WorldWideScience

Sample records for high coercive forces

  1. Study of high coercive force films made by vacuum deposition of cobalt onto chromium

    International Nuclear Information System (INIS)

    Randet, Denis

    1969-01-01

    A new method to make high coercive force films, by successive evaporations of chromium and cobalt, was demonstrated in 1966 at the 'Laboratoire d'Electronique et de Technologie de l'Informatique'. This work first contains a description of the magnetic properties of these films according to the conditions of preparation. These properties, which are isotropic in the plane of the film, are then related to the crystallographic structure of chromium and cobalt, in particular through electron microscopy. It is concluded that the coercive force is essentially due to the high magneto-crystalline anisotropy of cobalt in its hexagonal phase and depends, altogether with the shape of the hysteresis loop, on the magnetostatic coupling between the grains, which varies according to their dimensions. The chromium underlayer, if its surface is free enough of oxygen contamination, induces the growth of the hexagonal phase and influences the grain size of cobalt by a sort of epitaxy. At last, the behaviour of the Co/Cr films as a magnetic recording material is briefly examined and discussed. (author) [fr

  2. Highly coercive thin-film nanostructures

    International Nuclear Information System (INIS)

    Zhou, J.; Skomski, R.; Kashyap, A.; Sorge, K.D.; Sui, Y.; Daniil, M.; Gao, L.; Yan, M.L.; Liou, S.-H.; Kirby, R.D.; Sellmyer, D.J.

    2005-01-01

    The processing, structure, and magnetism of highly coercive Sm-Co and FePt thin-film nanostructures are investigated. The structures include 1:5 based Sm-Co-Cu-Ti magnets, particulate FePt:C thin films, and FePt nanotubes. As in other systems, the coercivity depends on texture and imperfections, but there are some additional features. A specific coercivity mechanism in particulate media is a discrete pinning mode intermediate between Stoner-Wohlfarth rotation and ordinary domain-wall pinning. This mechanism yields a coercivity maximum for intermediate intergranular exchange and explains the occurrence of coercivities of 5 T in particulate Sm-Co-Cu-Ti magnets

  3. Local coercive force of domain boundaries

    International Nuclear Information System (INIS)

    Kandaurova, G.S.; Vas'kovskij, V.O.

    1980-01-01

    The aim of the present paper is to show the variety of effects resulting from local coercivity using RFeO 3 orthoferrites crystals-plates, to separate factors which are not directly connected with the nature of every single defect but influence significantly Hsub(cw) local coercivity and, at last, to attract attention of physisists-theorists to new tasks of the magnetic hysteresis theory. Measurements have been carried out on a great number of defect of YFeO 3 and PyFeO 3 crystals. Such peculiarities of local coercivity as Hsub(cw) anisotropy and asymmetry, Hsub(cw) nonstability and its dependence on the sample magnetic prehistory. Qualitative explanation of these effects in based on the presumable interaction of the domain wall with magnetic heterogeneities existing in a region of structural defects

  4. Local coercive force of domain boundaries

    Energy Technology Data Exchange (ETDEWEB)

    Kandaurova, G S; Vas' kovskii, V O [Ural' skij Gosudarstvennyj Univ., Sverdlovsk (USSR)

    1980-04-01

    The aim of the present paper is to show the variety of effects resulting from local coercivity using RFeO/sub 3/ orthoferrites crystals-plates, to separate factors which are not directly connected with the nature of every single defect but influence significantly H/sub cw/ local coercivity and, at last, to attract attention of physisists-theorists to new tasks of the magnetic hysteresis theory. Measurements have been carried out on a great number of defect of YFeO/sub 3/ and PyFeO/sub 3/ crystals. Such peculiarities of local coercivity as H/sub cw/ anisotropy and asymmetry, H/sub cw/ nonstability and its dependence on the sample magnetic prehistory. Qualitative explanation of these effects in based on the presumable interaction of the domain wall with magnetic heterogeneities existing in a region of structural defects.

  5. Coercive force features in stressed epitaxial ferrite-garnet films

    International Nuclear Information System (INIS)

    Dubinko, S.V.; Nedviga, A.S.; Vishnevskij, V.G.; Shaposhnikov, A.N.; Yagupov, V.S.; Nesteruk, A.G.; Prokopov, A.R.

    2005-01-01

    One has investigated into effect of a relative mismatching of periods of lattices of a film and of a substrate within 0.5-0.85% range on behavior of the coercive force of (Bi, Sm, Lu, Ca) 3 (Fe, Sc, Ga, Al) 5 O 12 composition ferrite garnet epitaxial films (FGEF) synthesized at (111) orientation gadolinium-gallium garnet substrates. One has revealed that the FGEF coercive force at increase of the relative mismatching of periods of lattices of a film and of a substrate increases at first, while when reaching the maximum value it begins to decrease. The coercive force maximum value is shown to result from the periodical localized stresses. The period of the localized stresses is determined by the value of mismatching of periods of lattices of a film and of a substrate [ru

  6. Developing high coercivity in large diameter cobalt nanowire arrays

    Science.gov (United States)

    Montazer, A. H.; Ramazani, A.; Almasi Kashi, M.; Zavašnik, J.

    2016-11-01

    Regardless of the synthetic method, developing high magnetic coercivity in ferromagnetic nanowires (NWs) with large diameters has been a challenge over the past two decades. Here, we report on the synthesis of highly coercive cobalt NW arrays with diameters of 65 and 80 nm, which are embedded in porous anodic alumina templates with high-aspect-ratio pores. Using a modified electrochemical deposition method enabled us to reach room temperature coercivity and remanent ratio up to 3000 Oe and 0.70, respectively, for highly crystalline as-synthesized hcp cobalt NW arrays with a length of 8 μm. The first-order reversal curve (FORC) analysis showed the presence of both soft and hard magnetic phases along the length of the resulting NWs. To develop higher coercive fields, the length of the NWs was then gradually reduced in order from bottom to top, thereby reaching NW sections governed by the hard phase. Consequently, this resulted in record high coercivities of 4200 and 3850 Oe at NW diameters of 65 and 80 nm, respectively. In this case, the FORC diagrams confirmed a significant reduction in interactions between the magnetic phases of the remaining sections of NWs. At this stage, x-ray diffraction (XRD) and dark-field transmission electron microscopy analyses indicated the formation of highly crystalline bamboo-like sections along the [0 0 2] direction during a progressive pulse-controlled electrochemical growth of NW arrays under optimized parameters. Our results both provide new insights into the growth process, crystalline characteristics and magnetic phases along the length of large diameter NW arrays and, furthermore, develop the performance of pure 3d transition magnetic NWs.

  7. Iron in the Fire: Searching for Fire's Magnetic Fingerprint using Controlled Heating Experiments, High-Resolution FORCs, IRM Coercivity Spectra, and Low-Temperature Remanence Experiments

    Science.gov (United States)

    Lippert, P. C.; Reiners, P. W.

    2014-12-01

    Evidence for recent climate-wildfire linkages underscores the need for better understanding of relationships between wildfire and major climate shifts in Earth history, which in turn offers the potential for prognoses for wildfire and human adaptations to it. In particular, what are the links between seasonality and wildfire frequency and severity, and what are the feedbacks between wildfire, landscape evolution, and biogeochemical cycles, particularly the carbon and iron cycles? A key first step in addressing these questions is recovering well-described wildfire records from a variety of paleolandscapes and paleoclimate regimes. Although charcoal and organic biomarkers are commonly used indicators of fire, taphonomic processes and time-consuming analytical preparations often preclude their routine use in some environments and in high-stratigraphic resolution paleowildfire surveying. The phenomenological relationship between fire and magnetic susceptibility can make it a useful surveying tool, but increased magnetic susceptibility in sediments is not unique to fire, and thus limits its diagnostic power. Here we utilize component-specific rock magnetic methods and analytical techniques to identify the rock magnetic fingerprint of wildfire. We use a custom-designed air furnace, a series of iron-free laboratory soils, natural saprolites and soils, and fuels from Arizona Ponderosa pine forests and grasslands to simulate wildfire in a controlled and monitored environment. Soil-ash residues and soil and fuel controls were then characterized using First Order Reversal Curve (FORC) patterns, DC backfield IRM coercivity spectra, low-temperature SIRM demagnetization behavior, and low-temperature cycling of room-temperature SIRM behavior. We will complement these magnetic analyses with high-resolution TEM of magnetic extracts. Here we summarize the systematic changes to sediment magnetism as pyrolitized organic matter is incorporated into artificial and natural soils. These

  8. Tuning coercive force by adjusting electric potential in solution processed Co/Pt(111) and the mechanism involved

    Science.gov (United States)

    Chang, Cheng-Hsun-Tony; Kuo, Wei-Hsu; Chang, Yu-Chieh; Tsay, Jyh-Shen; Yau, Shueh-Lin

    2017-03-01

    A combination of a solution process and the control of the electric potential for magnetism represents a new approach to operating spintronic devices with a highly controlled efficiency and lower power consumption with reduced production cost. As a paradigmatic example, we investigated Co/Pt(111) in the Bloch-wall regime. The depression in coercive force was detected by applying a negative electric potential in an electrolytic solution. The reversible control of coercive force by varying the electric potential within few hundred millivolts is demonstrated. By changing the electric potential in ferromagnetic layers with smaller thicknesses, the efficiency for controlling the tunable coercive force becomes higher. Assuming that the pinning domains are independent of the applied electric potential, an electric potential tuning-magnetic anisotropy energy model was derived and provided insights into our knowledge of the relation between the electric potential tuning coercive force and the thickness of the ferromagnetic layer. Based on the fact that the coercive force can be tuned by changing the electric potential using a solution process, we developed a novel concept of electric-potential-tuned magnetic recording, resulting in a stable recording media with a high degree of writing ability.

  9. Recoil curve properties and coercive force decrease ratio in NdFeB sintered magnets

    Energy Technology Data Exchange (ETDEWEB)

    Matsuura, Yutaka, E-mail: Yutaka_Matsuura@hitachi-metals.co.jp; Kitai, Nobuyuki; Ishii, Rintaro; Natsumeda, Toshimitsu; Hoshijima, Jun

    2013-11-15

    It is examined that whether a reverse domain and magnetic domain wall exist in a lower demagnetization area than the coercive force and whether the observed demagnetization ratio curve can be explained using the alignment distribution function or not. From measurements of the recoil curve in the low demagnetization field, it was confirmed that minor demagnetization occurred in every demagnetization field and magnets of every grade of coercive force. The alignment distribution of Nd{sub 2}Fe{sub 14}B grains was also measured by electron back-scattering diffraction (EBSD). The alignments and the coercive force decrease ratios were calculated using these alignment distributions. These data were compared against the results obtained from magnetization measurements. From EBSD data, it was found that the alignment distributions of magnets used in this experiment were close to a Gaussian distribution. It was also found that there was no difference in the alignment distribution between magnets with Dy and without Dy, even though the coercive force decrease ratios were Dy dependent. The calculated alignments using the alignment distribution functions were close to the values of magnetization measurements. However, it was found that the calculated coercive force decrease ratios were different from the results obtained from magnetization measurement. - Highlights: • Reverse magnetic domains already exist lower magnetic field than coercive force. • Demagnetization happens not only from surface but also from inside of magnets. • Calculated alignment agrees well with that of the magnetic properties measurement. • Coercive force decrease ratio could not explain from alignment distribution. • We could not find any difference with and without Dy magnets in alignment distribution.

  10. Variable substrate temperature deposition of CoFeB film on Ta for manipulating the perpendicular coercive forces

    Science.gov (United States)

    Lakshmanan, Saravanan; Rao, Subha Krishna; Muthuvel, Manivel Raja; Chandrasekaran, Gopalakrishnan; Therese, Helen Annal

    2017-08-01

    Magnetization of Ta/CoFeB/Ta trilayer films with thick layer of CoFeB deposited under different substrate temperatures (Ts) via ultra-high vacuum DC sputtering technique has been measured with the applied magnetic field parallel and perpendicular to the plane of the film respectively to study the perpendicular coercive forces of the film. The samples were further analyzed for its structural, topological, morphological, and electrical transport properties. The core chemical states for the elements present in the CoFeB thin film were analyzed by XPS studies. Magnetization studies reveal the existence of perpendicular coercive forces in CoFeB films deposited only at certain temperatures such as RT, 450 °C, 475 °C and 500 °C. CoFeB film deposited at 475 °C exhibited a maximum coercivity of 315 Oe and a very low saturation magnetization (Ms) of 169 emu/cc in perpendicular direction. This pronounced effect in perpendicular coercive forces observed for CoFeB475 could be attributed to the effect of temperature in enhancing the crystallization of the film at the Ta/CoFeB interfaces. However at temperatures higher than 475 °C the destruction of the Ta/CoFeB interface due to intermixing of Ta and CoFeB results in the disappearance of magnetic anisotropy.

  11. High-coercive garnet films for thermo-magnetic recording

    International Nuclear Information System (INIS)

    Berzhansky, V N; Danishevskaya, Y V; Nedviga, A S; Milyukova, H T

    2016-01-01

    The possibility of using high-coercive of garnet films for thermo-magnetic recording is related with the presence of the metastable domain structure, which arises due to a significant mismatch of the lattice parameters of the film and the substrate. In the work the connection between facet crystal structure of elastically strained ferrite garnets films and the domain structure in them is established by methods of phase contrast and polarization microscopy. (paper)

  12. The coercive force of fine particles of monoclinic pyrrhotite (Fe7S8 ...

    African Journals Online (AJOL)

    The temperature dependence of coercive force (Hc) between 77 K and 600 K has been investigated for fine particles of monoclinic pyrrhotite (Fe7S8) of < 1 mm and 1- 30 mm particle sizes. The study has shown that Hc is strongly dependent on temperature, as temperature rises above room temperature (293 K) to near the ...

  13. Relation between Nd2Fe14B grain alignment and coercive force decrease ratio in NdFeB sintered magnets

    International Nuclear Information System (INIS)

    Matsuura, Yutaka; Hoshijima, Jun; Ishii, Rintaro

    2013-01-01

    It was found that the coercive force of NdFeB sintered magnets decreases as the Nd 2 Fe 14 B grain alignment improves. Because of this phenomenon, studies looked at the relation between this alignment and the coercive force decrease ratio. In experiments, it was expected that the coercive force of perfectly aligned magnet reached 0.7 of coercive force in istotropically aligned magnet. When it is postulated that the coercive force is determined by the Stoner–Wohlfarth model, coercive force increases as the alignment improves and it becomes difficult to explain our experimental data. On the other hand, when the coercive force is determined by magnetic domain wall motion, the coercive force decreases as the alignment improves and the coercive force of the perfectly aligned magnet reaches 1/√(2) of the isotropically aligned magnet. This tendency and value was very close to our data. It strongly suggests that the coercive force of NdFeB sintered magnets is determined by the domain wall motion. - Highlights: ► Coercive force of NdFeB sintered magnets decreases as grains alignment improves. ► Coercive force decrease ratio reaches −30% at the perfect aligned magnet. ►These experimental results are different from the Stoner–Wohlfarth model. ► The magnetic domain wall motion could explain this coercive force decrease ratio

  14. Relation between Nd{sub 2}Fe{sub 14}B grain alignment and coercive force decrease ratio in NdFeB sintered magnets

    Energy Technology Data Exchange (ETDEWEB)

    Matsuura, Yutaka, E-mail: Yutaka_Matsuura@hitachi-metals.co.jp [Hitachi Metals Ltd., NEOMAX Division, 2-15-17 Egawa, Shimamoto-cho, Mishima-gun, Osaka 618-0013 (Japan); Hoshijima, Jun; Ishii, Rintaro [Hitachi Metals Ltd., NEOMAX Division, 2-15-17 Egawa, Shimamoto-cho, Mishima-gun, Osaka 618-0013 (Japan)

    2013-06-15

    It was found that the coercive force of NdFeB sintered magnets decreases as the Nd{sub 2}Fe{sub 14}B grain alignment improves. Because of this phenomenon, studies looked at the relation between this alignment and the coercive force decrease ratio. In experiments, it was expected that the coercive force of perfectly aligned magnet reached 0.7 of coercive force in istotropically aligned magnet. When it is postulated that the coercive force is determined by the Stoner–Wohlfarth model, coercive force increases as the alignment improves and it becomes difficult to explain our experimental data. On the other hand, when the coercive force is determined by magnetic domain wall motion, the coercive force decreases as the alignment improves and the coercive force of the perfectly aligned magnet reaches 1/√(2) of the isotropically aligned magnet. This tendency and value was very close to our data. It strongly suggests that the coercive force of NdFeB sintered magnets is determined by the domain wall motion. - Highlights: ► Coercive force of NdFeB sintered magnets decreases as grains alignment improves. ► Coercive force decrease ratio reaches −30% at the perfect aligned magnet. ►These experimental results are different from the Stoner–Wohlfarth model. ► The magnetic domain wall motion could explain this coercive force decrease ratio.

  15. High-coercivity FePt sputtered films

    International Nuclear Information System (INIS)

    Luong, N.H.; Hiep, V.V.; Hong, D.M.; Chau, N.; Linh, N.D.; Kurisu, M.; Anh, D.T.K.; Nakamoto, G.

    2005-01-01

    Fe 56 Pt 44 thin films have been prepared by RF magnetron sputtering on Si substrates. The substrate temperature was kept at 350 deg C. The X-ray diffraction patterns of as-deposited FePt films exhibited a disordered structure. Annealing of the films at 650-685 deg C for 1 h yielded an ordered L1 0 phase with FCT structure. The high value for coercivity H C of 17 kOe was obtained at room temperature for the 68 nm thick film annealed at 685 deg C. The hard magnetic properties as well as grain structure of the films strongly depend on the annealing conditions

  16. Variable substrate temperature deposition of CoFeB film on Ta for manipulating the perpendicular coercive forces

    Energy Technology Data Exchange (ETDEWEB)

    Lakshmanan, Saravanan; Rao, Subha Krishna [Nanotechnology Research Centre, SRM University, Kattankulathur, Chennai 603203 (India); Muthuvel, Manivel Raja [Defence Metallurgical Research Laboratory (DMRL), Hyderabad 500058 (India); Chandrasekaran, Gopalakrishnan [Nanotechnology Research Centre, SRM University, Kattankulathur, Chennai 603203 (India); Therese, Helen Annal, E-mail: helen.a@ktr.srmuniv.ac.in [Nanotechnology Research Centre, SRM University, Kattankulathur, Chennai 603203 (India)

    2017-08-01

    Highlights: • Ta/CoFeB(50 nm)/Ta thin films were deposited at various substrate temperatures (T{sub s}). • CoFeB films deposited at T{sub s} such as RT, 450 °C, 475 °C and 500 °C exhibited perpendicular coercivity. • CoFeB deposited at 475 °C displayed a higher coercivity of 315 Oe and a low M{sub s} of 169 emu/cc. • The enhanced crystallization of CoFeB at the Ta/CoFeB interface results in higher H{sub c} (⟂). - Abstract: Magnetization of Ta/CoFeB/Ta trilayer films with thick layer of CoFeB deposited under different substrate temperatures (T{sub s}) via ultra-high vacuum DC sputtering technique has been measured with the applied magnetic field parallel and perpendicular to the plane of the film respectively to study the perpendicular coercive forces of the film. The samples were further analyzed for its structural, topological, morphological, and electrical transport properties. The core chemical states for the elements present in the CoFeB thin film were analyzed by XPS studies. Magnetization studies reveal the existence of perpendicular coercive forces in CoFeB films deposited only at certain temperatures such as RT, 450 °C, 475 °C and 500 °C. CoFeB film deposited at 475 °C exhibited a maximum coercivity of 315 Oe and a very low saturation magnetization (M{sub s}) of 169 emu/cc in perpendicular direction. This pronounced effect in perpendicular coercive forces observed for CoFeB475 could be attributed to the effect of temperature in enhancing the crystallization of the film at the Ta/CoFeB interfaces. However at temperatures higher than 475 °C the destruction of the Ta/CoFeB interface due to intermixing of Ta and CoFeB results in the disappearance of magnetic anisotropy.

  17. τ-MnAl with high coercivity and saturation magnetization

    Directory of Open Access Journals (Sweden)

    J. Z. Wei

    2014-12-01

    Full Text Available In this paper, high purity τ-Mn54Al46 and Mn54−xAl46Cxalloys were successfully prepared using conventional arc-melting, melt-spinning, and heat treatment process. The magnetic and the structural properties were examined using x-ray diffraction (XRD, powder neutron diffraction and magnetic measurements. A room temperature saturation magnetization of 650.5 kAm-1, coercivity of 0.5 T, and a maximum energy product of (BHmax = 24.7 kJm-3 were achieved for the pure Mn54Al46 powders without carbon doping. The carbon substituted Mn54−xAl46Cx, however, reveals a lower Curie temperature but similar saturation magnetization as compared to the carbon-free sample. The electronic structure of MnAl shows that the Mn atom possesses a magnetic moment of 2.454 μB which results from strong hybridization between Mn-Al and Mn-Mn. We also investigated the volume and c/a ratio dependence of the magnetic moments of Mn and Al. The results indicate that an increase in the intra-atomic exchange splitting due to the cell volume expansion, leads to a large magnetic moment for the Mn atom. The Mn magnetic moment can reach a value of 2.9 μB at a volume expansion rate of ΔV/V ≈ 20%.

  18. The effect of sputter-deposition conditions on the coercive force in amorphous rare-earth - transition-metal thin films

    International Nuclear Information System (INIS)

    Davies, C.F.; Somekh, R.E.; Evetts, J.E.; Storey, P.A.

    1988-01-01

    The origins of the coercive force in amorphous rare earth - transition metal films have been investigated, the results being discussed in terms of how the growth conditions of the sputter-deposited films determine the pinning features which cause the coercive force. The authors have studied the variation of coercive force with film thickness and developed a model which enables a local pinning force per unit area to be deduced. This suggests that it should be possible to increase the coercive force by breaking up the microstructure with a multi-layered structure. An increase in coercive force obtained by making such structures with tungsten is described. They also report on the reduction in coercive force obtained when the films are deposited in the presence of a perpendicular magnetic field

  19. High coercivity rare earth-transition metal magnets

    International Nuclear Information System (INIS)

    Croat, J.J.

    1982-01-01

    Ferromagnetic compositions having intrinsic magnetic coercivities at room temperature of at least 1,000 Oersteds are formed by the controlled quenching of molten rare earth -transition metal alloys. Hard magnets may be inexpensively formed from the lower atomic weight lanthanide elements and iron. The preferable compositions lie within: at least one of Fe, Ni, Co (20 to 70 atomic percent); and at least one of Ce, Pr, Na, Sm, Eu, Tb, Dy, Ho, Er, Tm, Y (80 to 30 atomic percent). (author)

  20. High coercivity rare earth-transition metal magnets

    International Nuclear Information System (INIS)

    Croat, J.J.

    1982-01-01

    Ferromagnetic compositions having intrinsic magnetic coercivities at room temperature of at least 1,000 Oersteds are formed by the controlled quenching of molten rare earth-transition metal alloys. Hard magnets may be inexpensively formed from the lower atomic weight lanthanide elements and iron. The preferable compositions lie within: at least one of Fe, Ni, Co; 20 - 70 atomic percent: at least one of Ce, Pr, Nd, Sm, Eu, Tb, Dy, Ho, Er, Tm, Y; 80 - 30 atomic percent. (author)

  1. Coercive force changes in Sm(CoFeCuZr)z during step-like heat treatments

    International Nuclear Information System (INIS)

    Puzanova, T.Z.; Shchegoleva, N.N.; Sakhnova, L.V.; Majkov, V.G.; Shur, Ya.S.; Nikolaeva, N.V.

    1987-01-01

    Sm(Co 0.67 Fe 0.22 Cu 0.08 Zr 0.03 ) 8.35 alloy, contaning two homogeneous solid solutions SmM 6.85 and SmM 7.75 (M=Co, Fe, Cu, Zr) after high-temperature treatment, is investigated. It is shown, that after isothermal tempering at 800 deg C, SmM 6.85 and SmM 7.75 are close by microstructure and their coercive forces change in a different way during step-like cooling within 700-400 deg C interval. Possibility of producing material, single-phase in magnetic relation, is discussed

  2. Thermal treatment to enhance saturation magnetization of superparamagnetic Ni nanoparticles while maintaining low coercive force

    Science.gov (United States)

    Ishizaki, Toshitaka; Yatsugi, Kenichi; Akedo, Kunio

    2018-05-01

    Superparamagnetic nanoparticles capped by insulators have the potential to decrease eddy current and hysteresis losses. However, the saturation magnetization ( M s) decreases significantly with decreasing the particle size. In this study, superparamagnetic Ni nanoparticles having the mean size of 11.6 ± 1.8 nm were synthesized from the reduction of Ni(II) acetylacetonate in oleylamine with the addition of trioctylphosphine, indicating the coercive force ( H c) less than 1 Oe. Thermal treatments of the Ni nanoparticles were investigated as a method to enhance the M s. The results indicated that the M s was enhanced by an increase of the Ni mass ratio with increasing thermal treatment temperature. However, the decomposition behavior of the capping layers indicated that their alkyl chains actively decomposed at temperatures above 523 K to form Ni3P via reaction between Ni and P, resulting in particle growth with a significant increase in the H c. Therefore, the optimal temperature was determined to be 473 K, which increased the Ni ratio without formation of Ni3P while maintaining particle sizes with superparamagnetic properties. Further, the M s could be improved by 22% (relative to the as-synthesized Ni nanoparticles) after thermal treatment at 473 K while maintaining the H c to be less than 1 Oe.

  3. Estimation of the Ultimate Tensile Strength of Steel from Its HB and HV Hardness Numbers and Coercive Force

    Science.gov (United States)

    Sandomirskii, S. G.

    2017-11-01

    A formula is derived to accurately describe the tabulated relation between the Brinell ( HB) and Vickers ( HV) hardnesses of steel over the entire range of their possible variation. This formula and the formulas describing the relation between the HB hardness of chromium-molybdenum and chromium-nickel steels and their ultimate tensile strength σu are used to analyze the change in σu of 38KhNM steel upon quenching and tempering. The data that reveal a relation between σu of 38KhNM steel and its coercive force are obtained.

  4. High coercivity Sm-Co thin films from elemental Sm/Co multilayer deposition and their microstructural aspects

    Energy Technology Data Exchange (ETDEWEB)

    Krishnan, M. [Surface Engineering Division, CSIR-National Aerospace Laboratories, Bangalore 560 017 (India); Department of Physics, National Institute of Technology Calicut, Calicut 673601 (India); Predeep, P. [Department of Physics, National Institute of Technology Calicut, Calicut 673601 (India); Sridhara Rao, D.V. [Defence Metallurgical Research Laboratories, Hyderabad 500058 (India); Prajapat, C.L.; Singh, M.R. [Technical Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Barshilia, Harish C. [Surface Engineering Division, CSIR-National Aerospace Laboratories, Bangalore 560 017 (India); Chowdhury, P., E-mail: pchowdhury@nal.res.in [Surface Engineering Division, CSIR-National Aerospace Laboratories, Bangalore 560 017 (India)

    2017-05-15

    Hard magnetic thin films with high coercivity were fabricated by magnetron sputtering on MgO(100) and quartz substrates. The films were grown by depositing sequentially Sm and Co layers at an elevated substrate temperature of 500 °C. Subsequent post-annealing was carried out at various temperatures in range of 500–700 °C to form Sm-Co hard magnetic thin films. X-ray diffraction studies revealed the formation of randomly oriented SmCo{sub 5} crystallites on quartz substrate, whereas, a textured growth of Sm{sub 2}Co{sub 7} with strong (110) crystalline phases was observed on MgO substrate. Microstructural analyses were carried out using Transmission Electron Microscopy (TEM) for samples grown on MgO substrate at 650 °C and inferred the presence of high density planar defects along with large grain boundaries. Further microdiffraction studies confirmed the presence of SmCo{sub 3} as an impurity phase in the films. Magnetic hysteresis measurements indicate the square hysteresis behaviors with high coercivity value of 3.1 T and 2.7 T for 650 °C annealed samples on both MgO and quartz substrates, respectively. The origin of such high coercivity value was then correlated with pinning type of spin reversal mechanism as confirmed through the analyses of demagnetization curves. The magnetic force microscopy images for films on MgO substrate, annealed at 650 °C, revealed the presence of magnetic domains with size higher than 1 µm. The formed magnetic domains lacked well defined boundaries indicating an enhanced exchange coupling between the grain clusters. - Highlights: • Ewald technique in micromagnetic simulations with periodic boundary conditions. • Effect of micromagnetic parameters on hysteresis in exchange spring magnets. • Importance of the interface exchange coupling for hard-soft nanocomposites. • Geometry dependence of the optimal soft phase size in exchange spring magnets.

  5. Study of high-coercivity sintered NdFeB magnets

    Energy Technology Data Exchange (ETDEWEB)

    Bai, G. [School of Physics and Microelectronics, Shandong University, Jinan, 250100 (China); Department of Mathematics and Physics, Xi' an Institute of Technology, Xi' an, 710032 (China); Gao, R.W. [School of Physics and Microelectronics, Shandong University, Jinan, 250100 (China)]. E-mail: gaorwbox@sdu.edu.cn; Sun, Y. [School of Physics and Microelectronics, Shandong University, Jinan, 250100 (China); Han, G.B. [School of Physics and Microelectronics, Shandong University, Jinan, 250100 (China); Wang, B. [School of Physics and Microelectronics, Shandong University, Jinan, 250100 (China); Baotou Rare Earth Research Institute, Batou 014030 (China)

    2007-01-15

    Magnetic powders for sintered NdFeB magnets have been prepared by using an advanced processing method including strip casting, hydrogen decrepitation, jet milling and rubber isotropic press. The effects of Dy, Ga and Co addition on the microstructure and magnetic properties of sintered magnets have been investigated. By adopting a suitable component ratio and adjusting proper technological parameters, we have prepared high-coercivity sintered NdFeB magnets with hard magnetic properties of {sub j} H {sub c}=25.6 kOe, B {sub r}=13.2 kG and (BH){sub max}=39.9 MGOe. The temperature coefficient of coercivity of the magnets (between 20 and 150 deg. C) is -0.53% deg. C. The magnetic properties at high temperature satisfy the needs of permanent magnet motors.

  6. High-coercivity FePt nanoparticle assemblies embedded in silica thin films

    International Nuclear Information System (INIS)

    Yan, Q; Purkayastha, A; Singh, A P; Li, H; Ramanath, G; Li, A; Ramanujan, R V

    2009-01-01

    The ability to process assemblies using thin film techniques in a scalable fashion would be a key to transmuting the assemblies into manufacturable devices. Here, we embed FePt nanoparticle assemblies into a silica thin film by sol-gel processing. Annealing the thin film composite at 650 deg. C transforms the chemically disordered fcc FePt phase into the fct phase, yielding magnetic coercivity values H c >630 mT. The positional order of the particles is retained due to the protection offered by the silica host. Such films with assemblies of high-coercivity magnetic particles are attractive for realizing new types of ultra-high-density data storage devices and magneto-composites.

  7. Study of high-coercivity sintered NdFeB magnets

    International Nuclear Information System (INIS)

    Bai, G.; Gao, R.W.; Sun, Y.; Han, G.B.; Wang, B.

    2007-01-01

    Magnetic powders for sintered NdFeB magnets have been prepared by using an advanced processing method including strip casting, hydrogen decrepitation, jet milling and rubber isotropic press. The effects of Dy, Ga and Co addition on the microstructure and magnetic properties of sintered magnets have been investigated. By adopting a suitable component ratio and adjusting proper technological parameters, we have prepared high-coercivity sintered NdFeB magnets with hard magnetic properties of j H c =25.6 kOe, B r =13.2 kG and (BH) max =39.9 MGOe. The temperature coefficient of coercivity of the magnets (between 20 and 150 deg. C) is -0.53% deg. C. The magnetic properties at high temperature satisfy the needs of permanent magnet motors

  8. Magnetic properties and microstructure study of high coercivity Au/FePt/Au trilayer thin films

    International Nuclear Information System (INIS)

    Chen, S.K.; Yuan, F.T.; Liao, W.M.; Hsu, C.W.; Horng, Lance

    2006-01-01

    High-coercivity Au(60 nm)/FePt(δ nm)/Au(60 nm) trilayer samples were prepared by sputtering at room temperature, followed by post annealing at different temperatures. For the sample with δ=60 nm, L1 ordering transformation occurs at 500 deg. C. Coercivity (H c ) is increased with the annealing temperature in the studied range 400-800 deg. C. The H c value of the trilayer films is also varied with thickness of FePt intermediate layer (δ), from 27 kOe for δ=60 nm to a maximum value of 33.5 kOe for δ=20 nm. X-ray diffraction data indicate that the diffusion of Au atoms into the FePt L1 lattice is negligible even after a high-temperature (800 deg. C) annealing process. Furthermore, ordering parameter is almost unchanged as δ is reduced from 60 to 15 nm. Transmission electron microscope (TEM) photos indicate that small FePt Ll particles are dispersed amid the large-grained Au. We believe that the high coercivity of the trilayer sample is attributed to the small and uniform grain sizes of the highly ordered FePt particles which have perfect phase separation with Au matrix

  9. Perspectives for high-performance permanent magnets: applications, coercivity, and new materials

    Science.gov (United States)

    Hirosawa, Satoshi; Nishino, Masamichi; Miyashita, Seiji

    2017-03-01

    High-performance permanent magnets are indispensable in the production of high-efficiency motors and generators and ultimately for sustaining the green earth. The central issue of modern permanent magnetism is to realize high coercivity near and above room temperature on marginally hard magnetic materials without relying upon the critical elements such as heavy rare earths by means of nanostructure engineering. Recent investigations based on advanced nanostructure analysis and large-scale first principles calculations have led to significant paradigm shifts in the understandings of coercivity mechanism in Nd-Fe-B permanent magnets, which includes the discovery of the ferromagnetism of the thin (2 nm) intergranular phase surrounding the Nd2Fe14B grains, the occurrence of negative (in-plane) magnetocrystalline anisotropy of Nd ions and some Fe atoms at the interface which degrades coercivity, and visualization of the stochastic behaviors of magnetization in the magnetization reversal process at high temperatures. A major change may occur also in the motor topologies, which is currently overwhelmed by the magnetic flux weakening interior permanent magnet motor type, to other types with variable flux permanent magnet type in some applications to open up a niche for new permanent magnet materials. Keynote talk at 8th International Workshop on Advanced Materials Science and Nanotechnology (IWAMSN2016), 8-12 November 2016, Ha Long City, Vietnam.

  10. Very high coercivities of top-layer diffusion Au/FePt thin films

    International Nuclear Information System (INIS)

    Yuan, F.T.; Chen, S.K.; Liao, W.M.; Hsu, C.W.; Hsiao, S.N.; Chang, W.C.

    2006-01-01

    The Au/FePt samples were prepared by depositing a gold cap layer at room temperature onto a fully ordered FePt layer, followed by an annealing at 800 deg. C for the purpose of interlayer diffusion. After the deposition of the gold layer and the high-temperature annealing, the gold atoms do not dissolve into the FePt Ll 0 lattice. Compared with the continuous FePt film, the TEM photos of the bilayer Au(60 nm)/FePt(60 nm) show a granular structure with FePt particles embedded in Au matrix. The coercivity of Au(60 nm)/FePt(60 nm) sample is 23.5 kOe, which is 85% larger than that of the FePt film without Au top layer. The enhancement in coercivity can be attributed to the formation of isolated structure of FePt ordered phase

  11. Influence of inhomogeneous coercivities on media noise in granular perpendicular media investigated by using magnetic force microscopy

    International Nuclear Information System (INIS)

    Bai, J.; Takahoshi, H.; Ito, H.; Rheem, Y.W.; Saito, H.; Ishio, S.

    2004-01-01

    We investigated the influence of the inhomogeneous coercivities on the media noise in a CoPtCr-SiO 2 granular perpendicular magnetic recording medium via ex situ and in situ magnetic force microscopy (MFM) techniques. The ex situ MFM analyses exhibited that transition zigzags contributed to strong magnetic clusters in noise images, and thus resulted in dominant component of the media noise. According to the in situ MFM measurements, it was suggested that an amount of magnetic grains inside a microscopic area reversed like one magnetic ''particle because of strong inter-grain exchange coupling, and that these microscopic areas showed their local magnetic switching behaviors. A mathematic transformation was used to obtain approximately the magnetization distribution in recording layer. And the individual microscopic areas inside recorded bits were compared quasi-quantitatively with those leading large transition zigzags in magnetization switching behaviors. It was indicated that the inhomogeneous coercivities is one of crucial reasons of the medium noise in the perpendicular magnetic recording

  12. Observation of high coercive fields in chemically synthesized coated Fe-Pt nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Dalavi, Shankar B.; Panda, Rabi N., E-mail: rnp@goa.bits-pilani.ac.in

    2017-04-15

    Nanocrystalline Fe-Pt alloys have been synthesized via chemical reduction route using various capping agents; such as: oleic acid/oleylamine (route-1) and oleic acid/CTAB (route-2). We could able to synthesize Fe50Pt and Fe54Pt alloys via route 1 and 2, respectively. As-prepared Fe-Pt alloys crystallize in disordered fcc phase with crystallite sizes of 2.3 nm and 6 nm for route-1 and route-2, respectively. Disordered Fe-Pt alloys were transformed to ordered fct phase after annealing at 600 °C. SEM studies confirm the spherical shape morphologies of annealed Fe-Pt nanoparticles with SEM particle sizes of 24.4 nm and 21.2 nm for route-1 and route-2, respectively. TEM study confirms the presence of 4.6 nm particles for annealed Fe50Pt alloys with several agglomerating clusters of bigger size and appropriately agrees well with the XRD study. Room temperature magnetization studies of as-prepared Fe-Pt alloys (fcc) show ferromagnetism with negligible coercivities. Average magnetic moments per particle for as-prepared Fe-Pt alloys were estimated to be 753 μ{sub B} and 814 μ{sub B}, for route 1 and 2, respectively. Ordered fct Fe-Pt alloys show high values of coercivities of 10,000 Oe and 10,792 Oe for route-1 and route-2, respectively. Observed magnetic properties of the fct Fe-Pt alloys nps were interpreted with the basis of order parameters, size, surface, and composition effects. - Highlights: • Synthesis of capped nanocrystalline Fe-Pt alloys via chemical routes. • Ordered fct phase were obtained at 600 °C. • Microstructural studies were carried out using SEM and TEM. • Investigation on evolution of magnetic properties from fcc to fct state. • Maximum values of coercivities up to 10,792 Oe were observed.

  13. High coercivity Gd-substituted Ba hexaferrites, prepared by chemical coprecipitation

    Science.gov (United States)

    Litsardakis, G.; Manolakis, I.; Serletis, C.; Efthimiadis, K. G.

    2008-04-01

    A series of Gd-substituted Ba hexaferrites with nominal formula (Ba1-xGdx)Oṡ5.25 Fe2O3 (x=0-0.30) were prepared by the chemical coprecipitation method from nitrate precursors and heating at T =800-1200°C for 2h. The samples have been examined by x-ray diffraction, vibrating-sample magnetometer, and scanning electron microscopy methods. Gd substituted samples form single phase materials with the M-type hexaferrite structure at all heating temperatures, in the range of x ⩽0.10-0.20. The saturation magnetization (at 1.8T) varies slightly with x in most cases and, for x =0.05-0.10, it increases up to 66.7Am2/kg, exceeding the value of the unsubstituted hexaferrite. A strong enhancement of the coercivity is observed for all substituted samples, with maximum values Hc=457kA/m for the single-phase x =0.10 sample annealed at 1000°C and Hc=477kA/m for the x =0.25 sample annealed at 1100°C which contains Fe2O3 and GdFeO3 impurities. As the variation of coercivity with either substitution rate (x ) or annealing temperature is not monotonic, three different factors may account for the high coercivities that are obtained: (a) an inhibition of grain growth due to the presence of Gd, (b) a possible inherent effect on magnetocrystalline anisotropy, especially for single phase samples, and (c) a microstructural effect of secondary phases.

  14. An Enduring Framework for Assessing the Contributions of Force Structure to a Coercive Strategy

    National Research Council Canada - National Science Library

    Beene, Eric

    2001-01-01

    The US Department of Defense is still struggling to define itself in the post Cold War age, over a decade after the new period has begun With a strategy and force structure review occurring on average...

  15. Coercive diplomacy

    DEFF Research Database (Denmark)

    Jakobsen, Peter Viggo

    2016-01-01

    separate strategic eras with distinct challenges and theoretical developments are identified since the field’s emergence in the 1960s: the Cold War, the humanitarian 1990s, the war on terror and the hybrid future. The record clearly shows that skilful use of coercive diplomacy can resolve crises...

  16. Thermal effect on magnetic parameters of high-coercivity cobalt ferrite

    Energy Technology Data Exchange (ETDEWEB)

    Chagas, E. F., E-mail: efchagas@fisica.ufmt.br; Ponce, A. S.; Prado, R. J.; Silva, G. M. [Instituto de Física, Universidade Federal de Mato Grosso, 78060-900 Cuiabá-MT (Brazil); Bettini, J. [Laboratório Nacional de Nanotecnologia, Centro Nacional de Pesquisa em Energia e Materiais, 13083-970 Campinas (Brazil); Baggio-Saitovitch, E. [Centro Brasileiro de Pesquisas Físicas, Rua Xavier Sigaud 150 Urca. Rio de Janeiro (Brazil)

    2014-07-21

    We prepared very high-coercivity cobalt ferrite nanoparticles synthesized by a combustion method and using short-time high-energy mechanical milling to increase strain and the structural defects density. The coercivity (H{sub C}) of the milled sample reached 3.75 kOe—a value almost five times higher than that obtained for the non-milled material (0.76 kOe). To investigate the effect of the temperature on the magnetic behavior of the milled sample, we performed a thermal treatment on the milled sample at 300, 400, and 600 °C for 30 and 180 min. We analyzed the changes in the magnetic behavior of the nanoparticles due to the thermal treatment using the hysteresis curves, Williamson-Hall analysis, and transmission electron microscopy. The thermal treatment at 600 °C causes decreases in the microstructural strain and density of structural defects resulting in a significant decrease in H{sub C}. Furthermore, this thermal treatment increases the size of the nanoparticles and, as a consequence, there is a substantial increase in the saturation magnetization (M{sub S}). The H{sub C} of the samples treated at 600 °C for 30 and 180 min were 2.24 and 1.93 kOe, respectively, and the M{sub S} of these same samples increased from 57 emu/g to 66 and 70 emu/g, respectively. The H{sub C} and the M{sub S} are less affected by the thermal treatment at 300 and 400 °C.

  17. The preparation of sintered NdFeB magnet with high-coercivity and high temperature-stability

    Energy Technology Data Exchange (ETDEWEB)

    Yan, G H; Chen, R J; Ding, Y; Guo, S; Lee, Don; Yan, A R, E-mail: yangh@nimte.ac.cn [Zhejiang province Key Laboratory of Magnetic Materials and Application Technology, Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201 (China)

    2011-01-01

    The NdFeB magnets with high intrinsic coercivity have been produced by using the conventional powder metallurgy method (including SC, HD and JM) of sintered NdFeB magnets. The effects of grain boundary phases on the microstructure and magnetic properties of as-sintered and annealed magnets have been tried to investigate. Also the Curie temperature of the magnets was studied. By adopting suitable component ratio of some heavy rare-earth atoms and some micro-quantity additives, we have prepared high-coercivity sintered NdFeB magnets with magnetic properties of {sub j}H{sub c}=36.3kOe, B{sub r}=11.7kGs and (BH){sub max}=34.0MGOe. The temperature coefficient of residual magnetic flux of the magnets (between 20 and 200 deg. C) is -0.113%/deg. C, while the temperature coefficient of intrinsic coercivity -0.355%/deg. C. The Curie temperature of the magnets is about 342 deg. C.

  18. The preparation of sintered NdFeB magnet with high-coercivity and high temperature-stability

    International Nuclear Information System (INIS)

    Yan, G H; Chen, R J; Ding, Y; Guo, S; Lee, Don; Yan, A R

    2011-01-01

    The NdFeB magnets with high intrinsic coercivity have been produced by using the conventional powder metallurgy method (including SC, HD and JM) of sintered NdFeB magnets. The effects of grain boundary phases on the microstructure and magnetic properties of as-sintered and annealed magnets have been tried to investigate. Also the Curie temperature of the magnets was studied. By adopting suitable component ratio of some heavy rare-earth atoms and some micro-quantity additives, we have prepared high-coercivity sintered NdFeB magnets with magnetic properties of j H c =36.3kOe, B r =11.7kGs and (BH) max =34.0MGOe. The temperature coefficient of residual magnetic flux of the magnets (between 20 and 200 deg. C) is -0.113%/deg. C, while the temperature coefficient of intrinsic coercivity -0.355%/deg. C. The Curie temperature of the magnets is about 342 deg. C.

  19. COERCIVE FORCE IN THE SYSTEM OF FERROMAGNETIC GRANULES FOR HALF METAL CrO2 WITH PERCOLATION CONDUCTIVITY

    Directory of Open Access Journals (Sweden)

    N. V. Dalakova

    2017-10-01

    Full Text Available Magnetic and magnetoresistive properties of several samples of compacted powders of ferromagnetic half-metal CrO2, consisting of needle-shaped or spherical nanoparticles coated with thin dielectric shells, were investigated in wide temperature range. The temperature dependence of the coercive force Hc(T is compared with the temperature dependence of the field of maximum of positive tunneling magnetoresistance Hp(T. The dependence of Hp(T was nonmonotonic one. It is found that in the low-temperature range (4.2 ÷ 70 K the ratio Hp ≈ Hc, expected for compacted ferromagnetic powders with particles of submicron sizes, does not fulfilled. It is assumed that the possible reason of the difference between Hp and Hc is the mismatch between the orientation of the global magnetization of the entire sample and the orientations of the magnetic moments in some part of granules that form the optimal conducting channels at low temperatures. Such a mismatch may be due to the multidomain granules are more prone to the formation of optimal conducting chains in the transport channels. That leads to a change in the mechanism of magnetization reversal in these channels and to violation of the ratio Hp ≈ Hc.

  20. High coercivity in rare-earth lean nanocomposite magnets by grain boundary infiltration

    Energy Technology Data Exchange (ETDEWEB)

    Madugundo, Rajasekhar, E-mail: mraja@udel.edu [Department of Physics and Astronomy, University of Delaware, Newark, DE 19716 (United States); Salazar-Jaramillo, Daniel [BCMaterials, Bizkaia Science and Technology Park, E-48160 Derio (Spain); Manuel Barandiaran, Jose [BCMaterials, Bizkaia Science and Technology Park, E-48160 Derio (Spain); Department of Electricity & Electronics, University of the Basque Country (UPV/EHU), E-48080 Bilbao (Spain); Hadjipanayis, George C., E-mail: hadji@udel.edu [Department of Physics and Astronomy, University of Delaware, Newark, DE 19716 (United States)

    2016-02-15

    A significant enhancement in coercivity was achieved by grain boundary modification through low temperature infiltration of Pr{sub 75}(Cu{sub 0.25}Co{sub 0.75}){sub 25} eutectic alloy in rare-earth lean (Pr/Nd)–Fe–B/α-Fe nanocomposite magnets. The infiltration procedure was carried out on ribbons and hot-deformed magnets at 600–650 °C for different time durations. In Nd{sub 2}Fe{sub 14}B/α-Fe ribbons, the coercivity increased from 5.3 to 23.8 kOe on infiltration for 4 h. The Pr{sub 2}Fe{sub 14}B/α-Fe hot-deformed magnet shows an increase in coercivity from 5.4 to 22 kOe on infiltration for 6 h. The increase in the coercivity comes at the expense of remnant magnetization. X-ray diffraction studies confirm the presence of both the hard Nd{sub 2}Fe{sub 14}B and soft α-Fe phases. A decrease in the soft α-Fe phase content was observed after infiltration. - Highlights: • Enhancement in coercivity was achieved by grain boundary modification. • Coercivity increased from 5.3 to 23.8 kOe in Nd{sub 2}Fe{sub 14}B/α-Fe on infiltration. • Pr{sub 2}Fe{sub 14}B/α-Fe deformed magnet shows an increase in coercivity from 5.4 to 22 kOe. • The increase in the coercivity comes at the expense of remnant magnetization. • A decrease in the soft α-Fe phase content was observed after infiltration.

  1. Low-energy mechanically milled τ-phase MnAl alloys with high coercivity and magnetization

    International Nuclear Information System (INIS)

    Lu, Wei; Niu, Junchao; Wang, Taolei; Xia, Kada; Xiang, Zhen; Song, Yiming; Zhang, Hong; Yoshimura, Satoru; Saito, Hitoshi

    2016-01-01

    The high cost of rare earth elements makes the use of high-performance permanent magnets commercially very expensive. MnAl magnetic material is one of the most promising Rare-Earth-free permanent magnets due to its obvious characteristics. However, the coercivity of MnAl alloys produced by melt spinning followed by appropriate treatment is relatively low. In this investigation, a high coercivity up to 5.3 kOe and saturation magnetization of ∼62 emu/g (with an applied magnetic field of 19.5 kOe) were obtained in the mechanically milled τ-phase Mn_5_7Al_4_3 alloy. As milling time goes on, the coercivity firstly increases and then decreases, leading to the formation of knee-point coercivity, while the saturation magnetization decreases simultaneously. The structural imperfections such as disordering and defects play the most important role in the changes of magnetic properties of τ-phase MnAl alloys processed by low-energy mechanical milling. The present results will be helpful for the development of processing protocols for the optimization of τ-phase MnAl alloys as high performance Rare-Earth-free permanent magnets. - Highlights: • Successful fabrication of pure τ-phase Mn_5_7Al_4_3 alloy by melt spinning and low-energy ball milling processes. • High coercivity (~5.3 kOe) and magnetization (~62 emu/g) were obtained in τ-phase Mn_5_7Al_4_3 alloy. • Disordering and defects play the most important role in the changes of magnetic properties.

  2. Low-energy mechanically milled τ-phase MnAl alloys with high coercivity and magnetization

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Wei, E-mail: weilu@tongji.edu.cn [School of Materials Science and Engineering, Shanghai Key Lab. of D& A for Metal-Functional Materials, Tongji University, Shanghai 200092 (China); Research Center for Engineering Science, Akita University, Akita 010-8502 Japan (Japan); Niu, Junchao; Wang, Taolei; Xia, Kada; Xiang, Zhen; Song, Yiming [School of Materials Science and Engineering, Shanghai Key Lab. of D& A for Metal-Functional Materials, Tongji University, Shanghai 200092 (China); Zhang, Hong; Yoshimura, Satoru; Saito, Hitoshi [Research Center for Engineering Science, Akita University, Akita 010-8502 Japan (Japan)

    2016-08-05

    The high cost of rare earth elements makes the use of high-performance permanent magnets commercially very expensive. MnAl magnetic material is one of the most promising Rare-Earth-free permanent magnets due to its obvious characteristics. However, the coercivity of MnAl alloys produced by melt spinning followed by appropriate treatment is relatively low. In this investigation, a high coercivity up to 5.3 kOe and saturation magnetization of ∼62 emu/g (with an applied magnetic field of 19.5 kOe) were obtained in the mechanically milled τ-phase Mn{sub 57}Al{sub 43} alloy. As milling time goes on, the coercivity firstly increases and then decreases, leading to the formation of knee-point coercivity, while the saturation magnetization decreases simultaneously. The structural imperfections such as disordering and defects play the most important role in the changes of magnetic properties of τ-phase MnAl alloys processed by low-energy mechanical milling. The present results will be helpful for the development of processing protocols for the optimization of τ-phase MnAl alloys as high performance Rare-Earth-free permanent magnets. - Highlights: • Successful fabrication of pure τ-phase Mn{sub 57}Al{sub 43} alloy by melt spinning and low-energy ball milling processes. • High coercivity (~5.3 kOe) and magnetization (~62 emu/g) were obtained in τ-phase Mn{sub 57}Al{sub 43} alloy. • Disordering and defects play the most important role in the changes of magnetic properties.

  3. High coercivity in Fe-Nb-B-Dy bulk nanocrystalline magnets

    Energy Technology Data Exchange (ETDEWEB)

    Ziolkowski, Grzegorz; Chrobak, Artur; Klimontko, Joanna [Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007, Katowice (Poland); Chrobak, Dariusz; Rak, Jan [Institute of Materials Science, University of Silesia, 75 Pulku Piechoty 1, 41-500, Chorzow (Poland); Zivotsky, Ondrej; Hendrych, Ales [Department of Physics, VSB-TU Ostrava, Ostrava (Czech Republic)

    2016-11-15

    The paper refers to structural and magnetic properties of the (Fe{sub 80}Nb{sub 6}B{sub 14}){sub 1-x}Dy{sub x} (x = 0.08, 0.10, 0.12, 0.16) bulk nanocrystalline alloys prepared by making use of the vacuum suction casting technique. The samples are in a form of rods with different diameters d = 1.5, 1, and 0.5 mm. The phase structure was investigated by XRD technique and reveals an occurrence of magnetically hard Dy{sub 2}Fe{sub 14}B as well as other relatively soft Dy-Fe, Fe-B, and Fe phases dependently on the Dy content. The alloys show hard magnetic properties with high coercive field up to 5.5 T (for x = 0.12 and d = 0.5 mm). The observed magnetic hardening effect with the increase of cooling rate (decrease of sample diameter d) can be attributed to a formation of ultra-hard magnetic objects as well as increasing role of low dimensional microstructure. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. High-coercivity minerals from North African Humid Period soil material deposited in Lake Yoa (Chad)

    Science.gov (United States)

    Just, J.; Kroepelin, S.; Wennrich, V.; Viehberg, F. A.; Wagner, B.; Rethemeyer, J.; Karls, J.; Melles, M.

    2015-12-01

    The Holocene is a period of fundamental climatic change in North Africa. Humid conditions during the so-called African Humid Period (AHP) have favored the formation of big lake systems. Only very few of these lakes persist until today. One of them is Lake Yoa (19°03'N/20°31'E) in the Ounianga Basin, Chad, which maintains its water level by ground water inflow. Here we present the magnetic characteristics together with proxies for lacustrine productivity and biota of a sediment core (Co1240) from Lake Yoa, retrieved in 2010 within the framework of the Collaborative Research Centre 806 - Our Way to Europe (Deutsche Forschungsgemeinschaft). Magnetic properties of AHP sediments show strong indications for reductive diagenesis. An up to ~ 80 m higher lake level is documented by lacustrine deposits in the Ounianga Basin, dating to the early phase of the AHP. The higher lake level and less strong seasonality restricted deep mixing of the lake. Development of anoxic conditions consequently lead to the dissolution of iron oxides. An exception is an interval with high concentration of high-coercivity magnetic minerals, deposited between 7800 - 8120 cal yr BP. This interval post-dates the 8.2 event, which was dry in Northern Africa and probably caused a reduced vegetation cover. We propose that the latter resulted in the destabilization of soils around Lake Yoa. After the re-establishment of humid conditions, these soil materials were eroded and deposited in the lake. Magnetic minerals appear well preserved in the varved Late Holocene sequence, indicating (sub-) oxic conditions in the lake. This is surprising, because the occurrence of varves is often interpreted as an indicator for anoxic conditions of the lake water. However, the salinity of lake water rose strongly after the AHP. We therefore hypothesize that the conservation of varves and absence of benthic organisms rather relates to the high salinity than to anoxic conditions.

  5. High magnetic coercivity of FePt-Ag/MgO granular nanolayers

    Science.gov (United States)

    Roghani, R.; Sebt, S. A.; Khajehnezhad, A.

    2018-06-01

    L10-FePt ferromagnetic nanoparticles have a hight coercivity of Tesla order. Thus, these nanoparticles, with size of 10 to 15 nm and uniform surface distribution, are suitable in magnetic data storage technology with density of more than 1GB. In order to improve structural and magnetic properties of FePt nanoparticles, some elements and combinations have been added to compound. In this research, we show that due to the presence of the Ag, the phase transition temperature of FePt from fcc to L10-fct phase decreases. The presence of Ag as an additive in FePt-Ag nanocomposite, increases the magnetic coercivity. This nanocomposite, with 10% Ag, was deposited by magnetron sputtering on the MgO heat layer. VSM results of 10 nm nanoparticles show that coercivity has increased up to 1.4 T. XRD and FESEM results confirm that the size of the L10-FePt nanoparticles are 10 nm and their surface distribution are uniform. Ag gradually form nano scale clusters with separate lattice and FePt-Ag nanocomposite appears. The result of this process is emptiness of Ag position in FePt-fcc lattice. So, the mobility of Fe and Pt atoms in this lattice increases and it can be possible for them to move in lower temperature. This mechanism explain the effect of Ag on decreasing the transition temperature to fct-L10 phase, and hight coercivity of FePt nanoparticles.

  6. High coercivity microcrystalline Nd-rich Nd–Fe–Co–Al–B bulk magnets prepared by direct copper mold casting

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, L.Z.; Hong, Y. [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640 (China); Fang, X.G. [Institute for Advanced Materials and Laboratory of Quantum Engineering and Quantum Materials, South China Normal University, Guangzhou 510640 (China); Qiu, Z.G.; Zhong, X.C. [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640 (China); Gao, X.S. [Institute for Advanced Materials and Laboratory of Quantum Engineering and Quantum Materials, South China Normal University, Guangzhou 510640 (China); Liu, Z.W., E-mail: zwliu@scut.edu.cn [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640 (China)

    2016-06-15

    High coercivity Nd{sub 25}Fe{sub 40}Co{sub 20}Al{sub 15−x}B{sub x} (x=7–15) hard magnets were prepared by a simple process of injection casting. Different from many previous investigations on nanocomposite compositions, the magnets in this work contain hard magnetic Nd{sub 2}(FeCoAl){sub 14}B, Nd-rich, and Nd{sub 1+ε}(FeCo){sub 4}B{sub 4} phases. The magnetic properties, phase evolution, and microstructure of the as-cast and annealed magnets were investigated. As the boron content increased from 7 to 11 at%, the intrinsic coercivity H{sub cj} of the as-cast magnet increased from 816 to 1140 kA/m. The magnets annealed at 750 °C have shown more regular and smaller grains than the as-cast alloys, especially for the x=11 alloy. The high intrinsic coercivities for the annealed alloys with x=8~11 result from the presence of small-sized grains in the microstructure. The highest H{sub cj} of 1427 kA/m was obtained for the heat treated alloy with x=10. This work provides an alternative approach for preparing fully dense Nd-rich bulk hard magnets with relatively good properties. - Highlights: • 2 mm hard magnetic Nd{sub 25}Fe{sub 40}Co{sub 20}Al{sub 15−x}B{sub x} rods were prepared by direct casting. • High coercivity of 1.78 T was achieved in x=11 sample after heat treatment. • Small grains are responsible for the significant increase in H{sub C} after annealing. • Nd{sub 2}Fe{sub 14}B grains with two different sizes lead to two-step demagnetization process.

  7. Anisotropy and Microstructure of High Coercivity Rare Earth Iron Permanent Magnets, List of Papers Published

    Science.gov (United States)

    1989-01-01

    hardly influences both the pared by three different production technologies, absolute value of HA and its temperature dependence. The permanent magnets...ing reverse domains [2]. pared from 99.5% pure cast material supplied by The application of these magnets has been Rare Earth Products. The...the c/ re 3b Fig.. E ncrographs showingthe celular precipitation structure of precipitation hardened SmCo 2:17 magnets (a). In low coercivity magnets

  8. Synthesis, morphology and microstructure of pomegranate-like hematite (α-Fe2O3) superstructure with high coercivity

    International Nuclear Information System (INIS)

    Tadic, Marin; Citakovic, Nada; Panjan, Matjaz; Stanojevic, Boban; Markovic, Dragana; Jovanovic, Đorđe; Spasojevic, Vojislav

    2012-01-01

    Highlights: ► We found superior magnetic properties of the hematite (α-Fe 2 O 3 ). ► TEM and HRTEM images show a pomegranate-like superstructure. ► Magnetic measurements display high coercivity H C = 4350 Oe at the room temperature. - Abstract: We found novel and superior magnetic properties of the hematite (α-Fe 2 O 3 ) that originate from an internal microstructure of particles and strong inter-particle interactions between nanocrystal sub-units. The hematite particles were synthesized by thermal decomposition of iron (III) nitrate without any template or surfactant. The purity, size, crystallinity, morphology, microstructure and magnetic features of the as-prepared particles were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), energy-dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), Raman spectroscopy (RS) and SQUID magnetometry. An XRD study reveals a pure phase of α-Fe 2 O 3 whereas TEM shows α-Fe 2 O 3 spheres with a diameter of about 150 nm. RS also shows high quality and purity of the sample. Moreover, TEM and HRTEM images show a pomegranate-like superstructure and evidence that the spherical particles are composed of individual well-crystallized nanoparticle sub-units (self-assembled nanoparticles) with a size of about 20 nm. Magnetic measurements display hysteretic behavior at the room temperature with remanent magnetization M r = 0.731 emu/g, saturation magnetization M S = 6.83 emu/g and coercivity H C = 4350 Oe, as well as the Morin transition at T M = 261 K. These results and comparison with those in the literature reveal that the sample has extremely high coercivity. The magnetic properties of the sample are discussed in relation to morphology, internal microstructure, surface effects and exchange and dipole–dipole interactions.

  9. Electronic and magnetic interactions in high temperature superconducting and high coercivity materials. Final performance report

    International Nuclear Information System (INIS)

    Cooper, B.R.

    1997-01-01

    The issue addressed in the research was how to understand what controls the competition between two types of phase transition (ordering) which may be present in a hybridizing correlated-electron system containing two transition-shell atomic species; and how the variation of behavior observed can be used to understand the mechanisms giving the observed ordered state. This is significant for understanding mechanisms of high-temperature superconductivity and other states of highly correlated electron systems. Thus the research pertains to magnetic effects as related to interactions giving high temperature superconductivity; where the working hypothesis is that the essential feature governing the magnetic and superconducting behavior of copper-oxide-type systems is a cooperative valence fluctuation mechanism involving the copper ions, as mediated through hybridization effects dominated by the oxygen p electrons. (Substitution of praseodymium at the rare earth sites in the 1·2·3 material provides an interesting illustration of this mechanism since experimentally such substitution strongly suppresses and destroys the superconductivity; and, at 100% Pr, gives Pr f-electron magnetic ordering at a temperature above 16K). The research was theoretical and computational and involved use of techniques aimed at correlated-electron systems that can be described within the confines of model hamiltonians such as the Anderson lattice hamiltonian. Specific techniques used included slave boson methodology used to treat modification of electronic structure and the Mori projection operator (memory function) method used to treat magnetic response (dynamic susceptibility)

  10. Crystallization and atomic diffusion behavior of high coercive Ta/Nd-Fe-B/Ta-based permanent magnetic thin film

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Na; Zhang, Xiao; You, Caiyin; Fu, Huarui [Xi' an University of Technology, School of Materials Science and Engineering, Xi' an (China); Shen, Qianlong [Logistics University of People' s Armed Police Force, Tianjin (China)

    2017-06-15

    A high coercivity of about 20.4 kOe was obtained through post-annealing the sputtered Ta/Nd-Fe-B/Ta-based permanent magnetic thin films. Transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS) analyses were performed to investigate the crystallization and atomic diffusion behaviors during post-annealing. The results show that the buffer and capping Ta layers prefered to intermix with Fe and B atoms, and Nd tends to be combined with O atoms. The preferred atomic combination caused the appearance of the soft magnetic phase of Fe-Ta-B, resulting in a kink of the second quadratic magnetic hysteresis loop. The preferred atomic diffusion and phase formation of the thin films were well explained in terms of the formation enthalpy of the various compounds. (orig.)

  11. High coercivity, anisotropic, heavy rare earth-free Nd-Fe-B by Flash Spark Plasma Sintering.

    Science.gov (United States)

    Castle, Elinor; Sheridan, Richard; Zhou, Wei; Grasso, Salvatore; Walton, Allan; Reece, Michael J

    2017-09-11

    In the drive to reduce the critical Heavy Rare Earth (HRE) content of magnets for green technologies, HRE-free Nd-Fe-B has become an attractive option. HRE is added to Nd-Fe-B to enhance the high temperature performance of the magnets. To produce similar high temperature properties without HRE, a crystallographically textured nanoscale grain structure is ideal; and this conventionally requires expensive "die upset" processing routes. Here, a Flash Spark Plasma Sintering (FSPS) process has been applied to a Dy-free Nd 30.0 Fe 61.8 Co 5.8 Ga 0.6 Al 0.1 B 0.9 melt spun powder (MQU-F, neo Magnequench). Rapid sinter-forging of a green compact to near theoretical density was achieved during the 10 s process, and therefore represents a quick and efficient means of producing die-upset Nd-Fe-B material. The microstructure of the FSPS samples was investigated by SEM and TEM imaging, and the observations were used to guide the optimisation of the process. The most optimal sample is compared directly to commercially die-upset forged (MQIII-F) material made from the same MQU-F powder. It is shown that the grain size of the FSPS material is halved in comparison to the MQIII-F material, leading to a 14% increase in coercivity (1438 kA m -1 ) and matched remanence (1.16 T) giving a BH max of 230 kJ m -3 .

  12. Magnetic structure and microstructure of die-upset hard magnets RE13.75Fe80.25B6 (RE=Nd, Pr): A possible origin of high coercivity

    International Nuclear Information System (INIS)

    Volkov, V.V.; Zhu, Y.

    1999-01-01

    In situ transmission electron microscopy magnetizing experiments combined with Lorentz magnetic microscopy in Fresnel endash Foucault modes were used to characterize the magnetic structure of die-upset, high energy-product hard magnets Nd 13.75 Fe 80.25 B 6 and Pr 13.75 Fe 80.25 B 6 . Experimental observations indicate a well-aligned grain structure and quasiperiodic nonaligned open-quotes extended defectclose quotes layers transverse to press direction. The local remanence of the open-quotes defectclose quotes layers is far from saturation when the external field is removed. The layers are enriched with inclusions of approximate composition Nd 7 Fe 3 , generally with a polygonal shape, and are associated with the original ribbon interfaces. They may be responsible for a high coercivity mechanism, since the motion of reverse domains can be impeded by these layers, even when they are nucleated. Thus, a delayed nucleation of reversed domains seems to be a limiting factor for magnetization reversal and coercivity force. Both Lorentz magnetic imaging and high-resolution microscopy highlight the role of magnetocrystalline anisotropy for domain wall-grain boundary interactions and pinning. Local remanence was estimated directly from magnetic moment sensitive Foucault images. copyright 1999 American Institute of Physics

  13. Synthesis, morphology and microstructure of pomegranate-like hematite ({alpha}-Fe{sub 2}O{sub 3}) superstructure with high coercivity

    Energy Technology Data Exchange (ETDEWEB)

    Tadic, Marin, E-mail: marint@vinca.rs [Condensed Matter Physics Laboratory, Vinca Institute, University of Belgrade, P.O. Box 522, 11001 Belgrade (Serbia); Citakovic, Nada [Military Academy, Generala Pavla Jurisica Sturma 33, University of Belgrade, 11000 Belgrade (Serbia); Panjan, Matjaz [Jozef Stefan Institute, Jamova 39, 1000 Ljubljana (Slovenia); Stanojevic, Boban [Vinca Institute of Nuclear Sciences, P.O. Box 522, 11001 Belgrade, University of Belgrade (Serbia); Markovic, Dragana [Condensed Matter Physics Laboratory, Vinca Institute, University of Belgrade, P.O. Box 522, 11001 Belgrade (Serbia); Jovanovic, Dorde [Center for Solid State Physics and New Materials, Institute of Physics, University of Belgrade, Pregrevica 118, 11080 Belgrade (Serbia); Spasojevic, Vojislav [Condensed Matter Physics Laboratory, Vinca Institute, University of Belgrade, P.O. Box 522, 11001 Belgrade (Serbia)

    2012-12-05

    Highlights: Black-Right-Pointing-Pointer We found superior magnetic properties of the hematite ({alpha}-Fe{sub 2}O{sub 3}). Black-Right-Pointing-Pointer TEM and HRTEM images show a pomegranate-like superstructure. Black-Right-Pointing-Pointer Magnetic measurements display high coercivity H{sub C} = 4350 Oe at the room temperature. - Abstract: We found novel and superior magnetic properties of the hematite ({alpha}-Fe{sub 2}O{sub 3}) that originate from an internal microstructure of particles and strong inter-particle interactions between nanocrystal sub-units. The hematite particles were synthesized by thermal decomposition of iron (III) nitrate without any template or surfactant. The purity, size, crystallinity, morphology, microstructure and magnetic features of the as-prepared particles were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), energy-dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), Raman spectroscopy (RS) and SQUID magnetometry. An XRD study reveals a pure phase of {alpha}-Fe{sub 2}O{sub 3} whereas TEM shows {alpha}-Fe{sub 2}O{sub 3} spheres with a diameter of about 150 nm. RS also shows high quality and purity of the sample. Moreover, TEM and HRTEM images show a pomegranate-like superstructure and evidence that the spherical particles are composed of individual well-crystallized nanoparticle sub-units (self-assembled nanoparticles) with a size of about 20 nm. Magnetic measurements display hysteretic behavior at the room temperature with remanent magnetization M{sub r} = 0.731 emu/g, saturation magnetization M{sub S} = 6.83 emu/g and coercivity H{sub C} = 4350 Oe, as well as the Morin transition at T{sub M} = 261 K. These results and comparison with those in the literature reveal that the sample has extremely high coercivity. The magnetic properties of the sample are discussed in relation to morphology, internal microstructure, surface

  14. Study of the magnetic microstructure of high-coercivity sintered SmCo5 permanent magnets with the conventional Bitter pattern technique and the colloid-SEM method

    International Nuclear Information System (INIS)

    Szmaja, Witold

    2007-01-01

    The magnetic microstructure of high-coercivity sintered SmCo 5 permanent magnets was studied with the conventional Bitter pattern technique, and also for the first time with the colloid-scanning electron microscopy (colloid-SEM) method. Both techniques were supported by digital image acquisition, enhancement and analysis. Thanks to this, it was possible to obtain high-contrast and clear images of the magnetic microstructure and to analyze them in detail, and consequently also to achieve improvements over earlier results. In the thermally demagnetized state the grains were composed of magnetic domains. On the surface perpendicular to the alignment axis, the main domains forming a maze pattern and surface reverse spikes were observed. Investigations on the surface parallel to the alignment axis, especially by the colloid-SEM technique, provided a detailed insight into the orientation of grains. The alignment of grains was good, but certainly not perfect; there were also strongly misaligned grains, although generally very rare. In most cases the domain structures within grains were independent of their neighbors, but in some cases (not so rare) the domain walls were observed to continue through the grain boundaries, indicating significant magnetostatic interaction between neighboring grains. Studies of the behavior of the magnetic microstructure under the influence of an external magnetic field, performed for the first time on the surface parallel to the alignment axis (with the conventional Bitter pattern method), showed that the domain walls move easily within the grains and that the magnetization reversal mechanism is mainly related to the nucleation and growth of reverse domains, i.e. that sintered SmCo 5 magnets are nucleation-dominated systems. Groupwise magnetization reversal of adjacent magnetically coupled grains was observed, an unfavorable effect for high-coercivity magnets. Images obtained by the colloid-SEM technique and the conventional Bitter pattern

  15. Coercive Diplomacy: Countering War-Threatening Crises and Armed Conflicts

    DEFF Research Database (Denmark)

    Jakobsen, Peter Viggo

    2015-01-01

    Nowadays states rarely resort to war to defeat each other or to address war-threatening crises and armed conflicts. Instead, coercive diplomacy has emerged as their strategy of choice when persuasion and other non-military instruments fall short. Coercive diplomacy involves the use of military...... threats and/or limited force (sticks) coupled with inducements and assurances (carrots) in order to influence the opponent to do something it would prefer not to. States use coercive diplomacy in the hope of achieving their objectives without having to resort to full-scale war. This chapter presents...... the strategy of coercive diplomacy and its requirements for success and shows how states have employed it to manage crises and conflicts during the three strategic eras that the world has passed through since the end of the Cold War....

