WorldWideScience

Sample records for high cobalt catalyst

  1. A Highly Active and Selective Manganese Oxide Promoted Cobalt-on-Silica Fischer-Tropsch Catalyst

    NARCIS (Netherlands)

    den Breejen, Johan P.; Frey, Anne M.; Yang, Jia; Holmen, Anders; van Schooneveld, Matti M.; de Groot, Frank M. F.; Stephan, Odile; Bitter, Johannes H.; de Jong, Krijn P.

    2011-01-01

    A highly active and selective manganese oxide-promoted silica-supported cobalt catalyst for the Fischer-Tropsch reaction is reported. Co/MnO/SiO2 catalysts were prepared via impregnation of a cobalt nitrate and manganese nitrate precursor, followed by drying and calcination in an NO/He flow. The cat

  2. How NO affects nickel and cobalt nitrates at low temperatures to arrive at highly dispersed silica-supported nickel and cobalt catalysts

    NARCIS (Netherlands)

    Wolters, M.; Munnik, P.; Bitter, J.H.; de Jongh, P.E.; de Jong, K.P.

    2011-01-01

    Impregnation of porous silica supports with cobalt and nickel nitrate precursor solutions is a convenient method to prepare supported nickel and cobalt (oxide) catalysts. However, the metal (oxide) dispersion obtained is highly dependent on the gas atmosphere during thermal treatment to convert the

  3. Metal–Organic Frameworks Stabilize Solution-Inaccessible Cobalt Catalysts for Highly Efficient Broad-Scope Organic Transformations

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Teng; Manna, Kuntal; Lin, Wenbin (UC)

    2016-05-06

    New and active earth-abundant metal catalysts are critically needed to replace precious metal-based catalysts for sustainable production of commodity and fine chemicals. We report here the design of highly robust, active, and reusable cobalt-bipyridine- and cobalt-phenanthroline-based metal–organic framework (MOF) catalysts for alkene hydrogenation and hydroboration, aldehyde/ketone hydroboration, and arene C–H borylation. In alkene hydrogenation, the MOF catalysts tolerated a variety of functional groups and displayed unprecedentedly high turnover numbers of ~2.5 × 106 and turnover frequencies of ~1.1 × 105 h–1. Structural, computational, and spectroscopic studies show that site isolation of the highly reactive (bpy)Co(THF)2 species in the MOFs prevents intermolecular deactivation and stabilizes solution-inaccessible catalysts for broad-scope organic transformations. Computational, spectroscopic, and kinetic evidence further support a hitherto unknown (bpy•–)CoI(THF)2 ground state that coordinates to alkene and dihydrogen and then undergoing σ-complex-assisted metathesis to form (bpy)Co(alkyl)(H). Reductive elimination of alkane followed by alkene binding completes the catalytic cycle. MOFs thus provide a novel platform for discovering new base-metal molecular catalysts and exhibit enormous potential in sustainable chemical catalysis.

  4. Nitrogen oxides storage catalysts containing cobalt

    Science.gov (United States)

    Lauterbach, Jochen; Snively, Christopher M.; Vijay, Rohit; Hendershot, Reed; Feist, Ben

    2010-10-12

    Nitrogen oxides (NO.sub.x) storage catalysts comprising cobalt and barium with a lean NO.sub.x storage ratio of 1.3 or greater. The NO.sub.x storage catalysts can be used to reduce NO.sub.x emissions from diesel or gas combustion engines by contacting the catalysts with the exhaust gas from the engines. The NO.sub.x storage catalysts can be one of the active components of a catalytic converter, which is used to treat exhaust gas from such engines.

  5. Evidence of highly active cobalt oxide catalyst for the Fischer-Tropsch synthesis and CO2 hydrogenation.

    Science.gov (United States)

    Melaet, Gérôme; Ralston, Walter T; Li, Cheng-Shiuan; Alayoglu, Selim; An, Kwangjin; Musselwhite, Nathan; Kalkan, Bora; Somorjai, Gabor A

    2014-02-12

    Hydrogenations of CO or CO2 are important catalytic reactions as they are interesting alternatives to produce fine chemical feedstock hence avoiding the use of fossil sources. Using monodisperse nanoparticle (NP) catalysts, we have studied the CO/H2 (i.e., Fischer-Tropsch synthesis) and CO2/H2 reactions. Exploiting synchrotron based in situ characterization techniques such as XANES and XPS, we were able to demonstrate that 10 nm Co NPs cannot be reduced at 250 °C while supported on TiO2 or SiO2 and that the complete reduction of cobalt can only be achieved at 450 °C. Interestingly, cobalt oxide performs better than fully reduced cobalt when supported on TiO2. In fact, the catalytic results indicate an enhancement of 10-fold for the CO2/H2 reaction rate and 2-fold for the CO/H2 reaction rate for the Co/TiO2 treated at 250 °C in H2 versus Co/TiO2 treated at 450 °C. Inversely, the activity of cobalt supported on SiO2 has a higher turnover frequency when cobalt is metallic. The product distributions could be tuned depending on the support and the oxidation state of cobalt. For oxidized cobalt on TiO2, we observed an increase of methane production for the CO2/H2 reaction whereas it is more selective to unsaturated products for the CO/H2 reaction. In situ investigation of the catalysts indicated wetting of the TiO2 support by CoO(x) and partial encapsulation of metallic Co by TiO(2-x).

  6. Nickel(0) nanoparticles supported on bare or coated cobalt ferrite as highly active, magnetically isolable and reusable catalyst for hydrolytic dehydrogenation of ammonia borane.

    Science.gov (United States)

    Manna, Joydev; Akbayrak, Serdar; Özkar, Saim

    2017-08-16

    Nickel(0) nanoparticles supported on cobalt ferrite (Ni(0)/CoFe2O4), polydopamine coated cobalt ferrite (Ni(0)/PDA-CoFe2O4) or silica coated cobalt ferrite (Ni(0)/SiO2-CoFe2O4) are prepared and used as catalysts in hydrogen generation from the hydrolysis of ammonia borane at room temperature. Ni(0)/CoFe2O4 (4.0% wt. Ni) shows the highest catalytic activity with a TOF value of 38.3min(-1) in hydrogen generation from the hydrolysis of ammonia borane at 25.0±0.1°C. However, the initial catalytic activity of Ni(0)/CoFe2O4 catalyst is not preserved in subsequent runs of hydrolysis. Coating the surface of cobalt ferrite support with polydopamine or silica leads to a significant improvement in the stability of catalysts. The TOF values of Ni(0)/PDA-CoFe2O4 and Ni(0)/SiO2-CoFe2O4 are found to be 7.6 and 5.3min(-1), respectively, at 25.0±0.1°C. Ni(0)/PDA-CoFe2O4 catalyst shows high reusability as compared to the Ni(0)/CoFe2O4 and Ni(0)/SiO2-CoFe2O4 catalysts in hydrolytic dehydrogenation of ammonia borane at room temperature. All the catalysts are characterized by using a combination of various advanced analytical techniques. The results reveal that nickel nanoparticles with an average size of 12.3±0.7nm are well dispersed on the surface of PDA-CoFe2O4. . Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Supported cobalt catalysts - preparation, characterization and reaction studies

    OpenAIRE

    Backman, Leif

    2009-01-01

    The aim of this work was to understand on the effect of thermal treatments, precursor and support on the interaction between the support and cobalt species, and further how the interaction affects the reducibility and dispersion of the catalyst. Silica and alumina supported cobalt catalysts were prepared, characterised and tested for catalytic activity. The catalysts were prepared by gas phase deposition techniques from cobalt acetylacetonate and cobalt carbonyl and by incipient wetness impre...

  8. Characteristics of Polyaniline Cobalt Supported Catalysts for Epoxidation Reactions

    Directory of Open Access Journals (Sweden)

    Grzegorz Kowalski

    2014-01-01

    Full Text Available A study of polyaniline (PANI doping with various cobalt compounds, that is, cobalt(II chloride, cobalt(II acetate, and cobalt(II salen, is presented. The catalysts were prepared by depositing cobalt compounds onto the polymer surface. PANI powders containing cobalt ions were obtained by one- or two-step method suspending PANI in the following acetonitrile/acetic acid solution or acetonitrile and then acetic acid solution. Moreover different ratios of Co(II : PANI were studied. Catalysts obtained with both methods and at all ratios were investigated using various techniques including AAS and XPS spectroscopy. The optimum conditions for preparation of PANI/Co catalysts were established. Catalytic activity of polyaniline cobalt(II supported catalysts was tested in dec-1-ene epoxidation with molecular oxygen at room temperature. The relationship between the amount of cobalt species, measured with both AAS and XPS techniques, and the activity of PANI-Co catalysts has been established.

  9. Characteristics of Polyaniline Cobalt Supported Catalysts for Epoxidation Reactions

    Science.gov (United States)

    Kowalski, Grzegorz; Pielichowski, Jan; Grzesik, Mirosław

    2014-01-01

    A study of polyaniline (PANI) doping with various cobalt compounds, that is, cobalt(II) chloride, cobalt(II) acetate, and cobalt(II) salen, is presented. The catalysts were prepared by depositing cobalt compounds onto the polymer surface. PANI powders containing cobalt ions were obtained by one- or two-step method suspending PANI in the following acetonitrile/acetic acid solution or acetonitrile and then acetic acid solution. Moreover different ratios of Co(II) : PANI were studied. Catalysts obtained with both methods and at all ratios were investigated using various techniques including AAS and XPS spectroscopy. The optimum conditions for preparation of PANI/Co catalysts were established. Catalytic activity of polyaniline cobalt(II) supported catalysts was tested in dec-1-ene epoxidation with molecular oxygen at room temperature. The relationship between the amount of cobalt species, measured with both AAS and XPS techniques, and the activity of PANI-Co catalysts has been established. PMID:24701183

  10. High-performance hybrid oxide catalyst of manganese and cobalt for low-pressure methanol synthesis

    National Research Council Canada - National Science Library

    Li, Cheng-Shiuan; Melaet, Gérôme; Ralston, Walter T; An, Kwangjin; Brooks, Christopher; Ye, Yifan; Liu, Yi-Sheng; Zhu, Junfa; Guo, Jinghua; Alayoglu, Selim; Somorjai, Gabor A

    2015-01-01

    ... in the scanning transmission electron microscopy mode. Through control experiments, we find that the catalyst's chemical nature and architecture are the key factors in enabling the enhanced methanol synthesis and ethylene production...

  11. Recent Technological Developments in Cobalt Catalysts for Fischer-Tropsch Synthesis

    Institute of Scientific and Technical Information of China (English)

    Junling Zhang; Jiangang Chen; Yongwang Li; Yuhan Sun

    2002-01-01

    Co-based catalysts are often utilized due to their high Fischer-Tropsch synthesis (FT) activity,C+5 hydrocarbon selectivity, low water-gas shift reaction (WGS) activity and relatively low cost. Selective control of C5+ hydrocarbons and the catalyst longevity are critical in the design of cobalt catalysts.Thus, various methods to improve the performance of Co catalysts have been suggested. The progress in cobalt catalysts reviewed in the last few decades, mainly involved the support, promoter, preparation and deactivation of Co-based catalysts.

  12. Supported, Alkali-Promoted Cobalt Oxide Catalysts for NOx Removal from Coal Combustion Flue Gases

    Energy Technology Data Exchange (ETDEWEB)

    Morris D. Argyle

    2005-12-31

    A series of cobalt oxide catalysts supported on alumina ({gamma}-Al{sub 2}O{sub 3}) were synthesized with varying contents of cobalt and of added alkali metals, including lithium, sodium, potassium, rubidium, and cesium. Unsupported cobalt oxide catalysts and several cobalt oxide catalysts supported ceria (CeO{sub 2}) with varying contents of cobalt with added potassium were also prepared. The catalysts were characterized with UV-visible spectroscopy and were examined for NO{sub x} decomposition activity. The CoO{sub x}/Al{sub 2}O{sub 3} catalysts and particularly the CoO{sub x}/CeO{sub 2} catalysts show N{sub 2}O decomposition activity, but none of the catalysts (unsupported Co{sub 3}O{sub 4} or those supported on ceria or alumina) displayed significant, sustained NO decomposition activity. For the Al{sub 2}O{sub 3}-supported catalysts, N{sub 2}O decomposition activity was observed over a range of reaction temperatures beginning about 723 K, but significant (>50%) conversions of N{sub 2}O were observed only for reaction temperatures >900 K, which are too high for practical commercial use. However, the CeO{sub 2}-supported catalysts display N{sub 2}O decomposition rates similar to the Al{sub 2}O{sub 3}-supported catalysts at much lower reaction temperatures, with activity beginning at {approx}573 K. Conversions of >90% were achieved at 773 K for the best catalysts. Catalytic rates per cobalt atom increased with decreasing cobalt content, which corresponds to increasing edge energies obtained from the UV-visible spectra. The decrease in edge energies suggests that the size and dimensionality of the cobalt oxide surface domains increase with increasing cobalt oxide content. The rate data normalized per mass of catalyst that shows the activity of the CeO{sub 2}-supported catalysts increases with increasing cobalt oxide content. The combination of these data suggest that supported cobalt oxide species similar to bulk Co{sub 3}O{sub 4} are inherently more active than

  13. Preparation and characterization of highly active nanosized strontium-doped lanthanum cobaltate catalysts with high surface areas

    Institute of Scientific and Technical Information of China (English)

    NIU Jianrong; LIU Wei; DAI Hongxing; HE Hong; ZI Xuehong; LI Peiheng

    2006-01-01

    La1-xSrxCoO3-δ (x=0, 0.4) nanoparticles have been prepared using the citric acid complexing-hydrothermal synthesis coupled method and citric acid complexing method. The physico-chemical properties of these materials were characterized by means of X-ray diffraction (XRD), high resolution scanning electron microscopy (HRSEM), element analysis (EDX), X-ray photoelectron spectroscopic (XPS), oxygen temperature-programmed desorption (O2-TPD), hydrogen temperature-programmed reduction (H2-TPR) as well as surface area measurements and oxidation state titration. Their catalytic performance was examined for the total oxidation of ethylacetate (EA). It is found that the La1-xSrxCoO3-δ (x=0, 0.4) catalysts were single-phase and rhombohedrally-structured perovskites and their surface areas ranged from 16 to 26 m2/g. The Sr-doped sample derived from the coupled procedure was uniformly distributed nanoparticles with a short rod-shaped morphology. The doping of Sr (i) enhanced the concentrations of Co3+ and oxygen vacancies, (ii) increased the amount of oxygen adsorbed on the surface at low temperatures, (iii) promoted the mobility of lattice oxygen, and (iv) improved the properties of redox. The La0.6Sr0.4CoO2.78 catalyst prepared by the citric acid complexing-hydrothermal synthesis coupled strategy performed the best in the oxidation of EA, furthermore no partially oxidized products were formed. Based on the above results, we conclude that in addition to the surface area, the catalytic activity of the perovskite-type oxide nanoparticles was associated with the structural defect (oxygen vacancy)concentration and redox ability.

  14. In situ formation of cobalt oxide nanocubanes as efficient oxygen evolution catalysts.

    Science.gov (United States)

    Hutchings, Gregory S; Zhang, Yan; Li, Jian; Yonemoto, Bryan T; Zhou, Xinggui; Zhu, Kake; Jiao, Feng

    2015-04-01

    Oxygen evolution from water poses a significant challenge in solar fuel production because it requires an efficient catalyst to bridge the one-electron photon capture process with the four-electron oxygen evolution reaction (OER). Here, a new strategy was developed to synthesize nonsupported ultrasmall cobalt oxide nanocubanes through an in situ phase transformation mechanism using a layered Co(OH)(OCH3) precursor. Under sonication, the precursor was exfoliated and transformed into cobalt oxide nanocubanes in the presence of NaHCO3-Na2SiF6 buffer solution. The resulting cobalt catalyst with an average particle size less than 2 nm exhibited a turnover frequency of 0.023 per second per cobalt in photocatalytic water oxidation. X-ray absorption results suggested a unique nanocubane structure, where 13 cobalt atoms fully coordinated with oxygen in an octahedral arrangement to form 8 Co4O4 cubanes, which may be responsible for the exceptionally high OER activity.

  15. Polyacrylonitrile Fibers Anchored Cobalt/Graphene Sheet Nanocomposite: A Low-Cost, High-Performance and Reusable Catalyst for Hydrogen Generation.

    Science.gov (United States)

    Zhang, Fei; Huang, Guoji; Hou, Chengyi; Wang, Hongzhi; Zhang, Qinghong; Li, Yaogang

    2016-06-01

    Cobalt and its composites are known to be active and inexpensive catalysts in sodium borohydride (NaBH4) hydrolysis to generate clean and renewable hydrogen energy. A novel fiber catalyst, cobalt/graphene sheet nanocomposite anchored on polyacrylonitrile fibers (Co/GRs-PANFs), which can be easily recycled and used in any reactor with different shapes, were synthesized by anchoring cobalt/graphene (Co/GRs) on polyacrylonitrile fibers coated with graphene (GRs-PANFs) at low temperature. The unique structure design effectively prevents the inter-sheet restacking of Co/GRs and fully exploits the large surface area of novel hybrid material for generate hydrogen. And the extra electron transfer path supplied by GRs on the surface of GRs-PANFs can also enhance their catalysis performances. The catalytic activity of the catalyst was investigated by the hydrolysis of NaBH4 in aqueous solution with GRs-PANFs. GRs powders and Co powders were used as control groups. It was found that both GRs and fiber contributed to the hydrogen generation rate of Co/GRs-PANFs (3222 mL x min(-1) x g(-1)), which is much higher than that of cobalt powders (915 mL x min(-1) x g(-1)) and Co/GRs (995 mL x min(-1) x g(-1)). The improved hydrogen generation rate, low cost and uncomplicated recycling make the Co/GRs-PANFs promising candidate as catalysts for hydrogen generation.

  16. High efficiency of isopropanol combustion over cobalt oxides modified ZSM-5 zeolite membrane catalysts on paper-like stainless steel fibers

    Science.gov (United States)

    Wang, Tao; Zhang, Huiping; Yan, Ying

    2017-07-01

    Catalytic performances of isopropanol combustion and bed pressure drop in structured fixed bed reactor composed of cobalt oxides modified ZSM-5 zeolite membrane catalysts on paper-like stainless steel fibers (Co/ZSM-5/PSSF) and traditional granular ZSM-5 zeolites catalysts were investigated in this paper. Both of the catalyst samples were fabricated by wetness impregnation method and were characterized via X-ray diffraction (XRD), scanning electron microscopy (SEM) coupled with energy dispersive X-ray spectrometer (EDS) mapping and the N2 adsorption/desorption isotherm analyses. The result of EDS mapping revealed that cobalt oxides dispersed well on ZSM-5/PSSF. The Co/ZSM-5/PSSF catalyst display superior catalytic activity to granular Co/ZSM-5 catalyst, 50% and 90% isopropanol conversion temperatures over Co/ZSM-5/PSSF reduced 107 °C and 51 °C, respectively, compared with those over granular Co/ZSM-5 catalysts. The apparent activation energy for isopropanol combustion over Co/ZSM-5/PSSF (90 kJ/mol) was much lower than that over granular Co/ZSM-5 (134 kJ/mol). When the face velocity increased to 14.9 cm/s, the bed pressure drop of reactor filled with only Co/ZSM-5/PSSF catalysts was 9.5% of that of reactor filled with only granular Co/ZSM-5 catalysts. The ZSM-5 zeolite membrane on paper-like stainless steel fibers support provide good dispersion for cobalt oxides and Co/ZSM-5/PSSF show superior catalytic efficiency of isopropanol combustion and produced lower bed pressure drop in reactor compared with granular ZSM-5 zeolites. Co/ZSM-5/PSSF composite catalyst show superior catalytic activity for isopropanol combustion and produced lower bed pressure drop compared with traditional granular Co/ZSM-5.

  17. Enantioselective Epoxide Polymerization Using a Bimetallic Cobalt Catalyst

    KAUST Repository

    Thomas, Renee M.

    2010-11-24

    A highly active enantiopure bimetallic cobalt complex was explored for the enantioselective polymerization of a variety of monosubstituted epoxides. The polymerizations were optimized for high rates and stereoselectivity, with s-factors (kfast/kslow) for most epoxides exceeding 50 and some exceeding 300, well above the threshold for preparative utility of enantiopure epoxides and isotactic polyethers. Values for mm triads of the resulting polymers are typically greater than 95%, with some even surpassing 98%. In addition, the use of a racemic catalyst allowed the preparation of isotactic polyethers in quantitative yields. The thermal properties of these isotactic polyethers are presented, with many polymers exhibiting high T m values. This is the first report of the rapid synthesis of a broad range of highly isotactic polyethers via the enantioselective polymerization of racemic epoxides. © 2010 American Chemical Society.

  18. Cobalt--zirconia catalysts for the synthesis of hydrocarbons from carbon monoxide and hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Bulanova, T.F.; Lapidus, A.L.

    1972-01-01

    Laboratory and pilot plant experiments were done in order to replace thoria by more readily available and biologically inactive promoters in kieselguhr-supported cobalt and cobalt-magnesia catalysts. Maximum activity, stability, and yields of ceresins boiling above 460/sup 0/C were obtained with a zirconia-cobalt weight ratio of 1:10. The activity of this catalyst remained spectacularly high for five months. The optimum reaction temperature was 190/sup 0/C at 8 to 9 atm pressure of the carbon monoxide-hydrogen mixture. The experimental procedures and the chemical and grain-size composition of five catalysts are given, as well as the yields of methane, C/sub 2-4/fraction, gasoline, oils, and ceresin.

  19. High-Spin Cobalt Hydrides for Catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Holland, Patrick L. [Univ. of Rochester, NY (United States)

    2013-08-29

    Organometallic chemists have traditionally used catalysts with strong-field ligands that give low-spin complexes. However, complexes with a weak ligand field have weaker bonds and lower barriers to geometric changes, suggesting that they may lead to more rapid catalytic reactions. Developing our understanding of high-spin complexes requires the use of a broader range of spectroscopic techniques, but has the promise of changing the mechanism and/or selectivity of known catalytic reactions. These changes may enable the more efficient utilization of chemical resources. A special advantage of cobalt and iron catalysts is that the metals are more abundant and cheaper than those currently used for major industrial processes that convert unsaturated organic molecules and biofeedstocks into useful chemicals. This project specifically evaluated the potential of high-spin cobalt complexes for small-molecule reactions for bond rearrangement and cleavage reactions relevant to hydrocarbon transformations. We have learned that many of these reactions proceed through crossing to different spin states: for example, high-spin complexes can flip one electron spin to access a lower-energy reaction pathway for beta-hydride elimination. This reaction enables new, selective olefin isomerization catalysis. The high-spin cobalt complexes also cleave the C-O bond of CO2 and the C-F bonds of fluoroarenes. In each case, the detailed mechanism of the reaction has been determined. Importantly, we have discovered that the cobalt catalysts described here give distinctive selectivities that are better than known catalysts. These selectivities come from a synergy between supporting ligand design and electronic control of the spin-state crossing in the reactions.

  20. New efficient catalyst for ammonia synthesis: barium-promoted cobalt on carbon

    DEFF Research Database (Denmark)

    Hagen, Stefan; Barfod, Rasmus; Fehrmann, Rasmus

    2002-01-01

    Barium-promoted cobalt catalysts supported on carbon exhibit higher ammonia activities at synthesis temperatures than the commercial, multipromoted iron catalyst and also a lower ammonia......Barium-promoted cobalt catalysts supported on carbon exhibit higher ammonia activities at synthesis temperatures than the commercial, multipromoted iron catalyst and also a lower ammonia...

  1. Effects of preparation variables of supported-cobalt catalysts on the selective hydrogenation of. alpha. ,. beta. -unsaturated aldehydes

    Energy Technology Data Exchange (ETDEWEB)

    Nitta, Yuriko; Hiramatsu, Yoshifumi; Imanaka, Toshinobu (Osaka Univ., Toyonaka (Japan))

    1990-11-01

    The effects of starting salts, supports, added amount of Na{sub 2}CO{sub 3}, and other precipitation variables on catalytic properties of supported cobalt catalysts were studied for the hydrogenation of cinnamaldehyde and crotonaldehyde by using TGA, XRD, and XPS. The catalysts prepared from cobalt chloride always exhibited high selectivities to unsaturated alcohols irrespective of the support employed. The amount of surface chlorine remaining after H{sub 2}-reduction of the Co/SiO{sub 2} precursors prepared from cobalt chloride decreased with increasing amount of Na{sub 2}CO{sub 3} added as the precipitant, and both activity and selectivity reached maxima at around Cl/Co = 0.2 in the catalyst surface. The enhanced selectivity of the catalyst prepared from cobalt chloride was explained by the effects of residual chlorine both in the H{sub 2}-reduction stage and in the reaction stage; the former leads to a favorable crystallite size distribution (CDS) of cobalt and the latter depresses the hydrogenation of C{double bond}C double bond. The difference in activities and selectivities of various supported catalysts prepared from cobalt nitrate was discussed based on the difference in the strength of metal-support interaction which leads to different CDSs of cobalt in theses catalysts.

  2. Nitrogen-doped carbon-supported cobalt-iron oxygen reduction catalyst

    Science.gov (United States)

    Zelenay, Piotr; Wu, Gang

    2014-04-29

    A Fe--Co hybrid catalyst for oxygen reaction reduction was prepared by a two part process. The first part involves reacting an ethyleneamine with a cobalt-containing precursor to form a cobalt-containing complex, combining the cobalt-containing complex with an electroconductive carbon supporting material, heating the cobalt-containing complex and carbon supporting material under conditions suitable to convert the cobalt-containing complex and carbon supporting material into a cobalt-containing catalyst support. The second part of the process involves polymerizing an aniline in the presence of said cobalt-containing catalyst support and an iron-containing compound under conditions suitable to form a supported, cobalt-containing, iron-bound polyaniline species, and subjecting said supported, cobalt-containing, iron bound polyaniline species to conditions suitable for producing a Fe--Co hybrid catalyst.

  3. Re-manufacture of cobalt-manganese-bromide as a liquid catalyst from spent catalyst containing cobalt generated from petrochemical processes via hydrometallurgy.

    Science.gov (United States)

    Joo, Sung-Ho; Shin, Dong Ju; Oh, Chang Hyun; Wang, Jei-Pil; Shin, Shun Myung

    2016-11-15

    Cobalt and manganese have been the subject of individual separation studies because their fields of application are different. However, this study shows that high-value products can be manufactured in the form of a cobalt-manganese-bromide (CMB) liquid catalyst by simultaneously recovering cobalt and manganese. Na-bis-(2,4,4-tri-methyl-pentyl)phosphinic acid was employed in order to manufacture the CMB liquid catalyst from the spent catalyst generated from petroleum chemistry processes. The pH-isotherm, degree of saponification of solvent and separation factor values were investigated. ΔpH50 and separation factor values show that Co and Mn can be separated from impurities such as Mg and Ca. Further, the extraction stages and organic/aqueous ratio isotherms were investigated using counter-current simulation extraction batch tests. To prepare CMB from a loaded organic phase obtained in a stripping study using hydrogen bromide, the Co and Mn were completely stripped and concentrated by a factor of 6 using a 2M hydrogen bromide solution. When compared with manufactured and commercial CMB, the CMB liquid catalyst could be produced by supplying a shortage of Mn in the form of manganese bromide. Finally, the method of manufacture of CMB was subjected to a real pilot plant test.

  4. Concerning the Deactivation of Cobalt(III)-Based Porphyrin and Salen Catalysts in Epoxide/CO 2 Copolymerization

    KAUST Repository

    Xia, Wei

    2015-02-05

    © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. Functioning as active catalysts for propylene oxide (PO) and carbon dioxide copolymerization, cobalt(III)-based salen and porphyrin complexes have drawn great attention owing to their readily modifiable nature and promising catalytic behavior, such as high selectivity for the copolymer formation and good regioselectivity with respect to the polymer microstructure. Both cobalt(III)-salen and porphyrin catalysts have been found to undergo reduction reactions to their corresponding catalytically inactive cobalt(II) species in the presence of propylene oxide, as evidenced by UV/Vis and NMR spectroscopies and X-ray crystallography (for cobalt(II)-salen). Further investigations on a TPPCoCl (TPP=tetraphenylporphyrin) and NaOMe system reveal that such a catalyst reduction is attributed to the presence of alkoxide anions. Kinetic studies of the redox reaction of TPPCoCl with NaOMe suggests a pseudo-first order in cobalt(III)-porphyrin. The addition of a co-catalyst, namely bis(triphenylphosphine)iminium chloride (PPNCl), into the reaction system of cobalt(III)-salen/porphyrin and PO shows no direct stabilizing effect. However, the results of PO/CO2 copolymerization by cobalt(III)-salen/porphyrin with PPNCl suggest a suppressed catalyst reduction. This phenomenon is explained by a rapid transformation of the alkoxide into the carbonate chain end in the course of the polymer formation, greatly shortening the lifetime of the autoreducible PO-ring-opening intermediates, cobalt(III)-salen/porphyrin alkoxides. CO2 saves: The deactivation of cobalt(III)-porphyrin and salen catalysts in propylene oxide/carbon dioxide copolymerization is systematically investigated, revealing a proposed mechanism for the catalyst reduction (see scheme).

  5. Cobalt Fischer-Tropsch catalysts: influence of cobalt dispersion and titanium oxides promotion

    Energy Technology Data Exchange (ETDEWEB)

    Azib, H.

