Renguo; Yang, Wensheng

    2016-08-01

    Phosphor with extremely narrow emission line widths, high brightness, and wide color emission tunability in visible regions is required for display and lighting applications, yet none has been reported in the literature so far. In the present study, single-sized lead halide perovskite (APbX 3; A = CH3NH3 and Cs; X = Cl, Br, and I) nanocrystalline (NC) phosphors were achieved for the first time in a one-pot reaction at room temperature (25 °C). The size-dependent samples, which included four families of CsPbBr3 NCs and exhibited sharp excitonic absorption peaks and pure band gap emission, were directly obtained by simply varying the concentration of ligands. The continuity of the optical spectrum can be successively tuned over the entire UV-visible spectral region (360-610 nm) by preparing CsPbCl3, CsPbI3, and CsPb(Y/Br)3 (Y = Cl and I) NCs with the use of CsPbBr3 NCs as templates by anion exchange while maintaining the size of NCs and high quantum yields of up to 80%. Notably, an emission line width of 10-24 nm, which is completely consistent with that of their single particles, indicates the formation of single-sized NCs. The versatility of the synthetic strategy was validated by extending it to the synthesis of single-sized CH3NH3PbX 3 NCs by simply replacing the cesium precursor by the CH3NH3 X precursor.

  19. High resolution gamma-ray spectroscopy at high count rates with a prototype High Purity Germanium detector

    Science.gov (United States)

    Cooper, R. J.; Amman, M.; Vetter, K.

    2018-04-01

    High-resolution gamma-ray spectrometers are required for applications in nuclear safeguards, emergency response, and fundamental nuclear physics. To overcome one of the shortcomings of conventional High Purity Germanium (HPGe) detectors, we have developed a prototype device capable of achieving high event throughput and high energy resolution at very high count rates. This device, the design of which we have previously reported on, features a planar HPGe crystal with a reduced-capacitance strip electrode geometry. This design is intended to provide good energy resolution at the short shaping or digital filter times that are required for high rate operation and which are enabled by the fast charge collection afforded by the planar geometry crystal. In this work, we report on the initial performance of the system at count rates up to and including two million counts per second.

  20. Full-color tuning in binary polymer:perovskite nanocrystals organic-inorganic hybrid blends

    Science.gov (United States)

    Perulli, A.; Balena, A.; Fernandez, M.; Nedelcu, G.; Cretí, A.; Kovalenko, M. V.; Lomascolo, M.; Anni, M.

    2018-04-01

    The excellent optical and electronic properties of metal halide perovskites recently proposed these materials as interesting active materials for optoelectronic applications. In particular, the high color purity of perovskite colloidal nanocrystals (NCs) had recently motivated their exploration as active materials for light emitting diodes with tunable emission across the visible range. In this work, we investigated the emission properties of binary blends of conjugated polymers and perovskite NCs. We demonstrate that the emission color of the blends is determined by the superposition of the component photoluminescence spectra, allowing color tuning by acting on the blend relative composition. The use of two different polymers, two different perovskite NCs, and different blend compositions is exploited to tune the blend color in the blue-green, yellow-red, and blue-red ranges, including white light generation.

  1. Obtaining water with a high degree of purity by using reverse osmosis

    Directory of Open Access Journals (Sweden)

    Nicolae Chirilă

    2011-12-01

    Full Text Available In this paper, we used the method of reverse osmosis in order to obtain water with a high degree of purity. For this aim, we used the TKA 20-120ECO device. We completed physic-chemical determinations for the water of supply, as well as for the water obtained after the osmosis process. The results that we obtained are relevant and interesting.

  2. A solvent-extraction module for cyclotron production of high-purity technetium-99m.

    Science.gov (United States)

    Martini, Petra; Boschi, Alessandra; Cicoria, Gianfranco; Uccelli, Licia; Pasquali, Micòl; Duatti, Adriano; Pupillo, Gaia; Marengo, Mario; Loriggiola, Massimo; Esposito, Juan

    2016-12-01

    The design and fabrication of a fully-automated, remotely controlled module for the extraction and purification of technetium-99m (Tc-99m), produced by proton bombardment of enriched Mo-100 molybdenum metallic targets in a low-energy medical cyclotron, is here described. After dissolution of the irradiated solid target in hydrogen peroxide, Tc-99m was obtained under the chemical form of 99m TcO 4 - , in high radionuclidic and radiochemical purity, by solvent extraction with methyl ethyl ketone (MEK). The extraction process was accomplished inside a glass column-shaped vial especially designed to allow for an easy automation of the whole procedure. Recovery yields were always >90% of the loaded activity. The final pertechnetate saline solution Na 99m TcO 4 , purified using the automated module here described, is within the Pharmacopoeia quality control parameters and is therefore a valid alternative to generator-produced 99m Tc. The resulting automated module is cost-effective and easily replicable for in-house production of high-purity Tc-99m by cyclotrons. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Synthesis of high purity monoglycerides from crude glycerol and palm stearin

    Directory of Open Access Journals (Sweden)

    Pakamas Chetpattananondh

    2008-07-01

    Full Text Available The optimum conditions for the glycerolysis of palm stearin and crude glycerol derived from biodiesel process werefound to be a reaction temperature of 200oC with a molar ratio of crude glycerol to palm stearin of 2.5:1, and a reaction timeof 20 minutes. The yield and purity of monoglycerides obtained under these conditions was satisfactory as compared withthe glycerolysis of pure glycerol. To increase the purity of monoglycerides a two-step process, removal of residual glyceroland crystallization, was proposed instead of either vacuum or molecular distillation. Residual glycerol was removed byadding hydrochloric acid followed by washing with hot water. Optimum conditions for crystallization were achieved byusing isooctane as a solvent and a turbine impeller speed of 200 rpm at a crystallization temperature of 35oC. A purity notexceeding 99 percent of monoglycerides was obtained with monopalmitin as the major product.

  4. Synthesis of high purity rutile nanoparticles from medium-grade Egyptian natural ilmenite

    Directory of Open Access Journals (Sweden)

    Mohamed G. Shahien

    2015-09-01

    Full Text Available The Egyptian magmatic ilmenite is classified as a medium-grade ore. The present work is an attempt to produce a high-quality TiO2 that can be used in several industries from this medium-grade raw material using the mechanical activation, carbothermic reduction, hydrochloric acid leaching and calcination. A mixture from the ilmenite (FeTiO3 and activated carbon was milled for 30 h. This mixture was annealed at 1200 °C for one hour and the product was leached by hydrochloric acid and calcined at 600 °C for two hours. The role of the ball milling was to grind the raw ilmenite to obtain the nano size, and the carbothermic reduction was to reduce all the Fe-Ti phases to a mixture from Fe metal and TiO2. Leaching procedure was carried out to remove all the Fe metal and obtain a high-grade TiO2. After leaching and calcination of the milled and annealed mixture of FeTiO3/C under the optimal conditions, TiO2 nanoparticles with a size of 10–100 nm and purity more than 95% were obtained. The qualifications of the synthesized high purity rutile nanoparticles from the Egyptian natural ilmenite match the conditions of many industrial applications.

  5. Large-scale synthesis of high-purity well-aligned carbon nanotubes using pyrolysis of iron(II) phthalocyanine and acetylene

    Science.gov (United States)

    Liu, B. C.; Lee, T. J.; Lee, S. H.; Park, C. Y.; Lee, C. J.

    2003-08-01

    Well-aligned carbon nanotubes (CNTs) with high purity have been produced by pyrolysis of iron(II) phthalocyanine and acetylene at 800 °C. The synthesized CNTs have a length of 75 μm and diameters ranging from 20 to 60 nm. The CNTs have a bamboo-like structure and exhibit good crystallinity of graphite sheets. The growth rate of the CNTs was rapidly increased with adding C 2H 2. Our results demonstrate that the proposed growth method is suitable to large-scale synthesis of high-purity well-aligned CNTs on various substrates.

  6. Effect of initial grain size on dynamic recrystallization in high purity austenitic stainless steels

    International Nuclear Information System (INIS)

    El Wahabi, M.; Gavard, L.; Montheillet, F.; Cabrera, J.M.; Prado, J.M.

    2005-01-01

    The influence of initial microstructure on discontinuous dynamic recrystallization (DDRX) has been investigated by using high purity and ultra high purity austenitic stainless steels with various initial grain sizes. After uniaxial compression tests at constant strain rates and various temperatures, the steady state microstructure or the state corresponding to the maximum strain (ε = 1) attained in the test was analyzed by scanning electron microscopy aided with automated electron back scattering diffraction. Recrystallized grain size d rec and twin boundary fraction f TB measurements were carried out. The mechanical behavior was also investigated by comparing experimental stress-strain curves with various initial grain sizes. DDRX kinetics was described by the classical Avrami equation. It was concluded that larger initial grain sizes promoted a delay in the DDRX onset in the two alloys. It was also observed that the softening process progressed faster for smaller initial grain sizes. The effect of initial grain size is larger in the HP material and becomes more pronounced at low temperature

  7. Hysec Process: production of high-purity hydrogen from coke oven gas

    Energy Technology Data Exchange (ETDEWEB)

    Nishida, S

    1984-01-01

    An account is given of the development of the Hysec Process by the Kansai Netsukagaku and Mitsubishi Kakoki companies. The process is outlined and its special features noted. The initial development aim was to obtain high-purity hydrogen from coke oven gas by means of PSA. To achieve this, ways had to be found for removing the impurities in the coke oven gas and the trace amounts of oxygen which are found in the product hydrogen. The resulting hydrogen is 99.9999% pure. 3 references.

  8. Physical and mechanical metallurgy of high purity Nb for accelerator cavities

    International Nuclear Information System (INIS)

    Bieler, T.R.; Wright, N.T.; Pourboghrat, F.; Compton, C.; Hartwig, K.T.; Baars, D.; Zamiri, A.; Chandrasekaran, S.; Darbandi, P.; Jiang, H.; Skoug, E.; Balachandran, S.; Ice, G.E.; Liu, W.

    2010-01-01

    In the past decade, high Q values have been achieved in high purity Nb superconducting radio frequency (SRF) cavities. Fundamental understanding of the physical metallurgy of Nb that enables these achievements is beginning to reveal what challenges remain to establish reproducible and cost-effective production of high performance SRF cavities. Recent studies of dislocation substructure development and effects of recrystallization arising from welding and heat treatments and their correlations with cavity performance are considered. With better fundamental understanding of the effects of dislocation substructure evolution and recrystallization on electron and phonon conduction, as well as the interior and surface states, it will be possible to design optimal processing paths for cost-effective performance using approaches such as hydroforming, which minimizes or eliminates welds in a cavity.

  9. Photon harvesting, coloring and polarizing in photovoltaic cell integrated color filters: efficient energy routing strategies for power-saving displays.

    Science.gov (United States)

    Wen, Long; Chen, Qin; Song, Shichao; Yu, Yan; Jin, Lin; Hu, Xin

    2015-07-03

    We describe the integral electro-optical strategies that combine the functionalities of photovoltaic (PV) electricity generation and color filtering as well as polarizing to realize more efficient energy routing in display technology. Unlike the conventional pigment-based filters and polarizers, which absorb substantial amounts of unwanted spectral components and dissipate them in the form of heat, we propose converting the energy of those photons into electricity by constructing PV cell-integrated color filters based on a selectively transmitting aluminum (Al) rear electrode perforated with nanoholes (NHs). Combining with a dielectric-metal-dielectric (DMD) front electrode, the devices were optimized to enable efficient cavity-enhanced photon recycling in the PV functional layers. We perform a comprehensive theoretical and numerical analysis to explore the extraordinary optical transmission (EOT) through the Al NHs and identify basic design rules for achieving structural coloring or polarizing in our PV color filters. We show that the addition of thin photoactive polymer layers on the symmetrically configured Al NH electrode narrows the bandwidth of the EOT-assisted high-pass light filtering due to the strongly damped anti-symmetric coupling of the surface modes excited on the front and rear surface of the Al NHs, which facilitates the whole visible coloring with relatively high purity for the devices. By engineering the cut-off characteristics of the plasmonic waveguide mode supported by the circular or ellipsoidal Al NHs, beyond the photon recycling capacity, PV color filters and PV polarizing color filters that allow polarization-insensitive and strong polarization-anisotropic color filtering were demonstrated. The findings presented here may shed some light on expanding the utilization of PV electricity generation across new-generation energy-saving electrical display devices.

  10. Fabrication and research of high purity germanium detectors with abrupt and thin diffusion layer

    International Nuclear Information System (INIS)

    Rodriguez Cabal, A. E.; Diaz Garcia, A.

    1997-01-01

    A different high purity germanium detector's fabrication method is described. A very thin diffusion film with an abrupt change of the type of conductivity is obtained. The fine diffusion layer thickness makes possibly their utilization in experimental systems in which all the data are elaborated directly on the computer. (author) [es

  11. Crystallographic Analysis of Nucleation at Hardness Indentations in High-Purity Aluminum

    DEFF Research Database (Denmark)

    Xu, Chaoling; Zhang, Yubin; Lin, Fengxiang

    2016-01-01

    Nucleation at Vickers hardness indentations has been studied in high-purity aluminum cold-rolled 12 pct. Electron channeling contrast was used to measure the size of the indentations and to detect nuclei, while electron backscattering diffraction was used to determine crystallographic orientations....... It is found that indentations are preferential nucleation sites. The crystallographic orientations of the deformed grains affect the hardness and the nucleation potentials at the indentations. Higher hardness gives increased nucleation probabilities. Orientation relationships between nuclei developed...... they form. Finally, possible nucleation mechanisms are briefly discussed....

  12. Thermal behavior of Ni (99.967% and 99.5% purity) deformed to an ultra-high strain by high pressure torsion

    DEFF Research Database (Denmark)

    Zhang, H.W.; Huang, Xiaoxu; Pippan, R.

    2010-01-01

    Polycrystalline Ni of two purities (99.967% (4N) and 99.5% (2N)) was deformed to an ultra-high strain of εvM = 100 (εvM, von Mises strain) by high pressure torsion at room temperature. The 4N and 2N samples at this strain are nanostructured with an average boundary spacing of 100 nm, a high density...

  13. A Study of the Surface Quality of High Purity Copper after Heat Treatment

    CERN Document Server

    Aicheler, M; Atieh, S; Calatroni, S; Riddone, G; Lebet, S; Samoshkin, A

    2011-01-01

    Themanufacturing flow of accelerating structures for the compact linear collider, based on diamond-machined high purity copper components, include several thermal cycles (diffusion bonding, brazing of cooling circuits, baking in vacuum, etc.). The high temperature cycles may be carried out following different schedules and environments (vacuum, reducing hydrogen atmosphere, argon, etc.) and develop peculiar surface topographies which have been the object of extended observations. This study presents and discusses the results of scanning electron microscopy (SEM) and optical microscopy investigations.

  14. Low-temperature internal friction in high-purity monocrystalline and impure polycrystalline niobium after plastic deformation

    International Nuclear Information System (INIS)

    Wasserbaech, W.; Thompson, E.

    2001-01-01

    The internal friction Q -1 of plastically deformed, high-purity monocrystalline and impure polycrystalline niobium specimens was measured in the temperature range between 65 mK and about 2 K. Plastic deformation has a pronounced effect on the internal friction Q -1 of the high-purity monocrystalline specimens, and the effect has been found to be almost temperature independent. By contrast, surprisingly, the internal friction Q -1 of the impure polycrystalline specimens was found to be almost independent of the extent of plastic deformation. Comparison of the experimental results with different models of a dynamic scattering of acoustic phonons by dislocations leads to the conclusion that the results cannot be explained with the two-level tunneling model. Instead it is suggested that a strong interaction between acoustic phonons and geometrical kinks in non-screw dislocations is responsible for the observed internal friction Q -1 . (orig.)

  15. Disgust and the moralization of purity.

    Science.gov (United States)

    Horberg, E J; Oveis, Christopher; Keltner, Dacher; Cohen, Adam B

    2009-12-01

    Guided by appraisal-based models of the influence of emotion upon judgment, we propose that disgust moralizes--that is, amplifies the moral significance of--protecting the purity of the body and soul. Three studies documented that state and trait disgust, but not other negative emotions, moralize the purity moral domain but not the moral domains of justice or harm/care. In Study 1, integral feelings of disgust, but not integral anger, predicted stronger moral condemnation of behaviors violating purity. In Study 2, experimentally induced disgust, compared with induced sadness, increased condemnation of behaviors violating purity and increased approval of behaviors upholding purity. In Study 3, trait disgust, but not trait anger or trait fear, predicted stronger condemnation of purity violations and greater approval of behaviors upholding purity. We found that, confirming the domain specificity of the disgust-purity association, disgust was unrelated to moral judgments about justice (Studies 1 and 2) or harm/care (Study 3). Finally, across studies, individuals of lower socioeconomic status (SES) were more likely than individuals of higher SES to moralize purity but not justice or harm/care.

  16. Potential utility of eGFP-expressing NOG mice (NOG-EGFP as a high purity cancer sampling system

    Directory of Open Access Journals (Sweden)

    Shima Kentaro

    2012-06-01

    Full Text Available Abstract Purpose It is still technically difficult to collect high purity cancer cells from tumor tissues, which contain noncancerous cells. We hypothesized that xenograft models of NOG mice expressing enhanced green fluorescent protein (eGFP, referred to as NOG-EGFP mice, may be useful for obtaining such high purity cancer cells for detailed molecular and cellular analyses. Methods Pancreato-biliary cancer cell lines were implanted subcutaneously to compare the tumorigenicity between NOG-EGFP mice and nonobese diabetic/severe combined immunodeficiency (NOD/SCID mice. To obtain high purity cancer cells, the subcutaneous tumors were harvested from the mice and enzymatically dissociated into single-cell suspensions. Then, the cells were sorted by fluorescence-activated cell sorting (FACS for separation of the host cells and the cancer cells. Thereafter, the contamination rate of host cells in collected cancer cells was quantified by using FACS analysis. The viability of cancer cells after FACS sorting was evaluated by cell culture and subsequent subcutaneous reimplantation in NOG-EGFP mice. Results The tumorigenicity of NOG-EGFP mice was significantly better than that of NOD/SCID mice in all of the analyzed cell lines (p  Conclusions This method provides a novel cancer sampling system for molecular and cellular analysis with high accuracy and should contribute to the development of personalized medicine.

  17. High-Purity Semiconducting Single-Walled Carbon Nanotubes: A Key Enabling Material in Emerging Electronics.

    Science.gov (United States)

    Lefebvre, Jacques; Ding, Jianfu; Li, Zhao; Finnie, Paul; Lopinski, Gregory; Malenfant, Patrick R L

    2017-10-17

    Semiconducting single-walled carbon nanotubes (sc-SWCNTs) are emerging as a promising material for high-performance, high-density devices as well as low-cost, large-area macroelectronics produced via additive manufacturing methods such as roll-to-roll printing. Proof-of-concept demonstrations have indicated the potential of sc-SWCNTs for digital electronics, radiofrequency circuits, radiation hard memory, improved sensors, and flexible, stretchable, conformable electronics. Advances toward commercial applications bring numerous opportunities in SWCNT materials development and characterization as well as fabrication processes and printing technologies. Commercialization in electronics will require large quantities of sc-SWCNTs, and the challenge for materials science is the development of scalable synthesis, purification, and enrichment methods. While a few synthesis routes have shown promising results in making near-monochiral SWCNTs, gram quantities are available only for small-diameter sc-SWCNTs, which underperform in transistors. Most synthesis routes yield mixtures of SWCNTs, typically 30% metallic and 70% semiconducting, necessitating the extraction of sc-SWCNTs from their metallic counterparts in high purity using scalable postsynthetic methods. Numerous routes to obtain high-purity sc-SWCNTs from raw soot have been developed, including density-gradient ultracentrifugation, chromatography, aqueous two-phase extraction, and selective DNA or polymer wrapping. By these methods (termed sorting or enrichment), >99% sc-SWCNT content can be achieved. Currently, all of these approaches have drawbacks and limitations with respect to electronics applications, such as excessive dilution, expensive consumables, and high ionic impurity content. Excess amount of dispersant is a common challenge that hinders direct inclusion of sc-SWCNTs into electronic devices. At present, conjugated polymer extraction may represent the most practical route to sc-SWCNTs. By the use of

  18. Local deposition of high-purity Pt nanostructures by combining electron beam induced deposition and atomic layer deposition

    NARCIS (Netherlands)

    Mackus, A.J.M.; Mulders, J.J.L.; Sanden, van de M.C.M.; Kessels, W.M.M.

    2010-01-01

    An approach for direct-write fabrication of high-purity platinum nanostructures has been developed by combining nanoscale lateral patterning by electron beam induced deposition (EBID) with area-selective deposition of high quality material by atomic layer deposition (ALD). Because virtually pure,

  19. Physical and mechanical metallurgy of high purity Nb for accelerator cavities

    Directory of Open Access Journals (Sweden)

    T. R. Bieler

    2010-03-01

    Full Text Available In the past decade, high Q values have been achieved in high purity Nb superconducting radio frequency (SRF cavities. Fundamental understanding of the physical metallurgy of Nb that enables these achievements is beginning to reveal what challenges remain to establish reproducible and cost-effective production of high performance SRF cavities. Recent studies of dislocation substructure development and effects of recrystallization arising from welding and heat treatments and their correlations with cavity performance are considered. With better fundamental understanding of the effects of dislocation substructure evolution and recrystallization on electron and phonon conduction, as well as the interior and surface states, it will be possible to design optimal processing paths for cost-effective performance using approaches such as hydroforming, which minimizes or eliminates welds in a cavity.

  20. [Colorimetric investigation of normal tongue and lip colors from 516 healthy adults by visible reflection spectrum].

    Science.gov (United States)

    Zeng, Chang-chun; Yang, Li; Xu, Ying; Liu, Pei-pei; Guo, Shi-jun; Liu, Song-hao

    2011-09-01

    Using the data from normal tongue and lip colors of normal people which were collected by the visible reflection spectrum, we analyzed the colorimetric parameters of tongue and lip colors. In this study, 516 healthy students aging from 19 to 26 from the colleges and universities of Guangdong Province of China were taken as research subjects. After collecting the data of tongue and lip colors of the 516 subjects using visible reflectance spectroscopy, CIE XYZ tristimulus values as defined by the International Commission on Illumination in 1964 were calculated, and the colorimetric parameters of the normal tongue and lip colors were obtained, such as the CIE 1964 chromaticity coordinate, brightness, dominant wavelength and excitation purity. The results of CIE 1964 chromaticity diagram calculated on the visible reflection spectrum showed that the normal tongue color chromaticity coordinate x(10) was 0.341 3±0.008 5 and y(10) was 0.332 6±0.005 1, and the normal lip color chromaticity coordinate x(10) was 0.357 7±0.009 2 and y(10) was 0.338 3±0.005 7; the brightness Y values of the normal tongue color and lip colors were 17.96±3.78 and 19.78±3.72, the dominant wavelength values of the normal tongue color and lip color were (626.3±51.6) nm and (600.4±18.2) nm, and the excitation purity values of the normal tongue color and lip color were 0.083±0.031 and 0.144±0.036, respectively. Application of the visible reflection spectrum is a standard way to collect colorimetric data for inspection of the complexion. The investigation of chromaticity coordinates, brightness, dominant wavelength and excitation purity of the normal tongue and lip colors may offer the basic reference for diagnosing morbid complexion on the tongue and lip colors in traditional Chinese medicine.

  1. Effect of microplastic deformation on the electron ultrasonic absorption in high-purity molybdenum monocrystals

    International Nuclear Information System (INIS)

    Pal'-Val', P.P.; Kaufmann, Kh.-J.

    1983-01-01

    The low temperature (100-6 K) linear absorption of ultrasound (88 kHz) by high purity molybdenum single crystals have been studied. Both unstrained samples and samples sub ected to microplastic deformation (epsilon 0 approximately 10 -4 , during 10 min, at 6 K. A new relaxation peak of absorption at 10 K has been found in strained samples

  2. Precipitation of hydrides in high purity niobium after different treatments

    Energy Technology Data Exchange (ETDEWEB)

    Barkov, F.; Romanenko, A.; Trenikhina, Y.; Grassellino, A.

    2013-01-01

    Precipitation of lossy non-superconducting niobium hydrides represents a known problem for high purity niobium in superconducting applications. Using cryogenic optical and laser confocal scanning microscopy we have directly observed surface precipitation and evolution of niobium hydrides in samples after different treatments used for superconducting RF cavities for particle acceleration. Precipitation is shown to occur throughout the sample volume, and the growth of hydrides is well described by the fast diffusion-controlled process in which almost all hydrogen is precipitated at $T=140$~K within $\\sim30$~min. 120$^{\\circ}$C baking and mechanical deformation are found to affect hydride precipitation through their influence on the number of nucleation and trapping centers.

  3. Variation of low temperature internal friction of microplastic deformation of high purity molybdenum single crystals

    International Nuclear Information System (INIS)

    Pal-Val, P.P.; Kaufmann, H.J.

    1984-01-01

    Amplitude and temperature spectra of ultrasound absorption in weakly deformed high purity molybdenum single crystals of different orientations were measured. The results were discussed in terms of parameter changes related to quasiparticle or dislocation oscillations, respectively, dislocation point defect interactions as well as defect generation at microplastic deformation. (author)

  4. Variation of low temperature internal friction of microplastic deformation of high purity molybdenum single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Pal-Val, P.P. (AN Ukrainskoj SSR, Kharkov. Fiziko-Tekhnicheskij Inst. Nizkikh Temperatur); Kaufmann, H.J. (Akademie der Wissenschaften der DDR, Berlin)

    1984-08-01

    Amplitude and temperature spectra of ultrasound absorption in weakly deformed high purity molybdenum single crystals of different orientations were measured. The results were discussed in terms of parameter changes related to quasiparticle or dislocation oscillations, respectively, dislocation point defect interactions as well as defect generation at microplastic deformation.

  5. Strengthening Purity: Moral Purity as a Mediator of Direct and Extended Cross-Group Friendships on Sexual Prejudice.

    Science.gov (United States)

    Vezzali, Loris; Brambilla, Marco; Giovannini, Dino; Paolo Colucci, Francesco

    2017-01-01

    The present research investigated whether enhanced perceptions of moral purity drive the effects of intergroup cross-group friendships on the intentions to interact with homosexuals. High-school students (N = 639) reported their direct and extended cross-group friendships with homosexuals as well as their beliefs regarding the moral character of the sexual minority. Participants further reported their desire to interact with homosexuals in the future. Results showed that both face-to-face encounters and extended contact with homosexuals increased their perceived moral purity, which in turn fostered more positive behavioral intentions. Results further revealed the specific role of moral purity in this sense, as differential perceptions along other moral domains (autonomy and community) had no mediation effects on behavioral tendencies toward homosexuals. The importance of these findings for improving intergroup relations is discussed, together with the importance of integrating research on intergroup contact and morality.

  6. Electron beam welding of high-purity copper accelerator cells

    International Nuclear Information System (INIS)

    Delis, K.; Haas, H.; Schlebusch, P.; Sigismund, E.

    1986-01-01

    The operating conditions of accelerator cells require high thermal conductivity, low gas release in the ultrahigh vacuum, low content of low-melting metals and an extremely good surface quality. In order to meet these requirements, high-purity copper (OFHC, Grade 1, according to ASTM B 170-82 and extra specifications) is used as structural material. The prefabricated components of the accelerator cells (noses, jackets, flanges) are joined by electron beam welding, the weld seam being assessed on the basis of the same criteria as the base material. The welding procedures required depend, first, on the material and, secondly, on the geometries involved. Therefore experimental welds were made first on standardized specimens in order to study the behaviour of the material during electron beam welding and the influence of parameter variations. The welded joints of the cell design were planned on the basis of these results. Seam configuration, welding procedures and the parameters were optimized on components of original geometry. The experiments have shown that high-quality joints of this grade of copper can be produced by the electron beam welding process, if careful planning and preparation of the seams and adequate containment of the welding pool are assured. (orig.)

  7. Facile synthesis of upconversion nanoparticles with high purity using lanthanide oleate compounds

    Science.gov (United States)

    Kang, Ning; Ai, Chao-Chao; Zhou, Ya-Ming; Wang, Zuo; Ren, Lei

    2018-02-01

    A novel strategy for preparing highly pure NaYF4-based upconversion nanoparticles (UCNPs) was developed using lanthanide oleate compounds [Ln(OA)3] as the precursor, denoted as the Ln-OA preparation method. Compared to the conventional solvothermal method for synthesizing UCNPs using lanthanide chloride compounds (LnCl3) as the precursor (denoted as the Ln-Cl method), the Ln-OA strategy exhibited the merits of high purity, reduced purification process and a uniform size in preparing core and core-shell UCNPs excited by a 980 or 808 nm near infrared (NIR) laser. This work sheds new insight on the preparation of UCNPs and promotes their application in biomedical fields.

  8. Se-Se isoelectronic centers in high purity CdTe

    Energy Technology Data Exchange (ETDEWEB)

    Najjar, Rita; Andre, Regis; Mariette, Henri [CEA-CNRS, Nanophysique et Semiconducteurs, Institut Neel, 25 rue des martyrs, 38042 Grenoble (France); Golnik, Andrzej; Kossacki, Piotr; Gaj, Jan A. [Institute of Experimental Physics, University of Warsaw, Hoza 69, 00-681 Warsaw (Poland)

    2010-06-15

    We evidence zero-dimensional exciton states trapped on isoelectronic Se centers in CdTe quantum wells, {delta}-doped with Se. Thanks to special precautions taken to have very high purity CdTe heterostructures, it is possible to observe, in photoluminescence spectra, sharp discrete lines arising from individual centers related to the Se doping. These emission lines appear at about 40 meV below the CdTe band gap energy. The most prominent lines are attributed to the recombination of excitons bound to nearest-neighbor selenium pairs in a tetrahedral CdTe environment. This assignment is confirmed by a common linear polarization direction of the emitted light, parallel to <110>. These excitons localized on individual isoelectronic traps are good candidates as single photon emitters (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  9. Surface preparation for high purity alumina ceramics enabling direct brazing in hydrogen atmospheres

    Science.gov (United States)

    Cadden, Charles H.; Yang, Nancy Yuan Chi; Hosking, Floyd M.

    2001-01-01

    The present invention relates to a method for preparing the surface of a high purity alumina ceramic or sapphire specimen that enables direct brazing in a hydrogen atmosphere using an active braze alloy. The present invention also relates to a method for directly brazing a high purity alumina ceramic or sapphire specimen to a ceramic or metal member using this method of surface preparation, and to articles produced by this brazing method. The presence of silicon, in the form of a SiO.sub.2 -containing surface layer, can more than double the tensile bond strength in alumina ceramic joints brazed in a hydrogen atmosphere using an active Au-16Ni-0.75 Mo-1.75V filler metal. A thin silicon coating applied by PVD processing can, after air firing, produce a semi-continuous coverage of the alumina surface with a SiO.sub.2 film. Room temperature tensile strength was found to be proportional to the fraction of air fired surface covered by silicon-containing films. Similarly, the ratio of substrate fracture versus interface separation was also related to the amount of surface silicon present prior to brazing. This process can replace the need to perform a "moly-manganese" metallization step.

  10. Operation of a high-purity silicon diode alpha particle detector at 1.4 K

    International Nuclear Information System (INIS)

    Martoff, C.J.; Kaczanowicz, E.; Neuhauser, B.J.; Lopez, E.; Zhang, Y.; Ziemba, F.P.

    1991-01-01

    Detection of alpha particles at temperatures as low as 1.4 K was demonstrated using a specially fabricated Si diode. The diode was 475 mm 2 by 0.280 mm thick, fabricated from high-purity silicon with degenerately doped contacts. This is an important step toward development of dual-mode (ionization plus phonon) silicon detectors for low energy radiation. (orig.)

  11. Operation of a high-purity silicon diode alpha particle detector at 1. 4 K

    Energy Technology Data Exchange (ETDEWEB)

    Martoff, C.J.; Kaczanowicz, E. (Temple Univ., Philadelphia, PA (USA)); Neuhauser, B.J.; Lopez, E.; Zhang, Y. (San Francisco State Univ., CA (USA)); Ziemba, F.P. (Quantrad Corp. (USA))

    1991-03-01

    Detection of alpha particles at temperatures as low as 1.4 K was demonstrated using a specially fabricated Si diode. The diode was 475 mm{sup 2} by 0.280 mm thick, fabricated from high-purity silicon with degenerately doped contacts. This is an important step toward development of dual-mode (ionization plus phonon) silicon detectors for low energy radiation. (orig.).

  12. Contribution to the study of the conductivity of high purity water

    International Nuclear Information System (INIS)

    Nens, Ch.

    1964-01-01

    In this work a study is made more particularly of two points: the production of high purity water and the estimation of this purity by means of conductivity measurements. As far as water purification is concerned it is observed that the de-ionisation produced by ion exchange resins in mixed beds leads to a water having a lower conductivity than that obtained by distillation. This low conductivity however, measured at the column exit before the water comes into contact with air is not stable. In fact the carbon dioxide in the water gives rise to an equilibrium with production of the ions HCO 3 - , CO 3 -- . These ions are retained during the passage of the water through the resins. They reappear again at the column exit as a result of the displacement of the hydration equilibrium of CO 2 ; because of this the conductivity of the water increases with time. The water obtained by successive distillations does not behave in the same way because no carbon dioxide is present. Distillation is however a costly purification process on an industrial scale, especially if large quantities of water have to be treated. The measurement of these low conductivities is very delicate. The method employed makes use of a direct current and gives reproducible results if care is taken to exclude interfering electric fields by screening the apparatus. (author) [fr

  13. Streamer knotwilg branching: sudden transition in morphology of positive streamers in high-purity nitrogen

    International Nuclear Information System (INIS)

    Heijmans, L C J; Clevis, T T J; Nijdam, S; Van Veldhuizen, E M; Ebert, U

    2015-01-01

    We describe a peculiar branching phenomenon in positive repetitive streamer discharges in high purity nitrogen. We name it knotwilg branching after the Dutch word for a pollard willow tree. In a knotwilg branching a thick streamer suddenly splits into many thin streamers. Under some conditions this happens for all streamers in a discharge at about the same distance from the high-voltage electrode tip. At this distance, the thick streamers suddenly bend sharply and appear to propagate over a virtual surface surrounding the high-voltage electrode, rather than following the background electric field lines. From these bent thick streamers many, much thinner, streamers emerge that roughly follow the background electric field lines, creating the characteristic knotwilg branching. We have only found this particular morphology in high purity nitrogen at pressures in the range 50 to 200 mbar and for pulse repetition rates above 1 Hz; the experiments were performed for an electrode distance of 16 cm and for fast voltage pulses of 20 or 30 kV. These observations clearly disagree with common knowledge on streamer propagation. We have analyzed the data of several tens of thousands of discharges to clarify the phenomena. We also present some thoughts on how the ionization of the previous discharges could concentrate into some pre-ionization region near the needle electrode and create the knotwilg morphology, but we present no final explanation. (paper)

  14. High purity hydrogen production system by the PSA method

    Energy Technology Data Exchange (ETDEWEB)

    1986-01-01

    In a process developed by Nippon Steel, coke oven gas is compressed and purified of tarry matter, sulphur compounds and gum-formers by adsorption. It is then passed through a three-tower pressure-swing adsorption system to recover hydrogen whose purity can be selected in the range 99 to 99.999%. A composite adsorption agent is used.

  15. Facile Synthesis of Monodispersed Polysulfide Spheres for Building Structural Colors with High Color Visibility and Broad Viewing Angle.

    Science.gov (United States)

    Li, Feihu; Tang, Bingtao; Wu, Suli; Zhang, Shufen

    2017-01-01

    The synthesis and assembly of monodispersed colloidal spheres are currently the subject of extensive investigation to fabricate artificial structural color materials. However, artificial structural colors from general colloidal crystals still suffer from the low color visibility and strong viewing angle dependence which seriously hinder their practical application in paints, colorimetric sensors, and color displays. Herein, monodispersed polysulfide (PSF) spheres with intrinsic high refractive index (as high as 1.858) and light-absorbing characteristics are designed, synthesized through a facile polycondensation and crosslinking process between sodium disulfide and 1,2,3-trichloropropane. Owing to their high monodispersity, sufficient surface charge, and good dispersion stability, the PSF spheres can be assembled into large-scale and high-quality 3D photonic crystals. More importantly, high structural color visibility and broad viewing angle are easily achieved because the unique features of PSF can remarkably enhance the relative reflectivity and eliminate the disturbance of scattering and background light. The results of this study provide a simple and efficient strategy to create structural colors with high color visibility, which is very important for their practical application. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. A fundamental self-generated quenching center for lanthanide-doped high-purity solids

    International Nuclear Information System (INIS)

    Auzel, F.

    2002-01-01

    An intrinsic self-generated quenching center for lanthanide-doped high-purity solids is presented for transitions, which cannot be quenched by cross-relaxation. This center, in fact a cluster-like pair of active centers, is shown to come from a particular multiphonon-assisted energy transfer between them. Being due to the vibronic properties of the host it cannot be suppressed. Its role in lanthanide first excited states self-quenching is analyzed and a simple mathematical expression is derived. This law is compared with experimental results for self-quenching in Er-doped fluorophosphate glasses

  17. Measurement of oxide-layer thickness of internal granules in high-purity aluminium

    International Nuclear Information System (INIS)

    Takacs, S.; Ditroi, F.; Mahunka, I.

    1989-01-01

    Charged-particle activation analysis was used for the determination of bulk oxygen concentration in aluminium. High-purity aluminium samples and mixtures containing different amounts of alumina were irradiated by 13 MeV 3 He particles. The aim of the investigation was to determine the oxide-layer thickness on the surface of internal aluminium granules. The measurement was carried out by determining the bulk oxygen concentration in the samples, and calculating the oxide-layer thickness, by using model conditions about the microstructure of the aluminium samples. (author) 5 refs

  18. Obtaining high purity silica from rice hulls

    Directory of Open Access Journals (Sweden)

    José da Silva Júnior

    2010-01-01

    Full Text Available Many routes for extracting silica from rice hulls are based on direct calcining. These methods, though, often produce silica contaminated with inorganic impurities. This work presents the study of a strategy for obtaining silica from rice hulls with a purity level adequate for applications in electronics. The technique is based on two leaching steps, using respectively aqua regia and Piranha solutions, which extract the organic matrix and inorganic impurities. The material was characterized by Fourier-transform infrared spectroscopy (FTIR, powder x-ray diffraction (XRD, x-ray fluorescence (XRF, scanning electron microscopy (SEM, particle size analysis by laser diffraction (LPSA and thermal analysis.

  19. Neutron activation determination of impurities in high-purity bismuth with separation of matrix in form of hydroxide

    International Nuclear Information System (INIS)

    Artyukhin, P.I.; Shavinskij, B.M.; Mityakin, Yu.L.

    1979-01-01

    The technique of neutron activation determination of 15 impurity elements (Au, Ag, Ba, Cd, Co, Cs, Cu, Hg, K, Na, Ni, Se, Sr, Te, Zn) in high-purity bismuth (impurity content is approximately 10 -6 -10 -10 %) is presented. Bismuth hydroxide precipitation by ammonia from nitric acid solutions was used to separate bismuth from alkali, alkaline earth metals and elements forming stable ammines. Gold, selenium and tellurium are isolated in the form of metals at reduction by muriatic hydrazine. Results of analyzing two samples of special purity bismuth are presented. Neutron flux comprised 0.8-1x10 13 n/cm 2 xs. Radiation time was equal to 90 hours

  20. The element analysis of high purity beryllium by method of laser mass-spectrometry

    International Nuclear Information System (INIS)

    Virich, V.D.; Kisel', O.V.; Kovtun, K.V.; Pugachev, N.S.; Yakobson, L.A.

    2003-01-01

    The operation is devoted to examination of a possibility of the analysis of element composition pure and high purity model of a beryllium is model by a method of laser mass spectrometry. The advantages of a method in a part of finding of a small amount of admixtures in comparison with other modes of the analysis are exhibited. The possibility of quantitative definition of a content in beryllium samples of gas-making admixtures-C,N,O surveyed

  1. Perfomance of a high purity germanium multi-detector telescope for long range particles

    International Nuclear Information System (INIS)

    Riepe, G.; Protic, D.; Suekoesd, C.; Didelez, J.P.; Frascaria, N.; Gerlic, E.; Hourani, E.; Morlet, M.

    1980-01-01

    A telescope of stacked high purity germanium detectors designed for long range charged particles was tested using medium energy protons. Particle identification and the rejection of the low energy tail could be accomplished on-line allowing the measurement of complex spectra. The efficiency of the detector stack for protons was measured up to 156 MeV incoming energy. The various factors affecting the energy resolution are discussed and their estimated contributions are compared with the experimental results

  2. Superconducting radio-frequency cavities made from medium and low-purity niobium ingots

    Science.gov (United States)

    Ciovati, Gianluigi; Dhakal, Pashupati; Myneni, Ganapati R.

    2016-06-01

    Superconducting radio-frequency cavities made of ingot niobium with residual resistivity ratio (RRR) greater than 250 have proven to have similar or better performance than fine-grain Nb cavities of the same purity, after standard processing. The high purity requirement contributes to the high cost of the material. As superconducting accelerators operating in continuous-wave typically require cavities to operate at moderate accelerating gradients, using lower purity material could be advantageous not only to reduce cost but also to achieve higher Q 0-values. In this contribution we present the results from cryogenic RF tests of 1.3-1.5 GHz single-cell cavities made of ingot Nb of medium (RRR = 100-150) and low (RRR = 60) purity from different suppliers. Cavities made of medium-purity ingots routinely achieved peak surface magnetic field values greater than 70 mT with an average Q 0-value of 2 × 1010 at 2 K after standard processing treatments. The performances of cavities made of low-purity ingots were affected by significant pitting of the surface after chemical etching.

  3. Museum lighting for golden artifacts, with low correlated color temperature, high color uniformity and high color rendering index, using diffusing color mixing of red, cyan, and white-light-emitting diodes

    DEFF Research Database (Denmark)

    Thorseth, Anders; Corell, Dennis Dan; Poulsen, Peter Behrensdorff

    2012-01-01

    at the Royal Danish Collection at Rosenborg Castle. Color mixing of red, cyan, and white LEDs was employed to achieve the spectral power distribution needed for the required CCT and a CRI above 90. Color uniformity is achieved by the use of a highly diffusing reflector. The system has shown energy saving above......Museum lighting presents challenges mainly due to the demand for precise color rendering and the damaging effects of radiation. Golden objects must normally be illuminated by the non-standard CCT of 2200 K. An LED system that conforms to these requirements has been developed and implemented...

  4. The determination of boron in aluminium of high purity

    International Nuclear Information System (INIS)

    Cook, E.B.T.; Holan, H.

    1977-01-01

    A description is given of the investigations that led to the development of chemical methods for the determination of boron within the range 0,25 to 1,0 p.p.m. in aluminium of high purity. Methods were developed that incorporated fluorimetry, directly in solutions containing aluminium and after separation of boron by liquid-liquid extraction into 2-ethyl-1,3 hexanediol. A published spectrophotometric method, involving extraction of the BF 4 sup(-) complex with methylene blue into dichloroethane, was modified for application to alluminium samples. Details of this modified procedure and the fluorimetric-extraction procedure are appended. The precision of the methylene-blue method is about 6 percent relative and is recommended for precision and speed in preference to others. Separation of boron by distillation and spectrophotometric determination with curcumin gave low values in comparison with those obtained by the other methods. Agreement between the boron values obtained on the samples tested was good for the fluorimetric and methylene-blue spectrophotometric methods

  5. Synthesis and characterization of straight and stacked-sheet AlN nanowires with high purity

    International Nuclear Information System (INIS)

    Lei, M.; Yang, H.; Li, P.G.; Tang, W.H.

    2008-01-01

    Large-scale AlN nanowires with hexagonal crystal structure were synthesized by the direct nitridation method at high temperatures. The experimental results indicate that these single-crystalline AlN nanowires have high purity and consist of straight and stacked-sheet nanowires. It is found that straight AlN nanowire grows along [1, 1, -2, 0] direction, whereas the stacked-sheet nanowire with hexagonal cross section is along [0 0 0 1] direction. It is thought that vapor-solid (VS) mechanism should be responsible for the growth of AlN nanowires

  6. COLOR CHARACTERISTICS OF DRIED THREE-COMPONENT FRUIT AND BERRY PASTES

    Directory of Open Access Journals (Sweden)

    O. Cherevko

    2018-04-01

    Full Text Available Color characteristics of compositions of three-component fruit and berry pastes before and after infrared drying are determined. The compositions were prepared on the basis of apples, cranberries, and hawthorn with increased nutrition value and therapeutic and prophylactic properties, according to the suggested recipe. The ratio of the components in the first composition is 60 : 30 : 10, in the second, 65 : 25 : 10, and in the third, 55 : 40 : 5. The resulting compositions were controlled by the control (apple paste. To dry the compositions obtained, it is proposed to use a roller IR dryer based on a flexible resistive film electric heater of emitting type. The prepared paste compositions are reddish-orange according to the color characteristics determined. Color characteristics of dried three-component fruit and berry pastes are also determined. The wavelength of composition 1 is 498 nm, and those of compositions 2 and 3 are 620.5 and 589.4 nm, respectively. The first composition is bluish-purple, with tone purity 34.7 %. Composition 2 is red (34.8 %, composition 3 is bluish-red (34.6 %. The comparison of the color characteristics of compositions of three-component fruit and berry pastes before and after infrared drying as for the brightness and tone purity of the samples indicates a slight change in brightness within 2—6 %. Reduction of the color purity to almost a half is due to the drying shrinkage of the mass of raw materials and obtaining a visual color of the compositions that is attractive for a consumer. According to the results of expert evaluation of the quality indices of dried three-component fruit and berry paste compositions, a certain advantage is determined of the dried composition with the following ratio of components in the recipe: apple, cranberry, hawthorn — 60 : 30 : 10 (composition 1. The suggested compositions of dried three-component fruit and berry paste are recommended for use in food rations

  7. Some aspects of the metal purity in high strength Al-alloys

    International Nuclear Information System (INIS)

    Banizs, K.; Csernay-Balint, J.; Voeroes, G.

    1990-01-01

    The effect of Fe and Si on the properties of some high strength age-hardenable Al-alloys was investigated. It was found that a certain quantity (> 0.15 %) of Fe is advantageous to the formation of the cell-structure in the cast ingot both in the AlCuMg and AlZnMgCu alloys. An increased Fe-content causes a finer cell-structure. A higher Fe:Si ratio results in more homogeneous cell size distribution. Higher Si-content in the alloy decreases the favourable cast parameter range and increases the inclination to cracking of large diameter (> 270 mm) ingots. The reason of the correlation found between metal purity and mechanical properties is discussed

  8. Evaluation of color encodings for high dynamic range pixels

    Science.gov (United States)

    Boitard, Ronan; Mantiuk, Rafal K.; Pouli, Tania

    2015-03-01

    Traditional Low Dynamic Range (LDR) color spaces encode a small fraction of the visible color gamut, which does not encompass the range of colors produced on upcoming High Dynamic Range (HDR) displays. Future imaging systems will require encoding much wider color gamut and luminance range. Such wide color gamut can be represented using floating point HDR pixel values but those are inefficient to encode. They also lack perceptual uniformity of the luminance and color distribution, which is provided (in approximation) by most LDR color spaces. Therefore, there is a need to devise an efficient, perceptually uniform and integer valued representation for high dynamic range pixel values. In this paper we evaluate several methods for encoding colour HDR pixel values, in particular for use in image and video compression. Unlike other studies we test both luminance and color difference encoding in a rigorous 4AFC threshold experiments to determine the minimum bit-depth required. Results show that the Perceptual Quantizer (PQ) encoding provides the best perceptual uniformity in the considered luminance range, however the gain in bit-depth is rather modest. More significant difference can be observed between color difference encoding schemes, from which YDuDv encoding seems to be the most efficient.

  9. Mesophase Formation Stabilizes High-purity Magic-sized Clusters

    KAUST Repository

    Nevers, Douglas R.; Williamson, Curtis B.; Savitzky, Benjamin H; Hadar, Ido; Banin, Uri; Kourkoutis, Lena F.; Hanrath, Tobias; Robinson, Richard D.

    2018-01-01

    Magic-sized clusters (MSCs) are renowned for their identical size and closed-shell stability that inhibit conventional nanoparticle (NP) growth processes. Though MSCs have been of increasing interest, understanding the reaction pathways toward their nucleation and stabilization is an outstanding issue. In this work, we demonstrate that high concentration synthesis (1000 mM) promotes a well-defined reaction pathway to form high-purity MSCs (>99.9%). The MSCs are resistant to typical growth and dissolution processes. Based on insights from in-situ X-ray scattering analysis, we attribute this stability to the accompanying production of a large, hexagonal organic-inorganic mesophase (>100 nm grain size) that arrests growth of the MSCs and prevents NP growth. At intermediate concentrations (500 mM), the MSC mesophase forms, but is unstable, resulting in NP growth at the expense of the assemblies. These results provide an alternate explanation for the high stability of MSCs. Whereas the conventional mantra has been that the stability of MSCs derives from the precise arrangement of the inorganic structures (i.e., closed-shell atomic packing), we demonstrate that anisotropic clusters can also be stabilized by self-forming fibrous mesophase assemblies. At lower concentration (<200 mM or >16 acid-to-metal), MSCs are further destabilized and NPs formation dominates that of MSCs. Overall, the high concentration approach intensifies and showcases inherent concentration-dependent surfactant phase behavior that is not accessible in conventional (i.e., dilute) conditions. This work provides not only a robust method to synthesize, stabilize, and study identical MSC products, but also uncovers an underappreciated stabilizing interaction between surfactants and clusters.

  10. Mesophase Formation Stabilizes High-purity Magic-sized Clusters

    KAUST Repository

    Nevers, Douglas R.