  16. High-coercivity Nd-Fe-B magnets obtained with the electrophoretic deposition of submicron TbF3 followed by the grain-boundary diffusion process

    International Nuclear Information System (INIS)

    Soderžnik, Marko; Korent, Matic; Žagar Soderžnik, Kristina; Katter, Matthias; Üstüner, Kaan; Kobe, Spomenka

    2016-01-01

    Using a grain-boundary diffusion process (GBDP) involving the electrophoretic deposition (EPD) of submicron TbF 3 powder, we substantially increased the coercivity of sintered Nd-Fe-B permanent magnets. The experiments used magnets with low heavy-rare-earth (HRE) content (HRE = 1.2 wt%) and a coercivity of 790 kA/m (at 75 °C). After experiencing optimized conditions at 875 °C for 10 h and subsequent annealing at 500 °C for 1 h, the coercivity was increased to 1536 kA/m (at 75 °C). This value is 1.94 times higher than that for a sintered magnet, without post-sintering heat treatment. Furthermore, a vibration test revealed satisfactory adhesion of the TbF 3 powder to the surface of the magnet with no detected reduction in coercivity. Using field emission gun scanning electron microscopy (FEG-SEM) with an energy dispersive spectroscope (EDS), we confirmed the formation of various secondary intergranular phases and the core-shell-type microstructure, which increases the coercivity. The Tb content in the magnet, exposed to the EPD-based GBDP, was controlled by inductively coupled plasma optical electron spectroscopy (ICP-OES). The additional Tb detected in the magnet due to the described technology was only 0.12 wt%.

  17. Synthesis of core-shell hematite (α-Fe2O3) nanoplates: Quantitative analysis of the particle structure and shape, high coercivity and low cytotoxicity

    Science.gov (United States)

    Tadic, Marin; Kopanja, Lazar; Panjan, Matjaz; Kralj, Slavko; Nikodinovic-Runic, Jasmina; Stojanovic, Zoran

    2017-05-01

    Hematite core-shell nanoparticles with plate-like morphology were synthesized using a one-step hydrothermal synthesis. An XRPD analysis indicates that the sample consist of single-phase α-Fe2O3 nanoparticles. SEM and TEM measurements show that the hematite sample is composed of uniform core-shell nanoplates with 10-20 nm thickness, 80-100 nm landscape dimensions (aspect ratio ∼5) and 3-4 nm thickness of the surface shells. We used computational methods for the quantitative analysis of the core-shell particle structure and circularity shape descriptor for the quantitative shape analysis of the nanoparticles from TEM micrographs. The calculated results indicated that a percentage of the shell area in the nanoparticle area (share [%]) is significant. The determined values of circularity in the perpendicular and oblique perspective clearly show shape anisotropy of the nanoplates. The magnetic properties revealed the ferromagnetic-like properties at room temperature with high coercivity HC = 2340 Oe, pointing to the shape and surface effects. These results signify core-shell hematite nanoparticles' for practical applications in magnetic devices. The synthesized hematite plate-like nanoparticles exhibit low cytotoxicity levels on the human lung fibroblasts (MRC5) cell line demonstrating the safe use of these nanoparticles for biomedical applications.

  18. Magnetic and microstructural investigation of high-coercivity net-shape Nd–Fe–B-type magnets produced from spark-plasma-sintered melt-spun ribbons blended with DyF{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Žagar, Kristina, E-mail: kristina.zagar@ijs.si; Kocjan, Andraž; Kobe, Spomenka

    2016-04-01

    Nanostructured Nd–Fe–B-type materials produced by melt-spinning (MS) are used in a variety of applications in the electronics, automotive, and sensor industries. The very rapid MS process leads to flake-like powders with metastable, nanoscale, Nd{sub 2}Fe{sub 14}B grains. These powders are then formed into net-shaped, isotropic, polymer-bonded magnets, or they are hot formed into fully dense, metallic magnets that are isotropic and anisotropic. These fully dense magnets are usually produced with a conventional hot press without the inclusion of additives prior to the hot pressing. As a result, their properties, particularly the coercivity (H{sub ci}), are insufficient at automotive-relevant temperatures of 100–150 °C since the material H{sub ci} has a large temperature coefficient. In this study, we instead add a thin layer of DyF{sub 3} to the melt-spun ribbons prior to their hot consolidation in order to enhance the coercivity through a diffusion-based, partial substitution of the Nd by Dy. This is accomplished by applying extremely rapid, spark-plasma sintering to minimize any growth of the nanoscale Nd{sub 2}Fe{sub 14}B grains during consolidation. The result is a very high-coercivity magnet with drastically reduced amounts of heavy rare earths that is suitable for high-temperature applications. This work clearly demonstrates how rapidly formed, metastable states can provide us with properties that are unobtainable with conventional techniques. - Highlights: • We produced high coercivity magnets with drastically reduced amounts of HRE. • Microstructural analysis was conducted of the “free” and “wheel” side of Dy-treated Nd{sub 2}Fe{sub 14}B ribbons. • Dy-diffusion mechanism into ribbons depending on processing parameters is shown.

  19. Magnetic and microstructural investigation of high-coercivity net-shape Nd-Fe-B-type magnets produced from spark-plasma-sintered melt-spun ribbons blended with DyF3

    Science.gov (United States)

    Žagar, Kristina; Kocjan, Andraž; Kobe, Spomenka

    2016-04-01

    Nanostructured Nd-Fe-B-type materials produced by melt-spinning (MS) are used in a variety of applications in the electronics, automotive, and sensor industries. The very rapid MS process leads to flake-like powders with metastable, nanoscale, Nd2Fe14B grains. These powders are then formed into net-shaped, isotropic, polymer-bonded magnets, or they are hot formed into fully dense, metallic magnets that are isotropic and anisotropic. These fully dense magnets are usually produced with a conventional hot press without the inclusion of additives prior to the hot pressing. As a result, their properties, particularly the coercivity (Hci), are insufficient at automotive-relevant temperatures of 100-150 °C since the material Hci has a large temperature coefficient. In this study, we instead add a thin layer of DyF3 to the melt-spun ribbons prior to their hot consolidation in order to enhance the coercivity through a diffusion-based, partial substitution of the Nd by Dy. This is accomplished by applying extremely rapid, spark-plasma sintering to minimize any growth of the nanoscale Nd2Fe14B grains during consolidation. The result is a very high-coercivity magnet with drastically reduced amounts of heavy rare earths that is suitable for high-temperature applications. This work clearly demonstrates how rapidly formed, metastable states can provide us with properties that are unobtainable with conventional techniques.

  20. High-coercivity ultrafine-grained anisotropic Nd–Fe–B magnets processed by hot deformation and the Nd–Cu grain boundary diffusion process

    International Nuclear Information System (INIS)

    Sepehri-Amin, H.; Ohkubo, T.; Nagashima, S.; Yano, M.; Shoji, T.; Kato, A.; Schrefl, T.; Hono, K.

    2013-01-01

    The grain boundary diffusion process using an Nd 70 Cu 30 eutectic alloy has been applied to hot-deformed anisotropic Nd–Fe–B magnets, resulting in a substantial enhancement of coercivity, from 1.5 T to 2.3 T, at the expense of remanence. Scanning electron microscopy showed that the areal fraction of an Nd-rich intergranular phase increased from 10% to 37%. The intergranular phase of the hot-deformed magnet initially contained ∼55 at.% ferromagnetic element, while it diminished to an undetectable level after the process. Microscale eutectic solidification of Nd/NdCu as well as a fine lamellae structure of Nd 70 (Co,Cu) 30 /Nd were observed in the intergranular phase. Micromagnetic simulations indicated that the reduction of the magnetization in the intergranular phases leads to the enhancement of coercivity in agreement with the experimental observation

  1. Modeling forces in high-temperature superconductors

    International Nuclear Information System (INIS)

    Turner, L. R.; Foster, M. W.

    1997-01-01

    We have developed a simple model that uses computed shielding currents to determine the forces acting on a high-temperature superconductor (HTS). The model has been applied to measurements of the force between HTS and permanent magnets (PM). Results show the expected hysteretic variation of force as the HTS moves first toward and then away from a permanent magnet, including the reversal of the sign of the force. Optimization of the shielding currents is carried out through a simulated annealing algorithm in a C++ program that repeatedly calls a commercial electromagnetic software code. Agreement with measured forces is encouraging

  2. Stabilization of the high coercivity ε-Fe2O3 phase in the CeO2–Fe2O3/SiO2 nanocomposites

    International Nuclear Information System (INIS)

    Mantlikova, A.; Poltierova Vejpravova, J.; Bittova, B.; Burianova, S.; Niznansky, D.; Ardu, A.; Cannas, C.

    2012-01-01

    We have investigated the processes leading to the formation of the Fe 2 O 3 and CeO 2 nanoparticles in the SiO 2 matrix in order to stabilize the ε-Fe 2 O 3 as the major phase. The samples with two different concentrations of the Fe were prepared by sol–gel method, subsequently annealed at different temperatures up to 1100 °C, and characterized by the Mössbauer spectroscopy, Transmission Electron Microscopy (TEM), Powder X-ray Diffraction (PXRD), Energy Dispersive X-ray analysis (EDX) and magnetic measurements. The evolution of the different Fe 2 O 3 phases under various conditions of preparation was investigated, starting with the preferential appearance of the γ-Fe 2 O 3 phase for the sample with low Fe concentration and low annealing temperature and stabilization of the major ε-Fe 2 O 3 phase for high Fe concentration and high annealing temperature, coexisting with the most stable α-Fe 2 O 3 phase. A continuous increase of the particle size of the CeO 2 nanocrystals with increasing annealing temperature was also observed. - Graphical abstract: The graphical abstract displays the most important results of our work. The significant change of the phase composition due to the variation of preparation conditions is demonstrated. As a result, significant change of the magnetic properties from superparamagnetic γ-Fe 2 O 3 phase with negligible coercivity to the high coercivity ε-Fe 2 O 3 phase has been observed. Highlights: ► Research of the stabilization of the high coercivity ε-Fe 2 O 3 in CeO 2 –Fe 2 O 3 /SiO 2 . ► Samples with two different concentrations of Fe and three annealing temperatures. ► Phase transition γ→ε→(β)→α with increasing annealing temperature and particle size. ► Elimination of the superparamagnetic phases in samples with higher content of Fe. ► Best conditions for high coercivity ε-Fe 2 O 3 —higher Fe content and T A =1100°C.

  3. Coercivity in SmCo hard magnetic films for MEMS applications

    International Nuclear Information System (INIS)

    Pina, E.; Palomares, F.J.; Garcia, M.A.; Cebollada, F.; Hoyos, A. de; Romero, J.J.; Hernando, A.; Gonzalez, J.M.

    2005-01-01

    In this work we have investigated the thermal dependence of coercivity in 1.5 μm thick SmCo 5 films fabricated by sputtering technique. Samples were deposited onto Si substrates kept at different temperatures. Samples grown below 450 deg. C are amorphous, present low coercivity and require further crystallization processes in order to obtain the 1:5 SmCo hard phase. Samples grown at 450 deg. C are nanocrystalline in the as-deposited state and exhibit high room temperature in-plane coercivity. Correlation between the thermal dependence of coercivity and the nanostructure has been analyzed in the frame of the so-called micromagnetic model

  4. Coercive properties of elliptic-parabolic operator

    International Nuclear Information System (INIS)

    Duong Min Duc.

    1987-06-01

    Using a generalized Poincare inequality, we study the coercive properties of a class of elliptic-parabolic partial differential equations, which contains many degenerate elliptic equations considered by the other authors. (author). 16 refs

  5. Annealing induced low coercivity, nanocrystalline Co–Fe–Si thin films exhibiting inverse cosine angular variation

    Energy Technology Data Exchange (ETDEWEB)

    Hysen, T., E-mail: hysenthomas@gmail.com [Department of Physics, Cochin University of Science and Technology, Cochin 682022, Kerala (India); Al-Harthi, Salim; Al-Omari, I.A. [Department of Physics, Sultan Qaboos University, PC 123, Muscat, Sultanate of Oman (Oman); Geetha, P.; Lisha, R. [Department of Physics, Cochin University of Science and Technology, Cochin 682022, Kerala (India); Ramanujan, R.V. [School of Materials Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Sakthikumar, D. [Graduate School of Interdisciplinary New Science, Toyo University, Kawagoe, Saitama (Japan); Anantharaman, M.R., E-mail: mra@cusat.ac.in [Department of Physics, Cochin University of Science and Technology, Cochin 682022, Kerala (India)

    2013-09-15

    Co–Fe–Si based films exhibit high magnetic moments and are highly sought after for applications like soft under layers in perpendicular recording media to magneto-electro-mechanical sensor applications. In this work the effect of annealing on structural, morphological and magnetic properties of Co–Fe–Si thin films was investigated. Compositional analysis using X-ray photoelectron spectroscopy and secondary ion mass spectroscopy revealed a native oxide surface layer consisting of oxides of Co, Fe and Si on the surface. The morphology of the as deposited films shows mound like structures conforming to the Volmer–Weber growth model. Nanocrystallisation of amorphous films upon annealing was observed by glancing angle X-ray diffraction and transmission electron microscopy. The evolution of magnetic properties with annealing is explained using the Herzer model. Vibrating sample magnetometry measurements carried out at various angles from 0° to 90° to the applied magnetic field were employed to study the angular variation of coercivity. The angular variation fits the modified Kondorsky model. Interestingly, the coercivity evolution with annealing deduced from magneto-optical Kerr effect studies indicates a reverse trend compared to magetisation observed in the bulk. This can be attributed to a domain wall pinning at native oxide layer on the surface of thin films. The evolution of surface magnetic properties is correlated with morphology evolution probed using atomic force microscopy. The morphology as well as the presence of the native oxide layer dictates the surface magnetic properties and this is corroborated by the apparent difference in the bulk and surface magnetic properties. - Highlights: • The relation between grain size and magnetic properties in Co–Fe–Si thin films obeys the Herzer model. • Angular variation of coercivity is found to obey the Kondorsky model. • The MOKE measurements provide further evidence for domain wall pinning.

  6. Variables Associated with the Use of Coercive Measures on Psychiatric Patients in Spanish Penitentiary Centers

    Directory of Open Access Journals (Sweden)

    E. Girela

    2014-01-01

    Full Text Available We have studied the use of coercive medical measures (forced medication, isolation, and mechanical restraint in mentally ill inmates within two secure psychiatric hospitals (SPH and three regular prisons (RP in Spain. Variables related to adopted coercive measures were analyzed, such as type of measure, causes of indication, opinion of patient inmate, opinion of medical staff, and more frequent morbidity. A total of 209 patients (108 from SPH and 101 from RP were studied. Isolation (41.35% was the most frequent coercive measure, followed by mechanical restraint (33.17% and forced medication (25.48%. The type of center has some influence; specifically in RP there is less risk of isolation and restraint than in SPH. Not having had any previous imprisonment reduces isolation and restraint risk while increases the risk of forced medication, as well as previous admissions to psychiatric inpatient units does. Finally, the fact of having lived with a partner before imprisonment reduces the risk of forced medication and communication with the family decreases the risk of isolation. Patients subjected to a coercive measure exhibited a pronounced psychopathology and most of them had been subjected to such measures on previous occasions. The mere fact of external assessment of compliance with human rights slows down the incidence of coercive measures.

  7. Variables associated with the use of coercive measures on psychiatric patients in Spanish penitentiary centers.

    Science.gov (United States)

    Girela, E; López, A; Ortega, L; De-Juan, J; Ruiz, F; Bosch, J I; Barrios, L F; Luna, J D; Torres-González, F

    2014-01-01

    We have studied the use of coercive medical measures (forced medication, isolation, and mechanical restraint) in mentally ill inmates within two secure psychiatric hospitals (SPH) and three regular prisons (RP) in Spain. Variables related to adopted coercive measures were analyzed, such as type of measure, causes of indication, opinion of patient inmate, opinion of medical staff, and more frequent morbidity. A total of 209 patients (108 from SPH and 101 from RP) were studied. Isolation (41.35%) was the most frequent coercive measure, followed by mechanical restraint (33.17%) and forced medication (25.48%). The type of center has some influence; specifically in RP there is less risk of isolation and restraint than in SPH. Not having had any previous imprisonment reduces isolation and restraint risk while increases the risk of forced medication, as well as previous admissions to psychiatric inpatient units does. Finally, the fact of having lived with a partner before imprisonment reduces the risk of forced medication and communication with the family decreases the risk of isolation. Patients subjected to a coercive measure exhibited a pronounced psychopathology and most of them had been subjected to such measures on previous occasions. The mere fact of external assessment of compliance with human rights slows down the incidence of coercive measures.

  8. London forces in highly oriented pyrolytic graphite

    Directory of Open Access Journals (Sweden)

    L.V. Poperenko

    2017-07-01

    Full Text Available Surface of highly oriented pyrolytic graphite with terrace steps was studied using scanning tunneling microscopy with high spatial resolution. Spots with positive and negative charges were found in the vicinity of the steps. Values of the charges depended both on the microscope needle scan velocity and on its motion direction. The observed effect was theoretically explained with account of London forces that arise between the needle tip and the graphite surface. In this scheme, a terrace step works as a nanoscale diode for surface electric currents.

  9. Angular dependence of coercivity derived from alignment dependence of coercivity in Nd-Fe-B sintered magnets

    Directory of Open Access Journals (Sweden)

    Yutaka Matsuura

    2018-01-01

    Full Text Available Experimental results of the alignment dependence of the coercivity in Nd-Fe-B sintered magnets showed that the angle of magnetization reversal for anisotropically aligned magnets was bigger than that obtained from the theoretical results calculated using the postulation that every grain independently reverses its magnetization direction following the 1/cos θ law. The angles of reversed magnetization (θ1 for Nd13.48Co0.55B5.76Febal. with alignment α=0.95 and for Nd12.75Dy0.84B5.81Co0.55Febal. with α=0.96 were 30° and 36°, respectively, which were very similar to that of an ideal magnet with a Gaussian distribution (σ=31° and 44°, respectively of the grain alignment. In this model, we postulated that every grain independently reversed according to the 1/cos θ law. The calculation results for the angular dependence of the coercivity using the values θ1=ω1(0°=30°, σ=31° and θ1=ω1(0°=36°, σ=44° could qualitatively and convincingly explain the observed angular dependence of the coercivity of Nd14.2B6.2Co1.0Febal. and Nd14.2Dy0.3B6.2Co1.0Febal.. It is speculated that the magnetic domain wall is pinned at grains tilted away from the easy magnetization direction, and when the magnetic domain wall de-pins from the tilted grains, the magnetic domain wall jumps through several grains. We suggest that the coercive force of the aligned magnet behaves like a low-aligned magnet owing to the magnetization reversal of the crust of the grains induced by the pinning and subsequent jumping of the magnetic domain wall.

  10. Angular dependence of coercivity derived from alignment dependence of coercivity in Nd-Fe-B sintered magnets

    Science.gov (United States)

    Matsuura, Yutaka; Nakamura, Tetsuya; Sumitani, Kazushi; Kajiwara, Kentaro; Tamura, Ryuji; Osamura, Kozo

    2018-01-01

    Experimental results of the alignment dependence of the coercivity in Nd-Fe-B sintered magnets showed that the angle of magnetization reversal for anisotropically aligned magnets was bigger than that obtained from the theoretical results calculated using the postulation that every grain independently reverses its magnetization direction following the 1/cos θ law. The angles of reversed magnetization (θ1) for Nd13.48Co0.55B5.76Febal. with alignment α=0.95 and for Nd12.75Dy0.84B5.81Co0.55Febal. with α=0.96 were 30° and 36°, respectively, which were very similar to that of an ideal magnet with a Gaussian distribution (σ=31° and 44°, respectively) of the grain alignment. In this model, we postulated that every grain independently reversed according to the 1/cos θ law. The calculation results for the angular dependence of the coercivity using the values θ1=ω1(0°)=30°, σ=31° and θ1=ω1(0°)=36°, σ=44° could qualitatively and convincingly explain the observed angular dependence of the coercivity of Nd14.2B6.2Co1.0Febal. and Nd14.2Dy0.3B6.2Co1.0Febal.. It is speculated that the magnetic domain wall is pinned at grains tilted away from the easy magnetization direction, and when the magnetic domain wall de-pins from the tilted grains, the magnetic domain wall jumps through several grains. We suggest that the coercive force of the aligned magnet behaves like a low-aligned magnet owing to the magnetization reversal of the crust of the grains induced by the pinning and subsequent jumping of the magnetic domain wall.

  11. Sultan - forced flow, high field test facility

    International Nuclear Information System (INIS)

    Horvath, I.; Vecsey, G.; Weymuth, P.; Zellweger, J.

    1981-01-01

    Three European laboratories: CNEN (Frascati, I) ECN (Petten, NL) and SIN (Villigen, CH) decided to coordinate their development efforts and to install a common high field forced flow test facility at Villigen Switzerland. The test facility SULTAN (Supraleiter Testanlage) is presently under construction. As a first step, an 8T/1m bore solenoid with cryogenic periphery will be ready in 1981. The cryogenic system, data acquisition system and power supplies which are contributed by SIN are described. Experimental feasibilities, including cooling, and instrumentation are reviewed. Progress of components and facility construction is described. Planned extension of the background field up to 12T by insert coils is outlined. 5 refs

  12. Coercivity of magneto-optical media by spin dynamics

    International Nuclear Information System (INIS)

    Suits, J.C.

    1990-01-01

    Spin dynamics computer simulations have been carried out to study the effect of pinning on domain-wall motion in TbFeCo-like media. These calculations were done on a 30x30x1 mesh, where the spin direction at each lattice site was calculated with the Landau--Lifshitz--Gilbert equation. The simulations were made in an IBM 3090 mainframe--personal computer environment where the result of the calculation is a movie that runs at three frames/second on an AT and shows graphically the domain-wall--defect interaction. The domain wall is caused to move in an external field toward a defect, and the maximum field that pins the domain wall was observed. The defects have finite length and zero magnetization, which correspond to voids or nonmagnetic second phase in the media. The simulation shows that small defects on the order of 100 A in size can pin walls with pinning strength appropriate to the coercivity of magneto-optical media, i.e., local coercivities in the range 1--10 kOe. For sufficiently high fields a single wall may break up into two separate sections at the defect, and then join together beyond the defect to become a single wall again. For rectangular defects, the coercivity depends strongly and nearly linearly on defect length (parallel to the domain-wall surface) and only weakly on defect width for widths greater than about 50 A (perpendicular to the wall surface)

  13. High-frequency multimodal atomic force microscopy

    Directory of Open Access Journals (Sweden)

    Adrian P. Nievergelt

    2014-12-01

    Full Text Available Multifrequency atomic force microscopy imaging has been recently demonstrated as a powerful technique for quickly obtaining information about the mechanical properties of a sample. Combining this development with recent gains in imaging speed through small cantilevers holds the promise of a convenient, high-speed method for obtaining nanoscale topography as well as mechanical properties. Nevertheless, instrument bandwidth limitations on cantilever excitation and readout have restricted the ability of multifrequency techniques to fully benefit from small cantilevers. We present an approach for cantilever excitation and deflection readout with a bandwidth of 20 MHz, enabling multifrequency techniques extended beyond 2 MHz for obtaining materials contrast in liquid and air, as well as soft imaging of delicate biological samples.

  14. Coercive treatment and autonomy in psychiatry.

    Science.gov (United States)

    Sjöstrand, Manne; Helgesson, Gert

    2008-02-01

    There are three lines of argument in defence of coercive treatment of patients with mental disorders: arguments regarding (1) societal interests to protect others, (2) the patients' own health interests, and (3) patient autonomy. In this paper, we analyse these arguments in relation to an idealized case, where a person with a mental disorder claims not to want medical treatment for religious reasons. We also discuss who should decide what in situations where patients with mental disorders deny treatment on seemingly rational grounds. We conclude that, in principle, coercive treatment cannot be defended for the sake of protecting others. While coercive actions can be acceptable in order to protect close family and others, medical treatment is not justified for such reasons but should be given only in the interest of patients. Coercive treatment may be required in order to promote the patient's health interests, but health interests have to waive if they go against the autonomous interests of the patient. We argue that non-autonomous patients can have reasons, rooted in their deeply-set values, to renounce compulsory institutional treatment, and that such reasons should be respected unless it can be assumed that their new predicaments have caused them to change their views.

  15. Coercivity in SmCo hard magnetic films for MEMS applications

    Energy Technology Data Exchange (ETDEWEB)

    Pina, E. [Instituto de Magnetismo Aplicado, RENFE-UCM, Universidad Complutense de Madrid, P.O. Box 155, 28230 Las Rozas, Madrid (Spain)]. E-mail: epina@renfe.es; Palomares, F.J. [Instituto de Ciencia de Materiales de Madrid-CSIC, c/ Sor Juana Ines de la Cruz s/n, 28049 Madrid (Spain); Garcia, M.A. [Instituto de Magnetismo Aplicado, RENFE-UCM, Universidad Complutense de Madrid, P.O. Box 155, 28230 Las Rozas, Madrid (Spain); Cebollada, F. [Departamento de Fisica Aplicada a las Telecomunicaciones, EUITT-UPM, Crtra. De Valencia km 7, 28031 Madrid (Spain); Hoyos, A. de [Instituto de Magnetismo Aplicado, RENFE-UCM, Universidad Complutense de Madrid, P.O. Box 155, 28230 Las Rozas, Madrid (Spain); Romero, J.J. [Instituto de Magnetismo Aplicado, RENFE-UCM, Universidad Complutense de Madrid, P.O. Box 155, 28230 Las Rozas, Madrid (Spain); Hernando, A. [Instituto de Magnetismo Aplicado, RENFE-UCM, Universidad Complutense de Madrid, P.O. Box 155, 28230 Las Rozas, Madrid (Spain); Unidad asociada ICMM-IMA. P.O. Box 155, 28230 Las Rozas Madrid (Spain); Gonzalez, J.M. [Unidad asociada ICMM-IMA. P.O. Box 155, 28230 Las Rozas Madrid (Spain)

    2005-04-15

    In this work we have investigated the thermal dependence of coercivity in 1.5 {mu}m thick SmCo{sub 5} films fabricated by sputtering technique. Samples were deposited onto Si substrates kept at different temperatures. Samples grown below 450 deg. C are amorphous, present low coercivity and require further crystallization processes in order to obtain the 1:5 SmCo hard phase. Samples grown at 450 deg. C are nanocrystalline in the as-deposited state and exhibit high room temperature in-plane coercivity. Correlation between the thermal dependence of coercivity and the nanostructure has been analyzed in the frame of the so-called micromagnetic model.

  16. Differentiating between Confrontive and Coercive Kinds of Parental Power-Assertive Disciplinary Practices

    Science.gov (United States)

    Baumrind, Diana

    2012-01-01

    In this essay, I differentiate between coercive and confrontive kinds of power assertion to elucidate the significantly different effects on children's well-being of authoritarian and authoritative styles of parental authority. Although both parenting styles (in contrast to the permissive style) are equally demanding, forceful, and…

  17. Enhanced coercivity thermal stability realized in Nd–Fe–B thin films diffusion-processed by Nd–Co alloys

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Hui; Fu, Yanqing [Key laboratory of electromagnetic processing of materials (EPM), Ministry of Education, Northeastern University, Shenyang 110819 (China); Department of Physics and Chemistry of Materials, School of Materials Science and Engineering, Northeastern University, Shenyang 110819 (China); Li, Guojian; Liu, Tie [Key laboratory of electromagnetic processing of materials (EPM), Ministry of Education, Northeastern University, Shenyang 110819 (China); Cui, Weibin, E-mail: cuiweibin@epm.neu.edu.cn [Key laboratory of electromagnetic processing of materials (EPM), Ministry of Education, Northeastern University, Shenyang 110819 (China); Department of Physics and Chemistry of Materials, School of Materials Science and Engineering, Northeastern University, Shenyang 110819 (China); Liu, Wei; Zhang, Zhidong [Shenyang National Laboratory for Materials Science, Institute of Metal Research (IMR), Chinese Academy of Sciences (CAS), Shenyang 110016 (China); Wang, Qiang, E-mail: wangq@mail.neu.edu.cn [Key laboratory of electromagnetic processing of materials (EPM), Ministry of Education, Northeastern University, Shenyang 110819 (China)

    2017-03-15

    A proposed Nd{sub 2}Fe{sub 14}B-core/Nd{sub 2}(Fe, Co){sub 14}B-shell microstructure was realized by diffusion-processing textured Nd{sub 14}Fe{sub 77}B{sub 9} single-layer film with Nd{sub 100−x}Co{sub x} (x=10, 20 and 40) alloys to improve the coercivity thermal stability. The ambient coercivity was increased from around 1 T in single-layer film to nearly 2 T in diffusion-processed films, which was due to the Nd-rich grain boundaries as seen from transmission electron microscopy (TEM) images. The coercivity thermal stability was improved by the core/shell microstructure because Nd-rich grain boundaries provided the high ambient coercivity and Co-rich shell provided the improved coercivity stability. - Highlights: • Core–shell microstructure proposed for enhancing the coercivity thermal stability. • Coercivity enhanced to nearly 2 T by diffusion-processing with Nd–Co alloy. • Good squareness and highly textured microstructure obtained. • Nd-rich phases observed by TEM after diffusion process. • Coercivity thermal stability improved with minor Co addition in grain boundary regions.

  18. High Cable Forces Deteriorate Pinch Force Control in Voluntary-Closing Body-Powered Prostheses.

    Directory of Open Access Journals (Sweden)

    Mona Hichert

    Full Text Available It is generally asserted that reliable and intuitive control of upper-limb prostheses requires adequate feedback of prosthetic finger positions and pinch forces applied to objects. Body-powered prostheses (BPPs provide the user with direct proprioceptive feedback. Currently available BPPs often require high cable operation forces, which complicates control of the forces at the terminal device. The aim of this study is to quantify the influence of high cable forces on object manipulation with voluntary-closing prostheses.Able-bodied male subjects were fitted with a bypass-prosthesis with low and high cable force settings for the prehensor. Subjects were requested to grasp and transfer a collapsible object as fast as they could without dropping or breaking it. The object had a low and a high breaking force setting.Subjects conducted significantly more successful manipulations with the low cable force setting, both for the low (33% more and high (50% object's breaking force. The time to complete the task was not different between settings during successful manipulation trials.High cable forces lead to reduced pinch force control during object manipulation. This implies that low cable operation forces should be a key design requirement for voluntary-closing BPPs.

  19. Tuning coercivity in CoCrPt-SiO{sub 2} hard disk material

    Energy Technology Data Exchange (ETDEWEB)

    Strache, Thomas; Lenz, Kilian; Fassbender, Juergen [Forschungszentrum Dresden-Rossendorf, Institute of Ion Beam Physics and Materials Research, P.O. Box 51 01 19, 01314 Dresden (Germany); Tibus, Stefan [University of Konstanz, Department of Physics, 78457 Konstanz (Germany); Chemnitz University of Technology, Institute of Physics, 09107 Chemnitz (Germany); Springer, Felix [University of Konstanz, Department of Physics, 78457 Konstanz (Germany); Rohrmann, Hartmut [OC Oerlikon Balzers, AG Data Storage, P.O. Box 1000, 9496 Balzers (Liechtenstein); Albrecht, Manfred [Chemnitz University of Technology, Institute of Physics, 09107 Chemnitz (Germany)

    2009-07-01

    In order to increase the storage density of modern computer disk drives and to push the superparamagnetic limit to the smallest achievable bit sizes further, smaller grains with even larger magnetic anisotropies are required, which are accompanied by large coercive fields obstructing the writing process. One route to overcome this problem is to independently reduce the coercive field without altering anisotropy and remanence by tailoring the intergranular exchange in granular CoCrPt-SiO{sub 2} films. Here we demonstrate that by means of ion implantation of Co and Ne a continuous reduction of the coercive field can be achieved without significant modification of the remaining magnetic parameters. In addition to the magnetization reversal behavior of the entire film investigated by magneto-optic Kerr effect and SQUID magnetometry, also the magnetic domain configuration in the demagnetized state is imaged by magnetic force microscopy.

  20. Determining the effect of grain size and maximum induction upon coercive field of electrical steels

    Science.gov (United States)

    Landgraf, Fernando José Gomes; da Silveira, João Ricardo Filipini; Rodrigues-Jr., Daniel

    2011-10-01

    Although theoretical models have already been proposed, experimental data is still lacking to quantify the influence of grain size upon coercivity of electrical steels. Some authors consider a linear inverse proportionality, while others suggest a square root inverse proportionality. Results also differ with regard to the slope of the reciprocal of grain size-coercive field relation for a given material. This paper discusses two aspects of the problem: the maximum induction used for determining coercive force and the possible effect of lurking variables such as the grain size distribution breadth and crystallographic texture. Electrical steel sheets containing 0.7% Si, 0.3% Al and 24 ppm C were cold-rolled and annealed in order to produce different grain sizes (ranging from 20 to 150 μm). Coercive field was measured along the rolling direction and found to depend linearly on reciprocal of grain size with a slope of approximately 0.9 (A/m)mm at 1.0 T induction. A general relation for coercive field as a function of grain size and maximum induction was established, yielding an average absolute error below 4%. Through measurement of B50 and image analysis of micrographs, the effects of crystallographic texture and grain size distribution breadth were qualitatively discussed.

  1. Coercive Population Control and Asylum in the U.S.

    Directory of Open Access Journals (Sweden)

    Connie Oxford

    2017-11-01

    Full Text Available In 1980, China implemented one of the most controversial population policies in modern times. China’s one-child policy shaped population politics for thirty-five years until its dissolution in 2015. During this time, many women were subjected to routine gynecological examinations, pregnancy testing, abortions, and sterilizations, which were often forced upon them by family planning officials. Some women fled China and sought refuge in the United States after having experienced a forced abortion or forced sterilization or feared that they would be subjected to a forced abortion or forced sterilization. This article focuses on how the U.S. government responded to China’s one-child policy through the passage of immigration laws and policies that made asylum a viable option for Chinese nationals who had been persecuted or feared persecution because of coercive population control policies. Based on observations of asylum hearings and interviews with immigration judges and immigration attorneys, this article uses feminist ethnographic methods to show how China’s one-child policy and U.S. asylum laws shape the gender politics of reproduction and migration.

  2. High-speed force mapping on living cells with a small cantilever atomic force microscope

    International Nuclear Information System (INIS)

    Braunsmann, Christoph; Seifert, Jan; Rheinlaender, Johannes; Schäffer, Tilman E.

    2014-01-01

    The imaging speed of the wide-spread force mapping mode for quantitative mechanical measurements on soft samples in liquid with the atomic force microscope (AFM) is limited by the bandwidth of the z-scanner and viscous drag forces on the cantilever. Here, we applied high-speed, large scan-range atomic force microscopy and small cantilevers to increase the speed of force mapping by ≈10−100 times. This allowed resolving dynamic processes on living mouse embryonic fibroblasts. Cytoskeleton reorganization during cell locomotion, growth of individual cytoskeleton fibers, cell blebbing, and the formation of endocytic pits in the cell membrane were observed. Increasing the force curve rate from 2 to 300 Hz increased the measured apparent Young's modulus of the cells by about 10 times, which facilitated force mapping measurements at high speed

  3. High-speed force mapping on living cells with a small cantilever atomic force microscope

    Energy Technology Data Exchange (ETDEWEB)

    Braunsmann, Christoph; Seifert, Jan; Rheinlaender, Johannes; Schäffer, Tilman E., E-mail: Tilman.Schaeffer@uni-tuebingen [Institute of Applied Physics and LISA, University of Tübingen, Auf der Morgenstelle 10, 72076 Tübingen (Germany)

    2014-07-15

    The imaging speed of the wide-spread force mapping mode for quantitative mechanical measurements on soft samples in liquid with the atomic force microscope (AFM) is limited by the bandwidth of the z-scanner and viscous drag forces on the cantilever. Here, we applied high-speed, large scan-range atomic force microscopy and small cantilevers to increase the speed of force mapping by ≈10−100 times. This allowed resolving dynamic processes on living mouse embryonic fibroblasts. Cytoskeleton reorganization during cell locomotion, growth of individual cytoskeleton fibers, cell blebbing, and the formation of endocytic pits in the cell membrane were observed. Increasing the force curve rate from 2 to 300 Hz increased the measured apparent Young's modulus of the cells by about 10 times, which facilitated force mapping measurements at high speed.

  4. The coercivity mechanism of Pr–Fe–B nanoflakes prepared by surfactant-assisted ball milling

    Energy Technology Data Exchange (ETDEWEB)

    Zuo, Wen-Liang, E-mail: wlzuo@iphy.ac.cn; Zhang, Ming; Niu, E.; Shao, Xiao-Ping; Hu, Feng-Xia; Sun, Ji-Rong; Shen, Bao-Gen, E-mail: shenbg@aphy.iphy.ac.cn

    2015-09-15

    The strong (00l) textured Pr{sub 12+x}Fe{sub 82−x}B{sub 6} (x=0, 1, 2, 3, 4) nanoflakes with high coercivity were prepared by surfactant-assisted ball milling (SABM). The thickness and length of the flakes are mainly in the range of 50−200 nm and 0.5−2 μm, respectively. A coercivity of 4.16 kOe for Pr{sub 15}Fe{sub 79}B{sub 6} nanoflakes was obtained, which is the maximum coercivity of R{sub 2}Fe{sub 14}B (R=Pr, Nd) nanoflakes or nanoparticles reported up to now. The results of XRD and SEM for the aligned Pr{sub 15}Fe{sub 79}B{sub 6} nanoflakes indicate that a strong (00l) texture is obtained and the easy magnetization direction is parallel to the surface of the flakes. The angular dependence of coercivity for aligned sample indicates that the coercivity mechanism of the as-milled nanoflakes is mainly dominated by domain wall pinning. Meanwhile, the field dependence of coercivity, isothermal (IRM) and dc demagnetizing (DCD) remanence curves also indicate that the coercivity is mainly determined by domain wall pinning, and nucleation also has an important effect. In addition, the mainly interaction of flakes is dipolar coupling. The research of coercivity mechanism for Pr{sub 15}Fe{sub 79}B{sub 6} nanoflakes is important for guidance the further increase its value, and is useful for the future development of the high performance nanocomposite magnets and soft/hard exchange spring magnets. - Highlights: • A coercivity of 4.16 kOe for Pr{sub 15}Fe{sub 79}B{sub 6} nanoflakes was obtained. • The strong (00l) textured is obtained for Pr{sub 15}Fe{sub 79}B{sub 6} nanoflakes. • The interaction of nanoflakes is mainly dipolar coupling. • Domain wall pinning is the mainly coercivity mechanism.

  5. Can NATO's new Very High Readiness Joint Task Force deter?

    DEFF Research Database (Denmark)

    Rynning, Sten; Ringsmose, Jens

    2017-01-01

    ” a distinct strategic rival – Russia. Chief among the Welsh summit initiatives was the decision to set up a new multinational spearhead force – the Very High Readiness Joint Task Force (VJTF) – as part of an enhanced NATO Response Force (NRF) and within the framework of a so-called Readiness Action Plan (RAP...

  6. Stable dynamics in forced systems with sufficiently high/low forcing frequency.

    Science.gov (United States)

    Bartuccelli, M; Gentile, G; Wright, J A

    2016-08-01

    We consider parametrically forced Hamiltonian systems with one-and-a-half degrees of freedom and study the stability of the dynamics when the frequency of the forcing is relatively high or low. We show that, provided the frequency is sufficiently high, Kolmogorov-Arnold-Moser (KAM) theorem may be applied even when the forcing amplitude is far away from the perturbation regime. A similar result is obtained for sufficiently low frequency, but in that case we need the amplitude of the forcing to be not too large; however, we are still able to consider amplitudes which are outside of the perturbation regime. In addition, we find numerically that the dynamics may be stable even when the forcing amplitude is very large, well beyond the range of validity of the analytical results, provided the frequency of the forcing is taken correspondingly low.

  7. Imaging stability in force-feedback high-speed atomic force microscopy

    International Nuclear Information System (INIS)

    Kim, Byung I.; Boehm, Ryan D.

    2013-01-01

    We studied the stability of force-feedback high-speed atomic force microscopy (HSAFM) by imaging soft, hard, and biological sample surfaces at various applied forces. The HSAFM images showed sudden topographic variations of streaky fringes with a negative applied force when collected on a soft hydrocarbon film grown on a grating sample, whereas they showed stable topographic features with positive applied forces. The instability of HSAFM images with the negative applied force was explained by the transition between contact and noncontact regimes in the force–distance curve. When the grating surface was cleaned, and thus hydrophilic by removing the hydrocarbon film, enhanced imaging stability was observed at both positive and negative applied forces. The higher adhesive interaction between the tip and the surface explains the improved imaging stability. The effects of imaging rate on the imaging stability were tested on an even softer adhesive Escherichia coli biofilm deposited onto the grating structure. The biofilm and planktonic cell structures in HSAFM images were reproducible within the force deviation less than ∼0.5 nN at the imaging rate up to 0.2 s per frame, suggesting that the force-feedback HSAFM was stable for various imaging speeds in imaging softer adhesive biological samples. - Highlights: ► We investigated the imaging stability of force-feedback HSAFM. ► Stable–unstable imaging transitions rely on applied force and sample hydrophilicity. ► The stable–unstable transitions are found to be independent of imaging rate

  8. Proliferation Persuasion. Coercive Bargaining with Nuclear Technology

    Energy Technology Data Exchange (ETDEWEB)

    Volpe, Tristan A. [George Washington Univ., Washington, DC (United States)

    2015-08-31

    Why do states wait for prolonged periods of time with the technical capacity to produce nuclear weapons? Only a handful of countries have ever acquired the sensitive nuclear fuel cycle technology needed to produce fissile material for nuclear weapons. Yet the enduring trend over the last five decades is for these states to delay or forgo exercising the nuclear weapons option provided by uranium enrichment or plutonium reprocessing capabilities. I show that states pause at this threshold stage because they use nuclear technology to bargain for concessions from both allies and adversaries. But when does nuclear latency offer bargaining benefits? My central argument is that challengers must surmount a dilemma to make coercive diplomacy work: the more they threaten to proliferate, the harder it becomes to reassure others that compliance will be rewarded with nuclear restraint. I identify a range of mechanisms able to solve this credibility problem, from arms control over breakout capacity to third party mediation and confidence building measures. Since each step towards the bomb raises the costs of implementing these policies, a state hits a sweet spot when it first acquires enrichment and/or reprocessing (ENR) technology. Subsequent increases in proliferation capability generate diminishing returns at the bargaining table for two reasons: the state must go to greater lengths to make a credible nonproliferation promise, and nuclear programs exhibit considerable path dependency as they mature over time. Contrary to the conventional wisdom about power in world politics, less nuclear latency thereby yields more coercive threat advantages. I marshal new primary source evidence from archives and interviews to identify episodes in the historical record when states made clear decisions to use ENR technology as a bargaining chip, and employ this theory of proliferation persuasion to explain how Japan, North Korea, and Iran succeeded and failed to barter concessions from the

  9. Formation and characterization of magnetic barium ferrite hollow fibers with low coercivity via co-electrospun

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Gui-fang, E-mail: guifang777@163.com; Zhang, Zi-dong, E-mail: 1986zzd@163.com; Dang, Feng, E-mail: dangfeng@sdu.edu.cn; Cheng, Chuan-bing, E-mail: 807033063@qq.com; Hou, Chuan-xin, E-mail: 710313782@qq.com; Liu, Si-da, E-mail: superliustar@hotmail.com

    2016-08-15

    BaFe{sub 12}O{sub 19} fibers and hollow fibers were successfully prepared by electrospun and co-electrospun. A very interesting result appeared in this study that hollow fibers made by co-electrospun showed low coercivity values of a few hundred oersteds, compared with the coercivity values of more than thousand oersteds for the fibers made by electrospun. So the hollow fibers with high saturation magnetization (M{sub s}) and while comparatively low coercivity (H{sub c}) exhibited strong magnetism and basically showed soft character. And this character for hollow fibers will lead to increase of the permeability for the samples which is favorable for impedance matching in microwave absorption. So these hollow fibers are promised to have use in a number of applications, such as switching and sensing applications, electromagnetic materials, microwave absorber. - Highlights: • BaFe{sub 12}O{sub 19} fibers were prepared via electrospinning successfully. • The coercivity has a value of a few hundred oersteds for the hollow fibers made by coaxial electrospun. • BaFe{sub 12}O{sub 19} with high saturation magnetization and low coercivity shows great potential in microwave absorbing application.

  10. Giant coercivity in ferromagnetic Co doped ZnO single crystal thin film

    International Nuclear Information System (INIS)

    Loukya, B.; Negi, D.S.; Dileep, K.; Kumar, N.; Ghatak, Jay; Datta, R.

    2013-01-01

    The origin of ferromagnetism in ZnO doped with transition metal impurities has been discussed extensively and appeared to be a highly controversial and challenging topic in today's solid state physics. Magnetism observed in this system is generally weak and soft. We have grown Co:ZnO up to 30 at% Co in single crystal thin film form on c-plane sapphire. A composition dependent coercivity is observed in this system which reaches peak value at 25 at% Co, the values are 860 Oe and 1149 Oe with applied field along parallel and perpendicular to the film substrate interface respectively. This giant coercivity might pave the way to exploit this material as a magnetic semiconductor with novel logic functionalities. The findings are explained based on defect band itinerant ferromagnetism and its partial interaction with localized d electrons of Co through charge transfer. Besides large coercivity, an increase in the band gap with Co concentration has also been observed along with blue emission peak with long tail confirming the formation of extended point defect levels in the host lattice band gap. - Highlights: • Co doped ZnO ferromagnetic single crystal thin film. • Giant coercivity in Co:ZnO thin film which may help to turn this material into application. • Cathodoluminescence (CL) data showing increase in band gap with Co concentrations. • A theoretical proposal is made to explain the observed giant coercivity

  11. Ultrahigh coercivity and core-shell microstructure achieved in oriented Nd-Fe-B thin films diffusion-processed with Dy-based alloys

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Tongbo; Zhou, Xiaoqian; Yu, Dedong; Fu, Yanqing; Cui, Weibin [Northeastern University, Key Laboratory of Electromagnetic Processing of Materials (EPM), Ministry of Education, Shenyang (China); Northeastern University, Department of Physics and Chemistry of Materials, School of Materials Science and Engineering, Shenyang (China); Li, Guojian; Wang, Qiang [Northeastern University, Key Laboratory of Electromagnetic Processing of Materials (EPM), Ministry of Education, Shenyang (China)

    2017-01-15

    Ultrahigh ambient coercivities of ∝4 T were achieved in Nd-Fe-B benchmark thin film with coercivity of 1.06 T by diffusion-processing with Dy, Dy{sub 70}Cu{sub 30} and Dy{sub 80}Ag{sub 20} alloy layer. High texture and good squareness were obtained. In triple-junction regions, Dy element was found to be immiscible with Nd element. Microstructure observation indicated the typical gradient elementary distribution. Unambiguous core/shell microstructure was characterized by transition electron microscopy. Due to the enhanced ambient coercivity, the coercivity temperature stability was also substantially increased. (orig.)

  12. Hard magnetic properties and coercivity mechanism of melt-spun Misch Metal-Fe-B alloy

    Energy Technology Data Exchange (ETDEWEB)

    Quan, Ningtao; Luo, Yang, E-mail: eluoyang@foxmail.com; Yan, Wenlong; Yuan, Chao; Yu, Dunbo; Sun, Liang; Lu, Shuo; Li, Hongwei; Zhang, Hongbin

    2017-09-01

    Highlights: • Melt-spun MM{sub 13}Fe{sub 81}B{sub 6} alloy shows that the distributions of the La, Ce, Pr, Nd, Fe and B elements is uniformly distributed, and the grain size is in the range of 30–40 nm, it can be seen that Pr-rich and La-rich phases concentrated on grain boundaries, which resulted in the coercivity augment with the increase of MMFe{sub 2} content, and the grain size is around 40–50 nm in MM{sub 16}Fe{sub 78}B{sub 6}. • There is a significant formation of MMFe{sub 2} with abundant Pr and La, and a small amount of Ce and Nd enriched at the interfacial region in MM{sub 16}Fe{sub 78}B{sub 6}, thus an inhomogeneous region was formed. It is considered that the inhomogeneous region is effective in increasing the coercivity. • The optimum-quenched MM{sub 13}Fe{sub 81}B{sub 6} alloy have been shown to exhibit a coercive force of 6.9 kOe and an energy product of 8.5 MGOe, which is superior to anisotropic ferrite magnets of 4.5 MGOe. - Abstract: Magnetic and structural properties of Misch Metal (MM)-Fe-B alloys, were examined in the melt-spun ribbons. Melt-spun MM-Fe-B samples were prepared at the surface velocities of 18–30 m/s. Crystalline structure and their room-temperature magnetization characteristics were analyzed, and the optimum surface velocity of 20 m/s and nominal composition of MM{sub 13}Fe{sub 81}B{sub 6} were obtained. Microstructural analyses indicate that the grain size is approximately 30–50 nm in the alloys with the optimum characteristics. In the MM{sub 16}Fe{sub 78}B{sub 6} alloys, Pr-rich and La-rich phases concentrated on grain boundaries, which resulted in the coercivity augment with the increase of MMFe{sub 2} content. Dependence of coercivity on applied magnetic field suggested that the mechanism of coercivity in moderate MM-content samples was inhomogeneous domain wall pinning type. The melt-spun ribbons in the optimum condition exhibit a coercive force of 6.9 kOe and an energy product of 8.5 MGOe, which can be used as

  13. Study of coercive measures in prisons and secure psychiatric hospitals: the views of inmates and caregivers

    Directory of Open Access Journals (Sweden)

    A. Runte-Geidel

    2014-06-01

    Full Text Available Aim: The aim of the study was to ascertain the opinions of both inmates and staff of prison establishments about the use of coercive measures justified for clinical reasons for people with mental health problems and about the need to create protocols to regulate the application of these measures. Method: These opinions were gathered in a Qualitative Study with Focus Groups (prison inmates and prison staff from the Granada Penitentiary Centre and the Alicante Penitentiary Psychiatric Hospital, both in Spain. Results: The results showed that forced medication is the most commonly used coercive measure in these institutions. The inmates did not understand and rejected the use of this measure, above all because they were poorly informed about their illness and the medication required to treat it. The staff however defended the benefits of psychiatric medicine, even when administered without the patient's consent. Conclusions: Both inmates and staff agreed that it would be useful to have a protocol regulating the use of coercive measures. The study has also identified a number of important factors that could help to reduce the need for coercive measures or make their use unnecessary.

  14. Temperature-Dependent Coercive Field Measured by a Quantum Dot Strain Gauge.

    Science.gov (United States)

    Chen, Yan; Zhang, Yang; Keil, Robert; Zopf, Michael; Ding, Fei; Schmidt, Oliver G

    2017-12-13

    Coercive fields of piezoelectric materials can be strongly influenced by environmental temperature. We investigate this influence using a heterostructure consisting of a single crystal piezoelectric film and a quantum dots containing membrane. Applying electric field leads to a physical deformation of the piezoelectric film, thereby inducing strain in the quantum dots and thus modifying their optical properties. The wavelength of the quantum dot emission shows butterfly-like loops, from which the coercive fields are directly derived. The results suggest that coercive fields at cryogenic temperatures are strongly increased, yielding values several tens of times larger than those at room temperature. We adapt a theoretical model to fit the measured data with very high agreement. Our work provides an efficient framework for predicting the properties of ferroelectric materials and advocating their practical applications, especially at low temperatures.

  15. Influence of measuring temperature in size dependence of coercivity in nanostructured alloys

    International Nuclear Information System (INIS)

    Lopez, M.; Marin, P.; Kulik, T.; Hernando, A.

    2005-01-01

    An increase of coercive field with decreasing particle size has been observed in ball milled nanocomposite of Fe-rich nanocrystals embedded in an amorphous matrix. Previous works (J. Appl. Phys. 64 (1998) 6044) have concluded that for high lattice strain, , the increase of coercivity is due to the magnetoelastic anisotropy generated by . Even though other effects can also be involved, the experimental results seem to indicate that the influence of the particle size on the average structural anisotropy noticeably contributes to the hardening observed for low . The influence of measuring temperature in size dependence of coercivity in nanostructured alloys has been analyzed. Some analogies and differences in respect of that observed in partially nanocrystallized samples have been found

  16. Control of coercive field in lithium niobate crystals with repeated polarization reversal

    International Nuclear Information System (INIS)

    Ro, Jung Hoon; Jeong, Doun; Park, Taeyong; Kim, Chulhan; Kwon, Soon-Bok; Cha, Myoungsik; Choi, Byeong Cheol; Yu, Nanei; Kurimura, Sunao; Jeon, Gyerok

    2005-01-01

    In this study, the amount of decrease in coercive field of congruent lithium niobate during repeated poling and back-poling was measured. The polarization is reversed in 300 ms and then back-poled during the rest period. The coercive field can be decreased around 1 kV/mm with a repeated poling interval of 5 s. As the interval prolonged, the poling field decrease became smaller, and a stretched exponential function is suggested for the experimental fitting resulting in a set of meaningful parameters. These values are essential for the design of high quality domain engineering

  17. On the Issue of the Concept "Coercive Criminality"

    Directory of Open Access Journals (Sweden)

    Pestereva Y. S.

    2014-04-01

    Full Text Available The article deals with the actual problems relating to the concept of coercive criminality. Here is determined the lexical scope of the concept "coercion"; the philosophical and criminal law contents of the researched term are compared; the types of the coercive criminality are determined.

  18. Understanding gastric forces calculated from high-resolution pill tracking.

    Science.gov (United States)

    Laulicht, Bryan; Tripathi, Anubhav; Schlageter, Vincent; Kucera, Pavel; Mathiowitz, Edith

    2010-05-04

    Although other methods exist for monitoring gastrointestinal motility and contractility, this study exclusively provides direct and quantitative measurements of the forces experienced by an orally ingested pill. We report motive forces and torques calculated from real-time, in vivo measurements of the movement of a magnetic pill in the stomachs of fasted and fed humans. Three-dimensional net force and two-dimensional net torque vectors as a function of time data during gastric residence are evaluated using instantaneous translational and rotational position data. Additionally, the net force calculations described can be applied to high-resolution pill tracking acquired by any modality. The fraction of time pills experience ranges of forces and torques are analyzed and correlate with the physiological phases of gastric digestion. We also report the maximum forces and torques experienced in vivo by pills as a quantitative measure of the amount of force pills experience during the muscular contractions leading to gastric emptying. Results calculated from human data are compared with small and large animal models with a translational research focus. The reported magnitude and direction of gastric forces experienced by pills in healthy stomachs serves as a baseline for comparison with pathophysiological states. Of clinical significance, the directionality associated with force vector data may be useful in determining the muscle groups associated with gastrointestinal dysmotility. Additionally, the quantitative comparison between human and animal models improves insight into comparative gastric contractility that will aid rational pill design and provide a quantitative framework for interpreting gastroretentive oral formulation test results.

  19. Task force for integral test of High Energy nuclear data

    Energy Technology Data Exchange (ETDEWEB)

    Oyama, Yukio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-11-01

    According to completion of the JENDL-High Energy file for neutron nuclear cross sections up to 50 MeV, a task force for integral test of high energy nuclear data was organized to discuss a guide line for integral test activities. A status of existing differential and integral experiments and how to perform such a test were discussed in the task force. Here the purpose and outline of the task force is explained with some future problems raised in discussion among the task member. (author)

  20. Large time-dependent coercivity and resistivity modification under sustained voltage application in a Pt/Co/AlOx/Pt junction.

    NARCIS (Netherlands)

    Brink, van den A.; van der Heijden, M.A.J.; Swagten, H.J.M.; Koopmans, B.

    2015-01-01

    The coercivity and resistivity of a Pt/Co/AlOx/Pt junction are measured under sustained voltage application. High bias voltages of either polarity are determined to cause a strongly enhanced, reversible coercivity modification compared to low voltages. Time-resolved measurements show a logarithmic

  1. Reliability of force-velocity relationships during deadlift high pull.

    Science.gov (United States)

    Lu, Wei; Boyas, Sébastien; Jubeau, Marc; Rahmani, Abderrahmane

    2017-11-13

    This study aimed to evaluate the within- and between-session reliability of force, velocity and power performances and to assess the force-velocity relationship during the deadlift high pull (DHP). Nine participants performed two identical sessions of DHP with loads ranging from 30 to 70% of body mass. The force was measured by a force plate under the participants' feet. The velocity of the 'body + lifted mass' system was calculated by integrating the acceleration and the power was calculated as the product of force and velocity. The force-velocity relationships were obtained from linear regression of both mean and peak values of force and velocity. The within- and between-session reliability was evaluated by using coefficients of variation (CV) and intraclass correlation coefficients (ICC). Results showed that DHP force-velocity relationships were significantly linear (R² > 0.90, p  0.94), mean and peak velocities showed a good agreement (CV reliable and can therefore be utilised as a tool to characterise individuals' muscular profiles.

  2. Can NATO's new very high readiness joint task force deter?

    DEFF Research Database (Denmark)

    Rynning, Sten; Ringsmose, Jens

    2017-01-01

    When NATO-allies met at their Wales summit in September 2014, the D-word was back in vogue. Not in a muttering, shy or implicit way, but unambiguously and straightforward. For the first time in more than two decades NATO’s heads of states and governments openly discussed how best to “deter......” a distinct strategic rival – Russia. Chief among the Welsh summit initiatives was the decision to set up a new multinational spearhead force – the Very High Readiness Joint Task Force (VJTF) – as part of an enhanced NATO Response Force (NRF) and within the framework of a so-called Readiness Action Plan (RAP...

  3. The FORCE: A highly portable parallel programming language

    Science.gov (United States)

    Jordan, Harry F.; Benten, Muhammad S.; Alaghband, Gita; Jakob, Ruediger

    1989-01-01

    Here, it is explained why the FORCE parallel programming language is easily portable among six different shared-memory microprocessors, and how a two-level macro preprocessor makes it possible to hide low level machine dependencies and to build machine-independent high level constructs on top of them. These FORCE constructs make it possible to write portable parallel programs largely independent of the number of processes and the specific shared memory multiprocessor executing them.

  4. The FORCE - A highly portable parallel programming language

    Science.gov (United States)

    Jordan, Harry F.; Benten, Muhammad S.; Alaghband, Gita; Jakob, Ruediger

    1989-01-01

    This paper explains why the FORCE parallel programming language is easily portable among six different shared-memory multiprocessors, and how a two-level macro preprocessor makes it possible to hide low-level machine dependencies and to build machine-independent high-level constructs on top of them. These FORCE constructs make it possible to write portable parallel programs largely independent of the number of processes and the specific shared-memory multiprocessor executing them.

  5. Microstructure evolution and coercivity enhancement in Nd-Fe-B thin films diffusion-processed by R-Al alloys (R=Nd, Pr)

    Science.gov (United States)

    Xie, Yigao; Yang, Yang; Zhang, Tongbo; Fu, Yanqing; Jiang, Qingzheng; Ma, Shengcan; Zhong, Zhenchen; Cui, Weibin; Wang, Qiang

    2018-05-01

    Diffusion process by Nd-Al and Pr-Al alloys was compared and investigated in Nd-Fe-B thin films. Enhanced coercivity 2.06T and good squareness was obtained by using Pr85Al15 and Nd85Al15 alloys as diffusion sources. But the coercivity of diffusion-processed thin films by Pr70Al30 and Pr55Al45 alloys decreased to 2.04T and 1.82T. High ambient coercivity of 2.26T was achieved in diffusion-processed thin film by Nd70Al30 leading to an improved coercivity thermal stability because Nd2Fe14B grains were enveloped by Nd-rich phase as seen by transmission electron microscopy Nd-loss image. Meanwhile, microstructure-dependent parameters α and Neff were improved. However, high content of Al in diffusion-processed thin film by Nd55Al45 lead to degraded texture and coercivity.

  6. Coercive Tactics and Web Advertising Performance

    Directory of Open Access Journals (Sweden)

    Jiwon Lee

    2017-07-01

    Full Text Available By questioning contemporary coercive or intrusive web advertising activities, this study sheds light on the recent conditions of web advertising by focusing on a comprehensive process that leads to web ad performance. A total of 400 questionnaires were distributed by the principal investigators of this study. 170 were returned from 200 distributed questionnaires given in South Korea and 100 were returned from 200 distributed questionnaires in China. The responses total 248 out of 400 distributed questionnaires. The relationships among the measured factors are analyzed by the structural equation modeling method. Results show that the use of web ad tactics often leads to negative consequences, creating a user present avoidance behavior condition towards both the ad and ad-hosting website. In terms of the performance of the ad-hosting website, website retention was strongly influenced by content blocking. In addition, the results of the comparative test suggest that the influence of avoidance on advertising performance is stronger among users of newspaper websites than e-commerce websites.

  7. Coercivities of hot-deformed magnets processed from amorphous and nanocrystalline precursors

    International Nuclear Information System (INIS)

    Tang, Xin; Sepehri-Amin, H.; Ohkubo, T.; Hioki, K.; Hattori, A.; Hono, K.

    2017-01-01

    Hot-deformed magnets have been processed from amorphous and nanocrystalline precursors and their hard magnetic properties and microstructures have been investigated in order to explore the optimum process route. The hot-deformed magnets processed from an amorphous precursor exhibited the coercivity of 1.40 T that is higher than that processed from nanocrystalline powder, ∼1.28 T. The average grain size was larger in the magnets processed from amorphous precursor. Detailed microstructure analyses by aberration corrected scanning transmission electron microscopy revealed that the Nd + Pr concentrations in the intergranular phases were higher in the hot-deformed magnet processed from the amorphous precursor, which is considered to lead to the enhanced coercivity due to a stronger pinning force against magnetic domain wall motion.

  8. Coercivity of the Nd–Fe–B hot-deformed magnets diffusion-processed with low melting temperature glass forming alloys

    Energy Technology Data Exchange (ETDEWEB)

    Seelam, U.M.R. [Elements Strategy Initiative Center for Magnetic Materials (ESICMM), National Institute for Materials Science, 1-2-1 Sengen, Tsukuba 305-0047 (Japan); Liu, Lihua [Elements Strategy Initiative Center for Magnetic Materials (ESICMM), National Institute for Materials Science, 1-2-1 Sengen, Tsukuba 305-0047 (Japan); Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba 305-8571 (Japan); Akiya, T.; Sepehri-Amin, H.; Ohkubo, T. [Elements Strategy Initiative Center for Magnetic Materials (ESICMM), National Institute for Materials Science, 1-2-1 Sengen, Tsukuba 305-0047 (Japan); Sakuma, N.; Yano, M.; Kato, A. [Advanced Material Engineering Division, Toyota Motor Corporation, Susono 410-1193 (Japan); Hono, K., E-mail: kazuhiro.hono@nims.go.jp [Elements Strategy Initiative Center for Magnetic Materials (ESICMM), National Institute for Materials Science, 1-2-1 Sengen, Tsukuba 305-0047 (Japan); Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba 305-8571 (Japan)

    2016-08-15

    Nd- and Pr-based alloys with bulk glass forming ability and low melting temperatures, Nd{sub 60}Al{sub 10}Ni{sub 10}Cu{sub 20} and Pr{sub 60}Al{sub 10}Ni{sub 10}Cu{sub 20}, were used for grain boundary diffusion process to enhance the coercivity of hot-deformed magnets. The coercivity increment was proportional to the weight gain after the diffusion process. For the sample with 64% weight gain, the coercivity increased up to 2.8 T, which is the highest value for bulk Nd–Fe–B magnets that do not contain heavy rare-earth elements, Dy or Tb. Approximately half of the intergranular regions were amorphous and the remaining regions were crystalline. Magnetic isolation of the Nd{sub 2}Fe{sub 14}B grains by the Nd-rich amorphous/crystalline intergranular phases is attributed to the large coercivity enhancement. The coercivity does not change after the crystallization of the intergranular phase, indicating that the coercivity is not influenced by the strain at the interface with the crystalline intergranular phase. - Highlights: • Bulk-glass forming alloys were infiltrated into hot-deformed Nd–Fe–B magnets. • Very high coercivity of 2.8 T was attained without heavy rare-earth elements. • Approximately half of the inter-granular regions were amorphous. • Crystallization of amorphous intergranular phase does not change coercivity.

  9. Performance of Halbach magnet arrays with finite coercivity

    DEFF Research Database (Denmark)

    Insinga, Andrea Roberto; Bahl, C.R.H.; Bjørk, Rasmus

    2016-01-01

    of the magnetic material and the fact that the coercivity is not infinite will limit the attainable field. The presented method is able to predict when and where demagnetization will occur, and these predictions are compared with the analytical solution for the case of infinite coercivity. However, the approach...... presented here also allows quantification of the decrease in flux density and homogeneity for a partially demagnetized magnet. Moreover, the problem of how to realize a Halbach cylinder geometry using a mix of materials with different coercivities without altering the overall performance is addressed. Being......A numerical method to study the effect of finite coercivity on the Halbach cylinder geometry is presented. Despite the fact that the analytical solution available for this geometry does not set any limit to the maximum air gap flux density achievable, in real life the non-linear response...

  10. High-bandwidth piezoresistive force probes with integrated thermal actuation

    International Nuclear Information System (INIS)

    Doll, Joseph C; Pruitt, Beth L

    2012-01-01

    We present high-speed force probes with on-chip actuation and sensing for the measurement of pN-scale forces at the microsecond timescale. We achieve a high resonant frequency in water (1–100 kHz) with requisite low spring constants (0.3–40 pN nm −1 ) and low integrated force noise (1–100 pN) by targeting probe dimensions on the order of 300 nm thick, 1–2 μm wide and 30–200 μm long. Forces are measured using silicon piezoresistors, while the probes are actuated thermally with an aluminum unimorph and silicon heater. The piezoresistive sensors are designed using the open-source numerical optimization code that incorporates constraints on operating temperature. Parylene passivation enables operation in ionic media and we demonstrate simultaneous actuation and sensing. The improved design and fabrication techniques that we describe enable a 10–20-fold improvement in force resolution or measurement bandwidth over prior piezoresistive cantilevers of comparable thickness. (paper)

  11. High bandwidth piezoresistive force probes with integrated thermal actuation

    Science.gov (United States)

    Doll, Joseph C.; Pruitt, Beth L.

    2012-01-01

    We present high-speed force probes with on-chip actuation and sensing for the measurement of pN-scale forces at the microsecond time scale. We achieve a high resonant frequency in water (1–100 kHz) with requisite low spring constants (0.3–40 pN/nm) and low integrated force noise (1–100 pN) by targeting probe dimensions on the order of 300 nm thick, 1–2 μm wide and 30–200 μm long. Forces are measured using silicon piezoresistors while the probes are actuated thermally with an aluminum unimorph and silicon heater. The piezoresistive sensors are designed using open source numerical optimization code that incorporates constraints on operating temperature. Parylene passivation enables operation in ionic media and we demonstrate simultaneous actuation and sensing. The improved design and fabrication techniques that we describe enable a 10–20 fold improvement in force resolution or measurement bandwidth over prior piezoresistive cantilevers of comparable thickness. PMID:23175616

  12. Performance of Halbach magnet arrays with finite coercivity

    International Nuclear Information System (INIS)

    Insinga, A.R.; Bahl, C.R.H.; Bjørk, R.; Smith, A.

    2016-01-01

    A numerical method to study the effect of finite coercivity on the Halbach cylinder geometry is presented. Despite the fact that the analytical solution available for this geometry does not set any limit to the maximum air gap flux density achievable, in real life the non-linear response of the magnetic material and the fact that the coercivity is not infinite will limit the attainable field. The presented method is able to predict when and where demagnetization will occur, and these predictions are compared with the analytical solution for the case of infinite coercivity. However, the approach presented here also allows quantification of the decrease in flux density and homogeneity for a partially demagnetized magnet. Moreover, the problem of how to realize a Halbach cylinder geometry using a mix of materials with different coercivities without altering the overall performance is addressed. Being based on a numerical approach, the presented method can be employed to analyze the demagnetization effects due to coercivity for any geometry, even when the analytical solution is not available. - Highlights: • The effect of the finite coercivity on the performance of the Halbach cylinder geometry is analyzed • FEM predictions of demagnetization are in agreement with the analytical calculations. • Performance in the non-linear regime is quantified by the average and uniformity of the field • We show which regions in the geometry are more likely to experience non-linear behavior. • We provide a recipe for the fabrication of a multi-material Halbach cylinder

  13. Cutting force model for high speed machining process

    International Nuclear Information System (INIS)

    Haber, R. E.; Jimenez, J. E.; Jimenez, A.; Lopez-Coronado, J.

    2004-01-01

    This paper presents cutting force-based models able to describe a high speed machining process. The model considers the cutting force as output variable, essential for the physical processes that are taking place in high speed machining. Moreover, this paper shows the mathematical development to derive the integral-differential equations, and the algorithms implemented in MATLAB to predict the cutting force in real time MATLAB is a software tool for doing numerical computations with matrices and vectors. It can also display information graphically and includes many toolboxes for several research and applications areas. Two end mill shapes are considered (i. e. cylindrical and ball end mill) for real-time implementation of the developed algorithms. the developed models are validated in slot milling operations. The results corroborate the importance of the cutting force variable for predicting tool wear in high speed machining operations. The developed models are the starting point for future work related with vibration analysis, process stability and dimensional surface finish in high speed machining processes. (Author) 19 refs

  14. Design and performance of a high-resolution frictional force microscope with quantitative three-dimensional force sensitivity

    International Nuclear Information System (INIS)

    Dienwiebel, M.; Kuyper, E. de; Crama, L.; Frenken, J.W.M.; Heimberg, J.A.; Spaanderman, D.-J.; Glatra van Loon, D.; Zijlstra, T.; Drift, E. van der

    2005-01-01

    In this article, the construction and initial tests of a frictional force microscope are described. The instrument makes use of a microfabricated cantilever that allows one to independently measure the lateral forces in X and Y directions as well as the normal force. We use four fiber-optic interferometers to detect the motion of the sensor in three dimensions. The properties of our cantilevers allow easy and accurate normal and lateral force calibration, making it possible to measure the lateral force on a fully quantitative basis. First experiments on highly oriented pyrolytic graphite demonstrate that the microscope is capable of measuring lateral forces with a resolution down to 15 pN

  15. High-speed adaptive contact-mode atomic force microscopy imaging with near-minimum-force

    International Nuclear Information System (INIS)

    Ren, Juan; Zou, Qingze

    2014-01-01

    In this paper, an adaptive contact-mode imaging approach is proposed to replace the traditional contact-mode imaging by addressing the major concerns in both the speed and the force exerted to the sample. The speed of the traditional contact-mode imaging is largely limited by the need to maintain precision tracking of the sample topography over the entire imaged sample surface, while large image distortion and excessive probe-sample interaction force occur during high-speed imaging. In this work, first, the image distortion caused by the topography tracking error is accounted for in the topography quantification. Second, the quantified sample topography is utilized in a gradient-based optimization method to adjust the cantilever deflection set-point for each scanline closely around the minimal level needed for maintaining stable probe-sample contact, and a data-driven iterative feedforward control that utilizes a prediction of the next-line topography is integrated to the topography feeedback loop to enhance the sample topography tracking. The proposed approach is demonstrated and evaluated through imaging a calibration sample of square pitches at both high speeds (e.g., scan rate of 75 Hz and 130 Hz) and large sizes (e.g., scan size of 30 μm and 80 μm). The experimental results show that compared to the traditional constant-force contact-mode imaging, the imaging speed can be increased by over 30 folds (with the scanning speed at 13 mm/s), and the probe-sample interaction force can be reduced by more than 15% while maintaining the same image quality

  16. High-speed adaptive contact-mode atomic force microscopy imaging with near-minimum-force

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Juan; Zou, Qingze, E-mail: qzzou@rci.rutgers.edu [Department of Mechanical and Aerospace Engineering, Rutgers University, 98 Brett Rd, Piscataway, New Jersey 08854 (United States)

    2014-07-15

    In this paper, an adaptive contact-mode imaging approach is proposed to replace the traditional contact-mode imaging by addressing the major concerns in both the speed and the force exerted to the sample. The speed of the traditional contact-mode imaging is largely limited by the need to maintain precision tracking of the sample topography over the entire imaged sample surface, while large image distortion and excessive probe-sample interaction force occur during high-speed imaging. In this work, first, the image distortion caused by the topography tracking error is accounted for in the topography quantification. Second, the quantified sample topography is utilized in a gradient-based optimization method to adjust the cantilever deflection set-point for each scanline closely around the minimal level needed for maintaining stable probe-sample contact, and a data-driven iterative feedforward control that utilizes a prediction of the next-line topography is integrated to the topography feeedback loop to enhance the sample topography tracking. The proposed approach is demonstrated and evaluated through imaging a calibration sample of square pitches at both high speeds (e.g., scan rate of 75 Hz and 130 Hz) and large sizes (e.g., scan size of 30 μm and 80 μm). The experimental results show that compared to the traditional constant-force contact-mode imaging, the imaging speed can be increased by over 30 folds (with the scanning speed at 13 mm/s), and the probe-sample interaction force can be reduced by more than 15% while maintaining the same image quality.