    1996-04-10

    The aim of this work is to study the effect of Sol-Gel preparation parameters which occur in silica supported cobalt catalysts synthesis. These catalysts are particularly used for the waxes production in natural gas processing. The solids have been characterized by several techniques: transmission electron microscopy (TEM), X-ray absorption near edge spectroscopy (XANES), programmed temperature reduction (TPR), infrared spectroscopy (IR), ultraviolet spectroscopy (UV), Magnetism, thermodesorption of H{sub 2} (TPD). The results indicate that the control of the cobalt dispersion and oxide phases nature is possible by modifying Sol-Gel parameters. The catalytic tests in Fischer-Tropsch synthesis were conducted on a pilot unit under pressure (20 atm) and suggested that turnover rates were independent of Co crystallite size, Co phases in the solids (Co deg., cobalt silicate) and titanium oxide promotion. On the other methane, the C{sub 3}{sup +} hydrocarbon selectivity is increased with increasing crystallite size. Inversely, the methane production is favoured by very small crystallites, cobalt silicate increase and titanium addition. However, the latter, used as a cobalt promoter, has a benefic effect on the active phase stability during the synthesis. (author). 149 refs., 102 figs., 71 tabs.

  6. Synthesis and characterization of cobalt-supported catalysts on modified magnetic nanoparticle: Green and highly efficient heterogeneous nanocatalyst for selective oxidation of ethylbenzene, cyclohexene and oximes with molecular oxygen.

    Science.gov (United States)

    Faraji, Ali Reza; Mosazadeh, Sima; Ashouri, Fatemeh

    2017-11-15

    In this study, a new supported cobalt nanocatalyst has been described. The Fe3O4 magnetic nanoparticles (Fe3O4 MNPs) modified by SiO2/aminopropyl trimethoxy silane/cyanuric chloride (Fe3O4@SiO2-APTMS/CC) utilized for anchoring metformin-cobalt complex (Fe3O4 Ms@SiO2-APTMS/CC/Met@Co(II)). The structure of novel complex well defined by elemental analysis, ICP, AAS, BET, FT-IR, EDX, SEM, TEM, DLS, XRD, TG-DTG, VSM and XPS. The catalytic efficiency of the synthesized cobalt nanocatalyst was studied in the oxidation of ethylbenzene (EB), cyclohexene (CYHE) and various oximes using molecular oxygen as ecofriendly oxidant and high catalytic activity and selectivity toward oxidation is observed. Selective aerobic oxidation of EB and CYHE and various oximes catalyzed by the cobalt nanocatalyst without any reducing agent by using N-hydroxyphthalimide (NHPI), gave acetophenone (AcPO), 2-cyclohexene-1-one and corresponding carbonyl compounds respectively, as major products. To achieve high level of efficiency of heterogeneous nanocatalyst, various parameters such as the ratio and amount of nanocatalyst/NHPI, reaction time, temperature and solvents were evaluated. The easily preparation from inexpensive and commercially available reagent, thermal stability, suitable performance in reusability, high efficiency and selectivity in oxidation reactions, short reaction time, easy recovery and separation from reaction mixture, are advantages of this novel catalyst. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Cobalt(II) supported on ethylenediamine-functionalized nanocellulose as an efficient catalyst for room temperature aerobic oxidation of alcohols

    Indian Academy of Sciences (India)

    Ahmad Shaabani; Sajjad Keshipour; Mona Hamidzad; Mozhdeh Seyyedhamzeh

    2014-01-01

    Ethylenediamine-functionalized nanocellulose complexed with cobalt(II) was found to be a highly efficient heterogeneous catalyst for the room temperature aerobic oxidation of various types of primary and secondary benzylic alcohols into their corresponding aldehydes and ketones, respectively. The catalyst showed no significant loss of efficiency after five reaction cycles.

  8. Effects of loading and synthesis method of titania-supported cobalt catalysts for Fischer–Tropsch synthesis

    NARCIS (Netherlands)

    Eschemann, T.O.; Bitter, J.H.; Jong, de K.P.

    2014-01-01

    Because of their high activity and selectivity to C5+ hydrocarbons in the Fischer–Tropsch, process, titania-supported cobalt catalysts have received great interest from industrial and academic, institutions. Here, we report on three catalyst preparation procedures, incipient wetness impregnation (IW

  9. Effects of loading and synthesis method of titania-supported cobalt catalysts for Fischer-Tropsch synthesis

    NARCIS (Netherlands)

    Eschemann, Thomas O.; Bitter, Johannes H.; De Jong, Krijn P.

    2014-01-01

    Because of their high activity and selectivity to C5+ hydrocarbons in the Fischer-Tropsch, process, titania-supported cobalt catalysts have received great interest from industrial and academic, institutions. Here, we report on three catalyst preparation procedures, incipient wetness impregnation (IW

  10. Catalytic activity of cobalt and cerium catalysts supported on calcium hydroxyapatite in ethanol steam reforming

    Directory of Open Access Journals (Sweden)

    Dobosz Justyna

    2016-09-01

    Full Text Available In this paper, Co,Ce/Ca10(PO46(OH2 catalysts with various cobalt loadings for steam reforming of ethanol (SRE were prepared by microwave-assisted hydrothermal and sol-gel methods, and characterized by XRD, TEM, TPR-H2, N2 adsorption-desorption measurements and cyclohexanol (CHOL decomposition tests. High ethanol conversion (close to 100% was obtained for the catalysts prepared by both methods but these ones prepared under hydrothermal conditions (HAp-H ensured higher hydrogen yield (3.49 mol H2/mol C2H5OH as well as higher amount of hydrogen formed (up to 70% under reaction conditions. The superior performance of 5Co,10Ce/HAp-H catalyst is thought to be due to a combination of factors, including increased reducibility and oxygen mobility, higher density of basic sites on its surface, and improved textural properties. The results also show a significant effect of cobalt loading on catalysts efficiency in hydrogen production: the higher H2 yield exhibit catalysts with lower cobalt content, regardless of the used synthesis method.

  11. Influence of Reduction Promoters on Stability of Cobalt/g-Alumina Fischer-Tropsch Synthesis Catalysts

    Directory of Open Access Journals (Sweden)

    Gary Jacobs

    2014-03-01

    Full Text Available This focused review article underscores how metal reduction promoters can impact deactivation phenomena associated with cobalt Fischer-Tropsch synthesis catalysts. Promoters can exacerbate sintering if the additional cobalt metal clusters, formed as a result of the promoting effect, are in close proximity at the nanoscale to other cobalt particles on the surface. Recent efforts have shown that when promoters are used to facilitate the reduction of small crystallites with the aim of increasing surface Co0 site densities (e.g., in research catalysts, ultra-small crystallites (e.g., <2–4.4 nm formed are more susceptible to oxidation at high conversion relative to larger ones. The choice of promoter is important, as certain metals (e.g., Au that promote cobalt oxide reduction can separate from cobalt during oxidation-reduction (regeneration cycles. Finally, some elements have been identified to promote reduction but either poison the surface of Co0 (e.g., Cu, or produce excessive light gas selectivity (e.g., Cu and Pd, or Au at high loading. Computational studies indicate that certain promoters may inhibit polymeric C formation by hindering C-C coupling.

  12. Influence of Cobalt Precursor on Efficient Production of Commercial Fuels over FTS Co/SiC Catalyst

    Directory of Open Access Journals (Sweden)

    Ana Raquel de la Osa

    2016-07-01

    Full Text Available β-SiC-supported cobalt catalysts have been prepared from nitrate, acetate, chloride and citrate salts to study the dependence of Fischer–Tropsch synthesis (FTS on the type of precursor. Com/SiC catalysts were synthetized by vacuum-assisted impregnation while N2 adsorption/desorption, XRD, TEM, TPR, O2 pulses and acid/base titrations were used as characterization techniques. FTS catalytic performance was carried out at 220 °C and 250 °C while keeping constant the pressure (20 bar, space velocity (6000 Ncm3/g·h and syngas composition (H2/CO:2. The nature of cobalt precursor was found to influence basic behavior, extent of reduction and metallic particle size. For β-SiC-supported catalysts, the use of cobalt nitrate resulted in big Co crystallites, an enhanced degree of reduction and higher basicity compared to acetate, chloride and citrate-based catalysts. Consequently, cobalt nitrate provided a better activity and selectivity to C5+ (less than 10% methane was formed, which was centered in kerosene-diesel fraction (α = 0.90. On the contrary, catalyst from cobalt citrate, characterized by the highest viscosity and acidity values, presented a highly dispersed distribution of Co nanoparticles leading to a lower reducibility. Therefore, a lower FTS activity was obtained and chain growth probability was shortened as observed from methane and gasoline-kerosene (α = 0.76 production when using cobalt citrate.

  13. Cobalt promoted copper manganese oxide catalysts for ambient temperature carbon monoxide oxidation.

    Science.gov (United States)

    Jones, Christopher; Taylor, Stuart H; Burrows, Andrew; Crudace, Mandy J; Kiely, Christopher J; Hutchings, Graham J

    2008-04-14

    Low levels of cobalt doping (1 wt%) of copper manganese oxide enhances its activity for carbon monoxide oxidation under ambient conditions and the doped catalyst can display higher activity than current commercial catalysts.

  14. Stability of cobalt supported on ZrO{sub 2} catalysts for methane combustion

    Energy Technology Data Exchange (ETDEWEB)

    Milt, V.G.; Lombardo, E.A.; Ulla, M.A. [Instituto de Investigaciones en Catalisis y Petroquimica, INCAPE FIQ, UNL-CONICET, Santiago del Estero 2829, 3000 Santa Fe (Argentina)

    2002-04-08

    Cobalt supported catalysts were prepared by two different techniques: atomic layer epitaxy (ALE) and wet impregnation. Either ZrO{sub 2} or La/ZrO{sub 2} (La-doped ZrO{sub 2}) were used as supports. The solids were characterized by XRD, TPR and XPS before and after hydrothermal and catalytic stability tests (TOS: 150h, 970K). The most active catalysts were those in which cobalt was incorporated using the epitaxial growth technique. Moreover, the initial activity of cobalt supported on ZrO{sub 2} by ALE was significantly higher than that on La/ZrO{sub 2}. But, after maintaining the former catalysts for 150h at 970K on stream (stability test), their initial high activities significantly decreased. On the other hand, when Co was supported on La-doped ZrO{sub 2} the resulting catalysts became much more stable. Combining the catalytic results with the characterization information a simple model is proposed that rationalizes the behavior of these solids.

  15. Cobalt(III)-oxo cubane clusters as catalysts for oxidation of organic substrates

    Indian Academy of Sciences (India)

    Birinchi Kumar Das; Rajesh Chakrabarty

    2011-03-01

    Transition metal coordination complexes play a vital role as catalysts in the oxidation of organic substrates including renewable chemicals in an economically viable and environmentally friendly way. Here we highlight the preparation, characterization and application of oxo-cubane complexes of cobalt(III) as oxidation catalysts using air and water as oxidants. Cobalt(III)-oxo complexes of the type Co4O4(O2CR)4L4 have been prepared by a general method and these have been characterized by analytical, spectroscopic, electrochemical and crystallographic methods. These soluble complexes have shown promising utility as catalysts in the aerobic oxidation of side chains of alkylaromatic hydrocarbon compounds. Oxidation of neat ethylbenzene has shown very high conversion and selectivity for acetophenone formation. On the other hand, oxidation of -xylene has been found to yield both -toluic acid and terephthalic acid. It is also possible to oxidize -xylene in an aqueous medium under moderate applied O2 pressure. Selective epoxidation of -pinene with air as the oxidant also takes place with the cobalt(III)-based homogeneous catalysts.

  16. Cobalt supported on carbon nanofibers as catalysts for the Fischer-Tropsch synthesis

    NARCIS (Netherlands)

    Bezemer, G.L.

    2006-01-01

    The Fischer-Tropsch (FT) process converts synthesis gas (H2/CO) over a heterogeneous catalyst into hydrocarbons. Generally, cobalt catalysts supported on oxidic carriers are used for the FT process, however it appears to be difficult to obtain and maintain fully reduced cobalt particles. To overcome

  17. Cobalt nanoparticles as reusable catalysts for reduction of 4-nitrophenol under mild conditions

    Indian Academy of Sciences (India)

    ARIJIT MONDAL; ASISH MONDAL; BIBHUTOSH ADHIKARY; DEB KUMAR MUKHERJEE

    2017-04-01

    Facile reduction of p-nitrophenol to p-aminophenol by sodium borohydride catalysed by cobalt nanoparticles (CoNPs) has been discussed. A simple approach has been made to synthesize highly active and ordered structures of CoNPs. The air-stable nanoparticles were prepared from cobalt sulphate using tetrabutyl ammonium bromide as surfactant and sodium borohydride as reductant. The cobalt nanocolloids in aqueousmedium were foundto be efficient reusable catalysts for the p-nitrophenol reduction. Palladium nanoparticles prepared from palladium chloride and the same surfactant were found to reduce p-nitrophenol but lose their catalytic efficiency after recovery.Based on chemical and kinetic studies, an attempt has been made to elucidate the mechanism of p-nitrophenol reduction using these nanoclusters.

  18. An innovative catalyst system for slurry-phase Fischer-Tropsch synthesis: Cobalt plus a water-gas-shift catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Satterfield, C.N.; Yates, I.C.; Chanenchuk, C.

    1991-07-01

    The feasibility of using a mechanical mixture of a Co/MgO/SiO{sub 2} Fischer-Tropsch catalyst and a Cu-ZnO/Al{sub 2}O{sub 3} water-gas-shift (WGS) catalyst for hydrocarbon synthesis in a slurry reactor has been established. Such a mixture can combine the superior product distribution from cobalt with the high activity for the WGS reaction characteristic of iron. Weight ratios of Co/MgO/SiO{sub 2} to Cu-ZnO/Al{sub 2}O{sub 3} of 0.27 and 0.51 for the two catalysts were studied at 240{degrees}C, 0.79 MPa, and in situ H{sub 2}/CO ratios between 0.8 and 3.0. Each catalyst mixture showed stable Fischer-Tropsch activity for about 400 hours-on-stream at a level comparable to the cobalt catalyst operating alone. The Cu-ZnO/Al{sub 2}O{sub 3} catalyst exhibited a very slow loss of activity under these conditions, but when operated alone it was stable in a slurry reactor at 200--220{degrees}C, 0.79--1.48 MPa, and H{sub 2}/CO in situ ratios between 1.0 and 2.0. The presence of the water-gas-shift catalyst did not affect the long-term stability of the primary Fischer-Tropsch selectivity, but did increase the extent of secondary reactions, such as l-alkene hydrogenation and isomerization.

  19. Synthesis and catalytic properties of eggshell cobalt catalysts for the Fischer-Tropsch synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Iglesia, E. [Univ. of California, Berkeley, CA (United States); Soled, S.L.; Baumgartner, J.E. [Exxon Research and Engineering Co., Annandale, NJ (United States)] [and others

    1995-04-15

    CO diffusional restrictions decrease the rate and C{sup +}{sub 5} selectivity in large (1-3 mm) catalyst pellets required for Fischer-Tropsch synthesis in packed bed reactors. Eggshell catalysts, in which the active Co component is preferentially located near the outer pellet surface, decrease these transport restrictions and increase Fischer-Tropsch synthesis rates and C{sup +}{sub 5} selectivity. Maximum C{sup +}{sub 5} selectivities occur on catalysts with intermediate shell thickness, because these catalysts avoid intrapellet CO concentration gradients but still restrict the diffusive removal of reactive olefin products, which can readsorb and continue to grow to higher molecular weight hydrocarbons. Eggshell catalysts were prepared by a novel impregnation technique using molten cobalt nitrate. The eggshell thickness is controlled by the melt viscosity and by the contact time between the melt and the support pellet. These impregnation procedures and the slow reduction of the impregnated nitrate salts lead to relatively high cobalt dispersions (0.05-0.07) even at the high Co concentrations (40-50 wt%) present within the shell region. 51 refs., 8 figs., 4 tabs.

  20. N-doped graphitic layer encased cobalt nanoparticles as efficient oxygen reduction catalysts in alkaline media

    Science.gov (United States)

    Han, Ce; Bo, Xiangjie; Zhang, Yufan; Li, Mian; Nsabimana, Anaclet; Guo, Liping

    2015-03-01

    Nitrogen doped graphitic layer encased cobalt (N-C@Co) nanoparticles, as novel non-precious-metal catalysts for the oxygen reduction reaction (ORR), were fabricated by a facile method using cyanamide and cobalt nitrate as precursors. The N-C@Co catalysts exhibited comparable catalytic performance, better stability and improved methanol tolerance towards the ORR than those of the commercial Pt/C catalyst.Nitrogen doped graphitic layer encased cobalt (N-C@Co) nanoparticles, as novel non-precious-metal catalysts for the oxygen reduction reaction (ORR), were fabricated by a facile method using cyanamide and cobalt nitrate as precursors. The N-C@Co catalysts exhibited comparable catalytic performance, better stability and improved methanol tolerance towards the ORR than those of the commercial Pt/C catalyst. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr07571d

  1. Alternative Models of Iron and Cobalt Catalysts for Ethylene Oligomerization and Polymerization

    Institute of Scientific and Technical Information of China (English)

    Katrin; Wedeking; Sherrif; Adewuyi; Maliha; Asma; Igor; Vystorop; Saliu; Amolegbe; Elena; Novikova

    2007-01-01

    1 Results Great progresses have been made in the field of transition metal-based complexes as catalytic precursors for olefin oligomerization and polymerization,in which the core subjects will remain as "know and how" to develop novel catalysts both in academic and industrial consideration.The key advantage of iron and cobalt catalyst for ethylene polymerization is to produce vinyl-type polyethylenes.Therefore following the pioneering works of bis(imino) pyridyl iron and cobalt catalyst by Brookhart[1] ...

  2. Dimerization of Propylene by Nickel (Ⅱ) and Cobalt (Ⅱ) Catalysts Based on Bidentate Nitrogen-phosphino Chelating Ligands

    Institute of Scientific and Technical Information of China (English)

    Si Zhong WU; Shi Wei LU

    2003-01-01

    The catalytic property of propylene dimerization by several nickel (Ⅱ), cobalt (Ⅱ)complexes containing N-P bidentate ligands was studied in combination with organoaluminumco-catalysts. The effects of the type of aluminum co-catalysts and its relative amount, the natureof precursors in terms of ligand backbone and metal center were investigated. The resultsindicated that precursor I (N,N-dimethyl-2-(diphenylphosphino)aniline nickel (Ⅱ) dichloride)exhibited high activity in propylene dimerization in the presence of the strong Lewis acid Et3Al2Cl3,whereas low productivity by its cobalt analogues was observed under identical reaction conditions.

  3. Cobalt based catalysts prepared by Pechini method for CO{sub 2}-free hydrogen production by methane decomposition

    Energy Technology Data Exchange (ETDEWEB)

    Jana, Prabhas; de la Pena O' Shea, Victor A.; Coronado, Juan M. [Thermochemical Process Unit, Instituto IMDEA Energia, C/Tulipan s/n 28933, Mostoles, Madrid (Spain); Serrano, David P. [Thermochemical Process Unit, Instituto IMDEA Energia, C/Tulipan s/n 28933, Mostoles, Madrid (Spain); Department of Chemical and Environmental Technology, ESCET, Rey Juan Carlos University, c/ Tulipan s/n, 28933 Mostoles, Madrid (Spain)

    2010-10-15

    A variety of unsupported cobalt catalysts was synthesized using the Pechini method and tested for CO{sub 2}-free H{sub 2} production via methane decomposition. In order to study the influence of the synthesis conditions on the properties of cobalt materials, the Cobalt:Citric acid (Co:CA) ratio was varied systematically (from 1:2 to 1:20). In addition, a study of the effect of the activation process on the catalyst activity was performed by activating the catalyst with H{sub 2} or CH{sub 4}. In both the activation processes, metallic cobalt with fcc structure was obtained, but the particle morphology varied with the activation treatment. The catalytic behavior was highly influenced when the reduction procedure was performed under methane atmosphere. For the Co:CA ratios, the best results were obtained with the catalyst prepared with a Co:CA 1:20 ratio reduced in presence of methane, which shows a production of 6.47 mol of H{sub 2} per mol of cobalt even without deactivation behavior for 30 min of the reaction period. (author)

  4. Effect of cobalt loading on reducibility,dispersion and crystallite size of Co/Al2O3 Fischer-Tropsch catalyst

    Institute of Scientific and Technical Information of China (English)

    熊海峰; 张煜华; 李金林; 古映莹

    2004-01-01

    Co/Al2O3 Fischer-Tropsch synthesis catalysts with different cobalt loadings were prepared using incipient wetness impregnation method. The effects of cobalt loading on the properties of catalysts were studied by means of X-ray diffraction (XRD), temperature programmed reduction (TPR), hydrogen temperature programmed desorption (H2-TPD) and O2 titration. Co-support compound formation can be detected in catalyst system by XRD.For the Co/Al2 O3 catalysts with low cobalt loading, CoAl2 O4 phase appears visibly. Two different reduction regions can be presented for Co/Al2O3 catalysts, which belong to Co3O4 crystallites (reduction at 320 ℃ ) and cobalt oxidealumina interaction species (reduction at above 400 C ). Increasing Co loading results in the increase of Co3 O4 crystallite size. The reduced Co/Al2 O3 catalysts have two adsorption sites, and cobalt loading greatly influences the adsorption behavior. With the increase of cobalt loading, the amount of low temperature adsorption is increased, the amount of high temperature adsorption is decreased, and the percentage reduction and cobalt crystallite size are increased.

  5. Self-assembly of cobalt-centered metal organic framework and multiwalled carbon nanotubes hybrids as a highly active and corrosion-resistant bifunctional oxygen catalyst

    Science.gov (United States)

    Fang, Yiyun; Li, Xinzhe; Li, Feng; Lin, Xiaoqing; Tian, Min; Long, Xuefeng; An, Xingcai; Fu, Yan; Jin, Jun; Ma, Jiantai

    2016-09-01

    Metal organic frameworks (MOF) derived carbonaceous materials have emerged as promising bifunctional oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) catalysts for electrochemical energy conversion and storage. But previous attempts to overcome the poor electrical conductivity of MOFs hybrids involve a harsh high-template pyrolytic process to in situ form carbon, which suffer from extremely complex operation and inevitable carbon corrosion at high positive potentials when OER is operated. Herein, a self-assembly approach is presented to synthesize a non-precious metal-based, high active and strong durable Co-MOF@CNTs bifunctional catalyst for OER and ORR. CNTs not only improve the transportation of the electrons but also can sustain the harsh oxidative environment of OER without carbon corrosion. Meanwhile, the unique 3D hierarchical structure offers a large surface area and stable anchoring sites for active centers and CNTs, which enables the superior durability of hybrid. Moreover, a synergistic catalysis of Co(II), organic ligands and CNTs will enhance the bifunctional electrocatalytic performance. Impressively, the hybrid exhibits comparable OER and ORR catalytic activity to RuO2 and 20 wt% Pt/C catalysts and superior stability. This facile and versatile strategy to fabricating MOF-based hybrids may be extended to other electrode materials for fuel cell and water splitting applications.

  6. A Bioinspired Molecular Polyoxometalate Catalyst with Two Cobalt(II) Oxide Cores for Photocatalytic Water Oxidation.

    Science.gov (United States)

    Wei, Jie; Feng, Yingying; Zhou, Panpan; Liu, Yan; Xu, Jingyin; Xiang, Rui; Ding, Yong; Zhao, Chongchao; Fan, Linyuan; Hu, Changwen

    2015-08-24

    To overcome the bottleneck of water splitting, the exploration of efficient, selective, and stable water oxidation catalysts (WOCs) is crucial. We report an all-inorganic, oxidatively and hydrolytically stable WOC based on a polyoxometalate [(A-α-SiW9 O34)2Co8(OH)6(H2O)2(CO3)3](16-) (Co8 POM). As a cobalt(II)-based cubane water oxidation catalyst, Co8POM embeds double Co(II)4O3 cores. The self-assembled catalyst is similar to the oxygen evolving complex (OEC) of photosystem II (PS II). Using [Ru(bpy)3](2+) as a photosensitizer and persulfate as a sacrificial electron acceptor, Co8POM exhibits excellent water oxidation activity with a turnover number (TON) of 1436, currently the highest among bioinspired catalysts with a cubical core, and a high initial turnover frequency (TOF). Investigation by several spectroscopy, spectrometry, and other techniques confirm that Co8POM is a stable and efficient catalyst for visible light-driven water oxidation. The results offer a useful insight into the design of water oxidation catalysts.

  7. Sodium salts of anionic chiral cobalt(III) complexes as catalysts of the enantioselective Povarov reaction.

    Science.gov (United States)

    Yu, Jie; Jiang, Hua-Jie; Zhou, Ya; Luo, Shi-Wei; Gong, Liu-Zhu

    2015-09-14

    The sodium salts of anionic chiral cobalt(III) complexes (CCC(-) Na(+) ) have been found to be efficient catalysts of the asymmetric Povarov reaction of easily accessible dienophiles, such as 2,3-dihydrofuran, ethyl vinyl ether, and an N-protected 2,3-dihydropyrrole, with 2-azadienes. Ring-fused tetrahydroquinolines with up to three contiguous stereogenic centers were thus obtained in high yields, excellent diastereoselectivities (endo/exo up to >20:1), and high enantioselectivities (up to 95:5 e.r.).

  8. Preparation of Fischer-Tropsch catalysts from cobalt/iron hydrotalcites

    Energy Technology Data Exchange (ETDEWEB)

    Howard, B.H.; Boff, J.J.; Zarochak, M.F. [Pittsburgh Energy Technology Center, PA (United States)] [and others

    1995-12-31

    Compounds with the (hydrotalcites) have properties that make them attractive as precursors for Fischer-Tropsch catalysts. A series of single-phase hydrotalcites with cobalt/iron atom ratios ranging from 75/25 to 25/75 has been synthesized. Mixed cobalt/iron oxides have been prepared from these hydrotalcites by controlled thermal decomposition. Thermal decomposition at temperatures below 600 {degrees}C typically produced a single-phase mixed metal oxide with a spinel structure. The BET surface areas of the spinal samples have been found to be as high as about 150 m{sup 2}/g. Appropriate reducing pretreatments have been developed for several of these spinels and their activity, selectivity, and activity and selectivity maintenance have been examined at 13 MPa in a fixed-bed microreactor.

  9. Electrochemical performance of annealed cobalt-benzotriazole/CNTs catalysts towards the oxygen reduction reaction.

    Science.gov (United States)

    Morozan, Adina; Jégou, Pascale; Jousselme, Bruno; Palacin, Serge

    2011-12-28

    One of the major limitations yet to the global implementation of polymer electrolyte membrane fuel cells (PEMFCs) is the cathode catalyst. The development of efficient platinum-free catalysts is the key issue to solve the problem of slow kinetics of the oxygen reduction reaction (ORR) and high cost. We report a promising catalyst for ORR prepared through the annealing treatment under inert conditions of the cobalt-benzotriazole (Co-BTA) complex supported on carbon nanotubes (CNTs). The N-rich benzotriazole precursor was chosen based on its ability to complex Co(II) ions and generate under annealing highly reactive radicals able to tune the physicochemical properties of CNTs. X-Ray photoelectron spectroscopy (XPS) was used to follow the surface structure changes and highlight the active electrocatalytic sites towards the ORR. To achieve further evaluation of the catalysts in acidic medium, voltamperometry, rotating disk electrode (RDE), rotating ring-disk electrode (RRDE) and half-cell measurements were performed. The resulting catalysts (Co/N/CNTs) all show catalytic activity towards the ORR, the most active one resulting from annealing at 700 °C. The overall electron transfer number for the catalyzed ORR was determined to be ∼3.7 with no change upon the catalyst loading, suggesting that the ORR was dominated by a 4e(-) transfer process. The results indicate a promising alternative cathode catalyst for ORR in fuel cells, although its performance is still lower (overpotential around 110 mV evaluated by RDE and RRDE) than the reference Pt/C catalyst.

  10. Fischer-Tropsch Reaction Kinetics of Cobalt Catalyst in Supercritical Phase

    Institute of Scientific and Technical Information of China (English)

    Abdullah Irankhah; Ali Haghtalab; Ebrahim Vasheghani Farahani; Kambiz Sadaghianizadeh

    2007-01-01

    Fischer-Tropsch synthesis under supercritical phase condition was examined in a continuous and a high-pressure fixed bed reactor by employing a cobalt catalyst (Co-Ru/γ-Al2O3). An integral reactor model involving Fischer-Tropsch reaction kinetics in the supercritical fluid n-hexane was used to describe the overall performance. On the basis of Langmuir-Hinshelwood-Hougen-Watson (LHHW) model, the reaction rate constants were obtained for the rate equations of CO conversion to CH4 formation under supercritical conditions.

  11. CARBON NANOTUBES VIA METHANE DECOMPOSITION ON AN ALUMINA SUPPORTED COBALT AEROGEL CATALYST

    Institute of Scientific and Technical Information of China (English)

    Lingyu Piao; Jiuling Chen; Yongdan Li

    2003-01-01

    An alumina-supported cobalt aerogel catalyst prepared from a sol-gel and a supercritical drying method was used in the catalytic decomposition of methane. The physical-chemical properties of the catalyst were characterized and its activity for methane decomposition was investigated. The effects of calcination and reaction temperatures on the activity of the catalyst and the morphology of the carbon nanotubes produced were discussed. A CoAl2O4 spinel structure formed in the calcined catalyst. The quantity of the nanotubes produced in the reaction increases with the amount of cobalt in the reduced catalyst. A higher reaction temperature leads to a higher reaction rate, though faster deactivation of the catalyst occurs with the change. The carbon nanotubes grown on the catalyst have smooth walls and uniform diameter distribution.