    2018-01-27

    Magic-sized clusters (MSCs) are renowned for their identical size and closed-shell stability that inhibit conventional nanoparticle (NP) growth processes. Though MSCs have been of increasing interest, understanding the reaction pathways toward their nucleation and stabilization is an outstanding issue. In this work, we demonstrate that high concentration synthesis (1000 mM) promotes a well-defined reaction pathway to form high-purity MSCs (>99.9%). The MSCs are resistant to typical growth and dissolution processes. Based on insights from in-situ X-ray scattering analysis, we attribute this stability to the accompanying production of a large, hexagonal organic-inorganic mesophase (>100 nm grain size) that arrests growth of the MSCs and prevents NP growth. At intermediate concentrations (500 mM), the MSC mesophase forms, but is unstable, resulting in NP growth at the expense of the assemblies. These results provide an alternate explanation for the high stability of MSCs. Whereas the conventional mantra has been that the stability of MSCs derives from the precise arrangement of the inorganic structures (i.e., closed-shell atomic packing), we demonstrate that anisotropic clusters can also be stabilized by self-forming fibrous mesophase assemblies. At lower concentration (<200 mM or >16 acid-to-metal), MSCs are further destabilized and NPs formation dominates that of MSCs. Overall, the high concentration approach intensifies and showcases inherent concentration-dependent surfactant phase behavior that is not accessible in conventional (i.e., dilute) conditions. This work provides not only a robust method to synthesize, stabilize, and study identical MSC products, but also uncovers an underappreciated stabilizing interaction between surfactants and clusters.

  11. Superconducting radio-frequency cavities made from medium and low-purity niobium ingots

    International Nuclear Information System (INIS)

    Ciovati, Gianluigi; Dhakal, Pashupati; Myneni, Ganapati R

    2016-01-01

    Superconducting radio-frequency cavities made of ingot niobium with residual resistivity ratio (RRR) greater than 250 have proven to have similar or better performance than fine-grain Nb cavities of the same purity, after standard processing. The high purity requirement contributes to the high cost of the material. As superconducting accelerators operating in continuous-wave typically require cavities to operate at moderate accelerating gradients, using lower purity material could be advantageous not only to reduce cost but also to achieve higher Q 0 -values. In this contribution we present the results from cryogenic RF tests of 1.3–1.5 GHz single-cell cavities made of ingot Nb of medium (RRR = 100–150) and low (RRR = 60) purity from different suppliers. Cavities made of medium-purity ingots routinely achieved peak surface magnetic field values greater than 70 mT with an average Q 0 -value of 2 × 10 10 at 2 K after standard processing treatments. The performances of cavities made of low-purity ingots were affected by significant pitting of the surface after chemical etching. (paper)

  12. Tuning for optimal performance in angle control, uniformity, and energy purity

    International Nuclear Information System (INIS)

    Liebert, Reuel B.; Olson, Joseph C.; Arevalo, Edwin A.; Downey, Daniel F.

    2005-01-01

    Advances in reducing the sizes of device structures and line widths place increasing demands on the accuracy of dopant placement and the control of dopant motion during activation anneals. Serial process high current ion implantation systems seek to produce beams in which the angles are controlled to high precision avoiding the angles introduced by conical structures used for holding wafers on spinning discs in batch systems. However, ion optical corrections and control of incident beam angle, dose uniformity, high throughput and energy purity often present apparently contradictory requirements in machine design. Data is presented to illustrate that tuning procedures can be used to simultaneously optimize angle purity in both x and y planes as well as control energy purity and dose uniformity

  13. Effect of Aluminum Purity on the Pore Formation of Porous Anodic Alumina

    International Nuclear Information System (INIS)

    Kim, Byeol; Lee, Jin Seok

    2014-01-01

    Anodic alumina oxide (AAO), a self-ordered hexagonal array, has various applications in nanofabrication such as the fabrication of nanotemplates and other nanostructures. In order to obtain highly ordered porous alumina membranes, a two-step anodization or prepatterning of aluminum are mainly conducted with straight electric field. Electric field is the main driving force for pore growth during anodization. However, impurities in aluminum can disturb the direction of the electric field. To confirm this, we anodized two different aluminum foil samples with high purity (99.999%) and relatively low purity (99.8%), and compared the differences in the surface morphologies of the respective aluminum oxide membranes produced in different electric fields. Branched pores observed in porous alumina surface which was anodized in low-purity aluminum and the size; dimensions of the pores were found to be usually smaller than those obtained from high-purity aluminum. Moreover, anodization at high voltage proceeds to a significant level of conversion because of the high speed of the directional electric field. Consequently, anodic alumina membrane of a specific morphology, i. e., meshed pore, was produced

  14. Effect of Aluminum Purity on the Pore Formation of Porous Anodic Alumina

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Byeol; Lee, Jin Seok [Sookmyung Women' s Univ., Seoul (Korea, Republic of)

    2014-02-15

    Anodic alumina oxide (AAO), a self-ordered hexagonal array, has various applications in nanofabrication such as the fabrication of nanotemplates and other nanostructures. In order to obtain highly ordered porous alumina membranes, a two-step anodization or prepatterning of aluminum are mainly conducted with straight electric field. Electric field is the main driving force for pore growth during anodization. However, impurities in aluminum can disturb the direction of the electric field. To confirm this, we anodized two different aluminum foil samples with high purity (99.999%) and relatively low purity (99.8%), and compared the differences in the surface morphologies of the respective aluminum oxide membranes produced in different electric fields. Branched pores observed in porous alumina surface which was anodized in low-purity aluminum and the size; dimensions of the pores were found to be usually smaller than those obtained from high-purity aluminum. Moreover, anodization at high voltage proceeds to a significant level of conversion because of the high speed of the directional electric field. Consequently, anodic alumina membrane of a specific morphology, i. e., meshed pore, was produced.

  15. High Purity Hydrogen Production with In-Situ Carbon Dioxide and Sulfur Capture in a Single Stage Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Nihar Phalak; Shwetha Ramkumar; Daniel Connell; Zhenchao Sun; Fu-Chen Yu; Niranjani Deshpande; Robert Statnick; Liang-Shih Fan

    2011-07-31

    Enhancement in the production of high purity hydrogen (H{sub 2}) from fuel gas, obtained from coal gasification, is limited by thermodynamics of the water gas shift (WGS) reaction. However, this constraint can be overcome by conducting the WGS in the presence of a CO{sub 2}-acceptor. The continuous removal of CO{sub 2} from the reaction mixture helps to drive the equilibrium-limited WGS reaction forward. Since calcium oxide (CaO) exhibits high CO{sub 2} capture capacity as compared to other sorbents, it is an ideal candidate for such a technique. The Calcium Looping Process (CLP) developed at The Ohio State University (OSU) utilizes the above concept to enable high purity H{sub 2} production from synthesis gas (syngas) derived from coal gasification. The CLP integrates the WGS reaction with insitu CO{sub 2}, sulfur and halide removal at high temperatures while eliminating the need for a WGS catalyst, thus reducing the overall footprint of the hydrogen production process. The CLP comprises three reactors - the carbonator, where the thermodynamic constraint of the WGS reaction is overcome by the constant removal of CO{sub 2} product and high purity H{sub 2} is produced with contaminant removal; the calciner, where the calcium sorbent is regenerated and a sequestration-ready CO{sub 2} stream is produced; and the hydrator, where the calcined sorbent is reactivated to improve its recyclability. As a part of this project, the CLP was extensively investigated by performing experiments at lab-, bench- and subpilot-scale setups. A comprehensive techno-economic analysis was also conducted to determine the feasibility of the CLP at commercial scale. This report provides a detailed account of all the results obtained during the project period.

  16. Automation of the Characterization of High Purity Germanium Detectors

    Science.gov (United States)

    Dugger, Charles ``Chip''

    2014-09-01

    Neutrinoless double beta decay is a rare hypothesized process that may yield valuable insight into the fundamental properties of the neutrino. Currently there are several experiments trying to observe this process, including the Majorana DEMONSTRAOR experiment, which uses high purity germanium (HPGe) detectors to generate and search for these events. Because the event happens internally, it is essential to have the lowest background possible. This is done through passive detector shielding, as well as event discrimination techniques that distinguish between multi-site events characteristic of gamma-radiation, and single-site events characteristic of neutrinoless double beta decay. Before fielding such an experiment, the radiation response of the detectors must be characterized. A robotic arm is being tested for future calibration of HPGe detectors. The arm will hold a source at locations relative to the crystal while data is acquired. Several radioactive sources of varying energy levels will be used to determine the characteristics of the crystal. In this poster, I will present our work with the robot, as well as the characterization of data we took with an underground HPGe detector at the WIPP facility in Carlsbad, NM (2013). Neutrinoless double beta decay is a rare hypothesized process that may yield valuable insight into the fundamental properties of the neutrino. Currently there are several experiments trying to observe this process, including the Majorana DEMONSTRAOR experiment, which uses high purity germanium (HPGe) detectors to generate and search for these events. Because the event happens internally, it is essential to have the lowest background possible. This is done through passive detector shielding, as well as event discrimination techniques that distinguish between multi-site events characteristic of gamma-radiation, and single-site events characteristic of neutrinoless double beta decay. Before fielding such an experiment, the radiation response of

  17. Recovery of high purity proteins from polyacrylamide gels using ultraviolet scanning densitometry

    International Nuclear Information System (INIS)

    Bartolini, P.; Arkaten, R.; Ribela, M.T.C.P.

    1988-07-01

    We present here a technique for the purification of proteins carried out by a quantitative analytical method used in conjunction with a preparative gel electrophoresis. Both methods employ densitometric ultraviolet scanning of unstained protein bands, a procedure wich is particulary suitable for the purification and recovery of biologically active polypeptides. In short, the purified extracted protein, isolated in a segment cut out from a preparative gel, is recovered by a second (reversed) electrophoresis. We performed the extractions and recoveries of different amounts of two standard proteins (BSA and STI) and a polypeptide hormone (hGH). Our main interest, especially for the hormone is the complete protein recovery with retention of bio and immunoactivity and high purity. For the proteins tested, the mean recovery was of 93 + - 5% obtaining a mean purity of 95 + - 7%. We conclude that the proposed method should have interesting applications, particularly in the obtention of very pure hormones, as are needed for radioligand assays, for radiolabelling and specific antibody raising. We emphasize the simplicity and rapidity of the method (the entire preparative process: first electrophoresis, UV scanning and reversed electrophoresis can be performed in approximately six hours) and its efficiency in recovering pure proteins even on a milligram scale. We thank the support from the IAEA (4299/RB) and FINEP (43.86.0351.00) and CENE (Brazil). (author) [pt

  18. High resolution RGB color line scan camera

    Science.gov (United States)

    Lynch, Theodore E.; Huettig, Fred

    1998-04-01

    A color line scan camera family which is available with either 6000, 8000 or 10000 pixels/color channel, utilizes off-the-shelf lenses, interfaces with currently available frame grabbers, includes on-board pixel by pixel offset correction, and is configurable and controllable via RS232 serial port for computer controlled or stand alone operation is described in this paper. This line scan camera is based on an available 8000 element monochrome line scan camera designed by AOA for OEM use. The new color version includes improvements such as better packaging and additional user features which make the camera easier to use. The heart of the camera is a tri-linear CCD sensor with on-chip color balancing for maximum accuracy and pinned photodiodes for low lag response. Each color channel is digitized to 12 bits and all three channels are multiplexed together so that the resulting camera output video is either a 12 or 8 bit data stream at a rate of up to 24Megpixels/sec. Conversion from 12 to 8 bit, or user-defined gamma, is accomplished by on board user-defined video look up tables. The camera has two user-selectable operating modes; lows speed, high sensitivity mode or high speed, reduced sensitivity mode. The intended uses of the camera include industrial inspection, digital archiving, document scanning, and graphic arts applications.

  19. Spall behaviors of high purity copper under sweeping detonation

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yang, E-mail: yangyanggroup@163.com [School of Material Science and Engineering, Central South University, Changsha 410083 (China); Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang 621900 (China); National Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081 (China); Key Laboratory of Nonferrous Metals Material Science and Engineering of Ministry of Education, Central South University, Changsha 410083 (China); Zhi-qiang, Peng; Xing-zhi, Chen [School of Material Science and Engineering, Central South University, Changsha 410083 (China); Key Laboratory of Nonferrous Metals Material Science and Engineering of Ministry of Education, Central South University, Changsha 410083 (China); Zhao-liang, Guo; Tie-gang, Tang; Hai-bo, Hu [Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang 621900 (China); Qing-ming, Zhang [National Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081 (China)

    2016-01-10

    Suites of sweeping detonation experiments were conducted to assess the spall behavior of high purity copper samples with different heat treatment histories. Incipient spall samples were obtained at different sweeping detonation condition. Metallographic and Electron Backscattered Diffraction (EBSD) analyses were performed on the soft-recovered samples. The effects of grain boundaries, grain size, crystal orientation and loading direction on the spall behaviors were discussed. Spall plane branching was found in the main spall plane of the damage samples. For similar microstructure, the area of voids increase with the increase of shock stress, and the coalescence of voids also become more obvious. Results from EBSD analysis show that the grain sizes were decreased and the grains were elongated along the direction of the plate width. Triple junctions composed of two or more general high angle boundaries are the preferred locations for intergranular damage. Voids prefer to nucleate in the grain boundaries composed of grain with high Taylor Factor (TF) than other grains. The damage areas in the grains with high TF are more severe. Boundaries close to perpendicular to the loading direction are more susceptible to void nucleation than the boundaries close to parallel to the loading direction, but the difference of voids nucleated in these two boundaries is less significant than the results obtained by plate impact experiment. It would be caused by the obliquity between the shock loading direction and the plate normal.

  20. A simple dissolved metals mixing method to produce high-purity MgTiO3 nanocrystals

    International Nuclear Information System (INIS)

    Pratapa, Suminar; Baqiya, Malik A.; Istianah,; Lestari, Rina; Angela, Riyan

    2014-01-01

    A simple dissolved metals mixing method has been effectively used to produce high-purity MgTiO 3 (MT) nanocrystals. The method involves the mixing of independently dissolved magnesium and titanium metal powders in hydrochloric acid followed by calcination. The phase purity and nanocrystallinity were determined by making use of laboratory x-ray diffraction data, to which Rietveld-based analyses were performed. Results showed that the method yielded only one type magnesium titanate powders, i.e. MgTiO 3 , with no Mg 2 TiO 4 or MgTi 2 O 5 phases. The presence of residual rutile or periclase was controlled by adding excessive Mg up to 5% (mol) in the stoichiometric mixing. The method also resulted in MT nanocrystals with estimated average crystallite size of 76±2 nm after calcination at 600°C and 150±4 nm (at 800°C). A transmission electron micrograph confirmed the formation of the nanocrystallites

  1. Gain limits of a Thick GEM in high-purity Ne, Ar and Xe

    CERN Document Server

    Miyamoto, J; Peskov, V

    2010-01-01

    The dependence of the avalanche charge gain in Thick Gas Electron Multipliers (THGEM) on the purity of Ne, Ar and Xe filling gases was investigated. The gain, measured with alpha-particles in standard conditions (atmospheric pressure, room temperature), was found to considerably drop in gases purified by non-evaporable getters. On the other hand, small N2 admixtures to noble gases resulted in high reachable gains. The results are of general relevance in the operation of gas-avalanche detectors in noble gases, particularly that of two-phase cryogenic detectors for rare events.

  2. Synthesis of high-purity Li{sub 8}ZrO{sub 6} powder by solid state reaction under hydrogen atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Shin-mura, Kiyoto; Otani, Yu; Ogawa, Seiya [Course of Mechanical Engineering, Graduate School of Engineering, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa 259-1292 (Japan); Niwa, Eiki; Hashimoto, Takuya [Department of Physics, College of Humanities and Sciences, Nihon University, 3-8-1 Sakurajousui, Setagaya-ku, Tokyo 156-8550 (Japan); Hoshino, Tsuyoshi [Breeding Functional Materials Development Group, Department of Blanket Systems Research, Rokkasho Fusion Institute, Sector of Fusion Research and Development, Japan Atomic Energy Agency, 2-166 Obuchi, Omotedate, Rokkasho-mura, Kamikita-gun, Aomori 039-3212 (Japan); Sasaki, Kazuya, E-mail: k_sasaki@tokai-u.ac.jp [Course of Mechanical Engineering, Graduate School of Engineering, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa 259-1292 (Japan); Department of Prime Mover Engineering, School of Engineering, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa 259-1292 (Japan)

    2016-11-01

    Highlights: • A fine pure Li{sub 8}ZrO{sub 6} powder was synthesized by using Li{sub 2}CO{sub 3} and ZrO{sub 2} via a solid state reaction. • Influences on the purity of product powder, lattice defect, and crystal orientation were revealed. • The suitable synthesis conditions of the fine and high purity Li{sub 8}ZrO{sub 6} powder were found. • The reaction process of the synthesis of Li{sub 8}ZrO{sub 6} was estimated. - Abstract: Li{sub 8}ZrO{sub 6} contains a large amount of Li and has a significant potential as a tritium breeder. However, few syntheses of fine-grain, high-purity Li{sub 8}ZrO{sub 6} powder have been reported. In this study, a high-purity powder of Li{sub 8}ZrO{sub 6} was synthesized by solid state reaction under hydrogen atmosphere combined with an effective lithium source and a suitable initial Li:Zr molar ratio. Mixed powders of Li{sub 2}CO{sub 3} and ZrO{sub 2} were fired at around 630 °C in H{sub 2} for several hours and several firing cycles. The low firing temperature inhibited the vaporization of Li during the heating, so that excessive amounts of Li were not needed for the synthesis, and the Li:Zr ratio in the starting material was 10:1 (mol:mol). In this synthesis, Li{sub 2}O was generated via the decomposition of Li{sub 2}CO{sub 3} during firing in H{sub 2}, and reacted with ZrO{sub 2} to form Li{sub 6}Zr{sub 2}O{sub 7}, which reacted with itself to form Li{sub 8}ZrO{sub 6}.

  3. High-pressure torsion of aluminum with ultrahigh purity (99.9999%) and occurrence of inverse Hall-Petch relationship

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Yuki [Department of Materials Science and Engineering, Kyushu University, Fukuoka 819-0395 (Japan); Edalati, Kaveh, E-mail: Kaveh.edalati@zaiko6.zaiko.kyushu-u.ac.jp [Department of Materials Science and Engineering, Kyushu University, Fukuoka 819-0395 (Japan); WPI, International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, Fukuoka 819-0395 (Japan); Horita, Zenji [Department of Materials Science and Engineering, Kyushu University, Fukuoka 819-0395 (Japan); WPI, International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, Fukuoka 819-0395 (Japan)

    2017-01-02

    Severe plastic deformation through the high-pressure torsion (HPT) method was applied to pure aluminum with a wide range of purity levels such as 99% (A1100), 99.5% (A1050), 99.99% (4NAl), 99.999% (5NAl) and 99.9999% (6NAl). The hardness of 6NAl decreased with straining and saturated to a level below the hardness level of the annealed sample. This softening behavior, which was similar to the behavior of metals with low melting temperatures such as indium, tin, lead and zinc, was not observed in 5NAl or less pure Al. It was found that the grain-size dependence of hardness became less significant with increasing the purity level, while the HPT-processed 6NAl followed an inverse Hall-Petch relationship. In 6NAl with large grain sizes, dislocations accumulated in the grains in the form of dislocation cells and enhanced the hardness, but when the grain size was small, the dislocations moved fast and disappeared in high-angle grain boundaries.

  4. Synthesis of high purity tungsten nanoparticles from tungsten heavy alloy scrap by selective precipitation and reduction route

    International Nuclear Information System (INIS)

    Kamal, S.S. Kalyan; Sahoo, P.K.; Vimala, J.; Shanker, B.; Ghosal, P.; Durai, L.

    2016-01-01

    In this paper we report synthesis of tungsten nanoparticles of high purity >99.7 wt% from heavy alloy scrap using a novel chemical route of selective precipitation and reduction. The effect of Poly(vinylpyrrolidone) polymer on controlling the particle size is established through FTIR spectra and corroborated with TEM images, wherein the average size decreased form 210 to 45 nm with increasing PVP content from zero to 2 g under different experimental conditions. This process is economical as raw material is a scrap and the efficiency of the reaction is >95%. - Highlights: • Tungsten nanoparticles were synthesized from tungsten heavy alloy scrap. • A novel chemical route of precipitation and reduction with Poly(vinylpyrrolidone) polymer as stabilizer is reported. • The average size decreased form 210 to 45 nm with increasing PVP content from zero to 2 g. • High pure tungsten nanoparticles of >99.7% purity could be synthesized using this route. • Efficiency of the reaction is >95%.

  5. Amorphous germanium as an electron or hole blocking contact on high-purity germanium detectors

    International Nuclear Information System (INIS)

    Hansen, W.L.; Haller, E.E.

    1976-10-01

    Experiments were performed in an attempt to make thin n + contacts on high-purity germanium by the solid phase/sup 1)/ epitaxial regrowth of arsenic doped amorphous germanium. After cleaning the crystal surface with argon sputtering and trying many combinations of layers, it was not found possible to induce recrystallization below 400 0 C. However, it was found that simple thermally evaporated amorphous Ge made fairly good electron or hole blocking contacts. Excellent spectrometers have been made with amorphous Ge replacing the n + contact. As presently produced, the amorphous Ge contact diodes show a large variation in high-voltage leakage current

  6. Damage process of high purity tungsten coatings by hydrogen beam heat loads

    International Nuclear Information System (INIS)

    Tamura, S.; Tokunaga, K.; Yoshida, N.; Taniguchi, M.; Ezato, K.; Sato, K.; Suzuki, S.; Akiba, M.; Tsunekawa, Y.; Okumiya, M.

    2005-01-01

    To investigate the synergistic effects of heat load and hydrogen irradiation, cyclic heat load tests with a hydrogen beam and a comparable electron beam were performed for high purity CVD-tungsten coatings. Surface modification was examined as a function of the peak temperature by changing the heat flux. Scanning Electron Microscopy analysis showed that the surface damage caused by the hydrogen beam was more severe than that by the electron beam. In the hydrogen beam case, cracking at the surface occurred at all peak temperatures examined from 300 deg. C to 1600 deg. C. These results indicate that the injected hydrogen induces embrittlement for the CVD-tungsten coating

  7. Purity Evaluation of Single-Walled Carbon Nanotubes Using Thermogravimetric Analysis

    International Nuclear Information System (INIS)

    Goak, Jeung Choon; Kim, Tae Yang; Jung, Jongwan; Seo, Young-Soo; Lee, Naesung; Sok, Junghyun

    2013-01-01

    This study evaluated the purity of single-walled carbon nanotubes (SWCNTs) in the arc-synthesized SWCNT samples by using thermogravimetric analysis (TGA). The as-produced SWCNT samples were heat-treated in air for 20 h at 275-475°C and characterized by scanning and transmission electron microscopes and TGA to establish oxidation temperature ranges of SWCNTs and carbonaceous impurities comprising the samples. Based on these oxidation temperature ranges, derivative thermogravimetric curves were deconvoluted, and differentiated peaks were assigned to SWCNTs and carbonaceous impurities. The compositions and the SWCNT purities of the samples were obtained simply by calculating the areal ratios under the deconvoluted curves. TGA studies on purity evaluation and thermal stabilities of SWCNTs and carbonaceous impurities are likely to provide us with a simple route of thermal oxidation purification to acquire high-purity SWCNT samples.

  8. N-Type delta Doping of High-Purity Silicon Imaging Arrays

    Science.gov (United States)

    Blacksberg, Jordana; Hoenk, Michael; Nikzad, Shouleh

    2005-01-01

    A process for n-type (electron-donor) delta doping has shown promise as a means of modifying back-illuminated image detectors made from n-doped high-purity silicon to enable them to detect high-energy photons (ultraviolet and x-rays) and low-energy charged particles (electrons and ions). This process is applicable to imaging detectors of several types, including charge-coupled devices, hybrid devices, and complementary metal oxide/semiconductor detector arrays. Delta doping is so named because its density-vs.-depth characteristic is reminiscent of the Dirac delta function (impulse function): the dopant is highly concentrated in a very thin layer. Preferably, the dopant is concentrated in one or at most two atomic layers in a crystal plane and, therefore, delta doping is also known as atomic-plane doping. The use of doping to enable detection of high-energy photons and low-energy particles was reported in several prior NASA Tech Briefs articles. As described in more detail in those articles, the main benefit afforded by delta doping of a back-illuminated silicon detector is to eliminate a "dead" layer at the back surface of the silicon wherein high-energy photons and low-energy particles are absorbed without detection. An additional benefit is that the delta-doped layer can serve as a back-side electrical contact. Delta doping of p-type silicon detectors is well established. The development of the present process addresses concerns specific to the delta doping of high-purity silicon detectors, which are typically n-type. The present process involves relatively low temperatures, is fully compatible with other processes used to fabricate the detectors, and does not entail interruption of those processes. Indeed, this process can be the last stage in the fabrication of an imaging detector that has, in all other respects, already been fully processed, including metallized. This process includes molecular-beam epitaxy (MBE) for deposition of three layers, including

  9. Effect of temperature on corrosion of steels in high purity water

    International Nuclear Information System (INIS)

    Honda, Takashi; Kashimura, Eiji; Ohashi, Kenya; Furutani, Yasumasa; Ohsumi, Katsumi; Aizawa, Motohiro; Matsubayashi, Hideo.

    1987-01-01

    Effect of temperature on corrosion behavior of steels was evaluated in the range of 150 - 300 deg C in high purity water containing about 200 ppb oxygen. The exposure tests were carried out in actual and simulated reactor water of BWR plants. Through X-ray diffractometry, SIMS, XPS and chemical analyses, it was clarified that the chemical composition and morphology of oxide films formed on austenitic stainless steel changed above about 250 deg C. Chromium dissolved easily through corrosion above this temperature, and the oxide films primarily consisted of spinel type oxides containing high concentration of nickel. Further, as the protectivety of oxide films increased with temperature, the corrosion rate had a peak around 250 deg C after a long exposure period. A major phase of oxide films on carbon steel was magnetite in the whole temperature range. However, as the oxide films formed at high temperatures had very compact structures, the effect of temperature on the corrosion rate was similar to that observed on stainless steel. (author)

  10. Effects of cyclic tensile loading on stress corrosion cracking susceptibility for sensitized Type 304 stainless steel in 290 C high purity water

    International Nuclear Information System (INIS)

    Takaku, H.; Tokiwai, M.; Hirano, H.

    1979-01-01

    The effects of load waveform on intergranular stress corrosion cracking (IGSCC) susceptibility have been examined for sensitized Type 304 stainless steels in a 290 C high purity water loop. Concerning the strain rate in the trapezoidal stress waveform, it was found that IGSCC susceptibility was higher for smaller values of the strain rate. It was also shown that IGSCC susceptibility became higher when the holding time at the upper stress was prolonged, and when the upper stress was high. The occurrence of IGSCC for sensitized Type 304 stainless steel became easy due to the application of cyclic tensile stress in 290 C high purity water

  11. High-purity fatty acid methyl ester production from canola, soybean, palm, and yellow grease lipids by means of a membrane reactor

    International Nuclear Information System (INIS)

    Cao Peigang; Dube, Marc A.; Tremblay, Andre Y.

    2008-01-01

    High-purity fatty acid methyl ester (FAME) was produced from different lipids, such as soybean oil, canola oil, a hydrogenated palm oil/palm oil blend, yellow grease, and brown grease, combined with methanol using a continuous membrane reactor. The membrane reactor combines reaction and separation in a single unit, provides continuous mixing of raw materials, and maintains a high molar ratio of methanol to lipid in the reaction loop while maintaining two phases during the reaction. It was demonstrated that the membrane reactor can be operated using a very broad range of feedstocks at highly similar operating conditions to produce FAME. The total glycerine and free glycerine contents of the FAME produced were below the ASTM D6751 standard after a single reaction step. Under essentially the same reaction conditions, a conventional batch reaction was not able to achieve the same degree of FAME purity. The effect of the fatty acid composition of the lipid feedstocks on the FAME purity was also shown. It was demonstrated that, due to the fatty acid composition, FAME from virgin soybean oil and virgin canola oil was produced in the membrane reactor within ASTM specifications even without a water washing step

  12. Determination of radiochemistry purity and pH of radiopharmaceutical in Northeast nuclear medicine services

    International Nuclear Information System (INIS)

    Andrade, Wellington; Santos, Poliane; Lima, Fernando de Andrade; Lima, Fabiana Farias de

    2013-01-01

    The radiopharmaceutical is a chemical compound associated with a radionuclide, which is selected so that meets the need cf diagnosis and capable of producing quality images. Drugs labeled with 99m Tc radionuclide kits consist of lyophilized, and be handled by the nuclear medicine services (NMS) must pass tests as the resolution of ANVISA (RDC 38) published in 2008. Among these tests are those of radiochemical purity and pH determination. This study evaluated the radiochemical purity of radiopharmaceuticals and pH SMN manipulated in the Northeast. The radiochemical purity (RCP) was determined by thin layer chromatography, which were used Whatman ® and silica gel, with dimensions of 1 x 10 cm, as stationary phase, and solvents indicated in the inserts of manufacturers. The chromatographic strips were placed in sealed containers so as not to touch the walls thereof. After the chromatographic run, the tape was cut every centimeter and the activities determined in doses of each calibrator NMS. The pH of the radiopharmaceutical was assessed through the use of universal pH paper (Merck®) and obtained staining compared with its color scale. The results showed (hat 82.6% and 100% of the radiopharmaceuticals of the samples were within the limits recommended by international pharmacopoeias for radiochemical purity and pl-l, respectively. There is then the need to include in routine tests indicated SMN by ANVISA. Well, they can detect possible problems in the marking of radiopharmaceuticals administered to the patient and avoid inappropriate material. (author)

  13. Comparison of Response Characteristics of High-Purity Germanium Detectors using Analog Versus Digital Processing

    International Nuclear Information System (INIS)

    Luke, S J; Raschke, K

    2004-01-01

    In this article we will discuss some of the results of the response characteristics of High Purity germanium detectors using analog versus digital processing of the signals that are outputted from the detector. The discussion will focus on whether or not there is a significant difference in the response of the detector with digital electronics that it limits the ability of the detection system to get reasonable gamma ray spectrometric results. Particularly, whether or not the performance of the analysis code Pu600 is compromised

  14. The method for production of high purity carrier free ortophosphoric acid labeled with isotopes Phosphorus-32 and Phosphorus-33

    International Nuclear Information System (INIS)

    Abdukayumov, M.N.; Abdusalyamov, A.N.; Chistyakov, P.G.; Yuldashev, B.S.

    2001-01-01

    Extensive application for various radioactive isotopes was found in an extremity of the 20-Th century in a science and production. Labeled compounds are used with growing effectiveness in a molecular biology, gene engineering, medicine and other areas. Phosphorus-32 and Phosphorus-33 isotopes as a different labeled compounds that are used mainly in molecular biology are produced at the Radiopreparat enterprise of the Institute of Nuclear Physics of Academy of Sciences of Uzbekistan Republic. The quality of labeled preparations is very high. The specifications for above mentioned preparations corresponds to demands most of customers in different countries. P-32 or P-33 labeled orthophosphoric acid has high radiochemical purity (more than 99 %) and specific radioactivity close to theoretical. Orthophosphoric acid prepared by the described above method has radiochemical purity about 95 % and output of the target product 99%

  15. The rapid synthesis of high purity [{sup 18}F]butyrophenone neuroleptics from nitro precursors for PET study

    Energy Technology Data Exchange (ETDEWEB)

    Hashizume, Kazunari; Hashimoto, Naoto; Kato, Hiroo; Cork, D G; Miyake, Yoshihiro [National Cardiovascular Center, Suita, Osaka (Japan)

    1995-04-01

    We have completed rapid syntheses of [{sup 18}F]butyrophenone neuroleptics ([{sup 18}F]haloperidol and [{sup 18}F]spiperone) from their nitro precursors in high radiochemical yields (up to 21%) by combining a one-step nitro-fluoro exchange reaction and a novel high performance liquid chromatography (HPLC) separation method. The synthesis time was ca. 95 min and both the radiochemical and chemical purities of the labeled products were over 99%. (author).

  16. Efficiency correction for disk sources using coaxial High-Purity Ge detectors

    International Nuclear Information System (INIS)

    Chatani, Hiroshi.

    1993-03-01

    Efficiency correction factors for disk sources were determined by making use of closed-ended coaxial High-Purity Ge (HPGe) detectors, their relative efficiencies for a 3' 'x3' ' NaI(Tl) with the 1.3 MeV γ-rays were 30 % and 10 %, respectively. Parameters for the correction by mapping method were obtained systematically, using several monoenergetic (i.e. no coincidence summing loses) γ-ray sources produced by irradiation in the Kyoto University Reactor (KUR) core. These were found out that (1) the systematics of the Gaussian fitting parameters, which were calculated using the relative efficiency distributions of HPGe, to the γ-ray energies are recognized, (2) the efficiency distributions deviate from the Gaussian distributions outside of the radii of HPGe. (3) mapping method is a practical use in satisfactory accuracy, as the results in comparison with the disk source measurements. (author)

  17. All electrochemical fabrication of a bilayer membrane composed of nanotubular photocatalyst and palladium toward high-purity hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Hattori, Masashi [Institute for Materials Chemistry and Engineering, Kyushu University, Kasuga 816-8580 (Japan); Noda, Kei, E-mail: nodakei@elec.keio.ac.jp [Department of Electronics and Electrical Engineering, Keio University, Hiyoshi, Yokohama 223-8522 (Japan)

    2015-12-01

    Graphical abstract: - Highlights: • A bilayer membrane composed of TiO{sub 2} nanotube array and palladium was fabricated. • The TiO{sub 2}/Pd bilayer membrane was prepared with an all-electrochemical process. • The membrane consists of pure Pd and anatase TiO{sub 2} nanotubes with no alloy formation. • Photocatalytic H{sub 2} production and concomitant separation were demonstrated. • High-purity H{sub 2} production rate and apparent quantum yield were evaluated. - Abstract: We developed an all-electrochemical technique for fabricating a bilayer structure of a titanium dioxide (TiO{sub 2}) nanotube array (TNA) and a palladium film (TNA/Pd membrane), which works for photocatalytic high-purity hydrogen production. Electroless plating was used for depositing the Pd film on the TNA surface prepared by anodizing a titanium foil. A 3-μm-thick TNA/Pd membrane without any pinholes in a 1.5-cm-diameter area was fabricated by transferring a 1-μm-thick TNA onto an electroless-plated 2-μm-thick Pd film with a mechanical peel-off process. This ultrathin membrane with sufficient mechanical robustness showed photocatalytic H{sub 2} production via methanol reforming under ultraviolet illumination on the TNA side, immediately followed by the purification of the generated H{sub 2} gas through the Pd layer. The hydrogen production rate and the apparent quantum yield for high-purity H{sub 2} production from methanol/water mixture with the TNA/Pd membrane were also examined. This work suggests that palladium electroless plating is more suitable and practical for preparing a well-organized TNA/Pd heterointerface than palladium sputter deposition.

  18. Preparation of high-purity Pr{sup 3+} doped Ge–As–Se–In–I glasses for active mid-infrared optics

    Energy Technology Data Exchange (ETDEWEB)

    Karaksina, E.V.; Shiryaev, V.S., E-mail: shiryaev@ihps.nnov.ru; Kotereva, T.V.; Velmuzhov, A.P.; Ketkova, L.A.; Snopatin, G.E.

    2016-09-15

    The multi-stage method for the synthesis of high-purity Ge–As–Se–In–I glasses doped with Pr{sup 3+} ions is developed. It is based on the chemical distillation purification of glass-forming melt and the chemical transport reactions for purification and vacuum loading of indium. The level of purity of glasses, synthesized by this method, is higher in comparison with the traditional direct melting method for glass synthesis. The high-purity Pr{sup 3+}-doped Ge–As–Se–In and Pr{sup 3+}-doped Ge–As–Se–In–I glass samples are prepared; the optical, thermal and luminescent properties are investigated. The purest host glass samples, obtained by the multi-stage purification techniques, contain a low concentration of limiting impurities: hydrogen − ≤0.05 ppm (wt) and oxygen − ≤0.1 ppm (wt), that is, at present, the best result for multi-component chalcogenide glasses for mid-IR active fibers. The samples of Pr{sup 3+}-doped Ge–As–Se–In glass fibers have the minimum optical losses of 0.58 dB/m at the wavelength of 2.72 μm and exhibit an intense broadband luminescence in the spectral range of 3.5–5.5 μm, with a maximum shifted to longer wavelengths as compared with the bulk samples.

  19. Gamut mapping in a high-dynamic-range color space

    Science.gov (United States)

    Preiss, Jens; Fairchild, Mark D.; Ferwerda, James A.; Urban, Philipp

    2014-01-01

    In this paper, we present a novel approach of tone mapping as gamut mapping in a high-dynamic-range (HDR) color space. High- and low-dynamic-range (LDR) images as well as device gamut boundaries can simultaneously be represented within such a color space. This enables a unified transformation of the HDR image into the gamut of an output device (in this paper called HDR gamut mapping). An additional aim of this paper is to investigate the suitability of a specific HDR color space to serve as a working color space for the proposed HDR gamut mapping. For the HDR gamut mapping, we use a recent approach that iteratively minimizes an image-difference metric subject to in-gamut images. A psychophysical experiment on an HDR display shows that the standard reproduction workflow of two subsequent transformations - tone mapping and then gamut mapping - may be improved by HDR gamut mapping.

  20. High resolution color imagery for orthomaps and remote sensing

    Energy Technology Data Exchange (ETDEWEB)

    Fricker, Peter [Leica Geosystems GIS and Mapping, LLC (Switzerland); Gallo, M. Guillermo [Leica Geosystems GIS and Mapping, LLC (United States)

    2005-07-01

    The ADS40 Airborne Digital Pushbroom Sensor is currently the only commercial sensor capable of acquiring color and false color strip images in the low decimeter range at the same high resolution as the black and white stereo images. This high resolution of 12,000 pixels across the entire swath and 100% forward overlap in the image strips result in high quality DSM's, True Ortho's and at the same time allow unbiased remote sensing applications due to color strip images unchanged by pan-sharpening. The paper gives details on how the pushbroom sensor achieves these seemingly difficult technical challenges. It describes how a variety of mapping applications benefit from this sensor, a sensor which acts as a satellite pushbroom sensor within the airborne environment. (author)

  1. Modelling of hydrogen permeability of membranes for high-purity hydrogen production

    Science.gov (United States)

    Zaika, Yury V.; Rodchenkova, Natalia I.

    2017-11-01

    High-purity hydrogen is required for clean energy and a variety of chemical technology processes. Different alloys, which may be well-suited for use in gas-separation plants, were investigated by measuring specific hydrogen permeability. One had to estimate the parameters of diffusion and sorption to numerically model the different scenarios and experimental conditions of the material usage (including extreme ones), and identify the limiting factors. This paper presents a nonlinear mathematical model taking into account the dynamics of sorption-desorption processes and reversible capture of diffusing hydrogen by inhomogeneity of the material’s structure, and also modification of the model when the transport rate is high. The results of numerical modelling allow to obtain information about output data sensitivity with respect to variations of the material’s hydrogen permeability parameters. Furthermore, it is possible to analyze the dynamics of concentrations and fluxes that cannot be measured directly. Experimental data for Ta77Nb23 and V85Ni15 alloys were used to test the model. This work is supported by the Russian Foundation for Basic Research (Project No. 15-01-00744).

  2. Radio frequency and linearity performance of transistors using high-purity semiconducting carbon nanotubes.

    Science.gov (United States)

    Wang, Chuan; Badmaev, Alexander; Jooyaie, Alborz; Bao, Mingqiang; Wang, Kang L; Galatsis, Kosmas; Zhou, Chongwu

    2011-05-24

    This paper reports the radio frequency (RF) and linearity performance of transistors using high-purity semiconducting carbon nanotubes. High-density, uniform semiconducting nanotube networks are deposited at wafer scale using our APTES-assisted nanotube deposition technique, and RF transistors with channel lengths down to 500 nm are fabricated. We report on transistors exhibiting a cutoff frequency (f(t)) of 5 GHz and with maximum oscillation frequency (f(max)) of 1.5 GHz. Besides the cutoff frequency, the other important figure of merit for the RF transistors is the device linearity. For the first time, we report carbon nanotube RF transistor linearity metrics up to 1 GHz. Without the use of active probes to provide the high impedance termination, the measurement bandwidth is therefore not limited, and the linearity measurements can be conducted at the frequencies where the transistors are intended to be operating. We conclude that semiconducting nanotube-based transistors are potentially promising building blocks for highly linear RF electronics and circuit applications.

  3. Fabrication high-purity Fe nanochains with near theoretical limit value of saturation magnetization of bulk Fe

    Energy Technology Data Exchange (ETDEWEB)

    Bian, Erkang [Henan University, Key Laboratory for Special Functional Materials of Ministry of Education (China); Xu, Yanling [Henan University, The Audit Department (China); Lou, Shiyun, E-mail: lousy@henu.edu.cn [Henan University, Key Laboratory for Special Functional Materials of Ministry of Education (China); Fu, Yunlong, E-mail: yunlongfu@dns.sxnu.edu.cn [Shanxi Normal University, School of Chemistry and Material Science (China); Zhou, Shaomin, E-mail: smzhou@henu.edu.cn [Henan University, Key Laboratory for Special Functional Materials of Ministry of Education (China)

    2016-11-15

    High-yield purity chain-like one-dimensional nanostructures consisting of single crystal Fe nanoparticles have been produced by using solution dispersion approach. Room temperature magnetic measurement shows that the as-fabricated Fe nanochains are ferromagnetic with a high saturation magnetization (203 emu/g) whereas the nanoparticles are single magnetic domains, which indicate that the as-synthesized products have superparamagnetism behavior with the saturation magnetization of about 28 emu/g. Maybe this results from the directional alignment of the nanoparticles. The excellent characteristic may have led to the potential applications in spin filtering, high density magnetic recording, and nanosensors.

  4. Sensor locations and noise reduction in high-purity batch distillation control loops

    Directory of Open Access Journals (Sweden)

    Oisiovici R.M.

    2000-01-01

    Full Text Available The influence of the sensor locations on the composition control of high-purity batch distillation columns has been investigated. Using concepts of the nonlinear control theory, an input-output linearizing controller was implemented to keep the distillate composition constant at a desired value by varying the reflux ratio. An Extended Kalman Filter was developed to estimate the compositions required in the control algorithm using temperature measurements. In the presence of measurement noise, the control performance depended greatly on the sensor locations. Placing the sensors further from the top stages reduced the detrimental effects of noise but increased the inference error. To achieve accurate composition control, both noise reduction and composition estimate accuracy should be considered in the selection of the sensor locations.

  5. [Chromaticity and optical spectrum colorimetry of the tongue color in different syndromes of primary hepatic carcinoma].

    Science.gov (United States)

    Xu, Ying; Zeng, Chang-chun; Cai, Xiu-yu; Guo, Rong-ping; Nie, Guang; Jin, Ying

    2012-11-01

    In this study, the optical data of tongue color of different syndromes in primary hepatic carcinoma (PHC) were detected by optical spectrum colorimetry, and the chromaticity of tongue color was compared and analyzed. The tongue color characteristics of different syndromes in PHC and the relationship between different syndromes and tongue color were also investigated. Tongue color data from 133 eligible PHC patients were collected by optical spectrum colorimetry and the patients were divided into 4 syndrome groups according to their clinical features. The syndrome groups were liver depression and spleen deficiency (LDSD), accumulation of damp-heat (ADH), deficiency of liver and kidney yin (DLKY), and qi stagnation and blood stasis (QSBS). The variation characteristics of chromaticity coordinates, dominant wavelength, excitation purity and the distribution in the International Commission on Illumination (CIE) LAB uniform color space were measured. At the same time, the differences of overall chromatism, clarity, chroma, saturation and hue were also calculated and analyzed. PHC patients in different syndrome groups exhibited differences in chromaticity coordinates. The dominant wavelength of QSBS was distinctly different from that of the other 3 syndromes. Excitation purity in the syndromes of LDSD, ADH and DLKY showed gradual increases (Pcolorimetry technology. Different syndromes in PHC exhibit distinct chromatisms of tongue color through the calculation and analysis of chromaticity parameters of CIE, combined with colorimetric system and CIE LAB color space, and these are consistent with the characteristics of clinical tongue color. Applying optical spectrum colorimetry technology to tongue color differentiation has the potential to serve as a reference point in standardizing traditional Chinese medicine syndrome classification in PHC.

  6. Event-Based Color Segmentation With a High Dynamic Range Sensor

    Directory of Open Access Journals (Sweden)

    Alexandre Marcireau

    2018-04-01

    Full Text Available This paper introduces a color asynchronous neuromorphic event-based camera and a methodology to process color output from the device to perform color segmentation and tracking at the native temporal resolution of the sensor (down to one microsecond. Our color vision sensor prototype is a combination of three Asynchronous Time-based Image Sensors, sensitive to absolute color information. We devise a color processing algorithm leveraging this information. It is designed to be computationally cheap, thus showing how low level processing benefits from asynchronous acquisition and high temporal resolution data. The resulting color segmentation and tracking performance is assessed both with an indoor controlled scene and two outdoor uncontrolled scenes. The tracking's mean error to the ground truth for the objects of the outdoor scenes ranges from two to twenty pixels.

  7. Aluminium. II - A review of deformation properties of high purity aluminium and dilute aluminium alloys.

    Science.gov (United States)

    Reed, R. P.

    1972-01-01

    The elastic and plastic deformation behavior of high-purity aluminum and of dilute aluminum alloys is reviewed. Reliable property data, including elastic moduli, elastic coefficients, tensile, creep, fatigue, hardness, and impact are presented. Single crystal tensile results are discussed. Rather comprehensive reference lists, containing publications of the past 20 years, are included for each of the above categories. Defect structures and mechanisms responsible for mechanical behavior are presented. Strengthening techniques (alloys, cold work, irradiation, quenching, composites) and recovery are briefly reviewed.

  8. Analysis of the strain-aging phenomena in high purity niobium: competition between hardening and recovery

    International Nuclear Information System (INIS)

    Andreone, C.; Cizeron, G.; Larere, A.

    1981-01-01

    The strain-aging phenomena in high purity niobium were studied using tensile tests. Four parameters were considered which characterize the yield point, the permanent hardening, the recovery and the apparent yield stress. Five successive steps can be distinguished from the changes in these parameters with changes in the aging temperature. The detailed analysis of the phenomena involved concerns mainly the locking of dislocations by first- and second-type segregations and the opposite effect of reorganization of the dislocation network. (Auth.)

  9. Cross Purposes: Love and Purity at a Puerto Rican Protestant High School

    Science.gov (United States)

    Seale-Collazo, James

    2013-01-01

    A "native" Christian ethnographer finds religious education at this church-sponsored school to pursue two distinct, and occasionally conflicting, curricula: "love" and "purity." The curriculum of love draws on what Turner called liminality and communitas in an effort to promote spiritual "encounters with…

  10. Sorption-enhanced water gas shift reaction for high-purity hydrogen production: Application of a Na-Mg double salt-based sorbent and the divided section packing concept

    International Nuclear Information System (INIS)

    Lee, Chan Hyun; Lee, Ki Bong

    2017-01-01

    Highlights: •Na-Mg double salt-based sorbent was used for high-temperature CO 2 sorption. •Divided section packing concept was applied to the SE-WGS reaction. •High-purity H 2 was produced from the SE-WGS reaction with divided section packing. •High-purity H 2 productivity could be further enhanced by modifying packing method. -- Abstract: Hydrogen is considered a promising environmentally benign energy carrier because it has high energy density and produces no pollutants when it is converted into other types of energy. The sorption-enhanced water gas shift (SE-WGS) reaction, where the catalytic WGS reaction and byproduct CO 2 removal are carried out simultaneously in a single reactor, has received considerable attention as a novel method for high-purity hydrogen production. Since the high-purity hydrogen productivity of the SE-WGS reaction is largely dependent on the performance of the CO 2 sorbent, the development of sorbents having high CO 2 sorption capacity is crucial. Recently, a Na-Mg double salt-based sorbent has been considered for high-temperature CO 2 capture since it has been reported to have a high sorption capacity and fast sorption kinetics. In this study, the SE-WGS reaction was experimentally demonstrated using a commercial catalyst and a Na-Mg double salt-based sorbent. However, the SE-WGS reaction with a one-body hybrid solid, a physical admixture of catalyst and sorbent, showed poor reactivity and reduced CO 2 sorption uptake. As a result, a divided section packing concept was suggested as a solution. In the divided section packing method, the degree of mixing for the catalyst and sorbent in a column can be controlled by the number of sections. High-purity hydrogen (<10 ppm CO) was produced directly from the SE-WGS reaction with divided section packing, and the hydrogen productivity was further improved when the reactor column was divided into more sections and packed with more sorbent.

  11. The determination of minor amounts of rare earth elements in high purity earth oxides by HPLC/IDMS

    International Nuclear Information System (INIS)

    Stijfhoorn, D.E.; Stray, H.; Hjelmseth, H.