  17. Motor Unit Interpulse Intervals During High Force Contractions.

    Science.gov (United States)

    Stock, Matt S; Thompson, Brennan J

    2016-01-01

    We examined the means, medians, and variability for motor-unit interpulse intervals (IPIs) during voluntary, high force contractions. Eight men (mean age = 22 years) attempted to perform isometric contractions at 90% of their maximal voluntary contraction force while bipolar surface electromyographic (EMG) signals were detected from the vastus lateralis and vastus medialis muscles. Surface EMG signal decomposition was used to determine the recruitment thresholds and IPIs of motor units that demonstrated accuracy levels ≥ 96.0%. Motor units with high recruitment thresholds demonstrated longer mean IPIs, but the coefficients of variation were similar across all recruitment thresholds. Polynomial regression analyses indicated that for both muscles, the relationship between the means and standard deviations of the IPIs was linear. The majority of IPI histograms were positively skewed. Although low-threshold motor units were associated with shorter IPIs, the variability among motor units with differing recruitment thresholds was comparable.

  18. Coercivity enhancement of HDDR-processed Nd-Fe-B permanent magnet with the rapid hot-press consolidation process

    Energy Technology Data Exchange (ETDEWEB)

    Nozawa, N. [Magnetic Materials Research Laboratory, NEOMAX Company, Hitachi Metals Ltd., Osaka 618-0013 (Japan); Sepehri-Amin, H. [Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba 305-8571 (Japan); Magnetic Materials Center, National Institute for Materials Science, Tsukuba 305-0047 (Japan); Ohkubo, T. [Magnetic Materials Center, National Institute for Materials Science, Tsukuba 305-0047 (Japan); Hono, K. [Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba 305-8571 (Japan); Magnetic Materials Center, National Institute for Materials Science, Tsukuba 305-0047 (Japan); Nishiuchi, T. [Magnetic Materials Research Laboratory, NEOMAX Company, Hitachi Metals Ltd., Osaka 618-0013 (Japan); Hirosawa, S., E-mail: Satoshi_Hirosawa@hitachi-metals.co.j [Magnetic Materials Research Laboratory, NEOMAX Company, Hitachi Metals Ltd., Osaka 618-0013 (Japan)

    2011-01-15

    High coercivity, fully dense anisotropic permanent magnets of submicron grain sizes were produced by rapid hot-press consolidation of hydrogenation-disproportionation-desorption-recombination (HDDR) processed Nd-Fe-Co-B powders. In the hot-press process, the coercivity of the consolidated material showed a sharp minimum prior to full densification. Thereafter, it reached a value 25% higher than that of the initial powder. Scanning electron microscopy and transmission electron microscopy observations revealed that the variation in H{sub cJ} was caused by a redistribution of Nd along the grain boundaries during hot pressing and that the high coercivity was attributable to the formation of thin, continuous Nd-rich phase along the grain boundaries.

  19. Coercive Sanctions and International Conflicts: A Sociological Theory

    DEFF Research Database (Denmark)

    Jaeger, Mark Daniel

    international sanctions work, and more substantially, what are the social conditions within sanctions conflicts that are conducive to either cooperation or non-cooperation? Arguing that coercive sanctions and international conflicts are socially-constructed facts, the book explores the processes involved......Perhaps the most common question raised in the literature on coercive international sanctions is: "Do sanctions work?" Unsurprisingly, the answer to such a sweeping question remains inconclusive. Instead of asking whether sanctions work, this book addresses a more basic question: How do coercive......, and to its potential transformation. Thus it is premature to ‘predict’ the political effectiveness of sanctions simply on the basis of their economic impact. The book presents analyses of the sanctions conflicts between China and Taiwan and over Iran’s nuclear program, illustrating how negative sanctions...

  20. High-speed atomic force microscopy coming of age

    International Nuclear Information System (INIS)

    Ando, Toshio

    2012-01-01

    High-speed atomic force microscopy (HS-AFM) is now materialized. It allows direct visualization of dynamic structural changes and dynamic processes of functioning biological molecules in physiological solutions, at high spatiotemporal resolution. Dynamic molecular events unselectively appear in detail in an AFM movie, facilitating our understanding of how biological molecules operate to function. This review describes a historical overview of technical development towards HS-AFM, summarizes elementary devices and techniques used in the current HS-AFM, and then highlights recent imaging studies. Finally, future challenges of HS-AFM studies are briefly discussed. (topical review)

  1. High-speed atomic force microscopy coming of age

    Science.gov (United States)

    Ando, Toshio

    2012-02-01

    High-speed atomic force microscopy (HS-AFM) is now materialized. It allows direct visualization of dynamic structural changes and dynamic processes of functioning biological molecules in physiological solutions, at high spatiotemporal resolution. Dynamic molecular events unselectively appear in detail in an AFM movie, facilitating our understanding of how biological molecules operate to function. This review describes a historical overview of technical development towards HS-AFM, summarizes elementary devices and techniques used in the current HS-AFM, and then highlights recent imaging studies. Finally, future challenges of HS-AFM studies are briefly discussed.

  2. Theory of high-force DNA stretching and overstretching.

    Science.gov (United States)

    Storm, C; Nelson, P C

    2003-05-01

    Single-molecule experiments on single- and double-stranded DNA have sparked a renewed interest in the force versus extension of polymers. The extensible freely jointed chain (FJC) model is frequently invoked to explain the observed behavior of single-stranded DNA, but this model does not satisfactorily describe recent high-force stretching data. We instead propose a model (the discrete persistent chain) that borrows features from both the FJC and the wormlike chain, and show that it resembles the data more closely. We find that most of the high-force behavior previously attributed to stretch elasticity is really a feature of the corrected entropic elasticity; the true stretch compliance of single-stranded DNA is several times smaller than that found by previous authors. Next we elaborate our model to allow coexistence of two conformational states of DNA, each with its own stretch and bend elastic constants. Our model is computationally simple and gives an excellent fit through the entire overstretching transition of nicked, double-stranded DNA. The fit gives the first value for the bend stiffness of the overstretched state. In particular, we find the effective bend stiffness for DNA in this state to be about 12 nm k(B)T, a value quite different from either the B-form or single-stranded DNA.

  3. Enhanced coercivity in α-(Fe,Co)/(Nd,Pr)2Fe14B nanocomposite magnets via interfacial modification

    International Nuclear Information System (INIS)

    Li Wei; Li Lanlan; Li Xiaohong; Sun Hongyu; Zhang Xiangyi

    2008-01-01

    We have prepared α-(Fe,Co)/(Nd,Pr) 2 Fe 14 B nanocomposite magnets having a high coercivity H c = 7.5 kOe and a large energy product (BH) max = 22.7 MGOe by interfacial modification using an intergranular amorphous phase, as compared with the corresponding values obtained without the intergranular phase, H c = 5.5 kOe and (BH) max = 16.1 MGOe. The enhanced coercivity is attributed to the increase in the nucleation field for magnetization reversal due to interfacial modification. This demonstrates a counter-intuitive approach for enhancing the magnetic properties of nanocomposite magnets

  4. High resolution, large deformation 3D traction force microscopy.

    Directory of Open Access Journals (Sweden)

    Jennet Toyjanova

    Full Text Available Traction Force Microscopy (TFM is a powerful approach for quantifying cell-material interactions that over the last two decades has contributed significantly to our understanding of cellular mechanosensing and mechanotransduction. In addition, recent advances in three-dimensional (3D imaging and traction force analysis (3D TFM have highlighted the significance of the third dimension in influencing various cellular processes. Yet irrespective of dimensionality, almost all TFM approaches have relied on a linear elastic theory framework to calculate cell surface tractions. Here we present a new high resolution 3D TFM algorithm which utilizes a large deformation formulation to quantify cellular displacement fields with unprecedented resolution. The results feature some of the first experimental evidence that cells are indeed capable of exerting large material deformations, which require the formulation of a new theoretical TFM framework to accurately calculate the traction forces. Based on our previous 3D TFM technique, we reformulate our approach to accurately account for large material deformation and quantitatively contrast and compare both linear and large deformation frameworks as a function of the applied cell deformation. Particular attention is paid in estimating the accuracy penalty associated with utilizing a traditional linear elastic approach in the presence of large deformation gradients.

  5. Nuclear forces and high-performance computing: The perfect match

    International Nuclear Information System (INIS)

    Luu, T; Walker-Loud, A

    2009-01-01

    High-performance computing is now enabling the calculation of certain hadronic interaction parameters directly from Quantum Chromodynamics, the quantum field theory that governs the behavior of quarks and gluons and is ultimately responsible for the nuclear strong force. In this paper we briefly describe the state of the field and show how other aspects of hadronic interactions will be ascertained in the near future. We give estimates of computational requirements needed to obtain these goals, and outline a procedure for incorporating these results into the broader nuclear physics community.

  6. Nonlinear geometric scaling of coercivity in a three-dimensional nanoscale analog of spin ice

    Science.gov (United States)

    Shishkin, I. S.; Mistonov, A. A.; Dubitskiy, I. S.; Grigoryeva, N. A.; Menzel, D.; Grigoriev, S. V.

    2016-08-01

    Magnetization hysteresis loops of a three-dimensional nanoscale analog of spin ice based on the nickel inverse opal-like structure (IOLS) have been studied at room temperature. The samples are produced by filling nickel into the voids of artificial opal-like films. The spin ice behavior is induced by tetrahedral elements within the IOLS, which have the same arrangement of magnetic moments as a spin ice. The thickness of the films vary from a two-dimensional, i.e., single-layered, antidot array to a three-dimensional, i.e., multilayered, structure. The coercive force, the saturation, and the irreversibility field have been measured in dependence of the thickness of the IOLS for in-plane and out-of-plane applied fields. The irreversibility and saturation fields change abruptly from the antidot array to the three-dimensional IOLS and remain constant upon further increase of the number of layers n . The coercive force Hc seems to increase logarithmically with increasing n as Hc=Hc 0+α ln(n +1 ) . The logarithmic law implies the avalanchelike remagnetization of anisotropic structural elements connecting tetrahedral and cubic nodes in the IOLS. We conclude that the "ice rule" is the base of mechanism regulating this process.

  7. Higher Education Policy in Australia: Corporate or Coercive Federalism?

    Science.gov (United States)

    Smart, Don

    1991-01-01

    Although the Hawke government's general strategy of corporate federalism may dominate educational policy in Australia, higher education (excluding teacher education) is an exception. Because the Commonwealth assumed full financial responsibility for higher education, it has increasingly employed coercive federalism or simply ignored the states.…

  8. Nonlinear anisotropic elliptic equations with variable exponents and degenerate coercivity

    Directory of Open Access Journals (Sweden)

    Hocine Ayadi

    2018-02-01

    Full Text Available In this article, we prove the existence and the regularity of distributional solutions for a class of nonlinear anisotropic elliptic equations with $p_i(x$ growth conditions, degenerate coercivity and $L^{m(\\cdot}$ data, with $m(\\cdot$ being small, in appropriate Lebesgue-Sobolev spaces with variable exponents. The obtained results extend some existing ones [8,10].

  9. Empowerment, Coercive Persuasion and Organizational Learning: Do They Connect?

    Science.gov (United States)

    Schein, Edgar H.

    1999-01-01

    Individual learning in organizations can be de facto coercive persuasion when organizational learning and culture change require that learners develop appropriate attitudes and thinking. If the goal of organizational learning--innovative organizations--is accepted, moral choices that restrict individual freedom must be made. (SK)

  10. Investigation of coercivity for electroplated Fe-Ni thick films

    Science.gov (United States)

    Yanai, T.; Eguchi, K.; Koda, K.; Kaji, J.; Aramaki, H.; Takashima, K.; Nakano, M.; Fukunaga, H.

    2018-05-01

    We have already reported Fe-Ni firms with good soft magnetic properties prepared by using an electroplating method. In our previous studies, we prepared the Fe-Ni films from citric-acid-based baths (CA-baths) and ammonium-chloride-based ones (AC-baths), and confirmed that the coercivity for the AC-baths was lower than that for the CA-baths. In the present study, we investigated reasons for the lower coercivity for the AC-baths to further improve the soft magnetic properties. From an observation of magnetic domains of the Fe22Ni78 films, we found that Fe22Ni78 film for AC-bath had a magnetic anisotropy in the width direction, and also found that the coercivity in the width direction was lower than the longitudinal one for the AC-bath. As an annealing for a stress relaxation in the films reduced the difference in the coercivity, we considered that the anisotropy is attributed to the magneto-elastic effect.

  11. Soft Pneumatic Actuator Fascicles for High Force and Reliability.

    Science.gov (United States)

    Robertson, Matthew A; Sadeghi, Hamed; Florez, Juan Manuel; Paik, Jamie

    2017-03-01

    Soft pneumatic actuators (SPAs) are found in mobile robots, assistive wearable devices, and rehabilitative technologies. While soft actuators have been one of the most crucial elements of technology leading the development of the soft robotics field, they fall short of force output and bandwidth requirements for many tasks. In addition, other general problems remain open, including robustness, controllability, and repeatability. The SPA-pack architecture presented here aims to satisfy these standards of reliability crucial to the field of soft robotics, while also improving the basic performance capabilities of SPAs by borrowing advantages leveraged ubiquitously in biology; namely, the structured parallel arrangement of lower power actuators to form the basis of a larger and more powerful actuator module. An SPA-pack module consisting of a number of smaller SPAs will be studied using an analytical model and physical prototype. Experimental measurements show an SPA pack to generate over 112 N linear force, while the model indicates the benefit of parallel actuator grouping over a geometrically equivalent single SPA scale as an increasing function of the number of individual actuators in the group. For a module of four actuators, a 23% increase in force production over a volumetrically equivalent single SPA is predicted and validated, while further gains appear possible up to 50%. These findings affirm the advantage of utilizing a fascicle structure for high-performance soft robotic applications over existing monolithic SPA designs. An example of high-performance soft robotic platform will be presented to demonstrate the capability of SPA-pack modules in a complete and functional system.

  12. Soft Pneumatic Actuator Fascicles for High Force and Reliability

    Science.gov (United States)

    Robertson, Matthew A.; Sadeghi, Hamed; Florez, Juan Manuel

    2017-01-01

    Abstract Soft pneumatic actuators (SPAs) are found in mobile robots, assistive wearable devices, and rehabilitative technologies. While soft actuators have been one of the most crucial elements of technology leading the development of the soft robotics field, they fall short of force output and bandwidth requirements for many tasks. In addition, other general problems remain open, including robustness, controllability, and repeatability. The SPA-pack architecture presented here aims to satisfy these standards of reliability crucial to the field of soft robotics, while also improving the basic performance capabilities of SPAs by borrowing advantages leveraged ubiquitously in biology; namely, the structured parallel arrangement of lower power actuators to form the basis of a larger and more powerful actuator module. An SPA-pack module consisting of a number of smaller SPAs will be studied using an analytical model and physical prototype. Experimental measurements show an SPA pack to generate over 112 N linear force, while the model indicates the benefit of parallel actuator grouping over a geometrically equivalent single SPA scale as an increasing function of the number of individual actuators in the group. For a module of four actuators, a 23% increase in force production over a volumetrically equivalent single SPA is predicted and validated, while further gains appear possible up to 50%. These findings affirm the advantage of utilizing a fascicle structure for high-performance soft robotic applications over existing monolithic SPA designs. An example of high-performance soft robotic platform will be presented to demonstrate the capability of SPA-pack modules in a complete and functional system. PMID:28289573

  13. Fluids with highly directional attractive forces. IV. Equilibrium polymerization

    International Nuclear Information System (INIS)

    Wertheim, M.S.

    1986-01-01

    The author investigates approximation methods for systems of molecules interacting by core repulsion and highly directional attraction due to several attraction sites. The force model chosen imitates a chemical bond by providing for bond saturation when binding occurs. The dense fluid is an equilibrium mixture of s-mers with mutual repulsion. The author uses a previously derived reformulation of statistical thermodynamics in which the particle species are monomeric units with a specified set of attraction sites bonded. Thermodynamic perturbation theory (TPT) and integral equations of two types are derived. The use of TPT is illustrated by explicit calculation for a molecular model with two attraction sites capable of forming chain and ring polymers. Successes and defects of TPT are discussed. The integral equations for pair correlations between particles of specified bonding include calculation of self-consistent densities of species. Methods of calculating thermodynamic properties from the solutions of integral equations are given

  14. Faculty Perceptions of and Experiences with Students' Use of Coercive Power

    Science.gov (United States)

    Kuhn, Kristine L.

    2016-01-01

    The purpose of this basic qualitative study was to understand how faculty perceive and experience students' use of coercive power in faculty-student relationships. Interviews were used to gather data from faculty members who had experienced students' use of coercive power. Data reveal that students' use of coercive power can negatively impact…

  15. Coercivity Recovery Effect of Sm-Fe-Cu-Al Alloy on Sm2Fe17N3 Magnet

    Science.gov (United States)

    Otogawa, Kohei; Asahi, Toru; Jinno, Miho; Yamaguchi, Wataru; Takagi, Kenta; Kwon, Hansang

    2018-03-01

    The potential of a Sm-Fe-Cu-Al binder for improvement of the magnetic properties of Sm2Fe17N3 was examined. Transmission electron microscope (TEM) observation of a Sm-Fe-Cu-Al alloy-bonded Sm2Fe17N3 magnet which showed high coercivity revealed that the Sm-Fe-Cu-Al alloy had an effect of removing the surface oxide layer of the Sm2 Fe17N3 grains. However, the Sm-Fe-Cu-Al binder was contaminated by carbon and nitrogen, which originated from the organic solvent used as the milling medium during pulverization. To prevent carbon and nitrogen contamination, the Sm-Fe- Cu-Al alloy was added directly on the surface of the Sm2Fe17N3 grains by sputtering. Comparing the recovered coercivity per unit amount of the added binder the uncontaminated binder-coated sample had a higher coercivity recovery effect than the milled binder-added sample. These results suggested that sufficient addition of the contamination-free Sm-Fe-Cu-Al binder has the possibility to reduce the amount of binder necessary to produce a high coercive Sm2Fe17N3 magnet.

  16. Magnetization reversal mechanism and coercivity enhancement in three-dimensional granular Nd-Fe-B magnets studied by micromagnetic simulations

    Science.gov (United States)

    Lee, Jae-Hyeok; Choe, Jinhyeok; Hwang, Shinwon; Kim, Sang-Koog

    2017-08-01

    We studied the mechanism of magnetization reversals and coercivity enhancements in three-dimensional (3D) granular Nd-Fe-B permanent magnets using finite-element micromagnetic simulations. The magnetization reversals in the hard magnets consisting of hard-phase grains separated by relatively soft-phase grain boundaries were analyzed with reference to the simulation results for the magnetic field-dependent distributions of the local magnetizations. The saturation magnetization of the grain-boundary phase plays a crucial role in the transition between nucleation- and domain-wall-propagation-controlled reversal processes. The smaller the saturation magnetization of the grain-boundary phase is, the more preferable is the nucleation-controlled process, which results in a larger coercivity. The exchange stiffness of the grain-boundary phase determines the preferred paths of domain-wall propagations, whether inward into grains or along the grain boundaries for relatively small and large exchange stiffness, respectively. However, the exchange stiffness of the grain-boundary phase alone does not significantly contribute to coercivity enhancement in cases where the size of hard-phase grains is much greater than the exchange length. This work paves the way for the design of high-performance hard magnets of large coercivity and maximum-energy-product values.

  17. A harsh parenting team? Maternal reports of coparenting and coercive parenting interact in association with children's disruptive behaviour.

    Science.gov (United States)

    Latham, Rachel M; Mark, Katharine M; Oliver, Bonamy R

    2017-05-01

    Parenting and coparenting are both important for children's adjustment, but their interaction has been little explored. Using a longitudinal design and considering two children per family, we investigated mothers' and fathers' perceptions of coparenting as moderators of associations between their coercive parenting and children's disruptive behaviour. Mothers and fathers from 106 'intact' families were included from the Twins, Family and Behaviour study. At Time 1 (M child age  = 3 years 11 months, SD child age  = 4.44 months) parents reported on their coercive parenting and children's disruptive behaviour via questionnaire; at Time 2 (M child age  = 4 years 8 months, SD child age  = 4.44 months) perceptions of coparenting and the marital relationship were collected by telephone interview. Questionnaire-based reports of children's disruptive behaviour were collected at follow-up (M child age  = 5 years 11 months, SD child age  = 5.52 months). Multilevel modelling was used to examine child-specific and family-wide effects. Conservative multilevel models including both maternal and paternal perceptions demonstrated that maternal perceptions of coparenting and overall coercive parenting interacted in their prediction of parent-reported child disruptive behaviour. Specifically, accounting for perceived marital quality, behavioural stability, and fathers' perceptions, only in the context of perceived higher quality coparenting was there a positive association between mother-reported overall coercive parenting and children's disruptive behaviour at follow-up. When combined with highly coercive parenting, maternal perceptions of high quality coparenting may be detrimental for children's adjustment. © 2016 Association for Child and Adolescent Mental Health.

  18. Shuffle motor: a high force, high precision linear electrostatic stepper motor

    NARCIS (Netherlands)

    Tas, Niels Roelof; Wissink, Jeroen; Sander, A.F.M.; Sander, Louis; Lammerink, Theodorus S.J.; Elwenspoek, Michael Curt

    1997-01-01

    The shuffle motor is a electrostatic stepper motor that employs a mechanical transformation to obtain high forces and small steps. A model has been made to calculate the driving voltage, step size and maximum load to pull as well as the optimal geometry. Tests results are an effective step size of

  19. High cable forces deteriorate pinch force control in voluntary-closing body-powered prostheses

    NARCIS (Netherlands)

    Hichert, M.; Abbink, D.A.; Kyberd, P.J.; Plettenburg, D.H.

    2017-01-01

    Background It is generally asserted that reliable and intuitive control of upper-limb prostheses requires adequate feedback of prosthetic finger positions and pinch forces applied to objects. Bodypowered prostheses (BPPs) provide the user with direct proprioceptive feedback. Currently available

  20. High spatial resolution Kelvin probe force microscopy with coaxial probes

    International Nuclear Information System (INIS)

    Brown, Keith A; Westervelt, Robert M; Satzinger, Kevin J

    2012-01-01

    Kelvin probe force microscopy (KPFM) is a widely used technique to measure the local contact potential difference (CPD) between an AFM probe and the sample surface via the electrostatic force. The spatial resolution of KPFM is intrinsically limited by the long range of the electrostatic interaction, which includes contributions from the macroscopic cantilever and the conical tip. Here, we present coaxial AFM probes in which the cantilever and cone are shielded by a conducting shell, confining the tip–sample electrostatic interaction to a small region near the end of the tip. We have developed a technique to measure the true CPD despite the presence of the shell electrode. We find that the behavior of these probes agrees with an electrostatic model of the force, and we observe a factor of five improvement in spatial resolution relative to unshielded probes. Our discussion centers on KPFM, but the field confinement offered by these probes may improve any variant of electrostatic force microscopy. (paper)

  1. Subjective experience of coercion in psychiatric care: a study comparing the attitudes of patients and healthy volunteers towards coercive methods and their justification.

    Science.gov (United States)

    Mielau, J; Altunbay, J; Gallinat, J; Heinz, A; Bermpohl, F; Lehmann, A; Montag, C

    2016-06-01

    Under certain conditions, coercive interventions in psychotic patients can help to regain insight and alleviate symptoms, but can also traumatize subjects. This study explored attitudes towards psychiatric coercive interventions in healthy individuals and persons suffering from schizophrenia, schizoaffective or bipolar disorder. The impact of personal history of coercive treatment on preferences concerning clinical management of patients unable to consent was investigated. Six case vignettes depicting scenarios of ethical dilemmas and demanding decisions in favour of or against coercive interventions were presented to 60 healthy volunteers and 90 patients. Structured interviews focusing on experienced coercion were performed in conjunction with the Coercion Experience Scale and the Admission Experience Survey. Symptom severity, psychosocial functioning and insight into illness were assessed as influencing variables. Student's t tests compared patients' and controls' judgments, followed by regression analyses to define the predictive value of symptoms and measures of coercion on judgments regarding the total patient sample and patients with experience of fixation. Patients and non-psychiatric controls showed no significant difference in their attitudes towards involuntary admission and forced medication. Conversely, patients more than controls significantly disapproved of mechanical restraint. Subjective experience of coercive interventions played an important role for the justification of treatment against an individual's "natural will". Factors influencing judgments on coercion were overall functioning and personal experience of treatment effectiveness and fairness. Qualitative and quantitative aspects of perceived coercion, in addition to insight into illness, predicted judgments of previously fixated patients. Results underline the importance of the quality of practical implementation and care, if coercive interventions cannot be avoided.

  2. Theory of high-force DNA stretching and overstretching

    NARCIS (Netherlands)

    Storm, C.; Nelson, P.

    2003-01-01

    Single-molecule experiments on single- and double-stranded DNA have sparked a renewed interest in the force versus extension of polymers. The extensible freely jointed chain (FJC) model is frequently invoked to explain the observed behavior of single-stranded DNA, but this model does not

  3. Enhancement of coercivity with reduced grain size in CoCrPt film grown by pulsed laser deposition

    International Nuclear Information System (INIS)

    Liang, Q.; Hu, X.F.; Li, H.Q.; He, X.X.; Wang, Xiaoru; Zhang, W.

    2006-01-01

    We report a pulsed laser deposition (PLD) growth of VMn/CoCrPt bilayer with a magnetic coercivity (H c ) of 2.2 kOe and a grain size of 12 nm. The effects of VMn underlayer on magnetic properties of CoCrPt layer were studied. The coercivity, H c , and squareness, S, of VMn/CoCrPt bilayer, is dependent on the thickness of VMn. The grain size of the CoCrPt film can also be modified by laser parameters. High laser fluence used for CoCrPt deposition produces a smaller grain size. Enhanced H c and reduced grain size in VMn/CoCrPt is explained by more pronounced surface phase segregation during deposition at high laser fluence

  4. Scaling of coercivity in a 3d random anisotropy model

    Energy Technology Data Exchange (ETDEWEB)

    Proctor, T.C., E-mail: proctortc@gmail.com; Chudnovsky, E.M., E-mail: EUGENE.CHUDNOVSKY@lehman.cuny.edu; Garanin, D.A.

    2015-06-15

    The random-anisotropy Heisenberg model is numerically studied on lattices containing over ten million spins. The study is focused on hysteresis and metastability due to topological defects, and is relevant to magnetic properties of amorphous and sintered magnets. We are interested in the limit when ferromagnetic correlations extend beyond the size of the grain inside which the magnetic anisotropy axes are correlated. In that limit the coercive field computed numerically roughly scales as the fourth power of the random anisotropy strength and as the sixth power of the grain size. Theoretical arguments are presented that provide an explanation of numerical results. Our findings should be helpful for designing amorphous and nanosintered materials with desired magnetic properties. - Highlights: • We study the random-anisotropy model on lattices containing up to ten million spins. • Irreversible behavior due to topological defects (hedgehogs) is elucidated. • Hysteresis loop area scales as the fourth power of the random anisotropy strength. • In nanosintered magnets the coercivity scales as the six power of the grain size.

  5. Coercivity enhancement and thermal-stability improvement in the melt-spun NdFeB ribbons by grain boundary diffusion

    Science.gov (United States)

    Xie, Jiajun; Yuan, Chao; Luo, Yang; Yang, Yuanfei; Hu, Bin; Yu, Dunbo; Yan, Wenlong

    2018-01-01

    Rapidly quenched NdFeB ribbons with high coercivity were obtained by Nd70Cu30 diffusion process. Samples with a high coercivity of 22.02 kOe at room temperature were obtained after grain boundary diffusion with 20 wt% Nd70Cu30 alloys. The NdCu diffusion process promoted grain growth in the ribbons, and grain boundary phases were formed with Cu segregation among NdFeB grains. Coercivity above 10 kOe at 150 °C was achieved in the bonded magnets with NdCu content over 10 wt%. The flux loss of bonded magnets was reduced by ∼32% at 120 °C after diffusion treatment with only a small amount (2 wt%) of NdCu.

  6. Highly-Integrated Hydraulic Smart Actuators and Smart Manifolds for High-Bandwidth Force Control

    Directory of Open Access Journals (Sweden)

    Victor Barasuol

    2018-06-01

    Full Text Available Hydraulic actuation is the most widely used alternative to electric motors for legged robots and manipulators. It is often selected for its high power density, robustness and high-bandwidth control performance that allows the implementation of force/impedance control. Force control is crucial for robots that are in contact with the environment, since it enables the implementation of active impedance and whole body control that can lead to a better performance in known and unknown environments. This paper presents the hydraulic Integrated Smart Actuator (ISA developed by Moog in collaboration with IIT, as well as smart manifolds for rotary hydraulic actuators. The ISA consists of an additive-manufactured body containing a hydraulic cylinder, servo valve, pressure/position/load/temperature sensing, overload protection and electronics for control and communication. The ISA v2 and ISA v5 have been specifically designed to fit into the legs of IIT’s hydraulic quadruped robots HyQ and HyQ-REAL, respectively. The key features of these components tackle 3 of today’s main challenges of hydraulic actuation for legged robots through: (1 built-in controllers running inside integrated electronics for high-performance control, (2 low-leakage servo valves for reduced energy losses, and (3 compactness thanks to metal additive manufacturing. The main contributions of this paper are the derivation of the representative dynamic models of these highly integrated hydraulic servo actuators, a control architecture that allows for high-bandwidth force control and their experimental validation with application-specific trajectories and tests. We believe that this is the first work that presents additive-manufactured, highly integrated hydraulic smart actuators for robotics.

  7. Force and Motion Characteristics of Contamination Particles near the High Voltage End of UHVDC Insulator

    Directory of Open Access Journals (Sweden)

    Lei Lan

    2017-07-01

    Full Text Available It is important to reveal the relations of physical factors to deposition of contaminants on insulator. In this paper, the simulation model of high voltage end of insulator was established to study the force and motion characteristics of particles affected by electric force and airflow drag force near the ultra-high voltage direct current (UHVDC insulator. By finite element method, the electric field was set specially to be similar to the one near practical insulator, the steady fluid field was simulated. The electric force and air drag force were loaded on the uniformly charged particles. The characteristics of the two forces on particles, the relationship between quantity of electric charge on particles and probability of particles contacting the insulator were analyzed. It was found that, near the sheds, airflow drag force on particles is significantly greater than electric force with less electric charge. As the charge multiplies, electric force increases linearly, airflow drag force grows more slowly. There is a trend that the magnitude of electric force and drag force is going to similar. Meanwhile, the probability of particles contacting the insulator is increased too. However, at a certain level of charge which has different value with different airflow velocity, the contact probability has extremum here. After exceeding the value, as the charge increasing, the contact probability decreases gradually.

  8. Synthetic oligorotaxanes exert high forces when folding under mechanical load

    Science.gov (United States)

    Sluysmans, Damien; Hubert, Sandrine; Bruns, Carson J.; Zhu, Zhixue; Stoddart, J. Fraser; Duwez, Anne-Sophie

    2018-01-01

    Folding is a ubiquitous process that nature uses to control the conformations of its molecular machines, allowing them to perform chemical and mechanical tasks. Over the years, chemists have synthesized foldamers that adopt well-defined and stable folded architectures, mimicking the control expressed by natural systems1,2. Mechanically interlocked molecules, such as rotaxanes and catenanes, are prototypical molecular machines that enable the controlled movement and positioning of their component parts3-5. Recently, combining the exquisite complexity of these two classes of molecules, donor-acceptor oligorotaxane foldamers have been synthesized, in which interactions between the mechanically interlocked component parts dictate the single-molecule assembly into a folded secondary structure6-8. Here we report on the mechanochemical properties of these molecules. We use atomic force microscopy-based single-molecule force spectroscopy to mechanically unfold oligorotaxanes, made of oligomeric dumbbells incorporating 1,5-dioxynaphthalene units encircled by cyclobis(paraquat-p-phenylene) rings. Real-time capture of fluctuations between unfolded and folded states reveals that the molecules exert forces of up to 50 pN against a mechanical load of up to 150 pN, and displays transition times of less than 10 μs. While the folding is at least as fast as that observed in proteins, it is remarkably more robust, thanks to the mechanically interlocked structure. Our results show that synthetic oligorotaxanes have the potential to exceed the performance of natural folding proteins.

  9. Investigation of energy losses in low-coercivity resin-bonded magnets in alternating magnetic fields

    Science.gov (United States)

    Milov, E. V.; Sipin, I. A.; Milov, V. N.; Andreenko, A. S.; Balan, I. A.

    2017-01-01

    Energy losses during alternating remagnetization of low-coercitivity resin-bonded magnets and commercially produced electrical steels were studied experimentally. The studies were conducted on several samples of resin-bonded magnets with different manufacturing technologies and samples of electrical steel sheets of various thicknesses. The static and dynamic magnetic properties of the samples were measured on a vibration magnetometer and a specially designed apparatus, respectively. It was found that the studied samples of bonded magnets have a relatively high level of hysteresis losses associated with high coercivity, which reaches a value of 4-5 Oe. At the same time, the remagnetization losses due to the Foucault currents in the bonded magnets are considerably lower than in electrical steels. The measurement results show that bonded magnets at high frequencies of remagnetization, especially in high-rpm motors, can be competitive in comparison with electrical steels.

  10. Hysteresis properties of the amorphous high permeability Co66Fe3Cr3Si15B13 alloy

    Directory of Open Access Journals (Sweden)

    V. S. Tsepelev

    2018-04-01

    Full Text Available The scaling law of minor loops was studied on an amorphous alloy Co66Fe3Cr3Si15B13 with a very high initial permeability (more than 150000 and low coercivity (about 0.1 A/m. An analytical expression for the coercive force in the Rayleigh region was derived. The coercive force is connected with the maximal magnetic field Hmax via the reversibility coefficient μi/ηHmax. Reversibility coefficient shows the relationship between reversible and irreversible magnetization processes. A universal dependence of magnetic losses for hysteresis Wh on the remanence Br with a power factor of 1.35 is confirmed for a wide range of magnetic fields strengths.

  11. Coercivity enhancement of sintered Nd-Fe-B magnets by chemical bath deposition of TbCl{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Shuai, E-mail: gshuai@nimte.ac.cn; Zhang, Xiaofeng; Ding, Guangfei; Chen, Renjie; Yan, Aru [Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Lee, Don [Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); University of Dayton, Dayton, Ohio 45469 (United States)

    2014-05-07

    The chemical bath deposition (CBD) and the grain boundary diffusion method were combined to diffuse the heavy rare earth for obtain the thick magnets with high coercivity and low heavy rare earth. The jet mill powders were soaked into the alcohol solution of 0.2 wt. % TbCl{sub 3}. A thin layer of TbCl{sub 3} was wrapped to the surface of (PrNd){sub 2}Fe{sub 14}B powder particles. The coercivity of magnet is increased from 11.89 kOe to 14.72 kOe without significant reduction of remanence after grain boundary diffusion in the sintering and the annealing processes. The temperature coefficients of the remanence and the coercivity are improved by the substitution of PrNd by Tb in the surface of grains. The highly accelerated temperature/humidity stress test (HAST) results indicate that the CBD magnet has poor corrosion resistance, attributing to the present of Cl atoms in the grain boundaries.

  12. Length-extension resonator as a force sensor for high-resolution frequency-modulation atomic force microscopy in air.

    Science.gov (United States)

    Beyer, Hannes; Wagner, Tino; Stemmer, Andreas

    2016-01-01

    Frequency-modulation atomic force microscopy has turned into a well-established method to obtain atomic resolution on flat surfaces, but is often limited to ultra-high vacuum conditions and cryogenic temperatures. Measurements under ambient conditions are influenced by variations of the dew point and thin water layers present on practically every surface, complicating stable imaging with high resolution. We demonstrate high-resolution imaging in air using a length-extension resonator operating at small amplitudes. An additional slow feedback compensates for changes in the free resonance frequency, allowing stable imaging over a long period of time with changing environmental conditions.

  13. Coercivity enhancement of Nd–Fe–B sintered magnets with intergranular adding (Pr, Dy, Cu)−H{sub x} powders

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yujing; Ma, Tianyu, E-mail: maty@zju.edu.cn; Liu, Xiaolian; Liu, Pan; Jin, Jiaying; Zou, Junding; Yan, Mi, E-mail: mse_yanmi@zju.edu.cn

    2016-02-01

    Forming Nd{sub 2}Fe{sub 14}B/(Nd, Dy){sub 2}Fe{sub 14}B core–shell structure by intergranular adding Dy-containing sources into Nd–Fe–B sintered magnets is effective to improve coercivity and to minimize remanence loss simultaneously. However, the excessive Dy located in the intergranular regions has nearly no hard magnetic contribution, causing its low utilization efficiency. In this work, diluted Dy powders (Pr{sub 37}Dy{sub 30}Cu{sub 33})–H{sub x} were prepared and incorporated into Nd–Fe–B sintered magnets via a dual-alloy approach. The coercivity increases rapidly from 15.0 to 18.2 kOe by 21.3% with 2.0 wt% (Pr, Dy, Cu)–H{sub x} addition (the equivalent Dy is only 0.32 at%). The deduced coercivity incremental ratio is 10.0 kOe per unit Dy at%. Dehydrogenation reaction of (Pr, Dy, Cu)–H{sub x} occurs during sintering, which favors Dy diffusion towards the 2:14:1 phase grains as well as smoothing the grain boundaries (GBs). The enhanced local anisotropic field and the well decoupled 2:14:1 phase grains contribute to such rapid coercivity enhancement. This work suggests that adding diluted Dy hydrides is promising for fabricating high coercivity Nd–Fe–B sintered magnets with less heavy rare-earth consumption. - Highlights: • (Pr, Dy, Cu)–H{sub x} hydride powders were introduced into Nd–Fe–B sintered magnets. • Rapid coercivity enhancement from 15.0 kOe to 18.2 kOe with only 0.32 at% Dy was realized. • High utilization efficiency of Dy was achieved due to its promoted diffusion process. • Wettability and mobility of grain boundary phase was improved.

  14. Coercivity enhancement of Dy-free Nd–Fe–B sintered magnets by intergranular adding Ho{sub 63.4}Fe{sub 36.6} alloy

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Liping; Ma, Tianyu, E-mail: maty@zju.edu.cn; Wu, Chen; Zhang, Pei; Liu, Xiaolian; Yan, Mi, E-mail: mse_yanmi@zju.edu.cn

    2016-01-01

    High coercivity Nd–Fe–B sintered magnets serving in high-temperature environments always consume expensive and scarce heavy rare-earth Dy, which has simulated considerable interest to reduce Dy usage. In this work, coercivity of Dy-free magnets was investigated through intergranular adding eutectic Ho{sub 63.4}Fe{sub 36.6} powders. The coercivity increases gradually up to 4 wt% Ho{sub 63.4}Fe{sub 36.6} addition, however the remanence starts to deteriorate drastically as the addition is over 2.5 wt%. Coercivity above 18.0 kOe is obtained at the expense of a slight reduction in remanence through optimizing the addition amount and sintering conditions. The coercivity enhancement is explained through microstructural observations and elemental distribution analysis. (i) (Nd, Ho){sub 2}Fe{sub 14}B shell forms in the outer region of 2:14:1 phase grains, strengthening the local magnetic anisotropy filed, (ii) RE-rich grain boundary phase with low Fe content is thickened, weakening the magnetic coupling between adjacent 2:14:1 phase grains, and (iii) 2:14:1 phase grains are refined upon lowering sintering temperature, reducing the microstructural defects and the stray fields aroused from neighboring grains. - Highlights: • Eutectic Ho{sub 63.4}Fe{sub 36.6} powders were intergranular added to NdFeB sintered magnets. • The doped Dy-free magnet possessed coercivity of 18.0 kOe, remanence of 13.15 kGs. • (Nd, Ho){sub 2}Fe{sub 14}B shell formed in the surface of the matrix grains, increasing the H{sub A}. • Thick grain boundaries with low Fe content formed, decoupling the matrix grains. • By sintered at lower temperature, the matrix phase grains were refined.

  15. Coercive Therapy in East and West: A Brief Review

    Directory of Open Access Journals (Sweden)

    Mohammad Jafar Bahredar

    2009-04-01

    Full Text Available "nAbstract: The physician-patient relationship has been undergoing significant changes in recent decades in Western countries. Taking a client-centered approach, society has given more autonomy and freedom to patients. The patient is regarded as a consumer who is looking for the best and most scientific approach and is free to choose among different methods of treatment. The role of the physician is only a guiding role. On the other hand, in Eastern countries, we still experience a parent-child relationship in the therapeutic setting. Eastern patients expect direct advice from their physicians and the family has an important role in decision-making. An approach which is considered coercive in Western countries could still be a useful and acceptable one in Eastern culture. The main goal of the authors in this paper is comparison of different attitudes toward this issue in Eastern and Western cultures.

  16. Angular dependence of the coercivity in arrays of ferromagnetic nanowires

    International Nuclear Information System (INIS)

    Holanda, J.; Silva, D.B.O.; Padrón-Hernández, E.

    2015-01-01

    We present a new magnetic model for polycrystalline nanowires arrays in porous anodic aluminum oxide. The principal consideration here is the crystalline structure and the morphology of the wires and them the dipolar interactions between the crystals into the wire. Other aspect here is the direct calculation of the dipolar energy for the interaction of one wire with the others in the array. The free energy density was formulated for polycrystalline nanowires arrays in order to determinate the anisotropy effective field. It was using the microstructure study by scanning and transmission electron microscopy for the estimation of the real structure of the wires. After the structural analysis we used the angular dependences for the coercivity field and for the remnant magnetization to determine the properties of the wires. All analysis were made by the theory treatment proposed by Stoner and Wohlfarth

  17. Angular dependence of the coercivity in arrays of ferromagnetic nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Holanda, J. [Departamento de Física, Universidade Federal de Pernambuco, Recife 50670-901, PE (Brazil); Silva, D.B.O. [Pós-Graduação em Ciência de Materiais, Universidade Federal de Pernambuco, Recife 50670-901, PE (Brazil); Padrón-Hernández, E., E-mail: padron@df.ufpe.br [Departamento de Física, Universidade Federal de Pernambuco, Recife 50670-901, PE (Brazil); Pós-Graduação em Ciência de Materiais, Universidade Federal de Pernambuco, Recife 50670-901, PE (Brazil)

    2015-03-15

    We present a new magnetic model for polycrystalline nanowires arrays in porous anodic aluminum oxide. The principal consideration here is the crystalline structure and the morphology of the wires and them the dipolar interactions between the crystals into the wire. Other aspect here is the direct calculation of the dipolar energy for the interaction of one wire with the others in the array. The free energy density was formulated for polycrystalline nanowires arrays in order to determinate the anisotropy effective field. It was using the microstructure study by scanning and transmission electron microscopy for the estimation of the real structure of the wires. After the structural analysis we used the angular dependences for the coercivity field and for the remnant magnetization to determine the properties of the wires. All analysis were made by the theory treatment proposed by Stoner and Wohlfarth.

  18. High-speed atomic force microscope imaging: Adaptive multiloop mode

    Science.gov (United States)

    Ren, Juan; Zou, Qingze; Li, Bo; Lin, Zhiqun

    2014-07-01

    In this paper, an imaging mode (called the adaptive multiloop mode) of atomic force microscope (AFM) is proposed to substantially increase the speed of tapping mode (TM) imaging while preserving the advantages of TM imaging over contact mode (CM) imaging. Due to its superior image quality and less sample disturbances over CM imaging, particularly for soft materials such as polymers, TM imaging is currently the most widely used imaging technique. The speed of TM imaging, however, is substantially (over an order of magnitude) lower than that of CM imaging, becoming the major bottleneck of this technique. Increasing the speed of TM imaging is challenging as a stable probe tapping on the sample surface must be maintained to preserve the image quality, whereas the probe tapping is rather sensitive to the sample topography variation. As a result, the increase of imaging speed can quickly lead to loss of the probe-sample contact and/or annihilation of the probe tapping, resulting in image distortion and/or sample deformation. The proposed adaptive multiloop mode (AMLM) imaging overcomes these limitations of TM imaging through the following three efforts integrated together: First, it is proposed to account for the variation of the TM deflection when quantifying the sample topography; second, an inner-outer feedback control loop to regulate the TM deflection is added on top of the tapping-feedback control loop to improve the sample topography tracking; and, third, an online iterative feedforward controller is augmented to the whole control system to further enhance the topography tracking, where the next-line sample topography is predicted and utilized to reduce the tracking error. The added feedback regulation of the TM deflection ensures the probe-sample interaction force remains near the minimum for maintaining a stable probe-sample interaction. The proposed AMLM imaging is tested and demonstrated by imaging a poly(tert-butyl acrylate) sample in experiments. The

  19. An H1(Ph)-coercive discontinuous Galerkin formulation for the Poisson problem: 1D analysis

    NARCIS (Netherlands)

    Zee, van der K.G.; Brummelen, van E.H.; Borst, de R.

    2006-01-01

    Coercivity of the bilinear form in a continuum variational problem is a fundamental property for finite-element discretizations: By the classical Lax–Milgram theorem, any conforming discretization of a coercive variational problem is stable; i.e., discrete approximations are well-posed and possess

  20. An H1(Ph)-Coercive Discontinuous Galerkin Formulation for The Poisson Problem : 1-D Analysis

    NARCIS (Netherlands)

    Van der Zee, K.G.; Van Brummelen, E.H.; De Borst, R.

    2006-01-01

    Coercivity of the bilinear form in a continuum variational problem is a fundamental property for finite-element discretizations: By the classical Lax–Milgram theorem, any conforming discretization of a coercive variational problem is stable; i.e., discrete approximations are well-posed and possess

  1. Parental Perceptions of the Use of Coercive Measures on Children with Developmental Disabilities

    Science.gov (United States)

    Saloviita, Timo; Pirttimaa, Raija; Kontu, Elina

    2016-01-01

    Background: Children with developmental disabilities who exhibit challenging behaviour are potentially subject to the use of coercive interventions. The aim of the study was to investigate the prevalence of the use of coercive measures by authorities, according to parents' reports. Materials and Methods: A postal survey was distributed, as a total…

  2. Excess use of coercive measures in psychiatry among migrants compared with native Danes

    DEFF Research Database (Denmark)

    Nørredam, Marie Louise; Garcia-Lopez, A; Keiding, N

    2010-01-01

    Norredam M, Garcia-Lopez A, Keiding N, Krasnik A. Excess use of coercive measures in psychiatry among migrants compared with native Danes.Objective: To investigate differences in risk of compulsory admission and other coercive measures in psychiatric emergencies among refugees and immigrants comp...

  3. Force Structure. DOD Needs to Integrate Data into Its Force Identification Process and Examine Options to Meet Requirements for High-Demand Support Forces

    National Research Council Canada - National Science Library

    2006-01-01

    ...) will continue to meet its requirements using an all-volunteer force. The Army, in particular, has faced continuing demand for large numbers of forces, especially for forces with support skills...

  4. High resolution magnetic force microscopy using focused ion beam modified tips

    NARCIS (Netherlands)

    Phillips, G.N.; Siekman, Martin Herman; Abelmann, Leon; Lodder, J.C.

    2002-01-01

    Atomic force microscope tips coated by the thermal evaporation of a magnetic 30 nm thick Co film have been modified by focused ion beam milling with Ga+ ions to produce tips suitable for magnetic force microscopy. Such tips possess a planar magnetic element with high magnetic shape anisotropy, an

  5. Magnetization reversal and coercivity of Fe3Se4 nanowire arrays

    Science.gov (United States)

    Li, D.; Li, S. J.; Zhou, Y. T.; Bai, Y.; Zhu, Y. L.; Ren, W. J.; Long, G.; Zeng, H.; Zhang, Z. D.

    2015-05-01

    The microstructure and magnetic properties of Fe3Se4 nanowire (NW) arrays in anodic aluminum oxide (AAO) porous membrane are studied. Cross-sectional SEM and plane-view TEM images show that the mean wire diameter (dw) and the center-to-center spacing (D) of Fe3Se4 nanowires are about 220 nm and 330 nm, respectively. The field-cooled magnetization dependent on the temperature indicates a Curie temperature around 334 K for the Fe3Se4 nanowires. The coercivities of Fe3Se4 nanowires at 10 K, obtained from the in-plane and out-of-plane hysteresis loops, are as high as 22.4 kOe and 23.3 kOe, which can be understood from the magnetocrystalline anisotropy and the magnetization reversal process.

  6. Stokes versus Basset: comparison of forces governing motion of small bodies with high acceleration

    Science.gov (United States)

    Krafcik, A.; Babinec, P.; Frollo, I.

    2018-05-01

    In this paper, the importance of the forces governing the motion of a millimetre-sized sphere in a viscous fluid has been examined. As has been shown previously, for spheres moving with a high initial acceleration, the Basset history force should be used, as well as the commonly used Stokes force. This paper introduces the concept of history forces, which are almost unknown to students despite their interesting mathematical structure and physical meaning, and shows the implementation of simple and efficient numerical methods as a MATLAB code to simulate the motion of a falling sphere. An important application of this code could be, for example, the simulation of microfluidic systems, where the external forces are very large and the relevant timescale is in the order of milliseconds to seconds, and therefore the Basset history force cannot be neglected.

  7. High velocity properties of the dynamic frictional force between ductile metals

    International Nuclear Information System (INIS)

    Hammerberg, James Edward; Hollan, Brad L.; Germann, Timothy C.; Ravelo, Ramon J.

    2010-01-01

    The high velocity properties of the tangential frictional force between ductile metal interfaces seen in large-scale NonEquilibrium Molecular Dynamics (NEMD) simulations are characterized by interesting scaling behavior. In many cases a power law decrease in the frictional force with increasing velocity is observed at high velocities. We discuss the velocity dependence of the high velocity branch of the tangential force in terms of structural transformation and ultimate transition, at the highest velocities, to confined fluid behavior characterized by a critical strain rate. The particular case of an Al/Al interface is discussed.

  8. Compensator design for improved counterbalancing in high speed atomic force microscopy

    OpenAIRE

    Bozchalooi, I. S.; Youcef-Toumi, K.; Burns, D. J.; Fantner, G. E.

    2011-01-01

    High speed atomic force microscopy can provide the possibility of many new scientific observations and applications ranging from nano-manufacturing to the study of biological processes. However, the limited imaging speed has been an imperative drawback of the atomic force microscopes. One of the main reasons behind this limitation is the excitation of the AFM dynamics at high scan speeds, severely undermining the reliability of the acquired images. In this research, we propose a piezo based, ...

  9. Experimental StudyHigh Altitude Forced Convective Cooling of Electromechanical Actuation Systems

    Science.gov (United States)

    2016-01-01

    34 Massachusetts Institute of Technology , 1989. [3] FedBizOps.Gov, " Integrated Vehicle Energy Technology (INVENT) Development Program for the 6th...AFRL-RQ-WP-TR-2016-0043 EXPERIMENTAL STUDY—HIGH ALTITUDE FORCED CONVECTIVE COOLING OF ELECTROMECHANICAL ACTUATION SYSTEMS Evan M. Racine...TITLE AND SUBTITLE EXPERIMENTAL STUDY—HIGH ALTITUDE FORCED CONVECTIVE COOLING OF ELECTROMECHANICAL ACTUATION SYSTEMS 5a. CONTRACT NUMBER In-house

  10. Force scanning: a rapid, high-resolution approach for spatial mechanical property mapping

    International Nuclear Information System (INIS)

    Darling, E M

    2011-01-01

    Atomic force microscopy (AFM) can be used to co-localize mechanical properties and topographical features through property mapping techniques. The most common approach for testing biological materials at the microscale and nanoscale is force mapping, which involves taking individual force curves at discrete sites across a region of interest. The limitations of force mapping include long testing times and low resolution. While newer AFM methodologies, like modulated scanning and torsional oscillation, circumvent this problem, their adoption for biological materials has been limited. This could be due to their need for specialized software algorithms and/or hardware. The objective of this study is to develop a novel force scanning technique using AFM to rapidly capture high-resolution topographical images of soft biological materials while simultaneously quantifying their mechanical properties. Force scanning is a straightforward methodology applicable to a wide range of materials and testing environments, requiring no special modification to standard AFMs. Essentially, if a contact-mode image can be acquired, then force scanning can be used to produce a spatial modulus map. The current study first validates this technique using agarose gels, comparing results to ones achieved by the standard force mapping approach. Biologically relevant demonstrations are then presented for high-resolution modulus mapping of individual cells, cell-cell interfaces, and articular cartilage tissue.

  11. Friction force experimental approach in High School Physics classes

    Directory of Open Access Journals (Sweden)

    Marco Aurélio Alvarenga Monteiro

    2012-12-01

    Full Text Available http://dx.doi.org/10.5007/2175-7941.2012v29n3p1121 In this paper we propose and describe the performance of an experimental activity to address the concept of friction in High School Physics practical classes. We use a low-cost and simple construction device that enables the determination of the coefficient of static friction between two materials through three different procedures. The results were coherent, with small percentage deviation, which gives reliability to the activity and can stimulate discussions in class. The activity also allows greater contextualization of concepts that are usually discussed only theoretically, requiring a higher abstraction level of the students. This can stimulate discussions and greater interaction between teacher and students.

  12. Fluids with highly directional attractive forces. III. Multiple attraction sites

    International Nuclear Information System (INIS)

    Wertheim, M.S.

    1986-01-01

    The authors derive a reformulation of statistical thermodynamics for fluids of molecules which interact by highly directional attraction. The molecular model consists of a repulsive core and several sites of very short-ranged attraction. The authors explore the relationship between graph cancellation in the fugacity expansion and three types of steric incompatibility between repulsive and attractive interactions involving several molecules. The steric effects are used to best advantage in a limited regrouping of bonds. This controls the density parameters which appear when articulation points are eliminated in the graphical representation. Each density parameter is a singlet density for a species consisting of molecules with a specified set of sites bonded. The densities satisfy subsidiary conditions of internal consistency. These conditions are equivalent to a minimization of the Helmholtz free energy A. Graphical expressions for A and for the pressure are derived. Analogs of the s-particle direct correlation functions and of the Ornstein-Zernike equation are found

  13. Large coercivity in nanocrystalline TbMn6Sn6 permanent magnets prepared by mechanical milling

    International Nuclear Information System (INIS)

    Zhang Hongwei; Zhao Tongyun; Zhang Jian; Rong Chuanbing; Zhang Shaoying; Shen Baogen; Li Lu; Zhang Ligang

    2003-01-01

    Isotropic TbMn 6 Sn 6 was prepared by mechanical milling and subsequent annealing. Although the crystalline grain size was a little larger than 15 nm, no remanence enhancement resulting from intergrain exchange coupling was observed. The coercivity μ 0 H c = 0.96 T at 293 K was much larger than that expected from magnetocrystalline anisotropy. The smallest effective anisotropy constant is suggested to be 0.25 MJ m -3 when the coercivity mechanism is controlled by coherent rotation of magnetization in a single-domain grain. The contributions of shape anisotropy and magnetoelastic anisotropy are considered in order to explain the large coercivity in the magnets

  14. Structure, coercive control, and autonomy promotion: A comparison of fathers' and mothers' food parenting strategies.

    Science.gov (United States)

    Pratt, Mercedes; Hoffmann, Debra; Taylor, Maija; Musher-Eizenman, Dara

    2017-05-01

    This study explored differences in mothers' and fathers' food parenting strategies, specifically coercive control, structure, and autonomy promotion, and whether parenting style and parental responsibility for food parenting related to the use of these strategies. Parents of children aged 2.5-7.5 years ( N = 497) reported about their parenting practices and food parenting strategies. Parenting style accounted for the majority of the variance in food parenting. Fathers were more authoritarian than mothers. Authoritarian and permissive parenting practices were related to more coercive strategies. Mothers reported more food parenting responsibility. Responsibility was related to less coercive practices and more autonomy promotion and structure.

  15. Coercivity enhancement in Ce-Fe-B based magnets by core-shell grain structuring

    Directory of Open Access Journals (Sweden)

    M. Ito

    2016-05-01

    Full Text Available Ce-based R2Fe14B (R= rare-earth nano-structured permanent magnets consisting of (Ce,Nd2Fe14B core-shell grains separated by a non-magnetic grain boundary phase, in which the relative amount of Nd to Ce is higher in the shell of the magnetic grain than in its core, were fabricated by Nd-Cu infiltration into (Ce,Nd2Fe14B hot-deformed magnets. The coercivity values of infiltrated core-shell structured magnets are superior to those of as-hot-deformed magnets with the same overall Nd content. This is attributed to the higher value of magnetocrystalline anisotropy of the shell phase in the core-shell structured infiltrated magnets compared to the homogeneous R2Fe14B grains of the as-hot-deformed magnets, and to magnetic isolation of R2Fe14B grains by the infiltrated grain boundary phase. First order reversal curve (FORC diagrams suggest that the higher anisotropy shell suppresses initial magnetization reversal at the edges and corners of the R2Fe14B grains.

  16. Dynamic forces on agglomerated particles caused by high-intensity ultrasound.

    Science.gov (United States)

    Knoop, Claas; Fritsching, Udo

    2014-03-01

    In this paper the acoustic forces on particles and agglomerates caused by high-intensity ultrasound in gaseous atmosphere are derived by means of computational fluid dynamics (CFD). Sound induced forces cause an oscillating stress scenario where the primary particles of an agglomerate are alternatingly pressed together and torn apart with the frequency of the applied wave. A comparison of the calculated acoustic forces with respect to the inter particle adhesion forces from Van-der-Waals and liquid bridge interactions reveals that the separation forces may reach the same order of magnitude for 80 μm sized SiO2-particles. Hence, with finite probability acoustically agitated gases may de-agglomerate/disperse solid agglomerate structures. This effect is confirmed by dispersion experiments in an acoustic particle levitation setup. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Does the Sole Description of a Tax Authority Affect Tax Evasion? - The Impact of Described Coercive and Legitimate Power

    Science.gov (United States)

    Hartl, Barbara; Hofmann, Eva; Gangl, Katharina; Hartner-Tiefenthaler, Martina; Kirchler, Erich

    2015-01-01

    Following the classic economic model of tax evasion, taxpayers base their tax decisions on economic determinants, like fine rate and audit probability. Empirical findings on the relationship between economic key determinants and tax evasion are inconsistent and suggest that taxpayers may rather rely on their beliefs about tax authority’s power. Descriptions of the tax authority’s power may affect taxpayers’ beliefs and as such tax evasion. Experiment 1 investigates the impact of fines and beliefs regarding tax authority’s power on tax evasion. Experiments 2-4 are conducted to examine the effect of varying descriptions about a tax authority’s power on participants’ beliefs and respective tax evasion. It is investigated whether tax evasion is influenced by the description of an authority wielding coercive power (Experiment 2), legitimate power (Experiment 3), and coercive and legitimate power combined (Experiment 4). Further, it is examined whether a contrast of the description of power (low to high power; high to low power) impacts tax evasion (Experiments 2-4). Results show that the amount of fine does not impact tax payments, whereas participants’ beliefs regarding tax authority’s power significantly shape compliance decisions. Descriptions of high coercive power as well as high legitimate power affect beliefs about tax authority’s power and positively impact tax honesty. This effect still holds if both qualities of power are applied simultaneously. The contrast of descriptions has little impact on tax evasion. The current study indicates that descriptions of the tax authority, e.g., in information brochures and media reports, have more influence on beliefs and tax payments than information on fine rates. Methodically, these considerations become particularly important when descriptions or vignettes are used besides objective information. PMID:25923770

  18. Does the sole description of a tax authority affect tax evasion?--the impact of described coercive and legitimate power.

    Science.gov (United States)

    Hartl, Barbara; Hofmann, Eva; Gangl, Katharina; Hartner-Tiefenthaler, Martina; Kirchler, Erich

    2015-01-01

    Following the classic economic model of tax evasion, taxpayers base their tax decisions on economic determinants, like fine rate and audit probability. Empirical findings on the relationship between economic key determinants and tax evasion are inconsistent and suggest that taxpayers may rather rely on their beliefs about tax authority's power. Descriptions of the tax authority's power may affect taxpayers' beliefs and as such tax evasion. Experiment 1 investigates the impact of fines and beliefs regarding tax authority's power on tax evasion. Experiments 2-4 are conducted to examine the effect of varying descriptions about a tax authority's power on participants' beliefs and respective tax evasion. It is investigated whether tax evasion is influenced by the description of an authority wielding coercive power (Experiment 2), legitimate power (Experiment 3), and coercive and legitimate power combined (Experiment 4). Further, it is examined whether a contrast of the description of power (low to high power; high to low power) impacts tax evasion (Experiments 2-4). Results show that the amount of fine does not impact tax payments, whereas participants' beliefs regarding tax authority's power significantly shape compliance decisions. Descriptions of high coercive power as well as high legitimate power affect beliefs about tax authority's power and positively impact tax honesty. This effect still holds if both qualities of power are applied simultaneously. The contrast of descriptions has little impact on tax evasion. The current study indicates that descriptions of the tax authority, e.g., in information brochures and media reports, have more influence on beliefs and tax payments than information on fine rates. Methodically, these considerations become particularly important when descriptions or vignettes are used besides objective information.

  19. Does the sole description of a tax authority affect tax evasion?--the impact of described coercive and legitimate power.

    Directory of Open Access Journals (Sweden)

    Barbara Hartl

    Full Text Available Following the classic economic model of tax evasion, taxpayers base their tax decisions on economic determinants, like fine rate and audit probability. Empirical findings on the relationship between economic key determinants and tax evasion are inconsistent and suggest that taxpayers may rather rely on their beliefs about tax authority's power. Descriptions of the tax authority's power may affect taxpayers' beliefs and as such tax evasion. Experiment 1 investigates the impact of fines and beliefs regarding tax authority's power on tax evasion. Experiments 2-4 are conducted to examine the effect of varying descriptions about a tax authority's power on participants' beliefs and respective tax evasion. It is investigated whether tax evasion is influenced by the description of an authority wielding coercive power (Experiment 2, legitimate power (Experiment 3, and coercive and legitimate power combined (Experiment 4. Further, it is examined whether a contrast of the description of power (low to high power; high to low power impacts tax evasion (Experiments 2-4. Results show that the amount of fine does not impact tax payments, whereas participants' beliefs regarding tax authority's power significantly shape compliance decisions. Descriptions of high coercive power as well as high legitimate power affect beliefs about tax authority's power and positively impact tax honesty. This effect still holds if both qualities of power are applied simultaneously. The contrast of descriptions has little impact on tax evasion. The current study indicates that descriptions of the tax authority, e.g., in information brochures and media reports, have more influence on beliefs and tax payments than information on fine rates. Methodically, these considerations become particularly important when descriptions or vignettes are used besides objective information.

  20. Enhanced coercivity in Co-doped α-Fe2O3 cubic nanocrystal assemblies prepared via a magnetic field-assisted hydrothermal synthesis

    Directory of Open Access Journals (Sweden)

    Kinjal Gandha

    2017-05-01

    Full Text Available Ferromagnetic Co-doped α-Fe2O3 cubic shaped nanocrystal assemblies (NAs with a high coercivity of 5.5 kOe have been synthesized via a magnetic field (2 kOe assisted hydrothermal process. The X-ray diffraction pattern and Raman spectra of α-Fe2O3 and Co-doped α-Fe2O3 NAs confirms the formation of single-phase α-Fe2O3 with a rhombohedral crystal structure. Electron microscopy analysis depict that the Co-doped α-Fe2O3 NAs synthesized under the influence of the magnetic field are consist of aggregated nanocrystals (∼30 nm and of average assembly size 2 μm. In contrast to the NAs synthesized with no magnetic field, the average NAs size and coercivity of the Co-doped α-Fe2O3 NAs prepared with magnetic field is increased by 1 μm and 1.4 kOe, respectively. The enhanced coercivity could be related to the well-known spin–orbit coupling strength of Co2+ cations and the redistribution of the cations. The size increment indicates that the small ferromagnetic nanocrystals assemble into cubic NAs with increased size in the magnetic field that also lead to the enhanced coercivity.

  1. Successful interventions on an organisational level to reduce violence and coercive interventions in in-patients with adjustment disorders and personality disorders.

    Science.gov (United States)

    Steinert, Tilman; Eisele, Frank; Goeser, Ulla; Tschoeke, Stefan; Uhlmann, Carmen; Schmid, Peter

    2008-11-17

    Self-directed and other violence as well as subsequent coercive interventions occur in a substantial proportion of patients with personality disorders during in-patient treatment. Different strategies may be required to reduce coercive interventions for patients of different diagnostic groups. We specialised one of our acute admission wards in the treatment of personality disorders and adjustment disorders (ICD-10 F4 and F6). Patients are not transferred to other acute wards in case of suicidal or violent behaviour. Violent behaviour and coercive interventions such as seclusion or restraint were recorded in the same way as in the rest of the hospital. We recorded the percentage of subjects affected by diagnostic group and average length of an intervention in the year before and after the change in organisational structure. The total number of coercive interventions decreased by 85% both among patients with an F4 and those with an F6 primary diagnosis. Violent behaviours decreased by about 50%, the proportion of involuntary committed patients decreased by 70%. The organisational change turned out to be highly effective without any additional cost of personnel or other resources.

  2. Prototyping of a highly performant and integrated piezoresistive force sensor for microscale applications

    International Nuclear Information System (INIS)

    Komati, Bilal; Agnus, Joël; Clévy, Cédric; Lutz, Philippe

    2014-01-01

    In this paper, the prototyping of a new piezoresistive microforce sensor is presented. An original design taking advantage of both the mechanical and bulk piezoresistive properties of silicon is presented, which enables the easy fabrication of a very small, large-range, high-sensitivity with high integration potential sensor. The sensor is made of two silicon strain gauges for which widespread and known microfabrication processes are used. The strain gauges present a high gauge factor which allows a good sensitivity of this force sensor. The dimensions of this sensor are 700 μm in length, 100 μm in width and 12 μm in thickness. These dimensions make its use convenient with many microscale applications, notably its integration in a microgripper. The fabricated sensor is calibrated using an industrial force sensor. The design, microfabrication process and performances of the fabricated piezoresistive force sensor are innovative thanks to its resolution of 100 nN and its measurement range of 2 mN. This force sensor also presents a high signal-to-noise ratio, typically 50 dB when a 2 mN force is applied at the tip of the force sensor. (paper)

  3. Axial Force Analysis and Roll Contour Configuration of Four-High CVC Mill

    Directory of Open Access Journals (Sweden)

    Guang-ming Liu

    2018-01-01

    Full Text Available In order to analyze the influence of technical parameters on work roll axial force of four-high continuous variable crown (CVC mill, the deformation analyzing model with top roll system and strip was established based on influence function method. Then a CVC work roll curve designing scheme was proposed and it was carried out on some cold rolling mill considering the requirement of comprehensive work roll axial force minimization. The status of comprehensive work roll axial force is improved considering the rolling schedule that is beneficial to the roller bearing. Corresponding to the newly designed work roll contour, the backup roll end chamfer was designed considering comprehensive performance of interroll stress concentration, comprehensive work roll axial force, and strip shape control ability. The distribution of roll wear with newly designed backup roll contour is more even according to the field application data. The newly established roll configuration scheme is beneficial to four-high CVC mill.

  4. Numerical evaluation of electromagnetic force induced in high Tc superconductor with grain boundary

    International Nuclear Information System (INIS)

    Hashizume, Hidetoshi; Toda, Saburo; Maeda, Koutaro

    1996-01-01

    After high T c superconducting material was discovered, its superconducting characteristic has been improved so that its critical current density becomes comparable with that of metal alloy superconductors. Together with this progress of the high T c material, it is considered to apply the materials to generating levitation force in combination with permanent magnets. In this case, it becomes very important to evaluate quantitatively the electromagnetic force for designing of the devices. Some researches have used numerical analysis to evaluate the force, where the grain boundary was ignored or treated as nonconducting. In the real materials, however, some part of the screening current can pass through the grain boundary. In this paper, therefore, two dimensional electromagnetic analysis was performed with a new method to treat the grain boundaries, and its effect on the levitation force was discussed

  5. Flange joint system for SRF cavities utilizing high force spring clamps for low particle generation

    Science.gov (United States)

    None

    2017-09-05

    A flange joint system for SRF cavities. The flange joint system includes a set of high force spring clamps that produce high force on the simple flanges of Superconducting Radio Frequency (SRF) cavities to squeeze conventional metallic seals. The system establishes the required vacuum and RF-tight seal with minimum particle contamination to the inside of the cavity assembly. The spring clamps are designed to stay within their elastic range while being forced open enough to mount over the flange pair. Upon release, the clamps have enough force to plastically deform metallic seal surfaces and continue to a new equilibrium sprung dimension where the flanges remain held against one another with enough preload such that normal handling will not break the seal.

  6. Solutions to quasilinear equations of $N$-biharmonic type with degenerate coercivity

    Directory of Open Access Journals (Sweden)

    Sami Aouaoui

    2014-10-01

    Full Text Available In this article we show the existence of multiple solutions for quasilinear equations in divergence form with degenerate coercivity. Our strategy is to combine a variational method and an iterative technique to obtain the solutions.

  7. Effect of Complex Working Conditions on Nurses Who Exert Coercive Measures in Forensic Psychiatric Care.

    Science.gov (United States)

    Gustafsson, Niclas; Salzmann-Erikson, Martin

    2016-09-01

    Nurses who exert coercive measures on patients within psychiatric care are emotionally affected. However, research on their working conditions and environment is limited. The purpose of the current study was to describe nurses' experiences and thoughts concerning the exertion of coercive measures in forensic psychiatric care. The investigation was a qualitative interview study using unstructured interviews; data were analyzed with inductive content analysis. Results described participants' thoughts and experiences of coercive measures from four main categories: (a) acting against the patients' will, (b) reasoning about ethical justifications, (c) feelings of compassion, and (d) the need for debriefing. The current study illuminates the working conditions of nurses who exert coercive measures in clinical practice with patients who have a long-term relationship with severe symptomatology. The findings are important to further discuss how nurses and leaders can promote a healthier working environment. [Journal of Psychosocial Nursing and Mental Health Services, 54(9), 37-43.]. Copyright 2016, SLACK Incorporated.