  12. TECHNOLOGY DEVELOPMENT FOR IRON AND COBALT FISCHER-TROPSCH CATALYSTS

    Energy Technology Data Exchange (ETDEWEB)

    Burtron H. Davis

    1999-04-30

    The impact of activation procedure on the phase composition of precipitated iron Fischer-Tropsch (FT) catalysts has been studied. Catalyst samples taken during activation and FT synthesis have been characterized by Moessbauer spectroscopy. Formation of iron carbide is necessary for high FT activity. Hydrogen activation of precipitated iron catalysts results in reduction to predominantly metallic iron and Fe{sub 3}O{sub 4}. Metallic iron is not stable under FT 3 4 conditions and is rapidly converted to {epsilon}{prime}-Fe{sub 2.2}C. Activation with carbon monoxide or syngas 2.2 with low hydrogen partial pressure reduces catalysts to {chi}-Fe{sub 5}C{sub 2} and a small amount of 5 2 superparamagnetic carbide. Exposure to FT conditions partially oxidizes iron carbide to Fe{sub 3}O{sub 4}; however, catalysts promoted with potassium or potassium and copper maintain a constant carbide content and activity after the initial oxidation. An unpromoted iron catalyst which was activated with carbon monoxide to produce 94% {chi}-Fe{sub 5}C{sub 2}, deactivated rapidly as the carbide was oxidized to Fe{sub 3}O{sub 4}. No difference in activity, stability or deactivation rate was found for {chi}-Fe{sub 5}C{sub 2} and {epsilon}{prime}-Fe{sub 2.2}C.

  13. The Sulfidation of gamma-Alumina and Titania Supported (Cobalt) Molybdenum Oxide Catalysts Monitored by EXAFS.

    NARCIS (Netherlands)

    Koningsberger, D.C.; Leliveld, R.G.; Dillen, A.J. van; Geus, John W.

    1997-01-01

    The sulfidation of @c-alumina- and titania-supported(cobalt)molybdenum oxide catalysts has been studied with X-rayabsorption spectroscopy and temperature programmed sulfidation (TPS).The catalysts were stepwise sulfided at temperatures between 298 and673 K and their structure was determined with EXA

  14. Amorphous cobalt potassium phosphate microclusters as efficient photoelectrochemical water oxidation catalyst

    Science.gov (United States)

    Zhang, Ye; Zhao, Chunsong; Dai, Xuezeng; Lin, Hong; Cui, Bai; Li, Jianbao

    2013-12-01

    A novel amorphous cobalt potassium phosphate hydrate compound (KCoPO4·H2O) is identified to be active photocatalyst for oxygen evolution reaction (OER) to facilitate hydrogen generation from water photolysis. It has been synthesized through a facile and cost-effective solution-based precipitation method using earth-abundant materials. Its highly porous structure and large surface areas are found to be responsible for the excellent electrochemical performance featuring a low OER onset at ˜550 mVSCE and high current density in alkaline condition. Unlike traditional cobalt-based spinel oxides (Co3O4, NiCo2O4) and phosphate (Co-Pi, Co(PO3)2) electrocatalysts, with proper energy band alignment for light-assisted water oxidation, cobalt potassium phosphate hydrate also exhibits robust visible-light response, generating a photocurrent density of ˜200 μA cm-2 at 0.7 VSCE. This catalyst could thus be considered as a promising candidate to perform photoelectrochemical water splitting.

  15. CO-free hydrogen from steam-reforming of bioethanol over ZnO-supported cobalt catalysts. Effect of the metallic precursor

    Energy Technology Data Exchange (ETDEWEB)

    Llorca, Jordi; De la Piscina, Pilar Ramirez; Sales, Joaquim; Homs, Narcis [Departament de Quimica Inorganica, Universitat de Barcelona, c/Marti i Franques 1-11, 08028 Barcelona (Spain); Dalmon, Jean-Alain [Institut de Recherches sur la Catalyse-CNRS, 2 Avenue Albert Einstein, 69626 Villeurbanne (France)

    2003-07-25

    The ethanol steam-reforming reaction was studied over ZnO-supported cobalt catalysts (10wt.% Co). Catalysts were prepared by impregnation of nitrate and carbonyl cobalt precursors. Characterization was accomplished by transmission electron microscopy (TEM), Raman spectroscopy, UV-Vis diffuse reflectance spectroscopy (DRS), X-ray diffraction (XRD), and in situ techniques: magnetic measurements, and diffuse reflectance infrared spectroscopy (DRIFT) coupled to mass spectrometry. The use of Co{sub 2}(CO){sub 8} as precursor produced a catalyst that was highly stable and selective for the production of CO-free hydrogen at reaction temperature as low as 623K. The only by-product was methane and selectivity of 73% to H{sub 2} and 25% to CO{sub 2} was obtained. Under reaction conditions, the catalyst showed 92% of reduced cobalt, mainly as small particles.

  16. In situ observation of self-assembled hydrocarbon Fischer-Tropsch products on a cobalt catalyst

    Science.gov (United States)

    Navarro, Violeta; van Spronsen, Matthijs A.; Frenken, Joost W. M.

    2016-10-01

    Fischer-Tropsch synthesis is a heterogeneous catalytic reaction that creates approximately 2% of the world's fuel. It involves the synthesis of linear hydrocarbon molecules from a gaseous mixture of carbon monoxide and hydrogen at high pressures (from a few to tens of bars) and high temperatures (200-350 °C). To gain further insight into the fundamental mechanisms of this industrial process, we have used a purpose-built scanning tunnelling microscope to monitor a cobalt model catalyst under reaction conditions. We show that, after 30 minutes of reaction, the terraces of the cobalt catalyst are covered by parallel arrays of stripes. We propose that the stripes are formed by the self-assembly of linear hydrocarbon product molecules. Surprisingly, the width of the stripes corresponds to molecules that are 14 or 15 carbon atoms long. We introduce a simple model that explains the accumulation of such long molecules by describing their monomer-by-monomer synthesis and explicitly accounting for their thermal desorption.

  17. A cobalt-based catalyst for the hydrogenation of CO2 under ambient conditions.

    Science.gov (United States)

    Jeletic, Matthew S; Mock, Michael T; Appel, Aaron M; Linehan, John C

    2013-08-07

    Because of the continually rising levels of CO2 in the atmosphere, research for the conversion of CO2 into fuels using carbon-neutral energy is an important and current topic in catalysis. Recent research on molecular catalysts has led to improved rates for conversion of CO2 to formate, but the catalysts are based on precious metals such as iridium, ruthenium and rhodium and require high temperatures and high pressures. Using established thermodynamic properties of hydricity (ΔGH(-)) and acidity (pKa), we designed a cobalt-based catalyst system for the production of formate from CO2 and H2. The complex Co(dmpe)2H (dmpe is 1,2-bis(dimethylphosphino)ethane) catalyzes the hydrogenation of CO2, with a turnover frequency of 3400 h(-1) at room temperature and 1 atm of 1:1 CO2:H2 (74,000 h(-1) at 20 atm) in tetrahydrofuran. These results highlight the value of fundamental thermodynamic properties in the rational design of catalysts.

  18. Single-Site Cobalt Catalysts at New Zr8(μ2-O)8(μ2-OH)4 Metal-Organic Framework Nodes for Highly Active Hydrogenation of Alkenes, Imines, Carbonyls, and Heterocycles.

    Science.gov (United States)

    Ji, Pengfei; Manna, Kuntal; Lin, Zekai; Urban, Ania; Greene, Francis X; Lan, Guangxu; Lin, Wenbin

    2016-09-21

    We report here the synthesis of robust and porous metal-organic frameworks (MOFs), M-MTBC (M = Zr or Hf), constructed from the tetrahedral linker methane-tetrakis(p-biphenylcarboxylate) (MTBC) and two types of secondary building units (SBUs): cubic M8(μ2-O)8(μ2-OH)4 and octahedral M6(μ3-O)4(μ3-OH)4. While the M6-SBU is isostructural with the 12-connected octahedral SBUs of UiO-type MOFs, the M8-SBU is composed of eight M(IV) ions in a cubic fashion linked by eight μ2-oxo and four μ2-OH groups. The metalation of Zr-MTBC SBUs with CoCl2, followed by treatment with NaBEt3H, afforded highly active and reusable solid Zr-MTBC-CoH catalysts for the hydrogenation of alkenes, imines, carbonyls, and heterocycles. Zr-MTBC-CoH was impressively tolerant of a range of functional groups and displayed high activity in the hydrogenation of tri- and tetra-substituted alkenes with TON > 8000 for the hydrogenation of 2,3-dimethyl-2-butene. Our structural and spectroscopic studies show that site isolation of and open environments around the cobalt-hydride catalytic species at Zr8-SBUs are responsible for high catalytic activity in the hydrogenation of a wide range of challenging substrates. MOFs thus provide a novel platform for discovering and studying new single-site base-metal solid catalysts with enormous potential for sustainable chemical synthesis.

  19. Studies on accelerated deactivation of ruthenium-promoted alumina-supported alkalized cobalt Fischer-Tropsch synthesis catalyst

    Institute of Scientific and Technical Information of China (English)

    Shohreh Tehrani; Mohamad Irani; Ahmad Tavasoli; Yadollah Mortazavi; Abbas A.Khodadadi; Ali Nakhaei Pour

    2011-01-01

    Accelerated deactivation of ruthenium-promoted alumina-supported alkalized cobalt(K-Ru-Co/-γ-Al2O3)Fischer-Tropsch(FT)synthesis catalyst along the catalytic bed over 120 h of time-on-stream(TOS)was investigated.Catalytic bed was divided into three parts and structural changes of the spent catalysts collected from each catalytic bed after FT synthesis were studied using different techniques.Rapid deactivation was observed during the reaction due to high reaction temperature and low feed flow rates.The physico-chemical properties of the catalyst charged in the Bed #1 of the reactor did not change significantly.Interaction of cobalt with alumina and the formation of CoAl2O4 increased along the catalytic bed.Reducibility percentage decreased by 4.5%,7.5% and 12.9% for the catalysts in the Beds #1,#2 and #3,respectively.Dispersion decreased by 8.8%,14.4% and 26.6% for the catalysts in the Beds #1,#2 and #3,respectively.Particle diameter increased by 0.6%,2.4% and 10.4% for the catalysts in the Beds #1,#2 and #3,respectively,suggesting higher rate of sintering at the last catalytic bed.The amount of coke at the last catalytic bed was significantly higher than those of Beds #1 and #2.

  20. Efficient hydrogen production from ethanol and glycerol by vapour-phase reforming processes with new cobalt-based catalysts.

    Science.gov (United States)

    Pereira, Evandro Brum; de la Piscina, Pilar Ramírez; Homs, Narcís

    2011-02-01

    The aim of this study was to investigate biohydrogen production from biofuel-reforming processes using new multi-component bulk-type cobalt-based catalysts. The addition of different components to improve the catalytic performance was studied. Monometallic cobalt catalyst and catalysts containing Ru (ca. 1%) and/or Na (ca. 0.5%) were characterized and tested in the 623-673 K temperature range in ethanol steam reforming (ESR) with a steam/carbon ratio (S/C) of 3. The catalysts showed a high performance for hydrogen production and, except for H(2) and CO(2), only small amounts of by-products were obtained, depending on the temperature and the catalyst used. The catalyst containing both Ru and Na (Co-Ru(Na)) showed the best catalytic behavior in ESR. It operated stably for at least 12 days under cycles of oxidative steam reforming of glycerol/ethanol mixtures (S/C=2) and activation under O(2).

  1. Highly dispersed metal catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Xin; West, William L.; Rhodes, William D.

    2016-11-08

    A supported catalyst having an atomic level single atom structure is provided such that substantially all the catalyst is available for catalytic function. A process of forming a single atom catalyst unto a porous catalyst support is also provided.

  2. Effect of potassium promoter on cobalt nano-catalysts for fischer-tropsch reaction

    Science.gov (United States)

    Ali, Sardar; Mohd Zabidi, Noor Asmawati; Subbarao, Duvvuri

    2012-09-01

    In the present work effect of potassium on cobalt nano-catalysts for Fischer-Tropsch reaction has been presented. The catalysts were prepared using a wet impregnation method and promoted with potassium. Samples were characterized by nitrogen adsorption, H2-TPR, and TEM. The Fischer-Tropsch Synthesis (FTS) was carried out in a fixed-bed microreactor 220 δC, 1 atm, H2/CO = 2 and a velocity (SV) =12 L/g.h. for 5 h. Addition of potassium into Co/CNTs decreased the average size of cobalt nanoparticles and the catalyst reducibility. Potassium-promoted Co catalyst resulted in appreciable increase in the selectivity of C5+ hydrocarbons and suppressed methane formation. The 0.06%KCo/CNTs catalyst enhanced the C5+ hydrocarbons selectivity by a factor of 23.5% and reduced the methane selectivity by a factor of 39.6%

  3. Structure and performance of cobalt and nickel catalysts for hydrogen generation from bio-ethanol partial oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Ehrlich, Heike; Kraleva, Elka [Rostock Univ. (Germany). Leibniz-Institut fuer Katalyse

    2012-07-01

    A hydrogen and CO rich fuel gas used for SOFC applications is obtained directly from ethanol by partial oxidation. Low-cost cobalt and nickel metals supported on different mixed oxides were found to be highly active catalysts in this reaction. The ethanol conversion started above 350 C and increased with increasing reaction temperature. Hydrogen and carbon monoxide were the predominant products at temperatures above 500 C. Among the catalysts studied, CoAlZn and NiAlZn mixed oxides showed to provide the highest H{sub 2} and CO selectivity. By the use of a sol-gel method for catalyst preparation the drawback of oxide sintering at high temperature could be eliminated. It was found that phase composition of the catalysts and their thermal stability depends significantly on the preparation method and chemical composition. (orig.)

  4. Reduction and reoxidation of cobalt Fischer-Tropsch catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Hilmen, Anne-Mette

    1996-12-31

    The Fischer-Tropsch synthesis involves the hydrogenation of carbon monoxide to produce mainly hydrocarbons, water and carbon dioxide, but also alcohols, aldehydes and acids are formed. The distribution of these products is determined by the choice of catalyst and synthesis conditions. This thesis studies the reduction and reoxidation of 17%Co/Al{sub 2}O{sub 3} and 17%Co-1%Re/Al{sub 2}O{sub 3} by means of several characterization techniques. The effect of small amounts of Re on the reduction properties of Al{sub 2}O{sub 3}-supported Co catalysts has been studied by temperature-programmed reduction (TPR). An intimate mixture of CoAl{sub 2}O{sub 3} and Re/Al{sub 2}O{sub 3} catalysts showed a promoting effect of Re similar to that for co impregnated CoRe/Al{sub 2}O{sub 3}. A loose mixture of Co/Al{sub 2}O{sub 3} + Re/Al{sub 2}O{sub 3} did not show any effect of Re on the reduction of Co. But a promoting effect was observed if the mixture had been pre-treated with Ar saturated with water before the TPR. It is suggested that Re promotes the reduction of Co oxide by hydrogen spillover. It is shown that a high temperature TPK peak at 1200K assigned to Co aluminate is mainly caused by the diffusion of Co ions during the TPR and not during calcination. The Co particle size measured by x-ray diffraction on oxidized catalysts decreased compared to the particle size on the calcined catalysts, while the dispersion measured by volumetric chemisorption decreased somewhat after the oxidation-reduction treatment. The role of water in the deactivation of Co/Al{sub 2}O{sub 3} and CoRe/Al{sub 2}O{sub 3} Fischer-Tropsch catalysts has been extensively studied. There were significant differences in the reducibility of the phases formed for the two catalysts during exposure to H{sub 2}O/He. 113 refs., 76 figs., 18 tabs.

  5. An Efficient and Recyclable Nanoparticle-Supported Cobalt Catalyst for Quinoxaline Synthesis.

    Science.gov (United States)

    Rajabi, Fatemeh; Alves, Diego; Luque, Rafael

    2015-11-19

    The syntheses of quinoxalines derived from 1,2-diamine and 1,2-dicarbonyl compounds under mild reaction conditions was carried out using a nanoparticle-supported cobalt catalyst. The supported nanocatalyst exhibited excellent activity and stability and it could be reused for at least ten times without any loss of activity. No cobalt contamination could be detected in the products by AAS measurements, pointing to the excellent activity and stability of the Co nanomaterial.

  6. An Efficient and Recyclable Nanoparticle-Supported Cobalt Catalyst for Quinoxaline Synthesis

    Directory of Open Access Journals (Sweden)

    Fatemeh Rajabi

    2015-11-01

    Full Text Available The syntheses of quinoxalines derived from 1,2-diamine and 1,2-dicarbonyl compounds under mild reaction conditions was carried out using a nanoparticle-supported cobalt catalyst. The supported nanocatalyst exhibited excellent activity and stability and it could be reused for at least ten times without any loss of activity. No cobalt contamination could be detected in the products by AAS measurements, pointing to the excellent activity and stability of the Co nanomaterial.

  7. Sulfide catalysts made of cobalt and hydroxyapatite; Catalyseurs sulfures a base de cobalt et d`hydroxyapatite

    Energy Technology Data Exchange (ETDEWEB)

    El Ouassouli, A.; Ezzemouri, S.; Ezzamarty, A.; Lakhdar, M. [Faculte des Sciences Hassan 2, Casablanca (Morocco). Lab. de Catalyse Heterogene; Leglise, J. [Centre National de la Recherche Scientifique (CNRS-ISMRA) Lab. de Catalyse et Spectrochimie, 14 - Caen (France)

    1999-07-01

    We have prepared a series of catalysts combining cobalt and a hydroxyapatite by coprecipitation in a basic medium. These sulfided solids catalyze the hydro-desulfurization of dimethyl-disulfide at 360 deg C and its hydrogenolysis int CH{sub 3}SH at 200 deg C. The coprecipitated solids are found more active than the impregnated catalysts because they exhibit a better dispersion of the active Co-S phase at higher Co content. With the precipitated catalysts, Co ions substitute for Ca ions into the apatite structure. The formation of large sulfide particles is thus more difficult as a result of sulfiding because the Co ions have to move to the surface. The apatite catalysts are intrinsically as active as their homologous Co/Al{sub 2}O{sub 3} (used in gas oils desulfurization. (authors) 20 refs.

  8. One-step electrochemical deposition of Schiff base cobalt complex as effective water oxidation catalyst

    Science.gov (United States)

    Huang, Binbin; Wang, Yan; Zhan, Shuzhong; Ye, Jianshan

    2017-02-01

    Schiff base metal complexes have been applied in many fields, especially, a potential homogeneous catalyst for water splitting. However, the high overpotential, time consumed synthesis process and complicated working condition largely limit their application. In the present work, a one-step approach to fabricate Schiff base cobalt complex modified electrode is developed. Microrod clusters (MRC) and rough spherical particles (RSP) can be obtained on the ITO electrode through different electrochemical deposition condition. Both of the MRC and RSP present favorable activity for oxygen evolution reaction (OER) compared to the commercial Co3O4, taking an overpotential of 650 mV and 450 mV to drive appreciable catalytic current respectively. The highly active and stable RSP shows a Tafel plot of 84 mV dec-1 and negligible decrease of the current density for 12 h bulk electrolysis. The synthesis strategy of effective and stable catalyst in this work provide a simple method to fabricate heterogeneous OER catalyst with Schiff base metal complex.

  9. Prussian blue analogue derived magnetic carbon/cobalt/iron nanocomposite as an efficient and recyclable catalyst for activation of peroxymonosulfate.

    Science.gov (United States)

    Lin, Kun-Yi Andrew; Chen, Bo-Jau

    2017-01-01

    A Prussian blue analogue, cobalt hexacyanoferrate Co3[Fe(CN)6]2, was used for the first time to prepare a magnetic carbon/cobalt/iron (MCCI) nanocomposite via one-step carbonization of Co3[Fe(CN)6]2. The resulting MCCI consisted of evenly-distributed cobalt and cobalt ferrite in a porous carbonaceous matrix, making it an attractive magnetic heterogeneous catalyst for activating peroxymonosulfate (PMS). As Rhodamine B (RhB) degradation was adopted as a model test for evaluating activation capability of MCCI, factors influencing RhB degradation were thoroughly examined, including MCCI and PMS dosages, temperature, pH, salt and radical scavengers. A higher MCCI dosage noticeably facilitated the degradation kinetics, whereas insufficient PMS dosage led to ineffective degradation. RhB degradation by MCCI-activated PMS was much more favorable at high temperatures and under neutral conditions. The presence of high concentration of salt slightly interfered with RhB degradation by MCCI-activated PMS. Through examining effects of radical scavengers, RhB degradation by MCCI-activated PMS can be primarily attributed to sulfate radicals instead of a combination of sulfate and hydroxyl radicals. Compared to Co3O4, a typical catalyst for PMS activation, MCCI also exhibited a higher catalytic activity for activating PMS. In addition, MCCI was proven as a durable and recyclable catalyst for activating PMS over multiple cycles without efficiency loss and significant changes of chemical characteristics. These features demonstrate that MCCI, simply prepared from a one-step carbonization of Co3[Fe(CN)6]2 is a promising heterogeneous catalyst for activating PMS to degrade organic pollutants.

  10. Liquid-Phase Deposition of Aligned Carbon Nanotubes Using Cobalt Catalyst

    Science.gov (United States)

    Nishitani-Gamo, Mikka; Shibasaki, Takeshi; Gamo, Hidenori; Nakagawa, Kiyoharu; Ando, Toshihiro

    2007-09-01

    We have recently developed a novel catalytic method for synthesizing a wide variety of carbon nanomaterials in the organic liquid. The method enabled us to realize a simple, rapid, and high-purity growth of carbon nanotubes (CNTs) in alcohol liquids. In this study, cobalt (Co) was used as a catalyst metal. In order to control the structure of carbon nanomaterials, we investigated the relationship between the growth conditions and the grown materials. Scanning electron microscopy (SEM) observation revealed that the morphology of the grown carbon nanomaterials strongly depended on the reaction temperature. Under the reaction temperature in the range from 873 to 973 K, fibriform deposits were mainly obtained. Transmission electron microscopy (TEM) revealed that the fibriform deposits were CNTs. The amount of the supported Co catalyst affected the fine tubular structure of the CNTs. We found that the existence of the reaction temperature of 873 K during the reaction time was essential for growing a fibriform structure in this study. The longer duration time for the reaction temperature of 1127 K resulted in a higher crystal quality for CNTs. We also demonstrated that the Co catalyst thermal oxidation at 1173 K resulted in the growth of aligned CNTs with the higher density.

  11. An innovative catalyst system for slurry-phase Fischer-Tropsch synthesis: Cobalt plus a water-gas-shift catalyst. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Satterfield, C.N.; Yates, I.C.; Chanenchuk, C.

    1991-07-01

    The feasibility of using a mechanical mixture of a Co/MgO/SiO{sub 2} Fischer-Tropsch catalyst and a Cu-ZnO/Al{sub 2}O{sub 3} water-gas-shift (WGS) catalyst for hydrocarbon synthesis in a slurry reactor has been established. Such a mixture can combine the superior product distribution from cobalt with the high activity for the WGS reaction characteristic of iron. Weight ratios of Co/MgO/SiO{sub 2} to Cu-ZnO/Al{sub 2}O{sub 3} of 0.27 and 0.51 for the two catalysts were studied at 240{degrees}C, 0.79 MPa, and in situ H{sub 2}/CO ratios between 0.8 and 3.0. Each catalyst mixture showed stable Fischer-Tropsch activity for about 400 hours-on-stream at a level comparable to the cobalt catalyst operating alone. The Cu-ZnO/Al{sub 2}O{sub 3} catalyst exhibited a very slow loss of activity under these conditions, but when operated alone it was stable in a slurry reactor at 200--220{degrees}C, 0.79--1.48 MPa, and H{sub 2}/CO in situ ratios between 1.0 and 2.0. The presence of the water-gas-shift catalyst did not affect the long-term stability of the primary Fischer-Tropsch selectivity, but did increase the extent of secondary reactions, such as l-alkene hydrogenation and isomerization.

  12. Technology development for cobalt F-T catalysts. Quarterly technical progress report No. 5, October 1, 1993--December 31, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Singleton, A.H.

    1994-05-31

    The goal of this project is the development of a commercially viable, cobalt-based Fischer-Tropsch (F-T) catalyst for use in a slurry bubble column reactor. Cobalt-based catalysts have long been known as being active for F-T synthesis. They typically possess greater activity than iron-based catalysts, historically the predominant catalyst being used commercially for the conversion of syngas based on coal, but possess two disadvantages that somewhat lessen its value: (1) cobalt tends to make more methane than iron does, and (2) cobalt is less versatile with low H{sub 2}/CO ratio syngas due to its lack of water-gas shift activity. Therefore, the major objectives of this work are (1) to develop a cobalt-based F-T catalyst with low (< 5 %) methane selectivity, (2) to develop a cobalt-based F-T catalyst with water-gas shift activity, and (3) to combine both these improvements into one catalyst. It will be demonstrated that these catalysts have the desired activity, selectivity, and life, and can be made reproducibly. Following this experimental work, a design and a cost estimate will be prepared for a plant to produce sufficient quantities of catalyst for scale-up studies.

  13. Structural modifications under reactive atmosphere of cobalt catalysts; Modifications structurales sous atmospheres reactionnelles de catalyseurs a base de cobalt

    Energy Technology Data Exchange (ETDEWEB)

    Ducreux, O.

    1999-11-23

    The purpose of this work was to develop in situ methods under reactive dynamic conditions (XRD and Fourier transform infrared spectroscopy) to describe the active phase structure in order to understand Fischer-Tropsch catalyst behaviour and improve the natural gas conversion process performance. Experiments were designed to correlate structural modifications with catalytic results. The effect of ruthenium used as a promoter has also been studied. The impregnation process increases cobalt-support interaction. The presence of ruthenium promoter reduces this effect. Interactions between Co{sub 3}O{sub 4} oxide and support play an important role in the reducibility of cobalt and in the resulting metal structure. This in turn strongly influences the catalytic behaviour. Our results show a close correlation between structure modification and reactivity in the systems studied. Cobalt metal and CO can react to form a carbide Co{sub 2}C under conditions close to those of the Fischer-Tropsch synthesis. This carbide formation seems to be related to a deactivation process. The presence of interstitial carbon formed by dissociation of CO is proposed as a key to understanding the mechanism of the Fischer-Tropsch reaction. A specific catalyst activation treatment was developed to increase the catalytic activity. This work permits correlation of materials structure with their chemical properties and demonstrates the contribution of in situ physico-chemical characterisation methods to describe solids under reactive atmosphere. (author)

  14. Bridging complexes of rare earth and cobalt cluster as catalyst precursors for Fischer-Tropsch synthesis

    Institute of Scientific and Technical Information of China (English)

    ZENG Shanghong; DU Dongping; BAI Fenghua; SU Haiquan

    2011-01-01

    Three new bridging complexes of rare earth and cobalt cluster were synthesized and characterized via ICP, IR and TG techniques.The structure of the complexes was speculated as: two rare earth atoms were bridged with four CF3COO-, and rare earth atoms were coordinated with cobalt carbonyl clusters to form a steady structure. Application of the complexes as the catalyst precursors was explored for Fischer-Tropsch synthesis. The study showed that the bridging complexes of rare earth and cobalt cluster had large molecular size and were difficult to enter pore path of γ-Al2O3, so they were dispersed on the surface of γ-A12O3 support. In addition, the performance of Co(Ce)/γ-Al2O3 was the best among the catalysts with complex as precursor and maintained 77.7% CO conversion at 220 ℃ for 80 operation hours.

  15. Effect of cobalt promoter on Co—Mo—K/C catalysts used for mixed alcohol synthesis

    Institute of Scientific and Technical Information of China (English)

    JunBao; MingJiang; TianduoHu; TaoLiu; Yan-ningXie; ZhongruiLi; YiluF

    2001-01-01

    The structures of sulfided Co-Mo-K/C catalysts were studied by menas of X-ray diffraction (XRD),laser Raman spectra(LRS),and X-ray absorption fine structure(XAFS).Activities for alcohol synthesis via CO hydrogenation were used to characterize the catalytic performance of these catalysts.On the activeated carbon support,molybdenum is mainly resent as MoS2 species which shrinks with the cobalt loading,While cobalt is mainly present in the form of “Co-Mo-S”phase at the low Co loading and partly in a Co9S8--like structure at higher Co loading.The catalysts exhibit outstanding performance for higher alcohol synthesis due to addition of the promotion of cobalt.The catalysts exhibit outstanding performance for higher alcohol synthesis due to the addition of the promotion of cobalt.The activity for alcohol formation is optimized at a Co/Mo atomic ratio of 0.5.Co species operate as s synergistic system,rather than independently from the MoS2 phase.2001 Elsevier Science B.V.All rights reserved.

  16. On the Deactivation of Cobalt-based Fischer-Tropsch Catalysts

    NARCIS (Netherlands)

    Cats, K.H.

