WorldWideScience

Sample records for high coercivity ferromagnetic

  1. Temperature Dependence of Exchange Bias and Coercivity in Ferromagnetic Layer Coupled with Polycrystalline Antiferromagnetic Layer

    Institute of Scientific and Technical Information of China (English)

    ZHAO Jin-Wei; HU Jing-Guo; CHEN Guang

    2004-01-01

    The temperature dependence of exchange bias and coercivity in a ferromagnetic layer coupled with an antiferromagnetic layer is discussed.In this model,the temperature dependence comes from the thermal instability of the system states and the temperature modulated relative magnetic parameters.Morever,the thermal fluctuation of orientations of easy axes of antiferromagnetic grains at preparing has been considered.From the present model,the experimental results can be illustrated qualitatively for available magnetic parameters.Based on our discussion,we can conclude that soft ferromagnetic layer coupled by hard antiferromagnetic layer may be very applicable to design magnetic devices.In special exchange coupling,we can get high exchange bias and low coercivity almost independent of temperature for proper temperature ranges.

  2. Formation of FePt Nanoparticles Having High Coercivity

    Energy Technology Data Exchange (ETDEWEB)

    Rutledge, R.D. [Vanderbilt University; MorrisIII, William H [Vanderbilt University; Wellons, M.S. [Vanderbilt University; Gai, Zheng [ORNL; Shen, Jian [ORNL; Bentley, James [ORNL; Wittig, J. E. [Vanderbilt University; Lukehart, C.M. [Vanderbilt University

    2006-01-01

    Ultrasonication of toluene solutions of the heteropolynuclear cluster complex, Pt{sub 3}Fe{sub 3}(CO){sub 15}, in the presence of oleic acid and oleylamine affords surface-capped fcc FePt nanoparticles having an average diameter of ca. 2 nm. Self-assembled arrays of these nanoparticles on oxidized Si wafers undergo a fcc-to-fct phase transition at 775 C to form ferromagnetic FePt nanocrystals ca. 5.8 nm in diameter well dispersed on the Si wafer surface. Room-temperature coercivity measurements of these annealed FePt nanoparticles confirm a high coercivity of ca. 22.3 kOe. Such high coercivity for fct FePt nanoparticles might result from use of a heterpolynuclear complex as a single-source precursor of Fe and Pt neutral atoms or from use of ultrasonication to form fcc FePt nanoparticles under conditions of exceptionally rapid heating. Experiments to determine the critical experimental conditions required to achieve such high room-temperature coercivities in ferromagnetic nanoparticles are underway.

  3. Angular dependence of the coercivity in arrays of ferromagnetic nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Holanda, J. [Departamento de Física, Universidade Federal de Pernambuco, Recife 50670-901, PE (Brazil); Silva, D.B.O. [Pós-Graduação em Ciência de Materiais, Universidade Federal de Pernambuco, Recife 50670-901, PE (Brazil); Padrón-Hernández, E., E-mail: padron@df.ufpe.br [Departamento de Física, Universidade Federal de Pernambuco, Recife 50670-901, PE (Brazil); Pós-Graduação em Ciência de Materiais, Universidade Federal de Pernambuco, Recife 50670-901, PE (Brazil)

    2015-03-15

    We present a new magnetic model for polycrystalline nanowires arrays in porous anodic aluminum oxide. The principal consideration here is the crystalline structure and the morphology of the wires and them the dipolar interactions between the crystals into the wire. Other aspect here is the direct calculation of the dipolar energy for the interaction of one wire with the others in the array. The free energy density was formulated for polycrystalline nanowires arrays in order to determinate the anisotropy effective field. It was using the microstructure study by scanning and transmission electron microscopy for the estimation of the real structure of the wires. After the structural analysis we used the angular dependences for the coercivity field and for the remnant magnetization to determine the properties of the wires. All analysis were made by the theory treatment proposed by Stoner and Wohlfarth.

  4. Effect of temperature-dependent shape anisotropy on coercivity with aligned Stoner-Wohlfarth soft ferromagnets

    OpenAIRE

    He, Lin; Chen, Chinping

    2007-01-01

    The temperature variation effect of shape anisotropy on the coercivity, HC(T), for the aligned Stoner-Wohlfarth (SW) soft ferromagnets, such as fcc Ni, fcc Co and bcc Fe, are investigated within the framework of Neel-Brown (N-B) analysis. An extended N-B equation is thus proposed,by introducing a single dimensionless correction function, the reduced magnetization, m(\\tao) = MS(T)/MS(0), in which \\tao = T/TC is the reduced temperature, MS(T) is the saturation magnetization, and TC is the Curie...

  5. Tailoring coercivity of unbiased exchange-coupled ferromagnet/antiferromagnet bilayers

    Energy Technology Data Exchange (ETDEWEB)

    Sossmeier, K. D.; Schafer, D.; Bastos, A. P. O.; Schmidt, J. E.; Geshev, J. [Instituto de Fisica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, 91501-970 Rio Grande do Sul (Brazil)

    2012-07-01

    This paper reports experimental results obtained on unconventional exchange-coupled ferromagnet/antiferromagnet (FM/AF) system showing zero net bias. The Curie temperature of the FM (NiCu) is lower than the blocking temperature of the AF (IrMn). Samples were either annealed or irradiated with He, Ar, or Ge ions at 40 keV. Due to the exchange coupling at the FM/AF interface, the coercivity (H{sub C}) of the as-deposited FM/AF bilayer is rather higher than that of the corresponding FM single layer. We found that by choosing a proper ion fluence or annealing temperature, it is possible to controllably vary H{sub C}. Ion irradiation of the FM single layer has lead to only a decrease of H{sub C} and annealing or He ion irradiation has not caused important changes at the FM/AF interface; nevertheless, a twofold increase of H{sub C} was obtained after these treatments. Even more significant enhancement of H{sub C} was attained after Ge ion irradiation and attributed to ion-implantation-induced modification of only the FM layer; damages of the FM/AF interface, on the other hand, decrease the coercivity.

  6. High coercivity in nanostructured Co-ferrite thin films

    Indian Academy of Sciences (India)

    J H Yin; B H Liu; J Ding; Y C Wang

    2006-11-01

    Three methods including sol–gel, rf sputtering and pulsed laser deposition (PLD) have been used for the fabrication of high coercivity Co-ferrite thin films with a nanocrystalline structure. The PLD method is demonstrated to be a possible tool to achieve Co-ferrite films with high coercivity and small grain size at low deposition temperature. High coercivity, over 10 kOe, has been successfully achieved in Co-ferrite films with a thickness of ∼ 100 nm deposited using PLD with a substrate temperature at 550°C. The Co-ferrite films prepared by PLD at over 300°C on different substrates including amorphous glass, quartz and silicon exhibits an obvious (111) textured structure and possesses perpendicular anisotropy. Our study has also shown that the high coercivity is related with a large residual strain, which may induce an additional magnetic anisotropy (stress anisotropy) and at the same time serve as pinning centres, which can restrict the domain wall movement and therefore, increase the coercivity.

  7. High coercivity remanence in baked clay materials used in archeomagnetism

    Science.gov (United States)

    McIntosh, Gregg; Kovacheva, Mary; Catanzariti, Gianluca; Donadini, Fabio; Lopez, Maria Luisa Osete

    2011-02-01

    A study of the high coercivity remanence in archeological baked clays has been carried out. More than 150 specimens from 46 sites across Europe have been analyzed, selected on the basis of the presence of a fraction of their natural remanence that was resistant to alternating field demagnetization to 100 mT. The study was based on the stability of isothermal remanence to alternating field and thermal demagnetization and its variation on cooling to liquid nitrogen temperature. Results indicate that the high coercivity remanence may be carried by magnetite, hematite, and in isolated cases partially oxidized magnetite and goethite. In addition, a high coercivity, thermally stable, low unblocking temperature phase has been identified. The unblocking temperatures of both the isothermal remanence and the alternating field resistant natural remanence exhibit similar unblocking temperatures, suggesting that the same phases carry both signals. The high coercivity, low unblocking temperature phase contributes to the natural remanence, sometimes carrying a stable direction and behaving ideally during palaeointensity experiments and sometimes not. An unambiguous mineralogical identification of this phase is lacking, although likely candidates include hemoilmentite, related to clay source lithology, and substituted hematite or magnetic ferri-cristabolite, both possible products of thermal transformation of iron-bearing clays.

  8. Perspectives for high-performance permanent magnets: applications, coercivity, and new materials

    Science.gov (United States)

    Hirosawa, Satoshi; Nishino, Masamichi; Miyashita, Seiji

    2017-03-01

    High-performance permanent magnets are indispensable in the production of high-efficiency motors and generators and ultimately for sustaining the green earth. The central issue of modern permanent magnetism is to realize high coercivity near and above room temperature on marginally hard magnetic materials without relying upon the critical elements such as heavy rare earths by means of nanostructure engineering. Recent investigations based on advanced nanostructure analysis and large-scale first principles calculations have led to significant paradigm shifts in the understandings of coercivity mechanism in Nd–Fe–B permanent magnets, which includes the discovery of the ferromagnetism of the thin (2 nm) intergranular phase surrounding the Nd2Fe14B grains, the occurrence of negative (in-plane) magnetocrystalline anisotropy of Nd ions and some Fe atoms at the interface which degrades coercivity, and visualization of the stochastic behaviors of magnetization in the magnetization reversal process at high temperatures. A major change may occur also in the motor topologies, which is currently overwhelmed by the magnetic flux weakening interior permanent magnet motor type, to other types with variable flux permanent magnet type in some applications to open up a niche for new permanent magnet materials. Keynote talk at 8th International Workshop on Advanced Materials Science and Nanotechnology (IWAMSN2016), 8–12 November 2016, Ha Long City, Vietnam.

  9. Room-temperature five-tesla coercivity of a rare-earth-free shell-ferromagnet

    Science.gov (United States)

    Scheibel, F.; Spoddig, D.; Meckenstock, R.; Gottschall, T.; ćakır, A.; Krenke, T.; Farle, M.; Gutfleisch, O.; Acet, M.

    2017-05-01

    Ni2MnX-based Heusler (X: main group element), when enriched with Mn, will decompose into ferromagnetic Ni2MnX and antiferromagnetic NiMn when temper-annealed around 650 K. When the starting material is chosen such that the X-composition is about 5 at. % and the annealing takes place in the presence of a magnetic field of about 1 T, the resulting material is a composite of nanoprecipitate strongly pinned shell-ferromagnets with a soft ferromagnetic core embedded in the antiferromagnetic matrix. We show that the shells of the precipitates are so strongly pinned that the estimated field required to fully reorient the spins is in the order of 20 T. We examine in a Ni50.0Mn45.1In4.9 sample the pinning and the magnetic interactions of the precipitate and the matrix with magnetization and ferromagnetic resonance studies carried out in fields ranging up to 14 and 12 T, respectively.

  10. Electric field induced changes in the coercivity of a thin-film ferromagnet

    Energy Technology Data Exchange (ETDEWEB)

    Fowley, C; Rode, K; Oguz, K; Kurt, H; Coey, J M D [CRANN and School of Physics, Trinity College Dublin (Ireland)

    2011-08-03

    Data are presented which indicate a modification of magnetic anisotropy in the MgO/CoFeB/Pd and MgO/CoFeB/Pt systems, using electric fields of order 500 MV m{sup -1} (0.5 V nm{sup -1}) applied across a thermally grown SiO{sub 2} as a gate dielectric. The effect is most prominent at low temperature (12 K) and is manifested as a small change in coercivity. The sign of the effect depends on the choice of both capping layer and annealing temperature. The results suggest that both interfaces play a role in the appearance of perpendicular magnetic anisotropy in these thin-film stacks, and not just the interface with MgO.

  11. Very high coercivity magnetic stripes produced by particle rotation

    Energy Technology Data Exchange (ETDEWEB)

    Naylor, R.B.

    1992-12-01

    This paper describes a current research program at Sandia National Laboratories whereby magnetic stripes are produced through the use of a new particle rotation technology. This new process allows the stripes to be produced in bulk and then held in a latent state so that they may be encoded at a later date. Since particle rotation is less dependent on the type of magnetic particle used, very high coercivity particles could provide a way to increase both magnetic tamper-resistance and accidental erasure protection. This research was initially funded by the Department of Energy, Office of Safeguard and Security as a portion of their Science and Technology Base Development, Advanced Security Concepts program. Current program funding is being provided by Sandia National Laboratories as part of their Laboratory Directed Research and Development program.

  12. Temperature stability and microstructure of ultra-high intrinsic coercivity Nd-Fe-B magnets

    Institute of Scientific and Technical Information of China (English)

    HU Zhihua; CHENG Xinghua; ZHU Minggang; LI Wei; LIAN Fazeng

    2008-01-01

    The variations of intrinsic coercivity and remanence of sintered Nd-Fe-B magnets with ultra-high intrinsic coercivity were investigated.The results showed that the intrinsic coercivity and remanence declined simultaneously with increasing temperature,but the squareness of the magnets has hardly been changed.The temperature coefficients of remanence (α) and coercivity (β) for the magnets were calculated by two different methods,and the variations of the temperature coefficients and the microstructure of sintered Nd-Fe-B magnets were analyzed.The temperature coefficients of remanence (α) and coercivity (β) for the sintered magnets are very small,and the existence of free microstructure is necessary to obtain sintered Nd-Fe-B magnets with ultra-high intrinsic coercivity.

  13. Iridate compound produces extraordinarily high coercive magnetic field

    Science.gov (United States)

    Zapf, Vivien; Topping, Craig; Kim, Jae-Wook; Mun, Eun-Deok; Goddard, Paul; Ghannadzadeh, Saman; Luo, Xuan; Cheong, Sang-Wook; Singleton, John

    2014-03-01

    We present a data on an iridate compound that shows an extraordinarily large magnetic hysteresis loop. The coercive magnetic field exceeds 40 Tesla in single-crystal samples. The hysteresis coexists with a linear background, and the total remanent magnetization is about half a Bohr magneton. We will discuss the emergence of these properties from the interplay of spin-orbit coupling, magnetic exchange and possible frustration. The single crystalline material exhibits a magnetic hysteresis loop for one orientation of the magnetic field and a smooth linear increase in the magnetization with field for the other. Measurements were conducted in 65 T short-pulse magnets and the 60 Tesla shaped-pulse magnet at the National High Magnetic Field Lab in Los Alamos. We do not observe any dependence of the magnetic hysteresis on magnetic field sweep rate. Compounds containing Ir4 + have attracted attention recently due to strong spin-orbit coupling that competes with crystal-electric field and exchange interactions. This competition can result in non-Hund's-rule ground states with unusual properties.

  14. τ-MnAl with high coercivity and saturation magnetization

    Directory of Open Access Journals (Sweden)

    J. Z. Wei

    2014-12-01

    Full Text Available In this paper, high purity τ-Mn54Al46 and Mn54−xAl46Cxalloys were successfully prepared using conventional arc-melting, melt-spinning, and heat treatment process. The magnetic and the structural properties were examined using x-ray diffraction (XRD, powder neutron diffraction and magnetic measurements. A room temperature saturation magnetization of 650.5 kAm-1, coercivity of 0.5 T, and a maximum energy product of (BHmax = 24.7 kJm-3 were achieved for the pure Mn54Al46 powders without carbon doping. The carbon substituted Mn54−xAl46Cx, however, reveals a lower Curie temperature but similar saturation magnetization as compared to the carbon-free sample. The electronic structure of MnAl shows that the Mn atom possesses a magnetic moment of 2.454 μB which results from strong hybridization between Mn-Al and Mn-Mn. We also investigated the volume and c/a ratio dependence of the magnetic moments of Mn and Al. The results indicate that an increase in the intra-atomic exchange splitting due to the cell volume expansion, leads to a large magnetic moment for the Mn atom. The Mn magnetic moment can reach a value of 2.9 μB at a volume expansion rate of ΔV/V ≈ 20%.

  15. Observation of high coercive fields in chemically synthesized coated Fe-Pt nanostructures

    Science.gov (United States)

    Dalavi, Shankar B.; Panda, Rabi N.

    2017-04-01

    Nanocrystalline Fe-Pt alloys have been synthesized via chemical reduction route using various capping agents; such as: oleic acid/oleylamine (route-1) and oleic acid/CTAB (route-2). We could able to synthesize Fe50Pt and Fe54Pt alloys via route 1 and 2, respectively. As-prepared Fe-Pt alloys crystallize in disordered fcc phase with crystallite sizes of 2.3 nm and 6 nm for route-1 and route-2, respectively. Disordered Fe-Pt alloys were transformed to ordered fct phase after annealing at 600 °C. SEM studies confirm the spherical shape morphologies of annealed Fe-Pt nanoparticles with SEM particle sizes of 24.4 nm and 21.2 nm for route-1 and route-2, respectively. TEM study confirms the presence of 4.6 nm particles for annealed Fe50Pt alloys with several agglomerating clusters of bigger size and appropriately agrees well with the XRD study. Room temperature magnetization studies of as-prepared Fe-Pt alloys (fcc) show ferromagnetism with negligible coercivities. Average magnetic moments per particle for as-prepared Fe-Pt alloys were estimated to be 753 μB and 814 μB, for route 1 and 2, respectively. Ordered fct Fe-Pt alloys show high values of coercivities of 10,000 Oe and 10,792 Oe for route-1 and route-2, respectively. Observed magnetic properties of the fct Fe-Pt alloys nps were interpreted with the basis of order parameters, size, surface, and composition effects.

  16. Magnetic microstructure and coercivity mechanism of high performance Nd-Fe-B magnets

    Institute of Scientific and Technical Information of China (English)

    ZHU Minggang; LIU Xingmin; FANG Yikun; LI Zhengbang; LI Wei

    2006-01-01

    Magnetic microstructure of high performance Nd-Fe-B magnets was investigated by using magnetic force microscopy. The correlation between magnetic microstructure and coercivity for high performance Nd-Fe-B magnets was studied. It is found that the magnets with different coercivity mechanism take on different microstructures and magnetism. Moreover, the magnetic microstructures of high performance permanent magnets can be explained by the starting field theory model.

  17. Coercive Force and Antimagnetizing Mechanism Relating to Size of Ferromagnetic Microcrystal--A Consummating to Result of Stoner-Wohlforth Theory

    Institute of Scientific and Technical Information of China (English)

    Yu Ning; Ji Jingwen

    2004-01-01

    The expression of critical size of ferromagnetic microcrystal in an external magnetic field with an intensity of H is derived by means of comparing energies of domain structure states.The ferromagnetic microcrystal here means an ferromagnetic single crystal with the size which is smaller than L0, and L0 is the critical value of the size of single-domain particles at the external magnetic field intensity H =0.Also, the coercive strength H(Ls) relating to the size of microcrystal Ls is given and quantitatively evaluated with the material SmCo5 as an instance.It is thus concluded that if L0 > Ls > LC, the antimagnetization of microcrystal will be subjected to a multi-domain process just like the particles of a size greater than L0, only if Ls < LC, the anti-magnetizaton will be carried on in accordance with the Stoner-Wohlforth mechanism( LC is the maximum size of microcrystal with MHcth ).It is suggested that the material RECo5 is available to make an advanced magnet with MHC = 2 K/Mc.

  18. Tailoring the coercivity in ferromagnetic ZnO thin films by 3d and 4f elements codoping

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J. J.; Xing, G. Z., E-mail: guozhong.xing@unsw.edu.au; Yi, J. B.; Li, S. [School of Materials Science and Engineering, The University of New South Wales, Sydney, New South Wales 2052 (Australia); Chen, T. [Department of Physics, The Chinese University of Hong Kong, Shatin (Hong Kong); Ionescu, M. [Australian Nuclear Science and Technology Organization, Sydney, New South Wales 2234 (Australia)

    2014-01-06

    Cluster free, Co (3d) and Eu (4f) doped ZnO thin films were prepared using ion implantation technique accompanied by post annealing treatments. Compared with the mono-doped ZnO thin films, the samples codoped with Co and Eu exhibit a stronger magnetization with a giant coercivity of 1200 Oe at ambient temperature. This was further verified through x-ray magnetic circular dichroism analysis, revealing the exchange interaction between the Co 3d electrons and the localized carriers induced by Eu{sup 3+} ions codoping. The insight gained with modulating coercivity in magnetic oxides opens up an avenue for applications requiring non-volatility in spintronic devices.

  19. High coercivity sized controlled cobalt–gold core–shell nano-crystals prepared by reverse microemulsion

    Energy Technology Data Exchange (ETDEWEB)

    Bahmanrokh, Ghazaleh, E-mail: ghazalehbahmanrokh@yahoo.com [Advanced Materials and Nanotechnology Laboratory, Institute of Advanced Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia); Hashim, Mansor [Advanced Materials and Nanotechnology Laboratory, Institute of Advanced Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia); Soltani, Nayereh [Department of Physics, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia); Ismail, Ismayadi [Advanced Materials and Nanotechnology Laboratory, Institute of Advanced Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia); Vaziri, Parisa [Department of Medical Physics and Biomedical Engineering, Shahid Beheshti University of Medical Sciences, Tehran (Iran, Islamic Republic of); Navaseri, Manizheh; Erfani, Maryam [Department of Physics, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia); Kanagesan, Samikannu [Advanced Materials and Nanotechnology Laboratory, Institute of Advanced Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia)

    2013-10-15

    Graphical abstract: - Highlights: • Calculating the crystallinity percentage and percentage of phases presented in Co–Au core–shell nanoparticles. • Magnetic properties of four groups nanogarin: 5, 10, 15, 20 nm. • Single domain ferromagnetic materials with high coercivity at room temperature. • Intrinsic blocking temperature measured in zero field cooled-warmed (ZFC-W). - Abstract: Size-controlled cobalt–gold core–shell nanoparticles were synthesized via the reverse-micelle microemulsion method. In order to control the size of the nanoparticles, the nucleation and growth process were performed within a confined space by adjusting the water to surfactant ratio of reverse micelles solution during synthesis. The crystallinity percentage and percentage of phases presented in Co–Au core–shell nanoparticles were calculated using X-ray diffraction data. The results from transmission electron microscopy provide direct evidence for core–shell structure nanomaterials. Magnetic properties of the samples were investigated using a vibrating sample magnetometer. The as-prepared samples showed significant coercivity at room temperature. The intrinsic blocking temperature was experimentally deduced from zero-field-cooled warmed (ZFC-W) curves by a simple method without employing an external magnetic field. The B-field dependence temperature data of Co–Au nanoparticles exhibited an intrinsic blocking temperature at 45 K. Annealing these samples at 400 °C caused an increase in particle size, crystallinity percentage and further enhanced their magnetic properties.

  20. SiO{sub 2} modified Co-ferrite with high coercivity

    Energy Technology Data Exchange (ETDEWEB)

    Ding, J. E-mail: masdingj@nus.edu.sg; Gong, H.; Melaka, R.; Wang, S.; Shi, Y.; Chen, Y.J.; Phuc, N.X

    2001-05-01

    Magnetic and Moessbauer measurements have shown that 1-2 wt% of SiO{sub 2} were solved in the CoFe{sub 2}O{sub 4} structure after mechanical milling and subsequent heat treatment. Coercivity values up to 3.5 kOe were measured for CoFe{sub 2}O{sub 4}/SiO{sub 2} powders. High coercivities were also achieved in SiO{sub 2} doped Co-ferrite thin films prepared by sputtering technique. The Co-ferrite thin film deposited on silicon wafer using a 5 wt%-SiO{sub 2}/Co-ferrite target possessed a coercivity of 7.4 kOe, which is the highest value in Co-ferrite and spinel materials according to our knowledge.

  1. Mechanochemical synthesis of Nd2Fe14B alloy with high coercivity

    Energy Technology Data Exchange (ETDEWEB)

    Pal, A; Gabay, A; Hadjipanayis, GC

    2012-12-05

    High coercivity nanocrystalline Nd2Fe14B particles were synthesized by mechanochemical processing involving the reduction of Nd2O3 with Ca in presence of Fe-B and Fe. The as-milled powder shows amorphous structure and subsequent heat treatment results in formation of nanocrystalline Nd2Fe14B. The resulting powder does not only consist of Nd2Fe14B but also some Nd-rich phase. The optimally heat treated sample exhibits coercivity of more than 12 kOe. (C) 2012 Elsevier B.V. All rights reserved.

  2. Fabrication of high quality ferromagnetic Josephson junctions

    Energy Technology Data Exchange (ETDEWEB)

    Weides, M. [Institute for Solid State Research, Research Centre Juelich, D-52425 Juelich (Germany) and CNI-Center of Nanoelectronic Systems for Information Technology, Research Centre Juelich, D-52425 Juelich (Germany)]. E-mail: m.weides@fz-juelich.de; Tillmann, K. [Institute for Solid State Research, Research Centre Juelich, D-52425 Juelich (Germany); Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons, Research Centre Juelich, D-52425 Juelich (Germany); Kohlstedt, H. [Institute for Solid State Research, Research Centre Juelich, D-52425 Juelich (Germany); CNI-Center of Nanoelectronic Systems for Information Technology, Research Centre Juelich, D-52425 Juelich (Germany); Department of Material Science and Engineering and Department of Physics, University of Berkeley, CA 94720 (United States)

    2006-05-15

    We present ferromagnetic Nb/Al{sub 2}O{sub 3}/Ni{sub 60}Cu{sub 40}/Nb Josephson junctions (SIFS) with an ultrathin Al{sub 2}O{sub 3} tunnel barrier. The junction fabrication was optimized regarding junction insulation and homogeneity of current transport. Using ion-beam-etching and anodic oxidation we defined and insulated the junction mesas. The additional 2 nm thin Cu-layer below the ferromagnetic NiCu (SINFS) lowered interface roughness and ensured very homogeneous current transport. A high yield of junctional devices with j {sub c} spreads less than 2% was obtained.

  3. High coercivity through texture formation in SmCo5/Co multilayers

    Science.gov (United States)

    Sastry, P. U.; Mishra, P. K.; Krishnan, M.; Chowdhury, P.; Ravikumar, G.

    2013-02-01

    We have shown that high coercivity in SmCo5/Co multilayer exchange spring magnet can be obtained on silicon substrates as well. This is achieved by annealing the as-grown sample at an optimum temperature that favors texture formation. This compares well with multilayers grown on MgO substrates and post-annealed at the same temperature.

  4. Growth, structural and magnetic properties of high coercivity Co/Pt multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Weller, D.; Folks, L.; Best, M.; Fullerton, E.EwqTerris, B.D.; Kusinski, G.J.; Krishnan, K.M.; Thomas, G.

    2000-11-01

    Co/Pt multilayer films ([Co (tCo nm)/Pt(1 nm)]10, 0.2 < tCo < 2 nm) with perpendicular magnetic anisotropy and room temperature coercivity Hc = 12-15 kOe are fabricated using electron beam evaporation at elevated growth temperatures onto Si(001)/SiNx(40nm)/Pt(20nm) substrate/seed structures. Hysteresis and magnetic force microscopy (MFM) studies indicate changes in the magnetization reversal mechanism along with a sharp increase in coercivity for growth temperatures higher TG {approx} 230 - 250 degrees C. Films grown at TG < 230 degrees C (tCo = 0.2 - 0.4 nm) show large micrometer size magnetic domains and rectangular hysteresis loops indicating magnetization reversal dominated by rapid domain wall motion throughout the film following nucleation at Hn {approx} Hc. Films grown at TG > 250 degrees C show fine-grained MFM features on the sub-100 nm length scale and hysteresis studies indicate reversal dominated by localized switching of small clusters. The hysteresis curves for the highest coercivity films are sheared with a hysteresis slope alpha=4(pi)dM/dH|Hc approximately equal 1.5, which is close to the ideal value for completely decoupled grains of alpha =1. High resolution cross-sectional TEM with elemental analysis shows columnar grains extending throughout the multilayer stack. Sharp Co/Pt interfaces are found from TEM and grazing incidence X-ray diffraction. At higher TG, Co depletion and structural defects at the grain boundaries provide a mechanism for exchange decoupling of adjacent grains, which may result in the high coercivities observed. Anisotropy and magnetization values are estimated as Ku {approx} 8x106 erg/cc and MS {approx} 450 emu/cc (per total volume), hence Hk = 2Ku/MS {approx} 17.5 kOe for the highest coercivity Hc {approx} 15 kOe films.

  5. High-temperature ferromagnetism in heavily Fe-doped ferromagnetic semiconductor (Ga,Fe)Sb

    Energy Technology Data Exchange (ETDEWEB)

    Tu, Nguyen Thanh [Department of Electrical Engineering and Information Systems, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656 (Japan); Department of Physics, Ho Chi Minh City University of Pedagogy, 280, An Duong Vuong Street, District 5, Ho Chi Minh City 748242 (Viet Nam); Hai, Pham Nam [Department of Electrical Engineering and Information Systems, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656 (Japan); Department of Physical Electronics, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro, Tokyo 152-0033 (Japan); Center for Spintronics Research Network (CSRN), The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Anh, Le Duc [Department of Electrical Engineering and Information Systems, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656 (Japan); Tanaka, Masaaki [Department of Electrical Engineering and Information Systems, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656 (Japan); Center for Spintronics Research Network (CSRN), The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan)

    2016-05-09

    We show high-temperature ferromagnetism in heavily Fe-doped ferromagnetic semiconductor (Ga{sub 1−x},Fe{sub x})Sb (x = 23% and 25%) thin films grown by low-temperature molecular beam epitaxy. Magnetic circular dichroism spectroscopy and anomalous Hall effect measurements indicate intrinsic ferromagnetism of these samples. The Curie temperature reaches 300 K and 340 K for x = 23% and 25%, respectively, which are the highest values reported so far in intrinsic III-V ferromagnetic semiconductors.

  6. Isotropic, high coercive field in melt-spun tetragonal Heusler Mn3Ge

    Directory of Open Access Journals (Sweden)

    Adel Kalache

    2016-08-01

    Full Text Available Nanostructured Mn3Ge ribbons with a composition ranging from 77 to 74 at.% Mn were prepared using induction melting, melt-spinning, and subsequent heat treatment. The hard magnetic properties of the ribbons originate from the highly anisotropic tetragonal D022 structure of Mn3Ge. Depending on the composition and the amount of ferrimagnetic Mn5Ge2 as a secondary phase, a coercivity of up to μ0HC = 2.62 T was obtained for the Mn3Ge ribbons. Microstructure investigations by transmission electron microscopy confirmed the formation of the secondary phase. All samples show isotropic coercive fields, i.e., independent of the direction of the applied magnetic field in contrast to already known epitaxial thin films. The Curie temperature was found to be higher than 800 K, which is the temperature of the phase transition from the tetragonal D022 structure to the hexagonal D019 structure.

  7. Isotropic, high coercive field in melt-spun tetragonal Heusler Mn3Ge

    Science.gov (United States)

    Kalache, Adel; Kreiner, Guido; Ouardi, Siham; Selle, Susanne; Patzig, Christian; Höche, Thomas; Felser, Claudia

    2016-08-01

    Nanostructured Mn3Ge ribbons with a composition ranging from 77 to 74 at.% Mn were prepared using induction melting, melt-spinning, and subsequent heat treatment. The hard magnetic properties of the ribbons originate from the highly anisotropic tetragonal D022 structure of Mn3Ge. Depending on the composition and the amount of ferrimagnetic Mn5Ge2 as a secondary phase, a coercivity of up to μ0HC = 2.62 T was obtained for the Mn3Ge ribbons. Microstructure investigations by transmission electron microscopy confirmed the formation of the secondary phase. All samples show isotropic coercive fields, i.e., independent of the direction of the applied magnetic field in contrast to already known epitaxial thin films. The Curie temperature was found to be higher than 800 K, which is the temperature of the phase transition from the tetragonal D022 structure to the hexagonal D019 structure.

  8. Synthesis of Fe–Si–B–Mn-based nanocrystalline magnetic alloys with large coercivity by high energy ball milling

    Indian Academy of Sciences (India)

    P D Reddi; N K Mukhopadhyay; B Majumdar; A K Singh; S S Meena; S M Yusuf; N K Prasad

    2014-06-01

    Alloys of Fe–Si–B with varying compositions of Mn were prepared using high energy planetary ball mill for maximum duration of 120 h. X-ray diffraction (XRD) analysis suggests that Si gets mostly dissolved into Fe after 80 h of milling for all compositions. The residual Si was found to form an intermetallic Fe3Si. The dissolution was further confirmed from the field emission scanning electron microscopy/energy dispersive X-ray analysis (FE-SEM/EDX). With increased milling time, the lattice parameter and lattice strain are found to increase. However, the crystallite size decreases from micrometer (75–95 m) to nanometer (10–20 nm). Mössbauer spectra analysis suggests the presence of essentially ferromagnetic phases with small percentage of super paramagnetic phase in the system. The saturation magnetization (s), remanance (r) and coercivity (c) values for Fe–0Mn sample after 120 h of milling were 96.4 Am2/kg, 11.5 Am2/kg and 12.42 k Am-1, respectively. However, for Fe–10Mn–5Cu sample the s, c and r values were found to be 101.9 Am2/kg, 10.98 kA/m and 12.4 Am2/kg, respectively. The higher value of magnetization could be attributed to the favourable coupling between Mn and Cu.

  9. High-Coercivity Iron Oxide Based Nanocomposites - Particle Shape and Magnetic Structure by Synchrotron and Neutron Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Vejpravova, Jana Poltierova; Prokleska, Jan; Vales, Vaclav; Danis, Stanislav; Mantlikova, Alice; Holy, Vaclav [Charles University Prague, Faculty of Mathematics and Physics, Department of Condensed Matter Physics, Ke Karlovu 5, 121 16 - Prague 2 (Czech Republic); Brazda, Petr [Institute of Inorganic Chemistry, Academy of Sciences of the CR, 250 68 - Rez (Czech Republic); Doyle, Stephen [Synchrotron Light Source ANKA, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen (Germany); Ritter, Clemens [Institute Laue Langevin, 6 rue Jules Horowitz, F-38042 - Grenoble Cedex 9 (France); Kitazawa, H [National Institute for Materials Science, Quantum Beam Center, Neutron Scattering Group, 1-2-2 Sengen, Tsukuba-shi, Ibaraki 305-0047 (Japan); Niznansky, D, E-mail: vejpravova@seznam.cz [Charles University Prague, Faculty of Science, Department of Inorganic Chemistry, Hlavova 2, 121 16 - Prague 2 (Czech Republic)

    2011-03-15

    We report on advanced investigation of structure and magnetism of high-coercivity Fe{sub 2-x}Al{sub x}O{sub 3}/SiO{sub 2} (x = 0 - 0.75) nanocrystals obtained by a smart sol-gel route. The substitution of Fe by Al originates suppression of the high-to-low coercivity crossover at 120 K typical for the {epsilon}-Fe{sub 2}O{sub 3} phase. Our neutron scattering experiment revealed, that the high-coercivity collinear magnetic structure of the {epsilon}-Fe{sub 2}O{sub 3} persists in the Al-doped nanocrystals down to low temperatures, while an incommensurate magnetic structure develops in the low-coercivity phase in the undoped {epsilon}-Fe{sub 2}O{sub 3} only. The size and shape of the nanocrystals was obtained by advanced profile analysis of the high-quality S-PXRD data.

  10. Coercive diplomacy

    DEFF Research Database (Denmark)

    Jakobsen, Peter Viggo

    2016-01-01

    Coercive diplomacy (CD) involves the use of military threats and/or limited force in support of diplomatic negotiations relying on persuasion, rewards and assurances. This combination of coercion (sticks) and diplomacy (carrots) is as old as the practice of diplomacy, and it is typically employed...... separate strategic eras with distinct challenges and theoretical developments are identified since the field’s emergence in the 1960s: the Cold War, the humanitarian 1990s, the war on terror and the hybrid future. The record clearly shows that skilful use of coercive diplomacy can resolve crises...... that coercive diplomacy does hold....

  11. Magnetization and Coercivity in Ferromagnetic Films with Cubic Lattices%具有立方格点结构的铁磁薄膜的磁化强度和矫顽力

    Institute of Scientific and Technical Information of China (English)

    袁敏; 张君霞; 陈洪

    2005-01-01

    Using the variational cumulant expansion, the authors examine the magnetization and coercivity for spin1/2 ferromagnetic films of simple cubic, body-centered-cubic and face-centered-cubic lattices. It is shown that the magnetization and coercivity depend on the lattice structures as well as the temperature and the number of spin layers in the film.%使用变分累积展开法.计算了简单立方、体心立方、面心立方格点上自旋1/2的铁磁薄膜的磁化强度和矫玩力.显示磁化强度和矫顽力不仅依赖于温度和自旋层数,而且还依赖于格点结构.

  12. High coercivity in mechanically milled ThMn12-type Nd-Fe-Mo nitrides

    Science.gov (United States)

    Zhang, Xiao-dong; Cheng, Ben-pei; Yang, Ying-chang

    2000-12-01

    Starting from carefully homogenized Nd10Fe90-yMoy (y=12, 10, 7) alloys and by appropriate mechanical milling, the as-milled microstructure consisting of a nanoscale mixture of severely distorted 1:12 phase and substitutional α-Fe-based solid solution was obtained. This kind of as-milled microstructure was thought to have a critical effect on the formation of iron-free nanocrystalline 1:12 phase during subsequent annealing. Upon nitrogenation, the sample of Nd10Fe78Mo12Nx exhibited a record-high coercivity of 13.1 kOe at 293 K. Measurements of initial magnetization curve and a family of demagnetization curves engendered under different maximum applied fields Hm were carried out, and the results revealed the domain-wall pinning at grain boundaries as the coercivity mechanism. A low Mo-content sample of Nd10Fe83Mo7Nx with iHc˜5.8 kOe, Br˜6.8 kG, and (BH)max˜7.0 MG Oe was made by optimizing the preparation conditions.

  13. Defect mediated magnetic interaction and high Tc ferromagnetism in Co doped ZnO nanoparticles.

    Science.gov (United States)

    Pal, Bappaditya; Giri, P K

    2011-10-01

    Structural, optical and magnetic studies have been carried out for the Co-doped ZnO nanoparticles (NPs). ZnO NPs are doped with 3% and 5% Co using ball milling and ferromagnetism (FM) is studied at room temperature and above. A high Curie temperature (Tc) has been observed from the Co doped ZnO NPs. X-ray diffraction and high resolution transmission electron microscopy analysis confirm the absence of metallic Co clusters or any other phase different from würtzite-type ZnO. UV-visible absorption and photoluminescence studies on the doped samples show change in band structure and oxygen vacancy defects, respectively. Micro-Raman studies of doped samples shows defect related additional strong bands at 547 and 574 cm(-1) confirming the presence of oxygen vacancy defects in ZnO lattice. The field dependence of magnetization (M-H curve) measured at room temperature exhibits the clear M-H loop with saturation magnetization and coercive field of the order of 4-6 emu/g and 260 G, respectively. Temperature dependence of magnetization measurement shows sharp ferromagnetic to paramagnetic transition with a high Tc = 791 K for 3% Co doped ZnO NPs. Ferromagnetic ordering is interpreted in terms of overlapping of polarons mediated through oxygen vacancy defects based on the bound magnetic polaron (BMP) model. We show that the observed FM data fits well with the BMP model involving localised carriers and magnetic cations.

  14. Thermal effect on magnetic parameters of high-coercivity cobalt ferrite

    Energy Technology Data Exchange (ETDEWEB)

    Chagas, E. F., E-mail: efchagas@fisica.ufmt.br; Ponce, A. S.; Prado, R. J.; Silva, G. M. [Instituto de Física, Universidade Federal de Mato Grosso, 78060-900 Cuiabá-MT (Brazil); Bettini, J. [Laboratório Nacional de Nanotecnologia, Centro Nacional de Pesquisa em Energia e Materiais, 13083-970 Campinas (Brazil); Baggio-Saitovitch, E. [Centro Brasileiro de Pesquisas Físicas, Rua Xavier Sigaud 150 Urca. Rio de Janeiro (Brazil)

    2014-07-21

    We prepared very high-coercivity cobalt ferrite nanoparticles synthesized by a combustion method and using short-time high-energy mechanical milling to increase strain and the structural defects density. The coercivity (H{sub C}) of the milled sample reached 3.75 kOe—a value almost five times higher than that obtained for the non-milled material (0.76 kOe). To investigate the effect of the temperature on the magnetic behavior of the milled sample, we performed a thermal treatment on the milled sample at 300, 400, and 600 °C for 30 and 180 min. We analyzed the changes in the magnetic behavior of the nanoparticles due to the thermal treatment using the hysteresis curves, Williamson-Hall analysis, and transmission electron microscopy. The thermal treatment at 600 °C causes decreases in the microstructural strain and density of structural defects resulting in a significant decrease in H{sub C}. Furthermore, this thermal treatment increases the size of the nanoparticles and, as a consequence, there is a substantial increase in the saturation magnetization (M{sub S}). The H{sub C} of the samples treated at 600 °C for 30 and 180 min were 2.24 and 1.93 kOe, respectively, and the M{sub S} of these same samples increased from 57 emu/g to 66 and 70 emu/g, respectively. The H{sub C} and the M{sub S} are less affected by the thermal treatment at 300 and 400 °C.

  15. Highly coercive cobalt ferrite nanoparticles-CuTl-1223 superconductor composites

    Energy Technology Data Exchange (ETDEWEB)

    Jabbar, Abdul; Qasim, Irfan; Khan, Shahid A.; Nadeem, K.; Waqee-ur-Rehman, M.; Mumtaz, M., E-mail: mmumtaz75@yahoo.com; Zeb, F.

    2015-03-01

    We explored the effects of highly coercive cobalt ferrite (CoFe{sub 2}O{sub 4}) nanoparticles addition on structural, morphological, and superconducting properties of Cu{sub 0.5}Tl{sub 0.5}Ba{sub 2}Ca{sub 2}Cu{sub 3}O{sub 10-δ} (CuTl-1223) matrix. Series of (CoFe{sub 2}O{sub 4}){sub x}/CuTl-1223 (x=0 ∼2.0 wt%) composites samples were synthesized and were characterized by x-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared (FTIR) absorption spectroscopy, and dc-resistivity versus temperature measurements. The magnetic behavior of CoFe{sub 2}O{sub 4} nanoparticles was determined by MH-loops with the help of superconducting quantum interference device (SQUID). MH-loops analysis showed that these nanoparticles exhibit high saturation magnetization (86 emu/g) and high coercivity (3350 Oe) at 50 K. The tetragonal structure of host CuTl-1223 superconducting matrix was not altered after the addition of CoFe{sub 2}O{sub 4} nanoparticles, which gave us a clue that these nanoparticles had occupied the inter-granular sites (grain-boundaries) and had filled the pores. The increase of mass density with increasing content of these nanoparticles in composites can also be an evidence of filling up the voids in the matrix. The resistivity versus temperature measurements showed an increase in zero resistivity critical {T_c(0)}, which could be most probably due to improvement of weak-links by the addition of these nanoparticles. But the addition of these nanoparticles beyond an optimum level caused the agglomeration and produced additional stresses in material and suppressed the superconductivity. - Highlights: • T{sub c}(0) increased with increasing CoFe{sub 2}O{sub 4} nanoparticles up to x=1.5. • CoFe{sub 2}O{sub 4} nanoparticles addition has not affected the structure of CuTl-1223. • Addition of CoFe{sub 2}O{sub 4} nanoparticles has improved inter-grains weak links. • Non-monotonic variation of ρ{sub (300} {sub K)} (Ω-cm) is due to

  16. High-coercivity CoFe2O4 thin films on Si substrates by sol-gel

    Science.gov (United States)

    Tang, Xianwu; Jin, Linghua; Wei, Renhuai; Zhu, Xiaoguang; Yang, Jie; Dai, Jianming; Song, Wenhai; Zhu, Xuebin; Sun, Yuping

    2017-01-01

    CoFe2O4 (CFO) thin films with high coercivity HC are desirable in applications. The difficulty in achieving large-area CFO thin films with high coercivity by sol-gel has hindered the development of CFO thin films. Herein, polycrystalline CFO thin films with the room temperature out-of-plane and in-plane coercivity HC respectively reached ~5.9 and 3.6 kOe has been achieved on the silicon substrate by sol-gel. The room-temperature maximum magnetic energy product (BH)max and remanence ratio Mr/Ms are of 1.66 MG Oe and 0.58 respectively, which are also the largest values amongst the CFO thin films prepared by solution methods. At the same time, annealing temperature and thickness effects on the HC, (BH)max and Mr/Ms of the derived CFO thin films have been investigated. It is observed that grain size and residual tensile strain in the derived films play an important role in the variations of HC and Mr/Ms. These results will provide an effective route for fabricating larger-area high-coercivity CFO thin films with low-cost by sol-gel on silicon wafers.

  17. Highly thermal-stable ferromagnetism by a natural composite

    Science.gov (United States)

    Ma, Tianyu; Gou, Junming; Hu, Shanshan; Liu, Xiaolian; Wu, Chen; Ren, Shuai; Zhao, Hui; Xiao, Andong; Jiang, Chengbao; Ren, Xiaobing; Yan, Mi

    2017-01-01

    All ferromagnetic materials show deterioration of magnetism-related properties such as magnetization and magnetostriction with increasing temperature, as the result of gradual loss of magnetic order with approaching Curie temperature TC. However, technologically, it is highly desired to find a magnetic material that can resist such magnetism deterioration and maintain stable magnetism up to its TC, but this seems against the conventional wisdom about ferromagnetism. Here we show that a Fe-Ga alloy exhibits highly thermal-stable magnetization up to the vicinity of its TC, 880 K. Also, the magnetostriction shows nearly no deterioration over a very wide temperature range. Such unusual behaviour stems from dual-magnetic-phase nature of this alloy, in which a gradual structural-magnetic transformation occurs between two magnetic phases so that the magnetism deterioration is compensated by the growth of the ferromagnetic phase with larger magnetization. Our finding may help to develop highly thermal-stable ferromagnetic and magnetostrictive materials.

  18. High coercivity in Fe-Nb-B-Dy bulk nanocrystalline magnets

    Energy Technology Data Exchange (ETDEWEB)

    Ziolkowski, Grzegorz; Chrobak, Artur; Klimontko, Joanna [Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007, Katowice (Poland); Chrobak, Dariusz; Rak, Jan [Institute of Materials Science, University of Silesia, 75 Pulku Piechoty 1, 41-500, Chorzow (Poland); Zivotsky, Ondrej; Hendrych, Ales [Department of Physics, VSB-TU Ostrava, Ostrava (Czech Republic)

    2016-11-15

    The paper refers to structural and magnetic properties of the (Fe{sub 80}Nb{sub 6}B{sub 14}){sub 1-x}Dy{sub x} (x = 0.08, 0.10, 0.12, 0.16) bulk nanocrystalline alloys prepared by making use of the vacuum suction casting technique. The samples are in a form of rods with different diameters d = 1.5, 1, and 0.5 mm. The phase structure was investigated by XRD technique and reveals an occurrence of magnetically hard Dy{sub 2}Fe{sub 14}B as well as other relatively soft Dy-Fe, Fe-B, and Fe phases dependently on the Dy content. The alloys show hard magnetic properties with high coercive field up to 5.5 T (for x = 0.12 and d = 0.5 mm). The observed magnetic hardening effect with the increase of cooling rate (decrease of sample diameter d) can be attributed to a formation of ultra-hard magnetic objects as well as increasing role of low dimensional microstructure. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. Mechanisms of High Coercivity in Ni/NiO Composite Films by Post Annealing

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A coercivity as large as 2.4 kOe has been achieved in the Ni/NiO composite film after an annealing under a magnetic field of 10 kOe and an O2 partial pressure of 0.001 torr. The coercivity was attributed to the strong exchange coupling of Ni and NiO. Small grain size of Ni and NiO was observed after the post-annealing. The enhanced coercivity is probably associated with the domain wall pinning by local energy minima, the distribution of Ni and NiO, and the domain structure in the interface of Ni/NiO generated under the presence of the magnetic field during the post-annealing.

  20. Coercivity enhancement in (Co/CoO)n superlattices

    Science.gov (United States)

    Polisetty, Srinivas; Binek, Christian

    2009-03-01

    The temperature dependence of the coercivity is studied in (Co/CoO)n periodic multilayer thin film superstructures below and above the exchange bias blocking temperature. The ferromagnetic Co thin films are grown with the help of MBE at a base pressure of 10E-10 m.bar whereas antiferromagnetic CoO thin films are grown from in-situ oxidized Co. The thicknesses of these films are monitored by reflection high energy electron diffraction (RHEED). A mean-field theory^1 is outlined which provides an analytic and intuitive expression for the enhancement of the coercivity of the ferromagnet which experiences the exchange coupling with a neighboring antiferromagnet. An experimental approach is developed allowing to determine the interface susceptibility of an individual antiferromagnetic pinning layer by systematic change in the thickness of the antiferromagnet thin films in various sets of superlattice samples measured at different temperatures, respectively. The experiment enables us to separate out the intrinsic coercivity from the contribution induced by exchange coupling at the interface. It is the goal of our study to evidence or disprove if it is simply this susceptibility of the reversible interface magnetization creating the spin drag effect and by that the coercivity enhancement. Financial support by NSF through CAREER DMR-0547887, NRI and Nebraska MRSEC. ^1G. Scholten, K. D. Usadel, and U. Nowak, Phys. Rev B. 71, 064413 (2005).

  1. Synthesis of High Coercivity Core–Shell Nanorods Based on Nickel and Cobalt and Their Magnetic Properties

    Directory of Open Access Journals (Sweden)

    Shaijumon MM

    2009-01-01

    Full Text Available Abstract Hybrid magnetic nanostructures with high coercivity have immense application potential in various fields. Nickel (Ni electrodeposited inside Cobalt (Co nanotubes (a new system named Ni @ Co nanorods were fabricated using a two-step potentiostatic electrodeposition method. Ni @ Co nanorods were crystalline, and they have an average diameter of 150 nm and length of ~15 μm. The X-ray diffraction studies revealed the existence of two separate phases corresponding to Ni and Co. Ni @ Co nanorods exhibited a very high longitudinal coercivity. The general mobility-assisted growth mechanism proposed for the growth of one-dimensional nanostructures inside nano porous alumina during potentiostatic electrodeposition is found to be valid in this case too.

  2. High coercivity microcrystalline Nd-rich Nd-Fe-Co-Al-B bulk magnets prepared by direct copper mold casting

    Science.gov (United States)

    Zhao, L. Z.; Hong, Y.; Fang, X. G.; Qiu, Z. G.; Zhong, X. C.; Gao, X. S.; Liu, Z. W.

    2016-06-01

    High coercivity Nd25Fe40Co20Al15-xBx (x=7-15) hard magnets were prepared by a simple process of injection casting. Different from many previous investigations on nanocomposite compositions, the magnets in this work contain hard magnetic Nd2(FeCoAl)14B, Nd-rich, and Nd1+ε(FeCo)4B4 phases. The magnetic properties, phase evolution, and microstructure of the as-cast and annealed magnets were investigated. As the boron content increased from 7 to 11 at%, the intrinsic coercivity Hcj of the as-cast magnet increased from 816 to 1140 kA/m. The magnets annealed at 750 °C have shown more regular and smaller grains than the as-cast alloys, especially for the x=11 alloy. The high intrinsic coercivities for the annealed alloys with x=8~11 result from the presence of small-sized grains in the microstructure. The highest Hcj of 1427 kA/m was obtained for the heat treated alloy with x=10. This work provides an alternative approach for preparing fully dense Nd-rich bulk hard magnets with relatively good properties.

  3. MnxGa1-x nanodots with high coercivity and perpendicular magnetic anisotropy

    Science.gov (United States)

    Karel, J.; Casoli, F.; Lupo, P.; Celegato, F.; Sahoo, R.; Ernst, B.; Tiberto, P.; Albertini, F.; Felser, C.

    2016-11-01

    A MnxGa1-x (x = 0.70) epitaxial thin film with perpendicular magnetic anisotropy and a large coercivity (μ0Hc = 1 T) was patterned into nanodots using a combined self-assembly nanolithography and plasma etching procedure. Nanostructuring is achieved by self-assembly of polystyrene nanospheres acting as a mask on the magnetic film. This procedure allows easy patterning of a large area although introduced some chemical disorder, which resulted in a soft magnetic component in the magnetic hysteresis loops. However, chemical order was recovered after vacuum annealing at low temperature. The resulting nanodots retain the properties of the original film, i.e. magnetization oriented perpendicular to the particle and large coercivity. Our results suggest this lithography procedure could be a promising direction for nanostructuring tetragonal Heusler alloys.

  4. Joint effect of ferromagnetic and non-ferromagnetic cations for adjusting room temperature ferromagnetism of highly luminescent CuNiInS quaternary nanocrystals

    Science.gov (United States)

    Shen, Jin; Wang, Chunlei; Xu, Shuhong; Lv, Changgui; Zhang, Ruohu; Cui, Yiping

    2017-01-01

    In this work, highly luminescent quaternary CuNiInS nanocrystals (NCs) are put forward as a good prototype for investigating defect-induced room temperature ferromagnetism. A ferromagnetic Ni cation can preserve the strong luminescence of NCs without introducing intermediate energy levels in the center of the forbidden band. The strong luminescence of NCs is used as an indicator for monitoring the concentration of vacancy defects inside them, facilitating the investigation of the origin of room temperature ferromagnetism in CuNiInS NCs. Our results reveal that the patching of Cu vacancies ({{{{V}}}{{Cu}}}-) with Ni will result in bound magnetic polarons composed of both {{{{V}}}{{Cu}}}- and a substitution of Cu by Ni ({{{{Ni}}}{{Cu}}}+), giving rise to the room temperature ferromagnetism of CuNiInS NCs. Either the ferromagnetic Ni or the non-ferromagnetic Cu cation can tune the magnetism of CuNiInS NCs because of the change of bound magnetic polaron concentration at the altered concentration ratio of {{{{V}}}{{Cu}}}- and {{{{Ni}}}{{Cu}}}+.

  5. A link between the coercivity and microstructure of high moment Fe films and their use in magnetic tunnel junctions

    Energy Technology Data Exchange (ETDEWEB)

    Georgieva, M.T. [Institute for Materials Research, Maxwell Building, The University of Salford, Salford M5 4WT (United Kingdom)]. E-mail: milena.georgieva@mdm.infm.it; Telling, N.D. [Institute for Materials Research, Maxwell Building, The University of Salford, Salford M5 4WT (United Kingdom); Magnetic Spectroscopy Group, CCLRC Daresbury Laboratory, Warrington WA4 4AD (United Kingdom); Grundy, P.J. [Institute for Materials Research, Maxwell Building, The University of Salford, Salford M5 4WT (United Kingdom)

    2006-01-25

    Magnetron sputtered single Fe films have been 'softened' magnetically by controlled N-doping during the sputter deposition. This technique allows a reduction in grain size and coercivity of the Fe films, without decreasing the saturation magnetization and without the formation of any crystalline FeN phases. We describe this effect through a modification of the random magnetocrystalline anisotropy model, by taking the film thickness into account. The coercivities calculated in this way are in good agreement with those obtained experimentally. It is demonstrated that N-doping can be samples increased as to control the switching field of the 'free' layer in magnetic trilayer films of the MTJ type. It is thus possible to construct an all Fe-electrode magnetic tunnel junction (MTJ) that displays the tunneling magnetoresistance (TMR) effect by altering the switching field of one Fe layer using N-doping. The ability to control the magnetic softness of high magnetic moment materials is important in regard to their incorporation into TMR devices.

  6. High perpendicular coercive field of CoFe{sub 2}O{sub 4} thin films deposited by PLD

    Energy Technology Data Exchange (ETDEWEB)

    Terzzoli, M.C.; Duhalde, S.; Jacobo, S.; Steren, L.; Moina, C

    2004-04-28

    Thin films of CoFe{sub 2}O{sub 4} were deposited on (1 0 0) Si and (1 0 0) MgO substrates by pulsed laser deposition (PLD). The X-ray analysis shows the existence of single-phase spinel structure. Thin films deposited on (1 0 0) MgO substrates are epitaxial and completely oriented in-plane and out of plane due to the small lattice mismatch between Co ferrite and MgO. The surface microstructure was probed by atomic force microscopy and we can describe it like a tidy mosaic of monocrystals. Surprisingly, the films grew on (1 0 0) Si using 355 nm, reveal a complete (1 1 1) orientation in spite of the native oxide of the substrate when deposited. The films deposited with 266 nm also were textured in the (1 1 1) but with less particulate on the surface. (1 0 0) films show at 35 K a perpendicular coercive field H{sub c} as high as 12.9 kOe, meanwhile for the (1 1 1) films H{sub c} was around 9 kOe. However, at room temperature, the (1 1 1) films deposited with 266 nm show a perpendicular coercive field of 5.1 kOe and a squareness of 0.86 which make them attractive for magneto-optic recording applications.

  7. Anisotropic ferromagnetic behaviors in highly orientated epitaxial NiO-based thin films

    Directory of Open Access Journals (Sweden)

    Yu-Jun Zhang

    2015-07-01

    Full Text Available Antiferromagnetic materials attract a great amount of attention recently for promising antiferromagnet-based spintronics applications. NiO is a conventional antiferromagnetic semiconductor material and can show ferromagnetism by doping other magnetic elements. In this work, we synthesized epitaxial Fe-doped NiO thin films on SrTiO3 substrates with various crystal orientations by pulsed laser deposition. The room-temperature ferromagnetism of these films is anisotropic, including the saturated magnetization and the coercive field. The anisotropic magnetic behaviors of Fe-doped NiO diluted magnetic oxide system should be closely correlated to the magnetic structure of antiferromagnetic NiO base. Within the easy plane of NiO, the coercive field of the films becomes smaller, and larger coercive field while tested out of the easy plane of NiO. The saturated magnetization anisotropy is due to different strain applied by different substrates. These results lead us to more abundant knowledge of the exchange interactions in this conventional antiferromagnetic system.

  8. Tuning coercive force by adjusting electric potential in solution processed Co/Pt(111) and the mechanism involved

    Science.gov (United States)

    Chang, Cheng-Hsun-Tony; Kuo, Wei-Hsu; Chang, Yu-Chieh; Tsay, Jyh-Shen; Yau, Shueh-Lin

    2017-03-01

    A combination of a solution process and the control of the electric potential for magnetism represents a new approach to operating spintronic devices with a highly controlled efficiency and lower power consumption with reduced production cost. As a paradigmatic example, we investigated Co/Pt(111) in the Bloch-wall regime. The depression in coercive force was detected by applying a negative electric potential in an electrolytic solution. The reversible control of coercive force by varying the electric potential within few hundred millivolts is demonstrated. By changing the electric potential in ferromagnetic layers with smaller thicknesses, the efficiency for controlling the tunable coercive force becomes higher. Assuming that the pinning domains are independent of the applied electric potential, an electric potential tuning-magnetic anisotropy energy model was derived and provided insights into our knowledge of the relation between the electric potential tuning coercive force and the thickness of the ferromagnetic layer. Based on the fact that the coercive force can be tuned by changing the electric potential using a solution process, we developed a novel concept of electric-potential-tuned magnetic recording, resulting in a stable recording media with a high degree of writing ability.

  9. Rethinking Coercive Control.

    Science.gov (United States)

    Stark, Evan

    2009-12-01

    The critical appraisals of Coercive Control focus largely on what my analysis implies for intervention, a matter to which the book devotes only limited space. In this reply, I reiterate core concepts in the book and acknowledge that much more work is needed to translate the realities of coercive control into practical legal and advocacy strategies. I review how coercive control differs from partner assaults and so why it merits a distinct response; the extent to which coercive control targets gender identity; the wisdom of complementing the focus on violence with an emphasis on male domination, sexual inequality and personal liberty; what this implies for shelters and the law; why sexual inequality differentiates coercive control from female partner abuse of men; how sexual equality can be both cause and antidote for coercive control; why I think an affirmative concept of freedom is essential to grasp the human rights violations inflicted by coercive control; and what it means to "story" coercive control by integrating women into the larger liberty narrative on which our national identity rests.

  10. Atomic structure of high-coercivity cobalt-carbide nanoparticles ensembles

    Science.gov (United States)

    Arena, D. A.; Sterbinsky, G.; Stephens, P. W.; Carroll, K. J.; Yoon, H.; Meng, S.; Huba, Z.; Carpenter, E. E.

    2013-03-01

    Permanent magnets are increasingly important in numerous applications, including the quickly expanding area of green technologies (e . g . high efficiency electric car motors and wind turbine power systems). We present studies of novel permanent magnet materials based on cobalt carbide nanoparticles (NPs), where the energy product (BHmax) exceeds 20 kJ / m3. The NPs are synthesized via a polyol process, which offers a flexible approach to modify the Co-carbide phase (Co2C and Co3C), and NP morphology, size and size dispersion. The Co2C and Co3C phases have unique magnetic properties, and the combination exhibits the high BHmax . We present a detailed assessment of the structure of mixtures of Co2C and Co3 NPs, measured by high-resolution, synchrotron based powder x-ray diffraction (p-XRD). Both the Co2C and Co3 phases exhibit an orthorhombic structure (Pnnm and Pnma space groups, respectively). The high-resolution p-XRD facilitates identification of mixed phase samples, enabling detailed comparisons of the atomic structure with the magnetic properties, measured by both lab-based magnetometry and x-ray spectroscopy (soft x-ray XAS & XMCD).

  11. Anisotropy and Microstructure of High Coercivity Rare Earth Iron Permanent Magnets, List of Papers Published

    Science.gov (United States)

    1989-01-01

    aublattice anisotropy. 1. Introduction The compound Nd2Fe14B is the basic material for the production of high quality Permanent magniets [1, 21. It...the in-plane anisotropy is in disagreement with the observed different magnetiza- tion curves for Nd2Fe14B in the [1001 and [1101 directions [101... Nd2Fe14B based permanent magnets so far. The grain size of the magnets also strongly der ds on the processing technique. The electron micrographs of Fig

  12. High Coercivity Sr-ferrite Magnetic Thin Films Induced by Various Underlayers

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Three kinds of oxide underlayers, namely SiO2, ZnO and Al2O3, were deposited prior to the sputtering of Sr-ferrite films, respectively, in order to induce the optimum grain morphology and the texture of the films. A Sr-ferrite film with an easy axis in-plane orientation was induced by SiO2 underlayer. In contrast, it prefers to be perpendicular to film plane for the cases of ZnO and Al2O3 underlayers. The optimum magnetic properties of the former film along film plane are: 4πMr=1.7 kG, iHc=5.35 kOe, and Sq=0.59, which are mainly dominated by the exchange coupling effect, determined by Wohlfarth's remanence analysis, among grains. While those for the films with an easy axis perpendicular to film plane can be as high as 4πMr=3.72 kG, iHc=6.42 kOe, and Sq=0.82, which are mainly dominated by the magnetostatic interaction among grains.

  13. Ultrathin SmCo5 nanoflakes with high-coercivity prepared by solid particle (NaCl) and surfactant co-assisted ball milling

    Science.gov (United States)

    Zuo, Wen-Liang; Zhao, Xin; Zhao, Tong-Yun; Hu, Feng-Xia; Sun, Ji-Rong; Shen, Bao-Gen

    2016-05-01

    The ultrathin SmCo5 nanoflakes with average thickness smaller than 50 nm are prepared by a novel method of solid particle (NaCl) and surfactant co-assisted ball milling. The as-prepared nanoflakes exhibit a narrower thickness distribution of 10–50 nm and high coercivity of 23 kOe. The possible formation mechanism of nanoflakes are proposed. Temperature dependence of demagnetization curves indicate that the magnetization reversal may be controlled by both nucleation and pinning. The results of X-ray powder diffraction and magnetic measurement for aligned SmCo5 nanoflakes resin composite indicate that the nanoflakes have a high texture degree. The ultrathin thickness and high coercivity are beneficial for preparing the high performance soft/hard coupling magnets and nanocomposite magnets.

  14. High coercivity, anisotropic, heavy rare earth-free Nd-Fe-B by Flash Spark Plasma Sintering.

    Science.gov (United States)

    Castle, Elinor; Sheridan, Richard; Zhou, Wei; Grasso, Salvatore; Walton, Allan; Reece, Michael J

    2017-09-11

    In the drive to reduce the critical Heavy Rare Earth (HRE) content of magnets for green technologies, HRE-free Nd-Fe-B has become an attractive option. HRE is added to Nd-Fe-B to enhance the high temperature performance of the magnets. To produce similar high temperature properties without HRE, a crystallographically textured nanoscale grain structure is ideal; and this conventionally requires expensive "die upset" processing routes. Here, a Flash Spark Plasma Sintering (FSPS) process has been applied to a Dy-free Nd30.0Fe61.8Co5.8Ga0.6Al0.1B0.9 melt spun powder (MQU-F, neo Magnequench). Rapid sinter-forging of a green compact to near theoretical density was achieved during the 10 s process, and therefore represents a quick and efficient means of producing die-upset Nd-Fe-B material. The microstructure of the FSPS samples was investigated by SEM and TEM imaging, and the observations were used to guide the optimisation of the process. The most optimal sample is compared directly to commercially die-upset forged (MQIII-F) material made from the same MQU-F powder. It is shown that the grain size of the FSPS material is halved in comparison to the MQIII-F material, leading to a 14% increase in coercivity (1438 kA m(-1)) and matched remanence (1.16 T) giving a BHmax of 230 kJ m(-3).

  15. Influence of dysprosium substitution on magnetic and mechanical properties of high intrinsic coercivity Nd-Fe-B magnets prepared by double-alloy powder mixed method

    Institute of Scientific and Technical Information of China (English)

    胡志华; 瞿海锦; 马冬威; 罗成; 王会杰

    2016-01-01

    The double-alloy powder mixed method is very proper for developing new small-mass products by changing the composi-tion of sintered Nd-Fe-B magnets, and there is little research on this aspect. The variation on magnetic and mechanical properties of high intrinsic coercivity Nd-Fe-B magnets prepared by double-alloy powder mixed method was discussed, which is a method blend-ing two-type main phase alloy powders with different components. The results showed that the intrinsic coercivity and density of sin-tered Nd-Fe-B magnets increased gradually with the increase in Dy content, and the double-alloy powder mixed method could obtain high intrinsic coercivity Nd-Fe-B magnets with good crystallographic alignment and microstructure. The bending strength of sintered Nd-Fe-B magnets declined, and the Rockwell hardness of sintered Nd-Fe-B magnets first declined, and then increased with the in-crease in Dy content. The microstructure showed that there existed the phenomenon that the Dy element diffused into main phase dur-ing sintering process, and the distribution of Dy content in main phase had some variation in homogeneity as a result of incomplete reaction between the double-alloy powder types.

  16. Preparation of YCo{sub 5}, PrCo{sub 5} and SmCo{sub 5} anisotropic high-coercivity powders via mechanochemistry

    Energy Technology Data Exchange (ETDEWEB)

    Gabay, A.M., E-mail: gabay@udel.edu [Department of Physics and Astronomy, University of Delaware, 217 Sharp Lab, Newark, DE 19716 (United States); Hu, X.C. [Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716 (United States); Hadjipanayis, G.C. [Department of Physics and Astronomy, University of Delaware, 217 Sharp Lab, Newark, DE 19716 (United States)

    2014-11-15

    Polydispersed RCo{sub 5} powders consisting mostly of single crystal particles with an average size ranging from 280 nm to 400 nm have been prepared mechanochemically for R=Y, Pr, Pr–Sm and Sm. The synthesis included (i) mechanical activation of a mixture of rare earth oxides, Co, Ca and CaO, (ii) short annealing and (iii) separation of the RCo{sub 5} particles through a multi-step washing process. The highest room-temperature coercivities of the oriented YCo{sub 5}, PrCo{sub 5} and SmCo{sub 5} powders were 20.6, 19.1 and 41.5 kOe, respectively. This improvement compared to traditionally ground powders is attributed to a lower density of crystalline defects. An investigation of a broad, 1050–1320 K, range of the synthesis temperatures revealed nearly universal evolution of crystalline anisotropy of the particles and their remanent magnetization, significant variations in the particle growth rate—with growth of the YCo{sub 5} particles being the most sluggish—and, surprisingly, no correlation between the average size of the particles and their coercivity. These findings extend the practical limits associated with hard magnetic materials and demonstrate that the hard magnetic properties of the mechanochemically synthesized YCo{sub 5} and PrCo{sub 5} powders are similar to those of traditionally prepared SmCo{sub 5}. - Highlights: • Mechanochemistry yields RCo{sub 5} single crystals few hundred nanometers in size. • Coercivity of powders is 2–5 times larger than the one attainable through milling. • The high coercivity is attributed to a lower density of crystalline defects.

  17. Ultrafast Coercivity Dynamics in GaMnAs

    Science.gov (United States)

    Hall, Kimberley; Zahn, Jeremy; March, Samuel; Liu, Xinyu; Furdyna, Jacek

    2008-03-01

    The hole-mediated ferromagnetism in III-Mn-V diluted magnetic semiconductors opens up a whole host of possibilities for future multifunctional devices. Control over the ferromagnetic properties in these materials through hole density modulation has been demonstrated using electrical gates [1] and CW optical excitation [2], and more recently using femtosecond optical excitation [3,4]. Using time-resolved magneto-optical Kerr Effect spectroscopy, we have measured the magnetization and coercivity dynamics in GaMnAs. Our experiments reveal a subpicosecond ferromagnetic to paramagnetic phase transition followed by coercivity enhancement on longer time scales. Our findings are promising for possible applications in ultrafast, nonthermal magneto-optical recording using diluted magnetic semiconductors. [1] H. Ohno et al., Nature 408, 944 (2000). [2] S. Koshihara et al., Phys. Rev. Lett. 78, 4617 (1997). [3] J. Wang et al., Phys. Rev. Lett. 95, 167401 (2005). [4] J. Wang et al., Phys. Rev. Lett. 98, 217401 (2007).

  18. Origin of Room-Temperature Ferromagnetism for Cobalt-Doped ZnO Diluted Magnetic Semiconductor

    Institute of Scientific and Technical Information of China (English)

    PENG Long; ZHANG Huai-Wu; WEN Qi-Ye; SONG Yuan-Qiang; SU Hua; John Q. Xiao

    2008-01-01

    @@ The pure single phase of Zn0.95Co0.05O bulks is successfully prepared by solid-state reaction method. The effects of annealing atmosphere on room-temperature ferromagnetic behaviour for the Zn0.95 Co0.05O bulks are investigated. The results show that the air-annealed samples has similar weak ferromagnetic behaviour with the as-sintered samples, but the obvious ferromagnetic behaviour is observed for the samples annealed in vacuum or Ar/H2 gas, indicating that the strong ferromagnetism is associated with high oxygen vacancies density. High saturation magnetization Ms = 0.73 μB /Co and coercivity Hc = 233.8 Oe are obtained for the Ar/H2 annealed samples with pure single phase structure. The enhanced room-temperature ferromagnetic behaviour is also found in the samples with high carrier concentration controlled by doping interstitials Zn (Zni).

  19. Thickness dependence of the magnetic properties of high-coercive Pr-Fe-B thin films with perpendicular magnetic anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Yang, F. [Shenyang National Laboratory for Materials Science, Institute of Metal Research and International Centre for Materials Physics, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang Liaoning 110016 (China); Liu, W. [Shenyang National Laboratory for Materials Science, Institute of Metal Research and International Centre for Materials Physics, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang Liaoning 110016 (China)], E-mail: wliu@imr.ac.cn; Cui, W.B.; Feng, J.N.; Zhang, Y.Q.; Zhang, Z.D [Shenyang National Laboratory for Materials Science, Institute of Metal Research and International Centre for Materials Physics, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang Liaoning 110016 (China)

    2008-10-01

    The magnetic properties of Pr-Fe-B films with perpendicular magnetic anisotropy have been studied as a function of thickness varying from 10 to 1200 nm. The crucial thickness for forming the Pr{sub 2}Fe{sub 14}B phase is estimated to be about 25 nm in our study, and the perpendicular anisotropy shows a trend to vanish for thick films. The coercivity of the films initially increases with increasing film thickness, gradually reaching a value which is near the value for bulk material. The magnetic domain size increases with increasing thickness. The surface morphology, the roughness and the domain structure of the films have been investigated by means of atomic-force microscopy and magnetic-force microscopy.

  20. High temperature magnetism and microstructure of ferromagnetic alloy Si1-x Mn x

    Science.gov (United States)

    Aronzon, B. A.; Davydov, A. B.; Vasiliev, A. L.; Perov, N. S.; Novodvorsky, O. A.; Parshina, L. S.; Presniakov, M. Yu; Lahderanta, E.

    2017-02-01

    The results of a detailed study of magnetic properties and of the microstructure of SiMn films with a small deviation from stoichiometry are presented. The aim was to reveal the origin of the high temperature ferromagnetic ordering in such compounds. Unlike SiMn single crystals with the Curie temperature ~30 K, considered Si1-x Mn x compounds with x  =  0.5  +Δx and Δx in the range of 0.01-0.02 demonstrate a ferromagnetic state above room temperature. Such a ferromagnetic state can be explained by the existence of highly defective B20 SiMn nanocrystallites. These defects are Si vacancies, which are suggested to possess magnetic moments. The nanocrystallites interact with each other through paramagnons (magnetic fluctuations) inside a weakly magnetic manganese silicide matrix giving rise to a long range ferromagnetic percolation cluster. The studied structures with a higher value of Δx  ≈  0.05 contained three different magnetic phases: (a)—the low temperature ferromagnetic phase related to SiMn; (b)—the above mentioned high temperature phase with Curie temperature in the range of 200-300 K depending on the growth history and (c)—superparamagnetic phase formed by separated noninteracting SiMn nanocrystallites.

  1. Absence of field anisotropy in the intrinsic ferromagnetic signals of highly oriented pyrolytic graphite

    Energy Technology Data Exchange (ETDEWEB)

    Ballestar, A. [Laboratorio de Fisica y Sistemas Pequenos y Nanotecnologia, CSIC, Serano 144, E-28006 Madrid (Spain); Division of Superconductivity and Magnetism, Linnestrasse 5, Universitaet Leipzig, D-04103 Leipzig (Germany); Setzer, A. [Division of Superconductivity and Magnetism, Linnestrasse 5, Universitaet Leipzig, D-04103 Leipzig (Germany); Esquinazi, P., E-mail: esquin@physik.uni-leipzig.d [Division of Superconductivity and Magnetism, Linnestrasse 5, Universitaet Leipzig, D-04103 Leipzig (Germany); Garcia, N. [Laboratorio de Fisica y Sistemas Pequenos y Nanotecnologia, CSIC, Serano 144, E-28006 Madrid (Spain)

    2011-03-15

    We have measured the magnetization of bulk samples of highly oriented pyrolytic graphite (HOPG) at magnetic fields applied parallel and perpendicular to the graphene layers. Within experimental error the intrinsic ferromagnetic signals of the samples show similar magnetic moments at saturation for the two magnetic field directions, in contrast to recently published data (J. Cervenka et al., Nat. Phys. 5 (2009) 840). To check that the SQUID device provides correctly the small ferromagnetic signals obtained after subtracting the 100 times larger diamagnetic background, we have prepared a sample with a superconducting Pb-film deposited on one of the HOPG surfaces. We show that the field dependence of the measured magnetic moment and after the background subtraction is highly reliable even in the sub-{mu} emu range providing the real magnetic properties of the embedded small ferromagnetic and superconducting signals. - Research highlights: > We have measured the magnetization of bulk samples of highly oriented pyrolytic graphite (HOPG) at magnetic fields applied parallel and perpendicular to the graphene layers. > Within experimental error the intrinsic ferromagnetic signals of the samples show similar magnetic moments at saturation for the two magnetic field directions. > The absence of magnetic anisotropy of the intrinsic ferromagnetic order found in HOPG samples contrasts recently published data by Cervenka et al., Nat Phys 5, 840 (2009).