    1991-05-01

    Since the early seventies isotopic dilution mass spectrometry (IDMS) has been used at Institutt for energiteknikk, Kjeller, Norway for determination and certification of rare earth elements in high purity Y 2 O 3 . These lanthanides have, during the last few decades, become more widely used in highly specialized technology. High purity, quality 4 N (99.99%) or even 5 N materials are needed for phosphors, lasers, optical fibers, X-ray films, and in contrast fluids for magnetic resonance imaging (MRI). However, in a matrix constisting primarily of a single lanthanide, IDMS alone will not be effective due to isobaric interferences from the main elements or the mono-oxides formed in the ion source. On the other hand, high performance liquid chromatography (HPLC) may be used, but the detection limit will be in the order of 5 to 10 ppm/W. In this work a combination of HPLC and IDMS has been used to lower the detection limit to 1 ppm/W, where the sample is spiked before separation by HPLC, followed by IDMS analysis of the HPLC- fractions. In some cases the HPLC-process has to be repeated to remove the main element completly. Results are presented for Dy 2 O 3 and Nd 2 O 3 , but similar separating procedures can be applied for other rare earth oxides. 3 refs., 2 figs. 2 tabs

  12. Determination of uranium in natural waters and high-purity aluminum by flow-injection on-line preconcentration and ICP-MS detection

    International Nuclear Information System (INIS)

    Seki, Tatsuya; Oguma, Koichi

    2004-01-01

    A flow injection method has been developed for the determination of uranium is natural waters and high-purity aluminum by use of on-line preconcentration on a U/TEVA TM column and ICP-MS detection. The sample solution prepared as a nitric acid solution in 3 mol l -1 was passed through the U/TEVA TM column to collect uranium and uranium adsorbed was eluted with 0.1 mol l -1 nitric acid. The effluent was introduced directly into the nebulizer of the ICP-MS and 238 U was measured. The detection limit, calculated as 3-times the standard deviation of the background noise, was 3pg and the sample throughput was about 10 per hour. The proposed method was successfully applied to the determination of uranium in river-water reference materials, a seawater reference material and high-purity aluminum reference materials. (author)

  13. Development of a facility for the recovery of high-purity hydrogen from coke oven gas by pressure swing adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, M; Saida, K; Uenoyama, K; Sugishita, M; Imokawa, K

    1985-01-01

    This paper reports 1) a pressure swing adsorption (PSA) system comprising three towers, each packed with three different adsorbents; and 2) studies of the application of this system to the recovery of high-purity hydrogen from coke oven gas. Running the adsorption plant at 35 C and 9.5 kg/cm/sup 2/ gives optimum operating stability and economy. In addition, an optimum time cycle for the three-tower system has been developed. Gas from the PSA equipment proper still contains traces of oxygen. This is removed in a further tower packed with Pd catalyst. The ultimate recovery of hydrogen is closely related to its concentration in the raw coke oven gas and to the degree of purity attained. 3 references.

  14. Abridged acid-base wet-milling synthesis of high purity hydroyapatite

    Directory of Open Access Journals (Sweden)

    Sandi Carolina Ruiz-Mendoza

    2008-06-01

    Full Text Available There is a plethora of routes to produce hydroxyapatite(HA and in general calcium phosphates(CP but production usually leads to a mixture of several phases. Besides ionic contamination, most of these methods are cumbersome, restricted to small volumes of product and require a lot of thermal energy. The acid-base route eliminates foreign ions or additives and its only byproduct is water. Heterogeneous reaction drawback is that solid reactants do not easily come in contact with each other and therefore addition and stirring times become very lengthy and still the product is a mixture. The synthesis started from calcium hydroxide and phosphoric acid (PA. Ball milling was used to favor kinetics and stoichiometry. Six sets of PA addition, paddle stirring and ball milling times were used. Products were evaluated by X ray diffraction (XRD, Fourier Transform Infrared (FTIR, scanning electron microscopy (SEM, X ray fluorescence (XRF and Ca/P ratio. Chemical analysis for calcium proceeded through oxalate precipitate and phosphorus by the phosphomolibdate technique. A set of conditions yielding high purity HA was established.

  15. Multicurie, transportable, integrally shielded 123Xe → 123I generator and processing system for high-purity iodine-123 production

    International Nuclear Information System (INIS)

    Lagunas-Solar, M.C.; Thibeau, H.L.; Goodart, C.E.; Little, F.E.; Navarro, N.J.; Hartnett, D.E.

    1985-01-01

    An integrally shielded 123 Xe → 123 I generator system has been designed and tested under production conditions for its suitability as a multicurie handling device from which to produce radiopharmaceutical-quality high-purity no-carrier-added (NCA) 123 I. The 123 Xe → 123 I generator system is expected to provide an alternative to current techniques and to increase the availability and reliability of high-purity 123 I made via the 127 I(p,5n) 123 Xe → 123 I nuclear reaction. The generator system is based on the Crocker Nuclear Laboratory's continuous-flow production system which has been operating since 1974 for the multicurie production of 123 I. The generator system, which consists of an integrally shielded xenon trap and separate loading and processing apparatuses, is simple and reliable to operate, can be adapted to computerized control, and provides a safe working environment for the repeated handling of multicurie amounts of Xe-I radioactivities

  16. Computers in the investigation of the impurity content of high-purity materials

    International Nuclear Information System (INIS)

    Makarov, Yu.B.; Yan'kov, S.V.

    1987-01-01

    The efficiency of the concept of data banks for the accumulation and processing of information is now generally acknowledged. In scientific investigations not only bibliographic but also factual data banks are becoming more and more prevalent. In this article, the authors consider the possibilities of providing a data bank on high-purity materials for the study of impurity contents. Also in this paper, the authors distinguish the following groups of problems that arise in the study of impurity composition and presents examples of their proposed solutions to these problems: the analysis of error and the determination of the most probably value of impurity concentration; the estimation of average properties of impurity composition with respect to groups of impurities and samples, and the forecast of the complete impurity composition

  17. Neutron activation analysis of high purity silver using high resolution gamma-spectrometry

    International Nuclear Information System (INIS)

    Gilbert, E.N.; Veriovkin, G.V.; Botchkaryov, B.N.; Godovikov, A.A.; Zhavoronkov, V.Ya.; Mikhailov, V.A.

    1975-01-01

    A method of neutron activation determination of microimpurities in high purity silver has been developed. For matrix activity separation the extraction of silver by dibuthylsulfide /DBS/ was employed. The purification coefficient was 10 8 after triple extraction. To study the behaviour of microimpurities in the extraction procedure and to determine their chemical yields some tracer experiments were undertaken with radionuclides of Na, Se, Fe, Co, Cu, As, Sc, Te, Zr, Hf, Mo, W, Cd, In, Sb, La, Ce, Eu, Ta, Re, Ir, Ru. All the elements studied were found to remain in the aqueous phase up to 96-99% after triple extraction with DBS. To estimate the accuracy of the method and to study the mutual influence of the elements in the sample in various relative amounts on the accuracy of the analysis, a number of experiments of ''added-found'' type was performed and the results were treated statistically. In these experiments model mixtures of 30 nuclides were analysed after triple DBS extraction. The t-criterion values for the confidence interval at P=0.95 show the absence of systematic errors. Variation coefficient values do not exceed 15%. Using Ge/Li/ detector it was possible to determine 30 elements simultaneously in silver samples. (T.G.)

  18. Quantitative influence of minor and impurity elements on hot cracking susceptibility of extra high-purity type 310 stainless steel

    International Nuclear Information System (INIS)

    Saida, Kazuyoshi; Matsushita, Hideki; Nishimoto, Kazutoshi; Kiuchi, Kiyoshi; Nakayama, Junpei

    2013-01-01

    To evaluate the influence of minor and impurity elements such as C, Mn, P and S on the solidification and ductility-dip cracking susceptibilities of extra high-purity type 310 stainless steels, the transverse-Varestraint test was conducted by using several type 310 stainless steels with different amounts of C, Mn, P and S. Two types of hot cracks occurred in these steels by Varestraint test; solidification and ductility-dip cracks. The solidification cracking susceptibility was significantly reduced as the amounts of C, P and S decreased. The ductility-dip cracking susceptibility also reduced with a decrease in P and S contents. It adversely, however, increased as the C content of the steels was reduced. Mn didn't greatly affect the hot cracking susceptibility of the extra high-purity steels. The characteristic influence on solidification cracking was the ratio of P:S:C=1:1.3:0.56, while Mn negligibly ameliorated solidification cracking in the extra low S (and P) steels. The numerical analysis on the solidification brittle temperature range (BTR) revealed that the reduced solidification cracking susceptibility with decreasing the amounts of C, P and S in steel could be attributed to the reduced BTR due to the suppression of solidification segregation of minor and impurity elements in the finally solidified liquid film between dendrites. On the other hand, a molecular orbital analysis to estimate the binding strength of the grain boundary suggested that the increased ductility-dip cracking susceptibility in extra high-purity steels was caused by grain boundary embrittlement due to the refining of beneficial elements for grain boundary strengthening such as C. (author)

  19. The probability distribution of intergranular stress corrosion cracking life for sensitized 304 stainless steels in high temperature, high purity water

    International Nuclear Information System (INIS)

    Akashi, Masatsune; Kenjyo, Takao; Matsukura, Shinji; Kawamoto, Teruaki

    1984-01-01

    In order to discuss the probability distribution of intergranular stress corrsion carcking life for sensitized 304 stainless steels, a series of the creviced bent beem (CBB) and the uni-axial constant load tests were carried out in oxygenated high temperature, high purity water. The following concludions were resulted; (1) The initiation process of intergranular stress corrosion cracking has been assumed to be approximated by the Poisson stochastic process, based on the CBB test results. (2) The probability distribution of intergranular stress corrosion cracking life may consequently be approximated by the exponential probability distribution. (3) The experimental data could be fitted to the exponential probability distribution. (author)

  20. Analysis of the Purity of Cetrimide by Titrations

    DEFF Research Database (Denmark)

    Andersen, Jens Enevold Thaulov; Rasmussen, Claus/Dallerup; Nielsen, Hans/Boye

    2006-01-01

    . Titration by perchloric acid showed a 99.69 ± 0.05 % purity of cetrimide and titration by silver nitrate showed a 99.85% ± 0.05 % purity while the traditional assay method predicted a purity of only 97.1 ± 0.4. It was found that the discrepancy could be identified as differences in selectivity during...

  1. Formation and evolution of tweed structures on high-purity aluminum polycrystalline foils under cyclic tension

    International Nuclear Information System (INIS)

    Kuznetsov, P. V.; Vlasov, I. V.; Sklyarova, E. A.; Smekalina, T. V.

    2015-01-01

    Peculiarities of formation and evolution of tweed structures on the surface of high-purity aluminum polycrystalline foils under cyclic tension were studied using an atom force microscope and a white light interferometer. Tweed structures of micron and submicron sizes were found on the foils at different number of cycles. In the range of 42,000 < N < 95,000 cycles destruction of tweed patterns is observed, which leads to their disappearance from the surface of the foils. Formation of tweed structures of various scales is discussed in terms of the Grinfeld instability

  2. Calibration of Single High Purity Germanium Detector for Whole Body Counter

    International Nuclear Information System (INIS)

    Taha, T.M.; Morsi, T.M.

    2009-01-01

    A new Accuscan II single germanium detector for whole body counter was installed in NRC (Egypt). The current paper concerned on calibration of single high purity germanium detector for whole body counter. Physical parameters affecting on performance of whole body counter such as linearity, minimum detectable activity and source detector distance, SDD were investigated. Counting efficiencies for the detector have been investigated in rear wall, fixed diagnostic position in air. Counting efficiencies for organ compartments such as thyroid, lung, upper and lower gastrointestinal tract have been investigated using transfer phantom in fixed diagnostic and screening positions respectively. The organ compartment efficiencies in screening geometry were higher than that value of diagnostic geometry by a factor of three. The committed dose equivalents of I-131 in thyroid were ranged from 0.073 ± 0.004 to 1.73±0.09 mSv and in lung was 0.02±0.001 mSv

  3. Characterization of high-purity niobium structures fabricated using the electron beam melting process

    Science.gov (United States)

    Terrazas Najera, Cesar Adrian

    Additive Manufacturing (AM) refers to the varied set of technologies utilized for the fabrication of complex 3D components from digital data in a layer-by-layer fashion. The use of these technologies promises to revolutionize the manufacturing industry. The electron beam melting (EBM) process has been utilized for the fabrication of fully dense near-net-shape components from various metallic materials. This process, catalogued as a powder bed fusion technology, consists of the deposition of thin layers (50 - 120microm) of metallic powder particles which are fused by the use of a high energy electron beam and has been commercialized by Swedish company Arcam AB. Superconducting radio frequency (SRF) cavities are key components that are used in linear accelerators and other light sources for studies of elemental physics. Currently, cavity fabrication is done by employing different forming processes including deep-drawing and spinning. In both of the latter techniques, a feedstock high-purity niobium sheet with a thickness ranging from 3-4 mm is mechanically deformed and shaped into the desired geometry. In this manner, half cavities are formed that are later joined by electron beam welding (EBW). The welding step causes variability in the shape of the cavity and can also introduce impurities at the surface of the weld interface. The processing route and the purity of niobium are also of utmost importance since the presence of impurities such as inclusions or defects can be detrimental for the SRF properties of cavities. The focus of this research was the use of the EBM process in the manufacture of high purity niobium parts with potential SRF applications. Reactor grade niobium was plasma atomized and used as the precursor material for fabrication using EBM. An Arcam A2 system was utilized for the fabrication. The system had all internal components of the fabrication chamber replaced and was cleaned to prevent contamination of niobium powder. A mini-vat, developed at

  4. Plasmonic color metasurfaces fabricated by a high speed roll-to-roll method

    DEFF Research Database (Denmark)

    Murthy, Swathi; Pranov, Henrik; Feidenhans'l, Nikolaj Agentoft

    2017-01-01

    Lab-scale plasmonic color printing using nano-structured and subsequently metallized surfaces have been demonstrated to provide vivid colors. However, upscaling these structures for large area manufacturing is extremely challenging due to the requirement of nanometer precision of metal thickness....... In this study, we have investigated a plasmonic color meta-surface design that can be easily upscaled. We have demonstrated the feasibility of fabrication of these plasmonic color surfaces by a high-speed roll-to-roll method, comprising roll-to-roll extrusion coating at 10 m min-1 creating a polymer foil having...... 100 nm deep pits of varying sub-wavelength diameter and pitch length. Subsequently this polymer foil was metallized and coated also by high-speed roll-to-roll methods. The perceived colors have high tolerance towards the thickness of the metal layer, when this thickness exceeds the depths of the pits...

  5. Bimodal star formation - constraints from galaxy colors at high redshift

    International Nuclear Information System (INIS)

    Wyse, R.F.G.; Silk, J.

    1987-01-01

    The possibility that at early epochs the light from elliptical galaxies is dominated by stars with an initial mass function (IMF) which is deficient in low-mass stars, relative to the solar neighborhood is investigated. V-R colors for the optical counterparts of 3CR radio sources offer the most severe constraints on the models. Reasonable fits are obtained to both the blue, high-redshift colors and the redder, low-redshift colors with a model galaxy which forms with initially equal star formation rates in each of two IMF modes: one lacking low-mass stars, and one with stars of all masses. The net effect is that the time-integrated IMF has twice as many high-mass stars as the solar neighborhood IMF, relative to low mass stars. A conventional solar neighborhood IMF does not simultaneously account for both the range in colors at high redshift and the redness of nearby ellipticals, with any single star formation epoch. Models with a standard IMF require half the stellar population to be formed in a burst at low redshift z of about 1. 38 references

  6. Monitoring the Microbial Purity of the Treated Water and Dialysate

    Directory of Open Access Journals (Sweden)

    Canaud Bernard

    2001-01-01

    Full Text Available Dialysate purity has become a major concern in recent years since it has been proven that contamination of dialysate is able to induce the production of proinflammatory cytokines, putatively implicated in the development of dialysis related pathology. In order to reduce this risk, it is advised to use ultrapure dialysate as a new standard of dialysate purity. Ultrapure dialysate preparation may be easily achieved with modern water treatment technologies. The reliable production of ultrapure dialysate requires several prerequisites: use of ultrapure water, use of clean electrolytic concentrates, implementation of ultrafilters in the dialysate pathway to ensure cold sterilization of the fresh dialysate. The regular supply with such high-grade purity dialysate relies on predefined microbiological monitoring of the chain using adequate and sensitive methods, and hygienic handling including frequent disinfection to reduce the level of contamination and to prevent biofilm formation. Reliability of this process requires compliance with a very strict quality assurance process. In this paper, we summarized the principles of the dialysate purity monitoring and the criteria used for surveillance in order to establish good antimicrobial practices in dialysis.

  7. Preparation of High-purity Indium Oxalate Salt from Indium Scrap by Organic Acids

    International Nuclear Information System (INIS)

    Koo, Su-Jin; Ju, Chang-Sik

    2013-01-01

    Effect of organic acid on the preparation of indium-oxalate salt from indium scraps generated from ITO glass manufacturing process was studied. Effects of parameters, such as type and concentration of organic acids, pH of reactant, temperature, reaction time on indium-oxalate salt preparation were examined. The impurity removal efficiency was similar for both oxalic acid and citric acid, but citric acid did not make organic acid salt with indium. The optimum conditions were 1.5 M oxalic acid, pH 7, 80 .deg. C, and 6 hours. On the other hand, the recoveries increased with pH, but the purity decreased. The indium-oxalate salt purity prepared by two cycles was 99.995% (4N5). The indium-oxalate salt could be converted to indium oxide and indium metal by substitution reaction and calcination

  8. Preparation of high purity nickel film from industrial effluent by the distribution of charge over microelectrodes using newly designed free electrolytic diffusion approach

    International Nuclear Information System (INIS)

    Ahmed, Sheikh Asrar; Qadir, Muhammad Abdul; Zafar, Muhammad Nadeem; Hussain, Ishtiaq; Tufail, Shahid; Rashid, Saima; Shah, Hamid Ali

    2008-01-01

    The present work deals with the development of a newly designed free electrolytic diffusion approach (the distribution of charge over microelectrodes) for the purification of metals and was successfully applied for the purification of nickel from the industrial effluent containing high proportion of nickel. Atomic absorption spectrophotometer (AAS) analyzed the purified nickel deposited on working microelectrodes. The results obtained show that the purity of nickel was enhanced from 95% to 99.9% with traces of copper etc. It was concluded that distribution of charge over the microcathodes at a rate of 50 cycles per second (cps) shows better results for the production of high purity (HP) nickel as compared to 25 cycles per second (cps)

  9. Preparation of high purity nickel film from industrial effluent by the distribution of charge over microelectrodes using newly designed free electrolytic diffusion approach

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Sheikh Asrar; Qadir, Muhammad Abdul [Institute of Chemistry, University of the Punjab, Lahore, 54590 (Pakistan); Zafar, Muhammad Nadeem [Institute of Chemistry, University of the Punjab, Lahore, 54590 (Pakistan)], E-mail: znadeempk@yahoo.com; Hussain, Ishtiaq [Institute of Chemistry, University of the Punjab, Lahore, 54590 (Pakistan); Tufail, Shahid [PCSIR Laboratories Complex, Feroz pur Road, Lahore (Pakistan); Rashid, Saima; Shah, Hamid Ali [Institute of Chemistry, University of the Punjab, Lahore, 54590 (Pakistan)

    2008-09-15

    The present work deals with the development of a newly designed free electrolytic diffusion approach (the distribution of charge over microelectrodes) for the purification of metals and was successfully applied for the purification of nickel from the industrial effluent containing high proportion of nickel. Atomic absorption spectrophotometer (AAS) analyzed the purified nickel deposited on working microelectrodes. The results obtained show that the purity of nickel was enhanced from 95% to 99.9% with traces of copper etc. It was concluded that distribution of charge over the microcathodes at a rate of 50 cycles per second (cps) shows better results for the production of high purity (HP) nickel as compared to 25 cycles per second (cps)

  10. High polarization purity operation of 99% in 9xx-nm broad stripe laser diodes

    Science.gov (United States)

    Morohashi, Rintaro; Yamagata, Yuji; Kaifuchi, Yoshikazu; Tada, Katsuhisa; Nogawa, Ryozaburo; Yamada, Yumi; Yamaguchi, Masayuki

    2018-02-01

    Polarization characteristics of self-aligned stripe (SAS) laser diodes (LDs) and Ridge-LDs are investigated to realize highly efficient polarization beam combined (PBC) LD modules. Vertical layers of both lasers are designed identically. Near field patterns (NFP) of TM polarization for the Ridge-LD showed peaks at the side edges, as expected by the strain simulation. On the other hand, SAS-LD showed a relatively flat and weak profile. Polarization purity (ITE/ (ITE+ITM)) of SAS-LDs exceeds 99%, while those of the Ridge-LDs are as low as 96%. It is confirmed that our SAS-LDs are suitable sources for PBC with low power loss.

  11. Properties of structural steels melted out of high-purity charge

    International Nuclear Information System (INIS)

    Marchenko, V.N.; Sergeeva, T.K.; Kondakova, N.K.; Morozov, V.P.; Madorskij, L.L.

    1993-01-01

    A comparative evaluation has been made of impurities, mechanical properties and hydrogen embirittlement parameters for steels type 40Kh and 40KhS produced by electrometallurgical method with the use of direct reduced charge (DR-steels) and melted in an open-hearth furnace. Investigation results have shown that 40Kh and 40KhS Dr-steels have more coarse austenitic grains and experience more complete transformation of martensite into ferritic-pearlitic mixture on tempering. Threshold stresses increase 2.5 times due to purity enhancement at the expense of application of direct reduced charge

  12. Temperature dependence of luminescence for different surface flaws in high purity silica glass

    International Nuclear Information System (INIS)

    Fournier, J.; Grua, P.; Neauport, J.; Fargin, E.; Jubera, V.; Talaga, D.; Del Guerzo, A.; Raffy, G.; Jouannigot, S.

    2013-01-01

    In situ temperature dependence of the Photoluminescence under 325 nm irradiation is used to investigate defect populations existing in different surface flaws in high purity fused silica. Five photoluminescence bands peaking at 1.9, 2.1, 2.3, 2.63 and 3.11 eV have been detected in the spectral area ranging from 1.6 up to 3.6 eV. The Gaussian deconvolution of spectra allows dividing the five luminescence bands in two categories. The former corresponds to bands showing a significant intensity enhancement while temperature decreases; the latter corresponds to bands remaining insensitive to the temperature evolution. Such a behavior brings new information on defects involved in laser damage mechanism at 351 nm in nanosecond regime. (authors)

  13. Simultaneously Recovering High-Purity Chromium and Removing Organic Pollutants from Tannery Effluent

    Directory of Open Access Journals (Sweden)

    Jie Zong

    2016-01-01

    Full Text Available Chromium pollution is a serious issue because of carcinogenic toxicities of the pollutants and low recovery rate of chromium because of the presence of organic, such as protein and fat. In this work, high recovery rate and high purity of the chromium ion were successfully prepared by the way of acid enzyme, flocculant, and Fenton oxidation. The experiments were characterized by TG, TOC, UV-VIS, and SEM. In the work, the tannery waste chrome liquor was used as experimental material. The results showed that the percentage of reduction of TOC in the tannery waste chrome liquor by method of Fenton oxidation, acid enzyme, and the flocculant was 71.15%, 65.26%, and 22.05%, respectively. Therefore, the organism content of chrome tanning waste liquid was greatly reduced through the pretreatment. And the application experiment showed that the properties and grain surface and fibers of the tanned leather with commercial chromium powder and chrome tanning agent prepared from the chromium waste liquid treated with Fenton are nearly the same.

  14. Statistical distribution of the local purity in a large quantum system

    International Nuclear Information System (INIS)

    De Pasquale, A; Pascazio, S; Facchi, P; Giovannetti, V; Parisi, G; Scardicchio, A

    2012-01-01

    The local purity of large many-body quantum systems can be studied by following a statistical mechanical approach based on a random matrix model. Restricting the analysis to the case of global pure states, this method proved to be successful, and a full characterization of the statistical properties of the local purity was obtained by computing the partition function of the problem. Here we generalize these techniques to the case of global mixed states. In this context, by uniformly sampling the phase space of states with assigned global mixedness, we determine the exact expression of the first two moments of the local purity and a general expression for the moments of higher order. This generalizes previous results obtained for globally pure configurations. Furthermore, through the introduction of a partition function for a suitable canonical ensemble, we compute the approximate expression of the first moment of the marginal purity in the high-temperature regime. In the process, we establish a formal connection with the theory of quantum twirling maps that provides an alternative, possibly fruitful, way of performing the calculation. (paper)

  15. Unique low-molecular-weight lignin with high purity extracted from wood by deep eutectic solvents (DES): a source of lignin for valorization

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez-Vasco, Carlos; Ma, Ruoshui; Quintero, Melissa; Guo, Mond; Geleynse, Scott; Ramasamy, Karthikeyan K.; Wolcott, Michael; Zhang, Xiao

    2016-01-01

    This paper reports a new method of applying Deep Eutectic Solvents (DES) for extracting lignin from woody biomass with high yield and high purity. DES mixtures prepared from Choline Chloride (ChCl) and four hydrogen-bond donors–acetic acid, lactic acid, levulinic acid and glycerol–were evaluated for treatment of hardwood (poplar) and softwood (D. fir). It was found that these DES treatments can selectively extract a significant amount of lignin from wood with high yields: 78% from poplar and 58% from D. fir. The extracted lignin has high purity (95%) with unique structural properties. We discover that DES can selectively cleave ether linkages in wood lignin and facilitate lignin removal from wood. The mechanism of DES cleavage of ether bonds between phenylpropane units was investigated. The results from this study demonstrate that DES is a promising solvent for wood delignification and the production of a new source of lignin with promising potential applications.

  16. Colorization-Based RGB-White Color Interpolation using Color Filter Array with Randomly Sampled Pattern.

    Science.gov (United States)

    Oh, Paul; Lee, Sukho; Kang, Moon Gi

    2017-06-28

    Recently, several RGB-White (RGBW) color filter arrays (CFAs) have been proposed, which have extra white (W) pixels in the filter array that are highly sensitive. Due to the high sensitivity, the W pixels have better SNR (Signal to Noise Ratio) characteristics than other color pixels in the filter array, especially, in low light conditions. However, most of the RGBW CFAs are designed so that the acquired RGBW pattern image can be converted into the conventional Bayer pattern image, which is then again converted into the final color image by using conventional demosaicing methods, i.e., color interpolation techniques. In this paper, we propose a new RGBW color filter array based on a totally different color interpolation technique, the colorization algorithm. The colorization algorithm was initially proposed for colorizing a gray image into a color image using a small number of color seeds. Here, we adopt this algorithm as a color interpolation technique, so that the RGBW color filter array can be designed with a very large number of W pixels to make the most of the highly sensitive characteristics of the W channel. The resulting RGBW color filter array has a pattern with a large proportion of W pixels, while the small-numbered RGB pixels are randomly distributed over the array. The colorization algorithm makes it possible to reconstruct the colors from such a small number of RGB values. Due to the large proportion of W pixels, the reconstructed color image has a high SNR value, especially higher than those of conventional CFAs in low light condition. Experimental results show that many important information which are not perceived in color images reconstructed with conventional CFAs are perceived in the images reconstructed with the proposed method.

  17. Nearly Blinking-Free, High-Purity Single-Photon Emission by Colloidal InP/ZnSe Quantum Dots.

    Science.gov (United States)

    Chandrasekaran, Vigneshwaran; Tessier, Mickaël D; Dupont, Dorian; Geiregat, Pieter; Hens, Zeger; Brainis, Edouard

    2017-10-11

    Colloidal core/shell InP/ZnSe quantum dots (QDs), recently produced using an improved synthesis method, have a great potential in life-science applications as well as in integrated quantum photonics and quantum information processing as single-photon emitters. Single-particle spectroscopy of 10 nm QDs with 3.2 nm cores reveals strong photon antibunching attributed to fast (70 ps) Auger recombination of multiple excitons. The QDs exhibit very good photostability under strong optical excitation. We demonstrate that the antibunching is preserved when the QDs are excited above the saturation intensity of the fundamental-exciton transition. This result paves the way toward their usage as high-purity on-demand single-photon emitters at room temperature. Unconventionally, despite the strong Auger blockade mechanism, InP/ZnSe QDs also display very little luminescence intermittency ("blinking"), with a simple on/off blinking pattern. The analysis of single-particle luminescence statistics places these InP/ZnSe QDs in the class of nearly blinking-free QDs, with emission stability comparable to state-of-the-art thick-shell and alloyed-interface CdSe/CdS, but with improved single-photon purity.

  18. Electrical conductivity of high-purity germanium crystals at low temperature

    Science.gov (United States)

    Yang, Gang; Kooi, Kyler; Wang, Guojian; Mei, Hao; Li, Yangyang; Mei, Dongming

    2018-05-01

    The temperature dependence of electrical conductivity of single-crystal and polycrystalline high-purity germanium (HPGe) samples has been investigated in the temperature range from 7 to 100 K. The conductivity versus inverse of temperature curves for three single-crystal samples consist of two distinct temperature ranges: a high-temperature range where the conductivity increases to a maximum with decreasing temperature, and a low-temperature range where the conductivity continues decreasing slowly with decreasing temperature. In contrast, the conductivity versus inverse of temperature curves for three polycrystalline samples, in addition to a high- and a low-temperature range where a similar conductive behavior is shown, have a medium-temperature range where the conductivity decreases dramatically with decreasing temperature. The turning point temperature ({Tm}) which corresponds to the maximum values of the conductivity on the conductivity versus inverse of temperature curves are higher for the polycrystalline samples than for the single-crystal samples. Additionally, the net carrier concentrations of all samples have been calculated based on measured conductivity in the whole measurement temperature range. The calculated results show that the ionized carrier concentration increases with increasing temperature due to thermal excitation, but it reaches saturation around 40 K for the single-crystal samples and 70 K for the polycrystalline samples. All these differences between the single-crystal samples and the polycrystalline samples could be attributed to trapping and scattering effects of the grain boundaries on the charge carriers. The relevant physical models have been proposed to explain these differences in the conductive behaviors between two kinds of samples.

  19. Gravimetric and volumetric determination of the purity of electrolytically refined silver and the produced silver nitrate

    Directory of Open Access Journals (Sweden)

    Ačanski Marijana M.

    2007-01-01

    Full Text Available Silver is, along with gold and the platinum-group metals, one of the so called precious metals. Because of its comparative scarcity, brilliant white color, malleability and resistance to atmospheric oxidation, silver has been used in the manufacture of coins and jewelry for a long time. Silver has the highest known electrical and thermal conductivity of all metals and is used in fabricating printed electrical circuits, and also as a coating for electronic conductors. It is also alloyed with other elements such as nickel or palladium for use in electrical contacts. The most useful silver salt is silver nitrate, a caustic chemical reagent, significant as an antiseptic and as a reagent in analytical chemistry. Pure silver nitrate is an intermediate in the industrial preparation of other silver salts, including the colloidal silver compounds used in medicine and the silver halides incorporated into photographic emulsions. Silver halides become increasingly insoluble in the series: AgCl, AgBr, AgI. All silver salts are sensitive to light and are used in photographic coatings on film and paper. The ZORKA-PHARMA company (Sabac, Serbia specializes in the production of pharmaceutical remedies and lab chemicals. One of its products is chemical silver nitrate (argentum-nitricum (l. Silver nitrate is generally produced by dissolving pure electrolytically refined silver in hot 48% nitric acid. Since the purity of silver nitrate, produced in 2002, was not in compliance with the p.a. level of purity, there was doubt that the electrolytically refined silver was pure. The aim of this research was the gravimetric and volumetric determination of the purity of electrolytically refined silver and silver nitrate, produced industrially and in a laboratory. The purity determination was carried out gravimetrically, by the sedimentation of silver(I ions in the form of insoluble silver salts: AgCl, AgBr and Agi, and volumetrically, according to Mohr and Volhardt. The

  20. Influence of Ta Content in High Purity Niobium on Cavity Performance Preliminary Results*

    CERN Document Server

    Kneisel, P

    2004-01-01

    In a previous paper* a program designed to study the influence of the residual tantalum content on the superconducting properties of pure niobium metal for RF cavities was outlined. The main rationale for this program was based on a potential cost reduction for high purity niobium, if a less strict limit on the chemical specification for Ta content, which is not significantly affecting the RRR–value, could be tolerated for high performance cavities. Four ingots with different Ta contents have been melted and transformed into sheets. In each manufacturing step the quality of the material has been monitored by employing chemical analysis, neutron activation analysis, thermal conductivity measurements and evaluation of the mechanical properties. The niobium sheets have been scanned for defects by an eddy current device. From three of the four ingots—Ta contents 100, 600 and 1,200 wppm—two single cell cavities each of the CEBAF variety have been fabricated and a series of tests on each ...

  1. Improvement in fuel utilization in pressurized heavy water reactors due to increased heavy water purity

    International Nuclear Information System (INIS)

    Balakrishnan, M.R.

    1991-01-01

    This paper reports that in a pressurized heavy water reactor (PHWR), the reactivity of the reactor and, consequently, the discharge burnup of the fuel depend on the isotopic purity of the heavy water used in the reactor. The optimal purity of heavy water used in PHWRs, in turn, depends on the cost of fabricated uranium fuel and on the incremental cost incurred in improving the heavy water purity. The physics and economics aspects of the desirability of increasing the heavy water purity in PHWRs in India were first examined in 1978. With the cost data available at that time, it was found that improving the heavy water purity from 99.80% to 99.95% was economically attractive. The same problem is reinvestigated with current cost data. Even now, there is sufficient incentive to improve the isotopic purity of heavy water used in PHWRs. Admittedly, the economic advantage that can be derived depends on the cost of the fabricated fuel. Nevertheless, irrespective of the economics, there is also a fairly substantial saving in natural uranium. That the increase in the heavy water purity is to be maintained only in the low-pressure moderator system, and not in the high-pressure coolant system, makes the option of achieving higher fuel burnup with higher heavy water purity feasible

  2. Thermostable phycocyanin from the red microalga Cyanidioschyzon merolae, a new natural blue food colorant.

    Science.gov (United States)

    Rahman, D Y; Sarian, F D; van Wijk, A; Martinez-Garcia, M; van der Maarel, M J E C

    2017-01-01

    The demand for natural food colorants is growing as consumers question the use of artificial colorants more and more. The phycobiliprotein C-phycocyanin of Arthospira platensis is used as a natural blue colorant in certain food products. The thermoacidophilic red microalga Cyanidioschyzon merolae might provide an alternative source of phycocyanin. Cyanidioschyzon merolae belongs to the order Cyanidiophyceae of the phylum Rhodophyta. Its natural habitat are sulfuric hot springs and geysers found near volcanic areas in, e.g., Yellowstone National Park in the USA and in Java, Indonesia. It grows optimally at a pH between 0.5 and 3.0 and at temperatures up to 56 °C. The low pH at which C . merolae grows minimizes the risk of microbial contamination and could limit production loss. As C . merolae lacks a cell wall, phycocyanin with a high purity number of 9.9 could be extracted by an osmotic shock using a simple ultrapure water extraction followed by centrifugation. The denaturation midpoint at pH 5 was 83 °C, being considerably higher than the A . platensis phycocyanin (65 °C). The C . merolae phycocyanin was relatively stable at pH 4 and 5 up to 80 °C. The high thermostability at slightly acidic pH makes the C . merolae phycocyanin an interesting alternative to A . platensis phycocyanin as a natural blue food colorant.

  3. CF4 plasma treatment-assisted inkjet printing for color pixel flexible display

    International Nuclear Information System (INIS)

    Tortissier, G; Daunay, B; Jalabert, L; Lambert, P; Kim, B; Fujita, H; Toshiyoshi, H; Ginet, P

    2011-01-01

    In this paper we report a MEMS flexible display device based on the color filter Fabry–Perot interferometer and fabricated on a transparent and flexible polyethylene naphthalate substrate. Targeting easy processing, fast evolution and reduced fabrication steps, inkjet printing is selected as a promising technology. CF 4 plasma surface treatment parameters' influence has been investigated through a design of experiment protocol. Important contact angle increase has led to pattern resolution between 50 and 100 µm depending on solutions and substrate nature. Finally, the designed device presents three primary color pixels with satisfying color purity (CIE 1931 chromaticity diagram—red: x = 0.52, y = 0.36; blue: x = 0.13, y = 0.20; green: x = 0.25, y = 0.57).

  4. A radioagent method for determination of traces of phosphorus in high-purity silicon

    International Nuclear Information System (INIS)

    Chen, P.Y.; Chen, J.S.; Sun, H.J.; Yang, M.H.

    1985-01-01

    The feasibility of the determination of phosphorus at the extreme trace levels in high-purity silicon by radioreagent method is explored. After silicon dissolution with hydrofluoric and nitric acids and matrix volatilization, 12-molybdophosphoric acid is formed by the addition of the reagent, sup(99)MoOsub(4)sup(2-), in nitric acid medium and then extracted into isobutyl acetate. By plotting the phosphorus content against the radioactivity of sup(99)Mo in the organic phase, a linear relationship persisting down to 5 ng is obtained. Special effort was made to eliminate the unreacted sup(99)MoOsub(4)sup(2-) reagent and the optimal control of phosphorus blank introduced through the multistage analytical procedure in order to ensure reliable determination of phosphorus at the ppb level. (author)

  5. Improving axion detection sensitivity in high purity germanium detector based experiments

    Science.gov (United States)

    Xu, Wenqin; Elliott, Steven

    2015-04-01

    Thanks to their excellent energy resolution and low energy threshold, high purity germanium (HPGe) crystals are widely used in low background experiments searching for neutrinoless double beta decay, e.g. the MAJORANA DEMONSTRATOR and the GERDA experiments, and low mass dark matter, e.g. the CDMS and the EDELWEISS experiments. A particularly interesting candidate for low mass dark matter is the axion, which arises from the Peccei-Quinn solution to the strong CP problem and has been searched for in many experiments. Due to axion-photon coupling, the postulated solar axions could coherently convert to photons via the Primakeoff effect in periodic crystal lattices, such as those found in HPGe crystals. The conversion rate depends on the angle between axions and crystal lattices, so the knowledge of HPGe crystal axis is important. In this talk, we will present our efforts to improve the HPGe experimental sensitivity to axions by considering the axis orientations in multiple HPGe crystals simultaneously. We acknowledge the support of the U.S. Department of Energy through the LANL/LDRD Program.

  6. Color preferences in participants with high or low hypnotic susceptibility

    Directory of Open Access Journals (Sweden)

    Yu E

    2018-01-01

    Full Text Available Enyan Yu,1,2 Junpeng Zhu,1,2 Yunfei Tan,1,2 Zhengluan Liao,1,2 Yaju Qiu,1,2 Bingren Zhang,3 Chu Wang,3 Wei Wang3 1Department of Psychiatry, Zhejiang Provincial People’s Hospital, Hangzhou, People’s Republic of China; 2Department of Psychiatry, People’s Hospital of Hangzhou Medical College, Hangzhou, People’s Republic of China; 3Department of Clinical Psychology and Psychiatry/School of Public health, Zhejiang University College of Medicine, Hangzhou, People’s Republic of China Purpose: Color preferences vary among normal individuals and psychiatric patients, and this might be related to their different levels of hypnotic susceptibility. We hypothesized that individuals with higher hypnotic susceptibility prefer more arousing colors such as red.Patients and methods: Out of 440 participants, we selected 70 with higher (HIGH and 66 with lower (LOW hypnotic susceptibilities, and asked them to undergo the Stanford Hypnotic Susceptibility Scale: Form C (SHSSC test, then to order their preferences of 11 colors.Results: The HIGH group preferred red more and scored higher on the total SHSSC. The preference order of black was negatively predicted by the SHSSC Taste hallucination but positively by Arm rigidity, and the preference of yellow was positively predicted by Posthypnotic amnesia and Taste hallucination in the HIGH group.Conclusion: The red preference and the SHSSC associations with black and yellow preferences in participants with high hypnotic susceptibility help to clarify the individual difference of color preference and provide research hints for behavioral studies in normal individuals and psychiatric patients. Keywords: color perception, healthy people, the Stanford Hypnotic Susceptibility Scale: Form C (SHSSC

  7. Spectrographic determination of lanthanides in high-purity uranium compounds, after chromatographic separation by alumina-hydrofluoric acid

    International Nuclear Information System (INIS)

    Lordello, A.R.; Abrao, A.

    1979-01-01

    A method is presented for the determination of fourteen rare earth elements in high-purity uranium compounds by emission spectrography. The rare earths are chromatographically separated from uranium by using alumina-hydrofluoric acid. Lanthanum is used both as collector and internal standard. The technique of excitation involves a total consumption of the sample in a 17 ampere direct current arc. The range of determination is about 0.005 to 0.5 μg/g uranium. The coefficient of variation for Pr, Ho, Dy, Er, Tm, Lu, Gd and Tb amounts to 10%. (Author) [pt

  8. Green colorants based on energetic azole borates.

    Science.gov (United States)

    Glück, Johann; Klapötke, Thomas M; Rusan, Magdalena; Stierstorfer, Jörg

    2014-11-24

    The investigation of green-burning boron-based compounds as colorants in pyrotechnic formulations as alternative for barium nitrate, which is a hazard to health and to the environment, is reported. Metal-free and nitrogen-rich dihydrobis(5-aminotetrazolyl)borate salts and dihydrobis(1,3,4-triazolyl)borate salts have been synthesized and characterized by NMR spectroscopy, elemental analysis, mass spectrometry, and vibrational spectroscopy. Their thermal and energetic properties have been determined as well. Several pyrotechnic compositions using selected azolyl borate salts as green colorants were investigated. Formulations with ammonium dinitramide and ammonium nitrate as oxidizers and boron and magnesium as fuels were tested. The burn time, dominant wavelength, spectral purity, luminous intensity, and luminous efficiency as well as the thermal and energetic properties of these compositions were measured. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. The analytical of radiochemical purity of tumor receptor imaging agent 99Tcm-octreotide

    International Nuclear Information System (INIS)

    Wang Xufu; Zuo Shuyao; Shao Wenbo; Wang Guoming; Sun Jianwen; Zhang Qin

    2003-01-01

    The radiochemical purity of tumor receptor imaging agent 99 Tc m -octreotide is measured by High Pressure Liquid Chromatography (HPLC) and two systems of chromatography combining method of silver stain. The results show that the radiochemical purity of 98 Tc m -octreotide measured by both methods are effective and correct. It can separate 99 Tc m -octreotide from other radioactive compositions correctly and effectively

  10. Design of a Multi-Color Lamp Using High Brightness RGB LEDs

    Energy Technology Data Exchange (ETDEWEB)

    Song, S.B.; Kang, S.H.; Yeo, I.S. [Chonnam National University, Kwangju (Korea)

    2003-02-01

    This paper proposes the design of a multi-color lamp using high brightness RGB LEDs for color variation. Appropriate number of RGB LEDs is so chosen according to the color mixing theory that the overall LEDs represent a color temperature of 6500K. Also, the chosen RGB LEDs are suitably arranged by using an optical design program. The lamp has an internal controller circuit, so it can be directly connected to the existing incandescent lamp socket. It's main body is comprised of two PCB layers. The upper layer contains 44 LEDs and the lower one has a simple microcontroller-based PWM control circuit. The lamp has functions of both ON/OFF control and PWM control, and enables color variation of over 100,000 colors and of more than 10 patterns. (author). 7 refs., 11 figs., 3 tabs.

  11. Color-Based Image Retrieval from High-Similarity Image Databases

    DEFF Research Database (Denmark)

    Hansen, Michael Adsetts Edberg; Carstensen, Jens Michael

    2003-01-01

    Many image classification problems can fruitfully be thought of as image retrieval in a "high similarity image database" (HSID) characterized by being tuned towards a specific application and having a high degree of visual similarity between entries that should be distinguished. We introduce...... a method for HSID retrieval using a similarity measure based on a linear combination of Jeffreys-Matusita (JM) distances between distributions of color (and color derivatives) estimated from a set of automatically extracted image regions. The weight coefficients are estimated based on optimal retrieval...... performance. Experimental results on the difficult task of visually identifying clones of fungal colonies grown in a petri dish and categorization of pelts show a high retrieval accuracy of the method when combined with standardized sample preparation and image acquisition....

  12. Photoluminescence measurement of polycrystalline CdTe made of high purity source material

    Energy Technology Data Exchange (ETDEWEB)

    Hempel, Hannes; Kraft, Christian; Heisler, Christoph; Geburt, Sebastian; Ronning, Carsten; Wesch, Werner [Institute of Solid State Physics, Friedrich Schiller Universitaet Jena, Helmholtzweg 3, 07743 Jena (Germany)

    2012-07-01

    CdTe is a common material for thin film solar cells. However, the mainly used CdTe source material is known to contain a high number of intrinsic defects and impurities. In this work we investigate the defect structure of high purity CdTe by means of Photoluminescence, which is a common method to detect the energy levels of defects in the band gap of semiconductors. We used a 633 nm HeNe-Laser at sample temperatures of 8 K. The examined samples were processed in a new vacuum system based on the PVD method. They yield significantly different spectra on as-grown samples compared to those measured on samples which are grown by the standard process, since the double peak at 1.55 eV was hardly detectable and the A-center correlated transition vanished. Instead a peak at 1.50 eV with pronounced phonon coupling was observed. The 1.50 eV peak is known from other measurements but has not been characterized so far. The intention of this work is to characterize this new feature and the influence of post deposition treatments of the CdTe layers on the PL spectra.

  13. Evaluation of measurement uncertainty for purity of a monoterpenic acid by small-scale coulometry

    Science.gov (United States)

    Norte, L. C.; de Carvalho, E. M.; Tappin, M. R. R.; Borges, P. P.

    2018-03-01

    Purity of the perylic acid (HPe) which is a monoterpenic acid from natural product (NP) with anti-inflammatory and anticancer properties was analyzed by small-scale coulometry (SSC), due to the low availability of HPe on the pharmaceutic market and its high cost. This work aims to present the evaluation of the measurements uncertainty from the purity of HPe by using SSC. Coulometric mean of purity obtained from 5 replicates resulted in 94.23% ± 0.88% (k = 2.06, for an approximately 95% confidence level). These studies aim in the future to develop the production of certified reference materials from NPs.

  14. High Purity Tungsten Spherical Particle Preparation From WC-Co Spent Hard Scrap

    Directory of Open Access Journals (Sweden)

    Han Chulwoong

    2015-06-01

    Full Text Available Tungsten carbide-cobalt hard metal scrap was recycled to obtain high purity spherical tungsten powder by a combined hydrometallurgy and physical metallurgy pathway. Selective leaching of tungsten element from hard metal scrap occurs at solid / liquid interface and therefore enlargement of effective surface area is advantageous. Linear oxidation behavior of Tungsten carbide-cobalt and the oxidized scrap is friable to be pulverized by milling process. In this regard, isothermally oxidized Tungsten carbide-cobalt hard metal scrap was mechanically broken into particles and then tungsten trioxide particle was recovered by hydrometallurgical method. Recovered tungsten trioxide was reduced to tungsten particle in a hydrogen environment. After that, tungsten particle was melted and solidified to make a spherical one by RF (Ratio Frequency thermal plasma process. Well spherical tungsten micro-particle was successfully obtained from spent scrap. In addition to the morphological change, thermal plasma process showed an advantage for the purification of feedstock particle.

  15. 10 CFR 36.63 - Pool water purity.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Pool water purity. 36.63 Section 36.63 Energy NUCLEAR... § 36.63 Pool water purity. (a) Pool water purification system must be run sufficiently to maintain the conductivity of the pool water below 20 microsiemens per centimeter under normal circumstances. If pool water...

  16. A light hydrocarbon fuel processor producing high-purity hydrogen

    Science.gov (United States)

    Löffler, Daniel G.; Taylor, Kyle; Mason, Dylan

    This paper discusses the design process and presents performance data for a dual fuel (natural gas and LPG) fuel processor for PEM fuel cells delivering between 2 and 8 kW electric power in stationary applications. The fuel processor resulted from a series of design compromises made to address different design constraints. First, the product quality was selected; then, the unit operations needed to achieve that product quality were chosen from the pool of available technologies. Next, the specific equipment needed for each unit operation was selected. Finally, the unit operations were thermally integrated to achieve high thermal efficiency. Early in the design process, it was decided that the fuel processor would deliver high-purity hydrogen. Hydrogen can be separated from other gases by pressure-driven processes based on either selective adsorption or permeation. The pressure requirement made steam reforming (SR) the preferred reforming technology because it does not require compression of combustion air; therefore, steam reforming is more efficient in a high-pressure fuel processor than alternative technologies like autothermal reforming (ATR) or partial oxidation (POX), where the combustion occurs at the pressure of the process stream. A low-temperature pre-reformer reactor is needed upstream of a steam reformer to suppress coke formation; yet, low temperatures facilitate the formation of metal sulfides that deactivate the catalyst. For this reason, a desulfurization unit is needed upstream of the pre-reformer. Hydrogen separation was implemented using a palladium alloy membrane. Packed beds were chosen for the pre-reformer and reformer reactors primarily because of their low cost, relatively simple operation and low maintenance. Commercial, off-the-shelf balance of plant (BOP) components (pumps, valves, and heat exchangers) were used to integrate the unit operations. The fuel processor delivers up to 100 slm hydrogen >99.9% pure with <1 ppm CO, <3 ppm CO 2. The

  17. Assessment of radiochemical purity of [18F]fludeoxyglucose by high pressure liquid chromatography (HPLC)

    International Nuclear Information System (INIS)

    Lacerda, Aline E.; Silva, Juliana B.; Silveira, Marina B.; Ferreira, Soraya Z.

    2011-01-01

    The quality control of [ 18 F]fludeoxyglucose ( 18 FDG) has received attention due to its increasing clinical use. Although the quality requirements of 18 FDG are established in various pharmacopoeia, the suitability of all testing methods used should be verified under actual conditions of use and documented. The aim of this study was to develop a high pressure liquid chromatography (HPLC) method for radiochemical purity evaluation of 18 FDG, based on pharmacopoeia references, and to verify its suitability for routine quality control in our centre. HPLC analysis was performed with an Agilent HPLC. 18 FDG and impurities were separated on an anion-exchange column by isocratic elution with 0.1 M NaOH as the mobile phase. Detection was accomplished with refractive index and NaI (Tl) scintillation detectors. The flow rate of the mobile phase was set at 0.8 mL/min and the column temperature was kept at 35 deg C. Specificity, linearity, precision and robustness were assessed to verify if the method was adequate for its intended purpose. Retention time of 18 FDG was not affected by the presence of other components of the formulation and a good peak resolution was achieved. The analytical curve of 18 FDG was linear, with a correlation coefficient value of 0.9995. Intraday repeatable precision, reported as the relative standard deviation, was 0.11%. Analytical procedure remained unaffected by small variations in mobile phase flow rate. Results evidenced that HPLC is suitable for radiochemical purity evaluation of 18 FDG, considering operational conditions of our laboratory. (author)

  18. Genome sequence of the thermophilic strain Bacillus coagulans 2-6, an efficient producer of high-optical-purity L-lactic acid.