    2016-01-01

    The Fischer-Tropsch Synthesis (FTS) process is an attractive way to obtain synthetic liquid fuel from alternative energy sources such as natural gas, coal or biomass. However, the deactivation of the catalyst, consisting of cobalt nanoparticles supported on TiO2, currently hampers the industrial app

  17. Ti-Si composite oxide-supported cobalt catalysts for CO2 hydrogenation

    Institute of Scientific and Technical Information of China (English)

    Jakrapan Janlamool; Piyasan Praserthdam; Bunjerd Jongsomjit

    2011-01-01

    In the present work,different silica-based supported cobalt (Co) catalysts were synthesized and used for CO2 hydrogenation for methanation.Different supports,such as SSP,MCM-41,TiSSP and TiMCM were used to prepare Co catalysts with 20 wt% Co loading.The supports and catalysts were characterized by means of N2 physisorption,XRD,SEM/EDX,XPS,TPR and CO chemisorption.It is found that after calcination of catalysts,Ti is present in the form of anatase.The introduction of Ti plays important roles in the properties of Co catalysts by.(i) facilitating the reduction of Co oxides species which are strongly interacted with support,(ii) preventing the formation of silicate compounds,and (iii) inhibiting the RWGS reaction.Based on CO2 hydrogenation,the CoTiMCM catalyst exhibites the highest activity and stability.

  18. Hydrotalcite-derived cobalt-aluminum mixed oxide catalysts for toluene combustion

    Science.gov (United States)

    Białas, Anna; Mazur, Michal; Natkański, Piotr; Dudek, Barbara; Kozak, Marek; Wach, Anna; Kuśtrowski, Piotr

    2016-01-01

    Hydrotalcite-like compounds (HTlcs) containing cobalt and aluminum (intended Co/Al molar ratio = 3.0) were coprecipitated at 30, 50 and 70 °C. Their crystallinity, which was confirmed by powder X-ray diffraction, increased with the precipitation temperature. Furthermore, HTlcs with various cobalt contents were prepared at 70 °C. Thermogravimetric analysis showed that HTlcs were transformed into stable oxides at 550 °C. The decrease in the crystallite size of the formed spinels with the increase in the precipitation temperature was observed. Low temperature sorption of nitrogen revealed meso-macroporous nature of the oxides with extended interparticle porosity. Aluminum segregated on the samples surface, which contained various amounts of lattice and adsorbed/electrophilic oxygen as detected by X-ray electron spectroscopy. The high ratio of lattice to adsorbed/electrophilic oxygen found for the sample with Co/Al = 3:1 caused that it turned out to be the most efficient catalyst in the total oxidation of toluene (50% conversion at 257 °C).

  19. Cobalt hydroxide nanoflakes and their application as supercapacitors and oxygen evolution catalysts

    Science.gov (United States)

    Rovetta, A. A. S.; Browne, M. P.; Harvey, A.; Godwin, I. J.; Coleman, J. N.; Lyons, M. E. G.

    2017-09-01

    Finding alternative routes to access and store energy has become a major issue recently. Transition metal oxides have shown promising behaviour as catalysts and supercapacitors. Recently, liquid exfoliation of bulk metal oxides appears to be an effective route which provides access to two-dimensional (2D) nano-flakes, the size of which can be easily selected. These 2D materials exhibit excellent electrochemical charge storage and catalytic activity for the oxygen evolution reaction. In this study, various sized selected cobalt hydroxide nano-flake materials are fabricated by this time efficient and highly reproducible process. Subsquently, the electrochemical properties of the standard size Co(OH)2 nanoflakes were investigated. The oxide modified electrodes were prepared by spraying the metal oxide flake suspension onto a porous conductive support electrode foam, either glassy carbon or nickel. The cobalt hydroxide/nickel foam system was found to have an overpotential value at 10 mA cm-2 in 1 M NaOH as low as 280 mV and an associated redox capacitance exhibiting numerical values up to 1500 F g-1, thereby making it a viable dual use electrode.

  20. Development of niobium-promoted cobalt catalysts on carbon nanotubes for Fischer-Tropsch synthesis

    Institute of Scientific and Technical Information of China (English)

    Sardar Ali; Noor Asmawati Mohd Zabidi; Duvvuri Subbarao

    2011-01-01

    Cobalt-based catalysts were prepared by a wet impregnation method on carbon nanotubes (CNTs) support and promoted with niobium.Samples were characterized by nitrogen adsorption,TEM,XRD,TPR,TPO and H2-TPD.Addition of niobium increased the dispersion of cobalt but decreased the catalysts reducibility.Fischer-Tropsch synthesis (FTS) was carried out in a fixed-bed microreactor at 543 K,1 atm and H2/CO =2 for 5 h.Addition of niobium enhanced the C5+ hydrocarbons selectivity by 39% and reduced methane selectivity by 59%.These effects were more pronounced for 0.04%Nb/Co/CNTs catalyst,compared with those observed for other niobium compositions.

  1. Model studies of secondary hydrogenation in Fischer-Tropsch synthesis studied by cobalt catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Aaserud, Christian

    2003-07-01

    Mass transfer effects are very important in Fischer-Tropsch (FT) synthesis. In order to study the FT synthesis without the influence of any transport limitations, cobalt foils have been used as model catalysts. The effect of pretreatment (number of calcinations and different reduction times) for cobalt foil catalysts at 220 {sup o}C, 1 bar and H{sub 2}/CO = 3 has been studied in a microreactor. The foils were examined by Scanning electron microscopy (SEM). It was found that the catalytic activity of the cobalt foil increases with the number of pretreatments possibly due to an increase in the surface area of the cobalt foil. The SEM results support the assumption that the surface area of the cobalt foil increases with the number of pretreatments. The reduction time was also found to influence the catalytic activity of the cobalt foil. Highest activity was obtained using a reduction time of only five min (compared to one and thirty min). The decrease in activity after reduction for thirty min compared to five min was suggested to be due to restructuring of the surface of the cobalt foil and a reduction time of only 1 min was not enough to reduce the cobalt foil sufficiently. Time of reduction did also influence the product distribution. Increased reduction time resulted in a lower selectivity to light products and increased selectivity to heavier components. The paraffin/olefin ratio increased with increasing CO-conversion also for cobalt foils. The paraffin/olefin ratio also increased when the reduction period of the cobalt foil was increased at a given CO-conversion. Hydrogenation of propene to propane has been studied as a model reaction for secondary hydrogenation of olefins in the FT synthesis. The study has involved promoted and unpromoted cobalt FT catalysts supported on different types of supports and also unsupported cobalt. Hydrogenation of propene was carried out at 120 {sup o}C, 1.8 bar and H{sub 2}/C{sub 3}H{sub 6} 6 in a fixed bed microreactor. The rate

  2. Size dependent stability of cobalt nanoparticles on silica under high conversion Fischer-Tropsch environment.

    Science.gov (United States)

    Wolf, Moritz; Kotzé, Hendrik; Fischer, Nico; Claeys, Michael

    2017-02-15

    Highly monodisperse cobalt crystallites, supported on Stöber silica spheres, as model catalysts for the Fischer-Tropsch synthesis were exposed to simulated high conversion environments in the presence and absence of CO utilising an in house developed in situ magnetometer. The catalyst comprising the smallest crystallites in the metallic state (average diameter of 3.2 nm) experienced pronounced oxidation whilst the ratio of H2O to H2 was increased stepwise to simulate CO conversions from 26% up to complete conversion. Direct exposure of this freshly reduced catalyst to a high conversion Fischer-Tropsch environment resulted in almost spontaneous oxidation of 40% of the metallic cobalt. In contrast, a model catalyst with cobalt crystallites of 5.3 nm only oxidised to a small extent even when exposed to a simulated conversion of over 99%. The largest cobalt crystallites were rather stable and only experienced measurable oxidation when subjected to H2O in the absence of H2. This size dependency of the stability is in qualitative accordance with reported thermodynamic calculations. However, the cobalt crystallites showed an unexpected low susceptibility to oxidation, i.e. only relatively high ratios of H2O to H2 partial pressure caused oxidation. Similar experiments in the presence of CO revealed the significance of the actual Fischer-Tropsch synthesis on the metallic surface as the dissociation of CO, an elementary step in the Fischer-Tropsch mechanism, was shown to be a prerequisite for oxidation. Direct oxidation of cobalt to CoO by H2O seems to be kinetically hindered. Thus, H2O may only be capable of indirect oxidation, i.e. high concentrations prevent the removal of adsorbed oxygen species on the cobalt surface leading to oxidation. However, a spontaneous direct oxidation of cobalt at the interface between the support and the crystallites by H2O forming presumably cobalt silicate type species was observed in the presence and absence of CO. The formation of these

  3. Crystallographic dependence of CO activation on cobalt catalysts: HCP versus FCC.

    Science.gov (United States)

    Liu, Jin-Xun; Su, Hai-Yan; Sun, Da-Peng; Zhang, Bing-Yan; Li, Wei-Xue

    2013-11-06

    Identifying the structure sensitivity of catalysts in reactions, such as Fischer-Tropsch synthesis from CO and H2 over cobalt catalysts, is an important yet challenging issue in heterogeneous catalysis. Based on a first-principles kinetic study, we find for the first time that CO activation on hexagonal close-packed (HCP) Co not only has much higher intrinsic activity than that of face centered-cubic (FCC) Co but also prefers a different reaction route, i.e., direct dissociation with HCP Co but H-assisted dissociation on the FCC Co. The origin is identified from the formation of various denser yet favorable active sites on HCP Co not available for FCC Co, due to their distinct crystallographic structure and morphology. The great dependence of the activity on the crystallographic structure and morphology of the catalysts revealed here may open a new avenue for better, stable catalysts with maximum mass-specific reactivity.

  4. Extraction of Nanosized Cobalt Sulfide from Spent Hydrocracking Catalyst

    Directory of Open Access Journals (Sweden)

    Samia A. Kosa

    2013-01-01

    Full Text Available The processes used for the extraction of metals (Co, Mo, and Al from spent hydrotreating catalysts were investigated in this study. A detailed mechanism of the metal extraction process is described. Additionally, a simulation study was performed to understand the sulfidizing mechanism. The suggested separation procedure was effective and achieved an extraction of approximately 80–90%. In addition, the sulfidization mechanism was identified. This sulfidizing process for Co was found to involve an intermediate, the structure of which was proposed. This proposed intermediate was confirmed through simulations. Moreover, the activities of the spent and the regenerated catalyst were examined in the cracking of toluene. The modification of the spent catalyst through the use of different iron oxide loadings improved the catalytic activity.

  5. Nano-sized cobalt based Fischer-Tropsch catalysts for gas-to-liquid process applications.

    Science.gov (United States)

    Kang, Jung Shik; Awate, S V; Lee, Yun Ju; Kim, So Jung; Park, Moon Ju; Lee, Sang Deuk; Hong, Suk-In; Moon, Dong Ju

    2010-05-01

    Nano-sized cobalt supported catalysts were prepared for Fischer-Tropsch synthesis in gas-to-liquid (GTL) process. The dependence of crystallite size and reducibility of Co3O4 on the supports were investigated with FTS activity. XRD peaks revealed nano crystallites ( Co/Al2O3 (70.0%) > Co/R_TiO2 (61%) > Co/A_TiO2 (57.5%).

  6. High-Activity Dealloyed Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Kongkanand, Anusorn [General Motors LLC, Pontiac, MI (United States)

    2014-09-30

    Reduction of costly Pt usage in proton exchange membrane fuel cell electrodes is one of the major challenges towards development and commercialization of fuel cell vehicles. Although few have met the initial-kinetic activity requirements in a realistic fuel cell device, no catalyst material has ever met the demanding fuel cell durability targets set by DOE. In this project, a team of 4 universities and 2 companies came together to investigate a concept that appeared promising in preliminary non-fuel cell tests then to further develop the catalyst to a mature level ready for vehicle implementation. The team consists of academia with technical leadership in their respective areas, a catalyst supplier, and a fuel cell system integrator.The tightly collaborative project enabled development of a highly active and durable catalyst with performance that significantly exceeds that of previous catalysts and meets the DOE targets for the first time (Figure 1A). The catalyst was then further evaluated in full-active-area stack in a realistic vehicle operating condition (Figure 1B). This is the first public demonstration that one can realize the performance benefit and Pt cost reduction over a conventional pure Pt catalyst in a long-term realistic PEMFC system. Furthermore, systematic analyses of a range of catalysts with different performance after fuel cell testing allowed for correlation between catalyst microstructure and its electrocatalytic activity and durability. This will in turn aid future catalyst development.

  7. Highly Efficient Oxidative Cleavage of Carbon-Carbon Double Bond over meso-Tetraphenyl Cobalt Porphyrin Catalyst in the Presence of Molecular Oxygen

    Institute of Scientific and Technical Information of China (English)

    周贤太; 纪红兵

    2012-01-01

    Highly efficient and selective carbon-carbon double bond aerobic cleavage of olefins catalyzed by metallopor- phyrins was investigated, and carbonyl compounds and epoxide were produced as the main products. CoTPP (co- balt meso-tetraphenyl porphyrin) showed excellent activity for the oxidative cleavage of carbon-carbon double bond by using styrene as model compound, in which the TOF (turnover frequency) and selectivity toward benzaldehyde was obtained with 2×10^4h-1 and 86%,respectively.

  8. High-Loading Nickel Cobaltate Nanoparticles Anchored on Three-Dimensional N-Doped Graphene as an Efficient Bifunctional Catalyst for Lithium-Oxygen Batteries.

    Science.gov (United States)

    Gong, Hao; Xue, Hairong; Wang, Tao; Guo, Hu; Fan, Xiaoli; Song, Li; Xia, Wei; He, Jianping

    2016-07-20

    The lithium-oxygen batteries have been considered as the progressive energy storage equipment for their expected specific energy. To improve the electrochemical catalytic performance in the lithium-oxygen batteries, the NiCo2O4 nanoparticles (NCONPs) are firmly anchored onto the surface of the N-doped reduced graphene oxide (N-rGO) by the hydrothermal method followed by low-temperature calcination. Compared with the pure metallic oxide, the introduction of the rGO can create the high surface area, which give a good performance for ORR (oxygen reduction reaction), and improve the electrical conductivity between the NCONPs. The high-loading NCONPs also ensure the material to have great catalytic activity for OER (oxygen evolution reaction), and the rGO can be protected by the nanoparticles coating against the side reaction with the Li2O2. The as-synthesized NCO@N-rGO composites deliver a specific surface area (about 242.5 m(2) g(-1)), exhibiting three-dimensional (3D) porous structure, which provides a large passageway for the diffusion of the oxygen and benefits the infiltration of electrolyte and the storage of the discharge products. Owing to these special architectures features and intrinsic materials, the NCO@N-rGO cathode delivers a high specific capacity (6716 mAh g(-1)), great rate performance, and excellent cycling stability with cutoff capacity of 1000 mAh g(-1) (112 cycles) in the lithium-oxygen batteries. The improved electrochemical catalytic activity and the special 3D porous structure make the NCO@N-rGO composites be a promising candidate for Li-O2 batteries.

  9. Synthesis of cobalt-containing mesoporous catalysts using the ultrasonic-assisted "pH-adjusting" method: Importance of cobalt species in styrene oxidation

    Science.gov (United States)

    Li, Baitao; Zhu, Yanrun; Jin, Xiaojing

    2015-01-01

    Cobalt-containing SBA-15 and MCM-41 (Co-SBA-15 and Co-MCM-41) mesoporous catalysts were prepared via ultrasonic-assisted "pH-adjusting" technique in this study. Their physiochemical structures were comprehensively characterized and correlated with catalytic activity in oxidation of styrene. The nature of cobalt species depended on the type of mesoporous silica as well as pH values. The different catalytic performance between Co-SBA-15 and Co-MCM-41 catalysts originated from cobalt species. Cobalt species were homogenously incorporated into the siliceous framework of Co-SBA-15 in single-site Co(II) state, while Co3O4 particles were loaded on Co-MCM-41 catalysts. The styrene oxidation tests showed that the single-site Co(II) state was more beneficial to the catalytic oxidation of styrene. The higher styrene conversion and benzaldehyde selectivity over Co-SBA-15 catalysts were mainly attributed to single-site Co(II) state incorporated into the framework of SBA-15. The highest conversion of styrene (34.7%) with benzaldehyde selectivity of 88.2% was obtained over Co-SBA-15 catalyst prepared at pH of 7.5, at the mole ratio of 1:1 (styrene to H2O2) at 70 °C.

  10. Role of cobalt catalyst porosity in the reaction of hydrocarbon synthesis from CO and H{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Eliseev, O.L.; Tsapkina, V.; Davydov, E. [Russian Academy of Sciences, Moscow (Russian Federation). N.D. Zelinsky Inst. of Organic Chemistry; Lapidus, A.L. [Russian Academy of Sciences, Moscow (Russian Federation). N.D. Zelinsky Inst. of Organic Chemistry; United Research and Development Centre, Moscow (Russian Federation)

    2010-12-30

    Effect of surface properties on catalyst performance is challenging problem for Fischer-Tropsch synthesis. We have studied a number of cobalt-alumina and cobalt-silica-alumina catalysts prepared by wet impregnation technique. Average pore diameter of supports varied from 6 to 100 nm. All the catalysts were activated uniformly in hydrogen and tested in FT synthesis. Non-linear dependence of cobalt crystallite size on average pore diameter of support have been found. For large pore aluminas with pore diameter 40 nm and more, cobalt crystallite size in activated Co-alumina catalysts reaches 14 nm and almost independent on pore diameter. Catalytic tests demonstrate that large-pore, low surface area supports are preferable in terms of activity. Calculated turnover rates reach 2.6-3.7 x 10{sup -3} s{sup -1} at 190 C for these catalysts. On the contrary, catalysts based on narrow-pore silica-aluminas display smaller turnover rate of about 0.4-0.8 x 10{sup -3} s{sup -1}. Thus, specific activity of small cobalt crystallites, 6 nm or less, was found to be lower than that of large particles. Molar selectivity to C{sub 5+} hydrocarbons reaches maximal values of 88-90% for supports with 7-12 nm average pore diameter. These samples provide lowest CH{sub 4} selectivity, 5-7 mol.%. (orig.)

  11. Cobalt-chitosan: Magnetic and biodegradable heterogeneous catalyst for selective aerobic oxidation of alkyl arenes and alcohols

    Indian Academy of Sciences (India)

    Ahmad Shaabani; Mahmoud Borjian Boroujeni; Mona Hamidzad Sangachin

    2015-11-01

    A novel and biodegradable cobalt-chitosan as a magnetic heterogeneous catalyst was synthesized and characterized by XPS, FT-IR, EDX and TEM. Catalytic performance of cobalt- chitosan was tested by aerobic oxidation of alkyl arenes and alcohols. The results show that the catalyst exhibits excellent conversion for selective aerobic oxidation of various alkyl arenes, primary and secondary alcohols with air as the only oxidant. The catalyst can be easily separated by magnetic devices and reused for 5 runs without appreciable loss of activity.

  12. Promotion effect of cobalt-based catalyst with rare earth for the ethanol steam reforming

    Science.gov (United States)

    Chiou, Josh Y. Z.; Chen, Ya-Ping; Yu, Shen-Wei; Wang, Chen-Bin

    2013-12-01

    Catalytic performance of ethanol steam reforming (ESR) was investigated on praseodymium (Pr) modified ceria-supported cobalt oxide catalyst. The ceria-supported cobalt oxide (Ce-Co) catalyst was prepared by co-precipitation-oxidation (CPO) method, and the doped Pr (5 and 10 wt% loading) catalysts (Pr5-Ce-Co and Pr10-Ce-Co) were prepared by incipient wetness impregnation method. The reduction pretreatment under 250 and 400 °C (H250 and H400) was also studied. All samples were characterized by XRD, TPR and TEM. Catalytic performance of ESR was tested from 250 to 500 °C in a fixed-bed reactor. The doping of Pr into the ceria lattice has significantly promoted the activity and reduced the coke formation. The products distribution also can be influenced by the different reduction pretreatment. The Pr10-Ce-Co-H400 sample is a preferential ESR catalyst, where the hydrogen distribution approaches 73% at 475 °C with less amounts (< 2%) of CO and CH4.

  13. Cobalt.

    Science.gov (United States)

    Fowler, Joseph F

    2016-01-01

    Cobalt has been a recognized allergen capable of causing contact dermatitis for decades. Why, therefore, has it been named 2016 "Allergen of the Year"? Simply put, new information has come to light in the last few years regarding potential sources of exposure to this metallic substance. In addition to reviewing some background on our previous understanding of cobalt exposures, this article will highlight the recently recognized need to consider leather as a major site of cobalt and the visual cues suggesting the presence of cobalt in jewelry. In addition, a chemical spot test for cobalt now allows us to better identify its presence in suspect materials.

  14. Effects of K and Pt promoters on the performance of cobalt catalyst supported on CNTs

    Science.gov (United States)

    Zabidi, Noor Asmawati Mohd; Ali, Sardar; Subbarao, Duvvuri

    2014-10-01

    This paper presents a comparative study on the effects of incorporation of potassium (K) and platinum (Pt) as promoters on the physicochemical properties of cobalt catalyst. The catalyst was prepared by a wet impregnation method on a CNTs support. Samples were characterized using transmission electron microscopy (TEM), H2-temperature-programmed reduction (TPR) and X-ray photoelectron spectroscopy (XPS) techniques. Fischer-Tropsch Synthesis (FTS) was carried out in a fixed-bed microreactor at 543 K and 1 atm, with H2/ CO = 2v / v and space velocity, SV of 12 L/g.h for 5 hours. The K-promoted and Pt-promoted Co catalysts have different physicochemical properties and catalytic performances compared to that of the un-promoted Co catalyst. XPS analysis revealed that K and Pt promoters induced electronic modifications as exhibited by the shifts in the Co binding energies. Incorporation of 0.06 wt% K and 0.06 wt% Pt in Co/CNTs catalyst resulted in an increase in the CO conversion and C5+ selectivity and a decrease in methane selectivity. Potassium was found to be a better promoter for Co/CNTs catalyst compared to platinum.

  15. Effects of K and Pt promoters on the performance of cobalt catalyst supported on CNTs

    Energy Technology Data Exchange (ETDEWEB)

    Zabidi, Noor Asmawati Mohd, E-mail: noorasmawati-mzabidi@petronas.com.my [Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak (Malaysia); Ali, Sardar, E-mail: alikhan-635@yahoo.com [Centralized Analytical Laboratory, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak (Malaysia); Subbarao, Duvvuri, E-mail: duvvuri-subbarao@petronas.com.my [Department of Chemical Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak (Malaysia)

    2014-10-24

    This paper presents a comparative study on the effects of incorporation of potassium (K) and platinum (Pt) as promoters on the physicochemical properties of cobalt catalyst. The catalyst was prepared by a wet impregnation method on a CNTs support. Samples were characterized using transmission electron microscopy (TEM), H{sub 2}-temperature-programmed reduction (TPR) and X-ray photoelectron spectroscopy (XPS) techniques. Fischer-Tropsch Synthesis (FTS) was carried out in a fixed-bed microreactor at 543 K and 1 atm, with H{sub 2}/CO = 2v/v and space velocity, SV of 12 L/g.h for 5 hours. The K-promoted and Pt-promoted Co catalysts have different physicochemical properties and catalytic performances compared to that of the un-promoted Co catalyst. XPS analysis revealed that K and Pt promoters induced electronic modifications as exhibited by the shifts in the Co binding energies. Incorporation of 0.06 wt% K and 0.06 wt% Pt in Co/CNTs catalyst resulted in an increase in the CO conversion and C{sub 5+} selectivity and a decrease in methane selectivity. Potassium was found to be a better promoter for Co/CNTs catalyst compared to platinum.

  16. Synthesis and Characterization of Cobalt Containing Nanoparticles on Alumina A Potential Catalyst for Gas to Liquid Fuels Production

    Science.gov (United States)

    Cowen, Jonathan; Hepp, Aloysius F.

    2016-01-01

    Fisher-Tröpsch synthesis (FTS) is a century-old gas-to-liquid (GTL) technology that commonly employs cobalt (Co, on an oxide support) or iron (supported or not) species catalysts. It has been well established that the activity of the Co catalyst depends directly upon the number of surface Co atoms. The addition of promoter (mainly noble) metals has been widely utilized to increase the fraction of Co that is available for surface catalysis. Direct synthesis of Co nanoparticles is a possible alternative approach; our preliminary synthesis and characterization efforts are described. Materials were characterized by various transmission microscopies and energy dispersive spectroscopy. Tri-n-octylphosphine oxide (TOPO) and dicobalt octacarbonyl were heated under argon to a temperature of 180 deg with constant stirring for 1 hr. Quenching the reaction in toluene produced Co-containing nanoparticles with a diameter of 5 to 10 nm. Alternatively, an alumina support (SBA-200 Al2O3) was added; the reaction was further stirred and the temperature was decreased to 140 deg to reduce the rate of further growth/ripening of the nucleated Co nanoparticles. A typical size of Co-containing NPs was also found to be in the range of 5 to 10 nm. This can be contrasted with a range of 50 to 200 nm for conventionally-produced Co-Al2O3 Fischer-Tröpsch catalysts. This method shows great potential for production of highly dispersed catalysts that are either supported or unsupported.

  17. Enantioselective polymerization of epoxides using biaryl-linked bimetallic cobalt catalysts: A mechanistic study

    KAUST Repository

    Ahmed, Syud M.

    2013-12-18

    The enantioselective polymerization of propylene oxide (PO) using biaryl-linked bimetallic salen Co catalysts was investigated experimentally and theoretically. Five key aspects of this catalytic system were examined: (1) the structural features of the catalyst, (2) the regio- and stereoselectivity of the chain-growth step, (3) the probable oxidation and electronic state of Co during the polymerization, (4) the role of the cocatalyst, and (5) the mechanism of monomer enchainment. Several important insights were revealed. First, density functional theory (DFT) calculations provided detailed structural information regarding the regio- and stereoselective chain-growth step. Specifically, the absolute stereochemistry of the binaphthol linker determines the enantiomer preference in the polymerization, and the interaction between the salen ligand and the growing polymer chain is a fundamental aspect of enantioselectivity. Second, a new bimetallic catalyst with a conformationally flexible biphenol linker was synthesized and found to enantioselectively polymerize PO, though with lower enantioselectivity than the binaphthol linked catalysts. Third, DFT calculations revealed that the active form of the catalyst has two active exo anionic ligands (chloride or carboxylate) and an endo polymer alkoxide which can ring-open an adjacent cobalt-coordinated epoxide. Fourth, calculations showed that initiation is favored by an endo chloride ligand, while propagation is favored by the presence of two exo carboxylate ligands. © 2013 American Chemical Society.

  18. Nanosized cobalt-based catalyst prepared by supercritical phase condition for Fischer-Tropsch synthesis

    Institute of Scientific and Technical Information of China (English)

    Jingmiao Li; Jingchang Zhang; Runduo Zhang; Weiliang Cao

    2009-01-01

    A series of nanosized Co/Zn/Mn/K composite catalysts for Fischer-Tropsch synthesis (FTS) were prepared by supercritical fluid drying (SCFD) method and common drying (CD) method. The nanosized cobalt-based catalysts were characterized by XRD,TEM and BET techniques. Their catalytic performances were tested in a slurry-bed reactor under FTS reaction conditions. The drying and crystallization were carded out simultaneously during SCFD,therefore,the catalysts prepared by SCFD method have ideal structure and show the FTS performance superior to the others prepared by CD method. The FTS activity and selectivity were improved via adding Zn,Mn and K promoters,and less CH_4 and CO_2 as well as higher yield of C~(5+) products were achieved. The optimal performance of a 92% CO conversion and a 65% C~(5+) product yield was obtained over a catalyst with the component of Co/Zn/Mn/K = 100/50/10/7. Furthermore,the catalytic performance was studied under the conditions of liquid-phase and supercriticai phase slurry-bed,and C~(5+) product yield were 57.4% and 65.4%,respectively. In summary,better catalytic performance was obtained using the nanosized catalyst prepared by SCFD method under supercritical reaction conditions,resulting in higher conversion of CO,less CO_2 byproduct,and higher yield of C~(5+) products,

  19. Cobalt phosphide nanowall array as an efficient 3D catalyst electrode for methanol electro-oxidation

    Science.gov (United States)

    Liu, Danni; Lu, Wenbo; Wang, Kunyang; Du, Gu; Asiri, Abdullah M.; Lu, Qun; Sun, Xuping

    2016-11-01

    In this letter, we report on the use of a cobalt phosphide nanowall array on conductive carbon cloth (CoP NA/CC) as an efficient catalyst electrode for methanol electro-oxidation under alkaline conditions. This CoP NA/CC achieves a current density of 96 mA cm-2 toward 0.5 M methanol at 0.5 V (versus a saturated calomel electrode (SCE)) in 1 M KOH. Moreover, this electrode exhibits superior stability and 93% of the initial anodic current density can be retained after 1000 cyclic voltammetry cycles when re-measured in new electrolyte.

  20. Kinetics of the Bray-Liebhafsky oscillatory reaction perturbed by polymer supported cobalt catalyst

    Directory of Open Access Journals (Sweden)

    Maksimović J.P.

    2011-01-01

    Full Text Available The Bray-Liebhafsky (BL oscillatory reaction generated in the batch reactor at 62- 68 oC was perturbed by cobalt(II-nitrate, supported on the macroreticular copolymer of poly-4-vinylpyridine with divinylbenzene (Co-PVPDVB. The kinetic data was analyzed of the complex pathways of the hydrogen peroxide decomposition in the examined BL reaction. The obtained results confirm that the kinetics of the BL reaction in the presence Co-PVPDVB comes partially from the Co-catalyst and partially from the macroreticular copolymer support.

  1. Slurry phase Fischer-Tropsch synthesis: Cobalt plus a water-gas shift catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Yates, I.C.; Satterfield, C.N.