  2. High temperature ferromagnetism in cubic Mn-doped ZrO{sub 2} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Nguyen Hoa, E-mail: nguyenhong@snu.ac.kr [Nanomagnetism Laboratory, Department of Physics and Astronomy, Seoul National University, Seoul 151-747 (Korea, Republic of); Park, Chul-Kwon; Raghavender, A.T. [Nanomagnetism Laboratory, Department of Physics and Astronomy, Seoul National University, Seoul 151-747 (Korea, Republic of); Ruyter, Antoine [Laboratoire GREMAN, UMR 7347 CNRS - Universite F. Rabelais, Parc de Grandmont, 37200 Tours (France); Chikoidze, Ekaterina; Dumont, Yves [Laboratoire GEMaC, UMR 8635 Universite de Versailles St Quentin en Yvelines - CNRS, 45, Av. des Etats-Unis, 78035 Versailles Cedex (France)

    2012-09-15

    Theory has predicted that high temperature ferromagnetism (FM) should be found in cubic fake-diamonds, Mn-doped ZrO{sub 2}. Experimentally, it is shown that Mn-doped ZrO{sub 2} ceramics are not ferromagnetic, but the nanosized Mn-doped ZrO{sub 2} thin films grown on LaAlO{sub 3} substrates can be ferromagnets with T{sub C} above 400 K. The largest saturated magnetic moment (M{sub s}) is huge as of about 230 emu/cm{sup 3} for the Mn{sub 0.05}Zr{sub 0.95}O{sub 2} films, and it decreases as the Mn content increases. The intrinsic FM is strongly associated with the cubic structure of Mn-doped ZrO{sub 2}, and the Mn-Mn interactions via oxygen intermediates are important. No electrical conductivity is observed. Mn-doped ZrO{sub 2} thin films can be truly considered as excellent candidates for spintronic applications. - Highlights: Black-Right-Pointing-Pointer Mn-doped ZrO2 thin films can be ferromagnetic above room temperature. Black-Right-Pointing-Pointer Huge magnetic moment of 13.8 {mu}{sub B} per Mn is found in the sampledoping with 5% of Mn. Black-Right-Pointing-Pointer Magnetic force measurements confirm intrinsic ferromagnetism. Black-Right-Pointing-Pointer Important feedback to the theoretical work. Black-Right-Pointing-Pointer Good candidates for spintronics applications.

  3. Synthesis, morphology and microstructure of pomegranate-like hematite ({alpha}-Fe{sub 2}O{sub 3}) superstructure with high coercivity

    Energy Technology Data Exchange (ETDEWEB)

    Tadic, Marin, E-mail: marint@vinca.rs [Condensed Matter Physics Laboratory, Vinca Institute, University of Belgrade, P.O. Box 522, 11001 Belgrade (Serbia); Citakovic, Nada [Military Academy, Generala Pavla Jurisica Sturma 33, University of Belgrade, 11000 Belgrade (Serbia); Panjan, Matjaz [Jozef Stefan Institute, Jamova 39, 1000 Ljubljana (Slovenia); Stanojevic, Boban [Vinca Institute of Nuclear Sciences, P.O. Box 522, 11001 Belgrade, University of Belgrade (Serbia); Markovic, Dragana [Condensed Matter Physics Laboratory, Vinca Institute, University of Belgrade, P.O. Box 522, 11001 Belgrade (Serbia); Jovanovic, Dorde [Center for Solid State Physics and New Materials, Institute of Physics, University of Belgrade, Pregrevica 118, 11080 Belgrade (Serbia); Spasojevic, Vojislav [Condensed Matter Physics Laboratory, Vinca Institute, University of Belgrade, P.O. Box 522, 11001 Belgrade (Serbia)

    2012-12-05

    Highlights: Black-Right-Pointing-Pointer We found superior magnetic properties of the hematite ({alpha}-Fe{sub 2}O{sub 3}). Black-Right-Pointing-Pointer TEM and HRTEM images show a pomegranate-like superstructure. Black-Right-Pointing-Pointer Magnetic measurements display high coercivity H{sub C} = 4350 Oe at the room temperature. - Abstract: We found novel and superior magnetic properties of the hematite ({alpha}-Fe{sub 2}O{sub 3}) that originate from an internal microstructure of particles and strong inter-particle interactions between nanocrystal sub-units. The hematite particles were synthesized by thermal decomposition of iron (III) nitrate without any template or surfactant. The purity, size, crystallinity, morphology, microstructure and magnetic features of the as-prepared particles were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), energy-dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), Raman spectroscopy (RS) and SQUID magnetometry. An XRD study reveals a pure phase of {alpha}-Fe{sub 2}O{sub 3} whereas TEM shows {alpha}-Fe{sub 2}O{sub 3} spheres with a diameter of about 150 nm. RS also shows high quality and purity of the sample. Moreover, TEM and HRTEM images show a pomegranate-like superstructure and evidence that the spherical particles are composed of individual well-crystallized nanoparticle sub-units (self-assembled nanoparticles) with a size of about 20 nm. Magnetic measurements display hysteretic behavior at the room temperature with remanent magnetization M{sub r} = 0.731 emu/g, saturation magnetization M{sub S} = 6.83 emu/g and coercivity H{sub C} = 4350 Oe, as well as the Morin transition at T{sub M} = 261 K. These results and comparison with those in the literature reveal that the sample has extremely high coercivity. The magnetic properties of the sample are discussed in relation to morphology, internal microstructure, surface

  4. Attachment and coercive sexual behavior.

    Science.gov (United States)

    Smallbone, S W; Dadds, M R

    2000-01-01

    This study examined the relationships between childhood attachment and coercive sexual behavior. One hundred sixty-two male undergraduate students completed self-report measures of childhood maternal attachment, childhood paternal attachment, adult attachment, antisociality, aggression, and coercive sexual behavior. As predicted, insecure childhood attachment, especially insecure paternal attachment, was associated with antisociality, aggression, and coercive sexual behavior. Moreover, childhood attachment independently predicted coercive sexual behavior after antisociality and aggression were statistically controlled. The hypothesis that paternal avoidant attachment would predict coercive sexual behavior independently of its relationship with aggression and antisociality was also supported. Posthoc analysis indicated that maternal anxious attachment was associated with antisociality and that paternal avoidant attachment was associated with both antisociality and coercive sexual behavior. These results are consistent with criminological and psychological research linking adverse early family experiences with offending and lend support to an attachment-theoretical framework for understanding offending behavior in general and sexual offending behavior in particular.

  5. Pulsed laser deposition of high-quality thin films of the insulating ferromagnet EuS

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Qi I., E-mail: qiyang@stanford.edu [Department of Physics, Stanford University, Stanford, California 94305 (United States); Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025 (United States); Geballe Laboratory for Advanced Materials, Stanford University, Stanford, California 94305 (United States); Zhao, Jinfeng; Risbud, Subhash H. [Department of Chemical Engineering and Materials Science, University of California, Davis, California 95616 (United States); Zhang, Li; Dolev, Merav [Geballe Laboratory for Advanced Materials, Stanford University, Stanford, California 94305 (United States); Department of Applied Physics, Stanford University, Stanford, California 94305 (United States); Fried, Alexander D. [Department of Physics, Stanford University, Stanford, California 94305 (United States); Geballe Laboratory for Advanced Materials, Stanford University, Stanford, California 94305 (United States); Marshall, Ann F. [Stanford Nanocharacterization Laboratory, Stanford University, Stanford, California 94305 (United States); Kapitulnik, Aharon [Department of Physics, Stanford University, Stanford, California 94305 (United States); Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025 (United States); Geballe Laboratory for Advanced Materials, Stanford University, Stanford, California 94305 (United States); Department of Applied Physics, Stanford University, Stanford, California 94305 (United States)

    2014-02-24

    High-quality thin films of the ferromagnetic insulator europium(II) sulfide (EuS) were fabricated by pulsed laser deposition on Al{sub 2}O{sub 3} (0001) and Si (100) substrates. A single orientation was obtained with the [100] planes parallel to the substrates, with atomic-scale smoothness indicates a near-ideal surface topography. The films exhibit uniform ferromagnetism below 15.9 K, with a substantial component of the magnetization perpendicular to the plane of the films. Optimization of the growth condition also yielded truly insulating films with immeasurably large resistance. This combination of magnetic and electric properties opens the gate for future devices that require a true ferromagnetic insulator.

  6. InSb:Mn - A high temperature ferromagnetic semiconductor

    Energy Technology Data Exchange (ETDEWEB)

    Laehderanta, E.; Lashkul, A.V. [Lappeenranta University of Technology (Finland); Kochura, A.V. [Lappeenranta University of Technology (Finland); South-West State University, Kursk (Russian Federation); Lisunov, K.G. [Lappeenranta University of Technology (Finland); Institute of Applied Physics, Academy of Sciences of Moldova, Kishinev (Moldova, Republic of); Aronzon, B.A. [Lappeenranta University of Technology (Finland); RRC ' ' Kurchatov Institute' ' , Moscow (Russian Federation); Shakhov, M.A. [Lappeenranta University of Technology (Finland); A.F. Ioffe Physico-Technical Institute, St. Petersburg (Russian Federation)

    2014-05-15

    Diluted magnetic semiconductor InSb:Mn exhibits a ferromagnetic behavior up to T ∝ 600 K due to presence of nanosize MnSb precipitates [Kochura et al., J. Appl. Phys. 113, 083905 (2013)]. Transport properties of InSb:Mn, including the resistivity, the magnetoresistance (MR), and the Hall effect, are investigated between T ∝ 1.6 and 300 K in magnetic fields B up to 15 T. The resistivity, ρ(T), displays an upturn with lowering the temperature below T ∝ 10-20 K attributable to the Kondo effect, where the universal Kondo behavior is observed. The Hall resistivity, ρ{sub H}, demonstrates a nonlinear dependence on B up to T ∝ 300 K, suggesting an anomalous contribution due to the effect of the MnSb nanoprecipitates. The relative MR, Δρ(B)/ρ(0), is positive (pMR) above T ∝ 10 K and transforms into a negative one (nMR) with lowering temperature. The Hall effect and pMR are interpreted simultaneously with the two-band model, addressed to presence of the two types of holes with quite different concentrations and mobilities. The dependences of nMR on B and T follow those of the Khosla-Fischer model, taking into account damping of the spin-dependent scattering of charge carriers in magnetic field. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. Environmental control on the occurrence of high-coercivity magnetic minerals and formation of iron sulfides in a 640 ka sediment sequence from Lake Ohrid (Balkans)

    Science.gov (United States)

    Just, Janna; Nowaczyk, Norbert R.; Sagnotti, Leonardo; Francke, Alexander; Vogel, Hendrik; Lacey, Jack H.; Wagner, Bernd

    2016-04-01

    The bulk magnetic mineral record from Lake Ohrid, spanning the past 637 kyr, reflects large-scale shifts in hydrological conditions, and, superimposed, a strong signal of environmental conditions on glacial-interglacial and millennial timescales. A shift in the formation of early diagenetic ferrimagnetic iron sulfides to siderites is observed around 320 ka. This change is probably associated with variable availability of sulfide in the pore water. We propose that sulfate concentrations were significantly higher before ˜ 320 ka, due to either a higher sulfate flux or lower dilution of lake sulfate due to a smaller water volume. Diagenetic iron minerals appear more abundant during glacials, which are generally characterized by higher Fe / Ca ratios in the sediments. While in the lower part of the core the ferrimagnetic sulfide signal overprints the primary detrital magnetic signal, the upper part of the core is dominated by variable proportions of high- to low-coercivity iron oxides. Glacial sediments are characterized by high concentration of high-coercivity magnetic minerals (hematite, goethite), which relate to enhanced erosion of soils that had formed during preceding interglacials. Superimposed on the glacial-interglacial behavior are millennial-scale oscillations in the magnetic mineral composition that parallel variations in summer insolation. Like the processes on glacial-interglacial timescales, low summer insolation and a retreat in vegetation resulted in enhanced erosion of soil material. Our study highlights that rock-magnetic studies, in concert with geochemical and sedimentological investigations, provide a multi-level contribution to environmental reconstructions, since the magnetic properties can mirror both environmental conditions on land and intra-lake processes.

  8. Enhanced coercivity in Co-doped α-Fe2O3 cubic nanocrystal assemblies prepared via a magnetic field-assisted hydrothermal synthesis

    Directory of Open Access Journals (Sweden)

    Kinjal Gandha

    2017-05-01

    Full Text Available Ferromagnetic Co-doped α-Fe2O3 cubic shaped nanocrystal assemblies (NAs with a high coercivity of 5.5 kOe have been synthesized via a magnetic field (2 kOe assisted hydrothermal process. The X-ray diffraction pattern and Raman spectra of α-Fe2O3 and Co-doped α-Fe2O3 NAs confirms the formation of single-phase α-Fe2O3 with a rhombohedral crystal structure. Electron microscopy analysis depict that the Co-doped α-Fe2O3 NAs synthesized under the influence of the magnetic field are consist of aggregated nanocrystals (∼30 nm and of average assembly size 2 μm. In contrast to the NAs synthesized with no magnetic field, the average NAs size and coercivity of the Co-doped α-Fe2O3 NAs prepared with magnetic field is increased by 1 μm and 1.4 kOe, respectively. The enhanced coercivity could be related to the well-known spin–orbit coupling strength of Co2+ cations and the redistribution of the cations. The size increment indicates that the small ferromagnetic nanocrystals assemble into cubic NAs with increased size in the magnetic field that also lead to the enhanced coercivity.

  9. Transition-metal embedded carbon nitride monolayers: high-temperature ferromagnetism and half-metallicity

    Science.gov (United States)

    Choudhuri, Indrani; Kumar, Sourabh; Mahata, Arup; Rawat, Kuber Singh; Pathak, Biswarup

    2016-07-01

    High-temperature ferromagnetic materials with planar surfaces are promising candidates for spintronics applications. Using state-of-the-art density functional theory (DFT) calculations, transition metal (TM = Cr, Mn, and Fe) incorporated graphitic carbon nitride (TM@gt-C3N4) systems are investigated as possible spintronics devices. Interestingly, ferromagnetism and half-metallicity were observed in all of the TM@gt-C3N4 systems. We find that Cr@gt-C3N4 is a nearly half-metallic ferromagnetic material with a Curie temperature of ~450 K. The calculated Curie temperature is noticeably higher than other planar 2D materials studied to date. Furthermore, it has a steel-like mechanical stability and also possesses remarkable dynamic and thermal (500 K) stability. The calculated magnetic anisotropy energy (MAE) in Cr@gt-C3N4 is as high as 137.26 μeV per Cr. Thereby, such material with a high Curie temperature can be operated at high temperatures for spintronics devices.High-temperature ferromagnetic materials with planar surfaces are promising candidates for spintronics applications. Using state-of-the-art density functional theory (DFT) calculations, transition metal (TM = Cr, Mn, and Fe) incorporated graphitic carbon nitride (TM@gt-C3N4) systems are investigated as possible spintronics devices. Interestingly, ferromagnetism and half-metallicity were observed in all of the TM@gt-C3N4 systems. We find that Cr@gt-C3N4 is a nearly half-metallic ferromagnetic material with a Curie temperature of ~450 K. The calculated Curie temperature is noticeably higher than other planar 2D materials studied to date. Furthermore, it has a steel-like mechanical stability and also possesses remarkable dynamic and thermal (500 K) stability. The calculated magnetic anisotropy energy (MAE) in Cr@gt-C3N4 is as high as 137.26 μeV per Cr. Thereby, such material with a high Curie temperature can be operated at high temperatures for spintronics devices. Electronic supplementary information (ESI

  10. High Power Laser Beam Welding of Thick-walled Ferromagnetic Steels with Electromagnetic Weld Pool Support

    Science.gov (United States)

    Fritzsche, André; Avilov, Vjaceslav; Gumenyuk, Andrey; Hilgenberg, Kai; Rethmeier, Michael

    The development of modern high power laser systems allows single pass welding of thick-walled components with minimal distortion. Besides the high demands on the joint preparation, the hydrostatic pressure in the melt pool increases with higher plate thicknesses. Reaching or exceeding the Laplace pressure, drop-out or melt sagging are caused. A contactless electromagnetic weld support system was used for laser beam welding of thick ferromagnetic steel plates compensating these effects. An oscillating magnetic field induces eddy currents in the weld pool which generate Lorentz forces counteracting the gravity forces. Hysteresis effects of ferromagnetic steels are considered as well as the loss of magnetization in zones exceeding the Curie temperature. These phenomena reduce the effective Lorentz forces within the weld pool. The successful compensation of the hydrostatic pressure was demonstrated on up to 20 mm thick plates of duplex and mild steel by a variation of the electromagnetic power level and the oscillation frequency.

  11. Critical currents and superconductivity ferromagnetism coexistence in high-Tc oxides

    CERN Document Server

    Khene, Samir

    2016-01-01

    The book comprises six chapters which deal with the critical currents and the ferromagnetism-superconductivity coexistence in high-Tc oxides. It begins by gathering key data for superconducting state and the fundamental properties of the conventional superconductors, followed by a recap of the basic theories of superconductivity. It then discusses the differences introduced by the structural anisotropy on the Ginzburg-Landau approach and the Lawrence-Doniach model before addressing the dynamics of vortices and the ferromagnetism-superconductivity coexistence in high-Tc oxides, and provides an outline of the pinning phenomena of vortices in these materials, in particular the pinning of vortices by the spins. It elucidates the methods to improve the properties of superconducting materials for industrial applications. This optimization aims at obtaining critical temperatures and densities of critical currents at the maximum level possible. Whereas the primary objective is the basic mechanisms pushing the superco...

  12. Spontaneous ferromagnetic spin ordering at the surface of La2CuO4

    Science.gov (United States)

    Yusupov, R. V.; Kabanov, V. V.; Mihailovic, D.; Conder, K.; Müller, K. A.; Keller, H.

    2007-07-01

    Magnetic properties of high purity stoichiometric La2CuO4 nanoparticles are systematically investigated as a function of particle size. Ferromagnetic single-domain spin clusters are shown to spontaneously form at the surface of fine grains as well as paramagnetic defects. Hysteresis loops and thermomagnetic irreversibility are observed in a wide temperature range 5-350K with the remnant moment and coercivity gradually decreasing with increasing temperature. Possible origins of the spontaneous surface ferromagnetic clusters and the relation of our data to the appearance of unusual magnetic phenomena and phase separation of doped cuprates are discussed.

  13. Spontaneous ferromagnetic spin ordering at the surface of La$_2$CuO$_4$

    OpenAIRE

    2007-01-01

    Magnetic properties of high purity stoichiometric La$_2$CuO$_4$ nanoparticles are systematically investigated as a function of particle size. Ferromagnetic single-domain spin clusters are shown to spontaneously form at the surface of fine grains as well as paramagnetic defects. Hysteresis loops and thermomagnetic irreversibility are observed in a wide temperature range $5 - 350$ K with the remnant moment and coercivity gradually decreasing with increasing temperature. Possible origins of the ...

  14. Discriminating Coercive from Sadomasochistic Sexuality.

    Science.gov (United States)

    Martin, Shannon M; Smith, Felix; Quirk, Stuart W

    2016-07-01

    Sadomasochistic (SM) sexual interest is reported by a wide range of individuals. Within the sex offender literature, the presence of SM interest is often viewed as a herald of criminal sexual behavior; however, research indicates that SM interests are not predictive of coercive sexual behavior. In the current study, we measured a range of sexual fantasies and behaviors, and then applied cluster analyses to determine (1) if individuals endorsed elevated SM interests also endorsed coercive fantasies and, (2) to explore cluster membership correlates using measures of sensation seeking, externalizing and antisocial behaviors, attitudes toward rape, and empathic capacity. A total of 550 participants were recruited through a variety of on-line discussion areas. A four cluster solution best fit the data with distinct clusters observed for those endorsing SM behaviors and those reporting coercive sexual behavior. Additional analyses revealed greater endorsement of victim blaming attitudes and lower empathic concern among members of the coercive sexual behavior cluster. Elevated sensation seeking and externalizing behaviors were reported by members of clusters marked by SM and coercive sexual behavior. Results provide further support for the differentiation between SM and coercive sexual behaviors as representative of individuals with divergent attitudes, traits, and behaviors.

  15. High-resolution mineralogical and rock magnetic study of ferromagnetic phases in metabasites from Oscar II Land, Western Spitsbergen—towards reliable model linking mineralogical and palaeomagnetic data

    Science.gov (United States)

    Burzyński, Mariusz; Michalski, Krzysztof; Nejbert, Krzysztof; Domańska-Siuda, Justyna; Manby, Geoffrey

    2017-07-01

    Typical 'whole rock' rock magnetic analyses are limited to the identification of the magnetic properties of the mixture of all ferromagnetic minerals within the samples. In this contribution standard 'whole rock' rock magnetic studies of two types of metabasites (metadolerites and metavolcanics) from the metamorphic Proterozoic-Lower Palaeozoic complex of Oscar II Land (Western Spitsbergen) are followed by separation of Fe-containing fractions and conducting magnetic analyses on Fe-containing separates. The main aim here is to determine if any ferromagnetic carriers of a palaeomagnetic signal preceding the Caledonian metamorphism persisted in the metabasites. A comprehensive set of applied methods has allowed for the precise identification of the ferromagnetic carriers and have revealed their textural context in the investigated rocks. The results of mineralogical and rock magnetic analyses of separates confirmed a dominance of low coercivity magnetite/maghemite and pyrrhotite in the metadolerites while in the metavolcanics the existence of magnetite/maghemite and hematite was highlighted. Our investigations support the hypothesis that Caledonian metamorphic remineralization has completely replaced the primary magmatic - Proterozoic/Lower Palaeozoic ferromagnetic minerals in the metadolerites. In the case of the metavolcanics, however, the existence of the ferromagnetic pre-Caledonian relicts cannot be excluded. Furthermore, this approach provided a unique opportunity for conducting rock magnetic experiments on natural mono-ferromagnetic fractions. The described methodologies and results of this study form a new approach that can be applied in further palaeomagnetic and petrographic studies of metamorphosed rock complexes of Svalbard.

  16. Theoretical Design of High-spin Organic Molecules with Heterocycles as Ferromagnetic Coupling Units

    Institute of Scientific and Technical Information of China (English)

    WANG Li-min; ZHANG Jing-ping; WANG Rong-shun

    2003-01-01

    Novel stable high spin molecules possessing three different arranged fashions are designed with -*N-N< as a spin-containing(SC) fragment, phenylene as an end group and various aromatic molecules, such as benzene(1), 2,6-pyridine(2), 3,5-pyridine(3), pyridazine(4), 4,6-pyrimidine(5), 2,6-pyrimidine(6), pyrazine(7) and triazine(8), as a ferromagnetic coupling(FC) unit. The effects of the different coupling units on the spin multiplicities of the ground states and their stabilities were investigated by means of AM1-CI approach. It has been found that the spin densities on the two atoms of the SC fragment are different from delocalization results in the specific stability of -*N-N<. In these molecules, the stabilities of the triplet states decrease when the distance between the atoms of central SC(-N-) increases. It is shown that the heterocycles as the coupling units have influence on the stabilities of the high-spin ground states. That the heteroatom lying in m-phenyl can improve ferromagnetic coupling, while the heteroatom lying in o-phenyl or p-phenyl is not in favor of the ferromagnetic coupling.

  17. Formation of submicron-sized SrFe{sub 12-x}Al{sub x}O{sub 19} with very high coercivity

    Energy Technology Data Exchange (ETDEWEB)

    Kazin, P.E. [Chemistry Department, Moscow State University, 119991 Moscow (Russian Federation); Trusov, L.A. [Department of Materials Science, Moscow State University, 119991 Moscow (Russian Federation)], E-mail: doz.trusov@gmail.com; Zaitsev, D.D. [Department of Materials Science, Moscow State University, 119991 Moscow (Russian Federation); Tretyakov, Yu.D. [Chemistry Department, Moscow State University, 119991 Moscow (Russian Federation); Department of Materials Science, Moscow State University, 119991 Moscow (Russian Federation); Jansen, M. [Max-Planck-Institut fuer Festkoerperforschung, D-70569 Stuttgart (Germany)

    2008-03-15

    Submicron-sized SrFe{sub 12-x}Al{sub x}O{sub 19} (x=1.3) was formed in glass-ceramic matrix using controlled thermocrystallization of the SrO-Fe{sub 2}O{sub 3}-Al{sub 2}O{sub 3}-B{sub 2}O{sub 3} glass and the hexaferrite powder was obtained by removing the matrix phases. The samples were characterized by X-ray diffraction, scanning electron microscopy with energy-dispersive X-ray (EDX) analysis and magnetization measurements. The glass-ceramic material exhibits very high coercivity value up to 10.18 kOe which approaches a theoretically estimated maximum value for the compound. The hexaferrite powder consists of well faceted single crystals, which adopt the shape of a truncated hexagonal bipyramid. The powder saturation magnetization value is close to the theoretically estimated one for bulk material. Crystal structure of the powder was refined by Rietveld method and distribution of Al atoms on Fe sites was determined. Al atoms occupy 41% of 2a sites, 14% of 12k sites and 5% of 4e(1/2) sites, while 4f sites are not affected.

  18. Emerging Diluted Ferromagnetism in High-Tc Superconductors Driven by Point Defect Clusters.

    Science.gov (United States)

    Gazquez, Jaume; Guzman, Roger; Mishra, Rohan; Bartolomé, Elena; Salafranca, Juan; Magén, Cesar; Varela, Maria; Coll, Mariona; Palau, Anna; Valvidares, S Manuel; Gargiani, Pierluigi; Pellegrin, Eric; Herrero-Martin, Javier; Pennycook, Stephen J; Pantelides, Sokrates T; Puig, Teresa; Obradors, Xavier

    2016-06-01

    Defects in ceramic materials are generally seen as detrimental to their functionality and applicability. Yet, in some complex oxides, defects present an opportunity to enhance some of their properties or even lead to the discovery of exciting physics, particularly in the presence of strong correlations. A paradigmatic case is the high-temperature superconductor YBa2Cu3O7-δ (Y123), in which nanoscale defects play an important role as they can immobilize quantized magnetic flux vortices. Here previously unforeseen point defects buried in Y123 thin films that lead to the formation of ferromagnetic clusters embedded within the superconductor are unveiled. Aberration-corrected scanning transmission microscopy has been used for exploring, on a single unit-cell level, the structure and chemistry resulting from these complex point defects, along with density functional theory calculations, for providing new insights about their nature including an unexpected defect-driven ferromagnetism, and X-ray magnetic circular dichroism for bearing evidence of Cu magnetic moments that align ferromagnetically even below the superconducting critical temperature to form a dilute system of magnetic clusters associated with the point defects.

  19. Nearly ferromagnetic Fermi-liquid behaviour in YFe2Zn20 and high-temperature ferromagnetism of GdFe2Zn20

    Science.gov (United States)

    Jia, S.; Bud'Ko, S. L.; Samolyuk, G. D.; Canfield, P. C.

    2007-05-01

    One of the historic goals of alchemy was to turn base elements into precious ones. Although the practice of alchemy has been superseded by chemistry and solid-state physics, the desire to dramatically change or tune the properties of a compound, preferably through small changes in stoichiometry or composition, remains. This desire becomes even more compelling for compounds that can be tuned to extremes in behaviour. Here, we report that the RT2Zn20 (R=rare earth and T=transition metal) family of compounds manifests exactly this type of versatility, even though they are more than 85% Zn. By tuning T, we find that YFe2Zn20 is closer to ferromagnetism than elemental Pd, the classic example of a nearly ferromagnetic Fermi liquid. By submerging Gd in this highly polarizable Fermi liquid, we tune the system to a remarkably high-temperature ferromagnetic (TC=86K) state for a compound with less than 5% Gd. Although this is not quite turning lead into gold, it is essentially tuning Zn to become a variety of model compounds.

  20. Enhancing electric-field control of ferromagnetism through nanoscale engineering of high-Tc MnxGe1-x nanomesh

    Science.gov (United States)

    Nie, Tianxiao; Tang, Jianshi; Kou, Xufeng; Gen, Yin; Lee, Shengwei; Zhu, Xiaodan; He, Qinglin; Chang, Li-Te; Murata, Koichi; Fan, Yabin; Wang, Kang L.

    2016-10-01

    Voltage control of magnetism in ferromagnetic semiconductor has emerged as an appealing solution to significantly reduce the power dissipation and variability beyond current CMOS technology. However, it has been proven to be very challenging to achieve a candidate with high Curie temperature (Tc), controllable ferromagnetism and easy integration with current Si technology. Here we report the effective electric-field control of both ferromagnetism and magnetoresistance in unique MnxGe1-x nanomeshes fabricated by nanosphere lithography, in which a Tc above 400 K is demonstrated as a result of size/quantum confinement. Furthermore, by adjusting Mn doping concentration, extremely giant magnetoresistance is realized from ~8,000% at 30 K to 75% at 300 K at 4 T, which arises from a geometrically enhanced magnetoresistance effect of the unique mesh structure. Our results may provide a paradigm for fundamentally understanding the high Tc in ferromagnetic semiconductor nanostructure and realizing electric-field control of magnetoresistance for future spintronic applications.

  1. A laminate of ferromagnetic films with high effective permeability at high frequencies

    Directory of Open Access Journals (Sweden)

    I. T. Iakubov

    2014-10-01

    Full Text Available The paper reports on development of magnetodielectric material with high microwave permeability. The material is a laminate of multi-layer permalloy films deposited onto a thin mylar substrate by magnetron sputtering. The deposited films are arranged into a stack and glued together under pressure to obtain the laminate. With the content of ferromagnetic component in the laminate being 22 % vol., its measured quasistatic permeability is 60. The peak value of imaginary permeability attains 50 and the peak is located near 1 GHz. As compared with the multi-layer films, which the laminate is made of, it exhibits lower magnetic loss tangent at frequencies below the magnetic loss peak and may therefore be useful for many technical applications. Lower low-frequency loss may be attributed to pressing of the glued sample. This rectifies wrinkling appearing due to sputtering of rigid multi-layer film onto flexible mylar substrate and, therefore, makes the magnetic structure of the film more uniform.

  2. Observation of Thermoelectric Currents in High-Field Superconductor-Ferromagnet Tunnel Junctions.

    Science.gov (United States)

    Kolenda, S; Wolf, M J; Beckmann, D

    2016-03-01

    We report on the experimental observation of spin-dependent thermoelectric currents in superconductor-ferromagnet tunnel junctions in high magnetic fields. The thermoelectric signals are due to a spin-dependent lifting of the particle-hole symmetry, and are found to be in excellent agreement with recent theoretical predictions. The maximum Seebeck coefficient inferred from the data is about -100  μV/K, much larger than commonly found in metallic structures. Our results directly prove the coupling of spin and heat transport in high-field superconductors.

  3. Simultaneous effects of surface spins: rarely large coercivity, high remanence magnetization and jumps in the hysteresis loops observed in CoFe2O4 nanoparticles

    Science.gov (United States)

    Xu, S. T.; Ma, Y. Q.; Zheng, G. H.; Dai, Z. X.

    2015-04-01

    Well-dispersed uniform cobalt ferrite nanoparticles were synthesized by thermal decomposition of a metal-organic salt in organic solvent with a high boiling point. Some of the nanoparticles were diluted in a SiO2 matrix and then the undiluted and diluted samples were characterized and their magnetic behavior explored. The undiluted and diluted samples exhibited maximum coercivity Hc of 23 817 and 15 056 Oe at 10 K, respectively, which are the highest values reported to date, and the corresponding ratios of remanence (Mr) to saturation (Ms) magnetization (Mr/Ms) were as high as 0.85 and 0.76, respectively. Interestingly, the magnetic properties of the samples changed at 200 K, which was observed in magnetic hysteresis M(H) loops and zero-field cooling curves as well as the temperature dependence of Hc, Mr/Ms, anisotropy, dipolar field, and the magnetic grain size. Below 200 K, both samples have large effective anisotropy, which arises from the surface spins, resulting in large Hc and Mr/Ms. Above 200 K, the effective anisotropy decreases because there is no contribution from surface spins, while the dipolar interaction increases, resulting in small Hc and Mr/Ms. Our results indicate that strong anisotropy and weak dipolar interaction tend to increase Hc and Mr/Ms, and also clarify that the jumps around H = 0 in M(H) loops can be attributed to the reorientation of surface spins. This work exposes the underlying mechanism in nanoscale magnetic systems, which should lead to improved magnetic performance.

  4. Magnetic properties of cementite and the coercive force of carbon steels after plastic deformation and annealing

    Science.gov (United States)

    Ul'Yanov, A. I.; Chulkina, A. A.

    2009-05-01

    Magnetic hysteresis properties of cementite obtained by the method of mechanical alloying have been studied. It is shown that the strongly deformed cementite is in a low-coercivity state, and the cementite annealed at 500°C is in a high-coercivity state. The need to allow for the contribution of the coercivity of cementite to the coercive force of high-carbon steel is shown. Taking into account this point of view, the behavior of the coercive force depending on the degree of cold plastic deformation by drawing is explained for a number of carbon steels with a structure of fine platelike and globular cementite.

  5. Ferromagnetic superconductors

    Science.gov (United States)

    Huxley, Andrew D.

    2015-07-01

    The co-existence of superconductivity and ferromagnetism is of potential interest for spintronics and high magnetic field applications as well as a fascinating fundamental state of matter. The recent focus of research is on a family of ferromagnetic superconductors that are superconducting well below their Curie temperature, the first example of which was discovered in 2000. Although there is a 'standard' theoretical model for how magnetic pairing might bring about such a state, why it has only been seen in a few materials that at first sight appear to be very closely related has yet to be fully explained. This review covers the current state of knowledge of the magnetic and superconducting properties of these materials with emphasis on how they conform and differ from the behaviour expected from the 'standard' model and from each other.

  6. Assembling non-ferromagnetic materials to ferromagnetic architectures using metal-semiconductor interfaces

    Science.gov (United States)

    Ma, Ji; Liu, Chunting; Chen, Kezheng

    2016-01-01

    In this work, a facile and versatile solution route was used to fabricate room-temperature ferromagnetic fish bone-like, pteridophyte-like, poplar flower-like, cotton-like Cu@Cu2O architectures and golfball-like Cu@ZnO architecture. The ferromagnetic origins in these architectures were found to be around metal-semiconductor interfaces and defects, and the root cause for their ferromagnetism lay in charge transfer processes from metal Cu to semiconductors Cu2O and ZnO. Owing to different metallization at their interfaces, these architectures exhibited different ferromagnetic behaviors, including coercivity, saturation magnetization as well as magnetic interactions. PMID:27680286

  7. Ferromagnetism carried by highly delocalized hybrid states in Sc-doped ZnO thin films

    KAUST Repository

    Benali Kanoun, Mohammed

    2012-05-29

    We present first-principles results for Sc-doped ZnOthin films. Neighboring Sc atoms in the surface and/or subsurface layers are found to be coupled ferromagnetically, where only two of the possible configurations induce spin polarization. In the first configuration, the polarization is carried by the Sc d states as expected for transition metaldoping. However, there is a second configuration which is energetically favorable. It is governed by polarized hybrid states of the Zns, O p, and Sc d orbitals. Such highly delocalized states can be an important ingredient for understanding the magnetism of dopedZnOthin films.

  8. Ferromagnetic Fe-based Amorphous Alloy with High Glass-forming Ability

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A ferromagnetic amorphous Fe73Al4Ge2Nb1P10C6B4 alloy with highglass-forming ability was synthesized by melt spinning. The supercooled liquid region before crystallization reaches about 65.7 K. The crystallized structure consists of α-Fe, Fe3B, FeB, Fe3P and Fe3C phases. The Febased amorphous alloy exhibits good magnetic properties with a high saturation magnetization and a low saturated magnetostriction. The crystallization leads to an obvious decrease in the soft magnetic properties.

  9. One-step solution combustion synthesis of pure Ni nanopowders with enhanced coercivity: The fuel effect

    Science.gov (United States)

    Khort, Alexander; Podbolotov, Kirill; Serrano-García, Raquel; Gun'ko, Yurii K.

    2017-09-01

    In this paper, we report a new modified one-step combustion synthesis technique for production of Ni metal nanoparticles. The main unique feature of our approach is the use of microwave assisted foam preparation. Also, the effect of different types of fuels (urea, citric acid, glycine and hexamethylenetetramine) on the combustion process and characteristics of resultant solid products were investigated. It is observed that the combination of microwave assisted foam preparation and using of hexamethylenetetramine as a fuel allows producing pure ferromagnetic Ni metal nanoparticles with enhanced coercivity (78 Oe) and high value of saturation magnetization (52 emu/g) by one-step solution combustion synthesis under normal air atmosphere without any post-reduction processing.

  10. Ferromagnetic superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Huxley, Andrew D.

    2015-07-15

    Highlights: • Review of ferromagnetic superconductors. • Covers UGe{sub 2}, URhGe and UCoGe and briefly other materials. • The focus is on experimental data and the pairing mechanism. - Abstract: The co-existence of superconductivity and ferromagnetism is of potential interest for spintronics and high magnetic field applications as well as a fascinating fundamental state of matter. The recent focus of research is on a family of ferromagnetic superconductors that are superconducting well below their Curie temperature, the first example of which was discovered in 2000. Although there is a ‘standard’ theoretical model for how magnetic pairing might bring about such a state, why it has only been seen in a few materials that at first sight appear to be very closely related has yet to be fully explained. This review covers the current state of knowledge of the magnetic and superconducting properties of these materials with emphasis on how they conform and differ from the behaviour expected from the ‘standard’ model and from each other.

  11. Dynamic coercivity of Mo-doped FINEMETs

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborty, Srimoy; Mandal, Kalyan; Sakar, Debashis [S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata 700 098 (India); Cremaschi, Victoria J. [Lab. de Solidos Amorfos, INTECIN, Facultad de Ingenieria, Universidad de Buenos Aires-CONICET, Paseo Colon 850, C1063ACV Buenos Aires (Argentina); Member of CONICET (Argentina); Silveyra, Josefina M., E-mail: jsilveyra@fi.uba.a [Lab. de Solidos Amorfos, INTECIN, Facultad de Ingenieria, Universidad de Buenos Aires-CONICET, Paseo Colon 850, C1063ACV Buenos Aires (Argentina)

    2011-05-01

    The structure and the dc magnetic behavior of FINEMET-type alloys doped with molybdenum have been recently reported. Most commercial applications of these materials are, however, not at dc but at high magnetizing frequencies. Therefore, we report a study of the frequency dependence of coercivity, H{sub c}(f), in amorphous and nanocrystalline ribbons of composition Fe{sub 73.5}Si{sub 13.5}Nb{sub 3-x}Mo{sub x}B{sub 9}Cu{sub 1} (x=0, 1.5 and 3) in the frequency range from 0.5 to 1.3 kHz. The nature of H{sub c}(f) measurements revealed the influence of eddy currents in the magnetization of samples. The frequency dependence of coercivity did not vary with the molybdenum content in the amorphous samples. All the alloys exhibited a systematic improvement in the coercivity after nanocrystallization and it was found that this improvement was better as more Nb was replaced by Mo.

  12. Excitonic Wigner crystal and high T sub c ferromagnetism in RB sub 6

    CERN Document Server

    Kasuya, T

    2000-01-01

    The mechanisms for the high T sub c ferromagnetism in La-doped divalent hexaborides DB sub 6 are studied in detail comparing with similar family materials, in particular with YbB sub 6 , EuB sub 6 and Ce monopnictides. It is shown that in DB sub 6 the light-electron-heavy-hole paired excitonic states form the Wigner crystal, or Wigner glass in actual materials, in which the conventional intersite electron exchange interactions similar to that in Ni dominate the pair singlet formation due to the intra pair mixing causing a ferromagnetic spin glass-like ordering of electron spins. In the La-doped system La sub x D sub 1 sub - sub x B sub 6 , the population of molecular La impurity states with giant moments increases as x approaches the optimal value x sub 0 approx 0.005 for high T sub c providing vacant states for the roton-like fluctuations, which cause the high T sub c at the boundary of the delocalization of electron carriers. Therefore, the critical La concentration for delocalization coincides with the opt...

  13. Iron in the Fire: Searching for Fire's Magnetic Fingerprint using Controlled Heating Experiments, High-Resolution FORCs, IRM Coercivity Spectra, and Low-Temperature Remanence Experiments

    Science.gov (United States)

    Lippert, P. C.; Reiners, P. W.

    2014-12-01

    Evidence for recent climate-wildfire linkages underscores the need for better understanding of relationships between wildfire and major climate shifts in Earth history, which in turn offers the potential for prognoses for wildfire and human adaptations to it. In particular, what are the links between seasonality and wildfire frequency and severity, and what are the feedbacks between wildfire, landscape evolution, and biogeochemical cycles, particularly the carbon and iron cycles? A key first step in addressing these questions is recovering well-described wildfire records from a variety of paleolandscapes and paleoclimate regimes. Although charcoal and organic biomarkers are commonly used indicators of fire, taphonomic processes and time-consuming analytical preparations often preclude their routine use in some environments and in high-stratigraphic resolution paleowildfire surveying. The phenomenological relationship between fire and magnetic susceptibility can make it a useful surveying tool, but increased magnetic susceptibility in sediments is not unique to fire, and thus limits its diagnostic power. Here we utilize component-specific rock magnetic methods and analytical techniques to identify the rock magnetic fingerprint of wildfire. We use a custom-designed air furnace, a series of iron-free laboratory soils, natural saprolites and soils, and fuels from Arizona Ponderosa pine forests and grasslands to simulate wildfire in a controlled and monitored environment. Soil-ash residues and soil and fuel controls were then characterized using First Order Reversal Curve (FORC) patterns, DC backfield IRM coercivity spectra, low-temperature SIRM demagnetization behavior, and low-temperature cycling of room-temperature SIRM behavior. We will complement these magnetic analyses with high-resolution TEM of magnetic extracts. Here we summarize the systematic changes to sediment magnetism as pyrolitized organic matter is incorporated into artificial and natural soils. These

  14. High-Curie-temperature ferromagnetism in self-organized Ge1-xMnx nanocolumns.

    Science.gov (United States)

    Jamet, Matthieu; Barski, André; Devillers, Thibaut; Poydenot, Valier; Dujardin, Romain; Bayle-Guillemaud, Pascale; Rothman, Johan; Bellet-Amalric, Edith; Marty, Alain; Cibert, Joël; Mattana, Richard; Tatarenko, Serge

    2006-08-01

    The emerging field of spintronics would be dramatically boosted if room-temperature ferromagnetism could be added to semiconductor nanostructures that are compatible with silicon technology. Here, we report a high-TC (>400K) ferromagnetic phase of (Ge,Mn) epitaxial layer. The manganese content is 6%, and careful structural and chemical analyses show that the Mn distribution is strongly inhomogeneous: we observe eutectoid growth of well-defined Mn-rich nanocolumns surrounded by a Mn-poor matrix. The average diameter of these nanocolumns is 3nm and their spacing is 10nm. Their composition is close to Ge(2)Mn, which corresponds to an unknown germanium-rich phase, and they have a uniaxially elongated diamond structure. Their Curie temperature is higher than 400K. Magnetotransport reveals a pronounced anomalous Hall effect up to room temperature. A giant positive magnetoresistance is measured from 7,000% at 30K to 200% at 300K and 9T, with no evidence of saturation.

  15. Perpendicular magnetic anisotropy in thin ferromagnetic films adjacent to high-k oxides

    Science.gov (United States)

    Xu, Meng; Bi, Chong; Rosales, Marcus; Newhouse-Illige, Ty; Almasi, Hamid; Wang, Weigang

    2015-03-01

    Perpendicular magnetic anisotropy (PMA) in thin ferromagnetic films has attracted a great deal of attention due to interesting physics and promising application in spintronic devices. The strength of PMA is often found to be strongly influenced by the adjacent heavy metal layer and oxide layer. A strong interest has emerged recently to control the PMA of these ultra-thin films by electric fields. Here we report the fabrication and characterization of perpendicularly magnetized 3d transitional metal films next to high-k oxides such as HfO2 and ZrO2. We have investigated structural, magnetic and transport properties of these films. The PMA strongly depends on the thickness of the ferromagnetic layers and the interfacial oxidation level of the bilayers. We will also discuss electric field controlled magnetic properties in these systems. This work was supported in part by NSF (ECCS-1310338) and by C-SPIN, one of six centers of STARnet, a Semiconductor Research Corporation program, sponsored by MARCO and DARPA.

  16. High-Density Physical Random Number Generator Using Spin Signals in Multidomain Ferromagnetic Layer

    Directory of Open Access Journals (Sweden)

    Sungwoo Chun

    2015-01-01

    Full Text Available A high-density random number generator (RNG based on spin signals in a multidomain ferromagnetic layer in a magnetic tunnel junction (MTJ is proposed and fabricated. Unlike conventional spin-based RNGs, the proposed method does not require one to control an applied current, leading to a time delay in the system. RNG demonstrations are performed at room temperature. The randomness of the bit sequences generated by the proposed RNG is verified using the FIPS 140-2 statistical test suite provided by the NIST. The test results validate the effectiveness of the proposed RNGs. Our results suggest that we can obtain high-density, ultrafast RNGs if we can achieve high integration on the chip.

  17. Coercivity and the critical switching field

    Energy Technology Data Exchange (ETDEWEB)

    Kahler, G.R. [George Washington University, Washington, DC 20052 (United States)]. E-mail: grkahler@aol.com; Bennett, L.H. [George Washington University, Washington, DC 20052 (United States); Della Torre, E. [George Washington University, Washington, DC 20052 (United States)

    2006-02-01

    The critical switching field and the coercivity of a material are not necessarily the same; these field values depend upon the magnetization process. Several field-related parameters are used to identify the major hysteresis loop of a material: the saturation field, remanent coercivity, critical field, average critical field, coercivity, median coercivity, and intrinsic coercivity. The parameters vary with changes in the magnetization process, which usually is assumed to be quasi-static. If the process is not quasi-static; i.e., it is faster or slower, the results of the process will change, and the field parameters will be differen000.

  18. Mn-stabilized zirconia: from imitation diamonds to a new potential high-Tc ferromagnetic spintronics material.

    Science.gov (United States)

    Ostanin, S; Ernst, A; Sandratskii, L M; Bruno, P; Däne, M; Hughes, I D; Staunton, J B; Hergert, W; Mertig, I; Kudrnovský, J

    2007-01-05

    From the basis of ab initio electronic structure calculations which include the effects of thermally excited magnetic fluctuations, we predict Mn-stabilized cubic zirconia to be ferromagnetic above 500 K. We find this material, which is well known both as an imitation diamond and as a catalyst, to be half-metallic with the majority and minority spin Mn impurity states lying in zirconia's wide gap. The Mn concentration can exceed 40%. The high-Tc ferromagnetism is robust to oxygen vacancy defects and to how the Mn impurities are distributed on the Zr fcc sublattice. We propose this ceramic as a promising future spintronics material.

  19. New insight into the thermodynamics of Heisenberg ferromagnets as inferred from high-temperature series

    Science.gov (United States)

    Kuz'min, M. D.

    2017-02-01

    In search of a suitable equation of state for ferromagnets, we revise the information about the Heisenberg model obtainable from high-temperature series. Special attention is paid to the ratio χ3 /χ4 (where χ ⁢ and ⁢χ3 are the linear and cubic susceptibilities) related to Landau's quartic coefficient b. It is found in particular that both χ3 /χ4 and b tend to a finite limit as T →TC . This limit is small - an order of magnitude smaller than predicted by Weiss's molecular field and similar theories - but contrary to the common belief, nonzero. This implies a rejection of the generally accepted critical-point exponents and a return to those of Landau: α = 0 , β = 1/2, γ = 1 , etc.

  20. High proton conduction in a chiral ferromagnetic metal-organic quartz-like framework.

    Science.gov (United States)

    Pardo, Emilio; Train, Cyrille; Gontard, Geoffrey; Boubekeur, Kamal; Fabelo, Oscar; Liu, Hongbo; Dkhil, Brahim; Lloret, Francesc; Nakagawa, Kosuke; Tokoro, Hiroko; Ohkoshi, Shin-ichi; Verdaguer, Michel

    2011-10-05

    A complex-as-ligand strategy to get a multifunctional molecular material led to a metal-organic framework with the formula (NH(4))(4)[MnCr(2)(ox)(6)]·4H(2)O. Single-crystal X-ray diffraction revealed that the anionic bimetallic coordination network adopts a chiral three-dimensional quartz-like architecture. It hosts ammonium cations and water molecules in functionalized channels. In addition to ferromagnetic ordering below T(C) = 3.0 K related to the host network, the material exhibits a very high proton conductivity of 1.1 × 10(-3) S cm(-1) at room temperature due to the guest molecules.

  1. Effect of Mg{sup 2+} and Ti{sup 4+} dopants on the structural, magnetic and high-frequency ferromagnetic properties of barium hexaferrite

    Energy Technology Data Exchange (ETDEWEB)

    Shams, Mohammad H. [Department of Physics, University of Isfahan, Hezar Jarib Street, Isfahan 81746-73441 (Iran, Islamic Republic of); Rozatian, Amir S.H., E-mail: a.s.h.rozatian@phys.ui.ac.ir [Department of Physics, University of Isfahan, Hezar Jarib Street, Isfahan 81746-73441 (Iran, Islamic Republic of); Yousefi, Mohammad H. [Department of Physics, University of Isfahan, Hezar Jarib Street, Isfahan 81746-73441 (Iran, Islamic Republic of); Valíček, Jan [Institute of Physics, Faculty of Mining and Geology, VŠB – Technical University of Ostrava, 17. Listopadu 15, 70833 Ostrava-Poruba (Czech Republic); Šepelák, Vladimir [Institute of Nanotechnology, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen (Germany); Slovak Academy of Sciences, Watsonova 45, 04001 Košice (Slovakia)

    2016-02-01

    The doped barium hexaferrite, BaFe{sub 12−x}(Mg{sub 0.5}Ti{sub 0.5}){sub x}O{sub 19} with 1≤x≤5, is synthesized by a solid state ceramic method. Its crystalline structure, morphology, as well as static and dynamic magnetic properties are investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), vibrating sample magnetometry, and vector network analysis, respectively. The cation distribution of Mg{sup 2+} and Ti{sup 4+} in the hexagonal structure of BaFe{sub 12−x}(Mg{sub 0.5}Ti{sub 0.5}){sub x}O{sub 19} is investigated by {sup 57}Fe Mössbauer spectroscopy. The effect of Mg{sup 2+} and Ti{sup 4+} dopants on static and high-frequency magnetic properties of the ferrite is studied. - Highlights: • The BaFe{sub 12−x}(MgTi){sub 0.5x}O{sub 19} (x =1– 5) are synthesized by a solid state reaction method. • The Mg{sup 2+} and Ti{sup 4+} dopants take positions 12k for x=1 and 4f{sub 1} and 4f{sub 2} for x=5. • The coercivity and magnetization are decreased with an increase in Mg–Ti content. • The ferromagnetic resonance frequency is decreased with increase of x. • The FMR is shifted to lower frequencies due to the reduction of the anisotropy field.

  2. Superconducting magnetoresistance in ferromagnet/superconductor/ferromagnet trilayers.

    Science.gov (United States)

    Stamopoulos, D; Aristomenopoulou, E

    2015-01-01

    Magnetoresistance is a multifaceted effect reflecting the diverse transport mechanisms exhibited by different kinds of plain materials and hybrid nanostructures; among other, giant, colossal, and extraordinary magnetoresistance versions exist, with the notation indicative of the intensity. Here we report on the superconducting magnetoresistance observed in ferromagnet/superconductor/ferromagnet trilayers, namely Co/Nb/Co trilayers, subjected to a parallel external magnetic field equal to the coercive field. By manipulating the transverse stray dipolar fields that originate from the out-of-plane magnetic domains of the outer layers that develop at coercivity, we can suppress the supercurrent of the interlayer. We experimentally demonstrate a scaling of the magnetoresistance magnitude that we reproduce with a closed-form phenomenological formula that incorporates relevant macroscopic parameters and microscopic length scales of the superconducting and ferromagnetic structural units. The generic approach introduced here can be used to design novel cryogenic devices that completely switch the supercurrent 'on' and 'off', thus exhibiting the ultimate magnetoresistance magnitude 100% on a regular basis.

  3. Strong coercivity reduction and high initial permeability in NiCoP coated BaFe12O19-polystyrene bilayer composite

    Science.gov (United States)

    Hamad, Mahmoud A.; El-Sayed, Adly H.; Hemeda, O. M.; Tawfik, A.

    2016-03-01

    Soft-magnetic NiCoP coated hard-magnetic M-type ferrite BaFe12O19 (BaM)-polystyrene (PS) bilayer composite film was successfully synthesized. X-ray diffraction peaks exhibited no change in the structure of BaM after coating with PS. The NiCoP coated BaM-PS composite exhibited a wasp-waisted magnetic hysteretic loop with remarkable reduction in the coercivity, remanence and squareness with respect to BaM-PS, which is useful for the core of a magnetic switching device to control currents so large that they are unmanageable. Moreover, the initial permeability measurement exhibits initial permeability of around 100 000 and thermal stability up to 558 K, which is good for flux-amplifying components of smaller inductors.

  4. Physical properties of nanofluid suspension of ferromagnetic graphite with high Zeta potential

    Energy Technology Data Exchange (ETDEWEB)

    Souza, N.S. [Materials and Devices Group, Department of Physics, Universidade Federal de São Carlos, 13565-905 São Carlos, SP (Brazil); Rodrigues, A.D. [Raman Spectroscopy in Nanostructured Materials, Department of Physics, Universidade Federal de São Carlos, 13565-905 São Carlos, SP (Brazil); Cardoso, C.A. [Materials and Devices Group, Department of Physics, Universidade Federal de São Carlos, 13565-905 São Carlos, SP (Brazil); Pardo, H.; Faccio, R.; Mombru, A.W. [Crystallography, Solid State and Materials Laboratory (Cryssmat-Lab), DEQUIFIM, Facultad de Química, Universidad de la República, P.O. Box 1157, CP 11800, Montevideo (Uruguay); Galzerani, J.C. [Raman Spectroscopy in Nanostructured Materials, Department of Physics, Universidade Federal de São Carlos, 13565-905 São Carlos, SP (Brazil); Lima, O.F. de [Instituto de Física “Gleb Wataghin”, UNICAMP, 13083-970 Campinas, SP (Brazil); Sergeenkov, S., E-mail: sergei@df.ufscar [Materials and Devices Group, Department of Physics, Universidade Federal de São Carlos, 13565-905 São Carlos, SP (Brazil); Araujo-Moreira, F.M. [Materials and Devices Group, Department of Physics, Universidade Federal de São Carlos, 13565-905 São Carlos, SP (Brazil)

    2012-01-09

    We report on the magnetic properties and stability of nanofluid ferromagnetic graphite (NFMG) studied through the measurements of its magnetization hysteresis curves, Raman spectrum and the so-called Zeta potential. The obtained results suggest a robust ferromagnetic behavior of NFMG even at room temperature along with a good stability of the dispersed solution (with Zeta potential around 41.3 mV) and a good reactivity between magnetic graphite and CTAB type cationic surfactant. -- Highlights: ► Magnetic properties and stability of nanofluid ferromagnetic graphite (NFMG) are studied. ► The magnetization hysteresis curves suggest a robust ferromagnetic behavior of NFMG even at room temperature. ► NFMG is found to have Zeta potential around 41.3 mV indicating a good stability of the dispersed solution.

  5. Room temperature ferromagnetism in ZnO prepared by microemulsion

    Directory of Open Access Journals (Sweden)

    Qingyu Xu

    2011-09-01

    Full Text Available Clear room temperature ferromagnetism has been observed in ZnO powders prepared by microemulsion. The O vacancy (VO clusters mediated by the VO with one electron (F center contributed to the ferromagnetism, while the isolated F centers contributed to the low temperature paramagnetism. Annealing in H2 incorporated interstitial H (Hi in ZnO, and removed the isolated F centers, leading to the suppression of the paramagnetism. The ferromagnetism has been considered to originate from the VO clusters mediated by the Hi, leading to the enhancement of the coercivity. The ferromagnetism disappeared after annealing in air due to the reduction of Hi.

  6. Physical properties of nanofluid suspension of ferromagnetic graphite with high Zeta potential

    Science.gov (United States)

    Souza, N. S.; Rodrigues, A. D.; Cardoso, C. A.; Pardo, H.; Faccio, R.; Mombru, A. W.; Galzerani, J. C.; de Lima, O. F.; Sergeenkov, S.; Araujo-Moreira, F. M.

    2012-01-01

    We report on the magnetic properties and stability of nanofluid ferromagnetic graphite (NFMG) studied through the measurements of its magnetization hysteresis curves, Raman spectrum and the so-called Zeta potential. The obtained results suggest a robust ferromagnetic behavior of NFMG even at room temperature along with a good stability of the dispersed solution (with Zeta potential around 41.3 mV) and a good reactivity between magnetic graphite and CTAB type cationic surfactant.

  7. Is a diagnostic category for paraphilic coercive disorder defensible?

    Science.gov (United States)

    Knight, Raymond A

    2010-04-01

    There is a proposal to establish a paraphilic coercive disorder as a new paraphilia in the DSM-V. The empirical data do not, however, support the hypothesis that a distinct syndrome exists that comprises males who are sexually aroused by the coercive elements of rape per se. Purported evidence for this syndrome has centered on the results of phallometric studies. Higher plethysmographic responses of rapists to coercive rape scenarios may, however, be better explained by the failure of coercive elements to inhibit arousal to sexual aspects of the stimuli rather than by arousal specifically to the coercive elements. In addition, sexual fantasies about forcing sex and about struggling victims are highly correlated with sadistic fantasies and have not been shown to identify a syndrome that can be discriminated from sadism. Finally, taxometric evidence strongly supports the hypothesis that the underlying components of rape are distributed as dimensions and do not constitute a separate taxon. Consequently, the criteria purported to categorize rapists into the proposed syndrome would have to be arbitrarily determined. Not only does there seem to be little empirical justification for the creation of this new syndrome, the inclusion of this disorder among the paraphilias would have serious potential for misuse. It would imply endorsement of Paraphilia, NOS, nonconsent, which is currently inappropriately employed in civil commitment proceedings to justify commitment.

  8. The modified procedures in coercivity scaling*

    Directory of Open Access Journals (Sweden)

    Najgebauer Mariusz

    2015-09-01

    Full Text Available The paper presents a scaling approach to the analysis of coercivity. The Widom-based procedure of coercivity scaling has been tested for non-oriented electrical steel. Due to insufficient results, the scaling procedure was improved relating to the method proposed by Van den Bossche. The modified procedure of coercivity scaling gave better results, in comparison to the original approach. The influence of particular parameters and a range of measurement data used in the estimations on the final effect of the coercivity scaling were discussed.

  9. Synthesis of colloidal Mn2+:ZnO quantum dots and high-TC ferromagnetic nanocrystalline thin films.

    Science.gov (United States)

    Norberg, Nick S; Kittilstved, Kevin R; Amonette, James E; Kukkadapu, Ravi K; Schwartz, Dana A; Gamelin, Daniel R

    2004-08-04

    We report the synthesis of colloidal Mn(2+)-doped ZnO (Mn(2+):ZnO) quantum dots and the preparation of room-temperature ferromagnetic nanocrystalline thin films. Mn(2+):ZnO nanocrystals were prepared by a hydrolysis and condensation reaction in DMSO under atmospheric conditions. Synthesis was monitored by electronic absorption and electron paramagnetic resonance (EPR) spectroscopies. Zn(OAc)(2) was found to strongly inhibit oxidation of Mn(2+) by O(2), allowing the synthesis of Mn(2+):ZnO to be performed aerobically. Mn(2+) ions were removed from the surfaces of as-prepared nanocrystals using dodecylamine to yield high-quality internally doped Mn(2+):ZnO colloids of nearly spherical shape and uniform diameter (6.1 +/- 0.7 nm). Simulations of the highly resolved X- and Q-band nanocrystal EPR spectra, combined with quantitative analysis of magnetic susceptibilities, confirmed that the manganese is substitutionally incorporated into the ZnO nanocrystals as Mn(2+) with very homogeneous speciation, differing from bulk Mn(2+):ZnO only in the magnitude of D-strain. Robust ferromagnetism was observed in spin-coated thin films of the nanocrystals, with 300 K saturation moments as large as 1.35 micro(B)/Mn(2+) and T(C) > 350 K. A distinct ferromagnetic resonance signal was observed in the EPR spectra of the ferromagnetic films. The occurrence of ferromagnetism in Mn(2+):ZnO and its dependence on synthetic variables are discussed in the context of these and previous theoretical and experimental results.

  10. High-pressure catalytic chemical vapor deposition of ferromagnetic ruthenium-containing carbon nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Khavrus, Vyacheslav O., E-mail: V.Khavrus@ifw-dresden.de; Ibrahim, E. M. M.; Bachmatiuk, Alicja; Ruemmeli, Mark H.; Wolter, A. U. B.; Hampel, Silke; Leonhardt, Albrecht [IFW Dresden (Germany)

    2012-06-15

    We report on the high-pressure catalytic chemical vapor deposition (CCVD) of ruthenium nanoparticles (NPs) and single-walled carbon nanotubes (SWCNTs) by means of gas-phase decomposition of acetonitrile and ruthenocene in a tubular quartz flow reactor at 950 Degree-Sign C and at elevated pressures (between 2 and 8 bar). The deposited material consists of Ru metal cores with sizes ranging between 1 and 3 nm surrounded by a carbon matrix. The high-pressure CCVD seems to be an effective route to obtain composite materials containing metallic NPs, Ru in this work, inside a nanostructured carbon matrix protecting them from oxidation in ambient air. We find that in contradiction to the weak paramagnetic properties characterizing bulk ruthenium, the synthesized samples are ferromagnetic as predicted for nanosized particles of nonmagnetic materials. At low pressure, the very small ruthenium catalyst particles are able to catalyze growth of SWCNTs. Their yield decreases with increasing reaction pressure. Transmission electron microscopy, selected area energy-dispersive X-ray analysis, Raman spectroscopy, and magnetic measurements were used to analyze and confirm properties of the synthesized NPs and nanotubes. A discussion on the growth mechanism of the Ru-containing nanostructures is presented.

  11. Cu, Pu and Fe high T{sub c} superconductors: Spin holes in anti-ferromagnetic clusters form nonmagnetic bipolarons

    Energy Technology Data Exchange (ETDEWEB)

    Wachter, Peter, E-mail: wachter@solid.phys.ethz.c [Laboratorium fuer Festkoerperphysik, ETH Zuerich, 8093 Zuerich (Switzerland)

    2009-03-15

    The new iron based high T{sub c} superconductors with T{sub c} up to 55 K have stirred new interest in this field. It is consensus that the BCS mechanism is not able to explain the high T{sub c}'s. In the following we propose that spin holes in anti-ferromagnetic clusters combine to make nonmagnetic bipolarons, which can condense and lead to superconductivity.

  12. A high-temperature ferromagnetic topological insulating phase by proximity coupling

    Energy Technology Data Exchange (ETDEWEB)

    Katmis, Ferhat; Lauter, Valeria; Nogueira, Flavio S.; Assaf, Badih A.; Jamer, Michelle E.; Wei, Peng; Satpati, Biswarup; Freeland, John W.; Eremin, Ilya; Heiman, Don; Jarillo-Herrero, Pablo; Moodera, Jagadeesh S.

    2016-05-09

    Topological insulators are insulating materials that display conducting surface states protected by time-reversal symmetry(1,)2, wherein electron spins are locked to their momentum. This unique property opens up new opportunities for creating next-generation electronic, spintronic and quantum computation devices(3-5). Introducing ferromagnetic order into a topological insulator system without compromising its distinctive quantum coherent features could lead to the realization of several predicted physical phenomena(6,7). In particular, achieving robust long-range magnetic order at the surface of the topological insulator at specific locations without introducing spin-scattering centres could open up new possibilities for devices. Here we use spin-polarized neutron reflectivity experiments to demonstrate topologically enhanced interface magnetism by coupling a ferromagnetic insulator (EuS) to a topological insulator (Bi2Se3) in a bilayer system. This interfacial ferromagnetism persists up to room temperature, even though the ferromagnetic insulator is known to order ferromagnetically only at low temperatures (<17 K). The magnetism induced at the interface resulting from the large spin-orbit interaction and the spin-momentum locking of the topological insulator surface greatly enhances the magnetic ordering (Curie) temperature of this bilayer system. The ferromagnetism extends similar to 2 nm into the Bi2Se3 from the interface. Owing to the short-range nature of the ferromagnetic exchange interaction, the time-reversal symmetry is broken only near the surface of a topological insulator, while leaving its bulk states unaffected. The topological magneto-electric response originating in such an engineered topological insulator(2,8) could allow efficient manipulation of the magnetization dynamics by an electric field, providing an energy-efficient topological control mechanism for future spin-based technologies.

  13. Enhancement of magnetic coercivity and macroscopic quantum tunneling in monodispersed Co/CoO cluster assemblies

    OpenAIRE

    Peng, D. L.; Sumiyama, Kenji; Hihara, Takehiko; Yamamuro, S.; ヒハラ, タケヒコ; スミヤマ, ケンジ; 日原, 岳彦; 隅山, 兼治; Hihara, T.; Sumiyama, K.

    1999-01-01

    Magnetic properties have been measured for monodisperse-sized Co/CoO cluster assemblies prepared by a plasma-gas-condensation-type cluster beam deposition technique. The clear correlation obtained between exchange bias field and coercivity suggests the enhancement of uniaxial anisotropy owing to the exchange coupling between the ferromagnetic Co core and antiferromagnetic CoO shell, and magnetic disorder at the core-shell interface. A nonthermal magnetic relaxation observed below 8 K, being r...

  14. High spin polarization and the origin of unique ferromagnetic ground state in CuFeSb

    Science.gov (United States)

    Sirohi, Anshu; Singh, Chandan K.; Thakur, Gohil S.; Saha, Preetha; Gayen, Sirshendu; Gaurav, Abhishek; Jyotsna, Shubhra; Haque, Zeba; Gupta, L. C.; Kabir, Mukul; Ganguli, Ashok K.; Sheet, Goutam

    2016-06-01

    CuFeSb is isostructural to the ferro-pnictide and chalcogenide superconductors and it is one of the few materials in the family that are known to stabilize in a ferromagnetic ground state. Majority of the members of this family are either superconductors or antiferromagnets. Therefore, CuFeSb may be used as an ideal source of spin polarized current in spin-transport devices involving pnictide and the chalcogenide superconductors. However, for that the Fermi surface of CuFeSb needs to be sufficiently spin polarized. In this paper we report direct measurement of transport spin polarization in CuFeSb by spin-resolved Andreev reflection spectroscopy. From a number of measurements using multiple superconducting tips we found that the intrinsic transport spin polarization in CuFeSb is high (˜47%). In order to understand the unique ground state of CuFeSb and the origin of large spin polarization at the Fermi level, we have evaluated the spin-polarized band structure of CuFeSb through first principles calculations. Apart from supporting the observed 47% transport spin polarization, such calculations also indicate that the Sb-Fe-Sb angles and the height of Sb from the Fe plane are strikingly different for CuFeSb than the equivalent parameters in other members of the same family thereby explaining the origin of the unique ground state of CuFeSb.

  15. The study of high Curie temperature ferromagnetism properties in Mn-doped SiC thin film

    Directory of Open Access Journals (Sweden)

    Chaoyang Kang

    2015-01-01

    Full Text Available Mn-doped 3C-SiC film has been prepared onto the Si (111 substrate by employing a molecular beam epitaxy method. The experimental analysis establishes that the prepared sample shows the ferromagnetic property with a relatively high Curie temperature (Tc of 355 K, which is an exciting phenomenon on account of the scarceness in the SiC-based diluted magnetic semiconductor. The analysis derived from the X-ray diffraction and absorption spectroscopy patterns indicates that Mn atoms should react with Si atoms and then form Mn4Si7 compounds. Combined with the theoretical simulation, it is speculated that a new alloy phase of Mn4Si7Cx maybe appear, which should be responsible for the exceptionally high Tc ferromagnetic behavior in the sample.

  16. Operation of High-Voltage Transverse Shock Wave Ferromagnetic Generator in the Open Circuit and Charging Modes

    Science.gov (United States)

    2005-06-01

    FMGs are based on the transverse (when the shock wave propagates across the magnetization vector M) shock demagnetization of Nd2Fe14B hard...generators based on the transverse (when the shock wave propagates across the magnetization vector M) shock wave demagnetization of Nd2Fe14B hard...and photo of a high-voltage transverse FMG are shown in Fig. 1. It contains a hollow hard ferromagnetic cylindrical Nd2Fe14B energy-carrying

  17. Ferroelectric-ferromagnetic multilayers: A magnetoelectric heterostructure with high output charge signal

    Energy Technology Data Exchange (ETDEWEB)

    Prokhorenko, S. [Laboratoire Structures, Propriétés et Modélisation des Solides, UMR CNRS—École Centrale Paris, 92295 Châtenay-Malabry (France); Kohlstedt, H. [Nanoelektronik, Technische Fakultät, Christian-Albrechts-Universität zu Kiel, D-24143 Kiel (Germany); Pertsev, N. A., E-mail: pertsev.domain@mail.ioffe.ru [A. F. Ioffe Physical-Technical Institute and St. Petersburg State Polytechnical University, St. Petersburg, 194021 and 195251 (Russian Federation)

    2014-09-21

    Multiferroic composites and heterostructures comprising ferroelectric and ferromagnetic materials exhibit room-temperature magnetoelectric (ME) effects greatly exceeding those of single-phase magnetoelectrics known to date. Since these effects are mediated by the interfacial coupling between ferroic constituents, the ME responses may be enhanced by increasing the density of interfaces and improving their quality. A promising material system providing these features is a ferroelectric-ferromagnetic multilayer with epitaxial interfaces. In this paper, we describe theoretically the strain-mediated direct ME effect exhibited by free-standing multilayers composed of single-crystalline ferroelectric nanolayers interleaved by conducting ferromagnetic slabs. Using a nonlinear thermodynamic approach allowing for specific mechanical boundary conditions of the problem, we first calculate the polarization states and dielectric properties of ferroelectric nanolayers in dependence on the lattice mismatch between ferroic constituents and their volume fractions. In these calculations, the ferromagnetic component is described by a model which combines linear elastic behavior with magnetic-field-dependent lattice parameters. Then the quasistatic ME polarization and voltage coefficients are evaluated using the theoretical strain sensitivity of ferroelectric polarization and measured effective piezomagnetic coefficients of ferromagnets. For Pb(Zr₀.₅Ti₀.₅)O₃-FeGaB and BaTiO₃-FeGaB multilayers, the ME coefficients are calculated numerically as a function of the FeGaB volume fraction and used to evaluate the output charge and voltage signals. It is shown that the multilayer geometry of a ferroelectric-ferromagnetic nanocomposite opens the way for a drastic enhancement of the output charge signal. This feature makes biferroic multilayers advantageous for the development of ultrasensitive magnetic-field sensors for technical and biomedical applications.

  18. Evidence of weak ferromagnetism in chromium(III) oxide particles

    Energy Technology Data Exchange (ETDEWEB)

    Vazquez-Vazquez, Carlos E-mail: qfmatcvv@usc.es; Banobre-Lopez, Manuel; Lopez-Quintela, M.A.; Hueso, L.E.; Rivas, J

    2004-05-01

    The low temperature (4ferromagnetism is observed below 250 K. The magnetisation curves as a function of the applied field show coercive fields due to the canted antiferromagnetism of the particles. Around 55 K a maximum is observed in the zero-field-cooled curves; this maximum can be assumed as a blocking temperature, similarly to ultrafine ferromagnetic particles.

  19. An active homopolar magnetic bearing with high temperature superconductor (HTS) coils and ferromagnetic cores

    Science.gov (United States)

    Brown, G. V.; Dirusso, E.; Provenza, A. J.

    1995-01-01

    A proof-of-feasibility demonstration showed that high temperature superconductor (HTS) coils can be used in a high-load, active magnetic bearing in liquid nitrogen. A homopolar radial bearing with commercially wound HTS (Bi 2223) bias and control coils produced over 200 lb (890 N) radial load capacity (measured non-rotating) and supported a shaft to 14000 rpm. The goal was to show that HTS coils can operate stably with ferromagnetic cores in a feedback controlled system at a current density similar to that in Cu in liquid nitrogen. Design compromises permitted use of circular coils with rectangular cross section. Conductor improvements will eventually permit coil shape optimization, higher current density and higher bearing load capacity. The bias coil, wound with non-twisted, multifilament HTS conductor, required negligible power to carry its direct current. The control coils were wound with monofilament HTS sheathed in Ag. These dissipated negligible power for direct current (i.e. for steady radial load components). When an alternating current (AC) was added, the AC component dissipated power which increased rapidly with frequency and quadratically with AC amplitude. In fact at frequencies above about 2 hz, the effective resistance of the control coil conductor actually exceeds that of the silver which is in electrical parallel with the oxide superconductor. This is at least qualitatively understandable in the context of a Bean-type model of flux and current penetration into a Type II superconductor. Fortunately the dynamic currents required for bearing stability are of small amplitude. These results show that while twisted multifilament conductor is not needed for stable levitation, twisted multifilaments will be required to reduce control power for sizable dynamic loads, such as those due to unbalance.

  20. Edge ferromagnetism from Majorana flat bands: application to split tunneling-conductance peaks in high-Tc cuprate superconductors.

    Science.gov (United States)

    Potter, Andrew C; Lee, Patrick A

    2014-03-21

    In mean-field descriptions of nodal d-wave superconductors, generic edges exhibit dispersionless Majorana fermion bands at zero energy. These states give rise to an extensive ground-state degeneracy, and are protected by time-reversal symmetry. We argue that the infinite density of states of these flat bands make them inherently unstable to interactions, and show that repulsive interactions lead to edge ferromagnetism which splits the flat bands. This edge ferromagnetism offers an explanation for the observation of the splitting of zero-bias peaks in edge tunneling in high-Tc cuprate superconductors. We argue that this mechanism for splitting is more likely than previously proposed scenarios and describe its experimental consequences.

  1. Scaling of coercivity in a 3d random anisotropy model

    Energy Technology Data Exchange (ETDEWEB)

    Proctor, T.C., E-mail: proctortc@gmail.com; Chudnovsky, E.M., E-mail: EUGENE.CHUDNOVSKY@lehman.cuny.edu; Garanin, D.A.

    2015-06-15

    The random-anisotropy Heisenberg model is numerically studied on lattices containing over ten million spins. The study is focused on hysteresis and metastability due to topological defects, and is relevant to magnetic properties of amorphous and sintered magnets. We are interested in the limit when ferromagnetic correlations extend beyond the size of the grain inside which the magnetic anisotropy axes are correlated. In that limit the coercive field computed numerically roughly scales as the fourth power of the random anisotropy strength and as the sixth power of the grain size. Theoretical arguments are presented that provide an explanation of numerical results. Our findings should be helpful for designing amorphous and nanosintered materials with desired magnetic properties. - Highlights: • We study the random-anisotropy model on lattices containing up to ten million spins. • Irreversible behavior due to topological defects (hedgehogs) is elucidated. • Hysteresis loop area scales as the fourth power of the random anisotropy strength. • In nanosintered magnets the coercivity scales as the six power of the grain size.

  2. Nanoengineering of an Si/MnGe quantum dot superlattice for high Curie-temperature ferromagnetism.

    Science.gov (United States)

    Nie, Tianxiao; Kou, Xufeng; Tang, Jianshi; Fan, Yabin; Lee, Shengwei; He, Qinglin; Chang, Li-Te; Murata, Koichi; Gen, Yin; Wang, Kang L

    2017-02-14

    The realization and application of spintronic devices would be dramatically advanced if room-temperature ferromagnetism could be integrated into semiconductor nanostructures, especially when compatible with mature silicon technology. Herein, we report the observation of such a system - an Si/MnGe superlattice with quantum dots well aligned in the vertical direction successfully grown by molecular beam epitaxy. Such a unique system could take full advantage of the type-II energy band structure of the Si/Ge heterostructure, which could trap the holes inside MnGe QDs, significantly enhancing the hole-mediated ferromagnetism. Magnetic measurements indeed found that the superlattice structure exhibited a Curie temperature of above 400 K. Furthermore, zero-field cooling and field cooling curves could confirm the absence of ferromagnetic compounds, such as Ge8Mn11 (Tc ∼ 270 K) and Ge3Mn5 (Tc ∼ 296 K) in our system. Magnetotransport measurement revealed a clear magnetoresistance transition from negative to positive and a pronounced anomalous Hall effect. Such a unique Si/MnGe superlattice sets a new stage for strengthening ferromagnetism due to the enhanced hole-mediation by quantum confinement, which can be exploited for realizing the room-temperature Ge-based spin field-effect transistors in the future.