  8. Effect of parameters of a high-temperature superconductor levitation system on the lateral force

    International Nuclear Information System (INIS)

    Yang Yong; Zheng Xiaojing

    2008-01-01

    The lateral forces on a rectangular permanent magnet above a cylindrical high-temperature superconductor during lateral traverses are simulated in two cooling conditions. The simulation is based on the finite element method and critical state model of Bean. The calculations agree well with the previous experimental data, on the basis of which the effect of initial cooling conditions, physical parameters, levitating height during lateral traverses and geometrical parameters on the lateral force is presented

  9. A High Performance Sensor for Triaxial Cutting Force Measurement in Turning

    Directory of Open Access Journals (Sweden)

    You Zhao

    2015-04-01

    Full Text Available This paper presents a high performance triaxial cutting force sensor with excellent accuracy, favorable natural frequency and acceptable cross-interference for high speed turning process. Octagonal ring is selected as sensitive element of the designed sensor, which is drawn inspiration from ring theory. A novel structure of two mutual-perpendicular octagonal rings is proposed and three Wheatstone full bridge circuits are specially organized in order to obtain triaxial cutting force components and restrain cross-interference. Firstly, the newly developed sensor is tested in static calibration; test results indicate that the sensor possesses outstanding accuracy in the range of 0.38%–0.83%. Secondly, impacting modal tests are conducted to identify the natural frequencies of the sensor in triaxial directions (i.e., 1147 Hz, 1122 Hz and 2035 Hz, which implies that the devised sensor can be used for cutting force measurement in a high speed lathe when the spindle speed does not exceed 17,205 rev/min in continuous cutting condition. Finally, an application of the sensor in turning process is operated to show its performance for real-time cutting force measurement; the measured cutting forces demonstrate a good accordance with the variation of cutting parameters. Thus, the developed sensor possesses perfect properties and it gains great potential for real-time cutting force measurement in turning.

  10. Superhydrophobic gecko feet with high adhesive forces towards water and their bio-inspired materials

    Science.gov (United States)

    Liu, Kesong; Du, Jiexing; Wu, Juntao; Jiang, Lei

    2012-01-01

    Functional integration is an inherent characteristic for multiscale structures of biological materials. In this contribution, we first investigate the liquid-solid adhesive forces between water droplets and superhydrophobic gecko feet using a high-sensitivity micro-electromechanical balance system. It was found, in addition to the well-known solid-solid adhesion, the gecko foot, with a multiscale structure, possesses both superhydrophobic functionality and a high adhesive force towards water. The origin of the high adhesive forces of gecko feet to water could be attributed to the high density nanopillars that contact the water. Inspired by this, polyimide films with gecko-like multiscale structures were constructed by using anodic aluminum oxide templates, exhibiting superhydrophobicity and a strong adhesive force towards water. The static water contact angle is larger than 150° and the adhesive force to water is about 66 μN. The resultant gecko-inspired polyimide film can be used as a ``mechanical hand'' to snatch micro-liter liquids. We expect this work will provide the inspiration to reveal the mechanism of the high-adhesive superhydrophobic of geckos and extend the practical applications of polyimide materials.

  11. Coercivity enhancement in hot deformed Nd2Fe14B-type magnets by doping low-melting RCu alloys (R = Nd, Dy, Nd + Dy)

    Science.gov (United States)

    Lee, Y. I.; Huang, G. Y.; Shih, C. W.; Chang, W. C.; Chang, H. W.; You, J. S.

    2017-10-01

    Magnetic properties of the anisotropic NdFeB magnets prepared by hot pressing followed by die-upsetting NdFeB MQU-F powders doped with low-melting RCu alloy powders were explored, where RCu stands for Nd70Cu30, Dy70Cu30 and (Nd0.5Dy0.5)70Cu30, respectively. In addition, the post-annealing at 600 °C was employed to modify the microstructures and the magnetic properties of the hot deformed magnets. It is found that doping RCu alloy powders is effective in enhancing the coercivity of the hot deformed NdFeB magnets from 15.1 kOe to 16.3-19.5 kOe. For Nd70Cu30-doped magnets, the increment of coercivity is only 1.2 kOe. Meanwhile, Dy70Cu30-doped and (Nd0.5Dy0.5)70Cu30-doped magnets show an almost identical enhancement of coercivity of about 4.4 kOe. Importantly, the latter magnet shows a beneficial effect of reducing the usage of Dy from 1.6 wt% to 0.8 wt%. TEM analysis shows that nonmagnetic Nd, Dy and Cu appear at grain boundary and isolate the magnetic grains, leading to an enhancement of coercivity. Doping lower melting point Dy-lean (Nd0.5Dy0.5)70Cu30 powders into commercial MQU-F powders for making high coercivity hot deformed NdFeB magnets might be a potential and economic way for mass production.

  12. Roll force prediction of high strength steel using foil rolling theory in cold skin pass rolling

    International Nuclear Information System (INIS)

    Song, Gil Ho; Jung, Jae Chook

    2013-01-01

    Skin pass rolling is a very important process for applying a certain elongation to a strip in the cold rolling and annealing processes, which play an important role in preventing the stretching of the yield point when the material is processed. The exact prediction of the rolling force is essential for obtaining a given elongation with the steel grade and strip size. Unlike hot rolling and cold rolling, skin pass rolling is used to apply an elongation of within 2% to the strip. Under a small reduction, it is difficult to predict the rolling force because the elastic deformation behavior of the rolls is complicated and a model for predicting the rolling force has not yet been established. Nevertheless, the exact prediction of the rolling force in skin pass rolling has gained increasing importance in recent times with the rapid development of high strength steels for use in automobiles. In this study, the possibility of predicting the rolling force in skin pass rolling for producing various steel grades was examined using foil rolling theory, which is known to have similar elastic deformation behavior of rolls in the roll bite. It was found that a noncircular arc model is more accurate than a circular model in predicting the roll force of high strength steel below TS 980 MPa in skin pass rolling

  13. High-Performance Flexible Force and Temperature Sensing Array with a Robust Structure

    Science.gov (United States)

    Kim, Min-Seok; Song, Han-Wook; Park, Yon-Kyu

    We have developed a flexible tactile sensor array capable of sensing physical quantities, e.g. force and temperature with high-performances and high spatial resolution. The fabricated tactile sensor consists of 8 × 8 force measuring array with 1 mm spacing and a thin metal (copper) temperature sensor. The flexible force sensing array consists of sub-millimetre-size bar-shaped semi-conductor strain gage array attached to a thin and flexible printed circuit board covered by stretchable elastomeric material on both sides. This design incorporates benefits of both materials; the semi-conductor's high performance and the polymer's mechanical flexibility and robustness, while overcoming their drawbacks of those two materials. Special fabrication processes, so called “dry-transfer technique” have been used to fabricate the tactile sensor along with standard micro-fabrication processes.

  14. An Enduring Framework for Assessing the Contributions of Force Structure to a Coercive Strategy

    National Research Council Canada - National Science Library

    Beene, Eric

    2001-01-01

    .... This paper uses a decision analysis framework as a foundation for creating such a basis, Instead of depending on leadership for guidance, which changes with destabilizing regularity, this paper...

  15. A generalized view of self-citation: direct, co-author, collaborative, and coercive induced self-citation.

    Science.gov (United States)

    Ioannidis, John P A

    2015-01-01

    The phenomenon of self-citation can present in many different forms, including direct, co-author, collaborative, and coercive induced self-citation. It can also pertain to the citation of single scientists, groups of scientists, journals, and institutions. This article presents some case studies of extreme self-citation practices. It also discusses the implications of different types of self-citation. Self-citation is not necessarily inappropriate by default. In fact, usually it is fully appropriate but often it is even necessary. Conversely, inappropriate self-citation practices may be highly misleading and may distort the scientific literature. Coercive induced self-citation is the most difficult to discover. Coercive Induced self-citation may happen directly from reviewers of articles, but also indirectly from reviewers of grants, scientific advisors who steer a research agenda, and leaders of funding agencies who may espouse spending disproportionately large funds in research domains that perpetuate their own self-legacy. Inappropriate self-citation can be only a surrogate marker of what might be much greater distortions of the scientific corpus towards conformity to specific opinions and biases. Inappropriate self-citations eventually affect also impact metrics. Different impact metrics vary in the extent to which they can be gamed through self-citation practices. Citation indices that are more gaming-proof are available and should be more widely used. We need more empirical studies to dissect the impact of different types of inappropriate self-citation and to examine the effectiveness of interventions to limit them. Copyright © 2014. Published by Elsevier Inc.

  16. Repurposing a Benchtop Centrifuge for High-Throughput Single-Molecule Force Spectroscopy.

    Science.gov (United States)

    Yang, Darren; Wong, Wesley P

    2018-01-01

    We present high-throughput single-molecule manipulation using a benchtop centrifuge, overcoming limitations common in other single-molecule approaches such as high cost, low throughput, technical difficulty, and strict infrastructure requirements. An inexpensive and compact Centrifuge Force Microscope (CFM) adapted to a commercial centrifuge enables use by nonspecialists, and integration with DNA nanoswitches facilitates both reliable measurements and repeated molecular interrogation. Here, we provide detailed protocols for constructing the CFM, creating DNA nanoswitch samples, and carrying out single-molecule force measurements.

  17. Effect of Coercive Voltage and Charge Injection on Performance of a Ferroelectric-Gate Thin-Film Transistor

    Directory of Open Access Journals (Sweden)

    P. T. Tue

    2013-01-01

    Full Text Available We adopted a lanthanum oxide capping layer between semiconducting channel and insulator layers for fabrication of a ferroelectric-gate thin-film transistor memory (FGT which uses solution-processed indium-tin-oxide (ITO and lead-zirconium-titanate (PZT film as a channel layer and a gate insulator, respectively. Good transistor characteristics such as a high “on/off” current ratio, high channel mobility, and a large memory window of 108, 15.0 cm2 V−1 s−1, and 3.5 V were obtained, respectively. Further, a correlation between effective coercive voltage, charge injection effect, and FGT’s memory window was investigated. It is found that the charge injection from the channel to the insulator layer, which occurs at a high electric field, dramatically influences the memory window. The memory window’s enhancement can be explained by a dual effect of the capping layer: (1 a reduction of the charge injection and (2 an increase of effective coercive voltage dropped on the insulator.

  18. Design principles for high-pressure force fields: Aqueous TMAO solutions from ambient to kilobar pressures.

    Science.gov (United States)

    Hölzl, Christoph; Kibies, Patrick; Imoto, Sho; Frach, Roland; Suladze, Saba; Winter, Roland; Marx, Dominik; Horinek, Dominik; Kast, Stefan M

    2016-04-14

    Accurate force fields are one of the major pillars on which successful molecular dynamics simulations of complex biomolecular processes rest. They have been optimized for ambient conditions, whereas high-pressure simulations become increasingly important in pressure perturbation studies, using pressure as an independent thermodynamic variable. Here, we explore the design of non-polarizable force fields tailored to work well in the realm of kilobar pressures--while avoiding complete reparameterization. Our key is to first compute the pressure-induced electronic and structural response of a solute by combining an integral equation approach to include pressure effects on solvent structure with a quantum-chemical treatment of the solute within the embedded cluster reference interaction site model (EC-RISM) framework. Next, the solute's response to compression is taken into account by introducing pressure-dependence into selected parameters of a well-established force field. In our proof-of-principle study, the full machinery is applied to N,N,N-trimethylamine-N-oxide (TMAO) in water being a potent osmolyte that counteracts pressure denaturation. EC-RISM theory is shown to describe well the charge redistribution upon compression of TMAO(aq) to 10 kbar, which is then embodied in force field molecular dynamics by pressure-dependent partial charges. The performance of the high pressure force field is assessed by comparing to experimental and ab initio molecular dynamics data. Beyond its broad usefulness for designing non-polarizable force fields for extreme thermodynamic conditions, a good description of the pressure-response of solutions is highly recommended when constructing and validating polarizable force fields.

  19. Female youth who sexually coerce: prevalence, risk, and protective factors in two national high school surveys.

    Science.gov (United States)

    Kjellgren, Cecilia; Priebe, Gisela; Svedin, Carl Göran; Mossige, Svein; Långström, Niklas

    2011-12-01

    Sexual coercion is recognized as a serious societal problem. Correlates and risk factors of sexually abusive behavior in females are not well known. Etiological theory and empirical study of female perpetrators of sexual coercion are usually based on small or highly selected samples. Specifically, population-based data are needed to elucidate risk/protective factors. Main outcome measures include a self-report questionnaire containing 65 items tapping socio-demographic and health conditions, social relations, sexual victimization, conduct problems and a set of normative and deviant sexual cognitions, attitudes, and behaviors. We used a 2003-2004 survey of sexual attitudes and experiences among high school students in Norway and Sweden to identify risk factors and correlates to sexually coercive behavior (response rate 80%); 4,363 females participated (Mean = 18.1 years). Thirty-seven women (0.8%) reported sexual coercion (ever talked someone into, used pressure, or forced somebody to have sex). Sexually coercive compared with non-coercive women were similar on socio-demographic variables, but reported less parental care and more parental overprotection, aggression, depressive symptoms, and substance misuse. Also, sexually coercive females reported more sexual lust, sex partners, penetrative sexual victimization, rape myths, use of violent porn, and friends more likely to use porn. When using the Swedish subsample to differentiate risk factors specific for sexual coercion from those for antisocial behavior in general, we found less cannabis use, but more sexual preoccupation, pro-rape attitudes, and friends using violent porn in sexually coercive compared with non-sex conduct problem females. Sexually coercive behavior in high school women was associated with general risk/needs factors for antisocial behavior, but also with specific sexuality-related risk factors. This differential effect has previously been overlooked, agrees with similar findings in men, and

  20. Enhanced performance in capacitive force sensors using carbon nanotube/polydimethylsiloxane nanocomposites with high dielectric properties

    Science.gov (United States)

    Jang, Hyeyoung; Yoon, Hyungsuk; Ko, Youngpyo; Choi, Jaeyoo; Lee, Sang-Soo; Jeon, Insu; Kim, Jong-Ho; Kim, Heesuk

    2016-03-01

    Force sensors have attracted tremendous attention owing to their applications in various fields such as touch screens, robots, smart scales, and wearable devices. The force sensors reported so far have been mainly focused on high sensitivity based on delicate microstructured materials, resulting in low reproducibility and high fabrication cost that are limitations for wide applications. As an alternative, we demonstrate a novel capacitive-type force sensor with enhanced performance owing to the increased dielectric properties of elastomers and simple sensor structure. We rationally design dielectric elastomers based on alkylamine modified-multi-walled carbon nanotube (MWCNT)/polydimethylsiloxane (PDMS) composites, which have a higher dielectric constant than pure PDMS. The alkylamine-MWCNTs show excellent dispersion in a PDMS matrix, thus leading to enhanced and reliable dielectric properties of the composites. A force sensor array fabricated with alkylamine-MWCNT/PDMS composites presents an enhanced response due to the higher dielectric constant of the composites than that of pure PDMS. This study is the first to report enhanced performance of capacitive force sensors by modulating the dielectric properties of elastomers. We believe that the disclosed strategy to improve the sensor performance by increasing the dielectric properties of elastomers has great potential in the development of capacitive force sensor arrays that respond to various input forces.Force sensors have attracted tremendous attention owing to their applications in various fields such as touch screens, robots, smart scales, and wearable devices. The force sensors reported so far have been mainly focused on high sensitivity based on delicate microstructured materials, resulting in low reproducibility and high fabrication cost that are limitations for wide applications. As an alternative, we demonstrate a novel capacitive-type force sensor with enhanced performance owing to the increased

  1. Effect of Cu addition on coercivity and interfacial state of Nd-Fe-B/Nd-rich thin films

    International Nuclear Information System (INIS)

    Matsuura, M; Sugimoto, S; Fukada, T; Tezuka, N; Goto, R

    2010-01-01

    This study provides the effect of Cu addition on coercivity (H cJ ) and interfacial microstructure in Nd-Fe-B/Nd-rich thin films. All films were deposited by using ultra high vacuum (UHV) magnetron sputtering, and the Nd-Fe-B layer was oxidized under several atmospheres with different oxygen content. Then, the films were annealed at 250-550 0 C under UHV. The films oxidized in low vacuum (10 -2 -10 -5 Pa) (under low oxygen state) exhibited the recovery of H cJ by the annealing at 450 0 C. On the contrary, the H cJ of the films oxidized in Ar (under high oxygen state) decreased with increasing annealing temperature. However, the H cJ increased drastically at the temperatures above 550 0 C. In addition, the Cu added films, which were annealed at temperatures above 350 0 C, showed higher coercivities than the films without Cu addition. The XRD analysis suggested the existence of C-Nd 2 O 3 phase in the Cu added films annealed at 550 0 C. It can be considered that the Cu addition decreases the eutectic temperature of Nd-rich phase and influences the interfacial state between Nd 2 Fe 14 B and Nd-rich phase.

  2. High-resolution and large dynamic range nanomechanical mapping in tapping-mode atomic force microscopy

    International Nuclear Information System (INIS)

    Sahin, Ozgur; Erina, Natalia

    2008-01-01

    High spatial resolution imaging of material properties is an important task for the continued development of nanomaterials and studies of biological systems. Time-varying interaction forces between the vibrating tip and the sample in a tapping-mode atomic force microscope contain detailed information about the elastic, adhesive, and dissipative response of the sample. We report real-time measurement and analysis of the time-varying tip-sample interaction forces with recently introduced torsional harmonic cantilevers. With these measurements, high-resolution maps of elastic modulus, adhesion force, energy dissipation, and topography are generated simultaneously in a single scan. With peak tapping forces as low as 0.6 nN, we demonstrate measurements on blended polymers and self-assembled molecular architectures with feature sizes at 1, 10, and 500 nm. We also observed an elastic modulus measurement range of four orders of magnitude (1 MPa to 10 GPa) for a single cantilever under identical feedback conditions, which can be particularly useful for analyzing heterogeneous samples with largely different material components.

  3. Faraday forcing of high-temperature levitated liquid metal drops for the measurement of surface tension.

    Science.gov (United States)

    Brosius, Nevin; Ward, Kevin; Matsumoto, Satoshi; SanSoucie, Michael; Narayanan, Ranga

    2018-01-01

    In this work, a method for the measurement of surface tension using continuous periodic forcing is presented. To reduce gravitational effects, samples are electrostatically levitated prior to forcing. The method, called Faraday forcing, is particularly well suited for fluids that require high temperature measurements such as liquid metals where conventional surface tension measurement methods are not possible. It offers distinct advantages over the conventional pulse-decay analysis method when the sample viscosity is high or the levitation feedback control system is noisy. In the current method, levitated drops are continuously translated about a mean position at a small, constant forcing amplitude over a range of frequencies. At a particular frequency in this range, the drop suddenly enters a state of resonance, which is confirmed by large executions of prolate/oblate deformations about the mean spherical shape. The arrival at this resonant condition is a signature that the parametric forcing frequency is equal to the drop's natural frequency, the latter being a known function of surface tension. A description of the experimental procedure is presented. A proof of concept is given using pure Zr and a Ti 39.5 Zr 39.5 Ni 21 alloy as examples. The results compare favorably with accepted literature values obtained using the pulse-decay method.

  4. Creating social policy to support women's agency in coercive settings: A case study from Uganda.

    Science.gov (United States)

    Burgess, Rochelle; Campbell, Catherine

    2016-01-01

    Many emphasise the need for policies that support women's agency in highly coercive settings, and the importance of involving target women in public deliberation to inform policy design. The Ugandan Marriage and Divorce Bill seeks to strengthen women's agency in marriage, but has faced many obstacles, including objections from many women themselves in public consultations. We explore key stakeholders' accounts of the difficulties facing the Bill's progress to date, through focus groups with 24 rural and urban men and women, interviews with 14 gender champions in government, non-governmental organisations and legal sectors, and 25 relevant media and radio reports. Thematic analysis revealed an array of representations of the way the Bill's progress was shaped by the public consultation process, the nature of the Ugandan public sphere, the understanding and manipulation of concepts such as 'culture' and 'custom' in public discourse, the impact of economic inequalities on women's understandings of their gendered interests and low women's trust in the law and the political process. We discuss the complexities of involving highly marginalised women in public debates about gender issues and highlight possible implications for conceptualising agency, gender and social change as tools for gender policy and activism in extreme inequality.

  5. Nanomagnets with high shape anisotropy and strong crystalline anisotropy: perspectives on magnetic force microscopy

    International Nuclear Information System (INIS)

    Campanella, H; Llobet, J; Esteve, J; Plaza, J A; Jaafar, M; Vázquez, M; Asenjo, A; Del Real, R P

    2011-01-01

    We report on a new approach for magnetic imaging, highly sensitive even in the presence of external, strong magnetic fields. Based on FIB-assisted fabricated high-aspect-ratio rare-earth nanomagnets, we produce groundbreaking magnetic force tips with hard magnetic character where we combine a high aspect ratio (shape anisotropy) together with strong crystalline anisotropy (rare-earth-based alloys). Rare-earth hard nanomagnets are then FIB-integrated to silicon microcantilevers as highly sharpened tips for high-field magnetic imaging applications. Force resolution and domain reversing and recovery capabilities are at least one order of magnitude better than for conventional magnetic tips. This work opens new, pioneering research fields on the surface magnetization process of nanostructures based either on relatively hard magnetic materials—used in magnetic storage media—or on materials like superparamagnetic particles, ferro/antiferromagnetic structures or paramagnetic materials.

  6. Magnetic force microscopy of thin film media for high density magnetic recording

    NARCIS (Netherlands)

    Porthun, Steffen; Porthun, S.; Abelmann, Leon; Lodder, J.C.

    1998-01-01

    This paper discusses various aspect of magnetic force microscopy (MFM) for use in the field of high density magnetic recording. After an introduction of the most important magnetic imaging techniques, an overview is given of the operation and theory of MFM. The developments in instrumentation, MFM

  7. Measurement of Levitation Forces of High-"T[subscript c] Superconductors

    Science.gov (United States)

    Becker, M.; Koblischka, M. R.; Hartmann, U.

    2010-01-01

    We show the construction of a so-called levitation balance which is capable of measuring the levitation forces between a permanent magnet and a superconducting high-T[subscript c] thin film sample. The underlying theoretical basis is discussed in detail. The experiment is performed as an introductory physics experiment for school students as well…

  8. Levitation force and magnetization in bulk and thin film high Tc superconductors

    International Nuclear Information System (INIS)

    Riise, A.B

    1998-04-01

    The authors present high-resolution measurements of the repulsive vertical force and its associated stiffness between a Nd-B-Fe magnet and a YBa 2 Cu 3 O 7-δ superconductor in cylindrical geometry. The results are compared with theoretical predictions. The calculations are based on a model in which the superconductor is assumed to be either a sintered granular material or consisting of grains embedded in a nonactive matrix so that only intragranular currents are important. The critical state model is applied to each grain individually and closed form expressions for both vertical force F z and stiffness are obtained in a configuration with cylindrical symmetry. The model explains all features of the experimental results in a consistent way. A good quantitative agreement has been obtained using only three adjustable parameters. Several central aspects of the phenomenon of magnetic levitation with high-T c superconductors are presented. High-resolution measurements are made of the repulsive vertical force and its associated stiffness as well as the horizontal stabilizing force and the stiffness governing lateral vibrations. The results obtained at 77 K using a granular YBa 2 Cu 3 O 7-δ sample and Nd-Fe-B magnet in a rectangular levitation configuration are compared with theoretical predictions. The calculations, which are based on the critical state model with the assumption that it applies to the grins individually, give closed-form expressions for all the measured quantities. It is concluded that the present model explains all features of the observations in a consistent way. Using only three adjustable parameters a good agreement exists also at a quantitative level. Experimental studies and theoretical modelling of the levitation force on a permanent magnet placed above a superconducting thin film are offered. It is shown that measurements of the levitation force is a simple and precise method to determine the critical current density in thin films

  9. Levitation force and magnetization in bulk and thin film high T{sub c} superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Riise, A.B

    1998-04-01

    The authors present high-resolution measurements of the repulsive vertical force and its associated stiffness between a Nd-B-Fe magnet and a YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} superconductor in cylindrical geometry. The results are compared with theoretical predictions. The calculations are based on a model in which the superconductor is assumed to be either a sintered granular material or consisting of grains embedded in a nonactive matrix so that only intragranular currents are important. The critical state model is applied to each grain individually and closed form expressions for both vertical force F{sub z} and stiffness are obtained in a configuration with cylindrical symmetry. The model explains all features of the experimental results in a consistent way. A good quantitative agreement has been obtained using only three adjustable parameters. Several central aspects of the phenomenon of magnetic levitation with high-T{sub c} superconductors are presented. High-resolution measurements are made of the repulsive vertical force and its associated stiffness as well as the horizontal stabilizing force and the stiffness governing lateral vibrations. The results obtained at 77 K using a granular YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} sample and Nd-Fe-B magnet in a rectangular levitation configuration are compared with theoretical predictions. The calculations, which are based on the critical state model with the assumption that it applies to the grins individually, give closed-form expressions for all the measured quantities. It is concluded that the present model explains all features of the observations in a consistent way. Using only three adjustable parameters a good agreement exists also at a quantitative level. Experimental studies and theoretical modelling of the levitation force on a permanent magnet placed above a superconducting thin film are offered. It is shown that measurements of the levitation force is a simple and precise method to determine the

  10. Improvement of force factor of magnetostrictive vibration power generator for high efficiency

    International Nuclear Information System (INIS)

    Kita, Shota; Ueno, Toshiyuki; Yamada, Sotoshi

    2015-01-01

    We develop high power magnetostrictive vibration power generator for battery-free wireless electronics. The generator is based on a cantilever of parallel beam structure consisting of coil-wound Galfenol and stainless plates with permanent magnet for bias. Oscillating force exerted on the tip bends the cantilever in vibration yields stress variation of Galfenol plate, which causes flux variation and generates voltage on coil due to the law of induction. This generator has advantages over conventional, such as piezoelectric or moving magnet types, in the point of high efficiency, highly robust, and low electrical impedance. Our concern is the improvement of energy conversion efficiency dependent on the dimension. Especially, force factor, the conversion ratio of the electromotive force (voltage) on the tip velocity in vibration, has an important role in energy conversion process. First, the theoretical value of the force factor is formulated and then the validity was verified by experiments, where we compare four types of prototype with parameters of the dimension using 7.0 × 1.5 × 50 mm beams of Galfenol with 1606-turn wound coil. In addition, the energy conversion efficiency of the prototypes depending on load resistance was measured. The most efficient prototype exhibits the maximum instantaneous power of 0.73 W and energy of 4.7 mJ at a free vibration of frequency of 202 Hz in the case of applied force is 25 N. Further, it was found that energy conversion efficiency depends not only on the force factor but also on the damping (mechanical loss) of the vibration

  11. Coercivity enhancement in HDDR near-stoichiometric ternary Nd–Fe–B powders

    International Nuclear Information System (INIS)

    Wan, Fangming; Han, Jingzhi; Zhang, Yinfeng; Wang, Changsheng; Liu, Shunquan; Yang, Jinbo; Yang, Yingchang; Sun, Aizhi; Yang, Fuqiang; Song, Renbo

    2014-01-01

    Anisotropic HDDR near-stoichiometric ternary Nd–Fe–B powders have been prepared. The coercivity of the powders was improved from 208.6 to 980.1 kA/m by the subsequent diffusion treatment using the Pr–Cu alloy. For comparison, Nd 11.5 Fe 80.7 B 6.1 Pr 1.2 Cu 0.5 alloy, in which Pr and Cu elements were directly added into the original Nd–Fe–B alloy, was also treated by the same HDDR process and the coercivity was only 557.3 kA/m. Microstructural investigations showed that a large area of (Nd, Pr)-rich phases concentrated at triangle regions in the HDDR Nd 11.5 Fe 80.7 B 6.1 Pr 1.2 Cu 0.5 powders, while the (Nd, Pr)-rich phases distributed uniformly in the diffusion treated powders. The uniform grain boundary layer can pin the motion of domain wall more effectively, resulting in a higher coercivity in diffusion treated HDDR Nd–Fe–B powders. - Highlights: • Anisotropic HDDR near-stoichiometric ternary Nd–Fe–B powders have been prepared. • The coercivity of the powders was improved from 2.62 to 12.31 kOe by the diffusion of Pr–Cu alloy. • The uniform grain boundary layer leads to a higher coercivity in diffusion treated powders

  12. Angular dependence of the coercivity and remanence of ordered arrays of Co nanowires

    International Nuclear Information System (INIS)

    Lavín, R.; Gallardo, C.; Palma, J.L.; Escrig, J.; Denardin, J.C.

    2012-01-01

    The angular dependence of the coercivity and remanence of ordered hexagonal arrays of Co nanowires prepared using anodic aluminum oxide templates was investigated. The experimental evolution of coercivity as a function of the angle, in which the external field is applied, is interpreted considering micromagnetic simulations. Depending on the angle between the axis of the wire and the applied magnetic field direction our results show that the magnetization reversal mode changes from vortex to a transverse domain wall. Besides, we observed that the dipolar interactions cause a reduction in coercive fields, mainly in the direction of easy magnetization of the nanowires. Good agreement between numerical and experimental data is obtained. - Highlights: ► Angular dependence of the coercivity and remanence of Co nanowire arrays. ► Results show that the magnetization reversal mode changes from vortex to a transverse domain wall. ► Dipolar interactions cause a reduction in coercive fields, which is the strongest in the direction of easy magnetization of the nanowire.

  13. Angular dependence of the coercivity and remanence of ordered arrays of Co nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Lavin, R. [Departamento de Fisica, Universidad de Santiago de Chile, USACH, Av. Ecuador 3493, Santiago (Chile); Facultad de Ingenieria, Universidad Diego Portales, UDP, Ejercito 441, Santiago (Chile); Gallardo, C.; Palma, J.L. [Departamento de Fisica, Universidad de Santiago de Chile, USACH, Av. Ecuador 3493, Santiago (Chile); Escrig, J. [Departamento de Fisica, Universidad de Santiago de Chile, USACH, Av. Ecuador 3493, Santiago (Chile); Center for the Development of Nanoscience and Nanotechnology, CEDENNA, Av. Ecuador 3493, Santiago (Chile); Denardin, J.C., E-mail: jcdenardin@gmail.com [Departamento de Fisica, Universidad de Santiago de Chile, USACH, Av. Ecuador 3493, Santiago (Chile); Center for the Development of Nanoscience and Nanotechnology, CEDENNA, Av. Ecuador 3493, Santiago (Chile)

    2012-08-15

    The angular dependence of the coercivity and remanence of ordered hexagonal arrays of Co nanowires prepared using anodic aluminum oxide templates was investigated. The experimental evolution of coercivity as a function of the angle, in which the external field is applied, is interpreted considering micromagnetic simulations. Depending on the angle between the axis of the wire and the applied magnetic field direction our results show that the magnetization reversal mode changes from vortex to a transverse domain wall. Besides, we observed that the dipolar interactions cause a reduction in coercive fields, mainly in the direction of easy magnetization of the nanowires. Good agreement between numerical and experimental data is obtained. - Highlights: Black-Right-Pointing-Pointer Angular dependence of the coercivity and remanence of Co nanowire arrays. Black-Right-Pointing-Pointer Results show that the magnetization reversal mode changes from vortex to a transverse domain wall. Black-Right-Pointing-Pointer Dipolar interactions cause a reduction in coercive fields, which is the strongest in the direction of easy magnetization of the nanowire.

  14. Superhydrophobic Zr-based metallic glass surface with high adhesive force

    Science.gov (United States)

    Li, Ning; Xia, Ting; Heng, Liping; Liu, Lin

    2013-06-01

    Micro/nano hierarchical structures were constructed on Zr35Ti30Be26.75Cu8.25 metallic glass surface by silicon moulding and subsequently chemical etching. The as-formed surface exhibited both superhydrophobicity and high adhesive force towards water. The superhydrophobicity is rationalized based on the modified Cassie-Baxter model [A. B. D. Cassie and S. Baxter, Trans. Faraday Soc. 40, 546 (1944)]. The origin of the robust adhesion is described in terms of intermolecular capillary forces. The present results not only provide a method to fabricate superhydrophobic metallic glasses surface but also explore an important industrial application as dry adhesives and transport of liquid microdroplets.

  15. The evaluation on clamping force of high strength bolts by length parameter

    International Nuclear Information System (INIS)

    Kim, Kang-Seok; Nah, Hwan-Seon; Lee, Hyeon-Ju; Lee, Kang-Min

    2009-01-01

    It has been reported that the length parameter of high strength bolts results in the variance in tension loads. The required turn for each length is specified in AISC RCSC specification. This study was focused on evaluating any influence on the clamping torque subjected to length parameter of high strength bolts. The two kinds of high strength bolts of specimen are as follows; High Strength Hexagon bolt defined on ASTM A490 and Torque Shear Bolt on KS B 2819. The length parameter ranged from 60mm(3d) to 140mm(7d). The torque, turn of nut and the clamping force were analyzed to review whether length parameter can be affected on the required tension load. To test whether the length parameter has an impact on the torque and turn of nut for the required strength and clamping force, statistical analysis is carried out. (author)

  16. High-speed atomic force microscopy combined with inverted optical microscopy for studying cellular events.

    OpenAIRE

    Suzuki, Yuki; Sakai, Nobuaki; Yoshida, Aiko; Uekusa, Yoshitsugu; Yagi, Akira; Imaoka, Yuka; Ito, Shuichi; Karaki, Koichi; Takeyasu, Kunio

    2013-01-01

    A hybrid atomic force microscopy (AFM)-optical fluorescence microscopy is a powerful tool for investigating cellular morphologies and events. However, the slow data acquisition rates of the conventional AFM unit of the hybrid system limit the visualization of structural changes during cellular events. Therefore, high-speed AFM units equipped with an optical/fluorescence detection device have been a long-standing wish. Here we describe the implementation of high-speed AFM coupled with an optic...

  17. End effect braking force reduction in high-speed single-sided linear induction machine

    International Nuclear Information System (INIS)

    Shiri, Abbas; Shoulaie, Abbas

    2012-01-01

    Highlights: ► A new analytical equation to model the end effect braking force of SLIM is derived. ► Equations for efficiency, power factor and output thrust are analytically derived. ► The effect of design variables on the performance of the motor is analyzed. ► An optimization method is employed to minimize the end effect braking force (EEBF). ► The results show that EEBF is minimized by appropriate selection of motor parameters. - Abstract: Linear induction motors have been widely employed in industry because of their simple structure and low construction cost. However, they suffer from low efficiency and power factor. In addition, existence of so called end effect influences their performance especially in high speeds. The end effect deteriorates the performance of the motor by producing braking force. So, in this paper, by using Duncan equivalent circuit model, a new analytical equation is proposed to model end effect braking force. Employing the proposed equation and considering all phenomena involved in the single-sided linear induction motor, a simple design procedure is presented and the effect of different design variables on the performance of the motor is analyzed. A multi-objective optimization method based on genetic algorithm is introduced to maximize efficiency and power factor, as well as to minimize the end effect braking force, simultaneously. Finally, to validate the optimization results, 2D finite element method is employed.

  18. Interactive contribution of grain size and grain orientation to coercivity of melt spun ribbons

    International Nuclear Information System (INIS)

    Wang, N.; Li, G.; Yao, W.J.; Wen, X.X.

    2010-01-01

    During melt spinning process, the improvement of certain grain orientation and the refinement of grain size with surface velocity have interactive and contradictory effects on the magnetic properties. The contributions of these effects have seldom been taken into account and they were discussed in this paper via Fe-2, 4, 6.5 wt% Si alloys. Heat treatment at 1173 K for 1 h was performed to show the annealing impact. The X-ray diffraction patterns show that the high surface velocity and heat treatment increase the intensity ratio of line (2 0 0) to (1 1 0) of A2 phase. The (2 0 0) line corresponds to (2 0 0) plane in direction, easy magnetization direction of α-Fe phase in Fe-Si alloy. The improvement of this grain orientation with the surface velocity decreases the coercivity, which should increase due to the grain refinement. It is revealed that the texture promoted by the anisotropic heat release during melt spinning process is one factor to improve the magnetic properties and should be considered when preparing soft magnetic materials.

  19. Effects of High-Latitude Forcing Uncertainty on the Low-Latitude and Midlatitude Ionosphere

    Science.gov (United States)

    Pedatella, N. M.; Lu, G.; Richmond, A. D.

    2018-01-01

    Ensemble simulations are performed using the Thermosphere-Ionosphere-Electrodynamics General Circulation Model (TIE-GCM) in order to understand the role of high-latitude forcing uncertainty on the low-latitude and midlatitude ionosphere response to the April 2010 geomagnetic storm. The ensemble is generated by perturbing either the high-latitude electric potential or auroral energy flux in the assimilative mapping for ionosphere electrodynamics (AMIE). Simulations with perturbed high-latitude electric potential result in substantial intraensemble variability in the low-latitude and midlatitude ionosphere response to the geomagnetic storm, and the ensemble standard deviation for the change in NmF2 reaches 50-100% of the mean change. Such large intraensemble variability is not seen when perturbing the auroral energy flux. In this case, the effects of the forcing uncertainty are primarily confined to high latitudes. We therefore conclude that the specification of high-latitude electric fields is an important source of uncertainty when modeling the low-latitude and midlatitude ionosphere response to a geomagnetic storm. A multiple linear regression analysis of the results indicates that uncertainty in the storm time changes in the equatorial electric fields, neutral winds, and neutral composition can all contribute to the uncertainty in the ionosphere electron density. The results of the present study provide insight into the possible uncertainty in simulations of the low-latitude and midlatitude ionosphere response to geomagnetic storms due to imperfect knowledge of the high-latitude forcing.

  20. Enhanced coercivity in {alpha}-(Fe,Co)/(Nd,Pr){sub 2}Fe{sub 14}B nanocomposite magnets via interfacial modification

    Energy Technology Data Exchange (ETDEWEB)

    Li Wei; Li Lanlan; Li Xiaohong; Sun Hongyu; Zhang Xiangyi [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, 066004 Qinhuangdao (China)], E-mail: xyzh66@ysu.edu.cn

    2008-08-07

    We have prepared {alpha}-(Fe,Co)/(Nd,Pr){sub 2}Fe{sub 14}B nanocomposite magnets having a high coercivity H{sub c} = 7.5 kOe and a large energy product (BH){sub max} = 22.7 MGOe by interfacial modification using an intergranular amorphous phase, as compared with the corresponding values obtained without the intergranular phase, H{sub c} = 5.5 kOe and (BH){sub max} = 16.1 MGOe. The enhanced coercivity is attributed to the increase in the nucleation field for magnetization reversal due to interfacial modification. This demonstrates a counter-intuitive approach for enhancing the magnetic properties of nanocomposite magnets.

  1. Coercivity degradation caused by inhomogeneous grain boundaries in sintered Nd-Fe-B permanent magnets

    Science.gov (United States)

    Chen, Hansheng; Yun, Fan; Qu, Jiangtao; Li, Yingfei; Cheng, Zhenxiang; Fang, Ruhao; Ye, Zhixiao; Ringer, Simon P.; Zheng, Rongkun

    2018-05-01

    Quantitative correlation between intrinsic coercivity and grain boundaries in three dimensions is critical to further improve the performance of sintered Nd-Fe-B permanent magnets. Here, we quantitatively reveal the local composition variation across and especially along grain boundaries using the powerful atomic-scale analysis technique known as atom probe tomography. We also estimate the saturation magnetization, magnetocrystalline anisotropy constant, and exchange stiffness of the grain boundaries on the basis of the experimentally determined structure and composition. Finally, using micromagnetic simulations, we quantify the intrinsic coercivity degradation caused by inhomogeneous grain boundaries. This approach can be applied to other magnetic materials for the analysis and optimization of magnetic properties.

  2. Coercivity scaling in antidot lattices in Fe, Ni, and NiFe thin films

    Energy Technology Data Exchange (ETDEWEB)

    Gräfe, Joachim, E-mail: graefe@is.mpg.de; Schütz, Gisela; Goering, Eberhard J., E-mail: goering@is.mpg.de

    2016-12-01

    Antidot lattices can be used to artificially engineer magnetic properties in thin films, however, a conclusive model that describes the coercivity enhancement in this class of magnetic nano-structures has so far not been found. We prepared Fe, Ni, and NiFe thin films and patterned each with 21 square antidot lattices with different geometric parameters and measured their hysteretic behavior. On the basis of this extensive dataset we are able to provide a model that can describe both the coercivity scaling over a wide range of geometric lattice parameters and the influence of different materials.

  3. Depolarization corrections to the coercive field in thin-film ferroelectrics

    International Nuclear Information System (INIS)

    Dawber, M; Chandra, P; Littlewood, P B; Scott, J F

    2003-01-01

    Empirically, the coercive field needed to reverse the polarization in a ferroelectric increases with decreasing film thickness. For ferroelectric films of 100 μm to 100 nm in thickness the coercive field has been successfully described by a semi-empirical scaling law. Accounting for depolarization corrections, we show that this scaling behaviour is consistent with field measurements of ultrathin ferroelectric capacitors down to one nanometre in film thickness. Our results also indicate that the minimum film thickness, determined by a polarization instability, can be tuned by the choice of electrodes, and recommendations for next-generation ferroelectric devices are discussed. (letter to the editor)

  4. Depolarization corrections to the coercive field in thin-film ferroelectrics

    CERN Document Server

    Dawber, M; Littlewood, P B; Scott, J F

    2003-01-01

    Empirically, the coercive field needed to reverse the polarization in a ferroelectric increases with decreasing film thickness. For ferroelectric films of 100 mu m to 100 nm in thickness the coercive field has been successfully described by a semi-empirical scaling law. Accounting for depolarization corrections, we show that this scaling behaviour is consistent with field measurements of ultrathin ferroelectric capacitors down to one nanometre in film thickness. Our results also indicate that the minimum film thickness, determined by a polarization instability, can be tuned by the choice of electrodes, and recommendations for next-generation ferroelectric devices are discussed. (letter to the editor)

  5. Percent voluntary inactivation and peak force predictions with the interpolated twitch technique in individuals with high ability of voluntary activation

    International Nuclear Information System (INIS)

    Herda, Trent J; Walter, Ashley A; Hoge, Katherine M; Stout, Jeffrey R; Costa, Pablo B; Ryan, Eric D; Cramer, Joel T

    2011-01-01

    The purpose of this study was to examine the sensitivity and peak force prediction capability of the interpolated twitch technique (ITT) performed during submaximal and maximal voluntary contractions (MVCs) in subjects with the ability to maximally activate their plantar flexors. Twelve subjects performed two MVCs and nine submaximal contractions with the ITT method to calculate percent voluntary inactivation (%VI). Additionally, two MVCs were performed without the ITT. Polynomial models (linear, quadratic and cubic) were applied to the 10–90% VI and 40–90% VI versus force relationships to predict force. Peak force from the ITT MVC was 6.7% less than peak force from the MVC without the ITT. Fifty-eight percent of the 10–90% VI versus force relationships were best fit with nonlinear models; however, all 40–90% VI versus force relationships were best fit with linear models. Regardless of the polynomial model or the contraction intensities used to predict force, all models underestimated the actual force from 22% to 28%. There was low sensitivity of the ITT method at high contraction intensities and the predicted force from polynomial models significantly underestimated the actual force. Caution is warranted when interpreting the % VI at high contraction intensities and predicted peak force from submaximal contractions

  6. A Combined TEM/STEM and Micromagnetic Study of the Anisotropic Nature of Grain Boundaries and Coercivity in Nd-Fe-B Magnets

    Directory of Open Access Journals (Sweden)

    Gregor A. Zickler

    2017-01-01

    Full Text Available The nanoanalytical high resolution TEM/STEM investigation of the intergranular grain boundary phase of anisotropic sintered and rapidly quenched heavy rare earth-free Nd-Fe-B magnet materials revealed a difference in composition for grain boundaries parallel (large Fe-content and perpendicular (low Fe content to the alignment direction. This behaviour vanishes in magnets with a high degree of misorientation. The numerical finite element micromagnetic simulations are based on the anisotropic compositional behaviour of GBs and show a decrease of the coercive field with an increasing thickness of the grain boundary layer. The magnetization reversal and expansion of reversed magnetic domains primarily start as Bloch domain wall at grain boundaries parallel to the c-axis and secondly as Néel domain wall perpendicular to the c-axis into the adjacent hard magnetic grains. The increasing misalignment of grains leads to the loss of the anisotropic compositional behaviour and therefore to an averaged value of the grain boundary composition. In this case the simulations show an increase of the coercive field compared to the anisotropic magnet. The calculated coercive field values of the investigated magnet samples are in the order of μ0HcJ=1.8 T–2.1 T for a mean grain boundary thickness of 4 nm, which agrees perfectly with the experimental data.

  7. Dynamic force microscopy with quartz tuning forks at high oscillation amplitudes

    International Nuclear Information System (INIS)

    Labardi, M

    2007-01-01

    Dynamic force microscopy (DFM) with the self-oscillator (SO) method allows reasonably high scanning rates even with high Q-factors of the resonant force sensor, typical of cantilevers in ultra-high vacuum and of quartz tuning forks. However, due to simpler interpretation of force spectroscopy measurements, small oscillation amplitudes (sub-nm level) are generally preferred. In applications like 'apertureless' scanning near-field optical microscopy (SNOM), oscillation amplitudes of the order of 5-10 nm are needed to increase optical sensitivity and to apply standard optical artefact suppression methods. This motivates the study of the behaviour of tuning forks driven at such high amplitudes, as compared to usual air-operated cantilevers. Both constant-excitation-amplitude (CE) and constant-oscillation-amplitude (CA) modes of SO-DFM are analysed, since the CA mode is more convenient for SNOM applications, denoting remarkable differences. In particular, possible instability effects, previously found in CE mode, are not anticipated for CA mode. It is shown how resonance and approach ('isophase') curves in both modes can be conveniently described in terms of the usual 'normalized frequency shift' γ and of a 'normalized gain' η, defined as a measurement of surface dissipation

  8. HIGHLY QUALIFIED WORKING FORCE – KEY ELEMENT OF INNOVATIVE DEVELOPMENT MODEL

    Directory of Open Access Journals (Sweden)

    M. Avksientiev

    2014-12-01

    Full Text Available Highly qualified working force is a central element of intensive development model in modern society. The article surveys the experience of countries that managed to transform their economy to the innovative one. Ukrainian economy cannot stand aside processes that dominate the world economy trends, thus we are to use this experience to succeed in future. Today any government of the world is facing challenges that occur due to transformation of the economy into informational one. This type of economy causes its transformation form extensive to intensive one. The main reasons under that is limitation of nature resources, material factors of production. Thus this approach depends much on the quality of working force. Unfortunately in Ukraine there is a misbalance in specialist preparation. This puts additional pressure on the educational sphere also. In order to avoid this pressure we are to conduct reforms in education sphere. Nowadays, in the world views and concepts of governmental role in the social development are changing. This why, even at times of economic recession educational costs are not reduced under the new economical doctrine in the EU. Highly qualified specialists, while creating new products and services play role of engineers in XXI century. They are to lead their industries to world leading positions. From economic point of view, highly qualified specialists benefit society with higher income rates, taxation and thus, increasing the living standards in society. Thus, the majority if modern scientists prove the importance of highly trained working force for more effective economic development.

  9. High-force NdFeB-based magnetic tweezers device optimized for microrheology experiments.

    Science.gov (United States)

    Lin, Jun; Valentine, Megan T

    2012-05-01

    We present the design, calibration, and testing of a magnetic tweezers device that employs two pairs of permanent neodymium iron boron magnets surrounded by low-carbon steel focusing tips to apply large forces to soft materials for microrheology experiments. Our design enables the application of forces in the range of 1-1800 pN to ∼4.5 μm paramagnetic beads using magnet-bead separations in the range of 0.3-20 mm. This allows the use of standard coverslips and sample geometries. A high speed camera, custom LED-based illumination scheme, and mechanically stabilized measurement platform are employed to enable the measurement of materials with viscoelastic moduli as high as ∼1 kPa.

  10. High-force NdFeB-based magnetic tweezers device optimized for microrheology experiments

    Energy Technology Data Exchange (ETDEWEB)

    Lin Jun [Department of Mechanical Engineering, University of California, Santa Barbara, California 93106 (United States); Biomolecular Science and Engineering Program, University of California, Santa Barbara, California 93106 (United States); Valentine, Megan T. [Department of Mechanical Engineering, University of California, Santa Barbara, California 93106 (United States)

    2012-05-15

    We present the design, calibration, and testing of a magnetic tweezers device that employs two pairs of permanent neodymium iron boron magnets surrounded by low-carbon steel focusing tips to apply large forces to soft materials for microrheology experiments. Our design enables the application of forces in the range of 1-1800 pN to {approx}4.5 {mu}m paramagnetic beads using magnet-bead separations in the range of 0.3-20 mm. This allows the use of standard coverslips and sample geometries. A high speed camera, custom LED-based illumination scheme, and mechanically stabilized measurement platform are employed to enable the measurement of materials with viscoelastic moduli as high as {approx}1 kPa.

  11. Three-dimensional Force and Kinematic Interactions in V1 Skating at High Speeds.

    Science.gov (United States)

    Stöggl, Thomas; Holmberg, Hans-Christer

    2015-06-01

    To describe the detailed kinetics and kinematics associated with use of the V1 skating technique at high skiing speeds and to identify factors that predict performance. Fifteen elite male cross-country skiers performed an incremental roller-skiing speed test (Vpeak) on a treadmill using the V1 skating technique. Pole and plantar forces and whole-body kinematics were monitored at four submaximal speeds. The propulsive force of the "strong side" pole was greater than that of the "weak side" (P skating at high speeds. The faster skiers exhibit more symmetric leg motion on the "strong" and "weak" sides, as well as more synchronized poling. With respect to methods, the pressure insoles and three-dimensional kinematics in combination with the leg push-off model described here can easily be applied to all skating techniques, aiding in the evaluation of skiing techniques and comparison of effectiveness.

  12. Tubular bending and pull-out forces in high-curvature well bores

    International Nuclear Information System (INIS)

    Dareing, D.W.; Ahlers, C.A.

    1991-01-01

    This paper is concerned with drag forces developed on tubulars in high-curvature well bores typically found in drainhole and horizontal drilling. The dog-leg severity of these types of boreholes are considerably higher than those typically found in conventional directional drilling. The objective of the study was to determine the significance of bending stiffness on drag forces in the pull-out mode. The method of analysis treats the tubular as a multi-spanned curved beam under tension and solves for radial displacements, slope, shear and bending moment over each span. Calculations show that bending stiffness is a minor factor provided there are no locally severe dog legs superimposed in the high-curvature well bore

  13. Laser apparatus for surgery and force therapy based on high-power semiconductor and fibre lasers

    International Nuclear Information System (INIS)

    Minaev, V P

    2005-01-01

    High-power semiconductor lasers and diode-pumped lasers are considered whose development qualitatively improved the characteristics of laser apparatus for surgery and force therapy, extended the scope of their applications in clinical practice, and enhanced the efficiency of medical treatment based on the use of these lasers. The characteristics of domestic apparatus are presented and their properties related to the laser emission wavelength used in them are discussed. Examples of modern medical technologies based on these lasers are considered. (invited paper)

  14. Magnetic field and force analysis of high Tc superconductor with flux flow and creep

    International Nuclear Information System (INIS)

    Yoshida, Yoshikatsu; Uesaka, Mitsuru; Miya, Kenzo

    1994-01-01

    This paper describes a new method for the magnetic force analysis of high T c superconductor based on the flux flow and creep model. The introduction of the artificial conductivity, which is used in the conventional method, is not needed. The CPU time requirement of the calculations is considerably lower than that in the case of the conventional method. Thereby the vibration of a levitated permanent magnet was numerically analyzed by taking into account the flux flow and creep

  15. Search and Rescue in the High North: An Air Force Mission?

    Science.gov (United States)

    2013-12-01

    at the strange new things in the land of the midnight sun. What wouldn’t surprise him are the things that never change: six months of darkness ...8-98) Prescribed by ANSI Std Z39-18 November–December 2013 Air & Space Power Journal | 5 Conway Search and Rescue in the High North Feature tourism ...official sanction of the Department of Defense, Air Force, Air Education and Training Command, Air University, or other agencies or departments of

  16. Burnout in boiling heat transfer. Part III. High-quality forced-convection systems

    International Nuclear Information System (INIS)

    Bergles, A.E.

    1979-01-01

    This is the final part of a review of burnout during boiling heat transfer. The status of burnout in high-quality forced-convection systems is reviewed, and recent developments are summarized in detail. A general guide to the considerable literature is given. Parametric effects and correlations for water in circular and noncircular ducts are presented. Other topics discussed include transients, steam-generator applications, correlations for other fluids, fouling, and augmentation

  17. High-throughput single-molecule force spectroscopy for membrane proteins

    Science.gov (United States)

    Bosshart, Patrick D.; Casagrande, Fabio; Frederix, Patrick L. T. M.; Ratera, Merce; Bippes, Christian A.; Müller, Daniel J.; Palacin, Manuel; Engel, Andreas; Fotiadis, Dimitrios

    2008-09-01

    Atomic force microscopy-based single-molecule force spectroscopy (SMFS) is a powerful tool for studying the mechanical properties, intermolecular and intramolecular interactions, unfolding pathways, and energy landscapes of membrane proteins. One limiting factor for the large-scale applicability of SMFS on membrane proteins is its low efficiency in data acquisition. We have developed a semi-automated high-throughput SMFS (HT-SMFS) procedure for efficient data acquisition. In addition, we present a coarse filter to efficiently extract protein unfolding events from large data sets. The HT-SMFS procedure and the coarse filter were validated using the proton pump bacteriorhodopsin (BR) from Halobacterium salinarum and the L-arginine/agmatine antiporter AdiC from the bacterium Escherichia coli. To screen for molecular interactions between AdiC and its substrates, we recorded data sets in the absence and in the presence of L-arginine, D-arginine, and agmatine. Altogether ~400 000 force-distance curves were recorded. Application of coarse filtering to this wealth of data yielded six data sets with ~200 (AdiC) and ~400 (BR) force-distance spectra in each. Importantly, the raw data for most of these data sets were acquired in one to two days, opening new perspectives for HT-SMFS applications.

  18. High-throughput single-molecule force spectroscopy for membrane proteins

    International Nuclear Information System (INIS)

    Bosshart, Patrick D; Casagrande, Fabio; Frederix, Patrick L T M; Engel, Andreas; Fotiadis, Dimitrios; Ratera, Merce; Palacin, Manuel; Bippes, Christian A; Mueller, Daniel J

    2008-01-01

    Atomic force microscopy-based single-molecule force spectroscopy (SMFS) is a powerful tool for studying the mechanical properties, intermolecular and intramolecular interactions, unfolding pathways, and energy landscapes of membrane proteins. One limiting factor for the large-scale applicability of SMFS on membrane proteins is its low efficiency in data acquisition. We have developed a semi-automated high-throughput SMFS (HT-SMFS) procedure for efficient data acquisition. In addition, we present a coarse filter to efficiently extract protein unfolding events from large data sets. The HT-SMFS procedure and the coarse filter were validated using the proton pump bacteriorhodopsin (BR) from Halobacterium salinarum and the L-arginine/agmatine antiporter AdiC from the bacterium Escherichia coli. To screen for molecular interactions between AdiC and its substrates, we recorded data sets in the absence and in the presence of L-arginine, D-arginine, and agmatine. Altogether ∼400 000 force-distance curves were recorded. Application of coarse filtering to this wealth of data yielded six data sets with ∼200 (AdiC) and ∼400 (BR) force-distance spectra in each. Importantly, the raw data for most of these data sets were acquired in one to two days, opening new perspectives for HT-SMFS applications

  19. High-throughput single-molecule force spectroscopy for membrane proteins

    Energy Technology Data Exchange (ETDEWEB)

    Bosshart, Patrick D; Casagrande, Fabio; Frederix, Patrick L T M; Engel, Andreas; Fotiadis, Dimitrios [M E Mueller Institute for Structural Biology, Biozentrum of the University of Basel, CH-4056 Basel (Switzerland); Ratera, Merce; Palacin, Manuel [Institute for Research in Biomedicine, Barcelona Science Park, Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona and Centro de Investigacion Biomedica en Red de Enfermedades Raras, E-08028 Barcelona (Spain); Bippes, Christian A; Mueller, Daniel J [BioTechnology Center, Technical University, Tatzberg 47, D-01307 Dresden (Germany)], E-mail: andreas.engel@unibas.ch, E-mail: dimitrios.fotiadis@mci.unibe.ch

    2008-09-24

    Atomic force microscopy-based single-molecule force spectroscopy (SMFS) is a powerful tool for studying the mechanical properties, intermolecular and intramolecular interactions, unfolding pathways, and energy landscapes of membrane proteins. One limiting factor for the large-scale applicability of SMFS on membrane proteins is its low efficiency in data acquisition. We have developed a semi-automated high-throughput SMFS (HT-SMFS) procedure for efficient data acquisition. In addition, we present a coarse filter to efficiently extract protein unfolding events from large data sets. The HT-SMFS procedure and the coarse filter were validated using the proton pump bacteriorhodopsin (BR) from Halobacterium salinarum and the L-arginine/agmatine antiporter AdiC from the bacterium Escherichia coli. To screen for molecular interactions between AdiC and its substrates, we recorded data sets in the absence and in the presence of L-arginine, D-arginine, and agmatine. Altogether {approx}400 000 force-distance curves were recorded. Application of coarse filtering to this wealth of data yielded six data sets with {approx}200 (AdiC) and {approx}400 (BR) force-distance spectra in each. Importantly, the raw data for most of these data sets were acquired in one to two days, opening new perspectives for HT-SMFS applications.

  20. Study of Cutting Edge Temperature and Cutting Force of End Mill Tool in High Speed Machining

    Directory of Open Access Journals (Sweden)

    Kiprawi Mohammad Ashaari

    2017-01-01

    Full Text Available A wear of cutting tools during machining process is unavoidable due to the presence of frictional forces during removing process of unwanted material of workpiece. It is unavoidable but can be controlled at slower rate if the cutting speed is fixed at certain point in order to achieve optimum cutting conditions. The wear of cutting tools is closely related with the thermal deformations that occurred between the frictional contact point of cutting edge of cutting tool and workpiece. This research paper is focused on determinations of relationship among cutting temperature, cutting speed, cutting forces and radial depth of cutting parameters. The cutting temperature is determined by using the Indium Arsenide (InAs and Indium Antimonide (InSb photocells to measure infrared radiation that are emitted from cutting tools and cutting forces is determined by using dynamometer. The high speed machining process is done by end milling the outer surface of carbon steel. The signal from the photocell is digitally visualized in the digital oscilloscope. Based on the results, the cutting temperature increased as the radial depth and cutting speed increased. The cutting forces increased when radial depth increased but decreased when cutting speed is increased. The setup for calibration and discussion of the experiment will be explained in this paper.

  1. The response of a high-speed train wheel to a harmonic wheel-rail force

    International Nuclear Information System (INIS)

    Sheng, Xiaozhen; Liu, Yuxia; Zhou, Xin

    2016-01-01

    The maximum speed of China's high-speed trains currently is 300km/h and expected to increase to 350-400km/h. As a wheel travels along the rail at such a high speed, it is subject to a force rotating at the same speed along its periphery. This fast moving force contains not only the axle load component, but also many components of high frequencies generated from wheel-rail interactions. Rotation of the wheel also introduces centrifugal and gyroscopic effects. How the wheel responds is fundamental to many issues, including wheel-rail contact, traction, wear and noise. In this paper, by making use of its axial symmetry, a special finite element scheme is developed for responses of a train wheel subject to a vertical and harmonic wheel-rail force. This FE scheme only requires a 2D mesh over a cross-section containing the wheel axis but includes all the effects induced by wheel rotation. Nodal displacements, as a periodic function of the cross-section angle 6, can be decomposed, using Fourier series, into a number of components at different circumferential orders. The derived FE equation is solved for each circumferential order. The sum of responses at all circumferential orders gives the actual response of the wheel. (paper)

  2. The origin of the coercivity reduction of Nd–Fe–B sintered magnet annealed below an optimal temperature

    International Nuclear Information System (INIS)

    Akiya, T.; Sasaki, T.T.; Ohkubo, T.; Une, Y.; Sagawa, M.; Kato, H.; Hono, K.

    2013-01-01

    In order to understand the origin of the coercivity reduction in a sintered Nd–Fe–B magnet that is annealed below an optimal annealing temperature, we performed focused ion beam/scanning electron microscopy tomography of post-sinter annealed magnets. A number of grain boundary cracks were observed between Nd 2 Fe 14 B grains and Nd-rich phases in the sample annealed below the optimal temperature. We deduced micromagnetic parameters α and N eff by fitting the temperature dependence of the coercivity. While α was constant regardless of the annealing conditions, N eff increased in the sample annealed below the optimal temperature with the reduced coercivity. This indicates that the reduction of the coercivity is due to the local stray field at the cracks. - Highlights: • We performed FIB/SEM tomography of post-sinter annealed magnets. • A number of grain boundary cracks were observed in the low-coercivity sample. • Parameters α and N eff were deduced from the temperature dependence of coercivity. • While α was constant, N eff increased in the low-coercivity sample. • The reduction of the coercivity is due to the local stray field at the cracks

  3. Coercive Journal Self Citations, Impact Factor, Journal Influence and Article Influence

    NARCIS (Netherlands)

    C-L. Chang (Chia-Lin); M.J. McAleer (Michael)

    2013-01-01

    textabstractThis paper examines the issue of coercive journal self citations and the practical usefulness of two recent journal performance metrics, namely the Eigenfactor score, which may be interpreted as measuring “Journal Influence”, and the Article Influence score, using the Thomson Reuters ISI

  4. Magnetic coercivity and intensity of Mars crust: Dichotomy formation via unicellular convection mechanism

    Czech Academy of Sciences Publication Activity Database

    Kletetschka, Günther; Acuna, M. H.; Connerney, J. E.; Wasilewski, P. J.; Ness, F. N.

    2005-01-01

    Roč. 86, č. 52 (2005), GP43A-0884 ISSN 0096-3941. [American Geophysical Union Fall Meeting. 05.12.2005-05.12.2005, San Francisco] Institutional research plan: CEZ:AV0Z30130516 Keywords : magnetic coercivity * magnetic intesity * plate tectonics Subject RIV: BM - Solid Matter Physics ; Magnetism

  5. Coercive and legitimate authority impact tax honesty: evidence from behavioral and ERP experiments.

    Science.gov (United States)

    Gangl, Katharina; Pfabigan, Daniela M; Lamm, Claus; Kirchler, Erich; Hofmann, Eva

    2017-07-01

    Cooperation in social systems such as tax honesty is of central importance in our modern societies. However, we know little about cognitive and neural processes driving decisions to evade or pay taxes. This study focuses on the impact of perceived tax authority and examines the mental chronometry mirrored in ERP data allowing a deeper understanding about why humans cooperate in tax systems. We experimentally manipulated coercive and legitimate authority and studied its impact on cooperation and underlying cognitive (experiment 1, 2) and neuronal (experiment 2) processes. Experiment 1 showed that in a condition of coercive authority, tax payments are lower, decisions are faster and participants report more rational reasoning and enforced compliance, however, less voluntary cooperation than in a condition of legitimate authority. Experiment 2 confirmed most results, but did not find a difference in payments or self-reported rational reasoning. Moreover, legitimate authority led to heightened cognitive control (expressed by increased MFN amplitudes) and disrupted attention processing (expressed by decreased P300 amplitudes) compared to coercive authority. To conclude, the neuronal data surprisingly revealed that legitimate authority may led to higher decision conflict and thus to higher cognitive demands in tax decisions than coercive authority. © The Author (2017). Published by Oxford University Press.

  6. Sex-Symmetric Effects of Coercive Behaviors on Mental Health? Not Exactly

    Science.gov (United States)

    Prospero, Moises

    2009-01-01

    The present study tested a section of the model of coercion in intimate partner violence (IPV) by investigating the relationships among coercion, IPV and mental health symptoms. The study's sample consisted of 573 culturally diverse university students (age M = 21.4) who completed a survey that measured past IPV victimization, coercive behaviors,…

  7. Modulation of magnetic coercivity in Ni thin films by reversible control of strain

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Wen-Chin, E-mail: wclin@ntnu.edu.tw [Department of Physics, National Taiwan Normal University, Taipei 116, Taiwan (China); Huang, Chia-Wei; Ting, Yi-Chieh; Lo, Fang-Yuh [Department of Physics, National Taiwan Normal University, Taipei 116, Taiwan (China); Chern, Ming-Yau [Department of Physics, National Taiwan University, Taipei 106, Taiwan (China)

    2015-05-01

    In this study, we demonstrated the magnetoelectric control of magnetic thin films. (111)-textured Pd/Ni/Pd thin films were prepared on mica/lead zirconium titanate (PZT) substrates for the investigation. The reversible modulation of magnetic coercivity in Ni films was observed through the electric-voltage-controlled strain variation from the PZT substrate. For 14 nm Ni film, the applied electric field of ±350 V/m led to ±0.5% strain variation of PZT, which was transferred to ±0.4% strain variation of Pd/Ni/Pd thin films on mica, and resulted in ∓17 Oe (∓5% of the preliminary magnetic coercivity). The reversible modulation of magnetic coercivity is supposed to be caused by the voltage-controlled strain through the magneto-elastic effect. - Highlights: • The magnetoelectric control of the magnetic coercivity of Pd/Ni/Pd thin films was demonstrated. • The ±0.4% strain variation of 14 nm Ni thin films resulted in ±17 Oe change of H{sub c}. • The reversible modulation of H{sub c} is supposed to be caused by the magneto-elastic effect.

  8. Angular dependence of coercivity in isotropically aligned Nd-Fe-B sintered magnets

    Science.gov (United States)

    Matsuura, Yutaka; Nakamura, Tetsuya; Sumitani, Kazushi; Kajiwara, Kentaro; Tamura, Ryuji; Osamura, Kozo

    2018-05-01

    In order to understand the coercivity mechanism in Nd-Fe-B sintered magnets, the angular dependence of the coercivity of an isotropically aligned Nd15Co1.0B6Febal. sintered magnet was investigated through magnetization measurements using a vibrating sample magnetometer. These results are compared with the angular dependence calculated under the assumption that the magnetization reversal of each grain follows the Kondorskii law or, in other words, the 1/cos θ law for isotropic alignment distributions. The calculated angular dependence of the coercivity agrees very well with the experiment for magnetic fields applied between angles of 0 and 60°, and it is expected that the magnetization reversal occurs in each grain individually followed the 1/cos θ law. In contrast, this agreement between calculation and experiment is not found for anisotropic Nd-Fe-B samples. This implies that the coercivity of the aligned magnets depends upon the de-pinning of the domain walls from pinning sites. When the de-pinning occurs, it is expected that the domain walls are displaced through several grains at once.

  9. Magnetic Signals of High-Temperature Superconductor Bulk During the Levitation Force Measurement Process

    Science.gov (United States)

    Huang, Huan; Zheng, Jun; Qian, Nan; Che, Tong; Zheng, Botian; Jin, Liwei; Deng, Zigang

    2017-05-01

    In order to study the commonly neglected magnetic field information in the course of levitation force measurement process in a superconducting maglev system, a multipoint magnetic field measurement platform was employed to acquire magnetic signals of a bulk high-Tc superconductor on both the top and the bottom surface. Working conditions including field cooling (FC) and zero field cooling were investigated for these vertical down and up motions above a permanent magnet guideway performed on a HTS maglev measurement system. We have discussed the magnetic flux variation process based on the Bean model. A magnetic hysteresis effect similar to the levitation force hysteresis loop of the bulk superconductor was displayed and analyzed in this paper. What is more valuable, there exists some available magnetic flux on the top surface of the bulk superconductor, and the proportion is as high as 62.42% in the FC condition, which provides an experimental hint to design the superconductor bulk and the applied field for practical use in a more efficient way. In particular, this work reveals real-time magnetic flux variation of the bulk superconductor in the levitation application, which is the other important information in contrast to the macroscopic levitation and guidance force investigations in previous studies, and it enriches the existing research methods. The results are significant for understanding the magnetic characteristic of superconductors, and they can contribute to optimize the present HTS maglev system design.

  10. Analysis of Electromagnetics Forces on Magnetically Suspended High-Speed Trains

    Directory of Open Access Journals (Sweden)

    Daniel Mayer

    2004-01-01

    Full Text Available High-speed superexpresses (HSST developed by Japanese airlines (JAL are based on the electrodynamics principle of magnetic suspension. The track contains short-circuited coils and interaction between them and superconductive coils in the vehicle produces its suspension. The paper includes a mathematical model for traction electrodynamics suspension device HSST represented by a system of linear differential equations with coefficients varying in time. Numerical analysis of this model fields the velocity-dependent lift and drag forces acting on the system. The time distribution of the lift force exhibits certain oscillations that may be suppressed by suitable placement of several superconductive levitation wings in the vehicle. The results obtained are in a good agreement with the knowledge found by various authors on prototype vehicles.

  11. Mechanically stable tuning fork sensor with high quality factor for the atomic force microscope.

    Science.gov (United States)

    Kim, Kwangyoon; Park, Jun-Young; Kim, K B; Lee, Naesung; Seo, Yongho

    2014-01-01

    A quartz tuning fork was used instead of cantilever as a force sensor for the atomic force microscope. A tungsten tip was made by electrochemical etching from a wire of 50 µm diameter. In order to have mechanical stability of the tuning fork, it was attached on an alumina plate. The tungsten tip was attached on the inside end of a prong of a tuning fork. The phase shift was used as a feedback signal to control the distance between the tip and sample, and the amplitude was kept constant using a lock-in amplifier and a homemade automatic gain controller. Due to the mechanical stability, the sensor shows a high quality factor (∼10(3)), and the image quality obtained with this sensor was equivalent to that of the cantilever-based AFM. © 2014 Wiley Periodicals, Inc.

  12. Safety aspects of forced flow cooldown transients in modular high temperature gas-cooled reactors

    International Nuclear Information System (INIS)

    Kroeger, P.G.

    1992-01-01

    During some of the design basis accidents in Modular High Temperature Gas Cooled Reactors (MHTGRs) the main Heat Transport System (HTS) and the Shutdown Cooling System (SCS), are assumed to have failed. Decay heat is then removed by the passive Reactor Cavity Cooling System (RCCS) only. If either forced flow cooling system becomes available during such a transient, its restart could significantly reduce the down-time. This paper uses the THATCH code to examine whether such restart, during a period of elevated core temperatures, can be accomplished within safe limits for fuel and metal component temperatures. If the reactor is scrammed, either system can apparently be restarted at any time, without exceeding any safe limits. However, under unscrammed conditions a restart of forced cooling can lead to recriticality, with fuel and metal temperatures significantly exceeding the safety limits

  13. High frequency write head measurement with the phase detection magnetic force microscope

    International Nuclear Information System (INIS)

    Abe, M.; Tanaka, Y.