    1989-01-01

    The rate of synthesis gas consumption over a cobalt FischerTropsch catalyst was measured in a well-mixed, continuous-flow, slurry reactor at 220 to 240[degrees]C, 0.5 to 1.5 MPa, H[sub 2]/CO feed ratios of 1.5 to 3.5 and conversions of 7 to 68% of hydrogen and 11 to 73% of carbon monoxide. The inhibiting effect of carbon monoxide was determined quantitatively and a Langmuir-Hinshelwood-type equation of the following form was found to best represent the results: -R[sub H[sub 2+Co

  2. Preparation of spherical cobalt carbonate powder with high tap density

    Institute of Scientific and Technical Information of China (English)

    XIAO Jin; WANG Jian-feng; LIU Yong-dong; LI Jie; LIU Ye-xiang

    2006-01-01

    Spherical cobalt carbonate with high tap density, good crystallization and uniform particle size was prepared by controlled chemical crystal method using cobalt chloride and ammonium bicarbonate as cobalt source and precipitator. The effects of pH value and reaction time on crystallization and physical properties of cobalt carbonate were studied. The results show that the key factors influencing the preparation process of spherical cobalt carbonate with high tap density and good crystallization are how to control pH value (7.25 ± 0.05) and keep some reaction time (about 10 h). Co4O3 was prepared by sintering spherical morphology CoCO3 samples at varied temperatures. The results show that as the decomposition temperature increases, the as-obtained Co4O3 products with porous structure transform into polyhedral structure with glazed surface, and simultaneously the cobalt content and tap density increase. However, the specific surface area shows a trend of decrease.

  3. Lump Kinetic Analysis of Syngas Composition Effect on Fischer-Tropsch Synthesis over Cobalt and Cobalt-Rhenium Alumina Supported Catalyst

    Directory of Open Access Journals (Sweden)

    Dewi Tristantini

    2016-03-01

    Received: 10th November 2015; Revised: 10th February 2016; Accepted: 16th February 2016 How to Cite: Tristantini, D., Suwignjo, R.K. (2016. Lump Kinetic Analysis of Syngas Composition Effect on Fischer-Tropsch Synthesis over Cobalt and Cobalt-Rhenium Alumina Supported Catalyst. Bulletin of Chemical Reaction Engineering & Catalysis, 11 (1: 84-92. (doi:10.9767/bcrec.11.1.424.84-92 Permalink/DOI: http://dx.doi.org/10.9767/bcrec.11.1.424.84-92

  4. Cobalt ferrite nanoparticles under high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Saccone, F. D.; Ferrari, S.; Grinblat, F.; Bilovol, V. [Instituto de Tecnologías y Ciencias de la Ingeniería, “Ing. H. Fernández Long,” Av. Paseo Colón 850 (1063), Buenos Aires (Argentina); Errandonea, D., E-mail: daniel.errandonea@uv.es [Departamento de Fisica Aplicada, Institut Universitari de Ciència dels Materials, Universitat de Valencia, c/ Doctor Moliner 50, E-46100 Burjassot, Valencia (Spain); Agouram, S. [Departamento de Física Aplicada y Electromagnetismo, Universitat de València, 46100 Burjassot, Valencia (Spain)

    2015-08-21

    We report by the first time a high pressure X-ray diffraction and Raman spectroscopy study of cobalt ferrite (CoFe{sub 2}O{sub 4}) nanoparticles carried out at room temperature up to 17 GPa. In contrast with previous studies of nanoparticles, which proposed the transition pressure to be reduced from 20–27 GPa to 7.5–12.5 GPa (depending on particle size), we found that cobalt ferrite nanoparticles remain in the spinel structure up to the highest pressure covered by our experiments. In addition, we report the pressure dependence of the unit-cell parameter and Raman modes of the studied sample. We found that under quasi-hydrostatic conditions, the bulk modulus of the nanoparticles (B{sub 0} = 204 GPa) is considerably larger than the value previously reported for bulk CoFe{sub 2}O{sub 4} (B{sub 0} = 172 GPa). In addition, when the pressure medium becomes non-hydrostatic and deviatoric stresses affect the experiments, there is a noticeable decrease of the compressibility of the studied sample (B{sub 0} = 284 GPa). After decompression, the cobalt ferrite lattice parameter does not revert to its initial value, evidencing a unit cell contraction after pressure was removed. Finally, Raman spectroscopy provides information on the pressure dependence of all Raman-active modes and evidences that cation inversion is enhanced by pressure under non-hydrostatic conditions, being this effect not fully reversible.

  5. Exploration of Cocatalyst Effects on a Bimetallic Cobalt Catalyst System: Enhanced Activity and Enantioselectivity in Epoxide Polymerization

    KAUST Repository

    Widger, Peter C. B.

    2011-07-26

    Organic ionic compounds were synthesized and investigated as cocatalysts with a bimetallic cobalt complex for enantioselective epoxide polymerization. The identities of both the cation and the anion were systematically varied, and the subsequent reactivity was studied. The nature of the ionic cocatalyst dramatically impacted the rate and enantioselectivity of the catalyst system. The ionic cocatalyst [P(N=P(N(CH2)4)3) 4 +][tBuCO2 -] in combination with a bimetallic cobalt complex produced a catalyst system that exhibited the greatest activity and selectivity for a variety of monosubstituted epoxides. © 2011 American Chemical Society.

  6. Synthesis and study of carbon microspheres for use as catalyst support for cobalt

    Directory of Open Access Journals (Sweden)

    N.J. Coville

    2010-01-01

    Full Text Available The production of pure carbon spheres was achieved in the absence of a catalyst through the direct pyrolysis of two hydrocarbon sources, acetylene and ethylene. Systematic studies using acetylene as the feedstock indicated that the size distribution of the resulting carbon microspheres can be controlled by pyrolysis temperature, time and feedstock flow rate. The resulting spheres were fully characterised by transmission electron microscopy (TEM and thermogravimetric analysis. The TEM examination showed that these spheres have a ball-like and chain-like morphology, and the balls have smooth surfaces with a variation in diameter size and distribution determined by the reaction conditions. Carbon microsphere-supported cobalt catalysts were synthesised and have shown good activity in the ethylene hydrogenation reaction.

  7. Methanol Reforming over Cobalt Catalysts Prepared from Fumarate Precursors: TPD Investigation

    Directory of Open Access Journals (Sweden)

    Eftichia Papadopoulou

    2016-02-01

    Full Text Available Temperature-programmed desorption (TPD was employed to investigate adsorption characteristics of CH3OH, H2O, H2, CO2 and CO on cobalt-manganese oxide catalysts prepared through mixed Co-Mn fumarate precursors either by pyrolysis or oxidation and oxidation/reduction pretreatment. Pyrolysis temperature and Co/Mn ratio were the variable synthesis parameters. Adsorption of methanol, water and CO2 was carried out at room temperature. Adsorption of H2 and H2O was carried out at 25 and 300 °C. Adsorption of CO was carried out at 25 and 150 °C. The goal of the work was to gain insight on the observed differences in the performance of the aforementioned catalysts in methanol steam reforming. TPD results indicated that activity differences are mostly related to variation in the number density of active sites, which are able to adsorb and decompose methanol.

  8. Effect of Addition Sequence during Neutralization and Precipitation on Iron-based Catalysts for High Temperature Shift Reaction

    Institute of Scientific and Technical Information of China (English)

    Li Wei; Zhu Jianhua; Mou Zhanjun

    2007-01-01

    The preparation of the iron-based catalysts promoted by cobalt with a small amount of copper and aluminum for the high temperature shift reaction (HTS) with different sequences of adding catalyst raw materials during neutralization and precipitation was investigated. XRD,BET and particle size distribution (PSD) were used to characterize the prepared catalysts. It was found that the catalyst crystals were all γ-Fe2O3,and the intermediate of the catalyst after aging was Fe3O4. The crystallographic form of the catalyst and its intermediate was not affected by the addition sequence in the neutralization and precipitation process. The results showed that the specific surface area and the particle size of the catalysts depended on the addition sequence to the mother liquor. Cobalt with a small amount of copper and aluminum could increase the specific surface area and decrease the particle size of catalysts.

  9. Synthesis of AlN whiskers using cobalt oxide catalyst and their alignments for the improvement of thermal conductivity

    Energy Technology Data Exchange (ETDEWEB)

    Dang, Thi My Linh [Nano-Convergence Materials Center, Korea Institute of Ceramic Engineering and Technology, Soho-ro 10, Jinju-si, Kyeoungsangnam-do, 660-031 (Korea, Republic of); Electronic Materials Lab., School of Advanced Materials Science and Engineering, SungKyunKwan Univ., Suwon-si, Gyeonggi-do, 440-746 (Korea, Republic of); Yoon, Dae-Ho, E-mail: dhyoon@skku.edu [Electronic Materials Lab., School of Advanced Materials Science and Engineering, SungKyunKwan Univ., Suwon-si, Gyeonggi-do, 440-746 (Korea, Republic of); Kim, Chang-Yeoul, E-mail: cykim15@kicet.re.kr [Nano-Convergence Materials Center, Korea Institute of Ceramic Engineering and Technology, Soho-ro 10, Jinju-si, Kyeoungsangnam-do, 660-031 (Korea, Republic of)

    2016-08-15

    We synthesized one dimensional (1-D) AlN whiskers by using the cobalt oxide catalyst-assisted carbothermal reduction method. The formation of AlN whiskers is investigated by the thermo-gravimetric and differential thermal analysis, Fourier-transformed infrared spectra, X-ray diffraction patterns, scanning electron microscopy and transmission electron microscopy observations. It was found that Co{sub 3}O{sub 4} droplets on the surfaces of Al{sub 2}O{sub 3} acted as a catalyst for the growth of AlN whiskers by vapor-liquid-solid (VLS) mechanism. In addition, AlN whiskers/PVA composites aligned in parallel with the heat flow direction showed an excellent thermal conductivity about three times higher than those of the perpendicularly aligned whisker composites. - Highlights: • AlN whiskers with high aspect ratio were synthesized from Al{sub 2}O{sub 3}. • Co{sub 3}O{sub 4} droplets on the surface of Al{sub 2}O{sub 3} acts as a catalyst for the whisker growth. • AlN whiskers are aligned within PVA in perpendicular and parallel with heat flow. • AlN whisker/PVA composite in perpendicular alignment shows a excellent heat conductivity.

  10. Synthesis of cobalt-containing mesoporous catalysts using the ultrasonic-assisted “pH-adjusting” method: Importance of cobalt species in styrene oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Li, Baitao, E-mail: btli@scut.edu.cn; Zhu, Yanrun; Jin, Xiaojing

    2015-01-15

    Cobalt-containing SBA-15 and MCM-41 (Co-SBA-15 and Co-MCM-41) mesoporous catalysts were prepared via ultrasonic-assisted “pH-adjusting” technique in this study. Their physiochemical structures were comprehensively characterized and correlated with catalytic activity in oxidation of styrene. The nature of cobalt species depended on the type of mesoporous silica as well as pH values. The different catalytic performance between Co-SBA-15 and Co-MCM-41 catalysts originated from cobalt species. Cobalt species were homogenously incorporated into the siliceous framework of Co-SBA-15 in single-site Co(II) state, while Co{sub 3}O{sub 4} particles were loaded on Co-MCM-41 catalysts. The styrene oxidation tests showed that the single-site Co(II) state was more beneficial to the catalytic oxidation of styrene. The higher styrene conversion and benzaldehyde selectivity over Co-SBA-15 catalysts were mainly attributed to single-site Co(II) state incorporated into the framework of SBA-15. The highest conversion of styrene (34.7%) with benzaldehyde selectivity of 88.2% was obtained over Co-SBA-15 catalyst prepared at pH of 7.5, at the mole ratio of 1:1 (styrene to H{sub 2}O{sub 2}) at 70 °C. - Graphical abstract: Cobalt-containing mesoporous silica catalysts were developed via ultrasonic-assisted “pH-adjusting” technique. Compared with Co{sub 3}O{sub 4} in Co-MCM-41, the single-site Co(II) state in Co-SBA-15 was more efficient for the styrene oxidation. - Highlights: • Fast and cost-effective ultrasonic technique for preparing mesoporous materials. • Incorporation of Co via ultrasonic irradiation and “pH-adjusting”. • Physicochemical comparison between Co-SBA-15 and Co-MCM-41. • Correlation of styrene oxidation activity and catalyst structural property.

  11. New Cobalt-Mediated Radical Polymerization (CMRP) of Methyl Methacrylate Initiated by Two Single-Component Dinuclear β-Diketone Cobalt (II) Catalysts

    Science.gov (United States)

    Bao, Feng; Feng, Lingling; Gao, Jie; Tan, Zhifang; Xing, Bin; Ma, Rui; Yan, Chunjie

    2010-01-01

    Two dinuclear cobalt complexes based on bis-diketonate ligands (ligand 1: 3,3′-(1,3-phenylene)bis(1-phenylpropane-1,3-dione); ligand 2: 3,3′-(1,4-phenylene)bis(1-phenylpropane-1,3-dione)) were successfully synthesized. The two neutral catalysts all showed satisfactory activities in the cobalt-mediated radical polymerization (CMRP) of methyl methacrylate (MMA) with the common initiator of azodiisobutyronitrile (AIBN). The resulting polymerizations have all of the characteristics of a living polymerization and displayed linear semilogarithmic kinetic plots, a linear correlation between the number-average molecular weight and the monomer conversion, and low polydispersities. Mono- or dicomponent low polydispersity polymers could be obtained by using the two dinuclear catalysts under proper reaction conditions. All these improvements facilitate the implementation of the acrylate CMRP and open the door to the scale-up of the syntheses and applications of the multicomponent low polydispersity polymers. PMID:21049027

  12. Ultrafine cobalt nanoparticles supported on reduced graphene oxide: Efficient catalyst for fast reduction of hexavalent chromium at room temperature

    Science.gov (United States)

    Xu, Tingting; Xue, Jinjuan; Zhang, Xiaolei; He, Guangyu; Chen, Haiqun

    2017-04-01

    A novel composite ultrafine cobalt nanoparticles-reduced graphene oxide (Co-RGO) was firstly synthesized through a modified one-step solvothermal method with Co(OH)2 as the precursor. The prepared low-cost Co-RGO composite exhibited excellent catalytic activity for the reduction of highly toxic Cr(VI) to nontoxic Cr(III) at room temperature when formic acid (HCOOH) was employed as the reductant, and its catalytic performance was even comparable with that of noble metal-based catalysts in the same reduction reaction. Moreover, Co-RGO composite could be readily recovered under an external magnetic field and efficiently participated in recycled reaction for Cr(VI) reduction.

  13. Atomic layer deposited cobalt oxide: An efficient catalyst for NaBH{sub 4} hydrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Nandi, Dip K.; Manna, Joydev; Dhara, Arpan; Sharma, Pratibha; Sarkar, Shaibal K., E-mail: shaibal.sarkar@iitb.ac.in [Department of Energy Science and Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076 (India)

    2016-01-15

    Thin films of cobalt oxide are deposited by atomic layer deposition using dicobalt octacarbonyl [Co{sub 2}(CO){sub 8}] and ozone (O{sub 3}) at 50 °C on microscope glass substrates and polished Si(111) wafers. Self-saturated growth mechanism is verified by x-ray reflectivity measurements. As-deposited films consist of both the crystalline phases; CoO and Co{sub 3}O{sub 4} that gets converted to pure cubic-Co{sub 3}O{sub 4} phase upon annealing at 500 °C under ambient condition. Elemental composition and uniformity of the films is examined by x-ray photoelectron spectroscopy and secondary ion-mass spectroscopy. Both as-deposited and the annealed films have been successfully tested as a catalyst for hydrogen evolution from sodium borohydride hydrolysis. The activation energy of the hydrolysis reaction in the presence of the as-grown catalyst is found to be ca. 38 kJ mol{sup −1}. Further implementation of multiwalled carbon nanotube, as a scaffold layer, improves the hydrogen generation rate by providing higher surface area of the deposited catalyst.

  14. Transition metal complexes on mesoporous silica nanoparticles as highly efficient catalysts for epoxidation of styrene.

    Science.gov (United States)

    Tang, Duihai; Zhang, Wenting; Zhang, Yinling; Qiao, Zhen-An; Liu, Yunling; Huo, Qisheng

    2011-04-01

    We have synthesized a series of catalysts for epoxidation of styrene by immobilizing salicylaldimine transition metal (copper, manganese, and cobalt) complexes on mesoporous silica nanoparticles (MSNs) with diameters of 120-150 nm. The prepared catalysts are characterized by infrared (IR) spectra, thermal gravimetric analyses (TGA), inductively coupled plasma (ICP), CHN elemental analysis, nitrogen adsorption-desorption, scanning electron microscopy (SEM), and transmission electron microscopy (TEM). These catalysts possess excellent catalytic efficiency in epoxidation of styrene when using tert-BuOOH (TBHP) as oxidant. Styrene shows a high conversion (∼99%) as well as epoxide selectivity (∼80%) over Cu-MSN catalysts, and high conversion (∼99%) and moderate epoxide selectivity (∼65%) over Mn-MSN and Co-MSN catalysts. The recycling experiment results indicate that these catalysts maintain catalytic activity even after being used for three cycles. Our results indicate that MSNs can serve as better catalyst supports.

  15. Nickel and cobalt as active phase on supported zirconia catalysts for bio-ethanol reforming: Influence of the reaction mechanism on catalysts performance

    Energy Technology Data Exchange (ETDEWEB)

    Padilla, R.; Rodriguez, L.; Serrano, A.; Munoz, G. [Instituto de Catalisis y Petroleoquimica (CSIC), C/ Marie Curie 2, Campus Cantoblanco, 28049 Madrid (Spain); Benito, M.; Daza, L. [Instituto de Catalisis y Petroleoquimica (CSIC), C/ Marie Curie 2, Campus Cantoblanco, 28049 Madrid (Spain); Centro de Investigaciones Energeticas Medioambientales y Tecnologicas (CIEMAT), Av. Complutense 22, 28040 Madrid (Spain)

    2010-09-15

    Steam reforming of ethanol for hydrogen production was investigated on Co/ZrO{sub 2} and Ni/ZrO{sub 2} catalysts promoted with lanthana. Catalysts were prepared by impregnation method and characterized by XRD and TPR. TPD-R experiments were also carried out to determine the role of active phase on reaction mechanism. The results suggest that adsorbed ethanol is dehydrogenated to acetaldehyde producing hydrogen. Then, the adsorbed acetaldehyde may evolve by different mechanisms, depending on the nature of active phase. On one hand, in cobalt-based catalyst, acetaldehyde could be reformed directly. By acetaldehyde thermal decomposition, methyl and formaldehyde groups are obtained. By coupling of methyl groups, ethane can be obtained. At medium temperature range, WGS reaction contribution is noteworthy. On the other hand, in nickel-based catalyst, acetone was detected in a higher temperature range as the main intermediate reaction product, which indicates that acetaldehyde is transformed into acetone by decarbonylation of acetaldehyde leading to H{sub 2} and CO{sub 2} formation. In addition, acetone can also be reformed to give both H{sub 2} and CO{sub 2}. Contrary to cobalt-based catalyst, ethylene was detected at intermediate range temperature which suggests that it was formed by ethanol dehydration reaction. Ethylene polymerization could easily explain coke formation, which must be avoided. Steam reforming reaction was studied at S/C ratio of 4.84 and 700 C, to verify the activity, selectivity and stability of the catalysts. Ethanol conversion reached 100% and catalysts were very stable for almost 50 h on stream. No significant differences were detected in both catalysts. Nevertheless, TPO experiments performed on used samples demonstrate a higher carbon production on nickel based catalyst that can be correlated to ethanol dehydration contribution on it reaction pathway. (author)

  16. Hydrometallurgical route to recover molybdenum, nickel, cobalt and aluminum from spent hydrotreating catalysts in sulphuric acid medium.

    Science.gov (United States)

    Valverde, Ivam Macedo; Paulino, Jéssica Frontino; Afonso, Julio Carlos

    2008-12-30

    This work describes a hydrometallurgical route for processing spent commercial catalysts (CoMo and NiMo/Al2O3), for recovering the active phase and support components. They were initially pre-oxidized (500 degrees C, 5h) in order to eliminate coke and other volatile species present. Pre-oxidized catalysts were dissolved in H2SO4 (9molL-1) at approximately 90 degrees C, and the remaining residues separated from the solution. Molybdenum was recovered by solvent extraction using tertiary amines. Alamine 304 presented the best performance at pH around 1.8. After this step, cobalt (or nickel) was separated by adding aqueous ammonium oxalate in the above pH. Before aluminum recovery, by adding NaOH to the acid solution, phosphorus (H2PO4-) was removed by passing the liquid through a strong anion exchange column. Final wastes occur as neutral and colorless sodium sulphate solutions and the insoluble solid in the acid leachant. The hydrometallurgical route presented in this work generates less final aqueous wastes, as it is not necessary to use alkaline medium during the metal recovery steps. The metals were isolated in very high yields (>98wt.%).

  17. Surface and catalytic properties of potassium-modified cobalt molybdenum catalysts for ammonia synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Moszynski, Dariusz, E-mail: dmoszynski@ps.pl [West Pomeranian University of Technology, Szczecin, Pulaskiego 10, 70-322 Szczecin (Poland); Jedrzejewski, Roman; Ziebro, Janusz; Arabczyk, Walerian [West Pomeranian University of Technology, Szczecin, Pulaskiego 10, 70-322 Szczecin (Poland)

    2010-06-15

    The influence of potassium addition on the structural, catalytic and surface properties of the cobalt molybdenum nitride was studied. The measurements of the catalytic activity and the specific surface area as well as the phase analysis with the use of X-ray diffraction were performed. The mixtures of Co{sub 3}Mo{sub 3}N and Co{sub 2}Mo{sub 3}N phases have been found to constitute the samples. The concentration ratio between the Co{sub 2}Mo{sub 3}N and Co{sub 3}Mo{sub 3}N phases is notably influenced by potassium admixture. The specific surface area of the catalysts changes also with the Co{sub 2}Mo{sub 3}N/Co{sub 3}Mo{sub 3}N ratio. The catalytic activity of the catalysts in the ammonia synthesis carried out at 400 deg. C and under the pressure of 10 MPa can be increased up to 2.4 times by the addition of potassium compounds. There is the optimal range of potassium concentration between 0.8 and 1.2 wt.%.

  18. Facile heterogenization of a cobalt catalyst via graphene adsorption: robust and versatile dihydrogen production systems.

    Science.gov (United States)

    Eady, Shawn C; Peczonczyk, Sabrina L; Maldonado, Stephen; Lehnert, Nicolai

    2014-07-28

    A heterogeneous dihydrogen (H2) production system has been attained by simply soaking electrodes made from electro-deposited graphene on FTO plated glass in solutions of a cobalt bis(dithiolate) compound. The resulting electrodes are active in weakly acidic aqueous solutions (pH > 3), have relatively low overpotentials (0.37 V versus platinum), show high catalytic rates (TOF > 1000 s(-1)), and are resistant to degradation by dioxygen.

  19. Electrochemical Water Oxidation of Ultrathin Cobalt Oxide-Based Catalyst Supported onto Aligned ZnO Nanorods.

    Science.gov (United States)

    Koteeswara Reddy, Nandanapalli; Winkler, Stefanie; Koch, Norbert; Pinna, Nicola

    2016-02-10

    A stable and durable electrochemical water oxidation catalyst based on CoO functionalized ZnO nanorods (NRs) is introduced. ZnO NRs were grown on fluorine-doped tin oxide (FTO) by using a low-temperature chemical solution method and were functionalized with cobalt oxide by electrochemical deposition. The electrochemical water oxidation performance of cobalt oxide functionalized ZnO NRs was studied under alkaline (pH = 10) conditions. From these studies, it is noticed that cobalt oxide functionalized ZnO NRs show electrocatalytic activity toward water oxidation with current density on the order of several mA cm(-2). Further, 30 s CoO deposited ZnO nanorods exhibited excellent galvanostatic stability at a current density of 1 mA cm(-2) and potentiostatic stability at 1.25 V vs Ag/AgCl over an electrolysis period of 1 h.

  20. Cobalt Biogeochemistry in the South Atlantic: A Full-Depth Zonal Ocean Section of Total Dissolved Cobalt, and Development of a High Throughput Cobalt ICP-MS Method

    Science.gov (United States)

    Noble, A. E.; Saito, M. A.; Goepfert, T. J.

    2008-12-01

    This study presents the first high-resolution full-depth zonal section of total dissolved cobalt from a recent cruise transecting the South Atlantic Ocean along approximately 11S. This section demonstrates that current electrochemical analytical techniques are capable of producing the high precision and high resolution datasets for total dissolved cobalt expected to be generated as a part of the international GEOTRACES Program. The micronutritive role of cobalt may affect community structure in different regions of the oceans, a compelling reason to include cobalt in the trace element analyses planned for the GEOTRACES Program. This cobalt section reveals an advective source of cobalt from the African coast near Namibia, which we propose to be due to the Benguela Current interacting with reducing shelf sediments. These high concentrations of cobalt were also observed within the oxygen minimum zone that extends across much of the South Atlantic basin in this section, and are likely indicative of redox cycling of cobalt in the water column. Nutrient-like vertical structure of cobalt was observed in the surface waters across the majority of the basin due to biological utilization, and the expected hybrid-type trend is observed at depth, with scavenging of cobalt below the nutricline. Deepwater concentrations of cobalt were around 50pM across the basin below 3000m. Analysis of the shelf-life of refrigerated filtered samples stored without acidification for electrochemical cobalt analysis demonstrated that those samples which were collected specifically within oxygen minimum zones may underestimate cobalt if not analyzed within a few weeks of collection. These results motivate our on-going development of a method to measure cobalt in acidified samples via inductively coupled plasma mass spectrometry (ICP-MS). The benefit of this technique would be twofold: acidification would extend the shelf-life of the samples significantly, and samples would be preserved identically

  1. Cobalt and KNO{sub 3} supported on alumina catalysts for diesel soot combustion

    Energy Technology Data Exchange (ETDEWEB)

    Grzona, Claudia B. [25 de mayo 284, INTEQUI-CONICET-UNSL, Facultad de Ingenieria y Ciencias Economico-Sociales, Villa Mercedes, 5730 (Argentina); Lick, Ileana D. [Calle 47 No 257, CINDECA (CCT-LaPlata-CONICET-UNLP), Departamento de Quimica, Facultad de Ciencias Exactas, La Plata, 1900 (Argentina); Castellon, Enrique Rodriguez [Departamento de Quimica Inorganica, Cristalografia y Mineralogia, Facultad de Ciencias, Universidad de Malaga, Campus de Teatinos, Malaga, 29071 (Spain); Ponzi, Marta I. [25 de mayo 284, INTEQUI-CONICET-UNSL, Facultad de Ingenieria y Ciencias Economico-Sociales, Villa Mercedes, 5730 (Argentina); Ponzi, Esther N., E-mail: eponzi@quimica.unlp.edu.ar [Calle 47 No 257, CINDECA (CCT-LaPlata-CONICET-UNLP), Departamento de Quimica, Facultad de Ciencias Exactas, La Plata, 1900 (Argentina)

    2010-10-01

    The catalytic combustion of diesel soot was studied in the presence of fresh and aged catalysts: Co/Al{sub 2}O{sub 3}, KNO{sub 3}/Al{sub 2}O{sub 3} and Co/KNO{sub 3}/Al{sub 2}O{sub 3}. The catalysts were prepared by impregnation using nitrate solutions. The catalysts were characterized by X-ray diffraction, thermal programmed reduction, vibrational spectroscopy and X-ray photoelectron spectroscopy. Fresh and aged catalysts present high activity in presence of O{sub 2} and O{sub 2}/NO. The values of the combustion temperature decrease more than 200 deg. C with respect to that observed in the process without catalysis. The activity is associated with the presence of KNO{sub 3} and the role of this salt can be attributed to the contribution of NO{sub 3}{sup -}/NO{sub 2}{sup -} redox cycle.

  2. Cobalt-based catalysts for the hydrolysis of NaBH4 and NH3BH3.

    Science.gov (United States)

    Demirci, Umit B; Miele, Philippe

    2014-04-21

    Cobalt has been widely used as the main component of catalysts for the hydrolysis of sodium borohydride NaBH4 and, to a lesser extent, for the hydrolysis of ammonia borane NH3BH3. Though active in these reactions, the cobalt-based catalyst generally suffers from rapid deactivation. As emphasized in a perspective paper finalized in 2009 [Phys. Chem. Chem. Phys., 2010, 12, 14651], the nature of the catalytically active phase and the reasons for its deactivation are rather unknown. However, since 2010, significant advances have been reported. Therefore, after 4 years of fruitful research, the present perspective paper aims to (i) answer the questions asked in our previous contribution, (ii) give an overview of the new insights, and (iii) identify the nature of the catalytically active phase of cobalt. The literature of the period 2010-2013 has been exhaustively surveyed while paying attention to the characterization results and problems, the experimental conditions, and the authors' interpretations. Our main observation is that the research groups involved in the field have shown scientific curiosity and dynamism, and demonstrated ingenuity to circumvent the characterization difficulties. Thus, each group has contributed to highlight the nature of the catalytically active phase of cobalt as well as the reasons for its deactivation.