  3. In-situ synthesis of reduced graphene oxide decorated with highly dispersed ferromagnetic CdS nanoparticles for enhanced photocatalytic activity under UV irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Sumeet; Ojha, Animesh K., E-mail: animesh198@gmail.com

    2016-03-01

    A facile one step in-situ solvothermal synthesis method has been used to synthesize CdS nanoparticles (NPs), graphene oxide (GO), reduced graphene oxide (rGO) and rGO decorated with highly dispersed CdS NPs. The optical properties of synthesized samples have been investigated using ultraviolet–visible (UV–VIS) spectroscopy, photoluminescence (PL) spectroscopy and Raman spectroscopy (RS) techniques and a comparative analysis of the results obtained by these techniques have been done. The CdS NPs decorated over rGO sheet act as an external perturbation that causes to split 2D Raman band into two distinct Raman peaks. The presence of two distinct Raman peaks in 2D band indicates that the synthesized rGO could be composed by double layers. The room temperature ferromagnetism (RTFM) of CdS NPs decorated over rGO is decreased compared to pure CdS NPs. The rGO-CdS nanocomposites show enhanced photocatalytic activity for the degradation of methylene blue (MB) dye than that of the pure CdS NPs. The improved photocatalytic activity of rGO-CdS nanocomposites could be attributed to the transfer of electron from conduction band (CB) of CdS NPs to the rGO sheets. It causes to increase the amount of ·OH and O{sub 2}·{sup −} radicals in the aqueous solution of dye, which react with MB dye and degrade it. Due to enhanced photocatalytic activity and coercivity, the rGO-CdS nanocomposites may be used for many practical applications in future nanotechnology. - Highlights: • rGO decorated with highly dispersed CdS NPs is synthesized by in-situ solvothermal method. • CdS NPs decorated over rGO surface act as an external perturbation for splitting of 2D band. • Two distinct Raman peaks in 2D band indicates that the rGO may be composed of double layers. • rGO-CdS nanocomposites show enhanced photocatalytic activity. • The rGO-CdS nanocomposites revealed RTFM.

  4. High-frequency susceptibility of a multilayered ferromagnetic system with two-dimensional inhomogeneities

    Science.gov (United States)

    Mankov, Yu. I.; Tsikalov, D. S.

    2010-03-01

    This paper reports on the results of the investigation of the high-frequency susceptibility of a layered ferromagnetic structure in which, apart from a periodic change in the magnetic anisotropy parameter from layer to layer, this parameter varies along layers according to a random law (the superlattice with two-dimensional phase inhomogeneities). The evolution of the frequency dependence of the imaginary part of the averaged Green’s function in the range of the energy gap (band gap) in the spectrum of waves propagating along the superlattice axis due to the change in the relative root-mean-square fluctuations of the phase γ2 has been studied at the boundaries of the odd Brillouin zones. It has been found that, for all odd Brillouin zones, the imaginary part of the Green’s function exhibits a universal behavior: the peak corresponding to the edge of the band gap with a lower frequency remains unchanged, and the peak corresponding to the edge of the band gap with a higher frequency is smoothed with an increase in the quantity γ2. These effects, which were initially revealed at the boundary of the first Brillouin zone of the sinusoidal superlattice, have been explained, as before, by the specific features of the energy conservation laws for the incident and scattered waves in the lattice with two-dimensional inhomogeneities. It has been demonstrated that an increase in the Brillouin zone number leads to a decrease in the value of γ2 at which the peak at the edge of the band gap with a higher frequency disappears.

  5. Atomically Thin B doped g-C3N4 Nanosheets: High-Temperature Ferromagnetism and calculated Half-Metallicity

    Science.gov (United States)

    Gao, Daqiang; Liu, Yonggang; Liu, Peitao; Si, Mingsu; Xue, Desheng

    2016-10-01

    Since the graphitic carbon nitride (g-C4N3), which can be seen as C-doped graphitic-C3N4 (g-C3N4), was reported to display ferromagnetic ground state and intrinsic half-metallicity (Du et al., PRL,108,197207,2012), it has attracted numerous research interest to tune the electronic structure and magnetic properties of g-C3N4 due to their potential applications in spintronic devices. In this paper, we reported the experimentally achieving of high temperature ferromagnetism in metal-free ultrathin g-C3N4 nanosheets by introducing of B atoms. Further, first-principles calculation results revealed that the current flow in such a system was fully spin-polarized and the magnetic moment was mainly attributed to the p orbital of N atoms in B doped g-C3N4 monolayer, giving the theoretic evidence of the ferromagnetism and half-metallicity. Our finding provided a new perspective for B doped g-C3N4 spintronic devices in future.

  6. Room-Temperature Anisotropic Ferromagnetism in Fe-Doped In2O3 Heteroepitaxial Films

    Institute of Scientific and Technical Information of China (English)

    XING Peng-Fei; CHEN Yan-Xue; TANG Min-Jian; YAN Shi-Shen; LIU Guo-Lei; MEI Liang-Mo; JIAO Jun

    2009-01-01

    Fe-doped In_2O_3 films are grown epitaxially on YSZ (100) substrates by pulsed laser deposition. The in-situ reflection high-energy electron diffraction, the atomic force microscopy, and the x-ray diffraction patterns show that the films have a well defined cubic structure epitaxially oriented in the (100) direction. Room temperature ferromagnetism is observed by an alternating gradient magnetometer. Strong perpendicular magnetic anisotropy with a remnant magnetization ratio of 0.83 and a coercivity of 2.S kOe is revealed. Both the structural and the magnetic measurements suggest that this ferromagnetism is an intrinsic property deriving from the spin-orbit coupling between the diluted Fe atoms.

  7. Feasibility of introducing ferromagnetic materials to onboard bulk high-T{sub c} superconductors to enhance the performance of present maglev systems

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Zigang, E-mail: zgdeng@gmail.com [Applied Superconductivity Laboratory (ASCLab), Southwest Jiaotong University (SWJTU), Chengdu, Sichuan 610031 (China); State Key Laboratory of Traction Power (TPL), Southwest Jiaotong University (SWJTU), Chengdu, Sichuan 610031 (China); Wang, Jiasu [Applied Superconductivity Laboratory (ASCLab), Southwest Jiaotong University (SWJTU), Chengdu, Sichuan 610031 (China); Zheng, Jun; Zhang, Ya [Applied Superconductivity Laboratory (ASCLab), Southwest Jiaotong University (SWJTU), Chengdu, Sichuan 610031 (China); State Key Laboratory of Traction Power (TPL), Southwest Jiaotong University (SWJTU), Chengdu, Sichuan 610031 (China); Wang, Suyu [Applied Superconductivity Laboratory (ASCLab), Southwest Jiaotong University (SWJTU), Chengdu, Sichuan 610031 (China)

    2013-02-14

    Highlights: ► Ferromagnetic materials guide the flux distribution of the PMG to bulk positions. ► With ferromagnetic materials, guidance performance can be enhanced greatly. ► A new HTS Maglev system with onboard ferromagnetic materials is designed. ► The design can meet large guidance force requirements for practical applications. -- Abstract: Performance improvement is a long-term research task for the promotion of practical application of promising high-temperature superconducting (HTS) magnetic levitation (maglev) vehicle technologies. We studied the feasibility to enhance the performance of present HTS Maglev systems by introducing ferromagnetic materials to onboard bulk superconductors. The principle here is to make use of the high magnetic permeability of ferromagnetic materials to alter the flux distribution of the permanent magnet guideway for the enhancement of magnetic field density at the position of the bulk superconductors. Ferromagnetic iron plates were added to the upper surface of bulk superconductors and their geometric and positioning effects on the maglev performance were investigated experimentally. Results show that the guidance performance (stability) was enhanced greatly for a particular setup when compared to the present maglev system which is helpful in the application where large guidance forces are needed such as maglev tracks with high degrees of curves.

  8. A comparison of soft magnetic composites designed from different ferromagnetic powders and phenolic resins☆

    Institute of Scientific and Technical Information of China (English)

    Magdalena Streckova; Radovan Bures; Maria Faberova; Lubomir MedveckY; Jan Fuzer; Peter Kollar

    2015-01-01

    Soft magnetic composites (SMCs) were prepared from three different ferromagnetic powder particles:iron powder ASC 100.29, spherical FeSi particles and vitroperm (Fe73Cu1Nb3Si16B7) flakes. Two types of hybrid organic–inorganic phenolic resins modified with either silica nanoparticles or boron were used to design a thin insulating layer perfect-ly covering the ferromagnetic particles. Fourier transform infrared (FTIR) spectrometry confirmed an incorporation of silica or boron into the polymer matrix, which manifested itself through an improved thermal stability of the hybrid resins verified by thermogravimetric-differential scanning calorimetry (TG-DSC) analysis. The core-shell particles prepared from the ferromagnetic powder particles and the modified hybrid resins were further compacted to the cylindrical and toroidal shapes for the mechanical, electrical and magnetic testing. A uniform distribution of the resin between the ferromagnetic particles was evidenced by scanning electron microscope (SEM) analysis, which was also reflected in a rather high value of the electrical resistivity. A low porosity and extraordinary high values of mechanical hardness and flexural strength were found in SMC consisting of the iron powder and phenolic resin modified with boron. The coercive fields of the prepared samples were comparable with the commercial SMCs.

  9. High-pressure synthesis of ferromagnetic Mn3Ge with the Cu3Au-type structure

    Science.gov (United States)

    Takizawa, H.; Yamashita, T.; Uheda, K.; Endo, T.

    2002-11-01

    A new intermetallic compound, Mn3Ge, has been synthesized by direct reaction of elemental components at 6.2 GPa and 1000°C for 30 min using a belt-type high-pressure apparatus. The compound crystallizes into a cubic structure with the space group Pm3m, namely the L12-type (Cu3Au-type) structure. The structure was refined by Rietveld analysis of the powder x-ray diffraction data and the lattice constant was determined as a = 0.380 19(3) nm. The compound shows metallic conductivity and ferromagnetism with a Curie temperature of 400 K.

  10. Ferromagnetism of polythiophene-capped Au nanoparticles

    Science.gov (United States)

    Suzuki, K.; Zhang, H.; Saito, K.; Garitaonandia, J. S.; Goikolea, E.; Insausti, M.

    2011-04-01

    The magnetic and electrical transport properties of regioregular poly(3-hexylthiophene)-capped Au nanoparticles (NPs) doped with iodine have been investigated to clarify the effectiveness of conductive polymer capping on the induction of ferromagnetism in Au. The room-temperature magnetization curve of the undoped polythiophene-capped Au NPs exhibits a clear hysteresis behavior with a coercive force of 160 Oe. The spontaneous magnetization normalized by the mass of Au is 2.0 × 10-2 emu/g. The spontaneous magnetization was found virtually unaffected by iodine doping, whereas the electrical conductivity is enhanced dramatically to ˜10 S/cm. Our results show that polythiophene capping could lead to spontaneous magnetic polarization in Au NPs, and the conductivity of the polymer capping does not affect the ferromagnetism of the Au nanoparticles, opening a possibility for further investigation into the magnetotransport behavior of ferromagnetic Au NPs.

  11. High-Temperature Ferromagnetism in Transition Metal Implanted Wide-Bandgap Semiconductors

    Science.gov (United States)

    2005-07-01

    for which calculations were performed [100]. Uspenskii et al. also performed ab initio calculations concerning the energy-related preference of a DMS...xCrxO (x = 0.25) [100]. A-2 In the case of Cr-doped ZnO, Uspenskii et al. found the preferred mag- netic ordering to be ferromagnetic. In the case... Uspenskii et al. also reported a ground state preference for antiferro- magnetic ordering for the case of Zn0.875Mn0.125O [131]. Dietl et al. have

  12. Nonlinear thermoelectric effects in high-field superconductor-ferromagnet tunnel junctions

    Directory of Open Access Journals (Sweden)

    Stefan Kolenda

    2016-11-01

    Full Text Available Background: Thermoelectric effects result from the coupling of charge and heat transport and can be used for thermometry, cooling and harvesting of thermal energy. The microscopic origin of thermoelectric effects is a broken electron–hole symmetry, which is usually quite small in metal structures. In addition, thermoelectric effects decrease towards low temperatures, which usually makes them vanishingly small in metal nanostructures in the sub-Kelvin regime.Results: We report on a combined experimental and theoretical investigation of thermoelectric effects in superconductor/ferromagnet hybrid structures. We investigate the dependence of thermoelectric currents on the thermal excitation, as well as on the presence of a dc bias voltage across the junction.Conclusion: Large thermoelectric effects are observed in superconductor/ferromagnet and superconductor/normal-metal hybrid structures. The spin-independent signals observed under finite voltage bias are shown to be reciprocal to the physics of superconductor/normal-metal microrefrigerators. The spin-dependent thermoelectric signals in the linear regime are due to the coupling of spin and heat transport, and can be used to design more efficient refrigerators.

  13. HDDR法制备NdFeB永磁体的高矫顽力研究%Study on the Mechanism of the High Coercivity of NdFeB Magnets Prepared by HDDR Method

    Institute of Scientific and Technical Information of China (English)

    张朋越; 泮敏翔; 朱津津; 葛洪良; 孙浩; 金一彪

    2011-01-01

    , especially for the coercivity which is reduced by 1496 kA/m from 295 to 448 K.The coercivity mechanism of the NdFeB magnets prepared by HDDR method was analyzed by studying the behavior of Hc(T)/Ms(T) versus HminN (T)/Ms(T) (Kronmilller-plot).The results of Kronmiiller-plot sbow that nucleation is the dominating mechanism for the magnetization reversal in these samples.Micromagnetic parameters ak of 1.39 and Neff of 1.75 are responsible for the high coercivity of magnetic alloys.

  14. Ferromagnetic grain boundary signature in die-upset RE-Fe-B magnets

    Energy Technology Data Exchange (ETDEWEB)

    Henderson Lewis, L.; Zhu, Y.; Welch, D.O.

    1994-07-01

    Previous nanostructural and nanocompositional studies performed on the boundaries of deformed grains in two die-upset rare earth magnets with bulk compositions Nd{sub 13.75}Fe{sub 80.25}B{sub 6}, and Pr{sub 13.75}Fe{sub 80.25}B{sub 6} indicate that the intergranular phase in many grain boundaries is enriched in iron relative to the bulk. Preliminary magnetic data are presented that provide further evidence that this grain boundary phase is indeed iron-rich, and in fact appears to be ferromagnetic. Hysteresis loops were performed at 800 K on die-upset magnets with the above compositions. Each sample showed a clear hysteresis with coercivities between 34 and 40 Oe average remanence 4{pi}M{sub R} of 6.8 G for the Nd-based sample and 10.3 G for the Pr-based sample. The ferromagnetic signals measured at high temperature in these magnets are attributed to the iron-rich grain boundary phase. The implications of this conclusion with respect to coercivity are discussed.

  15. Micromagnetic simulation of the orientation dependence of grain boundary properties on the coercivity of Nd-Fe-B sintered magnets

    Science.gov (United States)

    Fujisaki, Jun; Furuya, Atsushi; Uehara, Yuji; Shimizu, Koichi; Ataka, Tadashi; Tanaka, Tomohiro; Oshima, Hirotaka; Ohkubo, Tadakatsu; Hirosawa, Satoshi; Hono, Kazuhiro

    2016-05-01

    This paper is focused on the micromagnetic simulation study about the orientation dependence of grain boundary properties on the coercivity of polycrystalline Nd-Fe-B sintered magnets. A multigrain object with a large number of meshes is introduced to analyze such anisotropic grain boundaries and the simulation is performed by combining the finite element method and the parallel computing. When the grain boundary phase parallel to the c-plane is less ferromagnetic the process of the magnetization reversal changes and the coercivity of the multigrain object increases. The simulations with various magnetic properties of the grain boundary phases are executed to search for the way to enhance the coercivity of polycrystalline Nd-Fe-B sintered magnets.

  16. Development of ti-coated ferromagnetic needle, adaptable for ablation cancer therapy by high-frequency induction heating.

    Science.gov (United States)

    Naohara, Takashi; Aono, Hiromichi; Maehara, Tsunehiro; Hirazawa, Hideyuki; Matsutomo, Shinya; Watanabe, Yuji

    2012-03-06

    To develop a novel ablation therapy for human solid cancer, the heating properties of a ferromagnetic carbon steel rod and a prototype Ti-coated needle using this carbon steel rod, were investigated in several high-frequency outputs at 300 kHz. In the former, the heating property was drastically different among the three inclination angles (θ = 0°, 45° and 90°) relative to the magnetic flux direction as a result of the shape magnetic anisotropy. However, the effect of the inclination angles was completely eliminated in the latter. It is considered that the complete non-oriented heating property relative to the magnetic flux direction allows the precise control of the ablation temperature during minimally invasive thermotherapy without a lead-wire connected to a fiber-optic thermometer. This newly designed Ti-coated device will be suitable for clinical use combined with its superior biocompatibility for ablation treatments using high-frequency induction heating.

  17. Manganese mono-boride, an inexpensive room temperature ferromagnetic hard material

    Science.gov (United States)

    Ma, Shuailing; Bao, Kuo; Tao, Qiang; Zhu, Pinwen; Ma, Teng; Liu, Bo; Liu, Yazhou; Cui, Tian

    2017-01-01

    We synthesized orthorhombic FeB-type MnB (space group: Pnma) with high pressure and high temperature method. MnB is a promising soft magnetic material, which is ferromagnetic with Curie temperature as high as 546.3 K, and high magnetization value up to 155.5 emu/g, and comparatively low coercive field. The strong room temperature ferromagnetic properties stem from the positive exchange-correlation between manganese atoms and the large number of unpaired Mn 3d electrons. The asymptotic Vickers hardness (AVH) is 15.7 GPa which is far higher than that of traditional ferromagnetic materials. The high hardness is ascribed to the zigzag boron chains running through manganese lattice, as unraveled by X-ray photoelectron spectroscopy result and first principle calculations. This exploration opens a new class of materials with the integration of superior mechanical properties, lower cost, electrical conductivity, and fantastic soft magnetic properties which will be significant for scientific research and industrial application as advanced structural and functional materials. PMID:28262805

  18. Room-Temperature Ferromagnetism of Ga1-xMnxN Grown by Low-Pressure Metalorganic Chemical Vapour Deposition

    Institute of Scientific and Technical Information of China (English)

    CHEN Zhi-Tao; ZHANG Guo-Yi; SU Yue-Yong; YANG Zhi-Jian; ZHANG Yan; ZHANG Bin; GUO Li-Ping; XU Ke; PAN Yao-Bao; ZHANG Han

    2006-01-01

    @@ Epitaxial films of Ga1-xMnxN have been grown on c-sapphire substrates by low-pressure metal-organic vapour phase epitaxy. The samples show ferromagnetic behaviour up to a temperature of T = 380 K with hysteresis curves showing a coercivity of 50-100Oe. No ferromagnetic second phases and no significant deterioration in crystal quality with the incorporation of Mn can be detected by high-resolution x-ray diffraction. The result of x-ray absorption near-edge structures indicates that Mn atoms substitute for Ga atoms. The Mn concentrations of the layers are determined to reach x = 0.038 by proton-induced x-ray emission.

  19. Coercivity in SmCo hard magnetic films for MEMS applications

    Energy Technology Data Exchange (ETDEWEB)

    Pina, E. [Instituto de Magnetismo Aplicado, RENFE-UCM, Universidad Complutense de Madrid, P.O. Box 155, 28230 Las Rozas, Madrid (Spain)]. E-mail: epina@renfe.es; Palomares, F.J. [Instituto de Ciencia de Materiales de Madrid-CSIC, c/ Sor Juana Ines de la Cruz s/n, 28049 Madrid (Spain); Garcia, M.A. [Instituto de Magnetismo Aplicado, RENFE-UCM, Universidad Complutense de Madrid, P.O. Box 155, 28230 Las Rozas, Madrid (Spain); Cebollada, F. [Departamento de Fisica Aplicada a las Telecomunicaciones, EUITT-UPM, Crtra. De Valencia km 7, 28031 Madrid (Spain); Hoyos, A. de [Instituto de Magnetismo Aplicado, RENFE-UCM, Universidad Complutense de Madrid, P.O. Box 155, 28230 Las Rozas, Madrid (Spain); Romero, J.J. [Instituto de Magnetismo Aplicado, RENFE-UCM, Universidad Complutense de Madrid, P.O. Box 155, 28230 Las Rozas, Madrid (Spain); Hernando, A. [Instituto de Magnetismo Aplicado, RENFE-UCM, Universidad Complutense de Madrid, P.O. Box 155, 28230 Las Rozas, Madrid (Spain); Unidad asociada ICMM-IMA. P.O. Box 155, 28230 Las Rozas Madrid (Spain); Gonzalez, J.M. [Unidad asociada ICMM-IMA. P.O. Box 155, 28230 Las Rozas Madrid (Spain)

    2005-04-15

    In this work we have investigated the thermal dependence of coercivity in 1.5 {mu}m thick SmCo{sub 5} films fabricated by sputtering technique. Samples were deposited onto Si substrates kept at different temperatures. Samples grown below 450 deg. C are amorphous, present low coercivity and require further crystallization processes in order to obtain the 1:5 SmCo hard phase. Samples grown at 450 deg. C are nanocrystalline in the as-deposited state and exhibit high room temperature in-plane coercivity. Correlation between the thermal dependence of coercivity and the nanostructure has been analyzed in the frame of the so-called micromagnetic model.

  20. Ferro-resonance in high and medium voltage networks - Part 4, elimination of ferromagnetic-resonance oscillation; Ferroresonanzschwingungen in Hoch- und Mittelspannungsnetzen. Teil 4: Behebung von Ferroresonanzschwingungen

    Energy Technology Data Exchange (ETDEWEB)

    Braeunlich, R.; Daeumling, H.; Hofstetter, M.; Prucker, U.; Schmid, J.; Schlierf, H.-W.; Minkner, R.

    2009-07-01

    This last article of a series of four articles takes a look at ferromagnetic-resonance oscillation in high-voltage grids and how it can be detected and the problems thus caused can be avoided. The causes of such non-linear oscillations are described and discussed. Their effect on instrumentation such as voltage transformers is discussed. If such effects are not detected, thermal overloads can lead to the destruction of the instruments. This article deals with the avoidance of such problems. An overview of measures that can be taken is provided. Also, the dimensioning of voltage transformers is examined. A comprehensive table provides information on single-phase and three-phase ferromagnetic-resonance, instrument configuration and the measures that are available for the elimination of ferromagnetic resonance.

  1. Gating a ferromagnetic semiconductor

    Science.gov (United States)

    Bove, A.; Altomare, F.; Kundtz, N.; Chang, A. M.; Cho, Y. J.; Liu, X.; Furdyna, J.

    2007-03-01

    Ferromagnetic semiconductors have the potential of revolutionizing the way current electronic devices work: more so, because they are compatible with current fabrication lines and can easily be integrated with today's technology. Particular interest lies in III-V Diluted Magnetic Semiconductor (DMS), where the ferromagnetism is hole-mediated and the Curie temperature can therefore be tuned by changing the concentration of free carriers. In these systems, most of the effort is currently applied toward the fabrication of devices working at room-temperature: this implies high carrier density accompanied by low mobility and short mean free path. We will report our results for a ferromagnetic 2DHG system with low carrier density (˜3.4E12 cm-2) and mobility (˜ 1000 cm^2/(Vs)), and we will discuss the effects of local gating in light of possible applications to the fabrication of ferromagnetic quantum dots. T. Dietl et al., Phys. Rev. B 63, 195205 (2001). H. Ohno et al., Nature 408, 944 (2000)

  2. Micromagnetic simulation of a ferromagnetic particle

    Directory of Open Access Journals (Sweden)

    Ntallis N.

    2014-01-01

    Full Text Available In this work, the magnetic behaviour of a ferromagnetic particle has been investigated by means of micromagnetic modelling, using the Finite Element Method. The simulations were performed on an ellipsoidal particle with uniaxial magnetocrystalline anisotropy by varying the anisotropy constant, the shape and dimensions of the particle. The results indicate the critical particle size for different reversal modes. Above a critical size the formation and motion of domain walls is clearly observed. The associated nucleation and coercive fields are estimated from the demagnetization curves.

  3. Hollow Threats: Why Coercive Diplomacy Fails

    Science.gov (United States)

    2015-06-01

    Most likely, Argentina invaded the Falkland Islands in an attempt to achieve that unity and overcome its affliction of domestic discord. The...benefit during British coercion of Argentina was this hoped-for internal unity. 26. George, “Coercive Diplomacy,” 77. 27. Barry R. Posen, “Military...recognized government has taken refuge in Eastern Libya.90 In December 2014, one of the larger militias, Fajr Libya, fought to control oil export

  4. Ferromagnetic Planar Nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Carbucicchio, M.; Rateo, M. [University of Parma, and INFM, Department of Physics (Italy)

    2004-12-15

    Modern permanent magnets require a high coercive field on account of a strong magnetocrystalline anisotropy, as well as a high saturation magnetization and high Curie temperature. The achievement of so different characteristics in a unique phase is the present main difficulty. In principle, this problem can be solved combining the high saturation magnetization of a soft phase with the high magnetic anisotropy of a hard phase, via the exchange coupling on a nanometric scale. The first attempts showed the feasibility of planar magnetic nanocomposites, where soft and hard magnetic layers are intercalated, but on the other hand they also stressed the difficulties still existing. The present paper reviews some theoretical aspects and experimental results, pointing out the potentiality of Moessbauer spectroscopy in determining the spin configuration, as well as the nature and thickness of interfaces, which strongly influence the exchange interaction in these systems.

  5. Enhanced coercivity thermal stability realized in Nd-Fe-B thin films diffusion-processed by Nd-Co alloys

    Science.gov (United States)

    Zhong, Hui; Fu, Yanqing; Li, Guojian; Liu, Tie; Cui, Weibin; Liu, Wei; Zhang, Zhidong; Wang, Qiang

    2017-03-01

    A proposed Nd2Fe14B-core/Nd2(Fe, Co)14B-shell microstructure was realized by diffusion-processing textured Nd14Fe77B9 single-layer film with Nd100-xCox (x=10, 20 and 40) alloys to improve the coercivity thermal stability. The ambient coercivity was increased from around 1 T in single-layer film to nearly 2 T in diffusion-processed films, which was due to the Nd-rich grain boundaries as seen from transmission electron microscopy (TEM) images. The coercivity thermal stability was improved by the core/shell microstructure because Nd-rich grain boundaries provided the high ambient coercivity and Co-rich shell provided the improved coercivity stability.

  6. The coercivity mechanism of Pr–Fe–B nanoflakes prepared by surfactant-assisted ball milling

    Energy Technology Data Exchange (ETDEWEB)

    Zuo, Wen-Liang, E-mail: wlzuo@iphy.ac.cn; Zhang, Ming; Niu, E.; Shao, Xiao-Ping; Hu, Feng-Xia; Sun, Ji-Rong; Shen, Bao-Gen, E-mail: shenbg@aphy.iphy.ac.cn

    2015-09-15

    The strong (00l) textured Pr{sub 12+x}Fe{sub 82−x}B{sub 6} (x=0, 1, 2, 3, 4) nanoflakes with high coercivity were prepared by surfactant-assisted ball milling (SABM). The thickness and length of the flakes are mainly in the range of 50−200 nm and 0.5−2 μm, respectively. A coercivity of 4.16 kOe for Pr{sub 15}Fe{sub 79}B{sub 6} nanoflakes was obtained, which is the maximum coercivity of R{sub 2}Fe{sub 14}B (R=Pr, Nd) nanoflakes or nanoparticles reported up to now. The results of XRD and SEM for the aligned Pr{sub 15}Fe{sub 79}B{sub 6} nanoflakes indicate that a strong (00l) texture is obtained and the easy magnetization direction is parallel to the surface of the flakes. The angular dependence of coercivity for aligned sample indicates that the coercivity mechanism of the as-milled nanoflakes is mainly dominated by domain wall pinning. Meanwhile, the field dependence of coercivity, isothermal (IRM) and dc demagnetizing (DCD) remanence curves also indicate that the coercivity is mainly determined by domain wall pinning, and nucleation also has an important effect. In addition, the mainly interaction of flakes is dipolar coupling. The research of coercivity mechanism for Pr{sub 15}Fe{sub 79}B{sub 6} nanoflakes is important for guidance the further increase its value, and is useful for the future development of the high performance nanocomposite magnets and soft/hard exchange spring magnets. - Highlights: • A coercivity of 4.16 kOe for Pr{sub 15}Fe{sub 79}B{sub 6} nanoflakes was obtained. • The strong (00l) textured is obtained for Pr{sub 15}Fe{sub 79}B{sub 6} nanoflakes. • The interaction of nanoflakes is mainly dipolar coupling. • Domain wall pinning is the mainly coercivity mechanism.

  7. Development of uniaxial magnetocrystalline anisotropy in SrFe{sub 12−x}(DyGd){sub x}O{sub 19} thin film synthesized by incorporation of high coercivity nanoparticles in sol–gel method

    Energy Technology Data Exchange (ETDEWEB)

    Ghasemi, Ali, E-mail: ali13912001@yahoo.com

    2014-06-01

    SrFe{sub 12−x}(DyGd){sub x}O{sub 19} thin films with x=0–2.5 were synthesized by a sol–gel method on thermally oxidized silicon wafer (Si/SiO{sub 2}). XRD patterns and FE-SEM micrographs demonstrated that single phase c-axis hexagonal ferrite films with rather narrow grain size distribution were obtained. It was found that the grain size is decreased from about 110 nm (for the film with no substitution) to 35 nm (for the film with the highest amount of substitution cations). AFM micrographs exhibited that the surface roughness decreases with an increase in substitution content. It was found from the VSM graphs that with an increase in substitution contents coercivity and saturation of magnetization increase. The maximum saturation of magnetization and coercivity at perpendicular direction were 250 emu/g and 5.5 kOe, respectively. - Highlights: • SrFe{sub 12−x}(DyGd){sub x}O{sub 19} ferrite thin films were successfully synthesized by a sol–gel method. • With an increase in Dy-Gd substitution coercivity and saturation of magnetization increase. • The existence of perpendicular magnetic anisotropy was confirmed by plotting magnetization curve.

  8. Magnetization behavior of nanocrystalline systems combining ferromagnetic and antiferromagnetic phases

    Energy Technology Data Exchange (ETDEWEB)

    Loeffler, J.; Wagner, W.; Svygenhoven, H. van [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Meier, J.; Doudin, B.; Ansermet, J.P. [Ecole Polytechnique Federale, Lausanne (Switzerland)

    1997-09-01

    The magnetic properties of nanostructured materials on the basis of Fe and Ni have been investigated with a SQUID magnetometer, complementary to the small-angle neutron scattering study reported in the same volume. Measurements of the coercive field in a temperature range from 5 to 300 K confirm the validity of the random anisotropy model for our nanostructured systems. Furthermore, we obtain information about the presence and distribution of the antiferromagnetic oxides, joining the ferromagnetic grains. (author) 2 figs., 3 refs.

  9. Development of Ti-Coated Ferromagnetic Needle, Adaptable for Ablation Cancer Therapy by High-Frequency Induction Heating

    Directory of Open Access Journals (Sweden)

    Shinya Matsutomo

    2012-03-01

    Full Text Available To develop a novel ablation therapy for human solid cancer, the heating properties of a ferromagnetic carbon steel rod and a prototype Ti-coated needle using this carbon steel rod, were investigated in several high-frequency outputs at 300 kHz. In the former, the heating property was drastically different among the three inclination angles (θ = 0°, 45° and 90° relative to the magnetic flux direction as a result of the shape magnetic anisotropy. However, the effect of the inclination angles was completely eliminated in the latter. It is considered that the complete non-oriented heating property relative to the magnetic flux direction allows the precise control of the ablation temperature during minimally invasive thermotherapy without a lead-wire connected to a fiber-optic thermometer. This newly designed Ti-coated device will be suitable for clinical use combined with its superior biocompatibility for ablation treatments using high-frequency induction heating.

  10. Competing structural ordering tendencies in new high-TC ferromagnetic Fe-Co-based Heusler alloys from ab initio investigations

    Energy Technology Data Exchange (ETDEWEB)

    Dannenberg, Antje; Gruner, Markus; Entel, Peter [Faculty of Physics, University of Duisburg-Essen, 47048 Duisburg (Germany); Wuttig, Manfred [Department of Materials Science and Engineering, University of Maryland, College Park, MD 20742 (United States)

    2011-07-01

    Fe-Co-based Heuslers are candidates for new ferromagnetic shape memory alloys (FSMA) as they promise higher operation temperatures compared with prototype Ni2MnGa. Of interest are also the corresponding binary systems FeZn and Fe3Ga which show a huge magnetostriction. We present results of ab initio and Monte Carlo calculations regarding structural, magnetic, and electronic properties of Fe2CoGa1-xZnx alloys in conventional X2YZ and inverse (XY)XZ Heusler structures. All systems exhibit high Curie temperatures TC. The preference of the cubic inverse structures is believed to originate from the bcc-like environment of two inequivalent Fe atoms and their strong hybridization with the Co- states. Weakening the Co-Fe hybridization by substitution of Ga by Zn reduces this preference and leads to higher TC but simultaneously reduces the miscibility. Despite the strong spin-dependent Fe-Co hybridization we find a localized character of the spin moments. Extraordinary Z-elements like Cu, Ag, and Au or further enhancement of the Zn content induces a martensitic instability also in the inverse structures. Thus, we conclude that it is possible to find new FSMA with rather high Curie temperatures.

  11. Study on microstructure and soft magnetism of (Fe{sub 65}Co{sub 35}){sub x}(SiO{sub 2}){sub 1-x} nano-granular films with very high ferromagnetic resonance frequency

    Energy Technology Data Exchange (ETDEWEB)

    Yao Dongsheng [Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, Institute of Advanced Materials Physics, Faculty of Science, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072 (China); Ge Shihui, E-mail: yaodsh08@yahoo.co [Key Laboratory for Magnetism and Magnetic Materials, Lanzhou University, Lanzhou 730000 (China); Zhou Xueyun [Faculty of Science, Jiujiang University, Jiujiang City 332005, Jiangxi Province (China)

    2010-03-01

    A series of (Fe{sub 65}Co{sub 35}){sub x}(SiO{sub 2}){sub (1-x)} nano-granular films with different volume fraction x are fabricated by magnetron co-sputtering technique. The structure, magnetic and high frequency properties are investigated systematically by using X-ray diffraction, transmission electronic microscopy, vibrating sample magnetometer, resistivity and complex permeability measurements. Study results indicate that the films consist of Fe{sub 65}Co{sub 35} magnetic metal particles uniformly embedded in an insulating SiO{sub 2} matrix. (Fe{sub 65}Co{sub 35}){sub x}(SiO{sub 2}){sub (1-x)} films exhibit large magnetic anisotropy field H{sub k} and excellent soft magnetic properties in a wide x range from 0.80 to 0.52 with coercivity H{sub c} smaller than 18 Oe. A minimum H{sub c} value of 7.8 Oe is obtained for the sample with x=0.60 whose electrical resistivity rho reaches 2220 mu OMEGA cm and the magnetic anisotropy field H{sub k} is as high as 185 Oe. Especially, for the result of complex permeability measurement of the samples, very high ferromagnetic resonance (FMR) frequency is obtained. For the typical sample with x=0.60, the FMR frequency reaches 4.9 GHz, implying a very high cut-off frequency for high frequency applications, and the real part mu' of its complex permeability exceeds 60 below 3.8 GHz while the imaginary part mu'' is very small until f>2.0 GHz. These good high frequency properties imply that (Fe{sub 65}Co{sub 35}){sub x}(SiO{sub 2}){sub (1-x)} granular films are promising for applications in high frequency range. The good soft magnetic properties are ascribed to the exchange coupling among magnetic particles, which is discussed in this paper.

  12. Proliferation Persuasion. Coercive Bargaining with Nuclear Technology

    Energy Technology Data Exchange (ETDEWEB)

    Volpe, Tristan A. [George Washington Univ., Washington, DC (United States)

    2015-08-31

    Why do states wait for prolonged periods of time with the technical capacity to produce nuclear weapons? Only a handful of countries have ever acquired the sensitive nuclear fuel cycle technology needed to produce fissile material for nuclear weapons. Yet the enduring trend over the last five decades is for these states to delay or forgo exercising the nuclear weapons option provided by uranium enrichment or plutonium reprocessing capabilities. I show that states pause at this threshold stage because they use nuclear technology to bargain for concessions from both allies and adversaries. But when does nuclear latency offer bargaining benefits? My central argument is that challengers must surmount a dilemma to make coercive diplomacy work: the more they threaten to proliferate, the harder it becomes to reassure others that compliance will be rewarded with nuclear restraint. I identify a range of mechanisms able to solve this credibility problem, from arms control over breakout capacity to third party mediation and confidence building measures. Since each step towards the bomb raises the costs of implementing these policies, a state hits a sweet spot when it first acquires enrichment and/or reprocessing (ENR) technology. Subsequent increases in proliferation capability generate diminishing returns at the bargaining table for two reasons: the state must go to greater lengths to make a credible nonproliferation promise, and nuclear programs exhibit considerable path dependency as they mature over time. Contrary to the conventional wisdom about power in world politics, less nuclear latency thereby yields more coercive threat advantages. I marshal new primary source evidence from archives and interviews to identify episodes in the historical record when states made clear decisions to use ENR technology as a bargaining chip, and employ this theory of proliferation persuasion to explain how Japan, North Korea, and Iran succeeded and failed to barter concessions from the

  13. Magnetically controlled ferromagnetic swimmers

    Science.gov (United States)

    Hamilton, Joshua K.; Petrov, Peter G.; Winlove, C. Peter; Gilbert, Andrew D.; Bryan, Matthew T.; Ogrin, Feodor Y.

    2017-03-01

    Microscopic swimming devices hold promise for radically new applications in lab-on-a-chip and microfluidic technology, diagnostics and drug delivery etc. In this paper, we demonstrate the experimental verification of a new class of autonomous ferromagnetic swimming devices, actuated and controlled solely by an oscillating magnetic field. These devices are based on a pair of interacting ferromagnetic particles of different size and different anisotropic properties joined by an elastic link and actuated by an external time-dependent magnetic field. The net motion is generated through a combination of dipolar interparticle gradient forces, time-dependent torque and hydrodynamic coupling. We investigate the dynamic performance of a prototype (3.6 mm) of the ferromagnetic swimmer in fluids of different viscosity as a function of the external field parameters (frequency and amplitude) and demonstrate stable propulsion over a wide range of Reynolds numbers. We show that the direction of swimming has a dependence on both the frequency and amplitude of the applied external magnetic field, resulting in robust control over the speed and direction of propulsion. This paves the way to fabricating microscale devices for a variety of technological applications requiring reliable actuation and high degree of control.

  14. Magnetically controlled ferromagnetic swimmers

    Science.gov (United States)

    Hamilton, Joshua K.; Petrov, Peter G.; Winlove, C. Peter; Gilbert, Andrew D.; Bryan, Matthew T.; Ogrin, Feodor Y.

    2017-01-01

    Microscopic swimming devices hold promise for radically new applications in lab-on-a-chip and microfluidic technology, diagnostics and drug delivery etc. In this paper, we demonstrate the experimental verification of a new class of autonomous ferromagnetic swimming devices, actuated and controlled solely by an oscillating magnetic field. These devices are based on a pair of interacting ferromagnetic particles of different size and different anisotropic properties joined by an elastic link and actuated by an external time-dependent magnetic field. The net motion is generated through a combination of dipolar interparticle gradient forces, time-dependent torque and hydrodynamic coupling. We investigate the dynamic performance of a prototype (3.6 mm) of the ferromagnetic swimmer in fluids of different viscosity as a function of the external field parameters (frequency and amplitude) and demonstrate stable propulsion over a wide range of Reynolds numbers. We show that the direction of swimming has a dependence on both the frequency and amplitude of the applied external magnetic field, resulting in robust control over the speed and direction of propulsion. This paves the way to fabricating microscale devices for a variety of technological applications requiring reliable actuation and high degree of control. PMID:28276490

  15. Enhancement of zinc vacancies in room-temperature ferromagnetic Cr–Mn codoped ZnO nanorods synthesized by hydrothermal method under high pulsed magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Min [Laboratory for Microstructures/School of Materials Science and Engineering, Shanghai University, 149 Yanchang Road, 200072 Shanghai (China); Li, Ying, E-mail: liying62@shu.edu.cn [Laboratory for Microstructures/School of Materials Science and Engineering, Shanghai University, 149 Yanchang Road, 200072 Shanghai (China); Hu, Yemin; Zhu, Mingyuan; Li, Wenxian; Jin, Hongmin; Wang, Shiwei [Laboratory for Microstructures/School of Materials Science and Engineering, Shanghai University, 149 Yanchang Road, 200072 Shanghai (China); Li, Yibing; Zhao, Huijun [Centre for Clean Environment and Energy, Griffith School of Environment, Griffith University, Gold Coast Campus, QLD 4222 (Australia)

    2015-10-25

    Room-temperature ferromagnetic Cr–Mn codoped ZnO diluted magnetic semiconductor was synthesized by pulse magnetic field-assisted hydrothermal method. X-ray diffraction and Raman spectra analysis reveal that all the samples have hexagonal wurtzite structure. High resolution transmission electron microscopy and Energy-dispersive spectroscopy measurements ensure that the Cr and Mn ions are incorporated into the wurtzite host matrix without any detectable impurity phase. X-ray photoelectron spectroscopy confirms that Mn and Cr ions are doped into the ZnO wurtzite host matrix with divalent states in the sample without magnetic field processing. Cr ions became trivalent states in ZnO synthesized with high pulsed magnetic field, while Mn keeps its divalent state. The presence of Cr{sup 3+} is attributed to hole doping in ZnO with zinc vacancies induced by the field. Magnetization measurements reveal the appearance of ferromagnetism for the magnetic field processed sample. Comparing with oxygen vacancies, zinc vacancies (hole doping) is more effectively to stabilized ferromagnetism in Mn-doped ZnO diluted magnetic semiconductors. - Graphical abstract: This figure shows the magnetization versus magnetic field curves for ZnO–Cr–Mn-0T and ZnO–Cr–Mn-4T at 290 K. The 4 T sample was well-defined hysteresis loops, which is indicative of room-temperature ferromagnetic behavior. But for 0 T sample, no ferromagnetic response at 290 K is observed. The hole doping enhanced by high pulsed magnetic field is crucial to stabilize ferromagnetism in Mn-doped ZnO diluted magnetic semiconductor. And the presence of Cr{sup 3+} in 4 T sample is a possible signature of hole doping induced by zinc vacancies. - Highlights: • Cr–Mn codoped ZnO nanorods were synthesized by hydrothermal method. • High pulsed magnetic field was applied during the hydrothermal method. • The valence state of doped elements was investigated by XPS. • High pulsed magnetic field enhances the

  16. Critical behaviour of coupled organic ferromagnet chains

    Institute of Scientific and Technical Information of China (English)

    Guo Ji-Yong; Chen Yu-Guang; Chen Hong

    2005-01-01

    The interchain coupling in a model, which is most relevant to organic ferromagnets, is studied by a kind of mean field theory. A full phase diagram is given for this model. It is shown that the interchain coupling dramatically affects the ferromagnetic order in the ground state. When the interchain coupling reaches a critical value, the high-spin ground state disappears and the system may transit from ferromagnetic phase into Kondo-singlet phase.

  17. 脉冲磁场技术在高矫顽力稀土永磁测量领域的应用%Application of pulsed field technique to magnetic property measurements of rare earth based hard magnetic materials with high coercivity

    Institute of Scientific and Technical Information of China (English)

    林安利; 贺建; 张跃; John Dudding

    2009-01-01

    An inherent problem was introduced when measuring the magnetic properties of high coercivity hard magnetic materials with an existent static BH tracer (hysteresisograph) and the reason why the problem happens was discussed. To deal with the problem a pulsed field magnetometer (PFM) system based on the f-2f method, which could generates 8756kA·m~(-1) magnetic field, was designed and applied to measure the whole hysteresis loop of high coercivity hard magnetic materials. The technical advantages, structure and eddy current effect correction of the system were also introduced. It can be approved, from a large quantity of measurement results, that the long term repeatability of the system is very good. The deviation of magnetic properties, i.e. remanence B_r, intrinsic coercivity H_(cJ), magnetic flux density coercivity H_(cB), and maximum energy product (BH)_(max), measured with a PFM compared with that measured with a national standard static BH tracer is within 1% for low coercivity hard magnets. For high coercivity hard magnets the system could measure the whole hysteresis loop and solve the high coercivity problem that a static BH tracer could not avoid.%简述了超高矫顽力永磁体测量现状,分析了静态磁滞回线仪在测量高矫顽力永磁体时存在的问题及其原因.为解决此问题,采用"f-2f"原理建立了基于脉冲磁场技术的高矫顽力永磁测量装置,该装置能产生最高8756kA·m~(-1)的测量磁场,能够测量高矫顽力永磁体的整个磁滞回线.阐述了该脉冲磁场测量装置的优势、组成结构以及涡流修正方法.经过实验验证,该系统具有良好的测量重复性.与国家永磁标准测量装置的对比结果显示:在低矫顽力范围内两者剩磁Br、内禀矫顽力H_(cJ)、磁感应强度矫顽力H_(cB)和最大磁能积(BH)_(max)四个参数的测量偏差在1%以内;在高矫顽力范围,该装置解决了静态磁滞回线仪测量曲线变形的问题.

  18. Near room temperature ferromagnetism of copper phthalocyanine thin films

    Energy Technology Data Exchange (ETDEWEB)

    Wang, XueYan, E-mail: xueyanadeline@163.com; Zheng, JianBang; Chen, Lei; Qiao, Kai; Xu, JiaWei; Cao, ChongDe

    2015-11-30

    Highlights: • The α-CuPc films without and with light Ni-doping were characterized by X-ray photoelectron spectroscopy to confirm the absence of other ferromagnetic impurities. • The α-CuPc film exhibited ferromagnetic hysteresis with saturation magnetization of ∼6.77 emu/cm{sup 3} and coercivity of ∼96 Oe at 280 K, while that of the Ni-doped α-CuPc film are ∼0.69 emu/cm{sup 3} and ∼113 Oe, respectively. • Through the density functional theory calculations, the origin of the ferromagnetism arise from Cu 3d states and N 2s2p electronic spin polarization, as well as p–d exchange coupling interactions, and spin-unbalanced electronic structure of C 2p induced by the π–π interactions. - Abstract: We reported near room temperature ferromagnetism of α-CuPc films without and with light Ni-doping. Two samples were characterized by X-ray photoelectron spectroscopy (XPS) to confirm the absence of other ferromagnetic impurities. The α-CuPc film exhibited ferromagnetic hysteresis with saturation magnetization of ∼6.77 emu/cm{sup 3} and coercivity of ∼96 Oe at 280 K, while that of the Ni-doped α-CuPc film are ∼0.69 emu/cm{sup 3} and ∼113 Oe, respectively. Through the density functional theory (DFT) calculations, the origin of the ferromagnetism arise from Cu 3d states and N 2s2p electronic spin polarization, as well as p-d exchange coupling interactions, and spin-unbalanced electronic structure of C 2p induced by the π–π interactions.

  19. Giant magnetoresistance of novel ferromagnets AMg4Mn6O15 (A=K, Rb, and Cs) with highly symmetric structure

    Science.gov (United States)

    Tanaka, Yudai; Sato, Hirohiko

    2017-04-01

    A novel family of cubic manganese oxides, AMg4Mn6O15 (A=K, Rb, and Cs), were discovered. In this type of structure, the MnO6 octahedra share edges, constructing a highly symmetric framework where Mn atoms form a three-dimensional network of truncated octahedra. The crystallographic site of Mn is unique and the average oxidation state of Mn is 3.5, indicating a mixed-valence electronic state where Mn3+ and Mn4+ sites are completely indistinguishable. These compounds become ferromagnetic with fully polarized magnetic moments of Mn ions. The ferromagnetic transition temperature TC is 170 K, that is considerably high for manganese oxides. The electric resistivity of KMg4Mn6O15 is about 105 Ωcm at 300 K and exhibits a non-metallic temperature dependence. It reveals a large negative magnetoresistance; about 40% of the resistivity is suppressed by 5 T of magnetic field at TC.

  20. Random magnetic anisotropy: Switching and coercivity behavior

    Science.gov (United States)

    Creswell, A.; Paul, D. I.

    1990-05-01

    Starting from a Hamiltonian based on the random magnetic anisotropy model to describe the magnetic characteristics of amorphous materials such as TbFe2, we determine the low-temperature dependence of the coercivity as well as the magnetization dynamics of these materials. Our model features clusters, each characterized by its anisotropy direction. The exchange energy term entering the Hamiltonian is represented by an effective exchange interaction acting in the intercluster regions. Our Hamiltonian has a minimum in each of the two opposite hemispheres defined by the applied field. We derive the temperature-dependent coercivity by calculating the field necessary to have the one metastable minimum disappear. Our results agree well with experimental data for reasonable values of the parameters. We study the dynamics of the magnetization at 0 K by performing a numerical integration of the equations of motion derived from our Hamiltonian augmented by a Gilbert and Kelly damping term. The average magnetization of the material is reevaluated at each integration step in order for the mean-field approximation for exchange to remain physically meaningful. We obtain the time dependence of the magnetization, determine the switching fields and switching times, and study the influence of the exchange on the results.

  1. Perpendicular magnetic anisotropy in amorphous ferromagnetic CoSiB/Pt multilayers.

    Science.gov (United States)

    Hwang, J Y; Park, J S; Yim, H I; Kim, T W; Shin, D Y; Lee, S B

    2011-01-01

    Magnetic anisotropy properties of amorphous ferromagnetic CoSiB/Pt multilayers with perpendicular magnetic anisotropy (PMA, K(u)) were systematically investigated as a function of CoSiB layer thickness (t(coSiB)) and Pt layer thickness (t(Pt)). In two series of [CoSiB t(coSiB)Pt t(P1)]5 multilayers, the perpendicular coercivity (H(c)) increased to reach a maximum and then decreased with further increase in both t(coSiB) and t(Pt), due to intermixing of CoSiB/Pt interfaces. Particularly, using the amorphous soft magnetic CoSiB, the coercivity became very sensitive to the CoSiB thickness. These multilayer films exhibited a high K(u) of 2 x 10(6) erg/cc and a high H(c) of 360 Oe with marked squareness. It was found that even after annealing at 350 degrees C, the CoSiB/Pt multilayers had a high PMA and their H(c) increased.

  2. Ferromagnetic resonance frequency increase and resonance line broadening of a ferromagnetic Fe-Co-Hf-N film with in-plane uniaxial anisotropy by high-frequency field perturbation

    Science.gov (United States)

    Seemann, K.; Leiste, H.; Krüger, K.

    2013-11-01

    Soft ferromagnetic Fe-Co-Hf-N films, produced by reactive r.f. magnetron sputtering, are useful to study the ferromagnetic resonance (FMR) by means of frequency domain permeability measurements up to the GHz range. Films with the composition Fe33Co43Hf10N14 exhibit a saturation polarisation Js of around 1.35 T. They are consequently considered as being uniformly magnetised due to an in-plane uniaxial anisotropy of approximately μ0Hu≈4.5 m T after annealing them, e.g., at 400 °C in a static magnetic field for 1 h. Being exposed to a high-frequency field, the precession of magnetic moments leads to a marked frequency-dependent permeability with a sharp Lorentzian shaped imaginary part at around 2.33 GHz (natural resonance peak), which is in a very good agreement with the modified Landau-Lifschitz-Gilbert (LLG) differential equation. A slightly increased FMR frequency and a clear increase in the resonance line broadening due to an increase of the exciting high-frequency power (1-25.1 mW), considered as an additional perturbation of the precessing system of magnetic moments, could be discovered. By solving the homogenous LLG differential equation with respect to the in-plane uniaxial anisotropy, it was revealed that the high-frequency field perturbation impacts the resonance peak position fFMR and resonance line broadening ΔfFMR characterised by a completed damping parameter α=αeff+Δα. Adapted from this result, the increase in fFMR and decrease in lifetime of the excited level of magnetic moments associated with ΔfFMR, similar to a spin-½ particle in a static magnetic field, was theoretically elaborated as well as compared with experimental data.

  3. Low coercivity giant magnetoresistance with perpendicular magnetic anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jeong-Seop; Yoon, Jungbum; Kang, Mool-Bit; You, Chun-Yeol, E-mail: cyyou@inha.ac.kr

    2014-05-01

    We find the perpendicular magnetic anisotropy giant magnetoresistance structure, whose coercivity is less than 10 Oe. We reveal that the coercivity of free layer can be smaller than 5 Oe in Co/Pd/Cu/[Co/Pd]{sub 4} multilayer structure with a TiO{sub 2} seed layer. The TiO{sub 2} seed layer plays a critical role in the small coercivity of free layer. The GMR ratio is around 1–1.8% for the out-of-plane magnetic fields, and the maximum MR sensitivity of 0.12%/Oe is achieved. - Highlights: • We find an extremely small coercivity giant magnetoresistance (GMR) structure for the out-of-plane magnetic field. • The key ingredient of small coercivity is a TiO{sub 2} seed layer. • Such a small coercivity GMR structure will be useful for automotive applications such as wheel speed, rotation, and position sensors.

  4. Ferromagnetism and chirality in two-dimensional cyanide-bridged bimetallic compounds.

    Science.gov (United States)

    Coronado, Eugenio; Gómez-García, Carlos J; Nuez, Alicia; Romero, Francisco M; Rusanov, Eduard; Stoeckli-Evans, Helen

    2002-09-09

    The combination of hexacyanoferrate(III) anions, [Fe(CN)(6)](3)(-), with nickel(II) complexes derived from the chiral ligand trans-cyclohexane-1,2-diamine (trans-chxn) affords the enantiopure layered compounds [Ni(trans-(1S,2S)-chxn)(2)](3)[Fe(CN)(6)](2).2H(2)O (1) and [Ni(trans-(1R,2R)-chxn)(2)](3)[Fe(CN)(6)](2).2H(2)O (2). These chiral systems behave as ferromagnets (T(c) = 13.8 K) with a relatively high coercive field (H(c) = 0.17 T) at 2 K. They also exhibit an unusual magnetic behavior at low temperatures that has been attributed to the dynamics of the magnetic domains in the ordered phase.

  5. Asymmetric Ferromagnet-Superconductor-Ferromagnet Switch

    Energy Technology Data Exchange (ETDEWEB)

    Cadden-Zimansky, P.; Bazaliy, Ya.B.; Litvak, L.M.; Jiang, J.S.; Pearson, J.; Gu, J.Y.; You, Chun-Yeol; Beasley, M.R.; Bader, S.D.

    2011-11-04

    In layered ferromagnet-superconductor-ferromagnet F{sub 1} /S/F{sub 2} structures, the critical temperature T{sub c} of the superconductors depends on the magnetic orientation of the ferromagnetic layers F{sub 1} and F{sub 2} relative to each other. So far, the experimentally observed magnitude of change in T{sub c} for structures utilizing weak ferromagnets has been 2 orders of magnitude smaller than is expected from calculations. We theoretically show that such a discrepancy can result from the asymmetry of F/S boundaries, and we test this possibility by performing experiments on structures where F{sub 1} and F{sub 2} are independently varied. Our experimental results indicate that asymmetric boundaries are not the source of the discrepancy. If boundary asymmetry is causing the suppressed magnitude of T{sub c} changes, it may only be possible to detect in structures with thinner ferromagnetic layers.

  6. Ultrahigh coercivity and core-shell microstructure achieved in oriented Nd-Fe-B thin films diffusion-processed with Dy-based alloys

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Tongbo; Zhou, Xiaoqian; Yu, Dedong; Fu, Yanqing; Cui, Weibin [Northeastern University, Key Laboratory of Electromagnetic Processing of Materials (EPM), Ministry of Education, Shenyang (China); Northeastern University, Department of Physics and Chemistry of Materials, School of Materials Science and Engineering, Shenyang (China); Li, Guojian; Wang, Qiang [Northeastern University, Key Laboratory of Electromagnetic Processing of Materials (EPM), Ministry of Education, Shenyang (China)

    2017-01-15

    Ultrahigh ambient coercivities of ∝4 T were achieved in Nd-Fe-B benchmark thin film with coercivity of 1.06 T by diffusion-processing with Dy, Dy{sub 70}Cu{sub 30} and Dy{sub 80}Ag{sub 20} alloy layer. High texture and good squareness were obtained. In triple-junction regions, Dy element was found to be immiscible with Nd element. Microstructure observation indicated the typical gradient elementary distribution. Unambiguous core/shell microstructure was characterized by transition electron microscopy. Due to the enhanced ambient coercivity, the coercivity temperature stability was also substantially increased. (orig.)

  7. Ultrahigh coercivity and core-shell microstructure achieved in oriented Nd-Fe-B thin films diffusion-processed with Dy-based alloys

    Science.gov (United States)

    Zhang, Tongbo; Zhou, Xiaoqian; Yu, Dedong; Fu, Yanqing; Li, Guojian; Cui, Weibin; Wang, Qiang

    2017-01-01

    Ultrahigh ambient coercivities of 4 T were achieved in Nd-Fe-B benchmark thin film with coercivity of 1.06 T by diffusion-processing with Dy, Dy70Cu30 and Dy80Ag20 alloy layer. High texture and good squareness were obtained. In triple-junction regions, Dy element was found to be immiscible with Nd element. Microstructure observation indicated the typical gradient elementary distribution. Unambiguous core/shell microstructure was characterized by transition electron microscopy. Due to the enhanced ambient coercivity, the coercivity temperature stability was also substantially increased.

  8. Electrically detected ferromagnetic resonance

    NARCIS (Netherlands)

    Goennenwein, S.T.B.; Schink, S.W.; Brandlmaier, A.; Boger, A.; Opel, M.; Gross, R.; Keizer, R.S.; Klapwijk, T.M.; Gupta, A.; Huebl, H.; Bihler, C.; Brandt, M.S.

    2007-01-01

    We study the magnetoresistance properties of thin ferromagnetic CrO2 and Fe3O4 films under microwave irradiation. Both the sheet resistance ρ and the Hall voltage VHall characteristically change when a ferromagnetic resonance (FMR) occurs in the film. The electrically detected ferromagnetic resonanc

  9. Formation and characterization of magnetic barium ferrite hollow fibers with low coercivity via co-electrospun

    Science.gov (United States)

    Liu, Gui-fang; Zhang, Zi-dong; Dang, Feng; Cheng, Chuan-bing; Hou, Chuan-xin; Liu, Si-da

    2016-08-01

    BaFe12O19 fibers and hollow fibers were successfully prepared by electrospun and co-electrospun. A very interesting result appeared in this study that hollow fibers made by co-electrospun showed low coercivity values of a few hundred oersteds, compared with the coercivity values of more than thousand oersteds for the fibers made by electrospun. So the hollow fibers with high saturation magnetization (Ms) and while comparatively low coercivity (Hc) exhibited strong magnetism and basically showed soft character. And this character for hollow fibers will lead to increase of the permeability for the samples which is favorable for impedance matching in microwave absorption. So these hollow fibers are promised to have use in a number of applications, such as switching and sensing applications, electromagnetic materials, microwave absorber.

  10. Effective anisotropy and coercivity in nanocrystalline single-phase NdFeB permanent magnetic material

    Institute of Scientific and Technical Information of China (English)

    韩广兵; 高汝伟; 冯维存; 刘汉强; 王标; 张鹏; 陈伟; 李卫; 郭永权

    2003-01-01

    The effect of exchange-coupling interaction on the effective anisotropy and its varying tendency in nanocrystalline single-phase NdFeB permanent magnetic material have been investigated. The results show that the exchange-coupling interaction between grains makes the effective anisotropy of material, Keff, decrease with the reduction of grain size. The variation of Keff is basically the same as that of coercivity. The decrease in effective anisotropy is the main reason of the reduction of coercivity for nanocrystalline single-phase NdFeB permanent magnetic material. In order to get high anisotropy and coercivity in nanocrystalline single-phase NdFeB permanent material, the grain size should be larger than 35 nm.

  11. Soft-ferromagnetic bulk glassy alloys with large magnetostriction and high glass-forming ability

    Directory of Open Access Journals (Sweden)

    Jiawei Li

    2011-12-01

    Full Text Available The effect of Dy addition on the glass-forming ability (GFA, magnetostriction as well as soft-magnetic properties and fracture strength in FeDyBSiNb glassy alloys was investigated. In addition to the increase of supercooled liquid region from 55 to 100 K, the addition of Dy is effective in approaching alloy to an eutectic point and increasing the saturation magnetostrction (λs. Accordingly, bulk glassy alloy (BGA rods with diameters up to 4 mm were produced, which exhibit a large λs as high as 65×10-6. Besides, the BGA system exhibits superhigh fracture strength of 4000 MPa, combined with good soft-magnetic properties.

  12. Raman evidence for presence of high-temperature ferromagnetic clusters in magnetodielectric compound Ba-doped La2NiMnO6

    Science.gov (United States)

    Barbosa, D. A. B.; Paschoal, C. W. A.

    2017-10-01

    Magnetodielectric ferromagnetic semiconductors are key materials because of their applications in spintronic devices; they can be used to control the magnetic properties by applying electric fields. La2NiMnO6 emerged as an important magnetodielectric ferromagnetic semiconductor because of its high Curie temperature near room temperature. Recently Ba doped was successfully used to improve magnetic properties in La2NiMnO6, originating partially ordered systems with different ordering degrees but presenting same Tc = 280 K. However, the influence of Ba doping on the temperature dependent vibrational properties of the system was not investigated. To investigate the Ba doping influence on temperature dependent phonon spectra in La2NiMnO6, we used Raman Spectroscopy to probe the symmetric stretching mode behavior in the range from 10 to 600 K. Remarkable softenings were detected in the phonon behavior due to spin phonon coupling, at several different temperatures, much above Tc. The FWHM dependence with temperature rules out magnetostriction effects. The phonon softenings are the largest reported so far for the RE2NiMnO6 systems and also indicate that Ba doping induces ordering in the Ni/Mn sites. The temperature discordance in characteristic softening onset of the spin phonon coupling are related to ferromagnetic short range clusters due the presence of Ni3 +, Mn3 + oxidation states.

  13. Flexible ferromagnetic filaments and the interface with biology

    Energy Technology Data Exchange (ETDEWEB)

    Erglis, K.; Belovs, M. [University of Latvia, Zellu 8, Riga LV-1002 (Latvia); Cebers, A. [University of Latvia, Zellu 8, Riga LV-1002 (Latvia)], E-mail: aceb@tesla.sal.lv

    2009-04-15

    Flexible ferromagnetic filaments are studied both theoretically and experimentally. Two main deformation modes of the filament at magnetic field inversion are theoretically described and observed experimentally by using DNA-linked chains of ferromagnetic particles. Anomalous orientation of ferromagnetic filaments perpendicular to AC field with a frequency which is high enough is predicted and confirmed experimentally. By experimental studies of magnetotactic bacteria it is demonstrated how these properties of ferromagnetic filaments may be used to measure the flexibility of the chain of magnetosomes.

  14. Hydrogen in ferromagnetic semiconductors for planar spintronics

    Science.gov (United States)

    Farshchi, Rouin

    This dissertation documents the use of hydrogen for controlling electrical and magnetic properties of ferromagnetic semiconductors, particularly GaMnAs. With minimal structural perturbation, hydrogen forms complexes with Mn acceptors and renders them neutral, thereby substantially increasing electrical resistivity and removing ferromagnetism. A major finding presented herein is that laser annealing can be used to controllably dissociate the Mn-H complexes and restore ferromagnetism. Structural, electrical, and magnetic effects of the laser activation process are thoroughly explored through experiments and numerical modeling. Local laser activation with tightly-focused ultra-short laser pulses allows for high-resolution direct-writing of ferromagnetic patterns in semiconductors, introducing a new paradigm for device design. Prospects for laser formation of high-temperature phases in ferromagnetic semiconductors are investigated. Finally, several device concepts incorporating the laser activation process are discussed as building blocks towards planar all-semiconductor spintronics.

  15. Ferromagnetic resonance frequency increase and resonance line broadening of a ferromagnetic Fe–Co–Hf–N film with in-plane uniaxial anisotropy by high-frequency field perturbation

    Energy Technology Data Exchange (ETDEWEB)

    Seemann, K., E-mail: klaus.seemann@kit.edu; Leiste, H.; Krüger, K.

    2013-11-15

    Soft ferromagnetic Fe-Co-Hf-N films, produced by reactive r.f. magnetron sputtering, are useful to study the ferromagnetic resonance (FMR) by means of frequency domain permeability measurements up to the GHz range. Films with the composition Fe{sub 33}Co{sub 43}Hf{sub 10}N{sub 14} exhibit a saturation polarisation J{sub s} of around 1.35 T. They are consequently considered as being uniformly magnetised due to an in-plane uniaxial anisotropy of approximately μ{sub 0}H{sub u}≈4.5 m T after annealing them, e.g., at 400 °C in a static magnetic field for 1 h. Being exposed to a high-frequency field, the precession of magnetic moments leads to a marked frequency-dependent permeability with a sharp Lorentzian shaped imaginary part at around 2.33 GHz (natural resonance peak), which is in a very good agreement with the modified Landau–Lifschitz–Gilbert (LLG) differential equation. A slightly increased FMR frequency and a clear increase in the resonance line broadening due to an increase of the exciting high-frequency power (1–25.1 mW), considered as an additional perturbation of the precessing system of magnetic moments, could be discovered. By solving the homogenous LLG differential equation with respect to the in-plane uniaxial anisotropy, it was revealed that the high-frequency field perturbation impacts the resonance peak position f{sub FMR} and resonance line broadening Δf{sub FMR} characterised by a completed damping parameter α=α{sub eff}+Δα. Adapted from this result, the increase in f{sub FMR} and decrease in lifetime of the excited level of magnetic moments associated with Δf{sub FMR}, similar to a spin-½ particle in a static magnetic field, was theoretically elaborated as well as compared with experimental data. - Highlights: • Impact on the resonance frequency and resonance line by the high-frequency power. • Theoretic approach by solving the LLG differential equation. • Experimental verification and magnon processes. • Theoretical and

  16. Structural changes concurrent with ferromagnetic transition

    Institute of Scientific and Technical Information of China (English)

    Yang Sen; Bao Hui-Xin; Zhou Chao; Wang Yu; Ren Xiao-Bing; Song Xiao-Ping; Yoshitaka Matsushita

    2013-01-01

    Ferromagnetic transition has generally been considered to involve only an ordering of magnetic moment with no change in the host crystal structure or symmetry,as evidenced by a wealth of crystal structure data from conventional X-ray diffractometry (XRD).However,the existence of magnetostriction in all known ferromagnetic systems indicates that the magnetic moment is coupled to the crystal lattice; hence there is a possibility that magnetic ordering may cause a change in crystal structure.With the development of high-resolution synchrotron XRD,more and more magnetic transitions have been found to be accompanied by simultaneous structural changes.In this article,we review our recent progress in understanding the structural change at a ferromagnetic transition,including synchrotron XRD evidence of structural changes at the ferromagnetic transition,a phenomenological theory of crystal structure changes accompanying ferromagnetic transitions,new insight into magnetic morphotropic phase boundaries (MPB) and so on.Two intriguing implications of non-centric symmetry in the ferromagnetic phase and the first-order nature of ferromagnetic transition are also discussed here.In short,this review is intended to give a self-consistent and logical account of structural change occurring simultaneously with a ferromagnetic transition,which may provide new insight for developing highly magneto-responsive materials.

  17. Single crystalline monoclinic La0.7Sr0.3MnO3 nanowires with high temperature ferromagnetism

    Energy Technology Data Exchange (ETDEWEB)

    Carretero-Genevrier, Adrian [ICMAB, Barcelona, Spain; Gazquez Alabart, Jaume [ORNL; Idrobo Tapia, Juan C [ORNL; Oro, Judith [ICMAB, Barcelona, Spain; Arbiol, Jordi [ICMAB, Barcelona, Spain; Varela del Arco, Maria [ORNL; Ferain, Etienne [Universite catholique de Louvain, Belgium (UCL); Rodriguez-Carvajal, Juan [Institut Laue-Langevin (ILL); Puig, Teresa [ICMAB, Barcelona, Spain; Mestres, Narcis [ICMAB, Barcelona, Spain; Obradors, Xavier [ICMAB, Barcelona, Spain

    2011-01-01

    Porous mixed-valent manganese oxides are a group of multifunctional materials that can be used as molecular sieves, catalysts, battery materials, and gas sensors. However, material properties and thus activity can vary significantly with different synthesis methods or process conditions, such as temperature and time. Here, we report on a new synthesis route for MnO{sub 2} and LaSr-doped molecular sieve single crystalline nanowires based on a solution chemistry methodology combined with the use of nanoporous polymer templates supported on top of single crystalline substrates. Because of the confined nucleation in high aspect ratio nanopores and of the high temperatures attained, new structures with novel physical properties have been produced. During the calcination process, the nucleation and crystallization of {var_epsilon}-MnO{sub 2} nanoparticles with a new hexagonal structure is promoted. These nanoparticles generated up to 30 {mu}m long and flexible hexagonal nanowires at mild growth temperatures (T{sub g} = 700 C) as a consequence of the large crystallographic anisotropy of {var_epsilon}-MnO{sub 2}. The nanocrystallites of MnO{sub 2} formed at low temperatures serve as seeds for the growth of La{sub 0.7}Sr{sub 0.3}MnO{sub 3} nanowires at growth temperatures above 800 C, through the diffusion of La and Sr into the empty 1D-channels of {var_epsilon}-MnO{sub 2}. Our particular growth method has allowed the synthesis of single crystalline molecular sieve (LaSr-2 x 4) monoclinic nanowires with composition La{sub 0.7}Sr{sub 0.3}MnO{sub 3} and with ordered arrangement of La{sup 3+} and Sr{sup 2+} cations inside the 1D-channels. These nanowires exhibit ferromagnetic ordering with strongly enhanced Curie temperature (T{sub c} > 500 K) that probably results from the new crystallographic order and from the mixed valence of manganese.

  18. High pressure studies on the ferromagnetic dense Kondo systems CeRh3B2 and UCu2Ge2

    Science.gov (United States)

    Cornelius, A. L.; Schilling, J. S.; Endstra, T.; Mydosh, J. A.

    1994-07-01

    The dependence of the Curie temperature of the anomalous ferromagnets UCu2Ge2 and CeRh3B2 on hydrostatic pressure to 11 GPa is determined using a diamond-anvil cell loaded with dense helium as pressure medium. A sensitive primary/secondary coil system allows the detection of the ferromagnetic transition in the ac susceptibility for tiny samples with less than 1 μ mass. The Curie temperatures of the above two compounds, Tc≊110 K and 118 K, both increase initially under pressure but pass through maxima at 8 GPa and 2 GPa, respectively, before falling rapidly at higher pressures. We take this as evidence that both compounds behave as dense Kondo system, where Tc depends on the exchange coupling J according to a magnetic phase diagram originally proposed by Doniach.

  19. High-temperature ferromagnetism in Zn{sub 1-} {sub x} Mn {sub x} O semiconductor thin films

    Energy Technology Data Exchange (ETDEWEB)

    Theodoropoulou, Nikoleta [Francis Bitter Magnet Lab, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)]. E-mail: nineta@mit.edu; Misra, Vinith [Francis Bitter Magnet Lab, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Philip, John [Francis Bitter Magnet Lab, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); LeClair, Patrick [Francis Bitter Magnet Lab, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Berera, Geetha P. [Francis Bitter Magnet Lab, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Moodera, Jagadeesh S. [Francis Bitter Magnet Lab, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Satpati, Biswarup [Institute of Physics, Sachivalaya Marg, Bhubaneswar 751 005 (India); Som, Tapobrata [Institute of Physics, Sachivalaya Marg, Bhubaneswar 751 005 (India)

    2006-05-15

    Clear evidence of ferromagnetic behavior at temperatures >400 K as well as spin polarization of the charge carriers have been observed in Zn{sub 1-} {sub x} Mn {sub x} O thin films grown on Al{sub 2}O{sub 3} and MgO substrates. The magnetic properties depended on the exact Mn concentration and the growth parameters. In well-characterized single-phase films, the magnetic moment is 4.8 {mu} {sub B}/Mn at 350 K, the highest moment yet reported for any Mn doped magnetic semiconductor. Anomalous Hall effect shows that the charge carriers (electrons) are spin-polarized and participate in the observed ferromagnetic behavior.

  20. Force transducers based on the stress dependence of coercive force

    Science.gov (United States)

    Garshelis, I. J.

    1993-05-01

    An alternative measurement regime for magnetoelastic force transducers, based on variations in coercive field, is described. Hc is shown to be more directly related to the primary magnetic influence of stress, namely, the orientation of effective anisotropy, than conventionally used magnetization related parameters. The stress dependence of Hc is shown to generally reflect opposing factors associated with rotational and wall displacement magnetization reversal processes. In materials wherein Hc≪K/Ms wall motion dominates and if the product of λs/K and yield stress is high enough, large monotonic reductions of Hc with positive (tensile) stress are shown to be possible. A more complex variation of Hc with increasing compression is similarly expected. Experimental results from a transducer having an 18% Ni maraging steel core support these expectations.