    Science.gov (United States)

    Su, Fei; Yu, Bo; Sun, Jibin; Ou, Hong-Yu; Zhao, Bo; Wang, Limin; Qin, Jiayang; Tang, Hongzhi; Tao, Fei; Jarek, Michael; Scharfe, Maren; Ma, Cuiqing; Ma, Yanhe; Xu, Ping

    2011-09-01

    Bacillus coagulans 2-6 is an efficient producer of lactic acid. The genome of B. coagulans 2-6 has the smallest genome among the members of the genus Bacillus known to date. The frameshift mutation at the start of the d-lactate dehydrogenase sequence might be responsible for the production of high-optical-purity l-lactic acid.

  19. Design and development of fluidized bed reactor system for production of trichlorosilane as a precursor for high purity silicon

    International Nuclear Information System (INIS)

    Kumar, Rajesh; Mohan, Sadhana; Bhanja, K.; Nayak, S.; Bhattacharya, S.K.

    2009-01-01

    Trichlorosilane is widely used as precursor material for production of high purity silicon. It is mainly produced by reaction of metallurgical grade silicon with anhydrous HCl gas in a fluidized bed reactor. To develop this process on commercial scale a pilot size fluidized bed reactor system was designed and developed and successfully operated. This paper discusses the critical issues related to these activities. (author)

  20. An indirect sequential determination of phosphorus and arsenic in high-purity tungsten and its compounds by atomic-absorption spectrophotometry

    International Nuclear Information System (INIS)

    Tekula-Buxbaum, P.

    1981-01-01

    An indirect atomic-absorption spectrophotometric method based on selective extraction of heteropolymolybdic acids has been developed for determination of small quantities of P and As in high-purity tungsten metal and tungsten compounds. The method is suitable for determination of 5-100 ppm of phosphorus and arsenic. The relative standard deviation is 38-5% for P and 31-3% for As, depending on the concentrations. (auth.)

  1. Policosanol extraction from beeswax and improvement of the purity

    Directory of Open Access Journals (Sweden)

    Srisaipet Anakhaorn

    2017-01-01

    Full Text Available Policosanol is a mixture of high molecular weight aliphatic long chain alcohols (20-36 carbon atoms. It has been use in pharmaceutical composition and food supplements. This research aimed to isolate and improve the purity of policosanol extracted from beeswax. Triglycerides and other impurities were eliminated from beeswax by refluxing with hexane followed by isopropanol. The purified beeswax was hydrolyzed by refluxing with 1 M ethanolic NaOH for 2 hours. Purification of policosanol was performed by extracting the hydrolyzed product with acetone at 50-60 °C for 3 hours and it was stored at 4 °C for precipitation. The precipitate was refluxed with heptanes followed by washing with hot water. The heptanes layer was kept for policosanol precipitation at 4 °C. The purity of policosanol was confirmed by TLC and high performance liquid chromatography (HPLC. The yield of purified policosanol was 13.23-13.89 %.

  2. Purity of targets prepared on Cu substrates

    Science.gov (United States)

    Méens, A.; Rossini, I.; Sens, J. C.

    1993-09-01

    The purity of several elemental self-supporting targets usually prepared by evaporation onto soluble Cu substrates has been studied. The targets were analysed by Rutherford backscattering and instrumental neutron activation analysis. Because of the high percentage of Cu observed in some Si targets, further measurements, including transmission electron microscopy, have been performed on Si targets deposited by e-gun bombardment onto Cu and ion-beam sputtering onto betaine.

  3. Cyclotron production of high-purity 123I for medical applications via the 127I(p,5n)123Xe → 123I nuclear reaction

    International Nuclear Information System (INIS)

    Lagunas-Solar, M.C.

    1985-01-01

    The use of iodine-123 in nuclear medicine procedures is well documented in the scientific literature. Also, several methods for its production based on accelerator techniques have been described. Indirectly made 123 I via the 127 I(p,5n) 123 Xe → 123 I reaction produces 123 I of > 99.9% radionuclidic purity, with only 125 I ( 123 I production were developed at the University of California at Davis, where since 1974 the 76-in. isochronous cyclotron of the Crocker Nuclear Laboratory has been used for routine biweekly production of high-purity no-carrier-added 123 I

  4. Helium gas purity monitor based on low frequency acoustic resonance

    Science.gov (United States)

    Kasthurirengan, S.; Jacob, S.; Karunanithi, R.; Karthikeyan, A.

    1996-05-01

    Monitoring gas purity is an important aspect of gas recovery stations where air is usually one of the major impurities. Purity monitors of Katherometric type are commercially available for this purpose. Alternatively, we discuss here a helium gas purity monitor based on acoustic resonance of a cavity at audio frequencies. It measures the purity by monitoring the resonant frequency of a cylindrical cavity filled with the gas under test and excited by conventional telephone transducers fixed at the ends. The use of the latter simplifies the design considerably. The paper discusses the details of the resonant cavity and the electronic circuit along with temperature compensation. The unit has been calibrated with helium gas of known purities. The unit has a response time of the order of 10 minutes and measures the gas purity to an accuracy of 0.02%. The unit has been installed in our helium recovery system and is found to perform satisfactorily.

  5. μ+ diffusion and trapping in high purity and oxygen-doped Nb

    International Nuclear Information System (INIS)

    Brown, J.A.; Heffner, R.H.; Leon, M.; Parkin, D.M.; Schillaci, M.E.; Gauster, W.B.; Fiory, A.T.; Kossler, W.J.; Birnbaum, H.K.; Denison, A.B.; Cooke, D.W.

    1979-01-01

    Data are presented for the temperature dependence of the muon depolarization rate between 10 K and 120 K for three samples of niobium of varying purity. Two samples, each containing approximately 200 ppm substitutional Ta and interstitial concentrations of 10 ppm and 560 ppm (mostly O), respectively, were studied. A third sample containing only 3 ppm Ta and an estimated 10 ppm total interstitial impurities was also measured. The results indicate that even at the lowest temperatures studied the depolarization of the muon is dominated by traps associated with impurities. (Auth.)

  6. A combined arc-melting and tilt-casting furnace for the manufacture of high-purity bulk metallic glass materials.

    Science.gov (United States)

    Soinila, E; Pihlajamäki, T; Bossuyt, S; Hänninen, H

    2011-07-01

    An arc-melting furnace which includes a tilt-casting facility was designed and built, for the purpose of producing bulk metallic glass specimens. Tilt-casting was chosen because reportedly, in combination with high-purity processing, it produces the best fatigue endurance in Zr-based bulk metallic glasses. Incorporating the alloying and casting facilities in a single piece of equipment reduces the amount of laboratory space and capital investment needed. Eliminating the sample transfer step from the production process also saves time and reduces sample contamination. This is important because the glass forming ability in many alloy systems, such as Zr-based glass-forming alloys, deteriorates rapidly with increasing oxygen content of the specimen. The challenge was to create a versatile instrument, in which high purity conditions can be maintained throughout the process, even when melting alloys with high affinity for oxygen. Therefore, the design provides a high-vacuum chamber to be filled with a low-oxygen inert atmosphere, and takes special care to keep the system hermetically sealed throughout the process. In particular, movements of the arc-melting electrode and sample manipulator arm are accommodated by deformable metal bellows, rather than sliding O-ring seals, and the whole furnace is tilted for tilt-casting. This performance of the furnace is demonstrated by alloying and casting Zr(55)Cu(30)Al(10)Ni(5) directly into rods up to ø 10 mm which are verified to be amorphous by x-ray diffraction and differential scanning calorimetry, and to exhibit locally ductile fracture at liquid nitrogen temperature.

  7. Development of high-throughput and high sensitivity capillary gel electrophoresis platform method for Western, Eastern, and Venezuelan equine encephalitis (WEVEE) virus like particles (VLPs) purity determination and characterization.

    Science.gov (United States)

    Gollapudi, Deepika; Wycuff, Diane L; Schwartz, Richard M; Cooper, Jonathan W; Cheng, K C

    2017-10-01

    In this paper, we describe development of a high-throughput, highly sensitive method based on Lab Chip CGE-SDS platform for purity determination and characterization of virus-like particle (VLP) vaccines. A capillary gel electrophoresis approach requiring about 41 s per sample for analysis and demonstrating sensitivity to protein initial concentrations as low as 20 μg/mL, this method has been used previously to evaluate monoclonal antibodies, but this application for lot release assay of VLPs using this platform is unique. The method was qualified and shown to be accurate for the quantitation of VLP purity. Assay repeatability was confirmed to be less than 2% relative standard deviation of the mean (% RSD) with interday precision less than 2% RSD. The assay can evaluate purified VLPs in a concentration range of 20-249 μg/mL for VEE and 20-250 μg/mL for EEE and WEE VLPs. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Fusion of lens-free microscopy and mobile-phone microscopy images for high-color-accuracy and high-resolution pathology imaging

    Science.gov (United States)

    Zhang, Yibo; Wu, Yichen; Zhang, Yun; Ozcan, Aydogan

    2017-03-01

    Digital pathology and telepathology require imaging tools with high-throughput, high-resolution and accurate color reproduction. Lens-free on-chip microscopy based on digital in-line holography is a promising technique towards these needs, as it offers a wide field of view (FOV >20 mm2) and high resolution with a compact, low-cost and portable setup. Color imaging has been previously demonstrated by combining reconstructed images at three discrete wavelengths in the red, green and blue parts of the visible spectrum, i.e., the RGB combination method. However, this RGB combination method is subject to color distortions. To improve the color performance of lens-free microscopy for pathology imaging, here we present a wavelet-based color fusion imaging framework, termed "digital color fusion microscopy" (DCFM), which digitally fuses together a grayscale lens-free microscope image taken at a single wavelength and a low-resolution and low-magnification color-calibrated image taken by a lens-based microscope, which can simply be a mobile phone based cost-effective microscope. We show that the imaging results of an H&E stained breast cancer tissue slide with the DCFM technique come very close to a color-calibrated microscope using a 40x objective lens with 0.75 NA. Quantitative comparison showed 2-fold reduction in the mean color distance using the DCFM method compared to the RGB combination method, while also preserving the high-resolution features of the lens-free microscope. Due to the cost-effective and field-portable nature of both lens-free and mobile-phone microscopy techniques, their combination through the DCFM framework could be useful for digital pathology and telepathology applications, in low-resource and point-of-care settings.

  9. Comparison of the effect of neutron irradiation on high purity vanadium and vanadium oxygen alloys

    International Nuclear Information System (INIS)

    Arsenault, R.J.; Bressers, J.

    1977-01-01

    An investigation of the effect of neutron damage on the low temperature deformation characteristics of high purity vanadium (R/sub 300K//R/sub 4.2K/ = 1100) was undertaken for two purposes. One purpose was to determine if reducing the purity interstitial content to a lower level would result in a large difference in the effective stress between irradiated and non-irradiated samples. The present data along with previously obtained data does indicate that the difference increases as the impurity interstitial content is reduced. The explanation of this observation is based on the rapid increase of the non-irradiated yield stress at 77 0 K due to small increases in the oxygen content; however, the increase of the yield stress of the irradiated samples is much less with the same increase in oxygen content. A second purpose of this investigation was to determine the size and density of observable neutron produced defects as a function of oxygen content by transmission electron microscopy, and to relate the changes in density with changes in the yield stress. It was found that the density decreases and the size increases as the oxygen content decreases. There is qualitative agreement between the increase in yield stress at 300 0 K and the observable defect density. However, the change in the yield stress at 77 0 K due to neutron irradiation cannot be related to defect density and size

  10. Effect of microplastic deformation on the electron ultrasonic absorption in high-purity molybdenum monocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Pal' -Val' , P.P.; Kaufmann, Kh.J.

    1983-03-01

    The low temperature (100-6 K) linear absorption of ultrasound (88 kHz) by high purity molybdenum single crystals have been studied. Both unstrained samples and samples sub ected to microplastic deformation (epsilon<=0.45%) were used. Unstrained samples displayed at T<30 K a rapid increase in the absorption with lowering temperature which is interpreted as an indication of electron viscosity due to electron-phonon collisions. After deformation this part of absorption disappeared. This seems to suggest that microplastic deformation brings about in the crystal a sufficiently large number of defects that can compete with phonons in restricting the electron mean free path. A low temperature dynamic annealing has been revealed in strained samples, that is almost complete recovery of the absorption nature under irradiation with high amplitude sound, epsilon/sub 0/ approximately 10/sup -4/, during 10 min, at 6 K. A new relaxation peak of absorption at 10 K has been found in strained samples.

  11. Effect of microplastic deformation on the electron ultrasonic absorption in high-purity molybdenum monocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Pal' -Val' , P.P. (AN Ukrainskoj SSR, Kharkov. Fiziko-Tekhnicheskij Inst. Nizkikh Temperatur); Kaufmann, Kh.J. (Akademie der Wissenschaften der DDR, Berlin)

    1983-03-01

    The low temperature (100-6 K) linear absorption of ultrasound (88 kHz) by high purity molybdenum single crystals have been studied. Both unstrained samples and samples subjected to microplastic deformation (epsilon<=0.45%) were used. Unstrained samples displayed at T<30 K a rapid increase in the absorption with lowering temperature which is interpreted as an indication of electron viscosity due to electron-phonon collisions. After deformation this part of absorption disappeared. This seems to suggest that microplastic deformation brings about in the crystal a sufficiently large number of defects that can compete with phonons in restricting the electron mean free path. A low temperature ''dynamic annealing'' has been revealed in strained samples, that is, almost complete recovery of the absorption nature under irradiation with high amplitude sound, epsilon/sub 0/ approximately 10/sup -4/, during 10 min, at 6 K. A new relaxation peak of absorption at 10 K has been found in strained samples.

  12. Uncertainty estimates of purity measurements based on current information: toward a "live validation" of purity methods.

    Science.gov (United States)

    Apostol, Izydor; Kelner, Drew; Jiang, Xinzhao Grace; Huang, Gang; Wypych, Jette; Zhang, Xin; Gastwirt, Jessica; Chen, Kenneth; Fodor, Szilan; Hapuarachchi, Suminda; Meriage, Dave; Ye, Frank; Poppe, Leszek; Szpankowski, Wojciech

    2012-12-01

    To predict precision and other performance characteristics of chromatographic purity methods, which represent the most widely used form of analysis in the biopharmaceutical industry. We have conducted a comprehensive survey of purity methods, and show that all performance characteristics fall within narrow measurement ranges. This observation was used to develop a model called Uncertainty Based on Current Information (UBCI), which expresses these performance characteristics as a function of the signal and noise levels, hardware specifications, and software settings. We applied the UCBI model to assess the uncertainty of purity measurements, and compared the results to those from conventional qualification. We demonstrated that the UBCI model is suitable to dynamically assess method performance characteristics, based on information extracted from individual chromatograms. The model provides an opportunity for streamlining qualification and validation studies by implementing a "live validation" of test results utilizing UBCI as a concurrent assessment of measurement uncertainty. Therefore, UBCI can potentially mitigate the challenges associated with laborious conventional method validation and facilitates the introduction of more advanced analytical technologies during the method lifecycle.

  13. Construction, assembling and operation of an equipment for sodium purity

    International Nuclear Information System (INIS)

    Becquart, E.T.; Botbol, J.; Echenique, P.N.; Fruchtenicht, F.W.; Gil, D.A.; Perillo, P.; Vardich, R.N.; Vigo, D.E.

    1993-01-01

    The purpose of this work is the production of high purity metallic sodium for bench-scale, research studies. A stainless steel equipment was built and assembled, including high vacuum, heating and cooling systems. It was satisfactorily operated in two successive steps, filtration and vacuum distillation, with a good yield. (Author). 5 refs., 5 figs

  14. Stress corrosion of very high purity stainless steels in alkaline media

    International Nuclear Information System (INIS)

    Hechmat-Dehcordi, Ebrahim

    1981-01-01

    This research thesis reports the study of stress corrosion resistance of stainless steels in caustic environments. It notably concerns the electronuclear industrial sector, the production of soda by electrolysis, and the preparation of hydrogen as energy vector. After a presentation of the experimental conditions, the author highlights the influence of purity on stress corrosion cracking of 20Cr-25Ni-type austenitic alloys. The specific action of a high number of addition metallic and non-metallic elements has been studied. Stress corrosion tests have been also performed in autoclave on austeno-ferritic (21 to 25 pc Cr - 6 to 10 pc Ni) as well as ferritic (26 pc Cr) grades. The author reports the study of electrochemical properties of stainless steel in soda by means of potentiostatic techniques with an application of Pourbaix thermodynamic equilibrium diagrams, and the study of the chemical composition of passivation thin layers by Auger spectroscopy. He more particularly studies the influence of electrode potential and of some addition elements on the chemical characteristics of oxides developed at the surface of austenite. Then, the author tries to establish correlations between strain hardening microstructure of the various steels and their sensitivity to stress corrosion [fr

  15. Electrical properties of as-grown and proton-irradiated high purity silicon

    Energy Technology Data Exchange (ETDEWEB)

    Krupka, Jerzy, E-mail: krupka@imio.pw.edu.pl [Institute of Microelectronics and Optoelectronics, Warsaw University of Technology, Koszykowa 75, 00-662 Warsaw (Poland); Karcz, Waldemar [Joint Institute for Nuclear Research, Joliot-Curie 6, 141980 Dubna (Russian Federation); Kamiński, Paweł [Institute of Electronic Materials Technology, Wólczyńska 13, 301-919 Warsaw (Poland); Jensen, Leif [Topsil Semiconductor Materials A/S, Siliciumvej 1, DK-3600 Frederikssund (Denmark)

    2016-08-01

    The complex permittivity of as-grown and proton-irradiated samples of high purity silicon obtained by the floating zone method was measured as a function of temperature at a few frequencies in microwave spectrum by employing the quasi TE{sub 011} and whispering gallery modes excited in the samples under test. The resistivity of the samples was determined from the measured imaginary part of the permittivity. The resistivity was additionally measured at RF frequencies employing capacitive spectroscopy as well as in a standard direct current experiment. The sample of as-grown material had the resistivity of ∼85 kΩ cm at room temperature. The sample irradiated with 23-MeV protons had the resistivity of ∼500 kΩ cm at 295 K and its behavior was typical of the intrinsic material at room and at elevated temperatures. For the irradiated sample, the extrinsic conductivity region is missing and at temperatures below 250 K hopping conductivity occurs. Thermal cycle hysteresis of the resistivity for the sample of as-grown material is observed. After heating and subsequent cooling of the sample, its resistivity decreases and then slowly (∼50 h) returns to the initial value.

  16. Intergranular corrosion of 13Cr and 17Cr martensitic stainless steels in accelerated corrosive solution and high-temperature, high-purity water

    International Nuclear Information System (INIS)

    Ozaki, Toshinori; Ishikawa, Yuichi

    1988-01-01

    Intergranular corrosion behavior of 13Cr and 17Cr martensitic stainless steels was studied by electrochemical and immersing corrosion tests. Effects of the mEtallurgical and environmental conditions on the intergranular corrosion of various tempered steels were examined by the following tests and discussed. (a) Anodic polarization measurement and electrolytical etching test in 0.5 kmol/m 3 H 2 SO 4 solution at 293 K. (b) Immersion corrosion test in 0.88 kmol/m 3 HNO 3 solution at 293 K. (c) Long-time immersion test for specimens with a crevice in a high purity water at 473 K∼561 K. It was found from the anodic polarization curves in 0.5 kmol/m 3 H 2 SO 4 solution-at 293 K that the steels tempered at 773∼873 K had susceptibility to intergranular corrosion in the potential region indicating a second current maximum (around-0.1 V. vs. SCE). But the steel became passive in the more noble potential region than the second current peak potential, while in the less noble potential region general corrosion occurred independent of its microstructure. The intergranular corrosion occurred due to the localized dissolution along the pre-austenitic grain boundary and the martensitic lath boundary. It could be explained by the same dissolution model of the chromium depleted zone as proposed for the intergranular corrosion of austenitic and ferritic stainless steels. The intergranular corrosion occurred entirely at the free surface in 0.88 kmol/m 3 HNO 3 solution, while in the high temperature and high purity water only the entrance of the crevice corroded. It was also suggested that this intergranular corrosion might serve as the initiation site for stress corrosion cracking of the martensitic stainless steel. (author)

  17. Contour adaptation reduces the spreading of edge induced colors.

    Science.gov (United States)

    Coia, Andrew J; Crognale, Michael A

    2017-04-25

    Brief exposure to flickering achromatic outlines of an area causes a reduction in the brightness contrast of the surface inside the area. This contour adaptation to achromatic contours does not reduce surface contrast when the surface is chromatic (the saturation or colorimetric purity of the surface is maintained). In addition to reducing the brightness of physical luminance contrast, contour adaptation also reduces (or even reverses) the illusory brightness contrast seen in the Craik-O'Brien-Cornsweet illusion, in which two physically identical grey areas appear different brightness because of a sharp luminance edge separating them. Chromatic color spreading illusions also occur with chromatic inducing edges, and an unanswered question is whether contour adaptation can reduce the perceived contrast of illusory color spreading from edges, even though it cannot reduce the perceived contrast of physical surface color. The current studies use a color spreading illusion known as the watercolor effect in order to test whether illusory color spreading is affected by contour adaptation. The general findings of physical achromatic contrast being reduced and chromatic contrast being robust to contour adaptation were replicated. However, both illusory brightness and color were reduced by contour adaptation, even when the illusion edges only differed in chromatic contrast with each other and the background. Additional studies adapting to chromatic contours showed opposite effects on illusory color contrast than achromatic adaptation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Smart design to resolve spectral overlapping of phosphor-in-glass for high-powered remote-type white light-emitting devices.

    Science.gov (United States)

    Lee, Jin Seok; Arunkumar, P; Kim, Sunghoon; Lee, In Jae; Lee, Hyungeui; Im, Won Bin

    2014-02-15

    The white light-emitting diode (WLED) is a state-of-the-art solid state technology, which has replaced conventional lighting systems due to its reduced energy consumption, its reliability, and long life. However, the WLED presents acute challenges in device engineering, due to its lack of color purity, efficacy, and thermal stability of the lighting devices. The prime cause for inadequacies in color purity and luminous efficiency is the spectral overlapping of red components with yellow/green emissions when generating white light by pumping a blue InGaN chip with yellow YAG:Ce³⁺ phosphor, where red phosphor is included, to compensate for deficiencies in the red region. An innovative strategy was formulated to resolve this spectral overlapping by alternatively arranging phosphor-in-glass (PiG) through cutting and reassembling the commercial red CaAlSiN₃:Eu²⁺ and green Lu₃Al₅O₁₂:Ce³⁺ PiG. PiGs were fabricated using glass frits with a low softening temperature of 600°C, which exhibited excellent thermal stability and high transparency, improving life time even at an operating temperature of 200°C. This strategy overcomes the spectral overlapping issue more efficiently than the randomly mixed and patented stacking design of multiple phosphors for a remote-type WLED. The protocol for the current design of PiG possesses excellent thermal and chemical stability with high luminous efficiency and color purity is an attempt to make smarter solid state lighting for high-powered remote-type white light-emitting devices.

  19. Embedding Color Watermarks in Color Images

    Directory of Open Access Journals (Sweden)

    Wu Tung-Lin

    2003-01-01

    Full Text Available Robust watermarking with oblivious detection is essential to practical copyright protection of digital images. Effective exploitation of the characteristics of human visual perception to color stimuli helps to develop the watermarking scheme that fills the requirement. In this paper, an oblivious watermarking scheme that embeds color watermarks in color images is proposed. Through color gamut analysis and quantizer design, color watermarks are embedded by modifying quantization indices of color pixels without resulting in perceivable distortion. Only a small amount of information including the specification of color gamut, quantizer stepsize, and color tables is required to extract the watermark. Experimental results show that the proposed watermarking scheme is computationally simple and quite robust in face of various attacks such as cropping, low-pass filtering, white-noise addition, scaling, and JPEG compression with high compression ratios.

  20. MIS High-Purity Plutonium Oxide Hydride Product 5501579 (SSR124): Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Veirs, Douglas Kirk [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Stroud, Mary Ann [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Berg, John M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Narlesky, Joshua Edward [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Worl, Laura Ann [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Martinex, Max A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Carillo, Alex [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2018-02-08

    A high-purity plutonium dioxide material from the Material Identification and Surveillance (MIS) Program inventory has been studied with regard to gas generation and corrosion in a storage environment. Sample 5501579 represents process plutonium oxides from hydride oxide from Rocky Flats that are currently stored in 3013 containers. After calcination to 950°C, the material contained 87.42% plutonium with no major impurities. This study followed over time, the gas pressure of a sample with nominally 0.5 wt% water in a sealed container with an internal volume scaled to 1/500th of the volume of a 3013 container. Gas compositions were measured periodically over a six year period. The maximum observed gas pressure was 124 kPa. The increase over the initial pressure of 70 kPa was primarily due to generation of nitrogen and carbon dioxide gas. Hydrogen and oxygen were minor components of the headspace gas. At the completion of the study, the internal components of the sealed container showed signs of corrosion.

  1. High-throughput flow injection analysis mass spectroscopy with networked delivery of color-rendered results. 2. Three-dimensional spectral mapping of 96-well combinatorial chemistry racks.

    Science.gov (United States)

    Görlach, E; Richmond, R; Lewis, I

    1998-08-01

    For the last two years, the mass spectroscopy section of the Novartis Pharma Research Core Technology group has analyzed tens of thousands of multiple parallel synthesis samples from the Novartis Pharma Combinatorial Chemistry program, using an in-house developed automated high-throughput flow injection analysis electrospray ionization mass spectroscopy system. The electrospray spectra of these samples reflect the many structures present after the cleavage step from the solid support. The overall success of the sequential synthesis is mirrored in the purity of the expected end product, but the partial success of individual synthesis steps is evident in the impurities in the mass spectrum. However this latter reaction information, which is of considerable utility to the combinatorial chemist, is effectively hidden from view by the very large number of analyzed samples. This information is now revealed at the workbench of the combinatorial chemist by a novel three-dimensional display of each rack's complete mass spectral ion current using the in-house RackViewer Visual Basic application. Colorization of "forbidden loss" and "forbidden gas-adduct" zones, normalization to expected monoisotopic molecular weight, colorization of ionization intensity, and sorting by row or column were used in combination to highlight systematic patterns in the mass spectroscopy data.

  2. Production of R,R-2,3-butanediol of ultra-high optical purity from Paenibacillus polymyxa ZJ-9 using homologous recombination.

    Science.gov (United States)

    Zhang, Li; Cao, Can; Jiang, Ruifan; Xu, Hong; Xue, Feng; Huang, Weiwei; Ni, Hao; Gao, Jian

    2018-08-01

    The present study describes the use of metabolic engineering to achieve the production of R,R-2,3-butanediol (R,R-2,3-BD) of ultra-high optical purity (>99.99%). To this end, the diacetyl reductase (DAR) gene (dud A) of Paenibacillus polymyxa ZJ-9 was knocked out via homologous recombination between the genome and the previously constructed targeting vector pRN5101-L'C in a process based on homologous single-crossover. PCR verification confirmed the successful isolation of the dud A gene disruption mutant P. polymyxa ZJ-9-△dud A. Moreover, fermentation results indicated that the optical purity of R,R-2,3-BD increased from about 98% to over 99.99%, with a titer of 21.62 g/L in Erlenmeyer flasks. The latter was further increased to 25.88 g/L by fed-batch fermentation in a 5-L bioreactor. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Differential scanning calorimetry method for purity determination: A case study on polycyclic aromatic hydrocarbons and chloramphenicol

    International Nuclear Information System (INIS)

    Kestens, V.; Zeleny, R.; Auclair, G.; Held, A.; Roebben, G.; Linsinger, T.P.J.

    2011-01-01

    Highlights: → Purity assessment of polycyclic aromatic hydrocarbons and chloramphenicol by DSC. → DSC results compared with traditional purity methods. → Different methods give different results, multiple method approach recommended. → DSC sensitive to impurities that have similar structures as main component. - Abstract: In this study the validity and suitability of differential scanning calorimetry (DSC) to determine the purity of selected polycyclic aromatic hydrocarbons and chloramphenicol has been investigated. The study materials were two candidate certified reference materials (CRMs), 6-methylchrysene and benzo[a]pyrene, and two different batches of commercially available highly pure chloramphenicol. The DSC results were compared with those obtained by other methods, namely gas and liquid chromatography with mass spectrometric detection, liquid chromatography with diode array detection, and quantitative nuclear magnetic resonance. The purity results obtained by these different analytical methods confirm the well-known challenges of comparing results of different method-defined measurands. In comparison with other methods, DSC has a much narrower working range. This limits the applicability of DSC as purity determination method, for instance during the assignment of the purity value of a CRM. Nevertheless, this study showed that DSC can be a powerful technique to detect impurities that are structurally very similar to the main purity component. From this point of view, and because of its good repeatability, DSC can be considered as a valuable technique to investigate the homogeneity and stability of candidate purity CRMs.

  4. Determination of continuous variable entanglement by purity measurements.

    Science.gov (United States)

    Adesso, Gerardo; Serafini, Alessio; Illuminati, Fabrizio

    2004-02-27

    We classify the entanglement of two-mode Gaussian states according to their degree of total and partial mixedness. We derive exact bounds that determine maximally and minimally entangled states for fixed global and marginal purities. This characterization allows for an experimentally reliable estimate of continuous variable entanglement based on measurements of purity.

  5. Color categories and color appearance

    Science.gov (United States)

    Webster, Michael A.; Kay, Paul

    2011-01-01

    We examined categorical effects in color appearance in two tasks, which in part differed in the extent to which color naming was explicitly required for the response. In one, we measured the effects of color differences on perceptual grouping for hues that spanned the blue–green boundary, to test whether chromatic differences across the boundary were perceptually exaggerated. This task did not require overt judgments of the perceived colors, and the tendency to group showed only a weak and inconsistent categorical bias. In a second case, we analyzed results from two prior studies of hue scaling of chromatic stimuli (De Valois, De Valois, Switkes, & Mahon, 1997; Malkoc, Kay, & Webster, 2005), to test whether color appearance changed more rapidly around the blue–green boundary. In this task observers directly judge the perceived color of the stimuli and these judgments tended to show much stronger categorical effects. The differences between these tasks could arise either because different signals mediate color grouping and color appearance, or because linguistic categories might differentially intrude on the response to color and/or on the perception of color. Our results suggest that the interaction between language and color processing may be highly dependent on the specific task and cognitive demands and strategies of the observer, and also highlight pronounced individual differences in the tendency to exhibit categorical responses. PMID:22176751

  6. Steam purity in PWRs

    International Nuclear Information System (INIS)

    Hopkinson, J.; Passell, T.

    1982-01-01

    Reports that 2 EPRI studies of PWRs prove that impure steam triggers decay of turbine metals. Reveals that EPRI is attempting to improve steam monitoring and analysis, which are key steps on the way to deciding the most cost-effective degree of steam purity, and to upgrade demineralizing systems, which can then reliably maintain that degree of purity. Points out that 90% of all cracks in turbine disks have occurred at the dry-to-wet transition zone, dubbed the Wilson line. Explains that because even very clean water contains traces of chemical impurities with concentrations in the parts-per-billion range, Crystal River-3's secondary loop was designed with even more purification capability; a deaerator to remove oxygen and prevent oxidation of system metals, and full-flow resin beds to demineralize 100% of the secondary-loop water from the condenser. Concludes that focusing attention on steam and water chemistry can ward off cracking and sludge problems caused by corrosion

  7. New hybrid rice cultivar 'Zhefuliangyou 12' with improved grain quality produced by leaf color marker-labeled male sterile line and mutant with enhanced tillers and improved grain quality

    International Nuclear Information System (INIS)

    Mei Shufang; Zhao Hua; Wang Yongqiang; Shu Xiaoli; Wu Dianxing

    2013-01-01

    In order to breed high yielding and good grain quality new variety with controllable seed purity, hybrid rice 'Zhefuliangyou 12' was produced by green-revertible albino leaf color marker-labeled two-line male sterile line 'NHR111S' and mutant 'ZF-2' with enhanced tillers and improved grain quality, which was characterized by improved grain quality, rice blast resistance and lodging resistance. Breeding protocol, characteristics, and high yielding cultivation techniques of 'Zhefuliangyou 12' were briefly introduced in the current paper. (authors)

  8. Melt-drop technique for the production of high-purity metal powder

    International Nuclear Information System (INIS)

    Aldinger, F.; Linck, E.; Claussen, N.

    1977-01-01

    The production of high-purity powders of metals and alloys such as beryllium, titanium alloys, or superalloys is a problem. Oxidation of these materials cannot be avoided. Oxidation occurs in inert gases and even in reducing atmospheres when any gas impurities are present. Therefore, the powder production of these materials has to be performed either in high vacuum or at least in a static atmosphere of inert gas purified immediately before coming into contact with the disintegrating material. These requirements are very well met by the melt-drop technique presented in this paper, especially for coarse powders which must not necessarily be cold-workable. This is true, for example, for superalloys where high-temperature applications require large grain sizes; or in titanium alloys because the final microstructure will be achieved by a thermomechanical treatment. In the case of beryllium and beryllium alloys, where grain sizes <5 μm are desired, further milling is necessary. But the melt-drop technique offers a simple and clean method directly from the purifying process of vacuum melting. In melt-drop processes a liquid metal flows through a nozzle at the bottom of a crucible or the melt is just poured through a sieve. The theory of disintegration of a liquid jet into droplets, dates back to the 19th century. More recent investigations attempted to produce uniformly sized droplets by applying a capillary wave of given wave length to the jet. But this has been done only with non-metallic materials. Evidence is presented to prove the theory and show that this concept is applicable to the production of metal powders with controlled particle size

  9. Study on the Key Technology of High Purity Strontium Titanate Powder Synthesized from Oxalic Acid Co-sediment Precipitation

    Science.gov (United States)

    Bi, Xiaoguo; Dong, Yingnan; Li, Yingjie; Niu, Wei; Tang, Jian; Ding, Shuang; Li, Meiyang

    2017-09-01

    Oxalate coprecipitation is applied in this paper, high purity titanium tetrachloride, and after the purification of strontium chloride, match with a certain concentration of solution, oxalate and strontium chloride and titanium tetrachloride in 1.005:1.000 make strontium titanium mixture ratio, slowly under 60°C to join in oxalic acid solution, aging around 4 h, get oxygen titanium strontium oxalate (SrTiO(C2O4)2 • 4H2 ) precipitation, after washing, drying and other process made oxygen titanium strontium oxalate powder.

  10. Ultra low energy-ultra low background high purity germanium detectors for studies on dark matter

    International Nuclear Information System (INIS)

    Soma, A.K.; Singh, V.; Singh, L.; Singh, M.K.; Wong, H.T.

    2009-01-01

    Weakly Interacting Massive Particles (WIMP) are the leading DM candidates. Super symmetric particles (SUSY) are one of the leading WIMP candidates. To probe this least explored region Taiwan EXperiments On NeutrinO collaboration is pursuing research and development program by using High Purity Germanium detectors (HPGe). These detectors offer a matured technology to scale up the detectors and achieve sub-keV level threshold i.e. few hundreds of eV, economically. The various detectors developed by the collaboration is shown in the below figure. The current goal of the collaboration is to develop detectors of kg-scale target mass, ∼100 eV threshold and low-background specification for the studies on WIMPs, μ v and neutrino - nucleus coherent scattering

  11. Bibliographical study on the high-purity germanium radiation detectors used in gamma and X spectrometry

    International Nuclear Information System (INIS)

    Bornand, Bernard; Friant, Alain

    1979-03-01

    The germanium or silicon lithium-drifted detectors, Ge(Li) or Si(Li), and high-purity germanium detectors, HP Ge (impurity concentration approximately 10 10 cm -3 ), are the most commonly used at the present time as gamma and X-ray spectrometers. The HP Ge detectors for which room temperature storage is the main characteristic can be obtained with a large volume and a thin window, and are used as the Ge(Li) in γ ray spectrometry or the Si(Li) in X-ray spectrometry. This publication reviews issues from 1974 to 1978 on the state of the art and applications of the HP Ge semiconductor detectors. 101 bibliographical notices with French summaries are presented. An index for authors, documents and periodicals, and subjects is included [fr

  12. Simple single-emitting layer hybrid white organic light emitting with high color stability

    Science.gov (United States)

    Nguyen, C.; Lu, Z. H.

    2017-10-01

    Simultaneously achieving a high efficiency and color quality at luminance levels required for solid-state lighting has been difficult for white organic light emitting diodes (OLEDs). Single-emitting layer (SEL) white OLEDs, in particular, exhibit a significant tradeoff between efficiency and color stability. Furthermore, despite the simplicity of SEL white OLEDs being its main advantage, the reported device structures are often complicated by the use of multiple blocking layers. In this paper, we report a highly simplified three-layered white OLED that achieves a low turn-on voltage of 2.7 V, an external quantum efficiency of 18.9% and power efficiency of 30 lm/W at 1000 cd/cm2. This simple white OLED also shows good color quality with a color rendering index of 75, CIE coordinates (0.42, 0.46), and little color shifting at high luminance. The device consists of a SEL sandwiched between a hole transport layer and an electron transport layer. The SEL comprises a thermally activated delayer fluorescent molecule having dual functions as a blue emitter and as a host for other lower energy emitters. The improved color stability and efficiency in such a simple device structure is explained as due to the elimination of significant energy barriers at various organic-organic interfaces in the traditional devices having multiple blocking layers.

  13. Searching for color sextet quarks at high energy hardon colliders

    International Nuclear Information System (INIS)

    Kantar, M.

    2005-01-01

    We analyze the resonance and pair production of color sextet quarks and their decay modes at very high energy hadron colliders such as VHLC (Very Large Hadron Collider) with the energy of 28 TeV and SSC (Superconducting Super Collider) for two options with energies of 40 TeV and 100 TeV, respectively. The total cross sections of color sextet quark for three different machines are calculated and plotted versus its mass. The distributions of transverse momentum T p and invariant mass jj m of two final state jets are plotted for signals and backgrounds and analyzed the discovery limits of this resonance particle. The observation condition of color sextet quarks are performed by the number of signal events to the number of background events

  14. Effect of small additions of silicon, iron, and aluminum on the room-temperature tensile properties of high-purity uranium

    International Nuclear Information System (INIS)

    Ludwig, R.L.

    1983-01-01

    Eleven binary and ternary alloys of uranium and very low concentrations of iron, silicon, and aluminum were prepared and tested for room-temperature tensile properties after various heat treatments. A yield strength approximately double that of high-purity derby uranium was obtained from a U-400 ppM Si-200 ppM Fe alloy after beta solution treatment and alpha aging. Higher silicon plus iron alloy contents resulted in increased yield strength, but showed an unacceptable loss of ductility

  15. Quantitative analyses of impurity silicon-carbide (SiC) and high-purity-titanium by neutron activation analyses based on k0-standardization method. Development of irradiation silicon technology in productivity using research reactor (Joint research)

    International Nuclear Information System (INIS)

    Motohashi, Jun; Takahashi, Hiroyuki; Magome, Hirokatsu; Sasajima, Fumio; Tokunaga, Okihiro; Kawasaki, Kozo; Onizawa, Koji; Isshiki, Masahiko

    2009-07-01

    JRR-3 and JRR-4 have been providing neutron-transmutation-doped silicon (NTD-Si) by using the silicon NTD process, which is a method to produce a high quality semiconductor. The domestic supply of NTD-Si is insufficient for the demand, and the market of NTD-Si is significantly growing at present. It is very important to increase achieve the production. To fulfill the requirement, we have been investigating a neutron filter, which is made of high-purity-titanium, for uniform doping. Silicon-carbide (SiC) semiconductor doped with NTD technology is considered suitable for high power devices with superior performances to conventional Si-based devices. We are very interested in the SiC as well. This report presents the results obtained after the impurity contents in the high-purity-titanium and SiC were analyzed by neutron activation analyses (NAA) using k 0 -standardization method. There were 6 and 9 impurity elements detected from the high-purity-titanium and SiC, respectively. Among those Sc from the high-purity-titanium and Fe from SiC were comparatively long half life nuclides. From the viewpoint of exposure in handling them, we need to examine the impurity control of materials. (author)

  16. Characteristics of high-purity Teflon vial for 14C measurement in old tree rings

    International Nuclear Information System (INIS)

    Sakurai, H.; Saswaki, Y.; Matsumoto, T.; Aoki, T.; Kato, W.; Gandou, T.; Gunji, S.; Tokanai, F.

    2003-01-01

    14 C concentration in single-year tree rings of an old cedar of ca. 2500 years ago is measured to investigate the 11-yr periodicity of solar activity. Our highly accurate 14 C measuring system is composed of a benzene synthesizer capable of producing a large quantity (10 g) of benzene and a Quantulus 1220 TM liquid scintillation counting system. The accuracy is less than 0.2% for measurements of 14 C concentration. The benzene sample is contained in a high-purity Teflon/copper-counting vial (20 ml) manufactured by Wallac Oy Company. We found a vial with an irregular copper cap for the measurements of 11 tree rings. The behavior of the vial with the irregular cap was investigated. The Teflon sheet inside the cap plays an important role in achieving stable measurement. The rate of volatilization of the benzene was less than 0.35 mg/day for vials with ordinary caps. This results in the volatilization rate of 0.003% for 10.5 g of benzene and hence guarantees measurement at an accuracy of 0.2% for 70 days

  17. Structural and mechanical behaviour of severe plastically deformed high purity aluminium sheets processed by constrained groove pressing technique

    International Nuclear Information System (INIS)

    Satheesh Kumar, S.S.; Raghu, T.

    2014-01-01

    Highlights: • High purity aluminium sheets constrained groove pressed up to plastic strain of 5.8. • Microstructural evolution studied by TEM and X-ray diffraction profile analysis. • Ultrafine grained structure with grain size ∼900 nm achieved in sheets. • Yield strength increased by 5.3 times and tensile strength doubled after first pass. • Enhanced deformation homogeneity seen with increased accumulated plastic strain. - Abstract: High purity aluminium sheets (∼99.9%) are subjected to intense plastic straining by constrained groove pressing method successfully up to 5 passes thereby imparting an effective plastic strain of 5.8. Transmission electron microscopy studies of constrained groove pressed sheets divulged significant grain refinement and the average grain sizes obtained after five pass is estimated to be ∼0.9 μm. In addition to that, microstructural evolution of constrained groove pressed sheets is characterized by X-ray diffraction peak profile analysis employing Williamson–Hall method and the results obtained fairly concur with electron microscopy findings. The tensile behaviour evolution with increased straining indicates substantial improvement of yield strength by ∼5.3 times from 17 MPa to 90 MPa during first pass corroborated to grain refinement observed. Marginal increase in strengths is noticed during second pass followed by minor drop in strengths attributed to predominance of dislocation recovery is noticed in subsequent passes. Quantitative assessment of degree of deformation homogeneity using microhardness profiles reveal relatively better strain homogeneity at higher number of passes

  18. Industrial-scale separation of high-purity single-chirality single-wall carbon nanotubes for biological imaging

    Science.gov (United States)

    Yomogida, Yohei; Tanaka, Takeshi; Zhang, Minfang; Yudasaka, Masako; Wei, Xiaojun; Kataura, Hiromichi

    2016-01-01

    Single-chirality, single-wall carbon nanotubes are desired due to their inherent physical properties and performance characteristics. Here, we demonstrate a chromatographic separation method based on a newly discovered chirality-selective affinity between carbon nanotubes and a gel containing a mixture of the surfactants. In this system, two different selectivities are found: chiral-angle selectivity and diameter selectivity. Since the chirality of nanotubes is determined by the chiral angle and diameter, combining these independent selectivities leads to high-resolution single-chirality separation with milligram-scale throughput and high purity. Furthermore, we present efficient vascular imaging of mice using separated single-chirality (9,4) nanotubes. Due to efficient absorption and emission, blood vessels can be recognized even with the use of ∼100-fold lower injected dose than the reported value for pristine nanotubes. Thus, 1 day of separation provides material for up to 15,000 imaging experiments, which is acceptable for industrial use. PMID:27350127

  19. Jerusalem artichoke powder: a useful material in producing high-optical-purity l-lactate using an efficient sugar-utilizing thermophilic Bacillus coagulans strain.

    Science.gov (United States)

    Wang, Limin; Xue, Zhangwei; Zhao, Bo; Yu, Bo; Xu, Ping; Ma, Yanhe

    2013-02-01

    Jerusalem artichoke is a low-requirement crop, which does not interfere with food chain, and is a promising carbon source for industrial fermentation. Microbial conversion of such a renewable raw material to useful products, such as lactic acid, is an important objective in industrial biotechnology. In this study, high-optical-purity l-lactate was efficiently produced from the hydrolysates of Jerusalem artichoke powder by a thermophilic bacterium, Bacillus coagulans XZL4. High l-lactate production (134gl(-1)) was obtained using 267gl(-1) Jerusalem artichoke powder (total reducing sugars of 140gl(-1)) and 10gl(-1) of corn steep powder in fed-batch fermentation, with an average productivity of 2.5gl(-1)h(-1) and a yield of 0.96gg(-1) reducing sugars. The final product optical purity is 99%, which meets the requirement of lactic acid polymerization. Our study represents a cost-effective and promising method for polymer-grade l-lactate production using a cheap raw bio-resource. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Epitaxial growth of high purity cubic InN films on MgO substrates using HfN buffer layers by pulsed laser deposition

    International Nuclear Information System (INIS)

    Ohba, R.; Ohta, J.; Shimomoto, K.; Fujii, T.; Okamoto, K.; Aoyama, A.; Nakano, T.; Kobayashi, A.; Fujioka, H.; Oshima, M.

    2009-01-01

    Cubic InN films have been grown on MgO substrates with HfN buffer layers by pulsed laser deposition (PLD). It has been found that the use of HfN (100) buffer layers allows us to grow cubic InN (100) films with an in-plane epitaxial relationship of [001] InN //[001] HfN //[001] MgO . X-ray diffraction and electron back-scattered diffraction measurements have revealed that the phase purity of the cubic InN films was as high as 99%, which can be attributed to the use of HfN buffer layers and the enhanced surface migration of the film precursors by the use of PLD. - Graphical abstract: Cubic InN films have been grown on MgO substrates with HfN buffer layers by pulsed laser deposition (PLD). It has been revealed that the phase purity of the cubic InN films was as high as 99 %, which can be attributed to the use of HfN buffer layers and the enhanced surface migration of the film precursors by the use of PLD.

  1. High-phase-purity zinc-blende InN on r-plane sapphire substrate with controlled nitridation pretreatment

    International Nuclear Information System (INIS)

    Hsiao, C.-L.; Wu, C.-T.; Hsu, H.-C.; Hsu, G.-M.; Chen, L.-C.; Liu, T.-W.; Shiao, W.-Y.; Yang, C. C.; Gaellstroem, Andreas; Holtz, Per-Olof; Chen, C.-C.; Chen, K.-H.

    2008-01-01

    High-phase-purity zinc-blende (zb) InN thin film has been grown by plasma-assisted molecular-beam epitaxy on r-plane sapphire substrate pretreated with nitridation. X-ray diffraction analysis shows that the phase of the InN films changes from wurtzite (w) InN to a mixture of w-InN and zb-InN, to zb-InN with increasing nitridation time. High-resolution transmission electron microscopy reveals an ultrathin crystallized interlayer produced by substrate nitridation, which plays an important role in controlling the InN phase. Photoluminescence emission of zb-InN measured at 20 K shows a peak at a very low energy, 0.636 eV, and an absorption edge at ∼0.62 eV is observed at 2 K, which is the lowest bandgap reported to date among the III-nitride semiconductors

  2. Highly conductive and flexible color filter electrode using multilayer film structure

    Science.gov (United States)

    Han, Jun Hee; Kim, Dong-Young; Kim, Dohong; Choi, Kyung Cheol

    2016-07-01

    In this paper, a high performance flexible component that serves as a color filter and an electrode simultaneously is suggested. The suggested highly conductive and flexible color filter electrode (CFE) has a multilayer film structure composed of silver (Ag) and tungsten trioxide (WO3). The CFE maintained its color filtering capability even when the films were bent on a polyethylene terephthalate (PET) film. Low sheet resistance of the CFE was obtained using WO3 as a bridge layer that connects two Ag layers electrically. The sheet resistance was less than 2 Ω/sq. and it was negligibly changed after bending the film, confirming the flexibility of the CFE. The CFE can be easily fabricated using a thermal evaporator and is easily patterned by photolithography or a shadow mask. The proposed CFE has enormous potential for applications involving optical devices including large area devices and flexible devices.

  3. Color response and color transport in a quark-gluon plasma

    International Nuclear Information System (INIS)

    Heinz, U.

    1986-01-01

    Using color kinetic theory, we discuss color conduction and color response in a quark-gluon plasma. Collective color oscillations and their damping rates are investigated. An instability of the thermal equilibrium state in high T QCD is discovered

  4. Color response and color transport in a quark-gluon plasma

    International Nuclear Information System (INIS)

    Heinz, U.

    1986-01-01

    Using color kinetic theory, the authors discuss color conduction and color response in a quark-gluon plasma. Collective color oscillations and their damping rates are investigated. An instability of the thermal equilibrium state in high T QCD is discovered

  5. Assessment of radiochemical purity of [{sup 18}F]fludeoxyglucose by high pressure liquid chromatography (HPLC)

    Energy Technology Data Exchange (ETDEWEB)

    Lacerda, Aline E.; Silva, Juliana B.; Silveira, Marina B.; Ferreira, Soraya Z., E-mail: radiofarmacoscdtn@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil). Unidade de Pesquisa e Producao de Radiofarmacos

    2011-07-01

    The quality control of [{sup 18}F]fludeoxyglucose ({sup 18}FDG) has received attention due to its increasing clinical use. Although the quality requirements of {sup 18}FDG are established in various pharmacopoeia, the suitability of all testing methods used should be verified under actual conditions of use and documented. The aim of this study was to develop a high pressure liquid chromatography (HPLC) method for radiochemical purity evaluation of {sup 18}FDG, based on pharmacopoeia references, and to verify its suitability for routine quality control in our centre. HPLC analysis was performed with an Agilent HPLC. {sup 18}FDG and impurities were separated on an anion-exchange column by isocratic elution with 0.1 M NaOH as the mobile phase. Detection was accomplished with refractive index and NaI (Tl) scintillation detectors. The flow rate of the mobile phase was set at 0.8 mL/min and the column temperature was kept at 35 deg C. Specificity, linearity, precision and robustness were assessed to verify if the method was adequate for its intended purpose. Retention time of {sup 18}FDG was not affected by the presence of other components of the formulation and a good peak resolution was achieved. The analytical curve of {sup 18}FDG was linear, with a correlation coefficient value of 0.9995. Intraday repeatable precision, reported as the relative standard deviation, was 0.11%. Analytical procedure remained unaffected by small variations in mobile phase flow rate. Results evidenced that HPLC is suitable for radiochemical purity evaluation of {sup 18}FDG, considering operational conditions of our laboratory. (author)

  6. High-purity germanium detection system for the in vivo measurement of americium and plutonium

    International Nuclear Information System (INIS)

    Tyree, W.H.; Falk, R.B.; Wood, C.B.; Liskey, R.W.