    2001-01-01

    We demonstrated the measurement of the high frequency (HF) magnetic field of a write head with the phase detection magnetic force microscope. An amplitude-modulated current was applied to the head coil to detect the force gradient induced by the HF magnetic field. Spatial resolution of this method was higher than that of the deflection detection method previously proposed. By the phase detection method, dynamic HF magnetic fields at the poles of the write heads were clearly imaged. HF magnetic field leakage was observed along the P2 pole shape on the air-bearing surface. The frequency dependence of the write head dynamics up to 350 MHz was also investigated. [copyright] 2001 American Institute of Physics

  14. Skeletal muscle collagen content in humans after high-force eccentric contractions

    DEFF Research Database (Denmark)

    Mackey, Abigail; Donnelly, Alan E; Turpeenniemi-Hujanen, Taina

    2004-01-01

    The purpose of this study was to investigate the effects of high-force eccentric muscle contractions on collagen remodeling and on circulating levels of matrix metalloproteinases (MMP) and tissue inhibitors of metalloproteinases (TIMP) in humans. Nine volunteers [5 men and 4 women, mean age 23 (SD...... 4) yr] each performed a bout of 100 maximum voluntary eccentric contractions of the knee extensors. Muscle biopsies were taken before exercise and on days 4 and 22 afterward. Image analysis of stained tissue sections was used to quantify endomysial collagen staining intensity. Maximum voluntary...... contractile force declined by 39 +/- 23% (mean +/- SD) on day 2 postexercise and recovered thereafter. Serum creatine kinase activity peaked on day 4 postexercise (P Collagen type IV staining intensity increased significantly on day 22 postexercise to 126 +/- 29% (mean +/- SD) of preexercise values...

  15. Possible manifestation of long range forces in high energy hadron collisions

    International Nuclear Information System (INIS)

    Kuraev, Eh.A.; Ferro, P.; Trentadue, L.

    1997-01-01

    Pion-pion and photon-photon scattering are discussed.. We obtain, starting from the impact representation introduced by Cheng and Wu a new contribution to the high energy hadron-hadron scattering amplitude for small transferred momentum q 2 of the form is (q 2 /m 4 )ln(-q 2 /m 2 ). This behaviour may be interpreted as a manifestation of long transverse-range forces between hadrons which, for ρ>> m -1 fall off as ρ -4 . We consider the examples of pion and photon scattering with photons converted in the intermediate state to two pairs of quarks interacting by exchanging two gluon colorless state. A phenomenological approach for proton impact factor is used to analyze proton-proton scattering. The analysis of the lowest order radiative corrections for the case of photon-photon scattering is done. We discuss the possibility of observing the effects of these long range forces

  16. Tip radius preservation for high resolution imaging in amplitude modulation atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ramos, Jorge R., E-mail: jorge.rr@cea.cu [Instituto de Ciencia de Materiales de Madrid, Sor Juana Inés de la Cruz 3, Canto Blanco, 28049 Madrid, España (Spain)

    2014-07-28

    The acquisition of high resolution images in atomic force microscopy (AFM) is correlated to the cantilever's tip shape, size, and imaging conditions. In this work, relative tip wear is quantified based on the evolution of a direct experimental observable in amplitude modulation atomic force microscopy, i.e., the critical amplitude. We further show that the scanning parameters required to guarantee a maximum compressive stress that is lower than the yield/fracture stress of the tip can be estimated via experimental observables. In both counts, the optimized parameters to acquire AFM images while preserving the tip are discussed. The results are validated experimentally by employing IgG antibodies as a model system.

  17. Development of nanomanipulator using a high-speed atomic force microscope coupled with a haptic device

    International Nuclear Information System (INIS)

    Iwata, F.; Ohashi, Y.; Ishisaki, I.; Picco, L.M.; Ushiki, T.

    2013-01-01

    The atomic force microscope (AFM) has been widely used for surface fabrication and manipulation. However, nanomanipulation using a conventional AFM is inefficient because of the sequential nature of the scan-manipulation scan cycle, which makes it difficult for the operator to observe the region of interest and perform the manipulation simultaneously. In this paper, a nanomanipulation technique using a high-speed atomic force microscope (HS-AFM) is described. During manipulation using the AFM probe, the operation is periodically interrupted for a fraction of a second for high-speed imaging that allows the topographical image of the manipulated surface to be periodically updated. With the use of high-speed imaging, the interrupting time for imaging can be greatly reduced, and as a result, the operator almost does not notice the blink time of the interruption for imaging during the manipulation. This creates a more intuitive interface with greater feedback and finesse to the operator. Nanofabrication under real-time monitoring was performed to demonstrate the utility of this arrangement for real-time nanomanipulation of sample surfaces under ambient conditions. Furthermore, the HS-AFM is coupled with a haptic device for the human interface, enabling the operator to move the HS-AFM probe to any position on the surface while feeling the response from the surface during the manipulation. - Highlights: • A nanomanipulater based on a high-speed atomic force microscope was developped. • High-speed imaging provides a valuable feedback during the manipulation operation. • Operator can feel the response from the surface via a haptic device during manipulation. • Nanofabrications under real-time monitoring were successfully performed

  18. High-Force Versus Low-Force Lumbar Traction in Acute Lumbar Sciatica Due to Disc Herniation: A Preliminary Randomized Trial.

    Science.gov (United States)

    Isner-Horobeti, Marie-Eve; Dufour, Stéphane Pascal; Schaeffer, Michael; Sauleau, Erik; Vautravers, Philippe; Lecocq, Jehan; Dupeyron, Arnaud

    This study compared the effects of high-force versus low-force lumbar traction in the treatment of acute lumbar sciatica secondary to disc herniation. A randomized double blind trial was performed, and 17 subjects with acute lumbar sciatica secondary to disc herniation were assigned to high-force traction at 50% body weight (BW; LT50, n = 8) or low force traction at 10% BW (LT10, n = 9) for 10 sessions in 2 weeks. Radicular pain (visual analogue scale [VAS]), lumbo-pelvic-hip complex motion (finger-to-toe test), lumbar-spine mobility (Schöber-Macrae test), nerve root compression (straight-leg-raising test), disability (EIFEL score), drug consumption, and overall evaluation of each patient were measured at days 0, 7, 1, 4, and 28. Significant (P sciatica secondary to disc herniation who received 2 weeks of lumbar traction reported reduced radicular pain and functional impairment and improved well-being regardless of the traction force group to which they were assigned. The effects of the traction treatment were independent of the initial level of medication and appeared to be maintained at the 2-week follow-up. Copyright © 2016. Published by Elsevier Inc.

  19. A new atomic force microscopy based technique for studying nanoscale friction at high sliding velocities

    International Nuclear Information System (INIS)

    Tambe, Nikhil S; Bhushan, Bharat

    2005-01-01

    Tribological studies on the micro/nanoscale conducted using an atomic force microscope (AFM) have been limited to low sliding velocities ( -1 ) due to inherent instrument limitations. Studies of tribological properties of materials, coatings and lubricants that find applications in micro/nanoelectromechanical systems and magnetic head-media in magnetic storage devices that operate at high sliding velocities have thus been rendered inadequate. We have developed a new technique to study nanotribological properties at high sliding velocities (up to 10 mm s -1 ) by modifying the commercial AFM set-up. A custom calibrated nanopositioning piezo stage is used for mounting samples and scanning is achieved by providing a triangular input voltage pulse. A capacitive sensor feedback control system is employed to ensure a constant velocity profile during scanning. Friction data are obtained by processing the AFM laser photo-diode signals using a high sampling rate data acquisition card. The utility of the modified set-up for nanoscale friction studies at high sliding velocities is demonstrated using results obtained from various tests performed to study the effect of scan size, rest time, acceleration and velocity on the frictional force for single crystal silicon (100) with native oxide

  20. Magnetic tweezers optimized to exert high forces over extended distances from the magnet in multicellular systems

    Science.gov (United States)

    Selvaggi, L.; Pasakarnis, L.; Brunner, D.; Aegerter, C. M.

    2018-04-01

    Magnetic tweezers are mainly divided into two classes depending on the ability of applying torque or forces to the magnetic probe. We focused on the second category and designed a device composed by a single electromagnet equipped with a core having a special asymmetric profile to exert forces as large as 230 pN-2.8 μm Dynabeads at distances in excess of 100 μm from the magnetic tip. Compared to existing solutions our magnetic tweezers overcome important limitations, opening new experimental paths for the study of a wide range of materials in a variety of biophysical research settings. We discuss the benefits and drawbacks of different magnet core characteristics, which led us to design the current core profile. To demonstrate the usefulness of our magnetic tweezers, we determined the microrheological properties inside embryos of Drosophila melanogaster during the syncytial stage. Measurements in different locations along the dorsal-ventral axis of the embryos showed little variation, with a slight increase in cytoplasm viscosity at the periphery of the embryos. The mean cytoplasm viscosity we obtain by active force exertion inside the embryos is comparable to that determined passively using high-speed video microrheology.

  1. A Facile All-Solution-Processed Surface with High Water Contact Angle and High Water Adhesive Force.

    Science.gov (United States)

    Chen, Mei; Hu, Wei; Liang, Xiao; Zou, Cheng; Li, Fasheng; Zhang, Lanying; Chen, Feiwu; Yang, Huai

    2017-07-12

    A series of sticky superhydrophobicity surfaces with high water contact angle and high water adhesive force is facilely prepared via an all-solution-processed method based on polymerization-induced phase separation between liquid crystals (LCs) and epoxy resin, which produces layers of epoxy microspheres (EMSs) with nanofolds on the surface of a substrate. The morphologies and size distributions of EMSs are confirmed by scanning electron microscopy. Results reveal that the obtained EMS coated-surface exhibits high apparent contact angle of 152.0° and high water adhesive force up to 117.6 μN. By varying the composition of the sample or preparing conditions, the sizes of the produced EMSs can be artificially regulated and, thus, control the wetting properties and water adhesive behaviors. Also, the sticky superhydrophobic surface exhibits excellent chemical stability, as well as long-term durability. Water droplet transportation experiments further prove that the as-made surface can be effectively used as a mechanical hand for water transportation applications. Based on this, it is believed that the simple method proposed in this paper will pave a new way for producing a sticky superhydrophobic surface and obtain a wide range of use.

  2. Long-range forces affecting equilibrium inertial focusing behavior in straight high aspect ratio microfluidic channels

    Energy Technology Data Exchange (ETDEWEB)

    Reece, Amy E.; Oakey, John, E-mail: joakey@uwyo.edu [Department of Chemical Engineering, University of Wyoming, Laramie, Wyoming 82071 (United States)

    2016-04-15

    The controlled and directed focusing of particles within flowing fluids is a problem of fundamental and technological significance. Microfluidic inertial focusing provides passive and precise lateral and longitudinal alignment of small particles without the need for external actuation or sheath fluid. The benefits of inertial focusing have quickly enabled the development of miniaturized flow cytometers, size-selective sorting devices, and other high-throughput particle screening tools. Straight channel inertial focusing device design requires knowledge of fluid properties and particle-channel size ratio. Equilibrium behavior of inertially focused particles has been extensively characterized and the constitutive phenomena described by scaling relationships for straight channels of square and rectangular cross section. In concentrated particle suspensions, however, long-range hydrodynamic repulsions give rise to complex particle ordering that, while interesting and potentially useful, can also dramatically diminish the technique’s effectiveness for high-throughput particle handling applications. We have empirically investigated particle focusing behavior within channels of increasing aspect ratio and have identified three scaling regimes that produce varying degrees of geometrical ordering between focused particles. To explore the limits of inertial particle focusing and identify the origins of these long-range interparticle forces, we have explored equilibrium focusing behavior as a function of channel geometry and particle concentration. Experimental results for highly concentrated particle solutions identify equilibrium thresholds for focusing that scale weakly with concentration and strongly with channel geometry. Balancing geometry mediated inertial forces with estimates for interparticle repulsive forces now provide a complete picture of pattern formation among concentrated inertially focused particles and enhance our understanding of the fundamental limits

  3. Comparison of environmental forcings affecting suspended sediments variability in two macrotidal, highly-turbid estuaries

    Science.gov (United States)

    Jalón-Rojas, Isabel; Schmidt, Sabine; Sottolichio, Aldo

    2017-11-01

    The relative contribution of environmental forcing frequencies on turbidity variability is, for the first time, quantified at seasonal and multiannual time scales in tidal estuarine systems. With a decade of high-frequency, multi-site turbidity monitoring, the two nearby, macrotidal and highly-turbid Gironde and Loire estuaries (west France) are excellent natural laboratories for this purpose. Singular Spectrum Analyses, combined with Lomb-Scargle periodograms and Wavelet Transforms, were applied to the continuous multiannual turbidity time series. Frequencies of the main environmental factors affecting turbidity were identified: hydrological regime (high versus low river discharges), river flow variability, tidal range, tidal cycles, and turbulence. Their relative influences show similar patterns in both estuaries and depend on the estuarine region (lower or upper estuary) and the time scale (multiannual or seasonal). On the multiannual time scale, the relative contribution of tidal frequencies (tidal cycles and range) to turbidity variability decreases up-estuary from 68% to 47%, while the influence of river flow frequencies increases from 3% to 42%. On the seasonal time scale, the relative influence of forcings frequencies remains almost constant in the lower estuary, dominated by tidal frequencies (60% and 30% for tidal cycles and tidal range, respectively); in the upper reaches, it is variable depending on hydrological regime, even if tidal frequencies are responsible for up 50% of turbidity variance. These quantifications show the potential of combined spectral analyses to compare the behavior of suspended sediment in tidal estuaries throughout the world and to evaluate long-term changes in environmental forcings, especially in a context of global change. The relevance of this approach to compare nearby and overseas systems and to support management strategies is discussed (e.g., selection of effective operation frequencies/regions, prediction of the most

  4. Thigh-calf contact parameters for six high knee flexion postures: Onset, maximum angle, total force, contact area, and center of force.

    Science.gov (United States)

    Kingston, David C; Acker, Stacey M

    2018-01-23

    In high knee flexion, contact between the posterior thigh and calf is expected to decrease forces on tibiofemoral contact surfaces, therefore, thigh-calf contact needs to be thoroughly characterized to model its effect. This study measured knee angles and intersegmental contact parameters in fifty-eight young healthy participants for six common high flexion postures using motion tracking and a pressure sensor attached to the right thigh. Additionally, we introduced and assessed the reliability of a method for reducing noise in pressure sensor output. Five repetitions of two squatting, two kneeling, and two unilateral kneeling movements were completed. Interactions of posture by sex occurred for thigh-calf and heel-gluteal center of force, and thigh-calf contact area. Center of force in thigh-calf regions was farther from the knee joint center in females, compared to males, during unilateral kneeling (82 and 67 mm respectively) with an inverted relationship in the heel-gluteal region (331 and 345 mm respectively), although caution is advised when generalizing these findings from a young, relatively fit sample to a population level. Contact area was larger in females when compared to males (mean of 155.61 and 137.33 cm 2 across postures). A posture main effect was observed in contact force and sex main effects were present in onset and max angle. Males had earlier onset (121.0°) and lower max angle (147.4°) with onset and max angles having a range between movements of 8° and 3° respectively. There was a substantial total force difference of 139 N between the largest and smallest activity means. Force parameters measured in this study suggest that knee joint contact models need to incorporate activity-specific parameters when estimating loading. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Cryogenic Impinging Jets Subjected to High Frequency Transverse Acoustic Forcing in a High Pressure Environment

    Science.gov (United States)

    2016-07-27

    generated by a Fluke 292 arbitrary waveform generator. The signal generator was then fed to two Trek PZD2000A high- voltage amplifiers that drove two...Processes of Impinging Jet Injectors,” NASA Propulsion Engineering Research Center, vol. 2, N94-23042, 1993, pp.69-74. 8 Li, R., and Ashgriz...Instability,” NASA SP-194, 1972 V. Appendix A Figure A1. Instantaneous images of an acoustic cycle for the PAN 5 condition. A large group of

  6. Joining forces: collaborating internationally to deliver high-quality, online postgraduate education in pain management.

    Science.gov (United States)

    Devonshire, Elizabeth; Siddall, Philip

    2011-01-01

    The effective management of pain is a complex and costly global issue, requiring a range of innovative educational strategies to enable culturally appropriate and high-quality health care provision. In response to this issue, the Pain Management Research Institute at the University of Sydney (Sydney, Australia) has established several strategic alliances with other overseas universities to deliver online postgraduate education in pain management. The present article discusses the rationale for joining forces, and the approach adopted in creating and maintaining these alliances. It also provides insights into the benefits, challenges and opportunities associated with collaborative educational initiatives of this nature, from institutional, academic and student perspectives.

  7. Real-time nanofabrication with high-speed atomic force microscopy

    International Nuclear Information System (INIS)

    Vicary, J A; Miles, M J

    2009-01-01

    The ability to follow nanoscale processes in real-time has obvious benefits for the future of material science. In particular, the ability to evaluate the success of fabrication processes in situ would be an advantage for many in the semiconductor industry. We report on the application of a previously described high-speed atomic force microscope (AFM) for nanofabrication. The specific fabrication method presented here concerns the modification of a silicon surface by locally oxidizing the region in the vicinity of the AFM tip. Oxide features were fabricated during imaging, with relative tip-sample velocities of up to 10 cm s -1 , and with a data capture rate of 15 fps.

  8. Compensator design for improved counterbalancing in high speed atomic force microscopy.

    Science.gov (United States)

    Bozchalooi, I S; Youcef-Toumi, K; Burns, D J; Fantner, G E

    2011-11-01

    High speed atomic force microscopy can provide the possibility of many new scientific observations and applications ranging from nano-manufacturing to the study of biological processes. However, the limited imaging speed has been an imperative drawback of the atomic force microscopes. One of the main reasons behind this limitation is the excitation of the AFM dynamics at high scan speeds, severely undermining the reliability of the acquired images. In this research, we propose a piezo based, feedforward controlled, counter actuation mechanism to compensate for the excited out-of-plane scanner dynamics. For this purpose, the AFM controller output is properly filtered via a linear compensator and then applied to a counter actuating piezo. An effective algorithm for estimating the compensator parameters is developed. The information required for compensator design is extracted from the cantilever deflection signal, hence eliminating the need for any additional sensors. The proposed approach is implemented and experimentally evaluated on the dynamic response of a custom made AFM. It is further assessed by comparing the imaging performance of the AFM with and without the application of the proposed technique and in comparison with the conventional counterbalancing methodology. The experimental results substantiate the effectiveness of the method in significantly improving the imaging performance of AFM at high scan speeds. © 2011 American Institute of Physics

  9. Implementing Molecular Dynamics for Hybrid High Performance Computers - 1. Short Range Forces

    International Nuclear Information System (INIS)

    Brown, W. Michael; Wang, Peng; Plimpton, Steven J.; Tharrington, Arnold N.

    2011-01-01

    The use of accelerators such as general-purpose graphics processing units (GPGPUs) have become popular in scientific computing applications due to their low cost, impressive floating-point capabilities, high memory bandwidth, and low electrical power requirements. Hybrid high performance computers, machines with more than one type of floating-point processor, are now becoming more prevalent due to these advantages. In this work, we discuss several important issues in porting a large molecular dynamics code for use on parallel hybrid machines - (1) choosing a hybrid parallel decomposition that works on central processing units (CPUs) with distributed memory and accelerator cores with shared memory, (2) minimizing the amount of code that must be ported for efficient acceleration, (3) utilizing the available processing power from both many-core CPUs and accelerators, and (4) choosing a programming model for acceleration. We present our solution to each of these issues for short-range force calculation in the molecular dynamics package LAMMPS. We describe algorithms for efficient short range force calculation on hybrid high performance machines. We describe a new approach for dynamic load balancing of work between CPU and accelerator cores. We describe the Geryon library that allows a single code to compile with both CUDA and OpenCL for use on a variety of accelerators. Finally, we present results on a parallel test cluster containing 32 Fermi GPGPUs and 180 CPU cores.

  10. Compensator design for improved counterbalancing in high speed atomic force microscopy

    Science.gov (United States)

    Bozchalooi, I. S.; Youcef-Toumi, K.; Burns, D. J.; Fantner, G. E.

    2011-11-01

    High speed atomic force microscopy can provide the possibility of many new scientific observations and applications ranging from nano-manufacturing to the study of biological processes. However, the limited imaging speed has been an imperative drawback of the atomic force microscopes. One of the main reasons behind this limitation is the excitation of the AFM dynamics at high scan speeds, severely undermining the reliability of the acquired images. In this research, we propose a piezo based, feedforward controlled, counter actuation mechanism to compensate for the excited out-of-plane scanner dynamics. For this purpose, the AFM controller output is properly filtered via a linear compensator and then applied to a counter actuating piezo. An effective algorithm for estimating the compensator parameters is developed. The information required for compensator design is extracted from the cantilever deflection signal, hence eliminating the need for any additional sensors. The proposed approach is implemented and experimentally evaluated on the dynamic response of a custom made AFM. It is further assessed by comparing the imaging performance of the AFM with and without the application of the proposed technique and in comparison with the conventional counterbalancing methodology. The experimental results substantiate the effectiveness of the method in significantly improving the imaging performance of AFM at high scan speeds.

  11. Recommendations for a National High Blood Pressure Community Education Plan. Report of Task Force III--Community Education.

    Science.gov (United States)

    National Institutes of Health (DHEW), Bethesda, MD. High Blood Pressure Information Center.

    Hypertensive disease being one of the most important medical problems now facing American medicine brought about the formation of the Federally sponsored National High Blood Pressure Education Program, which included four Task Forces. Task Force 3 reviews in this study information and experience useful for the development of guidelines for…

  12. High-speed atomic force microscopy combined with inverted optical microscopy for studying cellular events.

    Science.gov (United States)

    Suzuki, Yuki; Sakai, Nobuaki; Yoshida, Aiko; Uekusa, Yoshitsugu; Yagi, Akira; Imaoka, Yuka; Ito, Shuichi; Karaki, Koichi; Takeyasu, Kunio

    2013-01-01

    A hybrid atomic force microscopy (AFM)-optical fluorescence microscopy is a powerful tool for investigating cellular morphologies and events. However, the slow data acquisition rates of the conventional AFM unit of the hybrid system limit the visualization of structural changes during cellular events. Therefore, high-speed AFM units equipped with an optical/fluorescence detection device have been a long-standing wish. Here we describe the implementation of high-speed AFM coupled with an optical fluorescence microscope. This was accomplished by developing a tip-scanning system, instead of a sample-scanning system, which operates on an inverted optical microscope. This novel device enabled the acquisition of high-speed AFM images of morphological changes in individual cells. Using this instrument, we conducted structural studies of living HeLa and 3T3 fibroblast cell surfaces. The improved time resolution allowed us to image dynamic cellular events.

  13. Cryogenic Impinging Jets Subjected to High Frequency Transverse Acoustic Forcing in a High Pressure Environment

    Science.gov (United States)

    2016-07-27

    impingement sheet – Probably due to a impingement point physically moving Distribution A: Approved for Public Release; Distribution Unlimited. PA# 16333 22...AIAA-92- 0458 30th ASM 7. N. Bremond and E. Villermaux, “Atomization by jet impact”, J. Fluid Mech 2006, vol.549, 273-306 8. W.E. Anderson, H. M. Ryan...Sheets formed by Impinging Jets in High Pressure Environments,” AIAA-2004-3526 40th ASM 11. X. Chen, D. Ma, and V. Yang, “Mechanism Study of Impact Wave

  14. Revisiting the blocking force test on ferroelectric ceramics using high energy x-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Daniel, L., E-mail: laurent.daniel@u-psud.fr [School of Materials, University of Manchester, Manchester M13 9PL (United Kingdom); GeePs (CNRS UMR8507, CentraleSupelec, UPMC, Univ Paris-Sud), 91192 Gif sur Yvette cedex (France); Hall, D. A.; Withers, P. J. [School of Materials, University of Manchester, Manchester M13 9PL (United Kingdom); Koruza, J.; Webber, K. G. [Institute of Materials Science, Technische Universität Darmstadt, Alarich-Weiss-Straße 2, 64287 Darmstadt (Germany); King, A. [European Synchrotron Radiation Facility (ESRF), 6 rue J. Horowitz, 38043 Grenoble (France); Synchrotron SOLEIL, BP 48, 91192 Gif sur Yvette cedex (France)

    2015-05-07

    The blocking force test is a standard test to characterise the properties of piezoelectric actuators. The aim of this study is to understand the various contributions to the macroscopic behaviour observed during this experiment that involves the intrinsic piezoelectric effect, ferroelectric domain switching, and internal stress development. For this purpose, a high energy diffraction experiment is performed in-situ during a blocking force test on a tetragonal lead zirconate titanate (PZT) ceramic (Pb{sub 0.98}Ba{sub 0.01}(Zr{sub 0.51}Ti{sub 0.49}){sub 0.98}Nb{sub 0.02}O{sub 3}). It is shown that the usual macroscopic linear interpretation of the test can also be performed at the single crystal scale, allowing the identification of local apparent piezoelectric and elastic properties. It is also shown that despite this apparent linearity, the blocking force test involves significant non-linear behaviour mostly due to domain switching under electric field and stress. Although affecting a limited volume fraction of the material, domain switching is responsible for a large part of the macroscopic strain and explains the high level of inter- and intra-granular stresses observed during the course of the experiment. The study shows that if apparent piezoelectric and elastic properties can be identified for PZT single crystals from blocking stress curves, they may be very different from the actual properties of polycrystalline materials due to the multiplicity of the physical mechanisms involved. These apparent properties can be used for macroscopic modelling purposes but should be considered with caution if a local analysis is aimed at.

  15. Coercivity enhancement of hot-deformed Nd-Fe-B magnets by the eutectic grain boundary diffusion process

    International Nuclear Information System (INIS)

    Liu, Lihua; Sepehri-Amin, H.; Ohkubo, T.; Yano, M.; Kato, A.; Shoji, T.; Hono, K.

    2016-01-01

    Nd-M (M = Al, Cu, Ga, Zn, Mn) alloys with compositions close to eutectic points were investigated as diffusion sources for the grain boundary diffusion process to hot-deformed Nd-Fe-B magnets. Coercivity enhancement was observed for most of the alloys. Among them, the sample processed with Nd 90 Al 10 exhibited the highest coercivity of 2.5 T at room temperature. However, the sample processed with Nd 70 Cu 30 exhibited the highest coercivity of 0.7 T at 200 ° C. Microstructural observations using scanning transmission electron microscope (STEM) showed that nonferromagnetic Nd-rich intergranular phase envelops the Nd 2 Fe 14 B grains after the diffusion process. Abnormal grain growth and the dissolution of Al into the Nd 2 Fe 14 B grains were observed in the sample processed with Nd 90 Al 10 , which explains its inferior thermal stability of coercivity compared to the sample processed with Nd 70 Cu 30 . The coercivity enhancement and poor thermal stability of the coercivity of the Nd 90 Al 10 diffusion-processed sample are discussed based on microstructure studies by transmission electron microscopy. - Highlights: • Coercivity of hot-deformed Nd-Fe-B magnets is enhanced by the infiltration of various R-TM eutectic alloys. • The sample infiltrated with Nd 90 Al 10 shows the highest coercivity of 2.5 T at room temperature. • At 200 °C, Nd 70 Cu 30 diffusion-processed sample possesses the highest coercivity of 0.7 T.

  16. Coercivity enhancement of hot-deformed Nd-Fe-B magnets by the eutectic grain boundary diffusion process

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Lihua [Elements Strategy Initiative Center for Magnetic Materials, National Institute of Materials Science, Tsukuba 305-0047 (Japan); Graduate School of Pure and Applied Science, University of Tsukuba, Tsukuba 305-8577 (Japan); Sepehri-Amin, H.; Ohkubo, T. [Elements Strategy Initiative Center for Magnetic Materials, National Institute of Materials Science, Tsukuba 305-0047 (Japan); Yano, M.; Kato, A.; Shoji, T. [Toyota Motor Corporation, Advanced Material Engineering Div., Susono 410-1193 (Japan); Hono, K., E-mail: kazuhiro.hono@nims.go.jp [Elements Strategy Initiative Center for Magnetic Materials, National Institute of Materials Science, Tsukuba 305-0047 (Japan); Graduate School of Pure and Applied Science, University of Tsukuba, Tsukuba 305-8577 (Japan)

    2016-05-05

    Nd-M (M = Al, Cu, Ga, Zn, Mn) alloys with compositions close to eutectic points were investigated as diffusion sources for the grain boundary diffusion process to hot-deformed Nd-Fe-B magnets. Coercivity enhancement was observed for most of the alloys. Among them, the sample processed with Nd{sub 90}Al{sub 10} exhibited the highest coercivity of 2.5 T at room temperature. However, the sample processed with Nd{sub 70}Cu{sub 30} exhibited the highest coercivity of 0.7 T at 200 {sup °}C. Microstructural observations using scanning transmission electron microscope (STEM) showed that nonferromagnetic Nd-rich intergranular phase envelops the Nd{sub 2}Fe{sub 14}B grains after the diffusion process. Abnormal grain growth and the dissolution of Al into the Nd{sub 2}Fe{sub 14}B grains were observed in the sample processed with Nd{sub 90}Al{sub 10}, which explains its inferior thermal stability of coercivity compared to the sample processed with Nd{sub 70}Cu{sub 30}. The coercivity enhancement and poor thermal stability of the coercivity of the Nd{sub 90}Al{sub 10} diffusion-processed sample are discussed based on microstructure studies by transmission electron microscopy. - Highlights: • Coercivity of hot-deformed Nd-Fe-B magnets is enhanced by the infiltration of various R-TM eutectic alloys. • The sample infiltrated with Nd{sub 90}Al{sub 10} shows the highest coercivity of 2.5 T at room temperature. • At 200 °C, Nd{sub 70}Cu{sub 30} diffusion-processed sample possesses the highest coercivity of 0.7 T.

  17. Miniature robust five-dimensional fingertip force/torque sensor with high performance

    International Nuclear Information System (INIS)

    Liang, Qiaokang; Huang, Xiuxiang; Li, Zhongyang; Zhang, Dan; Ge, Yunjian

    2011-01-01

    This paper proposes an innovative design and investigation for a five-dimensional fingertip force/torque sensor with a dual annular diaphragm. This sensor can be applied to a robot hand to measure forces along the X-, Y- and Z-axes (F x , F y and F z ) and moments about the X- and Y-axes (M x and M y ) simultaneously. Particularly, the details of the sensing principle, the structural design and the overload protection mechanism are presented. Afterward, based on the design of experiments approach provided by the software ANSYS®, a finite element analysis and an optimization design are performed. These are performed with the objective of achieving both high sensitivity and stiffness of the sensor. Furthermore, static and dynamic calibrations based on the neural network method are carried out. Finally, an application of the developed sensor on a dexterous robot hand is demonstrated. The results of calibration experiments and the application show that the developed sensor possesses high performance and robustness

  18. Single molecule force spectroscopy at high data acquisition: A Bayesian nonparametric analysis

    Science.gov (United States)

    Sgouralis, Ioannis; Whitmore, Miles; Lapidus, Lisa; Comstock, Matthew J.; Pressé, Steve

    2018-03-01

    Bayesian nonparametrics (BNPs) are poised to have a deep impact in the analysis of single molecule data as they provide posterior probabilities over entire models consistent with the supplied data, not just model parameters of one preferred model. Thus they provide an elegant and rigorous solution to the difficult problem encountered when selecting an appropriate candidate model. Nevertheless, BNPs' flexibility to learn models and their associated parameters from experimental data is a double-edged sword. Most importantly, BNPs are prone to increasing the complexity of the estimated models due to artifactual features present in time traces. Thus, because of experimental challenges unique to single molecule methods, naive application of available BNP tools is not possible. Here we consider traces with time correlations and, as a specific example, we deal with force spectroscopy traces collected at high acquisition rates. While high acquisition rates are required in order to capture dwells in short-lived molecular states, in this setup, a slow response of the optical trap instrumentation (i.e., trapped beads, ambient fluid, and tethering handles) distorts the molecular signals introducing time correlations into the data that may be misinterpreted as true states by naive BNPs. Our adaptation of BNP tools explicitly takes into consideration these response dynamics, in addition to drift and noise, and makes unsupervised time series analysis of correlated single molecule force spectroscopy measurements possible, even at acquisition rates similar to or below the trap's response times.

  19. The role of elastic energy in activities with high force and power requirements: a brief review.

    Science.gov (United States)

    Wilson, Jacob M; Flanagan, Eamonn P

    2008-09-01

    The purpose of this article is to provide strength and conditioning practitioners with an understanding of the role of elastic energy in activities with high force and power requirements. Specifically, the article covers 1) the nature of elasticity and its application to human participants, 2) the role of elastic energy in activities requiring a stretch-shorten cycle such as the vertical jump, 3) the role of muscular stiffness in athletic performance, 4) the control of muscular stiffness through feedforward and feedback mechanisms, and 5) factors affecting muscular stiffness. Finally, practical applications are provided. In this section, it is suggested that the storage and reuse of elastic energy is optimized at relatively higher levels of stiffness. Because stiffness decreases as fatigue ensues as well as with stretching before an event, the article emphasizes the need for proper preparation phases in a periodized cycle and the avoidance of long static stretches before high-force activities. The importance of teaching athletes to transition from eccentric to concentric movements with minimal time delays is also proposed due to the finding that time delays appear to decrease the reuse of elastic energy. In addition to teaching within the criterion tasks, evidence is provided that minimizing transitions in plyometric training, a technique demonstrated to increase musculotendinous stiffness, can optimize power output in explosive movements. Finally, evidence is provided that training and teaching programs designed to optimize muscular stiffness may protect athletes against sports-related injuries.

  20. Receptivity and Forced Response to Acoustic Disturbances in High-Speed Boundary Layers

    Science.gov (United States)

    Balakumar, P.; King, Rudolph A.; Chou, Amanda; Owens, Lewis R.; Kegerise, Michael A.

    2016-01-01

    Supersonic boundary-layer receptivity to freestream acoustic disturbances is investigated by solving the Navier-Stokes equations for Mach 3.5 flow over a sharp flat plate and a 7-deg half-angle cone. The freestream disturbances are generated from a wavy wall placed at the nozzle wall. The freestream acoustic disturbances radiated by the wavy wall are obtained by solving the linearized Euler equations. The results for the flat plate show that instability modes are generated at all the incident angles ranging from zero to highly oblique. However, the receptivity coefficient decreases by about 20 times when the incident angle increases from zero to a highly oblique angle of 68 degrees. The results for the cone show that no instability modes are generated when the acoustic disturbances impinge the cone obliquely. The results show that the perturbations generated inside the boundary layer by the acoustic disturbances are the response of the boundary layer to the external forcing. The amplitude of the forced disturbances inside the boundary layer are about 2.5 times larger than the incoming field for zero azimuthal wavenumber and they are about 1.5 times for large azimuthal wavenumbers.

  1. LLW disposal wasteform preparation in the UK: the role of high force compaction

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, L. F.; Fearnley, I. G. [British Nuclear Fuels Ltd., Sellafield (United Kingdom)

    1991-07-01

    British Nuclear Fuels plc (BNFL) owns and operates the principal UK solid low level radioactive waste (LLW) disposal site. The site is located at Drigg in West Cumbria some 6 km to the south east of BNFL's Sellafield reprocessing complex. Sellafield is the major UK generator of LLW, accounting for about 85% of estimated future arisings of raw (untreated, unpackaged) waste. Non-Sellafield consignors to the Drigg site include other BNFL production establishments, nuclear power stations, sites of UKAEA, Ministry of Defence facilities, hospitals, universities, radioisotope production sites and various other industrial organisations. In September 1987, BNFL announced a major upgrade of operations at the Drigg site aimed at improving management practices, the efficiency of space utilisation and enhancing the visual impact of disposal operations. During 1989 a review of plans for compaction and containerisation of Sellafield waste identified that residual voidage in ISO freight containers could be significant even after the introduction of compaction. Subsequent studies which examined a range of compaction and packaging options concluded that the preferred scheme centred on the use of high force compaction (HFC) of compactable waste, and grouting to take up readily accessible voidage in the wasteform. The paper describes the emergence of high force compaction as the preferred scheme for wasteform preparation and subsequent benefits against the background of the overall development of Low Level Waste disposal operations at Drigg.

  2. LLW disposal wasteform preparation in the UK: the role of high force compaction

    International Nuclear Information System (INIS)

    Johnson, L. F.; Fearnley, I. G.

    1991-01-01

    British Nuclear Fuels plc (BNFL) owns and operates the principal UK solid low level radioactive waste (LLW) disposal site. The site is located at Drigg in West Cumbria some 6 km to the south east of BNFL's Sellafield reprocessing complex. Sellafield is the major UK generator of LLW, accounting for about 85% of estimated future arisings of raw (untreated, unpackaged) waste. Non-Sellafield consignors to the Drigg site include other BNFL production establishments, nuclear power stations, sites of UKAEA, Ministry of Defence facilities, hospitals, universities, radioisotope production sites and various other industrial organisations. In September 1987, BNFL announced a major upgrade of operations at the Drigg site aimed at improving management practices, the efficiency of space utilisation and enhancing the visual impact of disposal operations. During 1989 a review of plans for compaction and containerisation of Sellafield waste identified that residual voidage in ISO freight containers could be significant even after the introduction of compaction. Subsequent studies which examined a range of compaction and packaging options concluded that the preferred scheme centred on the use of high force compaction (HFC) of compactable waste, and grouting to take up readily accessible voidage in the wasteform. The paper describes the emergence of high force compaction as the preferred scheme for wasteform preparation and subsequent benefits against the background of the overall development of Low Level Waste disposal operations at Drigg

  3. Investigation of cellular microstructure and enhanced coercivity in sputtered Sm2(CoCuFeZr)17 film

    International Nuclear Information System (INIS)

    Bhatt, Ranu; Schütz, G.; Bhatt, Pramod

    2014-01-01

    We have investigated the effect of annealing temperature on the microstructure and magnetic properties of Sm 2 (CoCuFeZr) 17 films prepared using ion beam sputtering at room temperature. The as-deposited film shows randomly oriented polycrystalline grains and exhibits small coercivity (H C ) of 0.04 T at room temperature. Post annealing of these films at 700 °C under Ar atmosphere shows significant changes in the microstructure transforming it to the development of cellular growth, concomitant with enhanced coercivity up to 1.3 T. The enhanced coercivity is explained using the domain wall pinning mechanism

  4. Analysis of Nanodomain Composition in High-Impact Polypropylene by Atomic Force Microscopy-Infrared.

    Science.gov (United States)

    Tang, Fuguang; Bao, Peite; Su, Zhaohui

    2016-05-03

    In this paper, compositions of nanodomains in a commercial high-impact polypropylene (HIPP) were investigated by an atomic force microscopy-infrared (AFM-IR) technique. An AFM-IR quantitative analysis method was established for the first time, which was then employed to analyze the polyethylene content in the nanoscopic domains of the rubber particles dispersed in the polypropylene matrix. It was found that the polyethylene content in the matrix was close to zero and was high in the rubbery intermediate layers, both as expected. However, the major component of the rigid cores of the rubber particles was found to be polypropylene rather than polyethylene, contrary to what was previously believed. The finding provides new insight into the complicated structure of HIPPs, and the AFM-IR quantitative method reported here offers a useful tool for assessing compositions of nanoscopic domains in complex polymeric systems.

  5. Approximate model for toroidal force balance in the high-beta stellarator

    International Nuclear Information System (INIS)

    Barnes, D.C.

    1979-03-01

    A simple model for estimating the body force acting on a diffuse plasma confined in a three-dimensional, high-beta stellarator geometry is given. The equilibrium is treated by an asymptotic expansion about a straight theta pinch with diffuse, circular cross section. The expansion parameter delta is the strength of the applied helical fields. This expansion leads to an inconsistent set of equations for the equilibrium in second order. Nevertheless, by averaging the equilibrium equations over the volume of the confined plasma, a unique condition for toroidal equilibrium is obtained. When the results are compared with the predictions of previous equilibrium theory, which is based on the sharp-boundary model, a large deviation is found. This correction is especially large for l = 0,1 systems at high beta and must be accounted for in any confinement experiment

  6. Coercivity enhancement in Nd-Fe-B sintered permanent magnet by Dy nanoparticles doping

    Energy Technology Data Exchange (ETDEWEB)

    Liu, W.Q., E-mail: liuweiqiang77@hotmail.co [College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124 (China); Sun, H. [College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124 (China); Yi, X.F. [Anhui Earth-panda Advance Magnetic Material Co., Ltd., Anhui 231500 (China); Liu, X.C.; Zhang, D.T. [College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124 (China); Yue, M., E-mail: yueming@bjut.edu.c [College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124 (China); Zhang, J.X. [College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124 (China)

    2010-07-02

    Nd-Fe-B permanent magnets with a small amount of Dysprosium (Dy) nanoparticles doping were prepared by conventional sintered method, and the microstructure and magnetic properties of the magnets were studied. Investigation shows that the coercivity rises gradually, while the remanence decreases simultaneously with increased Dy doping amount. As a result, the magnet with 1.5 wt.% Dy exhibits optimal magnetic properties. Further investigation presumed that Dy is enriched as (Nd, Dy){sub 2}Fe{sub 14}B phase in the surface region of the Nd{sub 2}Fe{sub 14}B matrix grains indicated by the enhancement of the magneto-crystalline anisotropy field of the Nd{sub 2}Fe{sub 14}B phase. As a result, the magnet doped with a small amount of Dy nanoparticles possesses remarkably enhanced coercivity without sacrificing its magnetization noticeably.

  7. Which patients are in highest risk of coercive measures after admission to a general psychiatric ward?

    DEFF Research Database (Denmark)

    Højlund, Mikkel; Høgh, Lene; Nørregaard, Anne-Mette

    2017-01-01

    Background Coercive measures, especially mechanical restraint, are more frequently applied to some patients in general psychiatry. In order to tailor an intervention to reduce mechanical restraint we sought to create an evidence base speci c to our population in general psychiatry. Aims To identi...... is currently being tested at the Department of Psychiatry in Aabenraa, Denmark and has until now lead to a decrease in episodes with mechanical restraint from 18 in 2015 to 9 in 2016, and only 1 episode in the rst half of 2017.......Background Coercive measures, especially mechanical restraint, are more frequently applied to some patients in general psychiatry. In order to tailor an intervention to reduce mechanical restraint we sought to create an evidence base speci c to our population in general psychiatry. Aims To identify...

  8. The fabrication and the coercivity mechanism of segmented (Ni/Fe)m composite nanowire arrays

    International Nuclear Information System (INIS)

    Xue, D S; Shi, H G; Si, M S

    2004-01-01

    Arrays of segmented (Ni/Fe) m (m = 1,2,3,4,5) composite nanowires about 3 μm in length and with aspect ratios of about 60 were electrodeposited on anodic porous alumina templates using a dual bath. The structure, morphology and magnetic properties of the samples were characterized by means of x-ray diffraction, transmission electron microscopy and vibrating sample magnetometry, respectively. It is found that Fe(110) and Ni(111) orientations along nanowire axis are preferred. The large aspect ratio of the composite nanowires reveals a strong shape magnetic anisotropy. As the number of the Ni/Fe composite segments m increases, the coercivity of the nanowire arrays, with the magnetic field applied parallel to the wire, gradually increases. The coercivity variation of the segmented composite nanowires is closely related to the effective exchange coupling between the Ni and Fe segments

  9. Out-of-plane coercive field of Ni80Fe20 antidot arrays

    International Nuclear Information System (INIS)

    Gao Chunhong; Chen Ke; Lue Ling; Zhao Jianwei; Chen Peng

    2010-01-01

    The out-of-plane magnetic anisotropy and out-of-plane magnetization reversal process of nanoscale Ni 80 Fe 20 antidot arrays deposited by magnetron sputtering technique on an anodic aluminum oxide (AAO) membrane are investigated. The angular dependence of out-of-plane remanent magnetization of Ni 80 Fe 20 antidot arrays shows that the maximum remanence is in-plane and the squareness of the out-of-plane hysteresis loop follow a |cos θ| dependence. The angular dependence of out-of-plane coercivity of Ni 80 Fe 20 antidot arrays shows that the maximum coercivity lies on the surface of a cone with its symmetric axis normal to the sample plane, which indicates a transition of magnetic reversal from curling to coherent rotation when changing the angle between the applied magnetic field and the sample plane.

  10. Out-of-plane coercive field of Ni 80Fe 20 antidot arrays

    Science.gov (United States)

    Gao, Chunhong; Chen, Ke; Lü, Ling; Zhao, Jianwei; Chen, Peng

    2010-11-01

    The out-of-plane magnetic anisotropy and out-of-plane magnetization reversal process of nanoscale Ni 80Fe 20 antidot arrays deposited by magnetron sputtering technique on an anodic aluminum oxide (AAO) membrane are investigated. The angular dependence of out-of-plane remanent magnetization of Ni 80Fe 20 antidot arrays shows that the maximum remanence is in-plane and the squareness of the out-of-plane hysteresis loop follow a |cos θ| dependence. The angular dependence of out-of-plane coercivity of Ni 80Fe 20 antidot arrays shows that the maximum coercivity lies on the surface of a cone with its symmetric axis normal to the sample plane, which indicates a transition of magnetic reversal from curling to coherent rotation when changing the angle between the applied magnetic field and the sample plane.

  11. Angular dependence of coercivity with temperature in Co-based nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Bran, C., E-mail: cristina.bran@icmm.csic.es [Institute of Materials Science of Madrid, CSIC, 28049 Madrid (Spain); Espejo, A.P. [Departamento de Física, Universidad de Santiago de Chile (USACH) and Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Avenida Ecuador 3493, 9170124 Santiago (Chile); Palmero, E.M. [Institute of Materials Science of Madrid, CSIC, 28049 Madrid (Spain); Escrig, J. [Departamento de Física, Universidad de Santiago de Chile (USACH) and Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Avenida Ecuador 3493, 9170124 Santiago (Chile); Vázquez, M. [Institute of Materials Science of Madrid, CSIC, 28049 Madrid (Spain)

    2015-12-15

    The magnetic behavior of arrays of Co and CoFe nanowire arrays has been measured in the temperature range between 100 and 300 K. We have paid particular attention to the angular dependence of magnetic properties on the applied magnetic field orientation. The experimental angular dependence of coercivity has been modeled according to micromagnetic analytical calculations, and we found that the propagation of a transversal domain wall mode gives the best fitting with experimental observations. That reversal mode holds in the whole measuring temperature range, for nanowires with different diameters and crystalline structure. Moreover, the quantitative strength of the magnetocrystalline anisotropy and its magnetization easy axis are determined to depend on the crystalline structure and nanowires diameter. The evolution of the magnetocrystalline anisotropy with temperature for nanowires with different composition gives rise to an opposite evolution of coercivity with increasing temperature: it decreases for CoFe while it increases for Co nanowire arrays.

  12. Superparamagnetism and coercivity in HCP-Co nanoparticles dispersed in silica matrix

    Energy Technology Data Exchange (ETDEWEB)

    Julian Fernandez, C. de E-mail: dejulian@padova.infm.it; Mattei, G.; Sangregorio, C.; Battaglin, C.; Gatteschi, D.; Mazzoldi, P

    2004-05-01

    The magnetic properties of Co HCP nanoparticles dispersed in a silica matrix with sizes between 2{+-}0.7 and 5{+-}2.2 nm were investigated. The temperature dependence of zero-field cooled and field cooled magnetizations and of the coercive field were analyzed considering the thermal activated demagnetization process. Enhanced anisotropy was observed for the 2 nm nanoparticles, while the demagnetization process of the larger ones is dominated by interparticle interactions.

  13. Superparamagnetism and coercivity in HCP-Co nanoparticles dispersed in silica matrix

    International Nuclear Information System (INIS)

    Julian Fernandez, C. de; Mattei, G.; Sangregorio, C.; Battaglin, C.; Gatteschi, D.; Mazzoldi, P.

    2004-01-01

    The magnetic properties of Co HCP nanoparticles dispersed in a silica matrix with sizes between 2±0.7 and 5±2.2 nm were investigated. The temperature dependence of zero-field cooled and field cooled magnetizations and of the coercive field were analyzed considering the thermal activated demagnetization process. Enhanced anisotropy was observed for the 2 nm nanoparticles, while the demagnetization process of the larger ones is dominated by interparticle interactions

  14. Attitude of young psychiatrists toward coercive measures in psychiatry: a case vignette study in Japan

    Directory of Open Access Journals (Sweden)

    Wake Yosuke

    2009-09-01

    Full Text Available Abstract Background Every psychiatrist must pay careful attention to avoid violating human rights when initiating coercive treatments such as seclusion and restraint. However, these interventions are indispensable in clinical psychiatry, and they are often used as strategies to treat agitated patients. In this study, we investigated young psychiatrists' attitudes toward psychiatric coercive measures. Methods A total of 183 young psychiatrists participated as subjects in our study. A questionnaire with a case vignette describing a patient with acute psychosis was sent to the study subjects via the Internet or by mail. This questionnaire included scoring the necessity for hospitalization, and the likelihood of prescribing seclusion and/or restraint, on a 9-point Likert scale (with 9 indicating strong agreement. Results There was general agreement among the study subjects that the case should be admitted to a hospital (8.91 ± 0.3 and secluded (8.43 ± 1.0. The estimated length of hospitalization was 13.53 ± 6.4 weeks. Regarding the likelihood of prescribing restraint, results showed great diversity (5.14 ± 2.5 on 9-point scale; psychiatrists working at general hospitals scored significantly higher (6.25 ± 2.5 than those working at university hospitals (5.02 ± 2.3 or psychiatric hospitals (4.15 ± 2.6. A two-group comparison of the length of inpatient care revealed a significant difference between those psychiatrists who scored 1-3 (n = 55, 14.22 ± 7.4 wks and those who scored 7-9 (n = 62, 12.22 ± 4.0 regarding the need to use restraint. Conclusion Our results may reflect the current dilemma in Japanese psychiatry wherein psychiatrists must initiate coercive measures to shorten hospitalization stays. This study prompted its subject psychiatrists to consider coercive psychiatric treatments.

  15. On the angular dependence of the coercivity of NdFeB hard magnets

    International Nuclear Information System (INIS)

    Jahn, L.; Christoph, V.; Pastuschenko, J.S.

    1989-01-01

    In order to test the model assumptions on hard magnetic properties of sintered NdFeB magnets, a comparison of the measured and calculated values of the magnetization and remanence coercivities H C and H R , respectively, as a function of the angle between texture axis and external field θ in Nd 16 Fe 76 B 8 and (Nd 0.9 Tb 0.1 ) 16 Fe 76 B 8 is given and explained qualitatively

  16. Cognitive Targeting: A Coercive Air Power Theory for Conventional Escalation Control Against Nuclear Armed Adversaries

    Science.gov (United States)

    2016-06-01

    strategic,” in the cognitive targeting paradigm , are those that directly disable - in the strategic audience’s mind – the attractiveness or...This study analyses the applicability of three operational targeting paradigms to coerce a nuclear-armed adversary in a regional crisis, while...principles and elements of war and understand the coercive ability of utility targeting (a capabilities-based targeting paradigm , CBTP), axiological

  17. The enhanced coercivity for the magnetite/silica nanocomposite at room temperature

    International Nuclear Information System (INIS)

    Wu Mingzai; Xiong Ying; Peng Zhenmeng; Jiang Nan; Qi Haiping; Chen Qianwang

    2004-01-01

    Magnetite/silica nanocomposite was synthesized by a facile solvothermal processing at 150 deg. C for about 10 h. X-ray diffraction (XRD) analysis revealed the effect of annealing on the crystallinity of silica. Transmission electron microscopy (TEM) images showed the good dispersion of magnetite in the silica matrix. Magnetic properties of the nanocomposite were characterized by vibration sample magnetometer (VSM), and the enhanced coercivity was explained by the intrinsic anisotropy of the particles enhanced by the interparticle dipolar fields

  18. Influence of microstructural change of the interface between Nd2Fe14B and Nd-O phases on coercivity of Nd-Fe-B films by oxidation and subsequent low-temperature annealing

    International Nuclear Information System (INIS)

    Matsuura, Masashi; Tezuka, Nobuki; Sugimoto, Satoshi; Goto, Ryota

    2011-01-01

    This study provides the influence of microstructural change of the interface between Nd 2 Fe 14 B and Nd-O phases on coercivity of Nd-Fe-B thin films during annealing at low temperature (∼350 deg. C). All films were prepared by using ultra high vacuum (UHV) magnetron sputtering, and the Nd-Fe-B layer was oxidized under Ar gas atmosphere (O 2 content; ∼2 Vol.ppm). Then, the films were annealed at 250-350 deg. C under UHV condition. After oxidation, the coercivity of Nd-Fe-B film decreased to around 40% of the coercivity of as-deposited Nd-Fe-B film. The Nd-rich phase changed from α-Nd to amorphous Nd(-O), and the interface of Nd 2 Fe 14 B/Nd(-O) became rough. In the Nd-Fe-B films oxidized and subsequent annealed at 350 deg. C, the coercivity decreased to around 20%. In the films, poly crystalline hcp Nd 2 O 3 phase crystallized in Nd-rich phase, and there were some steps at the surface of Nd 2 Fe 14 B phase contacting with hcp Nd 2 O 3 phase. Regardless of crystal orientation of Nd 2 Fe 14 B, the microstructural changes of the interface described above were observed.

  19. Temperature dependence of coercivity behavior in iron films on silicone oil surfaces

    International Nuclear Information System (INIS)

    Xu Xiaojun; Ye Quanlin; Ye Gaoxiang

    2007-01-01

    A new iron film system, deposited on silicone oil surfaces by vapor phase deposition method, has been fabricated and its microstructure as well as magnetic properties has been studied. It is found that the temperature dependence of the coercive field H c (T) of the films exhibits a peak around a critical temperature T crit =10-15 K: for the temperature T crit ,H c (T) increases with the temperature; if T>T crit , however, it decreases rapidly and then approaches a steady value as T further increases. Our study shows that, for T>T crit , the observed coercivity behavior is mainly dominated by the effect of the non-uniform single-domain particle size distribution, and for T crit , the anomalous coercivity behavior may be resulted from the surface anisotropy, the surface effect and the characteristic internal stress distribution in the films. The influence of the shape and size of the particles on the thermal dependence of the magnetization is also investigated

  20. Micromagnetic simulation and the angular dependence of coercivity and remanence for array of polycrystalline nickel nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Fuentes, G.P.; Holanda, J. [Departamento de Física, Universidade Federal de Pernambuco, Recife, PE 50670-901 (Brazil); Guerra, Y.; Silva, D.B.O.; Farias, B.V.M. [Pós-Graduação em Ciência de Materiais, Universidade Federal de Pernambuco, Recife, PE 50670-901 (Brazil); Padrón-Hernández, E., E-mail: padron@df.ufpe.br [Departamento de Física, Universidade Federal de Pernambuco, Recife, PE 50670-901 (Brazil); Pós-Graduação em Ciência de Materiais, Universidade Federal de Pernambuco, Recife, PE 50670-901 (Brazil)

    2017-02-01

    We present here our experimental results for the preparation and characterization of nanowires of nickel and the analysis of the angular dependence of coercivity and remanence using experimental data and micromagnetic simulation. The fabrication was made by using aluminum oxide membranes as templates and deposited nickel by an electrochemical route. The magnetic measurements showed that coercivity and remanence are dependent of the angle of application of the external magnetic field. Our results are different than that expected for the coherent, vortex and transversal modes of the reversion for the magnetic moments. According to the transmission electron microscopy analysis we can see that our nanowires have not a perfect cylindrical format. That is why we have used the ellipsoids chain model for better understanding the real structure of wires and its relation with the magnetic behavior. In order to generate theoretical results for this configuration we have made micromagnetic simulation using Nmag code. Our numerical results for the realistic distances are in correspondence with the magnetic measurements and we can see that there are contradictions if we assume the transverse reversal mode. Then, we can conclude that structure of nanowires should be taken into account to understand the discrepancies reported in the literature for the reversion mechanism in arrays of nickel nanowires. - Highlights: • We present answers for the problem of angular dependence for the coercivity and remanence. • Experimental and theoretical results confirmed the great importance of the real structure. • Micromagnetic calculations confirmed the importance of the real structure.

  1. High intensity interior aircraft noise increases the risk of high diastolic blood pressure in Indonesian Air Force pilots

    Directory of Open Access Journals (Sweden)

    Minarma Siagian

    2009-12-01

    Full Text Available Aim: To analyze the effects of aircraft noise, resting pulse rate, and other factors on the risk of high diastolic blood pressure (DBP in Indonesian Air Force pilots.Methods: A nested case-control study was conducted using data extracted from annual medical check-ups indoctrination aerophysiologic training records at the Saryanto Aviation and Aerospace Health Institute (LAKESPRA in Jakarta from January 2003 – September 2008. For analysis of DBP: the case group with DBP ≥ 90 mmHg were compared with contral group with DBP < 79 mmHG. One case matched to 12 controls.Results: Out of 567 pilots, 544 (95.9% had complete medical records. For this analysis there were 40 cases of high DBP and 480 controls for DBP. Pilots exposed to aircraft noise 90-95 dB rather than 70-80 dB had a 2.7-fold increase for high DBP [adjusted odds ratio (ORa = 2.70; 95% confi dence interval (CI = 1.05-6.97]. Pilots with resting pulse rates of ≥ 81/minute rather than ≤ 80/minute had a 2.7-fold increase for high DBP (ORa = 2.66; 95% CI = 1.26-5.61. In terms of total fl ight hours, pilots who had 1401-11125 hours rather than 147-1400 hours had a 3.2-fold increase for high DBP (ORa = 3.18; 95% CI = 1.01-10.03.Conclusion: High interior aircraft noise, high total flight hours,  and high resting pulse rate, increased risk for high DBP. Self assessment of resting pulse rate can be used to control the risk of high DBP. (Med J Indones 2009; 276: 276-82Keywords: diastolic blood pressure, aircraft noise, resting pulse rate, military pilots

  2. High-threshold motor unit firing reflects force recovery following a bout of damaging eccentric exercise

    Science.gov (United States)

    Macgregor, Lewis J.

    2018-01-01

    Exercise-induced muscle damage (EIMD) is associated with impaired muscle function and reduced neuromuscular recruitment. However, motor unit firing behaviour throughout the recovery period is unclear. EIMD impairment of maximal voluntary force (MVC) will, in part, be caused by reduced high-threshold motor unit firing, which will subsequently increase to recover MVC. Fourteen healthy active males completed a bout of eccentric exercise on the knee extensors, with measurements of MVC, rate of torque development and surface electromyography performed pre-exercise and 2, 3, 7 and 14 days post-exercise, on both damaged and control limb. EIMD was associated with decreased MVC (235.2 ± 49.3 Nm vs. 161.3 ± 52.5 Nm; p motor unit firing rate was reduced (16.4 ± 2.2 Hz vs. 12.6 ± 1.7 Hz; p motor units only, 48h post-exercise, and common drive was elevated (0.36 ± 0.027 vs. 0.56 ± 0.032; pmotor units was reduced in parallel with impaired muscle function, whilst early recruited motor units remained unaltered. Common drive of motor units increased in offset to the firing rate impairment. These alterations correlated with the recovery of force decrement, but not of pain elevation. This study provides fresh insight into the central mechanisms associated with EIMD recovery, relative to muscle function. These findings may in turn lead to development of novel management and preventative procedures. PMID:29630622

  3. DOE Task Force meeting on Electrical Breakdown of Insulating Ceramics in a High Radiation Field

    International Nuclear Information System (INIS)

    Green, P.H.

    1991-08-01

    This volume contains the abstracts and presentation material from the Research Assistance Task Force Meeting ''Electrical Breakdown of Insulating Ceramics in a High-Radiation Field.'' The meeting was jointly sponsored by the Office of Basic Energy Sciences and the Office of Fusion Energy of the US Department of Energy in Vail, Colorado, May 28--June 1, 1991. The 26 participants represented expertise in fusion, radiation damage, electrical breakdown, ceramics, and semiconductor and electronic structures. These participants came from universities, industries, national laboratories, and government. The attendees represented eight nations. The Task Force meeting was organized in response to the recent discovery that a combination of temperature, electric field, and radiation for an extended period of time has an unexplained adverse effect in ceramics, termed radiation-enhanced electrical degradation (REED). REED occurs after an incubation period and continues to accelerate with irradiation until the ceramics can no longer be regarded as insulators. It appears that REED is irreversible and the ceramic insulators cannot be readily annealed or otherwise repaired for future services. This effect poses a serious threat for fusion reactors, which require electrical insulators in diagnostic devices, in radio frequency and neutral beam systems, and in magnetic assemblies. The problem of selecting suitable electrical insulating materials in thus far more serious than previously anticipated

  4. A high-force controllable MR fluid damper–liquid spring suspension system

    International Nuclear Information System (INIS)

    Raja, Pramod; Wang, Xiaojie; Gordaninejad, Faramarz

    2014-01-01

    The goal of the present research is to investigate the feasibility of incorporating a liquid spring in a semi-active suspension system for use in heavy off-road vehicles. A compact compressible magneto-rheological (MR) fluid damper–liquid spring (CMRFD–LS) with high spring rate is designed, developed and tested. Compressible MR fluids with liquid spring and variable damping characteristics are used. These fluids can offer unique functions in reducing the volume/weight of vehicle struts and improving vehicle dynamic stability and safety. The proposed device consists of a cylinder and piston–rod arrangement with an internal annular MR fluid valve. The internal pressures in the chambers on either side of the piston develop the spring force, while the pressure difference across the MR valve produces the damping force, when the fluid flows through the MR valve. Harmonic characterization of the CMRFD–LS is performed and the force–displacement results are presented. A fluid-mechanics based model is also developed to predict the performance of the system at different operating conditions and compared to the experimental results. Good agreement between the experimental results and theoretical predictions has been achieved. (paper)

  5. Stacking it up: Exploring the limits of ultra-high resolution atomic force microscopy

    NARCIS (Netherlands)

    van der Heijden, N.J.

    2017-01-01

    Atomic force microscopy (AFM) is a technique wherein an atomically sharp needle raster scans across a surface, detecting forces between it and the sample. In state-of-the-art AFM experiments the measured forces are typically on the order of pico-Newtons, and the lateral resolution is on the order of

  6. Impact of Cutting Forces and Chip Microstructure in High Speed Machining of Carbon Fiber – Epoxy Composite Tube

    Directory of Open Access Journals (Sweden)

    Roy Y. Allwin

    2017-09-01

    Full Text Available Carbon fiber reinforced polymeric (CFRP composite materials are widely used in aerospace, automobile and biomedical industries due to their high strength to weight ratio, corrosion resistance and durability. High speed machining (HSM of CFRP material is needed to study the impact of cutting parameters on cutting forces and chip microstructure which offer vital inputs to the machinability and deformation characteristics of the material. In this work, the orthogonal machining of CFRP was conducted by varying the cutting parameters such as cutting speed and feed rate at high cutting speed/feed rate ranges up to 346 m/min/ 0.446 mm/rev. The impact of the cutting parameters on cutting forces (principal cutting, feed and thrust forces and chip microstructure were analyzed. A significant impact on thrust forces and chip segmentation pattern was seen at higher feed rates and low cutting speeds.

  7. Relationships Between Shame, Restrictiveness, Authoritativeness, and Coercive Control in Men Mandated to a Domestic Violence Offenders Program.

    Science.gov (United States)

    Kaplenko, Hannah; Loveland, Jennifer E; Raghavan, Chitra

    2018-04-01

    Coercive control, a key element of intimate partner violence (IPV), is defined as an abuse dynamic that intends to strip the target of autonomy and liberty. While coercive control is gaining popularity in the research world, little is known about its correlates and causes. This study sought to examine how shame and men's need for dominance, measured by two trait indexes of dominance, restrictiveness and the need for authority, influence coercive control. The present study used a diverse sample of men (n = 134) who were mandated to attend a domestic violence offenders program. Findings suggest that shame plays a role in the commission of coercively controlling behavior both directly and partially through its influence on authority but not through restrictiveness. Implications for understanding IPV in a domestic violence offenders program are discussed.

  8. Electron beam fabrication and characterization of high-resolution magnetic force microscopy tips

    Science.gov (United States)

    Rührig, M.; Porthun, S.; Lodder, J. C.; McVitie, S.; Heyderman, L. J.; Johnston, A. B.; Chapman, J. N.

    1996-03-01

    The stray field, magnetic microstructure, and switching behavior of high-resolution electron beam fabricated thin film tips for magnetic force microscopy (MFM) are investigated with different imaging modes in a transmission electron microscope (TEM). As the tiny smooth carbon needles covered with a thermally evaporated magnetic thin film are transparent to the electron energies used in these TEMs it is possible to observe both the external stray field emanating from the tips as well as their internal domain structure. The experiments confirm the basic features of electron beam fabricated thin film tips concluded from various MFM observations using these tips. Only a weak but highly concentrated stray field is observed emanating from the immediate apex region of the tip, consistent with their capability for high resolution. It also supports the negligible perturbation of the magnetization sample due to the tip stray field observed in MFM experiments. Investigation of the magnetization distributions within the tips, as well as preliminary magnetizing experiments, confirm a preferred single domain state of the high aspect ratio tips. To exclude artefacts of the observation techniques both nonmagnetic tips and those supporting different magnetization states are used for comparison.

  9. A serial-kinematic nanopositioner for high-speed atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Wadikhaye, Sachin P., E-mail: sachin.wadikhaye@uon.edu.au; Yong, Yuen Kuan; Reza Moheimani, S. O. [School of Electrical Engineering and Computer Science, The University of Newcastle, Callaghan, NSW (Australia)

    2014-10-15

    A flexure-guided serial-kinematic XYZ nanopositioner for high-speed Atomic Force Microscopy is presented in this paper. Two aspects influencing the performance of serial-kinematic nanopositioners are studied in this work. First, mass reduction by using tapered flexures is proposed to increased the natural frequency of the nanopositioner. 25% increase in the natural frequency is achieved due to reduced mass with tapered flexures. Second, a study of possible sensor positioning in a serial-kinematic nanopositioner is presented. An arrangement of sensors for exact estimation of cross-coupling is incorporated in the proposed design. A feedforward control strategy based on phaser approach is presented to mitigate the dynamics and nonlinearity in the system. Limitations in design approach and control strategy are discussed in the Conclusion.

  10. Atomic force microscopy study of anion intercalation into highly oriented pyrolytic graphite

    Energy Technology Data Exchange (ETDEWEB)

    Alliata, D; Haering, P; Haas, O; Koetz, R [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Siegenthaler, H [University of Berne (Switzerland)

    1999-08-01

    In the context of ion transfer batteries, we studied highly oriented pyrolytic graphite (HOPG) in perchloric acid, as a model to elucidate the mechanism of electrochemical intercalation in graphite. Aim of the work is the local and time dependent investigation of dimensional changes of the host material during electrochemical intercalation processes on the nanometer scale. We used atomic force microscopy (AFM), combined with cyclic voltammetry, as in-situ tool of analysis during intercalation and expulsion of perchloric anions into the HOPG electrodes. According to the AFM measurements, the HOPG interlayer spacing increases by 32% when perchloric anions intercalate, in agreement with the formation of stage IV of graphite intercalation compounds. (author) 3 figs., 3 refs.

  11. High-speed imaging upgrade for a standard sample scanning atomic force microscope using small cantilevers

    Energy Technology Data Exchange (ETDEWEB)

    Adams, Jonathan D.; Nievergelt, Adrian; Erickson, Blake W.; Yang, Chen; Dukic, Maja; Fantner, Georg E., E-mail: georg.fantner@epfl.ch [Ecole Polytechnique Fédérale de Lausanne, Lausanne (Switzerland)

    2014-09-15

    We present an atomic force microscope (AFM) head for optical beam deflection on small cantilevers. Our AFM head is designed to be small in size, easily integrated into a commercial AFM system, and has a modular architecture facilitating exchange of the optical and electronic assemblies. We present two different designs for both the optical beam deflection and the electronic readout systems, and evaluate their performance. Using small cantilevers with our AFM head on an otherwise unmodified commercial AFM system, we are able to take tapping mode images approximately 5–10 times faster compared to the same AFM system using large cantilevers. By using additional scanner turnaround resonance compensation and a controller designed for high-speed AFM imaging, we show tapping mode imaging of lipid bilayers at line scan rates of 100–500 Hz for scan areas of several micrometers in size.

  12. Serum induced degradation of 3D DNA box origami observed by high speed atomic force microscope

    DEFF Research Database (Denmark)

    Jiang, Zaixing; Zhang, Shuai; Yang, Chuanxu

    2015-01-01

    3D DNA origami holds tremendous potential to encapsulate and selectively release therapeutic drugs. Observations of real-time performance of 3D DNA origami structures in physiological environment will contribute much to its further applications. Here, we investigate the degradation kinetics of 3D...... DNA box origami in serum using high-speed atomic force microscope optimized for imaging 3D DNA origami in real time. The time resolution allows characterizing the stages of serum effects on individual 3D DNA box origami with nanometer resolution. Our results indicate that the whole digest process...... is a combination of a rapid collapse phase and a slow degradation phase. The damages of box origami mainly happen in the collapse phase. Thus, the structure stability of 3D DNA box origami should be further improved, especially in the collapse phase, before clinical applications...

  13. Adsorption and manipulation of carbon onions on highly oriented pyrolytic graphite studied with atomic force microscopy

    International Nuclear Information System (INIS)

    Zhou Jianfeng; Shen Ziyong; Hou Shimin; Zhao Xingyu; Xue Zengquan; Shi Zujin; Gu Zhennan

    2007-01-01

    Carbon onions produced by DC arc discharge method were deposited on highly oriented pyrolytic graphite (HOPG) surface and their adsorption and manipulation was studied using an atomic force microscopy (AFM). Well-dispersed adsorption of carbon onions on HOPG surface was obtained and aggregations of onions were not observed. The van der Waals interaction between the onion and HOPG surface and that between two onions, were calculated and discussed using Hamaker's theory. The manipulation of adsorbed onions on HOPG surface was realized using the AFM in both the raster mode and the vector mode. The controllability and precision of two manipulation modes were compared and the vector mode manipulation was found superior, and is a useful technique for the construction of nano-scale devices based on carbon onions

  14. A serial-kinematic nanopositioner for high-speed atomic force microscopy

    International Nuclear Information System (INIS)

    Wadikhaye, Sachin P.; Yong, Yuen Kuan; Reza Moheimani, S. O.

    2014-01-01

    A flexure-guided serial-kinematic XYZ nanopositioner for high-speed Atomic Force Microscopy is presented in this paper. Two aspects influencing the performance of serial-kinematic nanopositioners are studied in this work. First, mass reduction by using tapered flexures is proposed to increased the natural frequency of the nanopositioner. 25% increase in the natural frequency is achieved due to reduced mass with tapered flexures. Second, a study of possible sensor positioning in a serial-kinematic nanopositioner is presented. An arrangement of sensors for exact estimation of cross-coupling is incorporated in the proposed design. A feedforward control strategy based on phaser approach is presented to mitigate the dynamics and nonlinearity in the system. Limitations in design approach and control strategy are discussed in the Conclusion

  15. Coupled force-balance and particle-occupation rate equations for high-field electron transport

    International Nuclear Information System (INIS)

    Lei, X. L.