  1. Volume and structural study of Fe{sub 64}Mn{sub 36} anti-ferromagnetic Invar alloy under high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Matsushita, M., E-mail: matsushita@eng.ehime-u.ac.j [Department of Mechanical Engineering, Graduate School of Science and Engineering, Ehime University, 3-Bunkyocho, Matsuyama 790-0826 (Japan); Nakano, S. [National Institute for Materials Science, Tsukuba, Ibaraki 305-0044 (Japan); Ohfuji, H. [Geodynamics Research Center, Ehime University, 2-Bunkyocho, Matsuyama 790-0826 (Japan); Yamada, I. [Department of Chemistry and Biology, Graduate School of Science and Engineering, Ehime University, 2-Bunkyocho, Matsuyama 790-0826 (Japan); Kikegawa, T. [High Energy Accelerator Research Organization, Tsukuba 305-0801 (Japan)

    2011-03-15

    We have investigated the pressure variation of the volume and structure of an FCC Fe{sub 64}Mn{sub 36} anti-ferromagnetic Invar alloy. The inclination of the pressure-volume (P-V) curve of the FCC structure becomes discontinuous at a pressure of 4 GPa. According to the bulk modulus at zero pressure estimated by the Birch-Murnaghan equation of state, the pressure between 4 and 10 GPa is 33 GPa larger than that at a pressure below 4 GPa. Considering previous experiments on magnetism at high pressure the Neel temperature at 4 GPa almost decreases to room temperature. These results suggest that the increase in the bulk modulus by 33 GPa can be attributed to the pressure-induced magnetic phase transition from anti-ferromagnetism to paramagnetism. Volume at zero pressure was estimated using the Birch-Murnaghan equation of state. The volume of FCC structure in the anti-ferromagnetic state was 1.17% larger than the volume in the paramagnetic state, namely, the spontaneous magnetostriction was 1.17%. Pressure-induced structural transition from FCC to HCP occurs with an increase in the pressure, especially at up to 5 GPa. The value of c/a is 1.62; this value almost corresponds to that of an ideal HCP structure. The bulk modulus of the HCP structure estimated by the Birch-Murnaghan equation of state is larger than that of the FCC structure, and the volume/atom ratio is smaller than that of the FCC structure. - Research highlights: > We have investigated the pressure variation of volume and structure of FCC Fe{sub 64}Mn{sub 36} alloy. > We discovered that the change in inclination of the pressure-volume (P-V) curve of the FCC structure becomes discontinuous at a pressure of 4 GPa. This pressure corresponds to the Neel temperature, which decreases down to room temperature. > Further we estimated bulk modulus and volume at zero pressure using the Birch-Murnaghan equation of state. As a result, we have demonstrated that anti-ferromagnetism has very close relationship with the

  2. Textured Nd2Fe14B flakes with enhanced coercivity

    Energy Technology Data Exchange (ETDEWEB)

    Cui, BZ; Zheng, LY; Marinescu, M; Liu, JF; Hadjipanayis, GC

    2012-04-01

    Morphology, structure, and magnetic properties of the [001] textured Nd2Fe14B nanocrystalline flakes prepared by surfactant-assisted high energy ball milling (HEBM) and subsequent annealing were studied. These flakes have a thickness of 80-200 nm, a length of 0.5-10 mu m, and an average grain size of 10-14nm. The addition of some amount of Dy, Nd70Cu30 alloy, and an appropriate post annealing increased the coercivity H-i(c) of the Nd2Fe14B flakes. iHc was 3.7, 4.3, and 5.7 kOe for the Nd15.5Fe78.5B6, Nd14Dy1.5Fe78.5B6 and 83.3wt.% Nd14Dy1.5Fe78.5B6+16.7 wt.% Nd70Cu30 flakes prepared by HEBM for 5 h in heptane with 20 wt.% oleylamine, respectively. After annealing at 450 degrees C for 0.5h, their iHc increased to 5.1, 6.2, and 7.0 kOe, respectively. Anisotropic magnetic behavior was found in all of the as-milled and annealed flakes. Both, the thickening of Nd-rich phase at grain boundaries via diffusion of Nd70Cu30 and the surface modification of the Nd2Fe14B flake could be the main reasons for the coercivity enhancement in the as-milled and annealed Nd70Cu30-added Nd2Fe14B flakes. (C) 2012 American Institute of Physics. [doi: 10.1063/1.3679425

  3. Ultrathin Epitaxial Ferromagneticγ-Fe2O3Layer as High Efficiency Spin Filtering Materials for Spintronics Device Based on Semiconductors

    KAUST Repository

    Li, Peng

    2016-06-01

    In spintronics, identifying an effective technique for generating spin-polarized current has fundamental importance. The spin-filtering effect across a ferromagnetic insulating layer originates from unequal tunneling barrier heights for spin-up and spin-down electrons, which has shown great promise for use in different ferromagnetic materials. However, the low spin-filtering efficiency in some materials can be ascribed partially to the difficulty in fabricating high-quality thin film with high Curie temperature and/or partially to the improper model used to extract the spin-filtering efficiency. In this work, a new technique is successfully developed to fabricate high quality, ferrimagnetic insulating γ-Fe2O3 films as spin filter. To extract the spin-filtering effect of γ-Fe2O3 films more accurately, a new model is proposed based on Fowler–Nordheim tunneling and Zeeman effect to obtain the spin polarization of the tunneling currents. Spin polarization of the tunneled current can be as high as −94.3% at 2 K in γ-Fe2O3 layer with 6.5 nm thick, and the spin polarization decays monotonically with temperature. Although the spin-filter effect is not very high at room temperature, this work demonstrates that spinel ferrites are very promising materials for spin injection into semiconductors at low temperature, which is important for development of novel spintronics devices. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

  4. Magnetic properties and large coercivity of Mn{sub x}Ga nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Jamer, M.E., E-mail: m.jamer@neu.edu [Department of Physics, Northeastern University, Boston, MA 02115 (United States); Assaf, B.A. [Department of Physics, Northeastern University, Boston, MA 02115 (United States); Bennett, S.P. [Department of Electrical Engineering, Northeastern University, Boston, MA 02115 (United States); Lewis, L.H. [Department of Chemical Engineering, Northeastern University, Boston, MA 02115 (United States); Heiman, D. [Department of Physics, Northeastern University, Boston, MA 02115 (United States)

    2014-05-01

    To investigate structure–property correlations, high-coercivity Mn{sub x}Ga nanoparticles were synthesized by the method of sequential deposition of Ga and Mn fluxes using molecular beam epitaxy. Spontaneous nanostructuring was assisted by the use of an Au precursor and thermal annealing, and the growth properties, structure and magnetic properties were characterized. Atomic force microscopy revealed average particle dimensions of 100 nm and X-ray diffraction revealed a dominant tetragonal D0{sub 22} crystal structure. Magnetic characterization at room temperature identified the presence of two magnetic phases, dominated by a high-coercivity (2.3 T) component in addition to a low-coercivity component. - Highlights: • Mn{sub x}Ga nanoparticles were synthesized using Molecular Beam Epitaxy. • The tetragonal D0{sub 22} structure of Mn{sub x}Ga (x=2.3–2.6) was found to be the dominant phase. • The D0{sub 22} phase of the Mn{sub x}Ga nanoparticles exhibited a large coercivity µ{sub o}H=2.3 T. • MFM showed that multiple nanoparticles contributed to a single domain.

  5. Novel room temperature ferromagnetic semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Amita

    2004-11-01

    Today's information world, bits of data are processed by semiconductor chips, and stored in the magnetic disk drives. But tomorrow's information technology may see magnetism (spin) and semiconductivity (charge) combined in one 'spintronic' device that exploits both charge and 'spin' to carry data (the best of two worlds). Spintronic devices such as spin valve transistors, spin light emitting diodes, non-volatile memory, logic devices, optical isolators and ultra-fast optical switches are some of the areas of interest for introducing the ferromagnetic properties at room temperature in a semiconductor to make it multifunctional. The potential advantages of such spintronic devices will be higher speed, greater efficiency, and better stability at a reduced power consumption. This Thesis contains two main topics: In-depth understanding of magnetism in Mn doped ZnO, and our search and identification of at least six new above room temperature ferromagnetic semiconductors. Both complex doped ZnO based new materials, as well as a number of nonoxides like phosphides, and sulfides suitably doped with Mn or Cu are shown to give rise to ferromagnetism above room temperature. Some of the highlights of this work are discovery of room temperature ferromagnetism in: (1) ZnO:Mn (paper in Nature Materials, Oct issue, 2003); (2) ZnO doped with Cu (containing no magnetic elements in it); (3) GaP doped with Cu (again containing no magnetic elements in it); (4) Enhancement of Magnetization by Cu co-doping in ZnO:Mn; (5) CdS doped with Mn, and a few others not reported in this thesis. We discuss in detail the first observation of ferromagnetism above room temperature in the form of powder, bulk pellets, in 2-3 mu-m thick transparent pulsed laser deposited films of the Mn (<4 at. percent) doped ZnO. High-resolution transmission electron microscopy (HRTEM) and electron energy loss spectroscopy (EELS) spectra recorded from 2 to 200nm areas showed homogeneous

  6. Novel room temperature ferromagnetic semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Amita [KTH Royal Inst. of Technology, Stockholm (Sweden)

    2004-06-01

    Today's information world, bits of data are processed by semiconductor chips, and stored in the magnetic disk drives. But tomorrow's information technology may see magnetism (spin) and semiconductivity (charge) combined in one 'spintronic' device that exploits both charge and 'spin' to carry data (the best of two worlds). Spintronic devices such as spin valve transistors, spin light emitting diodes, non-volatile memory, logic devices, optical isolators and ultra-fast optical switches are some of the areas of interest for introducing the ferromagnetic properties at room temperature in a semiconductor to make it multifunctional. The potential advantages of such spintronic devices will be higher speed, greater efficiency, and better stability at a reduced power consumption. This Thesis contains two main topics: In-depth understanding of magnetism in Mn doped ZnO, and our search and identification of at least six new above room temperature ferromagnetic semiconductors. Both complex doped ZnO based new materials, as well as a number of nonoxides like phosphides, and sulfides suitably doped with Mn or Cu are shown to give rise to ferromagnetism above room temperature. Some of the highlights of this work are discovery of room temperature ferromagnetism in: (1) ZnO:Mn (paper in Nature Materials, Oct issue, 2003); (2) ZnO doped with Cu (containing no magnetic elements in it); (3) GaP doped with Cu (again containing no magnetic elements in it); (4) Enhancement of Magnetization by Cu co-doping in ZnO:Mn; (5) CdS doped with Mn, and a few others not reported in this thesis. We discuss in detail the first observation of ferromagnetism above room temperature in the form of powder, bulk pellets, in 2-3 mu-m thick transparent pulsed laser deposited films of the Mn (<4 at. percent) doped ZnO. High-resolution transmission electron microscopy (HRTEM) and electron energy loss spectroscopy (EELS) spectra recorded from 2 to 200nm areas showed homogeneous

  7. Josephson junctions with ferromagnetic interlayer

    Energy Technology Data Exchange (ETDEWEB)

    Wild, Georg Hermann

    2012-03-04

    We report on the fabrication of superconductor/insulator/ferromagnetic metal/superconductor (Nb/AlO{sub x}/Pd{sub 0.82}Ni{sub 0.18}/Nb) Josephson junctions (SIFS JJs) with high critical current densities, large normal resistance times area products, and high quality factors. For these junctions, a transition from 0- to {pi}-coupling is observed for a thickness d{sub F}=6 nm of the ferromagnetic Pd{sub 0.82}Ni{sub 0.18} interlayer. The magnetic field dependence of the critical current of the junctions demonstrates good spatial homogeneity of the tunneling barrier and ferromagnetic interlayer. Magnetic characterization shows that the Pd{sub 0.82}Ni{sub 0.18} has an out-of-plane anisotropy and large saturation magnetization indicating negligible dead layers at the interfaces. A careful analysis of Fiske modes up to about 400 GHz provides valuable information on the junction quality factor and the relevant damping mechanisms. Whereas losses due to quasiparticle tunneling dominate at low frequencies, at high frequencies the damping is explained by the finite surface resistance of the junction electrodes. High quality factors of up to 30 around 200 GHz have been achieved. They allow to study the junction dynamics, in particular the switching probability from the zero-voltage into the voltage state with and without microwave irradiation. The experiments with microwave irradiation are well explained within semi-classical models and numerical simulations. In contrast, at mK temperature the switching dynamics without applied microwaves clearly shows secondary quantum effects. Here, we could observe for the first time macroscopic quantum tunneling in Josephson junctions with a ferromagnetic interlayer. This observation excludes fluctuations of the critical current as a consequence of an unstable magnetic domain structure of the ferromagnetic interlayer and affirms the suitability of SIFS Josephson junctions for quantum information processing.

  8. Room temperature ferromagnetism in Fe-doped CuO nanoparticles.

    Science.gov (United States)

    Layek, Samar; Verma, H C

    2013-03-01

    The pure and Fe-doped CuO nanoparticles of the series Cu(1-x)Fe(x)O (x = 0.00, 0.02, 0.04, 0.06 and 0.08) were successfully prepared by a simple low temperature sol-gel method using metal nitrates and citric acid. Rietveld refinement of the X-ray diffraction data showed that all the samples were single phase crystallized in monoclinic structure of space group C2/c with average crystallite size of about 25 nm and unit cell volume decreases with increasing iron doping concentration. TEM micrograph showed nearly spherical shaped agglomerated particles of 4% Fe-doped CuO with average diameter 26 nm. Pure CuO showed weak ferromagnetic behavior at room temperature with coercive field of 67 Oe. The ferromagnetic properties were greatly enhanced with Fe-doping in the CuO matrix. All the doped samples showed ferromagnetism at room temperature with a noticeable coercive field. Saturation magnetization increases with increasing Fe-doping, becomes highest for 4% doping then decreases for further doping which confirms that the ferromagnetism in these nanoparticles are intrinsic and are not resulting from any impurity phases. The ZFC and FC branches of the temperature dependent magnetization (measured in the range of 10-350 K by SQUID magnetometer) look like typical ferromagnetic nanoparticles and indicates that the ferromagnetic Curie temperature is above 350 K.

  9. Coercivity of the Nd–Fe–B hot-deformed magnets diffusion-processed with low melting temperature glass forming alloys

    Energy Technology Data Exchange (ETDEWEB)

    Seelam, U.M.R. [Elements Strategy Initiative Center for Magnetic Materials (ESICMM), National Institute for Materials Science, 1-2-1 Sengen, Tsukuba 305-0047 (Japan); Liu, Lihua [Elements Strategy Initiative Center for Magnetic Materials (ESICMM), National Institute for Materials Science, 1-2-1 Sengen, Tsukuba 305-0047 (Japan); Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba 305-8571 (Japan); Akiya, T.; Sepehri-Amin, H.; Ohkubo, T. [Elements Strategy Initiative Center for Magnetic Materials (ESICMM), National Institute for Materials Science, 1-2-1 Sengen, Tsukuba 305-0047 (Japan); Sakuma, N.; Yano, M.; Kato, A. [Advanced Material Engineering Division, Toyota Motor Corporation, Susono 410-1193 (Japan); Hono, K., E-mail: kazuhiro.hono@nims.go.jp [Elements Strategy Initiative Center for Magnetic Materials (ESICMM), National Institute for Materials Science, 1-2-1 Sengen, Tsukuba 305-0047 (Japan); Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba 305-8571 (Japan)

    2016-08-15

    Nd- and Pr-based alloys with bulk glass forming ability and low melting temperatures, Nd{sub 60}Al{sub 10}Ni{sub 10}Cu{sub 20} and Pr{sub 60}Al{sub 10}Ni{sub 10}Cu{sub 20}, were used for grain boundary diffusion process to enhance the coercivity of hot-deformed magnets. The coercivity increment was proportional to the weight gain after the diffusion process. For the sample with 64% weight gain, the coercivity increased up to 2.8 T, which is the highest value for bulk Nd–Fe–B magnets that do not contain heavy rare-earth elements, Dy or Tb. Approximately half of the intergranular regions were amorphous and the remaining regions were crystalline. Magnetic isolation of the Nd{sub 2}Fe{sub 14}B grains by the Nd-rich amorphous/crystalline intergranular phases is attributed to the large coercivity enhancement. The coercivity does not change after the crystallization of the intergranular phase, indicating that the coercivity is not influenced by the strain at the interface with the crystalline intergranular phase. - Highlights: • Bulk-glass forming alloys were infiltrated into hot-deformed Nd–Fe–B magnets. • Very high coercivity of 2.8 T was attained without heavy rare-earth elements. • Approximately half of the inter-granular regions were amorphous. • Crystallization of amorphous intergranular phase does not change coercivity.

  10. Ferromagnetic resonance studies and magnetization curvesof Co-Cr and Co-Cr/Ni-Fe thin films

    NARCIS (Netherlands)

    Stam, Maria Theresia Helena Clasina Wilhelmina

    1989-01-01

    In this thesis CoCr and CoCr/NiFe double layers are studied by ferromagnetic resonance. The coercivity and the initial susceptibility of these layers are measured. An approximation of the Kooy and Enz model which is suitable for calculating the initial suceptibility is presented [3.36]. A theoretica

  11. Influence of grain growth on the high-frequency behaviour of ferromagnetic Fe-Co-(M)-N (M=Ta, Hf) nanocomposite films

    Energy Technology Data Exchange (ETDEWEB)

    Seemann, K. [Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft, Institut fuer Material for schung I, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen (Germany)], E-mail: klaus.seemann@imf.fzk.de; Leiste, H. [Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft, Institut fuer Material for schung I, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen (Germany)

    2009-04-15

    The CMOS compatible ferromagnetic Fe-Co-(M)-N (M=Ta, Hf) films were investigated with regard to their grain size-dependent frequency behaviour. Predominantly Fe{sub 33}Co{sub 40}Ta{sub 10}N{sub 17} films were deposited by reactive r.f. magnetron sputtering. These films were compared to Fe{sub 36}Co{sub 44}Hf{sub 9}N{sub 11} films. In order to induce an in-plane uniaxial anisotropy H{sub u} as well as to investigate the grain growth behaviour, the films were annealed in a static magnetic field. The in-plane uniaxial anisotropy field of around 4 mT as well as a good soft magnetic behaviour with a saturation polarisation of approximately 1.2-1.4 T could be observed after heat treatment. Ferromagnetic resonance frequencies (FMR) of approximately up to 2.4 GHz could be achieved according to the Kittel theory. Depending on the heat treatment, high-frequency losses through energy dissipation was made conspicuous by means of the full-width at half-maximum (FWHM) {delta}f{sub eff} of the imaginary part of the frequency-dependent permeability which was between 0.4 and 1 GHz. This FWHM was basically discussed in terms of two-magnon scattering theories, in combination with the Herzer random anisotropy model. In order to correlate the resonance line broadening with a phenomenological damping parameter {alpha}{sub eff}, which ranged from about 0.0125 to 0.028, the modified Landau-Lifschitz-Gilbert equation was used to fit and describe the permeability spectra of the ferromagnetic films.

  12. Performance of Halbach magnet arrays with finite coercivity

    DEFF Research Database (Denmark)

    Insinga, Andrea Roberto; Bahl, C.R.H.; Bjørk, Rasmus;

    2016-01-01

    A numerical method to study the effect of finite coercivity on the Halbach cylinder geometry is presented. Despite the fact that the analytical solution available for this geometry does not set any limit to the maximum air gap flux density achievable, in real life the non-linear response...... based on a numerical approach, the presented method can be employed to analyze the demagnetization effects due to coercivity for any geometry, even when the analytical solution is not available....... of the magnetic material and the fact that the coercivity is not infinite will limit the attainable field. The presented method is able to predict when and where demagnetization will occur, and these predictions are compared with the analytical solution for the case of infinite coercivity. However, the approach...

  13. Coercive Diplomacy: Countering War-Threatening Crises and Armed Conflicts

    DEFF Research Database (Denmark)

    Jakobsen, Peter Viggo

    2015-01-01

    Nowadays states rarely resort to war to defeat each other or to address war-threatening crises and armed conflicts. Instead, coercive diplomacy has emerged as their strategy of choice when persuasion and other non-military instruments fall short. Coercive diplomacy involves the use of military...... threats and/or limited force (sticks) coupled with inducements and assurances (carrots) in order to influence the opponent to do something it would prefer not to. States use coercive diplomacy in the hope of achieving their objectives without having to resort to full-scale war. This chapter presents...... the strategy of coercive diplomacy and its requirements for success and shows how states have employed it to manage crises and conflicts during the three strategic eras that the world has passed through since the end of the Cold War....

  14. The Physics of Ferromagnetism

    CERN Document Server

    Miyazaki, Terunobu

    2012-01-01

    This book covers both basic physics of ferromagnetism such as magnetic moment, exchange coupling, magnetic anisotropy and recent progress in advanced ferromagnetic materials. Special interests are focused on NdFeB permanent magnets and the materials studied in the field of spintronics. In the latter, development of tunnel magnetoresistance effect through so called giant magnetoresistance effect is explained.

  15. High-temperature ferromagnetism in Co-doped CeO2 synthesized by the coprecipitation technique.

    Science.gov (United States)

    Colis, S; Bouaine, A; Schmerber, G; Ulhaq-Bouillet, C; Dinia, A; Choua, S; Turek, P

    2012-05-28

    The aim of the present study is to check the influence of annealing under vacuum and a mixture of N(2)-H(2) atmosphere on the magnetic properties of polycrystalline Co-doped CeO(2) diluted magnetic oxides (DMOs) with Co concentrations of 5 at% synthesized using the coprecipitation technique. X-Ray diffraction (XRD) patterns and transmission electron microscopy (TEM) showed for all samples the expected CeO(2) cubic fluorite-type structure and that Co ions are uniformly distributed inside the samples. Room-temperature Raman and photoluminescence (PL) spectroscopies indicate an increase in the concentration of oxygen vacancies upon Co doping and further annealing. Field dependent magnetization measurements revealed a paramagnetic behavior for as-prepared Co-doped CeO(2), while a ferromagnetic behavior appears when the same samples are annealed under vacuum or N(2)-H(2) atmosphere. Temperature dependent magnetization measurements suggest that the observed ferromagnetism is due to the presence of metallic Co clusters with nanometric size and broad size distribution. These results are supported by electron paramagnetic resonance studies.

  16. Ferromagnet / superconductor oxide superlattices

    Science.gov (United States)

    Santamaria, Jacobo

    2006-03-01

    The growth of heterostructures combining oxide materials is a new strategy to design novel artificial multifunctional materials with interesting behaviors ruled by the interface. With the (re)discovery of colossal magnetoresistance (CMR) materials, there has been renewed interest in heterostructures involving oxide superconductors and CMR ferromagnets where ferromagnetism (F) and superconductivity (S) compete within nanometric distances from the interface. In F/S/F structures involving oxides, interfaces are especially complex and various factors like interface disorder and roughness, epitaxial strain, polarity mismatch etc., are responsible for depressed magnetic and superconducting properties at the interface over nanometer length scales. In this talk I will focus in F/S/F structures made of YBa2Cu3O7 (YBCO) and La0.7Ca0.3MnO3 (LCMO). The high degree of spin polarization of the LCMO conduction band, together with the d-wave superconductivity of the YBCO make this F/S system an adequate candidate for the search of novel spin dependent effects in transport. We show that superconductivity at the interface is depressed by various factors like charge transfer, spin injection or ferromagnetic superconducting proximity effect. I will present experiments to examine the characteristic distances of the various mechanisms of superconductivity depression. In particular, I will discuss that the critical temperature of the superconductor depends on the relative orientation of the magnetization of the F layers, giving rise to a new giant magnetoresistance effect which might be of interest for spintronic applications. Work done in collaboration with V. Peña^1, Z. Sefrioui^1, J. Garcia-Barriocanal^1, C. Visani^1, D. Arias^1, C. Leon^1 , N. Nemes^2, M. Garcia Hernandez^2, S. G. E. te Velthuis^3, A. Hoffmann^3, M. Varela^4, S. J. Pennycook^4. Work supported by MCYT MAT 2005-06024, CAM GR- MAT-0771/2004, UCM PR3/04-12399 Work at Argonne supported by the Department of Energy, Basic

  17. Identifying the sources of ferromagnetism in sol-gel synthesized Zn1-xCoxO (0≤x≤0.10) nanoparticles

    Science.gov (United States)

    Beltrán, J. J.; Barrero, C. A.; Punnoose, A.

    2016-08-01

    We have carefully investigated the structural, optical and electronic properties and related them with changes in the magnetism of sol-gel synthesized Zn1-xCoxO (0≤x≤0.10) nanoparticles. Samples with x≤0.05 were free of spurious phases. Samples with x≤0.03 were found to be with only high spin Co2+ ions into ZnO structure, whereas sample with x=0.05, exhibited the presence of high spin Co2+ and low spin Co3+. We found that the intensity of the main EPR peak associated with Co2+ varies with the nominal Co content in a similar manner as the saturation magnetization and coercive field do. These results point out that the ferromagnetism in these samples should directly be correlated with the presence of divalent cobalt ions. Bound magnetic polaron (BMP) model and the charge transfer model are insufficient to explain the ferromagnetic properties of Zn1-xCoxO nanoparticles. The room temperature ferromagnetism (RTFM) may be originated from a combination of several factors such as the interaction of high spin Co2+ ions, perturbation/alteration and/or changes in the electronic structure of ZnO close to the valence band edge and grain boundary effects.

  18. Half metallic ferromagnets.

    Science.gov (United States)

    Dowben, Peter

    2007-08-01

    as surface and interface reconstructions. Thus spin injection, i.e. the spin polarization of the current through the interface, may be effectively reduced to very low values, although the non-equilibrium spin polarization of the electron density can have very high values in select devices. Underlying these issues is the need to consider the definition of polarization: not all polarizations are equal. Polarization depends on the measurement. We do not always measure a polarization that follows the usual definition of spin polarization, and in many cases, it is not exactly clear what polarization has been measured. For example, there are corrections for the Fermi velocity ν(↓,↑) and spin relaxation τ(↓,↑): [Formula: see text] where n = 1 applies to the ballistic regime and n = 2 applies to the diffuse regime [3]. Neglecting interfaces and other complications, the diffuse regime (n = 2) should be the spin polarization of the bulk conductivity while ballistic regime (n = 1) is the polarization of the tunnel current and, in principle, Andreev reflection. As a result, suitable spin dependent Fermi velocity corrections might overcome an otherwise lackluster polarization for some device structures. Even measurements of polarization that are Fermi velocity independent (n = 0) may still depend on the wave vector and details of the interface band structure: as in the case of spin polarized photoemission and inverse photoemission. This special issue cannot possibly give due justice to all the various aspects of the physics of half metallic systems. By including both advocates and critics of half metallic ferromagnetism, the special issue should provide at least a taste of the controversies and challenges that exist in the study of half metallic ferromagnets. It may be that 'nature abhors half-metallicity' [2], and that relatively minor structural and thermal perturbations have a disproportionally strong effect on the density of states at the Fermi level, but in spite

  19. PREFACE: Half Metallic Ferromagnets

    Science.gov (United States)

    Dowben, Peter

    2007-08-01

    surface and interface reconstructions. Thus spin injection, i.e. the spin polarization of the current through the interface, may be effectively reduced to very low values, although the non-equilibrium spin polarization of the electron density can have very high values in select devices. Underlying these issues is the need to consider the definition of polarization: not all polarizations are equal. Polarization depends on the measurement. We do not always measure a polarization that follows the usual definition of spin polarization, and in many cases, it is not exactly clear what polarization has been measured. For example, there are corrections for the Fermi velocity ν↓,↑ and spin relaxation τ↓,↑: equation 1 where n = 1 applies to the ballistic regime and n = 2 applies to the diffuse regime [3]. Neglecting interfaces and other complications, the diffuse regime (n = 2) should be the spin polarization of the bulk conductivity while ballistic regime (n = 1) is the polarization of the tunnel current and, in principle, Andreev reflection. As a result, suitable spin dependent Fermi velocity corrections might overcome an otherwise lackluster polarization for some device structures. Even measurements of polarization that are Fermi velocity independent (n = 0) may still depend on the wave vector and details of the interface band structure: as in the case of spin polarized photoemission and inverse photoemission. This special issue cannot possibly give due justice to all the various aspects of the physics of half metallic systems. By including both advocates and critics of half metallic ferromagnetism, the special issue should provide at least a taste of the controversies and challenges that exist in the study of half metallic ferromagnets. It may be that 'nature abhors half-metallicity' [2], and that relatively minor structural and thermal perturbations have a disproportionally strong effect on the density of states at the Fermi level, but in spite of much study half

  20. Granular and layered ferroelectric-ferromagnetic thin-film nanocomposites as promising materials with high magnetotransmission effect

    Science.gov (United States)

    Akbashev, A. R.; Telegin, A. V.; Kaul, A. R.; Sukhorukov, Yu. P.

    2015-06-01

    Epitaxial thin films of granular and layered nanocomposites consisting of ferromagnetic perovskite Pr1-xSrxMnO3 and ferroelectric hexagonal LuMnO3 were grown on ZrO2(Y2O3) substrates using metal-organic chemical vapor deposition (MOCVD). A self-organized growth of the granular composite took place in situ as a result of phase separation of the Pr-Sr-Lu-Mn-O system into the perovskite and hexagonal phases. Optical transmission measurements revealed a large negative magnetotransmission effect in the layered nanocomposite over a wide spectral and temperature range. The granular nanocomposite unexpectedly showed an even larger, but positive, magnetotransmission effect at room temperature.

  1. Monte Carlo simulation of the hysteresis phenomena on ferromagnetic nanotubes.

    Science.gov (United States)

    Salazar-Enríquez, C D; Restrepo, J; Restrepo-Parra, E

    2012-06-01

    In this work the hysteretic properties of single wall ferromagnetic nanotubes were studied. Hysteresis loops were computed on the basis of a classical Heisenberg model involving nearest neighbor interactions and using a Monte Carlo method implemented with a single spin movement Metropolis dynamics. Nanotubes with square and hexagonal unit cells were studied varying their diameter, temperature and magneto-crystalline anisotropy. Effects of the diameter were found stronger in the square unit cell magnetic nanotubes (SMNTs) than in the hexagonal unit cell magnetic nanotubes (HMNTs). The ferromagnetic behavior was observed in SMNTs at higher temperature than in HMNTs. Moreover in both cases, SMNTs and HMNTs, the magneto-crystalline anisotropy in the longitudinal direction showed a linear correspondence with the coercive field.

  2. Coupling between ferromagnetic electrodes through ZnS barrier

    Energy Technology Data Exchange (ETDEWEB)

    Fix, T. [IPCMS-GMI (UMR 7504 du CNRS), ULP-ECPM, 23 rue du Loess, BP43 F-67034 Strasbourg (France)]. E-mail: thomas.fix@ipcms.u-strasbg.fr; Colis, S. [IPCMS-GMI (UMR 7504 du CNRS), ULP-ECPM, 23 rue du Loess, BP43 F-67034 Strasbourg (France); Schmerber, G. [IPCMS-GMI (UMR 7504 du CNRS), ULP-ECPM, 23 rue du Loess, BP43 F-67034 Strasbourg (France); Ulhaq, C. [IPCMS-GMI (UMR 7504 du CNRS), ULP-ECPM, 23 rue du Loess, BP43 F-67034 Strasbourg (France); Dinia, A. [IPCMS-GMI (UMR 7504 du CNRS), ULP-ECPM, 23 rue du Loess, BP43 F-67034 Strasbourg (France)

    2005-02-01

    Magnetization measurements are performed on CoFe{sub 2}/ZnS/CoFe{sub 2}/NiFe structures to investigate the interactions between ferromagnetic electrodes through the ZnS barrier. Negative shifts observed in magnetization minor loops indicate a ferromagnetic interaction. The influence of the hard-layer deposition temperature on this shift and on the hard-layer coercive field is considered. The amplitude of the shift decreases as the thickness of the ZnS layer increases. The decrease in this shift at low temperature confirms the presence of an indirect exchange coupling between the magnetic electrodes mediated by spin-polarized quantum tunneling through the ZnS layer.

  3. Effect of exchange interaction in ferromagnetic superlattices: A Monte Carlo study

    Science.gov (United States)

    Masrour, R.; Jabar, A.

    2016-10-01

    The Monte Carlo simulation is used to investigate the magnetic properties of ferromagnetic superlattices through the Ising model. The reduced critical temperatures of the ferromagnetic superlattices are studied each as a function of layer thickness for different values of exchange interaction. The exchange interaction in each layer within the interface and the crystal field in the unit cell are studied. The magnetic coercive fields and magnetization remnants are obtained for different values of exchange interaction, different values of temperature and crystal field with fixed values of physical parameters.

  4. Observation of ferromagnetic semiconductor behavior in manganese-oxide doped graphene

    Directory of Open Access Journals (Sweden)

    Chang-Soo Park

    2014-08-01

    Full Text Available We have doped manganese-oxide onto graphene by an electrochemical method. Graphene showed a clear ferromagnetic semiconductor behavior after doping of manganese-oxide. The manganese-oxide doped graphene has a coercive field (Hc of 232 Oe at 10 K, and has the Curie temperature of 270 K from the temperature-dependent resistivity using transport measurement system. The ferromagnetism of manganese-oxide doped graphene attributes to the double-exchange from the coexistence of Mn3+ and Mn4+ on the surface of graphene. In addition, the semiconducting behavior is caused by the formation of manganese-oxide on graphene.

  5. Coercive and precocious sexuality as a fundamental aspect of psychopathy.

    Science.gov (United States)

    Harris, Grant T; Rice, Marnie E; Hilton, N Zoe; Lalumiére, Martin L; Quinsey, Vernon L

    2007-02-01

    Sexual behavior is closely associated with delinquency and crime. Although psychopaths, by definition, have many short-term sexual relationships, it has not been shown that sexuality is a core aspect of psychopathy. A Darwinian view of psychopathy led to the hypothesis that psychopaths have a unique sexuality involving early, frequent, and coercive sex. Our subjects were 512 sex offenders assessed on the Hare Psychopathy Checklist (PCL-R). Five variables reflecting early, frequent, and coercive sex loaded on the same principal component in exploratory factor analysis on a subset of the sample, whereas PCL-R items pertaining to adult sexual behavior did not. Confirmatory factor analysis of the remaining subjects yielded a measurement model containing three inter-correlated factors - the traditional two PCL-R factors, and coercive and precocious sexuality. Taxometric analyses gave evidence of a natural discontinuity underlying coercive and precocious sexuality. Coercive and precocious sexuality yielded statistically significant associations with other study variables predicted by the Darwinian hypothesis. The present findings are consistent with prior empirical findings and support the hypothesis that psychopathy has been a nonpathological, reproductively viable, alternate life history strategy.

  6. Physics of ferromagnetism

    CERN Document Server

    Graham, C D

    2009-01-01

    This book is a textbook for graduate students and researchers who are interested in ferromagnetism. The emphasis is primarily on explanation of physical concepts rather than on a rigorous theoretical treatment.

  7. Defect mediated room temperature ferromagnetism and resistance minima study in epitaxial ZnGa0.002Al0.02O transparent conducting oxide films

    Science.gov (United States)

    Temizer, Namik K.; Nori, Sudhakar; Kumar, D.; Narayan, Jagdish

    2016-09-01

    We report on the micro-structural, transport, optical and magnetic properties in ZnGa0.002Al0.02O (AGZO) films grown by pulsed laser deposition under different growth conditions. AGZO films grown at substrate temperatures of 600 °C show metal-like behavior with a resistivity minima at lower temperatures, whereas films grown at 300 °C and ambient oxygen partial pressure of 1 mTorr show metallic nature with resistivity values on the order of 100 µΩ · cm at room temperature. The most interesting features are the concomitant occurrence of high temperature resistivity minima and room temperature ferromagnetism with a saturation magnetic moment of 1000 A m-1 and with coercivity in the range 100-240 Oe. The temperature dependent resistivity data has been interpreted in the light of quantum corrections to conductivity in disordered systems, suggesting that the e-e interactions is the dominant mechanism in the weak-localization (WL) limit in the case of films showing resisitivity minima. The simultaneous ferromagnetic ordering coupled with the enhancements in electrical conductivity in AGZO system should have their origin in native point defects in the form of oxygen and zinc vacancies and interstitials and their complexes. We propose that formation of oxygen vacancy-zinc interstitial defect complex (V O-I Zn) is responsible for the enhancement in n-type conductivity, and zinc vacancies (V Zn) for the observed room temperature ferromagnetism.

  8. Itinerant Ferromagnetism and Superconductivity

    OpenAIRE

    Karchev, Naoum

    2004-01-01

    Superconductivity has again become a challenge following the discovery of unconventional superconductivity. Resistance-free currents have been observed in heavy-fermion materials, organic conductors and copper oxides. The discovery of superconductivity in a single crystal of $UGe_2$, $ZrZn_2$ and $URhGe$ revived the interest in the coexistence of superconductivity and ferromagnetism. The experiments indicate that: i)The superconductivity is confined to the ferromagnetic phase. ii)The ferromag...

  9. Strong textured SmCo5 nanoflakes with ultrahigh coercivity prepared by multistep (three steps) surfactant-assisted ball milling

    Science.gov (United States)

    Zuo, Wen-Liang; Zhao, Xin; Xiong, Jie-Fu; Zhang, Ming; Zhao, Tong-Yun; Hu, Feng-Xia; Sun, Ji-Rong; Shen, Bao-Gen

    2015-08-01

    The high coercivity of 26.2 kOe for SmCo5 nanoflakes are obtained by multistep (three steps) surfactant-assisted ball milling. The magnetic properties, phase structure and morphology are studied by VSM, XRD and SEM, respectively. The results demonstrate that the three step ball-milling can keep more complete crystallinity (relatively less defects) during the process of milling compared with one step high energy ball-milling, which enhances the texture degree and coercivity. In addition, the mechanism of coercivity are also studied by the temperature dependence of demagnetization curves for aligned SmCo5 nanoflakes/resin composite, the result indicates that the magnetization reversal could be controlled by co-existed mechanisms of pinning and nucleation.

  10. Evidences of Persuasion Coercive for Indoctrination of Jihadists Terrorists: Towards Violent Radicalization

    OpenAIRE

    Humberto M. Trujillo; Juan J. Ramírez; Ferran Alonso

    2009-01-01

    This work analyzes two processes of psychological manipulation for indoctrination and violent radicalization of jihadist terrorists in Spain: coercive persuasion and psychological group abuse. This research is based on the trustworthy information used in findings of the Spanish “Audiencia Nacional”(the Spanish High Court charged with terrorist trials) about the affidavits NOVA Operation I, II, and III. This research facilitates a reliable analysis of the possible processes of psychological ma...

  11. Ferromagnetic behavior of nanocrystalline Cu–Mn alloy prepared by ball milling

    Energy Technology Data Exchange (ETDEWEB)

    Mondal, B.N., E-mail: bholanath_mondal@yahoo.co.in [Department of Central Scientific Services, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032 (India); Sardar, G. [Department of Zoology, Baruipur College, South 24 parganas 743 610 (India); Nath, D.N. [Department of Physical Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032 (India); Chattopadhyay, P.P. [Department of Metallurgy and Materials Engineering, Bengal Engineering and Science University, Shibpur, Howrah 711 103 (India)

    2014-12-15

    50Cu–50Mn (wt%) alloy was produced by ball milling. The milling was continued up to 30 h followed by isothermal annealing over a four interval of temperature from 350 to 650 °C held for 1 h. Crystallite size, lattice strain, lattice parameter were determined by Rietveld refinement structure analysis of X-ray diffraction data. The amount of dissolved/precipitated Mn (wt%) after ball milling/milling followed by annealing was calculated by quantative phase analysis (QPA). The increase of coercivity could be attributed to the introduction of lattice strain and reduction of crystallite size as a function of milling time. Electron paramagnetic resonance and superconducting quantum interface device analysis indicate that soft ferromagnetic behavior has been achieved by ball milled and annealed Cu–Mn alloy. The maximum coercivity value of Cu–Mn alloy obtained after annealing at 350 °C for 1 h is 277 Oe. - Highlights: • A small amount of Mn has dissolved in Cu after ball milling for 30 h. • Coercivity of the Cu–Mn alloy has increased with an increase in milling time. • Substantial MnO has formed after annealing at 650 °C for 1 h. • The ball milled and annealed alloy have revealed soft ferromagnetic behavior. • The alloy annealed at 350 °C shows the maximum value of coercivity.

  12. Coercive agency in mission education at Lovedale Missionary Institution

    Directory of Open Access Journals (Sweden)

    Graham A. Duncan

    2004-11-01

    Full Text Available Any society and its institutions are coercive. While acknowledging the invaluable contribution made by mission education towards the development of black South Africans, Lovedale Missionary Institution exemplifies the concept of a “total institution” susceptible to the problems of power relations. Those who studied there internalized its ethos. Coercive agency encouraged adaptation to missionary ideology. However, many Lovedale students rejected the mores of the religion and education they received as they challenged and resisted the effects of the coercive agency of internalization. Institutionalisation is, by nature, resistant to change as can be seen in the policies of the respective Principals of the Institution. Consequently, black people were alienated by a process of “exclusion”. The values of justice, love and peace are appropriate tools for a new model of education in South Africa.

  13. Preparation and characterization of bottom ferromagnetic electrode for graphene based magnetic junction

    Science.gov (United States)

    Cheng, Shufan; Cobas, Enrique; van't Erve, Olaf M. J.; Jonker, Berend T.

    2016-03-01

    Magnetic multilayer stacks incorporating several layers of graphene have been predicted to produce very high magnetoresistance and high conductivity, a combination of properties that would be useful in magnetic sensors and future spin-based data storage and processing technologies such as MRAM. To realize the theoretically modeled heterostructures and probe their properties, a clean, high-quality graphene-ferromagnet interface, such as one that results from CVD of graphene directly on ferromagnetic films, is required. However, past works using Ni and Co films for CVD of graphene employ the ferromagnetic film as a sacrificial layer to be dissolved after graphene growth and ignore changes to its morphology and magnetic properties. Here we investigated the effect of graphene CVD growth conditions on the properties of Co, Ni, Co90Fe10 and Ni80Fe20 ferromagnetic films. The magnetic films were grown by dc magnetron sputtering with different growth conditions onto c-Al2O3, Si/AlN and MgO substrates. The crystalline orientation, surface morphology/roughness and magnetic properties of the films were measured using X-ray diffraction, atomic force microscopy and vibrating sample magnetometry, respectively. Cobalt films grown at 500 °C were found to be hcp and heteroepitaxial on c-Al2O3. CoFe, Ni, and NiFe films on c-Al2O3 were found to be fcc and to be (111) textured but with grains having in-plane rotation differing by 60°. The CoFe and NiFe films on c-Al2O3 retained their small coercivity and high remanence while the pure Co and Ni films exhibited much smaller remanence after graphene growth, making them unsuitable for magnetic memory technologies. Films on Si/AlN were found to have the same rotational domains as those on sapphire c-Al2O3. The NiFe films on (111) MgO were found to be mostly single domain.

  14. The manipulation of magnetic coercive field and orientation of magnetic anisotropy via electric fields

    Science.gov (United States)

    Xiang, Jun-Sen; Ye, Jun; Yang, Yun-Long; Xie, Yong; Li, Wei; Chen, Zi-Yu

    2016-08-01

    We report the effects of the electric field on the magnetic coercive field (H c) and uniaxial magnetic anisotropy (UMA) orientation of polycrystalline Ni film grown on an unpoled (0 1 1) [Pb(Mg1/3Nb2/3)O3](1-x)-[PbTiO3] x (PMN-PT) single crystal substrate. Under various electric fields, normalized magnetic hysteresis loops of Ni films change in width; this represents the change of coercive field (ΔH c). Loop shapes are found to depend on the angle between the magnetic field and the sample, where changes in the shape reveal a small rotation of UMA. All these changes show that the magnetic properties vary periodically with a periodic electric field, by strain-mediated magnetoelectric coupling in the Ni/Ag/PMN-PT/Ag heterostructure. The poled PMN-PT produces strains under electric fields in the range of  -4.2 kV cm-1  ⩽  E  ⩽  4.2 kV cm-1, then transfers it to Ni films resulting in changes to its H c and UMA. The curves of the in-plane H c and strain, at two mutually orthogonal directions, represent butterfly patterns versus the applied electric field. In addition, the changes observed in both the H c and strain show asymmetric features in two orthogonal directions, which results in a small rotation angle of the UMA of Ni as the electric field decreases. The effective manipulation of magnitude and orientation of magnetic anisotropy via electric fields in ferromagnetic/ferroelectric (FM/FE) heterostructures is an important step towards controlling the magnetic tunnel junctions.

  15. Thermodynamic-state and kinetic-process dependent dual ferromagnetic states in high-Si content FeMn(PSi) alloys

    Energy Technology Data Exchange (ETDEWEB)

    Li, Guijiang, E-mail: guijiangli@gmail.com [Applied Materials Physics, Department of Materials Science and Engineering, KTH Royal Institute of Technology, SE-10044 Stockholm (Sweden); Eriksson, Olle [Department of Physics and Astronomy, Division of Materials Theory, Uppsala University, Box 516, SE-75120 Uppsala (Sweden); Johansson, Börje [Applied Materials Physics, Department of Materials Science and Engineering, KTH Royal Institute of Technology, SE-10044 Stockholm (Sweden); Department of Physics and Astronomy, Division of Materials Theory, Uppsala University, Box 516, SE-75120 Uppsala (Sweden); Vitos, Levente [Applied Materials Physics, Department of Materials Science and Engineering, KTH Royal Institute of Technology, SE-10044 Stockholm (Sweden); Department of Physics and Astronomy, Division of Materials Theory, Uppsala University, Box 516, SE-75120 Uppsala (Sweden); Research Institute for Solid State Physics and Optics, Wigner Research Center for Physics, P.O. Box 49, H-1525 Budapest (Hungary)

    2015-12-07

    We have found that thermodynamic state and kinetic process co-determine the dual ferromagnetic (FM) orders in high-Si content FeMnP{sub 1−x}Si{sub x} (0.25 < x < 0.5). Alloys undergoing high temperature annealing and quenching process prefer a high magnetic moment FM state in a chemically partial disordered structure with low c/a ratio. This mechanism is suggested to be responsible for the often discussed virgin effect as well. A chemically ordered structure obtained by a slow cooling process from a relatively low annealing temperature and the increase in Si content stabilize a metastable lattice with high c/a ratio and FM order with low magnetic moment. The non-simultaneity of the magnetic and structural transitions can be responsible for the occurrence of FM state in the high c/a range. Thus, a c/a ratio that changes from high to low is physically plausible to stabilize the metastable FM order at low temperature. Our theoretical observations indicate that suitable thermodynamic state and kinetic diffusion process is crucial for optimizing magnetocaloric properties and exploring feasible magnetocaloric materials.

  16. Influence of Tb on easy magnetization direction and magnetostriction of ferromagnetic Laves phase GdFe2 compounds

    Science.gov (United States)

    Murtaza, Adil; Yang, Sen; Zhou, Chao; Song, Xiaoping

    2016-09-01

    The crystal structure, magnetization, and spontaneous magnetostriction of ferromagnetic Laves phase GdFe2 compound have been investigated. High resolution synchrotron x-ray diffraction (XRD) analysis shows that GdFe2 has a lower cubic symmetry with easy magnetization direction (EMD) along [100] below Curie temperature TC. The replacement of Gd with a small amount of Tb changes the EMD to [111]. The Curie temperature decreases while the field dependence of the saturation magnetization (Ms) measured in temperature range 5-300 K varies with increasing Tb concentration. Coercivity Hc increases with increasing Tb concentration and decays exponentially as temperature increases. The anisotropy in GdFe2 is so weak that some of the rare-earth substitution plays an important role in determining the easy direction of magnetization in GdFe2. The calculated magnetostrictive constant λ100 shows a small value of 37×10-6. This value agrees well with experimental data 30×10-6. Under a relatively small magnetic field, GdFe2 exhibits a V-shaped positive magnetostriction curve. When the field is further increased, the crystal exhibits a negative magnetostriction curve. This phenomenon has been discussed in term of magnetic domain switching. Furthermore, magnetostriction increases with increasing Tb concentration. Our work leads to a simple and unified mesoscopic explanation for magnetostriction in ferromagnets. It may also provide insight for developing novel functional materials. Project supported by the National Basic Research Program of China (Grant No. 2012CB619401).

  17. 5 CFR 950.108 - Preventing coercive activity.

    Science.gov (United States)

    2010-01-01

    ... giving is fundamental to Federal fundraising activities. Actions that do not allow free choices or create... or to keep them confidential, are contrary to Federal fundraising policy. Activities contrary to the non-coercive intent of Federal fundraising policy are not permitted in campaigns. They include,...

  18. Green's function study of a three-sublattice mixed-spin Heisenberg ferromagnetic and ferrimagnetic system

    Energy Technology Data Exchange (ETDEWEB)

    Mert, Gülistan, E-mail: gmert@selcuk.edu.tr

    2014-08-01

    The magnetic properties of a three-sublattice mixed-spin Heisenberg ferromagnetic and ferrimagnetic system are investigated with the help of the Green's function technique in order to clarify some characteristic magnetic behaviors of Prussian-blue compounds. Various types of magnetization curves are obtained, which exhibits one- and two-compensation temperatures. The first-order phase transitions from ferrimagnetic to ferromagnetic state have been observed. There are zero-temperature quantum fluctuations for the ferrimagnet at the absolute state while not for ferromagnet. Moreover, in the case of ferrimagnet, inverted magnetic hysteresis loop with negative coercivity is observed at a certain temperature range and the coercivity takes the value zero at the compensation point. - Highlights: • We investigate a three-sublattice Heisenberg ferromagnetic and ferrimagnetic system. • System exhibits one- and two-compensation temperatures. • One observes the first-order phase transitions. • Inverted hysteresis loop for ferrimagnet is obtained. • Coercive field for ferrimagnet reaches zero at compensation temperature.

  19. Perpendicular switching of a single ferromagnetic layer induced by in-plane current injection.

    Science.gov (United States)

    Miron, Ioan Mihai; Garello, Kevin; Gaudin, Gilles; Zermatten, Pierre-Jean; Costache, Marius V; Auffret, Stéphane; Bandiera, Sébastien; Rodmacq, Bernard; Schuhl, Alain; Gambardella, Pietro

    2011-08-11

    Modern computing technology is based on writing, storing and retrieving information encoded as magnetic bits. Although the giant magnetoresistance effect has improved the electrical read out of memory elements, magnetic writing remains the object of major research efforts. Despite several reports of methods to reverse the polarity of nanosized magnets by means of local electric fields and currents, the simple reversal of a high-coercivity, single-layer ferromagnet remains a challenge. Materials with large coercivity and perpendicular magnetic anisotropy represent the mainstay of data storage media, owing to their ability to retain a stable magnetization state over long periods of time and their amenability to miniaturization. However, the same anisotropy properties that make a material attractive for storage also make it hard to write to. Here we demonstrate switching of a perpendicularly magnetized cobalt dot driven by in-plane current injection at room temperature. Our device is composed of a thin cobalt layer with strong perpendicular anisotropy and Rashba interaction induced by asymmetric platinum and AlOx interface layers. The effective switching field is orthogonal to the direction of the magnetization and to the Rashba field. The symmetry of the switching field is consistent with the spin accumulation induced by the Rashba interaction and the spin-dependent mobility observed in non-magnetic semiconductors, as well as with the torque induced by the spin Hall effect in the platinum layer. Our measurements indicate that the switching efficiency increases with the magnetic anisotropy of the cobalt layer and the oxidation of the aluminium layer, which is uppermost, suggesting that the Rashba interaction has a key role in the reversal mechanism. To prove the potential of in-plane current switching for spintronic applications, we construct a reprogrammable magnetic switch that can be integrated into non-volatile memory and logic architectures. This device is simple

  20. Identifying the sources of ferromagnetism in sol-gel synthesized Zn{sub 1−x}Co{sub x}O (0≤x≤0.10) nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Beltrán, J.J., E-mail: jjbj08@gmail.com [Grupo de Energías Alternativas y Biomasa (GEAB-CIDTEC), Universidad Popular del Cesar, UPC, Balneario Hurtado Via Patillal, Valledupar (Colombia); Grupo de Estado Sólido, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia, UdeA, Calle 70 No 52-21, Medellín (Colombia); Barrero, C.A. [Grupo de Estado Sólido, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia, UdeA, Calle 70 No 52-21, Medellín (Colombia); Punnoose, A. [Department of Physics, Boise State University, Boise, ID 83725-1570 (United States)

    2016-08-15

    We have carefully investigated the structural, optical and electronic properties and related them with changes in the magnetism of sol-gel synthesized Zn{sub 1−x}Co{sub x}O (0≤x≤0.10) nanoparticles. Samples with x≤0.05 were free of spurious phases. Samples with x≤0.03 were found to be with only high spin Co{sup 2+} ions into ZnO structure, whereas sample with x=0.05, exhibited the presence of high spin Co{sup 2+} and low spin Co{sup 3+}. We found that the intensity of the main EPR peak associated with Co{sup 2+} varies with the nominal Co content in a similar manner as the saturation magnetization and coercive field do. These results point out that the ferromagnetism in these samples should directly be correlated with the presence of divalent cobalt ions. Bound magnetic polaron (BMP) model and the charge transfer model are insufficient to explain the ferromagnetic properties of Zn{sub 1−x}Co{sub x}O nanoparticles. The room temperature ferromagnetism (RTFM) may be originated from a combination of several factors such as the interaction of high spin Co{sup 2+} ions, perturbation/alteration and/or changes in the electronic structure of ZnO close to the valence band edge and grain boundary effects. - Graphical abstract: The intensity of the main EPR peak associated with Co{sup 2+} varies with the nominal Co content in a similar manner as the saturation magnetization and coercive field do. These results point out that the ferromagnetism in these samples should directly be correlated with the presence of Co{sup 2+} ions. Display Omitted - Highlights: • Systematic and carefully study of physical-chemical properties of Zn{sub 1−x}Co{sub x}O nanoparticles. • Samples with x=0.01 and 0.03 were found to be with only high spin Co{sup 2+}. • Sample with x=0.05, exhibited the presence of high spin Co{sup 2+} and low spin Co{sup 3+}. • The BMP and charge transfer models seem not explain the ferromagnetic properties. • RTFM: high spin Co{sup 2+} ions

  1. "Coercion Experience Scale" (CES - validation of a questionnaire on coercive measures

    Directory of Open Access Journals (Sweden)

    Flammer Erich

    2010-01-01

    Full Text Available Abstract Background Although the authors of a Cochrane Review on seclusion and mechanical restraint concluded that "there is a surprising and shocking lack of published trials" on coercive interventions in psychiatry, there are only few instruments that can be applied in trials. Furthermore, as main outcome variable safety, psychopathological symptoms, and duration of an intervention cannot meet the demand to indicate subjective suffering and impact relevant to posttraumatic stress syndromes. An instrument used in controlled trials should assess the patients' subjective experiences, needs to be applicable to more than one intervention in order to compare different coercive measures and has to account for the specific psychiatric context. Methods The primary version of the questionnaire comprised 44 items, nine items on restrictions to human rights, developed on a clinical basis, and 35 items on stressors, derived from patients' comments during the pilot phase of the study. An exploratory factor analysis (EFA using principal axis factoring (PAF was carried out. The resulting factors were orthogonally rotated via VARIMAX procedure. Items with factor loadings less than .50 were eliminated. The reliability of the subscales was assessed by calculating Cronbach. Results Data of 102 patients was analysed. The analysis yielded six factors which were entitled "Humiliation", "Physical adverse effects", "Separation", "Negative environment", "Fear" and "Coercion". These six factors explained 54.5% of the total variance. Cronbach alpha ranged from .67 to .93, which can be interpreted as a high internal consistency. Convergent and discriminant validity yielded both highly significant results (r = .79, p Conclusions The "Coercion Experience Scale" is an instrument to measure the psychological impact during psychiatric coercive interventions. Its psychometric properties showed satisfying reliability and validity. For purposes of research it can be used to

  2. Relationship between ferromagnetic properties and grain size of Inconel alloy 600

    Energy Technology Data Exchange (ETDEWEB)

    Kikuchi, H., E-mail: hkiku@iwate-u.ac.jp; Takahashi, H.; Yanagiwara, H.; Murakami, T.

    2015-05-01

    Inconel alloy 600 is widely used in steam generator tubings where sensitization due to chromium depletion occurs at grain boundaries and the sensitization induces tubing failures. Though the alloy usually exhibits paramagnetic properties, it shows ferromagnetic properties along grain boundaries when chromium depletion occurs. This means that magnetic nondestructive evaluation of sensitization is possible. Therefore, as a fundamental study to develop magnetic nondestructive evaluation technique for sensitization, the relationship between ferromagnetic properties and grain size in Inconel 600 was investigated using isothermal heat treatment. The grain was controlled using solution annealing, and then, specimens were heat treated at 873, 923, and 973 K within 400 h. The saturation magnetization increases as heat treatment time increases and eventually peaks. The peak time depends on the heat treatment temperature. The coercivity increases during the initial heat treatment stage, and decreases as the duration of heat treatment increases. The maximum saturation magnetization decreases as the grain diameter increases and is inversely proportional to the grain diameter squared, which is consistent with the fact that the ferromagnetic phase only formed along grain boundaries. - Highlights: • Relationship between ferromagnetism and grain size in Inconel 600 was clarified. • The saturation magnetization increases and eventually peaks during heat treatment. • The coercivity increases during the initial heat treatment stage, and then decreases. • The saturation magnetization is inversely proportional to the grain diameter squared. • The magnetic property changes are explained by the Cr depletion at grain boundaries.

  3. Giant magnetic coercivity in orthorhombic YNi4Si-type SmNi4Si compound

    Science.gov (United States)

    Yao, Jinlei; Morozkin, A. V.

    2015-10-01

    Magnetic properties, magnetocaloric effect and heat capacity of the YNi4Si-type SmNi4Si compound have been investigated. SmNi4Si exhibits ferromagnetic transition at 17 K. Below ~9 K, the magnetic isotherms of SmNi4Si show metamagnetic-like behavior with critical field of 20 kOe at 5 K. Heat capacity measurements of SmNi4Si show the electronic heat capacity coefficient γ=94 mJ/(mol K2), phonon coefficient β=0.35 mJ/(mol K4) and Debye temperature TD=310 K. The magnetocaloric effect of SmNi4Si is calculated in terms of isothermal magnetic entropy change which is obtained by the isothermal magnetization (ΔSmmagn) and heat capacity measurements (ΔSmheat). Both ΔSmmagn and ΔSmheat reach a maximum of -1.0 J/kg K at 17 K for a field change of 50 kOe and they show positive values for a field change of 20 kOe at ~9 K. Below 15 K, SmNi4Si shows large magnetic hysteresis with considerable remanence. At 5 K it exhibits giant coercive field of 58 kOe in an applied field of 90 kOe.

  4. Nickel/carbon core/shell nanotubes: Lanthanum nickel alloy catalyzed synthesis, characterization and studies on their ferromagnetic and lithium-ion storage properties

    Energy Technology Data Exchange (ETDEWEB)

    Anthuvan Rajesh, John [Department of Chemistry, Institute of Catalysis and Petroleum Technology, Anna University, Chennai 600025, Tamil Nadu (India); Pandurangan, Arumugam, E-mail: pandurangan_a@yahoo.com [Department of Chemistry, Institute of Catalysis and Petroleum Technology, Anna University, Chennai 600025, Tamil Nadu (India); Senthil, Chenrayan; Sasidharan, Manickam [SRM Research Institute, SRM University, Kancheepuram 603203, Tamil Nadu (India)

    2014-12-15

    Highlights: • Ni/CNTs core/shell structure was synthesized using LaNi{sub 5} alloy catalyst by CVD. • The magnetic and lithium-ion storage properties of Ni/CNTs structure were studied. • The specific Ni/CNTs structure shows strong ferromagnetic property with large coercivity value of 446.42 Oe. • Ni/CNTs structure shows enhanced electrochemical performance in terms of stable capacity and better rate capability. - Abstract: A method was developed to synthesize ferromagnetic nickel core/carbon shell nanotubes (Ni/CNTs) by chemical vapor deposition using Pauli paramagnetic lanthanum nickel (LaNi{sub 5}) alloy both as a catalyst and as a source for the Ni-core. The Ni-core was obtained through oxidative dissociation followed by hydrogen reduction during the catalytic growth of the CNTs. Transmission electron microscopy (TEM), selected area electron diffraction (SAED) and X-ray diffraction (XRD) analyses reveal that the Ni-core exists as a face centered cubic single crystal. The magnetic hysteresis loop of Ni/CNTs particle shows increased coercivity (446.42 Oe) than bulk Ni at room temperature. Furthermore, the Ni/CNTs core/shell particles were investigated as anode materials in lithium-ion batteries. The Ni/CNTs electrode delivered a high discharge capacity of 309 mA h g{sup −1} at 0.2 C, and a stable cycle-life, which is attributed to high structural stability of Ni/CNTs electrode during electrochemical lithium-ion insertion and de-insertion redox reactions.

  5. Visible photoluminescence and room temperature ferromagnetism in high In-content InGaN:Yb nanorods grown by molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Dasari, K.; Palai, R., E-mail: r.palai@upr.edu [Department of Physics, University of Puerto Rico, San Juan, Puerto Rico 00936 (United States); Wang, J.; Jadwisienczak, W. M. [School of Electrical Engineering and Computer Science, Ohio University, Athens, Ohio 45701-2979 (United States); Guinel, M. J.-F. [Department of Physics, University of Puerto Rico, San Juan, Puerto Rico 00936 (United States); Department of Chemistry, University of Puerto Rico, San Juan, Puerto Rico 00936 (United States); Huhtinen, H. [Wihuri Physical Laboratory, Department of Physics and Astronomy, University of Turku, Turku FI-20014 (Finland); Mundle, R.; Pradhan, A. K. [Department of Engineering, Norfolk State University, 700 Park Avenue, Norfolk, Virginia 23504 (United States)

    2015-09-28

    We report the growth of high indium content InGaN:Yb nanorods grown on c-plane sapphire (0001) substrates using plasma assisted molecular beam epitaxy. The in situ reflection high energy electron diffraction patterns recorded during and after the growth revealed crystalline nature of the nanorods. The nanorods were examined using electron microscopy and atomic force microscopy. The photoluminescence studies of the nanorods showed the visible emissions. The In composition was calculated from x-ray diffraction, x-ray photoelectron spectroscopy, and the photoluminescence spectroscopy. The In-concentration was obtained from photoluminescence using modified Vegard's law and found to be around 37% for InGaN and 38% for Yb (5 ± 1%)-doped InGaN with a bowing parameter b = 1.01 eV. The Yb-doped InGaN showed significant enhancement in photoluminescence properties compared to the undoped InGaN. The Yb-doped InGaN nanorods demonstrated the shifting of the photoluminescence band at room temperature, reducing luminescence amplitude temperature dependent fluctuation, and significant narrowing of excitonic emission band as compared to the undoped InGaN. The magnetic properties measured by superconducting quantum interference devices reveals room temperature ferromagnetism, which can be explained by the double exchange mechanism and magnetostriction.

  6. High-Tc ferromagnetic semiconductor-like behavior and unusual electrical properties in compounds with a 2×2×2 superstructure of the half-Heusler phase.

    Science.gov (United States)

    Xiong, Ding-Bang; Okamoto, Norihiko L; Waki, Takeshi; Zhao, Yufeng; Kishida, Kyosuke; Inui, Haruyuki

    2012-02-27

    Heusler phases, including the full- and half-Heusler families, represent an outstanding class of multifunctional materials on account of their great tunability in compositions, valence electron counts (VEC), and properties. Here we demonstrate a systematic design of a series of new compounds with a 2×2×2 superstructure of the half-Heusler unit cell in X-Y-Z (X=Fe, Ru, Co, Rh, Ir; Y=Zn, Mn; Z=Sn, Sb) systems. Their structures were solved by using both powder and single-crystal X-ray diffraction, and also directly observed by using high-angle annular dark-field imaging in a scanning transmission electron microscope (HAADF-STEM). The VEC values of these new compounds span a wide and continuous range comparable to those for the full- and half-Heusler families, thereby implying tunability in compositions and physical properties in the superstructure. In fact, we observed abnormal electrical properties and a ferromagnetic semiconductor-like behavior with a high and tunable Curie temperature in these superstructures. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Control of room-temperature defect-mediated ferromagnetism in VO{sub 2} films

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Tsung-Han, E-mail: tyang3@ncsu.edu [NSF Center for Advanced Materials and Smart Structures, Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695-7907 (United States); Nori, Sudhakar; Mal, Siddhartha; Narayan, Jagdish [NSF Center for Advanced Materials and Smart Structures, Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695-7907 (United States)

    2011-09-15

    We report interesting ferromagnetic properties and their control in a vanadium-based oxide system driven by stoichiometric defects. Vanadium oxide (VO{sub 2}) thin films were grown on c-plane sapphire substrates by a pulsed laser deposition technique under different ambient conditions. The ferromagnetism of the epitaxial VO{sub 2} films can be switched on and off by altering the cooling ambient parameters. In addition, the saturated magnetic moments and coercivity of the VO{sub 2} films were found to be a function of the oxygen partial pressure during the growth process. The room-temperature ferromagnetic properties of VO{sub 2} films were correlated with the nature of the microstructure and the growth parameters. The origin of the induced magnetic properties are qualitatively understood to stem from intrinsic structural and stoichiometric defects.

  8. Simple and advanced ferromagnet/molecule spinterfaces

    Science.gov (United States)

    Gruber, M.; Ibrahim, F.; Djedhloul, F.; Barraud, C.; Garreau, G.; Boukari, S.; Isshiki, H.; Joly, L.; Urbain, E.; Peter, M.; Studniarek, M.; Da Costa, V.; Jabbar, H.; Bulou, H.; Davesne, V.; Halisdemir, U.; Chen, J.; Xenioti, D.; Arabski, J.; Bouzehouane, K.; Deranlot, C.; Fusil, S.; Otero, E.; Choueikani, F.; Chen, K.; Ohresser, P.; Bertran, F.; Le Fèvre, P.; Taleb-Ibrahimi, A.; Wulfhekel, W.; Hajjar-Garreau, S.; Wetzel, P.; Seneor, P.; Mattana, R.; Petroff, F.; Scheurer, F.; Weber, W.; Alouani, M.; Beaurepaire, E.; Bowen, M.

    2016-10-01

    Spin-polarized charge transfer between a ferromagnet and a molecule can promote molecular ferromagnetism 1, 2 and hybridized interfacial states3, 4. Observations of high spin-polarization of Fermi level states at room temperature5 designate such interfaces as a very promising candidate toward achieving a highly spin-polarized, nanoscale current source at room temperature, when compared to other solutions such as half-metallic systems and solid-state tunnelling over the past decades. We will discuss three aspects of this research. 1) Does the ferromagnet/molecule interface, also called an organic spinterface, exhibit this high spin-polarization as a generic feature? Spin-polarized photoemission experiments reveal that a high spin-polarization of electronics states at the Fermi level also exist at the simple interface between ferromagnetic cobalt and amorphous carbon6. Furthermore, this effect is general to an array of ferromagnetic and molecular candidates7. 2) Integrating molecules with intrinsic properties (e.g. spin crossover molecules) into a spinterface toward enhanced functionality requires lowering the charge transfer onto the molecule8 while magnetizing it1,2. We propose to achieve this by utilizing interlayer exchange coupling within a more advanced organic spinterface architecture. We present results at room temperature across the fcc Co(001)/Cu/manganese phthalocyanine (MnPc) system9. 3) Finally, we discuss how the Co/MnPc spinterface's ferromagnetism stabilizes antiferromagnetic ordering at room temperature onto subsequent molecules away from the spinterface, which in turn can exchange bias the Co layer at low temperature10. Consequences include tunnelling anisotropic magnetoresistance across a CoPc tunnel barrier11. This augurs new possibilities to transmit spin information across organic semiconductors using spin flip excitations12.

  9. Scientific and conceptual flaws of coercive treatment models in addiction.

    Science.gov (United States)

    Uusitalo, Susanne; van der Eijk, Yvette

    2016-01-01

    In conceptual debates on addiction, neurobiological research has been used to support the idea that addicted drug users lack control over their addiction-related actions. In some interpretations, this has led to coercive treatment models, in which, the purpose is to 'restore' control. However, neurobiological studies that go beyond what is typically presented in conceptual debates paint a different story. In particular, they indicate that though addiction has neurobiological manifestations that make the addictive behaviour difficult to control, it is possible for individuals to reverse these manifestations through their own efforts. Thus, addicted individuals should not be considered incapable of making choices voluntarily, simply on the basis that addiction has neurobiological manifestations, and coercive treatment models of addiction should be reconsidered in this respect.

  10. Coercive Disarmament, Demobilization and Reintegration (DDR): Can It Be Successful

    Science.gov (United States)

    2008-03-01

    DEMOBLIZATION AND REINTEGRATION (DDR): CAN IT BE SUCCESSFUL ? by Shane R. Doolan March 2008 Thesis Co-Advisors: Jeanne Giraldo...DATES COVERED Master’s Thesis 4. TITLE AND SUBTITLE Coercive Disarmament Demobilization and Reintegration (DDR): Can it be Successful ? 6. AUTHOR(S...DISARMAMENT DEMOBILIZATION AND REINTEGRATION (DDR): CAN IT BE SUCCESSFUL ? Shane R. Doolan Captain, United States Army B.S., Police Studies, John Jay

  11. Measurement of high frequency conductivity of oxide-doped anti-ferromagnetic thin film with a near-field scanning microwave microscope

    Directory of Open Access Journals (Sweden)

    Z. Wu

    2014-04-01

    Full Text Available In this manuscript, we describe how the map of high frequency conductivity distribution of an oxide-doped anti-ferromagnetic 200 nm thin film can be obtained from the quality factor (Q measured by a near-field scanning microwave microscope (NSMM. Finite element analysis (FEA is employed to simulate the NSMM tip-sample interaction and obtain a curve related between the simulated quality factor (Q and conductivity. The curve is calibrated by a standard Cu thin film with thickness of 200 nm, together with NSMM measured Q of Ag, Au, Fe, Cr and Ti thin films. The experimental conductivity obtained by the NSMM for IrMn thin films with various doped concentrations of Al2O3 is found consistent with conventional voltammetry measurement in the same tendency. That conductivity decreases as the content of doped Al2O3 increases. The results and images obtained demonstrate that NSMM can be employed in thin film analysis for characterization of local electrical properties of materials in a non-destructive manner and for obtaining a map of conductivity distribution on the same film.

  12. Ferromagnetism in an Itinerant Electron Cluster

    Institute of Scientific and Technical Information of China (English)

    LIGang; TIANGuang-Shan

    2005-01-01

    In the present paper, we study the existence of metallic ferromagnetism in a cluster of nanometer scale,which is described by the Hubbard model defined on a complete graph. Therefore, the system is highly frustrated with respect to electron hopping. By solving the model exactly, we show that its ground state is fully spin-polarized at half-rilling, even if the Coulomb interaction is finite. This conclusion is in sharp contrast to the well-known result for the Hubbard model on a bipartite lattice. As a result, our exact solution strongly suggests that frustration may play an important role in causing metallic ferromagnetism.

  13. Ferromagnetism in an Itinerant Electron Cluster

    Institute of Scientific and Technical Information of China (English)

    LI Gang; TIAN Guang-Shan

    2005-01-01

    In the present paper, we study the existence of metallic ferromagnetism in a cluster of nanometer scale,which is described by the Hubbard model defined on a complete graph. Therefore, the system is highly frustrated with respect to electron hopping. By solving the model exactly, we show that its ground state is fully spin-polarized at half-filling, even if the Coulomb interaction is finite. This conclusion is in sharp contrast to the well-known result for the Hubbard model on a bipartite lattice. As a result, our exact solution strongly suggests that frustration may play an important role in causing metallic ferromagnetism.

  14. Variable substrate temperature deposition of CoFeB film on Ta for manipulating the perpendicular coercive forces

    Science.gov (United States)

    Lakshmanan, Saravanan; Rao, Subha Krishna; Muthuvel, Manivel Raja; Chandrasekaran, Gopalakrishnan; Therese, Helen Annal

    2017-08-01

    Magnetization of Ta/CoFeB/Ta trilayer films with thick layer of CoFeB deposited under different substrate temperatures (Ts) via ultra-high vacuum DC sputtering technique has been measured with the applied magnetic field parallel and perpendicular to the plane of the film respectively to study the perpendicular coercive forces of the film. The samples were further analyzed for its structural, topological, morphological, and electrical transport properties. The core chemical states for the elements present in the CoFeB thin film were analyzed by XPS studies. Magnetization studies reveal the existence of perpendicular coercive forces in CoFeB films deposited only at certain temperatures such as RT, 450 °C, 475 °C and 500 °C. CoFeB film deposited at 475 °C exhibited a maximum coercivity of 315 Oe and a very low saturation magnetization (Ms) of 169 emu/cc in perpendicular direction. This pronounced effect in perpendicular coercive forces observed for CoFeB475 could be attributed to the effect of temperature in enhancing the crystallization of the film at the Ta/CoFeB interfaces. However at temperatures higher than 475 °C the destruction of the Ta/CoFeB interface due to intermixing of Ta and CoFeB results in the disappearance of magnetic anisotropy.

  15. Ferromagnetic properties of fcc Gd thin films

    Energy Technology Data Exchange (ETDEWEB)

    Bertelli, T. P., E-mail: tambauh@gmail.com; Passamani, E. C.; Larica, C.; Nascimento, V. P.; Takeuchi, A. Y. [Universidade Federal do Espírito Santo, Departamento de Física, Vitória/ES 29075-910 (Brazil); Pessoa, M. S. [Universidade Federal do Espírito Santo, Departamento de Ciências Naturais, São Mateus/ES 29932-540 (Brazil)

    2015-05-28

    Magnetic properties of sputtered Gd thin films grown on Si (100) substrates kept at two different temperatures were investigated using X-ray diffraction, ac magnetic susceptibility, and dc magnetization measurements. The obtained Gd thin films have a mixture of hcp and fcc structures, but with their fractions depending on the substrate temperature T{sub S} and film thickness x. Gd fcc samples were obtained when T{sub S} = 763 K and x = 10 nm, while the hcp structure was stabilized for lower T{sub S} (300 K) and thicker film (20 nm). The fcc structure is formed on the Ta buffer layer, while the hcp phase grows on the fcc Gd layer as a consequence of the lattice relaxation process. Spin reorientation phenomenon, commonly found in bulk Gd species, was also observed in the hcp Gd thin film. This phenomenon is assumed to cause the magnetization anomalous increase observed below 50 K in stressed Gd films. Magnetic properties of fcc Gd thin films are: Curie temperature above 300 K, saturation magnetization value of about 175 emu/cm{sup 3}, and coercive field of about 100 Oe at 300 K; features that allow us to classify Gd thin films, with fcc structure, as a soft ferromagnetic material.

  16. A harsh parenting team? Maternal reports of coparenting and coercive parenting interact in association with children's disruptive behaviour.

    Science.gov (United States)

    Latham, Rachel M; Mark, Katharine M; Oliver, Bonamy R

    2017-05-01

    Parenting and coparenting are both important for children's adjustment, but their interaction has been little explored. Using a longitudinal design and considering two children per family, we investigated mothers' and fathers' perceptions of coparenting as moderators of associations between their coercive parenting and children's disruptive behaviour. Mothers and fathers from 106 'intact' families were included from the Twins, Family and Behaviour study. At Time 1 (Mchild age  = 3 years 11 months, SDchild age  = 4.44 months) parents reported on their coercive parenting and children's disruptive behaviour via questionnaire; at Time 2 (Mchild age  = 4 years 8 months, SDchild age  = 4.44 months) perceptions of coparenting and the marital relationship were collected by telephone interview. Questionnaire-based reports of children's disruptive behaviour were collected at follow-up (Mchild age  = 5 years 11 months, SDchild age  = 5.52 months). Multilevel modelling was used to examine child-specific and family-wide effects. Conservative multilevel models including both maternal and paternal perceptions demonstrated that maternal perceptions of coparenting and overall coercive parenting interacted in their prediction of parent-reported child disruptive behaviour. Specifically, accounting for perceived marital quality, behavioural stability, and fathers' perceptions, only in the context of perceived higher quality coparenting was there a positive association between mother-reported overall coercive parenting and children's disruptive behaviour at follow-up. When combined with highly coercive parenting, maternal perceptions of high quality coparenting may be detrimental for children's adjustment. © 2016 Association for Child and Adolescent Mental Health.

  17. [Architectural modernization of psychiatric hospitals influences the use of coercive measures].

    Science.gov (United States)

    Rohe, T; Dresler, T; Stuhlinger, M; Weber, M; Strittmatter, T; Fallgatter, A J

    2017-01-01

    Coercive measures are widely applied in psychiatric hospitals as a last resort to prevent patients seriously harming themselves or others, with negative psychological and somatic consequences for those affected. In a naturalistic observational study it was investigated whether relocation of the structural milieu of a psychiatric hospital to an architectonically improved new building influenced the application of coercive measures. The frequency and duration of coercive measures (e.g. fixation, coercive medication and preventive restraints) were routinely documented and compared in the periods before and after the relocation. After the relocation the utilization of coercive measures was significantly reduced by 48-84 %. Despite the limitations of the study design the results suggest that the architectural improvements reduced the application of coercive measures. It is speculated that the positive structural milieu enhanced the well-being of patients and staff and their social relations, which in turn prevented coercive measures.

  18. Precessing Ferromagnetic Needle Magnetometer.

    Science.gov (United States)

    Jackson Kimball, Derek F; Sushkov, Alexander O; Budker, Dmitry

    2016-05-13

    A ferromagnetic needle is predicted to precess about the magnetic field axis at a Larmor frequency Ω under conditions where its intrinsic spin dominates over its rotational angular momentum, Nℏ≫IΩ (I is the moment of inertia of the needle about the precession axis and N is the number of polarized spins in the needle). In this regime the needle behaves as a gyroscope with spin Nℏ maintained along the easy axis of the needle by the crystalline and shape anisotropy. A precessing ferromagnetic needle is a correlated system of N spins which can be used to measure magnetic fields for long times. In principle, by taking advantage of rapid averaging of quantum uncertainty, the sensitivity of a precessing needle magnetometer can far surpass that of magnetometers based on spin precession of atoms in the gas phase. Under conditions where noise from coupling to the environment is subdominant, the scaling with measurement time t of the quantum- and detection-limited magnetometric sensitivity is t^{-3/2}. The phenomenon of ferromagnetic needle precession may be of particular interest for precision measurements testing fundamental physics.