    1976-01-01

    A high-purity germanium (HPGe) array, photon-counting system has been developed for the Rocky Flats Plant Body-Counter Medical Facility. The newly improved system provides exceptional resolutions of low-energy X-ray and gamma-ray spectra associated with the in vivo deposition of plutonium and americium. Described are the operational parameters of the system and some qualitative results illustrating detector performance for the photon emissions produced from the decay of plutonium and americium between energy ranges from 10 to 100 kiloelectron volts. Since large amounts of data are easily generated with the system, data storage, analysis, and computer software developments continue to be an essential ingredient for processing spectral data obtained from the detectors. Absence of quantitative data is intentional. The primary concern of the study was to evaluate the effects of the various physical and electronic operational parameters before adding those related entirely to a human subject

  7. The flow stress of high-purity refractory body-centred cubic metals and its modification by atomic defects

    International Nuclear Information System (INIS)

    Seeger, A.

    1995-01-01

    The strong temperature and strain-rate dependence of the flow stress of high-purity refractory body-centred cubic metals has been shown to be an intrinsic property and is usually ascribed to a high Peierls barrier of a o left angle 111 right angle /2 screw dislocations. These barriers are overcome by the formation of kink pairs on the screw dislocations. The paper reports on recent, very complete flow-stress data on ultra-high purity Mo crystals obtained by two different experimental techniques and covering the temperature range 4 K to 460 K. The results are in accord with earlier work of Brunner and Diehl on α-Fe, who showed that below the so-called knee temperature, T K , three regimes in the temperature variation of the flow-stress should be distinguished. Two of them are fully accounted for by the same glide mechanism, namely elementary glide steps on {211} planes. The so-called upper bend separating these two regimes in an inherent feature of the theory of kink-pair formation and does not indicate a change in the glide mechanism. There is, however, strong evidence that the so-called lower bend, separating the range of {211} elementary glide steps from the low-temperature flow-stress regime, is due to a change in the glide mechanism. It is argued that at the lower bend the screw-dislocation cores undergo a ''first-order phase transition'' from a low-temperature configuration that allows glide of a given screw dislocation on any of its three {110} glide planes to a high-temperature configuration that can glide only on one definite {211} plane. Between T K and the lower-bend temperature, T, bcc metals may show the unique phenomena of alloy and irradiation softening. With regard to the latter phenomenon, Brunner and Diehl distinguish between ''primary'' and ''secondary'' softening. It is shown that alloy softening and the ''secondary irradiation softening'' of bcc metals may be explained by an ''overheating'' of the phase transition in the dislocation core. (orig./WL)

  8. Certification of caffeine reference material purity by ultraviolet/visible spectrophotometry and high-performance liquid chromatography with diode-array detection as two independent analytical methods.

    Science.gov (United States)

    Shehata, A B; Rizk, M S; Rend, E A

    2016-10-01

    Caffeine reference material certified for purity is produced worldwide, but no research work on the details of the certification process has been published in the literature. In this paper, we report the scientific details of the preparation and certification of pure caffeine reference materials. Caffeine was prepared by extraction from roasted and ground coffee by dichloromethane after heating in deionized water mixed with magnesium oxide. The extract was purified, dried, and bottled in dark glass vials. Stratified random selection was applied to select a number of vials for homogeneity and stability studies, which revealed that the prepared reference material is homogeneous and sufficiently stable. Quantification of caffeine purity % was carried out using a calibrated UV/visible spectrophotometer and a calibrated high-performance liquid chromatography with diode-array detection method. The results obtained from both methods were combined to drive the certified value and its associated uncertainty. The certified value of the reference material purity was found to be 99.86% and its associated uncertainty was ±0.65%, which makes the candidate reference material a very useful calibrant in food and drug chemical analysis. Copyright © 2016. Published by Elsevier B.V.

  9. Certification of caffeine reference material purity by ultraviolet/visible spectrophotometry and high-performance liquid chromatography with diode-array detection as two independent analytical methods

    Directory of Open Access Journals (Sweden)

    A.B. Shehata

    2016-10-01

    Full Text Available Caffeine reference material certified for purity is produced worldwide, but no research work on the details of the certification process has been published in the literature. In this paper, we report the scientific details of the preparation and certification of pure caffeine reference materials. Caffeine was prepared by extraction from roasted and ground coffee by dichloromethane after heating in deionized water mixed with magnesium oxide. The extract was purified, dried, and bottled in dark glass vials. Stratified random selection was applied to select a number of vials for homogeneity and stability studies, which revealed that the prepared reference material is homogeneous and sufficiently stable. Quantification of caffeine purity % was carried out using a calibrated UV/visible spectrophotometer and a calibrated high-performance liquid chromatography with diode-array detection method. The results obtained from both methods were combined to drive the certified value and its associated uncertainty. The certified value of the reference material purity was found to be 99.86% and its associated uncertainty was ±0.65%, which makes the candidate reference material a very useful calibrant in food and drug chemical analysis.

  10. Radioactive preparations. Determination of radiochemical purity by thin-layer chromatography

    International Nuclear Information System (INIS)

    1986-01-01

    The standard sets the data which must be attached to every sample, and the equipment, chemicals and auxiliary substances used in the determination of radiochemical purity of substances by chromatography. Described are preparation of the sample, the procedure of sample deposition, the development, drying and detection of the radioactive preparation. The qualitative and quantitative assessment of the radiochromatogram is described as are the calculation of radiochemical purity and the determination of the reproducibility of measurement of radiochemical purity of radioactive preparations. (E.S.)

  11. Purity of Gaussian states: Measurement schemes and time evolution in noisy channels

    International Nuclear Information System (INIS)

    Paris, Matteo G.A.; Illuminati, Fabrizio; Serafini, Alessio; De Siena, Silvio

    2003-01-01

    We present a systematic study of the purity for Gaussian states of single-mode continuous variable systems. We prove the connection of purity to observable quantities for these states, and show that the joint measurement of two conjugate quadratures is necessary and sufficient to determine the purity at any time. The statistical reliability and the range of applicability of the proposed measurement scheme are tested by means of Monte Carlo simulated experiments. We then consider the dynamics of purity in noisy channels. We derive an evolution equation for the purity of general Gaussian states both in thermal and in squeezed thermal baths. We show that purity is maximized at any given time for an initial coherent state evolving in a thermal bath, or for an initial squeezed state evolving in a squeezed thermal bath whose asymptotic squeezing is orthogonal to that of the input state

  12. 7 CFR 201.51b - Purity procedures for coated seed.

    Science.gov (United States)

    2010-01-01

    ... ACT FEDERAL SEED ACT REGULATIONS Purity Analysis in the Administration of the Act § 201.51b Purity...). Use of fine mesh sieves is recommended for this procedure, and stirring or shaking the coated units...

  13. Comparison between bulk and thin foil ion irradiation of ultra high purity Fe

    Energy Technology Data Exchange (ETDEWEB)

    Prokhodtseva, A., E-mail: anna.prokhodtseva@psi.ch [Ecole Polytechnique Fédérale de Lausanne (EPFL), Centre de Recherches en Physique des Plasmas, Association Euratom-Confédération Suisse, 5232 Villigen PSI (Switzerland); Décamps, B. [Centre de Spectrométrie Nucléaire et de Spectrométrie de Masse (CSNSM), CNRS-IN2P3-Univ. Paris-Sud 11, UMR 8609, Bât. 108, 91405 Orsay (France); Schäublin, R. [Ecole Polytechnique Fédérale de Lausanne (EPFL), Centre de Recherches en Physique des Plasmas, Association Euratom-Confédération Suisse, 5232 Villigen PSI (Switzerland)

    2013-11-15

    Accumulation of radiation damage in ultra high purity iron under self ion irradiation without and with simultaneous He implantation was investigated in bulk and thin foil form to assess, on the one hand, the effect of free surfaces and, on the other hand, the influence of He. Specimens were irradiated at room temperature to a dose of 0.8 dpa and ∼900 appm He content. We found in thin foils after irradiation with single beam a majority of a{sub 0} 〈1 0 0〉 type loops, while in the presence of He it is the ½ a{sub 0} 〈1 1 1〉 type loops that prevail. In single beam irradiated bulk samples most of the loops are of ½ a{sub 0} 〈1 1 1〉 type. In both bulk and thin foils density of defects visible in transmission electron microscope is considerably higher when He is implanted with prevailing ½ a{sub 0} 〈1 1 1〉 dislocation loops, indicating that He stabilizes them.

  14. Optimization of extraction of high purity all-trans-lycopene from tomato pulp waste.

    Science.gov (United States)

    Poojary, Mahesha M; Passamonti, Paolo

    2015-12-01

    The aim of this work was to optimize the extraction of pure all-trans-lycopene from the pulp fractions of tomato processing waste. A full factorial design (FFD) consisting of four independent variables including extraction temperature (30-50 °C), time (1-60 min), percentage of acetone in n-hexane (25-75%, v/v) and solvent volume (10-30 ml) was used to investigate the effects of process variables on the extraction. The absolute amount of lycopene present in the pulp waste was found to be 0.038 mg/g. The optimal conditions for extraction were as follows: extraction temperature 20 °C, time 40 min, a solvent composition of 25% acetone in n-hexane (v/v) and solvent volume 40 ml. Under these conditions, the maximal recovery of lycopene was 94.7%. The HPLC-DAD analysis demonstrated that, lycopene was obtained in the all-trans-configuration at a very high purity grade of 98.3% while the amount of cis-isomers and other carotenoids were limited. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Highly Efficient Light-Emitting Diodes of Colloidal Metal-Halide Perovskite Nanocrystals beyond Quantum Size.

    Science.gov (United States)

    Kim, Young-Hoon; Wolf, Christoph; Kim, Young-Tae; Cho, Himchan; Kwon, Woosung; Do, Sungan; Sadhanala, Aditya; Park, Chan Gyung; Rhee, Shi-Woo; Im, Sang Hyuk; Friend, Richard H; Lee, Tae-Woo

    2017-07-25

    Colloidal metal-halide perovskite quantum dots (QDs) with a dimension less than the exciton Bohr diameter D B (quantum size regime) emerged as promising light emitters due to their spectrally narrow light, facile color tuning, and high photoluminescence quantum efficiency (PLQE). However, their size-sensitive emission wavelength and color purity and low electroluminescence efficiency are still challenging aspects. Here, we demonstrate highly efficient light-emitting diodes (LEDs) based on the colloidal perovskite nanocrystals (NCs) in a dimension > D B (regime beyond quantum size) by using a multifunctional buffer hole injection layer (Buf-HIL). The perovskite NCs with a dimension greater than D B show a size-irrespective high color purity and PLQE by managing the recombination of excitons occurring at surface traps and inside the NCs. The Buf-HIL composed of poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) (PEDOT:PSS) and perfluorinated ionomer induces uniform perovskite particle films with complete film coverage and prevents exciton quenching at the PEDOT:PSS/perovskite particle film interface. With these strategies, we achieved a very high PLQE (∼60.5%) in compact perovskite particle films without any complex post-treatments and multilayers and a high current efficiency of 15.5 cd/A in the LEDs of colloidal perovskite NCs, even in a simplified structure, which is the highest efficiency to date in green LEDs that use colloidal organic-inorganic metal-halide perovskite nanoparticles including perovskite QDs and NCs. These results can help to guide development of various light-emitting optoelectronic applications based on perovskite NCs.

  16. Trace radioactive measurement in foodstuffs using high purity germanium detector

    International Nuclear Information System (INIS)

    Morco, Ryan P.; Racho, Joseph Michael D.; Castaneda, Soledad S.; Almoneda, Rosalina V.; Pabroa, Preciosa Corazon B.; Sucgang, Raymond J.

    2010-01-01

    Trace radioactivity in food has been seriously considered sources of potential harm after the accidental radioactive releases in the last decades which led to contamination of the food chain. Countermeasures are being used to reduce the radiological health risk to the population and to ensure that public safety and international commitments are met. Investigation of radioactive traces in foods was carried out by gamma-ray spectrometry. The radionuclides being measured were fission products 1 37Cs and 1 34Cs and naturally occurring 4 0Κ. Gamma-ray measurements were performed using a hybrid gamma-ray counting system with coaxial p-type Tennelec High Purity Germanium (HPGe) detector with relative efficiency of 18.4%. Channels were calibrated to energies using a standard check source with 1 37Cs and 6 0Co present. Self-shielding within samples was taken into account by comparing directly with reference standards of similar matrix and geometry. Efficiencies of radionuclides of interests were accounted in calculating the activity concentrations in the samples. Efficiency calibration curve was generated using an in-house validated program called FINDPEAK, a least-square method that fits a polynomial up to sixth-order of equation. Lower Limits of Detection (LLD) obtained for both 1 37Cs and 1 34Cs ranges from 1-6 Bq/Kg depending on the sample matrix. In the last five years, there have been no foodstuffs analyzed exceeded the local and international regulatory limit of 1000Bq/Kg for the summed activities of 1 37Cs and 1 34Cs. (author)

  17. Full-frame, high-speed 3D shape and deformation measurements using stereo-digital image correlation and a single color high-speed camera

    Science.gov (United States)

    Yu, Liping; Pan, Bing

    2017-08-01

    Full-frame, high-speed 3D shape and deformation measurement using stereo-digital image correlation (stereo-DIC) technique and a single high-speed color camera is proposed. With the aid of a skillfully designed pseudo stereo-imaging apparatus, color images of a test object surface, composed of blue and red channel images from two different optical paths, are recorded by a high-speed color CMOS camera. The recorded color images can be separated into red and blue channel sub-images using a simple but effective color crosstalk correction method. These separated blue and red channel sub-images are processed by regular stereo-DIC method to retrieve full-field 3D shape and deformation on the test object surface. Compared with existing two-camera high-speed stereo-DIC or four-mirror-adapter-assisted singe-camera high-speed stereo-DIC, the proposed single-camera high-speed stereo-DIC technique offers prominent advantages of full-frame measurements using a single high-speed camera but without sacrificing its spatial resolution. Two real experiments, including shape measurement of a curved surface and vibration measurement of a Chinese double-side drum, demonstrated the effectiveness and accuracy of the proposed technique.

  18. Measurement of the high-field Q-drop in a high-purity large-grain niobium cavity for different oxidation processes

    Energy Technology Data Exchange (ETDEWEB)

    Ciovati, Gianluigi; Kneisel, Peter; gurevich, alex

    2007-06-01

    The most challenging issue for understanding the performance of superconducting radio-frequency (rf) cavities made of high-purity (residual resistivity ratio > 200) niobium is due to a sharp degradation (“Q-drop”) of the cavity quality factor Q0(Bp) as the peak surface magnetic field (Bp) exceeds about 90 mT, in the absence of field emission. In addition, a low-temperature (100 – 140 C) “in-situ” baking of the cavity was found to be beneficial in reducing the Q-drop. In this contribution, we present the results from a series of rf tests at 1.7 K and 2.0 K on a single-cell cavity made of high-purity large (with area of the order of few cm2) grain niobium which underwent various oxidation processes, after initial buffered chemical polishing, such as anodization, baking in pure oxygen atmosphere and baking in air up to 180 °C, with the objective of clearly identifying the role of oxygen and the oxide layer on the Q-drop. During each rf test a temperature mapping system allows measuring the local temperature rise of the cavity outer surface due to rf losses, which gives information about the losses location, their field dependence and space distribution. The results confirmed that the depth affected by baking is about 20 – 30 nm from the surface and showed that the Q-drop did not re-appear in a previously baked cavity by further baking at 120 °C in pure oxygen atmosphere or in air up to 180 °C. These treatments increased the oxide thickness and oxygen concentration, measured on niobium samples which were processed with the cavity and were analyzed with Transmission Electron Microscope (TEM) and Secondary Ion Mass Spectroscopy (SIMS). Nevertheless, the performance of the cavity after air baking at 180 °C degraded significantly and the temperature maps showed high losses, uniformly distributed on the surface, which could be completely recovered only by a post-purification treatment at 1250 °C. A statistic of the position of the “hot-spots” on the

  19. Measurement of the high-field Q drop in a high-purity large-grain niobium cavity for different oxidation processes

    Directory of Open Access Journals (Sweden)

    G. Ciovati

    2007-06-01

    Full Text Available The most challenging issue for understanding the performance of superconducting radio-frequency (rf cavities made of high-purity (residual resistivity ratio >200 niobium is due to a sharp degradation (“Q-drop” of the cavity quality factor Q_{0}(B_{p} as the peak surface magnetic field (B_{p} exceeds about 90 mT, in the absence of field emission. In addition, a low-temperature (100–140°C in situ baking of the cavity was found to be beneficial in reducing the Q-drop. In this contribution, we present the results from a series of rf tests at 1.7 and 2.0 K on a single-cell cavity made of high-purity large (with area of the order of few cm^{2} grain niobium which underwent various oxidation processes, after initial buffered chemical polishing, such as anodization, baking in pure oxygen atmosphere, and baking in air up to 180°C, with the objective of clearly identifying the role of oxygen and the oxide layer on the Q-drop. During each rf test a temperature mapping system allows measuring the local temperature rise of the cavity outer surface due to rf losses, which gives information about the losses location, their field dependence, and space distribution. The results confirmed that the depth affected by baking is about 20–30 nm from the surface and showed that the Q-drop did not reappear in a previously baked cavity by further baking at 120°C in pure oxygen atmosphere or in air up to 180°C. These treatments increased the oxide thickness and oxygen concentration, measured on niobium samples which were processed with the cavity and were analyzed with transmission electron microscope and secondary ion mass spectroscopy. Nevertheless, the performance of the cavity after air baking at 180°C degraded significantly and the temperature maps showed high losses, uniformly distributed on the surface, which could be completely recovered only by a postpurification treatment at 1250°C. A statistic of the position of the “hot spots” on the

  20. Fate of Colored Smoke Dyes

    Science.gov (United States)

    1992-01-01

    4.13] have been applied to their estimation. This approach has the advantages of sensitivity and of not requiring high purity and known structures...Chrom absorbance detector, and an Alltech Econosil C-18 (10 micrometer) column (4.6 mm X 25 cm with guard column). The mobile phase, HPLC-grade methanol...water partition coefficient or vice versa. The HPLC method is of similar precision and has the advantage that known structure and purity of the dye are

  1. Quark condensation, induced symmetry breaking and color superconductivity at high density

    International Nuclear Information System (INIS)

    Langfeld, Kurt; Rho, Mannque

    1999-01-01

    The phase structure of hadronic matter at high density relevant to the physics of compact stars and relativistic heavy-ion collisions is studied in a low-energy effective quark theory. The relevant phases that figure are (1) chiral condensation, (2) diquark color condensation (color superconductivity) and (3) induced Lorentz-symmetry breaking (''ISB''). For a reasonable strength for the effective four-Fermi current-current interaction implied by the low-energy effective quark theory for systems with a Fermi surface we find that the ''ISB'' phase sets in together with chiral symmetry restoration (with the vanishing quark condensate) at a moderate density while color superconductivity associated with scalar diquark condensation is pushed up to an asymptotic density. Consequently, color superconductivity seems rather unlikely in heavy-ion collisions although it may play a role in compact stars. Lack of confinement in the model makes the result of this analysis only qualitative but the hierarchy of the transitions we find seems to be quite robust

  2. The Liquid Argon Purity Demonstrator

    Energy Technology Data Exchange (ETDEWEB)

    Adamowski, M.; Carls, B.; Dvorak, E.; Hahn, A.; Jaskierny, W.; Johnson, C.; Jostlein, H.; Kendziora, C.; Lockwitz, S.; Pahlka, B.; Plunkett, R.; Pordes, S.; Rebel, B.; Schmitt, R.; Stancari, M.; Tope, T.; Voirin, E.; Yang, T.

    2014-07-01

    The Liquid Argon Purity Demonstrator was an R&D test stand designed to determine if electron drift lifetimes adequate for large neutrino detectors could be achieved without first evacuating the cryostat. We describe here the cryogenic system, its operations, and the apparatus used to determine the contaminant levels in the argon and to measure the electron drift lifetime. The liquid purity obtained by this system was facilitated by a gaseous argon purge. Additionally, gaseous impurities from the ullage were prevented from entering the liquid at the gas-liquid interface by condensing the gas and filtering the resulting liquid before returning to the cryostat. The measured electron drift lifetime in this test was greater than 6 ms, sustained over several periods of many weeks. Measurements of the temperature profile in the argon, to assess convective flow and boiling, were also made and are compared to simulation.

  3. Integrated High Resolution Digital Color Light Sensor in 130 nm CMOS Technology

    Directory of Open Access Journals (Sweden)

    Drago Strle

    2015-07-01

    Full Text Available This article presents a color light detection system integrated in 130 nm CMOS technology. The sensors and corresponding electronics detect light in a CIE XYZ color luminosity space using on-chip integrated sensors without any additional process steps, high-resolution analog-to-digital converter, and dedicated DSP algorithm. The sensor consists of a set of laterally arranged integrated photodiodes that are partly covered by metal, where color separation between the photodiodes is achieved by lateral carrier diffusion together with wavelength-dependent absorption. A high resolution, hybrid, ∑∆ ADC converts each photo diode’s current into a 22-bit digital result, canceling the dark current of the photo diodes. The digital results are further processed by the DSP, which calculates normalized XYZ or RGB color and intensity parameters using linear transformations of the three photo diode responses by multiplication of the data with a transformation matrix, where the coefficients are extracted by training in combination with a pseudo-inverse operation and the least-mean square approximation. The sensor system detects the color light parameters with 22-bit accuracy, consumes less than 60 μA on average at 10 readings per second, and occupies approx. 0.8 mm2 of silicon area (including three photodiodes and the analog part of the ADC. The DSP is currently implemented on FPGA.

  4. Integrated High Resolution Digital Color Light Sensor in 130 nm CMOS Technology.

    Science.gov (United States)

    Strle, Drago; Nahtigal, Uroš; Batistell, Graciele; Zhang, Vincent Chi; Ofner, Erwin; Fant, Andrea; Sturm, Johannes

    2015-07-22

    This article presents a color light detection system integrated in 130 nm CMOS technology. The sensors and corresponding electronics detect light in a CIE XYZ color luminosity space using on-chip integrated sensors without any additional process steps, high-resolution analog-to-digital converter, and dedicated DSP algorithm. The sensor consists of a set of laterally arranged integrated photodiodes that are partly covered by metal, where color separation between the photodiodes is achieved by lateral carrier diffusion together with wavelength-dependent absorption. A high resolution, hybrid, ∑∆ ADC converts each photo diode's current into a 22-bit digital result, canceling the dark current of the photo diodes. The digital results are further processed by the DSP, which calculates normalized XYZ or RGB color and intensity parameters using linear transformations of the three photo diode responses by multiplication of the data with a transformation matrix, where the coefficients are extracted by training in combination with a pseudo-inverse operation and the least-mean square approximation. The sensor system detects the color light parameters with 22-bit accuracy, consumes less than 60 μA on average at 10 readings per second, and occupies approx. 0.8 mm(2) of silicon area (including three photodiodes and the analog part of the ADC). The DSP is currently implemented on FPGA.

  5. Determination of trace impurities in high purity water by emission spectroscopy and flame photometry

    International Nuclear Information System (INIS)

    Charbel, M.Y.; Lordello, A.R.

    1985-01-01

    A spectrochemical method for the determination of trace amounts of Fe, Mg, Mn, Sn, Cr, Bi, Ni, Ca, Na, Zn, Sr, Al, Ba and Cu in high purity water is described. In addition Na, Li and K are measured by flame photometry. The standards used in the spectrochemical method are prepared by evaporation in hot plate of 50 mL standard solution in Teflon becker to dryness, the residue being dissolved with 500 μL hot HCl (1:1). Four hundred μL of this solution is evaporated under infra-red lamp on Apiezon treated flat top graphite electrodes. The residue is submitted to a direct current arc excitation. The accuracy is estimated by the spectrochemical method with a direct procedure sample preparation. The relative standard deviation varies from +- 4% to +- 27%. For the elements Na, Li and K standard solutions are concentrated fiftyfold by a simple evaporation procedure and then measured by flame photometry. The standard deviation and accuracy are given. (Author) [pt

  6. Simulation for photon detection in spectrometric system of high purity (HPGe) using MCNPX code

    International Nuclear Information System (INIS)

    Correa, Guilherme Jorge de Souza

    2013-01-01

    The Brazilian National Commission of Nuclear Energy defines parameters for classification and management of radioactive waste in accordance with the activity of materials. The efficiency of a detection system is crucial to determine the real activity of a radioactive source. When it's possible, the system's calibration should be performed using a standard source. Unfortunately, there are only a few cases that it can be done this way, considering the difficulty of obtaining appropriate standard sources for each type of measurement. So, computer simulations can be performed to assist in calculating of the efficiency of the system and, consequently, also auxiliary the classification of radioactive waste. This study aims to model a high purity germanium (HPGe) detector with MCNPX code, approaching the spectral values computationally obtained of the values experimentally obtained for the photopeak of 137 Cs. The approach will be made through changes in outer dead layer of the germanium crystal modeled. (author)

  7. Effect of zirconium purity on the glass-forming-ability and notch toughness of Cu{sub 43}Zr{sub 43}Al{sub 7}Be{sub 7}

    Energy Technology Data Exchange (ETDEWEB)

    Andersen, Laura M. [Department of NanoEngineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA (United States); Hofmann, Douglas C. [Materials Development and Manufacturing Technology Group, NASA Jet Propulsion Laboratory/California Institute of Technology, MS 18-105, 4800 Oak Grove Dr. Pasadena, CA 91109 (United States); Vecchio, Kenneth S., E-mail: kvecchio@ucsd.edu [Department of NanoEngineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA (United States)

    2016-09-30

    The effect of substituting standard grade zirconium lump (99.8% excluding up to 4% hafnium) for high purity zirconium crystal bar (99.5%) in a Cu{sub 43}Zr{sub 43}Al{sub 7}Be{sub 7} bulk metallic glass (BMG) is examined. The final hafnium content in the BMG specimens was found to range from 0 to 0.44 at%. Introducing low purity zirconium significantly decreased the glass-forming-ability and reduced the notch toughness of the BMG. In contrast, when adding high purity hafnium to Cu{sub 43}Zr{sub 43}Al{sub 7}Be{sub 7} made with high purity zirconium, no significant change in the glass-forming-ability or toughness was observed. This suggests that the introduction of low purity zirconium in BMGs creates a more complex response than a simple addition of hafnium. It is likely that other impurities in the material, such as oxygen, play a role in the complex crystallization kinetics and change in mechanical properties. The notch toughness was measured through four-point-bend tests, which showed a decrease in notch toughness from an average of ~53 MPa m{sup 1/2} for the high purity samples to an average of ~29 MPa m{sup 1/2} with full substitution of low purity zirconium. A similar decrease in glass-forming-ability and toughness is observed in commercially synthesized high purity Cu{sub 43}Zr{sub 43}Al{sub 7}Be{sub 7}. The large scale commercial process is expected to introduced some unintentional impurities, which decrease the properties of the BMG in the same way as the lower purity elements. Lastly, Weibull statistics are used to provide an analysis of variability in toughness for both ingots synthesized in a small laboratory arc-melter and those synthesized commercially.

  8. Natural Colorants: Food Colorants from Natural Sources.

    Science.gov (United States)

    Sigurdson, Gregory T; Tang, Peipei; Giusti, M Mónica

    2017-02-28

    The color of food is often associated with the flavor, safety, and nutritional value of the product. Synthetic food colorants have been used because of their high stability and low cost. However, consumer perception and demand have driven the replacement of synthetic colorants with naturally derived alternatives. Natural pigment applications can be limited by lower stability, weaker tinctorial strength, interactions with food ingredients, and inability to match desired hues. Therefore, no single naturally derived colorant can serve as a universal alternative for a specified synthetic colorant in all applications. This review summarizes major environmental and biological sources for natural colorants as well as nature-identical counterparts. Chemical characteristics of prevalent pigments, including anthocyanins, carotenoids, betalains, and chlorophylls, are described. The possible applications and hues (warm, cool, and achromatic) of currently used natural pigments, such as anthocyanins as red and blue colorants, and possible future alternatives, such as purple violacein and red pyranoanthocyanins, are also discussed.

  9. High luminance monochrome vs. color displays: impact on performance and search

    Science.gov (United States)

    Krupinski, Elizabeth A.; Roehrig, Hans; Matsui, Takashi

    2011-03-01

    To determine if diagnostic accuracy and visual search efficiency with a high luminance medical-grade color display are equivalent to a high luminance medical-grade monochrome display. Six radiologists viewed DR chest images, half with a solitary pulmonary nodule and half without. Observers reported whether or not a nodule was present and their confidence in that decision. Total viewing time per image was recorded. On a subset of 15 cases eye-position was recorded. Confidence data were analyzed using MRMC ROC techniques. There was no statistically significant difference (F = 0.0136, p = 0.9078) between color (mean Az = 0.8981, se = 0.0065) and monochrome (mean Az = 0.8945, se = 0.0148) diagnostic performance. Total viewing time per image did not differ significantly (F = 0.392, p = 0.5315) as a function of color (mean = 27.36 sec, sd = 12.95) vs monochrome (mean = 28.04, sd = 14.36) display. There were no significant differences in decision dwell times (true and false, positive and negative) overall for color vs monochrome displays (F = 0.133, p = 0.7154). The true positive (TP) and false positive (FP) decisions were associated with the longest dwell times, the false negatives (FN) with slightly shorter dwell times, and the true negative decisions (TN) with the shortest (F = 50.552, p radiology.

  10. 1-GWh diurnal load-leveling superconducting magnetic energy storage system reference design. Appendix B: cost study, high-purity aluminum production

    International Nuclear Information System (INIS)

    Cochran, C.N.; Dawless, R.K.; Whitchurch, J.B.

    1979-09-01

    Cost information is supplied for aluminum with purities of 200, 2000, and 5000 residual resistivity ratio. Two production situations were used for each purity: (1) 1 x 10 6 kg/yr production rate with a 30-yr sustaining market and (2) 1 x 10 6 kg/yr production rate for 2 yrs only. These productions and purities are of interest for manufacturing devices for Superconducting Magnetic Energy Storage. The cost study results are presented as a range and include (1) the selling price of the aluminum for each case, (2) the cost of facilities including construction, engineering, and related costs, (3) the cost of money and depreciation (interest/amortization), and (4) the energy costs - the total of power and fuel. The range is affected by possible production variations and other uncertainties. Information is also given on plant location options and the preferred feed to the purification facility

  11. Trace analysis measurements in high-purity aluminium by means of radiochemical neutron and proton activation analysis

    International Nuclear Information System (INIS)

    Egger, K.P.

    1987-01-01

    The aim of the study consisted in the development of efficient radiochemical composite processes and activation methods for the multi-element determination of traces within the lower ng range in high-purity aluminium. More than 50 elements were determined with the help of activation with reactor neutrons; the selective separation of matrix activity (adsorption with hydrated antimony pentoxide) led to a noticeable improvement of detectability, as compared with instrumental neutron activation analysis. Further improvements were achieved with the help of radiochemical group separations in ion exchangers or with the help of the selective separation of the pure beta-emitting elements. Over 20 elements up to high atomic numbers were determined by means of activating 13 MeV protons and 23 Me protons. In this connection, improvements of the detection limit by as a factor of 10 were achieved with radiochemical separation techniques, as compared with pure instrumental proton activation analysis. (RB) [de

  12. Synthesis and morphological examination of high-purity Ca(OH)2 nanoparticles suitable to consolidate porous surfaces

    Science.gov (United States)

    Madrid, Juan Antonio; Lanzón, Marcos

    2017-12-01

    Adequate synthetic methods to obtain pure Ca(OH)2 nanoparticles are scarcely documented in the literature. This paper presents a complete methodology to obtain highly-pure Ca(OH)2 nanoparticles that are appropriate for strengthening heritage materials. The precipitation synthesis was operated in controlled atmosphere to avoid carbonation by atmospheric CO2. A complete purification method was developed to eliminate the sodium chloride generated in the reaction. Several analytical techniques, such as electrical conductivity, pH, ion chromatography, X-ray diffraction (XRD) and thermogravimetric analysis coupled to mass spectrometry (TGA-MS) were used to analyse both the aqueous medium and solid phase. The amount of material obtained in the synthesis (yield) was quantified throughout the purification procedure. The influence of temperature on the nanoparticles' size and stability was studied by transmission electron microscopy (HRTEM) and sedimentation tests (light scattering). It was found that the synthesis yielded high-purity nanoparticles, whose morphological features were greatly affected by the reaction temperature.

  13. Full-color large-scaled computer-generated holograms using RGB color filters.

    Science.gov (United States)

    Tsuchiyama, Yasuhiro; Matsushima, Kyoji

    2017-02-06

    A technique using RGB color filters is proposed for creating high-quality full-color computer-generated holograms (CGHs). The fringe of these CGHs is composed of more than a billion pixels. The CGHs reconstruct full-parallax three-dimensional color images with a deep sensation of depth caused by natural motion parallax. The simulation technique as well as the principle and challenges of high-quality full-color reconstruction are presented to address the design of filter properties suitable for large-scaled CGHs. Optical reconstructions of actual fabricated full-color CGHs are demonstrated in order to verify the proposed techniques.

  14. Iodine Absorption Cells Purity Testing

    Directory of Open Access Journals (Sweden)

    Jan Hrabina

    2017-01-01

    Full Text Available This article deals with the evaluation of the chemical purity of iodine-filled absorption cells and the optical frequency references used for the frequency locking of laser standards. We summarize the recent trends and progress in absorption cell technology and we focus on methods for iodine cell purity testing. We compare two independent experimental systems based on the laser-induced fluorescence method, showing an improvement of measurement uncertainty by introducing a compensation system reducing unwanted influences. We show the advantages of this technique, which is relatively simple and does not require extensive hardware equipment. As an alternative to the traditionally used methods we propose an approach of hyperfine transitions’ spectral linewidth measurement. The key characteristic of this method is demonstrated on a set of testing iodine cells. The relationship between laser-induced fluorescence and transition linewidth methods will be presented as well as a summary of the advantages and disadvantages of the proposed technique (in comparison with traditional measurement approaches.

  15. Performance of A Compact Multi-crystal High-purity Germanium Detector Array for Measuring Coincident Gamma-ray Emissions

    Energy Technology Data Exchange (ETDEWEB)

    Howard, Chris [Univ. of North Carolina, Chapel Hill, NC (United States); Triangle Univ. Nuclear Lab., Durham, NC (United States); Daigle, Stephen [Univ. of North Carolina, Chapel Hill, NC (United States); Triangle Univ. Nuclear Lab., Durham, NC (United States); Buckner, Matt [Univ. of North Carolina, Chapel Hill, NC (United States); Triangle Univ. Nuclear Lab., Durham, NC (United States); Erikson, Luke E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Runkle, Robert C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Stave, Sean C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Champagne, Art [Univ. of North Carolina, Chapel Hill, NC (United States); Triangle Univ. Nuclear Lab., Durham, NC (United States); Cooper, Andrew [Univ. of North Carolina, Chapel Hill, NC (United States); Triangle Univ. Nuclear Lab., Durham, NC (United States); Downen, Lori [Univ. of North Carolina, Chapel Hill, NC (United States); Triangle Univ. Nuclear Lab., Durham, NC (United States); Glasgow, Brian D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kelly, Keegan [Univ. of North Carolina, Chapel Hill, NC (United States); Triangle Univ. Nuclear Lab., Durham, NC (United States); Sallaska, Anne [Univ. of North Carolina, Chapel Hill, NC (United States); Triangle Univ. Nuclear Lab., Durham, NC (United States)

    2015-02-18

    The Multi-sensor Airborne Radiation Survey (MARS) detector is a 14-crystal array of high-purity germanium (HPGe) detectors housed in a single cryostat. The array was used to measure the astrophysical S-factor for the 14N(p,γ)15O* reaction for several transition energies at an effective center of mass energy of 163 keV. Owing to the segmented nature of the MARS detector, the effect of gamma-ray summing was greatly reduced in comparison to past experiments which utilized large, single-crystal detectors. The new S-factor values agree within the uncertainties with the past measurements. Details of the analysis and detector performance will be presented.

  16. Performance of a compact multi-crystal high-purity germanium detector array for measuring coincident gamma-ray emissions

    Energy Technology Data Exchange (ETDEWEB)

    Howard, Chris; Daigle, Stephen; Buckner, Matt [University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 (United States); Triangle Universities Nuclear Laboratory, Durham, NC 27708 (United States); Erikson, Luke E.; Runkle, Robert C. [Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Stave, Sean C., E-mail: Sean.Stave@pnnl.gov [Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Champagne, Arthur E.; Cooper, Andrew; Downen, Lori [University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 (United States); Triangle Universities Nuclear Laboratory, Durham, NC 27708 (United States); Glasgow, Brian D. [Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Kelly, Keegan; Sallaska, Anne [University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 (United States); Triangle Universities Nuclear Laboratory, Durham, NC 27708 (United States)

    2015-05-21

    The Multi-sensor Airborne Radiation Survey (MARS) detector is a 14-crystal array of high-purity germanium (HPGe) detectors housed in a single cryostat. The array was used to measure the astrophysical S-factor for the {sup 14}N(p,γ){sup 15}O{sup ⁎} reaction for several transition energies at an effective center-of-mass energy of 163 keV. Owing to the granular nature of the MARS detector, the effect of gamma-ray summing was greatly reduced in comparison to past experiments which utilized large, single-crystal detectors. The new S-factor values agree within their uncertainties with the past measurements. Details of the analysis and detector performance are presented.

  17. At-line cotton color measurements by portable color spectrophotometers

    Science.gov (United States)

    As a result of reports of cotton bales that had significant color changes from their initial Uster® High Volume Instrument (HVI™) color measurements, a program was implemented to measure cotton fiber color (Rd, +b) at-line in remote locations (warehouse, mill, etc.). The measurement of cotton fiber...

  18. Initial Stages of Recrystallization in Aluminum of Commercial Purity

    DEFF Research Database (Denmark)

    Hansen, Niels; Bay, Bent

    1979-01-01

    In commercial aluminum with a purity of 99.4 pct, the formation and growth of recrystallization nuclei were studied by techniques such asin-situ annealing in a high voltage electron microscope, transmission electron microscopy and light microscopy. Sample parameters were the initial grain size (370...... by the FeAl3 particles present in the commercial aluminum as impurities. The nucleation temperatures determined by high voltage electron microscopy and transmission electron microscopy decrease markedly when the initial grain size is decreased both after 50 and 90 pct cold rolling; a less pronounced...

  19. A Color-Texture-Structure Descriptor for High-Resolution Satellite Image Classification

    Directory of Open Access Journals (Sweden)

    Huai Yu

    2016-03-01

    Full Text Available Scene classification plays an important role in understanding high-resolution satellite (HRS remotely sensed imagery. For remotely sensed scenes, both color information and texture information provide the discriminative ability in classification tasks. In recent years, substantial performance gains in HRS image classification have been reported in the literature. One branch of research combines multiple complementary features based on various aspects such as texture, color and structure. Two methods are commonly used to combine these features: early fusion and late fusion. In this paper, we propose combining the two methods under a tree of regions and present a new descriptor to encode color, texture and structure features using a hierarchical structure-Color Binary Partition Tree (CBPT, which we call the CTS descriptor. Specifically, we first build the hierarchical representation of HRS imagery using the CBPT. Then we quantize the texture and color features of dense regions. Next, we analyze and extract the co-occurrence patterns of regions based on the hierarchical structure. Finally, we encode local descriptors to obtain the final CTS descriptor and test its discriminative capability using object categorization and scene classification with HRS images. The proposed descriptor contains the spectral, textural and structural information of the HRS imagery and is also robust to changes in illuminant color, scale, orientation and contrast. The experimental results demonstrate that the proposed CTS descriptor achieves competitive classification results compared with state-of-the-art algorithms.

  20. A green preparation of Mn-based product with high purity from low-grade rhodochrosite

    Science.gov (United States)

    Lian, F.; Ma, L.; Chenli, Z.; Mao, L.

    2018-01-01

    The low-grade rhodochrosite, the main resources for exploitation and applications in China, contains multiple elements such as iron, silicon, calcium and magnesium. So the conventional preparation of manganese sulphate and manganese oxide with high purity from electrolytic product is characterized by long production-cycle, high-resource input and high-pollution discharge. In our work, a sustainable preparation approach of high pure MnSO4 solution and Mn3O4 was studied by employing low-grade rhodochrosite (13.86%) as raw material. The repeated leaching of rhodochrosite with sulphuric acid was proposed in view of the same ion effect, in order to improve the solubility of Mn2+ and inhibit the dissolution of the impurities Ca2+ and Mg2+. With the aid of theoretical calculation, BaF2 was chosen to remove Ca2+ and Mg2+ completely in the process of purifying. The results showed that the impurities such as Ca2+, Mg2+, Na+ were decreased to less than 20ppm, and the Ni- and Fe- impurities were decreased to less than 1ppm, which meets the standards of high pure reagent for energy and electronic materials. The extraction ratio and the recovery ratio of manganese reached 94.3% and 92.7%, respectively. Moreover, the high pure Mn3O4 was one-step synthesized via the oxidation of MnSO4 solution with the ratios of OH-/Mn2+=2 and Mn2+/H2O2=1.03, and the recovery rate of manganese reaches 99%.

  1. Preparation of high-purity ZrSiO4 powder using sol-gel processing and mechanical properties of the sintered body

    International Nuclear Information System (INIS)

    Mori, T.; Yamamura, H.; Kobayashi, H.; Mitamura, T.

    1992-01-01

    This paper reports that effects of the concentration of ZrOCl 2 , calcination temperature, heating rate, and the size of secondary particles after hydrolysis on the preparation of high-purity ZrSiO 4 fine powders from ZrOCl 2 :8H 2 O (0.2M to 1.7M) and equimolar colloidal SiO 2 using Sol--gel processing have been studied. Mechanical properties of the sintered ZrSiO 4 from the high-purity ZrSiO 4 powders have been also investigated. Single-phase ZrSiO 4 fine powders were synthesized at 1300 degrees C by forming ZrSiO 4 precursors having a Zr---O---Si bond, which was found in all the hydrolysis solutions, and by controlling a secondary particle size after hydrolysis. The conversion rate of ZrSiO 4 precursor gels to ZrSiO 4 powders from concentrations other than 0.4M ZrOCl 2 ·8H 2 O increased when the heating rate was high, whereupon the crystallization of unreacted ZrO 2 and SiO 2 was depressed and the propagation and increase of ZrSiO 4 nuclei in the gels were accelerated. The density of the ZrSiO 4 sintered bodies, manufactured by firing the ZrSiO 4 compacts at 1600 degrees to 1700 degrees C, was more than 95% of the theoretical density, and the grain size ranged around 2 to 4 μm. The mechanical strength was 320 MPa (room temperature to 1400 degrees C), and the thermal shock resistance was superior to that of mullite and alumina, with fairly high stability at higher temperatures

  2. Entanglement and purity of two-mode Gaussian states in noisy channels

    International Nuclear Information System (INIS)

    Serafini, Alessio; Illuminati, Fabrizio; De Siena, Silvio; Paris, Matteo G.A.

    2004-01-01

    We study the evolution of purity, entanglement, and total correlations of general two-mode continuous variable Gaussian states in arbitrary uncorrelated Gaussian environments. The time evolution of purity, von Neumann entropy, logarithmic negativity, and mutual information is analyzed for a wide range of initial conditions. In general, we find that a local squeezing of the bath leads to a faster degradation of purity and entanglement, while it can help to preserve the mutual information between the modes

  3. Accurate determination of non-metallic impurities in high purity tetramethylammonium hydroxide using inductively coupled plasma tandem mass spectrometry

    Science.gov (United States)

    Fu, Liang; Xie, Hualin; Shi, Shuyun; Chen, Xiaoqing

    2018-06-01

    The content of non-metallic impurities in high-purity tetramethylammonium hydroxide (HPTMAH) aqueous solution has an important influence on the yield, electrical properties and reliability of the integrated circuit during the process of chip etching and cleaning. Therefore, an efficient analytical method to directly quantify the content of non-metallic impurities in HPTMAH aqueous solutions is necessary. The present study was aimed to develop a novel method that can accurately determine seven non-metallic impurities (B, Si, P, S, Cl, As, and Se) in an aqueous solution of HPTMAH by inductively coupled plasma tandem mass spectrometry (ICP-MS/MS). The samples were measured using a direct injection method. In the MS/MS mode, oxygen and hydrogen were used as reaction gases in the octopole reaction system (ORS) to eliminate mass spectral interferences during the analytical process. The detection limits of B, Si, P, S, Cl, As, and Se were 0.31, 0.48, 0.051, 0.27, 3.10, 0.008, and 0.005 μg L-1, respectively. The samples were analyzed by the developed method and the sector field inductively coupled plasma mass spectrometry (SF-ICP-MS) was used for contrastive analysis. The values of these seven elements measured using ICP-MS/MS were consistent with those measured by SF-ICP-MS. The proposed method can be utilized to analyze non-metallic impurities in HPTMAH aqueous solution. Table S2 Multiple potential interferences on the analytes. Table S3 Parameters of calibration curve and the detection limit (DL). Table S4 Results obtained for 25% concentration high-purity grade TMAH aqueous solution samples (μg L-1, mean ± standard deviation, n = 10).

  4. Bis(carbazol-9-ylphenyl)aniline end-capped oligoarylenes as solution-processed nondoped emitters for full-emission color tuning organic light-emitting diodes.

    Science.gov (United States)

    Khanasa, Tanika; Prachumrak, Narid; Rattanawan, Rattanawaree; Jungsuttiwong, Siriporn; Keawin, Tinnagon; Sudyoadsuk, Taweesak; Tuntulani, Thawatchai; Promarak, Vinich

    2013-07-05

    A series of bis(3,6-di-tert-butylcarbazol-9-ylphenyl)aniline end-capped oligoarylenes, BCPA-Ars, are synthesized by double palladium-catalyzed cross-coupling reactions. By using this bis(carbazol-9-yl)triphenylamine moiety as an end-cap, we are able to reduce the crystallization and retain the high-emission ability of these planar fluorescent oligoarylene cores in the solid state, as well as improve the amorphous stability and solubility of the materials. The results of optical and electrochemical studies show that their HOMOs, LUMOs, and energy gaps can be easily modified or fine-tuned by either varying the degree of π-conjugation or using electron affinities of the aryl cores which include fluorene, oligothiophenes, 2,1,3-benzothiadiazole, 4,7-diphenyl-4-yl-2,1,3-benzothiadiazole, and 4,7-dithien-2-yl-2,1,3-benzothiadiazole. As a result, their emission spectra measured in solution and thin films can cover the full UV-vis spectrum (426-644 nm). Remarkably, solution-processed nondoped BCPA-Ars-based OLEDs could show moderate to excellent device performance with emission colors spanning the whole visible spectrum (deep blue to red). Particularly, the RGB (red, green, blue) OLEDs exhibit good color purity close to the pure RGB colors. This report offers a practical approach for both decorating the highly efficient but planar fluorophores and tuning their emission colors to be suitable for applications in nondoped and solution-processable full-color emission OLEDs.

  5. Influence of sulphur and phosphorus on the hot deformation of Fe-Cr 13% high purity steel

    International Nuclear Information System (INIS)

    Lahreche, M.; Bouzabata, B.; Kobylanski, A.

    1995-01-01

    A series of Fe-Cr13%-C high purity steels containing increasing volume fractions of Sulphur (30, 60 and 100ppm) and Phosphorus (30, 60 and 100ppm) were prepared in order to study their hot deformation properties by tensile tests at various strain rates (10 -1 s -1 to 10 -4 s -1 ) and at temperatures from 700 C to 1100 C. It is observed that the hot ductility is lowered at 1000 C with the addition of sulphur. However, this decrease is relatively small (about 30% for 100ppm of sulphur) and quite similar for all additions of sulphur. When phosphorus is added, the embrittlement is along the whole deformed specimen. The usual criteria of ductility by parameter Z do not seem to be sufficient to describe this embrittlement. (orig.)