  3. Regenerable cobalt oxide loaded magnetosphere catalyst from fly ash for mercury removal in coal combustion flue gas.

    Science.gov (United States)

    Yang, Jianping; Zhao, Yongchun; Zhang, Junying; Zheng, Chuguang

    2014-12-16

    To remove Hg(0) in coal combustion flue gas and eliminate secondary mercury pollution of the spent catalyst, a new regenerable magnetic catalyst based on cobalt oxide loaded magnetospheres from fly ash (Co-MF) was developed. The catalyst, with an optimal loading of 5.8% cobalt species, attained approximately 95% Hg(0) removal efficiency at 150 °C under simulated flue gas atmosphere. O2 could enhance the Hg(0) removal activity of magnetospheres catalyst via the Mars-Maessen mechanism. SO2 displayed an inhibitive effect on Hg(0) removal capacity. NO with lower concentration could promote the Hg(0) removal efficiency. However, when increasing the NO concentration to 300 ppm, a slightly inhibitive effect of NO was observed. In the presence of 10 ppm of HCl, greater than 95.5% Hg(0) removal efficiency was attained, which was attributed to the formation of active chlorine species on the surface. H2O presented a seriously inhibitive effect on Hg(0) removal efficiency. Repeated oxidation-regeneration cycles demonstrated that the spent Co-MF catalyst could be regenerated effectively via thermally treated at 400 °C for 2 h.

  4. Metallic cobalt nanoparticles imbedded into ordered mesoporous carbon: A non-precious metal catalyst with excellent hydrogenation performance.

    Science.gov (United States)

    Liu, Jiangyong; Wang, Zihao; Yan, Xiaodong; Jian, Panming

    2017-11-01

    Ordered mesoporous carbon (OMC)-metal composites have attracted great attention owing to their combination of high surface area, controlled pore size distribution and physicochemical properties of metals. Herein, we report the cobalt nanoparticles/ordered mesoporous carbon (CoNPs@OMC) composite prepared by a one-step carbonization/reduction process assisted by a hydrothermal pre-reaction. The CoNPs@OMC composite presents a high specific surface area of 544m(2)g(-1), and the CoNPs are uniformly imbedded or confined in the ordered mesoporous carbon matrix. When used as a non-precious metal-containing catalyst for hydrogenation reduction of p-nitrophenol and nitrobenzene, it demonstrates high efficiency and good cycling stability. Furthermore, the CoNPs@OMC composite can be directly used to catalyze the Fischer-Tropsch synthesis for the high-pressure CO hydrogenation, and presents a good catalytic selectivity for C5(+) hydrocarbons. The excellent catalytic performance of the CoNPs@OMC composite can be ascribed to synergistic effect between the high specific surface area, mesoporous structure and well-imbedded CoNPs in the carbon matrix. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Low-Temperature CO Oxidation over a Ternary Oxide Catalyst with High Resistance to Hydrocarbon Inhibition.

    Science.gov (United States)

    Binder, Andrew J; Toops, Todd J; Unocic, Raymond R; Parks, James E; Dai, Sheng

    2015-11-02

    Platinum group metal (PGM) catalysts are the current standard for control of pollutants in automotive exhaust streams. Aside from their high cost, PGM catalysts struggle with CO oxidation at low temperatures (oxide catalyst composed of copper oxide, cobalt oxide, and ceria (dubbed CCC) that outperforms synthesized and commercial PGM catalysts for CO oxidation in simulated exhaust streams while showing no signs of inhibition by propene. Diffuse reflectance IR (DRIFTS) and light-off data both indicate low interaction between propene and the CO oxidation active site on this catalyst, and a separation of adsorption sites is proposed as the cause of this inhibition resistance. This catalyst shows great potential as a low-cost component for low temperature exhaust streams that are expected to be a characteristic of future automotive systems. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Slurry phase Fischer-Tropsch synthesis: Cobalt plus a water-gas shift catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Chanenchuk, C.A.; Yates, I.C.; Satterfield, C.N.

    1990-01-01

    A Co/MgO/SiO[sub 2] Fischer-Tropsch catalyst was operated simultaneously with a Cu/ZnO/Al[sub 2]O[sub 3] water-gas-shift catalyst in a slurry reactor for over 400 hours. The process conditions were held constant at a temperature of 240[degrees]C, a pressure of 0.79 MPa, and a 1.1 H[sub 2]/CO feed of 0.065 Nl/min-g.cat. The Fischer-Tropsch activity remained constant at the level predicted by the operation of the Co/MgO/SiO[sub 2] catalyst alone. The water-gas-shift reaction was near equilibrium. The hydrocarbon product distribution of the combined catalyst system was stable and matched that of the CO/MgO/SiO[sub 2] operating alone under similar conditions. The combined catalyst system exhibited a high selectivity to n-alkanes. Neither catalysts's operation appeared to have a detrimental effect on that of the other, showing promise for future option.

  7. Purification Influence of Synthesis Gas Derived from Methanol Cracking on the Performance of Cobalt Catalyst in Fischer-Tropsch Synthesis

    Institute of Scientific and Technical Information of China (English)

    Wei Zhou; Shengying Liu; Yulan Wang; Kegong Fang; Jiangang Chen; Yuhan Sun

    2005-01-01

    Synthesis gas derived from methanol cracking (SGMC) was applied as simulating feedstock of Fischer-Tropsch synthesis (FTS) in laboratory. With MS and GC detector, a trifle of sulfur compounds,a small amount of oxygenates including H2O, CH3OH, DME and CO2 as well as a few of low carbon alkanes were found in the SGMC. After purification, the sulfur compounds, H2O, CH3OH and DME could be eliminated efficiently from the SGMC while CO2 and the low carbon alkanes were partly removed.When the unpurified SGMC, the desufurized SGMC and the totally purified SGMC were sequentially applied in cobalt-based FTS, the catalytic performance of Co/ZrO2/SiO2 catalyst was gradually improved corresponding to the degree of purification. The untreated SGMC led to the serious deactivation of the cobalt catalyst, the partially treated SGMC slowed down the deactivation rate and the totally purified SGMC resulted in little deactivation of the catalyst, which was similar to what the pure synthesis gas(the mixture of pure H2 and CO) did. The results indicated that the SGMC should be purified and the purification course used in this paper was effective for the SGMC. Furthermore, the totally purified SGMC could substitute for the pure synthesis gas in cobalt FTS.

  8. Single-Site Cobalt Catalysts at New Zr 82 -O) 82 -OH) 4 Metal-Organic Framework Nodes for Highly Active Hydrogenation of Alkenes, Imines, Carbonyls, and Heterocycles

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Pengfei; Manna, Kuntal; Lin, Zekai; Urban, Ania; Greene, Francis X.; Lan, Guangxu; Lin, Wenbin

    2016-09-21

    We report here the synthesis of robust and porous metal–organic frameworks (MOFs), M-MTBC (M = Zr or Hf), constructed from the tetrahedral linker methane-tetrakis(p-biphenylcarboxylate) (MTBC) and two types of secondary building units (SBUs): cubic M82-O)82-OH)4 and octahedral M6(μ3-O)43-OH)4. While the M6-SBU is isostructural with the 12-connected octahedral SBUs of UiO-type MOFs, the M8-SBU is composed of eight MIV ions in a cubic fashion linked by eight μ2-oxo and four μ2-OH groups. The metalation of Zr-MTBC SBUs with CoCl2, followed by treatment with NaBEt3H, afforded highly active and reusable solid Zr-MTBC-CoH catalysts for the hydrogenation of alkenes, imines, carbonyls, and heterocycles. Zr-MTBC-CoH was impressively tolerant of a range of functional groups and displayed high activity in the hydrogenation of tri- and tetra-substituted alkenes with TON > 8000 for the hydrogenation of 2,3-dimethyl-2-butene. Our structural and spectroscopic studies show that site isolation of and open environments around the cobalt-hydride catalytic species at Zr8-SBUs are responsible for high catalytic activity in the hydrogenation of a wide range of challenging substrates. MOFs thus provide a novel platform for discovering and studying new single-site base-metal solid catalysts with enormous potential for sustainable chemical synthesis.

  9. Performance of nitrogen-containing macroporous carbon supported cobalt catalyst synthesized through in-situ construction of catalytic sites for oxygen reduction reaction

    Science.gov (United States)

    He, Fan; Yang, Jun; Li, Rui; Liu, Bin Hong; Li, Zhou Peng

    2015-01-01

    A novel method of in-situ catalytic site (CoNx) construction in macroporous carbon (MPC) is developed. The nitrogen-containing MPC-supported cobalt (Co/N-MPC) catalysts are synthesized via the pyrolysis of a mixture of glucose-urea resin, nano-CaCO3, and cobalt nitrate. The nano-CaCO3 functions as a template to fabricate MPC that provides high electric conductivity and large specific surface area. The catalytic CoNx sites are simultaneously created during the formation of N-MPC. The use of glucose-urea resin as the carbon and nitrogen sources significantly increases the nitrogen content as high as 8.8 at% in the MPC. The synthesized Co/N-MPC demonstrates superb catalytic activity toward oxygen reduction reaction. The direct borohydride fuel cell using the Co/N-MPC shows a power density as high as 170 mW cm-2 which is much higher than the cell using 10 wt.% Pt/C but slightly lower than the cell using 20 wt.% Pt/C as the cathode catalyst at ambient conditions.

  10. Catalytic Combustion of Ethyl Acetate over Nanostructure Cobalt Supported ZSM-5 Zeolite Catalysts

    Institute of Scientific and Technical Information of China (English)

    NIAEI,Aligholi; SALARI,Dariush; HOSSEINI,Seyed Ali; KHATAMIAN,Masumeh; JODAEL,Azadeh

    2009-01-01

    Gas phase catalytic combustion of ethyl acetate,as one of volatile organic compounds(VOC),was studied on nanostructure ZSM-5.HZSM-5 and Co-ZSM-5 with different cobalt loadings. Nanostructure of ZSM-5 Was deter-mined by XRD,SEM and TEM. Catalytic studies were carried out under atmospheric pressure in a fixed bed reactor.Results showed that the Co-ZSM-5 catalysts had better activity than others and at temperatures below 350℃.amount of Co loading was mole effective on catalytic activity.The order of conversion of ethyl acetate over differ-ent Co loading is as follows:Co-ZSM-5(0.75 wt%)

  11. Nanostructured Cobalt Oxide Clusters in Mesoporous Silica as Efficient Oxygen-Evolving Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Jiao, Feng; Frei, Heinz

    2009-01-01

    The development of integrated artificial photosynthetic systems for the direct conversion of carbon dioxide and water to fuel depends on the availability of efficient and robust catalysts for the chemical transformations. Catalysts need to exhibit turnover frequency (TOF) and density (hence size) commensurate with the solar flux at ground level (1000Wm2, airmass (AM) 1.5)[1]to avoid wasting of incidentsolar photons. For example, a catalyst with a TOF of 100 s1 requires a density of one catalytic site per square nanometer. Catalysts with lower rates or taking up a larger space will require a high-surface-area, nanostructured support that affords tens to hundreds of catalytic sites per square nanometer. Furthermore, catalysts need to operate close to the thermodynamic potential of the redox reaction so that amaximum fraction of the solar photon energy is converted to chemical energy. Stability considerations favor all-inorganic oxide materials, as does avoidance of harsh reaction conditions of pH value or temperature.

  12. Nanostructured Cobalt Oxide Clusters in Mesoporous Silica as Efficient Oxygen-Evolving Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Jiao, Feng; Frei, Heinz

    2009-01-01

    The development of integrated artificial photosynthetic systems for the direct conversion of carbon dioxide and water to fuel depends on the availability of efficient and robust catalysts for the chemical transformations. Catalysts need to exhibit turnover frequency (TOF) and density (hence size) commensurate with the solar flux at ground level (1000Wm2, airmass (AM) 1.5)[1]to avoid wasting of incidentsolar photons. For example, a catalyst with a TOF of 100 s1 requires a density of one catalytic site per square nanometer. Catalysts with lower rates or taking up a larger space will require a high-surface-area, nanostructured support that affords tens to hundreds of catalytic sites per square nanometer. Furthermore, catalysts need to operate close to the thermodynamic potential of the redox reaction so that amaximum fraction of the solar photon energy is converted to chemical energy. Stability considerations favor all-inorganic oxide materials, as does avoidance of harsh reaction conditions of pH value or temperature.

  13. Suppression of methane formation during Fisher-Tropsch synthesis using manganese-cobalt oxide supported on H-5A zeolite as a catalyst

    Institute of Scientific and Technical Information of China (English)

    Syed Tajammul Hussain; Muhammad Mazhar; Muhammad Arif Nadeem

    2009-01-01

    In Fischer-Tropsch synthesis reaction, methane formation is one of the side reactions which must be suppressed in order to get better catalytic selectivity for light olefins. In the present study, we have modified cobalt based Fischer-Tropsch catalyst and developed a process to minimize methane production, consequently to produce maximum yield of light olefins. Manganese-cobalt oxide supported on H-5A zeolite catalyst was synthesized using modified H-5A zeolite, to increase its surface acid sites. Increased acidity of zeolite plays a major part in the suppression of methane formation during the Fischer-Tropsch reaction. The modified zeolite results in the electronic modification of catalyst surface by creating new active catalytic sites. The results are compared with other supported catalysts along with unmodified zeolite. Appreciable reduction in methane formation is achieved on modified zeolite supported catalyst in comparison with unsupported catalyst.

  14. Exploration of cobalt phosphate as a potential catalyst for rechargeable aqueous sodium-air battery

    Science.gov (United States)

    Senthilkumar, Baskar; Khan, Ziyauddin; Park, Sangmin; Seo, Inseok; Ko, Hyunhyub; Kim, Youngsik

    2016-04-01

    Bifunctional catalysts are prominent to attain high capacity, maximum energy efficiency and long cycle-life for aqueous rechargeable Na-air batteries. In this work, we report the synthesis of bi-functional noble metal free, Co3(PO4)2 nanostructures by facile precipitation technique and evaluated its electrocatalytic activity. Co3(PO4)2 nanostructure was investigated as a potential electrocatalyst for rechargeable aqueous Na-air battery for the first time. The synthesized Co3(PO4)2 grain-like nanostructures showed better oxygen evolution activity compared to Pt/C catalyst. The fabricated Na-air battery with the Co3(PO4)2 catalyst as air-cathode delivered low overpotential and its round trip energy efficiency reached up to 83%. The Na-air battery exhibited stable cycle performance up to 50 cycles.

  15. Fischer-Tropsch Cobalt Catalyst Improvements with the Presence of TiO2, La2O3, and ZrO2 on an Alumina Support

    Science.gov (United States)

    Klettlinger, Jennifer Lindsey Suder

    2012-01-01

    The objective of this study was to evaluate the effect of titanium oxide, lanthanum oxide, and zirconium oxide on alumina supported cobalt catalysts. The hypothesis was that the presence of lanthanum oxide, titanium oxide, and zirconium oxide would reduce the interaction between cobalt and the alumina support. This was of interest because an optimized weakened interaction could lead to the most advantageous cobalt dispersion, particle size, and reducibility. The presence of these oxides on the support were investigated using a wide range of characterization techniques such as SEM, nitrogen adsorption, x-ray diffraction (XRD), temperature programmed reduction (TPR), temperature programmed reduction after reduction (TPR-AR), and hydrogen chemisorptions/pulse reoxidation. Results indicated that both La2O3 and TiO2 doped supports facilitated the reduction of cobalt oxide species in reference to pure alumina supported cobalt catalysts, however further investigation is needed to determine the effect of ZrO2 on the reduction profile. Results showed an increased corrected cluster size for all three doped supported catalysts in comparison to their reference catalysts. The increase in reduction and an increase in the cluster size led to the conclusion that the support-metal interaction weakened by the addition of TiO2 and La2O3. It is also likely that the interaction decreased upon presence of ZrO2 on the alumina, but further research is necessary. Preliminary results have indicated that the alumina-supported catalysts with titanium oxide and lanthanum oxide present are of interest because of the weakened cobalt support interaction. These catalysts showed an increased extent of reduction, therefore more metallic cobalt is present on the support. However, whether or not there is more cobalt available to participate in the Fischer-Tropsch synthesis reaction (cobalt surface atoms) depends also on the cluster size. On one hand, increasing cluster size alone tends to decrease the

  16. Thermal decomposition and cobalt species transformation of carbon nanotubes supported cobalt catalyst for Fischer-Tropsch synthesis

    Institute of Scientific and Technical Information of China (English)

    Jing Lü; Chengdu Huang; Suli Bai; Yunhui Jiang; Zhenhua Li

    2012-01-01

    The effect of calcination condition on the cobalt species and Fischer-Tropsch synthesis (FTS) was studied.It was found that higher calcination temperature resulted in decreased FTS activities because CNTs were consumed by oxidation in air at temperature higher than 230 ℃.Cobalt species went through transformation from Co3O4 to metallic Co in Ar by autoreduction at temperature over 500 ℃.The autoreduction route might be Co3O4→CoO→Co or Co3O4→Co2C→Co.Reduction at temperature higher than 500 ℃ also resulted in decreased FTS activities due to the methanation of CNTs in hydrogen.

  17. Cobalt supported on CNTs-covered γ-and nano-structured alumina catalysts utilized for wax selective Fischer-Tropsch synthesis

    Institute of Scientific and Technical Information of China (English)

    Mohammad Reza Hemmati; Mohammad Kazemeini; Farhad Khorasheh; Jamshid Zarkesh; Alimorad Rashidi

    2012-01-01

    Cobalt supported on carbon nanotubes (CNTs)-covered alumina has been recently developed and successfully utilized as a catalyst in Fischer-Tropsch synthesis (FTS).Problems associated with shaping of Co/CNTs into extrudates or pellets as well as catalyst attrition rendered these materials unfavorable for industrial applications.In this investigation regular γ-and nano-structured (N-S) alumina as well as CNTs-covered regular γ-and N-S-alumina supports were impregnated by cobalt nitrate solution to make new cobalt-based catalysts which were also promoted by Ru.The catalysts were characterized and tested in a micro reactor to evaluate their applicability in FTS.γ-Al2O3 was prepared by calcination of bohemite and N-S-Al2O3 was prepared by sol-gel method using aluminum chloride as starting material.Catalyst evaluations indicated that N-S-Al2O3 was superior to regular γ-Al2O3 and that CNTs-covered alumina supports were favored over non-covered ones in terms of activity and heavy hydrocarbon selectivity.These were justified by porosimetric characteristics of the catalysts and existence of CNTs points of view.CNTs-covered catalysts also showed higher wax selectivity and better resistance to deactivation.Furthermore,TPR analysis indicated that the cobalt aluminate phase,which is responsible for the permanent deactivation of alumina supported Co-based catalysts,did not form on alumina supported Co-based catalysts covered with CNTs due to weaker interactions between cobalt and alumina.

  18. Lindqvist Polyoxoniobate Ion-Assisted Electrodeposition of Cobalt and Nickel Water Oxidation Catalysts.

    Science.gov (United States)

    Liu, YuPing; Guo, Si-Xuan; Ding, Liang; Ohlin, C André; Bond, Alan M; Zhang, Jie

    2015-08-01

    A method has been developed for the efficient electrodeposition of cobalt and nickel nanostructures with the assistance of the Lindqvist ion [Nb6O19](8-). Scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), Raman spectroscopy, inductively coupled plasma mass spectrometry (ICP-MS), inductively coupled plasma optical emission spectrometry, and a range of electrochemical techniques have been used to characterize the morphology, composition, catalytic water oxidation activity and stability of the films in alkaline solution. SEM images show that films consisting of nanoparticles with diameters of ca. 30 to 40 nm are formed after 40-50 potential cycles of deposition. Nb and Co/Ni are detected in the films by EDX. ICP-MS results show an elemental ratio of 1:1 for Co:Nb and 1:3 for Ni:Nb, respectively. Raman spectra reveal the presence of both [Nb6O19](8-) and Co(OH)2/Ni(OH)2. The films exhibit excellent stability and efficiency for electrocatalytic water oxidation in alkaline solution. Turnover frequencies of 12.9 and 13.2 s(-1) were determined by rotating ring disk electrode voltammetry at an overpotential of 480 mV for Co and Ni films, respectively. Fourier transformed large amplitude alternating current (FTAC) voltammetry reveals an additional underlying oxidation process for Co under catalytic turnover conditions, which indicates that a Co(IV) species is involved in the efficient catalytic water oxidation reactions. FTAC voltammetric data also suggest that the Ni films undergoes a clear phase transformation upon aging in aqueous 1 M NaOH and the electrogenerated higher oxidation state Ni from β-NiOOH is the more active form of the catalyst.

  19. ALTERNATING COPOLYMERIZATION OF CYCLOHEXENE OXIDE AND CARBON DIOXIDE UNDER COBALT PORPHYRIN CATALYST

    Institute of Scientific and Technical Information of China (English)

    Yu-sheng Qin; Li-jie Chen; Xian-hong Wang; Xiao-jiang Zhao; Fo-song Wang

    2011-01-01

    Cobalt porphyrin complexes (TPPComx) (TPP =5,10,15,20-tetraphenyl-porphyrin; X =halide) in combination with bis(triphenylphosphine) iminium chloride (PPNC1) were used for the copolymerization of cyclohexene oxide and CO2.The highest turnover frequency of 67.2 h-1 was achieved after 13 h at 20℃,and the obtained poly(1,2-cyclohexylene carbonate) (PCHC) showed number average molecular weight (Mn) of 10 × 103.Though the obtained PCHC showed atactic structure,the m-centered tetrads content reached 58.1% at CO2 pressure of 1.0 MPa,and decreased to 51.9% at CO2 pressure of 6.0 MPa,indicating that it was inclined to form atactic polymer at high CO2 pressure.

  20. Production of Carbon Nanofibers Using a CVD Method with Lithium Fluoride as a Supported Cobalt Catalyst

    Directory of Open Access Journals (Sweden)

    S. A. Manafi

    2008-02-01

    Full Text Available Carbon nanofibers (CNFs have been synthesized in high yield (>70% by catalytic chemical vapor deposition (CCVD on Co/LiF catalyst using acetylene as carbon source. A novel catalyst support (LiF is reported for the first time as an alternative for large-scale production of carbon nanofibers while purification process of nanofibers is easier. In our experiment, the sealed furnace was heated at 700∘C for 0.5 hour (the heating rate was 10∘C/min and then cooled to room temperature in the furnace naturally. Catalytic chemical vapor deposition is of interest for fundamental understanding and improvement of commercial synthesis of carbon nanofibers (CNFs. The obtained sample was sequentially washed with ethanol, dilutes acid, and distilled water to remove residual impurities, amorphous carbon materials, and remaining of catalyst, and then dried at 110∘C for 24 hours. The combined physical characterization through several techniques, such as high-resolution transmission electron microscope (TEM, scanning electron microscope (SEM, thermogarvimetric analysis (TGA, and zeta-sizer and Raman spectroscopy, allows determining the geometric characteristic and the microstructure of individual carbon nanofibers. Catalytic chemical vapor deposition is of interest for fundamental understanding and improvement of commercial synthesis of carbon nanofibers (CNFs. As a matter of fact, the method of CCVD guarantees the production of CNFs for different applications.

  1. A Biomass-Derived Non-Noble Cobalt Catalyst for Selective Hydrodehalogenation of Alkyl and (Hetero)Aryl Halides.

    Science.gov (United States)

    Sahoo, Basudev; Surkus, Annette-Enrica; Pohl, Marga-Martina; Radnik, Jörg; Schneider, Matthias; Bachmann, Stephan; Scalone, Michelangelo; Junge, Kathrin; Beller, Matthias

    2017-09-04

    Hydrodehalogenation is a straightforward approach for detoxifications of harmful anthropogenic organohalide-based pollutants, as well as removal of halide protecting groups used in multistep syntheses. A novel sustainable catalytic material was prepared from biowaste (chitosan) in combination with an earth-abundant cobalt salt. The heterogeneous catalyst was fully characterized by transmission electron microscope, X-ray diffraction, and X-ray photoelectron spectroscopy measurements, and successfully applied to hydrodehalogenation of alkyl and (hetero)aryl halides with broad scope (>40 examples) and excellent chemoselectivity using molecular hydrogen as a reductant. The general usefulness of this method is demonstrated by successful detoxification of non-degradable pesticides and fire retardants. Moreover, the potential of the catalyst as a deprotection tool is demonstrated in a multistep synthesis of (±)-peronatin B (alkaloid). © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Well-Combined Magnetically Separable Hybrid Cobalt Ferrite/Nitrogen-Doped Graphene as Efficient Catalyst with Superior Performance for Oxygen Reduction Reaction.

    Science.gov (United States)

    Lu, Lei; Hao, Qingli; Lei, Wu; Xia, Xifeng; Liu, Peng; Sun, Dongping; Wang, Xin; Yang, Xujie

    2015-11-18

    Catalysts with low-cost, high activity and stability toward oxygen reduction reaction (ORR) are extremely desirable, but its development still remains a great challenge. Here, a novel magnetically separable hybrid of multimetal oxide, cobalt ferrite (CoFe2O4), anchored on nitrogen-doped reduced graphene oxide (CoFe2O4/NG) is prepared via a facile solvothermal method followed by calcination at 500 °C. The structure of CoFe2O4/NG and the interaction of both components are analyzed by several techniques. The possible formation of Co/Fe-N interaction in the CoFe2O4/NG catalyst is found. As a result, the well-combination of CoFe2O4 nanoparticles with NG and its improved crystallinity lead to a synergistic and efficient catalyst with high performance to ORR through a four-electron-transfer process in alkaline medium. The CoFe2O4/NG exhibits particularly comparable catalytic activity as commercial Pt/C catalyst, and superior stability against methanol oxidation and CO poisoning. Meanwhile, it has been proved that both nitrogen doping and the spinel structure of CoFe2O4 can have a significant contribution to the catalytic activity by contrast experiments. Multimetal oxide hybrid demonstrates better catalysis to ORR than a single metal oxide hybrid. All results make the low-cost and magnetically separable CoFe2O4/NG a promising alternative for costly platinum-based ORR catalyst in fuel cells and metal-air batteries. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Highly uniform and monodisperse carbon nanospheres enriched with cobalt-nitrogen active sites as a potential oxygen reduction electrocatalyst

    Science.gov (United States)

    Wan, Xing; Wang, Hongjuan; Yu, Hao; Peng, Feng

    2017-04-01

    Uniform cobalt and nitrogen co-doped carbon nanospheres (CoN-CNS) with high specific surface area (865 m2 g-1) have been prepared by a simple but efficient method. The prepared CoN-CNS catalyst exhibits outstanding catalytic performance for the oxygen reduction reaction (ORR) in both alkaline and acidic electrolytes. In alkaline electrolyte, the prepared CoN-CNS has more positive half-wave potential and larger kinetic current density than commercial Pt/C. In acidic electrolyte, CoN-CNS also shows good ORR activity with high electron transfer number, its onset and half-wave potentials are all close to those of commercial carbon supported platinum catalyst (Pt/C). CoN-CNS catalyst shows more superior stability and higher methanol-tolerance than commercial Pt/C both in alkaline and in acidic electrolytes. The potassium thiocyanate-poisoning test further confirms that the cobalt-nitrogen active sites exist in CoN-CNS, which are dominating to endow high ORR catalytic activity in acidic electrolyte. This study develops a new method to prepare non-precious metal catalyst with excellent ORR performances for direct methanol fuel cells.

  4. Nano copper and cobalt ferrites as heterogeneous catalysts for the one-pot synthesis of 2,4,5-tri substituted imidazoles

    Indian Academy of Sciences (India)

    Paul Douglas Sanasi; D Santhipriya; Y Ramesh; M Ravi Kumar; B Swathi; K Jaya Rao

    2014-11-01

    A simple one-pot synthesis has been developed for the synthesis of 2,4,5-trisubstituted imidazoles using magnetic recyclable spinel nano copper and cobalt ferrites by the condensation of benzil, aromatic aldehyde and ammonium acetate in ethanol as solvent. The reaction, with these catalysts was carried out under mild reaction conditions with very good yields of substituted imidazoles. These catalysts can be recycled very easily and reused, which makes this methodology environmentally benign.

  5. Cobalt(I) Olefin Complexes: Precursors for Metal-Organic Chemical Vapor Deposition of High Purity Cobalt Metal Thin Films.

    Science.gov (United States)

    Hamilton, Jeff A; Pugh, Thomas; Johnson, Andrew L; Kingsley, Andrew J; Richards, Stephen P

    2016-07-18

    We report the synthesis and characterization of a family of organometallic cobalt(I) metal precursors based around cyclopentadienyl and diene ligands. The molecular structures of the complexes cyclopentadienyl-cobalt(I) diolefin complexes are described, as determined by single-crystal X-ray diffraction analysis. Thermogravimetric analysis and thermal stability studies of the complexes highlighted the isoprene, dimethyl butadiene, and cyclohexadiene derivatives [(C5H5)Co(η(4)-CH2CHC(Me)CH2)] (1), [(C5H5)Co(η(4)-CH2C(Me)C(Me)CH2)] (2), and [(C5H5)Co(η(4)-C6H8)] (4) as possible cobalt metal organic chemical vapor deposition (MOCVD) precursors. Atmospheric pressure MOCVD was employed using precursor 1, to synthesize thin films of metallic cobalt on silicon substrates under an atmosphere (760 torr) of hydrogen (H2). Analysis of the thin films deposited at substrate temperatures of 325, 350, 375, and 400 °C, respectively, by scanning electron microscopy and atomic force microscopy reveal temperature-dependent growth features. Films grown at these temperatures are continuous, pinhole-free, and can be seen to be composed of hexagonal particles clearly visible in the electron micrograph. Powder X-ray diffraction and X-ray photoelectron spectroscopy all show the films to be highly crystalline, high-purity metallic cobalt. Raman spectroscopy was unable to detect the presence of cobalt silicides at the substrate/thin film interface.

  6. Cobalt Nanoparticle-Embedded Porous Carbon Nanofibers with Inherent N- and F-Doping as Binder-Free Bifunctional Catalysts for Oxygen Reduction and Evolution Reactions.