  19. Evolution of room temperature ferromagnetism with increasing 1D growth in Ni-doped ZnO nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Pal, Bappaditya, E-mail: bpal.iitg@gmail.com [Department of Physics, Gauhati University, Guwahati 781014 (India); Dhara, Soumen; Giri, P.K. [Department of Physics, Indian Institute of Technology Guwahati, Guwahati 781039 (India); Sarkar, D., E-mail: sarkardeepali@gmail.com [Department of Physics, Gauhati University, Guwahati 781014 (India)

    2015-10-25

    Zn{sub 1−x}Ni{sub x}O (x = 0, 0.03, and 0.5) 1D nanostructures showing room temperature ferromagnetism (RT FM) with high moment have been synthesized by a solvothermal route. X-ray diffraction, transmission electron microscopy (TEM), energy dispersive X-ray spectrum (EDS) and X-ray photoelectron spectroscopy (XPS) analysis reveal the growth of single phase wurtzite structure Zn{sub 1−x}Ni{sub x}O NRs of diameter 60–70 nm and length of 0.4–0.6 μm with the successful incorporation of Ni ions inside ZnO matrix. High resolution TEM lattice images show that all the NRs are single crystalline with a d-spacing of 2.57 Å with c-axis growth. Room temperature magnetic measurements exhibit strong ferromagnetic characteristic with magnetic moment of 1.13 emu/g, coercivity of 150 G. Photoluminescence (PL) spectra exhibit near band edge UV emission as well as defect related visible emission which is expected to play a significant role in the FM ordering, also PL spectra reveal slight band edge modification due to doping effect. Systemic structural, magnetic, and optical properties reveal that both the nature of the defects as well as Ni{sup 2+} ions are significant ingredients to attain FM characteristics with high moment and ordering temperature in the 1-dimensional ZnO NRs. Magnetic interaction is analysed using a bound magnetic polaron model and expected to arise from the intrinsic exchange interaction of Ni ions, Zn {sub V}acancy and O iterstitial related defects. - Highlights: • Room temperature ferromagnetism with high moment in Zn{sub 1−x}Ni{sub x}O nanorods. • Magnetic moment has increased with c-axis 1D growth of ZnO nanostructure. • XPS spectra confirm that the Ni ions are in 2+ valance state inside ZnO matrix. • PL spectra demonstrate presence of strong Zn{sub V}, O{sub i} defect modes. • Intrinsic exchange interaction of Ni ions and Zn{sub V}, O{sub i} defects yields ferromagnetism.

  20. Hyperfine coupling constant for {sup 59}Co estimated from a high-field susceptibility and high-field NMR shift in ferromagnetic Co{sub 2}TiGa and Co{sub 2}VGa

    Energy Technology Data Exchange (ETDEWEB)

    Nishihara, H; Furutani, Y; Wada, T [Faculty of Science and Technology, Ryukoku University, Otsu 520-2194 (Japan); Kanomata, T [Faculty of Engineering, Tohoku Gakuin University, Tagajo 985-8537 (Japan); Kobayashi, K; Ishida, K [Graduate School of Engineering, Tohoku University, Sendai 980-8579 (Japan); Kainuma, R [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577 (Japan); Koyama, K; Watanabe, K, E-mail: nishihara@rins.ryukoku.ac.j [Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan)

    2010-01-01

    The hyperfine coupling constant for {sup 59}Co in the ferromagnetic state of a Heusler alloy Co{sub 2}TiGa in the high-field range has been estimated to be 170 kOe per 1 {mu}{sub B} of the moment of cobalt atom from the high-field magnetic susceptibility of 2.3 x 10{sup -6} emu/gOe measured at 5 K in a field range from 20 to 70 kOe and a reported positive high-field NMR shift of +0.83 percent. The value of the hyperfine coupling constant has been found to be even larger in the case of Co{sub 2}VGa. These features suggest that the positive hyperfine field at Co nucleus in the Co-based Heusler alloys is due to conduction electron polarization rather than a transferred hyperfine field.

  1. Note: a high-sensitivity current sensor based on piezoelectric ceramic Pb(Zr,Ti)O3 and ferromagnetic materials.

    Science.gov (United States)

    He, Wei; Li, Ping; Wen, Yumei; Zhang, Jitao; Yang, Aichao; Lu, Caijiang

    2014-02-01

    An electric current sensor using piezoelectric ceramic Pb(Zr,Ti)O3 (PZT) sandwiched between two high permeability cuboids and two NdFeB magnets is presented. The magnetic field originating from an electric wire is augmented by the high permeability cuboids. The PZT plate experiences an enhanced magnetic force and generates voltage output. When placed with a distance of d = 5.0 mm from the wire, the sensor shows a flat sensitivity of ∼5.7 mV/A in the frequency range of 30 Hz-80 Hz and an average sensitivity of 5.6 mV/A with highly linear behavior in the current range of 1 A-10 A at 50 Hz.

  2. Spin-orbit ferromagnetic resonance

    Science.gov (United States)

    Ferguson, Andrew

    2013-03-01

    In conventional magnetic resonance techniques the magnitude and direction of the oscillatory magnetic field are (at least approximately) known. This oscillatory field is used to probe the properties of a spin ensemble. Here, I will describe experiments that do the inverse. I will discuss how we use a magnetic resonance technique to map out the current-induced effective magnetic fields in the ferromagnetic semiconductors (Ga,Mn)As and (Ga,Mn)(As,P). These current-induced fields have their origin in the spin-orbit interaction. Effective magnetic fields are observed with symmetries which resemble the Dresselhaus and Rashba spin-orbit interactions and which depend on the diagonal and off-diagonal strain respectively. Ferromagnetic semiconductor materials of different strains, annealing conditions and concentrations are studied and the results compared with theoretical calculations. Our original study measured the rectification voltage coming from the product of the oscillatory magnetoresistance, during magnetisation precession, and the alternating current. More recently we have developed an impedance matching technique which enables us to extract microwave voltages from these high resistance (10 k Ω) samples. In this way we measure the microwave voltage coming from the product of the oscillating magneto-resistance and a direct current. The direct current is observed to affect the magnetisation precession, indicating that anti-damping as well as field-like torques can originate from the spin-orbit interaction.

  3. Damping Dependence of Reversal Magnetic Field on Co-based Nano-Ferromagnetic with Thermal Activation

    Directory of Open Access Journals (Sweden)

    Nadia Ananda Herianto

    2015-02-01

    Full Text Available Currently, hard disk development has used HAMR technology that applies heat to perpendicular media until near Curie temperature, then cools it down to room temperature. The use of HAMR technology is significantly influence by Gilbert damping constants. Damping affects the magnetization reversal and coercivity field. Simulation is used to evaluate magnetization reversal by completing Landau-Lifshitz-Gilbert explicit equation. A strong ferromagnetic cobalt based material with size 50×50×20 nm3 is used which parameters are anisotropy materials 3.51×106 erg/cm3, magnetic saturation 5697.5 G, exchange constant 1×10-7 erg/cm, and various Gilbert damping from 0.09 to 0.5. To observe the thermal effect, two schemes are used which are Reduced Barrier Writing and Curie Point Writing. As a result, materials with high damping is able to reverse the magnetizations faster and reduce the energy barrier. Moreover, it can lower the minimum field to start the magnetizations reversal, threshold field, and probability rate. The heating near Curie temperature has succeeded in reducing the reversal field to 1/10 compared to writing process in absence of thermal field.

  4. Frequency mixer having ferromagnetic film

    Energy Technology Data Exchange (ETDEWEB)

    Khitun, Alexander; Roshchin, Igor V.; Galatsis, Kosmas; Bao, Mingqiang; Wang, Kang L.

    2016-03-29

    A frequency conversion device, which may include a radiofrequency (RF) mixer device, includes a substrate and a ferromagnetic film disposed over a surface of the substrate. An insulator is disposed over the ferromagnetic film and at least one microstrip antenna is disposed over the insulator. The ferromagnetic film provides a non-linear response to the frequency conversion device. The frequency conversion device may be used for signal mixing and amplification. The frequency conversion device may also be used in data encryption applications.

  5. Perpendicular Magnetic Anisotropy in Amorphous Ferromagnetic CoSiB/Pd Thin-Film Layered Structures.

    Science.gov (United States)

    Jung, Sol; Yim, Haein

    2015-10-01

    Spin transfer torque (STT) induced switching of magnetization has led to intriguing and practical possibilities for magnetic random access memory (MRAM). This form of memory, called STT-MRAM, is a strong candidate for future memory applications. This application usually requires a large perpendicular magnetic anisotropy (PMA), large coercivity, and low saturation magnetization. Therefore, we propose an amorphous ferromagnetic CoSiB alloy and investigate CoSiB/Pd multilayer thin films, which have a large PMA, large coercivity, and low saturation magnetization. In this research, we propose a remarkable layered structure that could be a candidate for future applications and try to address a few factors that might affect the variation of PMA, coercivity, and saturation magnetization in the CoSiB/Pd multilayers. We investigate the magnetic properties of the CoSiB/Pd multilayers with various thicknesses of the CoSiB layer. The coercivity was obtained with a maximum of 228 Oe and a minimum value of 91 Oe in the [CoSiB 7 Å/Pd 14 Å], and [CoSiB 9 Å/Pd 14 Å], multilayers, respectively. The PMA arises from tCoSiB = 3 Å to tCoSiB = 9 Å and disappears after tCoSiB = 9 Å.

  6. Grain structure dependence of coercivity in thin films

    CERN Document Server

    Bachleitner-Hofmann, Anton; Satz, Armin; Suess, Dieter

    2016-01-01

    We investigated coercive fields of 200nm x 1200nm x 5nm rectangular nanocrystalline thin films as a function of grain size D using finite elements simulations. To this end, we created granular finite element models with grain sizes ranging from 5nm to 60nm, and performed micromagnetic hysteresis calculations along the y-axis (easy direction) as well as along the x-axis (hard direction). We then used an extended Random Anisotropy model to interpret the results and to illustrate the interplay of random and uniform anisotropy in thin films.

  7. Coercive Region-level Registration for Multi-modal Images

    CERN Document Server

    Chen, Yu-Hui; Newstadt, Gregory; Simmons, Jeffrey; hero, Alfred

    2015-01-01

    We propose a coercive approach to simultaneously register and segment multi-modal images which share similar spatial structure. Registration is done at the region level to facilitate data fusion while avoiding the need for interpolation. The algorithm performs alternating minimization of an objective function informed by statistical models for pixel values in different modalities. Hypothesis tests are developed to determine whether to refine segmentations by splitting regions. We demonstrate that our approach has significantly better performance than the state-of-the-art registration and segmentation methods on microscopy images.

  8. Soliton dynamics in planar ferromagnets and anti-ferromagnets

    Institute of Scientific and Technical Information of China (English)

    LINFang-hua; SHATAHJalal

    2003-01-01

    The aim of this paper is to present a rigorous mathematical proof of the dynamical laws for the topological solitons( magnetic vortices) in ferromagnets and anti-ferromagnets. It is achieved through the conservation laws for the topological vorticity and the weak convergence methods.

  9. A new generation of CMOS-compatible high frequency micro-inductors with ferromagnetic cores: Theory, fabrication and characterisation

    Energy Technology Data Exchange (ETDEWEB)

    Seemann, K. [Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft, Institut fuer Materialforschung I, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany)]. E-mail: klaus.seemann@imf.fzk.de; Leiste, H. [Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft, Institut fuer Materialforschung I, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Bekker, V. [Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft, Institut fuer Materialforschung I, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany)

    2006-07-15

    A new generation of CMOS-compatible micro-inductor prototypes with magnetic cores were realized, characterised as well as theoretically modelled in a frequency range up to 4 GHz, a frequency range where, e.g., mobile communication and global positioning systems (GPS) are operated. The micro-inductor's electrical magnitudes like inductance (L) and quality factor (Q) were theoretically described by means of an equivalent circuit model taking the frequency behaviour of the magnetic film core, expressed by the Landau-Lifschitz and Maxwell equations, into account. Six inch targets were used to deposit metallic layers (Al{sub 99}Si{sub 0.5}Cu{sub 0.5}), diffusion barriers (Si{sub 3}N{sub 4}), insulating layers (SiO{sub 2}) and magnetic films (Fe{sub 39}Co{sub 3}Ta{sub 8}N{sub 23}) by DC or reactive r.-f.-magnetron sputtering. All film materials were patterned by NUV-lithography (Near Ultra Violet), plasma beam milling and reactive ion etching to form the micro-inductors on 4-inch silicon wafers. The inductor windings are arranged in a way that they possess a low resistance and generate a quasi closed flux at the end of the cores to minimise eddy current losses in the silicon substrate. In order to diminish demagnetising effects in an efficient working core the magnetic films were patterned into micro squares with lateral dimensions of 20 and 100 {mu}m with 100 nm in thickness. More magnetic volume and a higher micro-inductor cross-section was achieved by producing 100 nm magnetic double layers separated by a 800 nm thick Si{sub 3}N{sub 4} inter-layer. To guarantee a sufficiently high cut-off frequency of the magnetic films, they were annealed in a static magnetic field at a temperature of 400 deg. C for uniaxial anisotropy induction. This represents a temperature treatment where aluminium CMOS processes take place. As a result of patterning, the magnetic film material exhibited a remarkable increase of the cut-off frequency from 2 GHz in laterally extended films up

  10. Ferromagnetic behaviour of Fe-doped ZnO nanograined films

    Directory of Open Access Journals (Sweden)

    Boris B. Straumal

    2013-06-01

    Full Text Available The influence of the grain boundary (GB specific area sGB on the appearance of ferromagnetism in Fe-doped ZnO has been analysed. A review of numerous research contributions from the literature on the origin of the ferromagnetic behaviour of Fe-doped ZnO is given. An empirical correlation has been found that the value of the specific grain boundary area sGB is the main factor controlling such behaviour. The Fe-doped ZnO becomes ferromagnetic only if it contains enough GBs, i.e., if sGB is higher than a certain threshold value sth = 5 × 104 m2/m3. It corresponds to the effective grain size of about 40 μm assuming a full, dense material and equiaxial grains. Magnetic properties of ZnO dense nanograined thin films doped with iron (0 to 40 atom % have been investigated. The films were deposited by using the wet chemistry “liquid ceramics” method. The samples demonstrate ferromagnetic behaviour with Js up to 0.10 emu/g (0.025 μB/f.u.ZnO and coercivity Hc ≈ 0.03 T. Saturation magnetisation depends nonmonotonically on the Fe concentration. The dependence on Fe content can be explained by the changes in the structure and contiguity of a ferromagnetic “grain boundary foam” responsible for the magnetic properties of pure and doped ZnO.

  11. Ferromagnetic behaviour of Fe-doped ZnO nanograined films.

    Science.gov (United States)

    Straumal, Boris B; Protasova, Svetlana G; Mazilkin, Andrei A; Tietze, Thomas; Goering, Eberhard; Schütz, Gisela; Straumal, Petr B; Baretzky, Brigitte

    2013-01-01

    The influence of the grain boundary (GB) specific area s GB on the appearance of ferromagnetism in Fe-doped ZnO has been analysed. A review of numerous research contributions from the literature on the origin of the ferromagnetic behaviour of Fe-doped ZnO is given. An empirical correlation has been found that the value of the specific grain boundary area s GB is the main factor controlling such behaviour. The Fe-doped ZnO becomes ferromagnetic only if it contains enough GBs, i.e., if s GB is higher than a certain threshold value s th = 5 × 10(4) m(2)/m(3). It corresponds to the effective grain size of about 40 μm assuming a full, dense material and equiaxial grains. Magnetic properties of ZnO dense nanograined thin films doped with iron (0 to 40 atom %) have been investigated. The films were deposited by using the wet chemistry "liquid ceramics" method. The samples demonstrate ferromagnetic behaviour with J s up to 0.10 emu/g (0.025 μB/f.u.ZnO) and coercivity H c ≈ 0.03 T. Saturation magnetisation depends nonmonotonically on the Fe concentration. The dependence on Fe content can be explained by the changes in the structure and contiguity of a ferromagnetic "grain boundary foam" responsible for the magnetic properties of pure and doped ZnO.

  12. A battered women's movement perspective of Coercive Control.

    Science.gov (United States)

    Arnold, Gretchen

    2009-12-01

    In Coercive Control, Evan Stark calls on battered women's activists to reorient their understanding of abusive relationships. Rather than being primarily about physical violence, he maintains, domestic violence is better conceptualized as men's attempts to destroy women's autonomy and reinstate patriarchy in intimate relationships. His analysis suggests important changes to defending battered women in court, modifications to the kinds of support services the movement provides for battered women, and changes in the laws and law enforcement regarding battering. Stark also maintains that, to end coercive control, the battered women's movement must renew its commitment not only to ensuring the safety of individual women but also to attaining the feminist goal of substantive freedom and equality for women in both public and private life. I contend that Stark's reframing of woman abuse is useful for battered women's advocates and may, in some cases but not in others, lead to more effective practices in battered women's programs. At the same time, it is likely to complicate activists' efforts to mobilize public opinion, resources, and public policy to address the problem of woman abuse.

  13. CONTEMPORARY U.S. FEDERALISM: COERCIVE CHANGE WITH COOPERATIVE CONTINUITY

    Directory of Open Access Journals (Sweden)

    John Kincaid

    2008-04-01

    Full Text Available Contemporary U.S. federalism is a complex mixture of coercive, cooperative,and dual elements. Constitutionally and politically, the federal system hasbecome coercive because there has been a vast expansion of federal-governmentpower over the states since the 1960s. This coercion involves, amongother things, increased regulations attached to federal grants-in-aid, mandatesimposed on the states, and federal preemptions of state powers. Neitherthe U.S. Senate nor the Supreme Court or the president serves as a protectorof state powers today. Administratively, however, intergovernmentalrelations between the federal, state, and local governments remain highlycooperative. State and local officials implement and comply with federalgovernmentpolicies and occasionally obtain concessions and adjustmentsin implementation from federal officials. At the same time, the states stillretain considerable residual powers, which, along with their substantial fiscalcapacities, allow them to engage in independent and innovative policymakingin a large number of policy fields. State policy activism in suchfields as consumer protection, criminal justice, environmental protection,health care, and worker rights has, in part, been a reaction against coercivefederalism and, in turn, has often highlighted weaknesses in comparablefederal-government policies.

  14. Vortex state in ferromagnetic nanoparticles

    Science.gov (United States)

    Betto, Davide; Coey, J. M. D.

    2014-05-01

    The evolution of the magnetic state of a soft ferromagnetic nanoparticle with its size is usually thought to be from superparamagnetic single domain to blocked single domain to a blocked multidomain structure. Néel pointed out that a vortex configuration produces practically no stray field at the cost of an increase in the exchange energy, of the order of RJS2lnR /c, where JS2 is the bond energy, R is the particle radius, and c is of the order of the exchange length. A vortex structure is energetically cheaper than single domain when the radius is greater than a certain value. The correct sequence should include a vortex configuration between the single domain and the multidomain states. The critical size is calculated for spherical particles of four important materials (nickel, magnetite, permalloy, and iron) both numerically and analytically. A vortex state is favored in materials with high magnetisation.

  15. Toward a Standard Approach to Operationalizing Coercive Control and Classifying Violence Types.

    Science.gov (United States)

    Hardesty, Jennifer L; Crossman, Kimberly A; Haselschwerdt, Megan L; Raffaelli, Marcela; Ogolsky, Brian G; Johnson, Michael P

    2015-08-01

    Coercive control is central to distinguishing between Johnson's (2008) 2 main types of intimate partner violence: (a) coercive controlling violence and (b) situational couple violence. Approaches to assessing coercive control, however, have been inconsistent. Using data from 2 projects involving divorcing mothers (N = 190), the authors compared common analytic strategies for operationalizing coercive control and classifying types of violence. The results establish advantages to measuring coercive control in terms of frequency versus number of tactics, illustrate the use of both hierarchical and k-means clustering methods to identify patterns of coercive control and evaluate clustering solutions, and offer a suggested cutoff for classifying violence types in general samples of separated women using the Dominance-Isolation subscale of the widely used Psychological Maltreatment of Women Inventory (Tolman, 1992). Finally, the authors demonstrate associations between types of violence and theoretically relevant variables, including frequency and severity of violence, harassment and violence after separation, fear, and perceived threat.

  16. Damped Topological Magnons in the Kagome-Lattice Ferromagnets

    Science.gov (United States)

    Chernyshev, A. L.; Maksimov, P. A.

    2016-10-01

    We demonstrate that interactions can substantially undermine the free-particle description of magnons in ferromagnets on geometrically frustrated lattices. The anharmonic coupling, facilitated by the Dzyaloshinskii-Moriya interaction, and a highly degenerate two-magnon continuum yield a strong, nonperturbative damping of the high-energy magnon modes. We provide a detailed account of the effect for the S =1 /2 ferromagnet on the kagome lattice and propose further experiments.

  17. Tunnel magnetoresis-tance(TMR) in ferromagnetic metalinsulator granular films

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    We review the recently discovered tunnel-type giant magnetoresistance (GMR) in ferromagnetic metal- insulator granular thin films, which is the magnetoresistance (MR) associated with the spin-dependent tunneling between two ferromagnetic metal particles. The theoretical and ex-perimental results including electrical resistivity, magnetore-sistance and their temperature dependence are described. Limitations to the applications of the ferromagnetic metal- insulator granular films are also discussed. Additionally, a brief survey of another two magnetic properties, high- fre-quency property and giant Hall effect (GHE) associated strongly with the granular structures is also presented.

  18. Structure and coercivity of nanocrystalline Fe–Si–B–Nb–Cu alloys

    Indian Academy of Sciences (India)

    B Majumdar; D Akhtar

    2005-08-01

    Crystallization behaviour and magnetic properties of melt-spun Fe–Si–B–Nb–Cu alloys have been investigated. It is found that the primary phase changes from -Fe(Si) to Fe3Si (DO3) on increasing the Si content. The coercivity of the alloys containing the Fe3Si phase is significantly lower as compared to the alloy containing -Fe(Si) phase. A heat treatment temperature–time–coercivity map has been obtained for optimization of the coercivity.

  19. Correlation between coercive field and radiation attenuation in Ni and Mg ferrite doped with Mn and Co

    Energy Technology Data Exchange (ETDEWEB)

    Silva, José Eves M., E-mail: evesquimica@yahoo.com.br [Chemistry Institute, UFRN, Cep. 59078-970, Natal, do Norte (Brazil); Nasar, Ricardo S., E-mail: nasar@terra.com.br [Chemistry Institute, UFRN, Cep. 59078-970, Natal, do Norte (Brazil); Nasar, Marinalva C., E-mail: mari.nat@terra.com.br [Chemistry Institute, UFRN, Cep. 59078-970, Natal, do Norte (Brazil); Firme, Caio L. [Chemistry Institute, UFRN, Cep. 59078-970, Natal, do Norte (Brazil); Araújo, José H., E-mail: humberto@dfte.ufrn.br [Department of Theoretical and Experimental Physics, UFRN, Cep. 59078-970, Natal, Grande do Norte (Brazil)

    2015-11-15

    It was investigated NiMg{sub 0.1}M{sub x}Fe{sub 2}O{sub 4} ferrite where M stands for Mn, Co or simultaneously Mn and Co dopants. The concentration of M is 0.1 and it was divided by two in the sample with addition of Mn and Co. It was used the method of citrate precursors with 1100 °C calcination. The materials were characterized by X-ray diffractometer (XRD), scanning electron microscopy (SEM), vibrating sample magnetometer (VSM) and reflectivity measures by waveguide method. The X-ray diffraction measures, with Rietveld refinement, present average crystallite sizes between 0.576 and 0.626 µm. The SEM analysis shows clustered particles smaller than 1 µm at 1100 °C, in agreement with Rietveld refinement. The compositions with Mn reach magnetization between 42.09 and 53.20 Am{sup 2}/kg, which does not generate high microwave absorption. The 0.1 Co addition reached greater coercivity (2.96×10{sup −2} T), with up to 84% reflectivity at 10.17 GHz frequency. The Co material has high magnetocrystalline anisotropy, which is associated with the increase of coercive field, H{sub c}. The higher coercivity optimizes the reflectivity results. - Highlights: • Manganese diffusion occurs in octahedral sites. • Analysis by SEM and by Rietved shows agreement. • The structure is the inverse spinel type. • Low loss leads to obtain low radiation absorption. • The Co addition gets high reflectivity and coincides with high coercivity.

  20. Raman characterization of bulk ferromagnetic nanostructured graphite

    Energy Technology Data Exchange (ETDEWEB)

    Pardo, Helena, E-mail: hpardo@fq.edu.uy [Centro NanoMat, Polo Tecnologico de Pando, Facultad de Quimica, Universidad de la Republica, Cno. Aparicio Saravia s/n, 91000, Pando, Canelones (Uruguay); Crystallography, Solid State and Materials Laboratory (Cryssmat-Lab), DETEMA, Facultad de Quimica, Universidad de la Republica, Gral. Flores 2124, P.O. Box 1157, Montevideo (Uruguay); Divine Khan, Ngwashi [Mantfort University, Leicester (United Kingdom); Faccio, Ricardo [Centro NanoMat, Polo Tecnologico de Pando, Facultad de Quimica, Universidad de la Republica, Cno. Aparicio Saravia s/n, 91000, Pando, Canelones (Uruguay); Crystallography, Solid State and Materials Laboratory (Cryssmat-Lab), DETEMA, Facultad de Quimica, Universidad de la Republica, Gral. Flores 2124, P.O. Box 1157, Montevideo (Uruguay); Araujo-Moreira, F.M. [Grupo de Materiais e Dispositivos-CMDMC, Departamento de Fisica e Engenharia Fisica, UFSCar, Caixa Postal 676, 13565-905, Sao Carlos SP (Brazil); Fernandez-Werner, Luciana [Centro NanoMat, Polo Tecnologico de Pando, Facultad de Quimica, Universidad de la Republica, Cno. Aparicio Saravia s/n, 91000, Pando, Canelones (Uruguay); Crystallography, Solid State and Materials Laboratory (Cryssmat-Lab), DETEMA, Facultad de Quimica, Universidad de la Republica, Gral. Flores 2124, P.O. Box 1157, Montevideo (Uruguay)

    2012-08-15

    Raman spectroscopy was used to characterize bulk ferromagnetic graphite samples prepared by controlled oxidation of commercial pristine graphite powder. The G:D band intensity ratio, the shape and position of the 2D band and the presence of a band around 2950 cm{sup -1} showed a high degree of disorder in the modified graphite sample, with a significant presence of exposed edges of graphitic planes as well as a high degree of attached hydrogen atoms.

  1. Investigation of energy losses in low-coercivity resin-bonded magnets in alternating magnetic fields

    Science.gov (United States)

    Milov, E. V.; Sipin, I. A.; Milov, V. N.; Andreenko, A. S.; Balan, I. A.

    2017-01-01

    Energy losses during alternating remagnetization of low-coercitivity resin-bonded magnets and commercially produced electrical steels were studied experimentally. The studies were conducted on several samples of resin-bonded magnets with different manufacturing technologies and samples of electrical steel sheets of various thicknesses. The static and dynamic magnetic properties of the samples were measured on a vibration magnetometer and a specially designed apparatus, respectively. It was found that the studied samples of bonded magnets have a relatively high level of hysteresis losses associated with high coercivity, which reaches a value of 4-5 Oe. At the same time, the remagnetization losses due to the Foucault currents in the bonded magnets are considerably lower than in electrical steels. The measurement results show that bonded magnets at high frequencies of remagnetization, especially in high-rpm motors, can be competitive in comparison with electrical steels.

  2. Interfacial Symmetry Control of Emergent Ferromagnetism at the Nanoscale.

    Science.gov (United States)

    Grutter, A J; Vailionis, A; Borchers, J A; Kirby, B J; Flint, C L; He, C; Arenholz, E; Suzuki, Y

    2016-09-14

    The emergence of complex new ground states at interfaces has been identified as one of the most promising routes to highly tunable nanoscale materials. Despite recent progress, isolating and controlling the underlying mechanisms behind these emergent properties remains among the most challenging materials physics problems to date. In particular, generating ferromagnetism localized at the interface of two nonferromagnetic materials is of fundamental and technological interest. Moreover, the ability to turn the ferromagnetism on and off would shed light on the origin of such emergent phenomena and is promising for spintronic applications. We demonstrate that ferromagnetism confined within one unit cell at the interface of CaRuO3 and CaMnO3 can be switched on and off by changing the symmetry of the oxygen octahedra connectivity at the boundary. Interfaces that are symmetry-matched across the boundary exhibit interfacial CaMnO3 ferromagnetism while the ferromagnetism at symmetry-mismatched interfaces is suppressed. We attribute the suppression of ferromagnetic order to a reduction in charge transfer at symmetry-mismatched interfaces, where frustrated bonding weakens the orbital overlap. Thus, interfacial symmetry is a new route to control emergent ferromagnetism in materials such as CaMnO3 that exhibit antiferromagnetism in bulk form.

  3. Coexistence of ferromagnetism and superconductivity in YBCO nanoparticles.

    Science.gov (United States)

    Zhu, Zhonghua; Gao, Daqiang; Dong, Chunhui; Yang, Guijin; Zhang, Jing; Zhang, Jinlin; Shi, Zhenhua; Gao, Hua; Luo, Honggang; Xue, Desheng

    2012-03-21

    Nanoparticles of superconducting YBa(2)Cu(3)O(7-δ) were synthesized via a citrate pyrolysis technique. Room temperature ferromagnetism was revealed in the samples by a vibrating sample magnetometer. Electron spin resonance spectra at selected temperatures indicated that there is a transition from the normal to the superconducting state at temperatures below 100 K. The M-T curves with various applied magnetic fields showed that the superconducting transition temperatures are 92 K and 55 K for the air-annealed and the post-annealed samples, respectively. Compared to the air-annealed sample, the saturation magnetization of the sample by reheating the air-annealed one in argon atmosphere is enhanced but its superconductivity is weakened, which implies that the ferromagnetism maybe originates from the surface oxygen defects. By superconducting quantum interference device measurements, we further confirmed the ferromagnetic behavior at high temperatures and interesting upturns in field cooling magnetization curves within the superconducting region are found. We attributed the upturn phenomena to the coexistence of ferromagnetism and superconductivity at low temperatures. Room temperature ferromagnetism of superconducting YBa(2)Cu(3)O(7-δ) nanoparticles has been observed in some previous related studies, but the issue of the coexistence of ferromagnetism and superconductivity within the superconducting region is still unclear. In the present work, it will be addressed in detail. The cooperation phenomena found in the spin-singlet superconductors will help us to understand the nature of superconductivity and ferromagnetism in more depth.

  4. Micromagnetic Simulations of Anisotropies in Coupled and Uncoupled Ferromagnetic Nanowire Systems

    Directory of Open Access Journals (Sweden)

    T. Blachowicz

    2013-01-01

    Full Text Available The influence of a variation of spatial relative orientations onto the coupling dynamics and subsequent magnetic anisotropies was modeled in ferromagnetic nanowires. The wires were analyzed in the most elementary configurations, thus, arranged in pairs perpendicular to each other, leading to one-dimensional (linear and zero-dimensional (point-like coupling. Different distances within each elementary pair of wires and between the pairs give rise to varying interactions between parallel and perpendicular wires, respectively. Simulated coercivities show an exchange of easy and hard axes for systems with different couplings. Additionally, two of the systems exhibit a unique switching behavior which can be utilized for developing new functionalities.

  5. Application of a novel flash-milling procedure for coercivity development in nanocrystalline MnAl permanent magnet powders

    Science.gov (United States)

    Rial, J.; Villanueva, M.; Céspedes, E.; López, N.; Camarero, J.; Marshall, L. G.; Lewis, L. H.; Bollero, A.

    2017-03-01

    This study shows the possibility of dramatically tuning microstructure and magnetic properties of gas-atomized Mn54Al46 particles by milling for an unprecedented duration of 30 s. This flash-milling procedure avoids the high temperatures typically achieved in lengthy conventional ball milling experiments, and is efficient to reduce the crystallite size to the nanometer scale, induce microstructural strain and ease phase transformations. This leads to the creation of the τ-MnAl phase providing magnetization, and the β-Mn phase operating in the mechanism for coercivity development. Post-annealing at 355 °C for 10 min results in a coercivity about three times larger than that of the annealed starting material, and thus reduces the optimum processing temperature in 75 °C by comparison with that needed for the latter to achieve the best combination of magnetic properties. A maximum obtained coercivity exceeding 5 kOe compares to the highest values reported to date for isotropic MnAl powders attained after milling for times above 20 h. This high coercivity is of additional relevance for further consideration of this material as a hard magnetic phase in the preparation of nanocomposite permanent magnets. The combination of the cost-efficient synthesis technique (gas-atomization) and novel processing route (flash-milling) for the production of low-cost isotropic nanocrystalline MnAl powders, opens new paths to the possible mass production of these materials as an alternative to permanent magnets containing critical raw materials.

  6. Enhanced coercivity of HCP Co–Pt alloy thin films on a glass substrate at room temperature for patterned media

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Y.S. [Department of Chemical Engineering and Materials Science, Yuan-Ze University, Chung-Li 32003, Taiwan (China); Sun, An-Cheng, E-mail: acsun@saturn.yzu.edu.tw [Department of Chemical Engineering and Materials Science, Yuan-Ze University, Chung-Li 32003, Taiwan (China); Lee, H.Y. [National Synchrotron Radiation Research Center (NSRRC), Hsinchu 300, Taiwan (China); Department of Applied Science, National Hsinchu University of Education, Hsinchu 300, Taiwan (China); Lu, Hsi-Chuan; Wang, Sea-Fue [Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, Taipei 106, Taiwan (China); Sharma, Puneet [School of Physics and Materials Science, Thapar University, Patiala (India)

    2015-10-01

    High coercivity (H{sub c}) Co-rich type Co–Pt alloy thin films with a columnar grain structure were deposited at room temperature (RT) by magnetron sputtering. Films with a thickness (t) of up to 10 nm had a FCC structure and exhibited soft magnetic properties. When t>25 nm, the magnetic anisotropy changed from in-plane to isotropic. H{sub c} was also enhanced with increasing t and found to be maximum at t=50 nm. The in-plane and out-of-plane H{sub c} of the film was 2.2 and 2.7 kOe, respectively. Further increasing t led to a slight decrease in H{sub c}. Microstructure and phase structure studies revealed columnar Co–Pt grains with a uniform lateral size grown on a 7 nm initial layer. Films with t>25 nm showed a HCP phase, due to the internal stress and volume effect. The microstructural details responsible for the enhanced RT magnetic properties of the HCP Co–Pt alloy thin films were investigated by TEM. - Highlights: • Deposited Co–Pt alloy thin films on glass substrate at room temperature. • High out-of-plane coercivity of Co-rich type Co–Pt thin film at thinner thickness. • Columnar structure contributed out-of-plane coercivity.

  7. On the comparison of the polarisation behaviour of exchange-biased AF/F NiMn/Fe 37Co 48Hf 15 bi-layer and multi-layer films with increased ferromagnetic cut-off frequencies

    Science.gov (United States)

    Seemann, K.; Leiste, H.; Krüger, K.

    2012-03-01

    Antiferromagnetic/ferromagnetic (AF/F) NiMn/Fe37Co48Hf15 films were investigated with respect to their exchange bias, in-plane unidirectional anisotropy, polarisation and high frequency behaviour. After deposition, carried out by r.f. magnetron sputtering, the films were post-annealed for 4 h at 300 °C in a static magnetic field, in order to induce exchange-bias, which results in a unidirectional anisotropy. Dependent on the presence of a bi-layer or multi-layer sandwich structure the films show a different exchange-bias field-ferromagnetic inter-layer thickness behaviour with exchange-bias fields μ0*Heb between 2 and 10 mT. The in-plane uniaxial (single film) or unidirectional anisotropy fields μ0*HUF were between 4 and 18 mT. This results in a significant increase of the cut-off frequency in the GHz range in comparison to a single Fe37Co48Hf15 film, which is shown by frequency-dependent permeability plots. High damping in the imaginary part of the permeability, i.e., high resonance line broadening could be observed for films with high coercivity μ0*Hc of around 7 mT in the easy axis of magnetisation.

  8. Elimination of Ferromagnetic Particles Aggregation for Investigation by Electron Microscopy

    Directory of Open Access Journals (Sweden)

    О.S. Kuzema

    2011-01-01

    Full Text Available It has been described the device for sample preparation of highly dispersed ferromagnetic powders including micropowders for permanent magnets, magnetic carriers, machine and mechanism components’ wear products contained in lubricants for investigation of these materials by light and electron microscopy. The device eliminates the coalescence of ferromagnetic particles and improves reliability of the results of such objects investigation. The technique of such device application has been described and exemplified for various materials investigation.

  9. Preparation and characterization of bottom ferromagnetic electrode for graphene based magnetic junction

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Shufan, E-mail: Shu.Cheng@nrl.navy.mil; Cobas, Enrique, E-mail: Enrique.Cobas@nrl.navy.mil; Erve, Olaf M.J. van ' t, E-mail: Olaf.vantErve@nrl.navy.mil; Jonker, Berend T., E-mail: Berry.Jonker@nrl.navy.mil

    2016-03-01

    Magnetic multilayer stacks incorporating several layers of graphene have been predicted to produce very high magnetoresistance and high conductivity, a combination of properties that would be useful in magnetic sensors and future spin-based data storage and processing technologies such as MRAM. To realize the theoretically modeled heterostructures and probe their properties, a clean, high-quality graphene-ferromagnet interface, such as one that results from CVD of graphene directly on ferromagnetic films, is required. However, past works using Ni and Co films for CVD of graphene employ the ferromagnetic film as a sacrificial layer to be dissolved after graphene growth and ignore changes to its morphology and magnetic properties. Here we investigated the effect of graphene CVD growth conditions on the properties of Co, Ni, Co{sub 90}Fe{sub 10} and Ni{sub 80}Fe{sub 20} ferromagnetic films. The magnetic films were grown by dc magnetron sputtering with different growth conditions onto c-Al{sub 2}O{sub 3}, Si/AlN and MgO substrates. The crystalline orientation, surface morphology/roughness and magnetic properties of the films were measured using X-ray diffraction, atomic force microscopy and vibrating sample magnetometry, respectively. Cobalt films grown at 500 °C were found to be hcp and heteroepitaxial on c-Al{sub 2}O{sub 3}. CoFe, Ni, and NiFe films on c-Al{sub 2}O{sub 3} were found to be fcc and to be (111) textured but with grains having in-plane rotation differing by 60°. The CoFe and NiFe films on c-Al{sub 2}O{sub 3} retained their small coercivity and high remanence while the pure Co and Ni films exhibited much smaller remanence after graphene growth, making them unsuitable for magnetic memory technologies. Films on Si/AlN were found to have the same rotational domains as those on sapphire c-Al{sub 2}O{sub 3}. The NiFe films on (111) MgO were found to be mostly single domain. - Highlights: • The NiFe films on c-Al{sub 2}O{sub 3,} Si/c-AlN and (111)MgO were

  10. Strain induced ferromagnetism in epitaxial Cr{sub 2}O{sub 3} thin films integrated on Si(001)

    Energy Technology Data Exchange (ETDEWEB)

    Punugupati, Sandhyarani, E-mail: spunugu@ncsu.edu; Narayan, Jagdish; Hunte, Frank [Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States)

    2014-09-29

    We report on the epitaxial growth and magnetic properties of antiferromagnetic and magnetoelectric (ME) Cr{sub 2}O{sub 3} thin films deposited on cubic yttria stabilized zirconia (c-YSZ)/Si(001) using pulsed laser deposition. The X-ray diffraction (2ϴ and Φ) and TEM characterizations confirm that the films were grown epitaxially. The Cr{sub 2}O{sub 3}(0001) growth on YSZ(001) occurs with twin domains. There are four domains of Cr{sub 2}O{sub 3} with in-plane rotation of 30° or 150° from each other about the [0001] growth direction. The epitaxial relation between the layers is given as [001]Si ‖ [001]YSZ ‖ [0001]Cr{sub 2}O{sub 3} and [100]Si ǁ [100]YSZ ǁ [101{sup ¯}0] Cr{sub 2}O{sub 3} or [112{sup ¯}0] Cr{sub 2}O{sub 3}. Though the bulk Cr{sub 2}O{sub 3} is an antiferromagnetic with T{sub N} = 307 K, we found that the films exhibit ferromagnetic like hysteresis loops with high saturation and finite coercive field up to 400 K. The thickness dependent magnetizations together with oxygen annealing results suggest that the ferromagnetism (FM) is due to oxygen related defects whose concentration is controlled by strain present in the films. This FM, in addition to the intrinsic magneto-electric properties of Cr{sub 2}O{sub 3}, opens the door to relevant spintronics applications.

  11. Ferromagnetic response of multiferroic TbMnO{sub 3} films mediated by epitaxial strain and chemical pressure

    Energy Technology Data Exchange (ETDEWEB)

    Izquierdo, J.; Morán, O., E-mail: omoranc@unal.edu.co [Universidad Nacional de Colombia, Campus Medellín, Departamento de Física, Laboratorio de Materiales Cerámicos y Vítreos, A.A. 568, Medellín Colombia (Colombia); Astudillo, A.; Bolaños, G. [Low Temperature Laboratory, Department of Physics, University of Cauca, Calle 5 No. 4-70, Popayán (Colombia); Arnache, O. [Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia, Calle 70 No. 52-21, A.A. 1226, Medellín (Colombia)

    2014-05-07

    High quality Tb{sub 1−x}Al{sub x}MnO{sub 3} (x = 0, 0.3) films have been grown under different values of compressive/tensile strain using (001)-oriented SrTiO{sub 3} and MgO substrates. The films were grown by means of rf sputtering at substrate temperature of 800  °C. X-ray diffraction analysis shows that films are single phase, preferentially oriented in the (111) and (122) directions for films deposited on SrTiO{sub 3} and MgO substrates, respectively. Although the TbMnO{sub 3} target shows antiferromagnetic order, the films deposited on both substrates show weak ferromagnetic phase at low temperature coexisting with the antiferromagnetic phase. The introduction of Al in the films clearly enhances their ferromagnetic behavior, improving the magnetic performance of this material. Indeed, M(H) measurements at 5 K show a well-defined hysteresis for films grown on both substrates. However, a stronger magnetic signal (larger values of remanence and coercive field) is observed for films deposited on MgO substrates. The chemical pressure generated by Al doping together with the substrate-induced strain seem to modify the subtle competition between magnetic interactions in the system. It is speculated that such modification could lead to a non-collinear magnetic state that may be tuned by strain modifications. This may be performed by varying the thickness of the films and/or considering other substrate materials.

  12. Theoretic 3-D study of the high-frequency magnetic moment dynamics in thin ferromagnetic films with in-plane uniaxial anisotropy by considering eddy-current generation

    Energy Technology Data Exchange (ETDEWEB)

    Seemann, K., E-mail: klaus.seemann@kit.edu [Karlsruhe Institute of Technology KIT (Campus North), Institute for Applied Materials, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Leiste, H.; Krueger, K. [Karlsruhe Institute of Technology KIT (Campus North), Institute for Applied Materials, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany)

    2012-06-15

    In the present paper, theoretic investigations of polarisation vector precession trajectories represented by a macro spin in ferromagnetic films with in-plane uniaxial anisotropy were realised. For this purpose, the Landau-Lifschitz-Gilbert differential equation (LLG) in combination with the Maxwell equations were solved for three dimensions by considering a linear progression of the magnetisation or polarisation with an external field. The frequency and time dependent polarisation trajectories illustrate how a magnetic moment precesses if effective damping and eddy-currents impacts its motion. For computation, typical parameter values like the saturation polarisation J{sub s}={mu}{sub 0}{center_dot}M{sub s}=1.4 T and in-plane uniaxial anisotropy {mu}{sub 0}{center_dot}H{sub u}=4.5 mT were employed. The main focus of simulation was on the variation of the effective damping parameter {alpha}{sub eff} between 0.01 and 0.05 and ferromagnetic film thickness t{sub m} between 200 nm and 1200 nm. The frequency-dependent calculations were carried out between 50 MHz and 6 GHz. The time-dependent simulations were done for a duration between 5 and 30 ns. - Highlights: Black-Right-Pointing-Pointer Frequency- and time domain solution of the LLG and Maxwell differential equation. Black-Right-Pointing-Pointer 3D magnetic moment or macro spin trajectories by eddy-current impact. Black-Right-Pointing-Pointer Progression of a magnetic excitation field in thin ferromagnetic films. Black-Right-Pointing-Pointer Transient response evaluation of uniform magnetic moments excited by an r.f. field.

  13. Magnetically extracted microstructural development along the length of Co nanowire arrays: The interplay between deposition frequency and magnetic coercivity

    Science.gov (United States)

    Montazer, A. H.; Ramazani, A.; Almasi Kashi, M.

    2016-09-01

    Providing practical implications for developing the design and optimizing the performance of hard magnets based on nanowires (NWs) requires an in-depth understanding of the processes in fabrication and magnetic parameters. Here, an electrochemical deposition technique with different frequencies is used to fabricate 50 nm diameter Co NW arrays into the nanopores of anodic aluminum oxide templates. The resulting NWs with dendrites at the base are subsequently exposed to a chemical etching with which to prepare cylindrical Co NWs with an aspect ratio of 200. In this way, the coercivity at room temperature increases up to 20% for different deposition frequencies, indicating the occurrence of a magnetic hardening along the NW length. Decreasing the length of the cylindrical NWs in ascending order whilst also using a successive magnetometry, the deposition frequency is found to be an important parameter in further enhancing the initial coercivity up to 65% in the length range of 10 to 3 μm. The first-order reversal curve diagrams evaluated along the NW length evidence the elimination of a soft magnetic phase and the formation of harder magnetic domains when reducing the length. Alternatively, X-ray diffraction patterns show improvements in the crystallinity along the [002] direction, pertaining to the alignment of the hexagonal close-packed c-axis of cobalt and long axis of NWs when reducing the length. These results may address the growing need for the creative design and low cost fabrication of rare-earth-free permanent magnets with high coercivity and availability.

  14. Spin dynamics and spin freezing at ferromagnetic quantum phase transitions

    Science.gov (United States)

    Schmakat, P.; Wagner, M.; Ritz, R.; Bauer, A.; Brando, M.; Deppe, M.; Duncan, W.; Duvinage, C.; Franz, C.; Geibel, C.; Grosche, F. M.; Hirschberger, M.; Hradil, K.; Meven, M.; Neubauer, A.; Schulz, M.; Senyshyn, A.; Süllow, S.; Pedersen, B.; Böni, P.; Pfleiderer, C.

    2015-07-01

    We report selected experimental results on the spin dynamics and spin freezing at ferromagnetic quantum phase transitions to illustrate some of the most prominent escape routes by which ferromagnetic quantum criticality is avoided in real materials. In the transition metal Heusler compound Fe2TiSn we observe evidence for incipient ferromagnetic quantum criticality. High pressure studies in MnSi reveal empirical evidence for a topological non-Fermi liquid state without quantum criticality. Single crystals of the hexagonal Laves phase compound Nb1- y Fe2+ y provide evidence of a ferromagnetic to spin density wave transition as a function of slight compositional changes. Last but not least, neutron depolarisation imaging in CePd1- x Rh x underscore evidence taken from the bulk properties of the formation of a Kondo cluster glass.

  15. Parental Perceptions of the Use of Coercive Measures on Children with Developmental Disabilities

    Science.gov (United States)

    Saloviita, Timo; Pirttimaa, Raija; Kontu, Elina

    2016-01-01

    Background: Children with developmental disabilities who exhibit challenging behaviour are potentially subject to the use of coercive interventions. The aim of the study was to investigate the prevalence of the use of coercive measures by authorities, according to parents' reports. Materials and Methods: A postal survey was distributed, as a total…

  16. Solid-state high-resolution NMR studies on spin density distribution of a ferromagnetic coordination polymer: Ni(NCS)2(Him)2

    OpenAIRE

    Maruta, Goro; Takeda, Sadamu

    2005-01-01

    We determined hyperfine coupling constants (hfcc) of the imidazole ligand in a ferromagnetic coordination polymer, di-μ-thiocyanatobis(imidazole)nickel(II), using 1H-, 2H-, and 13C-MAS-NMR. Partially or fully deuterated sample was prepared to measure temperature dependence of the isotropic shifts of NMR signals. We obtained hfcc of AC = +0.57, +0.69, +1.88 MHz for 2-, 4-, 5-carbon and AH = +0.66, +0.37, +0.48, +0.53 MHz for 1-, 2-, 4-, 5-proton in the imidazole ligand, respectively, which ind...

  17. Optical Orientation in Ferromagnet/Semiconductor Hybrids

    OpenAIRE

    Korenev, V. L.

    2008-01-01

    The physics of optical pumping of semiconductor electrons in the ferromagnet/semiconductor hybrids is discussed. Optically oriented semiconductor electrons detect the magnetic state of the ferromagnetic film. In turn, the ferromagnetism of the hybrid can be controlled optically with the help of the semiconductor. Spin-spin interactions near the interface ferromagnet/semiconductor play crucial role in the optical readout and the manipulation of ferromagnetism.

  18. Ab initio and Monte Carlo investigations of structural, electronic and magnetic properties of new ferromagnetic Heusler alloys with high Curie temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Dannenberg, Antje

    2011-08-30

    The mechanism which causes many of the unusual thermomechanical properties of martensitic alloys, as for example, superelasticity and the shape-memory effect, is the martensitic transformation. The prototype ferromagnetic shape memory alloy (FSMA) is Ni{sub 2}MnGa. But a technological breakthrough is missing due to its poor ductility and low operation temperatures. The goal of this thesis is the proposal of new FSMA appropriate for future technological applications. I focus on X{sub 2}YZ Heusler alloys which are mainly based on Mn, Fe, Co, and Ni for the X and Y sites and Z=Ga or Zn. The big challenge of this work is to find material classes which combine the unique magnetomechanical properties of FSMA which are large recoverable magnetostrictive strains, high magnetocrystalline anisotropy energy, and highly mobile twin boundaries with transformation temperatures clearly above room temperature and a reduced brittleness. Such a study, providing material classes which from a theoretical point of view are promising candidates for future FSMA, will help the experimental physicists to select interesting subgroups in the vast number of possible chemical compositions of X{sub 2}YZ Heusler alloys. I have systematically varied the composition in the new Heusler alloys in order to find trends indicating generic tendencies of the material properties, for instance, as a function of the valence electron concentration e/a. A main feature of this thesis is the attempt to find the origin of the competing structural ordering tendencies between conventional X{sub 2}YZ and inverse (XY)XZ Heusler structures which are observed for all systems investigated. In the first part of this work the accuracy and predictive power of ab initio and Monte Carlo simulations is demonstrated by reproducing the experimental phase diagram of Ni-Mn-(Ga,In,Sn,Sb). The linear increasing and decreasing slopes of T{sub M} and T{sub C} can be reproduced by total and free energy calculations and the analysis

  19. Ferromagnetic Objects Magnetovision Detection System

    Directory of Open Access Journals (Sweden)

    Michał Nowicki

    2013-12-01

    Full Text Available This paper presents the application of a weak magnetic fields magnetovision scanning system for detection of dangerous ferromagnetic objects. A measurement system was developed and built to study the magnetic field vector distributions. The measurements of the Earth’s field distortions caused by various ferromagnetic objects were carried out. The ability for passive detection of hidden or buried dangerous objects and the determination of their location was demonstrated.

  20. Properties of twisted ferromagnetic filaments

    Energy Technology Data Exchange (ETDEWEB)

    Belovs, Mihails; Cebers, Andrejs [University of Latvia, Zellu 8, LV-1002 (Latvia)], E-mail: aceb@tesla.sal.lv

    2009-02-01

    The full set of equations for twisted ferromagnetic filaments is derived. The linear stability analysis of twisted ferromagnetic filament is carried out. Two different types of the buckling instability are found - monotonous and oscillatory. The first in the limit of large twist leads to the shape of filament reminding pearls on the string, the second to spontaneous rotation of the filament, which may constitute the working of chiral microengine.

  1. Non-ferromagnetic overburden casing

    Energy Technology Data Exchange (ETDEWEB)

    Vinegar, Harold J. (Bellaire, TX); Harris, Christopher Kelvin (Houston, TX); Mason, Stanley Leroy (Allen, TX)

    2010-09-14

    Systems, methods, and heaters for treating a subsurface formation are described herein. At least one system for electrically insulating an overburden portion of a heater wellbore is described. The system may include a heater wellbore located in a subsurface formation and an electrically insulating casing located in the overburden portion of the heater wellbore. The casing may include at least one non-ferromagnetic material such that ferromagnetic effects are inhibited in the casing.

  2. Ferromagnetism beyond Lieb's theorem

    Science.gov (United States)

    Costa, Natanael C.; Mendes-Santos, Tiago; Paiva, Thereza; Santos, Raimundo R. dos; Scalettar, Richard T.

    2016-10-01

    The noninteracting electronic structures of tight-binding models on bipartite lattices with unequal numbers of sites in the two sublattices have a number of unique features, including the presence of spatially localized eigenstates and flat bands. When a uniform on-site Hubbard interaction U is turned on, Lieb proved rigorously that at half-filling (ρ =1 ) the ground state has a nonzero spin. In this paper we consider a "CuO2 lattice" (also known as "Lieb lattice," or as a decorated square lattice), in which "d orbitals" occupy the vertices of the squares, while "p orbitals" lie halfway between two d orbitals; both d and p orbitals can accommodate only up to two electrons. We use exact determinant quantum Monte Carlo (DQMC) simulations to quantify the nature of magnetic order through the behavior of correlation functions and sublattice magnetizations in the different orbitals as a function of U and temperature; we have also calculated the projected density of states, and the compressibility. We study both the homogeneous (H) case, Ud=Up , originally considered by Lieb, and the inhomogeneous (IH) case, Ud≠Up . For the H case at half-filling, we found that the global magnetization rises sharply at weak coupling, and then stabilizes towards the strong-coupling (Heisenberg) value, as a result of the interplay between the ferromagnetism of like sites and the antiferromagnetism between unlike sites; we verified that the system is an insulator for all U . For the IH system at half-filling, we argue that the case Up≠Ud falls under Lieb's theorem, provided they are positive definite, so we used DQMC to probe the cases Up=0 ,Ud=U and Up=U ,Ud=0 . We found that the different environments of d and p sites lead to a ferromagnetic insulator when Ud=0 ; by contrast, Up=0 leads to to a metal without any magnetic ordering. In addition, we have also established that at density ρ =1 /3 , strong antiferromagnetic correlations set in, caused by the presence of one fermion on each

  3. Theoretic 3-D study of the high-frequency magnetic moment dynamics in thin ferromagnetic films with in-plane uniaxial anisotropy by considering eddy-current generation

    Science.gov (United States)

    Seemann, K.; Leiste, H.; Krüger, K.

    2012-06-01

    In the present paper, theoretic investigations of polarisation vector precession trajectories represented by a macro spin in ferromagnetic films with in-plane uniaxial anisotropy were realised. For this purpose, the Landau-Lifschitz-Gilbert differential equation (LLG) in combination with the Maxwell equations were solved for three dimensions by considering a linear progression of the magnetisation or polarisation with an external field. The frequency and time dependent polarisation trajectories illustrate how a magnetic moment precesses if effective damping and eddy-currents impacts its motion. For computation, typical parameter values like the saturation polarisation Js=μ0·Ms=1.4 T and in-plane uniaxial anisotropy μ0·Hu=4.5 mT were employed. The main focus of simulation was on the variation of the effective damping parameter αeff between 0.01 and 0.05 and ferromagnetic film thickness tm between 200 nm and 1200 nm. The frequency-dependent calculations were carried out between 50 MHz and 6 GHz. The time-dependent simulations were done for a duration between 5 and 30 ns.

  4. A simple one step solid state synthesis of nanocrystalline ferromagnetic α-Fe{sub 2}O{sub 3} with high surface area and catalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Shete, Madhavi D.; Fernandes, J.B., E-mail: julio@unigoa.ac.in

    2015-09-01

    α-Fe{sub 2}O{sub 3} is obtained by a simple route involving solvent free solid state decomposition of ferric nitrate in presence of urea. The samples were characterized by X-ray diffraction, infra-red and UV–Vis spectral studies, TEM, BET surface area measurements and TG–DTA analysis. Magnetic measurements were done from M–H hysteresis profiles. By changing the ratio of ferric nitrate and urea, α-phase was obtained in all the synthesized samples and was accompanied with increase in ferromagnetic behavior. The samples showed good photocatalytic activity for decomposition of H{sub 2}O{sub 2} and could be correlated with surface area values. The results were interpreted in terms of activity for the heterogeneous photo-Fenton reaction. - Highlights: • α-Fe{sub 2}O{sub 3} were synthesized by a solid state method. • These oxides showed large surface area and ferromagnetic behavior. • The catalysts showed good heterogeneous photo-Fenton activity.

  5. Flocking ferromagnetic colloids

    Science.gov (United States)

    Kaiser, Andreas; Snezhko, Alexey; Aranson, Igor S.

    2017-01-01

    Assemblages of microscopic colloidal particles exhibit fascinating collective motion when energized by electric or magnetic fields. The behaviors range from coherent vortical motion to phase separation and dynamic self-assembly. Although colloidal systems are relatively simple, understanding their collective response, especially under out-of-equilibrium conditions, remains elusive. We report on the emergence of flocking and global rotation in the system of rolling ferromagnetic microparticles energized by a vertical alternating magnetic field. By combing experiments and discrete particle simulations, we have identified primary physical mechanisms, leading to the emergence of large-scale collective motion: spontaneous symmetry breaking of the clockwise/counterclockwise particle rotation, collisional alignment of particle velocities, and random particle reorientations due to shape imperfections. We have also shown that hydrodynamic interactions between the particles do not have a qualitative effect on the collective dynamics. Our findings shed light on the onset of spatial and temporal coherence in a large class of active systems, both synthetic (colloids, swarms of robots, and biopolymers) and living (suspensions of bacteria, cell colonies, and bird flocks). PMID:28246633

  6. Defects related room temperature ferromagnetism in Cu-implanted ZnO nanorod arrays

    Energy Technology Data Exchange (ETDEWEB)

    Li, D. [Department of Physics and Development Center for New Materials Engineering and Technology in Universities of Guangdong, Zhanjiang Normal University, Zhanjiang 524048 (China); Li, D.K. [School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 511400 (China); Wu, H.Z.; Liang, F.; Xie, W. [Department of Physics and Development Center for New Materials Engineering and Technology in Universities of Guangdong, Zhanjiang Normal University, Zhanjiang 524048 (China); Zou, C.W., E-mail: qingyihaiyanas@163.com [Department of Physics and Development Center for New Materials Engineering and Technology in Universities of Guangdong, Zhanjiang Normal University, Zhanjiang 524048 (China); Shao, L.X. [Department of Physics and Development Center for New Materials Engineering and Technology in Universities of Guangdong, Zhanjiang Normal University, Zhanjiang 524048 (China)

    2014-04-05

    Highlights: • Room temperature ferromagnetism was observed in Cu-implanted ZnO nanorod arrays. • Cu-implanted ZnO nanorods show a saturation magnetization value of 1.82 μ{sub B}/Cu. • The origin of ferromagnetism can be explained by the defects related bound magnetic polarons. -- Abstract: Room temperature ferromagnetism (FM) was observed in Cu-implanted ZnO nanorod arrays. The implantation dose for Cu ions was 1 × 10{sup 16} cm{sup −2} and the implantation energy was 100 keV. The ion implantation induced defects and disorder has been observed by the XRD, PL and TEM experiments. The PL spectrum revealed a dominant luminescence peaks at 390 nm and a broad and strong green emission at 500–700 nm, which is considered to be related to the ionized oxygen vacancy. Cu-implanted ZnO nanorods annealed at 500 °C show a saturation magnetization value of 1.82 μ{sub B}/Cu and a positive coercive field of 68 Oe. The carrier concentration is not much improved after annealing and in the order of 10{sup 16} cm{sup −3}, which suggests that FM does not depend upon the presence of a significant carrier concentration. The origin of ferromagnetism behavior can be explained on the basis of electrons and defects that form bound magnetic polarons, which overlap to create a spin-split impurity band.

  7. Magnetic annealing of the ion-beam sputtered IrMn/CoFeB bilayers - positive exchange bias and coercivity behaviour

    Science.gov (United States)

    Raju, M.; Chaudhary, Sujeet; Pandya, D. K.

    2013-12-01

    The effect of optimum dilution of antiferromagnetic (AF)/ferromagnetic (FM) interface necessary for observance of positive exchange bias in ion-beam sputtered Si/Ir22Mn78 ( t AF = 12, 18, 24 nm)/Co20Fe60B20( t FM = 6,9,15 nm) exchange coupled bilayers is investigated by magnetic annealing at 380, 420 and 460 °C for 1 h at 5 × 10-6 Torr in presence of 500 Oe magnetic field. While the coercivity of the exchange coupled FM layer decreases with the increase in annealing temperature irrespective of the value of t AF or t FM, the hysteresis loops however shift by ≈+ 10 Oe whenever the coercivity drops in the 10-15 Oe range. This is consistent with the phase diagram of exchange bias field and coercivity derived from Meiklejohn and Bean model. The X-ray diffraction and X-ray reflectivity measurements confirmed that the texture, grain size and interface roughness of IrMn/CoFeB bilayers are thickness dependent and are correlated to the observed magnetic response of the bilayers. The results establish that optimum dilution of the IrMn/CoFeB interface by thermally diffused Mn-spins is necessary in inducing the effective coupling between the IrMn domains and diluted CoFeB layer. It is further shown that the annealing temperature required for the optimum dilution of the CoFeB interface critically depends on the thickness of the layers.

  8. Robust ferromagnetism carried by antiferromagnetic domain walls

    Science.gov (United States)

    Hirose, Hishiro T.; Yamaura, Jun-Ichi; Hiroi, Zenji

    2017-02-01

    Ferroic materials, such as ferromagnetic or ferroelectric materials, have been utilized as recording media for memory devices. A recent trend for downsizing, however, requires an alternative, because ferroic orders tend to become unstable for miniaturization. The domain wall nanoelectronics is a new developing direction for next-generation devices, in which atomic domain walls, rather than conventional, large domains themselves, are the active elements. Here we show that atomically thin magnetic domain walls generated in the antiferromagnetic insulator Cd2Os2O7 carry unusual ferromagnetic moments perpendicular to the wall as well as electron conductivity: the ferromagnetic moments are easily polarized even by a tiny field of 1 mT at high temperature, while, once cooled down, they are surprisingly robust even in an inverse magnetic field of 7 T. Thus, the magnetic domain walls could serve as a new-type of microscopic, switchable and electrically readable magnetic medium which is potentially important for future applications in the domain wall nanoelectronics.

  9. Defect-induced ferromagnetism in crystalline SrTiO3

    Energy Technology Data Exchange (ETDEWEB)

    Osten, Julia; Potzger, Kay; Shalimov, Artem; Talut, Georg; Reuther, Helfried; Arpaci, Seda; Buerger, Danilo; Schmidt, Heidemarie [Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328 Dresden (Germany); Levin, Alexander.A. [Institut fuer Strukturphysik, Technische Universitaet Dresden, 01062 (Germany); Nestler, Tina; Meyer, Dirk C. [Institut fuer Experimentelle Physik, Technische Universitaet Bergakademie Freiberg, 09596 Freiberg (Germany)

    2011-07-01

    Ion irradiation of high-quality SrTiO3 single crystals leads to room-temperature ferromagnetism. Structural analysis revealed oxygen deficient (polycrystalline) SrTiO3, Sr2Ti6O13, or Ruddlesden-Popper like secondary phases at the sample surface induced by the irradiation. The lack of potentially ferromagnetic secondary phases suggests defects to be the origin of the observed ferromagnetic signal.

  10. Conceptual study of ferromagnetic pebbles for heat exhaust in fusion reactors with short power decay length

    Directory of Open Access Journals (Sweden)

    N. Gierse

    2015-03-01

    The key results of this study are that very high heat fluxes are accessible in the operation space of ferromagnetic pebbles, that ferromagnetic pebbles are compatible with tokamak operation and current divertor designs, that the heat removal capability of ferromagnetic pebbles increases as λq decreases and, finally, that for fusion relevant values of q∥ pebble diameters below 100 μm are required.

  11. Self-assembly of linear [Mn II 2 Mn III ] units with end-on azido bridges: the construction of a ferromagnetic chain using S T = 7 high-spin trimers

    KAUST Repository

    Jiang, Yuan

    2015-01-01

    © The Royal Society of Chemistry 2015. The controlled organization of high-spin complexes into 1D coordination polymers is a challenge in molecular magnetism. In this work, we report a ferromagnetic Mn trimer Mn3(HL)2(CH3OH)6(Br)4·Br·(CH3OH)21 (H2L = 2-[(9H-fluoren-9-yl)amino]propane-1,3-diol) with the ground spin state of ST = 7 that can be assembled into a one-dimensional coordination chain [Mn3(HL)2(CH3OH)2(Br)4(N3)(H2O)·CH3OH]2 using azido bridging ligands. Interestingly, the ferromagnetic nature of 1 is well retained in 2. However, due to the negligible magnetic anisotropy in 1, both 1 and 2 do not show slow-relaxation of magnetization, which indicates that during the process of molecular assembly not only the intratrimer magnetic interaction but also the magnetic anisotropy of the trimer can be reserved.

  12. Tailoring interlayer coupling and coercivity in Co/Mn/Co trilayers by controlling the interface roughness

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Bin; Wu, Chii-Bin; Kuch, Wolfgang, E-mail: kuch@physik.fu-berlin.de [Institut für Experimentalphysik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin (Germany)

    2014-06-21

    Epitaxial Co/Mn/Co trilayers with a wedged Mn layer were grown on Cu(001) and studied by magneto-optical Kerr effect measurements. The bottom Co film as well as the Mn film exhibits a layer-by-layer growth mode, which allows to modify both interface roughnesses on the atomic scale by tuning the thicknesses of the films to achieve a certain filling of their topmost atomic layers. The onset of antiferromagnetic order in the Mn layer at room temperature was found at thicknesses of 4.1 (4.8) and 3.4 (4.0) atomic monolayers (ML) for a filled (half-filled) topmost atomic layer of the bottom Co film in Mn/Co bilayers and Co/Mn/Co trilayers, respectively. Magnetization loops with only one step were found for a trilayer with half-filled topmost atomic layer of the bottom Co film, while loops with two separate steps have been observed in trilayers with an integer number of atomic layers in the bottom Co film. The coercivity of the top Co film shows an oscillation with 1 ML period as a function of the Mn thickness above 10 ML, which is interpreted as the influence of the atomic-scale control of the interface roughness on the interface exchange coupling between the antiferromagnetic Mn and the top ferromagnetic (FM) Co layer. The strength of the magnetic interlayer coupling between the top and bottom Co layers through the Mn layer for an integer number of atomic layers in the bottom Co layer, deduced from minor-loop measurements, exhibits an oscillation with a period of 2 ML Mn thickness, indicative of direct exchange coupling through the antiferromagnetic Mn layer. In addition, a long-period interlayer coupling of the two FM layers with antiparallel coupling maxima at Mn thicknesses of 2.5, 8.2, and 13.7 ML is observed and attributed to indirect exchange coupling of the Rudermann-Kittel-Kasuya-Yosida type.

  13. Effects of orientation and interaction of grains on coercivity for sintered NdFeB magnets

    Institute of Scientific and Technical Information of China (English)

    高汝伟; 李卫; 张建成; 吴良学; 喻晓军

    1999-01-01

    The coercivity of NdFeB magnets is determined by the coercivity of individual grains and the interaction between the grains composed of the magnets. The coercivity of individual grains and the intergrain interaction depend on the degree of the grain alignment. "tanθ type" Ganssian function is applied to describing the degree of the grain alignment. According to different coercivity mechanisms, there are different formula on the coercivity and the angular dependence of coercivity. The interaction between grains can be classified as the long-range magnetostatic interaction and the exchange-coupling interaction of neighboring grains. For the sintered magnet, the grain size is large and the grain boundaries are mostly separated by the non-magnetic phase. So, the long-range magnetostatic interaction is much stronger than the exchange coupling interaction and it makes the coercivity of the magnet composed of misaligned grains be bigger than that of the magnet composed of ideally aligned grains. The effects o

  14. High-pressure synthesis of 5d cubic perovskite BaOsO3 at 17 GPa: ferromagnetic evolution over 3d to 5d series.

    Science.gov (United States)

    Shi, Youguo; Guo, Yanfeng; Shirako, Yuichi; Yi, Wei; Wang, Xia; Belik, Alexei A; Matsushita, Yoshitaka; Feng, Hai Luke; Tsujimoto, Yoshihiro; Arai, Masao; Wang, Nanlin; Akaogi, Masaki; Yamaura, Kazunari

    2013-11-06

    In continuation of the series of perovskite oxides that includes 3d(4) cubic BaFeO3 and 4d(4) cubic BaRuO3, 5d(4) cubic BaOsO3 was synthesized by a solid-state reaction at a pressure of 17 GPa, and its crystal structure was investigated by synchrotron powder X-ray diffraction measurements. In addition, its magnetic susceptibility, electrical resistivity, and specific heat were measured over temperatures ranging from 2 to 400 K. The results establish a series of d(4) cubic perovskite oxides, which can help in the mapping of the itinerant ferromagnetism that is free from any complication from local lattice distortions for transitions from the 3d orbital to the 5d orbital. Such a perovskite series has never been synthesized at any d configuration to date. Although cubic BaOsO3 did not exhibit long-range ferromagnetic order unlike cubic BaFeO3 and BaRuO3, enhanced feature of paramagnetism was detected with weak temperature dependence. Orthorhombic CaOsO3 and SrOsO3 show similar magnetic behaviors. CaOsO3 is not as conducting as SrOsO3 and BaOsO3, presumably due to impact of tilting of octahedra on the width of the t2g band. These results elucidate the evolution of the magnetism of perovskite oxides not only in the 5d system but also in group 8 of the periodic table.

  15. Structure, coercive control, and autonomy promotion: A comparison of fathers' and mothers' food parenting strategies.

    Science.gov (United States)

    Pratt, Mercedes; Hoffmann, Debra; Taylor, Maija; Musher-Eizenman, Dara

    2017-05-01

    This study explored differences in mothers' and fathers' food parenting strategies, specifically coercive control, structure, and autonomy promotion, and whether parenting style and parental responsibility for food parenting related to the use of these strategies. Parents of children aged 2.5-7.5 years ( N = 497) reported about their parenting practices and food parenting strategies. Parenting style accounted for the majority of the variance in food parenting. Fathers were more authoritarian than mothers. Authoritarian and permissive parenting practices were related to more coercive strategies. Mothers reported more food parenting responsibility. Responsibility was related to less coercive practices and more autonomy promotion and structure.

  16. Synthesis, X-ray powder structure, and magnetic properties of the new, weak ferromagnet iron(II) phenylphosphonate.

    Science.gov (United States)

    Bellitto, C; Federici, F; Altomare, A; Rizzi, R; Ibrahim, S A

    2000-04-17

    A new molecule-based weak ferromagnet of formula Fe[C6H5PO3].H2O was synthesized. It was characterized by thermogravimetric analysis and UV-visible and infrared spectroscopy, and the magnetic properties were studied using a superconducting quantum interference device magnetometer. The crystal structure of the compound was determined "ab initio" from X-ray powder diffraction data and refined by the Rietveld method. The crystals of Fe[C6H5PO3].H2O are orthorhombic, space group Pmn2(1), with a = 5.668(8) A, b = 14.453(2) A, c = 4.893(7) A, and Z = 2. The title compound is isostructural with the previously reported lamellar M[C6H5PO3].H2O, M = Mn(II), Zn(II), and Cd(II). The inorganic layers are made of Fe(II) ions octahedrally coordinated by five phosphonate oxygen atoms and one from oxygen of the water molecule. These layers are then separated by bilayers of the phenyl groups, and van der Waals contacts are established between them. The refinement has shown that the phenyl rings are disordered in the lattice. The oxidation state of the metal ion is +2, and the electronic configuration is d6 (S = 2) high-spin, as determined from dc magnetic susceptibility measurements from 150 K to room temperature. Below 100 K, the magnetic moment of Fe[C6H5PO3].H2O rises rapidly to a maximum at TN = 21.5 K, and then it decreases again. The peak at TN is associated with the 3D antiferromagnetic long-range ordering. Below the critical temperature, the title compound behaves as a "weak" ferromagnet, which represents the third type of magnetic materials characterized by having a finite zero-field magnetization, ferromagnets and ferrimagnets being the other two types. The large coercive field (i.e., 6400 G) observed in the hysteresis loop at T = 10 K is rare in molecule-based materials; it can be ascribed to a pronounced spin-orbit coupling for the 5T2g ground state of the Fe(II) ion in the octahedral environment.

  17. Development of eddy current testing system using magnetic saturation in ferromagnetic materials

    Energy Technology Data Exchange (ETDEWEB)

    Sung, Je Joong; Ahn, Hyung Keun; Shin, Yong Hoon [Sae An Engineering Corperation, Seoul (Korea, Republic of); Seo, Dong Man [Kunjang College, Kunsan (Korea, Republic of)

    2002-11-15

    Ferromagnetic materials have difficulties of eddy current test using traditional eddy current equipment due to their electric character of high permeability and anomalous magnetic flux. Development of on-line eddy current test equipment for ferromagnetic materials is a goal of this research. as the first step for it, in this paper, a prove for ferromagnetic materials was developed and practical test was performed with it at a manufactory. For magnetic saturation of inside of ferromagnetic material, DC power supply was used. As increasement of applied voltage, signals of defects were distinguished.

  18. Dynamical response of vibrating ferromagnets

    CERN Document Server

    Gaganidze, E; Ziese, M

    2000-01-01

    The resonance frequency of vibrating ferromagnetic reeds in a homogeneous magnetic field can be substantially modified by intrinsic and extrinsic field-related contributions. Searching for the physical reasons of the field-induced resonance frequency change and to study the influence of the spin glass state on it, we have measured the low-temperature magnetoelastic behavior and the dynamical response of vibrating amorphous and polycrystalline ferromagnetic ribbons. We show that the magnetoelastic properties depend strongly on the direction of the applied magnetic field. The influence of the re-entrant spin glass transition on these properties is discussed. We present clear experimental evidence that for applied fields perpendicular to the main area of the samples the behavior of ferromagnetic reeds is rather independent of the material composition and magnetic state, exhibiting a large decrease of the resonance frequency. This effect can be very well explained with a model based on the dynamical response of t...

  19. Does the sole description of a tax authority affect tax evasion?--the impact of described coercive and legitimate power.

    Directory of Open Access Journals (Sweden)

    Barbara Hartl

    Full Text Available Following the classic economic model of tax evasion, taxpayers base their tax decisions on economic determinants, like fine rate and audit probability. Empirical findings on the relationship between economic key determinants and tax evasion are inconsistent and suggest that taxpayers may rather rely on their beliefs about tax authority's power. Descriptions of the tax authority's power may affect taxpayers' beliefs and as such tax evasion. Experiment 1 investigates the impact of fines and beliefs regarding tax authority's power on tax evasion. Experiments 2-4 are conducted to examine the effect of varying descriptions about a tax authority's power on participants' beliefs and respective tax evasion. It is investigated whether tax evasion is influenced by the description of an authority wielding coercive power (Experiment 2, legitimate power (Experiment 3, and coercive and legitimate power combined (Experiment 4. Further, it is examined whether a contrast of the description of power (low to high power; high to low power impacts tax evasion (Experiments 2-4. Results show that the amount of fine does not impact tax payments, whereas participants' beliefs regarding tax authority's power significantly shape compliance decisions. Descriptions of high coercive power as well as high legitimate power affect beliefs about tax authority's power and positively impact tax honesty. This effect still holds if both qualities of power are applied simultaneously. The contrast of descriptions has little impact on tax evasion. The current study indicates that descriptions of the tax authority, e.g., in information brochures and media reports, have more influence on beliefs and tax payments than information on fine rates. Methodically, these considerations become particularly important when descriptions or vignettes are used besides objective information.

  20. Does the sole description of a tax authority affect tax evasion?--the impact of described coercive and legitimate power.