    2008-01-01

    It is pointed out that in the framework of balance-equation approach, the coupled force-balance and particle-occupation rate equations can be used as a complete set of equations to determine the high-field transport of semiconductors in both strong and weak electron-electron interaction limits. We call to attention that the occupation rate equation conserves the total particle number and maintains the energy balance of the relative electron system, and there is no need to introduce any other term in it. The addition of an energy-drift term in the particle-occupation rate equation [Phys. Rev. B 71, 195205 (2005)] is physically inadequate for the violation of the total particle-number conservation and the energy balance. It may lead to a substantial unphysical increase of the total particle number by the application of a dc electric field

  16. The health and cost implications of high body mass index in Australian defence force personnel

    Directory of Open Access Journals (Sweden)

    Peake Jonathan

    2012-06-01

    Full Text Available Abstract Background Frequent illness and injury among workers with high body mass index (BMI can raise the costs of employee healthcare and reduce workforce maintenance and productivity. These issues are particularly important in vocational settings such as the military, which require good physical health, regular attendance and teamwork to operate efficiently. The purpose of this study was to compare the incidence of injury and illness, absenteeism, productivity, healthcare usage and administrative outcomes among Australian Defence Force personnel with varying BMI. Methods Personnel were grouped into cohorts according to the following ranges for (BMI: normal (18.5 − 24.9 kg/m2; n = 197, overweight (25–29.9 kg/m2; n = 154 and obese (≥30 kg/m2 with restricted body fat (≤28% for females, ≤24% for males (n = 148 and with no restriction on body fat (n = 180. Medical records for each individual were audited retrospectively to record the incidence of injury and illness, absenteeism, productivity, healthcare usage (i.e., consultation with medical specialists, hospital stays, medical investigations, prescriptions and administrative outcomes (e.g., discharge from service over one year. These data were then grouped and compared between the cohorts. Results The prevalence of injury and illness, cost of medical specialist consultations and cost of medical scans were all higher (p  Conclusions High BMI in the military increases healthcare usage, but does not disrupt workforce maintenance. The greater prevalence of injury and illness, greater healthcare usage and lower productivity in obese Australian Defence Force personnel is not related to higher levels of body fat.

  17. Back pain and its consequences among Polish Air Force pilots flying high performance aircraft

    Directory of Open Access Journals (Sweden)

    Aleksandra Truszczyńska

    2014-04-01

    Full Text Available Objectives: Back pain in Air Force fast jet pilots has been studied by several air forces and found to be relatively common. The objective of the study was to determine the prevalence and degree of the pain intensity in the cervical, thoracic and lumbar spine, subjective risk factors and their effect on the pilots' performance while flying high maneuver aircrafts and the consequences for cognitive deficiencies. Material and Methods: The study was designed as a retrospective, anonymous questionnaire survey, collecting data on the age, aircraft type, flying hours, pain characteristics, physical activity, etc. The study was participated by 94 pilots aged 28-45 years (mean age: 35.9±3.3 years, actively flying fast jet aircrafts Su-22, Mig-29 and F-16. The estimates regarding the level of the subjective back pain were established using visual analogue scales (VAS. Results: The values of the Cochran and Cox T-test for heterogeneous variances are as follows: for the total number of flying hours: F = 2.53, p = 0.0145, for the pilot's age: F = 3.15, p = 0.003, and for the BMI factor F = 2.73, p = 0.008. Conclusions: Our questionnaire survey showed a significant problem regarding spinal conditions in high performance aircraft pilots. The determination of the risk factors may lead to solving this problem and help eliminate the effect of the unfavorable environment on piloting jet aircrafts. Experiencing back pain during the flight might influence the mission performance and flight safety. The costs of pilots education are enormous and inability to fly, or even disability, leads to considerable economic loss. More research on specific prevention strategies is warranted in order to improve the in-flight working environment of fighter pilots.

  18. High-threshold motor unit firing reflects force recovery following a bout of damaging eccentric exercise.

    Science.gov (United States)

    Macgregor, Lewis J; Hunter, Angus M

    2018-01-01

    Exercise-induced muscle damage (EIMD) is associated with impaired muscle function and reduced neuromuscular recruitment. However, motor unit firing behaviour throughout the recovery period is unclear. EIMD impairment of maximal voluntary force (MVC) will, in part, be caused by reduced high-threshold motor unit firing, which will subsequently increase to recover MVC. Fourteen healthy active males completed a bout of eccentric exercise on the knee extensors, with measurements of MVC, rate of torque development and surface electromyography performed pre-exercise and 2, 3, 7 and 14 days post-exercise, on both damaged and control limb. EIMD was associated with decreased MVC (235.2 ± 49.3 Nm vs. 161.3 ± 52.5 Nm; p exercise. Mean motor unit firing rate was reduced (16.4 ± 2.2 Hz vs. 12.6 ± 1.7 Hz; p motor units only, 48h post-exercise, and common drive was elevated (0.36 ± 0.027 vs. 0.56 ± 0.032; pexercise. The firing rate of high-threshold motor units was reduced in parallel with impaired muscle function, whilst early recruited motor units remained unaltered. Common drive of motor units increased in offset to the firing rate impairment. These alterations correlated with the recovery of force decrement, but not of pain elevation. This study provides fresh insight into the central mechanisms associated with EIMD recovery, relative to muscle function. These findings may in turn lead to development of novel management and preventative procedures.

  19. Evaluation of the clamping force in high tension bolt by using the ultrasonic nonlinearity

    International Nuclear Information System (INIS)

    Jang, Kyung Young; Cheon, Hae Wha; Ha, Hob; Park, Man Sick; Kim, No You

    2005-01-01

    High tension bolts have been used widely for the clamping of many kinds of large structure. Therefore, its estimation has been regarded as main issue in the maintenance of high tension bolts. This paper proposes a novel method using the ultrasonic nonlinearity, which is based on the dependency of sound speed on the stress. For this we introduce nonlinear elastic constants in the stress-strain relationship, and derive the sound speed as a linear function of stress. In order to verify the usefulness of the proposed method, two kinds of experiments are carried out: The first one is to measure the sound speed when the bolt is stressed by the tension tester. The result showed good agreement with the expected linear relationship between the sound speed and the axial stress. The second one is to measure the sound speed when the bolt is stressed by the torque wrench. The results showed that the sound speed was decreased when the torque was increased. From these results we can say that the proposed method is enough useful to evaluate the clamping force in the high tension bolt.

  20. Evaluation of cutting force and surface roughness in high-speed milling of compacted graphite iron

    Directory of Open Access Journals (Sweden)

    Azlan Suhaimi Mohd

    2017-01-01

    Full Text Available Compacted Graphite Iron, (CGI is known to have outstanding mechanical strength and weight-to-strength ratio as compared to conventional grey cast iron, (CI. The outstanding characteristics of CGI is due to its graphite particle shape, which is presented as compacted vermicular particle. The graphite is interconnected with random orientation and round edges, which results in higher mechanical strength. Whereas, graphite in the CI consists of a smooth-surfaced flakes that easily propagates cracks which results in weaker and brittle properties as compared to CGI. Owing to its improved properties, CGI is considered as the best candidate material in substituting grey cast iron that has been used in engine block applications for years. However, the smooth implementation of replacing CI with CGI has been hindered due to the poor machinability of CGI especially at high cutting speed. The tool life is decreased by 20 times when comparing CGI with CI under the same cutting condition. This study investigates the effect of using cryogenic cooling and minimum quantity lubrication (MQL during high-speed milling of CGI (grade 450. Results showed that, the combination of internal cryogenic cooling and enhanced MQL improved the tool life, cutting force and surface quality as compared to the conventional flood coolant strategy during high-speed milling of CGI.

  1. Effect of sintering in a hydrogen atmosphere on the density and coercivity of (Sm,Zr)(Co,Cu,Fe)Z permanent magnets

    Science.gov (United States)

    Burkhanov, G. S.; Dormidontov, N. A.; Kolchugina, N. B.; Dormidontov, A. G.

    2018-04-01

    The effect of heat treatments in manufacturing (Sm,Zr)(Co,Cu,Fe)Z-based permanent magnets sintered in a hydrogen atmosphere on their properties has been studied. It was shown that the dynamics of the magnetic hardening of the studied magnets during heat treatments, in whole, corresponds to available concepts of phase transformations in five-component precipitation-hardened SmCo-based alloys. Peculiarities of the studied compositions consist in the fact that the coercive force magnitude of magnets quenched from the isothermal aging temperature is higher by an order of magnitude than those available in the literature. It was noted that, in using the selected manufacturing procedure, the increase in the density of samples does not finish at the sintering stage but continues in the course of solid-solution heat treatment.

  2. Influence of the phenomena occurring at the interface between L1{sub 0}-ordered-FePt and Fe on the coercivity behavior

    Energy Technology Data Exchange (ETDEWEB)

    Carbucicchio, Massimo, E-mail: massimo.carbucicchio@ino.it [University of Parma, Physics Department (Italy)

    2016-12-15

    L1{sub 0}-ordered FePt/Fe thin bi-layers were grown using a molecular beam epitaxy onto (100)-MgO substrates changing the soft Fe layer thickness. The study of the intermixing phenomena occurring at the hard/soft interfaces was carried out using surface Mössbauer spectroscopy. The magnetic properties of the samples were analyzed with a magneto-optical Kerr effect magnetometer. The surface morphology and the magnetic domains were analyzed with an UHV atomic and magnetic force microscopy in tapping and lift mode respectively.The present work clearly demonstrates that the degree of interface intermixing and reactions is the responsible for the coercivity behavior in exchange-spring magnets.

  3. A miniaturized, high frequency mechanical scanner for high speed atomic force microscope using suspension on dynamically determined points

    Energy Technology Data Exchange (ETDEWEB)

    Herfst, Rodolf; Dekker, Bert; Witvoet, Gert; Crowcombe, Will; Lange, Dorus de [Department of Optomechatronics, Netherlands Organization for Applied Scientific Research, TNO, Delft (Netherlands); Sadeghian, Hamed, E-mail: hamed.sadeghianmarnani@tno.nl, E-mail: h.sadeghianmarnani@tudelft.nl [Department of Optomechatronics, Netherlands Organization for Applied Scientific Research, TNO, Delft (Netherlands); Department of Precision and Microsystems Engineering, Delft University of Technology, Delft (Netherlands)

    2015-11-15

    One of the major limitations in the speed of the atomic force microscope (AFM) is the bandwidth of the mechanical scanning stage, especially in the vertical (z) direction. According to the design principles of “light and stiff” and “static determinacy,” the bandwidth of the mechanical scanner is limited by the first eigenfrequency of the AFM head in case of tip scanning and by the sample stage in terms of sample scanning. Due to stringent requirements of the system, simply pushing the first eigenfrequency to an ever higher value has reached its limitation. We have developed a miniaturized, high speed AFM scanner in which the dynamics of the z-scanning stage are made insensitive to its surrounding dynamics via suspension of it on specific dynamically determined points. This resulted in a mechanical bandwidth as high as that of the z-actuator (50 kHz) while remaining insensitive to the dynamics of its base and surroundings. The scanner allows a practical z scan range of 2.1 μm. We have demonstrated the applicability of the scanner to the high speed scanning of nanostructures.

  4. Aircraft vibration and other factors related to high systolic blood pressure in Indonesian Air Force pilots

    Directory of Open Access Journals (Sweden)

    Minarma Siagian

    2013-05-01

    Indonesian Air Force pilots doing annual medical check-ups at the Saryanto Institute for Medical and Health Aviation and Aerospace (LAKESPRA from 2003 – 2008. The data extracted from medical records were age, total flight hours, type of aircraft, fasting blood glucose and cholesterol levels, waist circumference, height and weight (Body Mass Index, and blood pressure.Results: Of 336 pilots, there were 16 with systolic pressure  140 mmHg. The pilot who had high vibration than low vibration had 2.8-fold to be high systolic blood pressure [adjusted odds ratio (ORa = 2.83; 95%confidence interval (CI =1.16-22.04. In term of average flight hours, those who had average flight hours of 300-622 hours per year compared to 29-299 hours per year had 5-fold increased risk to be high systolic blood pressure (ORa = 5.05; 95% CI =1.16-22.04]. Furthermore, those who had high than normal resting pulse rate had 2.4 times to be high systolic blood pressure (ORa = 2.37; 95 CI =0.81-6.97; P = 0.115.Conclusion:High aircraft vibration, high average flight hours per year, and high resting pulse rate increase risk high systolic blood pressure in air force pilots.Keywords: systolic blood pressure, aircraft vibration, resting pulse rate, pilots

  5. Fiber Fabry-Perot Force Sensor with Small Volume and High Performance for Assessing Fretting Damage of Steam Generator Tubes.

    Science.gov (United States)

    Huang, Peijian; Wang, Ning; Li, Junying; Zhu, Yong; Zhang, Jie

    2017-12-13

    Measuring the radial collision force between the steam generator tube (SGT) and the tube support plate (TSP) is essential to assess the fretting damage of the SGT. In order to measure the radial collision force, a novel miniaturized force sensor based on fiber Fabry-Perot (F-P) was designed, and the principle and characteristics of the sensor were analyzed in detail. Then, the F-P force sensor was successfully fabricated and calibrated, and the overall dimensions of the encapsulated fiber F-P sensor were 17 mm × 5 mm × 3 mm (L × W × H). The sensor works well in humid, high pressure (10 MPa), high temperature (350 °C), and vibration (40 kHz) environments. Finally, the F-P force sensors were installed in a 1:1 steam generator test loop, and the radial collision force signals between the SGT and the TSP were obtained. The experiments indicated that the F-P sensor with small volume and high performance could help in assessing the fretting damage of the steam generator tubes.

  6. Predicting family health and well-being after separation from an abusive partner: role of coercive control, mother's depression and social support.

    Science.gov (United States)

    Broughton, Sharon; Ford-Gilboe, Marilyn

    2017-08-01

    Drawing on the Strengthening Capacity to Limit Intrusion theory, we tested whether intrusion (i.e. unwanted interference from coercive control, custody and access difficulties and mother's depressive symptoms) predicted family health and well-being after separation from an abusive partner/father, and whether social support moderated intrusion effects on family health and well-being. Experiences of coercive control and the negative consequences related to those experiences have been documented among women who have separated from an abusive partner. We conducted a secondary analysis of data from 154 adult, Canadian mothers of dependent children who had separated from an abusive partner and who participated in Wave 2 of the Women's Health Effects Study. We used hierarchical multiple regression to test whether intrusion predicts family health and well-being as well as whether social support moderated this relationship. Families were found to experience considerable intrusion, yet their health and well-being was similar to population norms. Intrusion predicted 11·4% of the variance in family health and well-being, with mother's depressive symptoms as the only unique predictor. Social support accounted for an additional 9% of explained variance, but did not buffer intrusion effects on family health and well-being. Although women had been separated from their abusive partners for an average of 2·5 years, the majority continued to experience coercive control. On average, levels of social support and family functioning were relatively high, contrary to public and academic discourse. In working with these families postseparation, nurses should approach care from a strength-based perspective, and integrate tailored assessment and intervention options for women and families that address both depression and social support. © 2016 John Wiley & Sons Ltd.

  7. Study on a high thrust force bi-double-sided permanent magnet linear synchronous motor

    Directory of Open Access Journals (Sweden)

    Liang Tong

    2016-03-01

    Full Text Available A high thrust force bi-double-sided permanent magnet linear synchronous motor used in gantry-type five-axis machining center is designed and its performance was tested in this article. This motor is the subproject of Chinese National Science and Technology Major Project named as “development of domestic large thrust linear motor used in high-speed gantry-type five-axis machining center project” jointly participated by enterprises and universities. According to the requirement of the application environment and motor performance parameters, the linear motor’s basic dimensions, form of windings, and magnet arrangement are preliminarily specified through theoretical analysis and calculation. To verify the correctness of the result of the calculation, the finite element model of the motor is established. The static and dynamic characteristics of the motor are studied and analyzed through the finite element method, and the initial scheme is revised. The prototype of the motor is manufactured based on the final revised structure parameters, and the performance of the motor is fully tested using the evaluation platform for direct-drive motor component. Experimental test results meet the design requirements and show the effectiveness of design method and process.

  8. Effect of wire size on maxillary arch force/couple systems for a simulated high canine malocclusion.

    Science.gov (United States)

    Major, Paul W; Toogood, Roger W; Badawi, Hisham M; Carey, Jason P; Seru, Surbhi

    2014-12-01

    To better understand the effects of copper nickel titanium (CuNiTi) archwire size on bracket-archwire mechanics through the analysis of force/couple distributions along the maxillary arch. The hypothesis is that wire size is linearly related to the forces and moments produced along the arch. An Orthodontic Simulator was utilized to study a simplified high canine malocclusion. Force/couple distributions produced by passive and elastic ligation using two wire sizes (Damon 0.014 and 0.018 inch) measured with a sample size of 144. The distribution and variation in force/couple loading around the arch is a complicated function of wire size. The use of a thicker wire increases the force/couple magnitudes regardless of ligation method. Owing to the non-linear material behaviour of CuNiTi, this increase is less than would occur based on linear theory as would apply for stainless steel wires. The results demonstrate that an increase in wire size does not result in a proportional increase of applied force/moment. This discrepancy is explained in terms of the non-linear properties of CuNiTi wires. This non-proportional force response in relation to increased wire size warrants careful consideration when selecting wires in a clinical setting. © 2014 British Orthodontic Society.

  9. Investigation of polymer derived ceramics cantilevers for application of high speed atomic force microscopy

    Science.gov (United States)

    Wu, Chia-Yun

    High speed Atomic Force Microscopy (AFM) has a wide variety of applications ranging from nanomanufacturing to biophysics. In order to have higher scanning speed of certain AFM modes, high resonant frequency cantilevers are needed; therefore, the goal of this research is to investigate using polymer derived ceramics for possible applications in making high resonant frequency AFM cantilevers using complex cross sections. The polymer derived ceramic that will be studied, is silicon carbide. Polymer derived ceramics offer a potentially more economic fabrication approach for MEMS due to their relatively low processing temperatures and ease of complex shape design. Photolithography was used to make the desired cantilever shapes with micron scale size followed by a wet etching process to release the cantilevers from the substrates. The whole manufacturing process we use borrow well-developed techniques from the semiconducting industry, and as such this project also could offer the opportunity to reduce the fabrication cost of AFM cantilevers and MEMS in general. The characteristics of silicon carbide made from the precursor polymer, SMP-10 (Starfire Systems), were studied. In order to produce high qualities of silicon carbide cantilevers, where the major concern is defects, proper process parameters needed to be determined. Films of polymer derived ceramics often have defects due to shrinkage during the conversion process. Thus control of defects was a central issue in this study. A second, related concern was preventing oxidation; the polymer derived ceramics we chose is easily oxidized during processing. Establishing an environment without oxygen in the whole process was a significant challenge in the project. The optimization of the parameters for using photolithography and wet etching process was the final and central goal of the project; well established techniques used in microfabrication were modified for use in making the cantilever in the project. The techniques

  10. Synchronous fire activity in the tropical high Andes: an indication of regional climate forcing.

    Science.gov (United States)

    Román-Cuesta, R M; Carmona-Moreno, C; Lizcano, G; New, M; Silman, M; Knoke, T; Malhi, Y; Oliveras, I; Asbjornsen, H; Vuille, M

    2014-06-01

    Global climate models suggest enhanced warming of the tropical mid and upper troposphere, with larger temperature rise rates at higher elevations. Changes in fire activity are amongst the most significant ecological consequences of rising temperatures and changing hydrological properties in mountainous ecosystems, and there is a global evidence of increased fire activity with elevation. Whilst fire research has become popular in the tropical lowlands, much less is known of the tropical high Andean region (>2000 masl, from Colombia to Bolivia). This study examines fire trends in the high Andes for three ecosystems, the Puna, the Paramo and the Yungas, for the period 1982-2006. We pose three questions: (i) is there an increased fire response with elevation? (ii) does the El Niño- Southern Oscillation control fire activity in this region? (iii) are the observed fire trends human driven (e.g., human practices and their effects on fuel build-up) or climate driven? We did not find evidence of increased fire activity with elevation but, instead, a quasicyclic and synchronous fire response in Ecuador, Peru and Bolivia, suggesting the influence of high-frequency climate forcing on fire responses on a subcontinental scale, in the high Andes. ENSO variability did not show a significant relation to fire activity for these three countries, partly because ENSO variability did not significantly relate to precipitation extremes, although it strongly did to temperature extremes. Whilst ENSO did not individually lead the observed regional fire trends, our results suggest a climate influence on fire activity, mainly through a sawtooth pattern of precipitation (increased rainfall before fire-peak seasons (t-1) followed by drought spells and unusual low temperatures (t0), which is particularly common where fire is carried by low fuel loads (e.g., grasslands and fine fuel). This climatic sawtooth appeared as the main driver of fire trends, above local human influences and fuel build

  11. Thermal dependence of coercivity in granular CoNiCu glass coated microwires

    International Nuclear Information System (INIS)

    Zhukova, V.; Zhukov, A.; Palomares, F.J.; Pigazo, F.; Cebollada, F.; Del Val, J.J.; Garcia, C.; Gonzalez, J.M.; Gonzalez, J.

    2007-01-01

    Cu 80 Co 19 Ni 1 glass covered microwire samples with different geometric ratio, 0.13≤ρ≤0.5, has been investigated by using X-ray diffraction (XRD) and VSM technique. Our results show (i) the presence of FCC Co crystallites dispersed on the Cu matrix, (ii) the observation in all the samples of the coercivity, at room temperature, of the order of kA, exhibiting a maximum and decreased down to a value of the order of the room temperature one at 25 K. These results are discussed in terms of a distribution of superparamagnetic Co nanoparticles

  12. Real-time deflection and friction force imaging by bimorph-based resonance-type high-speed scanning force microscopy in the contact mode.

    Science.gov (United States)

    Cai, Wei; Fan, Haiyun; Zhao, Jianyong; Shang, Guangyi

    2014-01-01

    We report herein an alternative high-speed scanning force microscopy method in the contact mode based on a resonance-type piezoelectric bimorph scanner. The experimental setup, the modified optical beam deflection scheme suitable for smaller cantilevers, and a high-speed control program for simultaneous data capture are described in detail. The feature of the method is that the deflection and friction force images of the sample surface can be obtained simultaneously in real time. Images of various samples (e.g., a test grating, a thin gold film, and fluorine-doped tin oxide-coated glass slides) are acquired successfully. The imaging rate is 25 frames per second, and the average scan speed reaches a value of approximately 2.5 cm/s. The method combines the advantages of both observing the dynamic processes of the sample surface and monitoring the frictional properties on the nanometer scale. 07.79.Lh; 07.79.Sp; 68.37.Ps.

  13. Influence of main forcing affecting the Tagus turbid plume under high river discharges using MODIS imagery.

    Science.gov (United States)

    Fernández-Nóvoa, D; Gómez-Gesteira, M; Mendes, R; deCastro, M; Vaz, N; Dias, J M

    2017-01-01

    The role of river discharge, wind and tide on the extension and variability of the Tagus River plume was analyzed from 2003 to 2015. This study was performed combining daily images obtained from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor located onboard the Aqua and Terra satellites. Composites were generated by averaging pixels with the same forcing conditions. River discharge shows a strong relation with the extension of the Tagus plume. The plume grows with the increasing river discharge and express a two day lag caused by the long residence time of water within the estuary. The Tagus turbid plume was found to be smaller under northerly and easterly winds, than under southerly and westerly winds. It is suggested that upwelling favoring winds provoke the offshore movement of the plume material with a rapidly decrease in turbidity values whereas downwelling favoring winds retain plume material in the north coast close to the Tagus mouth. Eastern cross-shore (oceanward) winds spread the plume seaward and to the north following the coast geometry, whereas western cross-shore (landward) winds keep the plume material in both alongshore directions occupying a large part of the area enclosed by the bay. Low tides produce larger and more turbid plumes than high tides. In terms of fortnightly periodicity, the maximum plume extension corresponding to the highest turbidity is observed during and after spring tides. Minimum plume extension associated with the lowest turbidity occurs during and after neap tides.

  14. Influence of main forcing affecting the Tagus turbid plume under high river discharges using MODIS imagery.

    Directory of Open Access Journals (Sweden)

    D Fernández-Nóvoa

    Full Text Available The role of river discharge, wind and tide on the extension and variability of the Tagus River plume was analyzed from 2003 to 2015. This study was performed combining daily images obtained from the Moderate Resolution Imaging Spectroradiometer (MODIS sensor located onboard the Aqua and Terra satellites. Composites were generated by averaging pixels with the same forcing conditions. River discharge shows a strong relation with the extension of the Tagus plume. The plume grows with the increasing river discharge and express a two day lag caused by the long residence time of water within the estuary. The Tagus turbid plume was found to be smaller under northerly and easterly winds, than under southerly and westerly winds. It is suggested that upwelling favoring winds provoke the offshore movement of the plume material with a rapidly decrease in turbidity values whereas downwelling favoring winds retain plume material in the north coast close to the Tagus mouth. Eastern cross-shore (oceanward winds spread the plume seaward and to the north following the coast geometry, whereas western cross-shore (landward winds keep the plume material in both alongshore directions occupying a large part of the area enclosed by the bay. Low tides produce larger and more turbid plumes than high tides. In terms of fortnightly periodicity, the maximum plume extension corresponding to the highest turbidity is observed during and after spring tides. Minimum plume extension associated with the lowest turbidity occurs during and after neap tides.

  15. High-Reynolds Number Active Blowing Semi-Span Force Measurement System Development

    Science.gov (United States)

    Lynn, Keith C.; Rhew, Ray D.; Acheson, Michael J.; Jones, Gregory S.; Milholen, William E.; Goodliff, Scott L.

    2012-01-01

    Recent wind-tunnel tests at the NASA Langley Research Center National Transonic Facility utilized high-pressure bellows to route air to the model for evaluating aircraft circulation control. The introduction of these bellows within the Sidewall Model Support System significantly impacted the performance of the external sidewall mounted semi-span balance. As a result of this impact on the semi-span balance measurement performance, it became apparent that a new capability needed to be built into the National Transonic Facility s infrastructure to allow for performing pressure tare calibrations on the balance in order to properly characterize its performance under the influence of static bellows pressure tare loads and bellows thermal effects. The objective of this study was to design both mechanical calibration hardware and an experimental calibration design that can be employed at the facility in order to efficiently and precisely perform the necessary loadings in order to characterize the semi-span balance under the influence of multiple calibration factors (balance forces/moments and bellows pressure/temperature). Using statistical design of experiments, an experimental design was developed allowing for strategically characterizing the behavior of the semi-span balance for use in circulation control and propulsion-type flow control testing at the National Transonic Facility.

  16. An exponential universal scaling law for the volume pinning force of high temperature superconductors

    International Nuclear Information System (INIS)

    Hampshire, D.P.

    1993-01-01

    The exponential magnetic field dependence of the critical current density (J c (B,T)) found in many high temperature superconductors, given by: J c (B,T) α(T)exp(-B/β(T)) where α(T) and β(T) are functions of temperature alone, necessarily implies a Universal Scaling Law for the volume pinning force (F p ) of the form: F p /F PMAX exp(+1).(B/β(T)).exp(-B/β(T)). If the Upper Critical Field is not explicitly measured but is artificially determined by smooth extrapolation of J c (B,T) to zero on a linear J c (B,T) vs B plot, this exponential scaling law can be closely approximated by the Kramer dependence given by: F p /F PMAX C.b p .(1-b) q where p = 0.5, q = 2, C ∼ 3.5 and b = B/B C2 (T). The implications for flux pinning studies are discussed. (orig.)

  17. Technique for forcing high Reynolds number isotropic turbulence in physical space

    Science.gov (United States)

    Palmore, John A.; Desjardins, Olivier

    2018-03-01

    Many common engineering problems involve the study of turbulence interaction with other physical processes. For many such physical processes, solutions are expressed most naturally in physical space, necessitating the use of physical space solutions. For simulating isotropic turbulence in physical space, linear forcing is a commonly used strategy because it produces realistic turbulence in an easy-to-implement formulation. However, the method resolves a smaller range of scales on the same mesh than spectral forcing. We propose an alternative approach for turbulence forcing in physical space that uses the low-pass filtered velocity field as the basis of the forcing term. This method is shown to double the range of scales captured by linear forcing while maintaining the flexibility and low computational cost of the original method. This translates to a 60% increase of the Taylor microscale Reynolds number on the same mesh. An extension is made to scalar mixing wherein a scalar field is forced to have an arbitrarily chosen, constant variance. Filtered linear forcing of the scalar field allows for control over the length scale of scalar injection, which could be important when simulating scalar mixing.

  18. High force measurement sensitivity with fiber Bragg gratings fabricated in uniform-waist fiber tapers

    International Nuclear Information System (INIS)

    Wieduwilt, Torsten; Brückner, Sven; Bartelt, Hartmut

    2011-01-01

    Fiber Bragg gratings inscribed in the waist of tapered photosensitive fibers offer specific attractive properties for sensing applications. A small-diameter fiber reduces structural influences for imbedded fiber sensing elements. In the case of application as a force-sensing element for tensile forces, sensitivity scales inversely with the fiber cross-sectional area. It is therefore possible to increase force sensitivity by several orders of magnitude compared to Bragg grating sensors in conventionally sized fibers. Special requirements for such Bragg grating arrangements are discussed and experimental measurements for different fiber taper diameters down to 4 µm are presented

  19. Propagation and Breaking at High Altitudes of Gravity Waves Excited by Tropospheric Forcing

    Science.gov (United States)

    Prusa, Joseph M.; Smolarkiewicz, Piotr K.; Garcia, Rolando R.

    1996-01-01

    An anelastic approximation is used with a time-variable coordinate transformation to formulate a two-dimensional numerical model that describes the evolution of gravity waves. The model is solved using a semi-Lagrangian method with monotone (nonoscillatory) interpolation of all advected fields. The time-variable transformation is used to generate disturbances at the lower boundary that approximate the effect of a traveling line of thunderstorms (a squall line) or of flow over a broad topographic obstacle. The vertical propagation and breaking of the gravity wave field (under conditions typical of summer solstice) is illustrated for each of these cases. It is shown that the wave field at high altitudes is dominated by a single horizontal wavelength; which is not always related simply to the horizontal dimension of the source. The morphology of wave breaking depends on the horizontal wavelength; for sufficiently short waves, breaking involves roughly one half of the wavelength. In common with other studies, it is found that the breaking waves undergo "self-acceleration," such that the zonal-mean intrinsic frequency remains approximately constant in spite of large changes in the background wind. It is also shown that many of the features obtained in the calculations can be understood in terms of linear wave theory. In particular, linear theory provides insights into the wavelength of the waves that break at high altitudes, the onset and evolution of breaking. the horizontal extent of the breaking region and its position relative to the forcing, and the minimum and maximum altitudes where breaking occurs. Wave breaking ceases at the altitude where the background dissipation rate (which in our model is a proxy for molecular diffusion) becomes greater than the rate of dissipation due to wave breaking, This altitude, in effect, the model turbopause, is shown to depend on a relatively small number of parameters that characterize the waves and the background state.

  20. High resolution magnetic force microscopy using focussed ion beam modified tips

    NARCIS (Netherlands)

    Phillips, G.N.; Siekman, Martin Herman; Abelmann, Leon; Lodder, J.C.

    2002-01-01

    Summary form only given. Magnetic force microscopy (MFM) is well established for imaging surface magnetic stray fields. With commercial microscopes and magnetic tips, images with 50 nm resolution are quite routine; however, obtaining higher resolutions is experimentally more demanding. Higher

  1. Synthesis, characterization and Monte Carlo simulation of CoFe2O4/Polyvinylpyrrolidone nanocomposites: The coercivity investigation

    International Nuclear Information System (INIS)

    Mirzaee, Sh; Farjami shayesteh, S.; Mahdavifar, S; Hekmatara, S Hoda.

    2015-01-01

    To study the influence of polymer matrix on the effective magnetic anisotropy constant and coercivity of magnetic nanoparticles, we have synthesized the Cobalt ferrite/Polyvinylpyrrolidone (PVP) nanocomposites by co-precipitation method in four different processes. In addition the Monte Carlo simulation and law of approach to the saturation magnetization have been applied to achieve the anisotropy constants. The obtained experimental and theoretical results showed a decrease in anisotropy constant relative to the bulk cobalt ferrite. We have showed that the PVP matrix can interact with metal cations and made them approximately immobilized to participate in spinel structure. Hence different anisotropy constants or coercivity were obtained for synthesized nanocomposites. In addition, PVP matrix can attach to the surface of magnetic particles and make them approximately non-interacting. The synthesized samples have been characterized by Fourier transform infrared spectroscopy (FT-IR) and X-ray diffraction (XRD). Magnetic measurements were made at room temperature using a vibrating sample magnetometer (VSM). - Highlights: • We studied the effect of polymer matrix on the coercivity of the CoFe 2 O 4 /PVP nanocomposites. • The polymer matrix decreases the anisotropy of the nanocomposite system. • We have synthesized nanocomposites with approximately the same size, but significantly different coercivity. • We showed that the PVP/CoFe 2 O 4 nanocomposite has the considerable coercivity due to the spin hindrance. • Magnetic properties of nanocomposites simulated by Monte Carlo method

  2. Control of fingertip forces in young and older adults pressing against fixed low- and high-friction surfaces.

    Directory of Open Access Journals (Sweden)

    Kevin G Keenan

    Full Text Available Mobile computing devices (e.g., smartphones and tablets that have low-friction surfaces require well-directed fingertip forces of sufficient and precise magnitudes for proper use. Although general impairments in manual dexterity are well-documented in older adults, it is unclear how these sensorimotor impairments influence the ability of older adults to dexterously manipulate fixed, low-friction surfaces in particular. 21 young and 18 older (65+ yrs adults produced maximal voluntary contractions (MVCs and steady submaximal forces (2.5 and 10% MVC with the fingertip of the index finger. A Teflon covered custom-molded splint was placed on the fingertip. A three-axis force sensor was covered with either Teflon or sandpaper to create low- and high-friction surfaces, respectively. Maximal downward forces (F(z were similar (p = .135 for young and older adults, and decreased by 15% (p<.001 while pressing on Teflon compared to sandpaper. Fluctuations in F(z during the submaximal force-matching tasks were 2.45× greater (p<.001 for older adults than in young adults, and reached a maximum when older adults pressed against the Teflon surface while receiving visual feedback. These age-associated changes in motor performance are explained, in part, by altered muscle activity from three hand muscles and out-of-plane forces. Quantifying the ability to produce steady fingertip forces against low-friction surfaces may be a better indicator of impairment and disability than the current practice of evaluating maximal forces with pinch meters. These age-associated impairments in dexterity while interacting with low-friction surfaces may limit the use of the current generation of computing interfaces by older adults.

  3. Enhancement of the coercivity in Co-Ni layered double hydroxides by increasing basal spacing.

    Science.gov (United States)

    Zhang, Cuijuan; Tsuboi, Tomoya; Namba, Hiroaki; Einaga, Yasuaki; Yamamoto, Takashi

    2016-09-14

    The magnetic properties of layered double hydroxides (LDH) containing transition metal ions can still develop, compared with layered metal hydroxide salts which exhibit structure-dependent magnetism. In this article, we report the preparation of a hybrid magnet composed of Co-Ni LDH and n-alkylsulfonate anions (Co-Ni-CnSO3 LDH). As Co-Ni LDH is anion-exchangeable, we can systematically control the interlayer spacing by intercalating n-alkylsulfonates with different carbon numbers. The magnetic properties were examined with temperature- and field-dependent magnetization measurements. As a result, we have revealed that the coercive field depends on the basal spacing. It is suggested that increasing the basal spacing varies the competition between the in-plane superexchange interactions and long-range out-of-plane dipolar interactions. Moreover, a jump in the coercive field at around 20 Å of the basal spacing is assumed to be the modification of the magnetic ordering in Co-Ni-CnSO3 LDH.

  4. Nursing Education in High Blood Pressure Control. Report of the Task Force on the Role of Nursing in High Blood Pressure Control.

    Science.gov (United States)

    National Institutes of Health (DHEW), Bethesda, MD. High Blood Pressure Information Center.

    This curriculum guide on high blood pressure (hypertension) for nursing educators has five sections: (1) Introduction and Objectives provides information regarding the establishment and objectives of the National Task Force on the Role of Nursing in High Blood Pressure Control and briefly discusses nursing's role in hypertension control; (2) Goals…

  5. A novel aptasensor based on single-molecule force spectroscopy for highly sensitive detection of mercury ions.

    Science.gov (United States)

    Li, Qing; Michaelis, Monika; Wei, Gang; Colombi Ciacchi, Lucio

    2015-08-07

    We have developed a novel aptasensor based on single-molecule force spectroscopy (SMFS) capable of detecting mercury ions (Hg(2+)) with sub-nM sensitivity. The single-strand (ss) DNA aptamer used in this work is rich in thymine (T) and readily forms T-Hg(2+)-T complexes in the presence of Hg(2+). The aptamer was conjugated to an atomic force microscope (AFM) probe, and the adhesion force between the probe and a flat graphite surface was measured by single-molecule force spectroscopy (SMFS). The presence of Hg(2+) ions above a concentration threshold corresponding to the affinity constant of the ions for the aptamer (about 5 × 10(9) M(-1)) could be easily detected by a change of the measured adhesion force. With our chosen aptamer, we could reach an Hg(2+) detection limit of 100 pM, which is well below the maximum allowable level of Hg(2+) in drinking water. In addition, this aptasensor presents a very high selectivity for Hg(2+) over other metal cations, such as K(+), Ca(2+), Zn(2+), Fe(2+), and Cd(2+). Furthermore, the effects of the ionic strength and loading rate on the Hg(2+) detection were evaluated. Its simplicity, reproducibility, high selectivity and sensitivity make our SMFS-based aptasensor advantageous with respect to other current Hg(2+) sensing methods. It is expected that our strategy can be exploited for monitoring the pollution of water environments and the safety of potentially contaminated food.

  6. An isometric muscle force estimation framework based on a high-density surface EMG array and an NMF algorithm

    Science.gov (United States)

    Huang, Chengjun; Chen, Xiang; Cao, Shuai; Qiu, Bensheng; Zhang, Xu

    2017-08-01

    Objective. To realize accurate muscle force estimation, a novel framework is proposed in this paper which can extract the input of the prediction model from the appropriate activation area of the skeletal muscle. Approach. Surface electromyographic (sEMG) signals from the biceps brachii muscle during isometric elbow flexion were collected with a high-density (HD) electrode grid (128 channels) and the external force at three contraction levels was measured at the wrist synchronously. The sEMG envelope matrix was factorized into a matrix of basis vectors with each column representing an activation pattern and a matrix of time-varying coefficients by a nonnegative matrix factorization (NMF) algorithm. The activation pattern with the highest activation intensity, which was defined as the sum of the absolute values of the time-varying coefficient curve, was considered as the major activation pattern, and its channels with high weighting factors were selected to extract the input activation signal of a force estimation model based on the polynomial fitting technique. Main results. Compared with conventional methods using the whole channels of the grid, the proposed method could significantly improve the quality of force estimation and reduce the electrode number. Significance. The proposed method provides a way to find proper electrode placement for force estimation, which can be further employed in muscle heterogeneity analysis, myoelectric prostheses and the control of exoskeleton devices.

  7. Quantification of the resist dissolution process: an in situ analysis using high speed atomic force microscopy

    Science.gov (United States)

    Santillan, Julius Joseph; Shichiri, Motoharu; Itani, Toshiro

    2016-03-01

    This work focuses on the application of a high speed atomic force microscope (HS-AFM) for the in situ visualization / quantification of the resist dissolution process. This technique, as reported in the past, has provided useful pointers on the formation of resist patterns during dissolution. This paper discusses about an investigation made on the quantification of what we refer to as "dissolution unit size" or the basic units of patterning material dissolution. This was done through the establishment of an originally developed analysis method which extracts the difference between two succeeding temporal states of the material film surface (images) to indicate the amount of change occurring in the material film at a specific span of time. Preliminary experiments with actual patterning materials were done using a positive-tone EUV model resist composed only of polyhydroxystyrene (PHS)-based polymer with a molecular weight of 2,500 and a polydispersity index of 1.2. In the absence of a protecting group, the material was utilized at a 50nm film thickness with post application bake of 90°C/60s. The resulting film is soluble in the alkali-based developer even without exposure. Results have shown that the dissolution components (dissolution unit size) of the PHS-based material are not of fixed size. Instead, it was found that aside from one constantly dissolving unit size, another, much larger dissolution unit size trend also occurs during material dissolution. The presence of this larger dissolution unit size suggests an occurrence of "polymer clustering". Such polymer clustering was not significantly present during the initial stages of dissolution (near the original film surface) but becomes more persistently obvious after the dissolution process reaches a certain film thickness below the initial surface.

  8. Monsoonal response to mid-holocene orbital forcing in a high resolution GCM

    Directory of Open Access Journals (Sweden)

    J. H. C. Bosmans

    2012-04-01

    Full Text Available In this study, we use a sophisticated high-resolution atmosphere-ocean coupled climate model, EC-Earth, to investigate the effect of Mid-Holocene orbital forcing on summer monsoons on both hemispheres. During the Mid-Holocene (6 ka, there was more summer insolation on the Northern Hemisphere than today, which intensified the meridional temperature and pressure gradients. Over North Africa, monsoonal precipitation is intensified through increased landward monsoon winds and moisture advection as well as decreased moisture convergence over the oceans and more convergence over land compared to the pre-industrial simulation. Precipitation also extends further north as the ITCZ shifts northward in response to the stronger poleward gradient of insolation. This increase and poleward extent is stronger than in most previous ocean-atmosphere GCM simulations. In north-westernmost Africa, precipitation extends up to 35° N. Over tropical Africa, internal feedbacks completely overcome the direct warming effect of increased insolation. We also find a weakened African Easterly Jet. Over Asia, monsoonal precipitation during the Mid-Holocene is increased as well, but the response is different than over North-Africa. There is more convection over land at the expense of convection over the ocean, but precipitation does not extend further northward, monsoon winds over the ocean are weaker and the surrounding ocean does not provide more moisture. On the Southern Hemisphere, summer insolation and the poleward insolation gradient were weaker during the Mid-Holocene, resulting in a reduced South American monsoon through decreased monsoon winds and less convection, as well as an equatorward shift in the ITCZ. This study corroborates the findings of paleodata research as well as previous model studies, while giving a more detailed account of Mid-Holocene monsoons.

  9. Final Report of the National Black Health Providers Task Force on High Blood Pressure Education and Control.

    Science.gov (United States)

    Public Health Service (DHHS), Rockville, MD.

    This is the final report of National Black Health Providers Task Force (NBHPTF) on High Blood Pressure Education and Control. The first chapter of the report recounts the history of the NBHPTF and its objectives. In the second chapter epidemiological evidence is presented to demonstrate the need for a suggested 20 year plan aimed at controlling…

  10. Micromagnetic simulation of the orientation dependence of grain boundary properties on the coercivity of Nd-Fe-B sintered magnets

    Directory of Open Access Journals (Sweden)

    Jun Fujisaki

    2016-05-01

    Full Text Available This paper is focused on the micromagnetic simulation study about the orientation dependence of grain boundary properties on the coercivity of polycrystalline Nd-Fe-B sintered magnets. A multigrain object with a large number of meshes is introduced to analyze such anisotropic grain boundaries and the simulation is performed by combining the finite element method and the parallel computing. When the grain boundary phase parallel to the c-plane is less ferromagnetic the process of the magnetization reversal changes and the coercivity of the multigrain object increases. The simulations with various magnetic properties of the grain boundary phases are executed to search for the way to enhance the coercivity of polycrystalline Nd-Fe-B sintered magnets.

  11. Instantaneous axial force of a high-order Bessel vortex beam of acoustic waves incident upon a rigid movable sphere.

    Science.gov (United States)

    Mitri, F G; Fellah, Z E A

    2011-08-01

    The present investigation examines the instantaneous force resulting from the interaction of an acoustical high-order Bessel vortex beam (HOBVB) with a rigid sphere. The rigid sphere case is important in fluid dynamics applications because it perfectly simulates the interaction of instantaneous sound waves in a reduced gravity environment with a levitated spherical liquid soft drop in air. Here, a closed-form solution for the instantaneous force involving the total pressure field as well as the Bessel beam parameters is obtained for the case of progressive, stationary and quasi-stationary waves. Instantaneous force examples for progressive waves are computed for both a fixed and a movable rigid sphere. The results show how the instantaneous force per unit cross-sectional surface and unit pressure varies versus the dimensionless frequency ka (k is the wave number in the fluid medium and a is the sphere's radius), the half-cone angle β and the order m of the HOBVB. It is demonstrated here that the instantaneous force is determined only for (m,n) = (0,1) (where n is the partial-wave number), and vanishes for m>0 because of symmetry. In addition, the instantaneous force and normalized amplitude velocity results are computed and compared with those of a rigid immovable (fixed) sphere. It is shown that they differ significantly for ka values below 5. The proposed analysis may be of interest in the analysis of instantaneous forces on spherical particles for particle manipulation, filtering, trapping and drug delivery. The presented solutions may also serve as a method for comparison to other solutions obtained by strictly numerical or asymptotic approaches. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Performance of Cableless Magnetic In-Piping Actuator Capable of High-Speed Movement by Means of Inertial Force

    Directory of Open Access Journals (Sweden)

    Hiroyuki Yaguchi

    2011-01-01

    Full Text Available The present paper proposes a novel cableless magnetic actuator with a new propulsion module that exhibits a very high thrusting force. This actuator contains an electrical inverter that directly transforms DC from button batteries into AC. The electrical DC-AC inverter incorporates a mass-spring system, a reed switch, and a curved permanent magnet that switches under an electromagnetic force. The actuator is moved by the inertial force of the mass-spring system due to mechanical resonance energy. The experimental results show that the actuator is able to move upward at a speed of 19.7 mm/s when using 10 button batteries when pulling a 20 g load mass. This cableless magnetic actuator has several possible applications, including narrow pipe inspection and maintenance.

  13. Estimation of the local response to a forcing in a high dimensional system using the fluctuation-dissipation theorem

    Directory of Open Access Journals (Sweden)

    F. C. Cooper

    2013-04-01

    Full Text Available The fluctuation-dissipation theorem (FDT has been proposed as a method of calculating the response of the earth's atmosphere to a forcing. For this problem the high dimensionality of the relevant data sets makes truncation necessary. Here we propose a method of truncation based upon the assumption that the response to a localised forcing is spatially localised, as an alternative to the standard method of choosing a number of the leading empirical orthogonal functions. For systems where this assumption holds, the response to any sufficiently small non-localised forcing may be estimated using a set of truncations that are chosen algorithmically. We test our algorithm using 36 and 72 variable versions of a stochastic Lorenz 95 system of ordinary differential equations. We find that, for long integrations, the bias in the response estimated by the FDT is reduced from ~75% of the true response to ~30%.

  14. On the force relaxation in the magnetic levitation system with a high-Tc superconductor

    International Nuclear Information System (INIS)

    Smolyak, B M; Zakharov, M S

    2014-01-01

    The effect of magnetic flux creep on the lift force in a magnet/superconductor system was studied. It was shown experimentally that in the case of real levitation (when a levitating object bears only on a magnetic field) the suspension height and consequently the lift force did not change over a long period of time. When the levitating object is fixed for some time (i.e. a rigid constraint is imposed on it), the levitation height decreases after removal of the external constraint. It is assumed that free oscillations of the levitating object slow down the flux creep process, which is activated when these oscillations are suppressed. (paper)

  15. Optimal design of high damping force engine mount featuring MR valve structure with both annular and radial flow paths

    International Nuclear Information System (INIS)

    Nguyen, Q H; Choi, S B; Lee, Y S; Han, M S

    2013-01-01

    This paper focuses on the optimal design of a compact and high damping force engine mount featuring magnetorheological fluid (MRF). In the mount, a MR valve structure with both annular and radial flows is employed to generate a high damping force. First, the configuration and working principle of the proposed MR mount is introduced. The MRF flows in the mount are then analyzed and the governing equations of the MR mount are derived based on the Bingham plastic behavior of the MRF. An optimal design of the MR mount is then performed to find the optimal structure of the MR valve to generate a maximum damping force with certain design constraints. In addition, the gap size of MRF ducts is empirically chosen considering the ‘lockup’ problem of the mount at high frequency. Performance of the optimized MR mount is then evaluated based on finite element analysis and discussions on performance results of the optimized MR mount are given. The effectiveness of the proposed MR engine mount is demonstrated via computer simulation by presenting damping force and power consumption. (paper)

  16. Fabrication of high-aspect-ratio microstructures using dielectrophoresis-electrocapillary force-driven UV-imprinting

    International Nuclear Information System (INIS)

    Li, Xiangming; Shao, Jinyou; Tian, Hongmiao; Ding, Yucheng; Li, Xiangmeng

    2011-01-01

    We propose a novel method for fabricating high-aspect-ratio micro-/nano-structures by dielectrophoresis-electrocapillary force (DEP-ECF)-driven UV-imprinting. The force of DEP-ECF, acting on an air–liquid interface and an air–liquid–solid three-phase contact line, is generated by applying voltage between an electrically conductive mold and a substrate, and tends to pull the dielectric liquid (a UV-curable pre-polymer) into the mold micro-cavities. The existence of DEP-ECF is explained theoretically and demonstrated experimentally by the electrically induced reduction of the contact angle. Furthermore, DEP-ECF is proven to play a critical role in forcing the polymer to fill into the mold cavities by the real-time observation of the dynamic filling process. Using the DEP-ECF-driven UV-imprinting process, high-aspect-ratio polymer micro-/nano-structures (more than 10:1) are fabricated with high consistency. This patterning method can overcome the drawbacks of the mechanically induced mold deformation and position shift in conventional imprinting lithography and maximize the pattern uniformity which is usually poor in capillary force lithography

  17. Optimal design of high damping force engine mount featuring MR valve structure with both annular and radial flow paths

    Science.gov (United States)

    Nguyen, Q. H.; Choi, S. B.; Lee, Y. S.; Han, M. S.

    2013-11-01

    This paper focuses on the optimal design of a compact and high damping force engine mount featuring magnetorheological fluid (MRF). In the mount, a MR valve structure with both annular and radial flows is employed to generate a high damping force. First, the configuration and working principle of the proposed MR mount is introduced. The MRF flows in the mount are then analyzed and the governing equations of the MR mount are derived based on the Bingham plastic behavior of the MRF. An optimal design of the MR mount is then performed to find the optimal structure of the MR valve to generate a maximum damping force with certain design constraints. In addition, the gap size of MRF ducts is empirically chosen considering the ‘lockup’ problem of the mount at high frequency. Performance of the optimized MR mount is then evaluated based on finite element analysis and discussions on performance results of the optimized MR mount are given. The effectiveness of the proposed MR engine mount is demonstrated via computer simulation by presenting damping force and power consumption.

  18. High temperature reactor: Driving force to convert CO2 to fuel - HTR2008-58132

    International Nuclear Information System (INIS)

    McCormick, J. L.

    2008-01-01

    The rapidly increasing cost of petroleum products and uncertainty of long-term supply have prompted the U.S. military to aggressively pursue production of alternative fuels (synfuels) such as coal-to-liquids (CTL). U.S. Air Force is particularly active in this effort while the entire military is involved in simultaneously developing fuel specifications for alternative fuels that enable a single fuel for the entire battle space; all ground vehicles, aircraft and fuel cells. By limiting its focus on coal, tar sands and oil shale resources, the military risks violating federal law which requires the use of synfuels that have life cycle greenhouse gas emissions less than or equal to emissions from conventional petroleum fuels. A climate-friendly option would use a high temperature nuclear reactor to split water. The hydrogen (H 2 ) would be used in the reverse water gas shift (RWGS) to react with carbon dioxide (CO 2 ) to produce carbon monoxide (CO) and water. The oxygen (O 2 ) would be fed into a supercritical (SC) coal furnace. The flue gas CO 2 emissions would be stripped of impurities before reacting with H 2 in a RWGS process. Resultant carbon monoxide (CO) is fed, with additional H2, (extra H 2 needed to adjust the stoichiometry: 2 moles H 2 to one mole CO) into a conventional Fischer-Tropsch synthesis (FTS) to produce a heavy wax which is cracked and isomerized and refined to Jet Propulsion 8 (JP-8) and Jet Propulsion 5 (JP-5) fuels. The entire process offers valuable carbon-offsets and multiple products that contribute to lower syn-fuel costs and to comply with the federal limitation imposed on syn-fuel purchases. While the entire process is not commercially available, component parts are being researched; their physical and chemical properties understood and some are state-of-the-art technologies. An international consortium should complete physical, chemical and economic flow sheets to determine the feasibility of this concept that, if pursued, has broad

  19. Self-Centering Seismic Lateral Force Resisting Systems: High Performance Structures for the City of Tomorrow

    Directory of Open Access Journals (Sweden)

    Nathan Brent Chancellor

    2014-09-01

    Full Text Available Structures designed in accordance with even the most modern buildings codes are expected to sustain damage during a severe earthquake; however; these structures are expected to protect the lives of the occupants. Damage to the structure can require expensive repairs; significant business downtime; and in some cases building demolition. If damage occurs to many structures within a city or region; the regional and national economy may be severely disrupted. To address these shortcomings with current seismic lateral force resisting systems and to work towards more resilient; sustainable cities; a new class of seismic lateral force resisting systems that sustains little or no damage under severe earthquakes has been developed. These new seismic lateral force resisting systems reduce or prevent structural damage to nonreplaceable structural elements by softening the structural response elastically through gap opening mechanisms. To dissipate seismic energy; friction elements or replaceable yielding energy dissipation elements are also included. Post-tensioning is often used as a part of these systems to return the structure to a plumb; upright position (self-center after the earthquake has passed. This paper summarizes the state-of-the art for self-centering seismic lateral force resisting systems and outlines current research challenges for these systems.

  20. Elastic-properties measurement at high temperatures through contact resonance atomic force microscopy

    DEFF Research Database (Denmark)

    Marinello, Francesco; Pezzuolo, Andrea; Carmignato, Simone

    2015-01-01

    fast direct and non-destructive measurement of Young's modulus and related surface parameters.In this work an instrument set up for Contact Resonance Atomic Force Microscopy is proposed, where the sample with is coupled to a heating stage and a piezoelectric transducer directly vibrate the cantilever...

  1. Experimental Contribution to High-Precision Characterization of Magnetic Forces in Active Magnetic Bearings

    DEFF Research Database (Denmark)

    Kjølhede, Klaus; Santos, Ilmar

    2007-01-01

    of the magnetic forces is conducted using different experimental tests: (i) by using hall sensors mounted directly on the poles (precise measurements of the magnetic flux) and by an auxiliary system, composed of strain gages and flexible beams attached to the rotor (ii) by measuring the input current and bearing...

  2. High resolution magnetic force microscopy: instrumentation and application for recording media

    NARCIS (Netherlands)

    Porthun, Steffen; Porthun, S.

    This thesis describes aspects of the use of magnetic force microscopy for the study of magnetic recording media. The maximum achievable storage density in magnetic recording is limited by the magnetic reversal behaviour of the medium and by the stability of the written information. The shape and

  3. Electron beam fabrication and characterization of high- resolution magnetic force microscopy tips

    NARCIS (Netherlands)

    Ruhrig, M.; Rührig, M.; Porthun, S.; Porthun, S.; Lodder, J.C.; Mc vitie, S.; Heyderman, L.J.; Johnston, A.B.; Chapman, J.N.

    1996-01-01

    The stray field, magnetic microstructure, and switching behavior of high‐resolution electron beam fabricated thin film tips for magnetic force microscopy (MFM) are investigated with different imaging modes in a transmission electron microscope (TEM). As the tiny smooth carbon needles covered with a

  4. Simulation-Driven Development and Optimization of a High-Performance Six-Dimensional Wrist Force/Torque Sensor

    Directory of Open Access Journals (Sweden)

    Qiaokang LIANG

    2010-05-01

    Full Text Available This paper describes the Simulation-Driven Development and Optimization (SDDO of a six-dimensional force/torque sensor with high performance. By the implementation of the SDDO, the developed sensor possesses high performance such as high sensitivity, linearity, stiffness and repeatability simultaneously, which is hard for tranditional force/torque sensor. Integrated approach provided by software ANSYS was used to streamline and speed up the process chain and thereby to deliver results significantly faster than traditional approaches. The result of calibration experiment possesses some impressive characters, therefore the developed fore/torque sensor can be usefully used in industry and the methods of design can also be used to develop industrial product.

  5. Coercivity and nanostructure of melt-spun Ti-Fe-Co-B-based alloys

    Directory of Open Access Journals (Sweden)

    W. Y. Zhang

    2016-05-01

    Full Text Available Nanocrystalline Ti-Fe-Co-B-based alloys, prepared by melt spinning and subsequent annealing, have been characterized structurally and magnetically. X-ray diffraction and thermomagnetic measurements show that the ribbons consist of tetragonal Ti3(Fe,Co5B2, FeCo-rich bcc, and NiAl-rich L21 phases; Ti3(Fe,Co5B2, is a new substitutional alloy series whose end members Ti3Co5B2 and Ti3Fe5B2 have never been investigated magnetically and may not even exist, respectively. Two compositions are considered, namely Ti11+xFe37.5-0.5xCo37.5−0.5xB14 (x = 0, 4 and alnico-like Ti11Fe26Co26Ni10Al11Cu2B14, the latter also containing an L21-type alloy. The volume fraction of the Ti3(Fe,Co5B2 phase increases with x, which leads to a coercivity increase from 221 Oe for x = 0 to 452 Oe for x = 4. Since the grains are nearly equiaxed, there is little or no shape anisotropy, and the coercivity is largely due to the magnetocrystalline anisotropy of the tetragonal Ti3(Fe,Co5B2 phase. The alloy containing Ni, Al, and Cu exhibits a magnetization of 10.6 kG and a remanence ratio of 0.59. Our results indicate that magnetocrystalline anisotropy can be introduced in alnico-like magnets, adding to shape anisotropy that may be induced by field annealing.

  6. Spin spring behavior in exchange coupled soft and high-coercivity hard ferromagnets.

    Energy Technology Data Exchange (ETDEWEB)

    Shull, R. D.; Shapiro, A. J.; Gornakov, V. S.; Nikitenko, V. I.; Jiang, J. S.; Kaper, H.; Leaf, G.; Bader, S. D.

    2000-11-01

    The magnetization reversal processes in an epitaxial Fe/Sm{sub 2}Co{sub 7} structure were investigated using the magneto-optical indicator film technique. The dependence of the magnitude and the orientation of the structure average magnetization have been studied on both cycling and rotating the external magnetic field. It was discovered that the magnetization reversal of the soft ferromagnet can proceed by formation of not only one-dimensional, but also two-dimensional, exchange spin springs. Experimental data is compared with a theoretical estimation of the rotational hysteresis loop for a spin system containing a one-dimensional exchange spring.

  7. High quality NMR structures: a new force field with implicit water and membrane solvation for Xplor-NIH

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Ye [Sanford-Burnham-Prebys Medical Discovery Institute (United States); Schwieters, Charles D. [National Institutes of Health, Center for Information Technology (United States); Opella, Stanley J. [University of California San Diego, Department of Chemistry and Biochemistry (United States); Marassi, Francesca M., E-mail: fmarassi@sbmri.org [Sanford-Burnham-Prebys Medical Discovery Institute (United States)

    2017-01-15

    Structure determination of proteins by NMR is unique in its ability to measure restraints, very accurately, in environments and under conditions that closely mimic those encountered in vivo. For example, advances in solid-state NMR methods enable structure determination of membrane proteins in detergent-free lipid bilayers, and of large soluble proteins prepared by sedimentation, while parallel advances in solution NMR methods and optimization of detergent-free lipid nanodiscs are rapidly pushing the envelope of the size limit for both soluble and membrane proteins. These experimental advantages, however, are partially squandered during structure calculation, because the commonly used force fields are purely repulsive and neglect solvation, Van der Waals forces and electrostatic energy. Here we describe a new force field, and updated energy functions, for protein structure calculations with EEFx implicit solvation, electrostatics, and Van der Waals Lennard-Jones forces, in the widely used program Xplor-NIH. The new force field is based primarily on CHARMM22, facilitating calculations with a wider range of biomolecules. The new EEFx energy function has been rewritten to enable OpenMP parallelism, and optimized to enhance computation efficiency. It implements solvation, electrostatics, and Van der Waals energy terms together, thus ensuring more consistent and efficient computation of the complete nonbonded energy lists. Updates in the related python module allow detailed analysis of the interaction energies and associated parameters. The new force field and energy function work with both soluble proteins and membrane proteins, including those with cofactors or engineered tags, and are very effective in situations where there are sparse experimental restraints. Results obtained for NMR-restrained calculations with a set of five soluble proteins and five membrane proteins show that structures calculated with EEFx have significant improvements in accuracy, precision

  8. Magnetic properties and coercivity mechanism of Sm{sub 1-x}Pr{sub x}Co{sub 5} (x=0-0.6) nanoflakes prepared by surfactant-assisted ball milling

    Energy Technology Data Exchange (ETDEWEB)

    Xu, M. L.; Yue, M., E-mail: yueming@bjut.edu.cn; Wu, Q.; Li, Y. Q.; Lu, Q. M. [College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124 (China)

    2016-05-15

    Sm{sub 1-x}Pr{sub x}Co{sub 5} (x=0-0.6) nanoflakes with CaCu{sub 5} structure were successfully prepared by surfactant-assisted high-energy ball milling (SAHEBM). The crystal structure and magnetic properties of Sm{sub 1-x}Pr{sub x}Co{sub 5} (x=0-0.6) nanoflakes were studied by X-ray diffraction and vibrating sample magnetometer. Effects of Pr addition on the structure, magnetic properties and coercivity mechanism of Sm{sub 1-x}Pr{sub x}Co{sub 5} nanoflakes were systematically investigated. XRD results show that all the nanoflakes have a hexagonal CaCu{sub 5}-type (Sm, Pr){sub 1}Co{sub 5} main phase and the (Sm, Pr){sub 2}Co{sub 7} impurity phase, and all of the samples exhibit a strong (00l) texture after magnetic alignment. As the Pr content increases, remanence firstly increases, then slightly reduced, while anisotropy field (H{sub A}) and H{sub ci} of decrease monotonically. Maximum energy product [(BH){sub max}] of the flakes increases first, peaks at 24.4 MGOe with Pr content of x = 0.4, then drops again. Magnetization behavior analysis indicate that the coercivity mechanism is mainly controlled by inhomogeneous domain wall pinning, and the pinning strength weakens with the increased Pr content, suggesting the great influence of H{sub A} on the coercivity of flakes.

  9. COERCIVITY AND VECTOR MAGNETIZATION ANALYSIS OF OBSIDIAN SAMPLES FROM THE TRANS-MEXICAN VOLCANIC BELT (Coercitividad y análisis de magnetización vectorial de muestras de obsidianas de la faja volcánica transmexicana

    Directory of Open Access Journals (Sweden)

    Jaime Urrutia-Fucugauchi

    2017-09-01

    Full Text Available This note presents initial results of a paleomagnetic study of obsidian from twenty localities in the eastern, central and western sectors of the Trans-Mexican volcanic belt in central Mexico. We focus on the coercivity and vector composition of the remanent magnetization, which are critical for paleodirectional and paleointensity studies. Alternating field demagnetization shows that obsidians carry single and two-component magnetizations residing in low- and high-coercivity magnetic minerals, with discrete and overlapping coercivity spectra. Magnetic minerals are likely iron-titanium oxides with fine-grain sizes characterized by pseudo-single domain states. ESPAÑOL: Se presentan los resultados preliminares del estudio de obsidianas de veinte localidades en los sectores este, central y oeste de la faja volcánica transmexicana. Los análisis se concentran en la coercitividad y la composición vectorial de la magnetización remanente, que son propiedades claves para evaluar los registros de direcciones e intensidades. La desmagnetización por campos alternos revela la presencia de magnetizaciones de una y dos componentes, que residen en minerales con baja y alta coercitividad con espectros que traslapan y discretos. Los minerales magnéticos son óxidos de hierro-titanio con grano fino y estados de dominio seudosencillo.

  10. Equivalent Coil Model for Computing Levitation Forces Between Permanent Magnets and High Temperatures Superconductors

    International Nuclear Information System (INIS)

    Cavia Santos, S.; Garcia-Tabares, L.

    1998-05-01

    A new simple theory has been developed for the study of levitation forces between a permanent magnet and a HTc superconductor. This theory is based on the assumption that both, the magnet and the superconductor, can be modelled by an equivalent coil placed on their surface. While the current flowing through the permanent magnet is constant, the equivalent current through the superconductor can be iether corresponding to screen the overall flux or a constant current corresponding to critical current density when the superconductor is saturated. A test facility has been designed and built for measuring levitation forces at variable approaching speeds. Comparison between theoretical and experimental measurements are presented in the report as well as a general description of the test facility. (Author)

  11. Experimental Contribution to High Precision Characterization of Magnetic Forces in Active Magnetic Bearings

    DEFF Research Database (Denmark)

    Kjølhede, Klaus; Santos, Ilmar

    2006-01-01

    Parameter identification procedures and model validation are major steps towards intelligent machines supported by active magnetic bearings (AMB). The ability of measuring the electromagnetic bearing forces, or deriving them from measuring the magnetic flux, strongly contributes to the model...... validation and leads to novel approaches in identifying crucial rotor parameters. This is the main focus of this paper, where an intelligent AMB is being developed with the aim of aiding the accurate identification of damping and stiffness coefficients of active lubricated journal bearings. The main...... of the magnetic forces is conducted using different experimental tests: (a) by using hall sensors mounted directly on the poles (precise measurements of the magnetic flux) and by an auxiliary system, composed of strain gages and flexible beams attached to the rotor, (b) by measuring the input current and bearing...

  12. Substrate bias effects on composition and coercivity of CoCrTa/Cr thin films on canasite and glass

    Science.gov (United States)

    Deng, Y.; Lambeth, D. N.; Sui, X.; Lee, L.-L.; Laughlin, D. E.

    1993-05-01

    CoCrTa/Cr thin films were prepared by rf diode sputtering onto canasite and glass substrates at various bias voltages from two targets of different compositions (Co82.8Cr14.6Ta2.6 and Co86Cr12Ta2). While Auger depth profile analysis indicates that there is some broadening at the CoCrTa-Cr interface, x-ray fluorescence spectroscopy reveals that changes in alloy composition due to the resputtering processes are even more prominent. For both targets, as the substrate bias increases the Co content in the films declines, and the magnetization decreases. The maximum film coercivity appears to correlate to the final film composition. By investigating the results from both targets, it is concluded that the coercivity reaches a maximum when the film composition is in the neighborhood of Co84Cr13Ta3. Thus, to optimize the coercivity different bias voltages are required for each target. Excessive substrate bias, however, leads to films with low magnetization and coercivity.

  13. Predicting sexual coercion in early adulthood: The transaction among maltreatment, gang affiliation, and adolescent socialization of coercive relationship norms.

    Science.gov (United States)

    Ha, Thao; Kim, Hanjoe; Christopher, Caroline; Caruthers, Allison; Dishion, Thomas J

    2016-08-01

    This study tested a transactional hypothesis predicting early adult sexual coercion from family maltreatment, early adolescent gang affiliation, and socialization of adolescent friendships that support coercive relationship norms. The longitudinal study of a community sample of 998 11-year-olds was intensively assessed in early and middle adolescence and followed to 23-24 years of age. At age 16-17 youth were videotaped with a friend, and their interactions were coded for coercive relationship talk. Structural equation modeling revealed that maltreatment predicted gang affiliation during early adolescence. Both maltreatment and gang affiliation strongly predicted adolescent sexual promiscuity and coercive relationship norms with friends at age 16-17 years. Adolescent sexual promiscuity, however, did not predict sexual coercion in early adulthood. In contrast, higher levels of observed coercive relationship talk with a friend predicted sexual coercion in early adulthood for both males and females. These findings suggest that peers have a socialization function in the development of norms prognostic of sexual coercion, and the need to consider peers in the promotion of healthy relationships.

  14. Forced sex, rape and sexual exploitation: attitudes and experiences of high school students in South Kivu, Democratic Republic of Congo.

    Science.gov (United States)

    Mulumeoderhwa, Maroyi; Harris, Geoff

    2015-01-01

    This paper reports on fieldwork carried out in 2011 with the aim of investigating the attitudes and reported behaviour of Congolese high school students concerning sexual relationships. A total of 56 boys and girls aged 16-20 from two urban and two rural high schools in South Kivu Province took part in focus groups, and 40 of these were subsequently interviewed individually. The majority of boys felt that they were entitled to sex from their girlfriends and that if persuasion was unsuccessful, the use of force was legitimate; this, in their minds, did not constitute rape. Girls, on the other hand, were clear that such forced sex was rape. However it may be understood, rape was perceived as having increased in recent years and was explained by weak legal systems, pornography and provocative dressing by girls. Boys were angry at the competition from older, often married, men who were able to provide monetary and other incentives to the girls.

  15. Phase relations in a forced turbulent boundary layer: implications for modelling of high Reynolds number wall turbulence.

    Science.gov (United States)

    Duvvuri, Subrahmanyam; McKeon, Beverley

    2017-03-13

    Phase relations between specific scales in a turbulent boundary layer are studied here by highlighting the associated nonlinear scale interactions in the flow. This is achieved through an experimental technique that allows for targeted forcing of the flow through the use of a dynamic wall perturbation. Two distinct large-scale modes with well-defined spatial and temporal wavenumbers were simultaneously forced in the boundary layer, and the resulting nonlinear response from their direct interactions was isolated from the turbulence signal for the study. This approach advances the traditional studies of large- and small-scale interactions in wall turbulence by focusing on the direct interactions between scales with triadic wavenumber consistency. The results are discussed in the context of modelling high Reynolds number wall turbulence.This article is part of the themed issue 'Toward the development of high-fidelity models of wall turbulence at large Reynolds number'. © 2017 The Author(s).

  16. Unexpected weak seasonal climate in the western Mediterranean region during MIS 31, a high-insolation forced interglacial

    Science.gov (United States)

    Oliveira, Dulce; Sánchez Goñi, Maria Fernanda; Naughton, Filipa; Polanco-Martínez, J. M.; Jimenez-Espejo, Francisco J.; Grimalt, Joan O.; Martrat, Belen; Voelker, Antje H. L.; Trigo, Ricardo; Hodell, David; Abrantes, Fátima; Desprat, Stéphanie

    2017-04-01

    Marine Isotope Stage 31 (MIS 31) is an important analogue for ongoing and projected global warming, yet key questions remain about the regional signature of its extreme orbital forcing and intra-interglacial variability. Based on a new direct land-sea comparison in SW Iberian margin IODP Site U1385 we examine the climatic variability between 1100 and 1050 ka including the ;super interglacial; MIS 31, a period dominated by the 41-ky obliquity periodicity. Pollen and biomarker analyses at centennial-scale-resolution provide new insights into the regional vegetation, precipitation regime and atmospheric and oceanic temperature variability on orbital and suborbital timescales. Our study reveals that atmospheric and SST warmth during MIS 31 was not exceptional in this region highly sensitive to precession. Unexpectedly, this warm stage stands out as a prolonged interval of a temperate and humid climate regime with reduced seasonality, despite the high insolation (precession minima values) forcing. We find that the dominant forcing on the long-term temperate forest development was obliquity, which may have induced a decrease in summer dryness and associated reduction in seasonal precipitation contrast. Moreover, this study provides the first evidence for persistent atmospheric millennial-scale variability during this interval with multiple forest decline events reflecting repeated cooling and drying episodes in SW Iberia. Our direct land-sea comparison shows that the expression of the suborbital cooling events on SW Iberian ecosystems is modulated by the predominance of high or low-latitude forcing depending on the glacial/interglacial baseline climate states. Severe dryness and air-sea cooling is detected under the larger ice volume during glacial MIS 32 and MIS 30. The extreme episodes, which in their climatic imprint are similar to the Heinrich events, are likely related to northern latitude ice-sheet instability and a disruption of the Atlantic Meridional Overturning

  17. Coercivity enhancements of Nd–Fe–B sintered magnets by diffusing DyHx along different axes

    International Nuclear Information System (INIS)

    Ma, Tianyu; Wang, Xuejiao; Liu, Xiaolian; Wu, Chen; Yan, Mi

    2015-01-01

    Diffusing heavy rare earth elements along the grain boundaries (GBs) for Nd 2 Fe 14 B-type sintered magnets serves as an effective method to enhance coercivity and to minimize remanence loss simultaneously. Considering the texture anisotropy of Nd-rich GB phases, the coercivity incremental difference by diffusing DyH x fine powders along or perpendicular to the  <0 0 1 >  easy axis (c-axis) has been investigated. The coercivity increases more rapidly to 20.61 kOe (5.76 kOe higher than that of the as-sintered state) when diffusing along the c-axis than that diffusing perpendicular to c-axis (18.85 kOe, 4.00 kOe higher than the as-sintered state). Microstructural investigation reveals that Dy diffuses more easily towards the magnet inner part when treating along the c-axis than that for the perpendicular case due to the anisotropic distribution of the Nd-rich phase. This is verified by a higher Dy content at equivalent diffusing depth and a much deeper final diffusion distance. The local Dy-containing fractions with a stronger anisotropy field are richer for the magnet treated along the c-axis, leading to the much rapider coercivity enhancement. This work reveals that diffusion heavy rare earth along the c-axis is more effective to enhance coercivity for aligned Nd–Fe–B sintered magnets. (paper)

  18. Hartree-Fock calculations for strongly deformed and highly excited nuclei using the Skyrme force

    International Nuclear Information System (INIS)

    Zint, P.G.