    Science.gov (United States)

    Singhal, Richa; Kalra, Vibha

    2017-01-18

    Efficient, low-cost, non-precious metal-based, and stable bifunctional electrocatalysts are key to various energy storage and conversion devices such as regenerative fuel cells and metal-air batteries. In this work, we report cobalt nanoparticle-embedded porous carbon nanofibers with inherent N- and F-doping as binder-free bifunctional electrocatalysts with excellent activity for both the oxygen reduction and oxygen evolution reaction (ORR/OER) in an alkaline medium. Single-step electrospinning of a solution of the polymer mixture (carbon precursor) and the cobalt precursor followed by controlled pyrolysis with an intermediate reduction step in H2 (to reduce cobalt oxides to cobalt) was utilized to synthesize an integrated freestanding catalyst. The fabricated catalyst with effective structural and electronic interaction between the cobalt metal nanoparticles and the N- and F-doped carbon defect sites showed enhanced catalytic properties compared to the benchmark catalysts for ORR and OER (Pt, Ir, and Ru). The ORR potential at the current density of -3 mA cm(-2) was 0.81 VRHE and the OER potential at a current density of 10 mA cm(-2) was 1.595 VRHE , resulting in a ΔE of only 0.785 V.

  7. Synthesis of methyl esters from palm (Elaeis guineensis) oil using cobalt doped MgO as solid oxide catalyst.

    Science.gov (United States)

    Rahman, Nur Ashikin Ab; Olutoye, M A; Hameed, B H

    2011-10-01

    The potential of Mg(x)Co(2-)(x)O(2) as heterogeneous reusable catalyst in transesterification of palm oil to methyl ester was investigated. The catalyst was prepared via co-precipitation of the metal hydroxides at different Mg-Co ratios. Mg(1.7)Co(0.3)O(2) catalyst was more active than Mg(0.3)Co(1.7)O(2) in the transesterification of palm oil with methanol. The catalysts calcined at temperature 300 °C for 4 h resulted in highly active oxides and the highest transesterification of 90% was achieved at methanol/oil molar ratio of 9:1, catalyst loading of 5.00 wt.%, reaction temperature of 150 °C and reaction time of 2 h. The catalyst could easily be removed from reaction mixture, but showed 50% decrease in activity when reused due to leaching of active sites. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. The effects of promoters of K and Zr on the mesoporous carbon supported cobalt catalysts for Fischer-Tropsch synthesis.

    Science.gov (United States)

    Chen, Liang; Song, Guoxia; Fu, Yuchuan; Shen, Jianyi

    2012-02-15

    The mesoporous carbon supported cobalt catalyst (15%Co/MC) was found to be more active and selective to C(5)(+) than the traditionally activated carbon supported one (15%Co/AC) for the Fischer-Tropsch synthesis (FTS). The addition of small amount of K(2)O and ZrO(2) significantly affected the FTS behavior of 15%Co/MC. The addition of 1% K inhibited the FTS activity dramatically, while the addition of 3% Zr increased the FTS activity significantly. The addition of K(2)O decreased the surface acidity while increased the surface basicity of 15%Co/MC, resulting in the increased heat of adsorption of CO and substantially decreased heat of adsorption of H(2) on Co. In contrast, the addition of ZrO(2) increased the surface acidity and heat of adsorption of H(2) on Co. The FTS activity was found to be related to the ratio of heats for the adsorption of CO and H(2) on the catalysts 15%Co/MC, 15%Co-1%K/MC and 15%Co-3%Zr/MC. The highest FTS activity was obtained on the catalyst with the heat ratio of 1.2. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. [Simultaneous determination of cobalt and nickel in catalyst by microwave digestion-dual wavelength equal absorption spectrophotometry].

    Science.gov (United States)

    Li, L; Zhang, J; Gao, C

    2001-08-01

    Catalyst samples are digested in a microwave digestion system. The optimum parameters for microwave digestion are selected. Cobalt and nickel in the mixture of Co2+ and Ni2+ with 4-(2-pyridylazo) resorcinol (PAR) can be determined simultaneously by dual-wavelength equal absorption spectrophotometry. By means of the combination of two methods, Co2+ and Ni2+ in catalyst can be determined rapidly, accurately, and contamination problems avoided. The linear ranges are 0-30 micrograms.25 mL-1 for Co2+ and 0-25 micrograms.25 mL-1 for Ni2+. The recoveries of Co2+ and Ni2+ in synthetic samples are between 98.2%-103.6% and between 97.9%-103.7%, respectively. The relative standard deviations of analytical results in catalyst samples are less than 2.2% for Co2+ and less than 1.8% for Ni2+, and relative errors are less than +/- 2.5% for Co2+ and Ni2+.

  10. A hybrid-assembly approach towards nitrogen-doped graphene aerogel supported cobalt nanoparticles as high performance oxygen reduction electrocatalysts.

    Science.gov (United States)

    Liu, Ruili; Jin, Yeqing; Xu, Peimin; Xing, Xia; Yang, Yuxing; Wu, Dongqing

    2016-02-15

    As a novel electrocatalyst for oxygen reduction reaction (ORR), nitrogen-doped graphene aerogel supported cobalt nanoparticles (Co-NGA) is archived by a hybrid-assembly of graphene oxide (GO), o-phthalonitrile and cobalt acetate and the following thermal treatment. The hybrid-assembly process successfully combines the ionic assembly of GO sheets and Co ions with the coordination between o-phthalonitrile and Co ions, which can be converted to nitrogen doped carbon and Co nanoparticles in the pyrolysis process under nitrogen flow. Remarkable features of Co-NGA including the macroporous graphene scaffolds, high surface area, and N/Co-doping effect can lead to a high catalytic efficiency for ORR. As the results, the composites pyrolyzed at 600°C (Co-NGA600) shows excellent electrocatalytic activities and kinetics for ORR in basic media, which are comparable with those of Pt/C catalyst, together with superior durability.

  11. Ferromagnetic resonance of cobalt nanoparticles used as a catalyst for the carbon nanotubes synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Duraia, El-Shazly M. [Suez Canal University, Faculty of Science, Physics Department, Ismailia (Egypt); Al-Farabi Kazakh National University, Almaty (Kazakhstan); Institute of Physics and Technology, Almaty (Kazakhstan)], E-mail: duraia_physics@yahoo.com; Abdullin, Kh.A. [Institute of Physics and Technology, Almaty (Kazakhstan)

    2009-12-15

    Catalyst is considered to be the most crucial parameter for the growth of carbon nanotubes. In this work we study the ferromagnetic resonance (FMR) spectra of the catalyst nanoclusters. Moreover we report for the first time the angle FMR studies of catalyst particles with and without CNT layer. The dependencies of the FMR spectra, X-ray diffraction (XRD) patterns, Raman spectra and morphology of the CNT layers on the growth conditions are discussed.

  12. Highly dispersed CoMoS phase on titania nanotubes as efficient HDS catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Cortes-Jacome, M.A.; Escobar, J.; Angeles Chavez, C.; Lopez-Salinas, E.; Romero, E.; Ferrat, G.; Toledo-Antonio, J.A. [Molecular Engineering Program, Instituto Mexicano del Petroleo, Eje Central Lazaro Cardenas 152, San Bartolo Atepehuacan, G.A. Madero, 07730 Mexico, D.F. (Mexico)

    2008-01-15

    Nanotubular titania (NT) to be used as support for CoMo-based hydrodesulfurization (HDS) catalyst was synthesized and characterized by various techniques. NT annealed at 400 C (under nitrogen) was constituted by nanotubes of {proportional_to}5.5 nm (internal diameter) and retained 236 m{sup 2}/g of surface area. Mo at 3 atoms/nm{sup 2} (nominal loading) and cobalt at Co/(Co + Mo) = 0.3 were impregnated under nearly neutral, acidic or basic media. By XPS analyses of NT-supported sulfided catalysts, highly dispersed MoS{sub 2} particles of low stacking degree (1-2 slabs) aligned along the nanotubes were observed by HR-TEM in all sulfided materials. The CoMo catalysts supported on nanostructured titania had dibenzothiophene (DBT) HDS activity (in pseudo first order kinetic constant basis) values {proportional_to}1.35 and {proportional_to}1.7 times (Mo impregnated under near neutral and basic media, respectively) higher to that of a commercial reference with alumina carrier. According to shifts to higher binding energy of the Co 2p peak corresponding to sulfided cobalt (as determined by XPS), MoS{sub 2} dispersed on NT support could be efficiently promoted by Co (''CoMoS'' phase formation), opening the possibility of developing new highly active HDS catalysts. (author)

  13. Electrochemical, spectroscopic and theoretical studies of a simple bifunctional cobalt corrole catalyst for oxygen evolution and hydrogen production.

    Science.gov (United States)

    Lei, Haitao; Han, Ali; Li, Fengwang; Zhang, Meining; Han, Yongzhen; Du, Pingwu; Lai, Wenzhen; Cao, Rui

    2014-02-07

    Six cobalt and manganese corrole complexes were synthesized and examined as single-site catalysts for water splitting. The simple cobalt corrole [Co(tpfc)(py)2] (1, tpfc = 5,10,15-tris(pentafluorophenyl)corrole, py = pyridine) catalyzed both water oxidation and proton reduction efficiently. By coating complex 1 onto indium tin oxide (ITO) electrodes, the turnover frequency for electrocatalytic water oxidation was 0.20 s(−1) at 1.4 V (vs. Ag/AgCl, pH = 7), and it was 1010 s(−1) for proton reduction at −1.0 V (vs. Ag/AgCl, pH = 0.5). The stability of 1 for catalytic oxygen evolution and hydrogen production was evaluated by electrochemical, UV-vis and mass measurements, scanning electron microscope (SEM) and energy dispersive X-ray spectroscopy (EDX), which confirmed that 1 was the real molecular catalyst. Titration and UV-vis experiments showed that the pyridine group on Co dissociated at the beginning of catalysis, which was critical to subsequent activation of water. A proton-coupled electron transfer process was involved based on the pH dependence of the water oxidation reaction catalyzed by 1. As for manganese corroles 2–6, although their oxidizing powers were comparable to that of 1, they were not as stable as 1 and underwent decomposition at the electrode. Density functional theory (DFT) calculations indicated that water oxidation by 1 was feasible through a proposed catalytic cycle. The formation of an O–O bond was suggested to be the rate-determining step, and the calculated activation barrier of 18.1 kcal mol(−1) was in good agreement with that obtained from experiments.

  14. Intrinsic kinetics of eggshell cobalt catalysts for the Fischer-Tropsch synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Peluso, E.; Galarraga, C. E. [INTEVEP, S. A. Catalisis Aplicada, Caracas (Venezuela); De Lasa, H. I. [University of Western Ontario, Faculty of Engineering Science, London, ON (Canada)

    1998-05-01

    Production of synthetic hydrocarbons via the hydrogenation of carbon monoxide (Fischer-Tropsch synthesis, FT) as a means of producing clean fuels, and thus lessen the environmental burden, was discussed. To reduce transport limitations on the diffusion process through the catalytic pores, the use of pellicular or `eggshell` catalysts, especially eggshell Co-based catalysts, is recommended. These catalysts decrease the transport restrictions and therefore increase the FT reaction rates and C{sub 5}+ selectivity. The present study focuses on the kinetics of the FT reaction in an internally recycled Berty reactor over a Co-Zr/SiO{sub 2} eggshell catalyst by obtaining steady state reactivities at various H{sub 2}/CO ratios, temperatures and pressure ranges. Using statistical methods, the suitability of several kinetics models and possible reaction mechanisms in eggshell catalysts are analyzed. 3 refs.

  15. Performance of Cobalt-Based Fischer-Tropsch Synthesis Catalysts Using Dielectric-Barrier Discharge Plasma as an Alternative to Thermal Calcination

    Science.gov (United States)

    Bai, Suli; Huang, Chengdu; Lv, Jing; Li, Zhenhua

    2012-01-01

    Co-based catalysts were prepared by using dielectric-barrier discharge (DBD) plasma as an alternative method to conventional thermal calcination. The characterization results of N2-physisorption, temperature programmed reduction (TPR), transmission electron microscope (TEM), and X-ray diffraction (XRD) indicated that the catalysts prepared by DBD plasma had a higher specific surface area, lower reduction temperature, smaller particle size and higher cobalt dispersion as compared to calcined catalysts. The DBD plasma method can prevent the sintering and aggregation of active particles on the support due to the decreased treatment time (0.5 h) at lower temperature compared to the longer thermal calcination at higher temperature (at 500° C for 5 h). As a result, the catalytic performance of the Fischer-Tropsch synthesis on DBD plasma treated Co/SiO2 catalyst showed an enhanced activity, C5+ selectivity and catalytic stability as compared to the conventional thermal calcined Co/SiO2 catalyst.

  16. High pressure CO hydrogenation over bimetallic Pt-Co catalysts

    DEFF Research Database (Denmark)

    Christensen, Jakob Munkholt; Medford, Andrew James; Studt, Felix

    2014-01-01

    The potential of bimetallic Pt-Co catalysts for production of higher alcohols in high pressure CO hydrogenation has been assessed. Two catalysts (Pt3Co/SiO2 and PtCo/SiO2) were tested, and the existing literature on CO hydrogenation over Pt-Co catalysts was reviewed. It is found that the catalyst...

  17. Nanosized iron and iron–cobalt spinel oxides as catalysts for methanol decomposition

    OpenAIRE

    Manova, Elina; Tsoncheva, Tanya; Estournès, Claude; Paneva, Daniela; Tenchev, K.; Mitov, Ivan; Petrov, L.

    2006-01-01

    Nanosized iron and mixed iron–cobalt oxides supported on activated carbon materials and their bulk analogues prepared by thermal synthesis are studied by X-rays diffraction, Mo¨ssbauer spectroscopy, magnetic measurements and temperature programmed reduction. Their catalytic behavior in methanol decomposition to H2, CO and methane is tested. Phase transformations in the metal oxides affected by the reaction medium are also investigated. Changes in the reaction mechanism of the methanol decompo...

  18. Single Cobalt Atoms with Precise N-Coordination as Superior Oxygen Reduction Reaction Catalysts.

    Science.gov (United States)

    Yin, Peiqun; Yao, Tao; Wu, Yuen; Zheng, Lirong; Lin, Yue; Liu, Wei; Ju, Huanxin; Zhu, Junfa; Hong, Xun; Deng, Zhaoxiang; Zhou, Gang; Wei, Shiqiang; Li, Yadong

    2016-08-26

    A new strategy for achieving stable Co single atoms (SAs) on nitrogen-doped porous carbon with high metal loading over 4 wt % is reported. The strategy is based on a pyrolysis process of predesigned bimetallic Zn/Co metal-organic frameworks, during which Co can be reduced by carbonization of the organic linker and Zn is selectively evaporated away at high temperatures above 800 °C. The spherical aberration correction electron microscopy and extended X-ray absorption fine structure measurements both confirm the atomic dispersion of Co atoms stabilized by as-generated N-doped porous carbon. Surprisingly, the obtained Co-Nx single sites exhibit superior ORR performance with a half-wave potential (0.881 V) that is more positive than commercial Pt/C (0.811 V) and most reported non-precious metal catalysts. Durability tests revealed that the Co single atoms exhibit outstanding chemical stability during electrocatalysis and thermal stability that resists sintering at 900 °C. Our findings open up a new routine for general and practical synthesis of a variety of materials bearing single atoms, which could facilitate new discoveries at the atomic scale in condensed materials. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Cobalt phosphide nanowall arrays supported on carbon cloth: an efficient monolithic non-noble-metal hydrogen evolution catalyst

    Science.gov (United States)

    Yang, Libin; Wang, Kunyang; Du, Gu; Zhu, Wenxin; Cui, Liang; Zhang, Chengxiao; Sun, Xuping; Asiri, Abdullah M.

    2016-11-01

    Hydrogen has been considered as an ideal energy carrier for replacing fossil fuels to mitigate global energy crises. Hydrolysis of sodium borohydride (NaBH4) is simple and effective for hydrogen production but needs active and durable catalysts to accelerate the kinetics. In this paper, we demonstrate that cobalt phosphide nanowall arrays supported on carbon cloth (CoP NAs/CC) efficiently catalyze the hydrolytic dehydrogenation of NaBH4 with an activation energy of 42.1 kJ mol-1 in alkaline media. These monolithic CoP NAs/CC show a maximum hydrogen generation rate of 5960 {{ml}} {{{\\min }}}-1 {{{{g}}}-1}({{CoP})} and are robust with superior durability and reusability. They are also excellent in activity and durability for electrochemical hydrogen evolution in 1.0 M KOH, with the need of an overpotential of only 80 mV to drive 10 mA cm-2. They offer us a promising low-cost hydrogen-generating catalyst for applications.

  20. X-ray nanoscopy of cobalt Fischer-Tropsch catalysts at work.

    Science.gov (United States)

    Cats, Korneel H; Gonzalez-Jimenez, Ines D; Liu, Yijin; Nelson, Johanna; van Campen, Douglas; Meirer, Florian; van der Eerden, Ad M J; de Groot, Frank M F; Andrews, Joy C; Weckhuysen, Bert M

    2013-05-21

    Transmission X-ray microscopy has been used to investigate individual Co/TiO2 Fischer-Tropsch (FT) catalyst particles in 2-D and 3-D with 30 nm spatial resolution. Tomographic elemental mapping showed that Co is heterogeneously concentrated in the centre of the catalyst particles. In addition, it was found that Co is mostly metallic during FT at 250 °C and 10 bar. No evidence for Co oxidation was found.

  1. Stacking disorder in silicon carbide supported cobalt crystallites: an X-ray diffraction, electron diffraction and high resolution electron microscopy study.

    Science.gov (United States)

    du Plessis, H E; de Villiers, J P R; Tuling, A; Olivier, E J

    2016-11-21

    Supported cobalt Fischer-Tropsch catalysts are characteristically nanoparticulate and the reduced SiC supported catalyst was found to contain both HCP and FCC polymorphs. This is reflected in the powder XRD patterns and generally there is a poor fit between the experimental and calculated diffractograms. This was ascribed to small crystallite sizes and the occurrence of disorder, manifested as peak broadening and peak shifts. Selected area electron diffraction data of suitably oriented cobalt catalyst grains on silicon carbide supports show non-periodic disorder in the zone axis orientations that contain the common (001) (HCP) and (111) (FCC) reciprocal lattice planes. Both FCC and HCP polymorphs are present in the same grains and these show disorder mainly in the HCP component. The disorder is further examined using high angle annular dark field (HAADF) scanning transmission electron microscopy at atomic resolution and the stacking sequences elucidated. Random sequences of mainly FCC are interrupted by HCP sequences and twin surfaces with reverse stacking sequences are also present. This study highlights the presence of significant disorder in cobalt catalyst grains confirmed by HAADF microscopy.

  2. Nickel-doped cobalt ferrite nanoparticles: efficient catalysts for the reduction of nitroaromatic compounds and photo-oxidative degradation of toxic dyes.

    Science.gov (United States)

    Singh, Charanjit; Goyal, Ankita; Singhal, Sonal

    2014-07-21

    This study deals with the exploration of NixCo₁-xFe₂O₄ (x = 0.0, 0.2, 0.4, 0.6, 0.8, 1.0) ferrite nanoparticles as catalysts for reduction of 4-nitrophenol and photo-oxidative degradation of Rhodamine B. The ferrite samples with uniform size distribution were synthesized using the reverse micelle technique. The structural investigation was performed using powder X-ray diffraction, high-resolution transmission electron microscopy, energy dispersive X-ray and scanning tunneling microscopy. The spherical particles with ordered cubic spinel structure were found to have the crystallite size of 4-6 nm. Diffused UV-visible reflectance spectroscopy was employed to investigate the optical properties of the synthesized ferrite nanoparticles. The surface area calculated using BET method was found to be highest for Co₀.₄Ni₀.₆Fe₂O₄ (154.02 m(2) g(-1)). Co₀.₄Ni₀.₆Fe₂O₄ showed the best catalytic activity for reduction of 4-nitrophenol to 4-aminophenol in the presence of NaBH4 as reducing agent, whereas CoFe₂O₄ was found to be catalytically inactive. The reduction reaction followed pseudo-first order kinetics. The effect of varying the concentration of catalyst and NaBH₄ on the reaction rates was also scrutinized. The photo-oxidative degradation of Rhodamine B, enhanced oxidation efficacy was observed with the introduction of Ni(2+) in to the cobalt ferrite lattice due to octahedral site preference of Ni(2+). Almost 99% degradation was achieved in 20 min using NiFe₂O₄ nanoparticles as catalyst.

  3. Effect of CO{sub 2} and H{sub 2}O content in syngas on activity and selectivity of a cobalt based Fischer-Tropsch synthesis catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Poehlmann, F.; Kaiser, P.; Kern, C.; Jess, A. [Bayreuth Univ. (Germany). Dept. of Chemical Engineering

    2013-11-01

    When liquid hydrocarbons are to be used as CO{sub 2} neutral storage media for electrical energy, it is necessary to convert CO{sub 2} from e.g. flue gas and hydrogen from water electrolysis to synthesis gas (CO/H{sub 2}). This can be achieved by a high temperature reverse water gas shift (RWGS) reaction. Due to thermodynamic limitations, the product gas of RWGS reactors operated at technically feasible temperatures of around 900 C will always contain significant amounts of water and carbon dioxide, which can influence the activity of Fischer-Tropsch synthesis (FTS) catalysts for the actual hydrocarbon production. In this study, a commercial cobalt catalyst was investigated under low temperature FTS conditions (2.5 MPa, 215 C) regard to activity and selectivity in the presence of H{sub 2}O and CO{sub 2}. A continuous flow apparatus including a fixed-bed reactor for the synthesis step was used to conduct all experiments. The experimental data reveals that the CO/CO{sub 2}-ratio does not affect the activity and product selectivity until the CO{sub 2}-concentration reaches 75 vol.-% (CO{sub 2}/(CO+CO{sub 2})). On increasing the carbon dioxide concentration to 100 vol.-% (H{sub 2}/CO{sub 2} = 2), the methane selectivity rose up to 70 % and even above. Addition of water caused an initial loss of activity. After the initial loss of activity the FT catalyst activity was found to remain constant, irrespectively of if the water was removed from the feed or not. Thus, the deactivation was permanent. (orig.)

  4. Porous cobalt spheres for high temperature gradient magnetically assisted fluidized beds

    Science.gov (United States)

    Atwater, James E.; Akse, James R.; Jovanovic, Goran N.; Wheeler, Richard R Jr; Sornchamni, Thana

    2003-01-01

    Porous metallic cobalt spheres have been prepared as high temperature capable media for employment in gradient magnetically assisted fluidization and filtration technologies. Cobalt impregnated alginate beads are first formed by extrusion of an aqueous suspension of Co3O4 into a Co(II) chloride solution. The organic polymer is thermally decomposed yielding cobalt oxide spheres, followed by reduction to the metallic state, and densification. Cobalt beads have been produced with porosities ranging between 10 and 50%, depending upon sintering conditions. The product media have been characterized by scanning electron microscopy (SEM), nitrogen adsorption porosimetry, and vibrating sample magnetometry. c2003 Elsevier Science Ltd. All rights reserved.

  5. Slurry phase Fischer-Tropsch synthesis: Cobalt plus a water-gas shift catalyst. [Quarterly] report, October 1, 1989--December 31, 1989

    Energy Technology Data Exchange (ETDEWEB)

    Yates, I.C.; Satterfield, C.N.

    1989-12-31

    The rate of synthesis gas consumption over a cobalt FischerTropsch catalyst was measured in a well-mixed, continuous-flow, slurry reactor at 220 to 240{degrees}C, 0.5 to 1.5 MPa, H{sub 2}/CO feed ratios of 1.5 to 3.5 and conversions of 7 to 68% of hydrogen and 11 to 73% of carbon monoxide. The inhibiting effect of carbon monoxide was determined quantitatively and a Langmuir-Hinshelwood-type equation of the following form was found to best represent the results: -R{sub H{sub 2+Co}} = (a P{sub CO}P{sub H{sub 2}})/(1 + b P{sub CO}){sup 2}. The apparent activation energy was 93 to 95 kJ/mol. Data from previous studies on cobalt-based Fischer-Tropsch catalysts are also well correlated with this rate expression.

  6. Development of an Innovative XRD-DRIFTS Prototype Allowing Operando Characterizations during Fischer-Tropsch Synthesis over Cobalt-Based Catalysts under Representative Conditions

    Directory of Open Access Journals (Sweden)

    Scalbert Julien

    2015-03-01

    Full Text Available An original system combining both X-Ray Diffraction and diffuse reflectance infrared Fourier transform spectroscopy was developed with the aim to characterize Fischer-Tropsch catalysts in relevant reaction conditions. The catalytic properties of a model PtCo/silica catalyst tested with this prototype have shown to be in the same range of those obtained in similar conditions with classical fixed-bed reactors. No bulk cobalt oxidation nor sintering were observed on operando XRD patterns. The formation of linear carbonyls and adsorbed hydrocarbons species at the surface of the catalyst was observed on operando DRIFT spectra. The surface of the catalyst was also suspected to be covered with carbon species inducing unfavorable changes in selectivity.

  7. Fischer-Tropsch synthesis over MOF-supported cobalt catalysts (Co@MIL-53(Al)).

    Science.gov (United States)

    Isaeva, V I; Eliseev, O L; Kazantsev, R V; Chernyshev, V V; Davydov, P E; Saifutdinov, B R; Lapidus, A L; Kustov, L M

    2016-07-26

    Novel nanohybrid materials were prepared by immobilizing Co nanoparticles on a microporous framework MIL-53(Al) as a porous host matrix. The synthesized cobalt-containing materials were characterized by XRD, STEM, and oxygen titration. The catalytic performance of Co@MIL-53(Al) nanohybrids was examined in Fischer-Tropsch synthesis (FTS) for the first time. A higher selectivity to C5+ hydrocarbons and lower selectivity to methane for Co@MIL-53(Al) as compared to conventional Co/Al2O3 were observed.

  8. In-situ potentiostatic activation to optimize electrodeposited cobalt-phosphide electrocatalyst for highly efficient hydrogen evolution in alkaline media

    Science.gov (United States)

    Wei, Mengmeng; Yang, Liming; Wang, Longlu; Liu, Tian; Liu, Chengbin; Tang, Yanhong; Luo, Shenglian

    2017-08-01

    We first report a novel cobalt-phosphide (Co-P) hybrid with flake-like structure by a facile one-step electrodeposition combined with in-situ potentiostatic activation technique. Exotic microstructure transformation of Co-P hybrid from microspheres to nanosheets has been noted during the activation process. The Co-P catalyst exhibits striking kinetic metrics with an overpotential of 85 mV (at 10 mA cm-2) and Tafel slope of 37 mV dec-1, performing among the best of all the HER catalysts in strong alkaline media (at pH 14). This study offers a new in-situ approach to optimize catalytic materials for high-performance electrocatalysts towards energy-related applications.

  9. Synthesis of subnanometer-diameter vertically aligned single-walled carbon nanotubes with copper-anchored cobalt catalysts

    Science.gov (United States)

    Cui, Kehang; Kumamoto, Akihito; Xiang, Rong; An, Hua; Wang, Benjamin; Inoue, Taiki; Chiashi, Shohei; Ikuhara, Yuichi; Maruyama, Shigeo

    2016-01-01

    We synthesize vertically aligned single-walled carbon nanotubes (VA-SWNTs) with subnanometer diameters on quartz (and SiO2/Si) substrates by alcohol CVD using Cu-anchored Co catalysts. The uniform VA-SWNTs with a nanotube diameter of 1 nm are synthesized at a CVD temperature of 800 °C and have a thickness of several tens of μm. The diameter of SWNTs was reduced to 0.75 nm at 650 °C with the G/D ratio maintained above 24. Scanning transmission electron microscopy energy-dispersive X-ray spectroscopy (EDS-STEM) and high angle annular dark field (HAADF-STEM) imaging of the Co/Cu bimetallic catalyst system showed that Co catalysts were captured and anchored by adjacent Cu nanoparticles, and thus were prevented from coalescing into a larger size, which contributed to the small diameter of SWNTs. The correlation between the catalyst size and the SWNT diameter was experimentally clarified. The subnanometer-diameter and high-quality SWNTs are expected to pave the way to replace silicon for next-generation optoelectronic and photovoltaic devices.We synthesize vertically aligned single-walled carbon nanotubes (VA-SWNTs) with subnanometer diameters on quartz (and SiO2/Si) substrates by alcohol CVD using Cu-anchored Co catalysts. The uniform VA-SWNTs with a nanotube diameter of 1 nm are synthesized at a CVD temperature of 800 °C and have a thickness of several tens of μm. The diameter of SWNTs was reduced to 0.75 nm at 650 °C with the G/D ratio maintained above 24. Scanning transmission electron microscopy energy-dispersive X-ray spectroscopy (EDS-STEM) and high angle annular dark field (HAADF-STEM) imaging of the Co/Cu bimetallic catalyst system showed that Co catalysts were captured and anchored by adjacent Cu nanoparticles, and thus were prevented from coalescing into a larger size, which contributed to the small diameter of SWNTs. The correlation between the catalyst size and the SWNT diameter was experimentally clarified. The subnanometer-diameter and high

  10. Determination of the stability constants for cobalt, nickel and palladium homogeneous catalyst complexes containing triphenylphosphine ligands

    NARCIS (Netherlands)

    Djekic, T.; Zivkovic, Z.; van der Ham, A.G.J.; de Haan, A.B.