    Science.gov (United States)

    Hartl, Barbara; Hofmann, Eva; Gangl, Katharina; Hartner-Tiefenthaler, Martina; Kirchler, Erich

    2015-01-01

    Following the classic economic model of tax evasion, taxpayers base their tax decisions on economic determinants, like fine rate and audit probability. Empirical findings on the relationship between economic key determinants and tax evasion are inconsistent and suggest that taxpayers may rather rely on their beliefs about tax authority's power. Descriptions of the tax authority's power may affect taxpayers' beliefs and as such tax evasion. Experiment 1 investigates the impact of fines and beliefs regarding tax authority's power on tax evasion. Experiments 2-4 are conducted to examine the effect of varying descriptions about a tax authority's power on participants' beliefs and respective tax evasion. It is investigated whether tax evasion is influenced by the description of an authority wielding coercive power (Experiment 2), legitimate power (Experiment 3), and coercive and legitimate power combined (Experiment 4). Further, it is examined whether a contrast of the description of power (low to high power; high to low power) impacts tax evasion (Experiments 2-4). Results show that the amount of fine does not impact tax payments, whereas participants' beliefs regarding tax authority's power significantly shape compliance decisions. Descriptions of high coercive power as well as high legitimate power affect beliefs about tax authority's power and positively impact tax honesty. This effect still holds if both qualities of power are applied simultaneously. The contrast of descriptions has little impact on tax evasion. The current study indicates that descriptions of the tax authority, e.g., in information brochures and media reports, have more influence on beliefs and tax payments than information on fine rates. Methodically, these considerations become particularly important when descriptions or vignettes are used besides objective information.

  1. Does the Sole Description of a Tax Authority Affect Tax Evasion? - The Impact of Described Coercive and Legitimate Power

    Science.gov (United States)

    Hartl, Barbara; Hofmann, Eva; Gangl, Katharina; Hartner-Tiefenthaler, Martina; Kirchler, Erich

    2015-01-01

    Following the classic economic model of tax evasion, taxpayers base their tax decisions on economic determinants, like fine rate and audit probability. Empirical findings on the relationship between economic key determinants and tax evasion are inconsistent and suggest that taxpayers may rather rely on their beliefs about tax authority’s power. Descriptions of the tax authority’s power may affect taxpayers’ beliefs and as such tax evasion. Experiment 1 investigates the impact of fines and beliefs regarding tax authority’s power on tax evasion. Experiments 2-4 are conducted to examine the effect of varying descriptions about a tax authority’s power on participants’ beliefs and respective tax evasion. It is investigated whether tax evasion is influenced by the description of an authority wielding coercive power (Experiment 2), legitimate power (Experiment 3), and coercive and legitimate power combined (Experiment 4). Further, it is examined whether a contrast of the description of power (low to high power; high to low power) impacts tax evasion (Experiments 2-4). Results show that the amount of fine does not impact tax payments, whereas participants’ beliefs regarding tax authority’s power significantly shape compliance decisions. Descriptions of high coercive power as well as high legitimate power affect beliefs about tax authority’s power and positively impact tax honesty. This effect still holds if both qualities of power are applied simultaneously. The contrast of descriptions has little impact on tax evasion. The current study indicates that descriptions of the tax authority, e.g., in information brochures and media reports, have more influence on beliefs and tax payments than information on fine rates. Methodically, these considerations become particularly important when descriptions or vignettes are used besides objective information. PMID:25923770

  2. Successful interventions on an organisational level to reduce violence and coercive interventions in in-patients with adjustment disorders and personality disorders

    Directory of Open Access Journals (Sweden)

    Goeser Ulla

    2008-11-01

    Full Text Available Abstract Background Self-directed and other violence as well as subsequent coercive interventions occur in a substantial proportion of patients with personality disorders during in-patient treatment. Different strategies may be required to reduce coercive interventions for patients of different diagnostic groups. Methods We specialised one of our acute admission wards in the treatment of personality disorders and adjustment disorders (ICD-10 F4 and F6. Patients are not transferred to other acute wards in case of suicidal or violent behaviour. Violent behaviour and coercive interventions such as seclusion or restraint were recorded in the same way as in the rest of the hospital. We recorded the percentage of subjects affected by diagnostic group and average length of an intervention in the year before and after the change in organisational structure. Results The total number of coercive interventions decreased by 85% both among patients with an F4 and those with an F6 primary diagnosis. Violent behaviours decreased by about 50%, the proportion of involuntary committed patients decreased by 70%. Conclusion The organisational change turned out to be highly effective without any additional cost of personnel or other resources.

  3. Theory of disordered Heisenberg ferromagnets

    Science.gov (United States)

    Stubbs, R. M.

    1973-01-01

    A Green's function technique is used to calculate the magnetic properties of Heisenberg ferromagnets in which the exchange interactions deviate randomly in strength from the mean interaction. Systems of sc, bcc, and fcc topologies and of general spin values are treated. Disorder produces marked effects in the density of spin wave states, in the form of enhancement of the low-energy density and extension of the energy band to higher values. The spontaneous magnetization and the Curie temperature decrease with increasing disorder. The effects of disorder are shown to be more pronounced in the ferromagnetic than in the paramagnetic phase.

  4. Thermoelectric Detection of Ferromagnetic Resonance of a Nanoscale Ferromagnet

    NARCIS (Netherlands)

    Bakker, F. L.; Flipse, J.; Slachter, A.; Wagenaar, D.; van Wees, B. J.

    2012-01-01

    We present thermoelectric measurements of the heat dissipated due to ferromagnetic resonance of a Permalloy strip. A microwave magnetic field, produced by an on-chip coplanar strip waveguide, is used to drive the magnetization precession. The generated heat is detected via Seebeck measurements on a

  5. Temperature dependence of the coercive field of gas atomized Fe{sub 73.5}Si{sub 13.5}B{sub 9}Nb{sub 3}Cu{sub 1}

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Escorial, A., E-mail: age@cenim.csic.es [CENIM-CSIC, Avda, Gregorio del Amo, 8, 28040 Madrid (Spain); Lieblich, M. [CENIM-CSIC, Avda, Gregorio del Amo, 8, 28040 Madrid (Spain); Hernando, A.; Aragon, A.; Marin, P. [Instituto de Magnetismo Aplicado, IMA, P.O. Box 155, 28230 Madrid (Spain)

    2012-09-25

    Highlights: Black-Right-Pointing-Pointer An anomalous thermal dependence of the coercive field of gas atomized Fe{sub 73.5}Si{sub 13.5}B{sub 9}Nb{sub 3}Cu{sub 1} powder particles under 25 {mu}m powder particle, increasing Hc as temperature increases. Black-Right-Pointing-Pointer It is proposed that Cu rich regions at inter-grain boundaries could act as exchange decoupling regions contributing to the thermal increase of coercivity. Black-Right-Pointing-Pointer This anomalous thermal dependence points out that tailoring microstructure and size, by controlling the cooling rate of more adequate multiphase systems, could be a promising procedure to develop soft or hard magnets, avoiding Rare Earths metals that is nowadays an important target for the engineering of magnetic materials. - Abstract: In this work, the dependence of the coercive field of Fe{sub 73.5}Si{sub 13.5}B{sub 9}Nb{sub 3}Cu{sub 1} gas atomized powder with the temperature for different particle sizes has been studied, observing an anomalous behavior in the under 25 powder particle size fraction. This unusual behavior is related with the microstructure of the powder, and is attributed to the presence of a multiphase magnetic system, with non-magnetic regions decoupling the ferromagnetic domains.

  6. Rock Magnetic Detection of Two Coercivity Components of Magnetosomes in Lake Ely Sediments

    Science.gov (United States)

    Kodama, K. P.; Chen, A.; Egli, R.; Vavrek, J.

    2007-12-01

    The modeling of IRM acquisition curves has become an important tool used by environmental magnetists to characterize a sample's magnetic mineralogy. We have applied IRM modeling to lake sediments from Lake Ely, a small, post-glacial lake located in northeastern Pennsylvania. The lake is unique in having a strong sedimentary magnetization dominated by the magnetosomes produced by magnetotactic bacteria. Measurements of Fe, S, and O2 at different depths in the lake's water column, as well as the magnetization of material filtered from the water, indicate that magnetotactic bacteria live in the water column at the oxic-anoxic interface. Magnetic measurements and TEM observations of lake sediments and material caught in a sediment trap indicate that magnetosomes are the major constituent of the magnetic minerals in the lake sediments. IRM modeling shows two separate coercivity components at about 30 mT and 60 mT that are consistent with Egli's (2004) observations of BS (biogenic soft) and BH (biogenic hard) coercivity components for magnetosomes in lake sediments. However, the peaks are poorly determined because only 6-7 data points constrain the 0-100 mT part of the IRM coercivity spectrum. We used pARMs (97 μT DC field) applied in 5 mT alternating field steps between 0 and 100 mT to better resolve the BH and BS coercivity peaks. pARM spectra collected from lake sediment samples reveal one strong coercivity peak at approximately 30 mT in the 0-100 mT range. A second higher coercivity peak at about 80 mT is weakly evident in some samples. Alternating field demagnetization in 104 steps of an ARM applied to one sample also suggests the presence of two coercivity peaks but at 20 and 40 mT. First order reversal curves (FORCs) measured at the Institute for Rock Magnetism show that the magnetic grains behave as non-interacting single domain grains, implying that the magnetosome chains are relatively far apart and probably still intact. The FORC diagrams also show a large

  7. Spin Seebeck effect in a weak ferromagnet

    Science.gov (United States)

    Arboleda, Juan David; Arnache Olmos, Oscar; Aguirre, Myriam Haydee; Ramos, Rafael; Anadon, Alberto; Ibarra, Manuel Ricardo

    2016-06-01

    We report the observation of room temperature spin Seebeck effect (SSE) in a weak ferromagnetic normal spinel Zinc Ferrite (ZFO). Despite the weak ferromagnetic behavior, the measurements of the SSE in ZFO show a thermoelectric voltage response comparable with the reported values for other ferromagnetic materials. Our results suggest that SSE might possibly originate from the surface magnetization of the ZFO.

  8. Effect of the residual stresses on surface coercive force in amorphous alloys

    Energy Technology Data Exchange (ETDEWEB)

    Tejedor, M.; Garcia, J.A.; Carrizo, J.; Elbaile, L. E-mail: elbaile@pinon.ccu.uniovi.es; Santos, J.D

    2000-06-02

    The dependence of the coercivity H{sub c} on the applied stress {sigma} in the surfaces of various amorphous ribbons with positive magnetostriction is studied. The results obtained show that the behaviour of H{sub c}({sigma}) in the surfaces is the same as in the bulk and the minimum of H{sub c}({sigma}) does not depend on the residual stresses. The residual stresses affect the value of the coercive field but not its stress dependence.

  9. Room Temperature Ferromagnetic Mn:Ge(001

    Directory of Open Access Journals (Sweden)

    George Adrian Lungu

    2013-12-01

    Full Text Available We report the synthesis of a room temperature ferromagnetic Mn-Ge system obtained by simple deposition of manganese on Ge(001, heated at relatively high temperature (starting with 250 °C. The samples were characterized by low energy electron diffraction (LEED, scanning tunneling microscopy (STM, high resolution transmission electron microscopy (HRTEM, X-ray photoelectron spectroscopy (XPS, superconducting quantum interference device (SQUID, and magneto-optical Kerr effect (MOKE. Samples deposited at relatively elevated temperature (350 °C exhibited the formation of ~5–8 nm diameter Mn5Ge3 and Mn11Ge8 agglomerates by HRTEM, while XPS identified at least two Mn-containing phases: the agglomerates, together with a Ge-rich MnGe~2.5 phase, or manganese diluted into the Ge(001 crystal. LEED revealed the persistence of long range order after a relatively high amount of Mn (100 nm deposited on the single crystal substrate. STM probed the existence of dimer rows on the surface, slightly elongated as compared with Ge–Ge dimers on Ge(001. The films exhibited a clear ferromagnetism at room temperature, opening the possibility of forming a magnetic phase behind a nearly ideally terminated Ge surface, which could find applications in integration of magnetic functionalities on semiconductor bases. SQUID probed the co-existence of a superparamagnetic phase, with one phase which may be attributed to a diluted magnetic semiconductor. The hypothesis that the room temperature ferromagnetic phase might be the one with manganese diluted into the Ge crystal is formulated and discussed.

  10. Giant magnetic coercivity in orthorhombic YNi{sub 4}Si-type SmNi{sub 4}Si compound

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Jinlei [Research Center for Solid State Physics and Materials, School of Mathematics and Physics, Suzhou University of Science and Technology, Suzhou 215009 (China); Morozkin, A.V., E-mail: morozkin@tech.chem.msu.ru [Department of Chemistry, Moscow State University, Leninskie Gory, House 1, Building 3, Moscow, GSP-2 119992 (Russian Federation)

    2015-10-15

    Magnetic properties, magnetocaloric effect and heat capacity of the YNi{sub 4}Si-type SmNi{sub 4}Si compound have been investigated. SmNi{sub 4}Si exhibits ferromagnetic transition at 17 K. Below ~9 K, the magnetic isotherms of SmNi{sub 4}Si show metamagnetic-like behavior with critical field of 20 kOe at 5 K. Heat capacity measurements of SmNi{sub 4}Si show the electronic heat capacity coefficient γ=94 mJ/(mol K{sup 2}), phonon coefficient β=0.35 mJ/(mol K{sup 4}) and Debye temperature T{sub D}=310 K. The magnetocaloric effect of SmNi{sub 4}Si is calculated in terms of isothermal magnetic entropy change which is obtained by the isothermal magnetization (ΔS{sub m}{sup magn}) and heat capacity measurements (ΔS{sub m}{sup heat}). Both ΔS{sub m}{sup magn} and ΔS{sub m}{sup heat} reach a maximum of –1.0 J/kg K at 17 K for a field change of 50 kOe and they show positive values for a field change of 20 kOe at ~9 K. Below 15 K, SmNi{sub 4}Si shows large magnetic hysteresis with considerable remanence. At 5 K it exhibits giant coercive field of 58 kOe in an applied field of 90 kOe. - Highlights: • YNi{sub 4}Si-type SmNi{sub 4}Si has Curie point at 17 K. • ΔS{sub m}{sup magn} of SmNi{sub 4}Si reaches value of –1.0 J/kg K in 0–50 kOe near Curie point. • ΔS{sub m}{sup magn} of SmNi{sub 4}Si shows value of –0.4 and +0.8 J/kg K at 17 and 9 K in 0–20 kOe. • SmNi{sub 4}Si shows electronic heat capacity the 94 mJ/(mol K{sup 2}) and Debye T{sub D}=310 K. • SmNi{sub 4}Si shows huge magnetic hysteresis with coercive field of 58 kOe at 5 K.

  11. High-pressure study of the anomalous ferromagnet CeRh3B2 to 7 GPa: Comparison with substitutional experiments

    Science.gov (United States)

    Cornelius, A. L.; Schilling, J. S.

    1994-02-01

    The ferromagnet CeRh3B2 has a Curie temperature TC near 117 K, two orders of magnitude higher than anticipated from simple de Gennes scaling. To shed light on the nature of the anomalous magnetic state, the hydrostatic pressure dependence of TC was measured to 7.0 GPa using a diamond-anvil cell with dense He as pressure medium. As a function of pressure, TC(P) initially increases at the rate of 1.0 K/GPa but then passes through a maximum near 2.5 GPa and falls rapidly at higher pressures. This qualitative behavior can be accounted for by a simple phase diagram proposed some time ago by Doniach for dense Kondo systems. This diagram is also used to compare the evolution of magnetism in related substitutional compounds to that for CeRh3B2 under pressure. For selected Ce compounds, a universal relation between the coupling strength J and the ordering temperature TC is found.

  12. On the theory of ferromagnetism

    NARCIS (Netherlands)

    Ruijgrok, Th.W.

    1962-01-01

    An attempt is made to specify the conditions under which Heisenberg's model of ferromagnetism is correct. It is found that in addition to the exchange term there are other terms in the hamiltonian, describing the effects of the band width and of polar states. The new hamiltonian, which has a simple

  13. Skyrmion Excitations in Planar Ferromagnets

    Institute of Scientific and Technical Information of China (English)

    WANG Ji-Biao; REN Ji-Rong; LI Ran

    2009-01-01

    By making use of the (φ)-mapping topological current theory and the decomposition of gauge potential theory, we investigate the (2+1)-dimensional skyrmion excitations in ferromagnets. We also discuss the branch processes of these skyrmions and the generation and annihilation of skyrmion-antiskyrmion pairs.

  14. Carbon Nanotubes Filled with Ferromagnetic Materials

    Directory of Open Access Journals (Sweden)

    Albrecht Leonhardt

    2010-08-01

    Full Text Available Carbon nanotubes (CNT filled with ferromagnetic metals like iron, cobalt or nickel are new and very interesting nanostructured materials with a number of unique properties. In this paper we give an overview about different chemical vapor deposition (CVD methods for their synthesis and discuss the influence of selected growth parameters. In addition we evaluate possible growth mechanisms involved in their formation. Moreover we show their identified structural and magnetic properties. On the basis of these properties we present different application possibilities. Some selected examples reveal the high potential of these materials in the field of medicine and nanotechnology.

  15. Unexpected ferromagnetic ordering enhancement with crystallite size growth observed in La{sub 0.5}Ca{sub 0.5}MnO₃ nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Iniama, G.; Ita, B. I. [Department of Pure and Applied Chemistry, University of Calabar, Calabar (Nigeria); Presa, P. de la, E-mail: pmpresa@ucm.es; Hernando, A. [Instituto de Magnetismo Aplicado, UCM-ADIF-CSIC, 28230 Las Rozas (Spain); Fac. CC Físicas, Dpto. Física de Materiales, Univ. Complutense de Madrid, 28040 Madrid (Spain); Alonso, J. M. [Instituto de Magnetismo Aplicado, UCM-ADIF-CSIC, 28230 Las Rozas (Spain); Instituto de Ciencia de Materiales, CSIC, 28049-Madrid (Spain); Multigner, M. [Instituto de Magnetismo Aplicado, UCM-ADIF-CSIC, 28230 Las Rozas (Spain); Cortés-Gil, R.; Ruiz-González, M. L. [Fac. CC Químicas, Dpto. Química Inorgánica, Univ. Complutense de Madrid, 28040 Madrid (Spain); Gonzalez-Calbet, J. M. [Instituto de Magnetismo Aplicado, UCM-ADIF-CSIC, 28230 Las Rozas (Spain); Fac. CC Químicas, Dpto. Química Inorgánica, Univ. Complutense de Madrid, 28040 Madrid (Spain)

    2014-09-21

    In this paper, the physical properties of half-doped manganite La{sub 0.5}Ca{sub 0.5}MnO₃ with crystallite sizes ranging from 15 to 40 nm are investigated. As expected, ferromagnetic order strengthens at expense of antiferromagnetic one as crystallite size is reduced to 15 nm. However, contrary to previously reported works, an enhancement of saturation magnetization is observed as crystallite size increases from 15 to 22 nm. This unexpected behavior is accompanied by an unusual cell volume variation that seems to induce ferromagnetic-like behavior at expense of antiferromagnetic one. Besides, field cooled hysteresis loops show exchange bias field and coercivity enhancement for increasing cooling fields, which suggest a kind of core-shell structure with AFM-FM coupling for crystallite sizes as small as 15 nm. It is expected that inner core orders antiferromagnetically, whereas uncompensated surface spins behave as spin glass with ferromagnetic-like ordering.

  16. Low temperature magnetic force microscopy on ferromagnetic and superconducting oxides

    Science.gov (United States)

    Sirohi, Anshu; Sheet, Goutam

    2016-05-01

    We report the observation of complex ferromagnetic domain structures on thin films of SrRuO3 and superconducting vortices in high temperature superconductors through low temperature magnetic force microscopy. Here we summarize the experimental details and results of magnetic imaging at low temperatures and high magnetic fields. We discuss these data in the light of existing theoretical concepts.

  17. Ferromagnetism and glassiness on the surface of topological insulators

    Science.gov (United States)

    Liu, Chun-Xiao; Roy, Bitan; Sau, Jay D.

    2016-12-01

    We investigate the nature of the ordering among magnetic adatoms, randomly deposited on the surface of topological insulators. Restricting ourselves to dilute impurity and weak coupling (between itinerant fermion and magnetic impurities) limit, we show that for arbitrary amount of chemical doping away from the apex of the surface Dirac cone the magnetic impurities tend to arrange themselves in a spin-density-wave pattern, with the periodicity approximately π /kF , where kF is the Fermi wave vector, when magnetic moment for impurity adatoms is isotropic. However, when magnetic moment possesses strong Ising or easy-axis anisotropy, pursuing both analytical and numerical approaches we show that the ground state is ferromagnetic for low to moderate chemical doping, despite the fragmentation of the system into multiple ferromagnetic islands. For high doping away from the Dirac point as well, the system appears to fragment into many ferromagnetic islands, but the magnetization in these islands is randomly distributed. Such magnetic ordering with net zero magnetization is referred to here as ferromagnetic spin glass, which is separated from the pure ferromagnet state by a first order phase transition. We generalize our analysis for cubic topological insulators (supporting three Dirac cones on a surface) and demonstrate that the nature of magnetic orderings and the transition between them remains qualitatively the same. We also discuss the possible relevance of our analysis to recent experiments.

  18. Indium oxide: A transparent, conducting ferromagnetic semiconductor for spintronic applications

    Science.gov (United States)

    Babu, S. Harinath; Kaleemulla, S.; Rao, N. Madhusudhana; Krishnamoorthi, C.

    2016-10-01

    The optical and electrical properties are the two important dimensions of Indium oxide and its derivatives (indium tin oxide) and were well studied to understand the origin of wide electronic band gap and high electrical conductivity at room temperature. In2O3 and its derivatives find many applications in electronic and optoelectronic domains based on the above properties. The recent discovery of ferromagnetism in In2O3 at room temperature become a third dimension and lead to intensive research on enhancement of ferromagnetic strength by various means such as dopants and synthesis protocols and extrinsic parameters. The research lead to enormous experimental data and theoretical models proliferation over the past one decade with diverse insights into the origin of ferromagnetism in In2O3 based dilute magnetic semiconductors. The experimental data and theoretical models of ferromagnetism in In2O3 has been thoroughly surveyed in the literature and compiled all the data and presented for easy of understanding in this review. We have identified best chemical composition, geometry and synthesis protocols for strongest ferromagnetic strength and suitable theoretical model of magnetism has been presented in this review.

  19. Enhancing Tax Compliance through Coercive and Legitimate Power of Tax Authorities by Concurrently Diminishing or Facilitating Trust in Tax Authorities.

    Science.gov (United States)

    Hofmann, Eva; Gangl, Katharina; Kirchler, Erich; Stark, Jennifer

    2014-07-01

    Both coercion, such as strict auditing and the use of fines, and legitimate procedures, such as assistance by tax authorities, are often discussed as means of enhancing tax compliance. However, the psychological mechanisms that determine the effectiveness of each strategy are not clear. Although highly relevant, there is rare empirical literature examining the effects of both strategies applied in combination. It is assumed that coercion decreases implicit trust in tax authorities, leading to the perception of a hostile antagonistic tax climate and enforced tax compliance. Conversely, it is suggested that legitimate power increases reason-based trust in the tax authorities, leading to the perception of a service climate and eventually to voluntary cooperation. The combination of both strategies is assumed to cause greater levels of intended compliance than each strategy alone. We conducted two experimental studies with convenience samples of 261 taxpayers overall. The studies describe tax authorities as having low or high coercive power (e.g., imposing lenient or severe sanctions) and/or low or high legitimate power (e.g., having nontransparent or transparent procedures). Data analyses provide supportive evidence for the assumptions regarding the impact on intended tax compliance. Coercive power did not reduce implicit trust in tax authorities; however, it had an effect on reason-based trust, interaction climate, and intended tax compliance if applied solely. When wielded in combination with legitimate power, it had no effect.

  20. Raman spectra and magnetization of all-ferromagnetic superlattices grown on (110) oriented SrTiO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Behera, B. C.; Ravindra, A. V.; Padhan, P. [Department of Physics, Indian Institute of Technology Madras, Chennai 600036 (India); Prellier, W. [Laboratoire CRISMAT, CNRS UMR 6508, ENSICAEN, 6 Bd du Marehal Juin, F-14050 Caen Cedex (France)

    2014-03-03

    Superlattices consist of two ferromagnets La{sub 0.7}Sr{sub 0.3}MnO{sub 3} (LSMO) and SrRuO{sub 3} (SRO) were grown in (110)-orientation on SrTiO{sub 3} (STO) substrates. The x-ray diffraction and Raman spectra of these superlattices show the presence of in-plane compressive strain and orthorhombic structure of less than 4 u.c. thick LSMO spacer, respectively. Magnetic measurements reveal several features including reduced magnetization, enhanced coercivity, antiferromagnetic coupling, and switching from antiferromagnetic to ferromagnetic coupling with magnetic field orientations. These magnetic properties are explained by the observed orthorhombic structure of spacer LSMO in Raman scattering which occurs due to the modification in the stereochemistry of Mn at the interfaces of SRO and LSMO.

  1. Simple electrodepositing of CoFe/Cu multilayers: Effect of ferromagnetic layer thicknesses

    Science.gov (United States)

    Tekgül, Atakan; Alper, Mürsel; Kockar, Hakan

    2017-01-01

    The CoFe/Cu magnetic multilayers were produced by changing CoFe ferromagnetic layers from 3 nm to 10 nm using electrodeposition. By now, the thinnest Cu (0.5 nm) layer thicknesses were used to see whether the GMR effect in the multilayers can be obtained or not since the pinning of non-magnetic layer between the ferromagnetic layers is required. For the proper depositions, the cyclic voltammograms was used, and the current-time transients were obtained. The Cu and CoFe layers were deposited at a cathode potential of -0.3 and -1.5 V with respect to saturated calomel electrode, respectively. From the XRD patterns, the multilayers were shown to be fcc crystal structures. For the magnetization measurements, saturation magnetization increases from 160 to 600 kA/m from 3 to 8 nm ferromagnetic layer thicknesses. And, the coercivity values increase until the 8 nm of the CoFe layer thickness. It is seen that the thin Cu layer (fixed at 0.5 nm) and pinholes support the random magnetization orientation and thus all multilayers exhibited the giant magnetoresistance (GMR) effect, and the highest GMR value was observed about 5.5%. And, the variation of GMR field sensitivity was calculated. The results show that the GMR and GMR sensitivity are compatible among the multilayers. The CoFe/Cu magnetic multilayers having GMR properties are used in GMR sensors and hard disk drive of the nano-technological devices.

  2. Ferromagnetic microwire composites from sensors to microwave applications

    CERN Document Server

    Peng, Hua-Xin; Phan, Manh-Huong

    2016-01-01

    Situated at the forefront of interdisciplinary research on ferromagnetic microwires and their multifunctional composites, this book starts with a comprehensive treatment of the processing, structure, properties and applications of magnetic microwires. Special emphasis is placed on the giant magnetoimpedance (GMI) effect, which forms the basis for developing high-performance magnetic sensors. After defining the key criteria for selecting microwires for various types of GMI sensors, the book illustrates how ferromagnetic microwires are employed as functional fillers to create a new class of composite materials with multiple functionalities for sensing and microwave applications. Readers are introduced to state-of-the-art fabrication methods, microwave tunable properties, microwave absorption and shielding behaviours, as well as the metamaterial characteristics of these newly developed ferromagnetic microwire composites. Lastly, potential engineering applications are proposed so as to highlight the most promisin...

  3. Large magnetostriction from morphotropic phase boundary in ferromagnets.

    Science.gov (United States)

    Yang, Sen; Bao, Huixin; Zhou, Chao; Wang, Yu; Ren, Xiaobing; Matsushita, Yoshitaka; Katsuya, Yoshio; Tanaka, Masahiko; Kobayashi, Keisuke; Song, Xiaoping; Gao, Jianrong

    2010-05-14

    For more than half of a century, morphotropic phase boundary (MPB) in ferroelectric materials has drawn constant interest because it can significantly enhance the piezoelectric properties. However, MPB has been studied merely in ferroelectric systems, not in another large class of ferroic systems, the ferromagnets. In this Letter, we report the existence of an MPB in a ferromagnetic system TbCo2-DyCo2. Such a magnetic MPB involves a first-order magnetoelastic transition, at which both magnetization direction and crystal structure change simultaneously. The MPB composition demonstrates a 3-6 times larger "figure of merit" of magnetostrictive response compared with that of the off-MPB compositions. The finding of MPB in ferromagnets may help to discover novel high-performance magnetostrictive and even magnetoelectric materials.

  4. Electron transport in a mesoscopic superconducting ferromagnetic hybrid conductor

    Energy Technology Data Exchange (ETDEWEB)

    Giroud, M.; Hasselbach, K.; Courtois, H.; Pannetier, B. [Centre de Recherche sur les Tres Basses Temperatures, CNRS, 38 - Grenoble (France); Mailly, D. [Laboratoire de Photonique et de Nanostructures, 91 - Marcoussis (France)

    2003-01-01

    We present electrical transport experiments performed on submicron hybrid devices made of a ferromagnetic conductor (Co) and a superconducting (Al) electrode. The sample was patterned in order to separate the contributions of the Co conductor and of the Co-Al interface. We observed a strong influence of the Al electrode superconductivity on the resistance of the Co conductor. This effect is large only when the interface is highly transparent. We characterized the dependence of the observed resistance decrease on temperature, bias current and magnetic field. As the differential resistance of the ferromagnet exhibits a non-trivial asymmetry, we claim that the magnetic domain structure plays an important role in the electron transport properties of superconducting / ferromagnetic conductors. (authors)

  5. Dynamic detection of spin accumulation in ferromagnet-semiconductor devices by ferromagnetic resonance (Conference Presentation)

    Science.gov (United States)

    Crowell, Paul A.; Liu, Changjiang; Patel, Sahil; Peterson, Tim; Geppert, Chad C.; Christie, Kevin; Stecklein, Gordon; Palmstrøm, Chris J.

    2016-10-01

    A distinguishing feature of spin accumulation in ferromagnet-semiconductor devices is its precession in a magnetic field. This is the basis for detection techniques such as the Hanle effect, but these approaches become ineffective as the spin lifetime in the semiconductor decreases. For this reason, no electrical Hanle measurement has been demonstrated in GaAs at room temperature. We show here that by forcing the magnetization in the ferromagnet to precess at resonance instead of relying only on the Larmor precession of the spin accumulation in the semiconductor, an electrically generated spin accumulation can be detected up to 300 K. The injection bias and temperature dependence of the measured spin signal agree with those obtained using traditional methods. We further show that this new approach enables a measurement of short spin lifetimes (techniques. The measurements were carried out on epitaxial Heusler alloy (Co2FeSi or Co2MnSi)/n-GaAs heterostructures. Lateral spin valve devices were fabricated by electron beam and photolithography. We compare measurements carried out by the new FMR-based technique with traditional non-local and three-terminal Hanle measurements. A full model appropriate for the measurements will be introduced, and a broader discussion in the context of spin pumping experimenments will be included in the talk. The new technique provides a simple and powerful means for detecting spin accumulation at high temperatures. Reference: C. Liu, S. J. Patel, T. A. Peterson, C. C. Geppert, K. D. Christie, C. J. Palmstrøm, and P. A. Crowell, "Dynamic detection of electron spin accumulation in ferromagnet-semiconductor devices by ferromagnetic resonance," Nature Communications 7, 10296 (2016). http://dx.doi.org/10.1038/ncomms10296

  6. "He Could Scare Me Without Laying a Hand on Me": Mothers' Experiences of Nonviolent Coercive Control During Marriage and After Separation.

    Science.gov (United States)

    Crossman, Kimberly A; Hardesty, Jennifer L; Raffaelli, Marcela

    2016-03-01

    Studies demonstrate the negative effects of violent coercive control but few examine coercive control without violence. This study describes the characteristics of nonviolent coercive control among 8 divorcing mothers and compares them with 47 mothers who experienced violent coercive control or no violence/no control. Mothers with nonviolent coercive control reported more coping strategies, risk, harassment, and perceived threat than mothers with no violence/no control; similar levels of fear and control during marriage as mothers with violent coercive control; and more postseparation fear than both groups. Findings highlight the need to include nonviolent coercive control in screening methods and research measures.

  7. Isotope shift of the ferromagnetic transition temperature in itinerant ferromagnets

    Science.gov (United States)

    Yanagisawa, Takashi; Hase, Izumi; Odagiri, Kosuke

    2017-02-01

    We present a theory of the isotope effect of the Curie temperature Tc in itinerant ferromagnets. The isotope effect in ferromagnets occurs via the electron-phonon vertex correction and the effective attractive interaction mediated by the electron-phonon interaction. The decrease of the Debye frequency increases the relative strength of the Coulomb interaction, which results in a positive isotope shift of Tc when the mass M of an atom increases. Following this picture, we evaluate the isotope effect of Tc by using the Stoner theory and a spin-fluctuation theory. When Tc is large enough as large as or more than 100 K, the isotope effect on Tc can be measurable. Recently, precise measurements on the oxygen isotope effect on Tc have been performed for itinerant ferromagnet SrRuO3 with Tc ∼ 160 K. A clear isotope effect has been observed with the positive shift of Tc ∼ 1 K by isotope substitution (16O →18O). This experimental result is consistent with our theory.

  8. Magnetotunable left-handed FeSiB ferromagnetic microwires.

    Science.gov (United States)

    Labrador, Alberto; Gómez-Polo, Cristina; Pérez-Landazábal, José Ignacio; Zablotskii, Vitalii; Ederra, Iñigo; Gonzalo, Ramón; Badini-Confalonieri, Giovanni; Vázquez, Manuel

    2010-07-01

    The magnetotunable left-handed characteristics of Fe(77.5)Si(12.5)B(10) glass-coated ferromagnetic microwires are analyzed in array and single microwire configuration, employing a rectangular waveguide working in X band. While the negative permeability is ascribed to the natural ferromagnetic resonance (NFMR) of the highly and positive magnetostrictive microwire, the negative permittivity features of the medium are attributed to the interaction of the microwires with the metallic rectangular waveguide. The dependence of the NFMR frequency on the applied external magnetic field enables the design of magnetotunable left-handed systems with wide-frequency band.

  9. Creating social policy to support women's agency in coercive settings: A case study from Uganda.

    Science.gov (United States)

    Burgess, Rochelle; Campbell, Catherine

    2016-01-01

    Many emphasise the need for policies that support women's agency in highly coercive settings, and the importance of involving target women in public deliberation to inform policy design. The Ugandan Marriage and Divorce Bill seeks to strengthen women's agency in marriage, but has faced many obstacles, including objections from many women themselves in public consultations. We explore key stakeholders' accounts of the difficulties facing the Bill's progress to date, through focus groups with 24 rural and urban men and women, interviews with 14 gender champions in government, non-governmental organisations and legal sectors, and 25 relevant media and radio reports. Thematic analysis revealed an array of representations of the way the Bill's progress was shaped by the public consultation process, the nature of the Ugandan public sphere, the understanding and manipulation of concepts such as 'culture' and 'custom' in public discourse, the impact of economic inequalities on women's understandings of their gendered interests and low women's trust in the law and the political process. We discuss the complexities of involving highly marginalised women in public debates about gender issues and highlight possible implications for conceptualising agency, gender and social change as tools for gender policy and activism in extreme inequality.

  10. Reduction of magnetic damping and isotropic coercivity and increase of saturation magnetization in Rh-incorporated CoIr system

    Science.gov (United States)

    Wong, H. S.; He, S. K.; Chung, H. J.; Zhang, M. S.; Cher, Kelvin; Low, Melvin; Zhou, T. J.; Yang, Y.; Wong, S. K.

    2016-11-01

    Replacing Ir with Rh in a CoIr system possessing negative uniaxial magnetocrystalline anisotropy (K u ) substantially reduces its magnetic damping and coercivity by more than half while retaining its high negative K u . Moreover, a higher saturation magnetization (M s ) and more isotropic coercivity are achieved. Such material development makes it particularly suitable for use as the soft underlayer (SUL) of magnetic recording media for reducing noise, and as the oscillation layer of a spin-torque oscillator (STO) for achieving higher oscillation frequency, larger AC magnetic field and lower driving current, which can be readily integrated with the current recording head for microwave-assisted magnetic recording. Finally, we recommend a composite free layer by coupling CoIr with a spin polarizer (Co or Co/Cu/Co) for the enhancement of the spin-polarization rate and, therefore, the improvement of STO efficiency. These could pave the way for CoIr-based materials to be implemented in devices requiring a negative Ku with low damping and high ‘softness’, such as oscillators.

  11. One step facile synthesis of ferromagnetic magnetite nanoparticles

    Science.gov (United States)

    Suppiah, Durga Devi; Abd Hamid, Sharifah Bee

    2016-09-01

    The ferromagnetic properties of magnetite (Fe3O4) were influenced by the nanoparticle size, hence importance were given to the synthesis method. This paper clearly shows that magnetite nanoparticles were successfully synthesized by employing one step controlled precipitation method using a single salt (Iron(II) sulfate) iron precursor. The acquired titration curve from this method provides vital information on the possible reaction mechanism leading to the magnetite (Fe3O4) nanoparticles formation. Goethite (α-FeOOH) was obtained at pH 4, while the continuous addition of hydroxyl ions (OH-) forms iron hydroxides (Fe(OH)2). This subsequently reacts with the goethite, producing magnetite (Fe3O4) at pH 10. Spectroscopy studies validate the magnetite phase existence while structural and morphology analysis illustrates cubic shaped magnetite with an average size of 35 nm was obtained. The synthesized magnetite might be superparamagnetic though lower saturation magnetization (67.5 emu/g) measured at room temperature as compared to bulk magnetite. However the nanoparticles surface anisotropy leads to higher remanence (12 emu/g) and coercivity (117.7 G) making the synthesized magnetite an excellent candidate to be utilized in recording devices. The understanding of the magnetite synthesis mechanism can not only be used to achieve even smaller magnetite nanoparticles but also to prepare different types of iron oxides hydroxides using different iron precursor source.

  12. Controlled synthesis of ferromagnetic MnSe x particles

    Science.gov (United States)

    Sun, Junjie; Li, Chao; Chen, Duo; Kang, Shishou; Liu, Guolei; Yu, Shuyun; Han, Guangbing; Mei, Liangmo

    2016-10-01

    The MnSe x (x = 1,2) nanoparticles were synthesized under hydrothermal condition, by reaction of the reduced selenium and Mn2+ ion in the presence of hydrazine and acetic acid. By precisely controlling the pH value of the solution, a series of MnSe x particles were synthesized. The structure and morphology of as-prepared particles were examined with x-ray diffractometer (XRD), transmission electron microscopy (TEM), and scanning electron microscopy (SEM). The average sizes of as-prepared particles varied from nanoscale to microscale with pH value increase. Furthermore, the nucleation and growth mechanism associated with pH values were discussed, which can be applied to the hydrothermal synthesis of metal chalcogenide in general. Finally, the optical and magnetic properties of as-prepared particles were measured. All as-made particles exhibit a ferromagnetic behavior with low coercivity and remanence at room temperature. Project supported by the National Basic Research Program of China (Grant No. 2015CB921502), the National Natural Science Foundation of China (Grant Nos. 11474184 and 11627805), the 111 Project (Grant No. B13029), and the Fundamental Research Funds of Shandong University, China.

  13. Seal device for ferromagnetic containers

    Science.gov (United States)

    Meyer, Ross E.; Jason, Andrew J.

    1994-01-01

    A temporary seal or patch assembly prevents the escape of contents, e.g., fluids and the like, from within a container having a breach therethrough until the contents can be removed and/or a repair effected. A frame that supports a sealing bladder can be positioned over the breach and the frame is then attached to the container surface, which must be of a ferromagnet material, by using switchable permanent magnets. The permanent magnets are designed to have a first condition that is not attracted to the ferromagnetic surface and a second conditions whereby the magnets are attracted to the surface with sufficient force to support the seal assembly on the surface. Latching devices may be attached to the frame and engage the container surface with hardened pins to prevent the lateral movement of the seal assembly along the container surface from external forces such as fluid drag or gravity.

  14. Microwave metamaterials with ferromagnetic microwires

    Science.gov (United States)

    Panina, L. V.; Ipatov, M.; Zhukova, V.; Zhukov, A.; Gonzalez, J.

    2011-06-01

    This paper discusses a new type of wire media based on amorphous ferromagnetic microwires. The combination of two effects, namely, a strong dispersion of the effective permittivity in metallic wire composites (resonance or plasmonic type) and giant magnetoimpedance effect in wires, will result in unusual property that an effective dielectric response may strongly depend on the wire magnetization which can be changed with external stimuli: magnetic field, mechanical stress and temperature.

  15. Dynamical response of vibrating ferromagnets

    Science.gov (United States)

    Gaganidze, E.; Esquinazi, P.; Ziese, M.

    2000-02-01

    The resonance frequency of vibrating ferromagnetic reeds in a homogeneous magnetic field can be substantially modified by intrinsic and extrinsic field-related contributions. Searching for the physical reasons of the field-induced resonance frequency change and to study the influence of the spin glass state on it, we have measured the low-temperature magnetoelastic behavior and the dynamical response of vibrating amorphous and polycrystalline ferromagnetic ribbons. We show that the magnetoelastic properties depend strongly on the direction of the applied magnetic field. The influence of the re-entrant spin glass transition on these properties is discussed. We present clear experimental evidence that for applied fields perpendicular to the main area of the samples the behavior of ferromagnetic reeds is rather independent of the material composition and magnetic state, exhibiting a large decrease of the resonance frequency. This effect can be very well explained with a model based on the dynamical response of the reed and the magnetomechanical pole effect within a domain rotation model and is not related to magnetoelasticity.

  16. Off-axis electron holography of ferromagnetic multilayer nanowires

    DEFF Research Database (Denmark)

    Akhtari-Zavareh, Azadeh; Carignan, L. P.; Yelon, A.

    2014-01-01

    We have used electron holography to investigate the local magnetic behavior of isolated ferromagnetic nanowires (NWs) in their remanent states. The NWs consisted of periodic magnetic layers of soft, high-saturation magnetization CoFeB alloys, and non-magnetic layers of Cu. All NWs were fabricated...

  17. Unexpected large room-temperature ferromagnetism in porous Cu{sub 2}O thin films

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Xue [College of Physics Science & Information Engineering, Hebei Normal University, Shijiazhuang 050024 (China); Key Laboratory of Advanced Films of Hebei Province, Shijiazhuang 050024 (China); Sun, Huiyuan, E-mail: huiyuansun@126.com [College of Physics Science & Information Engineering, Hebei Normal University, Shijiazhuang 050024 (China); Key Laboratory of Advanced Films of Hebei Province, Shijiazhuang 050024 (China); Liu, Lihu; Jia, Xiaoxuan; Liu, Huiyuan [College of Physics Science & Information Engineering, Hebei Normal University, Shijiazhuang 050024 (China); Key Laboratory of Advanced Films of Hebei Province, Shijiazhuang 050024 (China)

    2015-05-15

    Porous Cu{sub 2}O films have been fabricated on porous anodic alumina substrates using DC-reactive magnetron sputtering with pure Cu targets, and unexpectedly large room temperature ferromagnetism has been observed in the films. The maximum saturation magnetic moment along the out-of-plane direction was as high as 94 emu/cm{sup 3}. Photoluminescence spectra show that the ferromagnetism originates with oxygen vacancies. The ferromagnetism could be adjusted by changing the concentration of oxygen vacancies through annealing in an oxygen atmosphere. These observations suggest that the origin of the ferromagnetism is due to coupling between oxygen vacancies with local magnetic moments in the porous Cu{sub 2}O films, which can occur either directly through exchange interactions between oxygen vacancies, or through the mediation of conduction electrons. Such a ferromagnet without the presence of any ferromagnetic dopant may find applications in spintronic devices. - Highlights: • Porous Cu{sub 2}O films were deposited on porous anodic alumina (PAA) substrates. • Significant room-temperature ferromagnetism has been observed in porous Cu{sub 2}O films. • Ferromagnetism of Cu{sub 2}O films exhibited different magnetic signals with the field. • The saturation magnetization is 94 emu/cm{sup 3} with an out-of-plane.

  18. Calibration of Hall sensor array for critical current measurement of YBCO tape with ferromagnetic substrate

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Yunpeng; Wang, Gang; Liu, Liyuan [Key laboratory of Magnetic levitation Technologies and Maglev Trains (Ministry of Education), Superconductor and New Energy R& D Center, Mail Stop 165#, Southwest Jiaotong University, Chengdu, 610031 (China); Yang, Xinsheng, E-mail: xsyang@swjtu.edu.cn [Key laboratory of Magnetic levitation Technologies and Maglev Trains (Ministry of Education), Superconductor and New Energy R& D Center, Mail Stop 165#, Southwest Jiaotong University, Chengdu, 610031 (China); Zhao, Yong [Key laboratory of Magnetic levitation Technologies and Maglev Trains (Ministry of Education), Superconductor and New Energy R& D Center, Mail Stop 165#, Southwest Jiaotong University, Chengdu, 610031 (China); Superconductivity Research Group, School of Materials Science and Engineering, University of New South Wale, Sydney 2052, NSW (Australia)

    2015-12-15

    Abstract : HAS (Hall sensor array) is a powerful tool to detect the uniformity of HTS (high temperature superconductor) tape through mapping the distribution of remanent or shielding field along the surface of the tape. However, measurement of HTS tape with ferromagnetic parts by HSA is still an issue because the ferromagnetic substrate has influence on the magnetic field around the HTS layer. In this work, a continuous HSA system has been designed to measure the critical current of the YBCO tape with ferromagnetic substrate. The relationship between the remanent field and critical current was calibrated by the finite element method. The result showed that the HSA is an effective method for evaluating the critical current of the HTS tape with ferromagnetic substrate. - Highlight: • A continuous Hall sensor array system has been designed. • The inhomogeneity of YBCO tape with ferromagnetic substrate can be detected by HAS. • Finite element method is an effective method for calibrating the remanent field.

  19. Effects of annealing on the ferromagnetism and photoluminescence of Cu-doped ZnO nanowires

    Science.gov (United States)

    Xu, H. J.; Zhu, H. C.; Shan, X. D.; Liu, Y. X.; Gao, J. Y.; Zhang, X. Z.; Zhang, J. M.; Wang, P. W.; Hou, Y. M.; Yu, D. P.

    2010-01-01

    Room temperature ferromagnetic Cu-doped ZnO nanowires have been synthesized using the chemical vapor deposition method. By combining structural characterizations and comparative annealing experiments, it has been found that both extrinsic (CuO nanoparticles) and intrinsic (Zn1-xCuxO nanowires) sources are responsible for the observed ferromagnetic ordering of the as-grown samples. As regards the former, annealing in Zn vapor led to a dramatic decrease of the ferromagnetism. For the latter, a reversible switching of the ferromagnetism was observed with sequential annealings in Zn vapor and oxygen ambience respectively, which agreed well with previous reports for Cu-doped ZnO films. In addition, we have for the first time observed low temperature photoluminescence changed with magnetic properties upon annealing in different conditions, which revealed the crucial role played by interstitial zinc in directly mediating high Tc ferromagnetism and indirectly modulating the Cu-related structured green emission via different charge transfer transitions.

  20. On the evolutionary stability of male harassment in a coercive mating game

    Directory of Open Access Journals (Sweden)

    Oyita Udiani

    2016-03-01

    Full Text Available In many animals, males employ coercive mating strategies to help them maximize their expected number of offspring. In such systems, selection will favor behavioral adaptations in females that help them mitigate harassment costs and maximize their reproductive fitness. Previously, Bokides et al. [1] presented a model showing how male harassment strategies can co-evolve with female habitat preferences in a mating game. Their results indicated that if females dispersed freely between habitats where males were present and where males were excluded, selection could favor males who strategically harassed at high (or low levels, depending on the proximity of their phenotype to a threshold level $h^*$. This article is a continuation of that work addressing the questions of stability at equilibria where males harass at the threshold level (i.e., $h^*$. We show these states are both locally and globally asymptotically stable. Further, we argue based on these results that $h^*$ is an evolutionary stable male harassment level at which females will be ideally distributed to match the resource quality and social environments of their alternative habitats.

  1. Unambiguous separation of the inverse spin Hall and anomalous Nernst effects within a ferromagnetic metal using the spin Seebeck effect

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Stephen M., E-mail: swu@anl.gov; Hoffman, Jason; Pearson, John E.; Bhattacharya, Anand [Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States)

    2014-09-01

    The longitudinal spin Seebeck effect is measured on the ferromagnetic insulator Fe{sub 3}O{sub 4} with the ferromagnetic metal Co{sub 0.2}Fe{sub 0.6}B{sub 0.2} (CoFeB) as the spin detector. By using a non-magnetic spacer material between the two materials (Ti), it is possible to decouple the two ferromagnetic materials and directly observe pure spin flow from Fe{sub 3}O{sub 4} into CoFeB. It is shown that in a single ferromagnetic metal, the inverse spin Hall effect (ISHE) and anomalous Nernst effect (ANE) can occur simultaneously with opposite polarity. Using this and the large difference in the coercive fields between the two magnets, it is possible to unambiguously separate the contributions of the spin Seebeck effect from the ANE and observe the degree to which each effect contributes to the total response. These experiments show conclusively that the ISHE and ANE in CoFeB are separate phenomena with different origins and can coexist in the same material with opposite response to a thermal gradient.

  2. Room temperature p-type conductivity and coexistence of ferroelectric order in ferromagnetic Li doped ZnO nanoparticles

    KAUST Repository

    Awan, Saif Ullah

    2014-10-28

    Memory and switching devices acquired new materials which exhibit ferroelectric and ferromagnetic order simultaneously. We reported multiferroic behavior in Zn1-yLiyO(0.00≤y≤0.10) nanoparticles. The analysis of transmission electron micrographs confirmed the hexagonal morphology and wurtzite crystalline structure. We investigated p-type conductivity in doped samples and measured hole carriers in range 2.4×1017/cc to 7.3×1017/cc for different Li contents. We found that hole carriers are responsible for long range order ferromagnetic coupling in Li doped samples. Room temperature ferroelectric hysteresis loops were observed in 8% and 10% Li doped samples. We demonstrated ferroelectric coercivity (remnant polarization) 2.5kV/cm (0.11 μC/cm2) and 2.8kV/cm (0.15 μC/cm2) for y=0.08 and y=0.10 samples. We propose that the mechanism of Li induced ferroelectricity in ZnO is due to indirect dipole interaction via hole carriers. We investigated that if the sample has hole carriers ≥5.3×1017/cc, they can mediate the ferroelectricity. Ferroelectric and ferromagnetic measurements showed that higher electric polarization and larger magnetic moment is attained when the hole concentration is larger and vice versa. Our results confirmed the hole dependent coexistence of ferromagnetic and ferroelectric behavior at room temperature, which provide potential applications for switchable and memory devices.

  3. Ferromagnetic germanide in Ge nanowire transistors for spintronics application.

    Science.gov (United States)

    Tang, Jianshi; Wang, Chiu-Yen; Hung, Min-Hsiu; Jiang, Xiaowei; Chang, Li-Te; He, Liang; Liu, Pei-Hsuan; Yang, Hong-Jie; Tuan, Hsing-Yu; Chen, Lih-Juann; Wang, Kang L

    2012-06-26

    To explore spintronics applications for Ge nanowire heterostructures formed by thermal annealing, it is critical to develop a ferromagnetic germanide with high Curie temperature and take advantage of the high-quality interface between Ge and the formed ferromagnetic germanide. In this work, we report, for the first time, the formation and characterization of Mn(5)Ge(3)/Ge/Mn(5)Ge(3) nanowire transistors, in which the room-temperature ferromagnetic germanide was found through the solid-state reaction between a single-crystalline Ge nanowire and Mn contact pads upon thermal annealing. The atomically clean interface between Mn(5)Ge(3) and Ge with a relatively small lattice mismatch of 10.6% indicates that Mn(5)Ge(3) is a high-quality ferromagnetic contact to Ge. Temperature-dependent I-V measurements on the Mn(5)Ge(3)/Ge/Mn(5)Ge(3) nanowire heterostructure reveal a Schottky barrier height of 0.25 eV for the Mn(5)Ge(3) contact to p-type Ge. The Ge nanowire field-effect transistors built on the Mn(5)Ge(3)/Ge/Mn(5)Ge(3) heterostructure exhibit a high-performance p-type behavior with a current on/off ratio close to 10(5), and a hole mobility of 150-200 cm(2)/(V s). Temperature-dependent resistance of a fully germanided Mn(5)Ge(3) nanowire shows a clear transition behavior near the Curie temperature of Mn(5)Ge(3) at about 300 K. Our findings of the high-quality room-temperature ferromagnetic Mn(5)Ge(3) contact represent a promising step toward electrical spin injection into Ge nanowires and thus the realization of high-efficiency spintronic devices for room-temperature applications.

  4. Magnetic properties and coercivity mechanism of precipitation-hardened Gd-Co based ribbons

    Institute of Scientific and Technical Information of China (English)

    Rong Chuan-Bing; Zhang Jian; Du Xiao-Bo; Zhang Hong-Wei; Zhang Shao-Ying; Shen Bao-Gen

    2004-01-01

    Gd(Co0.88-xCuxFe0.09Zr0.03)z ribbons with x = 0.075 - 0.200 and z=6.4-7.7 have been prepared by a meltspinning technique. A cellular microstructure consisting of 2:17 cells surrounded by the 1:5 cell boundary phase is obtained after precipitation hardening. The dependence of room temperature coercivity on the heat treatment process suggests that the long-time isothermal aging is not helpful for the development of magnetic properties. Positive temperature coefficient of remanence from room temperature to about 673K is typical for all samples, while positive temperature coefficient of coercivity is obtained only in ribbons with low Cu content. The coercivity mechanism of the precipitation-hardened ribbons at different temperatures is also discussed.

  5. Voltage control of the magnetic coercive field: Multiferroic coupling or artifact?

    Science.gov (United States)

    Vopsaroiu, M.; Cain, M. G.; Woolliams, P. D.; Weaver, P. M.; Stewart, M.; Wright, C. D.; Tran, Y.

    2011-03-01

    The ability to dynamically tune the coercive field of magnetic thin films is a powerful tool for applications, including in magnetic recording disk technologies. Recently, a number of papers have reported the electrical voltage control of the coercive field of various magnetic thin films in multiferroic composites. Theoretically, this is possible in magneto-electric (ME) multiferroics due to the piezoferroelectric component that can be electrically activated to dynamically modify the properties of the magnetic component of the composite via a direct or strain mediated ME coupling. In this paper we fabricated and examined such structures and we determined that the magnetic coercive field reduction is most likely due to a heating effect. We concluded that this effect is probably an artifact that cannot be attributed to a multiferroic coupling.

  6. Excess use of coercive measures in psychiatry among migrants compared with native Danes

    DEFF Research Database (Denmark)

    Nørredam, Marie Louise; Garcia-Lopez, A; Keiding, N;

    2010-01-01

    Norredam M, Garcia-Lopez A, Keiding N, Krasnik A. Excess use of coercive measures in psychiatry among migrants compared with native Danes.Objective: To investigate differences in risk of compulsory admission and other coercive measures in psychiatric emergencies among refugees and immigrants...... compared with that among native Danes. Method: A register-based retrospective cohort design. All refugees (n = 29 174) and immigrants (n = 33 287) who received residence permission in Denmark from 1.1.1993 to 31.12.1999 were included and matched 1 : 4 on age and sex with native Danes. Civil registration...... numbers were cross-linked to the Danish Psychiatric Central Register and the Registry of Coercive Measures in Psychiatric Treatment. Results: Refugees (RR = 1.82; 95%CI: 1.45; 2.29) and immigrants (RR = 1.14; 95%CI: 0.83; 1.56) experienced higher rates of compulsory admissions than did native Danes...

  7. On the Absence of Ferromagnetism in Typical 2D Ferromagnets

    Energy Technology Data Exchange (ETDEWEB)

    Biskup, Marek

    2010-04-06

    We consider the Ising systems in d dimensions with nearest-neighbor ferromagnetic interactions and long-range repulsive (antiferromagnetic) interactions that decay with power s of the distance. The physical context of such models is discussed; primarily this is d = 2 and s = 3 where, at long distances, genuine magnetic interactions between genuine magnetic dipoles are of this form.We prove that when the power of decay lies above d and does not exceed d + 1, then for all temperatures the spontaneous magnetization is zero. In contrast, we also show that for powers exceeding d + 1 (with d {ge} 2) magnetic order can occur.

  8. Coherent quantum trasport in ferromagnet-superconductor-ferromagnet graphene junctions

    Directory of Open Access Journals (Sweden)

    M Salehi

    2010-09-01

    Full Text Available In this paper, we investigate the coherent quantum transport in grapheme-based ferromagnet-superconductor-ferromagent junctions within the framework of BCS theory using DBdG quasiparticles equation .The coherency with the finite size of superconductor region has two characteristic features subgap electron transport and oscillations of differential conductance. we show that periodic vanishing of the Andreev reflection at the energies called geometrical resonances above the superconducting gap is a striking consequence of quasiparticles interference. We suggest to make devices that produce polarized spin-current with possible applications in spintronics.

  9. Enhancement in soft magnetic and ferromagnetic ordering behaviour through nanocrystallisation in Al substituted CoFeSiBNb alloys

    Energy Technology Data Exchange (ETDEWEB)

    Mohanta, Ojaswini [Council for Scientific and Industrial Research, National Metallurgical Laboratory, Jamshedpur 831 007 (India); Basumallick, A. [Bengal Engineering and Science University, Shibpur, West Bengal (India); Mitra, A. [Council for Scientific and Industrial Research, National Metallurgical Laboratory, Jamshedpur 831 007 (India); Panda, A.K., E-mail: akpanda@nmlindia.or [Council for Scientific and Industrial Research, National Metallurgical Laboratory, Jamshedpur 831 007 (India)

    2010-01-15

    The effect of substituting Al for Si in Co{sub 36}Fe{sub 36}Si{sub 4-x}Al{sub x}B{sub 20}Nb{sub 4}, (X=0, 0.5, 1.0, 1.5, 2.0 at%) alloys prepared in the form of melt-spun ribbons have been investigated. All the alloys were amorphous in their as-cast state. The onset of crystallization as observed using differential scanning calorimetry (DSC) was found to rise at low Al content up to X=1 at% beyond which there was a decreasing trend. The alloys also exhibited glass transition at 'T{sub g}'. Microstructural studies of optimally annealed samples indicated finer dispersions of nanoparticles in amorphous matrix which were identified as bcc-(FeCo)Si and bcc-(FeCo)SiAl nanophases by X-ray diffraction technique. Alloy with optimum content of Al around X=1 at% exhibited stability in coercivity at elevated temperatures. Though Al addition is known to lower magnetostriction, such consistency in coercivity may also be attributed towards lowering in the nanoparticle size compared to X=0 alloy. In the nanostructured state, the alloy containing optimum Al content (X=1) exhibited further enhancement in ferromagnetic ordering or the Curie temperature by 100 K compared to alloy without Al. Such addition also attributed to better frequency response of coercivity and low core losses.

  10. An extension to flat band ferromagnetism

    Science.gov (United States)

    Gulacsi, M.; Kovacs, G.; Gulacsi, Z.

    2014-11-01

    From flat band ferromagnetism, we learned that the lowest energy half-filled flat band gives always ferromagnetism if the localized Wannier states on the flat band satisfy the connectivity condition. If the connectivity conditions are not satisfied, ferromagnetism does not appear. We show that this is not always the case namely, we show that ferromagnetism due to flat bands can appear even if the connectivity condition does not hold due to a peculiar behavior of the band situated just above the flat band.

  11. Anomalous Hall Effect in a Kagome Ferromagnet

    Science.gov (United States)

    Ye, Linda; Wicker, Christina; Suzuki, Takehito; Checkelsky, Joseph; Joseph Checkelsky Team

    The ferromagnetic kagome lattice is theoretically known to possess topological band structures. We have synthesized large single crystals of a kagome ferromagnet Fe3Sn2 which orders ferromagnetically well above room temperature. We have studied the electrical and magnetic properties of these crystals over a broad temperature and magnetic field range. Both the scaling relation of anomalous Hall effect and anisotropic magnetic susceptibility show that the ferromagnetism of Fe3Sn2 is unconventional. We discuss these results in the context of magnetism in kagome systems and relevance to the predicted topological properties in this class of compounds. This research is supported by DMR-1231319.

  12. Depolarization corrections to the coercive field in thin-film ferroelectrics

    CERN Document Server

    Dawber, M; Littlewood, P B; Scott, J F

    2003-01-01

    Empirically, the coercive field needed to reverse the polarization in a ferroelectric increases with decreasing film thickness. For ferroelectric films of 100 mu m to 100 nm in thickness the coercive field has been successfully described by a semi-empirical scaling law. Accounting for depolarization corrections, we show that this scaling behaviour is consistent with field measurements of ultrathin ferroelectric capacitors down to one nanometre in film thickness. Our results also indicate that the minimum film thickness, determined by a polarization instability, can be tuned by the choice of electrodes, and recommendations for next-generation ferroelectric devices are discussed. (letter to the editor)

  13. Low coercive field of polymer ferroelectric via x-ray induced phase transition

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyeon Jun; Kim, Jihong; Lee, Hye Jeong; Kwak, Jeong Hun; Kim, Jae Myung; Lee, Sung Su; Kim, Dong-Yu; Jo, Ji Young, E-mail: jyjo@gist.ac.kr [School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Oryong-Dong, Buk-Gu, Gwangju 61005 (Korea, Republic of); Kwon, Owoong; Kim, Yunseok [School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do 400-746 (Korea, Republic of)

    2015-12-28

    We present an experimental strategy via X-ray irradiation combined with time-resolved X-ray diffraction to reduce a coercive field of ferroelectric thin films. We found in real-time that X-ray irradiation enables the irreversible phase transition from a polar to non-polar phase in ferroelectric poly(vinylidene fluoride-trifluoroethylene) thin films. The non-polar regions act as initial nucleation sites for opposite domains thus reducing the coercive field, directly related to the switching of domains, by 48%.

  14. Assessment of coercive and noncoercive pressures to enter drug abuse treatment.

    Science.gov (United States)

    Marlowe, D B; Kirby, K C; Bonieskie, L M; Glass, D J; Dodds, L D; Husband, S D; Platt, J J; Festinger, D S

    1996-10-01

    This paper reports preliminary data derived from a standardized interview scoring procedure for detecting and characterizing coercive and noncoercive pressures to enter substance abuse treatment. Coercive and noncoercive pressures stemming from multiple psychosocial domains are operationalized through recourse to established behavioral principles. Inter-rater reliability for the scoring procedure was exceptional over numerous rater trials. Substantive analyses indicate that, among clients in outpatient cocaine treatment, 'coercion' is operative in multiple psychosocial domains, and that subjects perceive legal pressures as exerting substantially less influence over their decisions to enter treatment than informal psychosocial pressures. Implications for drug treatment planning, legal and ethical issues, and directions for future research are proposed.

  15. Angular dependence of the exchange bias and coercivity of IrMn/Co bilayers

    Energy Technology Data Exchange (ETDEWEB)

    Nicolodi, S. [Instituto de Fisica-UFRGS, CP 15051, 91501-970 Porto Alegre, RS (Brazil)]. E-mail: nicolodi@if.ufrgs.br; Pereira, L.G. [Instituto de Fisica-UFRGS, CP 15051, 91501-970 Porto Alegre, RS (Brazil); Schmidt, J.E. [Instituto de Fisica-UFRGS, CP 15051, 91501-970 Porto Alegre, RS (Brazil); Nagamine, L.C.C.M. [Instituto de Fisica-UFRGS, CP 15051, 91501-970 Porto Alegre, RS (Brazil); Viegas, A.D.C. [Departamento de Fisica, CCNE, UFSM, 97105-900, Santa Maria, RS (Brazil); Deranlot, C. [Unite Mixte de Physique CNRS/Thales, 91767 Palaiseau and Universite Paris-Sud, 91405 Orsay (France); Petroff, F. [Unite Mixte de Physique CNRS/Thales, 91767 Palaiseau and Universite Paris-Sud, 91405 Orsay (France); Geshev, J. [Instituto de Fisica-UFRGS, CP 15051, 91501-970 Porto Alegre, RS (Brazil)

    2006-10-01

    In this study we present the in-plane angular dependences of the exchange-bias and coercive fields of magnetron-sputtered IrMn/Co exchange-coupled system before and after magnetic field annealing. Two experimental techniques were employed for the magnetic characterization of the samples, i.e., alternate gradient field magnetometry and anisotropic magnetoresistance measurements, which gave practically the same value for the exchange-bias field shift. An increase of the exchange-bias field and a substantial decrease of the coercivity are observed after the annealing. A phenomenological model was also used to adjust the data and to derive the anisotropy characteristics.

  16. Model for ballistic spin-transport in ferromagnet/two-dimensional electron gas/ferromagnet structures

    NARCIS (Netherlands)

    Schapers, T; Nitta, J; Heersche, HB; Takayanagi, H

    2002-01-01

    The spin dependent conductance of a ferromagnet/two-dimensional electron gas ferromagnet structure is theoretically examined in the ballistic transport regime. It is shown that the spin signal can be improved considerably by making use of the spin filtering effect of a barrier at the ferromagnet two

  17. Giant magnetic coercivity in CaCu{sub 5}-type SmNi{sub 3}TSi (T=Mn–Cu) solid solutions

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Jinlei; Yan, Xu [Research Center for Solid State Physics and Materials, School of Mathematics and Physics, Suzhou University of Science and Technology, Suzhou 215009 (China); Morozkin, A.V., E-mail: morozkin@tech.chem.msu.ru [Department of Chemistry, Moscow State University, Leninskie Gory, House 1, Building 3, GSP-2, Moscow 119992 (Russian Federation)

    2015-12-15

    The effects of transition metal substitution for Ni on the magnetic properties of the CaCu{sub 5}-type SmNi{sub 3}TSi (T=Mn, Fe, Co, Cu) solid solutions have been investigated. SmNi{sub 3}MnSi, SmNi{sub 3}FeSi, SmNi{sub 3}CoSi and SmNi{sub 3}CuSi show ferromagnetic ordering at 125 K, 190 K, 46 K and 12 K and field induced transitions at 65 K, 110 K, 30 K and 6 K, respectively. The magnetocaloric effects of SmNi{sub 3}TSi (T=Mn, Fe, Co, Cu) were calculated in terms of isothermal magnetic entropy change (ΔS{sub m}). The magnetic entropy ΔS{sub m} reaches value of −1.1 J/kg K at 130 K for SmNi{sub 3}MnSi, −0.4 J/kg K at 180 K for SmNi{sub 3}FeSi, −0.37 J/kg K at 45 K for SmNi{sub 3}CoSi and −0.5 J/kg K at 12 K for SmNi{sub 3}CuSi in field change of 0–50 kOe around the ferromagnetic ordering temperature. They show positive ΔS{sub m} of +2.4 J/kg K at 30 K for SmNi{sub 3}MnSi, −2.6 J/kg K at 65 K for SmNi{sub 3}FeSi, +0.73 J/kg K at 15 K for SmNi{sub 3}CoSi and −0.5 J/kg K at 6 K for SmNi{sub 3}CuSi in field change of 0–50 kOe around the metamagnetic-like transition temperature. Below the field induced transition temperature, SmNi{sub 3}TSi (T=Mn, Fe, Co, Cu) exhibits giant magnetic coercivity of 80 kOe at 20 K for SmNi{sub 3}MnSi, 87 kOe at 40 K for SmNi{sub 3}FeSi, 27 kOe at 20 K for SmNi{sub 3}CoSi and 54 kOe at 5 K for SmNi{sub 3}CuSi. - Graphical abstract: CaCu{sub 5}-type SmNi{sub 3}MnSi, SmNi{sub 3}FeSi, SmNi{sub 3}CoSi and SmNi{sub 3}CuSi show ferromagnetic ordering at 125 K, 190 K, 46 K and 12 K and field induced transitions at 65 K, 110 K, 30 K and 6 K, respectively. The magnetic entropy ΔS{sub m} reaches value of −1.1 J/kg K at 130 K for SmNi{sub 3}MnSi, −0.4 J/kg K at 180 K for SmNi{sub 3}FeSi, −0.37 J/kg K at 45 K for SmNi{sub 3}CoSi and −0.5 J/kg K at 12 K for SmNi{sub 3}CuSi in field change of 0–50 kOe around the ferromagnetic ordering temperature. They show positive ΔS{sub m} of +2.4 J/kg K at 30 K for SmNi{sub 3}MnSi, −2

  18. Dynamics of AC susceptibility and coercivity behavior in nanocrystalline TbAl{sub 1.5}Fe{sub 0.5} alloys

    Energy Technology Data Exchange (ETDEWEB)

    Rojas, D.P., E-mail: d.rojas@upm.es [Departamento de Fisica e Instalaciones-ETSAM, Universidad Politecnica de Madrid, Av. Juan Herrera, 4. 28040 Madrid (Spain); Fernandez Barquin, L.; Gonzalez Legarreta, L. [CITIMAC and MAGMA, Unidad Asociada-CSIC, Facultad de Ciencias, Universidad de Cantabria, Av. de los Castros s/n.39005 Santander (Spain); Chaboy, J.; Piquer, C. [ICMA and Departamento de Fisica de la Materia Condensada, CSIC-Universidad de Zaragoza, 50009 Zaragoza (Spain); Pedro, I. de; Rodriguez Fernandez, J. [CITIMAC and MAGMA, Unidad Asociada-CSIC, Facultad de Ciencias, Universidad de Cantabria, Av. de los Castros s/n.39005 Santander (Spain)

    2013-01-15

    The static and dynamic magnetic macroscopic properties of bulk and nanocrystalline TbAl{sub 1.5}Fe{sub 0.5} alloys have been investigated. In bulk state, this alloy is understood as a reentrant ferromagnet. This is characterized by a ferromagnetic Curie transition at 114 K, as deduced from magnetization including Arrott plots, higher than that of TbAl{sub 2}. The reentrance is found at lower temperatures, below 66 K, with a cluster glass behavior setting in, deduced from the magnetization irreversibility. This is accompanied by an abrupt increase in the coercivity from 0.08 kOe to 15 kOe at 5 K, with respect to the TbAl{sub 2} alloy. Room temperature Moessbauer spectroscopy confirms the paramagnetic state of such a bulk alloy. The spin dynamics within the disordered magnetic state is described by the AC-susceptibility which shows a Vogel-Fulcher law for the slowing down process. This is caused by a random anisotropy affecting the existing clusters. The production of milled TbAl{sub 1.5}Fe{sub 0.5} alloys enhances the presence of magnetic disorder and results in the particle downsizing toward the nanocrystalline state (close to 10 nm). In this case, two frequency-dependent contributions exist, with different activation energies, one of them cannot be described by ideal spin glass nor blocking/unblocking (nanoparticle) processes. In addition, the coercivity reduces to 1 kOe with the decrease in the size as a consequence of the existence of single domain particles. The results are explained by the intricate interplay between exchange interactions and magnetocrystalline anisotropy with disorder and size effects. - Highlights: Black-Right-Pointing-Pointer Bulk and nanocrystalline TbAl{sub 1.5}Fe{sub 0.5} alloys. Black-Right-Pointing-Pointer Enhancement of the magnetic properties when Fe substitutes Al in bulk TbAl{sub 2}, with a glassy behavior below 54 K. Black-Right-Pointing-Pointer AC susceptibility of nanocrystalline TbAl{sub 1.5}Fe{sub 0.5} alloys shows atypical

  19. Soft ferromagnetic properties of Ni44Fe6Mn32Al18 doped Co partially

    Science.gov (United States)

    Notonegoro, Hamdan Akbar; Kurniawan, Budhy; Kurniawan, Candra; Manaf, Azwar

    2017-01-01

    Research in finding suitable magnetocaloric material around room temperature made ferromagnetic (FM) (Ni-Mn)-based Heusler alloys receive considerable attention as a potential candidate for the magnetic refrigerator. This compound are associated with the shape-memory effect, magnetic superelasticity, and more others magneto-functional properties. The compounds were prepared by vacuum arc melter (VAM) under argon atmosphere which sintering and annealing process were running with quartz cube in vacuum condition. A small amount of coercivity value at σ = 0 in the hysteresis curve occurred whereas magnetization of the sample in various temperature does not reach saturation. The Currie temperature Tc of the sample was obtained at 358 K. Nevertheless, this is dubious value because at T = 300 K the curves had swooped down. Additional measurements necessary to taken as a comparison to verify this value.

  20. How antiferromagnetism drives the magnetization of a ferromagnetic thin film to align out of plane.

    Science.gov (United States)

    Wang, Bo-Yao; Hong, Jhen-Yong; Yang, Kui-Hon Ou; Chan, Yuet-Loy; Wei, Der-Hsin; Lin, Hong-Ji; Lin, Minn-Tsong

    2013-03-15

    Interfacial moments of an antiferromagnet are known for their prominent effects of induced coercivity enhancement and exchange bias in ferromagnetic-antiferromagnetic exchange-coupled systems. Here we report that the unpinned moments of an antiferromagnetic face-centered-cubic Mn layer can drive the magnetization of an adjacent Fe film perpendicular owing to a formation of intrinsic perpendicular anisotropy. X-ray magnetic circular dichroism and hysteresis loops show establishment of perpendicular magnetization on Fe/Mn bilayers while temperature was decreased. The fact that the magnitude of perpendicular anisotropy of the Fe layer is enhanced proportionally to the out-of-plane oriented orbital moment of the Mn unpinned layer, rather than that of Fe itself, gives evidence for the Mn unpinned moments to be the origin of the established perpendicular magnetization.

  1. Spin Injection from Ferromagnetic Semiconductor CoZnO into ZnO

    Institute of Scientific and Technical Information of China (English)

    Gang JI; Shishen YAN; Yanxue CHEN; Qiang CAO; Wei XIA; Yihua LIU; Liangmo MEI; Ze ZHANG

    2008-01-01

    2×(FeNi/CoZnO)/ZnO/(CoZnO/Co)×2 spin-inJection devices were prepared by sputtering and photo-lithography. In the devices, two composite magnetic layers 2×(FeNi/CoZnO) and (CoZnO/Co)×2 with different coercivities were used to fabricate the ZnO-based semiconductor spin valve. Since the CoZnO ferromagnetic semiconductor layers touched the ZnO space layer directly, the significant spin injection from CoZnO into ZnO was observed by measuring the magnetoresistance of the spin-inJection devices. The magnetoresistance reduced linearly with increasing temperature, from 1.12% at 90 K to 0.35% at room temperature.

  2. Electric field-controlled magnetization switching in Co/Pt thin-film ferromagnets

    Directory of Open Access Journals (Sweden)

    A. Siddique

    2016-12-01

    Full Text Available A study of dynamic and reversible voltage-controlled magnetization switching in ferromagnetic Co/Pt thin film with perpendicular magnetic anisotropy at room temperature is presented. The change in the magnetic properties of the system is observed in a relatively thick film of 15 nm. A surface charge is induced by the formation of electrochemical double layer between the metallic thin film and non-aqueous lithium LiClO4 electrolyte to manipulate the magnetism. The change in the magnetic properties occurred by the application of an external electric field. As the negative voltage was increased, the coercivity and the switching magnetic field decreased thus activating magnetization switching. The results are envisaged to lead to faster and ultra-low-power magnetization switching as compared to spin-transfer torque (STT switching in spintronic devices.

  3. Electronic structure and room temperature ferromagnetism of C doped TiO2

    Science.gov (United States)

    Ablat, Abduleziz; Wu, Rong; Mamat, Mamatrishat; Ghupur, Yasin; Aimidula, Aimierding; Bake, Muhammad Ali; Gholam, Turghunjan; Wang, Jiaou; Qian, Haijie; Wu, Rui; Ibrahim, Kurash

    2016-10-01

    C-doped TiO2 nanoparticles were successfully synthesized using a simple hydrothermal synthesis method. After this preparation, a portion of the samples were annealed separately in air on the one hand, and in argon on the other, and another portion remained untreated. The results of X-ray diffraction show that the untreated samples primarily display anatase and rutile structures. However, after annealing, the samples displayed the rutile structure only. The Ti K-edge and L-edge Near Edge X-ray Absorption Fine Structure analyses clearly show that C atoms were successfully incorporated into the TiO2 host lattice. All doped samples exhibit ferromagnetism at room temperature. The saturation magnetization (Ms) and coercive fields (Hc) tend to decrease after the samples are annealed in argon and in air. The maximum Ms of the untreated samples was approximately 0.038 emu/g.