  6. White organic light-emitting devices with high color purity and stability

    International Nuclear Information System (INIS)

    Bai, Yajie; Liu, Su; Li, Hairong; Liu, Chunjuan; Wang, Jinshun; Chang, Jinxian

    2014-01-01

    A white organic light-emitting device (WOLED) with dual-emitting layers was presented, in which the blue fluorescent dye 2,5,8,11-terta-tertbutylperylene (TBPe) was doped in 2-methyl-9, 10-di(2-naphthyl)-anthracene (MADN) as a blue-emitting layer, while 5,6,11,12-tetraphenylnaphthacene (rubrene, Rb) was doped in the above-mentioned materials as a yellow-emitting layer. The fabricated monochromatic devices using the blue- and yellow-emitting layer have demonstrated that the direct charge trapping mechanism is the dominant emission mechanism in the yellow OLED. Studies on the WOLEDs with dual-emitting layers have shown that the performances of these devices are strongly susceptible to the thickness of the emitting layer and the stack order of two emitting layers. Structure of ITO(160 nm)/NPB(30 nm)/MADN: 5 wt%TBPe: 3 wt%Rb(10 nm)/MADN: 5 wt%TBPe(20 nm)/BCP (10 nm)/Alq 3 (20 nm)/Al(100 nm) was determined to be the most favorable WOLED. The maximum luminance of 16 000 cd cm −2  at the applied voltage of 13.4 V and Commission International de 1′Eclairage (CIE) coordinates of (0.3263, 0.3437) which is closer to the standard white light (CIE (0.33, 0.33)) than the most recent reported WOLEDs were obtained. Moreover, there is just slight variation of CIE coordinates (ΔCIE x, y = 0.0171, 0.0167; corresponding Δu′v′ = 0.0119) when the current density increases from 10 to 100 mA cm −2 . It reveals that the emissive dopant Rb acts as charge traps to improve electron–hole balance, provides sites for electron–hole recombination and thus makes carriers distribute more evenly in the dual-emitting layers which broaden the recombination zone and improve the stability of the CIE coordinates. (paper)

  7. White organic light-emitting devices with high color purity and stability

    Science.gov (United States)

    Bai, Yajie; Liu, Su; Li, Hairong; Liu, Chunjuan; Wang, Jinshun; Chang, Jinxian

    2014-04-01

    A white organic light-emitting device (WOLED) with dual-emitting layers was presented, in which the blue fluorescent dye 2,5,8,11-terta-tertbutylperylene (TBPe) was doped in 2-methyl-9, 10-di(2-naphthyl)-anthracene (MADN) as a blue-emitting layer, while 5,6,11,12-tetraphenylnaphthacene (rubrene, Rb) was doped in the above-mentioned materials as a yellow-emitting layer. The fabricated monochromatic devices using the blue- and yellow-emitting layer have demonstrated that the direct charge trapping mechanism is the dominant emission mechanism in the yellow OLED. Studies on the WOLEDs with dual-emitting layers have shown that the performances of these devices are strongly susceptible to the thickness of the emitting layer and the stack order of two emitting layers. Structure of ITO(160 nm)/NPB(30 nm)/MADN: 5 wt%TBPe: 3 wt%Rb(10 nm)/MADN: 5 wt%TBPe(20 nm)/BCP (10 nm)/Alq3(20 nm)/Al(100 nm) was determined to be the most favorable WOLED. The maximum luminance of 16 000 cd cm-2 at the applied voltage of 13.4 V and Commission International de 1‧Eclairage (CIE) coordinates of (0.3263, 0.3437) which is closer to the standard white light (CIE (0.33, 0.33)) than the most recent reported WOLEDs were obtained. Moreover, there is just slight variation of CIE coordinates (ΔCIEx, y = 0.0171, 0.0167; corresponding Δu‧v‧ = 0.0119) when the current density increases from 10 to 100 mA cm-2. It reveals that the emissive dopant Rb acts as charge traps to improve electron-hole balance, provides sites for electron-hole recombination and thus makes carriers distribute more evenly in the dual-emitting layers which broaden the recombination zone and improve the stability of the CIE coordinates.

  8. Determination of trace impurities in high-purity iron using salting-out of polyoxyethylene-type surfactants

    Energy Technology Data Exchange (ETDEWEB)

    Matsumiya, Hiroaki, E-mail: h-matsu@numse.nagoya-u.ac.jp [Department of Molecular Design and Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Sakane, Yuto; Hiraide, Masataka [Department of Molecular Design and Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan)

    2009-10-19

    To an iron sample solution was added polyoxyethylene-4-isononylphenoxy ether (PONPE, nonionic surfactant, average number of ethylene oxides 7.5) and the surfactant was aggregated by the addition of lithium chloride. The iron(III) matrix was collected into the condensed surfactant phase in >99.9% yields, leaving trace metals [e.g., Ti(IV), Cr(III), Mn(II), Co(II), Ni(II), Cu(II), Zn(II), Cd(II), Pb(II), and Bi(III)] in the aqueous phase. After removing the surfactant phase by centrifugation, the remaining trace metals were concentrated onto an iminodiacetic acid-type chelating resin. The trace metals were desorbed with dilute nitric acid for the determination by inductively coupled plasma-mass spectrometry or graphite-furnace atomic absorption spectrometry. The proposed separation method allowed the analysis of high-purity iron metals for trace impurities at low {mu}g g{sup -1} to ng g{sup -1} levels.

  9. Dynamical recrystallization of high purity austenitic stainless steels

    International Nuclear Information System (INIS)

    Gavard, L.

    2001-01-01

    The aim of this work is to optimize the performance of structural materials. The elementary mechanisms (strain hardening and dynamical regeneration, germination and growth of new grains) occurring during the hot working of metals and low pile defect energy alloys have been studied for austenitic stainless steels. In particular, the influence of the main experimental parameters (temperature, deformation velocity, initial grain size, impurities amount, deformation way) on the process of discontinuous dynamical recrystallization has been studied. Alloys with composition equal to those of the industrial stainless steel-304L have been fabricated from ultra-pure iron, chromium and nickel. Tests carried out in hot compression and torsion in order to cover a wide range of deformations, deformation velocities and temperatures for two very different deformation ways have allowed to determine the rheological characteristics (sensitivity to the deformation velocity, apparent activation energy) of materials as well as to characterize their microstructural deformations by optical metallography and electron back-scattered diffraction. The influence of the initial grain size and the influence of the purity of the material on the dynamical recrystallization kinetics have been determined. An analytical model for the determination of the apparent mobility of grain boundaries, a semi-analytical model for the dynamical recrystallization and at last an analytical model for the stationary state of dynamical recrystallization are proposed as well as a new criteria for the transition between the refinement state and the state of grain growth. (O.M.)

  10. Micro-deformation behavior in micro-compression with high-purity aluminum processed by ECAP

    Directory of Open Access Journals (Sweden)

    Xu Jie

    2015-01-01

    Full Text Available Ultrafine-grained (UFG materials have a potential for applications in micro-forming since grain size appears to be the dominant factor which determines the limiting size of the geometrical features. In this research, high-purity Al was processed by equal-channel angular pressing (ECAP at room temperature through 1–8 passes. Analysis shows that processing by ECAP produces a UFG structure with a grain size of ~1.3 μm and with microhardness and microstructural homogeneity. Micro-compression testing was carried out with different specimen dimensions using the annealed sample and after ECAP processing through 1–8 passes. The results show the flow stress increases significantly after ECAP processing by comparison with the annealed material. The flow stress generally reaches a maximum value after 2 passes which is consistent with the results of microhardness. The flow stress decreases with decreasing specimen diameter from 4 mm to 1 mm which demonstrates that size effects also exist in the ultrafine-grained materials. However, the deformation mechanism in ultrafine-grained pure Al changes from strain strengthening to softening by dynamic recovery by comparison with the annealed material.

  11. Sensitive method for the determination of rare earth elements by radioisotope-excited XRF employing a high purity germanium detector in optimized geometry

    International Nuclear Information System (INIS)

    Lal, M.; Joseph, D.; Patra, P.K.; Bajpal, H.N.

    1993-01-01

    A close-coupled side-source geometrical configuration is proposed for obtaining a high detection sensitivity for rare earth elements (57 ≤ Z ≤ 69) by radioisotope-excited energy-dispersive x-ray fluorescence spectrometry. In this configuration a disc source of 241 Am (100 mCi), a high-purity germanium detector and thin samples of rare earth elements on a Mylar backing are employed in an optimized geometry to achieve detection limits in the range 20-50 ng for these elements in a counting time of 1 h. (author)

  12. Mechanical energy losses in plastically deformed and electron plus neutron irradiated high purity single crystalline molybdenum at elevated temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Zelada, Griselda I. [Laboratorio de Materiales, Escuela de Ingenieria Electrica, Facultad de Ciencias Exactas, Ingenieria y Agrimensura, Universidad Nacional de Rosario, Avda. Pellegrini 250, 2000 Rosario (Argentina); Lambri, Osvaldo Agustin [Laboratorio de Materiales, Escuela de Ingenieria Electrica, Facultad de Ciencias Exactas, Ingenieria y Agrimensura, Universidad Nacional de Rosario, Avda. Pellegrini 250, 2000 Rosario (Argentina); Instituto de Fisica Rosario - CONICET, Member of the CONICET& #x27; s Research Staff, Avda. Pellegrini 250, 2000 Rosario (Argentina); Bozzano, Patricia B. [Laboratorio de Microscopia Electronica, Unidad de Actividad Materiales, Centro Atomico Constituyentes, Comision Nacional de Energia Atomica, Avda. Gral. Paz 1499, 1650 San Martin (Argentina); Garcia, Jose Angel [Departamento de Fisica Aplicada II, Facultad de Ciencias y Tecnologia, Universidad del Pais Vasco, Apdo. 644, 48080 Bilbao, Pais Vasco (Spain)

    2012-10-15

    Mechanical spectroscopy (MS) and transmission electron microscopy (TEM) studies have been performed in plastically deformed and electron plus neutron irradiated high purity single crystalline molybdenum, oriented for single slip, in order to study the dislocation dynamics in the temperature range within one third of the melting temperature. A damping peak related to the interaction of dislocation lines with both prismatic loops and tangles of dislocations was found. The peak temperature ranges between 900 and 1050 K, for an oscillating frequency of about 1 Hz. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. Purity and surface roughness of vacuum deposited aluminium films

    Energy Technology Data Exchange (ETDEWEB)

    Dhere, N G; Arsenio, T P [Instituto Militar de Engenharia, Rio de Janeiro (Brazil); Patnaik, B K [Pontificia Universidade Catolica do Rio de Janeiro (Brazil). Instituto de Fisica; Assuncao, F C.R.; de Souza, A M [Pontificia Universidade Catolica do Rio de Janeiro (Brazil). Departamento de Ciencia dos Materiais e Metalurgia

    1975-04-01

    The authors studied the purity, surface roughness and grain size of vacuum-deposited aluminium films, using an intermetallic crucible and a continuous feed of pure aluminium wire. The grain size and roughness were studied by electron difraction, X-ray diffraction and the scanning electron microscope. Purity was determined by X-ray fluorescence produced by proton bombardment in the Van de Graaff accelerator and by X-ray and optical emission spectrometry.

  14. Neutron activation analysis of high-purity iron in comparison with chemical analysis

    International Nuclear Information System (INIS)

    Kinomura, Atsushi; Horino, Yuji; Takaki, Seiichi; Abiko, Kenji

    2000-01-01

    Neutron activation analysis of iron samples of three different purity levels has been performed and compared with chemical analysis for 30 metallic and metalloid impurity elements. The concentration of As, Cl, Cu, Sb and V detected by neutron activation analysis was mostly in agreement with that obtained by chemical analysis. The sensitivity limits of neutron activation analysis of three kinds of iron samples were calculated and found to be reasonable compared with measured values or detection limits of chemical analysis; however, most of them were above the detection limits of chemical analysis. Graphite-shielded irradiation to suppress fast neutron reactions was effective for Mn analysis without decreasing sensitivity to the other impurity elements. (author)

  15. Color sextet quarks and new high-energy interactions

    International Nuclear Information System (INIS)

    White, A.R.; Kang, Kyungsik

    1992-01-01

    We review the implications of adding a flavor doublet of color sextet quarks to QCD. Theoretical attractions include -- ''minimal'' dynamical symmetry breaking of the electroweak interaction, solution of the Strong CP problem via the ''heavy axion'' η 6 , and Critical Pomeron Scaling at asymptotic energies. Related experimental phenomena, which there may be evidence for, include -- production of the η 6 at LEP, large cross-sections for W + W - and Z o Z o pairs and very high energy jets in hadron colliders, and a hadronic threshold above which high-energy ''exotic'' diffractive processes appear in Cosmic Ray events

  16. Purity Evaluation of Bulk Single Wall Carbon Nanotube Materials

    International Nuclear Information System (INIS)

    Dettlaff-Weglikowska, U.; Hornbostel, B.; Cech, J.; Roth, S.; Wang, J.; Liang, J.

    2005-01-01

    We report on our experience using a preliminary protocol for quality control of bulk single wall carbon nanotube (SWNT) materials produced by the electric arc-discharge and laser ablation method. The first step in the characterization of the bulk material is mechanical homogenization. Quantitative evaluation of purity has been performed using a previously reported procedure based on solution phase near-infrared spectroscopy. Our results confirm that this method is reliable in determining the nanotube content in the arc-discharge sample containing carbonaceous impurities (amorphous carbon and graphitic particles). However, the application of this method to laser ablation samples gives a relative purity value over 100 %. The possible reason for that might be different extinction coefficient meaning different oscillator strength of the laser ablation tubes. At the present time, a 100 % pure reference sample of laser ablation SWNT is not available, so we chose to adopt the sample showing the highest purity as a new reference sample for a quantitative purity evaluation of laser ablation materials. The graphitic part of the carbonaceous impurities has been estimated using X-ray diffraction of 1:1 mixture of nanotube material and C60 as an internal reference. To evaluate the metallic impurities in the as prepared and homogenized carbon nanotube soot inductive coupled plasma (ICP) has been used

  17. GELATIO: a general framework for modular digital analysis of high-purity Ge detector signals

    International Nuclear Information System (INIS)

    Agostini, M; Pandola, L; Zavarise, P; Volynets, O

    2011-01-01

    GELATIO is a new software framework for advanced data analysis and digital signal processing developed for the GERDA neutrinoless double beta decay experiment. The framework is tailored to handle the full analysis flow of signals recorded by high purity Ge detectors and photo-multipliers from the veto counters. It is designed to support a multi-channel modular and flexible analysis, widely customizable by the user either via human-readable initialization files or via a graphical interface. The framework organizes the data into a multi-level structure, from the raw data up to the condensed analysis parameters, and includes tools and utilities to handle the data stream between the different levels. GELATIO is implemented in C++. It relies upon ROOT and its extension TAM, which provides compatibility with PROOF, enabling the software to run in parallel on clusters of computers or many-core machines. It was tested on different platforms and benchmarked in several GERDA-related applications. A stable version is presently available for the GERDA Collaboration and it is used to provide the reference analysis of the experiment data.

  18. GELATIO: a general framework for modular digital analysis of high-purity Ge detector signals

    Science.gov (United States)

    Agostini, M.; Pandola, L.; Zavarise, P.; Volynets, O.

    2011-08-01

    GELATIO is a new software framework for advanced data analysis and digital signal processing developed for the GERDA neutrinoless double beta decay experiment. The framework is tailored to handle the full analysis flow of signals recorded by high purity Ge detectors and photo-multipliers from the veto counters. It is designed to support a multi-channel modular and flexible analysis, widely customizable by the user either via human-readable initialization files or via a graphical interface. The framework organizes the data into a multi-level structure, from the raw data up to the condensed analysis parameters, and includes tools and utilities to handle the data stream between the different levels. GELATIO is implemented in C++. It relies upon ROOT and its extension TAM, which provides compatibility with PROOF, enabling the software to run in parallel on clusters of computers or many-core machines. It was tested on different platforms and benchmarked in several GERDA-related applications. A stable version is presently available for the GERDA Collaboration and it is used to provide the reference analysis of the experiment data.

  19. X-ray quantitative analysis on spallation response in high purity copper under sweeping detonation

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yang, E-mail: yangyanggroup@163.com [School of Material Science and Engineering, Central South University, Changsha 410083 (China); Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang 621900 (China); National Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081 (China); Key Laboratory of Nonferrous Metals Material Science and Engineering of Ministry of Education, Central South University, Changsha 410083 (China); Chen, Jixiong; Peng, Zhiqiang [School of Material Science and Engineering, Central South University, Changsha 410083 (China); Guo, Zhaoliang; Tang, Tiegang; Hu, Haibo [Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang 621900 (China); Hu, Yanan [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China)

    2016-06-14

    The 3-D quantitative investigation of spall behavior in high purity copper plants with different heat treatment histories was characterized using X-ray computer tomography (XRCT). The effect of shock stress and grain size on the spatial distribution and morphology of incipient spall samples were discussed. The results revealed that, in samples with similar microstructure, the ranges of void distribution decrease with the increasing of shock stress. The characteristic parameters (such as mean elongation, mean flatness and mean sphericity of voids) determined using XRCT herein as a function of shock stress and grain size. The quantitative analyses of spallation datasets render functional relationships between the microscopic parameters (like volume, frequency) of spallation voids and the microstructure. The XRCT observations show that voids are prone to coalescence in thermo-mechanical treatments (TMT) sample, while the final maximum and mean volume of void were smaller than that of annealed sample. This is due to the smaller grain size of TMT sample, which means more nucleation sites of voids, this made the voids get closer and easier to coalescence, and flat voids formed ultimately.

  20. Purity and Defect Characterization of Single-Wall Carbon Nanotubes Using Raman Spectroscopy

    Directory of Open Access Journals (Sweden)

    Yasumitsu Miyata

    2011-01-01

    Full Text Available We investigated the purity and defects of single-wall carbon nanotubes (SWCNTs produced by various synthetic methods including chemical vapor deposition, arc discharge, and laser ablation. The SWCNT samples were characterized using scanning electron microscopy (SEM, thermogravimetric analysis (TGA, and Raman spectroscopy. Quantitative analysis of SEM images suggested that the G-band Raman intensity serves as an index for the purity. By contrast, the intensity ratio of G-band to D-band (G/D ratio reflects both the purity and the defect density of SWCNTs. The combination of G-band intensity and G/D ratio is useful for a quick, nondestructive evaluation of the purity and defect density of a SWCNT sample.

  1. The influence of impurity concentration and magnetic fields on the superconducting transition of high-purity titanium

    Energy Technology Data Exchange (ETDEWEB)

    Peruzzi, A.; Gottardi, E.; Peroni, I.; Ponti, G.; Ventura, G

    1999-08-01

    The influence of impurity concentration c and applied magnetic field H on the superconducting transition of high-purity commercial titanium samples was investigated. The superconductive transition temperature T{sub C} was found to be very sensitive to the impurity concentration (dT{sub C}/dc {approx} -0.6 mK/w.ppm) and to the applied magnetic field (dT{sub C}/dH {approx} -1.1 mK/G). A linear dependence of T{sub C} decrease on impurity concentration, as theoretically predicted by various authors, was observed. In the purest sample, a linear decrease of T{sub C} on the applied magnetic field was found. The run-to-run and sample-to-sample reproducibility of the transition of the same sample was evaluated, and its suitability as a thermometric reference point below 1 K was discussed.

  2. The reasons for the color green fluorite Mehmandooye cover using UV spectroscopy and XRF results

    Science.gov (United States)

    Pirzadeh, Sara; Zahiri, Reza

    2016-04-01

    Fluorite mineral or fluorine with chemical formula CaF2 is most important mineralfluor in nature. This mineral crystallization to colors yellow, green, pink, blue, purple, colorless and sometimes black andin cubic system crystallized.assemi transparent and glass with polished.fluoritethe purity include 48/9% fluoreand 51/9% calcium. How the creation colors in minerals different greatly indebted to Kurt Nassau research from Bell Labs, Murray Hill, New Jersey.almostall the mechanisms that cause color in minerals, are the result of the interaction of light waves with the electrons The main factors affecting the color generation include the following: 1)the presence of a constructive element inherent (essential ingredient mineral composition) 2)The presence of a minor impurities (such a element as involved in latticesolid solution) 3) appearancedefects in the crystal structure 4) There are some physical boundaries with distances very small and delicate, like blades out of the solution (which may be the play of colors or Chatvyansy) 5) Mixing mechanical impurities dispersed in a host mineral Based on the results of the analysis, XRF and UV spectrum and also based on the results of ICP, because the color green fluorite examined, the focus color (F_center) and also the presence of some elementsintermediate (such as Y (yttrium). [1] Bill, H., Calas, G. Color centres associated rare earth ions and the origin of coloration in natural fluorites// PhysChem Min, (1978), v 3, pp. 117-131.

  3. Recovery behavior of high purity cubic SiC polycrystals by post-irradiation annealing up to 1673 K after low temperature neutron irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Idris, Mohd Idzat, E-mail: idzat.i.aa@m.titech.ac.jp [Department of Nuclear Engineering, Graduate School of Science and Engineering, Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-ku, Tokyo 152-8550 Japan (Japan); The National University of Malaysia, School of Applied Physics, Faculty of Science and Technology, 43600 Bangi Selangor (Malaysia); Yamazaki, Saishun; Yoshida, Katsumi; Yano, Toyohiko [Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-ku, Tokyo 152-8550 Japan (Japan)

    2015-10-15

    Two kinds of high purity cubic (β) SiC polycrystals, PureBeta-SiC and CVD-SiC, were irradiated in the BR2 reactor (Belgium) up to a fluence of 2.0–2.5 × 10{sup 24} (E > 0.1 MeV) at 333–363 K. Changes in macroscopic lengths were examined by post-irradiation thermal annealing using a precision dilatometer up to 1673 K with a step-heating method. The specimen was held at each temperature step for 6 h and the change in length of the specimen was recorded during each isothermal annealing step from 373 K to 1673 K with 50 K increments. The recovery curves were analyzed with the first order model, and rate constants at each annealing step were obtained. Recovery of defects, induced by neutron irradiation in high purity β-SiC, has four stages of different activation energies. At 373–573 K, the activation energy of PureBeta-SiC and CVD-SiC was in the range of 0.17–0.24 eV and 0.12–0.14 eV; 0.002–0.04 eV and 0.006–0.04 eV at 723–923 K; 0.20–0.27 eV and 0.26–0.31 eV at 923–1223 K; and 1.37–1.38 eV and 1.26–1.29 eV at 1323–1523 K, respectively. Below ∼1223 K the recombination occurred possibly for closely positioned C and Si Frenkel pairs, and no long range migration is deemed essential. Nearly three-fourths of recovery, induced by neutron irradiation, occur by this mechanism. In addition, at 1323–1523 K, recombination of slightly separated C Frenkel pairs and more long-range migration of Si interstitials may have occurred for PureBeta-SiC and CVD-SiC specimens. Migration of both vacancies may be restricted up to ∼1523 K. Comparing to hexagonal α-SiC, high purity β-SiC recovered more quickly in the lower annealing temperature range of less than 873 K, in particular less than 573 K. - Highlights: • Two kinds of high purity cubic (β) SiC polycrystals were irradiated. • Macroscopic lengths were examined by post-irradiation thermal annealing. • The recovery curves were analyzed with first order model.

  4. Production of High-purity Magnetite Nanoparticles from a Low-grade Iron Ore via Solvent Extraction

    Energy Technology Data Exchange (ETDEWEB)

    Suh, Yong Jae; Kil, Dae Sup; Jang, Hee Dong [Korea Institute of Geoscience and Mineral Resources, Daejeon (Korea, Republic of); Do, Thi May [Korea University of Science and Technology, Daejeon (Korea, Republic of); Cho, Kuk [Pusan National University, Busan (Korea, Republic of)

    2015-02-15

    We produced magnetite nanoparticles (MNPs) and a Mg-rich solution as a nano-adsorbent and a coagulant for water treatment, respectively, using a low-grade iron ore. The ore was leached with aqueous hydrochloric acid and its impurities were removed by solvent extraction of the leachate using tri-n-butyl phosphate as an extractant. The content of Si and Mg, which inhibit the formation of MNPs, was reduced from 10.3 wt% and 15.5 wt% to 28.1 mg/L and < 1.4 mg/L, respectively. Consequently, the Fe content increased from 68.6 wt% to 99.8 wt%. The high-purity Fe{sup 3+} solution recovered was used to prepare 5-15-nm MNPs by coprecipitation. The wastewater produced contained a large amount of Mg{sup 2+} and can be used to precipitate struvite in sewage treatment. This process helps reduce the cost of both sewage and iron-ore-wastewater treatments, as well as in the economic production of the nano-adsorbent.

  5. A novel auto-thermal reforming membrane reactor for high purity H2

    International Nuclear Information System (INIS)

    Tony Boyd; Grace, J.R.; Lim, C.J.; Adris, A.M.

    2006-01-01

    A novel hydrogen reactor based on steam reforming of natural gas has been developed and tested. The reactor produces high purity hydrogen using in-situ perm-selective membranes installed in a fluidized catalyst bed, thus shifting the thermodynamic equilibrium of the SMR reaction and eliminating the need for downstream hydrogen purification. The reactor is particularly suited to auto-thermal reforming, where air is added to the reformer to provide the endothermic reaction heat, thus eliminating the need to indirectly heat the reactor. The gas flow pattern within the fluidized bed induces an internal circulation of catalyst particles between the central SMR reaction (permeation) zone and an outer annulus. The circulating hot catalyst particles from the oxidation zone carry the required endothermic heat of reaction for the reforming, while ensuring that the palladium membranes are not exposed to excessive temperatures or to oxygen. Another beneficial characteristic of the reactor is that very little of the nitrogen present in the oxidation air reaches the reaction zone, thus maintaining the hydrogen driving force for the perm-selective membranes. Pilot plant results carried out in a semi-industrial scale reactor will be presented. The reactor was operated up to 650 C and 14 bar. Pure hydrogen (99.999+%) was initially obtained from the reactor and an equilibrium shift was demonstrated. (authors)

  6. Research of a novel biodegradable surgical staple made of high purity magnesium

    Directory of Open Access Journals (Sweden)

    Hongliu Wu

    2016-12-01

    Full Text Available Surgical staples made of pure titanium and titanium alloys are widely used in gastrointestinal anastomosis. However the Ti staple cannot be absorbed in human body and produce artifacts on computed tomography (CT and other imaging examination, and cause the risk of incorrect diagnosis. The bioabsorbable staple made from polymers that can degrade in human body environment, is an alternative. In the present study, biodegradable high purity magnesium staples were developed for gastric anastomosis. U-shape staples with two different interior angles, namely original 90° and modified 100°, were designed. Finite element analysis (FEA showed that the residual stress concentrated on the arc part when the original staple was closed to B-shape, while it concentrated on the feet for the modified staple after closure. The in vitro tests indicated that the arc part of the original staple ruptured firstly after 7 days immersion, whereas the modified one kept intact, demonstrating residual stress greatly affected the corrosion behavior of the HP-Mg staples. The in vivo implantation showed good biocompatibility of the modified Mg staples, without inflammatory reaction 9 weeks post-operation. The Mg staples kept good closure to the Anastomosis, no leaking and bleeding were found, and the staples exhibited no fracture or severe corrosion cracks during the degradation.

  7. On the purity assessment of solid sodium borohydride

    Science.gov (United States)

    Botasini, Santiago; Méndez, Eduardo

    2012-01-01

    Since sodium borohydride has become extensively used as chemical hydrogen storage material in fuel cells, many techniques have been proposed to assess the purity of this substance. However, all of them are developed in aqueous media, where the reagent is unstable. In addition, its hygroscopic nature was difficults in any attempt to make precise quantifications. The present work compares three different methods, namely, voltammetric, titrimetric, and Fourier transformed infrared spectroscopy (FTIR) in order to assess the purity of sodium borohydride, using an expired and a new sodium borohydride samples as references. Our results show that only the FTIR measurements provide a simple and semi-quantitative means to assess the purity of sodium borohydride due to the fact that it is the only one that measures the sample in the solid state. A comparison between the experimental data and theoretical calculation reveals the identification of the absorption bands at 1437 cm-1 of sodium metaborate and 2291 cm-1 of sodium borohydride which represent a good fingerprint for the qualitative assessment of the sample quality.

  8. Eu2+-doped Ba2GaB4O9Cl blue-emitting phosphor with high color purity for near-UV-pumped white light-emitting diodes

    Science.gov (United States)

    Gao, Zhiwen; Deng, Huajuan; Xue, Na; Jeong, Jung Hyun; Yu, Ruijin

    2018-01-01

    Eu2+-doped borate fluoride Ba2GaB4O9Cl was synthesized by the conventional high-temperature solid-state reaction. The crystal structure and luminescence properties of the phosphors, as well as their thermal luminescence quenching capabilities and CIE chromaticity coordinates were systematically investigated. Under the excitation at 340 nm, the phosphor exhibited an asymmetric broad-band blue emission with a peak at 445 nm, which is ascribed to the 4f-5d transition of Eu2+. It was further proved that energy transfer among the nearest neighbor ions is the major mechanism for concentration quenching of Eu2+ in Ba2-xGaB4O9Cl:xEu2+ phosphors. The luminescence quenching temperature is 432 K. The CIE color coordinates are very close to those of BaMgAl10O17:Eu2+ (BAM). All the properties indicated that the blue-emitting Ba2GaB4O9Cl:Eu2+ phosphor has potential application in white LEDs.

  9. Stress relaxation in 'aged high-purity aluminium at room temperature

    International Nuclear Information System (INIS)

    Butt, M.Z.; Haq, I.U.

    1993-01-01

    Stress relaxation in 99.996% Al polycrystals of average grain diameter 0.30, 0.42 and 0.51 mm, annealed at 500 deg. C and 'aged' for six months at room temperature, have been studied as a function of initial stress level from which relaxation at constant strain was allowed to start. The results obtained were compared with those for 'un-aged' Al specimens of the same purity and grain size. The intrinsic height of the thermally activable energy barrier (1.6 eV) evaluated for 'aged' Al is comparable with that (1.9 eV) for 'un-aged' Al, and is of the order of magnitude for recovery processes. In 'aged' specimens, the relaxation rate at a given stress level is larger and associated activation volume is smaller than that in 'un-aged' specimens. This is probably due to the diffusion of vacancies and/or residual impurity atoms to the cores to edge dislocations in 'aged' specimens; the length of dislocation segment involved in unit activation process therefore gets shortened compared with that in 'un-aged' specimens. (author)

  10. Color management of porcelain veneers: influence of dentin and resin cement colors.

    Science.gov (United States)

    Dozic, Alma; Tsagkari, Maria; Khashayar, Ghazal; Aboushelib, Moustafa

    2010-01-01

    Porcelain veneers have become an interesting treatment option to correct the shape and color of anterior teeth. Because of their limited thickness and high translucency, achieving a good color match is influenced by several variables. The aim of this work was to investigate the influence of natural dentin and resin cement colors on final color match of porcelain veneers. A preselected shade tab (A1) was chosen as the target color for a maxillary central incisor, and its color parameters (L*a*b*) were measured using a digital spectrophotometer (SpectroShade, MHT). Nine natural dentin colors (Natural Die Material, Ivoclar Vivadent) representing a wide range of tooth colors were used to prepare resin replicas of the maxillary central incisor with a standard preparation for porcelain veneers. The prepared porcelain veneers (IPS Empress Esthetic, A1, 0.6 mm thick, Ivoclar Vivadent) were cemented on the resin dies (nine groups of natural dentin colors) using seven shades of resin cement (Variolink Veneers, Ivoclar Vivadent). The L*a*b* values of the cemented veneers were measured, and DE values were calculated against the preselected target color (A1). DE greater than 3.3 was considered as a significant color mismatch detectable by the human eye. The seven shades of resin cement had no significant influence on the final color of the veneers, as the measured DE values were almost identical for every test group. On the other hand, the color of natural dentin was a significant factor that influenced final color match. None of the 63 tested combinations (nine natural dentin colors and seven resin cement colors) produced an acceptable color match. Thin porcelain veneers cannot mask underlying tooth color even when different shades of resin cement are used. Incorporation of opaque porcelain (high chroma) may improve final color match.

  11. Colored cool colorants based on rare earth metal ions

    Energy Technology Data Exchange (ETDEWEB)

    Sreeram, Kalarical Janardhanan; Aby, Cheruvathoor Poulose; Nair, Balachandran Unni; Ramasami, Thirumalachari [Chemical Laboratory, Central Leather Research Institute, Council of Scientific and Industrial Research, Adyar, Chennai 600 020 (India)

    2008-11-15

    Colored pigments with high near infrared reflectance and not based on toxic metal ions like cadmium, lead and cobalt are being sought as cool colorants. Through appropriate doping two pigments Ce-Pr-Mo and Ce-Pr-Fe have been developed to offer a reddish brown and reddish orange color, respectively. These pigments have been characterized and found to be highly crystalline with an average size of 300 nm. A shift in band gap energy from 2.21 to 2.18 eV has been observed when Li{sub 2}CO{sub 3} was used as a mineralizer. Scanning electron microscope-energy dispersive X-ray analysis (SEM-EDAX) measurement indicate a uniform grind shape and distribution of metal ion, with over 65% reflectance in the NIR region, these pigments can well serve as cool colorants. (author)

  12. Preparation of high-purity Pr(3+) doped Ge–Ga–Sb–Se glasses with intensive middle infrared luminescence

    Energy Technology Data Exchange (ETDEWEB)

    Karaksina, E.V.; Shiryaev, V.S., E-mail: shiryaev@ihps.nnov.ru; Kotereva, T.V.; Churbanov, M.F.

    2016-02-15

    Glass materials with high emission characteristics and low content of limiting impurities are required for creation of devices for middle infrared (mid-IR) fiber optics. The paper presents the results of preparation of high-purity Pr{sup 3+}-doped Ga{sub x}Ge{sub y}Sb{sub z}Se{sub 1−(x+y+z)} (x=3÷4, y=20÷26, z=5÷11) glasses. The multi-stage technique for synthesis of these glasses is developed. It is based on chemical distillation purification of glass components and the transport reaction for purification of gallium. Transmitting, as well as thermal and luminescent properties of glasses are investigated. The content of limiting impurities of oxygen, carbon and hydrogen in the glass samples was ≤0.2 ppm wt. The 1300–3000 ppm wt Pr{sup 3+}-doped Ga–Ge–Sb–Se bulk glasses exhibit an intensive photoluminescence in the spectral range of 3.5–5.5 μm.

  13. Potential of hot water extraction of birch wood to produce high-purity dissolving pulp after alkaline pulping.

    Science.gov (United States)

    Borrega, Marc; Tolonen, Lasse K; Bardot, Fanny; Testova, Lidia; Sixta, Herbert

    2013-05-01

    The potential of hot water extraction of birch wood to produce highly purified dissolving pulp in a subsequent soda-anthraquinone pulping process was evaluated. After intermediate extraction intensities, pulps with low xylan content (3-5%) and high cellulose yield were successfully produced. Increasing extraction intensity further decreased the xylan content in pulp. However, below a xylan content of 3%, the cellulose yield dramatically decreased. This is believed to be due to cleavage of glycosidic bonds in cellulose during severe hot water extractions, followed by peeling reactions during alkaline pulping. Addition of sodium borohydride as well as increased anthraquinone concentration in the pulping liquor increased the cellulose yield, but had no clear effects on pulp purity and viscosity. The low intrinsic viscosity of pulps produced after severe extraction intensities and soda-anthraquinone pulping corresponded to the viscosity at the leveling-off degree of polymerization, suggesting that nearly all amorphous cellulose had been degraded. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Influence of purity level on the mechanical properties of hot isostatically pressed beryllium

    International Nuclear Information System (INIS)

    Odegard, B.C. Jr.

    1979-09-01

    The procurement of a quantity of ultra-pure beryllium powder combined with special handling from powder to billet form resulted in the fabrication of high purity beryllium. The mechanical properties of these billets were contrasted to those of commercial grade billets to determine the influence of impurities and powder processing. The tensile test results show that the strength values are primarily dependent on the grain size in a behavior predictable by the Hall-Petch relationship. Only a fraction of the strength differential can be attributed to metallic impurities in solution. The grain size is controlled by the powder size distribution. The ductility is dominated by both grain size and oxide content. The fine grained, low oxide billets exhibited the highest ductilities. There is evidence to suggest that oxide distribution has a large influence on the ductility. The fracture toughness was highest for the high purity beryllium billets

  15. Degradation of fluorescent high-visibility colors used in safety garments for the Australian railway industry.

    Science.gov (United States)

    Vijayan, Arun; Islam, Saniyat; Jones, Michael; Padhye, Rajiv; Arnold, Lyndon

    2016-02-01

    This study investigated the compliance of four fluorescent orange high-visibility garment substrates that are predominantly used in the Australian railway industry. While Special Purpose Orange (SPO), a shade of the Fluorescent orange (Fl-orange) is recommended by most Australian states as the high-visibility background color of a safety garment, there appear to be variations in the background color of clothing used by line-workers and rail contractors. The color of the garment was assessed for compliance with the Australian Standard AS/NZS 1906.2.2010 for high-visibility materials for safety garments. The results were also compared with ANSI Z535.2011 and BS EN ISO 20471.2013 Standards. Photometric and colorimetric assessments of the background color of the garment substrates were performed using a spectrophotometer and were evaluated for compliance with the Standards after washing and exposure to UV. The spectrophotometry measurements showed that Fl-orange background color for all samples except one complied with the AS/NZS 1906.2 Standard for daytime high-visibility garments after 20 washes but failed to comply after exposure to UV. It was also found that the chromaticity coordinates of the corners of the Fl-orange color space, specified in the AS/NZS 1906.4.2010 Standard are much wider and yellower when compared with the ANSI Z535.1.2011 and BS EN ISO 20471.2013 Standards. The sample that failed to comply with the Australian and American Standards however complied with the ISO Standard. Irrespective of the Standard used, the research has shown the degrading effect of washing and light exposure and raises the questions as to how regularly, and under what conditions high-visibility garments need to be replaced. These findings will provide information for safety garment manufacturers about the characteristics and performance of high-visibility safety garments which make them conspicuous during daytime use. This research recommends that colors for railway workers

  16. Determination of rare earth elements in high purity rare earth oxides by liquid chromatography, thermionic mass spectrometry and combined liquid chromatography/thermionic mass spectrometry

    International Nuclear Information System (INIS)

    Stijfhoorn, D.E.; Stray, H.; Hjelmseth, H.

    1993-01-01

    A high-performance liquid chromatographic (HPLC) method for the determination of rare earth elements in rocks has been modified and used for the determination of rare earth elements (REE) in high purity rare earth oxides. The detection limit was 1-1.5 ng or 2-3 mg/kg when a solution corresponding to 0.5 mg of the rare earth oxide was injected. The REE determination was also carried out by adding a mixture of selected REE isotopes to the sample and analysing the collected HPLC-fractions by mass spectrometry (MS) using a thermionic source. Since the matrix element was not collected, interference from this element during the mass spectrometric analysis was avoided. Detection limits as low as 0.5 mg/kg could then be obtained. Detection limits as low as 0.05 mg/kg were possible by MS without HPLC-pre-separation, but this approach could only be used for those elements that were not affected by the matrix. Commercial samples of high purity Nd 2 O 3 , Gd 2 O 3 and Dy 2 O 3 were analysed in this study, and a comparison of results obtained by HPLC, combined HPLC/MS and direct MS is presented. (Author)

  17. Determination of radiochemical purity using gas chromatography

    International Nuclear Information System (INIS)

    1975-01-01

    The concepts of chromatography, gas chromatography, activity, radiochemical impurity are defined; the procedure of the application of gas chromatography for detecting radiochemical purity of substances is standardized. (E.F.)

  18. Developmental Color Perception

    Science.gov (United States)

    Gaines, Rosslyn; Little, Angela C.

    1975-01-01

    A sample of 107 subjects including kindergarteners, fifth graders, high school sophomores, parents of kindergarteners, and master artists were presented with a 108-item color perception test to investigate surface color perception at these age levels. A set of surface color perception rules was generated. (GO)

  19. Accurate color measurement methods for medical displays.

    Science.gov (United States)

    Saha, Anindita; Kelley, Edward F; Badano, Aldo

    2010-01-01

    at shorter distances between the light sources, which translates to less contamination. The tails of the scans indicate the magnitude of the spread in signal due to light from areas outside the intended measurement spot. The measurements indicate a corresponding glare factor for a large spot of 140, 500, and 2000 for probe A, B1, and B2, respectively. The dual-laser setup suggests that color purity can be maintained up to a few tens of millimeters outside the measurement spot. The comparison shows that there are significant differences in the performance of each probe design, and that those differences have an effect on the measured quantity used to quantify display color. Different probe designs show different measurements of the level of light contamination that affects the quantitative color determination.

  20. Monte Carlo simulation of gamma-ray interactions in an over-square high-purity germanium detector for in-vivo measurements

    Science.gov (United States)

    Saizu, Mirela Angela

    2016-09-01

    The developments of high-purity germanium detectors match very well the requirements of the in-vivo human body measurements regarding the gamma energy ranges of the radionuclides intended to be measured, the shape of the extended radioactive sources, and the measurement geometries. The Whole Body Counter (WBC) from IFIN-HH is based on an “over-square” high-purity germanium detector (HPGe) to perform accurate measurements of the incorporated radionuclides emitting X and gamma rays in the energy range of 10 keV-1500 keV, under conditions of good shielding, suitable collimation, and calibration. As an alternative to the experimental efficiency calibration method consisting of using reference calibration sources with gamma energy lines that cover all the considered energy range, it is proposed to use the Monte Carlo method for the efficiency calibration of the WBC using the radiation transport code MCNP5. The HPGe detector was modelled and the gamma energy lines of 241Am, 57Co, 133Ba, 137Cs, 60Co, and 152Eu were simulated in order to obtain the virtual efficiency calibration curve of the WBC. The Monte Carlo method was validated by comparing the simulated results with the experimental measurements using point-like sources. For their optimum matching, the impact of the variation of the front dead layer thickness and of the detector photon absorbing layers materials on the HPGe detector efficiency was studied, and the detector’s model was refined. In order to perform the WBC efficiency calibration for realistic people monitoring, more numerical calculations were generated simulating extended sources of specific shape according to the standard man characteristics.

  1. Efficiency of alfalfa seed processing with different seed purity

    OpenAIRE

    Đokić, Dragoslav; Stanisavljević, Rade; Terzić, Dragan; Milenković, Jasmina; Radivojević, Gordana; Koprivica, Ranko; Štrbanović, Ratibor

    2015-01-01

    The work was carried out analysis of the impact of the initial purity of raw alfalfa seed on the resulting amount of processed seed in the processing. Alfalfa is very important perennial forage legume which is used for fodder and seed production. Alfalfa seed is possible to achieve high yields and very good financial effects. To obtain the seed material with good characteristics complex machines for cleaning and sorting seeds are used. In the processing center of the Institute for forage crop...

  2. Animal Sex: Purity Education and the Naturalization of the Abstinence Agenda

    Science.gov (United States)

    Sethna, Christabelle

    2010-01-01

    An early-twentieth-century movement for social purity in England, Canada and the United States aimed to eradicate prostitution, the double standard of sexual morals and their dreaded corollary, the venereal diseases. Social purists suggested that "purity education" for children was the best pedagogical prophylaxis against such…

  3. Disgust sensitivity is primarily associated with purity-based moral judgments.

    Science.gov (United States)

    Wagemans, Fieke M A; Brandt, Mark J; Zeelenberg, Marcel

    2018-03-01

    Individual differences in disgust sensitivity are associated with a range of judgments and attitudes related to the moral domain. Some perspectives suggest that the association between disgust sensitivity and moral judgments will be equally strong across all moral domains (i.e., purity, authority, loyalty, care, fairness, and liberty). Other perspectives predict that disgust sensitivity is primarily associated with judgments of specific moral domains (e.g., primarily purity). However, no study has systematically tested if disgust sensitivity is associated with moral judgments of the purity domain specifically, more generally to moral judgments of the binding moral domains, or to moral judgments of all of the moral domains equally. Across 5 studies (total N = 1,104), we find consistent evidence for the notion that disgust sensitivity relates more strongly to moral condemnation of purity-based transgressions (meta-analytic r = .40) than to moral condemnation of transgressions of any of the other domains (range meta-analytic rs: .07-.27). Our findings are in line with predictions from Moral Foundations Theory, which predicts that personality characteristics like disgust sensitivity make people more sensitive to a certain set of moral issues. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  4. The color of money

    DEFF Research Database (Denmark)

    Ásgeirsson, Árni Gunnar; Kristjánsson, Árni; Einarsdóttir, Kristin Vala

    2014-01-01

    of attention are affected by reward, and whether the effect involves general enhancement or is specific to discrete components of attention. Observers viewed brief displays of differentially colored letters and reported their identity. Each color signified a consistent monetary value and we measured......, by including conditions with color-contingent negative values. This gave an opportunity to compare high-gain with high-loss conditions. We found clear effects of value on selectivity when comparing high- and low-value conditions. When comparing equally valuable high-loss and high-gain conditions there were...

  5. The interaction between surface color and color knowledge: Behavioral and electrophysiological evidence

    OpenAIRE

    Bramão, I.; Faísca, L.; Forkstam, C.; Inácio, F.; Araújo, S.; Petersson, K.; Reis, A.

    2012-01-01

    In this study, we used event-related potentials (ERPs) to evaluate the contribution of surface color and color knowledge information in object identification. We constructed two color-object verification tasks – a surface and a knowledge verification task – using high color diagnostic objects; both typical and atypical color versions of the same object were presented. Continuous electroencephalogram was recorded from 26 subjects. A cluster randomization procedure was used to explore the diffe...

  6. Photoproduction of colored pseudo-Goldstone bosons at very high energy

    International Nuclear Information System (INIS)

    Grifols, J.A.; Mendez, A.

    1982-01-01

    We estimate the photoproduction cross section of the color-octet pseudo-Goldstone bosons P 0 8 and P 3 8 in e-p collisions at very high energy. The calculated rates are within detectability limits, especially for the P 3 8 state which, besides, cannot be produced in hadron-hardon interactions

  7. Progress in digital color workflow understanding in the International Color Consortium (ICC) Workflow WG

    Science.gov (United States)

    McCarthy, Ann

    2006-01-01

    The ICC Workflow WG serves as the bridge between ICC color management technologies and use of those technologies in real world color production applications. ICC color management is applicable to and is used in a wide range of color systems, from highly specialized digital cinema color special effects to high volume publications printing to home photography. The ICC Workflow WG works to align ICC technologies so that the color management needs of these diverse use case systems are addressed in an open, platform independent manner. This report provides a high level summary of the ICC Workflow WG objectives and work to date, focusing on the ways in which workflow can impact image quality and color systems performance. The 'ICC Workflow Primitives' and 'ICC Workflow Patterns and Dimensions' workflow models are covered in some detail. Consider the questions, "How much of dissatisfaction with color management today is the result of 'the wrong color transformation at the wrong time' and 'I can't get to the right conversion at the right point in my work process'?" Put another way, consider how image quality through a workflow can be negatively affected when the coordination and control level of the color management system is not sufficient.

  8. Isotopic Abundance and Chemical Purity Analysis of Stable Isotope Deuterium Labeled Sudan I

    Directory of Open Access Journals (Sweden)

    CAI Yin-ping;LEI Wen;ZHENG Bo;DU Xiao-ning

    2014-02-01

    Full Text Available It is important that to analysis of the isotopic abundance and chemical purity of Sudan I-D5, which is the internal standard of isotope dilution mass spectrometry. The isotopic abundance of Sudan I-D5 is detected by “mass cluster” classification method and LC-MS. The repeatability and reproducibility experiments were carried out by using different mass spectrometers and different operators. The RSD was less than 0.1%, so the repeatability and reproducibility were satisfactory. The accuracy and precision of the isotopic abundance analysis method was good with the results of F test and t test. The high performance liquid chromatography (HPLC had been used for detecting the chemical purity of Sudan I-D5 as external standard method.

  9. Phase transformations of high-purity PbI{sub 2} nanoparticles synthesized from lead-acid accumulator anodes

    Energy Technology Data Exchange (ETDEWEB)

    Malevu, T.D., E-mail: malevutd@ufs.ac.za; Ocaya, R.O.; Tshabalala, K.G.

    2016-09-01

    High-purity hexagonal lead iodide nanoparticles have been synthesized from a depleted sealed lead acid battery anode. The synthesized product was found to consist of the rare 6R polytype form of PbI{sub 2} that is thought to have good potential in photovoltaic applications. We investigate the effects of annealing time and post-melting temperature on the structure and optical properties using 1.5418 Å CuKα radiation. Photoluminescence measurements were done under 150 W/221 nm wavelength xenon excitation. Phase transformation was observed through XRD peaks when annealing time increased from 0.5–5 h. The nanoparticle grain size and inter-planar distance appeared to be independent of annealing time. PL measurements show three broad peaks in a range of 400 nm to 700 nm that are attributed to excitonic, donor–acceptor pair and luminescence bands from the deep levels.

  10. Application of a Barrier Filter at a High Purity Synthetic Graphite Plant, CRADA 99-F035, Final Report

    Energy Technology Data Exchange (ETDEWEB)

    National Energy Technology Laboratory

    2000-08-31

    Superior Graphite Company and the US Department of Energy have entered into a Cooperative Research and Development Agreement (CRADA) to study the application of ceramic barrier filters at its Hopkinsville, Kentucky graphite plant. Superior Graphite Company is a worldwide leader in the application of advanced thermal processing technology to produce high purity graphite and carbons. The objective of the CRADA is to determine the technical and economic feasibility of incorporating the use of high-temperature filters to improve the performance of the offgas treatment system. A conceptual design was developed incorporating the ceramic filters into the offgas treatment system to be used for the development of a capital cost estimate and economic feasibility assessment of this technology for improving particulate removal. This CRADA is a joint effort of Superior Graphite Company, Parsons Infrastructure and Technology Group, and the National Energy Technology Laboratory (NETL) of the US Department of Energy (DOE).

  11. Study of absorption and IR-emission of Er3+, Dy3+, Tm3+ doped high-purity tellurite glasses

    Science.gov (United States)

    Motorin, S. E.; Dorofeev, V. V.; Galagan, B. I.; Sverchkov, S. E.; Koltashev, V. V.; Denker, B. I.

    2018-04-01

    A study of high-purity TeO2-ZnO based tellurite glasses doped with Er3+, Dy3+ or Tm3+ that could be used as laser media in the 2-3 μm spectral range is presented. The glasses are prepared by melting the oxides mixture inside a silica glass reactor in an atmosphere of purified oxygen. The low level of hydroxyl groups absorption allowed to measure correctly the luminescence decay characteristics of the dopants. The rare-earth ions absorption bands, the luminescence spectra and kinetic characteristics of emission from the levels 4I11/2, 4I13/2 of Er3+, 6H13/2 of Dy3+ and 3H4, 3H5, 3F4 of Tm3+ ions are investigated. The results confirm the high potential of tellurite glasses as an active media for bulk, planar waveguide and fiber lasers.

  12. Modeling human color categorization: Color discrimination and color memory

    OpenAIRE

    Heskes, T.; van den Broek, Egon; Lucas, P.; Hendriks, Maria A.; Vuurpijl, L.G.; Puts, M.J.H.; Wiegerinck, W.

    2003-01-01

    Color matching in Content-Based Image Retrieval is done using a color space and measuring distances between colors. Such an approach yields non-intuitive results for the user. We introduce color categories (or focal colors), determine that they are valid, and use them in two experiments. The experiments conducted prove the difference between color categorization by the cognitive processes color discrimination and color memory. In addition, they yield a Color Look-Up Table, which can improve c...