    1975-01-01

    It has been shown that in CHF-calculations the Skyrme-force is usefull to describe strongly deformed nuclei with even proton and neutron number till separation. Thereby the eigenfunctions of the two-centre Hamiltonian form an adequate basis. With this procedure, we obtain the correct deformation of the 32 S-system. Induding the spurious energy of relative motion between the 16 O-fragments, the energy curve is a good approximation for the real potential, extracted form scattering experiments. (orig./WL) [de

  19. Stochastic Ratcheting on a Funneled Energy Landscape Is Necessary for Highly Efficient Contractility of Actomyosin Force Dipoles

    Science.gov (United States)

    Komianos, James E.; Papoian, Garegin A.

    2018-04-01

    Current understanding of how contractility emerges in disordered actomyosin networks of nonmuscle cells is still largely based on the intuition derived from earlier works on muscle contractility. In addition, in disordered networks, passive cross-linkers have been hypothesized to percolate force chains in the network, hence, establishing large-scale connectivity between local contractile clusters. This view, however, largely overlooks the free energy of cross-linker binding at the microscale, which, even in the absence of active fluctuations, provides a thermodynamic drive towards highly overlapping filamentous states. In this work, we use stochastic simulations and mean-field theory to shed light on the dynamics of a single actomyosin force dipole—a pair of antiparallel actin filaments interacting with active myosin II motors and passive cross-linkers. We first show that while passive cross-linking without motor activity can produce significant contraction between a pair of actin filaments, driven by thermodynamic favorability of cross-linker binding, a sharp onset of kinetic arrest exists at large cross-link binding energies, greatly diminishing the effectiveness of this contractility mechanism. Then, when considering an active force dipole containing nonmuscle myosin II, we find that cross-linkers can also serve as a structural ratchet when the motor dissociates stochastically from the actin filaments, resulting in significant force amplification when both molecules are present. Our results provide predictions of how actomyosin force dipoles behave at the molecular level with respect to filament boundary conditions, passive cross-linking, and motor activity, which can explicitly be tested using an optical trapping experiment.

  20. Stochastic Ratcheting on a Funneled Energy Landscape Is Necessary for Highly Efficient Contractility of Actomyosin Force Dipoles

    Directory of Open Access Journals (Sweden)

    James E. Komianos

    2018-04-01

    Full Text Available Current understanding of how contractility emerges in disordered actomyosin networks of nonmuscle cells is still largely based on the intuition derived from earlier works on muscle contractility. In addition, in disordered networks, passive cross-linkers have been hypothesized to percolate force chains in the network, hence, establishing large-scale connectivity between local contractile clusters. This view, however, largely overlooks the free energy of cross-linker binding at the microscale, which, even in the absence of active fluctuations, provides a thermodynamic drive towards highly overlapping filamentous states. In this work, we use stochastic simulations and mean-field theory to shed light on the dynamics of a single actomyosin force dipole—a pair of antiparallel actin filaments interacting with active myosin II motors and passive cross-linkers. We first show that while passive cross-linking without motor activity can produce significant contraction between a pair of actin filaments, driven by thermodynamic favorability of cross-linker binding, a sharp onset of kinetic arrest exists at large cross-link binding energies, greatly diminishing the effectiveness of this contractility mechanism. Then, when considering an active force dipole containing nonmuscle myosin II, we find that cross-linkers can also serve as a structural ratchet when the motor dissociates stochastically from the actin filaments, resulting in significant force amplification when both molecules are present. Our results provide predictions of how actomyosin force dipoles behave at the molecular level with respect to filament boundary conditions, passive cross-linking, and motor activity, which can explicitly be tested using an optical trapping experiment.

  1. High Fidelity Non-Gravitational Force Models for Precise and Accurate Orbit Determination of TerraSAR-X

    Science.gov (United States)

    Hackel, Stefan; Montenbruck, Oliver; Steigenberger, -Peter; Eineder, Michael; Gisinger, Christoph

    Remote sensing satellites support a broad range of scientific and commercial applications. The two radar imaging satellites TerraSAR-X and TanDEM-X provide spaceborne Synthetic Aperture Radar (SAR) and interferometric SAR data with a very high accuracy. The increasing demand for precise radar products relies on sophisticated validation methods, which require precise and accurate orbit products. Basically, the precise reconstruction of the satellite’s trajectory is based on the Global Positioning System (GPS) measurements from a geodetic-grade dual-frequency receiver onboard the spacecraft. The Reduced Dynamic Orbit Determination (RDOD) approach utilizes models for the gravitational and non-gravitational forces. Following a proper analysis of the orbit quality, systematics in the orbit products have been identified, which reflect deficits in the non-gravitational force models. A detailed satellite macro model is introduced to describe the geometry and the optical surface properties of the satellite. Two major non-gravitational forces are the direct and the indirect Solar Radiation Pressure (SRP). Due to the dusk-dawn orbit configuration of TerraSAR-X, the satellite is almost constantly illuminated by the Sun. Therefore, the direct SRP has an effect on the lateral stability of the determined orbit. The indirect effect of the solar radiation principally contributes to the Earth Radiation Pressure (ERP). The resulting force depends on the sunlight, which is reflected by the illuminated Earth surface in the visible, and the emission of the Earth body in the infrared spectra. Both components of ERP require Earth models to describe the optical properties of the Earth surface. Therefore, the influence of different Earth models on the orbit quality is assessed within the presentation. The presentation highlights the influence of non-gravitational force and satellite macro models on the orbit quality of TerraSAR-X.

  2. LightForce Photon-Pressure Collision Avoidance: Updated Efficiency Analysis Utilizing a Highly Parallel Simulation Approach

    Science.gov (United States)

    Stupl, Jan; Faber, Nicolas; Foster, Cyrus; Yang, Fan Yang; Nelson, Bron; Aziz, Jonathan; Nuttall, Andrew; Henze, Chris; Levit, Creon

    2014-01-01

    This paper provides an updated efficiency analysis of the LightForce space debris collision avoidance scheme. LightForce aims to prevent collisions on warning by utilizing photon pressure from ground based, commercial off the shelf lasers. Past research has shown that a few ground-based systems consisting of 10 kilowatt class lasers directed by 1.5 meter telescopes with adaptive optics could lower the expected number of collisions in Low Earth Orbit (LEO) by an order of magnitude. Our simulation approach utilizes the entire Two Line Element (TLE) catalogue in LEO for a given day as initial input. Least-squares fitting of a TLE time series is used for an improved orbit estimate. We then calculate the probability of collision for all LEO objects in the catalogue for a time step of the simulation. The conjunctions that exceed a threshold probability of collision are then engaged by a simulated network of laser ground stations. After those engagements, the perturbed orbits are used to re-assess the probability of collision and evaluate the efficiency of the system. This paper describes new simulations with three updated aspects: 1) By utilizing a highly parallel simulation approach employing hundreds of processors, we have extended our analysis to a much broader dataset. The simulation time is extended to one year. 2) We analyze not only the efficiency of LightForce on conjunctions that naturally occur, but also take into account conjunctions caused by orbit perturbations due to LightForce engagements. 3) We use a new simulation approach that is regularly updating the LightForce engagement strategy, as it would be during actual operations. In this paper we present our simulation approach to parallelize the efficiency analysis, its computational performance and the resulting expected efficiency of the LightForce collision avoidance system. Results indicate that utilizing a network of four LightForce stations with 20 kilowatt lasers, 85% of all conjunctions with a

  3. Analysis of radiation pressure force exerted on a biological cell induced by high-order Bessel beams using Debye series

    International Nuclear Information System (INIS)

    Li, Renxian; Ren, Kuan Fang; Han, Xiang'e; Wu, Zhensen; Guo, Lixin; Gong, Shuxi

    2013-01-01

    Debye series expansion (DSE) is employed to the analysis of radiation pressure force (RPF) exerted on biological cells induced by high-order Bessel beams (BB). The beam shape coefficients (BSCs) for high-order Bessel beams are calculated using analytical expressions obtained by the integral localized approximation (ILA). Different types of cells, including a real Chinese Hamster Ovary (CHO) cell and a lymphocyte which are respectively modeled by a coated and five-layered sphere, are considered. The RPF induced by high-order Bessel beams is compared with that by Gaussian beams and zeroth-order Bessel beams, and the effect of different scattering processes on RPF is studied. Numerical calculations show that high-order Bessel beams with zero central intensity can also transversely trap particle in the beam center, and some scattering processes can provide longitudinal pulling force. -- Highlights: ► BSCs for high-order Bessel beam (HOBB) is derived using ILA. ► DSE is employed to study the RPF induced by HOBB exerted on multilayered cells. ► RPF is decided by radius relative to the interval of peaks in intensity profile. ► HOBB can also transversely trap high-index particle in the vicinity of beam axis. ► RPF for some scattering processes can longitudinally pull particles back

  4. Maximal voluntary contraction force, SR function and glycogen resynthesis during the first 72 h after a high-level competitive soccer game

    DEFF Research Database (Denmark)

    Krustrup, Peter; Ørtenblad, Niels; Nielsen, Joachim

    2011-01-01

    The aim of this study was to examine maximal voluntary knee-extensor contraction force (MVC force), sarcoplasmic reticulum (SR) function and muscle glycogen levels in the days after a high-level soccer game when players ingested an optimised diet. Seven high-level male soccer players had a vastus...... lateralis muscle biopsy and a blood sample collected in a control situation and at 0, 24, 48 and 72 h after a competitive soccer game. MVC force, SR function, muscle glycogen, muscle soreness and plasma myoglobin were measured. MVC force sustained over 1 s was 11 and 10% lower (P ...

  5. Unsteady lift forces on highly cambered airfoils moving through a gust

    Science.gov (United States)

    Atassi, H.; Goldstein, M.

    1974-01-01

    An unsteady airfoil theory in which the flow is linearized about the steady potential flow of the airfoil is presented. The theory is applied to an airfoil entering a gust. After transformation to the W-plane, the problem is formulated in terms of a Poisson's equation. The solutions are expanded in a Fourier-Bessel series. The theory is applied to a circular arc with arbitrary camber. Closed form expressions for the velocity and pressure on the surface of the airfoil are obtained. The unsteady aerodynamic forces are then calculated and shown to contain two terms. One in an explicit closed analytical form represents the contribution of the oncoming vortical disturbance, the other depends on a single quadrature and accounts for the effect of the wake.

  6. High-resolution distributed-feedback fiber laser dc magnetometer based on the Lorentzian force

    International Nuclear Information System (INIS)

    Cranch, G A; Flockhart, G M H; Kirkendall, C K

    2009-01-01

    A low-frequency magnetic field sensor, based on a current-carrying beam driven by the Lorentzian force, is described. The amplitude of the oscillation is measured by a distributed-feedback fiber laser strain sensor attached to the beam. The transduction mechanism of the sensor is derived analytically using conventional beam theory, which is shown to accurately predict the responsivity of a prototype sensor. Excellent linearity and negligible hysteresis are demonstrated. Noise sources in the fiber laser strain sensor are described and thermo-mechanical noise in the transducer is estimated. The prototype sensor achieves a magnetic field resolution of 5 nT Hz for 25 mA of current, which is shown to be close to the predicted thermo-mechanical noise limit of the sensor. The current is supplied optically through a separate optical fiber yielding an electrically passive sensor head

  7. Beyond "Witnessing": Children's Experiences of Coercive Control in Domestic Violence and Abuse.

    Science.gov (United States)

    Callaghan, Jane E M; Alexander, Joanne H; Sixsmith, Judith; Fellin, Lisa Chiara

    2015-12-10

    Children's experiences and voices are underrepresented in academic literature and professional practice around domestic violence and abuse. The project "Understanding Agency and Resistance Strategies" (UNARS) addresses this absence, through direct engagement with children. We present an analysis from interviews with 21 children in the United Kingdom (12 girls and 9 boys, aged 8-18 years), about their experiences of domestic violence and abuse, and their responses to this violence. These interviews were analyzed using interpretive interactionism. Three themes from this analysis are presented: (a) "Children's experiences of abusive control," which explores children's awareness of controlling behavior by the adult perpetrator, their experience of that control, and its impact on them; (b) "Constraint," which explores how children experience the constraint associated with coercive control in situations of domestic violence; and (c) "Children as agents," which explores children's strategies for managing controlling behavior in their home and in family relationships. The article argues that, in situations where violence and abuse occur between adult intimate partners, children are significantly affected, and can be reasonably described as victims of abusive control. Recognizing children as direct victims of domestic violence and abuse would produce significant changes in the way professionals respond to them, by (a) recognizing children's experience of the impact of domestic violence and abuse; (b) recognizing children's agency, undermining the perception of them as passive "witnesses" or "collateral damage" in adult abusive encounters; and (c) strengthening professional responses to them as direct victims, not as passive witnesses to violence. © The Author(s) 2015.

  8. The exponentiated Hencky-logarithmic strain energy. Part II: Coercivity, planar polyconvexity and existence of minimizers

    Science.gov (United States)

    Neff, Patrizio; Lankeit, Johannes; Ghiba, Ionel-Dumitrel; Martin, Robert; Steigmann, David

    2015-08-01

    We consider a family of isotropic volumetric-isochoric decoupled strain energies based on the Hencky-logarithmic (true, natural) strain tensor log U, where μ > 0 is the infinitesimal shear modulus, is the infinitesimal bulk modulus with the first Lamé constant, are dimensionless parameters, is the gradient of deformation, is the right stretch tensor and is the deviatoric part (the projection onto the traceless tensors) of the strain tensor log U. For small elastic strains, the energies reduce to first order to the classical quadratic Hencky energy which is known to be not rank-one convex. The main result in this paper is that in plane elastostatics the energies of the family are polyconvex for , extending a previous finding on its rank-one convexity. Our method uses a judicious application of Steigmann's polyconvexity criteria based on the representation of the energy in terms of the principal invariants of the stretch tensor U. These energies also satisfy suitable growth and coercivity conditions. We formulate the equilibrium equations, and we prove the existence of minimizers by the direct methods of the calculus of variations.

  9. Searching for justice for body and self in a coercive environment: sex work in Kerala, India.

    Science.gov (United States)

    Jayasree, A K

    2004-05-01

    Sex workers in Kerala, India, live in a coercive environment and face violence from the police and criminals, lack of shelter, lack of childcare support and have many physical and mental health problems. This paper documents the environment in which women have been selling sex in Kerala since 1995, and their efforts to claim their rights. It is based on sex workers' own reports and experiences, a situation analysis and a needs assessment study by the Foundation for Integrated Research in Mental Health. Involvement in HIV/AIDS prevention projects first gave sex workers in Kerala an opportunity to come together. Some have become peer educators and distribute condoms but they continue to be harassed by police. Most anti-trafficking interventions, including rescue and rehabilitation, either criminalise or victimise sex workers, and sex workers reject them as a solution to sex work. They understand that the lack of sexual fulfillment in other relationships and their own lack of access to other work and resources are the reasons why commercial sex flourishes. Sex workers are not mere victims without agency. They have a right to bodily integrity, pleasure, livelihood, self-determination and a safe working environment. Sex workers are organising themselves for these objectives and demand decriminalisation of sex work.

  10. Large coercivity and unconventional exchange coupling in manganese-oxide-coated manganese—gallium nanoparticles

    International Nuclear Information System (INIS)

    Feng Jun-Ning; Liu Wei; Geng Dian-Yu; Ma Song; Yu Tao; Zhao Xiao-Tian; Dai Zhi-Ming; Zhao Xin-Guo; Zhang Zhi-Dong

    2014-01-01

    The microstructures and magnetic properties of nanoparticles, each composed of an antiferromagnetic (AFM) manganese-oxide shell and a ferromagnetic-like core of manganese—gallium (MnGa) compounds, are studied. The core-shell structure is confirmed by transmission electron microscope (TEM). The ferromagnetic-like core contains three kinds of MnGa binary compounds, i.e., ferrimagnetic (FI) D0 22 -type Mn 3 Ga, ferromagnetic (FM) Mn 8 Ga 5 , and AFM D0 19 -type Mn 3 Ga, of which the first two correspond respectively to a hard magnetic phase and to a soft one. Decoupling effect between these two phases is found at low temperature, which weakens gradually with increasing temperature and disappears above 200 K. The exchange bias (EB) effect is observed simultaneously, which is caused by the exchange coupling between the AFM shell and FM-like core. A large coercivity of 6.96 kOe (1 Oe = 79.5775 A·m −1 ) and a maximum EB value of 0.45 kOe are achieved at 300 K and 200 K respectively. (special topic — international conference on nanoscience and technology, china 2013)

  11. Nucleation size of hcp-CoPt dot arrays characterized by time dependence of coercivity

    Energy Technology Data Exchange (ETDEWEB)

    Kikuchi, N; Kitakami, O [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, 980-8577 (Japan); Mitsuzuka, K; Shimatsu, T; Aoi, H, E-mail: kikuchin@tagen.tohoku.ac.j [Research Institute of Electrical Communication, Tohoku University, Sendai, 980-8577 (Japan)

    2010-01-01

    The magnetization reversal process for dot arrays is likely to start from a nucleation followed by propagation process. In this study, we estimated the nucleation diameter D{sub n} for dot arrays made from thin hcp-CoPt perpendicular films (thickness {delta}=3 nm) and Co/Pt multilayered films ({delta}=9 nm), respectively. The dot diameter, D, was varied from 30 to 200 nm for CoPt dot arrays, and from 40 to 80 nm for Co/Pt dot arrays. The remanence coercivity was measured at measurement times t' = 10{sup 3} s and 10{sup -5} s (pulse field), and defined as H{sub r} and H{sub r}{sup P}. The energy barrier {Delta}E was evaluated by fitting H{sub r} and H{sub r}{sup P} to Sharrock's equation. The value of D{sub n} was estimated from {Delta}E, {delta} and the effective magnetic anisotropy of dot arrays including the demagnetizing energy due to the dot shape K{sub u}{sup eff}. D{sub n} was independent of Din both series of dot arrays, and about 17 nm for CoPt dot arrays and about 11 nm for Co/Pt dot arrays. These values were close to both the grain size and the exchange length of these films.

  12. Remanence coercivity of dot arrays of hcp-CoPt perpendicular films

    Energy Technology Data Exchange (ETDEWEB)

    Mitsuzuka, K; Shimatsu, T; Aoi, H [Research Institute of Electrical Communication, Tohoku University, Sendai, 980-8577 (Japan); Kikuchi, N; Okamoto, S; Kitakami, O, E-mail: shimatsu@riec.tohoku.ac.j [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, 980-8577 (Japan)

    2010-01-01

    The remanence coercivity, H{sub r}, of hcp-CoPt dot arrays with various dot thicknesses, {delta}, (3 and 10 nm) and Pt content (20-30at%) were experimentally investigated as a function of the dot diameter, D(30-400 nm). All dot arrays showed a single domain state, even after removal of an applied field equal to H{sub r}. The angular dependence of H{sub r} for the dot arrays indicated coherent rotation of the magnetization during nucleation. H{sub r} increased as Ddecreased in all series of dot arrays with various {delta} and Pt content. Assuming that the nucleation field of a dot is determined by the switching field of a grain having the smallest switching field, we calculated the value of nucleation field H{sub n}{sup cal} taking account of the c-axis distribution and the distribution of the demagnetizing field in the dot. The values of H{sub r} obtained experimentally are in good agreement with those of H{sub n}{sup cal}, taking account of thermal agitation of magnetization. This result suggested that the reversal process of hcp-CoPt dot arrays starts from a nucleation at the center of the dot followed by a propagation process.

  13. Topology optimization of reduced rare-earth permanent magnet arrays with finite coercivity

    Science.gov (United States)

    Teyber, R.; Trevizoli, P. V.; Christiaanse, T. V.; Govindappa, P.; Rowe, A.

    2018-05-01

    The supply chain risk of rare-earth permanent magnets has yielded research efforts to improve both materials and magnetic circuits. While a number of magnet optimization techniques exist, literature has not incorporated the permanent magnet failure process stemming from finite coercivity. To address this, a mixed-integer topology optimization is formulated to maximize the flux density of a segmented Halbach cylinder while avoiding permanent demagnetization. The numerical framework is used to assess the efficacy of low-cost (rare-earth-free ferrite C9), medium-cost (rare-earth-free MnBi), and higher-cost (Dy-free NdFeB) permanent magnet materials. Novel magnet designs are generated that produce flux densities 70% greater than the segmented Halbach array, albeit with increased magnet mass. Three optimization formulations are then explored using ferrite C9 that demonstrates the trade-off between manufacturability and design sophistication, generating flux densities in the range of 0.366-0.483 T.

  14. Multi-actuation and PI control: A simple recipe for high-speed and large-range atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Soltani Bozchalooi, I., E-mail: isoltani@mit.edu; Youcef-Toumi, K.

    2014-11-15

    High speed atomic force microscopy enables observation of dynamic nano-scale processes. However, maintaining a minimal interaction force between the sample and the probe is challenging at high speed specially when using conventional piezo-tubes. While rigid AFM scanners are operational at high speeds with the drawback of reduced tracking range, multi-actuation schemes have shown potential for high-speed and large-range imaging. Here we present a method to seamlessly incorporate additional actuators into conventional AFMs. The equivalent behavior of the resulting multi-actuated setup resembles that of a single high-speed and large-range actuator with maximally flat frequency response. To achieve this, the dynamics of the individual actuators and their couplings are treated through a simple control scheme. Upon the implementation of the proposed technique, commonly used PI controllers are able to meet the requirements of high-speed imaging. This forms an ideal platform for retroactive enhancement of existing AFMs with minimal cost and without compromise on the tracking range. A conventional AFM with tube scanner is retroactively enhanced through the proposed method and shows an order of magnitude improvement in closed loop bandwidth performance while maintaining large range. The effectiveness of the method is demonstrated on various types of samples imaged in contact and tapping modes, in air and in liquid. - Highlights: • We present a novel method to incorporate extra actuators into conventional AFMs. • A maximally flat frequency response is achieved for the out of plane piezo-motion. • Commonly used PI or PID control is enabled to handle high speed AFM imaging. • An order of magnitude improvement in closed loop bandwidth performance is obtained. • High speed imaging is achieved on a large range piezo-tube.

  15. Multi-actuation and PI control: A simple recipe for high-speed and large-range atomic force microscopy

    International Nuclear Information System (INIS)

    Soltani Bozchalooi, I.; Youcef-Toumi, K.

    2014-01-01

    High speed atomic force microscopy enables observation of dynamic nano-scale processes. However, maintaining a minimal interaction force between the sample and the probe is challenging at high speed specially when using conventional piezo-tubes. While rigid AFM scanners are operational at high speeds with the drawback of reduced tracking range, multi-actuation schemes have shown potential for high-speed and large-range imaging. Here we present a method to seamlessly incorporate additional actuators into conventional AFMs. The equivalent behavior of the resulting multi-actuated setup resembles that of a single high-speed and large-range actuator with maximally flat frequency response. To achieve this, the dynamics of the individual actuators and their couplings are treated through a simple control scheme. Upon the implementation of the proposed technique, commonly used PI controllers are able to meet the requirements of high-speed imaging. This forms an ideal platform for retroactive enhancement of existing AFMs with minimal cost and without compromise on the tracking range. A conventional AFM with tube scanner is retroactively enhanced through the proposed method and shows an order of magnitude improvement in closed loop bandwidth performance while maintaining large range. The effectiveness of the method is demonstrated on various types of samples imaged in contact and tapping modes, in air and in liquid. - Highlights: • We present a novel method to incorporate extra actuators into conventional AFMs. • A maximally flat frequency response is achieved for the out of plane piezo-motion. • Commonly used PI or PID control is enabled to handle high speed AFM imaging. • An order of magnitude improvement in closed loop bandwidth performance is obtained. • High speed imaging is achieved on a large range piezo-tube

  16. Design of high-fidelity haptic display for one-dimensional force reflection applications

    Science.gov (United States)

    Gillespie, Brent; Rosenberg, Louis B.

    1995-12-01

    This paper discusses the development of a virtual reality platform for the simulation of medical procedures which involve needle insertion into human tissue. The paper's focus is the hardware and software requirements for haptic display of a particular medical procedure known as epidural analgesia. To perform this delicate manual procedure, an anesthesiologist must carefully guide a needle through various layers of tissue using only haptic cues for guidance. As a simplifying aspect for the simulator design, all motions and forces involved in the task occur along a fixed line once insertion begins. To create a haptic representation of this procedure, we have explored both physical modeling and perceptual modeling techniques. A preliminary physical model was built based on CT-scan data of the operative site. A preliminary perceptual model was built based on current training techniques for the procedure provided by a skilled instructor. We compare and contrast these two modeling methods and discuss the implications of each. We select and defend the perceptual model as a superior approach for the epidural analgesia simulator.

  17. Serial forced displacement in American cities, 1916-2010.

    Science.gov (United States)

    Fullilove, Mindy Thompson; Wallace, Rodrick

    2011-06-01

    Serial forced displacement has been defined as the repetitive, coercive upheaval of groups. In this essay, we examine the history of serial forced displacement in American cities due to federal, state, and local government policies. We propose that serial forced displacement sets up a dynamic process that includes an increase in interpersonal and structural violence, an inability to react in a timely fashion to patterns of threat or opportunity, and a cycle of fragmentation as a result of the first two. We present the history of the policies as they affected one urban neighborhood, Pittsburgh's Hill District. We conclude by examining ways in which this problematic process might be addressed.

  18. Design and control of multi-actuated atomic force microscope for large-range and high-speed imaging

    Energy Technology Data Exchange (ETDEWEB)

    Soltani Bozchalooi, I.; Careaga Houck, A. [Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States); AlGhamdi, J. [Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States); Department of Chemistry, College of Science, University of Dammam, Dammam (Saudi Arabia); Youcef-Toumi, K. [Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States)

    2016-01-15

    This paper presents the design and control of a high-speed and large-range atomic force microscopy (AFM). A multi-actuation scheme is proposed where several nano-positioners cooperate to achieve the range and speed requirements. A simple data-based control design methodology is presented to effectively operate the AFM scanner components. The proposed controllers compensate for the coupled dynamics and divide the positioning responsibilities between the scanner components. As a result, the multi-actuated scanner behavior is equivalent to that of a single X–Y–Z positioner with large range and high speed. The scanner of the designed AFM is composed of five nano-positioners, features 6 μm out-of-plane and 120 μm lateral ranges and is capable of high-speed operation. The presented AFM has a modular design with laser spot size of 3.5 μm suitable for small cantilever, an optical view of the sample and probe, a conveniently large waterproof sample stage and a 20 MHz data throughput for high resolution image acquisition at high imaging speeds. This AFM is used to visualize etching of calcite in a solution of sulfuric acid. Layer-by-layer dissolution and pit formation along the crystalline lines in a low pH environment is observed in real time. - Highlights: • High-speed AFM imaging is extended to large lateral and vertical scan ranges. • A general multi-actuation approach to atomic force microscopy is presented. • A high-speed AFM is designed and implemented based on the proposed method. • Multi-actuator control is designed auxiliary to a PID unit to maintain flexibility. • Influence of calcite crystal structure on dissolution is visualized in video form.

  19. GeoFORCE Alaska: Four-Year Field Program Brings Rural Alaskan High School Students into the STEM Pipeline

    Science.gov (United States)

    Fowell, S. J.; Rittgers, A.; Stephens, L.; Hutchinson, S.; Peters, H.; Snow, E.; Wartes, D.

    2016-12-01

    GeoFORCE Alaska is a four-year, field-based, summer geoscience program designed to raise graduation rates in rural Alaskan high schools, encourage participants to pursue college degrees, and increase the diversity of Alaska's technical workforce. Residents of predominantly Alaska Native villages holding degrees in science, technology, engineering, or math (STEM) bring valuable perspectives to decisions regarding management of cultural and natural resources. However, between 2010 and 2015 the average dropout rate for students in grades 7-12 was 8.5% per year in the North Slope School District and 7% per year in the Northwest Arctic School District. 2015 graduation rates were 70% and 75%, respectively. Statewide statistics highlight the challenge for Alaska Native students. During the 2014-2015 school year alone 37.6% of Alaska Native students dropped out of Alaskan public schools. At the college level, Alaska Native students are underrepresented in University of Alaska Fairbanks (UAF) science departments. Launched in 2012 by UAF in partnership with the longstanding University of Texas at Austin program, GeoFORCE applies the cohort model, leading the same group of high school students on geological field academies during four consecutive summers. Through a combination of active learning, teamwork, and hands-on projects at spectacular geological locations, students gain academic skills and confidence that facilitate high school and college success. To date, GeoFORCE Alaska has recruited two cohorts. 78% of these students identify as Alaska Native, reflecting community demographics. The inaugural cohort of 18 students from the North Slope Borough completed the Fourth-Year Academy in summer 2015. 94% of these students graduated from high school, at least 72% plan to attend college, and 33% will major in geoscience. A second cohort of 34 rising 9th and 10th graders entered the program in 2016. At the request of corporate sponsors, this cohort was recruited from both the

  20. Snow driven Radiative Forcing in High Latitude Areas of Disturbance Using Higher Resolution Albedo Products from Landsat and Sentinel-2

    Science.gov (United States)

    Erb, A.; Li, Z.; Schaaf, C.; Wang, Z.; Rogers, B. M.

    2017-12-01

    Land surface albedo plays an important role in the surface energy budget and radiative forcing by determining the proportion of absorbed incoming solar radiation available to drive photosynthesis and surface heating. In Arctic regions, albedo is particularly sensitive to land cover and land use change (LCLUC) and modeling efforts have shown it to be the primary driver of effective radiative forcing from the biogeophysical effects of LCLUC. In boreal forests, the effects of these changes are complicated during snow covered periods when newly exposed, highly reflective snow can serve as the primary driver of radiative forcing. In Arctic biomes disturbance scars from fire, pest and harvest can remain in the landscape for long periods of time. As such, understanding the magnitude and persistence of these disturbances, especially in the shoulder seasons, is critical. The Landsat and Sentinel-2 Albedo Products couple 30m and 20m surface reflectances with concurrent 500m BRDF Products from the MODerate resolution Imaging Spectroradiometer (MODIS). The 12 bit radiometric fidelity of Sentinel-2 and Landsat-8 allow for the inclusion of high-quality, unsaturated albedo calculations over snow covered surfaces at scales more compatible with fragmented landscapes. Recent work on the early spring albedo of fire scars has illustrated significant post-fire spatial heterogeneity of burn severity at the landscape scale and highlights the need for a finer spatial resolution albedo record. The increased temporal resolution provided by multiple satellite instruments also allows for a better understanding of albedo dynamics during the dynamic shoulder seasons and in historically difficult high latitude locations where persistent cloud cover limits high quality retrievals. Here we present how changes in the early spring albedo of recent boreal forest disturbance in Alaska and central Canada affects landscape-scale radiative forcing. We take advantage of the long historical Landsat record

  1. Investigation of cellular microstructure and enhanced coercivity in sputtered Sm{sub 2}(CoCuFeZr){sub 17} film

    Energy Technology Data Exchange (ETDEWEB)

    Bhatt, Ranu, E-mail: rbhatt@barc.gov.in; Schütz, G. [Max Planck Institute for Intelligent Systems (formerly Max Planck Institute for Metals Research), Heisenbergstr. 3, 70569 Stuttgart (Germany); Bhatt, Pramod [Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India)

    2014-03-14

    We have investigated the effect of annealing temperature on the microstructure and magnetic properties of Sm{sub 2}(CoCuFeZr){sub 17} films prepared using ion beam sputtering at room temperature. The as-deposited film shows randomly oriented polycrystalline grains and exhibits small coercivity (H{sub C}) of 0.04 T at room temperature. Post annealing of these films at 700 °C under Ar atmosphere shows significant changes in the microstructure transforming it to the development of cellular growth, concomitant with enhanced coercivity up to 1.3 T. The enhanced coercivity is explained using the domain wall pinning mechanism.

  2. A numerical modeling study of the interaction between the tides and the circulation forced by high-latitude plasma convection

    International Nuclear Information System (INIS)

    Mikkelsen, I.S.; Larsen, M.F.

    1991-01-01

    A spectral, time-varying thermospheric general circulation model has been used to study the nonlinear interaction at high latitudes between the tides propagating into the thermosphere from below and the circulation induced by magnetospheric forcing and in situ solar heating. The model is discrete in the vertical with 27 layers spaced by half a scale height. In the horizontal, the fields are expanded in a series of spherical harmonics using a triangular truncation at wave number 31, equivalent to a homogeneous global resolution with a minimum wavelength of 1,270 km. A hypothetical uniform grid point model would require a horizontal spacing of 417 km to describe the same minimum wavelength. In the high-latitude F region the tides affect the dusk vortex of the neutral flow very little, but the dawn vortex is either suppressed or amplified dependent upon the universal time and tidal phase. In the E region neutral flow, both the dusk and dawn vortices are shifted in local time by the tides, again as a function of universal time and tidal phase. At dusk a nonlinear amplification of the sunward winds occurs for certain combination of parameters, and at dawn the winds may be completely suppressed. Below 120 km altitude the magnetospheric forcing creates a single cyclonic vortex which is also sensitive to the high-latitude tidal structure

  3. Feasibility study of electrophoresis deposition of DyF3 on Nd-Fe-B particles for coercivity enhancement

    Directory of Open Access Journals (Sweden)

    K. M. Kim

    2018-05-01

    Full Text Available Feasibility of the electrophoresis deposition (EPD technique for homogeneous and adhesive deposition of DyF3 particles on the Nd-Fe-B-type particles was studied, and coercivity enhancement in the diffusion-treated Nd-Fe-B-type particles deposited with DyF3 by EPD was investigated. HDDR-treated Nd12.5Fe80.6B6.4Ga0.3Nb0.2 particles were deposited with DyF3 particles by EPD. More homogeneous and adhesive deposition of DyF3 particles on the surface of Nd-Fe-B particles was made by the EPD with respect to conventional dip-coating, and this led to more active and homogeneous diffusion of Dy. More profound coercivity enhancement was achieved in the diffusion-treated Nd-Fe-B-type particles deposited with DyF3 by EPD compared to dip-coated particles.

  4. The Impact of Coercive Migrations on the Changes of Total Population Flux in the War-Engulfed Croatian Counties

    Directory of Open Access Journals (Sweden)

    Ana Pažanin

    2006-01-01

    Full Text Available The author deals with the war impact and the impact of coercive migrations on the changes of total population fl ux between two censuses. On the eve of and during the Croatian War of Independence, the migration of population of the Republic of Croatia from the war-engulfed areas to the free areas of the country or to the foreign countries increased. The war in Bosnia and Herzegovina has caused a new wave of refugees from that country and a further migrational fl ux in our country. In the article, the author has established, on the case of the war-engulfed areas of eleven Croatian counties, that the war and coercive migrations have caused a decline of population, the growth of aged population, as well as changes in national and confessional structure.

  5. Meaning production about an absent image: towards Lula’s coercive conduction in the scope of Operation Lava-Jato

    Directory of Open Access Journals (Sweden)

    Janaina Cardoso Brum

    2017-11-01

    Full Text Available In March 2016, the former president Lula was conducted through a coercive way by the Federal Police in order to depose about his involvement in suspect activities related to Operation Lava Jato. The shooting or any other register of this coercive conduction have been forbidden, thus the national media began to work in the verge of this “denied image”. In this paper, we investigate the process of meaning production about this “absent image” through other images and materialities that circulate in the media discourse game regarding the destabilization/ stabilization of evidence about the March fourth current events. Therefore, the concept of lack, excess and strangeness, established by Ernst, were fundamental. We started with the hypothesis that, answering the lack of imagetic register, it was established a profusion of other imagetic, audiovisual and/or verbal discourses.

  6. Coercivity of Nd-Fe-B hot-deformed magnets produced by the spark plasma sintering method

    Directory of Open Access Journals (Sweden)

    Tetsuji Saito

    2017-05-01

    Full Text Available The effects of Nd-Cu alloy powder addition on the microstructures and magnetic properties of Nd-Fe-B hot-deformed magnets produced by the spark plasma sintering (SPS method were investigated. The addition of a small amount of Nd-Cu alloy powder, up to 2%, significantly increased the coercivity of the Nd-Fe-B hot-deformed magnets without deteriorating the crystallographic alignment of the Nd2Fe14B phase. The Nd-Fe-B hot-deformed magnet with 2% Nd-Cu alloy powder had the same remanence value as the Nd-Fe-B hot-deformed magnet without Nd-Cu alloy powder addition, but the magnet with 2% Nd-Cu alloy powder exhibited higher coercivity and a higher maximum energy product than the magnet without Nd-Cu alloy powder addition.

  7. Out-of-plane coercive field of Ni{sub 80}Fe{sub 20} antidot arrays

    Energy Technology Data Exchange (ETDEWEB)

    Chunhong, Gao [School of Physical Science and Technology, Southwest University, Chongqing 400715 (China); Ke, Chen [Chongqing Electric Power College, Chongqing (China); Ling, Lue; Jianwei, Zhao [School of Physical Science and Technology, Southwest University, Chongqing 400715 (China); Chen Peng, E-mail: pchen@swu.edu.c [School of Physical Science and Technology, Southwest University, Chongqing 400715 (China)

    2010-11-15

    The out-of-plane magnetic anisotropy and out-of-plane magnetization reversal process of nanoscale Ni{sub 80}Fe{sub 20} antidot arrays deposited by magnetron sputtering technique on an anodic aluminum oxide (AAO) membrane are investigated. The angular dependence of out-of-plane remanent magnetization of Ni{sub 80}Fe{sub 20} antidot arrays shows that the maximum remanence is in-plane and the squareness of the out-of-plane hysteresis loop follow a |cos {theta}| dependence. The angular dependence of out-of-plane coercivity of Ni{sub 80}Fe{sub 20} antidot arrays shows that the maximum coercivity lies on the surface of a cone with its symmetric axis normal to the sample plane, which indicates a transition of magnetic reversal from curling to coherent rotation when changing the angle between the applied magnetic field and the sample plane.

  8. Feasibility study of electrophoresis deposition of DyF3 on Nd-Fe-B particles for coercivity enhancement

    Science.gov (United States)

    Kim, K. M.; Kang, M. S.; Kwon, H. W.; Lee, J. G.; Yu, J. H.

    2018-05-01

    Feasibility of the electrophoresis deposition (EPD) technique for homogeneous and adhesive deposition of DyF3 particles on the Nd-Fe-B-type particles was studied, and coercivity enhancement in the diffusion-treated Nd-Fe-B-type particles deposited with DyF3 by EPD was investigated. HDDR-treated Nd12.5Fe80.6B6.4Ga0.3Nb0.2 particles were deposited with DyF3 particles by EPD. More homogeneous and adhesive deposition of DyF3 particles on the surface of Nd-Fe-B particles was made by the EPD with respect to conventional dip-coating, and this led to more active and homogeneous diffusion of Dy. More profound coercivity enhancement was achieved in the diffusion-treated Nd-Fe-B-type particles deposited with DyF3 by EPD compared to dip-coated particles.

  9. Exchange biased FeNi/FeMn bilayers with coercivity and switching field enhanced by FeMn surface oxidation

    Directory of Open Access Journals (Sweden)

    A. V. Svalov

    2013-09-01

    Full Text Available FeNi/FeMn bilayers were grown in a magnetic field and subjected to heat treatments at temperatures of 50 to 350 °C in vacuum or in a gas mixture containing oxygen. In the as-deposited state, the hysteresis loop of 30 nm FeNi layer was shifted. Low temperature annealing leads to a decrease of the exchange bias field. Heat treatments at higher temperatures in gas mixture result in partial oxidation of 20 nm thick FeMn layer leading to a nonlinear dependence of coercivity and a switching field of FeNi layer on annealing temperature. The maximum of coercivity and switching field were observed after annealing at 300 °C.

  10. The Amsterdam Studies of Acute Psychiatry I (ASAP-I; A prospective cohort study of determinants and outcome of coercive versus voluntary treatment interventions in a metropolitan area

    Directory of Open Access Journals (Sweden)

    Mulder Niels

    2008-05-01

    Full Text Available Abstract Background The overall number of involuntary admissions is increasing in many European countries. Patients with severe mental illnesses more often progress to stages in which acute, coercive treatment is warranted. The number of studies that have examined this development and possible consequences in terms of optimizing health care delivery in emergency psychiatry is small and have a number of methodological shortcomings. The current study seeks to examine factors associated with compulsory admissions in the Amsterdam region, taking into account a comprehensive model with four groups of predictors: patient vulnerability, social support, responsiveness of the health care system and treatment adherence. Methods/Design This paper describes the design of the Amsterdam Study of Acute Psychiatry-I (ASAP-I. The study is a prospective cohort study, with one and two-year follow-up, comparing patients with and without forced admission by means of a selected nested case-control design. An estimated total number of 4,600 patients, aged 18 years and over, consecutively coming into contact with the Psychiatric Emergency Service Amsterdam (PESA are included in the study. From this cohort, a randomly selected group of 125 involuntary admitted subjects and 125 subjects receiving non-coercive treatment are selected for further evaluation and comparison. First, socio-demographic, psychopathological and network characteristics, and prior use of health services will be described for all patients who come into contact with PESA. Second, the in-depth study of compulsory versus voluntary patients will examine which patient characteristics are associated with acute compulsory admission, also taking into account social network and healthcare variables. The third focus of the study is on the associations between patient vulnerability, social support, healthcare characteristics and treatment adherence in a two-year follow-up for patients with or without

  11. Report of the Interagency Task Force on High Energy Density Physics

    International Nuclear Information System (INIS)

    2007-01-01

    Identifies the needs for improving Federal stewardship of specific aspects of high energy density physics, particularly the study of high energy density plasmas in the laboratory, and strengthening university activities in this latter discipline. The report articulates how HEDP fits into the portfolio of federally funded missions and includes agency actions to be taken that are necessary to further this area of study consistent with Federal priorities and plans, while being responsive to the needs of the scientific community

  12. Report of the Interagency Task Force on High Energy Density Physics

    Energy Technology Data Exchange (ETDEWEB)

    None

    2007-08-01

    Identifies the needs for improving Federal stewardship of specific aspects of high energy density physics, particularly the study of high energy density plasmas in the laboratory, and strengthening university activities in this latter discipline. The report articulates how HEDP fits into the portfolio of federally funded missions and includes agency actions to be taken that are necessary to further this area of study consistent with Federal priorities and plans, while being responsive to the needs of the scientific community.

  13. Growth and giant coercive field of spinel-structured Co3- x Mn x O4 thin films

    Science.gov (United States)

    Kwak, Yongsu; Song, Jonghyun; Koo, Taeyeong

    2016-08-01

    We grew epitaxial thin films of CoMn2O4 and Co2MnO4 on Nb-doped SrTiO3(011) and SrTiO3(001) single crystal substrates using pulsed laser deposition. The magnetic Curie temperature ( T c ) of the Co2MnO4 thin films was ~176 K, which is higher than that of the bulk whereas CoMn2O4 thin films exhibited a value of T c (~151 K) lower than that of the bulk. For the Co2MnO4 thin films, the M - H loop showed a coercive field of ~0.7 T at 10 K, similar to the value for the bulk. However, the M -H loop of the CoMn2O4(0 ll) thin film grown on a Nb-doped SrTiO3(011) substrate exhibited a coercive field of ~4.5 T at 30 K, which is significantly higher than those of the Co2MnO4 thin film and bulk. This giant coercive field, only observed for the CoMn2O4(0 ll) thin film, can be attributed to the shape anisotropy and strong spin-orbit coupling.

  14. Dependence of the polar Kerr angle and coercivity on repeat distance in sequentially prepared Tb/FeCo films

    International Nuclear Information System (INIS)

    Shin, S.

    1991-01-01

    Multilayer thin films of Tb and FeCo were prepared by sequential thermal evaporation of Tb and Fe 90 Co 10 alloy on glass substrates at ambient temperature in a vacuum of about 1 x 10 -6 Torr. The repeat distance of the films was varied from 3.5 to 175 A while maintaining the composition constant for all samples. Low-angle x-ray diffraction and Auger electron spectroscopy showed that a multilayer structure was achieved for films fabricated with a repeat distance Λ≥31.5 A. The polar Kerr rotation angle and coercivity of the samples were obtained by measuring the polar Kerr hysteresis loop using a 632.8-nm HeNe laser. It was observed that for the samples having a multilayer structure, the remnant Kerr angle and coercivity monotonically decreased with increasing repeat distance, and eventually disappeared for Λ≥70 A. For the samples showing a nonmultilayer structure, the remnant Kerr angle was independent of repeat distance. However, the coercivity increased with repeat distance until a broad maximum was obtained around Λ congruent 14--21 A

  15. Temperature dependence of coercive field and fatigue in poly(vinylidene fluoride-trifluoroethylene) copolymer ultra-thin films

    International Nuclear Information System (INIS)

    Zhang Xiuli; Xu Haisheng; Zhang Yanni

    2011-01-01

    The experimental intrinsic coercive field of ferroelectric poly(vinylidene fluoride-trifluoethylene) copolymer films, with both bottom and top gold electrodes is measured at a wide temperature range. In the lower temperature region from -20 to 25 deg. C, the temperature dependence of coercive field shows good agreement with the prediction by the Landau-Ginzburg (LG) mean-field theory. In the higher temperature region from 25 to 80 deg. C, the coercive field shows a slow decrease with the increased temperature, where the LG theory is not applicable any more. The temperature-dependent changes in the polymer chains have been analysed. A reversible 'inherent fatigue' is observed from the partially recovered remanent polarization after re-annealing a fatigued P(VDF-TrFE) film. FTIR spectra indicate that the interchain spacing does not change from 10 to 10 7 switching cycles while the degree of all-trans ferroelectric phase decreases gradually with applied switching cycles. After a re-annealing treatment, ferroelectric phase recovers and dipoles at the boundary of crystallites acquire much higher energy.

  16. High-speed broadband nanomechanical property quantification and imaging of life science materials using atomic force microscope

    Science.gov (United States)

    Ren, Juan

    Nanoscale morphological characterization and mechanical properties quantification of soft and biological materials play an important role in areas ranging from nano-composite material synthesis and characterization, cellular mechanics to drug design. Frontier studies in these areas demand the coordination between nanoscale morphological evolution and mechanical behavior variations through simultaneous measurement of these two aspects of properties. Atomic force microscope (AFM) is very promising in achieving such simultaneous measurements at high-speed and broadband owing to its unique capability in applying force stimuli and then, measuring the response at specific locations in a physiologically friendly environment with pico-newton force and nanometer spatial resolution. Challenges, however, arise as current AFM systems are unable to account for the complex and coupled dynamics of the measurement system and probe-sample interaction during high-speed imaging and broadband measurements. In this dissertation, the creation of a set of dynamics and control tools to probe-based high-speed imaging and rapid broadband nanomechanical spectroscopy of soft and biological materials are presented. Firstly, advanced control-based approaches are presented to improve the imaging performance of AFM imaging both in air and in liquid. An adaptive contact mode (ACM) imaging scheme is proposed to replace the traditional contact mode (CM) imaging by addressing the major concerns in both the speed and the force exerted to the sample. In this work, the image distortion caused by the topography tracking error is accounted for in the topography quantification and the quantified sample topography is utilized in a gradient-based optimization method to adjust the cantilever deflection set-point for each scanline closely around the minimal level needed for maintaining a stable probe-sample contact, and a data-driven iterative feedforward control that utilizes a prediction of the next

  17. Reversal mechanisms and interactions in magnetic systems: coercivity versus switching field and thermally assisted demagnetization

    Directory of Open Access Journals (Sweden)

    Cebollada, F.

    2005-06-01

    Full Text Available In this paper we present a comparative analysis of the magnetic interactions and reversal mechanisms of two different systems: NdFeB-type alloys with grain sizes in the single domain range and Fe-SiO2 nanocomposites with Fe concentrations above and below the percolation threshold. We evidence that the use of the coercivity as the main parameter to analyse them might be misleading due to the convolution of both reversible and irreversible magnetization variations. We show that the switching field and thermally assisted demagnetization allow a better understanding of these mechanisms since they involve just irreversible magnetization changes. Specifically, the experimental analysis of the coercivity adquisition process for the NdFeB-type system suggests that the magnetization reversal is nucleated at the spin misalignments present due to intergranular exchange interactions. On the other hand, the study of the magnetic viscosity and of the isothermal remanent magnetization (IRM and direct field demagnetization (DCD remanence curves indicates that the dipolar interactions are responsible for the propagation of the switching started at individual particles.

    En este artículo presentamos un análisis comparativo de la influencia de la microestructura a través de las interacciones magnéticas en los mecanismos de inversión de la magnetización en dos sistemas diferentes: aleaciones tipo NdFeB con tamaños de grano en el rango de monodominio y nanocompuestos de Fe-SiO2 con concentraciones de Fe tanto por encima como por debajo del umbral de percolación. Ponemos de manifiesto que el uso del campo coercitivo como parámetro de análisis puede llevar a equívocos debido a la coexistencia de variaciones reversibles e irreversibles de la magnetización. También mostramos que el campo de conmutación y la desimanación térmicamente asistida permiten una mejor comprensión de dichos mecanismos ya que reflejan exclusivamente cambios irreversibles de

  18. Implosion lessons from national security, high reliability spacecraft, electronics, and the forces which changed them

    CERN Document Server

    Temple, L Parker

    2012-01-01

    Implosion is a focused study of the history and uses of high-reliability, solid-state electronics, military standards, and space systems that support our national security and defense. This book is unique in combining the interdependent evolution of and interrelationships among military standards, solid-state electronics, and very high-reliability space systems. Starting with a brief description of the physics that enabled the development of the first transistor, Implosion covers the need for standardizing military electronics, which began during World War II and continu

  19. Formation of well-mixed warm water column in central Bohai Sea during summer: Role of high-frequency atmospheric forcing

    Science.gov (United States)

    Ma, Weiwei; Wan, Xiuquan; Wang, Zhankun; Liu, Yulong; Wan, Kai

    2017-12-01

    The influence of high-frequency atmospheric forcing on the formation of a well-mixed summer warm water column in the central Bohai Sea is investigated comparing model simulations driven by daily surface forcing and those using monthly forcing data. In the absence of high-frequency atmospheric forcing, numerical simulations have repeatedly failed to reproduce this vertically uniform column of warm water measured over the past 35 years. However, high-frequency surface forcing is found to strongly influence the structure and distribution of the well-mixed warm water column, and simulations are in good agreement with observations. Results show that high frequency forcing enhances vertical mixing over the central bank, intensifies downward heat transport, and homogenizes the water column to form the Bohai central warm column. Evidence presented shows that high frequency forcing plays a dominant role in the formation of the well-mixed warm water column in summer, even without the effects of tidal and surface wave mixing. The present study thus provides a practical and rational way of further improving the performance of oceanic simulations in the Bohai Sea and can be used to adjust parameterization schemes of ocean models.

  20. Men pressured and forced into sexual experience.

    Science.gov (United States)

    Struckman-Johnson, C; Struckman-Johnson, D

    1994-02-01

    A predominantly heterosexual sample of 204 college men were asked to report incidents of pressured or forced sexual touch or intercourse since age 16. About 34% indicated they had received coercive sexual contact: 24% from women, 4% from men, and 6% from both sexes. Contact involved only sexual touching for 12% and intercourse for 22%. Sexual contact was pressured in 88% of the 81 reported incidents by tactics of persuasion, intoxication, threat of love withdrawal, and bribery. In 12% of the incidents, sexual contact was forced through physical restraint, physical intimidation, threat of harm, or harm. Contact was initiated by an acquaintance or intimate in 77% of incidents. The negative emotional impact of male contact was rated significantly higher than the impact of female contact. Men with and without coercion experience did not differ, however, for scale scores on sexual esteem, depression, and preoccupation. Interviews with 10 subjects revealed complex reactions to coercive male and female contact, including doubts about one's sexuality, resentment of unexpected or forceful contact, and fear of telling others about the event.

  1. Potentially coercive self-citation by peer reviewers: a cross-sectional study.

    Science.gov (United States)

    Thombs, Brett D; Levis, Alexander W; Razykov, Ilya; Syamchandra, Achyuth; Leentjens, Albert F G; Levenson, James L; Lumley, Mark A

    2015-01-01

    Peer reviewers sometimes request that authors cite their work, either appropriately or via coercive self-citation to highlight the reviewers' work. The objective of this study was to determine in peer reviews submitted to one biomedical journal (1) the extent of peer reviewer self-citation; (2) the proportion of reviews recommending revision or acceptance versus rejection that included reviewer self-citations; and (3) the proportion of reviewer self-citations versus citations to others that included a rationale. Peer reviews for manuscripts submitted in 2012 to the Journal of Psychosomatic Research were evaluated. Data extraction was performed independently by two investigators. There were 616 peer reviews (526 reviewers; 276 manuscripts), of which 444 recommended revision or acceptance and 172 rejection. Of 428 total citations, there were 122 peer reviewer self-citations (29%) and 306 citations to others' work (71%). Self-citations were more common in reviews recommending revision or acceptance (105 of 316 citations; 33%) versus rejection (17/112; 15%; pcitations with no rationale (26 of 122; 21%) was higher than for citations to others' work (15 of 306; 5%; pcitation in peer reviews is common and may reflect a combination of appropriate citation to research that should be cited in published articles and inappropriate citation intended to highlight the work of the peer reviewer. Providing instructions to peer reviewers about self-citation and asking them to indicate when and why they have self-cited may help to limit self-citation to appropriate, constructive recommendations. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. The Making of Masculinities: Fighting the Forces of Hierarchy and Hegemony in the High School Setting

    Science.gov (United States)

    Heinrich, Jill

    2013-01-01

    This study stems from a yearlong qualitative inquiry examining the influence that gender ideologies exercised in the lives of four young men in the high school setting. Utilizing a feminist, post-structuralist perspective (Davies, 1997, 1989; Connell, 1996, 1997, 1989; Martino, 1995), it analyzes how masculinity constructs itself through…

  3. High-speed dynamic atomic force microscopy by using a Q-controlled cantilever eigenmode as an actuator

    Energy Technology Data Exchange (ETDEWEB)

    Balantekin, M., E-mail: mujdatbalantekin@iyte.edu.tr

    2015-02-15

    We present a high-speed operating method with feedback to be used in dynamic atomic force microscope (AFM) systems. In this method we do not use an actuator that has to be employed to move the tip or the sample as in conventional AFM setups. Instead, we utilize a Q-controlled eigenmode of an AFM cantilever to perform the function of the actuator. Simulations show that even with an ordinary tapping-mode cantilever, imaging speed can be increased by about 2 orders of magnitude compared to conventional dynamic AFM imaging. - Highlights: • A high-speed imaging method is developed for dynamic-AFM systems. • An eigenmode of an AFM cantilever is utilized to perform fast actuation. • Simulations show 2 orders of magnitude increase in scan speed. • The time spent for dynamic-AFM imaging experiments will be minimized.

  4. Mediterranean Thermohaline Response to Large-Scale Winter Atmospheric Forcing in a High-Resolution Ocean Model Simulation

    Science.gov (United States)

    Cusinato, Eleonora; Zanchettin, Davide; Sannino, Gianmaria; Rubino, Angelo

    2018-04-01

    Large-scale circulation anomalies over the North Atlantic and Euro-Mediterranean regions described by dominant climate modes, such as the North Atlantic Oscillation (NAO), the East Atlantic pattern (EA), the East Atlantic/Western Russian (EAWR) and the Mediterranean Oscillation Index (MOI), significantly affect interannual-to-decadal climatic and hydroclimatic variability in the Euro-Mediterranean region. However, whereas previous studies assessed the impact of such climate modes on air-sea heat and freshwater fluxes in the Mediterranean Sea, the propagation of these atmospheric forcing signals from the surface toward the interior and the abyss of the Mediterranean Sea remains unexplored. Here, we use a high-resolution ocean model simulation covering the 1979-2013 period to investigate spatial patterns and time scales of the Mediterranean thermohaline response to winter forcing from NAO, EA, EAWR and MOI. We find that these modes significantly imprint on the thermohaline properties in key areas of the Mediterranean Sea through a variety of mechanisms. Typically, density anomalies induced by all modes remain confined in the upper 600 m depth and remain significant for up to 18-24 months. One of the clearest propagation signals refers to the EA in the Adriatic and northern Ionian seas: There, negative EA anomalies are associated to an extensive positive density response, with anomalies that sink to the bottom of the South Adriatic Pit within a 2-year time. Other strong responses are the thermally driven responses to the EA in the Gulf of Lions and to the EAWR in the Aegean Sea. MOI and EAWR forcing of thermohaline properties in the Eastern Mediterranean sub-basins seems to be determined by reinforcement processes linked to the persistency of these modes in multiannual anomalous states. Our study also suggests that NAO, EA, EAWR and MOI could critically interfere with internal, deep and abyssal ocean dynamics and variability in the Mediterranean Sea.

  5. Analysis and Environmental Fate of Air Force Distillate and High Density Fuels

    Science.gov (United States)

    1981-10-01

    728.1 128 0.8 Toluenc 751.3 92 0.6 XTHDCPD 1049.6 136 66.8 NTHDCPD 1079.2 136 1.5HNN 1509.6 186 20.1 JP-1O XTHDCPD 1050.3 136 96.8 ITHDCPD 1079.6 136 1,5...deionized water and the salts listed below. Blanks of both waters were routinely extracted and analyzed for possible 4.nterferences. MNN PXTX XTHDCPD ...through 13; complete data summaries for the distillate fuels may be found in Appendix C. All com- ponents of the high density fuels except XTHDCPD of

  6. High Speed Blanking: An Experimental Method to Measure Induced Cutting Forces

    OpenAIRE

    GAUDILLIERE , Camille; Ranc , Nicolas; LARUE , Arnaud; MAILLARD , A; Lorong , Philippe

    2013-01-01

    Lien vers la version éditeur: http://link.springer.com/article/10.1007/s11340-013-9738-1; International audience; A new blanking process that involves punch speed up to 10 ms −1 has obvious advantages in increased productivity. However, the inherent dynamics of such a process makes it difficult to develop a practical high speed punch press. The fracture phenomenon governing the blanking process has to be well understood to correctly design the machine support and the tooling. To observe this ...

  7. Childhood motocross truncal injuries: high-velocity, focal force to the chest and abdomen

    Science.gov (United States)

    Kennedy, Raelene D; Potter, D Dean; Osborn, John B; Zietlow, Scott; Zarroug, Abdalla E; Moir, Christopher R; Ishitani, Michael B; McIntosh, Amy

    2012-01-01

    Objectives To review the need for operative intervention and critical care services for motocross truncal injuries in children. Design cohort Retrospective review of patients identified via the hospital trauma registry. Setting Our Level 1 Pediatric Trauma Center serves five motocross tracks. These patients require frequent medical care for injuries. Participants All patients ≤17 years of age with truncal injuries sustained during motocross activities, between 2000 and 2011, were identified through the trauma registry. Primary and secondary outcome measures Operative intervention, intensive care unit (ICU) admission, length of stay, morbidity and demographics were reviewed. Results Motocross injured 162 children. Thirty (18.5%) were thoracic or abdominal injuries. Operative intervention was required in eight (27%) patients. Mean injury severity score (ISS) was 11.8. ICU admission was required in 50% and average hospital length of stay was 4.1 days. The most common injuries include pulmonary contusion, pneumothorax, spleen and liver lacerations. 13% of subjects suffered truncal injury from motocross on more than one occasion. Conclusions Paediatric motocross-related truncal injuries are significant. Surgical intervention is required in 27% of patients. The lower ISS incurred from motocross combined with high surgical and ICU admission rates suggests focal high-impact injuries to the chest and abdomen. Despite significant injury, 13% of motocross patients suffer recurrent injuries. Parents and children need injury prevention education. PMID:23166134

  8. Customization, control, and characterization of a commercial haptic device for high-fidelity rendering of weak forces.

    Science.gov (United States)

    Gurari, Netta; Baud-Bovy, Gabriel

    2014-09-30

    The emergence of commercial haptic devices offers new research opportunities to enhance our understanding of the human sensory-motor system. Yet, commercial device capabilities have limitations which need to be addressed. This paper describes the customization of a commercial force feedback device for displaying forces with a precision that exceeds the human force perception threshold. The device was outfitted with a multi-axis force sensor and closed-loop controlled to improve its transparency. Additionally, two force sensing resistors were attached to the device to measure grip force. Force errors were modeled in the frequency- and time-domain to identify contributions from the mass, viscous friction, and Coulomb friction during open- and closed-loop control. The effect of user interaction on system stability was assessed in the context of a user study which aimed to measure force perceptual thresholds. Findings based on 15 participants demonstrate that the system maintains stability when rendering forces ranging from 0-0.20 N, with an average maximum absolute force error of 0.041 ± 0.013 N. Modeling the force errors revealed that Coulomb friction and inertia were the main contributors to force distortions during respectively slow and fast motions. Existing commercial force feedback devices cannot render forces with the required precision for certain testing scenarios. Building on existing robotics work, this paper shows how a device can be customized to make it reliable for studying the perception of weak forces. The customized and closed-loop controlled device is suitable for measuring force perceptual thresholds. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. High-resolution noncontact AFM and Kelvin probe force microscopy investigations of self-assembled photovoltaic donor–acceptor dyads

    Directory of Open Access Journals (Sweden)

    Benjamin Grévin

    2016-06-01

    Full Text Available Self-assembled donor–acceptor dyads are used as model nanostructured heterojunctions for local investigations by noncontact atomic force microscopy (nc-AFM and Kelvin probe force microscopy (KPFM. With the aim to probe the photo-induced charge carrier generation, thin films deposited on transparent indium tin oxide substrates are investigated in dark conditions and upon illumination. The topographic and contact potential difference (CPD images taken under dark conditions are analysed in view of the results of complementary transmission electron microscopy (TEM experiments. After in situ annealing, it is shown that the dyads with longer donor blocks essentially lead to standing acceptor–donor lamellae, where the acceptor and donor groups are π-stacked in an edge-on configuration. The existence of strong CPD and surface photo-voltage (SPV contrasts shows that structural variations occur within the bulk of the edge-on stacks. SPV images with a very high lateral resolution are achieved, which allows for the resolution of local photo-charging contrasts at the scale of single edge-on lamella. This work paves the way for local investigations of the optoelectronic properties of donor–acceptor supramolecular architectures down to the elementary building block level.

  10. Burnout in a high heat flux boiling system with forced supply of liquid through a plane jet

    International Nuclear Information System (INIS)

    Katto, Yoshiro; Ishii, Kazunori.

    1978-01-01

    As for pool boiling, the non-dimensional formula for the burnout heat flux of a simple, basic boiling system has been obtained. On the other hand, in forced convection boiling, the studies on the burnout in forced flow boiling in a channel have been continued, but the derivation of a non-dimensional formula applicable generally is far away from the realization because the phenomena are too complex. Accordingly, in this study, the result of the experiment on the burnout of a boiling system to which liquid is supplied by the plane jet flowing out of a thin rectangular nozzle installed near the front edge of a rectangular heating surface is reported. The experimental apparatus is described, and the experiment was carried out in the ranges of two jet thicknesses at the nozzle outlet, two incident angles of jet and from 1.5 to 15 m/s of jet velocity. Burnout occurs under the situation of sufficiently developed nuclear boiling. A part of the liquid supplied from a plane jet is blown apart by the vapor blowing out of the nuclear boiling liquid layer covering the heating surface in the nuclear boiling with sufficiently developed high heat flux. However, the nuclear boiling liquid layer itself continues to exist on the heating surface till burnout occurs. Only the entering velocity of the plane jet affects burnout heat flux. (Kako, I.)

  11. Roles of coercivity and remanent flux density of permanent magnet in interior permanent magnet synchronous motor (IPMSM) performance for electric vehicle applications

    Science.gov (United States)

    Won, Hoyun; Hong, Yang-Ki; Lee, Woncheol; Choi, Minyeong

    2018-05-01

    We used four rotor topologies of an interior permanent magnet synchronous motor (IPMSM) to investigate the effects of remanent flux density (Br) and coercivity (Hc) of permanent magnet on motor performance. Commercial strontium hexaferrite (SrFe12O19: energy product, (BH)max, of 4.62 MGOe) and Nd-Fe-B ((BH)max of 38.2 MGOe) magnets were used for the rotor designs. The same machine specifications and magnet volume keep constant, while the Hc and Br vary to calculate torque and energy efficiency with the finite-element analysis. A combination of high Hc and low Br more effectively increased maximum torque of IPMSM when the hexaferrite magnet was used. For Nd-Fe-B magnet, the same combination did not affect maximum torque, but increased energy efficiency at high speed. Therefore, the Hc value of a permanent magnet is more effective than the Br in producing high maximum torque for SrM-magnet based IPMSM and high energy efficiency at high speed for Nd-Fe-B magnet based IPMSM.

  12. High-accuracy numerical integration of charged particle motion – with application to ponderomotive force

    International Nuclear Information System (INIS)

    Furukawa, Masaru; Ohkawa, Yushiro; Matsuyama, Akinobu

    2016-01-01

    A high-accuracy numerical integration algorithm for a charged particle motion is developed. The algorithm is based on the Hamiltonian mechanics and the operator decomposition. The algorithm is made to be time-reversal symmetric, and its order of accuracy can be increased to any order by using a recurrence formula. One of the advantages is that it is an explicit method. An effective way to decompose the time evolution operator is examined; the Poisson tensor is decomposed and non-canonical variables are adopted. The algorithm is extended to a time dependent fields' case by introducing the extended phase space. Numerical tests showing the performance of the algorithm are presented. One is the pure cyclotron motion for a long time period, and the other is a charged particle motion in a rapidly oscillating field. (author)

  13. Burnout experiment in subcooled forced-convection boiling of water for beam dumps of a high power neutral beam injector

    International Nuclear Information System (INIS)

    Horiike, Hiroshi; Kuriyama, Masaaki; Morita, Hiroaki

    1982-01-01

    Experimental studies were made on burnout heat flux in highly subcooled forced-convection boiling of water for the design of beam dumps of a high power neutral beam injector for Japan Atomic Energy Research Institute Tokamak-60. These dumps are composed of many circular tubes with two longitudinal fins. The tube was irradiated with nonuniformly distributed hydrogen ion beams of 120 to 200 kW for as long as 10 s. The coolant water was circulated at flow velocities of 3 to 7.5 m/s at exit pressures of 0.4 to 0.9 MPa. The burnout and film-boiling data were obtained at local heat fluxes of 8 to 15 MW/m 2 . These values were as high as 2.5 times larger than those for the circumferentially uniform heat flux case with the same parameters. These data showed insensitivity to local subcooling as well as to pressure, and simple burnout correlations were derived. From these results, the beam dumps have been designed to receive energetic beam fluxes of as high as 5 MW/m 2 with a margin of a factor of 2 for burnout

  14. High-speed atomic force microscopy reveals structural dynamics of α -synuclein monomers and dimers

    Science.gov (United States)

    Zhang, Yuliang; Hashemi, Mohtadin; Lv, Zhengjian; Williams, Benfeard; Popov, Konstantin I.; Dokholyan, Nikolay V.; Lyubchenko, Yuri L.

    2018-03-01

    α-Synuclein (α-syn) is the major component of the intraneuronal inclusions called Lewy bodies, which are the pathological hallmark of Parkinson's disease. α-Syn is capable of self-assembly into many different species, such as soluble oligomers and fibrils. Even though attempts to resolve the structures of the protein have been made, detailed understanding about the structures and their relationship with the different aggregation steps is lacking, which is of interest to provide insights into the pathogenic mechanism of Parkinson's disease. Here we report the structural flexibility of α-syn monomers and dimers in an aqueous solution environment as probed by single-molecule time-lapse high-speed AFM. In addition, we present the molecular basis for the structural transitions using discrete molecular dynamics (DMD) simulations. α-Syn monomers assume a globular conformation, which is capable of forming tail-like protrusions over dozens of seconds. Importantly, a globular monomer can adopt fully extended conformations. Dimers, on the other hand, are less dynamic and show a dumbbell conformation that experiences morphological changes over time. DMD simulations revealed that the α-syn monomer consists of several tightly packed small helices. The tail-like protrusions are also helical with a small β-sheet, acting as a "hinge". Monomers within dimers have a large interfacial interaction area and are stabilized by interactions in the non-amyloid central (NAC) regions. Furthermore, the dimer NAC-region of each α-syn monomer forms a β-rich segment. Moreover, NAC-regions are located in the hydrophobic core of the dimer.

  15. High-resolution high-speed dynamic mechanical spectroscopy of cells and other soft materials with the help of atomic force microscopy.

    Science.gov (United States)

    Dokukin, M; Sokolov, I

    2015-07-28

    Dynamic mechanical spectroscopy (DMS), which allows measuring frequency-dependent viscoelastic properties, is important to study soft materials, tissues, biomaterials, polymers. However, the existing DMS techniques (nanoindentation) have limited resolution when used on soft materials, preventing them from being used to study mechanics at the nanoscale. The nanoindenters are not capable of measuring cells, nanointerfaces of composite materials. Here we present a highly accurate DMS modality, which is a combination of three different methods: quantitative nanoindentation (nanoDMA), gentle force and fast response of atomic force microscopy (AFM), and Fourier transform (FT) spectroscopy. This new spectroscopy (which we suggest to call FT-nanoDMA) is fast and sensitive enough to allow DMS imaging of nanointerfaces, single cells, while attaining about 100x improvements on polymers in both spatial (to 10-70 nm) and temporal resolution (to 0.7 s/pixel) compared to the current art. Multiple frequencies are measured simultaneously. The use of 10 frequencies are demonstrated here (up to 300 Hz which is a rather relevant range for biological materials and polymers, in both ambient conditions and liquid). The method is quantitatively verified on known polymers and demonstrated on cells and polymers blends. Analysis shows that FT-nanoDMA is highly quantitative. The FT-nanoDMA spectroscopy can easily be implemented in the existing AFMs.

  16. Angular and geometry dependence of coercivity and remanence nickel nanotube isolated

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, J.L.; Davila, Y.G.; Garcia, R.P.; Del Toro, A.D.; Martins, I.G.; Hernandez, E.P. [Universidade Federal de Pernambuco (UFPE), PE (Brazil)

    2016-07-01

    , where we vary the angle of the magnetic field applied to the ferromagnetic system. We investigated the role of geometry in the coercivity and remanence of hysteresis curves, where we analyze the types of magnetization reversal modes that can appear in isolated nanotube system. (author)

  17. PFMCal : Photonic force microscopy calibration extended for its application in high-frequency microrheology

    Science.gov (United States)

    Butykai, A.; Domínguez-García, P.; Mor, F. M.; Gaál, R.; Forró, L.; Jeney, S.