  4. Radioactive Probes on Ferromagnetic Surfaces

    CERN Multimedia

    2002-01-01

    On the (broad) basis of our studies of nonmagnetic radioactive probe atoms on magnetic surfaces and at interfaces, we propose to investigate the magnetic interaction of magnetic probe atoms with their immediate environment, in particular of rare earth (RE) elements positioned on and in ferromagnetic surfaces. The preparation and analysis of the structural properties of such samples will be performed in the UHV chamber HYDRA at the HMI/Berlin. For the investigations of the magnetic properties of RE atoms on surfaces Perturbed Angular Correlation (PAC) measurements and Mössbauer Spectroscopy (MS) in the UHV chamber ASPIC (Apparatus for Surface Physics and Interfaces at CERN) are proposed.

  5. Damping and ferromagnetic resonance linewidth broadening in nanocrystalline soft ferromagnetic Fe-Co-Hf-N films

    Energy Technology Data Exchange (ETDEWEB)

    Seemann, K. [Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft, Institut fuer Material-forschung I, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany)], E-mail: klaus.seemann@imf.fzk.de; Leiste, H. [Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft, Institut fuer Material-forschung I, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Kovacs, A. [Institute of Scientific and Industrial Research, 8-1 Mihogaoka, Ibaraki, Osaka 5670047 (Japan)

    2008-07-15

    In order to describe high-frequency damping mechanisms of ferromagnetic films by means of the imaginary part of the frequency-dependant permeability, CMOS compatible ferromagnetic Fe{sub 36}Co{sub 44}Hf{sub 9}N{sub 11} films were deposited by reactive r.f. magnetron sputtering on oxidised 5x5 mm{sup 2}x380 {mu}m (1 0 0)-silicon substrates with a 6-in. Fe{sub 38}Co{sub 47}Hf{sub 15} target, as well as magnetic field annealing between 300 and 600 deg. C. An in-plane uniaxial anisotropy of around 4.5 mT as well as an excellent soft magnetic behaviour with a saturation polarisation of approximately 1.4 T could be observed after heat treatment at the above-mentioned temperatures, which drives these films to a high-frequency suitability. Ferromagnetic resonance frequencies of approximately up to 2.4 GHz could be obtained. The frequency-dependant permeability was measured with a broadband permeameter. Depending on the heat treatment, an increase of the full-width at half-maximum (FWHM) of the imaginary part of the frequency-dependant permeability is discussed in terms of two-magnon scattering, anisotropy-type competition and local resonance generation through predominant grain growth causing magnetisation and anisotropy inhomogeneities in the magnetic films. The grain size of the films was determined by (HRTEM) imaging and amounts from a few nanometres for films heat treated at 300 deg. C to more than 10 nm at 600 deg. C where the FWHM {delta}f{sub eff} and the Landau-Lifschitz-Gilbert equation damping parameter {alpha}{sub eff} increases with d{sub nm}{sup 2} and d{sub nm} (e.g. d{sub nm} is the grain diameter of the nonmagnetic Hf-N phase), respectively.

  6. The use of Coercive Interventions in Mental Health Care in Germany and the Netherlands. A comparison of the developments in two neighbouring countries

    Directory of Open Access Journals (Sweden)

    Tilman eSteinert

    2014-09-01

    Full Text Available In this review we compare the use of coercion in mental health care in Germany and in the Netherlands. Legal frameworks and published data on involuntary commitment, involuntary medication, seclusion, and restraint are highlighted as well as the role of guidelines, training and attitudes held by psychiatrists and the public. Legal procedures regulating involuntary admission and commitment are rather similar, and so is the percentage of involuntary admissions and the rate per 100.000 inhabitants. However, opposing trends can be observed in the use of coercive interventions during treatment which in both countries are considered as a last resort after all other alternative approaches have failed. In the Netherlands, for a long time seclusion has been considered as preferred intervention while the use of medication by force was widely disapproved as being unnecessarily invasive. However, after increasing evidence showed that number and duration of seclusions as well as the number of aggressive incidents per admission were considerably higher than in other European countries, attitudes changed within recent years. A national programme with spending of 15 million € was launched to reduce the use of seclusion, while the use of medication was facilitated. A legislation is scheduled which will allow also outpatient coercive treatment. In Germany, the latter was never legalized. While coercive treatment in Germany was rather common for involuntarily committed patients and mechanical restraint was preferred to seclusion in most hospital as a containment measure, the decisions of the Constitutional Court in 2011 had a high impact on legislation, attitudes and clinical practice. Though since 2013 coercive medication is approvable again under strict conditions, it is now widely perceived as very invasive and last resort. There is evidence that this change of attitudes lead to a considerable increase of the use of seclusion and restraint for some patients.

  7. Controllable 0-π Josephson junctions containing a ferromagnetic spin valve

    Science.gov (United States)

    Gingrich, E. C.; Niedzielski, Bethany M.; Glick, Joseph A.; Wang, Yixing; Miller, D. L.; Loloee, Reza; Pratt, W. P., Jr.; Birge, Norman O.

    2016-06-01

    Superconductivity and ferromagnetism are antagonistic forms of order, and rarely coexist. Many interesting new phenomena occur, however, in hybrid superconducting/ferromagnetic systems. For example, a Josephson junction containing a ferromagnetic material can exhibit an intrinsic phase shift of π in its ground state for certain thicknesses of the material. Such `π-junctions' were first realized experimentally in 2001 (refs ,), and have been proposed as circuit elements for both high-speed classical superconducting computing and for quantum computing. Here we demonstrate experimentally that the phase state of a Josephson junction containing two ferromagnetic layers can be toggled between 0 and π by changing the relative orientation of the two magnetizations. These controllable 0-π junctions have immediate applications in cryogenic memory, where they serve as a necessary component to an ultralow power superconducting computer. Such a fully superconducting computer is estimated to be orders of magnitude more energy-efficient than current semiconductor-based supercomputers. Phase-controllable junctions also open up new possibilities for superconducting circuit elements such as superconducting `programmable logic', where they could function in superconducting analogues to field-programmable gate arrays.

  8. Investigation of Room temperature Ferromagnetism in Mn doped Ge

    Science.gov (United States)

    Colakerol Arslan, Leyla; Toydemir, Burcu; Onel, Aykut Can; Ertas, Merve; Doganay, Hatice; Gebze Inst of Tech Collaboration; Research Center Julich Collaboration

    2014-03-01

    We present a systematic investigation of structural, magnetic and electronic properties of MnxGe1 -x single crystals. MnxGe1-x films were grown by sequential deposition of Ge and Mn by molecular-beam epitaxy at low substrate temperatures in order to avoid precipitation of ferromagnetic Ge-Mn intermetallic compounds. Reflected high energy electron diffraction and x-ray diffraction observations revealed that films are epitaxially grown on Si (001) substrates from the initial stage without any other phase formation. Magnetic measurements carried out using a physical property measurement system showed that all samples exhibited ferromagnetism at room temperature. Electron spin resonance indicates the presence of magnetically ordered localized spins of divalent Mn ions. X-ray absorption measurements at the Mn L-edge confirm significant substitutional doping of Mn into Ge-sites. The ferromagnetism was mainly induced by Mn substitution for Ge site, and indirect exchange interaction of these magnetic ions with the intrinsic charge carriers is the origin of ferromagnetism. The magnetic interactions were better understood by codoping with nonmagnetic impurities. This work was supported by Marie-Curie Reintegration Grant (PIRG08-GA-2010-276973).

  9. Neutron scattering studies of ferromagnetic superconductor UGe2 under pressure

    Science.gov (United States)

    Sokolov, D. A.; Huxley, A. D.; Ritz, R.; Pfleiderer, C.; Keller, T.

    2010-03-01

    Observation of an unconventional superconductivity in ferromagnetic UGe2 when ferromagnetism is suppressed by pressure indicates a dramatic modification of its electronic structure near the Quantum Critical Point [1]. We present high resolution measurements of the lattice constants of ferromagnetic superconductor UGe2 under pressure probed by a novel technique, which utilizes Larmor precession of polarized neutrons and surpasses the resolution of conventional scattering methods by an order of magnitude. We have observed sharp anomalies at the Curie temperature, TC and at TX, which marks the crossover regime. Our studies under pressure of 10, and 12 kbar indicate that the sharp anomaly corresponding to TC shifted to lower temperature in agreement with a phase diagram. At the pressure corresponding to an onset of superconductivity, 10kbar, the lattice expansion corresponding to ferromagnetic transition undergoes a first order transition and increases by a factor of 3. The results indicate a complex response of the electronic structure of UGe2 to external pressure and suggest a strong magnetoelastic coupling as one of multiple energy scales that stabilize superconductivity in UGe2. [1] S. S. Saxena, et al., Nature 406, 587 (2000)

  10. Reply to "Comment on 'Performance of Halbach magnet with finite coercivity'"

    DEFF Research Database (Denmark)

    Insinga, Andrea Roberto; Bahl, Christian; Bjørk, Rasmus

    2017-01-01

    We reply to Dr. Xu's comment on our paper 'Performance of Halbach magnet arrays with finite coercivity' (JMMM 407 (2016), 369-376). Contrary to Dr. Xu's objections we show that the procedure employed by us correctly accounts for the shape effects of the magnet elements. We show that the partial d...

  11. Effect of microstructure on the coercivity of HDDR Nd-Fe-B permanent magnetic alloy

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The effect of the grain boundary microstructure on the anisotropy and coercivity was investigated in an HDDR Nd-Fe-B permanent magnetic alloy. Considering the special microstructure of its magnetic powder grain, an anisotropic theoretical model influenced simultaneously by the structure defect at the grain boundary and the exchange coupling interaction was put forward. The variations of the structure defect factors based on the nucleation and pinning mechanism with 2r0/lex (where r0 and lex are the defect thickness and the length of exchange coupling, respec-tively) were calculated. The results show that the coercivity mechanism of an HDDR Nd-Fe-B permanent magnetic alloy is greatly related to its microstructure defect at the grain boundary. For a fixed lex, when 2r0/lex < 1.67, the coercivity is controlled by the pinning mechanism; when 2r0/lex > 1.67, it is determined by the nucleation mechanism. The coercivity reaches the maximum when 2r0/lex = 1.67. The calcula-tion result is consistent well with the experimental result given by Morimoto et al.

  12. Differentiating between Confrontive and Coercive Kinds of Parental Power-Assertive Disciplinary Practices

    Science.gov (United States)

    Baumrind, Diana

    2012-01-01

    In this essay, I differentiate between coercive and confrontive kinds of power assertion to elucidate the significantly different effects on children's well-being of authoritarian and authoritative styles of parental authority. Although both parenting styles (in contrast to the permissive style) are equally demanding, forceful, and…

  13. Study of coercive measures in prisons and secure psychiatric hospitals: the views of inmates and caregivers

    Directory of Open Access Journals (Sweden)

    A. Runte-Geidel

    2014-06-01

    Full Text Available Aim: The aim of the study was to ascertain the opinions of both inmates and staff of prison establishments about the use of coercive measures justified for clinical reasons for people with mental health problems and about the need to create protocols to regulate the application of these measures. Method: These opinions were gathered in a Qualitative Study with Focus Groups (prison inmates and prison staff from the Granada Penitentiary Centre and the Alicante Penitentiary Psychiatric Hospital, both in Spain. Results: The results showed that forced medication is the most commonly used coercive measure in these institutions. The inmates did not understand and rejected the use of this measure, above all because they were poorly informed about their illness and the medication required to treat it. The staff however defended the benefits of psychiatric medicine, even when administered without the patient's consent. Conclusions: Both inmates and staff agreed that it would be useful to have a protocol regulating the use of coercive measures. The study has also identified a number of important factors that could help to reduce the need for coercive measures or make their use unnecessary.

  14. Differentiating between Confrontive and Coercive Kinds of Parental Power-Assertive Disciplinary Practices

    Science.gov (United States)

    Baumrind, Diana

    2012-01-01

    In this essay, I differentiate between coercive and confrontive kinds of power assertion to elucidate the significantly different effects on children's well-being of authoritarian and authoritative styles of parental authority. Although both parenting styles (in contrast to the permissive style) are equally demanding, forceful, and…

  15. Coercive and Supportive Teacher Behaviour: Within- and across-Lesson Associations with the Classroom Social Climate

    Science.gov (United States)

    Mainhard, M. Tim; Brekelmans, Mieke; Wubbels, Theo

    2011-01-01

    The present study investigated whether the classroom social climate varies between lessons. Specifically, the within- and across-lesson associations of coercive and supportive teacher behaviour incidents with the classroom social climate were studied. Participants in the study were 48 Dutch secondary school teachers and their classes, that is,…

  16. Sex-Symmetric Effects of Coercive Behaviors on Mental Health? Not Exactly

    Science.gov (United States)

    Prospero, Moises

    2009-01-01

    The present study tested a section of the model of coercion in intimate partner violence (IPV) by investigating the relationships among coercion, IPV and mental health symptoms. The study's sample consisted of 573 culturally diverse university students (age M = 21.4) who completed a survey that measured past IPV victimization, coercive behaviors,…

  17. Predicting commitment in young adults' physically aggressive and sexually coercive dating relationships.

    Science.gov (United States)

    Young, Brennan J; Furman, Wyndol

    2013-11-01

    Intimate partner violence often begins during the courtship stage of romantic relationships. Although some relationships dissolve as a result of aggression, other relationships remain intact, increasing the risk for escalated violence. The present study identified factors predictive of individual differences in emerging adults' commitment to physically aggressive or sexually coercive dating relationships. Specifically, Rusbult's Investment Model of romantic relationships (e.g., investment, satisfaction, quality of alternatives, and commitment) was applied to a longitudinal sample of 148 young adult women who reported experiencing aggression or coercion from their current partners. To further explain commitment within aggressive or coercive dating relationships, rejection sensitivity and anxious and avoidant romantic relational styles were included as predictors of the Investment Model variables. A more avoidant romantic style indirectly predicted commitment through relationship satisfaction and investment. Both commitment and rejection sensitivity significantly predicted continuing an aggressive or coercive relationship 6 months later. The present study improves our understanding of the processes involved in relationship commitment. Continuing to understand these processes will inform interventions that seek to help women who have decided to end aggressive or coercive dating relationships.

  18. Authorities' Coercive and Legitimate Power: The Impact on Cognitions Underlying Cooperation

    Science.gov (United States)

    Hofmann, Eva; Hartl, Barbara; Gangl, Katharina; Hartner-Tiefenthaler, Martina; Kirchler, Erich

    2017-01-01

    The execution of coercive and legitimate power by an authority assures cooperation and prohibits free-riding. While coercive power can be comprised of severe punishment and strict monitoring, legitimate power covers expert, and informative procedures. The perception of these powers wielded by authorities stimulates specific cognitions: trust, relational climates, and motives. With four experiments, the single and combined impact of coercive and legitimate power on these processes and on intended cooperation of n1 = 120, n2 = 130, n3 = 368, and n4 = 102 student participants is investigated within two exemplary contexts (tax contributions, insurance claims). Findings reveal that coercive power increases an antagonistic climate and enforced compliance, whereas legitimate power increases reason-based trust, a service climate, and voluntary cooperation. Unexpectedly, legitimate power is additionally having a negative effect on an antagonistic climate and a positive effect on enforced compliance; these findings lead to a modification of theoretical assumptions. However, solely reason-based trust, but not climate perceptions and motives, mediates the relationship between power and intended cooperation. Implications for theory and practice are discussed. PMID:28149286

  19. Magnetoresistive system with concentric ferromagnetic asymmetric nanorings

    Energy Technology Data Exchange (ETDEWEB)

    Avila, J. I., E-mail: javila@ulg.ac.be; Tumelero, M. A.; Pasa, A. A.; Viegas, A. D. C. [Laboratório de Filmes Finos e Superfícies (LFFS), Departamento de Física, Universidade Federal de Santa Catarina, CP 476 Florianópolis (Brazil)

    2015-03-14

    A structure consisting of two concentric asymmetric nanorings, each displaying vortex remanent states, is studied with micromagnetic calculations. By orienting in suitable directions, both the asymmetry of the rings and a uniform magnetic field, the vortices chiralities can be switched from parallel to antiparallel, obtaining in this way the analogue of the ferromagnetic and antiferromagnetic configurations found in bar magnets pairs. Conditions on the thickness of single rings to obtain vortex states, as well as formulas for their remanent magnetization are given. The concentric ring structure enables the creation of magnetoresistive systems comprising the qualities of magnetic nanorings, such as low stray fields and high stability. A possible application is as contacts in spin injection in semiconductors, and estimations obtained here of magnetoresistance change for a cylindrical spin injection based device show significant variations comparable to linear geometries.

  20. Spin relaxation in metallic ferromagnets

    Science.gov (United States)

    Berger, L.

    2011-02-01

    The Elliott theory of spin relaxation in metals and semiconductors is extended to metallic ferromagnets. Our treatment is based on the two-current model of Fert, Campbell, and Jaoul. The d→s electron-scattering process involved in spin relaxation is the inverse of the s→d process responsible for the anisotropic magnetoresistance (AMR). As a result, spin-relaxation rate 1/τsr and AMR Δρ are given by similar formulas, and are in a constant ratio if scattering is by solute atoms. Our treatment applies to nickel- and cobalt-based alloys which do not have spin-up 3d states at the Fermi level. This category includes many of the technologically important magnetic materials. And we show how to modify the theory to apply it to bcc iron-based alloys. We also treat the case of Permalloy Ni80Fe20 at finite temperature or in thin-film form, where several kinds of scatterers exist. Predicted values of 1/τsr and Δρ are plotted versus resistivity of the sample. These predictions are compared to values of 1/τsr and Δρ derived from ferromagnetic-resonance and AMR experiments in Permalloy.

  1. Room temperature ferromagnetism down to 10 nanometer Ni–Fe–Mo alloy films

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, Mitali, E-mail: akm@bose.res.in [Department of Materials Science, S.N. Bose National Centre for Basic Sciences, JD Block, Sector III, Salt Lake City, Kolkata 700098 (India); Majumdar, A.K. [Department of Materials Science, S.N. Bose National Centre for Basic Sciences, JD Block, Sector III, Salt Lake City, Kolkata 700098 (India); Ramakrishna Mission Vivekananda University, PO Belur Math, Howrah 711202 (India); Rai, S.; Tiwari, Pragya; Lodha, G.S. [Raja Ramanna Centre for Advanced Technology, Indore 452013 (India); Banerjee, A. [UGC-DAE Consortium for Scientific Research, Khandwa Road, Indore 452017 (India); Nair, K.G.M [Materials Science Division, Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamil Nadu 603102 (India); Sarkar, Jayanta [Low Temperature Laboratory, Aalto University, P.O. Box 15100, FI-00076 AALTO (Finland); Choudhary, R.J.; Phase, D.M. [UGC-DAE Consortium for Scientific Research, Khandwa Road, Indore 452017 (India)

    2013-10-31

    Magnetic behavior of a few pulsed laser deposited soft ferromagnetic thin films of Ni–Fe–Mo alloys of different thickness on sapphire single crystals is interpreted on the basis of their structural characteristics. Highly textured thin films have high void density due to island-like growth. X-ray reflectivity (XRR) of the thin films indicate that instead of a uniform density there are effectively three layers with density gradient across the thickness, which is further supported by atomic force microscopy and cross-sectional scanning electron microscopy. Rutherford backscattering spectroscopy and energy dispersive spectrum measurements reveal that the composition in the films is not too far from that of the bulk target with a trend of enhanced Fe yield in the films. The structural disorder strongly affected the magnetic property of the films resulting in much higher values of the Curie temperature T{sub C} and coercive field H{sub C} than those of the bulk targets. Bifurcations of low-field zero-field-cooled and field-cooled magnetization reflect the disorder-induced anisotropy in the thin films. The spin wave stiffness constants D are higher than their bulk counterparts which are supportive of the enhanced Fe yield in the films. The saturation magnetization, M calculated from measurements in field transverse to the films strongly supports the thickness found from XRR. Finally, even the 10 nm thin films have sizable M and H{sub C} and T{sub C} > 300 K, making them good candidates for magnetic applications. Overall, the magnetic behavior and the structural characteristics have reasonably complemented each other. - Highlights: • Correlated structural and magnetic properties of pulsed laser grown Ni–Fe–Mo films • Film thickness from scanning microscopy agrees with X-ray reflectivity analysis. • Experiments reveal that targets and the films have somewhat similar compositions. • Low-field M(T) shows spin-glass-like features in all films in contrast to

  2. Strain-Induced Ferromagnetism in Antiferromagnetic LuMnO3 Thin Films

    Science.gov (United States)

    White, J. S.; Bator, M.; Hu, Y.; Luetkens, H.; Stahn, J.; Capelli, S.; Das, S.; Döbeli, M.; Lippert, Th.; Malik, V. K.; Martynczuk, J.; Wokaun, A.; Kenzelmann, M.; Niedermayer, Ch.; Schneider, C. W.

    2013-07-01

    Single phase and strained LuMnO3 thin films are discovered to display coexisting ferromagnetic and antiferromagnetic orders. A large moment ferromagnetism (≈1μB), which is absent in bulk samples, is shown to display a magnetic moment distribution that is peaked at the highly strained substrate-film interface. We further show that the strain-induced ferromagnetism and the antiferromagnetic order are coupled via an exchange field, therefore demonstrating strained rare-earth manganite thin films as promising candidate systems for new multifunctional devices.

  3. Ferromagnetism in vanadium-doped Bi2Se3 topological insulator films

    Science.gov (United States)

    Zhang, Liguo; Zhao, Dapeng; Zang, Yunyi; Yuan, Yonghao; Jiang, Gaoyuan; Liao, Menghan; Zhang, Ding; He, Ke; Ma, Xucun; Xue, Qikun

    2017-07-01

    With molecular beam epitaxy, we grew uniformly vanadium-doped Bi2Se3 films which exhibit ferromagnetism with perpendicular magnetic anisotropy. A systematic study on the magneto-transport properties of the films revealed the crucial role of topological surface states in ferromagnetic coupling. The enhanced ferromagnetism with reduced carrier density can support quantum anomalous Hall phase in the films, though the anomalous Hall resistance is far from quantization due to high carrier density. The topological surface states of films exhibit a gap of ˜180 meV which is unlikely to be magnetically induced but may significantly influence the quantum anomalous Hall effect in the system.

  4. Antiferro-ferromagnetic transition in ultrathin Ni(OH)2 layer grown on graphene surface and observation of interlayer exchange coupling in Ni(OH)2/graphene/Ni(OH)2 nanostructures

    Science.gov (United States)

    Bhattacharya, Shatabda; Mathan Kumar, E.; Thapa, Ranjit; Saha, Shyamal K.

    2017-01-01

    The major limitation of using graphene as a potential spacer element in interlayer exchange coupling (IEC) might be due to destruction of ferromagnetism as a result of the charge transfer effect at the interface if a transition metal based ferromagnetic layer is grown on the graphene surface. To overcome this problem, we have used the antiferromagnetic Ni(OH)2 layer grown on the graphene surface to convert it ferromagnetic due to the charge transfer effect. By growing thin layers of Ni(OH)2 on both sides of the graphene surface, strong antiferromagnetic IEC with ultra-low coercivity (7 Oe) is observed. By lowering the nickel content, an ultrathin layer of Ni(OH)2 is grown on either side of graphene and shows complete ferromagnetism with a giant coercivity of 4154 Oe. Ab initio calculations have been done to substantiate this kind of charge transfer effect at the interface of Ni(OH)2 and graphene. Magnetotransport of the composite material is also investigated to understand the role of IEC in transport properties.

  5. Relation between Nd{sub 2}Fe{sub 14}B grain alignment and coercive force decrease ratio in NdFeB sintered magnets

    Energy Technology Data Exchange (ETDEWEB)

    Matsuura, Yutaka, E-mail: Yutaka_Matsuura@hitachi-metals.co.jp [Hitachi Metals Ltd., NEOMAX Division, 2-15-17 Egawa, Shimamoto-cho, Mishima-gun, Osaka 618-0013 (Japan); Hoshijima, Jun; Ishii, Rintaro [Hitachi Metals Ltd., NEOMAX Division, 2-15-17 Egawa, Shimamoto-cho, Mishima-gun, Osaka 618-0013 (Japan)

    2013-06-15

    It was found that the coercive force of NdFeB sintered magnets decreases as the Nd{sub 2}Fe{sub 14}B grain alignment improves. Because of this phenomenon, studies looked at the relation between this alignment and the coercive force decrease ratio. In experiments, it was expected that the coercive force of perfectly aligned magnet reached 0.7 of coercive force in istotropically aligned magnet. When it is postulated that the coercive force is determined by the Stoner–Wohlfarth model, coercive force increases as the alignment improves and it becomes difficult to explain our experimental data. On the other hand, when the coercive force is determined by magnetic domain wall motion, the coercive force decreases as the alignment improves and the coercive force of the perfectly aligned magnet reaches 1/√(2) of the isotropically aligned magnet. This tendency and value was very close to our data. It strongly suggests that the coercive force of NdFeB sintered magnets is determined by the domain wall motion. - Highlights: ► Coercive force of NdFeB sintered magnets decreases as grains alignment improves. ► Coercive force decrease ratio reaches −30% at the perfect aligned magnet. ►These experimental results are different from the Stoner–Wohlfarth model. ► The magnetic domain wall motion could explain this coercive force decrease ratio.

  6. Analysis of ultra-narrow ferromagnetic domain walls

    Energy Technology Data Exchange (ETDEWEB)

    Jenkins, Catherine; Paul, David

    2012-01-10

    New materials with high magnetic anisotropy will have domains separated by ultra-narrow ferromagnetic walls with widths on the order of a few unit cells, approaching the limit where the elastic continuum approximation often used in micromagnetic simulations is accurate. The limits of this approximation are explored, and the static and dynamic interactions with intrinsic crystalline defects and external driving elds are modeled. The results developed here will be important when considering the stability of ultra-high-density storage media.

  7. Long range anti-ferromagnetic spin model for prebiotic evolution

    Energy Technology Data Exchange (ETDEWEB)

    Nokura, Kazuo [Shonan Institute of Technology, Fujisawa 251-8511 (Japan)

    2003-11-28

    I propose and discuss a fitness function for one-dimensional binary monomer sequences of macromolecules for prebiotic evolution. The fitness function is defined by the free energy of polymers in the high temperature random coil phase. With repulsive interactions among the same kind of monomers, the free energy in the high temperature limit becomes the energy function of the one-dimensional long range anti-ferromagnetic spin model, which is shown to have a dynamical phase transition and glassy states.

  8. Optimization of a superconducting linear levitation system using a soft ferromagnet

    Energy Technology Data Exchange (ETDEWEB)

    Agramunt-Puig, Sebastia; Del-Valle, Nuria; Navau, Carles, E-mail: carles.navau@uab.cat; Sanchez, Alvaro

    2013-04-15

    Highlights: ► Study of the levitation of a superconducting bar over different magnetic guideways. ► A soft ferromagnet within permanent magnets improves levitation stability. ► We study the best geometry for large levitation force with full stability. -- Abstract: The use of guideways that combine permanent magnets and soft ferromagnetic materials is a common practice in magnetic levitation transport systems (maglevs) with bulk high-temperature superconductors. Theoretical tools to simulate in a realistic way both the behavior of all elements (permanent magnets, soft ferromagnet and superconductor) and their mutual effects are helpful to optimize the designs of real systems. Here we present a systematic study of the levitation of a maglev with translational symmetry consisting of a superconducting bar and a guideway with two identic permanent magnets and a soft ferromagnetic material between them. The system is simulated with a numerical model based on the energy minimization method that allows to analyze the mutual interaction of the superconductor, assumed to be in the critical state, and a soft ferromagnet with infinite susceptibility. Results indicate that introducing a soft ferromagnet within the permanent magnets not only increases the levitation force but also improves the stability. Besides, an estimation of the relative sizes and shapes of the soft ferromagnet, permanent magnets and the superconductor in order to obtain large levitation force with full stability is provided.

  9. Large coercivity FePt nanoparticles prepared via a one-step method without post-annealing

    Science.gov (United States)

    Zhang, Xinwei; Xiong, Fang; Jiang, Xiaohong; Hua, Zhenghe; Wang, Chunlei; Yang, Shaoguang

    2016-12-01

    L10 FePt nanoparticles were synthesized by a one-step sol-gel autocombustion method, using nontoxic ferric nitrate, hexachloroplatinic acid, and glycine as starting materials. In contrast to common syntheses, high-temperature post-annealing was not required to form the L10 FePt phase. The entire ignition and combustion process lasted no more than one minute. The L10 FePt phase could form in the presence of the high temperature caused by the exothermic combustion reaction. Adjusting the glycine-to-metal ion molar ratio from 0.5 to 6.0 allowed its effects on the phase transformation and magnetic properties of the products to be investigated. X-ray diffraction indicated that pure phase L10 FePt was obtained at a glycine-to-metal ion molar ratio of 1.5. Transmission electron microscopy indicated that the monodisperse L10 FePt nanoparticles had an average particle size of about 20 nm. The reasons why the as-synthesized L10 FePt nanoparticles were not aggregated and sintered could be attributed to the large amount, a gas is being released and the short duration of heat treatment during this combustion. This finding constituted a significant improvement in the synthesis of L10 FePt nanoparticles. Magnetic measurements showed that the L10 FePt nanoparticles had a coercivity of 15.8 kOe at 300 K, and 23.2 kOe at 5 K. Thus, the L10 FePt nanoparticles had a very large coercivity.

  10. Fabrication and magnetic properties of Co7oCu3o alloy nanowire arrays with high coercivity%高矫顽力的C0(70)Cu(30)合金纳米线阵列的制备及磁性研究

    Institute of Scientific and Technical Information of China (English)

    刘晓旭; 赵兴涛; 张颖; 朱岩; 吴光恒

    2012-01-01

    利用直流电化学沉积法,在多孔阳极氧化铝模板中首次制备出了具有[220]取向的单晶面心立方结构的CoCu固溶体合金纳米线阵列,其Co含量高达70%.透射电子显微镜显示纳米线均匀连续,具有较高的长径比,约为300.磁性测量表明所制备的Co(70)Cu(30)合金纳米线具有超高的矫顽力Hc//=2438 Oe(1 Oe=79.5775 A/m)和较高的矩形比S//=0.76,远高于以往报道的CoCu合金纳米线的磁性,分析表明磁性好的主要原因是由于较高Co含量和高形状各向异性.通过磁性测量和模型计算,得到Co(70)Cu(30)合金纳米线阵列在反磁化过程中遵从对称扇型转动的球链模型,并从结构的角度分析了Co(70)Cu(30)合金纳米线阵列的反磁化行为.%CoCu solid solution alloy nanowire arrays which exhibit the face-centered cubic structure with strong [220] orientation along the nanowire axes are fabricated for first time in the anodic aluminum oxide template by electrodeposition. The proportion of Co ingredient in CoCu alloy nanowire arrays is up to 70%. Transmission electron microscopy revealts that the nanowire arrays are uniform and continuous and have a large aspect ratio of about 300. The magnetic hysteresis loop demonstrates that the Cor0Cua0 alloy nanowire arrays have a large coercivity of about 2438 Oe and relatively large squareness of about 0.76 parallel to nanowire arrays which greatly exceeds the value previousely reported. Good magnetic properties are achieved due mainly to the larger proportion of Co ingredient than that in the normal CoCu alloy nanowire arrays and the large shape anisotropy. The results of magnetic measurement and the calculations from formula demonstrate that the symmetric fanning mechanism of sphere chains model could be employed to explain the magnetization reversal process which is related to the structure of the Co70Cu3o nanowire arrays.

  11. Persistent currents in ferromagnetic condensates

    Science.gov (United States)

    Lamacraft, Austen

    2017-06-01

    Persistent currents in Bose condensates with a scalar order parameter are stabilized by the topology of the order parameter manifold. In condensates with multicomponent order parameters it is topologically possible for supercurrents to "unwind" without leaving the manifold. We study the energetics of this process in the case of ferromagnetic condensates using a long wavelength energy functional that includes both the superfluid and spin stiffnesses. Exploiting analogies to an elastic rod and rigid body motion, we show that the current carrying state in a 1D ring geometry transitions between a spin helix in the energy minima and a solitonlike configuration at the maxima. The relevance to recent experiments in ultracold atoms is briefly discussed.

  12. Effect of induced shape anisotropy on magnetic properties of ferromagnetic cobalt nanocubes.

    Science.gov (United States)

    Srikala, D; Singh, V N; Banerjee, A; Mehta, B R

    2010-12-01

    We report on the synthesis of ferromagnetic cobalt nanocubes of various sizes using thermal pyrolysis method and the effect of shape anisotropy on the static and dynamic magnetic properties were studied. Shape anisotropy of approximately 10% was introduced in nanocubes by making nanodiscs using a linear chain amine surfactant during synthesis process. It has been observed that, ferromagnetism persisted above room temperature and a sharp drop in magnetic moment at low temperatures in zero-field cooled magnetization may be associated with the spin disorder due to the effective anisotropy present in the system. Dynamic magnetic properties were studied using RF transverse susceptibility measurements at different temperatures and the singularities due to anisotropy fields were probed at low temperatures. Symmetrically located broad peaks are observed in the frozen state at the effective anisotropy fields and the peak structure is strongly affected by shape anisotropy and temperature. Irrespective of size the shape anisotropy gave rise to higher coercive fields and larger transverse susceptibility ratio at all temperatures. The role of shape anisotropy and the size of the particles on the observed magnetic behaviour were discussed.

  13. Direct Synthesis and Size Selection of Ferromagnetic FePt Nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Wellons, M.S. [Vanderbilt University; MorrisIII, William H [Vanderbilt University; Gai, Zheng [ORNL; Shen, Jian [ORNL; Bentley, James [ORNL; Wittig, J. E. [Vanderbilt University; Lukehart, C.M. [Vanderbilt University

    2007-01-01

    A one-step synthesis of L10 FePt nanoparticles ca. 17.0 nm in diameter by reductive decomposition of the single-source precursor, FePt(CO)4dppmBr2, on a water-soluble support (Na2CO3) is demonstrated. Direct conversion of a FePt(CO)4dppmBr2/Na2CO3 composite to a L10 FePt/Na2CO3 nanocomposite occurs at 600 C under getter gas with metal-ion reduction and minimal nanoparticle coalescence. Triturating the resulting nanocomposite with water simultaneously dissolves the sodium carbonate solid support and precipitates the formed fct FePt nanoparticles. As-prepared FePt nanoparticles are ferromagnetic and exhibit coercivities of 14.5 kOe at 300 K and 21.8 kOe at 5 K. When capped by functionalized methoxypoly(ethylene glycol) surfactant molecules, as-prepared, polydisperse ferromagnetic FePt nanoparticles can be dispersed and size-selected by fractional precipitation.

  14. Optimizing magneto-optical effects in the ferromagnetic semiconductor GaMnAs

    Energy Technology Data Exchange (ETDEWEB)

    Riahi, H., E-mail: hassenriahi1987@gmail.com [Laboratoire Matériaux Molécules et Applications, IPEST, Université de Carthage, La Marsa (Tunisia); Thevenard, L. [CNRS, UMR7588, Institut des Nanosciences de Paris, 4 place Jussieu, 75005 Paris (France); Sorbonne Universités, UPMC Université Paris 06, UMR7588, 4 place Jussieu, 75005 Paris (France); Maaref, M.A. [Laboratoire Matériaux Molécules et Applications, IPEST, Université de Carthage, La Marsa (Tunisia); Gallas, B. [CNRS, UMR7588, Institut des Nanosciences de Paris, 4 place Jussieu, 75005 Paris (France); Sorbonne Universités, UPMC Université Paris 06, UMR7588, 4 place Jussieu, 75005 Paris (France); Lemaître, A. [Laboratoire de Photonique et de Nanostructures – CNRS, Route de Nozay, 91460 Marcoussis (France); Gourdon, C [CNRS, UMR7588, Institut des Nanosciences de Paris, 4 place Jussieu, 75005 Paris (France); Sorbonne Universités, UPMC Université Paris 06, UMR7588, 4 place Jussieu, 75005 Paris (France)

    2015-12-01

    A trilayer of the ferromagnetic semiconductor GaMnAs, a SiO{sub 2} buffer layer and a piezoelectric ZnO layer, is investigated in view of its use in device implementation to study surface acoustic wave-assisted magnetization switching. The magneto-optical properties: Kerr rotation and ellipticity and magnetic contrast in Kerr microscopy images are investigated as a function of temperature. While the ZnO layer prevents any good quality imaging of magnetic domains, we show that with the SiO{sub 2} layer only the polar Kerr rotation and the magnetic contrast are increased by a factor of 2. This result is in good quantitative agreement with calculations using an optical interference model and could be further improved. The detrimental effects of the dielectric layers capping on the Curie temperature and coercive field of the GaMnAs layer can be kept to a reasonable level. - Highlights: • GaMnAs/SiO{sub 2}/ZnO studied for surface acoustic wave assisted magnetization switching. • The Kerr rotation and magneticcontrast increase by a factor 2 with SiO{sub 2} on GaMnAs. • Good quantitative agreement with an optical interference model. • Little detrimental effect of SiO{sub 2} and ZnO on the ferromagnetic properties of GaMnAs.

  15. Strain induced room temperature ferromagnetism in epitaxial magnesium oxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Zhenghe; Kim, Ki Wook [Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States); Nori, Sudhakar; Lee, Yi-Fang; Narayan, Jagdish [Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States); Kumar, D. [Department of Mechanical Engineering, North Carolina A & T State University, Greensboro, North Carolina 27411 (United States); Wu, Fan [Princeton Institute for the Science and Technology of Materials (PRISM), Princeton University, Princeton, New Jersey 08540 (United States); Prater, J. T. [Materials Science Division, Army Research Office, Research Triangle Park, North Carolina 27709 (United States)

    2015-10-28

    We report on the epitaxial growth and room-temperature ferromagnetic properties of MgO thin films deposited on hexagonal c-sapphire substrates by pulsed laser deposition. The epitaxial nature of the films has been confirmed by both θ-2θ and φ-scans of X-ray diffraction pattern. Even though bulk MgO is a nonmagnetic insulator, we have found that the MgO films exhibit ferromagnetism and hysteresis loops yielding a maximum saturation magnetization up to 17 emu/cc and large coercivity, H{sub c} = 1200 Oe. We have also found that the saturation magnetization gets enhanced and that the crystallization degraded with decreased growth temperature, suggesting that the origin of our magnetic coupling could be point defects manifested by the strain in the films. X-ray (θ-2θ) diffraction peak shift and strain analysis clearly support the presence of strain in films resulting from the presence of point defects. Based on careful investigations using secondary ion mass spectrometer and X-ray photoelectron spectroscopy studies, we have ruled out the possibility of the presence of any external magnetic impurities. We discuss the critical role of microstructural characteristics and associated strain on the physical properties of the MgO films and establish a correlation between defects and magnetic properties.

  16. Structural and magnetic properties of GeMn layers; High Curie temperature ferromagnetism induced by self organized GeMn nano-columns

    Energy Technology Data Exchange (ETDEWEB)

    Devillers, T.; Jamet, M.; Barski, A.; Poydenot, V.; Dujardin, R.; Bayle Guillemaud, P.; Bellet Amalric, E.; Mattana, R. [Departement de Recherche Fondamentale sur la Matiere Condensee, Service de Physique des Materiaux et Microstructures, CEA Grenoble, 17 avenue des Martyrs, 38054 Grenoble Cedex (France); Rothman, J. [Laboratoire d' Electronique de Technologie de l' Information, Laboratoire Infrarouge, CEA Grenoble, 17 avenue des Martyrs, 38054 Grenoble Cedex (France); Cibert, J. [Laboratoire Louis Neel, CNRS, BP166, 38042 Grenoble Cedex 9 (France); Tatarenko, S. [Laboratoire de Spectrometrie Physique, BP 87, 38402 Saint-Martin d' Heres (France)

    2007-01-15

    In this paper we report on the structural and magnetic properties of GeMn layers grown on Ge(001). We show that for the optimized Mn concentration (6%) and for optimized growth temperature (close to 130 C), GeMn samples exhibit a high Curie temperature (higher than 400 K) and Anomalous Hall Effect up to room temperature. Our GeMn layers grown at low temperature (70 C to 130 C) are composed of vertical Mn-rich nano-columns. Samples grown at temperatures higher than 130 C contain GeMn nanoclusters. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  17. Ferromagnetic bond of Li10 cluster: An alternative approach in terms of effective ferromagnetic sites

    Science.gov (United States)

    Donoso, Roberto; Rössler, Jaime; Llano-Gil, Sandra; Fuentealba, Patricio; Cárdenas, Carlos

    2016-09-01

    In this work, a model to explain the unusual stability of atomic lithium clusters in their highest spin multiplicity is presented and used to describe the ferromagnetic bonding of high-spin Li10 and Li8 clusters. The model associates the (lack of-)fitness of Heisenberg Hamiltonian with the degree of (de-)localization of the valence electrons in the cluster. It is shown that a regular Heisenberg Hamiltonian with four coupling constants cannot fully explain the energy of the different spin states. However, a more simple model in which electrons are located not at the position of the nuclei but at the position of the attractors of the electron localization function succeeds in explaining the energy spectrum and, at the same time, explains the ferromagnetic bond found by Shaik using arguments of valence bond theory. In this way, two different points of view, one more often used in physics, the Heisenberg model, and the other in chemistry, valence bond, come to the same answer to explain those atypical bonds.

  18. Valley and spin resonant tunneling current in ferromagnetic/nonmagnetic/ferromagnetic silicene junction

    Directory of Open Access Journals (Sweden)

    Yaser Hajati

    2016-02-01

    Full Text Available We study the transport properties in a ferromagnetic/nonmagnetic/ferromagnetic (FNF silicene junction in which an electrostatic gate potential, U, is attached to the nonmagnetic region. We show that the electrostatic gate potential U is a useful probe to control the band structure, quasi-bound states in the nonmagnetic barrier as well as the transport properties of the FNF silicene junction. In particular, by introducing the electrostatic gate potential, both the spin and valley conductances of the junction show an oscillatory behavior. The amplitude and frequency of such oscillations can be controlled by U. As an important result, we found that by increasing U, the second characteristic of the Klein tunneling is satisfied as a result of the quasiparticles chirality which can penetrate through a potential barrier. Moreover, it is found that for special values of U, the junction shows a gap in the spin and valley-resolve conductance and the amplitude of this gap is only controlled by the on-site potential difference, Δz. Our findings of high controllability of the spin and valley transport in such a FNF silicene junction may improve the performance of nano-electronics and spintronics devices.

  19. Ferromagnetic Resonance and Spin Hall Torque for Nanometric Thick Magnetic Insulator |Normal Metal Bilayers System

    OpenAIRE

    2014-01-01

    In bilayer system, consists of ferromagnetic insulator, high spin orbit coupling normal metal (FM|NM), a new ferromagnetic resonance (FMR) damping that depends on varying the thickness of the normal metal observed. This new enhancement in the damping attributed to magnetic proximity effect (MPE) at the interface, which is verified by the increases in the real part of spin mixing conductance. Spin pumping phenomena occurs when pure spin current can flow into the normal metal when the ferromagn...

  20. Magnetization of Coupled Ultrathin Ferromagnetic Films

    Institute of Scientific and Technical Information of China (English)

    WANG Huai-Yu; ZHOU Yun-Song; WANG Chong-Yu

    2002-01-01

    The magnetization of coupled ferromagnetic films is calculated by Green's function method. The coupling can either be ferromagnetic or antiferromagnetic. For the latter case, a concept of pseudo-spin is suggested to make calculation possible. A pseudo-spin is actually an anti-spin with its properties being analogue to other known anti particles such as a hole. The decreasing of Curie point as the coupling strength decays is computed. It is noted that with the same strength, antiferromagnetic coupling has higher Curie point than ferromagnetic coupling.

  1. Investigation of ferromagnetism in Mn{sub 1-x}Al{sub 1-y}Fe{sub x+y} alloys

    Energy Technology Data Exchange (ETDEWEB)

    Paduani, C. [DF-UFSC, Florianopolis, CEP 88040-900, SC (Brazil)], E-mail: paduani@fisica.ufsc.br; Schaf, J. [IF-UFRGS, Porto Alegre, CEP 91501-970, RS (Brazil); Persiano, A.I.C. [DF-ICEX-UFMG, Belo Horizonte, CP 702, 30161-970, MG (Brazil); Ardisson, J.D. [CDTN, Belo Horizonte, CEP 30123-970, MG (Brazil)

    2009-06-24

    The Mn{sub 1-x}Al{sub 1-y}Fe{sub x+y}alloys have been magnetically and structurally characterized. X-ray diffraction measurements showed that all investigated specimens possess predominantly a crystallographic phase with B2 structure, besides two minority phases in tiny proportion with structures {beta}-Mn and {eta} (fct, Al-rich). These alloys exhibit no hysteresis nor coercivity. Results of dc magnetization measurements at low temperatures suggest that a ferromagnetic (FM) behavior is ascribed to the main phase with B2 structure, which is in agreement with earlier investigations, although the coexistence of both antiferromagnetic and ferromagnetic exchanges is inferred from the results of low temperature magnetometry and Moessbauer spectroscopy. A remarkable feature observed in the M(T) curves for these alloys at low temperatures is the abrupt decrease in the total magnetization which occurs with the increase of temperature.

  2. 铁磁质磁滞回线的动态测量%THE LOOP-LINE DYNAMIC MEASURE OF FERROMAGNET HYSTERESIS

    Institute of Scientific and Technical Information of China (English)

    姚有峰; 沈金玲

    2001-01-01

    本文介绍了如何利用示波器观察和测量铁磁质的动态磁滞回线、剩磁、矫顽力等.并通过实验说明了铁磁质的磁化特性不仅与材料自身性质有关,还与磁化场的波形及频率有关.%It is introduced in the following essay that how to watch andmeasure the dynamic hysteresis loop-line,residual magnet and coercive force of ferromagnet through an oscillograph and illustrate by experimeat that the ferromagnet magnetism is relevant to its own quality and the wave and frequency of magnetic field.

  3. Coercivity enhancement of hot-deformed Nd-Fe-B magnets by the eutectic grain boundary diffusion process

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Lihua [Elements Strategy Initiative Center for Magnetic Materials, National Institute of Materials Science, Tsukuba 305-0047 (Japan); Graduate School of Pure and Applied Science, University of Tsukuba, Tsukuba 305-8577 (Japan); Sepehri-Amin, H.; Ohkubo, T. [Elements Strategy Initiative Center for Magnetic Materials, National Institute of Materials Science, Tsukuba 305-0047 (Japan); Yano, M.; Kato, A.; Shoji, T. [Toyota Motor Corporation, Advanced Material Engineering Div., Susono 410-1193 (Japan); Hono, K., E-mail: kazuhiro.hono@nims.go.jp [Elements Strategy Initiative Center for Magnetic Materials, National Institute of Materials Science, Tsukuba 305-0047 (Japan); Graduate School of Pure and Applied Science, University of Tsukuba, Tsukuba 305-8577 (Japan)

    2016-05-05

    Nd-M (M = Al, Cu, Ga, Zn, Mn) alloys with compositions close to eutectic points were investigated as diffusion sources for the grain boundary diffusion process to hot-deformed Nd-Fe-B magnets. Coercivity enhancement was observed for most of the alloys. Among them, the sample processed with Nd{sub 90}Al{sub 10} exhibited the highest coercivity of 2.5 T at room temperature. However, the sample processed with Nd{sub 70}Cu{sub 30} exhibited the highest coercivity of 0.7 T at 200 {sup °}C. Microstructural observations using scanning transmission electron microscope (STEM) showed that nonferromagnetic Nd-rich intergranular phase envelops the Nd{sub 2}Fe{sub 14}B grains after the diffusion process. Abnormal grain growth and the dissolution of Al into the Nd{sub 2}Fe{sub 14}B grains were observed in the sample processed with Nd{sub 90}Al{sub 10}, which explains its inferior thermal stability of coercivity compared to the sample processed with Nd{sub 70}Cu{sub 30}. The coercivity enhancement and poor thermal stability of the coercivity of the Nd{sub 90}Al{sub 10} diffusion-processed sample are discussed based on microstructure studies by transmission electron microscopy. - Highlights: • Coercivity of hot-deformed Nd-Fe-B magnets is enhanced by the infiltration of various R-TM eutectic alloys. • The sample infiltrated with Nd{sub 90}Al{sub 10} shows the highest coercivity of 2.5 T at room temperature. • At 200 °C, Nd{sub 70}Cu{sub 30} diffusion-processed sample possesses the highest coercivity of 0.7 T.

  4. Optimization of Pr(0.9)Ca(0.1)MnO(3) thin films and observation of coexisting spin-glass and ferromagnetic phases at low temperature.

    Science.gov (United States)

    Svedberg, M; Majumdar, S; Huhtinen, H; Paturi, P; Granroth, S

    2011-09-28

    Optimization of thin films of small bandwidth manganite, Pr(1-x)Ca(x)MnO3 (for x = 0.1), and their magnetic properties are investigated. Using different pulsed laser deposition (PLD) conditions, several films were deposited from the stoichiometric target material on SrTiO3 (001) substrate and their thorough structural and magnetic characterizations were carried out using x-ray diffraction, atomic force microscopy, x-ray photoelectron spectroscopy (XPS), SQUID magnetometry and ac susceptibility measurements. A systematic investigation shows that irrespective of the growth temperature (between 550 and 750 °C), all the as-deposited films have twin boundaries and magnetic double phases. Post-annealing in partial or full oxygen pressure removes the extra phase and the twin boundaries. Zero-field-cooled magnetization data show an antiferromagnetic to paramagnetic transition at around 100 K whereas the field-cooled magnetization data exhibit a paramagnetic to ferromagnetic transition close to 120 K. However, depending on the oxygen treatments, the saturation magnetization and Curie temperature of the films change significantly. Redistribution of oxygen vacancies due to annealing treatments leading to a change in ratio of Mn3+ and Mn4+ in the films is observed from XPS measurements. Low temperature (below 100 K) dc magnetization of these films shows metamagnetic transition, high coercivity and irreversibility magnetizations, indicating the presence of a spin-glass phase at low temperature. The frequency dependent shift in spin-glass freezing temperature from ac susceptibility measurement confirms the coexistence of spin-glass and ferromagnetic phases in these samples at low temperature.

  5. Room temperature ferromagnetism of Mn-doped SnO{sub 2} thin films fabricated by sol-gel method

    Energy Technology Data Exchange (ETDEWEB)

    Xiao Yuhua [Key Laboratory for Magnetism and Magnetic Materials of Ministry of Education, Lanzhou University, Lanzhou 730000 (China)], E-mail: xiaoyh04@lzu.cn; Ge Shihui; Xi Li; Zuo Yalu; Zhou Xueyun; Zhang Bangmin; Zhang Li [Key Laboratory for Magnetism and Magnetic Materials of Ministry of Education, Lanzhou University, Lanzhou 730000 (China); Li Chengxian; Han Xiufeng; Wen Zhenchao [State Key Laboratory of Magnetism, Institute of Physics, Chinese Academy of Sciences, Beijing 100080 (China)

    2008-09-15

    Sn{sub 1-x}Mn{sub x}O{sub 2} (x {<=} 0.11) thin films spin-coated on Si (1 1 1) substrate were fabricated by sol-gel method. X-ray diffraction revealed that single-phase rutile polycrystalline structure was obtained for x up to about 0.078. Evolution of the lattice parameters and X-ray photoelectron spectroscopy studies confirmed the incorporation of Mn{sup 3+} cations into rutile SnO{sub 2} lattice. Magnetic measurements revealed that all Sn{sub 1-x}Mn{sub x}O{sub 2} thin films exhibit ferromagnetism at room temperature, which is identified as an intrinsic characteristic. Magnetization data showed that the average magnetic moment per Mn atom decreased and the coercivity increases with increasing Mn content. The origin of room temperature ferromagnetism can be understood in terms of the percolation of the bound magnetic polaron. Our experimental results prove that the sol-gel method is an effective method for fabrication of transition metal doped SnO{sub 2} nanostructures with room temperature ferromagnetism by chemical synthesis.

  6. Exchange bias for ferromagnetic/antiferromagnetic bilayers with the uniaxial anisotropy being misaligned with the exchange anisotropy

    Institute of Scientific and Technical Information of China (English)

    BAI YuHao; YUN GuoHong

    2009-01-01

    Using the principle of minimal energy and S-W model, the exchange bias for ferromagnetic/antiferromagnetic bilayers has been investigated when the uniaxial anisotropy is misaligned with the exchange anisotropy. According to the relation between the energy of the bilayer and the orientation of ferromagnetic magnetization, it is found that the bilayer will be in the monostable state or bistable state when the external field is absent in the initial magnetization state. The monostable state or bistable state of the bilayer, which determines the angular dependence of exchange bias directly, is controlled by the competition between the exchange anisotropy and uniaxial anisotropy. When the applied field is parallel to the intrinsic easy axes and intrinsic hard axes, one of the switching fields of the hysteresis loop shows an abrupt change, while the other keep continuous by analyzing the magnetization reversal processes. Consequently, the exchange bias field and the coercivity will show a jump phenomenon.The numerical calculations indicate that both the magnitude and direction of the exchange anisotropy will significantly affect the angular dependence of exchange bias. The jump phenomenon of exchange bias is an intrinsic property of the bilayer, which is dependent on the interracial exchange-coupling constant, the orientation of the exchange anisotropy, the thickness and uniaxial anisotropy constant of the ferromagnetic layer.

  7. Exchange bias for ferromagnetic/antiferromagnetic bilayers with the uniaxial anisotropy being misaligned with the exchange anisotropy

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Using the principle of minimal energy and S-W model,the exchange bias for ferromagnetic/antiferro-magnetic bilayers has been investigated when the uniaxial anisotropy is misaligned with the exchange anisotropy. According to the relation between the energy of the bilayer and the orientation of ferro-magnetic magnetization,it is found that the bilayer will be in the monostable state or bistable state when the external field is absent in the initial magnetization state. The monostable state or bistable state of the bilayer,which determines the angular dependence of exchange bias directly,is controlled by the competition between the exchange anisotropy and uniaxial anisotropy. When the applied field is parallel to the intrinsic easy axes and intrinsic hard axes,one of the switching fields of the hysteresis loop shows an abrupt change,while the other keep continuous by analyzing the magnetization reversal processes. Consequently,the exchange bias field and the coercivity will show a jump phenomenon. The numerical calculations indicate that both the magnitude and direction of the exchange anisotropy will significantly affect the angular dependence of exchange bias. The jump phenomenon of exchange bias is an intrinsic property of the bilayer,which is dependent on the interfacial exchange-coupling constant,the orientation of the exchange anisotropy,the thickness and uniaxial anisotropy constant of the ferromagnetic layer.

  8. Crossover from antiferro-to-ferromagnetism on substitution of Co by V in RE(Co1-xVx)2Si2 (0 ≤ x ≤ 0.35)

    Science.gov (United States)

    Chowdhury, Rajeswari Roy; Dhara, Susmita; Bandyopadhyay, Bilwadal

    2015-06-01

    In PrCo2Si2 and NdCo2Si2, Co has been partially substituted by V. Vanadium having a larger atomic radius than cobalt, the substitution results in a negative pressure affecting the magnetic properties of the compound. The samples RE(Co1-xVx)2Si2 (RE = Pr, Nd; x = 0, 0.20, 0.35) were prepared by melting the corresponding elements in arc furnace and characterized using x-ray diffraction. Magnetometric measurements show that the parent compounds PrCo2Si2 and NdCo2Si2 are antiferromagnetic, as reported. With doping, ferrimagnetic behaviour is observed from temperature dependence of inverse susceptibility at about 50 K. At lower than 30 K, the magnetizations tend to saturate at high fields. From the field dependence of magnetization, the hysteresis loops and also coercive fields as observed, the samples exhibit ferromagnetism below ˜ 30 K. Exchange bias effect is also observed in the high V containing sample. The specific heat studies of the samples show transitions consistent with the magnetization data. Pr(Co0.65V0.35)2Si2 and Nd(Co0.65V0.35)2Si2 show magnetoresistance (MR) of ˜ 25% and 15%, respectively, at 4 K and 9 tesla.

  9. Ultra high sensitivity, room temperature magneto-optic field sensor made of ferromagnetic bismuth rare-earth iron garnet thick films

    Science.gov (United States)

    Wu, Dong Ho; Garzarella, Anthony; Fratello, Vince

    2011-03-01

    The ferrimagnetic bismuth rare-earth iron garnet (BiGdLu)3 (FeGa)5 O12 thick film has a specific Faraday rotation θS of 0.09 °/mm at 1550 nm and excellent transparency at infrared wavelengths. Using the thick film we recently have demonstrated a magneto-optic (MO) field sensor with a sensitivity of about 10-14 T/ Hz 1/2 , comparable with SQUID. The sensor is made of all dielectric materials including the bismuth rare-earth iron garnet and optical fibers, and is operated at room temperature without any cooling requirement. The MO field sensor is capable to measure a magnetic field over a very large dynamic range (from a very weak field to a very high magnetic field exceeding several hundred Tesla) and over a very wide frequency range, which may be from DC to a few hundred GHz. However, presently, our MO sensor's frequency range is limited from DC to 2 GHz. We think that this limited frequency range is due to the presence of magnetic domains in the bismuth rare-earth iron garnet film. In this presentation we will report our experimental results obtained from this MO field sensor as well as the effect of magnetic domains.

  10. Large magnetocaloric effect, moment, and coercivity enhancement after coating Ni nanoparticles with Ag.

    Science.gov (United States)

    Srinath, Sanyadanam; Poddar, Pankaj; Das, Raja; Sidhaye, Deepti; Prasad, Bhagavatula Lakshmi Vara; Gass, James; Srikanth, Hariharan

    2014-06-06

    We observe a large magnetocaloric effect in monodisperse Ni and Ni(core)Ag(shell) nanoparticles in the superparamagnetic region. The organically passivated Ni nanospheres show a large magnetic entropy change of 0.9 J kg(-1)  K for a 3 T magnetic field change. In comparison to the surfactant-coated Ni nanoparticles, the Ni(core)Ag(shell) nanoparticles show an enhanced coercivity, magnetization, and magnetocaloric effect (1.3 kg K for a 3 T magnetic field change). The coercivity at 10 K increases from 360 Oe for Ni nanoparticles to nearly 610 Oe for Ni(core)Ag(shell) particles. This large enhancement is attributed to the enhanced inter-particle interaction, which is mediated by the metallic shell, over the relatively weaker dipolar interaction in the surfactant-coated Ni nanoparticles, and to modification of the surface spin structure.

  11. Angular dependence of coercivity with temperature in Co-based nanowires

    Science.gov (United States)

    Bran, C.; Espejo, A. P.; Palmero, E. M.; Escrig, J.; Vázquez, M.

    2015-12-01

    The magnetic behavior of arrays of Co and CoFe nanowire arrays has been measured in the temperature range between 100 and 300 K. We have paid particular attention to the angular dependence of magnetic properties on the applied magnetic field orientation. The experimental angular dependence of coercivity has been modeled according to micromagnetic analytical calculations, and we found that the propagation of a transversal domain wall mode gives the best fitting with experimental observations. That reversal mode holds in the whole measuring temperature range, for nanowires with different diameters and crystalline structure. Moreover, the quantitative strength of the magnetocrystalline anisotropy and its magnetization easy axis are determined to depend on the crystalline structure and nanowires diameter. The evolution of the magnetocrystalline anisotropy with temperature for nanowires with different composition gives rise to an opposite evolution of coercivity with increasing temperature: it decreases for CoFe while it increases for Co nanowire arrays.

  12. Magnetic Relaxation and Coercivity of Finite-size Single Chain Magnets

    Science.gov (United States)

    Gredig, Thomas; Byrne, Matthew; Vindigni, Alessandro

    2015-03-01

    The magnetic coercivity of hysteresis loops for iron phthalocyanine thin films depends on the iron chain length and the measurement sweep speed below 5 K. The average one-dimensional (1D) iron chain length in samples is controlled during deposition. These 1D iron chains can be tuned over one order of magnitude with the shortest chain having 100 elements. We show that the coercivity strongly increases with the average length of the iron chains, which self-assemble parallel to the substrate surface. Magnetic relaxation and sweep speed data suggest spin dynamics play an important role. Implementing Glauber dynamics with a finite-sized 1D Ising model provides qualitative agreement with experimental data. This suggests that iron phthalocyanine thin films act as single chain magnets and provide a solid test system for tunable finite-sized magnetic chains. This research has been supported with the NSF-DMR 0847552 grant.

  13. Angular dependence of coercivity with temperature in Co-based nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Bran, C., E-mail: cristina.bran@icmm.csic.es [Institute of Materials Science of Madrid, CSIC, 28049 Madrid (Spain); Espejo, A.P. [Departamento de Física, Universidad de Santiago de Chile (USACH) and Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Avenida Ecuador 3493, 9170124 Santiago (Chile); Palmero, E.M. [Institute of Materials Science of Madrid, CSIC, 28049 Madrid (Spain); Escrig, J. [Departamento de Física, Universidad de Santiago de Chile (USACH) and Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Avenida Ecuador 3493, 9170124 Santiago (Chile); Vázquez, M. [Institute of Materials Science of Madrid, CSIC, 28049 Madrid (Spain)

    2015-12-15

    The magnetic behavior of arrays of Co and CoFe nanowire arrays has been measured in the temperature range between 100 and 300 K. We have paid particular attention to the angular dependence of magnetic properties on the applied magnetic field orientation. The experimental angular dependence of coercivity has been modeled according to micromagnetic analytical calculations, and we found that the propagation of a transversal domain wall mode gives the best fitting with experimental observations. That reversal mode holds in the whole measuring temperature range, for nanowires with different diameters and crystalline structure. Moreover, the quantitative strength of the magnetocrystalline anisotropy and its magnetization easy axis are determined to depend on the crystalline structure and nanowires diameter. The evolution of the magnetocrystalline anisotropy with temperature for nanowires with different composition gives rise to an opposite evolution of coercivity with increasing temperature: it decreases for CoFe while it increases for Co nanowire arrays.

  14. Materials optimization and ghz spin dynamics of metallic ferromagnetic thin film heterostructures

    Science.gov (United States)

    Cheng, Cheng

    Metallic ferromagnetic (FM) thin film heterostructures play an important role in emerging magnetoelectronic devices, which introduce the spin degree of freedom of electrons into conventional charge-based electronic devices. As the majority of magnetoelectronic devices operate in the GHz frequency range, it is critical to understand the high-frequency magnetization dynamics in these structures. In this thesis, we start with the static magnetic properties of FM thin films and their optimization via the field-sputtering process incorporating a specially designed in-situ electromagnet. We focus on the origins of anisotropy and hysteresis/coercivity in soft magnetic thin films, which are most relevant to magentic susceptibility and power dissipation in applications in the sub-GHz frequency regime, such as magnetic-core integrated inductors. Next we explore GHz magnetization dynamics in thin-film heterostructures, both in semi-infinite samples and confined geometries. All investigations are rooted in the Landau-Lifshitz-Gilbert (LLG) equation, the equation of motion for magnetization. The phenomenological Gilbert damping parameter in the LLG equation has been interpreted, since the 1970's, in terms of the electrical resistivity. We present the first interpretation of the size effect in Gilbert damping in single metallic FM films based on this electron theory of damping. The LLG equation is intrinsically nonlinear, which provides possibilities for rf signal processing. We analyze the frequency doubling effect at small-angle magnetization precession from the first-order expansion of the LLG equation, and demonstrate second harmonic generation from Ni81 Fe19 (Permalloy) thin film under ferromagnetic resonance (FMR), three orders of magnitude more efficient than in ferrites traditionally used in rf devices. Though the efficiency is less than in semiconductor devices, we provide field- and frequency-selectivity in the second harmonic generation. To address further the

  15. Cognitive Targeting: A Coercive Air Power Theory for Conventional Escalation Control Against Nuclear Armed Adversaries

    Science.gov (United States)

    2016-06-01

    COGNITIVE TARGETING: A COERCIVE AIR POWER THEORY FOR CONVENTIONAL ESCALATION CONTROL AGAINST NUCLEAR- ARMED ADVERSARIES BY PAUL A. GOOSSEN, MAJ...process with both critical analysis and with encouragement. Most importantly, I want to express my most sincere appreciation to my family. Their love...regional powers such as North Korea, the post-Cold War geo-political environment characterized by U.S. hegemony is fading away. In the emerging

  16. Covert Coercion: A Formal Analysis of Unconventional Warfare as an Interstate Coercive Policy Option

    Science.gov (United States)

    2013-06-01

    coercive effect, then proxy armies may be used to preserve the military resources of the coercing state.36 Nutter explicates further, “The reasons...food. Consider a large slice of pizza for dinner when an individual has not eaten since breakfast. Hungry, the individual’s desire for the pizza is...at a considerable level. After the first bite, the individual’s desire for the pizza is still great, but marginally less than it was before the first

  17. Childhood Sexual Abuse, Attachments in Childhood and Adulthood, and Coercive Sexual Behaviors in Community Males.

    Science.gov (United States)

    Langton, Calvin M; Murad, Zuwaina; Humbert, Bianca

    2017-04-01

    Associations between self-reported coercive sexual behavior against adult females, childhood sexual abuse (CSA), and child-parent attachment styles, as well as attachment with adult romantic partners, were examined among 176 adult community males. Attachment style with each parent and with romantic partners was also investigated as a potential moderator. Using hierarchical multiple regression analysis, avoidant attachment with mothers in childhood (and also with fathers, in a second model) accounted for a significant amount of the variance in coercive sexual behavior controlling for scores on anxious ambivalent and disorganized/disoriented attachment scales, as predicted. Similarly, in a third model, avoidance attachment in adulthood was a significant predictor of coercive sexual behavior controlling for scores on the anxiety attachment in adulthood scale. These main effects for avoidant and avoidance attachment were not statistically significant when CSA and control variables (other types of childhood adversity, aggression, antisociality, and response bias) were added in each of the models. But the interaction between scales for CSA and avoidance attachment in adulthood was significant, demonstrating incremental validity in a final step, consistent with a hypothesized moderating function for attachment in adulthood. The correlation between CSA and coercive sexual behavior was .60 for those with the highest third of avoidance attachment scores (i.e., the most insecurely attached on this scale), .24 for those with scores in the middle range on the scale, and .01 for those with the lowest third of avoidance attachment scores (i.e., the most securely attached). Implications for study design and theory were discussed.

  18. New type of single chain magnet: pseudo-one-dimensional chain of high-spin Co(II) exhibiting ferromagnetic intrachain interactions.

    Science.gov (United States)

    Tangoulis, V; Lalia-Kantouri, M; Gdaniec, M; Papadopoulos, Ch; Miletic, V; Czapik, A

    2013-06-03

    Two new six-coordinated high-spin Co(II) complexes have been synthesized through the reactions of Co(II) salts with dipyridylamine (dpamH) and 5-nitro-salicylaldehyde (5-NO2-saloH) or 3-methoxy-salicylaldehyde (3-OCH3-saloH) under argon atmosphere: [Co(dpamH)2(5-NO2-salo)]NO3 (1) and [Co(dpamH)2(3-OCH3-salo)]NO3·1.3 EtOH·0.4H2O (2). According to the crystal packing of compound 1, two coordination cations are linked with two nitrate anions into a cyclic dimeric arrangement via N-H···O and C-H···O hydrogen bonds. In turn, these dimers are assembled into (100) layers through π-π stacking interactions between inversion-center related pyridine rings of the dpamH ligands. The crystal packing of compound 2 reveals a 1D assembly consisting solely from the coordination cations, which is formed by π-π stacking interactions between pyridine rings of one of the dpamH along the [010] and another 1D assembly of the coordination cations and nitrate anions through the N-H···O hydrogen-bonding interactions along the [001] direction. All complexes were magnetically characterized, and a new approximation method was used to fit the magnetic susceptibility data in the whole temperature range 2-300 K on the basis of an empirical expression which allows the treatment of each cobalt(II) ion in axial symmetry as an effective spin S(eff) = 1/2. In zero-field, dynamic magnetic susceptibility measurements show slow magnetic relaxation below 5.5 K for compound 2. The slow dynamics may originate from the motion of broad domain walls and is characterized by an Arrhenius law with a single energy barrier Δr/k(B) = 55(1) K for the [10-1488 Hz] frequency range. In order to reveal the importance of the crystal packing in the SCM behavior, a gentle heating process to 180 °C was carried out to remove the solvent molecules. The system, after heating, undergoes a major but not complete collapse of the network retaining to a small percentage its SCM character.

  19. Influence of soft ferromagnetic sections on the magnetic flux density profile of a large grain, bulk Y-Ba-Cu-O superconductor

    OpenAIRE

    Philippe, Matthieu; Ainslie, Mark D.; Wera, Laurent; Fagnard, Jean-François; Dennis, Anthony; Shi, Yunhua; Cardwell, David A.; Vanderheyden, Benoît; Vanderbemden, Philippe

    2015-01-01

    Bulk, high temperature superconductors have significant potential for use as powerful permanent magnets in a variety of practical applications due to their ability to trap record magnetic fields. In this paper, soft ferromagnetic sections are combined with a bulk, large grain Y-Ba-Cu-O (YBCO) high temperature superconductor to form superconductor/ferromagnet (SC/FM) hybrid structures. We study how the ferromagnetic sections influence the shape of the profile of the trapped magnetic induction ...

  20. Magnetic properties of N-doped graphene with high Curie temperature

    Science.gov (United States)

    Miao, Qinghua; Wang, Lidong; Liu, Zhaoyuan; Wei, Bing; Xu, Fubiao; Fei, Weidong

    2016-01-01

    N-doped graphene with Curie temperature higher than room temperature is a good candidate for nanomagnetic applications. Here we report a kind of N-doped graphene that exhibits ferromagnetic property with high Curie temperature (>600 K). Four graphene samples were prepared through self-propagating high-temperature synthesis (SHS), and the doped nitrogen contents of in the samples were 0 at.%, 2.53 at.%, 9.21 at.% and 11.17 at.%. It has been found that the saturation magnetization and coercive field increase with the increasing of nitrogen contents in the samples. For the sample with the highest nitrogen content, the saturation magnetizations reach 0.282 emu/g at 10 K and 0.148 emu/g at 300 K; the coercive forces reach 544.2 Oe at 10 K and 168.8 Oe at 300 K. The drop of magnetic susceptibility at ~625 K for N-doped graphene is mainly caused by the decomposition of pyrrolic N and pydinic N. Our results suggest that SHS method is an effective and high-throughput method to produce N-doped graphene with high nitrogen concentration and that N-doped graphene produced by SHS method is promising to be a good candidate for nanomagnetic applications. PMID:26907569

  1. Conserved momenta of a ferromagnetic soliton

    Energy Technology Data Exchange (ETDEWEB)

    Tchernyshyov, Oleg, E-mail: olegt@jhu.edu

    2015-12-15

    Linear and angular momenta of a soliton in a ferromagnet are commonly derived through the application of Noether’s theorem. We show that these quantities exhibit unphysical behavior: they depend on the choice of a gauge potential in the spin Lagrangian and can be made arbitrary. To resolve this problem, we exploit a similarity between the dynamics of a ferromagnetic soliton and that of a charged particle in a magnetic field. For the latter, canonical momentum is also gauge-dependent and thus unphysical; the physical momentum is the generator of magnetic translations, a symmetry combining physical translations with gauge transformations. We use this analogy to unambiguously define conserved momenta for ferromagnetic solitons. General considerations are illustrated on simple models of a domain wall in a ferromagnetic chain and of a vortex in a thin film.

  2. Modified Heisenberg Ferromagnet Model and Integrable Equation

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    We investigate some integrable modified Heisenberg ferromagnet models by using the prolongation structure theory. Through associating them with the motion of curve in Minkowski space, the corresponding coupled integrable equations are presented.

  3. Microstructure and coercivity in La-coated Nd2Fe14B thin films

    Directory of Open Access Journals (Sweden)

    M. Itakura

    2017-03-01

    Full Text Available We investigated La-coated Nd2Fe14B thin film magnets by scanning/transmission electron microscopy to clarify the coercivity enhancement mechanism in Nd-Fe-B permanent magnets. The coercivity of La-coated film magnets was increased from 8.5 to 15 kOe by post-annealing. The fcc-LaOx layer was epitaxially grown on [001]-oriented Nd2Fe14B fine grains with a crystallographic orientation relation of Nd2Fe14B (001[110] || LaOx (111[112¯], both in the as-deposited and post-annealed films. STEM-EDS elemental analysis revealed that the only difference caused by post-annealing was the O content in the LaOx layer, which increased from 15 to 35 at.%. These results suggest that the magnetocrystalline anisotropy of the Nd ions, which were reduced at the surface of Nd2Fe14B, would be recovered by the presence of O, leading to a remarkable increase in the coercivity.

  4. Influence of dipolar interactions on the angular-dependent coercivity of nickel nanocylinders

    Science.gov (United States)

    Bender, P.; Krämer, F.; Tschöpe, A.; Birringer, R.

    2015-04-01

    In this study the influence of dipolar interactions on the orientation-dependent magnetization behavior of an ensemble of single-domain nickel nanorods was investigated. The rods were synthesized by electrodeposition of nickel into porous alumina templates. Some of the rods were released from the oxide and embedded in gelatine hydrogels (ferrogel) at a sufficiently large average interparticle distance to suppress dipolar interactions. By comparing the orientation-dependent hystereses of the two ensembles in the template and the gel-matrix it could be shown that the dipolar interactions in the template considerably alter the functional form of the angular-dependent coercivity. Analysis of the magnetization curves for an angle of 60° between the rod-axes and the field revealed a significantly reduced coercivity of the template compared to the ferrogel, which could be directly attributed to a stray field induced magnetization reversal of a steadily increasing number of rods with increasing field strength. The magnetization curve of the template could be approximated by a weighted linear superposition of the hysteresis branches of the ferrogel. The magnetization reversal process of the rods was investigated by analyzing the angular-dependent coercivity of the non-interacting nanorods. Comparison of the functional form with analytical models and micromagnetic simulations emphasized the assumption of a localized magnetization reversal. Additionally, it could be shown that the nucleation field of rods with diameters in the range 18-29 nm tends to increase with increasing diameter.

  5. Temperature dependent coercivity and magnetization of light rare-earth Nd doped permalloy thin films

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Chen [Physics Department, Southeast University, Nanjing 211189 (China); Fu, Yu [Physics Department, Southeast University, Nanjing 211189 (China); Institut Nanosciences et Cryogénie, CEA, 38054 Grenoble (France); Zhang, Dong [Physics Department, Southeast University, Nanjing 211189 (China); School of Physics Science and Information Engineering, Liaocheng University, Liaocheng 252059 (China); Yuan, Shijun [Physics Department, Southeast University, Nanjing 211189 (China); Zhai, Ya, E-mail: yazhai@seu.edu.cn [Physics Department, Southeast University, Nanjing 211189 (China); Dong, Shuai [Physics Department, Southeast University, Nanjing 211189 (China); Zhai, Hongru [National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093 (China)

    2015-01-15

    The temperature dependence of the magnetic properties of Ni{sub 80}Fe{sub 20} thin films with dilute Nd dopants has been studied. The effect of Nd dopants on the hysteresis loops of Nd-doped Ni{sub 80}Fe{sub 20} thin films is small at room temperature but large at low temperature. The measurements show an interesting temperature dependence of the coercivity with different concentrations of Nd impurities, which might be related to the film structure. The temperature dependence of the saturation magnetization for Nd-doped Ni{sub 80}Fe{sub 20} thin films is fitted by a theoretical expression of spin-wave excitation plus Stoner-type-like contribution, in which the spin-wave excitation plays a main role at low temperature. The spin-wave stiffness constant D evaluated from the fitting shows a strong doping concentration dependence. - Highlights: • The abnormal coercivity behavior of Nd-doped Permalloy thin films is studied. • The mechanism of temperature dependence of coercivity is discussed. • The effect of Nd dopants on temperature dependence of Ms is studied. • Spin-wave excitations and Stoner-type excitations are discussed quantitatively.