  13. Advanced microlens and color filter process technology for the high-efficiency CMOS and CCD image sensors

    Science.gov (United States)

    Fan, Yang-Tung; Peng, Chiou-Shian; Chu, Cheng-Yu

    2000-12-01

    New markets are emerging for digital electronic image device, especially in visual communications, PC camera, mobile/cell phone, security system, toys, vehicle image system and computer peripherals for document capture. To enable one-chip image system that image sensor is with a full digital interface, can make image capture devices in our daily lives. Adding a color filter to such image sensor in a pattern of mosaics pixel or wide stripes can make image more real and colorful. We can say 'color filter makes the life more colorful color filter is? Color filter means can filter image light source except the color with specific wavelength and transmittance that is same as color filter itself. Color filter process is coating and patterning green, red and blue (or cyan, magenta and yellow) mosaic resists onto matched pixel in image sensing array pixels. According to the signal caught from each pixel, we can figure out the environment image picture. Widely use of digital electronic camera and multimedia applications today makes the feature of color filter becoming bright. Although it has challenge but it is very worthy to develop the process of color filter. We provide the best service on shorter cycle time, excellent color quality, high and stable yield. The key issues of advanced color process have to be solved and implemented are planarization and micro-lens technology. Lost of key points of color filter process technology have to consider will also be described in this paper.

  14. Producing High Intense Attosecond Pulse Train by Interaction of Three-Color Pulse and Overdense Plasma

    Science.gov (United States)

    Salehi, M.; Mirzanejad, S.

    2017-05-01

    Amplifying the attosecond pulse by the chirp pulse amplification method is impossible. Furthermore, the intensity of attosecond pulse is low in the interaction of laser pulse and underdense plasma. This motivates us to propose using a multi-color pulse to produce the high intense attosecond pulse. In the present study, the relativistic interaction of a three-color linearly-polarized laser-pulse with highly overdense plasma is studied. We show that the combination of {{ω }}1, {{ω }}2 and {{ω }}3 frequencies decreases the instance full width at half maximum reflected attosecond pulse train from the overdense plasma surface. Moreover, we show that the three-color pulse increases the intensity of generated harmonics, which is explained by the relativistic oscillating mirror model. The obtained results demonstrate that if the three-color laser pulse interacts with overdense plasma, it will enhance two orders of magnitude of intensity of ultra short attosecond pulses in comparison with monochromatic pulse.

  15. Color superconductivity

    International Nuclear Information System (INIS)

    Wilczek, F.

    1997-01-01

    The asymptotic freedom of QCD suggests that at high density - where one forms a Fermi surface at very high momenta - weak coupling methods apply. These methods suggest that chiral symmetry is restored and that an instability toward color triplet condensation (color superconductivity) sets in. Here I attempt, using variational methods, to estimate these effects more precisely. Highlights include demonstration of a negative pressure in the uniform density chiral broken phase for any non-zero condensation, which we take as evidence for the philosophy of the MIT bag model; and demonstration that the color gap is substantial - several tens of MeV - even at modest densities. Since the superconductivity is in a pseudoscalar channel, parity is spontaneously broken

  16. Color superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Wilczek, F. [Institute for Advanced Study, Princeton, NJ (United States)

    1997-09-22

    The asymptotic freedom of QCD suggests that at high density - where one forms a Fermi surface at very high momenta - weak coupling methods apply. These methods suggest that chiral symmetry is restored and that an instability toward color triplet condensation (color superconductivity) sets in. Here I attempt, using variational methods, to estimate these effects more precisely. Highlights include demonstration of a negative pressure in the uniform density chiral broken phase for any non-zero condensation, which we take as evidence for the philosophy of the MIT bag model; and demonstration that the color gap is substantial - several tens of MeV - even at modest densities. Since the superconductivity is in a pseudoscalar channel, parity is spontaneously broken.

  17. High-reflective colorful films fabricated by all-solid multi-layer cholesteric structures

    Science.gov (United States)

    Li, Y.; Luo, D.

    2018-02-01

    We demonstrate all-solid-state film with high-reflectivity based on cholesteric template. The adhesive (NOA81) is both filler and an adhesive, which can be avoids interfacial losses. The reflected right- and left-circularly polarized light has been developed by roll-to-roll method, and the reflectance of the films is more than 78%. Here, the all-solid film was used in distribute feedback laser with dye-doped. In addition, this films also used in include flexible reflective display, color pixels in digital photographs, printing and colored cladding of variety of objects.

  18. Microwave-Hydrothermal Synthesis and Characterization of High-Purity Nb Doped BaTiO3 Nanocrystals

    Directory of Open Access Journals (Sweden)

    A. Khanfekr

    2014-01-01

    Full Text Available The synthesis of Nb doped BaTiO3 has been investigated under Microwave-Hydrothermal (MH conditions in the temperature of 150°C for only 2 h using C16H36O4Ti, BaH2O2.8H2O and NbCl5 as Ba, Ti and  Nb sources, respectively.  Typical experiments performed on MH processing have not yet reported for Nb doped BaTiO3.  In the MH process, the formation of high purity nano tetragonal Nb-BaTiO3 was strongly enhanced. New hydrothermal method was used instead of the previous solid state reaction for the BaTiO3±Nb2O3 system. The new method uses high pressure to create nano dimension particles in a lower time and temperature. In case of the phase evolution studies, the XRD pattern measurements and Raman spectroscopy were performed. TEM and FE-SEM images were taken for the detailed analysis of the particle size, surface and morphology.  Synthesis of Nb doped BaTiO3 with the Microwave-hydrothermal provides an advantage of fast crystallization and reduced crystal size when compared to existing methods.

  19. The characteristics of void distribution in spalled high purity copper cylinder under sweeping detonation

    Science.gov (United States)

    Yang, Yang; Jiang, Zhi; Chen, Jixinog; Guo, Zhaoliang; Tang, Tiegang; Hu, Haibo

    2018-03-01

    The effects of different peak compression stresses (2-5 GPa) on the spallation behaviour of high purity copper cylinder during sweeping detonation were examined by Electron Backscatter Diffraction Microscopy, Doppler Pins System and Optical Microscopy techniques. The velocity history of inner surface and the characteristics of void distributions in spalled copper cylinder were investigated. The results indicated that the spall strength of copper in these experiments was less than that revealed in previous reports concerning plate impact loading. The geometry of cylindrical copper and the obliquity of incident shock during sweeping detonation may be the main reasons. Different loading stresses seemed to be responsible for the characteristics of the resultant damage fields, and the maximum damage degree increased with increasing shock stress. Spall planes in different cross-sections of sample loaded with the same shock stress of 3.29 GPa were found, and the distance from the initiation end has little effect on the maximum damage degree (the maximum damage range from 12 to 14%), which means that the spallation behaviour was stable along the direction parallel to the detonation propagation direction under the same shock stress.

  20. MIS High-Purity Plutonium Oxide Metal Oxidation Product TS707001 (SSR123): Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Veirs, Douglas Kirk [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Stroud, Mary Ann [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Berg, John M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Narlesky, Joshua Edward [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Worl, Laura Ann [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Martinez, Max A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Carillo, Alex [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-08-09

    A high-purity plutonium dioxide material from the Material Identification and Surveillance (MIS) Program inventory has been studied with regard to gas generation and corrosion in a storage environment. Sample TS707001 represents process plutonium oxides from several metal oxidation operations as well as impure and scrap plutonium from Hanford that are currently stored in 3013 containers. After calcination to 950°C, the material contained 86.98% plutonium with no major impurities. This study followed over time, the gas pressure of a sample with nominally 0.5 wt% water in a sealed container with an internal volume scaled to 1/500th of the volume of a 3013 container. Gas compositions were measured periodically over a six year period. The maximum observed gas pressure was 138 kPa. The increase over the initial pressure of 80 kPa was primarily due to generation of nitrogen and carbon dioxide gas in the first six months. Hydrogen and oxygen were minor components of the headspace gas. At the completion of the study, the internal components of the sealed container showed signs of corrosion, including pitting.

  1. Laser color recording unit

    Science.gov (United States)

    Jung, E.

    1984-05-01

    A color recording unit was designed for output and control of digitized picture data within computer controlled reproduction and picture processing systems. In order to get a color proof picture of high quality similar to a color print, together with reduced time and material consumption, a photographic color film material was exposed pixelwise by modulated laser beams of three wavelengths for red, green and blue light. Components of different manufacturers for lasers, acousto-optic modulators and polygon mirrors were tested, also different recording methods as (continuous tone mode or screened mode and with a drum or flatbed recording principle). Besides the application for the graphic arts - the proof recorder CPR 403 with continuous tone color recording with a drum scanner - such a color hardcopy peripheral unit with large picture formats and high resolution can be used in medicine, communication, and satellite picture processing.

  2. The interaction between surface color and color knowledge: behavioral and electrophysiological evidence.

    Science.gov (United States)

    Bramão, Inês; Faísca, Luís; Forkstam, Christian; Inácio, Filomena; Araújo, Susana; Petersson, Karl Magnus; Reis, Alexandra

    2012-02-01

    In this study, we used event-related potentials (ERPs) to evaluate the contribution of surface color and color knowledge information in object identification. We constructed two color-object verification tasks - a surface and a knowledge verification task - using high color diagnostic objects; both typical and atypical color versions of the same object were presented. Continuous electroencephalogram was recorded from 26 subjects. A cluster randomization procedure was used to explore the differences between typical and atypical color objects in each task. In the color knowledge task, we found two significant clusters that were consistent with the N350 and late positive complex (LPC) effects. Atypical color objects elicited more negative ERPs compared to typical color objects. The color effect found in the N350 time window suggests that surface color is an important cue that facilitates the selection of a stored object representation from long-term memory. Moreover, the observed LPC effect suggests that surface color activates associated semantic knowledge about the object, including color knowledge representations. We did not find any significant differences between typical and atypical color objects in the surface color verification task, which indicates that there is little contribution of color knowledge to resolve the surface color verification. Our main results suggest that surface color is an important visual cue that triggers color knowledge, thereby facilitating object identification. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. A colorimetric method for highly sensitive and accurate detection of iodide by finding the critical color in a color change process using silver triangular nanoplates

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xiu-Hua; Ling, Jian, E-mail: lingjian@ynu.edu.cn; Peng, Jun; Cao, Qiu-E., E-mail: qecao@ynu.edu.cn; Ding, Zhong-Tao; Bian, Long-Chun

    2013-10-10

    Graphical abstract: -- Highlights: •Demonstrated a new colorimetric strategy for iodide detection by silver nanoplates. •The colorimetric strategy is to find the critical color in a color change process. •The colorimetric strategy is more accurate and sensitive than common colorimetry. •Discovered a new morphological transformation phenomenon of silver nanoplates. -- Abstract: In this contribution, we demonstrated a novel colorimetric method for highly sensitive and accurate detection of iodide using citrate-stabilized silver triangular nanoplates (silver TNPs). Very lower concentration of iodide can induce an appreciable color change of silver TNPs solution from blue to yellow by fusing of silver TNPs to nanoparticles, as confirmed by UV–vis absorption spectroscopy and transmission electron microscopy (TEM). The principle of this colorimetric assay is not an ordinary colorimetry, but a new colorimetric strategy by finding the critical color in a color change process. With this strategy, 0.1 μM of iodide can be recognized within 30 min by naked-eyes observation, and lower concentration of iodide down to 8.8 nM can be detected using a spectrophotometer. Furthermore, this high sensitive colorimetric assay has good accuracy, stability and reproducibility comparing with other ordinary colorimetry. We believe this new colorimetric method will open up a fresh insight of simple, rapid and reliable detection of iodide and can find its future application in the biochemical analysis or clinical diagnosis.

  4. A colorimetric method for highly sensitive and accurate detection of iodide by finding the critical color in a color change process using silver triangular nanoplates

    International Nuclear Information System (INIS)

    Yang, Xiu-Hua; Ling, Jian; Peng, Jun; Cao, Qiu-E.; Ding, Zhong-Tao; Bian, Long-Chun

    2013-01-01

    Graphical abstract: -- Highlights: •Demonstrated a new colorimetric strategy for iodide detection by silver nanoplates. •The colorimetric strategy is to find the critical color in a color change process. •The colorimetric strategy is more accurate and sensitive than common colorimetry. •Discovered a new morphological transformation phenomenon of silver nanoplates. -- Abstract: In this contribution, we demonstrated a novel colorimetric method for highly sensitive and accurate detection of iodide using citrate-stabilized silver triangular nanoplates (silver TNPs). Very lower concentration of iodide can induce an appreciable color change of silver TNPs solution from blue to yellow by fusing of silver TNPs to nanoparticles, as confirmed by UV–vis absorption spectroscopy and transmission electron microscopy (TEM). The principle of this colorimetric assay is not an ordinary colorimetry, but a new colorimetric strategy by finding the critical color in a color change process. With this strategy, 0.1 μM of iodide can be recognized within 30 min by naked-eyes observation, and lower concentration of iodide down to 8.8 nM can be detected using a spectrophotometer. Furthermore, this high sensitive colorimetric assay has good accuracy, stability and reproducibility comparing with other ordinary colorimetry. We believe this new colorimetric method will open up a fresh insight of simple, rapid and reliable detection of iodide and can find its future application in the biochemical analysis or clinical diagnosis

  5. Modeling a color-rendering operator for high dynamic range images using a cone-response function

    Science.gov (United States)

    Choi, Ho-Hyoung; Kim, Gi-Seok; Yun, Byoung-Ju

    2015-09-01

    Tone-mapping operators are the typical algorithms designed to produce visibility and the overall impression of brightness, contrast, and color of high dynamic range (HDR) images on low dynamic range (LDR) display devices. Although several new tone-mapping operators have been proposed in recent years, the results of these operators have not matched those of the psychophysical experiments based on the human visual system. A color-rendering model that is a combination of tone-mapping and cone-response functions using an XYZ tristimulus color space is presented. In the proposed method, the tone-mapping operator produces visibility and the overall impression of brightness, contrast, and color in HDR images when mapped onto relatively LDR devices. The tone-mapping resultant image is obtained using chromatic and achromatic colors to avoid well-known color distortions shown in the conventional methods. The resulting image is then processed with a cone-response function wherein emphasis is placed on human visual perception (HVP). The proposed method covers the mismatch between the actual scene and the rendered image based on HVP. The experimental results show that the proposed method yields an improved color-rendering performance compared to conventional methods.

  6. Frequency modulation of high-order harmonic generation in an orthogonally polarized two-color laser field.

    Science.gov (United States)

    Li, Guicun; Zheng, Yinghui; Ge, Xiaochun; Zeng, Zhinan; Li, Ruxin

    2016-08-08

    We have experimentally investigated the frequency modulation of high-order harmonics in an orthogonally polarized two-color laser field consisting of a mid-infrared 1800nm fundamental pulse and its second harmonic pulse. It is demonstrated that the high harmonic spectra can be fine-tuned as we slightly change the relative delay of the two-color laser pulses. By analyzing the relative frequency shift of each harmonic at different two-color delays, the nonadiabatic spectral shift induced by the rapid variation of the intensity-dependent intrinsic dipole phase can be distinguished from the blueshift induced by the change of the refractive index during self-phase modulation (SPM). Our comprehensive analysis shows that the frequency modulation pattern is a reflection of the average emission time of high-order harmonic generation (HHG), thus offering a simple method to fine-tune the spectra of the harmonics on a sub-cycle time scale.

  7. Color Fringe Correction by the Color Difference Prediction Using the Logistic Function.

    Science.gov (United States)

    Jang, Dong-Won; Park, Rae-Hong

    2017-05-01

    This paper proposes a new color fringe correction method that preserves the object color well by the color difference prediction using the logistic function. We observe two characteristics between normal edge (NE) and degraded edge (DE) due to color fringe: 1) the DE has relatively smaller R-G and B-G correlations than the NE and 2) the color difference in the NE can be fitted by the logistic function. The proposed method adjusts the color difference of the DE to the logistic function by maximizing the R-G and B-G correlations in the corrected color fringe image. The generalized logistic function with four parameters requires a high computational load to select the optimal parameters. In experiments, a one-parameter optimization can correct color fringe gracefully with a reduced computational load. Experimental results show that the proposed method restores well the original object color in the DE, whereas existing methods give monochromatic or distorted color.

  8. Aluminum anode for aluminum-air battery - Part I: Influence of aluminum purity

    Science.gov (United States)

    Cho, Young-Joo; Park, In-Jun; Lee, Hyeok-Jae; Kim, Jung-Gu

    2015-03-01

    2N5 commercial grade aluminum (99.5% purity) leads to the lower aluminum-air battery performances than 4N high pure grade aluminum (99.99% purity) due to impurities itself and formed impurity complex layer which contained Fe, Si, Cu and others. The impurity complex layer of 2N5 grade Al declines the battery voltage on standby status. It also depletes discharge current and battery efficiency at 1.0 V which is general operating voltage of aluminum-air battery. However, the impurity complex layer of 2N5 grade Al is dissolved with decreasing discharge voltage to 0.8 V. This phenomenon leads to improvement of discharge current density and battery efficiency by reducing self-corrosion reaction. This study demonstrates the possibility of use of 2N5 grade Al which is cheaper than 4N grade Al as the anode for aluminum-air battery.

  9. Color deviations in phosphor converted high power light emitting diodes under different dimming schemes

    International Nuclear Information System (INIS)

    Ludwiczak, Bogna; Jantsch, Wolfgang

    2015-01-01

    We investigate experimentally the color stability of high power phosphor converted InGaN LEDs under pulse width modulation (PWM) and continuous current reduction (CCR) dimming modes and for varied operation temperatures. Our measurements reveal that the chromaticity coordinate pathways of the warm white and the cold white LED's differ for the same operation conditions. The color deviation- minimizing phenomenon of opposite peak wavelength shifts appears only for a cold white LED under CCR driving mode. This favorable effect does not occur for warm white LEDs. This type of LED exhibits the best color stability under PWM driving mode. The experimental results are consistently explained in terms of the quantum confined Stark effect and temperature induced changes of the LED emission. - Highlights: • Cold and warm white LEDs reacts colorimetrically unlike in different driving modes. • For cold white emission driving conditions are crucial. • Opposite peak wavelength shifts reduces color deviations for cold white emission. • For warm white emission rather phosphor properties determines color deviations

  10. Preparation of high purity metallic protactinium. Crystal structure and dissolution enthalpy of the metal

    International Nuclear Information System (INIS)

    Bohet, J.

    1977-01-01

    Some 300 mg of Pa have been produced in a high purity metallic state. Protactinium monocarbide has been obtained by the carboreduction of Pa 2 O 5 . Protactinium iodide, produced by the direct reaction of iodine on the carbide, has been sublimated at 420 0 C and thermally dissociated at 1200 0 C on a W wire. In these conditions Pa metal has been deposited with a yield greater than 85% and presents a bct structure stable at room temperature (a=3.921+-0.001A and c=3.235+-0.001A). The fcc phase (Fm3m type) (a=5.018+-0.001A) has been obtained by quenching metallic samples (bct) heated in argon at 1500 0 C. The chemical analysis and the transformation of the fcc into bct phase by controlled heat treatments show the presence of this high temperature phase in the metal. Protactinium mononitride (5.58% N) produced by direct reaction of N on Pa at 1100 0 C presents the same fcc crystal structure but the lattice parameter is higher (a=5.047+-0.001A). The dissolution heat of metallic Pa (bct) has been determined in the aqueous solution HCl 12M - HF 0.05M at 298.15+-0.05 K. The standard formation enthalpies of the ionic species Pa(IV) and Pa(V) are respectively equal to -672+-15 kJ.mol -1 and -821+-15 kJ.mol -1

  11. GOODS-HERSCHEL: SEPARATING HIGH-REDSHIFT ACTIVE GALACTIC NUCLEI AND STAR-FORMING GALAXIES USING INFRARED COLOR DIAGNOSTICS

    Energy Technology Data Exchange (ETDEWEB)

    Kirkpatrick, Allison; Pope, Alexandra [Department of Astronomy, University of Massachusetts, Amherst, MA 01002 (United States); Charmandaris, Vassilis [Department of Physics and Institute of Theoretical and Computational Physics, University of Crete, GR-71003, Heraklion (Greece); Daddi, Emmanuele; Elbaz, David; Pannella, Maurilio; Aussel, Herve; Dasyra, Kalliopi; Leiton, Roger [Laboratoire AIM, CEA/DSM-CNRS-Universite Paris Diderot, Irfu/SAp, Orme des Merisiers, F-91191 Gif-sur-Yvette (France); Hwang, Ho Seong [Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States); Scott, Douglas; Magnelli, Benjamin; Popesso, Paola [Max-Planck-Institut fuer Extraterrestrische Physik (MPE), Postfach 1312, D-85741, Garching (Germany); Altieri, Bruno; Coia, Daniela; Valtchanov, Ivan [Herschel Science Centre, European Space Astronomy Centre, Villanueva de la Canada, E-28691 Madrid (Spain); Dannerbauer, Helmut [Universitaet Wien, Institut fuer Astrophysik, Tuerkenschanzstrasse 17, A-1180 Wien (Austria); Dickinson, Mark; Kartaltepe, Jeyhan [National Optical Astronomy Observatory, 950 North Cherry Avenue, Tucson, AZ 85719 (United States); Magdis, Georgios [Department of Physics, University of Oxford, Keble Road, Oxford OX1 3RH (United Kingdom)

    2013-02-15

    We have compiled a large sample of 151 high-redshift (z = 0.5-4) galaxies selected at 24 {mu}m (S {sub 24} > 100 {mu}Jy) in the GOODS-N and ECDFS fields for which we have deep Spitzer IRS spectroscopy, allowing us to decompose the mid-infrared spectrum into contributions from star formation and activity in the galactic nuclei. In addition, we have a wealth of photometric data from Spitzer IRAC/MIPS and Herschel PACS/SPIRE. We explore how effective different infrared color combinations are at separating our mid-IR spectroscopically determined active galactic nuclei from our star-forming galaxies. We look in depth at existing IRAC color diagnostics, and we explore new color-color diagnostics combining mid-IR, far-IR, and near-IR photometry, since these combinations provide the most detail about the shape of a source's IR spectrum. An added benefit of using a color that combines far-IR and mid-IR photometry is that it is indicative of the power source driving the IR luminosity. For our data set, the optimal color selections are S {sub 250}/S {sub 24} versus S {sub 8}/S {sub 3.6} and S {sub 100}/S {sub 24} versus S {sub 8}/S {sub 3.6}; both diagnostics have {approx}10% contamination rate in the regions occupied primarily by star-forming galaxies and active galactic nuclei, respectively. Based on the low contamination rate, these two new IR color-color diagnostics are ideal for estimating both the mid-IR power source of a galaxy when spectroscopy is unavailable and the dominant power source contributing to the IR luminosity. In the absence of far-IR data, we present color diagnostics using the Wide-field Infrared Survey Explorer mid-IR bands which can efficiently select out high-z (z {approx} 2) star-forming galaxies.

  12. Method of determination of radiochemical purity of gallium-67 citrate injection

    International Nuclear Information System (INIS)

    Wang Quanji

    1985-01-01

    A simple method is used to compare the effect of five developing agents on the radiochemical purity of neutral products of 67 GaCit and on Rsub(f) values. Two preferable developing agents are recommended as suitable for the identification of 67 GaCit injection in its production. The effect of six pH values of different developing agents on radiochemical purity, Rsub(f) and chromatogram are compared for the neutral products. The results of the experiments show that the ascending paper chromatography with 1:2:4 pyridine/ethanol/water and 85:15 methanol/water is preferable for the determination of the radiochemical purity of 67 GaCit. The other developing agents also can be used if there are not any impurities except gallium radioisotopes

  13. [Research on determination of chemical purity of andrographolide by coulometric titration method].

    Science.gov (United States)

    Yang, Ning; Yang, Dezhi; Xu, Lishen; Lv, Yang

    2010-04-01

    The determination of chemical purity of andrographolide by coulometric titration method is studied in this paper. The coulometric titration was carried out in a mixture composed of 4 mol x L(-1) hydrochloric acid and 1 mol x L(-1) potassium bromide solution and 1 mol x L(-1) potassium nitrate solution (1:1). Bromine is electrogenerated at the anode and reacts with the andrographolide. The number of electrons involved in the eleatrode reaction is 2. Purity of andrographolide is 99.76% compared with 99.77% utilizing area normalization method by HPLC. The RSD are 0.33% and 0.02% respectively. The results from two methods are consistent, so the determination of chemical purity of andrographolide by coulometric titration method is scientific and feasible. The method is rapid, simple, convenient, sensitive and accurate. The reference material is not essential in the method. The method is suitable for determination of chemical purity of andrographolide.

  14. Modeling human color categorization: Color discrimination and color memory

    NARCIS (Netherlands)

    Heskes, T.; van den Broek, Egon; Lucas, P.; Hendriks, Maria A.; Vuurpijl, L.G.; Puts, M.J.H.; Wiegerinck, W.

    2003-01-01

    Color matching in Content-Based Image Retrieval is done using a color space and measuring distances between colors. Such an approach yields non-intuitive results for the user. We introduce color categories (or focal colors), determine that they are valid, and use them in two experiments. The

  15. High purity Fe3O4 from Local Iron Sand Extraction

    Science.gov (United States)

    Gunanto, Y. E.; Izaak, M. P.; Jobiliong, E.; Cahyadi, L.; Adi, W. A.

    2018-04-01

    Indonesia has a long coastline and is rich with iron sand. The iron sand is generally rich in various elements such as iron and titanium. One of the products processing of the iron sand mineral is iron (II) (III) oxide (magnetite Fe3O4). The stages of purification process to extracting magnetite phase and discarding the other phases has been performed. Magnetite phase analysis of ironsand extraction retrieved from Indonesia have been investigated. The result of analysis element of iron sand shows that it consists of majority Fe around 65 wt%. However, there are still 17 impurities such as Ti, Al, Ce, Co, Cr, Eu, La, Mg, Mn, Na, Sc, Sm, Th, V, Yb, and Zn. After extraction process, Fe element content increases up to 94%. The iron sand powder after milling for 10 hours and separating using a magnetic separator, the iron sand powders are dissolved in acid chloride solution to form a solution of iron chloride, and this solution is sprinkled with sodium hydroxide to obtain fine powders of Fe3O4. The fine powders which formed were washed with de-mineralization water. The X-ray diffraction pattern shows that the fine powders have a single phase of Fe3O4. The analysis result shows that the sample has the chemical formula: Fe3O4 with a cubic crystal system, space group: Fd-3m and lattice parameters: a = b = c = 8.3681 (1) Å, α = β = γ = 90°. The microstructure analysis shows that the particle of Fe3O4 homogeneously shaped like spherical. The magnetic properties using vibrating sample magnetometer shows that Fe3O4 obtained have ferromagnetic behavior with soft magnetic characteristics. We concluded that this purification of iron sand had been successfully performed to obtain fine powders of Fe3O4 with high purity.

  16. Application of a Barrier Filter at a High Purity Synthetic Graphite Plant, CRADA 99-F035, Final Report; FINAL

    International Nuclear Information System (INIS)

    National Energy Technology Laboratory

    2000-01-01

    Superior Graphite Company and the US Department of Energy have entered into a Cooperative Research and Development Agreement (CRADA) to study the application of ceramic barrier filters at its Hopkinsville, Kentucky graphite plant. Superior Graphite Company is a worldwide leader in the application of advanced thermal processing technology to produce high purity graphite and carbons. The objective of the CRADA is to determine the technical and economic feasibility of incorporating the use of high-temperature filters to improve the performance of the offgas treatment system. A conceptual design was developed incorporating the ceramic filters into the offgas treatment system to be used for the development of a capital cost estimate and economic feasibility assessment of this technology for improving particulate removal. This CRADA is a joint effort of Superior Graphite Company, Parsons Infrastructure and Technology Group, and the National Energy Technology Laboratory (NETL) of the US Department of Energy (DOE)

  17. Color constancy in a scene with bright colors that do not have a fully natural surface appearance.

    Science.gov (United States)

    Fukuda, Kazuho; Uchikawa, Keiji

    2014-04-01

    Theoretical and experimental approaches have proposed that color constancy involves a correction related to some average of stimulation over the scene, and some of the studies showed that the average gives greater weight to surrounding bright colors. However, in a natural scene, high-luminance elements do not necessarily carry information about the scene illuminant when the luminance is too high for it to appear as a natural object color. The question is how a surrounding color's appearance mode influences its contribution to the degree of color constancy. Here the stimuli were simple geometric patterns, and the luminance of surrounding colors was tested over the range beyond the luminosity threshold. Observers performed perceptual achromatic setting on the test patch in order to measure the degree of color constancy and evaluated the surrounding bright colors' appearance mode. Broadly, our results support the assumption that the visual system counts only the colors in the object-color appearance for color constancy. However, detailed analysis indicated that surrounding colors without a fully natural object-color appearance had some sort of influence on color constancy. Consideration of this contribution of unnatural object color might be important for precise modeling of human color constancy.

  18. Image color reduction method for color-defective observers using a color palette composed of 20 particular colors

    Science.gov (United States)

    Sakamoto, Takashi

    2015-01-01

    This study describes a color enhancement method that uses a color palette especially designed for protan and deutan defects, commonly known as red-green color blindness. The proposed color reduction method is based on a simple color mapping. Complicated computation and image processing are not required by using the proposed method, and the method can replace protan and deutan confusion (p/d-confusion) colors with protan and deutan safe (p/d-safe) colors. Color palettes for protan and deutan defects proposed by previous studies are composed of few p/d-safe colors. Thus, the colors contained in these palettes are insufficient for replacing colors in photographs. Recently, Ito et al. proposed a p/dsafe color palette composed of 20 particular colors. The author demonstrated that their p/d-safe color palette could be applied to image color reduction in photographs as a means to replace p/d-confusion colors. This study describes the results of the proposed color reduction in photographs that include typical p/d-confusion colors, which can be replaced. After the reduction process is completed, color-defective observers can distinguish these confusion colors.

  19. Color transparency

    International Nuclear Information System (INIS)

    Miller, G.A.

    1993-01-01

    Imagine shooting a beam of protons of high momentum P through an atomic nucleus. Usually the nuclear interactions prevent the particles from emerging with momentum ∼P. Further, the angular distribution of elastically scattered protons is close to the optical diffraction pattern produced by a black disk. Thus the nucleus acts as a black disk and is not transparent. However, certain high momentum transfer reactions in which a proton is knocked out of the nucleus may be completely different. Suppose that the high momentum transfer process leads to the formation of a small-size color singlet wavepacket that is ejected from the nucleus. The effects of gluons emitted by color singlet systems of closely separated quarks and gluons tend to cancel. Thus the wavepacket-nuclear interactions are suppressed, the nucleus becomes transparant and one says that color transparency CT occurs. The observation of CT also requires that the wavepacket not expand very much while it moves through the nucleus. Simple quantum mechanical formulations can assess this expansion. The creation of a small-sized wavepacket is expected in asymptotic perturbative effects. The author reviews the few experimental attempts to observe color transparency in nuclear (e,e'p) and (p,pp) reactions and interpret the data and their implications

  20. Study of chromatic adaptation using memory color matches, Part II: colored illuminants.

    Science.gov (United States)

    Smet, Kevin A G; Zhai, Qiyan; Luo, Ming R; Hanselaer, Peter

    2017-04-03

    In a previous paper, 12 corresponding color data sets were derived for 4 neutral illuminants using the long-term memory colours of five familiar objects. The data were used to test several linear (one-step and two-step von Kries, RLAB) and nonlinear (Hunt and Nayatani) chromatic adaptation transforms (CAT). This paper extends that study to a total of 156 corresponding color sets by including 9 more colored illuminants: 2 with low and 2 with high correlated color temperatures as well as 5 representing high chroma adaptive conditions. As in the previous study, a two-step von Kries transform whereby the degree of adaptation D is optimized to minimize the DEu'v' prediction errors outperformed all other tested models for both memory color and literature corresponding color sets, whereby prediction errors were lower for the memory color set. Most of the transforms tested, except the two- and one-step von Kries models with optimized D, showed large errors for corresponding color subsets that contained non-neutral adaptive conditions as all of them tended to overestimate the effective degree of adaptation in this study. An analysis of the impact of the sensor space primaries in which the adaptation is performed was found to have little impact compared to that of model choice. Finally, the effective degree of adaptation for the 13 illumination conditions (4 neutral + 9 colored) was successfully modelled using a bivariate Gaussian in a Macleod-Boyton like chromaticity diagram.

  1. Image Transform Based on the Distribution of Representative Colors for Color Deficient

    Science.gov (United States)

    Ohata, Fukashi; Kudo, Hiroaki; Matsumoto, Tetsuya; Takeuchi, Yoshinori; Ohnishi, Noboru

    This paper proposes the method to convert digital image containing distinguishing difficulty sets of colors into the image with high visibility. We set up four criteria, automatically processing by a computer, retaining continuity in color space, not making images into lower visible for people with normal color vision, and not making images not originally having distinguishing difficulty sets of colors into lower visible. We conducted the psychological experiment. We obtained the result that the visibility of a converted image had been improved at 60% for 40 images, and we confirmed the main criterion of the continuity in color space was kept.

  2. HVI Colorimeter and Color Spectrophotometer Relationships and Their Impacts on Developing "Traceable" Cotton Color Standards

    Science.gov (United States)

    Color measurements of cotton fiber and cotton textile products are important quality parameters. The Uster® High Volume Instrument (HVI) is an instrument used globally to classify cotton quality, including cotton color. Cotton color by HVI is based on two cotton-specific color parameters—Rd (diffuse...

  3. ColorPhylo: A Color Code to Accurately Display Taxonomic Classifications.

    Science.gov (United States)

    Lespinats, Sylvain; Fertil, Bernard

    2011-01-01

    Color may be very useful to visualise complex data. As far as taxonomy is concerned, color may help observing various species' characteristics in correlation with classification. However, choosing the number of subclasses to display is often a complex task: on the one hand, assigning a limited number of colors to taxa of interest hides the structure imbedded in the subtrees of the taxonomy; on the other hand, differentiating a high number of taxa by giving them specific colors, without considering the underlying taxonomy, may lead to unreadable results since relationships between displayed taxa would not be supported by the color code. In the present paper, an automatic color coding scheme is proposed to visualise the levels of taxonomic relationships displayed as overlay on any kind of data plot. To achieve this goal, a dimensionality reduction method allows displaying taxonomic "distances" onto a Euclidean two-dimensional space. The resulting map is projected onto a 2D color space (the Hue, Saturation, Brightness colorimetric space with brightness set to 1). Proximity in the taxonomic classification corresponds to proximity on the map and is therefore materialised by color proximity. As a result, each species is related to a color code showing its position in the taxonomic tree. The so called ColorPhylo displays taxonomic relationships intuitively and can be combined with any biological result. A Matlab version of ColorPhylo is available at http://sy.lespi.free.fr/ColorPhylo-homepage.html. Meanwhile, an ad-hoc distance in case of taxonomy with unknown edge lengths is proposed.

  4. High Purity Germanium Detector as part of Health Canada's Mobile Nuclear Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Stocki, Trevor J.; Bouchard, Claude; Rollings, John; Boudreau, Marc-Oliver; McCutcheon- Wickham, Rory; Bergman, Lauren [Radiation Protection Bureau, Health Canada, AL6302D, 775 Brookfield Road, Ottawa, K1A 0K9 (Canada)

    2014-07-01

    In the event of a nuclear emergency on Canadian soil, Health Canada has designed and equipped two Mobile Nuclear Labs (MNLs) which can be deployed near a radiological accident site to provide radiological measurement capabilities. These measurements would help public authorities to make informed decisions for radiation protection recommendations. One of the MNLs has been outfitted with a High Purity Germanium (HPGe) detector within a lead castle, which can be used for identification as well as quantification of gamma emitting radioisotopes in contaminated soil, water, and other samples. By spring 2014, Health Canada's second MNL will be equipped with a similar detector to increase sample analysis capacity and also provide redundancy if one of the detectors requires maintenance. The Mobile Nuclear Lab (MNL) with the HPGe detector has been successfully deployed in the field for various exercises. One of these field exercises was a dirty bomb scenario where an unknown radioisotope required identification. A second exercise was an inter-comparison between the measurements of spiked soil and water samples, by two field teams and a certified laboratory. A third exercise was the deployment of the MNL as part of a full scale nuclear exercise simulating an emergency at a Canadian nuclear power plant. The lessons learned from these experiences will be discussed. (authors)

  5. Mengkaji Penggunaan Software Apple Color untuk Color Grading saat Pasca Produksi

    Directory of Open Access Journals (Sweden)

    Ahmad Faisal Choiril Anam Fathoni

    2011-04-01

    Full Text Available In post-production process, there is one process that is not as well known as the video editing process, the addition of animation, special effects enrichment, motion graphics or audio editing and audio mixing, an important process which is rarely realized called Color Correction or Color Grading. Various software have been made to handle this process, ranging from additional filters are already available for free in any editing software, to high-end devices worth billions of dollars dedicated for specifically conducting Color Correction. Apple Color is one of the software included in the purchase of Final Cut Studio package which also include Final Cut Pro for Video Editing, Soundtrack Pro for Sound Editing and Mixing, and Motion for compositing. Apple's Color is specially designed for color correction tasks after previously edited in Final Cut Pro. This paper is designed to introduce Apple's software as well as analyze the feasibility of Apple Color as a professional device in the world of production, especially post-production. Some professional color correction software will be compared briefly with Apple Color to get an objective conclusion. 

  6. Influence of Surrounding Colors in the Illuminant-Color Mode on Color Constancy

    Directory of Open Access Journals (Sweden)

    Kazuho Fukuda

    2011-05-01

    Full Text Available On color constancy, we showed that brighter surrounding colors had greater influence than dim colors (Uchikawa, Kitazawa, MacLeod, Fukuda, 2010 APCV. Increasing luminance of a stimulus causes the change in appearance from the surface-color to the illuminant-color mode. However it is unknown whether the visual system considers such color appearance mode of surrounding colors to achieve color constancy. We investigated the influence of surrounding colors that appeared illuminant on color constancy. The stimulus was composed of a central test stimulus and surrounding six colors: bright and dim red, green and blue. The observers adjusted the chromaticity of the test stimulus to be appeared as an achromatic surface. The luminance balance of three bright surrounding colors was equalized with that of the optimal colors in three illuminant conditions, then, the luminance of one of the three bright colors was varied in the range beyond the critical luminance of color appearance mode transition. The results showed that increasing luminance of a bright surrounding color shifted the observers' achromatic setting toward its chromaticity, but this effect diminished for the surrounding color in the illuminant-color mode. These results suggest that the visual system considers color appearance mode of surrounding colors to accomplish color constancy.

  7. Purity-activity relationships of natural products: the case of anti-TB active ursolic acid.

    Science.gov (United States)

    Jaki, Birgit U; Franzblau, Scott G; Chadwick, Lucas R; Lankin, David C; Zhang, Fangqiu; Wang, Yuehong; Pauli, Guido F

    2008-10-01

    The present study explores the variability of biological responses from the perspective of sample purity and introduces the concept of purity-activity relationships (PARs) in natural product research. The abundant plant triterpene ursolic acid (1) was selected as an exemplary natural product due to the overwhelming number yet inconsistent nature of its approximate 120 reported biological activities, which include anti-TB potential. Nine different samples of ursolic acid with purity certifications were obtained, and their purity was independently assessed by means of quantitative 1H NMR (qHNMR). Biological evaluation consisted of determining MICs against two strains of virulent Mycobacterium tuberculosis and IC50 values in Vero cells. Ab initio structure elucidation provided unequivocal structural confirmation and included an extensive 1H NMR spin system analysis, determination of nearly all J couplings and the complete NOE pattern, and led to the revision of earlier reports. As a net result, a sigmoid PAR profile of 1 was obtained, demonstrating the inverse correlation of purity and anti-TB bioactivity. The results imply that synergistic effects of 1 and its varying impurities are the likely cause of previously reported antimycobacterial potential. Generating PARs is a powerful extension of the routinely performed quantitative correlation of structure and activity ([Q]SAR). Advanced by the use of primary analytical methods such as qHNMR, PARs enable the elucidation of cases like 1 when increasing purity voids biological activity. This underlines the potential of PARs as a tool in drug discovery and synergy research and accentuates the need to routinely combine biological testing with purity assessment.

  8. A high capacity text steganography scheme based on LZW compression and color coding

    Directory of Open Access Journals (Sweden)

    Aruna Malik

    2017-02-01

    Full Text Available In this paper, capacity and security issues of text steganography have been considered by employing LZW compression technique and color coding based approach. The proposed technique uses the forward mail platform to hide the secret data. This algorithm first compresses secret data and then hides the compressed secret data into the email addresses and also in the cover message of the email. The secret data bits are embedded in the message (or cover text by making it colored using a color coding table. Experimental results show that the proposed method not only produces a high embedding capacity but also reduces computational complexity. Moreover, the security of the proposed method is significantly improved by employing stego keys. The superiority of the proposed method has been experimentally verified by comparing with recently developed existing techniques.

  9. Influence of moisture and hydrogen purity of the reliability of powerful electric machines

    International Nuclear Information System (INIS)

    Vigovs'kij, O.V.; Khvalyin, D.Yi.; Mistets'kij, V.A.

    2017-01-01

    It is shown that today the turbo generators with hydrogen-water cooling system is most unreliable technical equipment of Ukrainian nuclear power plants. On the one hand, hydrogen has several advantages over other coolers; on the other hand, the presence of hydrogen in the turbo generators systems carries the danger of engine rooms of power plants. It is also shown that the water and oxygen are main hazardous impurities in hydrogen, and zone of generator shaft compaction is the most responsible zone with high concentration of water. From the analysis was found that increasing of hydrogen purity reduces the mechanical losses and the change in total losses depending on the hydrogen purity has a linear nature. For example, with an increase the hydrogen purity from 0,1203 to 0,09 the loss in turbo generator rotor can be reduced by nearly 500 kW, which is about 25 % at a pressure of 0,5 MPa. The possibility of using metal hydrides to ensure purity, purification and hydrogen sorption was looked. The most practical value is for such hydrides as LaNi5Hx, FeTiHx, ZrNiHx. The main advantage the metal hydrides method of purification is a significant reduction in the number of purification stages. It was shown that the use of a thermoelectric gas dryer will reduce the total consumption of technological gases, that are removed from nuclear power plants, by 2,3 - 2,4 times due to a decrease in 5,0 - 6,0 times their absolute humidity, and decrease by 5, 0 times the activity of gases due to an increase in their exposure time in the decrease activity installation. All this suggests that the creation a hydrogen humidity monitoring system in the exploited turbo generator will solve the problem of objective control of hydrogen purity with further computerization and accumulation the information. Using a drainage or purification system of hydrogen, reducing the temperature and humidity of the cooling gas, can increase the reliability of operation the turbo generators and significantly

  10. Development of an installation for the production of high-purity hydrogen using the pressure-swing-adsorption process with coke-oven gas as feedstock

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, M; Sugishita, M

    1986-04-01

    This paper describes how Nippon Steel developed a process for producing high-purity hydrogen using the PSA method with coke-oven gas as a feedstock. The process comprises a gas-compression and gas-cooling stage, a pre-treatment stage, an adsorption stage, a de-oxygenation stage and various control and maintenance devices, etc. The triple-tower plant constructed is the equivalent of a four-tower conventional installation, with a maximum capacity of around 10,000 Nm/sup 3//h. 1 tab., 14 figs., 3 refs.

  11. Preliminary assessments of portable color spectrophotometer measurements of cotton color

    Science.gov (United States)

    Cotton in the U.S. is classified for color with the Uster® High Volume Instrument (HVI), using the parameters Rd (diffuse reflectance) and +b (yellowness). It has been reported that some cotton bales, especially those transported overseas, appear to have changed significantly in color from their in...

  12. On color transparency

    International Nuclear Information System (INIS)

    Jennings, B.K.; Miller, G.A.

    1989-10-01

    A quantum mechanical treatment of high momentum transfer nuclear processes is presented. Color transparency, the suppression of initial and final state interaction effects, is shown to arise from using the closure approximation. New conditions for the appearance of color transparency are derived

  13. Spectral Purity Enhancement via Polyphase Multipath Circuits

    NARCIS (Netherlands)

    Mensink, E.; Klumperink, Eric A.M.; Nauta, Bram

    2004-01-01

    The central question of this paper is: can we enhance the spectral purity of nonlinear circuits by using polyphase multipath circuits? The basic idea behind polyphase multipath circuits is to split the nonlinear circuits into two or more paths and exploit phase differences between these paths to

  14. Color Laser Microscope

    Science.gov (United States)

    Awamura, D.; Ode, T.; Yonezawa, M.

    1987-04-01

    A color laser microscope utilizing a new color laser imaging system has been developed for the visual inspection of semiconductors. The light source, produced by three lasers (Red; He-Ne, Green; Ar, Blue; He-Cd), is deflected horizontally by an AOD (Acoustic Optical Deflector) and vertically by a vibration mirror. The laser beam is focused in a small spot which is scanned over the sample at high speed. The light reflected back from the sample is reformed to contain linear information by returning to the original vibration mirror. The linear light is guided to the CCD image sensor where it is converted into a video signal. Individual CCD image sensors are used for each of the three R, G, or B color image signals. The confocal optical system with its laser light source yields a color TV monitor image with no flaring and a much sharper resolution than that of the conventional optical microscope. The AOD makes possible a high speed laser scan and a NTSC or PAL TV video signal is produced in real time without any video memory. Since the light source is composed of R, G, and B laser beams, color separation superior to that of white light illumination is achieved. Because of the photometric linearity of the image detector, the R, G, and B outputs of the system are most suitably used for hue analysis. The CCD linear image sensors in the optical system produce no geometrical distortion, and good color registration is available principally. The output signal can be used for high accuracy line width measuring. The many features of the color laser microscope make it ideally suited for the visual inspection of semiconductor processing. A number of these systems have already been installed in such a capacity. The Color Laser Microscope can also be a very useful tool for the fields of material engineering and biotechnology.

  15. Gamma-ray observations of SN 1987A with an array of high-purity germanium detectors

    International Nuclear Information System (INIS)

    Sandie, W.G.; Nakano, G.H.; Chase, L.F. Jr.; Fishman, G.J.; Meegan, C.A.; Wilson, R.B.; Paciesas, W.

    1988-01-01

    A balloon borne gamma-ray spectrometer comprising an array of high-purity n-type germanium (HPGe) detectors having geometric area 119 cm 2 , resolution 2.5 keV at 1.0 MeV, surrounded by an active NaI (Tl) collimator and Compton suppressing anticoincidence shield nominally 10 cm thick, was flown from Alice Springs, Northern Territory, Australia, on May 29--30, 1987, 96 days after the observed neutrino pulse. The average column depth of residual atmosphere in the direction of SN 1987A at float altitude was 6.3 g cm-2 during the observation. SN 1987A was within the 22-deg full-width-half-maximum (FWHM) field of view for about 3300 s during May 29.9--30.3 UT. No excess gamma rays were observed at energies appropriate to the Ni(56)-Co(56) decay chain or from other lines in the energy region from 0.1 to 3.0 MeV. With 80% of the data analyzed, the 3-sigma upper limit obtained for the 1238-keV line from Co(56) at the instrument resolution (about 3 keV) is 1.3 x 10-3 photons cm-2 s-1

  16. Evaluation of distribution patterns and decision of distribution coefficients of trace elements in high-purity aluminium by INAA

    International Nuclear Information System (INIS)

    Hayakawa, Yasuhiro; Suzuki, Shogo; Hirai, Shoji

    1986-01-01

    Recently, a high-purity aluminium has been used in semi-coductor device, so on. It was required that trace impurities should be reduced and that its content should be quantitatively evaluated. In this study, distribution patterns of many trace impurities in 99.999 % aluminium ingots, which was purified using a normal freezing method, were evaluated by an INAA. The effective distribution coefficient k for each detected elements was calculated using a theoretical distribution equation in the normal freezing method. As a result, the elements of k 1 was Hf. Especially, La, Sm, U and Th could be effectively purified, but Sc and Hf could be scarcely purified. Further more, it was found that the slower freezing gave the effective distribution coefficient close to the equilibrium distribution coefficient, and that the effective distribution coefficient became smaller with the larger atomic radius. (author)

  17. Fear no colors? Observer clothing color influences lizard escape behavior.

    Science.gov (United States)

    Putman, Breanna J; Drury, Jonathan P; Blumstein, Daniel T; Pauly, Gregory B

    2017-01-01

    Animals often view humans as predators, leading to alterations in their behavior. Even nuanced aspects of human activity like clothing color affect animal behavior, but we lack an understanding of when and where such effects will occur. The species confidence hypothesis posits that birds are attracted to colors found on their bodies and repelled by non-body colors. Here, we extend this hypothesis taxonomically and conceptually to test whether this pattern is applicable in a non-avian reptile and to suggest that species should respond less fearfully to their sexually-selected signaling color. Responses to clothing color could also be impacted by habituation to humans, so we examine whether behavior varied between areas with low and high human activity. We quantified the effects of four T-shirt colors on flight initiation distances (FID) and on the ease of capture in western fence lizards (Sceloporus occidentalis), and we accounted for detectability against the background environment. We found no differences in lizard behavior between sites. However, lizards tolerated the closest approaches and were most likely to be captured when approached with the T-shirt that resembled their sexually-selected signaling color. Because changes in individual behavior affect fitness, choice of clothing color by people, including tourists, hikers, and researchers, could impact wildlife populations and research outcomes.

  18. Applications of INAA with Ghent k0 factors to the analysis of high-purity metals and ceramics

    International Nuclear Information System (INIS)

    Erdtmann, G.; Petri, H.; Kaysser, B.; Kueppers, G.