    2017-11-01

    The present document is an update of the previously published MatLab code for the calibration of optical tweezers in the high-resolution detection of the Brownian motion of non-spherical probes [1]. In this instance, an alternative version of the original code, based on the same physical theory [2], but focused on the automation of the calibration of measurements using spherical probes, is outlined. The new added code is useful for high-frequency microrheology studies, where the probe radius is known but the viscosity of the surrounding fluid maybe not. This extended calibration methodology is automatic, without the need of a user's interface. A code for calibration by means of thermal noise analysis [3] is also included; this is a method that can be applied when using viscoelastic fluids if the trap stiffness is previously estimated [4]. The new code can be executed in MatLab and using GNU Octave. Program Files doi:http://dx.doi.org/10.17632/s59f3gz729.1 Licensing provisions: GPLv3 Programming language: MatLab 2016a (MathWorks Inc.) and GNU Octave 4.0 Operating system: Linux and Windows. Supplementary material: A new document README.pdf includes basic running instructions for the new code. Journal reference of previous version: Computer Physics Communications, 196 (2015) 599 Does the new version supersede the previous version?: No. It adds alternative but compatible code while providing similar calibration factors. Nature of problem (approx. 50-250 words): The original code uses a MatLab-provided user's interface, which is not available in GNU Octave, and cannot be used outside of a proprietary software as MatLab. Besides, the process of calibration when using spherical probes needs an automatic method when calibrating big amounts of different data focused to microrheology. Solution method (approx. 50-250 words): The new code can be executed in the latest version of MatLab and using GNU Octave, a free and open-source alternative to MatLab. This code generates an

  18. Downloading Deterrence: The Logic and Logistics of Coercive Deployment on U.S. Strategy

    Science.gov (United States)

    2016-06-01

    have me work for Dr. Dan Patt on both the Aircrew Labor In-Cockpit Automation System (ALIAS) and Strategic Mobility Architectures (SMA) Programs...worth in the Arab-Israeli wars. Initially, Egyptian and Syrian surface-to-air missiles (SAMs) proved deadly to the Israeli Air Force; however, advances...Heights in the northeast and the Sinai Peninsula to the West.”2 Israeli forces reeled under the weight of the combined Egyptian and Syrian attack

  19. Subatomic forces

    International Nuclear Information System (INIS)

    Sutton, C.

    1989-01-01

    Inside the atom, particles interact through two forces which are never felt in the everyday world. But they may hold the key to the Universe. These ideas on subatomic forces are discussed with respect to the strong force, the electromagnetic force and the electroweak force. (author)

  20. A computational simulated control system for a high-force pneumatic muscle actuator: system definition and application as an augmented orthosis.

    Science.gov (United States)

    Gerschutz, Maria J; Phillips, Chandler A; Reynolds, David B; Repperger, Daniel W

    2009-04-01

    High-force pneumatic muscle actuators (PMAs) are used for force assistance with minimal displacement applications. However, poor control due to dynamic nonlinearities has limited PMA applications. A simulated control system is developed consisting of: (1) a controller relating an input position angle to an output proportional pressure regulator voltage, (2) a phenomenological model of the PMA with an internal dynamic force loop (system time constant information), (3) a physical model of a human sit-to-stand task and (4) an external position angle feed-back loop. The results indicate that PMA assistance regarding the human sit-to-stand task is feasible within a specified PMA operational pressure range.

  1. Facile fabrication of functional PDMS surfaces with tunable wettablity and high adhesive force via femtosecond laser textured templating

    Directory of Open Access Journals (Sweden)

    Yanlei Hu

    2014-12-01

    Full Text Available Femtosecond laser processing is emerged as a promising tool to functionalize surfaces of various materials, including metals, semiconductors, and polymers. However, the productivity of this technique is limited by the low efficiency of laser raster scanning. Here we report a facile approach for efficiently producing large-area functional polymer surfaces, by which metal is firstly textured by a femtosecond laser, and the as-prepared hierarchical structures are subsequently transferred onto polydimethylsiloxane (PDMS surfaces. Aluminum pieces covered by laser induced micro/nano-structures act as template masters and their performance of displaying diverse colors are investigated. Polymer replicas are endowed with tunable wetting properties, which are mainly attributed to the multi-scale surface structures. Furthermore, the surfaces are found to have extremely high adhesive force for water drops because of the high water penetration depth and the resultant high contact angle hysteresis. This characteristic facilitates many potential applications like loss-free tiny water droplets transportation. The reusability of metal master and easiness of soft lithography make it to be a very simple, fast and cost-efficient way for mass production of functional polymeric surfaces.

  2. Iron Oxide Nanoparticles: Tunable Size Synthesis and Analysis in Terms of the Core-Shell Structure and Mixed Coercive Model

    Science.gov (United States)

    Phong, P. T.; Oanh, V. T. K.; Lam, T. D.; Phuc, N. X.; Tung, L. D.; Thanh, Nguyen T. K.; Manh, D. H.

    2017-04-01

    Iron oxide nanoparticles (NPs) are currently a very active research field. To date, a comprehensive study of iron oxide NPs is still lacking not only on the size dependence of structural phases but also in the use of an appropriate model. Herein, we report on a systematic study of the structural and magnetic properties of iron oxide NPs prepared by a co-precipitation method followed by hydrothermal treatment. X-ray diffraction and transmission electron microscopy reveal that the NPs have an inverse spinel structure of iron oxide phase (Fe3O4) with average crystallite sizes ( D XRD) of 6-19 nm, while grain sizes ( D TEM) are of 7-23 nm. In addition, the larger the particle size, the closer the experimental lattice constant value is to that of the magnetite structure. Magnetic field-dependent magnetization data and analysis show that the effective anisotropy constants of the Fe3O4 NPs are about five times larger than that of their bulk counterpart. Particle size ( D) dependence of the magnetization and the non-saturating behavior observed in applied fields up to 50 kOe are discussed using the core-shell structure model. We find that with decreasing D, while the calculated thickness of the shell of disordered spins ( t ˜ 0.3 nm) remains almost unchanged, the specific surface areas S a increases significantly, thus reducing the magnetization of the NPs. We also probe the coercivity of the NPs by using the mixed coercive Kneller and Luborsky model. The calculated results indicate that the coercivity rises monotonously with the particle size, and are well matched with the experimental ones.

  3. Probing the Surface Charge on the Basal Planes of Kaolinite Particles with High-Resolution Atomic Force Microscopy.

    Science.gov (United States)

    Kumar, N; Andersson, M P; van den Ende, D; Mugele, F; Siretanu, I

    2017-12-19

    High-resolution atomic force microscopy is used to map the surface charge on the basal planes of kaolinite nanoparticles in an ambient solution of variable pH and NaCl or CaCl 2 concentration. Using DLVO theory with charge regulation, we determine from the measured force-distance curves the surface charge distribution on both the silica-like and the gibbsite-like basal plane of the kaolinite particles. We observe that both basal planes do carry charge that varies with pH and salt concentration. The silica facet was found to be negatively charged at pH 4 and above, whereas the gibbsite facet is positively charged at pH below 7 and negatively charged at pH above 7. Investigations in CaCl 2 at pH 6 show that the surface charge on the gibbsite facet increases for concentration up to 10 mM CaCl 2 and starts to decrease upon further increasing the salt concentration to 50 mM. The increase of surface charge at low concentration is explained by Ca 2+ ion adsorption, while Cl - adsorption at higher CaCl 2 concentrations partially neutralizes the surface charge. Atomic resolution imaging and density functional theory calculations corroborate these observations. They show that hydrated Ca 2+ ions can spontaneously adsorb on the gibbsite facet of the kaolinite particle and form ordered surface structures, while at higher concentrations Cl - ions will co-adsorb, thereby changing the observed ordered surface structure.

  4. The coercivity mechanism of sintered SM(Co_b_a_lFe_0_._2_4_5Cu_0_._0_7Zr_0_._0_2)_7_._8 permanent magnets with different isothermal annealing time

    International Nuclear Information System (INIS)

    Sun, Wei; Zhu, Minggang; Guo, Zhaohui; Fang, Yikun; Li, Wei

    2015-01-01

    Precipitation-hardened 2:17-type SmCo permanent magnet has attracted much attention due to its high Curie temperature and excellent magnetic properties. Sm(Co_b_a_lFe_0_._2_4_5Cu_0_._0_7Zr_0_._0_2)_7_._8 (at%) sintered magnets with high remanence (B_r ~1.15 T) were prepared using a traditional powder metallurgy method. The intrinsic coercivity H_c_j of the magnets was increased from 429 to 994 kA m"−"1 with isothermal annealing time increasing from 10 to 40 h, which is different from the phenomenon that increasing aging time leads to a reduced coercivity mentioned in the Ref. [16]. In consideration of rarely report about the microstructure of the final magnet isothermally annealed for 40 h, we have tried to originally analyze the relationship between the microstructure and the magnetic properties. Besides, the lattice constants of sintered Sm(Co_b_a_lFe_0_._2_4_5Cu_0_._0_7Zr_0_._0_2)_7_._8 permanent magnet isothermally annealed for 40 h have been given by indexing the HRTEM results including the selected area electron diffraction (SAED) and HRTEM images.

  5. Cantilever-type electrode array-based high-throughput microparticle sorting platform driven by gravitation and negative dielectrophoretic force

    International Nuclear Information System (INIS)

    Kim, Youngho; Kim, Byungkyu; Lee, Junghun; Kim, Younggeun; Shin, Sang-Mo

    2011-01-01

    In this paper, we describe a cantilever-type electrode (CE) array-based high-throughput sorting platform, which is a tool used to separate microparticles using gravitation and negative dielectrophoretic (n-DEP) force. This platform consists of meso-size channels and a CE array, which is designed to separate a large number of target particles by differences in their dielectric material properties (DMP) and the weight of the particles. We employ a two-step separation process, with sedimentation as the first step and n-DEP as the second step. In order to differentiate the weight and the DMP of each particle, we employ the sedimentation phenomena in a vertical channel and the CE-based n-DEP in an inclined channel. By using three kinds of polystyrene beads with diameters of 10, 25 and 50 µm, the optimal population (10 7 beads ml −1 ) of particles and the appropriate length (25 mm) of the vertical channel for high performance were determined experimentally. Conclusively, by combining sedimentation and n-DEP schemes, we achieve 74.5, 94.7 and 100% separation efficiency for sorting microparticles with a diameter of 10, 25 and 50 µm, respectively.

  6. Investigation of the loss of forced cooling test by using the high temperature engineering test reactor (HTTR) (Contract research)

    International Nuclear Information System (INIS)

    Nakagawa, Shigeaki; Takamatsu, Kuniyoshi; Inaba, Yoshitomo; Goto, Minoru; Tochio, Daisuke

    2007-09-01

    The three gas circulators trip test and the vessel cooling system stop test as the safety demonstration test by using the High Temperature engineering Test Reactor (HTTR) are under planning to demonstrate inherent safety features of High Temperature Gas-cooled Reactor. All three gas circulators to circulate the helium gas as the coolant are stopped to simulate the loss of forced cooling in the three gas circulators trip test. The stop of the vessel cooling system located outside the reactor pressure vessel to remove the residual heat of the reactor core follows the stop of all three gas circulators in the vessel cooling system stop test. The analysis of the reactor transient for such tests and abnormal events postulated during the test was performed. From the result of analysis, it was confirmed that the three gas circulators trip test and the vessel cooling system stop test can be performed within the region of the normal operation in the HTTR and the safety of the reactor facility is ensured even if the abnormal events would occur. (author)

  7. Evaluation and compensation of steady gas flow force on the high-pressure electro-pneumatic servo valve direct-driven by voice coil motor

    International Nuclear Information System (INIS)

    Li, Baoren; Gao, Longlong; Yang, Gang

    2013-01-01

    Highlights: ► A novel energy saving high-pressure electro-pneumatic servo valve is presented. ► An evaluated method for steady gas flow forces on pneumatic valves is proposed. ► Gas jet angles at the orifices for the valve are larger than 69° commonly used. ► The steady gas flow force is strongly nonlinear with valve opening. ► The steady gas flow force is compensated and the aim at energy saving is realized. - Abstract: A novel voice coil motor (VCM) direct drive single stage high-pressure pneumatic servo valve is designed, and then the steady gas flow force acting on the spool of the servo valve is investigated by numerical simulation and experimental methods in this paper. At present, many studies about flow force are concentrated mainly on hydraulic valves, but rarely on pneumatic valves. However, the velocity of gas is up to sonic when high-pressure gas flows through the servo valve orifice. And therefore, the steady gas flow force, generated by high pressure and high speed gas flow, cannot be neglected and is an important disturbance for the VCM direct-drive single stage high-pressure pneumatic servo valve. Consequently, the numerical simulation with computational fluid dynamics (CFD) is adopted to analyze the flow filed, jet angles, and steady gas flow forces for the servo valve with different valve openings and inlet pressures. The experimental study is performed to evaluate and confirm the numerical analysis. Then the compensated approach is proposed to reduce the steady gas flow force for the servo valve, changing the angle of non-metering port designed in the valve sleeve to the spool axis. The results demonstrate that the presented numerical analysis method is validated, the gas jet angle for the servo valve orifice is more than 69° and varies with different spool openings, and the steady gas flow force is nonlinear with valve opening and linear with inlet pressure when the outlet boundary is atmospheric pressure. Moreover, the steady gas

  8. Set-up of a high-resolution 300 mK atomic force microscope in an ultra-high vacuum compatible "3He/10 T cryostat

    International Nuclear Information System (INIS)

    Allwörden, H. von; Ruschmeier, K.; Köhler, A.; Eelbo, T.; Schwarz, A.; Wiesendanger, R.

    2016-01-01

    The design of an atomic force microscope with an all-fiber interferometric detection scheme capable of atomic resolution at about 500 mK is presented. The microscope body is connected to a small pumped "3He reservoir with a base temperature of about 300 mK. The bakeable insert with the cooling stage can be moved from its measurement position inside the bore of a superconducting 10 T magnet into an ultra-high vacuum chamber, where the tip and sample can be exchanged in situ. Moreover, single atoms or molecules can be evaporated onto a cold substrate located inside the microscope. Two side chambers are equipped with standard surface preparation and surface analysis tools. The performance of the microscope at low temperatures is demonstrated by resolving single Co atoms on Mn/W(110) and by showing atomic resolution on NaCl(001).

  9. Set-up of a high-resolution 300 mK atomic force microscope in an ultra-high vacuum compatible {sup 3}He/10 T cryostat

    Energy Technology Data Exchange (ETDEWEB)

    Allwörden, H. von; Ruschmeier, K.; Köhler, A.; Eelbo, T.; Schwarz, A., E-mail: aschwarz@physnet.uni-hamburg.de; Wiesendanger, R. [Department of Physics, University of Hamburg, Jungiusstrasse 11, 20355 Hamburg (Germany)

    2016-07-15

    The design of an atomic force microscope with an all-fiber interferometric detection scheme capable of atomic resolution at about 500 mK is presented. The microscope body is connected to a small pumped {sup 3}He reservoir with a base temperature of about 300 mK. The bakeable insert with the cooling stage can be moved from its measurement position inside the bore of a superconducting 10 T magnet into an ultra-high vacuum chamber, where the tip and sample can be exchanged in situ. Moreover, single atoms or molecules can be evaporated onto a cold substrate located inside the microscope. Two side chambers are equipped with standard surface preparation and surface analysis tools. The performance of the microscope at low temperatures is demonstrated by resolving single Co atoms on Mn/W(110) and by showing atomic resolution on NaCl(001).

  10. Countermeasures for Reducing Unsteady Aerodynamic Force Acting on High-Speed Train in Tunnel by Use of Modifications of Train Shapes

    Science.gov (United States)

    Suzuki, Masahiro; Nakade, Koji; Ido, Atsushi

    As the maximum speed of high-speed trains increases, flow-induced vibration of trains in tunnels has become a subject of discussion in Japan. In this paper, we report the result of a study on use of modifications of train shapes as a countermeasure for reducing an unsteady aerodynamic force by on-track tests and a wind tunnel test. First, we conduct a statistical analysis of on-track test data to identify exterior parts of a train which cause the unsteady aerodynamic force. Next, we carry out a wind tunnel test to measure the unsteady aerodynamic force acting on a train in a tunnel and examined train shapes with a particular emphasis on the exterior parts identified by the statistical analysis. The wind tunnel test shows that fins under the car body are effective in reducing the unsteady aerodynamic force. Finally, we test the fins by an on-track test and confirmed its effectiveness.

  11. Acoustic radiation force on an air bubble and soft fluid spheres in ideal liquids: example of a high-order Bessel beam of quasi-standing waves.

    Science.gov (United States)

    Mitri, F G

    2009-04-01

    The partial wave series for the scattering of a high-order Bessel beam (HOBB) of acoustic quasi-standing waves by an air bubble and fluid spheres immersed in water and centered on the axis of the beam is applied to the calculation of the acoustic radiation force. A HOBB refers to a type of beam having an axial amplitude null and an azimuthal phase gradient. Radiation force examples obtained through numerical evaluation of the radiation force function are computed for an air bubble, a hexane, a red blood and mercury fluid spheres in water. The examples were selected to illustrate conditions having progressive, standing and quasi-standing waves with appropriate selection of the waves' amplitude ratio. An especially noteworthy result is the lack of a specific vibrational mode contribution to the radiation force determined by appropriate selection of the HOBB parameters.

  12. Power Structure in Family and Coercive Trends Consequence of it Based on Women’s Emotional Energy and Economic Situation in Abdanan

    Directory of Open Access Journals (Sweden)

    مریم مختاری

    2014-01-01

    Full Text Available This research carried out with the purpose of determining role of women’s emotional energy and economic situation in power structure in family and coercive trends consequence of it in Abdanan. Subject of power in family is one of the considered  problems in Sociology. In this way role of two differential factors (emotional energy and economic situation is thinkful. Research method was survey and population were all of married women in Abdanan that were selected 400women as a sample size with performance of multy stage cluster sampling. A researcher-made questionnaire was used for data collection. In this research power structure considered as a mediator variable. Research finging showed that there is significant and direct relation between emotional energy and power structure in family but there isn’t significant relation between economic situation and power structure in family. Relation between variables and coercive trends as a dependent variable is expressive of significant and direct relation between emotional energy and coercive trends. There is significant and reverse relation between economic situation and coercive trends and also significant and direct relation between power structure in family and coercive trends.

  13. Coercivity enhancement in (Ce,Nd)-Fe-B sintered magnets prepared by adding NdH{sub x} powders

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Le-le [Key Laboratory of Integrated Exploitation of Bayan Obo Multi-Metal Resources, Inner Mongolia University of Science and Technology, Baotou 014010 (China); School of Science, Inner Mongolia University of Science and Technology, Baotou 014010 (China); Li, Zhu-bai, E-mail: lzbgj@163.com [Key Laboratory of Integrated Exploitation of Bayan Obo Multi-Metal Resources, Inner Mongolia University of Science and Technology, Baotou 014010 (China); Ma, Qiang; Li, Yong-feng; Zhao, Qian [Key Laboratory of Integrated Exploitation of Bayan Obo Multi-Metal Resources, Inner Mongolia University of Science and Technology, Baotou 014010 (China); School of Science, Inner Mongolia University of Science and Technology, Baotou 014010 (China); Zhang, Xue-feng, E-mail: xuefeng056@163.com [Key Laboratory of Integrated Exploitation of Bayan Obo Multi-Metal Resources, Inner Mongolia University of Science and Technology, Baotou 014010 (China); School of Science, Inner Mongolia University of Science and Technology, Baotou 014010 (China)

    2017-08-01

    (Ce,Nd)-Fe-B sintered magnets were prepared by the addition of NdH{sub x} powders in Ce{sub 9}Nd{sub 4.5}Fe{sub 80}B{sub 6.5} powders. The coercivity is rather low in Ce{sub 9}Nd{sub 4.5}Fe{sub 80}B{sub 6.5} magnets, and Ce element prefers to distribute at the outer-layer of main phase (Ce,Nd){sub 2}Fe{sub 14}B. The investigation of scanning electron microscope shows that the addition of NdH{sub x} powders leads to the increase of Nd content at grain outer-layer of main phase owing to the element diffusion. Magnetization reversal undergoes the nucleation of reversed domain wall at grain outer-later, and the addition of NdH{sub x} powders leads to the increase in the nucleation field of reversed domain, giving rise to the significant improvement of coercivity. The larger amount addition of NdH{sub x} powders leads to the increase in the amount of intergranular phase, resulting in the decreases of the remanence, the squareness of demagnetization curve and the maximum energy product.

  14. Method of mechanical holding of cantilever chip for tip-scan high-speed atomic force microscope

    Energy Technology Data Exchange (ETDEWEB)

    Fukuda, Shingo [Department of Physics, College of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192 (Japan); Uchihashi, Takayuki; Ando, Toshio [Department of Physics, College of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192 (Japan); Bio-AFM Frontier Research Center, College of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192 (Japan); Core Research for Evolutional Science and Technology of the Japan Science and Technology Agency, 7 Goban-cho, Chiyoda-ku, Tokyo 102-0076 (Japan)

    2015-06-15

    In tip-scan atomic force microscopy (AFM) that scans a cantilever chip in the three dimensions, the chip body is held on the Z-scanner with a holder. However, this holding is not easy for high-speed (HS) AFM because the holder that should have a small mass has to be able to clamp the cantilever chip firmly without deteriorating the Z-scanner’s fast performance, and because repeated exchange of cantilever chips should not damage the Z-scanner. This is one of the reasons that tip-scan HS-AFM has not been established, despite its advantages over sample stage-scan HS-AFM. Here, we present a novel method of cantilever chip holding which meets all conditions required for tip-scan HS-AFM. The superior performance of this novel chip holding mechanism is demonstrated by imaging of the α{sub 3}β{sub 3} subcomplex of F{sub 1}-ATPase in dynamic action at ∼7 frames/s.

  15. Effect of magnetic field frequency on coercivity behavior of nanocrystalline Fe79Hf7B12Si2 glass-coated microwires

    International Nuclear Information System (INIS)

    Garcia, C.; Zhukova, V.; Gonzalez, J.; Blanco, J.M.; Zhukov, A.

    2008-01-01

    Dependence of coercitivy, H c , on AC magnetic field frequency, f, has been studied in glass coated Fe 79 Hf 7 B 12 Si 2 microwires exhibiting nanocrystalline structure. Annealing of the samples at 450-600 deg. C changes its structure and consequently the magnetic properties (coercivity and magnetostriction constant). The grain size of the nanocrystals increases from about 17 nm up to 35 nm after annealing at 600 deg. C. For the as-prepared microwires the frequency dependence fits well to √(f). In annealed at 550 deg. C samples H c ∼f 2/3 dependence is observed. In terms of the interpretation of the domain wall propagation, both kind of H c (f) dependences can be interpreted considering depinned domain walls, i.e. neglecting elastic coefficient K of the domain wall motion equation. The H c ∼√(f) corresponds better to low frequency limits while H c ∼f 2/3 is attributed to the high frequency behavior

  16. Contact wire positions and contact forces. Measurements at high-speed lines in China; Fahrdrahtlage und Kontaktkraefte. Messungen an Hochgeschwindigkeitsstrecken in China

    Energy Technology Data Exchange (ETDEWEB)

    Heland, Joerg; Rick, Frank; Sarnes, Bernhard [DB Systemtechnik GmbH, Muenchen (Germany); Puschmann, Rainer [Siemens AG, Erlangen (Germany). Infrastructure and Cities

    2012-07-15

    The reliable energy transmission from overhead contact line to pantograph of traction units without interruption decides on the successful operation of high-speed railway lines. Measurements of contact wire position and contact forces are suited to assess interaction of overhead contact line and pantograph. Chinese Railways actually implement the biggest electrification program for high-speed lines worldwide. For these projects contact wire position and contact forces are monitored by procedures developed in Germany. The experience confirms that keeping the contact wire position within the specified limits lead to a superior energy transmission up to 350 km/h. (orig.)

  17. Traceable atomic force microscopy of high-quality solvent-free crystals of [6,6]-phenyl-C61-butyric acid methyl ester

    OpenAIRE

    Lazzerini, GM; Paterno, GM; Tregnago, G; Treat, N; Stingelin, N; Yacoot, A; Cacialli, F

    2016-01-01

    We report high-resolution, traceable atomic force microscopymeasurements of high-quality, solvent-free single crystals of [6,6]-phenyl-C61-butyric acid methyl ester (PCBM). These were grown by drop-casting PCBM solutions onto the spectrosil substrates and by removing the residual solvent in a vacuum. A home-built atomic force microscope featuring a plane mirror differential optical interferometer, fiber-fed from a frequency-stabilized laser (emitting at 632.8???nm), was used to measure the cr...

  18. Traceable atomic force microscopy of high-quality solvent-free crystals of [6,6]-phenyl-C-61-butyric acid methyl ester

    OpenAIRE

    Lazzerini, G. M.; Paterno, G. M.; Tregnago, G.; Treat, N.; Stingelin, N.; Yacoot, A.; Cacialli, F.

    2016-01-01

    We report high-resolution, traceable atomic force microscopymeasurements of high-quality, solvent-free single crystals of [6,6]-phenyl-C61-butyric acid methyl ester (PCBM). These were grown by drop-casting PCBM solutions onto the spectrosil substrates and by removing the residual solvent in a vacuum. A home-built atomic force microscope featuring a plane mirror differential optical interferometer, fiber-fed from a frequency-stabilized laser (emitting at 632.8 nm), was used to measure the crys...

  19. A Study of Gestalt Teaching Theory and How It Compares to Standard Air Force Highly Technical Training for Air Force Students

    Science.gov (United States)

    Sutton, Richard J.

    2009-01-01

    The challenge of delivering effective training to our nation's Military personnel is one that has bested many over the years. How does one instruct young, energetic students on highly technical and often boring material in a manner that makes the best use of the available time? This study used a researcher-designed questionnaire to collect data…

  20. Power variables and bilateral force differences during unloaded and loaded squat jumps in high performance alpine ski racers.

    Science.gov (United States)

    Patterson, Carson; Raschner, Christian; Platzer, Hans-Peter

    2009-05-01

    The purpose of this paper was to investigate the power-load relationship and to compare power variables and bilateral force imbalances between sexes with squat jumps. Twenty men and 17 women, all members of the Austrian alpine ski team (junior and European Cup), performed unloaded and loaded (barbell loads equal to 25, 50, 75, and 100% body weight [BW]) squat jumps with free weights using a specially designed spotting system. Ground reaction force records from 2 force platforms were used to calculate relative average power (P), relative average power in the first 100 ms of the jump (P01), relative average power in the first 200 ms of the jump (P02), jump height, percentage of best jump height (%Jump), and maximal force difference between dominant and nondominant leg (Fmaxdiff). The men displayed significantly higher values at all loads for P and jump height (p free weights.

  1. Local profile dependence of coercivity in (MM0.3Nd0.7)-Fe-B sintered magnets

    Science.gov (United States)

    Yu, Xiaoqiang; Zhu, Minggang; Liu, Weiqiang; Li, Wei; Sun, Yachao; Shi, Xiaoning; Yue, Ming

    2018-03-01

    Two magnets with the same nominal composition of (MM0.3Nd0.7)-Fe-B (Marked as A) and [(La0.27Ce0.53Pr0.03Nd0.17)0.3Nd0.7]-Fe-B (Marked as B) were prepared using traditional powder metallurgical process, respectively. In order to point out the difference between two magnets, the magnetic properties, microstructure and magnetic domain of both magnets were investigated. Both magnets have the same elements, but different raw materials of misch-metal (MM) and La/Ce/Pr/Nd pure metal, which induces different magnetic properties. The magnet A with Br of 13.1 kGs, Hcj of 7.6 kOe, (BH)max of 37.8 MGOe and magnet B with Br of 13.4 kGs, Hcj of 5.8 kOe, (BH)max of 34.5 MGOe are obtained. Although both magnets have the similar Br, magnet A has higher coercivity than that of magnet B. According to refined results of characteristic X-ray diffraction peaks, there is a hard magnetic main phase with higher magnetic anisotropy field (HA) in magnet A and opposite case happens on magnet B. SEM images demonstrate that magnet A has more continuous RE-rich phase and smaller grain size compared to that of magnet B, which contributes to enhancing the coercivity. In addition, two main phases of [Nd0.82(La, Ce)0.18]-Fe-B and [Nd0.75(La, Ce)0.25]-Fe-B were detected by the EDX calculation, and the two main phases in both magnets were observed by magnetic domains again. Compared to magnet B, 2:14:1 main phases in magnet A contain more [Nd0.82(La, Ce)0.18]-Fe-B main phases and less [Nd0.75(La, Ce)0.25]-Fe-B main phases, which also leads to higher coercivity due to the different HA among Nd2Fe14B, La2Fe14B and Ce2Fe14B phases. Therefore, it is concluded that MM substitution could exhibit better magnetic properties than (La0.27Ce0.53Pr0.03Nd0.17)-metal substitution. Furthermore, applications of MM are beneficial to fabricate (MM, Nd)-Fe-B permanent magnets with lower cost.

  2. Friction welding of a nickel free high nitrogen steel: influence of forge force on microstructure, mechanical properties and pitting corrosion resistance

    Directory of Open Access Journals (Sweden)

    Mrityunjoy Hazra

    2014-01-01

    Full Text Available In the present work, nickel free high nitrogen austenitic stainless steel specimens were joined by continuous drive friction welding process by varying the amount of forge (upsetting force and keeping other friction welding parameters such as friction force, burn-off, upset time and speed of rotation as constant at appropriate levels. The joint characterization studies include microstructural examination and evaluation of mechanical (micro-hardness, impact toughness and tensile and pitting corrosion behaviour. The integrity of the joint, as determined by the optical microscopy was very high and no crack and area of incomplete bonding were observed. Welds exhibited poor Charpy impact toughness than the parent material. Toughness for friction weld specimens decreased with increase in forge force. The tensile properties of all the welds were almost the same (irrespective of the value of the applied forge force and inferior to those of the parent material. The joints failed in the weld region for all the weld specimens. Weldments exhibited lower pitting corrosion resistance than the parent material and the corrosion resistance of the weld specimens was found to decrease with increase in forge force.

  3. Measurement of NdFeB permanent magnets demagnetization induced by high energy electron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Temnykh, Alexander B. [Wilson Lab, Cornell University, LEPP, Ithaca, NY 14850 (United States)], E-mail: abt6@cornell.edu

    2008-03-11

    Demagnetization of NdFeB permanent magnets has been measured as function of radiation dose induced by high energy electrons. The magnet samples were of different intrinsic coercive forces, {approx_equal}12 and {approx_equal}20KOe, dimensions and direction of magnetization. 5 GeV electron beam from 12 GeV Cornell Synchrotron was used as a radiation source. A calorimetric technique was employed for radiation dose measurement. Results indicated that depending on the sample intrinsic coercive force, shape and direction of magnetization the radiation dose causing 1% of demagnetization of the sample varies from 0.0765{+-}0.005Mrad to 11.3{+-}3.0Mrad, i.e., by more than a factor of 100. Experimental data analysis revealed that demagnetization of the given sample induced by radiation is strongly correlated with the sample demagnetizing temperature. This correlation was approximated by an exponential function with two parameters obtained from the data fitting. The function can be used to predict the critical radiation dose for permanent magnet assemblies like undulator magnets based on its demagnetizing temperature. The latter (demagnetization temperature) can be determined at the design stage from 3-D magnetic modeling and permanent magnet material properties.

  4. A Successful Deterrence Against a Coercive Attempt by China to Reunify Taiwan must be Defeated in Phases Zero and One

    National Research Council Canada - National Science Library

    Hammersmark, Leif

    2008-01-01

    .... This will force the combatant commander to create more combat time by increasing Taiwan's ability and will to withstand force during phases zero and one, and by allocating forces required to counter...

  5. High quality-factor quartz tuning fork glass probe used in tapping mode atomic force microscopy for surface profile measurement

    Science.gov (United States)

    Chen, Yuan-Liu; Xu, Yanhao; Shimizu, Yuki; Matsukuma, Hiraku; Gao, Wei

    2018-06-01

    This paper presents a high quality-factor (Q-factor) quartz tuning fork (QTF) with a glass probe attached, used in frequency modulation tapping mode atomic force microscopy (AFM) for the surface profile metrology of micro and nanostructures. Unlike conventionally used QTFs, which have tungsten or platinum probes for tapping mode AFM, and suffer from a low Q-factor influenced by the relatively large mass of the probe, the glass probe, which has a lower density, increases the Q-factor of the QTF probe unit allowing it to obtain better measurement sensitivity. In addition, the process of attaching the probe to the QTF with epoxy resin, which is necessary for tapping mode AFM, is also optimized to further improve the Q-factor of the QTF glass probe. The Q-factor of the optimized QTF glass probe unit is demonstrated to be very close to that of a bare QTF without a probe attached. To verify the effectiveness and the advantages of the optimized QTF glass probe unit, the probe unit is integrated into a home-built tapping mode AFM for conducting surface profile measurements of micro and nanostructures. A blazed grating with fine tool marks of 100 nm, a microprism sheet with a vertical amplitude of 25 µm and a Fresnel lens with a steep slope of 90 degrees are used as measurement specimens. From the measurement results, it is demonstrated that the optimized QTF glass probe unit can achieve higher sensitivity as well as better stability than conventional probes in the measurement of micro and nanostructures.

  6. Review and Response to the Final Report of the National Black Health Providers Task Force on High Blood Pressure Education and Control.

    Science.gov (United States)

    Public Health Service (DHHS), Rockville, MD.

    This report presents the National Heart, Lung, and Blood Institute's (NHLBI) review of and response to the final report of the National Black Health Providers Task Force on High Blood Pressure Education and Control. The response includes a statement of NHLBI's involvement in health research, and descriptions of what steps can be taken to solve the…

  7. Labor Force

    Science.gov (United States)

    Occupational Outlook Quarterly, 2012

    2012-01-01

    The labor force is the number of people ages 16 or older who are either working or looking for work. It does not include active-duty military personnel or the institutionalized population, such as prison inmates. Determining the size of the labor force is a way of determining how big the economy can get. The size of the labor force depends on two…

  8. Design and fabrication of sintered Nd-Fe-B magnets with a low temperature coefficient of intrinsic coercivity

    Directory of Open Access Journals (Sweden)

    Cui X.G.

    2009-01-01

    Full Text Available To decrease the temperature coefficients of sintered Nd-Fe-B magnets, the influencing factors on temperature coefficients, especially the reversible temperature coefficient β of intrinsic coercivity Hcj, were analyzed. The results showed that the absolute value of β decreased with increasing Hcj and also the ratio of microstructure parameter c to Neff, indicating that the increase of magnetocrystalline anisotropy field HA and c/Neff can effectively decrease the absolute value of β. On the basis of this analysis, a sintered Nd-Fe-B magnet with a low temperature coefficient of Hcj was fabricated through composition design, and the value of β was only -0.385%/ºC in the temperature interval of 20-150ºC.

  9. The relationship between hegemonic norms of masculinity and men's conceptualization of sexually coercive acts by women in South Africa.

    Science.gov (United States)

    Stern, Erin; Cooper, Diane; Greenbaum, Bryant

    2015-03-01

    While sexual abuse against women and girls in South Africa has generated much deserved attention, the awareness of men's experiences of sexual coercion is limited, and often restricted to a homosexual context. This article illuminates men's experiences of pressurized sex in a heterosexual context, which were revealed in a broader men's sexual health study. Fifty sexual history narrative interviews were conducted with men purposively sampled from three age categories: (18-24, 25-54, and 55+), a wide range of cultural and racial backgrounds, and in urban and rural sites across five provinces in South Africa. Narrative interviews began with accounts of early knowledge of sex and sexual experimentation and explored the range of sexual relationships and experiences through adulthood. The narratives privileged the diversity of men's conceptualizations of and the impact of reportedly sexually coercive experiences by women. Many men described feeling unready for their first sexual experiences but pressured to do so by their peers and female partners, who were often older. There were also some instances of sexual coercion by women against men, some of which would constitute a criminal offense in South Africa. Due to the pressure for men to always be responsive to women's sexual desires, these experiences were often not framed as sexual coercion. Nevertheless, for many of these men, such experiences were uncomfortable and unrewarding. Men's negative responses to such experiences appeared to be linked to the fact that they did not fit social stereotypes of masculine sexuality as being initiative and dominant. Such coercive experiences could influence men's sexual risk-taking, including their use of sexual coercion against women. Research on sexual abuse should not be limited to male against male sexual abuse, but needs to explore the meanings and experiences associated with reported coercion against men by women to more comprehensively prevent and respond to sexual violence

  10. Structural, magnetic characterization (dependencies of coercivity and loss with the frequency) of magnetic cores based in Finemet

    Science.gov (United States)

    Osinalde, M.; Infante, P.; Domínguez, L.; Blanco, J. M.; del Val, J. J.; Chizhik, A.; González, J.

    2017-12-01

    We report changes of coercivity, induced magnetic anisotropy, magneto-optical domain structure and frequency dependencies of coercivity and energy loss (up to 10 MHz) associated with the structural modifications produced by thermal treatments under applied magnetic field (field annealing) in toroidal wound cores of Fe73.5Cu1Nb3Si15.5B7 amorphous alloy. The thermal treatment (535 °C, 1 h) leads to the typical nanocrystalline structure of α-Fe(Si) nanograins (60-65% relative volume, 10-20 nm average grain size embedded in a residual amorphous matrix, while the magnetic field with the possibility to be applied in two directions to the toroidal core axis, that is in transverse (which is equivalent to the transverse direction of the ribbon) or longitudinal (equivalent to the longitudinal direction of the ribbon), develops a macroscopic uniaxial magnetic anisotropy in the transverse (around 245 J/m3) or longitudinal (around 85 J/m3) direction of the ribbon, respectively. It is remarkable the quasi-unhysteretic character of the cores with these two kinds of field annealing as comparing with that of the as-quenched one. Magneto-optical study by Kerr-effect of the ribbons provides useful information on the domain structure of the surface in agreement with the direction and intensity of the induced magnetic anisotropy. This induced uniaxial magnetic anisotropy plays a very important role on the Hc(f) and EL(f) curves, (f: frequency), being drastic the presence and direction of the induced magnetic anisotropy. In addition, these frequency dependencies show a significant change at the frequency around 100 Hz.

  11. Research on a novel axial-flux magnetic-field-modulated brushless double-rotor machine with low axial force and high efficiency

    Directory of Open Access Journals (Sweden)

    Chengde Tong

    2017-05-01

    Full Text Available The axial-flux magnetic-field-modulated brushless double-rotor machine (MFM-BDRM is a possible alternative as a power-split device for hybrid electric vehicles (HEVs. However, the existence of large axial force may lead to assembly problems and rich inner air-gap harmonics could result in high PM loss and low efficiency. This paper proposes a novel axial-flux MFM-BDRM with improved PM rotor structure. 2-D analytical method to predict the magnetic-field distribution of the proposed MFM-BDRM is developed and the design procedure of the proposed machine is illustrated. The impact of key geometrical parameters on axial force and torque is investigated. To evaluate the advantage of the proposed machine, a comparison is made with a conventional one with respect to electromagnetic performances. Results show that the proposed machine is effective in reducing PM eddy loss and axial force by 60% and 35%, respectively.

  12. Finite Element Modelling of the effect of tool rake angle on tool temperature and cutting force during high speed machining of AISI 4340 steel

    International Nuclear Information System (INIS)

    Sulaiman, S; Roshan, A; Ariffin, M K A

    2013-01-01

    In this paper, a Finite Element Method (FEM) based on the ABAQUS explicit software which involves Johnson-Cook material model was used to simulate cutting force and tool temperature during high speed machining (HSM) of AISI 4340 steel. In this simulation work, a tool rake angle ranging from 0° to 20° and a range of cutting speeds between 300 to 550 m/min was investigated. The purpose of this simulation analysis was to find optimum tool rake angle where cutting force is smallest as well as tool temperature is lowest during high speed machining. It was found that cutting forces to have a decreasing trend as rake angle increased to positive direction. The optimum rake angle observed between 10° and 18° due to decrease of cutting force as 20% for all simulated cutting speeds. In addition, increasing cutting tool rake angle over its optimum value had negative influence on tool's performance and led to an increase in cutting temperature. The results give a better understanding and recognition of the cutting tool design for high speed machining processes

  13. Dispersion Forces

    CERN Document Server

    Buhmann, Stefan Yoshi

    2012-01-01

    In this book, a modern unified theory of dispersion forces on atoms and bodies is presented which covers a broad range of advanced aspects and scenarios. Macroscopic quantum electrodynamics is shown to provide a powerful framework for dispersion forces which allows for discussing general properties like their non-additivity and the relation between microscopic and macroscopic interactions. It is demonstrated how the general results can be used to obtain dispersion forces on atoms in the presence of bodies of various shapes and materials. Starting with a brief recapitulation of volume I, this volume II deals especially with bodies of irregular shapes, universal scaling laws, dynamical forces on excited atoms, enhanced forces in cavity quantum electrodynamics, non-equilibrium forces in thermal environments and quantum friction. The book gives both the specialist and those new to the field a thorough overview over recent results in the field. It provides a toolbox for studying dispersion forces in various contex...

  14. A piezo motor based on a new principle with high output force, rigidity and integrity: The Tuna Drive

    Science.gov (United States)

    Liu, Xiaolong; Lu, Qingyou

    2012-11-01

    We present a linear piezoelectric motor as simple as one piezoelectric scanner tube (PST) spring-clamping a central shaft at both ends with roughly equal clamping forces. The clamping points are aligned with ±X electrodes at one end and ±Y electrodes at the other end. Thus, the ±X (or ±Y) push-pull motions of the PST can cause the push-pull motions of the clamping points on the shaft (called push-pull rubbing), which reduces the total dynamic friction force at one (or the other) end of the PST. This new piezo motor advances one step by fast push-pull rubbing at one end while slowly retracting the PST followed by fast push-pull rubbing at the other end while slowly elongating the PST. Apart from the obvious advantages of simplicity, rigidity, integrity, etc., we will also show that this motor can produce a large output force, which we believe is because of the huge drop of the clamping friction force when the push-pull rubbing occurs.

  15. Piezoelectric properties of PbTiO(3) thin films characterized with piezoresponse force and high resolution transmission electron microscopy

    NARCIS (Netherlands)

    Morelli, A.; Venkatesan, Sriram; Kooi, B. J.; Palasantzas, G.; De Hosson, J. Th. M.

    2009-01-01

    In this paper we investigate the piezoelectric properties of PbTiO(3) thin films grown by pulsed laser deposition with piezoresponse force microscopy and transmission electron microscopy. The as-grown films exhibit an upward polarization, inhomogeneous distribution of piezoelectric characteristics

  16. Determination of the effective anisotropy constant of CoFe{sub 2}O{sub 4} nanoparticles through the T-dependence of the coercive field

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, M. H.; Meneses, C. T.; Duque, J. G. S. [Núcleo de Pós-Graduação em Física, Campus Prof. José Aloísio de Campos, UFS, 49100-000 São Cristóvão, SE (Brazil); Lima, R. J. S. [Universidade Federal de Campina Grande, Centro de Ciências e Tecnologia, Unidade Acadêmica de Física, 58429-900, Campina Grande, PB (Brazil); Folly, W. S. D. [Departamento de Geologia, Universidade Federal de Sergipe, 49100-000 São Cristóvão (Brazil); Sarmento, V. H. V. [Núcleo de Pós-Graduação em Química, Campus Prof. José Aloísio de Campos, UFS, 49100-000 São Cristóvão, SE (Brazil); Coelho, A. A. [Instituto de Física “Gleb Wataghin,” UNICAMP, 13083-970 Campinas, SP (Brazil)

    2016-03-07

    We present a systematic study of the coercive field of CoFe{sub 2}O{sub 4}–SiO{sub 2} nanocomposites. The samples were prepared via the sol-gel method by using the Tetraethyl Orthosilicate as starting reagent. Results of X-ray diffraction, transmission electron microscopy, and X-ray fluorescence confirm the dispersion of the magnetic nanoparticles inside the silica matrix. In addition, the shift in the maximum of Zero-Field-Cooled curves observed by varying the weight ratio of CoFe{sub 2}O{sub 4} nanoparticles to the precursor of silica is consistent with the increasing of average interparticle distances. Because our samples present a particle size distribution, we have used a generalized model which takes account such parameter to fit the experimental data of coercive field extracted from the magnetization curves as a function of applied field. Unlike most of the coercive field results reported in the literature for this material, the use of this model provided a successful description of the temperature dependence of the coercive field of CoFe{sub 2}O{sub 4} nanoparticles in a wide temperature range. Surprisingly, we have observed the decreasing of the nanoparticles anisotropy constant in comparison to the bulk value expected for the material. We believe that this can be interpreted as due to both the migration of the Co{sup 2+} from octahedral to tetrahedral sites.

  17. Determination of the effective anisotropy constant of CoFe2O4 nanoparticles through the T-dependence of the coercive field

    Science.gov (United States)

    Carvalho, M. H.; Lima, R. J. S.; Meneses, C. T.; Folly, W. S. D.; Sarmento, V. H. V.; Coelho, A. A.; Duque, J. G. S.

    2016-03-01

    We present a systematic study of the coercive field of CoFe2O4-SiO2 nanocomposites. The samples were prepared via the sol-gel method by using the Tetraethyl Orthosilicate as starting reagent. Results of X-ray diffraction, transmission electron microscopy, and X-ray fluorescence confirm the dispersion of the magnetic nanoparticles inside the silica matrix. In addition, the shift in the maximum of Zero-Field-Cooled curves observed by varying the weight ratio of CoFe2O4 nanoparticles to the precursor of silica is consistent with the increasing of average interparticle distances. Because our samples present a particle size distribution, we have used a generalized model which takes account such parameter to fit the experimental data of coercive field extracted from the magnetization curves as a function of applied field. Unlike most of the coercive field results reported in the literature for this material, the use of this model provided a successful description of the temperature dependence of the coercive field of CoFe2O4 nanoparticles in a wide temperature range. Surprisingly, we have observed the decreasing of the nanoparticles anisotropy constant in comparison to the bulk value expected for the material. We believe that this can be interpreted as due to both the migration of the Co2+ from octahedral to tetrahedral sites.

  18. Coupled energy-drift and force-balance equations for high-field hot-carrier transport

    International Nuclear Information System (INIS)

    Huang, Danhong; Alsing, P.M.; Apostolova, T.; Cardimona, D.A.

    2005-01-01

    Coupled energy-drift and force-balance equations that contain a frictional force for the center-of-mass motion of electrons are derived for hot-electron transport under a strong dc electric field. The frictional force is found to be related to the net rate of phonon emission, which takes away the momentum of a phonon from an electron during each phonon-emission event. The net rate of phonon emission is determined by the Boltzmann scattering equation, which depends on the distribution of electrons interacting with phonons. The work done by the frictional force is included into the energy-drift equation for the electron-relative scattering motion and is found to increase the thermal energy of the electrons. The importance of the hot-electron effect in the energy-drift term under a strong dc field is demonstrated in reducing the field-dependent drift velocity and mobility. The Doppler shift in the energy conservation of scattering electrons interacting with impurities and phonons is found to lead to an anisotropic distribution of electrons in the momentum space along the field direction. The importance of this anisotropic distribution is demonstrated through a comparison with the isotropic energy-balance equation, from which we find that defining a state-independent electron temperature becomes impossible. To the leading order, the energy-drift equation is linearized with a distribution function by expanding it into a Fokker-Planck-type equation, along with the expansions of both the force-balance equation and the Boltzmann scattering equation for hot phonons

  19. VARIATION IN RESISTIVE FORCE SELECTION DURING BRIEF HIGH INTENSITY CYCLE ERGOMETRY: IMPLICATIONS FOR POWER ASSESSMENT AND PRODUCTION IN ELITE KARATE PRACTITIONERS

    Directory of Open Access Journals (Sweden)

    Julien Steven Baker

    2006-07-01

    Full Text Available The purpose of this study was to measure power values generated in elite karate fighters during brief high intensity cycle ergometry when resistive forces were derived from total - body mass (TBM or fat - free mass (FFM. Male international karate practitioners volunteered as participants (n = 11. Body density was calculated using hydrostatic weighing procedures with fat mass ascertained from body density values. Participants were required to pedal maximally on a cycle ergometer (Monark 864 against randomly assigned loads ranging from 70 g·kg-1 - 95 g·kg-1 (using a TBM or FFM protocol for 8 seconds. The resistive force that produced the highest peak power output (PPO for each protocol was considered optimal. Differences (p 0.05 were observed between time to PPO, or heart rate when the TBM and FFM protocols were compared. The findings of this study suggest that when high intensity cycle ergometer resistive forces are derived from FFM, greater peak powers can be obtained consistently in karate athletes. Resistive forces that relate to the active muscle tissue utilised during this type of exercise may need to be explored in preference to protocols that include both lean and fat masses. The findings have implications for both exercise prescription and the evaluation of experimental results concerning karate athletes

  20. Cross-sectional study on nurses' attitudes regarding coercive measures: the importance of socio-demographic characteristics, job satisfaction, and strategies for coping with stress.

    Science.gov (United States)

    Bregar, Branko; Skela-Savič, Brigita; Kores Plesničar, Blanka

    2018-06-04

    Coercive measures are containment methods used in psychiatry to curb patients' disruptive and aggressive behaviours towards themselves, others or objects. The prevalence of the practice of coercive measures in psychiatry is directly related to the attitudes of the staff. When discussing these attitudes, nurses are often particularly singled out. The purpose of the study is to research the impact of individual factors on nurses' attitudes in the decision-making process for the use of coercive measures. A cross-sectional study among all psychiatric nursing staff in Slovenia (n = 367, 79%) was conducted over the years 2013/2014. Standardized questionnaires were used, including a survey of nurses' attitudes to the use of seclusion, the Job Descriptive Index, and the Folkman-Lazarus test. Nurses' attitudes towards special coercive measures are predominantly negative ([Formula: see text] = 11.312, SD = 2.641). The factors that explain a positive attitude are as follows: female gender (β = - 0.236, p <  0.001), fewer years of service (β = - 0.149, p = 0.023), emotion-focused strategies of coping with stress (β = 0.139, p = 0.020), and less-threatening patient behaviour (β = 0.157, p = 0.012). The effects of some known factors did not prove important in the model. Newly recognized factors are "less-threatening patient behaviour" and "emotion-focused strategies of coping with stress". Therefore, attitudes towards special coercive measures in psychiatry must be regarded as contextualized, interactive, and multidimensional phenomena that cannot be explained merely through a defined set of factors.

  1. Electro-optic deflectors deliver advantages over acousto-optical deflectors in a high resolution, ultra-fast force-clamp optical trap.

    Science.gov (United States)

    Woody, Michael S; Capitanio, Marco; Ostap, E Michael; Goldman, Yale E

    2018-04-30

    We characterized experimental artifacts arising from the non-linear response of acousto-optical deflectors (AODs) in an ultra-fast force-clamp optical trap and have shown that using electro-optical deflectors (EODs) instead eliminates these artifacts. We give an example of the effects of these artifacts in our ultra-fast force clamp studies of the interaction of myosin with actin filaments. The experimental setup, based on the concept of Capitanio et al. [Nat. Methods 9, 1013-1019 (2012)] utilizes a bead-actin-bead dumbbell held in two force-clamped optical traps which apply a load to the dumbbell to move it at a constant velocity. When myosin binds to actin, the filament motion stops quickly as the total force from the optical traps is transferred to the actomyosin attachment. We found that in our setup, AODs were unsuitable for beam steering due to non-linear variations in beam intensity and deflection angle as a function of driving frequency, likely caused by low-amplitude standing acoustic waves in the deflectors. These aberrations caused instability in the force feedback loops leading to artifactual jumps in the trap position. We demonstrate that beam steering with EODs improves the performance of our instrument. Combining the superior beam-steering capability of the EODs, force acquisition via back-focal-plane interferometry, and dual high-speed FPGA-based feedback loops, we apply precise and constant loads to study the dynamics of interactions between actin and myosin. The same concept applies to studies of other biomolecular interactions.

  2. Model-free iterative control of repetitive dynamics for high-speed scanning in atomic force microscopy.

    Science.gov (United States)

    Li, Yang; Bechhoefer, John

    2009-01-01

    We introduce an algorithm for calculating, offline or in real time and with no explicit system characterization, the feedforward input required for repetitive motions of a system. The algorithm is based on the secant method of numerical analysis and gives accurate motion at frequencies limited only by the signal-to-noise ratio and the actuator power and range. We illustrate the secant-solver algorithm on a stage used for atomic force microscopy.

  3. The Analysis of Force Parameters in Drawing Process of High Carbon Steel Wires in Conventional and Hydrodynamic Dies

    Directory of Open Access Journals (Sweden)

    Suliga M.

    2017-12-01

    Full Text Available The paper analyzes force parameters in the process of multistage drawing of steel wires in conventional and hydrodynamic dies. The drawing process of the wire rod with a diameter of 5.5 mm for wires with a diameter of 1.70 mm was performed in 12 drafts with the usage of the multistage drawbench Koch KGT with the speed range of 5-25 m/s.

  4. Real-Time Kennedy Space Center and Cape Canaveral Air Force Station High-Resolution Model Implementation and Verification

    Science.gov (United States)

    Shafer, Jaclyn A.; Watson, Leela R.

    2015-01-01

    Customer: NASA's Launch Services Program (LSP), Ground Systems Development and Operations (GSDO), and Space Launch System (SLS) programs. NASA's LSP, GSDO, SLS and other programs at Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS) use the daily and weekly weather forecasts issued by the 45th Weather Squadron (45 WS) as decision tools for their day-to-day and launch operations on the Eastern Range (ER). For example, to determine if they need to limit activities such as vehicle transport to the launch pad, protect people, structures or exposed launch vehicles given a threat of severe weather, or reschedule other critical operations. The 45 WS uses numerical weather prediction models as a guide for these weather forecasts, particularly the Air Force Weather Agency (AFWA) 1.67 kilometer Weather Research and Forecasting (WRF) model. Considering the 45 WS forecasters' and Launch Weather Officers' (LWO) extensive use of the AFWA model, the 45 WS proposed a task at the September 2013 Applied Meteorology Unit (AMU) Tasking Meeting requesting the AMU verify this model. Due to the lack of archived model data available from AFWA, verification is not yet possible. Instead, the AMU proposed to implement and verify the performance of an ER version of the AMU high-resolution WRF Environmental Modeling System (EMS) model (Watson 2013) in real-time. The tasking group agreed to this proposal; therefore the AMU implemented the WRF-EMS model on the second of two NASA AMU modeling clusters. The model was set up with a triple-nested grid configuration over KSC/CCAFS based on previous AMU work (Watson 2013). The outer domain (D01) has 12-kilometer grid spacing, the middle domain (D02) has 4-kilometer grid spacing, and the inner domain (D03) has 1.33-kilometer grid spacing. The model runs a 12-hour forecast every hour, D01 and D02 domain outputs are available once an hour and D03 is every 15 minutes during the forecast period. The AMU assessed the WRF-EMS 1

  5. Canted ferrimagnetism and giant coercivity in the nonstoichiometric double perovskite L a2N i1.19O s0.81O6

    Science.gov (United States)

    Feng, Hai L.; Reehuis, Manfred; Adler, Peter; Hu, Zhiwei; Nicklas, Michael; Hoser, Andreas; Weng, Shih-Chang; Felser, Claudia; Jansen, Martin

    2018-05-01

    The nonstoichiometric double perovskite oxide L a2N i1.19O s0.81O6 was synthesized by solid-state reaction and its crystal and magnetic structures were investigated by powder x-ray and neutron diffraction. L a2N i1.19O s0.81O6 crystallizes in the monoclinic double perovskite structure (general formula A2B B'O6 ) with space group P 21/n , where the B site is fully occupied by Ni and the B ' site by 19% Ni and 81% Os atoms. Using x-ray absorption spectroscopy an O s4.5 + oxidation state was established, suggesting the presence of about 50% paramagnetic O s5 + (5 d3 , S =3 /2 ) and 50% nonmagnetic O s4 + (5 d4 , Jeff=0 ) ions at the B ' sites. Magnetization and neutron diffraction measurements on L a2N i1.19O s0.81O6 provide evidence for a ferrimagnetic transition at 125 K. The analysis of the neutron data suggests a canted ferrimagnetic spin structure with collinear N i2 + -spin chains extending along the c axis but a noncollinear spin alignment within the a b plane. The magnetization curve of L a2N i1.19O s0.81O6 features a hysteresis with a very high coercive field, HC=41 kOe , at T =5 K , which is explained in terms of large magnetocrystalline anisotropy due to the presence of Os ions together with atomic disorder. Our results are encouraging to search for rare-earth-free hard magnets in the class of double perovskite oxides.

  6. Comparison of the Hang High-Pull and Loaded Jump Squat for the Development of Vertical Jump and Isometric Force-Time Characteristics.

    Science.gov (United States)

    Oranchuk, Dustin J; Robinson, Tracey L; Switaj, Zachary J; Drinkwater, Eric J

    2017-04-15

    Weightlifting movements have high skill demands and require expert coaching. Loaded jumps have a comparably lower skill demand, but may be similarly effective for improving explosive performance. The purpose of this study was to compare vertical jump performance, isometric force, and rate of force development (RFD) following a ten-week intervention employing the hang high-pull (hang-pull) or trap-bar jump squat (jump-squat). Eighteen NCAA Division II swimmers (8 males, 10 females) with at least one year of resistance training experience volunteered to participate. Testing included the squat jump (SJ), countermovement jump (CMJ) and the isometric mid-thigh pull (IMTP). Vertical ground reaction forces were analyzed to obtain jump height and relative peak power. Relative peak force, peak RFD and relative force at five time bands were obtained from the IMTP. Subjects were randomly assigned to either a hang-pull (n = 9) or jump-squat (n = 9) training group and completed a ten-week, volume-equated, periodized training program. While there was a significant main effect of training for both groups, no statistically significant between-group differences were found (p ≥ 0.17) for any of the dependent variables. However, medium effect sizes in favor of the jump-squat training group were seen in SJ height (d = 0.56) and SJ peak power (d = 0.69). Loaded jumps seem equally effective as weightlifting derivatives for improving lower-body power in experienced athletes. Since loaded jumps require less skill and less coaching expertise than weightlifting, loaded jumps should be considered where coaching complex movements is difficult.

  7. The Formation of High-Coercivity, Oriented, Nanophase Cobalt Precipitates in Al2O3 single cyrstals by ion implantation

    International Nuclear Information System (INIS)

    Honda, S.; Modine, F.A.; Haynes, T.E.; Meldrum, A.; Budai, J.D.; SOng, K.J.; Thompson, J.R.; Boatner, L.A.

    1999-01-01

    Ion-implantation and thermal-processing methods have been used to form nanophase magnetic precipitates of metallic cobalt that are embedded in the near-surface region of single crystals of Al 2 O 3 . The Co precipitates are isolated, single-crystal particles that are crystallographically oriented with respect to the host Al 2 O 3 lattice. Embedded nanophase Co precipitates were formed by the implantation of Co+ at an energy of 140 keV and a dose of 8 x l0 16 ions/cm 2 followed by annealing in a reducing atmosphere. The implanted/annealed Co depth profile, particle size distributions and shapes, and the orientational relationship between the nanophase precipitates and the host crystal lattice were determined using RBS/channeling, transmission electron microscopy, and x-ray diffraction

  8. Nanocomposite of CeO.sub.2./sub. and high-coercivity magnetic carrier with large specific surface area

    Czech Academy of Sciences Publication Activity Database

    Řezníčková Mantlíková, Alice; Plocek, Jiří; Pacáková, Barbara; Kubíčková, Simona; Vik, Ondřej; Nižňanský, D.; Šlouf, Miroslav; Vejpravová, Jana

    2016-01-01

    Roč. 2016, Nov (2016), s. 1-13, č. článku 7091241. ISSN 1687-4110 R&D Projects: GA ČR(CZ) GA15-01953S; GA MŠk(CZ) LO1507 Institutional support: RVO:68378271 ; RVO:61388980 ; RVO:61389013 Keywords : cobalt ferrite * cerium oxide * nanoparticles * catalysis Subject RIV: BM - Solid Matter Physics ; Magnetism; CD - Macromolecular Chemistry (UMCH-V); CA - Inorganic Chemistry (UACH-T) Impact factor: 1.871, year: 2016

  9. High-speed tapping-mode atomic force microscopy using a Q-controlled regular cantilever acting as the actuator: Proof-of-principle experiments

    Energy Technology Data Exchange (ETDEWEB)

    Balantekin, M., E-mail: mujdatbalantekin@iyte.edu.tr [Electrical and Electronics Engineering, İzmir Institute of Technology, Urla, İzmir 35430 (Turkey); Satır, S.; Torello, D.; Değertekin, F. L. [Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0405 (United States)

    2014-12-15

    We present the proof-of-principle experiments of a high-speed actuation method to be used in tapping-mode atomic force microscopes (AFM). In this method, we do not employ a piezotube actuator to move the tip or the sample as in conventional AFM systems, but, we utilize a Q-controlled eigenmode of a cantilever to perform the fast actuation. We show that the actuation speed can be increased even with a regular cantilever.

  10. Conceptual design of a 20-kA current lead using forced-flow cooling and Ag-alloy-sheathed Bi-2223 high-temperature superconductors

    International Nuclear Information System (INIS)

    Heller, R.; Hull, J.R.

    1994-01-01

    High-temperature superconductors (HTSs), consisting of Bi-2223 HTS tapes sheathed with Ag alloys are proposed for a 20-kA current lead for the planned stellarator WENDELSTEIN 7-X. Forced-flow He cooling is used, and 4-K He cooling of the whole lead as well as 60-K He cooling of the copper part of the lead, is discussed. Power consumption and behavior in case of loss of He flow are given

  11. Thermal response of core and central-cavity components of a high-temperature gas-cooled reactor in the absence of forced convection coolant flow

    International Nuclear Information System (INIS)

    Whaley, R.L.; Sanders, J.P.

    1976-09-01

    A means of determining the thermal responses of the core and the components of a high-temperature gas-cooled reactor after loss of forced coolant flow is discussed. A computer program, using a finite-difference technique, is presented together with a solution of the confined natural convection. The results obtained are reasonable and demonstrate that the computer program adequately represents the confined natural convection

  12. Influence of Arm-cranking on Changes in Plasma CK Activity after High Force Eccentric Exercise of the Elbow Flexors

    OpenAIRE

    Kosaka, Kazunori; Sakamoto, Kei; Newton, Mike

    2002-01-01

    NOSAKA, K., SAKAMOTO, K. and NEWTON, M., Influence of Armcranking on Changes in Plasma CK Activlty after High Force Eccentric Exerclse of the Elbow Flexours. Abv. Exerc. Sports Physiol., Vol.8, No.2 pp.45-50, 2002. It was hypothesized that the time course of changes in plasma creatine kinase(CK) activity following eccentrie exercise was influenced by rhythmical muscle contractions performned after eccentric exercise. This study examined whether arm-cranking (AC) alters the time course of chan...

  13. Structure and coercivity of nanocrystalline Fe–Si–B–Nb–Cu alloys

    Indian Academy of Sciences (India)

    Unknown

    Fe–Si–B–Nb–Cu alloy; melt-spinning; crystallization; nanocrystalline ... to possess a unique combination of soft magnetic properties ... meability and high electrical resistivity (Yoshizawa et al ... ture and thermal stability of the alloy ribbons.

  14. Different forces

    CERN Multimedia

    1982-01-01

    The different forces, together with a pictorial analogy of how the exchange of particles works. The table lists the relative strength of the couplings, the quanta associated with the force fields and the bodies or phenomena in which they have a dominant role.

  15. Labor Force

    Science.gov (United States)

    Occupational Outlook Quarterly, 2010

    2010-01-01

    The labor force is the number of people aged 16 or older who are either working or looking for work. It does not include active-duty military personnel or institutionalized people, such as prison inmates. Quantifying this total supply of labor is a way of determining how big the economy can get. Labor force participation rates vary significantly…

  16. Cross-sectional analysis of ferroelectric domains in PZT capacitors via piezoresponse force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Liu, J S [School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang City (China); Zeng, H Z [State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054 (China); Kholkin, A L [Department of Ceramic and Glass Engineering and CICECO, University of Aveiro, Aveiro 3810-193 (Portugal)

    2007-11-21

    Ferroelectric domains have been investigated on the cross-section of Pb(Zr{sub 0.55}Ti{sub 0.45})O{sub 3} (PZT) thin film capacitors by scanning probe microscopy. The static domain images on the cross-section were obtained by the lateral piezoresponse force microscopy (LPFM) method, in which the ac voltage used to induce the converse piezoelectric effect was applied between the conductive tip and the bottom electrode. The polarization component normal to the substrate could be characterized via both d{sub 33} and d{sub 15} piezoelectric coefficients, which resulted in a high resolution of LPFM images. After a variable dc bias was applied between the top and the bottom electrodes, the variations of domain image on the cross-section were recorded by the LPFM immediately. Upon the application of low bias, new domain sites appeared near the PZT/Pt interface opposite to the initial polarization. Forward stretch of new domains was facilitated under the dc field approaching the coercive field E{sub c}. Under a very high field (about three times of the E{sub c}), the sidewise expansion of columnar domains was observed. However, the domains were only partially switched even though a very high field was applied. The observed domain growth process indicated a lower energy barrier for nucleation compared with that of domain wall motion. Possible reasons for the incomplete switching are the substantial influences of the interface and depolarization in thin film capacitors.

  17. Flexible high-loading particle-reinforced polyurethane magnetic nanocomposite fabrication through particle-surface-initiated polymerization

    International Nuclear Information System (INIS)

    Guo Zhanhu; Park, Sung; Wei Suying; Pereira, Tony; Moldovan, Monica; Karki, Amar B; Young, David P; Hahn, H Thomas

    2007-01-01

    Flexible high-loading nanoparticle-reinforced polyurethane magnetic nanocomposites fabricated by the surface-initiated polymerization (SIP) method are reported. Extensive field emission scanning electron microscopic (SEM) and atomic force microscopic (AFM) observations revealed a uniform particle distribution within the polymer matrix. X-ray photoelectron spectrometry (XPS) and differential thermal analysis (DTA) revealed a strong chemical bonding between the nanoparticles and the polymer matrix. The elongation of the SIP nanocomposite under tensile test was about four times greater than that of the composite fabricated by a conventional direct mixing fabrication method. The nanocomposite shows particle-loading-dependent magnetic properties, with an increase of coercive force after the magnetic nanoparticles were embedded into the polymer matrix, arising from the increased interparticle distance and the introduced polymer-particle interactions

  18. Compensation of Wave-Induced Motion and Force Phenomena for Ship-Based High Performance Robotic and Human Amplifying Systems

    Energy Technology Data Exchange (ETDEWEB)

    Love, LJL

    2003-09-24

    The decrease in manpower and increase in material handling needs on many Naval vessels provides the motivation to explore the modeling and control of Naval robotic and robotic assistive devices. This report addresses the design, modeling, control and analysis of position and force controlled robotic systems operating on the deck of a moving ship. First we provide background information that quantifies the motion of the ship, both in terms of frequency and amplitude. We then formulate the motion of the ship in terms of homogeneous transforms. This transformation provides a link between the motion of the ship and the base of a manipulator. We model the kinematics of a manipulator as a serial extension of the ship motion. We then show how to use these transforms to formulate the kinetic and potential energy of a general, multi-degree of freedom manipulator moving on a ship. As a demonstration, we consider two examples: a one degree-of-freedom system experiencing three sea states operating in a plane to verify the methodology and a 3 degree of freedom system experiencing all six degrees of ship motion to illustrate the ease of computation and complexity of the solution. The first series of simulations explore the impact wave motion has on tracking performance of a position controlled robot. We provide a preliminary comparison between conventional linear control and Repetitive Learning Control (RLC) and show how fixed time delay RLC breaks down due to the varying nature wave disturbance frequency. Next, we explore the impact wave motion disturbances have on Human Amplification Technology (HAT). We begin with a description of the traditional HAT control methodology. Simulations show that the motion of the base of the robot, due to ship motion, generates disturbances forces reflected to the operator that significantly degrade the positioning accuracy and resolution at higher sea states. As with position-controlled manipulators, augmenting the control with a Repetitive

  19. Propagation and forcing of high-frequency sea level variability along the west coast of South America

    Science.gov (United States)

    del Pilar Cornejo-Rodriguez, Maria; Enfield, David B.

    1987-12-01

    Tide and wind data from coastal and island stations from Buenaventura, Colombia (4°N), to Callao, Peru (12°S), have been analyzed for the 1979-1984 time period to determine the propagation and forcing characteristics of coastal sea level variability at periods of days to weeks, as well as how they vary either with season or between the 1982-1983 El Niño-Southern Oscillation (ENSO) period and non-ENSO years. During four non-ENSO years, the ensemble averaged cross spectra between coastal sea level height (SLH) and local winds show weak evidence of local forcing during the whole year without significant differences between the austral summer and winter seasons, other than a greater energy in the wind fluctuations at Talara during summer. Cross spectra between SLH series from neighboring stations show evidence of poleward phase propagation during winter seasons at speeds of about 2.0 m s-1 between La Libertad and Talara at periods of a week or more, and about 2.7 m s-1 between Talara and Callao at periods of 5-11 days, but no propagation is found during summers. During the 1982-1983 ENSO there is a large increase in SLH energy at most frequencies at all coastal stations, but especially in the 8-to-11-day band, where energies are enhanced by as much as an order of magnitude above non-ENSO levels. The cross spectra between adjacent SLH stations indicate a nondispersive poleward propagation of events during the 1982-1983 ENSO with phase speeds of 2.2-3.5 m s-1 from La Libertad to Talara (periods of a week or more) and 3.4-3.6 m s-1 from Talara to Callao (3.5 days or more). As with the SLH energy, the coherence and phase propagation were much stronger along the Peru coast in 1982-1983 than during non-ENSO periods, especially in the 8-to-11-day band. The one-third increase in phase speeds during the ENSO over the non-ENSO speeds is found to be consistent with the anomalous depressions of the density structure during El Niño. Comparisons between coastal SLH and the local

  20. The influence of high-heeled shoes on strain and tension force of the anterior talofibular ligament and plantar fascia during balanced standing and walking.

    Science.gov (United States)

    Yu, Jia; Wong, Duo Wai-Chi; Zhang, Hongtao; Luo, Zong-Ping; Zhang, Ming

    2016-10-01

    High-heeled shoes have the capability to alter the strain and tension of ligamentous structures between the foot and ankle, which may result in ankle instability. However, high-heeled shoes can also reduce the strain on plantar fascia, which may be beneficial for the treatment of plantar fasciitis. In this study, the influence of heel height on strain and tension force applied to the anterior talofibular ligament (ATL) and plantar fascia were investigated. A three-dimensional finite element model of coupled foot-ankle-shoe complex was constructed. Four heel heights were studied in balanced standing: 0 in. (0cm), 1 in. (2.54cm), 2 in. (5.08cm), and 3 in. (7.62cm). A walking analysis was performed using 2-in. (5.08cm) high-heeled shoes. During balanced standing, the tension force on the ATL increased from 14.8N to 97.0N, with a six-fold increase in strain from 0 in. to 3 in. (0-7.62cm). The tension force and the average strain on the plantar fascia decreased from 151.0N (strain: 0.74%) to 59.6N (strain: 0.28%) when the heel height increased from 0 in. to 2 in. (0-5.08cm). When heel height reached 3 in. (7.62cm), the force and average strain increased to 278.3N (strain: 1.33%). The walking simulation showed that the fascia stretched out while the ATL loading decreased during push off. The simulation outcome demonstrated the influence of heel height on ATL alteration and plantar fascia strain, which implies risks for ankle injury and suggests guidance for the treatment of plantar fasciitis. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.