  6. Josephson tunnel junctions with ferromagnetic interlayer

    Energy Technology Data Exchange (ETDEWEB)

    Weides, M.P.

    2006-07-01

    Superconductivity and ferromagnetism are well-known physical properties of solid states that have been widely studied and long thought about as antagonistic phenomena due to difference in spin ordering. It turns out that the combination of both superconductor and ferromagnet leads to a very rich and interesting physics. One particular example, the phase oscillations of the superconducting order parameter inside the ferromagnet, will play a major role for the devices discussed in this work. In this thesis, I present Josephson junctions with a thin Al{sub 2}O{sub 3} tunnel barrier and a ferromagnetic interlayer, i.e. superconductor-insulator-ferromagnet-superconductor (SIFS) stacks. The fabrication of junctions was optimized regarding the insulation of electrodes and the homogeneity of the current transport. The junctions were either in the 0 or {pi} coupled ground state, depending on the thickness of the ferromagnetic layer and on temperature. The influence of ferromagnetic layer thickness on the transport properties and the coupling (0, {pi}) of SIFS tunnel junctions was studied. Furthermore, using a stepped ferromagnetic layer with well-chosen thicknesses, I obtained the so-called 0-{pi} Josephson junction. At a certain temperature this 0-{pi} junction can be made perfectly symmetric. In this case the ground state corresponds to a vortex of supercurrent creating a magnetic flux which is a fraction of the magnetic flux quantum {phi}{sub 0}. Such structures allow to study the physics of fractional vortices and to build various electronic circuits based on them. The SIFS junctions presented here have an exponentially vanishing damping at T {yields} 0. The SIFS technology developed within the framework of this work may be used to construct classical and quantum devices such as oscillators, memory cells and qubits. (orig.)

  7. Ferromagnetism in metallocene-doped fullerenes

    CERN Document Server

    Mihailovic, D

    2003-01-01

    Ferromagnetism in fullerene-based systems doped with metallocenes is reviewed. These compounds form a ferromagnetic state by spin-coupling between pi electrons on fullerene units, while the metallocene molecules do not contribute to the spin ordering. One of these compounds has the highest critical temperature (19 K) for this class of compound. The magnetic properties of these materials are very strongly dependent on the crystallization conditions. Refs. 19 (author)

  8. Superconductivity and ferromagnetism in nanomaterial NbSe2

    Science.gov (United States)

    Gill, Raminder

    2017-07-01

    Finding of superconductivity (SC) in ultra thin layer of Niobium diselenide (NbSe2) caught the attention of each condensed matter physicist in the era of nanotechnology. The coexistence of SC and magnetism have been a topic of interesting research in solid-state physics since the discovery of superconductivity. Ferromagnetism induced in any compound could destroy superconductivity by disturbing the cooper pairing of electrons of the atoms. The interplay between ferromagnetism (FM) and SC in nanomaterial NBSe2 impressed to study and to know the exact mechanism behind this coexistence which can lead to a very interesting research: superconductivity at room temperature. In this paper, I have theoretically studied the coexistence of SC and FM in NbSe2 and how this material could be useful in finding many high Tc nanomaterials.

  9. Disorder-Induced Stabilization of the Quantum Hall Ferromagnet

    Science.gov (United States)

    Piot, B. A.; Desrat, W.; Maude, D. K.; Kazazis, D.; Cavanna, A.; Gennser, U.

    2016-03-01

    We report on an absolute measurement of the electronic spin polarization of the ν =1 integer quantum Hall state. The spin polarization is extracted in the vicinity of ν =1 (including at exactly ν =1 ) via resistive NMR experiments performed at different magnetic fields (electron densities) and Zeeman energy configurations. At the lowest magnetic fields, the polarization is found to be complete in a narrow region around ν =1 . Increasing the magnetic field (electron density) induces a significant depolarization of the system, which we attribute to a transition between the quantum Hall ferromagnet and the Skyrmion glass phase theoretically expected as the ratio between Coulomb interactions and disorder is increased. These observations account for the fragility of the polarization previously observed in high mobility 2D electron gas and experimentally demonstrate the existence of an optimal amount of disorder to stabilize the ferromagnetic state.

  10. Magnetoanisotropic Andreev reflection in ferromagnet-superconductor junctions.

    Science.gov (United States)

    Högl, Petra; Matos-Abiague, Alex; Žutić, Igor; Fabian, Jaroslav

    2015-09-11

    Andreev reflection spectroscopy of ferromagnet-superconductor (FS) junctions [corrected] is an important probe of spin polarization. We theoretically investigate spin-polarized transport in FS junctions in the presence of Rashba and Dresselhaus interfacial spin-orbit fields and show that Andreev reflection can be controlled by changing the magnetization orientation. We predict a giant in- and out-of-plane magnetoanisotropy of the junction conductance. If the ferromagnet is highly spin polarized-in the half-metal limit-the magnetoanisotropic Andreev reflection depends universally on the spin-orbit fields only. Our results show that Andreev reflection spectroscopy can be used for sensitive probing of interfacial spin-orbit fields in a FS junction.

  11. Bolometric detection of ferromagnetic resonance in YIG slab

    Science.gov (United States)

    Tu, Sa; Białek, Marcin; Zhang, Youguang; Zhao, Weisheng; Yu, Haiming; Ansermet, Jean-Philippe

    2017-10-01

    The resistance of the Pt bar deposited on the YIG slab was monitored while the magnetic field was ramped through the ferromagnetic resonance with the YIG slab facing a coplanar waveguide resonator excited at 4.3 GHz excitation. The resistance change provides detection of the ferromagnetic resonance with a high signal-to-noise ratio. It is ascribed to a change in the temperature of the Pt bars. The thermal origin of the signal is confirmed by the observation that the signal vanishes when field modulation is applied at frequencies above 6 Hz. The spin pumping effect was vanishingly small, and the anisotropic magnetoresistance of the Pt bar, though quite easily observed, would imply a rectification voltage that is much smaller than the bolometric effect.

  12. The paramagnetic properties of ferromagnetic mixed-spin chain system

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Ai-Yuan, E-mail: huaiyuanhuyuanai@126.com; Wu, Zhi-Min; Cui, Yu-Ting; Qin, Guo-Ping

    2015-01-15

    The double-time Green's function method is used to investigate the paramagnetic properties of ferromagnetic mixed-spin chain system within the random-phase approximation and Anderson–Callen's decoupling approximation. The analytic expressions of the transverse susceptibility, longitudinal susceptibility and correlation length are obtained under transverse and longitudinal magnetic field. Using the analytic expressions of the transverse and longitudinal susceptibility to fit the experimental results, our results well agree with experimental data and the results from the high temperature series expansion within a simple Padé approximation. - Highlights: • We investigate the magnetic properties of a ferromagnetic mixed-spin chain system. • We use the double-time temperature-dependent Green's function technique. • Different single-ion anisotropy values for different spin values are considered. • Our results agree with experimental data and the results from the other theoretical methods.

  13. Research Update: Strain and composition effects on ferromagnetism of Mn0.05Ge0.95 quantum dots

    Directory of Open Access Journals (Sweden)

    Liming Wang

    2016-04-01

    Full Text Available Mn0.05Ge0.95 quantum dots (QDs samples were grown by molecular beam epitaxy on Si substrates and 15-nm-thick fully strained Si0.8Ge0.2 virtual substrates, respectively. The QDs samples grown on the Si0.8Ge0.2 virtual substrates show a significant ferromagnetism with a Curie temperature of 227 K, while the QDs samples grown on the Si substrates are non-ferromagnetic. Microstructures of the QDs samples were characterized by high resolution transmission electron microscopy and synchrotron radiation X-ray diffraction. Interdependence between microstructure and ferromagnetism of Mn-doped Ge QDs was investigated. For the QDs sample grown on the strained Si0.8Ge0.2 virtual substrate, although the ferromagnetic phase Mn5Ge3 clusters were found to be formed in small dome-shaped dots, the significant ferromagnetism observed in that sample is attributed to ferromagnetic phase Mn-doped large dome-shaped Ge QDs, rather than to the ferromagnetic phase Mn5Ge3 clusters. The fully strained Si0.8Ge0.2 virtual substrates would result in a residual strain into the QDs and an increase in Ge composition in the QDs. Both consequences favor the formations of ferromagnetic phase Mn-doped Ge QDs from points of view of quantum confinement effect as well as Mn doping at substitutional sites.

  14. Research Update: Strain and composition effects on ferromagnetism of Mn0.05Ge0.95 quantum dots

    Science.gov (United States)

    Wang, Liming; Liu, Tao; Jia, Quanjie; Zhang, Zhi; Lin, Dongdong; Chen, Yulu; Fan, Yongliang; Zhong, Zhenyang; Yang, Xinju; Zou, Jin; Jiang, Zuimin

    2016-04-01

    Mn0.05Ge0.95 quantum dots (QDs) samples were grown by molecular beam epitaxy on Si substrates and 15-nm-thick fully strained Si0.8Ge0.2 virtual substrates, respectively. The QDs samples grown on the Si0.8Ge0.2 virtual substrates show a significant ferromagnetism with a Curie temperature of 227 K, while the QDs samples grown on the Si substrates are non-ferromagnetic. Microstructures of the QDs samples were characterized by high resolution transmission electron microscopy and synchrotron radiation X-ray diffraction. Interdependence between microstructure and ferromagnetism of Mn-doped Ge QDs was investigated. For the QDs sample grown on the strained Si0.8Ge0.2 virtual substrate, although the ferromagnetic phase Mn5Ge3 clusters were found to be formed in small dome-shaped dots, the significant ferromagnetism observed in that sample is attributed to ferromagnetic phase Mn-doped large dome-shaped Ge QDs, rather than to the ferromagnetic phase Mn5Ge3 clusters. The fully strained Si0.8Ge0.2 virtual substrates would result in a residual strain into the QDs and an increase in Ge composition in the QDs. Both consequences favor the formations of ferromagnetic phase Mn-doped Ge QDs from points of view of quantum confinement effect as well as Mn doping at substitutional sites.

  15. Ferromagnetism of Mn{sub x}Li{sub y}Zn{sub 1-x-y}O films

    Energy Technology Data Exchange (ETDEWEB)

    Zhou Xueyun [Key Laboratory for Magnetism and Magnetic Materials of Ministry of Education, Lanzhou University, Lanzhou 730000 (China); Ge Shihui [Key Laboratory for Magnetism and Magnetic Materials of Ministry of Education, Lanzhou University, Lanzhou 730000 (China)], E-mail: zhxy06@lzu.cn; Yao Dongsheng; Zuo Yalu; Xiao Yuhua [Key Laboratory for Magnetism and Magnetic Materials of Ministry of Education, Lanzhou University, Lanzhou 730000 (China)

    2008-08-15

    We had prepared Mn-doped ZnO and Li, Mn codoped-ZnO films with different concentrations using spin coating method. Crystal structure and magnetic measurements demonstrate that the impurity phases (ZnMnO{sub 3}) are not contributed to room temperature ferromagnetism and the ferromagnetism in Mn-doped ZnO film is intrinsic. Interesting, saturated magnetization decreases with Mn or Li concentration increase, showing that some antiferromagnetism exists in the samples with high Mn or Li concentration. In addition, Mn{sub 0.05}Zn{sub 0.95}O film annealed in vaccum shows larger ferromagnetism than the as-prepared sample and more oxygen vacancies induced by annealing in reducing atmosphere enhance ferromagnetism, which supports the bound magnetic polaron model on the origin of room temperature ferromagnetism.

  16. Transport properties of Josephson contacts with ferromagnetic tunnel barriers; Transporteigenschaften von Josephson-Kontakten mit ferromagnetischer Tunnelbarriere

    Energy Technology Data Exchange (ETDEWEB)

    Sprungmann, Dirk

    2010-01-28

    The combination of the Josephson and the proximity effect is possible by the introduction of a ferromagnetic barrier into a Josephson contact resulting in a so called π coupling. The supra current through these contacts is flowing in the reverse direction. Specific new electronic circuits such as phase shifting devices are possible, for instance for high-speed analog-digital transducers. In the frame of this thesis SIFS Josephson contacts were studied, with a barrier consisting of a thin insulating Al2Ox barrier layer and a ferromagnetic thin film. For the ferromagnetic material weak ferromagnetic Ni(0.6)Cu(0.4), the strong ferromagnetic Fe(0.25)Co(0.75) and the ternary Heusler alloys Co2MnSn and Cu2MnAl were used. Josephson contacts with π coupling were realized with the NiCu alloy, triplet superconductivity seems to appear with the Heusler systems.

  17. Dependence of coercivity on phase distribution and grain size in nanocomposite Nd2Fe14B/α-Fe magnets

    Institute of Scientific and Technical Information of China (English)

    Feng Wei-Cun; Gao Ru-Wei; Li Wei; Han Guang-Bing; Sun Yan

    2005-01-01

    The dependence of coercivity on the grain size in nanocomposite Nd2Fe14B/α-Fe magnets with different distributions of magnetically soft and hard phases is investigated by means of statistical mean. The calculations show that when there exists no soft phase, the coercivity of magnets decreases monotonically with hard grain size reducing. For a given volume fraction of hard phase, the coercivity of nanocomposite Nd2Fe14B/α-Fe magnets with a random distribution of soft and hard grains shows a peak value as a function of hard grain size. When the hard grain size is larger than an optimum value of soft grain size (15nm), the nanocomposite Nd2Fe14B/α-Fe magnets with the multilayer structure of soft and hard grains can possess a higher coercivity than that with the random distribution of soft and hard grains.

  18. Investigation of the coercivity mechanism for Nd-Fe-B based magnets prepared by a new technique of strip casting

    Institute of Scientific and Technical Information of China (English)

    LI Bo; HU Jifan; WANG Dongling; GUO Binglin; WANG Xinlin

    2004-01-01

    The coercivity mechanism of Nd-Fe-B based magnets prepared by a new technique of strip casting was investigated. Different from the traditional magnets, α-Fe phases are difficult to be found in Nd-Fe-B magnets prepared by strip casting. Meanwhile, the rich-Nd phases occur not only near the grain boundaries of main phases, but also within the main-phase grains. Investigation on the magnetizing field dependence of the coercivity for the (Nd0.935Dy0.065)14.5Fe79.4B6.1magnet and the temperature dependence of the coercivity for the Nd14.5Fe79.4B6.1magnet have been done. Results show that coercivities for strip casting magnets are controlled by the nucleation mechanism.

  19. On the comparison of the polarisation behaviour of exchange-biased AF/F NiMn/Fe{sub 37}Co{sub 48}Hf{sub 15} bi-layer and multi-layer films with increased ferromagnetic cut-off frequencies

    Energy Technology Data Exchange (ETDEWEB)

    Seemann, K., E-mail: klaus.seemann@kit.edu [Karlsruhe Institute of Technology KIT (Campus North), Institute for Applied Materials, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Leiste, H.; Krueger, K. [Karlsruhe Institute of Technology KIT (Campus North), Institute for Applied Materials, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany)

    2012-03-15

    Antiferromagnetic/ferromagnetic (AF/F) NiMn/Fe{sub 37}Co{sub 48}Hf{sub 15} films were investigated with respect to their exchange bias, in-plane unidirectional anisotropy, polarisation and high frequency behaviour. After deposition, carried out by r.f. magnetron sputtering, the films were post-annealed for 4 h at 300 Degree-Sign C in a static magnetic field, in order to induce exchange-bias, which results in a unidirectional anisotropy. Dependent on the presence of a bi-layer or multi-layer sandwich structure the films show a different exchange-bias field-ferromagnetic inter-layer thickness behaviour with exchange-bias fields {mu}{sub 0} Low-Asterisk H{sub eb} between 2 and 10 mT. The in-plane uniaxial (single film) or unidirectional anisotropy fields {mu}{sub 0}*H{sub UF} were between 4 and 18 mT. This results in a significant increase of the cut-off frequency in the GHz range in comparison to a single Fe{sub 37}Co{sub 48}Hf{sub 15} film, which is shown by frequency-dependent permeability plots. High damping in the imaginary part of the permeability, i.e., high resonance line broadening could be observed for films with high coercivity {mu}{sub 0}*H{sub c} of around 7 mT in the easy axis of magnetisation. - Highlights: Black-Right-Pointing-Pointer Static and dynamic properties of NiMn/Fe{sub 37}Co{sub 48}Hf{sub 15} bi- and multi-layer films. Black-Right-Pointing-Pointer Theoretic analysis of the H{sub eb}- field difference of bi- and multi-layer films. Black-Right-Pointing-Pointer Two-stage magnetic process in the polarisation curves of the AF/F multi-layers. Black-Right-Pointing-Pointer Damping at the ferromagnetic permeability resonance state of AF/F multi-layers. Black-Right-Pointing-Pointer Derivation of the ferromagnetic resonance of AF/F multi-layer films.

  20. Resonance frequency in ferromagnetic superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Qiu Rongke; Huang Andong [School of Science, Shenyang University of Technology, Shenyang 110870 (China); Li Da; Zhang Zhidong, E-mail: rkqiu@163.com [Shenyang National Laboratory for Materials Science, Institute of Metal Research and International Centre for Materials Physics, Chinese Academy of Sciences, Shenyang 110016 (China)

    2011-10-19

    The resonance frequency in two-layer and three-layer ferromagnetic superlattices is studied, using the Callen's Green function method, the Tyablikov decoupling approximation and the Anderson-Callen decoupling approximation. The effects of interlayer exchange coupling, anisotropy, external magnetic field and temperature on the resonance frequency are investigated. It is found that the resonance frequencies increase with increasing external magnetic field. In a parameter region of the asymmetric system, each sublayer corresponds to its own resonance frequency. The anisotropy of a sublayer affects only the resonance frequency corresponding to this sublayer. The stronger the anisotropy, the higher is the resonance frequency. The interlayer exchange coupling affects only the resonance frequencies belonging to the sublayers connected by it. The stronger the interlayer exchange coupling, the higher are the resonance frequencies. All the resonance frequencies decrease as the reduced temperature increases. The results direct the method to enhance and adjust the resonance frequency of magnetic multilayered materials with a wide band.

  1. Ferromagnetic resonance of particulate magnetic recording tapes

    Science.gov (United States)

    Netzelmann, U.

    1990-08-01

    The room-temperature ferromagnetic resonance (FMR) spectra of γ-Fe2O3, CrO2, and barium ferrite particulate magnetic recording tapes have been measured at microwave frequencies of 9.35 and 35 GHz for various orientations of the static and high-frequency magnetic fields with respect to the tape. For CrO2 tapes, the influence of the width of the angular distribution of the particle orientations on the FMR spectra has been studied from the nearly isotropic case up to the highly oriented case. Hysteretic behavior for a CrO2 tape as well as the effect of tape calendering for a γ-Fe2O3 tape has been observed by FMR. Experimental results are found to be in reasonable agreement with results of theoretical calculations based on a model of an ellipsoidal single-domain particle with both shape and magnetocrystalline anisotropy. Magnetostatic interaction inside the magnetic film has been introduced by expressing the total magnetostatic energy as a combination of a part dependent on particle shape and a part dependent on the shape of the tape. As a result of a comparison of experimental data with calculated data from the model, the magnetocrystalline easy axis of the CrO2 particles is found to be parallel with the particle axis.

  2. Superconductor-ferromagnet bilayer under external drive: The role of vortex-antivortex matter

    Science.gov (United States)

    Frota, D. A.; Chaves, A.; Ferreira, W. P.; Farias, G. A.; Milošević, M. V.

    2016-03-01

    Using advanced Ginzburg-Landau simulations, we study the superconducting state of a thin superconducting film under a ferromagnetic layer, separated by an insulating oxide, in applied external magnetic field and electric current. The taken uniaxial ferromagnet is organized into a series of parallel domains with alternating polarization of out-of-plane magnetization, sufficiently strong to induce vortex-antivortex pairs in the underlying superconductor in absence of other magnetic field. We show the organization of such vortex-antivortex matter into rich configurations, some of which are not matching the periodicity of the ferromagnetic film. The variety of possible configurations is enhanced by applied homogeneous magnetic field, where additional vortices in the superconductor may lower the energy of the system by either annihilating the present antivortices under negative ferromagnetic domains or by lowering their own energy after positioning under positive ferromagnetic domains. As a consequence, both the vortex-antivortex reordering in increasing external field and the evolution of the energy of the system are highly nontrivial. Finally, we reveal the very interesting effects of applied dc electric current on the vortex-antivortex configurations, since resulting Lorentzian force has opposite direction for vortices and antivortices, while direction of the applied current with respect to ferromagnetic domains is of crucial importance for the interaction of the applied and the Meissner current, as well as the consequent vortex-antivortex dynamics—both of which are reflected in the anisotropic critical current of the system.

  3. Electronic structure of half-metallic ferromagnets and spinel ferromagnetic insulators

    Energy Technology Data Exchange (ETDEWEB)

    Szotek, Z [Daresbury Laboratory, Daresbury, Warrington WA4 4AD, Cheshire (United Kingdom); Temmerman, W M [Daresbury Laboratory, Daresbury, Warrington WA4 4AD, Cheshire (United Kingdom); Svane, A [Institute of Physics and Astronomy, University of Aarhus, DK-8000 Aarhus C (Denmark); Petit, L [Computer Science and Mathematics Division, and Center for Computational Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Strange, P [School of Chemistry and Physics, Keele University, Staffordshire ST5 5BG (United Kingdom); Stocks, G M [Metals and Ceramics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830 (United States); Koedderitzsch, D [Fachbereich Physik, Martin-Luther-Universitaet Halle-Wittenberg, Friedemann-Bach-Platz 6, D-06099 Halle (Germany); Hergert, W [Fachbereich Physik, Martin-Luther-Universitaet Halle-Wittenberg, Friedemann-Bach-Platz 6, D-06099 Halle (Germany); Winter, H [INFP, Forschungszentrum Karlsruhe GmbH, Postfach 3640, D-76021 Karlsruhe (Germany)

    2004-12-08

    We discuss an application of the self-interaction-corrected local spin density (SIC-LSD) approximation to study electronic structure of some half-metallic ferromagnets and ferromagnetic insulators of current interest in spintronics. Both d- and f-electron materials are considered, and we concentrate on the nominal valence and ground state properties of these systems.

  4. (Ga,Fe)Sb: A p-type ferromagnetic semiconductor

    Energy Technology Data Exchange (ETDEWEB)

    Tu, Nguyen Thanh; Anh, Le Duc; Tanaka, Masaaki [Department of Electrical Engineering and Information Systems, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656 (Japan); Hai, Pham Nam [Department of Electrical Engineering and Information Systems, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656 (Japan); Department of Physical Electronics, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro, Tokyo 152-0033 (Japan)

    2014-09-29

    A p-type ferromagnetic semiconductor (Ga{sub 1−x},Fe{sub x})Sb (x = 3.9%–13.7%) has been grown by low-temperature molecular beam epitaxy (MBE) on GaAs(001) substrates. Reflection high energy electron diffraction patterns during the MBE growth and X-ray diffraction spectra indicate that (Ga,Fe)Sb layers have the zinc-blende crystal structure without any other crystallographic phase of precipitates. Magnetic circular dichroism (MCD) spectroscopy characterizations indicate that (Ga,Fe)Sb has the zinc-blende band structure with spin-splitting induced by s,p-d exchange interactions. The magnetic field dependence of the MCD intensity and anomalous Hall resistance of (Ga,Fe)Sb show clear hysteresis, demonstrating the presence of ferromagnetic order. The Curie temperature (T{sub C}) increases with increasing x and reaches 140 K at x = 13.7%. The crystal structure analyses, magneto-transport, and magneto-optical properties indicate that (Ga,Fe)Sb is an intrinsic ferromagnetic semiconductor.

  5. Ferromagnetism in ZnO doped with alkaline elements

    Science.gov (United States)

    Wang, Yiren; Piao, Jingyuan; Xin, Guozhong; Lu, Yunhao; Ao, Zhimin; Bao, Nina; Ding, Jun; Li, Sean; Yi, Jiabao

    We have observed room temperature ferromagnetism (RTFM) in ZnO doped with alkaline elements Using first-principles calculations we found the magnetization in these systems is originated from the O2p hole states around Zn vacancies. Calculations indicate that the formation energy of Zn vacancies alone is rather high while further investigation indicates the formation can be much stabilized by the alkaline dopants in the form of defect complexes. By calculating the formation energy of concerned defects and complexes, we found the role of the dopants that under a certain doping concentration: Zn vacancy, substitutional and interstitial dopants can form a defect complex, which can lower formation energy, therefore stabilizing Zn vacancies. Moreover K dopants have shown unique functions on the ferromagnetism since the substitutional K can induce magnetic moments to the system by forming partial zinc vacancy via lattice distortion. Hence K doped ZnO can be magnetic at low doping concentrations. Experimentally, Li, Na doped ZnO films and K doped ZnO nanorods with different doping levels are synthesized, RTFM can be observed in all these systems. The magnetization is found to be greatly influenced by the doping concentrations. The experimental results have shown good consistence with our theoretical calculations. Our studies can inspire the defect induced ferromagnetism as a new route for the fabrication of new diluted magnetic semiconductors.

  6. Doping with Graphitic Nitrogen Triggers Ferromagnetism in Graphene

    Science.gov (United States)

    2017-01-01

    Nitrogen doping opens possibilities for tailoring the electronic properties and band gap of graphene toward its applications, e.g., in spintronics and optoelectronics. One major obstacle is development of magnetically active N-doped graphene with spin-polarized conductive behavior. However, the effect of nitrogen on the magnetic properties of graphene has so far only been addressed theoretically, and triggering of magnetism through N-doping has not yet been proved experimentally, except for systems containing a high amount of oxygen and thus decreased conductivity. Here, we report the first example of ferromagnetic graphene achieved by controlled doping with graphitic, pyridinic, and chemisorbed nitrogen. The magnetic properties were found to depend strongly on both the nitrogen concentration and type of structural N-motifs generated in the host lattice. Graphenes doped below 5 at. % of nitrogen were nonmagnetic; however, once doped at 5.1 at. % of nitrogen, N-doped graphene exhibited transition to a ferromagnetic state at ∼69 K and displayed a saturation magnetization reaching 1.09 emu/g. Theoretical calculations were used to elucidate the effects of individual chemical forms of nitrogen on magnetic properties. Results showed that magnetic effects were triggered by graphitic nitrogen, whereas pyridinic and chemisorbed nitrogen contributed much less to the overall ferromagnetic ground state. Calculations further proved the existence of exchange coupling among the paramagnetic centers mediated by the conduction electrons. PMID:28110530

  7. Current Induced Heat Generation in Ferromagnet-Quantum Dot-Ferromagnet System

    Directory of Open Access Journals (Sweden)

    Lili Zhao

    2015-06-01

    Full Text Available We study the heat generation in ferromagnet-quantum dot-ferromagnet system by the non-equilibrium Green’s functions method. Heat generation under the influence of ferromagnet leads is very different compared with a system with normal metal leads. The significant effects in heat generation are caused by the polarization angle θ associated with the orientation of polarized magnetic moment of electron in the ferromagnetic terminals. From the study of heat generation versus source drain bias (Q-eV curves, we find that the heat generation decreases as θ increases from 0 to 0.7π. The heat generation versus gate voltage (Q-eVg curves also display interesting behavior with increasing polarization angle θ. Meanwhile, heat generation is influenced by the relative angle θ of magnetic moment in the ferromagnetic leads. These results will provide theories to this quantum dot system as a new material of spintronics.

  8. Room Temperature Ferromagnetism of (Mn,Fe Codoped ZnO Nanowires Synthesized by Chemical Vapor Deposition

    Directory of Open Access Journals (Sweden)

    Yongqin Chang

    2011-01-01

    Full Text Available (Mn,Fe codoped ZnO nanowires were synthesized on silicon substrates in situ using a chemical vapor deposition method. The structure and property of the products were investigated by X-ray, electron microscopy, Raman, photoluminescence, and superconducting quantum interference device magnetometer. The doped nanowires are of pure wurtzite phase with single crystalline, and the elements distribute homogeneously in the doped nanowires. Photoluminescence spectrum of the doped nanowires is dominated by a deep-level emission with a negligible near-band-edge emission. The magnetic hysteresis curve with a coercive field of 35 Oe is clearly observed at 300 K, resulting from room-temperature ferromagnetic ordering in the (Mn,Fe codoped ZnO nanowires, which has great potential applications for spintronics devices.

  9. Electric-field assisted switching of magnetization in perpendicularly magnetized (Ga,Mn)As films at high temperatures

    Science.gov (United States)

    Wang, Hailong; Ma, Jialin; Yu, Xueze; Yu, Zhifeng; Zhao, Jianhua

    2017-01-01

    The electric-field effects on the magnetism in perpendicularly magnetized (Ga,Mn)As films at high temperatures have been investigated. An electric-field as high as 0.6 V nm-1 is applied by utilizing a solid-state dielectric Al2O3 film as a gate insulator. The coercive field, saturation magnetization and magnetic anisotropy have been clearly changed by the gate electric-field, which are detected via the anomalous Hall effect. In terms of the Curie temperature, a variation of about 3 K is observed as determined by the temperature derivative of the sheet resistance. In addition, electrical switching of the magnetization assisted by a fixed external magnetic field at 120 K is demonstrated, employing the gate-controlled coercive field. The above experimental results have been attributed to the gate voltage modulation of the hole density in (Ga,Mn)As films, since the ferromagnetism in (Ga,Mn)As is carrier-mediated. The limited modulation magnitude of magnetism is found to result from the strong charge screening effect introduced by the high hole concentration up to 1.10  ×  1021 cm-3, while the variation of the hole density is only about 1.16  ×  1020 cm-3.

  10. Coercive control and abused women's decisions about their pets when seeking shelter.

    Science.gov (United States)

    Hardesty, Jennifer L; Khaw, Lyndal; Ridgway, Marcella D; Weber, Cheryl; Miles, Teresa

    2013-09-01

    The importance of pets in families, especially during major life stressors, is well documented. Research suggests links between pet ownership and intimate partner violence (IPV). This study explored abused women's decisions about pets when seeking help from a shelter. Interviews were conducted with 19 women who were pet owners. Using grounded theory methods, two patterns emerged surrounding abusers' treatment of pets, bonds to pets, women's decisions about pets upon seeking shelter, and future plans for pets. The presence of coercive control was central to these patterns. Women also discussed their experiences with and needs from shelter professionals and veterinarians with implications for practice.

  11. Numerical study of the influence of interfacial roughness on the exchange bias properties of ferromagnetic/antiferromagnetic bilayers

    Science.gov (United States)

    Moritz, J.; Bacher, P.; Dieny, B.

    2016-09-01

    Exchange bias and coercivity are both studied numerically in antiferromagnetic/ferromagnetic (AFM/FM) bilayers in the presence of a rough interface. The roughness is modeled by an AFM atomic mesa of variable width, in a periodic bidimensional system. Unlike the flat interface case, roughness can favor the presence of magnetic interfacial frustration or the formation of sharp magnetic domain walls pinned within the first AFM planes, inside the AFM mesa, in a Peierls potential well. We demonstrate by using athermal steepest-descent calculations that irreversible processes can occur during the hysteresis loops, when the AFM mesa width is less than half of the system period. In this case, the depinning of the domain wall from the Peierls potential well during the descending branch is not followed by its rewinding in a certain range of the AFM anisotropy. This leads to a large increase of both exchange bias and coercivity at low temperature and to an athermal training effect. When the thermal activation is taken into account by using Monte Carlo simulations, we show that a random walk of the domain wall occurs within the AFM layer. These processes induce changes in the AFM spin configuration when the system is cycled several times and produce a thermally activated training effect. Our simulations, interpreted in the context of periodic Peierls potential, provide an explanation for two important features of the exchange bias phenomenon, i.e., the thermal variation of its characteristic fields and the different contributions giving rise to the training effect (AFM bulk vs interface). More generally, the presence of interfacial atomic roughness reduces both exchange bias and coercivity with respect to the perfect interface case.

  12. Tunable magnon Weyl points in ferromagnetic pyrochlores

    CERN Document Server

    Mook, Alexander; Mertig, Ingrid

    2016-01-01

    The dispersion relations of magnons in ferromagnetic pyrochlores with Dzyaloshinskii-Moriya interaction is shown to possess Weyl points, i.\\,e., pairs of topological nontrivial crossings of two magnon branches with opposite topological charge. As a consequence of their topological nature, their projections onto a surface are connected by magnon arcs, thereby resembling closely Fermi arcs of electronic Weyl semimetals. On top of this, the positions of the Weyl points in reciprocal space can be tuned widely by an external magnetic field: rotated within the surface plane, the Weyl points and magnon arcs are rotated as well; tilting the magnetic field out-of-plane shifts the Weyl points toward the center $\\bar{\\Gamma}$ of the surface Brillouin zone. The theory is valid for the class of ferromagnetic pyrochlores, i.\\,e., three-dimensional extensions of topological magnon insulators on kagome lattices. In this Letter, we focus on the $(111)$ surface, identify candidates of established ferromagnetic pyrochlores whic...

  13. Rapidly solidified ferromagnetic shape memory alloys

    Science.gov (United States)

    Craciunescu, C. M.; Ercuta, A.; Mitelea, I.; Valeanu, M.; Teodorescu, V. S.; Lupu, N.; Chiriac, H.

    2008-05-01

    Ferromagnetic shape memory alloys have been manufactured by various techniques involving rapid solidification. Bulk alloys have been obtained by extracting the melted alloy in especially designed copper molds; glass coated wires have been obtained by drawing the melt from glass recipients followed by water cooling and ribbons have been fabricated by melt-spinning. Microstructural observations show particular solidification aspects of fractured areas, while ferromagnetic behavior has been detected in glass coated wires obtained by rapid solidification. The martensitic microstructure was observed on Co-Ni-Ga rapid solidified bulk alloys and Fe-Pd ribbons. The memory effect was detected using a Vibran system that allows the detection of the phase transition for the ribbons and by visual observation for other specimens. The conclusions of the observations are related to the comparison between the ferromagnetic behaviors of shape memory alloys solidified using different techniques.

  14. Ultra-low coercive field of improper ferroelectric Ca3Ti2O7 epitaxial thin films

    Science.gov (United States)

    Li, X.; Yang, L.; Li, C. F.; Liu, M. F.; Fan, Z.; Xie, Y. L.; Lu, C. L.; Lin, L.; Yan, Z. B.; Zhang, Z.; Dai, J. Y.; Liu, J.-M.; Cheong, S. W.

    2017-01-01

    Hybrid improper ferroelectrics have their electric polarization generated by two or more combined non-ferroelectric structural distortions, such as the rotation and tilting of Ti-O octahedral in the Ca3Ti2O7 (CTO) family. In this work, we prepare the high quality (010)-oriented CTO thin films on (110) SrTiO3 (STO) substrates by pulsed laser deposition. The good epitaxial growth of the CTO thin films on the substrates with the interfacial epitaxial relationship of [001]CTO//[001]STO and [100]CTO//[-110]STO is revealed. The in-plane ferroelectric hysteresis unveils an ultralow coercive field of ˜5 kV/cm even at low temperature, nearly two orders of magnitude lower than that of bulk CTO single crystals. The huge difference between the epitaxial thin films and bulk crystals is most likely due to the lattice imperfections in the thin films rather than substrate induced lattice strains, suggesting high sensitivity of the ferroelectric properties to lattice defects.

  15. Cosmic Neutrino Background as a Ferromagnet

    CERN Document Server

    Arias, Paola; Lopez-Sarrion, Justo

    2013-01-01

    If cosmic background neutrinos interact very weakly with each other, through spin-spin interactions, then they may have experienced a phase transition, leading to a ferromagnetic ordering. The small magnetic field resulting from ferromagnetic ordering -- if present before galaxy formation -- could act as a primordial seed of the magnetic fields observed in several galaxies. Our findings suggest that the magnetization could occur in the right epoch, if the exchange gauge boson of neutrino-neutrino interaction is a massless boson beyond the Standard Model, with a coupling constant of $2.2\\times 10^{-13} \\left(\\frac{m_\

  16. Wellhead with non-ferromagnetic materials

    Energy Technology Data Exchange (ETDEWEB)

    Hinson, Richard A [Houston, TX; Vinegar, Harold J [Bellaire, TX

    2009-05-19

    Wellheads for coupling to a heater located in a wellbore in a subsurface formation are described herein. At least one wellhead may include a heater located in a wellbore in a subsurface formation; and a wellhead coupled to the heater. The wellhead may be configured to electrically couple the heater to one or more surface electrical components. The wellhead may include at least one non-ferromagnetic material such that ferromagnetic effects are inhibited in the wellhead. Systems and methods for using such wellheads for treating a subsurface formation are described herein.

  17. More on generalized Heisenberg ferromagnet models

    CERN Document Server

    Oh, P; Oh, Phillial; Park, Q Han

    1996-01-01

    We generalize the integrable Heisenberg ferromagnet model according to each Hermitian symmetric spaces and address various new aspects of the generalized model. Using the first order formalism of generalized spins which are defined on the coadjoint orbits of arbitrary groups, we construct a Lagrangian of the generalized model from which we obtain the Hamiltonian structure explicitly in the case of CP(N-1) orbit. The gauge equivalence between the generalized Heisenberg ferromagnet and the nonlinear Schr\\"{o}dinger models is given. Using the equivalence, we find infinitely many conserved integrals of both models.

  18. Three dimensional dynamics of ferromagnetic swimmer

    Energy Technology Data Exchange (ETDEWEB)

    Erglis, K.; Livanovics, R. [Department of Physics, University of Latvia, Zellu 8, Ri-bar ga LV-1002 (Latvia); Cebers, A., E-mail: aceb@tesla.sal.l [Department of Physics, University of Latvia, Zellu 8, Ri-bar ga LV-1002 (Latvia)

    2011-05-15

    It is shown that a flexible ferromagnetic filament self-propels perpendicularly to the AC magnetic field during a limited period of time due to the instability of the planar motion with respect to three dimensional perturbations. The transition from the oscillating U-like shapes to the oscillating S-like shapes is characterized by the calculated Wr number. - Research Highlights: A ferromagnetic filament self-propels perpendicularly to the AC field. During the self-propulsion cycle the filament moves both forward and backward. The self-propulsion stops due to the three dimensional instability. The mechanism of the self-propulsion is similar to that used by some microorganisms.

  19. Vortex dynamics in ferromagnetic/superconducting bilayers

    Energy Technology Data Exchange (ETDEWEB)

    Cieplak, M.Z.; Adamus, Z. [Polish Acad Sci, Inst Phys, PL-02668 Warsaw, (Poland); Konczykowski, M. [CEA, DSM, DRECAM, Lab Solides Irradies, Ecole Polytechnique, CNRS-UMR 7642, F-91128 Palaiseau (France); Zhu, L.Y.; Chien, C.L. [Johns Hopkins Univ, Dept Phys and Astron, Baltimore, MD 21218 (United States)

    2008-07-01

    The dependence of vortex dynamics on the geometry of magnetic domain pattern is studied in the superconducting/ferromagnetic bilayers, in which niobium is a superconductor, and Co/Pt multilayer with perpendicular magnetic anisotropy serves as a ferromagnetic layer. Magnetic domain patterns with different density of domains per surface area and different domain size, w, are obtained for Co/Pt with different thickness of Pt. The dense patterns of domains with the size comparable to the magnetic penetration depth (w {>=} {lambda}) produce large vortex pinning and smooth vortex penetration, while less dense patterns with larger domains (w {>=}{>=} {lambda}) enhance pinning less effectively and result in flux jumps during flux motion. (authors)

  20. Itinerant Ferromagnetism in Ultracold Fermi Gases

    DEFF Research Database (Denmark)

    Heiselberg, Henning

    2012-01-01

    Itinerant ferromagnetism in cold Fermi gases with repulsive interactions is studied applying the Jastrow-Slater approximation generalized to finite polarization and temperature. For two components at zero temperature a second order transition is found at akF ≃ 0.90 compatible with QMC. Thermodyna......Itinerant ferromagnetism in cold Fermi gases with repulsive interactions is studied applying the Jastrow-Slater approximation generalized to finite polarization and temperature. For two components at zero temperature a second order transition is found at akF ≃ 0.90 compatible with QMC...

  1. Integrable Heisenberg Ferromagnet Equations with self-consistent potentials

    CERN Document Server

    Zhunussova, Zh Kh; Tungushbaeva, D I; Mamyrbekova, G K; Nugmanova, G N; Myrzakulov, R

    2013-01-01

    In this paper, we consider some integrable Heisenberg Ferromagnet Equations with self-consistent potentials. We study their Lax representations. In particular we give their equivalent counterparts which are nonlinear Schr\\"odinger type equations. We present the integrable reductions of the Heisenberg Ferromagnet Equations with self-consistent potentials. These integrable Heisenberg Ferromagnet Equations with self-consistent potentials describe nonlinear waves in ferromagnets with magnetic fields.

  2. Temperature limited heater utilizing non-ferromagnetic conductor

    Energy Technology Data Exchange (ETDEWEB)

    Vinegar,; Harold J. (Bellaire, TX), Harris; Kelvin, Christopher [Houston, TX

    2012-07-17

    A heater is described. The heater includes a ferromagnetic conductor and an electrical conductor electrically coupled to the ferromagnetic conductor. The ferromagnetic conductor is positioned relative to the electrical conductor such that an electromagnetic field produced by time-varying current flow in the ferromagnetic conductor confines a majority of the flow of the electrical current to the electrical conductor at temperatures below or near a selected temperature.

  3. Micromagnetic simulation and the angular dependence of coercivity and remanence for array of polycrystalline nickel nanowires

    Science.gov (United States)

    Fuentes, G. P.; Holanda, J.; Guerra, Y.; Silva, D. B. O.; Farias, B. V. M.; Padrón-Hernández, E.

    2017-02-01

    We present here our experimental results for the preparation and characterization of nanowires of nickel and the analysis of the angular dependence of coercivity and remanence using experimental data and micromagnetic simulation. The fabrication was made by using aluminum oxide membranes as templates and deposited nickel by an electrochemical route. The magnetic measurements showed that coercivity and remanence are dependent of the angle of application of the external magnetic field. Our results are different than that expected for the coherent, vortex and transversal modes of the reversion for the magnetic moments. According to the transmission electron microscopy analysis we can see that our nanowires have not a perfect cylindrical format. That is why we have used the ellipsoids chain model for better understanding the real structure of wires and its relation with the magnetic behavior. In order to generate theoretical results for this configuration we have made micromagnetic simulation using Nmag code. Our numerical results for the realistic distances are in correspondence with the magnetic measurements and we can see that there are contradictions if we assume the transverse reversal mode. Then, we can conclude that structure of nanowires should be taken into account to understand the discrepancies reported in the literature for the reversion mechanism in arrays of nickel nanowires.

  4. Nonlinear geometric scaling of coercivity in a three-dimensional nanoscale analog of spin ice

    Science.gov (United States)

    Shishkin, I. S.; Mistonov, A. A.; Dubitskiy, I. S.; Grigoryeva, N. A.; Menzel, D.; Grigoriev, S. V.

    2016-08-01

    Magnetization hysteresis loops of a three-dimensional nanoscale analog of spin ice based on the nickel inverse opal-like structure (IOLS) have been studied at room temperature. The samples are produced by filling nickel into the voids of artificial opal-like films. The spin ice behavior is induced by tetrahedral elements within the IOLS, which have the same arrangement of magnetic moments as a spin ice. The thickness of the films vary from a two-dimensional, i.e., single-layered, antidot array to a three-dimensional, i.e., multilayered, structure. The coercive force, the saturation, and the irreversibility field have been measured in dependence of the thickness of the IOLS for in-plane and out-of-plane applied fields. The irreversibility and saturation fields change abruptly from the antidot array to the three-dimensional IOLS and remain constant upon further increase of the number of layers n . The coercive force Hc seems to increase logarithmically with increasing n as Hc=Hc 0+α ln(n +1 ) . The logarithmic law implies the avalanchelike remagnetization of anisotropic structural elements connecting tetrahedral and cubic nodes in the IOLS. We conclude that the "ice rule" is the base of mechanism regulating this process.

  5. Paraphilic Coercive Disorder in the DSM: the right diagnosis for the right reasons.

    Science.gov (United States)

    Stern, Paul

    2010-12-01

    The recommendation to include a Paraphilic Coercive Disorder (PCD) diagnosis in the DSM-5 represents an improvement over current options and would lead to the shrinking of the pool of individuals considered for detention as Sexually Violent Predators. A precise description of the diagnostic criteria for PCD would permit psychologists and psychiatrists to use more specific and narrow criteria for those who seek sexual gratification by coercing others to engage in unwanted sexual behavior. This might permit mental health professionals to abandon the Paraphilia NOS designation in favor of the more defined PCD in appropriate cases. Various critics have attacked the proposal on what appears to be misplaced ideological grounds. Not only should ideological concerns not play a part in a scientific debate, but the critics' predictions of how the PCD diagnosis would play out in the legal arena are likely wrong. Paraphilic Coercive Disorder would give the judicial system the best opportunity to most accurately identify the small group of men who have previously committed, and are likely in the future to commit, this type of predatory sexual violence.

  6. New Features of the Coercivity in Exchange-Coupled Ni81Fe19/CoO Bilayers

    Institute of Scientific and Technical Information of China (English)

    蔡建旺; 赖武彦

    2001-01-01

    The coercivity behaviour of the Nis1Fe19 film exchange-coupled with an antiferromagnetic CoO underlayer has been investigated systematically. It has been found that the coercivity is greatly enhanced not only in the easy axis direction but also in the hard axis direction when the temperature is below the Néel temperature of CoO. Also, the thickness dependence of coercivity at low temperature follows the scaling relation as 1/tNiFe with α = 2.5 at the hard axis, which is quite in contrast with the case of the easy axis, i.e. α = 1.5, predicted theoretically and verified experimentally previously. The increase of the temperature leads to the decrease of the coercivity at both the easy and hard axes, but the scaling relations are held except the narrow region just below the Néel temperature of CoO, at which the coercivity varies as 1/t NiFe with α = 1.0 for both the easy and hard axes. Based upon Hoffmann's ripple theory and Malozemoff's random field model, a simple interpretation of the experiment findings is presented.

  7. Intrinsic Ferromagnetism in Eu doped ZnO

    OpenAIRE

    Assadi, M. H. N.; Zhang,Y.B.; Ionescu, M.; Photongkam, P.; Li, S.

    2010-01-01

    We report room temperature ferromagnetism in as-implanted Eu doped ZnO (ZnO:Eu). To address the origin of ferromagnetism ab initio calculations of ZnO:Eu system are performed. Results show that the ferromagnetism is induced by ZnO point defects as Eu ions in perfect ZnO tend to align antiferromagnetically.

  8. Ferromagnets as pure spin current generators and detectors

    Energy Technology Data Exchange (ETDEWEB)

    Qu, Danru; Miao, Bingfeng; Chien, Chia -Ling; Huang, Ssu -Yen

    2015-09-08

    Provided is a spintronics device. The spintronics can include a ferromagnetic metal layer, a positive electrode disposed on a first surface portion of the ferromagnetic metal layer, and a negative electrode disposed on a second surface portion of the ferromagnetic metal.

  9. Co-existence of superconductivity and ferromagnetism in f-electron metals.

    Science.gov (United States)

    Huxley, Andrew

    2002-03-01

    In itinerant ferromagnets a strong spin polarisation might be expected to suppress any possibility of spin-singlet superconductivity. However spin triplet superconductivity may still occur if there is an appropriate pairing interaction and the material is sufficiently clean. The experimental evidence that a bulk superconducting state is indeed realised in two different f-electron ferromagnets will be reviewed, along with the special factors that might favour such a state. For UGe_2, samples that satisfy the clean limit condition are easily prepared. The superconducting transition temperature is however closely correlated with the proximity to a critical point for a magnetic transition within the ferromagnetic state, which is achieved only at high pressure. The same factors, perhaps related to Fermi surface nesting, which give rise to this complex magnetic behaviour, therefore appear to be implicated in the superconducting pairing. Superconductivity in ferromagnetic URhGe occurs at zero pressure, which has facilitated extensive magnetisation and heat-capacity studies. These confirm both the bulk nature of the two transitions and the co-existence of the two orders (ferromagnetism and superconductivity). Further, as expected for non s-wave pairing, it is found that only samples with a sufficiently low residual resistivity show superconductivity. In contrast to UGe_2, the magnetic state in URhGe behaves in accordance with the simplest version of the Moriya-Lonzarich theory. This, as well as the recent report that that the cubic itinerant ferromagnet ZrZn2 shows a low temperature transition, interpreted as an incomplete transition to superconductivity, suggest that superconductivity could occur more commonly in clean ferromagnets. The observed superconducting properties of UGe2 and URhGe appear to be consistent with a particular symmetry of the order parameter in these lower symmetry materials. Their lower symmetries also lead to several advantages relating to the

  10. Dual-frequency ferromagnetic resonance to measure spin current coupling in multilayers

    Science.gov (United States)

    Adur, Rohan; Du, Chunhui; Wang, Hailong; Manuilov, Sergei A.; Yang, Fengyuan; Hammel, P. Chris

    2014-08-01

    Spin pumping is a method for injecting a pure spin current into a non-magnetic metal (NM) by inducing precession of a neighboring ferromagnet (FM) at its ferromagnetic resonance frequency. A popular method to detect spin current uses the Inverse Spin Hall Effect (ISHE) to convert the spin current to a detectable charge current and hence a voltage. In order to better understand the role of time independent and high frequency contributions to spin pumping, we sought to detect we attempt to detect spin currents by using a second microwave frequency to detect changes in linewidth of a second ferromagnet due to the spin-torque induced by the spin current from the first ferromagnet. This dual resonance is achieved by pairing a custom broadband coplanar transmission line with the high-Q resonant cavity of a commercial electron paramagnetic resonance spectrometer. This technique is general enough that it should enable the investigation of spin currents in any FM-NM-FM system, for any orientation of external field, and is not sensitive to voltage artifacts often found in ISHE measurements. We find that the condition for simultaneous resonance generates a dc spin current that is too small to produce a measurable change in linewidth of the second ferromagnet, confirming the dominance of ac spin currents in linewidth enhancement measurements.

  11. Electric-field controlled ferromagnetism in MnGe magnetic quantum dots

    Directory of Open Access Journals (Sweden)

    Faxian Xiu

    2011-03-01

    Full Text Available Electric-field control of ferromagnetism in magnetic semiconductors at room temperature has been actively pursued as one of the important approaches to realize practical spintronics and non-volatile logic devices. While Mn-doped III-V semiconductors were considered as potential candidates for achieving this controllability, the search for an ideal material with high Curie temperature (Tc>300 K and controllable ferromagnetism at room temperature has continued for nearly a decade. Among various dilute magnetic semiconductors (DMSs, materials derived from group IV elements such as Si and Ge are the ideal candidates for such materials due to their excellent compatibility with the conventional complementary metal-oxide-semiconductor (CMOS technology. Here, we review recent reports on the development of high-Curie temperature Mn0.05Ge0.95 quantum dots (QDs and successfully demonstrate electric-field control of ferromagnetism in the Mn0.05Ge0.95 quantum dots up to 300 K. Upon the application of gate-bias to a metal-oxide-semiconductor (MOS capacitor, the ferromagnetism of the channel layer (i.e. the Mn0.05Ge0.95 quantum dots was modulated as a function of the hole concentration. Finally, a theoretical model based upon the formation of magnetic polarons has been proposed to explain the observed field controlled ferromagnetism.

  12. Enhanced coercivity of HCP Co-Pt alloy thin films on a glass substrate at room temperature for patterned media

    Science.gov (United States)

    Chen, Y. S.; Sun, An-Cheng; Lee, H. Y.; Lu, Hsi-Chuan; Wang, Sea-Fue; Sharma, Puneet

    2015-10-01

    High coercivity (Hc) Co-rich type Co-Pt alloy thin films with a columnar grain structure were deposited at room temperature (RT) by magnetron sputtering. Films with a thickness (t) of up to 10 nm had a FCC structure and exhibited soft magnetic properties. When t>25 nm, the magnetic anisotropy changed from in-plane to isotropic. Hc was also enhanced with increasing t and found to be maximum at t=50 nm. The in-plane and out-of-plane Hc of the film was 2.2 and 2.7 kOe, respectively. Further increasing t led to a slight decrease in Hc. Microstructure and phase structure studies revealed columnar Co-Pt grains with a uniform lateral size grown on a 7 nm initial layer. Films with t>25 nm showed a HCP phase, due to the internal stress and volume effect. The microstructural details responsible for the enhanced RT magnetic properties of the HCP Co-Pt alloy thin films were investigated by TEM.

  13. Tunneling Conductance in Ferromagnetic Metal/Normal Metal/Spin-Singlet -Wave Ferromagnetic Superconductor Junctions

    Directory of Open Access Journals (Sweden)

    Hamidreza Emamipour

    2013-01-01

    Full Text Available In the framework of scattering theory, we study the tunneling conductance in a system including two junctions, ferromagnetic metal/normal metal/ferromagnetic superconductor, where ferromagnetic superconductor is in spin-singlet -wave pairing state. The non-magnetic normal metal is placed in the intermediate layer with the thickness ( which varies from 1 nm to 10000 nm. The interesting result which we have found is the existence of oscillations in conductance curves. The period of oscillations is independent of FS and FN exchange field while it depends on . The obtained results can serve as a useful tool to determine the kind of pairing symmetry in ferromagnetic superconductors.

  14. Static Theory for Planar Ferromagnets and Antiferromagnets

    Institute of Scientific and Technical Information of China (English)

    Feng Bo HANG; Fang Hua LIN

    2001-01-01

    Here we generalize the "BBH"-asymptotic analysis to a simplified mathematical model for the planar ferromagnets and antiferromagncts. To develop such a static theory is a necessary step for a rigorous mathematical justification of dynamical laws for the magnetic vortices formally derived in [1] and [2].

  15. Ferromagnetic hysteresis and the effective field

    NARCIS (Netherlands)

    Naus, H.W.L.

    2002-01-01

    The Jiles-Atherton model of the behavior of ferromagnetic materials determines the irreversible magnetization from the effective field by using a differential equation. This paper presents an exact, analytical solution to the equation, one displaying hysteresis. The inclusion of magnetomechanical co

  16. Neutron Depolarization in Submicron Ferromagnetic Materials

    NARCIS (Netherlands)

    Rekveldt, M.Th.

    1989-01-01

    The neutron depolarization technique is based on the loss of polarization of a polarized neutron beam after transmission through ferromagnetic substances. This loss, caused by Larmor precession in individual domains, determines the mean domain size, the mean square direction cosines of the domains a

  17. Silicon spintronics with ferromagnetic tunnel devices

    NARCIS (Netherlands)

    Jansen, R.; Dash, S. P.; Sharma, S.; Min, B. C.

    In silicon spintronics, the unique qualities of ferromagnetic materials are combined with those of silicon, aiming at creating an alternative, energy-efficient information technology in which digital data are represented by the orientation of the electron spin. Here we review the cornerstones of

  18. Integrable hierarchies of Heisenberg ferromagnet equation

    Science.gov (United States)

    Nugmanova, G.; Azimkhanova, A.

    2016-08-01

    In this paper we consider the coupled Kadomtsev-Petviashvili system. From compatibility conditions we obtain the form of matrix operators. After using a gauge transformation, obtained a new type of Lax representation for the hierarchy of Heisenberg ferromagnet equation, which is equivalent to the gauge coupled Kadomtsev-Petviashvili system.

  19. Magnetic Properties of Uranium Based Ferromagnetic Superconductors

    NARCIS (Netherlands)

    Sakarya, S.

    2007-01-01

    Ferromagnetism and superconductivity have long been thought to be mutually exclusive. Recently however it was found that the compounds UGe2, URhGe and UIr belong to a class of materials in which ferromagnetisme and superconductivity appear simultaneously. One characteristic property of these compoun

  20. Measurment Of Residual Stress In Ferromagnetic Materials

    Science.gov (United States)

    Namkung, Min; Yost, William T.; Kushnick, Peter W.; Grainger, John L.

    1992-01-01

    Magnetoacoustic (MAC) and magnetoacoustic emission (MAE) techniques combined to provide complete characterization of residual stresses in ferromagnetic structural materials. Combination of MAC and MAE techniques makes it possible to characterize residual tension and compression without being limited by surface conditions and unavailability of calibration standards. Significant in field of characterization of materials as well as detection of fatigue failure.

  1. Angular and linear momentum of excited ferromagnets

    NARCIS (Netherlands)

    Yan, P.; Kamra, A.; Cao, Y.; Bauer, G.E.W.

    2013-01-01

    The angular momentum vector of a Heisenberg ferromagnet with isotropic exchange interaction is conserved, while under uniaxial crystalline anisotropy the projection of the total spin along the easy axis is a constant of motion. Using Noether's theorem, we prove that these conservation laws persist i

  2. Magnetization dissipation in ferromagnets from scattering theory

    NARCIS (Netherlands)

    Brataas, A.; Tserkovnyak, Y.; Bauer, G.E.W.

    2011-01-01

    The magnetization dynamics of ferromagnets is often formulated in terms of the Landau-Lifshitz-Gilbert (LLG) equation. The reactive part of this equation describes the response of the magnetization in terms of effective fields, whereas the dissipative part is parametrized by the Gilbert damping tens

  3. Effect of ferromagnetic nanoparticle on dyes biodegradation

    OpenAIRE

    Apostol, Laura; Pereira, Luciana; Pereira, Raquel; Alves, M.M.; Gavrilescu, M.

    2011-01-01

    In this study the biodecolourisation of two dyes, a xanthene dye, Erythrosine B (Ery B) and an azo dye, Reactive Red 51 (RR120), was investigated colourdecolourisationunder batch anaerobic conditions by using non - acclimated anaerobic granular sludge. The effect of ferromagnetic nanoparticle (FN) (as adsorbent or mediator) on dyes removal was experienced.

  4. Silicon spintronics with ferromagnetic tunnel devices

    NARCIS (Netherlands)

    Jansen, R.; Dash, S. P.; Sharma, S.; Min, B. C.

    2012-01-01

    In silicon spintronics, the unique qualities of ferromagnetic materials are combined with those of silicon, aiming at creating an alternative, energy-efficient information technology in which digital data are represented by the orientation of the electron spin. Here we review the cornerstones of sil

  5. Measurment Of Residual Stress In Ferromagnetic Materials

    Science.gov (United States)

    Namkung, Min; Yost, William T.; Kushnick, Peter W.; Grainger, John L.

    1992-01-01

    Magnetoacoustic (MAC) and magnetoacoustic emission (MAE) techniques combined to provide complete characterization of residual stresses in ferromagnetic structural materials. Combination of MAC and MAE techniques makes it possible to characterize residual tension and compression without being limited by surface conditions and unavailability of calibration standards. Significant in field of characterization of materials as well as detection of fatigue failure.

  6. First Principle Study of Ferromagnetism in Cr-Doped In2O3

    Institute of Scientific and Technical Information of China (English)

    XIE Zhi; CHENG Wen-Dan; WU Dong-Sheng; HUANG Shu-Ping; HU Jian-Ming; ZHANG Hao; HU Hui

    2008-01-01

    We present a first principle study of Cr-doped In2O3 system using density func- tional theory. The obtained results show that the Cr ion prefers the cation site of the center of trigonally distorted octahedron and converges to high spin-polarized configuration in the ground state. The hybridization between d-states and the donor states is strong, and the spin-split donor impurity-band model is found to be the most favorable mechanism for the ferromagnetism in this system. The good ferromagnetic property of high Curie temperature is discussed in view of the electronic structure analyses.

  7. Synthesis of ferromagnetic semiconductor 0.67FeTiO{sub 3}-0.33Fe{sub 2}O{sub 3} powder by chemical co-precipitation

    Energy Technology Data Exchange (ETDEWEB)

    Yan Shiming [Key Laboratory for Magnetism and Magnetic Materials of Ministry of Education, Lanzhou University, Lanzhou 730000 (China); Ge Shihui, E-mail: yashm05@lzu.c [Key Laboratory for Magnetism and Magnetic Materials of Ministry of Education, Lanzhou University, Lanzhou 730000 (China); Qiao Wen; Zuo Yalu [Key Laboratory for Magnetism and Magnetic Materials of Ministry of Education, Lanzhou University, Lanzhou 730000 (China)

    2010-04-15

    0.67FeTiO{sub 3}-0.33Fe{sub 2}O{sub 3} (IH33) solid solution powder was successfully synthesized by a chemical co-precipitation method using a mixture of ferrous and ferric salts as start material. Single phase of IH33 was obtained when the preparation was performed in argon atmosphere in order to protect Fe{sup 2+} ions from oxidization. Investigation of X-ray photoelectron spectroscopy confirmed the presence of Fe{sup 2+} ions in the IH33 powder. Magnetic measurement showed that the IH33 powder exhibited room-temperature ferromagnetism with a coercivity of 160 Oe.

  8. Size dependence of Peltier cooling in ferromagnet/Au nanopillars

    Science.gov (United States)

    Bosu, Subrojati; Sakuraba, Yuya; Kubota, Takahide; Juarez-Acosta, Isaac; Sugiyama, Tomoko; Saito, Kesami; Olivares-Robles, Miguel A.; Takahashi, Saburo; Bauer, Gerrit E. W.; Takanashi, Koki

    2015-08-01

    We study Peltier cooling in current-perpendicular-to-plane multilayer nanopillars with diameters D varying from 60 to 430 nm and made from Au and various ferromagnets (FMs): Heusler compounds Co2MnSi and Co2FeSi (CFS) and conventional FM metals Fe and Co. We report an enhanced effective Peltier coefficient ΠCPP in resistance-current curves at small D (Peltier coefficient Πbulk (˜7 mV) and corresponds to a high cooling power of 43.6 MW/cm2.

  9. Spin Transport in Mesoscopic Superconducting-Ferromagnetic Hybrid Conductor

    Directory of Open Access Journals (Sweden)

    Zein W. A.

    2008-01-01

    Full Text Available The spin polarization and the corresponding tunneling magnetoresistance (TMR for a hybrid ferromagnetic / superconductor junction are calculated. The results show that these parameters are strongly depends on the exchange field energy and the bias voltage. The dependence of the polarization on the angle of precession is due to the spin flip through tunneling process. Our results could be interpreted as due to spin imbalance of carriers resulting in suppression of gap energy of the superconductor. The present investigation is valuable for manufacturing magnetic recording devices and nonvolatile memories which imply a very high spin coherent transport for such junction.

  10. Magneto-optical Kerr-effect at low temperatures. Investigation of superconductor/ferromagnet heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Zahn, Patrick; Bayer, Jonas [Max Planck Institute for Intelligent Systems, Heisenbergstrasse 3, 70569 Stuttgart (Germany); Institute for Innovative Surfaces FINO, Aalen University, Beethovenstrasse 1, 73430 Aalen (Germany); Stahl, Claudia; Ruoss, Stephen; Graefe, Joachim; Schuetz, Gisela [Max Planck Institute for Intelligent Systems, Heisenbergstrasse 3, 70569 Stuttgart (Germany); Albrecht, Joachim [Institute for Innovative Surfaces FINO, Aalen University, Beethovenstrasse 1, 73430 Aalen (Germany)

    2016-07-01

    With XMCD microscopy it is possible to visualize the critical current density of the superconductor YBCO with high spatial resolution. Therefore, soft magnetic CoFeB is introduced as sensor layer. The magnetic stray fields of the supercurrents lead to a local reorientation of the magnetic moments in the ferromagnet, which are then imaged via X-ray microscopy. These experiments have to be carried out at the scanning X-ray microscope MAXYMUS at the synchrotron Bessy II in Berlin. For that purpose pre-characterization of the sensor is highly desirable: Magnetic interactions between the superconductor and the ferromagnetic sensor layer have been investigated at low temperatures using Kerr-effect measurements. Therefore hysteresis loops are obtained by a sophisticated magnet and field ramping setup within the NanoMOKE3 system. The results are used to optimize the ferromagnetic sensor layer for XMCD microscopy of superconductors.

  11. Neutron depolarization imaging of the hydrostatic pressure dependence of inhomogeneous ferromagnets

    Science.gov (United States)

    Schulz, M.; Neubauer, A.; Böni, P.; Pfleiderer, C.

    2016-05-01

    The investigation of fragile and potentially inhomogeneous forms of ferromagnetic order under extreme conditions, such as low temperatures and high pressures, is of central interest for areas such as geophysics, correlated electron systems, as well as the optimization of materials synthesis for applications where particular material properties are required. We report neutron depolarization imaging measurements on the weak ferromagnet Ni3Al under pressures up to 10 kbar using a Cu:Be clamp cell. Using a polychromatic neutron beam with wavelengths λ ≥ 4 Å in combination with 3He neutron spin filter cells as polarizer and analyzer, we were able to track differences of the pressure response in inhomogeneous samples by virtue of high resolution neutron depolarization imaging. This provides spatially resolved and non-destructive access to the pressure dependence of the magnetic properties of inhomogeneous ferromagnetic materials.

  12. Origins of the Exchange-Bias Phenomenology, Coercivity Enhancement, and Asymmetric Hysteretic Shearing in Core-Surface Smart Nanoparticles

    Directory of Open Access Journals (Sweden)

    Rıza Erdem

    2016-01-01

    Full Text Available We have used a spin-1 Ising model Hamiltonian with dipolar (bilinear, J, quadrupolar (biquadratic, K, and dipolar-quadrupolar (odd, L interactions in pair approximation to investigate the exchange-bias (EB, coercive field, and asymmetric hysteretic shearing properties peculiar to core/surface (C/S composite nanoparticles (NPs. Shifted hysteresis loops with an asymmetry and coercivity enhancement are observed only in the presence of the odd interaction term in the Hamiltonian expression and their magnitudes show strong dependence on the value of L. The observed coercivity and EB in C/S NPs originated from nonzero odd coupling energies and their dependence on temperature (T and particle size (R are also discussed in relation to experimental findings.

  13. REMARKABLE IMPROVEMENT OF THE COERCIVITY OF TbMn6Sn6 COMPOUND BY MELT-SPINNING PROCESS

    Institute of Scientific and Technical Information of China (English)

    赵鹏; 张绍英; 张宏伟; 阎阿儒; 沈保根

    2001-01-01

    The melt-spinning process has been carried out to improve the hard-magnetic properties of the TbMn6Sn6 compound. For the TbMn6Sn6 ribbons quenched at a rate of 40m/s and annealed at 545K for 30min, the highest coercivity of about 0.6T is achieved at room temperature, which is much higher than that of the TbMn6Sn6 ingot. Both the ingot and the ribbon coercivities will increase with decreasing temperature. For ribbons, a greater improvement of coercivity has been made at lower temperatures. Microstructural studies show the uniform nanocrystalline distribution in the TbMn6Sn6 ribbons and a small amount of Tb-rich phase in grain boundaries. The observed remarkable improvement of magnetic hardening in ribbons is believed to arise from the uniform nanoscale microstructure and the domain-wall pinning at the grain boundaries.

  14. Ferromagnetism in Gd doped ZnO nanowires: A first principles study

    KAUST Repository

    Aravindh, S. Assa

    2014-12-19

    In several experimental studies, room temperature ferromagnetism in Gd-doped ZnO nanostructures has been achieved. However, the mechanism and the origin of the ferromagnetism remain controversial. We investigate the structural, magnetic, and electronic properties of Zn 48O48 nanowires doped with Gd, using density functional theory. Our findings indicate that substitutionally incorporated Gd atoms prefer occupying the surface Zn sites. Moreover, the formation energy increases with the distance between Gd atoms, signifying that no Gd-Gd segregation occurs in the nanowires within the concentration limit of ≤2%. Gd induces ferromagnetism in ZnO nanowires with magnetic coupling energy up to 21 meV in the neutral state, which increases with additional electron and O vacancy, revealing the role of carriers in magnetic exchange. The potential for achieving room temperature ferromagnetism and high TC in ZnO:Gd nanowires is evident from the large ferromagnetic coupling energy (200 meV) obtained with the O vacancy. Density of states shows that Fermi level overlaps with Gd f states with the introduction of O vacancy, indicating the possibility of s-f coupling. These results will assist in understanding experimental findings in Gd-doped ZnO nanowires.

  15. First-principles calculations on the origin of ferromagnetism in transition-metal doped Ge

    Science.gov (United States)

    Shinya, Hikari; Fukushima, Tetsuya; Masago, Akira; Sato, Kazunori; Katayama-Yoshida, Hiroshi

    2017-09-01

    Many researchers have shown an interest in Ge-based dilute magnetic semiconductors (DMSs) due to potential advantages for semiconductor spintronics applications. There has been great discussion about mechanisms of experimentally observed ferromagnetism in (Ge,Fe) and (Ge,Mn). We investigate the electronic structures, structural stabilities, magnetic exchange coupling constants, and Curie temperature of Ge-based DMSs, and clarify origins of the ferromagnetism, on the basis of density functional theory calculations. In both the (Ge,Fe) and (Ge,Mn) cases, the inhomogeneous distribution of the magnetic impurities plays an important role to determine the magnetic states; however, physical mechanisms of the ferromagnetism in these two materials are completely different. By the spinodal nanodecomposition, the Fe impurities in Ge gather together with keeping the diamond structure, so that the number of the first-nearest-neighbor Fe pairs with strong ferromagnetic interaction increases. Therefore, the Curie temperature drastically increases with the progress of the annealing. Our cluster expansion method clearly reveals that the other ordered compounds with different crystal structures such as Ge3Mn5 and Ge8Mn11 are easily generated in the (Ge,Mn) system. The estimated Curie temperature of Ge3Mn5 is in agreement with the observed Curie temperature in experiments. It should be considered that the precipitation of the ferromagnetic Ge3Mn5 clusters is an origin of high Curie temperature in (Ge,Mn).

  16. FMR Study of the Field Dependence of the Ferromagnetic Transition in an Organic Magnet

    Science.gov (United States)

    Kovalev, Alexey; Winter, Stephen; Hill, Stephen; Oakley, Richard

    2012-02-01

    Organic heterocyclic thia/selenazyl radicals have unique magnetic properties. First and foremost, in their crystalline form, they experience a transition to a ferromagnetic state at temperatures that are the highest for any material containing only non-metallic elements. Second, their low temperature uniaxial anisotropy field is the highest among purely organic ferromagnets [Winter et al., JACS 133, 8126 (2011)]. To investigate the effect of a magnetic field on the transition in the mixed Se-S compound (Tc= 12.5 K) at zero field, we employ ferromagnetic resonance (FMR) absorption as a measure of the anisotropy field for a single crystal. We also focus on the temperature and field dependence of the FMR linewidth. Our main finding is that the application of a field significantly broadens the ferromagnetic transition, with a noticeable FMR signal observed to as high as 2Tc in fields of a few tesla. Meanwhile, the FMR linewidth is relatively insensitive to frequency/field, though it becomes narrower upon decreasing the temperature and saturates below Tc. We will discuss the broadening of the ferromagnetic transition within the framework of scaling theory.

  17. Coupled Lattice Polarization and Ferromagnetism in Multiferroic NiTiO 3 Thin Films

    Energy Technology Data Exchange (ETDEWEB)

    Varga, Tamas; Droubay, Timothy C.; Kovarik, Libor; Nandasiri, Manjula I.; Shutthanandan, Vaithiyalingam; Hu, Dehong; Kim, Bumsoo; Jeon, Seokwoo; Hong, Seungbum; Li, Yulan; Chambers, Scott A.

    2017-06-22

    Polarization-induced weak ferromagnetism has been predicted recently in LiNbO3-type MTiO3 (M = Fe, Mn, Ni). While coexisting ferroelectric polarization and ferromagnetism have been demonstrated in this family before, first in bulk FeTiO3, then in thin-film NiTiO3, the coupling of the two order parameters has not been confirmed. Here we report the stabilization of polar, ferromagnetic NiTiO3 by oxide epitaxy on LiNbO3 substrate utilizing tensile strain, and demonstrate the theory-predicted coupling between its polarization and ferromagnetism by x-ray magnetic circular dichroism under applied fields. The experimentally observed direction of ferroic ordering in the film is supported by simulation using phase-field approach. Our work validates symmetry-based criteria and first-principles calculations of the coexistence of ferroelectricity and weak ferromagnetism in MTiO3 transition metal titanates crystallizing in the LiNbO3 structure. It also demonstrates the applicability of epitaxial strain as a viable alternative to high-pressure crystal growth to stabilize metastable materials, and a valuable tuning parameter to simultaneously control two ferroic order parameters to create a multiferroic.

  18. Exploring Variations Within Situational Couple Violence and Comparisons With Coercive Controlling Violence and No Violence/No Control.

    Science.gov (United States)

    Nielsen, Samantha K; Hardesty, Jennifer L; Raffaelli, Marcela

    2016-02-01

    We examined variations within situational couple violence among 23 divorcing mothers and compared them with mothers with coercive controlling violence and no violence/no control. Situational couple violence had great variability in frequency and severity of violence, fear, harassment, and protective strategies. In some cases, situational couple violence was frequent and severe and resembled coercive controlling violence in its consequences. The dynamics of fear and harassment in situational couple violence and in the divorce process in general warrant attention. Finally, mothers reported mental health symptoms that did not differ by group, which is likely due to the stresses of divorce.

  19. Room temperature ferromagnetism in Teflon due to carbon dangling bonds.

    Science.gov (United States)

    Ma, Y W; Lu, Y H; Yi, J B; Feng, Y P; Herng, T S; Liu, X; Gao, D Q; Xue, D S; Xue, J M; Ouyang, J Y; Ding, J

    2012-03-06

    The ferromagnetism in many carbon nanostructures is attributed to carbon dangling bonds or vacancies. This provides opportunities to develop new functional materials, such as molecular and polymeric ferromagnets and organic spintronic materials, without magnetic elements (for example, 3d and 4f metals). Here we report the observation of room temperature ferromagnetism in Teflon tape (polytetrafluoroethylene) subjected to simple mechanical stretching, cutting or heating. First-principles calculations indicate that the room temperature ferromagnetism originates from carbon dangling bonds and strong ferromagnetic coupling between them. Room temperature ferromagnetism has also been successfully realized in another polymer, polyethylene, through cutting and stretching. Our findings suggest that ferromagnetism due to networks of carbon dangling bonds can arise in polymers and carbon-based molecular materials.

  20. Magnetic properties of high Li doped ZnO sol–gel thin films

    Energy Technology Data Exchange (ETDEWEB)

    Vettumperumal, R. [P.G and Research Department of Physics, Sri Paramakalyani College, Alwarkurichi (India); Kalyanaraman, S., E-mail: mayura_priya2003@yahoo.co.in [P.G and Research Department of Physics, Sri Paramakalyani College, Alwarkurichi (India); Santoshkumar, B. [P.G and Research Department of Physics, Sri Paramakalyani College, Alwarkurichi (India); Thangavel, R. [Department of Physics, Indian School of Mines, Dhanbad (India)

    2014-02-01

    Highlights: • Ferromagnetism in high Li doped ZnO films. • Magnetic properties observed by Guoy's and VSM method. • The rod and wrinkle like structures are observed from the surface of the films. • Band gap of ZnO does not get altered by high Li doping. - Abstract: Undoped and Li doped ZnO thin films were deposited on a glass substrate using the sol–gel dip coating method. The films were prepared at 5 mol.% and 10 mol.% of Li doped ZnO at 550 °C annealing temperature and the deposited films were characterized by X-ray diffraction (XRD), microscopic studies, Gouy's method, vibrating sample magnetometer (VSM) and UV–visible spectroscopy. All the deposited thin films had a hexagonal wurtzite structure with polycrystalline grains at random. Primarily magnetic properties of pure and Li doped ZnO films were observed by Guoy's method which depicted Dia and Para magnetic behavior at room temperature. VSM measurement reveals a coercivity of 97.7 Oe in the films. An inverse relative ferromagnetism was perceived in Li doped ZnO films which had an average transmission of <90%.