    1988-01-01

    Reactor neutron activation analysis (NAA) has been applied for many years in the chemical-analytical service carried out by the Central Division of Chemical Analysis at Kernforschungsanlage Julich. At this research center, two new research programs were started in 1986: high-temperature-resistant materials and structure ceramics, and basic research for information technology. Trace element analyses of materials are required for both programs, and the demand for activation analyses has largely increased. In most cases they are carried out by a purely instrumental technique, and radiochemical NAA is applied but with some special problems. Activation analyses have been carried out for a number of high-purity and ceramic materials, and the paper shows detection limits obtained with some of them. The differences in detection limits depend not only on the types of materials and the levels of impurities but also on the irradiation and counting conditions chose. In order to obtain realistic estimations of the uncertainties of the results, all sources of error have been considered and their influence on total uncertainties calculated via the error propagation law applied to the equation of absolute activation analysis

  19. Manufacture of high purity metal fluorides

    International Nuclear Information System (INIS)

    Vance, J.M.

    1984-01-01

    The Oak Ridge Gaseous Diffusion Plant has been developing technologies of many kinds since the early forties. The primary purpose of this R and D was to reduce the amount of electrical power and capital expense associated with the enrichment of uranium in the 235 isotope. One area that has received a lot of attention is the chemistry of fluorine and metal fluorides. The producing facility at ORGDP is a chemical pilot plant which has been used through the years to demonstrate new processes. Presently existing in this facility are: absorption columns which have been used to remove trace quantities of krypton and oxides of nitrogen and sulfur from gas streams; a flame reactor that is being used to reduce isotopically altered sulfur hexafluoride for conversion to SO 2 which will be used in acid rain studies; an environmental hold system in which methods were developed to remove or neutralize environmental insulting compounds; a fluid bed reactor, and of course the tungsten hexafluoride process. A rhenium hexafluoride facility is also located in the pilot plant. It is basically the same as the tungsten line with three small muffles being used in place of the large WF6 reactor. The product from each process is heated and transferred to approved 5-inch shipping cylinders and transported to the analytical chemistry laboratory for sampling and analysis. These cylinders must be used for shipment and may require modification of the customer facility to accommodate them. Liquid samples are obtained from the product cylinders and a visual examination of the samples for color and melting temperature provides a good indication of the conversion. X-ray fluorescence is utilized to determine the amount of tungsten and the percent conversion to the hexafluoride is calculated from the weighed sample. Infrared in addition to mass spectrometer analyses are performed to verify the findings. The material is then analyzed by spectrographic methods for contaminants

  20. High temperature color conductivity at next-to-leading log order

    International Nuclear Information System (INIS)

    Arnold, Peter; Yaffe, Laurence G.

    2000-01-01

    The non-Abelian analogue of electrical conductivity at high temperature has previously been known only at leading logarithmic order -- that is, neglecting effects suppressed only by an inverse logarithm of the gauge coupling. We calculate the first sub-leading correction. This has immediate application to improving, to next-to-leading log order, both effective theories of non-perturbative color dynamics, and calculations of the hot electroweak baryon number violation rate

  1. The Influence Of Dead Layer Effect On The Characteristics Of The High Purity Germanium P-Type Detector

    International Nuclear Information System (INIS)

    Ngo Quang Huy

    2011-01-01

    The present work aims at reviewing the studies of the influence of dead layer effect on the characteristics of a high purity germanium (HPGe) p-type detector, obtained by the author and his colleagues in the recent years. The object for study was the HPGe GC1518 detector-based gamma spectrometer of the Center for Nuclear Techniques, Ho Chi Minh City. The studying problems were: The modeling of an HPGe detector-based gamma spectrometer with using the MCNP code; the method of determining the thickness of dead layer by experimental measurements of gamma spectra and the calculations using MCNP code; the influence of material parameters and dead layer on detector efficiency; the increase of dead layer thickness over the operating time of the GC1518 detector; the influence of dead layer thickness increase on the decrease of detector efficiency; the dead layer effect for the gamma spectra measured in the GC1518 detector. (author)

  2. Stork Color Proofing Technology

    Science.gov (United States)

    Ekman, C. Frederick

    1989-04-01

    For the past few years, Stork Colorproofing B.V. has been marketing an analog color proofing system in Europe based on electrophoto-graphic technology it pioneered for the purpose of high resolution, high fidelity color imaging in the field of the Graphic Arts. Based in part on this technology, it will make available on a commercial basis a digital color proofing system in 1989. Proofs from both machines will provide an exact reference for the user and will look, feel, and behave in a reproduction sense like the printed press sheet.

  3. Capillary gel electrophoresis for the quantification and purity determination of recombinant proteins in inclusion bodies.

    Science.gov (United States)

    Espinosa-de la Garza, Carlos E; Perdomo-Abúndez, Francisco C; Campos-García, Víctor R; Pérez, Néstor O; Flores-Ortiz, Luis F; Medina-Rivero, Emilio

    2013-09-01

    In this work, a high-resolution CGE method for quantification and purity determination of recombinant proteins was developed, involving a single-component inclusion bodies (IBs) solubilization solution. Different recombinant proteins expressed as IBs were used to show method capabilities, using recombinant interferon-β 1b as the model protein for method validation. Method linearity was verified in the range from 0.05 to 0.40 mg/mL and a determination coefficient (r(2) ) of 0.99 was obtained. The LOQs and LODs were 0.018 and 0.006 mg/mL, respectively. RSD for protein content repeatability test was 2.29%. In addition, RSD for protein purity repeatability test was 4.24%. Method accuracy was higher than 90%. Specificity was confirmed, as the method was able to separate recombinant interferon-β 1b monomer from other aggregates and impurities. Sample content and purity was demonstrated to be stable for up to 48 h. Overall, this method is suitable for the analysis of recombinant proteins in IBs according to the attributes established on the International Conference for Harmonization guidelines. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. THE ORIGIN OF COLOR GRADIENTS IN EARLY-TYPE SYSTEMS AND THEIR COMPACTNESS AT HIGH-z

    International Nuclear Information System (INIS)

    La Barbera, F.; De Carvalho, R. R.

    2009-01-01

    In this Letter, we present mean optical+NIR color gradient estimates for 5080 early-type galaxies (ETGs) in the grizY JHK wavebands of the Sloan Digital Sky Survey plus the UKIRT Infrared Deep Sky Survey. The color gradient is estimated as the logarithmic slope of the radial color profile in ETGs. With such a large sample size, we study the variation of the mean color gradient as a function of waveband with unprecedented accuracy. We find that (1) color gradients are mainly due, on average, to a metallicity variation of about -0.4 dex per decade in galaxy radius; and (2) a small, but significant, positive age gradient is present, on average, in ETGs, with the inner stellar population being slightly younger, by ∼0.1 dex per radial decade, than the outer one. Also, we show that the presence of a positive mean age gradient in ETGs, as found in the present study, implies their effective radius to be smaller at high-z, consistent with observations.

  5. Color balancing in CCD color cameras using analog signal processors made by Kodak

    Science.gov (United States)

    Kannegundla, Ram

    1995-03-01

    The green, red, and blue color filters used for CCD sensors generally have different responses. It is often necessary to balance these three colors for displaying a high-quality image on the monitor. The color filter arrays on sensors have different architectures. A CCD with standard G R G B pattern is considered for the present discussion. A simple method of separating the colors using CDS/H that is a part of KASPs (Analog Signal Processors made by Kodak) and using the gain control, which is also a part of KASPs for color balance, is presented. The colors are separated from the video output of sensor by using three KASPs, one each for green, red, and blue colors and by using alternate sample pulses for green and 1 in 4 pulses for red and blue. The separated colors gain is adjusted either automatically or manually and sent to the monitor for direct display in the analog mode or through an A/D converter digitally to the memory. This method of color balancing demands high-quality ASPs. Kodak has designed four different chips with varying levels of power consumption and speed for analog signal processing of video output of CCD sensors. The analog ASICs have been characterized for noise, clock feedthrough, acquisition time, linearity, variable gain, line rate clamp, black muxing, affect of temperature variations on chip performance, and droop. The ASP chips have met their design specifications.

  6. Determination of radiochemistry purity and pH of radiopharmaceutical in Northeast nuclear medicine services; Determinacao da pureza radioquimica e pH de radiofarmacos em servicos de medicina nuclear do Nordeste

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, Wellington; Santos, Poliane, E-mail: wellington.gandrade@gmail.com, E-mail: polianeangelo@gmail.com [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil); Lima, Fernando de Andrade; Lima, Fabiana Farias de, E-mail: falima@cnen.gov.br, E-mail: ffmima@cnen.gov.br [Centro Regional de Ciencias Nucleares do Nordeste (CRCN-NE/CNEN-PE), Recife, PE (Brazil)

    2013-07-01

    The radiopharmaceutical is a chemical compound associated with a radionuclide, which is selected so that meets the need cf diagnosis and capable of producing quality images. Drugs labeled with {sup 99m}Tc radionuclide kits consist of lyophilized, and be handled by the nuclear medicine services (NMS) must pass tests as the resolution of ANVISA (RDC 38) published in 2008. Among these tests are those of radiochemical purity and pH determination. This study evaluated the radiochemical purity of radiopharmaceuticals and pH SMN manipulated in the Northeast. The radiochemical purity (RCP) was determined by thin layer chromatography, which were used Whatman Registered-Sign and silica gel, with dimensions of 1 x 10 cm, as stationary phase, and solvents indicated in the inserts of manufacturers. The chromatographic strips were placed in sealed containers so as not to touch the walls thereof. After the chromatographic run, the tape was cut every centimeter and the activities determined in doses of each calibrator NMS. The pH of the radiopharmaceutical was assessed through the use of universal pH paper (Merck Registered-Sign ) and obtained staining compared with its color scale. The results showed (hat 82.6% and 100% of the radiopharmaceuticals of the samples were within the limits recommended by international pharmacopoeias for radiochemical purity and pl-l, respectively. There is then the need to include in routine tests indicated SMN by ANVISA. Well, they can detect possible problems in the marking of radiopharmaceuticals administered to the patient and avoid inappropriate material. (author)

  7. The effect of the purity and of the materials used for adapters on the purification of yttrium by solid state electrotransport

    International Nuclear Information System (INIS)

    Nikoforova, T.V.; Volkov, V.T.

    1986-01-01

    The influence of tantalum, molybdenum and zirconium adapters on the efficiency of the solid state electrotransport process is investigated with a view to increasing the quality and purity of yttrium. The degree and direction of metallic impurity electromigration in the given metals were studied. The impurities in question were shown to move in different directions depending on the type of adapter. Recommendations for the application of adapters according to their purity are given. The application of high purity tantalum as anode and cathode adapters in three-stage solid state electrotransport enabled us to obtain yttrium single crystals with a ratio of resistance at room temperature to that at helium temperatures of 1200. (orig.)

  8. Multi-band transmission color filters for multi-color white LEDs based visible light communication

    Science.gov (United States)

    Wang, Qixia; Zhu, Zhendong; Gu, Huarong; Chen, Mengzhu; Tan, Qiaofeng

    2017-11-01

    Light-emitting diodes (LEDs) based visible light communication (VLC) can provide license-free bands, high data rates, and high security levels, which is a promising technique that will be extensively applied in future. Multi-band transmission color filters with enough peak transmittance and suitable bandwidth play a pivotal role for boosting signal-noise-ratio in VLC systems. In this paper, multi-band transmission color filters with bandwidth of dozens nanometers are designed by a simple analytical method. Experiment results of one-dimensional (1D) and two-dimensional (2D) tri-band color filters demonstrate the effectiveness of the multi-band transmission color filters and the corresponding analytical method.

  9. Various analytical techniques used for the measurement of isotopic purity of heavy water at Madras Atomic Power Station

    International Nuclear Information System (INIS)

    Satyanarayanan, V.; Umapathy, P.; Bhaskaran, R.; Nagarajan, J.; Pradeep, Jeena; Ayyar, S.R.

    2008-01-01

    The paper deals with the various techniques used for the measurement of isotopic purity of heavy water samples received from different sources viz. reactor systems, heavy water upgrading plant and fresh consignment from heavy water production plants. Heavy water is used in PHWRs as moderator and primary coolant. Isotopic Purity is an important parameter to be monitored/analysed regularly for both the systems. There is a minimum isotopic purity level to be maintained in the moderator system due to neutron economy/fuel burnup and in the case of coolant system the measurement is of paramount importance due to its safety considerations. The selection of the method of analysis depends on the isotopic range. The techniques used to measure the isotopic purity of heavy water are a) Infrared Spectrophotometry b) Refractometry c) Densitometry. Infrared spectrometer uses the property of molecular absorption of IR radiation by HOD species and the absorbance is the measure of isotopic purity. This technique is generally used for measuring high isotopic (80-99.98%) and low isotopic samples. Refractometer uses the property of refractive index of heavy water. The difference in refractive indices of light water and heavy water is 0.0048. A 1 % change in D 2 O concentration would thus equal to 0.000048 refractive index units. This method is used for determining the approximate isotopic value of a sample. Density meter uses the property of difference in densities of light and heavy water. The difference in density of 99.999% D 2 O and light water is 0.107540 which covers the whole range of interest. The experience gained with these techniques in the measurements of isotopic purity of various samples are presented in this paper. (author)

  10. A combined electrochemical-irradiation treatment of highly colored and polluted industrial wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Barrera-Diaz, C. E-mail: cbarrera@uaemex.mx; Urena-Nunez, F. E-mail: fun@nuclear.inin.mx; Campos, E.; Palomar-Pardave, M. E-mail: mepp@correo.azc.uam.mx; Romero-Romo, M

    2003-07-01

    This study reports on the attainment of optimal conditions for two electrolytic methods to treat wastewater: namely, electrocoagulation and particle destabilization of a highly polluted industrial wastewater, and electrochemically induced oxidation induced by in situ generation of Fenton's reactive. Additionally, a combined method that consisted of electrochemical treatment plus {gamma}-irradiation was carried out. A typical composition of the industrial effluent treated was COD 3400 mg/l, color 3750 Pt/Co units, and fecal coliforms 21000 MPN/ml. The best removal efficiency was obtained with electrochemical oxidation induced in situ, that resulted in the reduction of 78% for the COD, 86% color and 99.9% fecal coliforms removal. A treatment sequence was designed and carried out, such that after both electrochemical processes, a {gamma}-irradiation technique was used to complete the procedure. The samples were irradiated with various doses in an ALC {gamma}-cell unit provided with a Co-60 source. The removal efficiency obtained was 95% for the COD values, 90% color and 99.9% for fecal coliforms.

  11. A combined electrochemical-irradiation treatment of highly colored and polluted industrial wastewater

    International Nuclear Information System (INIS)

    Barrera-Diaz, C.; Urena-Nunez, F.; Campos, E.; Palomar-Pardave, M.; Romero-Romo, M.

    2003-01-01

    This study reports on the attainment of optimal conditions for two electrolytic methods to treat wastewater: namely, electrocoagulation and particle destabilization of a highly polluted industrial wastewater, and electrochemically induced oxidation induced by in situ generation of Fenton's reactive. Additionally, a combined method that consisted of electrochemical treatment plus γ-irradiation was carried out. A typical composition of the industrial effluent treated was COD 3400 mg/l, color 3750 Pt/Co units, and fecal coliforms 21000 MPN/ml. The best removal efficiency was obtained with electrochemical oxidation induced in situ, that resulted in the reduction of 78% for the COD, 86% color and 99.9% fecal coliforms removal. A treatment sequence was designed and carried out, such that after both electrochemical processes, a γ-irradiation technique was used to complete the procedure. The samples were irradiated with various doses in an ALC γ-cell unit provided with a Co-60 source. The removal efficiency obtained was 95% for the COD values, 90% color and 99.9% for fecal coliforms

  12. A combined electrochemical-irradiation treatment of highly colored and polluted industrial wastewater

    Science.gov (United States)

    Barrera-Díaz, C.; Ureña-Nuñez, F.; Campos, E.; Palomar-Pardavé, M.; Romero-Romo, M.

    2003-07-01

    This study reports on the attainment of optimal conditions for two electrolytic methods to treat wastewater: namely, electrocoagulation and particle destabilization of a highly polluted industrial wastewater, and electrochemically induced oxidation induced by in situ generation of Fenton's reactive. Additionally, a combined method that consisted of electrochemical treatment plus γ-irradiation was carried out. A typical composition of the industrial effluent treated was COD 3400 mg/l, color 3750 Pt/Co units, and fecal coliforms 21000 MPN/ml. The best removal efficiency was obtained with electrochemical oxidation induced in situ , that resulted in the reduction of 78% for the COD, 86% color and 99.9% fecal coliforms removal. A treatment sequence was designed and carried out, such that after both electrochemical processes, a γ-irradiation technique was used to complete the procedure. The samples were irradiated with various doses in an ALC γ-cell unit provided with a Co-60 source. The removal efficiency obtained was 95% for the COD values, 90% color and 99.9% for fecal coliforms.

  13. Definition of the generalized criterion of estimation of ecological purity of textile products

    International Nuclear Information System (INIS)

    Gintibidze, N.; Valishvili, T.

    2009-01-01

    One of actual problems is the estimation of hygienic and ecological properties of fabrics on the basis of the data on the properties of initial fiber. In the present article, the definition of generalized criterion of the estimation of ecological purity of textile products is discussed. The estimation is based on the International Standard EKO-TEX-100, regulating the contents of inorganic and organic compounds in textile production. The determination of all listed substances is made according to appropriate techniques for each parameter. The quantity of substances is determined and compared with norms. The judgement about ecological purity is made by separate parameters. There is no uniform parameter which could estimate the degree of ecological purity of textile products. For calculating the generalized criterion of estimation of ecological purity of textile products, it is offered to estimate each criterion by the points corresponding to each factor. The textile product is recognized as ecologically pure (environment friendly) if the total estimate is more than 1. (author)

  14. Evaluation of bipolar pulse generator for high-purity pulsed ion beam

    International Nuclear Information System (INIS)

    Ito, H.; Kitamura, I.; Masugata, K.

    2008-01-01

    A new type of pulsed ion beam accelerator named 'bipolar pulse accelerator (BPA)' has been proposed in order to improve the purity of intense pulsed ion beams. To confirm the principle of the BPA, we developed a bipolar pulse generator, which consists of a Marx generator and a pulse forming line (PFL) with a rail gap switch on its end. In this article, we report the experimental results of the bipolar pulse and evaluate the electrical characteristics of the bipolar pulse generator. When the bipolar pulse generator was operated at 70% of the full charge condition of the PEL, the bipolar pulse with the first (-138 kV, 72 ns) and the second pulse (+130 kV, 70 ns) was successfully obtained. The evaluation of the electrical characteristics indicates that the developed generator can produce the bipolar pulse with fast rise time and sharp reversing time. At present the bipolar pulse generator is installed in the B y type magnetically insulated ion diode and we carry out the experiment on the production of an intense pulsed ion beam by the bipolar pulse accelerator. (author)

  15. Major Role of NAD-Dependent Lactate Dehydrogenases in the Production of l-Lactic Acid with High Optical Purity by the Thermophile Bacillus coagulans.

    Science.gov (United States)

    Wang, Limin; Cai, Yumeng; Zhu, Lingfeng; Guo, Honglian; Yu, Bo

    2014-12-01

    Bacillus coagulans 2-6 is an excellent producer of optically pure l-lactic acid. However, little is known about the mechanism of synthesis of the highly optically pure l-lactic acid produced by this strain. Three enzymes responsible for lactic acid production-NAD-dependent l-lactate dehydrogenase (l-nLDH; encoded by ldhL), NAD-dependent d-lactate dehydrogenase (d-nLDH; encoded by ldhD), and glycolate oxidase (GOX)-were systematically investigated in order to study the relationship between these enzymes and the optical purity of lactic acid. Lactobacillus delbrueckii subsp. bulgaricus DSM 20081 (a d-lactic acid producer) and Lactobacillus plantarum subsp. plantarum DSM 20174 (a dl-lactic acid producer) were also examined in this study as comparative strains, in addition to B. coagulans. The specific activities of key enzymes for lactic acid production in the three strains were characterized in vivo and in vitro, and the levels of transcription of the ldhL, ldhD, and GOX genes during fermentation were also analyzed. The catalytic activities of l-nLDH and d-nLDH were different in l-, d-, and dl-lactic acid producers. Only l-nLDH activity was detected in B. coagulans 2-6 under native conditions, and the level of transcription of ldhL in B. coagulans 2-6 was much higher than that of ldhD or the GOX gene at all growth phases. However, for the two Lactobacillus strains used in this study, ldhD transcription levels were higher than those of ldhL. The high catalytic efficiency of l-nLDH toward pyruvate and the high transcription ratios of ldhL to ldhD and ldhL to the GOX gene provide the key explanations for the high optical purity of l-lactic acid produced by B. coagulans 2-6. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  16. Spectroscopic Determination of Trace Contaminants in High-Purity Oxygen

    Science.gov (United States)

    Hornung, Steven

    2013-01-01

    Oxygen used for extravehicular activities (EVAs) must be free of contaminants because a difference in a few tenths of a percent of argon or nitrogen content can mean significant reduction in available EVA time. These inert gases build up in the extravehicular mobility unit because they are not metabolized or scrubbed from the atmosphere. A prototype optical emission technique capable of detecting argon and nitrogen below 0.1% in oxygen has been developed. This instrument uses a glow discharge in reduced-pressure gas to produce atomic emission from the species present. Because the atomic emission lines from oxygen, nitrogen, and argon are discrete, and in many cases well-separated, trace amounts of argon and nitrogen can be detected in the ultraviolet and visible spectrum. This is a straightforward, direct measurement of the target contaminants, and may lend itself to a device capable of on-orbit verification of oxygen purity. A glow discharge is a plasma formed in a low-pressure (1 to 10 Torr) gas cell between two electrodes. Depending on the configuration, voltages ranging from 200 V and above are required to sustain the discharge. In the discharge region, the gas is ionized and a certain population is in the excited state. Light is produced by the transitions from the excited states formed in the plasma to the ground state. The spectrum consists of discrete, narrow emission lines for the atomic species, and broader peaks that may appear as a manifold for molecular species such as O2 and N2, the wavelengths and intensities of which are a characteristic of each atom. The oxygen emission is dominated by two peaks at 777 and 844 nm.

  17. Si effects on radiation induced segregation in high purity Fe-18Cr-14Ni alloys irradiated by Ni ions

    International Nuclear Information System (INIS)

    Ohta, Joji; Kako, Kenji; Mayuzumi, Masami; Kusanagi, Hideo; Suzuki, Takayoshi

    1999-01-01

    To illustrate the effects of the element Si on radiation induced segregation, which causes irradiation assisted stress corrosion cracking (IASCC), we investigated grain boundary chemistry of high purity Fe-18Cr-14Ni-Si alloys irradiated by Ni ions using FE-TEM. The addition of Si up to 1% does not affect the Cr depletion at grain boundaries, while it slightly enhances the depletion of Fe and the segregation of Ni and Si. The addition of 2% Si causes the depletion of Cr and Fe and the segregation of Ni and Si at grain boundaries. Thus, the Si content should be as low as possible. In order to reduce the depletion of Cr at grain boundaries, which is one of the major causes of IASCC, Si content should be less than 1%. (author)

  18. [Purity Detection Model Update of Maize Seeds Based on Active Learning].

    Science.gov (United States)

    Tang, Jin-ya; Huang, Min; Zhu, Qi-bing

    2015-08-01

    Seed purity reflects the degree of seed varieties in typical consistent characteristics, so it is great important to improve the reliability and accuracy of seed purity detection to guarantee the quality of seeds. Hyperspectral imaging can reflect the internal and external characteristics of seeds at the same time, which has been widely used in nondestructive detection of agricultural products. The essence of nondestructive detection of agricultural products using hyperspectral imaging technique is to establish the mathematical model between the spectral information and the quality of agricultural products. Since the spectral information is easily affected by the sample growth environment, the stability and generalization of model would weaken when the test samples harvested from different origin and year. Active learning algorithm was investigated to add representative samples to expand the sample space for the original model, so as to implement the rapid update of the model's ability. Random selection (RS) and Kennard-Stone algorithm (KS) were performed to compare the model update effect with active learning algorithm. The experimental results indicated that in the division of different proportion of sample set (1:1, 3:1, 4:1), the updated purity detection model for maize seeds from 2010 year which was added 40 samples selected by active learning algorithm from 2011 year increased the prediction accuracy for 2011 new samples from 47%, 33.75%, 49% to 98.89%, 98.33%, 98.33%. For the updated purity detection model of 2011 year, its prediction accuracy for 2010 new samples increased by 50.83%, 54.58%, 53.75% to 94.57%, 94.02%, 94.57% after adding 56 new samples from 2010 year. Meanwhile the effect of model updated by active learning algorithm was better than that of RS and KS. Therefore, the update for purity detection model of maize seeds is feasible by active learning algorithm.

  19. The Hydrometallurgical Extraction and Recovery of High-Purity Silver

    Science.gov (United States)

    Hoffmann, James E.

    2012-06-01

    -bearing inputs, will be described in detail to demonstrate how typical chemical engineering unit process and unit operations have supplanted classic smelting and fire refining techniques. The Kennecott Copper Company, which has operated a hydrometallurgical circuit successfully for the recovery of high-purity silver from the slimes wet chlorination residue, has permitted me to provide some operation information and results using the technology. Both Phelps Dodge and Kennecott should be recognized for their forward-looking attitude in undertaking the conversion of conceptual chemistry into successful, full-scale plants. The process as employed at Phelps Dodge is discussed at length in reference (J.E. Hoffmann and B. Wesstrom: Hydrometallurgy, 1994, vol. 94, pp. 69-105).

  20. Processing of Color Words Activates Color Representations

    Science.gov (United States)

    Richter, Tobias; Zwaan, Rolf A.

    2009-01-01

    Two experiments were conducted to investigate whether color representations are routinely activated when color words are processed. Congruency effects of colors and color words were observed in both directions. Lexical decisions on color words were faster when preceding colors matched the color named by the word. Color-discrimination responses…

  1. Digitally synthesized high purity, high-voltage radio frequency drive electronics for mass spectrometry

    Science.gov (United States)

    Schaefer, R. T.; MacAskill, J. A.; Mojarradi, M.; Chutjian, A.; Darrach, M. R.; Madzunkov, S. M.; Shortt, B. J.

    2008-09-01

    Reported herein is development of a quadrupole mass spectrometer controller (MSC) with integrated radio frequency (rf) power supply and mass spectrometer drive electronics. Advances have been made in terms of the physical size and power consumption of the MSC, while simultaneously making improvements in frequency stability, total harmonic distortion, and spectral purity. The rf power supply portion of the MSC is based on a series-resonant LC tank, where the capacitive load is the mass spectrometer itself, and the inductor is a solenoid or toroid, with various core materials. The MSC drive electronics is based on a field programmable gate array (FPGA), with serial peripheral interface for analog-to-digital and digital-to-analog converter support, and RS232/RS422 communications interfaces. The MSC offers spectral quality comparable to, or exceeding, that of conventional rf power supplies used in commercially available mass spectrometers; and as well an inherent flexibility, via the FPGA implementation, for a variety of tasks that includes proportional-integral derivative closed-loop feedback and control of rf, rf amplitude, and mass spectrometer sensitivity. Also provided are dc offsets and resonant dipole excitation for mass selective accumulation in applications involving quadrupole ion traps; rf phase locking and phase shifting for external loading of a quadrupole ion trap; and multichannel scaling of acquired mass spectra. The functionality of the MSC is task specific, and is easily modified by simply loading FPGA registers or reprogramming FPGA firmware.

  2. Digitally synthesized high purity, high-voltage radio frequency drive electronics for mass spectrometry.

    Science.gov (United States)

    Schaefer, R T; MacAskill, J A; Mojarradi, M; Chutjian, A; Darrach, M R; Madzunkov, S M; Shortt, B J

    2008-09-01

    Reported herein is development of a quadrupole mass spectrometer controller (MSC) with integrated radio frequency (rf) power supply and mass spectrometer drive electronics. Advances have been made in terms of the physical size and power consumption of the MSC, while simultaneously making improvements in frequency stability, total harmonic distortion, and spectral purity. The rf power supply portion of the MSC is based on a series-resonant LC tank, where the capacitive load is the mass spectrometer itself, and the inductor is a solenoid or toroid, with various core materials. The MSC drive electronics is based on a field programmable gate array (FPGA), with serial peripheral interface for analog-to-digital and digital-to-analog converter support, and RS232/RS422 communications interfaces. The MSC offers spectral quality comparable to, or exceeding, that of conventional rf power supplies used in commercially available mass spectrometers; and as well an inherent flexibility, via the FPGA implementation, for a variety of tasks that includes proportional-integral derivative closed-loop feedback and control of rf, rf amplitude, and mass spectrometer sensitivity. Also provided are dc offsets and resonant dipole excitation for mass selective accumulation in applications involving quadrupole ion traps; rf phase locking and phase shifting for external loading of a quadrupole ion trap; and multichannel scaling of acquired mass spectra. The functionality of the MSC is task specific, and is easily modified by simply loading FPGA registers or reprogramming FPGA firmware.

  3. Fear no colors? Observer clothing color influences lizard escape behavior

    Science.gov (United States)

    Drury, Jonathan P.; Blumstein, Daniel T.; Pauly, Gregory B.

    2017-01-01

    Animals often view humans as predators, leading to alterations in their behavior. Even nuanced aspects of human activity like clothing color affect animal behavior, but we lack an understanding of when and where such effects will occur. The species confidence hypothesis posits that birds are attracted to colors found on their bodies and repelled by non-body colors. Here, we extend this hypothesis taxonomically and conceptually to test whether this pattern is applicable in a non-avian reptile and to suggest that species should respond less fearfully to their sexually-selected signaling color. Responses to clothing color could also be impacted by habituation to humans, so we examine whether behavior varied between areas with low and high human activity. We quantified the effects of four T-shirt colors on flight initiation distances (FID) and on the ease of capture in western fence lizards (Sceloporus occidentalis), and we accounted for detectability against the background environment. We found no differences in lizard behavior between sites. However, lizards tolerated the closest approaches and were most likely to be captured when approached with the T-shirt that resembled their sexually-selected signaling color. Because changes in individual behavior affect fitness, choice of clothing color by people, including tourists, hikers, and researchers, could impact wildlife populations and research outcomes. PMID:28792983

  4. Fear no colors? Observer clothing color influences lizard escape behavior.

    Directory of Open Access Journals (Sweden)

    Breanna J Putman

    Full Text Available Animals often view humans as predators, leading to alterations in their behavior. Even nuanced aspects of human activity like clothing color affect animal behavior, but we lack an understanding of when and where such effects will occur. The species confidence hypothesis posits that birds are attracted to colors found on their bodies and repelled by non-body colors. Here, we extend this hypothesis taxonomically and conceptually to test whether this pattern is applicable in a non-avian reptile and to suggest that species should respond less fearfully to their sexually-selected signaling color. Responses to clothing color could also be impacted by habituation to humans, so we examine whether behavior varied between areas with low and high human activity. We quantified the effects of four T-shirt colors on flight initiation distances (FID and on the ease of capture in western fence lizards (Sceloporus occidentalis, and we accounted for detectability against the background environment. We found no differences in lizard behavior between sites. However, lizards tolerated the closest approaches and were most likely to be captured when approached with the T-shirt that resembled their sexually-selected signaling color. Because changes in individual behavior affect fitness, choice of clothing color by people, including tourists, hikers, and researchers, could impact wildlife populations and research outcomes.

  5. Color measurement of methylene blue dye/clay mixtures and its application using economical methods

    Science.gov (United States)

    Milosevic, Maja; Kaludjerovic, Lazar; Logar, Mihovil

    2016-04-01

    Identifying the clay mineral components of clay materials by staining tests is rapid and simple, but their applicability is restricted because of the mutual interference of the common components of clay materials and difficulties in color determination. The change of color with concentration of the dye is related to the use of colorants as a field test for identifying clay minerals and has been improved over the years to assure the accuracy of the tests (Faust G. T., 1940). The problem of measurement and standardization of color may be solved by combination of colors observed in staining tests with prepared charts of color chips available in the Munsell Book of Color, published by Munsell Color Co. Under a particular set of illumination conditions, a human eye can achieve an approximate match between the color of the dyed clay sample and that of a standard color chip, even though they do have different spectral reflectance characteristics. Experiments were carried out with diffuse reflectance spectroscopy on selected clay samples (three montmorillonite, three kaolinite and one mix-layer clay samples) saturated with different concentration of methylene blue dye solution. Dominant wavelength and purity of the color was obtained on oriented dry samples and calculated by use of the I. C. I. (x, y) - diagram in the region of 400-700 nm (reflectance spectra) without MB and after saturation with different concentrations of MB solutions. Samples were carefully photographed in the natural light environment and processed with user friendly and easily accessible applications (Adobe color CC and ColorHexa encyclopedia) available for android phones or tablets. Obtained colors were compared with Munsell standard color chips, RGB and Hexa color standards. Changes in the color of clay samples in their interaction with different concentration of the applied dye together with application of economical methods can still be used as a rapid fieldwork test. Different types of clay

  6. High-content analysis of single cells directly assembled on CMOS sensor based on color imaging.

    Science.gov (United States)

    Tanaka, Tsuyoshi; Saeki, Tatsuya; Sunaga, Yoshihiko; Matsunaga, Tadashi

    2010-12-15

    A complementary metal oxide semiconductor (CMOS) image sensor was applied to high-content analysis of single cells which were assembled closely or directly onto the CMOS sensor surface. The direct assembling of cell groups on CMOS sensor surface allows large-field (6.66 mm×5.32 mm in entire active area of CMOS sensor) imaging within a second. Trypan blue-stained and non-stained cells in the same field area on the CMOS sensor were successfully distinguished as white- and blue-colored images under white LED light irradiation. Furthermore, the chemiluminescent signals of each cell were successfully visualized as blue-colored images on CMOS sensor only when HeLa cells were placed directly on the micro-lens array of the CMOS sensor. Our proposed approach will be a promising technique for real-time and high-content analysis of single cells in a large-field area based on color imaging. Copyright © 2010 Elsevier B.V. All rights reserved.

  7. 104 evaluation of microbiological purity of some brands of ...

    African Journals Online (AJOL)

    DR. AMINU

    Keywords: Microbiological purity, tetracycline, contaminants, bacterial load, fungal load, microbiological ... Just like food substances, pharmaceutical products .... Malaysia. Chlortetracycline a. Mar. 2005. Mar. 2008. Ghana b. Aug. 2005. Aug.

  8. Setting up of Nuclide GRAF-3S spark source mass spectrometer for the analysis of high purity materials

    International Nuclear Information System (INIS)

    Mahalingam, T.R.; Murugaiyan, P.; Soni, K.S.; Venkateswarlu, Ch.

    1975-01-01

    A spark source mass spectrometer model GRAF-35 manufactured by the Nuclide Corporation, U.S.A., was set up for analysis of nuclear-grade and high purity materials. The main difficulty with its successful operation was to achieve and maintain the required level of vacuum i.e. less than 2X10 -8 torr in the magnetic analyser region. With 100 1/s ion pump, the required vacuum could be achieved, but the spectrometer required periodical baking which minimises the life of the instrument. The pumping system was replaced by Ultek Boostivac pump - a combination of ion pump (150 1/s) and a titanium sublimation pump (1000 1/sec speed for condensable vapours) which eliminated baking as the necessary level of vacuum could be easily achieved whenever required. Results of the analysis of zone-refined indium and uranium for trace impurities are given. (M.G.B.)

  9. Obtention of high purity silica from the flotation waste of itabiritic ore; Obtencao de silica de elevada pureza a partir do rejeito de flotacao de um minerio itabiritico

    Energy Technology Data Exchange (ETDEWEB)

    Martins, Polyana Fabricia Fernandes

    2016-10-01

    Banded iron formations are exploited as iron mineral in 'Quadrilatero Ferrifero' of Minas Gerais (MG) State, Brazil. About half of the amount of extracted material becomes tailings, which are stored in tailing dams or used for filling mining pits. Tens of thousands of tons are generated daily in operating mines in this region, causing concern about the environmental liabilities, and costs to manage the tailing dams. Miners are committed to finding uses for these wastes in other productive chains. This thesis aimed to obtain high purity silica from the flotation tailings of banded iron formations using classical techniques for ore processing, such as particle size classification and magnetic separation, followed by hydrometallurgical leaching, also alkaline fusion and chemical precipitation. The tailings samples was collected in the tailings dam of Peak Mine operated by Vale A.S., in Itabirito – MG. This sample had initially 33.4% by weight SiO{sub 2}, 57.4% wt Fe{sub 2}O{sub 3} and 8.31% wt Al{sub 2}O{sub 3}. After desliming for disposal of the fine particles (-37μm) the composition was 68.0% SiO{sub 2}, 31.4% Fe{sub 2}O{sub 3} and 0.50% Al{sub 2}O{sub 3}. After magnetic separation, the composition was 93.8% SiO{sub 2}, 1.16% Fe{sub 2}O{sub 3} and 3.80% Al{sub 2}O{sub 3}. After acid leaching l or digestion to remove impurities, it was possible to obtain silica with 98% purity. The fusion with sodium hydroxide, followed by alkaline leaching of sodium silicate and silica precipitation gave purities of about 99.5%. Values even higher may be possible with optimization of the parameters of alkaline fusion or by repeating the process from the product with purity of 99.5%. The iron oxide content and the aluminum main contaminants were 0.01% and 0.07%, respectively. Amorphous silica was obtained with high specific surface (322 m{sup 2}/g) and particle size less than 200 nm. Depending on the application, a control should be made for the impurities, such as

  10. Preferred skin color enhancement for photographic color reproduction

    Science.gov (United States)

    Zeng, Huanzhao; Luo, Ronnier

    2011-01-01

    Skin tones are the most important colors among the memory color category. Reproducing skin colors pleasingly is an important factor in photographic color reproduction. Moving skin colors toward their preferred skin color center improves the color preference of skin color reproduction. Several methods to morph skin colors to a smaller preferred skin color region has been reported in the past. In this paper, a new approach is proposed to further improve the result of skin color enhancement. An ellipsoid skin color model is applied to compute skin color probabilities for skin color detection and to determine a weight for skin color adjustment. Preferred skin color centers determined through psychophysical experiments were applied for color adjustment. Preferred skin color centers for dark, medium, and light skin colors are applied to adjust skin colors differently. Skin colors are morphed toward their preferred color centers. A special processing is applied to avoid contrast loss in highlight. A 3-D interpolation method is applied to fix a potential contouring problem and to improve color processing efficiency. An psychophysical experiment validates that the method of preferred skin color enhancement effectively identifies skin colors, improves the skin color preference, and does not objectionably affect preferred skin colors in original images.

  11. Supply-side response to declining heroin purity: fentanyl overdose episode in New Jersey.

    Science.gov (United States)

    Hempstead, Katherine; Yildirim, Emel O

    2014-06-01

    The inelastic price demand observations characteristic of illegal drug markets have led to the conclusion that the burden of a negative supply shock would be completely reflected to consumers. This paper argues that the increasing availability of prescription opioids may threaten heroin sellers' profit margin and force them to find alternative methods to compensate buyers in the event of a supply shock. We investigate the 2006 fentanyl overdose episode in New Jersey and argue that the introduction of non-pharmaceutical fentanyl, its spatial distribution, and the timing of overdose deaths may have been related to trends in heroin purity. Using medical examiner data, as well as data from the Drug Enforcement Administration, Office of Diversion Control on retail sales of prescription opioids in a negative binomial specification, we show that month-to-month fluctuations in heroin purity have a significant effect on fentanyl-related overdoses, particularly in those areas where prescription opioids are highly available. Copyright © 2013 John Wiley & Sons, Ltd.

  12. High colored dissolved organic matter (CDOM) absorption in surface waters of the central-eastern Arctic Ocean: Implications for biogeochemistry and ocean color algorithms.

    Science.gov (United States)

    Gonçalves-Araujo, Rafael; Rabe, Benjamin; Peeken, Ilka; Bracher, Astrid

    2018-01-01

    As consequences of global warming sea-ice shrinking, permafrost thawing and changes in fresh water and terrestrial material export have already been reported in the Arctic environment. These processes impact light penetration and primary production. To reach a better understanding of the current status and to provide accurate forecasts Arctic biogeochemical and physical parameters need to be extensively monitored. In this sense, bio-optical properties are useful to be measured due to the applicability of optical instrumentation to autonomous platforms, including satellites. This study characterizes the non-water absorbers and their coupling to hydrographic conditions in the poorly sampled surface waters of the central and eastern Arctic Ocean. Over the entire sampled area colored dissolved organic matter (CDOM) dominates the light absorption in surface waters. The distribution of CDOM, phytoplankton and non-algal particles absorption reproduces the hydrographic variability in this region of the Arctic Ocean which suggests a subdivision into five major bio-optical provinces: Laptev Sea Shelf, Laptev Sea, Central Arctic/Transpolar Drift, Beaufort Gyre and Eurasian/Nansen Basin. Evaluating ocean color algorithms commonly applied in the Arctic Ocean shows that global and regionally tuned empirical algorithms provide poor chlorophyll-a (Chl-a) estimates. The semi-analytical algorithms Generalized Inherent Optical Property model (GIOP) and Garver-Siegel-Maritorena (GSM), on the other hand, provide robust estimates of Chl-a and absorption of colored matter. Applying GSM with modifications proposed for the western Arctic Ocean produced reliable information on the absorption by colored matter, and specifically by CDOM. These findings highlight that only semi-analytical ocean color algorithms are able to identify with low uncertainty the distribution of the different optical water constituents in these high CDOM absorbing waters. In addition, a clustering of the Arctic Ocean

  13. Purity, adulteration and price of drugs bought on-line versus off-line in the Netherlands.

    Science.gov (United States)

    van der Gouwe, Daan; Brunt, Tibor M; van Laar, Margriet; van der Pol, Peggy

    2017-04-01

    On-line drug markets flourish and consumers have high expectations of on-line quality and drug value. The aim of this study was to (i) describe on-line drug purchases and (ii) compare on-line with off-line purchased drugs regarding purity, adulteration and price. Comparison of laboratory analyses of 32 663 drug consumer samples (stimulants and hallucinogens) purchased between January 2013 and January 2016, 928 of which were bought on-line. The Netherlands. Primary outcome measures were (i) the percentage of samples purchased on-line and (ii) the chemical purity of powders (or dosage per tablet); adulteration; and the price per gram, blotter or tablet of drugs bought on-line compared with drugs bought off-line. The proportion of drug samples purchased on-line increased from 1.4% in 2013 to 4.1% in 2015. The frequency varied widely, from a maximum of 6% for controlled, traditional substances [ecstasy tablets, 3,4-methylenedioxy-methamphetamine (MDMA) powder, amphetamine powder, cocaine powder, 4-bromo-2,5-dimethoxyphenethylamine (2C-B) and lysergic acid diethylamide (LSD)] to more than a third for new psychoactive substances (NPS) [4-fluoroamphetamine (4-FA), 5/6-(2-aminopropyl)benzofuran (5/6-APB) and methoxetamine (MXE)]. There were no large differences in drug purity, yet small but statistically significant differences were found for 4-FA (on-line 59% versus off-line 52% purity for 4-FA on average, P = 0.001), MDMA powders (45 versus 61% purity for MDMA, P = 0.02), 2C-B tablets (21 versus 10 mg 2C-B/tablet dosage, P = 0.49) and ecstasy tablets (131 versus 121 mg MDMA/tablet dosage, P = 0.05). The proportion of adulterated samples purchased on-line and off-line did not differ, except for 4-FA powder, being less adulterated on-line (χ 2  = 8.3; P < 0.02). Drug prices were mainly higher on-line, ranging for various drugs from 10 to 23% higher than that of drugs purchased off-line (six of 10 substances: P < 0.05). Dutch drug users increasingly

  14. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... One Use Facts About Colored Contacts and Halloween Safety Colored Contact Lens Facts Over-the-Counter Costume ... new application of artificial intelligence shows whether a patient’s eyes point to high blood pressure or risk ...

  15. Evaluation of Prebiotic Effects of High-Purity Galactooligosaccharides in vitro and in vivo

    Directory of Open Access Journals (Sweden)

    Ki Bae Hong

    2016-01-01

    Full Text Available Galactooligosaccharides (GOS are an important class of dietary prebiotics that exert beneficial effects on intestinal microbiota and gut barrier function. In this study, high-purity GOS (HP-GOS were investigated in vitro and in vivo and confirmed as prebiotic ingredients in rat diet. HP-GOS were successfully produced using a two-step process, enzymatic hydrolysis and fermentation by yeast. They were found to serve as a good substrate and carbon source for supporting the growth of probiotic bacteria more effectively than other commercial GOS. Following administration of 1 % (by mass of HP-GOS to rats, the growth of Bifidobacterium bifidum and B. longum in the gut increased most rapidly up to 12 h, and thereafter the increase was slow. Therefore, 1 % HP-GOS was found to be acceptable for the growth of probiotic bacteria. Groups of animals that were orally administered HP-GOS and bifidobacteria during the study, and the group administered HP-GOS during the 2nd (days 13–15 and 4th (days 28–30 period of the study had significantly (p<0.05 higher numbers of bifidobacteria in faeces than groups receiving a single dose of bifidobacteria. HP-GOS affected the expression of genes encoding glucagon-like peptide-1 (GLP-1 and peptide YY (PYY. There was a significant upregulation of GLP-1 and PYY mRNA with HP-GOS and bifidobacteria intake. We propose that the prebiotic properties of HP-GOS are potentially valuable for the production of functional foods for human consumption.

  16. Full-Color Biomimetic Photonic Materials with Iridescent and Non-Iridescent Structural Colors.

    Science.gov (United States)

    Kawamura, Ayaka; Kohri, Michinari; Morimoto, Gen; Nannichi, Yuri; Taniguchi, Tatsuo; Kishikawa, Keiki

    2016-09-23

    The beautiful structural colors in bird feathers are some of the brightest colors in nature, and some of these colors are created by arrays of melanin granules that act as both structural colors and scattering absorbers. Inspired by the color of bird feathers, high-visibility structural colors have been created by altering four variables: size, blackness, refractive index, and arrangement of the nano-elements. To control these four variables, we developed a facile method for the preparation of biomimetic core-shell particles with melanin-like polydopamine (PDA) shell layers. The size of the core-shell particles was controlled by adjusting the core polystyrene (PSt) particles' diameter and the PDA shell thicknesses. The blackness and refractive index of the colloidal particles could be adjusted by controlling the thickness of the PDA shell. The arrangement of the particles was controlled by adjusting the surface roughness of the core-shell particles. This method enabled the production of both iridescent and non-iridescent structural colors from only one component. This simple and novel process of using core-shell particles containing PDA shell layers can be used in basic research on structural colors in nature and their practical applications.

  17. Optical fiber design with orbital angular momentum light purity higher than 99.9.

    Science.gov (United States)

    Zhang, Zhishen; Gan, Jiulin; Heng, Xiaobo; Wu, Yuqing; Li, Qingyu; Qian, Qi; Chen, Dongdan; Yang, Zhongmin

    2015-11-16

    The purity of the synthesized orbital-angular-momentum (OAM) light in the fiber is inversely proportional to channel crosstalk level in the OAM optical fiber communication system. Here the relationship between the fiber structure and the purity is firstly demonstrated in theory. The graded-index optical fiber is proposed and designed for the OAM light propagation with the purity higher than 99.9%. 16 fiber modes (10 OAM modes) have been supported by a specific designed graded-index optical fiber with dispersion less than 35 ps/(km∙nm). Such fiber design has suppressed the intrinsic crosstalk to be lower than -30 dB, and can be potentially used for the long distance OAM optical communication system.

  18. Water containing deuterium electrolysis to obtain gaseous hydrogen isotope in a high state of purity

    International Nuclear Information System (INIS)

    Bellanger, Gilbert

    1992-01-01

    In this paper, the basic concept is to prepare hydrogen in a high state of purity by electrolysing water using a palladium cathode. During electrolysis, hydrogen is at first adsorbed at the palladium surface, and next it diffuses through it till opposite face of its entry where it is desorbed; thus permitting to regain it in a very pure state for storage. The method can be used from water containing deuterium. To improve hydrogen adsorption, surface effect of palladium must be studied. It was found that heat treatment of palladium improved the hydrogen permeation flux. The diffusivity of hydrogen is controlled by Fick and Sieverts equations in which temperature has a significant influence on permeation rates. Anyway, hydrogen desorption does not cause any difficulty. In a second part, we have studied the isotopic separation factor using water containing deuterium. We remarked in fact that it depends on current density, overpotential, diffusivity of hydrogen and deuterium and isotopic composition of electrolyte as expected. In the last part, we realized an original electrolysis model in a glove-box in which are taken into account the results given before and also the technology components employed in processes involving the use of tritium. (author) [fr

  19. Precise coulometric titration of uranium in a high-purity uranium metal and in uranium compounds

    International Nuclear Information System (INIS)

    Tanaka, Tatsuhiko; Yoshimori, Takayoshi

    1975-01-01

    Uranium in uranyl nitrate, uranium trioxide and a high-purity uranium metal was assayed by the coulometric titration with biamperometric end-point detection. Uranium (VI) was reduced to uranium (IV) by solid bismuth amalgam in 5M sulfuric acid solution. The reduced uranium was reoxidized to uranium (VI) with a large excess of ferric ion at a room temperature, and the ferrous ion produced was titrated with the electrogenerated manganese(III) fluoride. In the analyses of uranium nitrate and uranium trioxide, the results were precise enough when the error from uncertainty in water content in the samples was considered. The standard sample of pure uranium metal (JAERI-U4) was assayed by the proposed method. The sample was cut into small chips of about 0.2g. Oxides on the metal surface were removed by the procedure shown by National Bureau of Standards just before weighing. The mean assay value of eleven determinations corrected for 3ppm of iron was (99.998+-0.012) % (the 95% confidence interval for the mean), with a standard deviation of 0.018%. The proposed coulometric method is simple and permits accurate and precise determination of uranium which is matrix constituent in a sample. (auth.)

  20. Do focal colors look particularly "colorful"?

    Science.gov (United States)

    Witzel, Christoph; Franklin, Anna

    2014-04-01

    If the most typical red, yellow, green, and blue were particularly colorful (i.e., saturated), they would "jump out to the eye." This would explain why even fundamentally different languages have distinct color terms for these focal colors, and why unique hues play a prominent role in subjective color appearance. In this study, the subjective saturation of 10 colors around each of these focal colors was measured through a pairwise matching task. Results show that subjective saturation changes systematically across hues in a way that is strongly correlated to the visual gamut, and exponentially related to sensitivity but not to focal colors.