    2006-01-01

    Homogeneous catalysts are complex compounds that are always in equilibrium with their free metal, free ligand and other forms of complexes. The ratios between different species are defined by the stability constants, which are influenced by different parameters such as the type of metal, ligand, cou

  11. Synthesis, characterization and catalytic performance of nanosized iron-cobalt catalysts for light olefins production

    Institute of Scientific and Technical Information of China (English)

    Mostafa Feyzi; Asadollah Hassankhani

    2011-01-01

    Nanosized Fe-Co catalysts were prepared by co-precipitation method and studied for the conversion of synthesis gas to light olefins.In particular,the effects of a range of preparation variables such as Co/Fe molar ratios of the precipitation solution,pH value of precipitate,temperature of precipitation,promoters and loading of optimum promoter on the structure and catalytic performance are investigated.The optimal nano catalyst for light olefins (C2-C4) production was obtained overthe catalyst with Co/Fe molar ratio of 3/1 which promoted with 2 wt% K.The results show that the best operational conditions were GHSV =2200 h-1 (H2/CO =2/1) at 260 ℃ under atmospheric pressure.Characterization of catalysts were carried out using X-ray diffraction (XRD),thermal gravimetric analysis (TGA),differential scanning calorimetry (DSC),scanning electron microscopy (SEM),transmission electron microscopy (TEM) and N2 physisorption measurements such as BrunauerEmmett-Teller (BET) and Barrett-Joyner-Halenda (BJH) methods.

  12. Synthesis and characterization of niobium-promoted cobalt/iron catalysts supported on carbon nanotubes for the hydrogenation of carbon monoxide

    Institute of Scientific and Technical Information of China (English)

    Zahra Gholami; Noor Asmawati Mohd Zabidi; Fatemeh Gholami; Mohammadtaghi Vakili

    2016-01-01

    Bimetallic Co/Fe catalysts supported on carbon nanotubes ( CNTs) were prepared, and niobium ( Nb) was added as promoter to the 70Co:30Fe/CNT catalyst. The physicochemical properties of the catalysts were characterized, and the catalytic performances were analyzed at the same operation conditions (H2:CO (volume ratio)= 2:1, p = 1 MPa, and t = 260℃) in a tubular fixed-bed microreactor system. The addition of Nb to the bimetallic catalyst decreases the average size of the oxide nanoparticles and improves the reducibility of the bimetallic catalyst. Evaluation of the catalyst performance in a Fischer-Tropsch reaction shows that the catalyst results in high selectivity to methane, and the selectivity to C5+ increased slightly in the bimetallic catalyst unlike that in the monometallic catalysts. The addition of 1% Nb to the bimetallic catalyst increases CO conversion and selectivity to C5+. Meanwhile, a decrease in methane selectivity is observed.

  13. Reduced cobalt phases of ZrO{sub 2} and Ru/ZrO{sub 2} promoted cobalt catalysts and product distributions from Fischer–Tropsch synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Kangvansura, Praewpilin [Department of Materials Science, Faculty of Science, Kasetsart University, Bangkok 10900 (Thailand); Schulz, Hans, E-mail: hans.schulz@kit.edu [Karlsruhe Institute of Technology, Engler-Bunte Institute, 76131 Karlsruhe (Germany); Suramitr, Anwaraporn, E-mail: sfsciawn@src.ku.ac.th [Faculty of Science at Si Racha, Kasetsart University Si Racha Campus, Chonburi 20230 (Thailand); Poo-arporn, Yingyot, E-mail: yingyot@slri.or.th [Synchrotron Light Research Institute (Public Organization), Nakhon Ratchasima 30000 (Thailand); Viravathana, Pinsuda, E-mail: fscipvd@ku.ac.th [Department of Chemistry, Faculty of Science, Kasetsart University, Bangkok 10900 (Thailand); Worayingyong, Attera, E-mail: fscippl@ku.ac.th [Department of Materials Science, Faculty of Science, Kasetsart University, Bangkok 10900 (Thailand)

    2014-12-15

    Highlights: • Ru/ZrO{sub 2}, ZrO{sub 2} promoted Co/SiO{sub 2} for FTS were reduced by time resolved XANES. • Reduced catalysts resulted from XANES reduction showed the mixed phases of Co, CoO. • The highest percentages of CoO resulted from the high ZrO{sub 2} promoted Co/SiO{sub 2}. • Product distributions of 1-alkenes, iso-alkanes indicated sites for FTS and the 2° reaction. • Alkene readsorption were high corresponding to the high CoO forming branched alkanes. - Abstract: Co/SiO{sub 2} catalysts were promoted with 4% and 8% ZrO{sub 2}. Small amounts (0.07%) of Ru were impregnated onto 4%ZrO{sub 2}/Co/SiO{sub 2}. Catalysts resulting from time-resolved XANES reduction showed mixed phases of Co and CoO, with the highest percentages of Co resulting from Ru/4%ZrO{sub 2}/Co/SiO{sub 2} and the highest percentages of CoO resulting from 8%ZrO{sub 2}/Co/SiO{sub 2}. Product distributions of n-alkanes, iso-alkanes and alkenes during Fischer–Tropsch Synthesis (FTS) were used to investigate the catalyst performance of 4%ZrO{sub 2}/Co/SiO{sub 2} 8%ZrO{sub 2}/Co/SiO{sub 2} and Ru/4%ZrO{sub 2}/Co/SiO{sub 2}. FTS steady state was studied by growth probabilities of n-alkane products. No 1-alkene was produced from Ru/4%ZrO{sub 2}/Co/SiO{sub 2}, indicating high availability of Fischer–Tropsch sites for long chain hydrocarbon growth, despite high methanation. Branched alkanes produced from the secondary reaction were related to the high CoO percentages on 8%ZrO{sub 2}/Co/SiO{sub 2}. Alkene readsorption sites were high, corresponding to the high CoO percentages, causing a high probability of forming branched alkane products.

  14. Influence of the Cobalt Phase on the Highly Efficient Growth of MWNTs

    Directory of Open Access Journals (Sweden)

    Candida Milone

    2014-03-01

    Full Text Available In this work, the influence of the cobalt phase on the growth of carbon nanotubes by the catalytic chemical vapour deposition of CH4 with catalysts containing Co, Mo and Mg is investigated. To this end, the catalytic behaviour of physically mixed CoO/MgO+MgMoO4 and CoMoO4+MgMoO4 is studied. The results obtained show that CoMoO4+MgMoO4 allows for the attainment of the highest CNT yield (2407 wt % against 1296 wt %. Its higher activity is ascribed to the greater formation of active sites that, in light of current assessments, are constituted by metallic cobalt adjacent to Mo2C, and the huge exfoliation of the catalyst, which contributes towards enhancing their exposure.

  15. Highly Dispersed Alloy Catalyst for Durability

    Energy Technology Data Exchange (ETDEWEB)

    Murthi, Vivek S.; Izzo, Elise; Bi, Wu; Guerrero, Sandra; Protsailo, Lesia

    2013-01-08

    Achieving DOE's stated 5000-hr durability goal for light-duty vehicles by 2015 will require MEAs with characteristics that are beyond the current state of the art. Significant effort was placed on developing advanced durable cathode catalysts to arrive at the best possible electrode for high performance and durability, as well as developing manufacturing processes that yield significant cost benefit. Accordingly, the overall goal of this project was to develop and construct advanced MEAs that will improve performance and durability while reducing the cost of PEMFC stacks. The project, led by UTC Power, focused on developing new catalysts/supports and integrating them with existing materials (membranes and gas diffusion layers (GDLs)) using state-of-the-art fabrication methods capable of meeting the durability requirements essential for automotive applications. Specifically, the project work aimed to lower platinum group metals (PGM) loading while increasing performance and durability. Appropriate catalysts and MEA configuration were down-selected that protects the membrane, and the layers were tailored to optimize the movements of reactants and product water through the cell to maximize performance while maintaining durability.

  16. Developing a Thermal- and Coking-Resistant Cobalt-Tungsten Bimetallic Anode Catalyst for Solid Oxide Fuel Cells

    NARCIS (Netherlands)

    Yan, N.; Pandey, J.; Zeng, Y.; Amirkhiz, B.S.; Hua, B.; Geels, N.J.; Luo, J.L.; Rothenberg, G.

    2016-01-01

    We report the development of a novel Co–W bimetallic anode catalyst for solid oxide fuel cells (SOFCs) via a facile infiltration-annealing process. Using various microscopic and spectroscopic measurements, we find that the formed intermetallic nanoparticles are highly thermally stable up to 900 °C

  17. Magnetic cobalt ferrite composite as an efficient catalyst for photocatalytic oxidation of carbamazepine.

    Science.gov (United States)

    He, Yongzhen; Dai, Chaomeng; Zhou, Xuefei

    2017-01-01

    A magnetic spinel cobalt ferrite nanoparticle composite (CFO) was prepared via an ultrasonication-assisted co-precipitation method. The morphological structure and surface composition of CFO before and after reaction were investigated by using X-ray diffraction, scanning electron microscopy, transmission electron microscopy, energy dispersive X-ray, and Fourier transform infrared spectroscopy, indicating the consumption of iron oxide during photodegradation. X-ray photoelectron spectroscopy and vibrating sample magnetometry confirm the preparation of the ferrite nanoparticle composite and its magnetic properties. The prepared CFO was then used for the photocatalytic degradation of carbamazepine (CBZ) as an example of pharmaceuticals and personal care products (PPCPs) from aqueous solution. The effects of the nanocomposite dosage, contact time, and solution pH on the photodegradation process were investigated. More than 96% of the CBZ was degraded within 100 min at 0.2 g·L(-1) CFO in the presence of UV light. The reactive species for CBZ degradation in the CFO/UV system was identified as hydroxyl radicals by the methanol scavenging method. Combined with the detection of leached iron ions during the process, the CBZ degradation mechanism can be presumed to be heterogeneous and homogeneous photocatalytic degradation in the CFO/UV system. Furthermore, iminostilbene and acridine were detected as intermediate products by GC-MS.

  18. Selective Hydrogenation of Furfural to Furfuryl Alcohol in the Presence of a Recyclable Cobalt/SBA-15 Catalyst.

    Science.gov (United States)

    Audemar, Maïté; Ciotonea, Carmen; De Oliveira Vigier, Karine; Royer, Sébastien; Ungureanu, Adrian; Dragoi, Brindusa; Dumitriu, Emil; Jérôme, François

    2015-06-08

    The hydrogenation of furfural to furfuryl alcohol was performed in the presence of a Co/SBA-15 catalyst. High selectivity (96 %) at a conversion higher than 95 % is reported over this catalytic system. As the conversion of furfural to furfuryl alcohol occurs over metallic Co sites, the effect of reduction temperature, H2 pressure, and reaction temperature were studied. Optimum reaction conditions were: 150 °C, 1.5 h, 2.0 MPa of H2 . The catalyst was recyclable, and furfuryl alcohol was recovered with a purity higher than 90 %. The effect of the solvent concentration was also studied. With a minimum of 50 wt % of solvent, the selectivity to furfuryl alcohol and the conversion of furfural remained high (both over 80 %). Likewise, the activity of the catalyst is maintained even in pure furfural, which confirms the real potential of the proposed catalytic system. This catalyst was also used in the hydrogenation of levulinic acid to produce γ-valerolactone selectively.

  19. Development of high performance vinyl acetate monomer (VAM) catalysts

    OpenAIRE

    2009-01-01

    The focus of this study was to develop high performance catalysts for the synthesis of vinyl acetate monomer (VAM). By systematic variation of different preparation parameters a multitude of shell catalysts consisting of PdAu nanoparticles supported on a bentonite carrier was explored. In order to investigate the influence of these alterations on catalytic performance, a catalyst classification was accomplished in a high-throughput Temkin test unit by comparison with a highly efficient commer...

  20. Synthesis, Characterization, and Electrochemistry of sigma-Bonded Cobalt Corroles in High Oxidation States.

    Science.gov (United States)

    Will, Stefan; Lex, Johann; Vogel, Emanuel; Adamian, Victor A.; Van Caemelbecke, Eric; Kadish, Karl M.

    1996-09-11

    The synthesis, electrochemistry, spectroscopy, and structural characterization of two high-valent phenyl sigma-bonded cobalt corroles containing a central cobalt ion in formal +IV and +V oxidation states is presented. The characterized compounds are represented as phenyl sigma-bonded cobalt corroles, (OEC)Co(C(6)H(5)) and [(OEC)Co(C(6)H(5))]ClO(4), where OEC is the trianion of 2,3,7,8,12,13,17,18-octaethylcorrole. The electronic distribution in both molecules is discussed in terms of their NMR and EPR spectroscopic data, magnetic susceptibility, and electrochemistry.

  1. Bromoporphyrins as versatile synthons for modular construction of chiral porphyrins: cobalt-catalyzed highly enantioselective and diastereoselective cyclopropanation.

    Science.gov (United States)

    Chen, Ying; Fields, Kimberly B; Zhang, X Peter

    2004-11-17

    5,10-Bis(2',6'-dibromophenyl)porphyrins bearing various substituents at the 10 and 20 positions were demonstrated to be versatile synthons for modular construction of chiral porphyrins via palladium-catalyzed amidation reactions with chiral amides. The quadruple carbon-nitrogen bond formation reactions were accomplished in high yields with different chiral amide building blocks under mild conditions, forming a family of D2-symmetric chiral porphyrins. Cobalt(II) complexes of these chiral porphyrins were prepared in high yields and shown to be active catalysts for highly enantioselective and diastereoselective cyclopropanation under a practical one-pot protocol (alkenes as limiting reagents and no slow addition of diazo reagents).

  2. Cobalt(III) tetraaza-macrocyclic complexes as efficient catalyst for photoinduced hydrogen production in water: Theoretical investigation of the electronic structure of the reduced species and mechanistic insight.

    Science.gov (United States)

    Gueret, Robin; Castillo, Carmen E; Rebarz, Mateusz; Thomas, Fabrice; Hargrove, Aaron-Albert; Pécaut, Jacques; Sliwa, Michel; Fortage, Jérôme; Collomb, Marie-Noëlle

    2015-11-01

    We recently reported a very efficient homogeneous system for visible-light driven hydrogen production in water based on the cobalt(III) tetraaza-macrocyclic complex [Co(CR)Cl2](+) (1) (CR=2,12-dimethyl-3,7,11,17-tetra-azabicyclo(11.3.1)-heptadeca-1(17),2,11,13,15-pentaene) as a noble metal-free catalyst, with [Ru(II)(bpy)3](2+) (Ru) as photosensitizer and ascorbate/ascorbic acid (HA(-)/H2A) as a sacrificial electron donor and buffer (PhysChemChemPhys 2013, 15, 17544). This catalyst presents the particularity to achieve very high turnover numbers (TONs) (up to 1000) at pH 4.0 at a relative high concentration (0.1mM) generating a large amount of hydrogen and having a long term stability. A similar activity was observed for the aquo derivative [Co(III)(CR)(H2O)2](3+) (2) due to substitution of chloro ligands by water molecule in water. In this work, the geometry and electronic structures of 2 and its analog [Zn(II)(CR)Cl](+) (3) derivative containing the redox innocent Zn(II) metal ion have been investigated by DFT calculations under various oxidation states. We also further studied the photocatalytic activity of this system and evaluated the influence of varying the relative concentration of the different components on the H2-evolving activity. Turnover numbers versus catalyst (TONCat) were found to be dependent on the catalyst concentration with the highest value of 1130 obtained at 0.05 mM. Interestingly, the analogous nickel derivative, [Ni(II)(CR)Cl2] (4), when tested under the same experimental conditions was found to be fully inactive for H2 production. Nanosecond transient absorption spectroscopy measurements have revealed that the first electron-transfer steps of the photocatalytic H2-evolution mechanism with the Ru/cobalt tetraaza/HA(-)/H2A system involve a reductive quenching of the excited state of the photosensitizer by ascorbate (kq=2.5×10(7) M(-1) s(-1)) followed by an electron transfer from the reduced photosensitizer to the catalyst (ket=1.4×10(9) M

  3. Preparation of low-platinum-content platinum-nickel, platinum-cobalt binary alloy and platinum-nickel-cobalt ternary alloy catalysts for oxygen reduction reaction in polymer electrolyte fuel cells

    Science.gov (United States)

    Li, Mu; Lei, Yanhua; Sheng, Nan; Ohtsuka, Toshiaki

    2015-10-01

    A series of low-platinum-content platinum-nickel (Pt-Ni), platinum-cobalt (Pt-Co) binary alloys and platinum-nickel-cobalt (Pt-Ni-Co) ternary alloys electrocatalysts were successfully prepared by a three-step process based on electrodeposition technique and studied as electrocatalysts for oxygen reduction reaction (ORR) in polymer-electrolyte fuel cells. Kinetics of ORR was studied in 0.5 M H2SO4 solution on the Pt-Ni, Pt-Co and Pt-Ni-Co alloys catalysts using rotating disk electrode technique. Both the series of Pt-Ni, Pt-Co binary alloys and the Pt-Ni-Co ternary alloys catalysts exhibited an obvious enhancement of ORR activity in comparison with pure Pt. The significant promotion of ORR activities of Pt-Ni and Pt-Co binary alloys was attributed to the enhancement of the first electron-transfer step, whereas, Pt-Ni-Co ternary alloys presented a more complicated mechanism during the electrocatalysis process but a much more efficient ORR activities than the binary alloys.

  4. Interface Controlled Oxidation States in Layered Cobalt Oxide Nanoislands on Gold

    DEFF Research Database (Denmark)

    Walton, Alexander; Fester, Jakob; Bajdich, Michal

    2015-01-01

    Layered cobalt oxides have been shown to be highly active catalysts for the oxygen evolution reaction (OER; half of the catalytic “water splitting” reaction), particularly when promoted with gold. However, the surface chemistry of cobalt oxides and in particular the nature of the synergistic effect...... of gold contact are only understood on a rudimentary level, which at present prevents further exploration. We have synthesized a model system of flat, layered cobalt oxide nanoislands supported on a single crystal gold (111) substrate....

  5. Catalytic oxidation of volatile organic compounds (n-hexane, benzene, toluene, o-xylene promoted by cobalt catalysts supported on γ-Al2O3-CeO2

    Directory of Open Access Journals (Sweden)

    R. Balzer

    2014-09-01

    Full Text Available Cobalt catalysts supported on γ-alumina, ceria and γ-alumina-ceria, with 10 or 20%wt of cobalt load, prepared by the wet impregnation method and characterized by X-ray diffraction (XRD, scanning electron microscopy (SEM, field emission transmission electron microscopy (FETEM, N2 adsorption-desorption isotherms (BET/BJH methods, energy-dispersive X-ray spectroscopy (EDX, X-ray photoemission spectroscopy (XPS, O2-chemisorption and temperature programmed reduction (TPR were used to promote the oxidation of volatile organic compounds (n-hexane, benzene, toluene and o-xylene. For a range of low temperatures (50-350 °C, the activity of the catalysts with a higher cobalt load (20% wt was greater than that of the catalysts with a lower cobalt load (10% wt. The Co/γ-Al2O3-CeO2 catalytic systems presented the best performances. The results obtained in the characterization suggest that the higher catalytic activity of the Co20/γ-Al2O3-CeO2 catalyst may be attributed to the higher metal content and amount of oxygen vacancies, as well as the effects of the interaction between the cobalt and the alumina and cerium oxides.

  6. 费托合成钴基催化剂研究进展%Research progress on cobalt-based catalyst used for Fischer-Tropsch Synthesis and cause for its inactivation

    Institute of Scientific and Technical Information of China (English)

    吴梅; 张海兵

    2015-01-01

    This paper summarized the research progress on cobalt-based catalyst used for Fischer-Tropsch Synthesis and cause for its inactivation,reviewed the influence of catalyst's active components,carrier and cocatalysts on reaction activity and product selectivity,analyzed the cause for cobalt-base catalyst inactivation,and believed that the poisoning,cobalt crystal particle sintering,carbon effect,cobalt reoxidation,cobalt-carrier forming compound and mechanical wear can cause different degrees of catalyst inactivation.%综述了费托合成钴基催化剂及其失活原因的研究进展,阐述了催化剂的活性组分、载体、催化助剂等对反应活性和产物选择性的影响,分析了钴基催化剂失活原因,认为中毒、钴晶粒烧结、碳效应、钴再氧化、钴—载体形成化合物、机械磨损都会不同程度造成催化剂失活。

  7. High-Performance Monopropellants and Catalysts Evaluated

    Science.gov (United States)

    Reed, Brian D.

    2004-01-01

    The NASA Glenn Research Center is sponsoring efforts to develop advanced monopropellant technology. The focus has been on monopropellant formulations composed of an aqueous solution of hydroxylammonium nitrate (HAN) and a fuel component. HAN-based monopropellants do not have a toxic vapor and do not need the extraordinary procedures for storage, handling, and disposal required of hydrazine (N2H4). Generically, HAN-based monopropellants are denser and have lower freezing points than N2H4. The performance of HAN-based monopropellants depends on the selection of fuel, the HAN-to-fuel ratio, and the amount of water in the formulation. HAN-based monopropellants are not seen as a replacement for N2H4 per se, but rather as a propulsion option in their own right. For example, HAN-based monopropellants would prove beneficial to the orbit insertion of small, power-limited satellites because of this propellant's high performance (reduced system mass), high density (reduced system volume), and low freezing point (elimination of tank and line heaters). Under a Glenn-contracted effort, Aerojet Redmond Rocket Center conducted testing to provide the foundation for the development of monopropellant thrusters with an I(sub sp) goal of 250 sec. A modular, workhorse reactor (representative of a 1-lbf thruster) was used to evaluate HAN formulations with catalyst materials. Stoichiometric, oxygen-rich, and fuelrich formulations of HAN-methanol and HAN-tris(aminoethyl)amine trinitrate were tested to investigate the effects of stoichiometry on combustion behavior. Aerojet found that fuelrich formulations degrade the catalyst and reactor faster than oxygen-rich and stoichiometric formulations do. A HAN-methanol formulation with a theoretical Isp of 269 sec (designated HAN269MEO) was selected as the baseline. With a combustion efficiency of at least 93 percent demonstrated for HAN-based monopropellants, HAN269MEO will meet the I(sub sp) 250 sec goal.

  8. MMC-High Propylene Selectivity DCC Catalyst

    Institute of Scientific and Technical Information of China (English)

    Li Zheng; Xie Chaogang; Luo Yibin; Zhao Liuzhou; Shu Xingtian

    2007-01-01

    RIPP has developed the third generation novel DCC catalysts aimed at increasing the propylene yield, named as the MMC series catalysts. This catalyst is of the MFI structure composed of the ZSP zeolite as the main active component, which has higher capability for producing low-carbon olefins, in particular the propylene. The commercial application of this catalyst at SINOPEC Anqing Petrochemical Company has revealed that the adoption of the MMC-2 catalyst has resulted in a 1.6-4.0 percentages increase in propylene yield under basically similar conditions in terms of the feedstock property and process operating regime coupled with reduction in gasoline olefin content and increase in aromatic content to improve the gasoline quality.

  9. Ru promoted cobalt catalyst on γ-Al{sub 2}O{sub 3}: Influence of different catalyst preparation method and Ru loadings on Fischer–Tropsch reaction and kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Parnian, Mohammad Javad; Taheri Najafabadi, Ali [Catalysis and Nanostructured Materials Research Laboratory, School of Chemical Engineering, College of Engineering, University of Tehran, P.O. Box 11155/4563, Tehran (Iran, Islamic Republic of); Mortazavi, Yadollah, E-mail: mortazav@ut.ac.ir [Catalysis and Nanostructured Materials Research Laboratory, School of Chemical Engineering, College of Engineering, University of Tehran, P.O. Box 11155/4563, Tehran (Iran, Islamic Republic of); Oil and Gas Processing Center of Excellence, University of Tehran, P.O. Box 11155/4563, Tehran (Iran, Islamic Republic of); Khodadadi, Abbas Ali [Catalysis and Nanostructured Materials Research Laboratory, School of Chemical Engineering, College of Engineering, University of Tehran, P.O. Box 11155/4563, Tehran (Iran, Islamic Republic of); Oil and Gas Processing Center of Excellence, University of Tehran, P.O. Box 11155/4563, Tehran (Iran, Islamic Republic of); Nazzari, Idin [Catalysis and Nanostructured Materials Research Laboratory, School of Chemical Engineering, College of Engineering, University of Tehran, P.O. Box 11155/4563, Tehran (Iran, Islamic Republic of)

    2014-09-15

    Highlights: • Effect of impregnation order and Ru content on FT reaction is reported. • Co-impregnation of Co and Ru on Al{sub 2}O{sub 3} resulted in an improved reducibility of Co. • CoRu/Al{sub 2}O{sub 3} prepared by co-impregnation method showed a better catalytic performance. • Ru does not affect C{sub 5+} selectivity whereas the activity is enhanced considerably. • Effect of synthesis parameter on rate constant and activation energy is reported. - Abstract: Ruthenium promoted cobalt catalysts supported on γ-Al{sub 2}O{sub 3} were prepared by stepwise and co-impregnation methods. The effects of impregnation order on activity and selectivity of the Fischer–Tropsch synthesis (FTS) were investigated using fixed bed microreactor. The catalysts were characterized by TPR, XRD and TEM. The selected Ru loading was 0.15 wt.% while that of Co was 15.0 wt.% in all of the prepared samples by different order of impregnation. The catalyst prepared by co-impregnation method shifted both steps of cobalt oxide reduction temperatures to lower temperatures by about 100 °C. However, temperature shift was lower for the catalyst prepared by stepwise impregnation method. The highest CO conversion and C{sub 5+} selectivity and the lowest methane selectivity were obtained for the catalyst synthesized by co-impregnation method. Two other catalysts with 0.3 and 0.6 wt.% of Ru loadings on 15.0 wt.% Co were synthesized by co-impregnation and its effect on the FTS was investigated. The prepared catalysts showed an increase in CO conversion with the increase of Ru from 0 to 0.30 wt.%. However, further increase in Ru led to lower CO conversion for a Ru loading of 0.6 wt.%. The effects of temperature and H{sub 2}/CO ratio for all catalysts were examined and their performance modeled by a Langmuir–Hinshelwood–Hougen–Watson (LHHW) rate expression.

  10. Highly selective and active CO2 reduction electrocatalysts based on cobalt phthalocyanine/carbon nanotube hybrid structures

    Science.gov (United States)

    Zhang, Xing; Wu, Zishan; Zhang, Xiao; Li, Liewu; Li, Yanyan; Xu, Haomin; Li, Xiaoxiao; Yu, Xiaolu; Zhang, Zisheng; Liang, Yongye; Wang, Hailiang

    2017-01-01

    Electrochemical reduction of carbon dioxide with renewable energy is a sustainable way of producing carbon-neutral fuels. However, developing active, selective and stable electrocatalysts is challenging and entails material structure design and tailoring across a range of length scales. Here we report a cobalt-phthalocyanine-based high-performance carbon dioxide reduction electrocatalyst material developed with a combined nanoscale and molecular approach. On the nanoscale, cobalt phthalocyanine (CoPc) molecules are uniformly anchored on carbon nanotubes to afford substantially increased current density, improved selectivity for carbon monoxide, and enhanced durability. On the molecular level, the catalytic performance is further enhanced by introducing cyano groups to the CoPc molecule. The resulting hybrid catalyst exhibits >95% Faradaic efficiency for carbon monoxide production in a wide potential range and extraordinary catalytic activity with a current density of 15.0 mA cm−2 and a turnover frequency of 4.1 s−1 at the overpotential of 0.52 V in a near-neutral aqueous solution. PMID:28272403

  11. Highly selective and active CO2 reduction electrocatalysts based on cobalt phthalocyanine/carbon nanotube hybrid structures

    Science.gov (United States)

    Zhang, Xing; Wu, Zishan; Zhang, Xiao; Li, Liewu; Li, Yanyan; Xu, Haomin; Li, Xiaoxiao; Yu, Xiaolu; Zhang, Zisheng; Liang, Yongye; Wang, Hailiang

    2017-03-01

    Electrochemical reduction of carbon dioxide with renewable energy is a sustainable way of producing carbon-neutral fuels. However, developing active, selective and stable electrocatalysts is challenging and entails material structure design and tailoring across a range of length scales. Here we report a cobalt-phthalocyanine-based high-performance carbon dioxide reduction electrocatalyst material developed with a combined nanoscale and molecular approach. On the nanoscale, cobalt phthalocyanine (CoPc) molecules are uniformly anchored on carbon nanotubes to afford substantially increased current density, improved selectivity for carbon monoxide, and enhanced durability. On the molecular level, the catalytic performance is further enhanced by introducing cyano groups to the CoPc molecule. The resulting hybrid catalyst exhibits >95% Faradaic efficiency for carbon monoxide production in a wide potential range and extraordinary catalytic activity with a current density of 15.0 mA cm-2 and a turnover frequency of 4.1 s-1 at the overpotential of 0.52 V in a near-neutral aqueous solution.

  12. Effects of drying conditions on the synthesis of Co/SiO2 and Co/Al2O3 fischer-tropsch catalysts

    NARCIS (Netherlands)

    Munnik, Peter; Krans, Nynke A.; De Jongh, Petra E.; De Jong, Krijn P.

    2014-01-01

    The nanoscale distribution of the supported metal phase is an important property for highly active, selective, and stable catalysts. Here, the nanoscale redistribution and aggregate formation of cobalt nitrate during the synthesis of supported cobalt catalysts were studied. Drying over a range of te

  13. Highly sensitive silicon microreactor for catalyst testing

    DEFF Research Database (Denmark)

    Henriksen, Toke Riishøj; Olsen, Jakob Lind; Vesborg, Peter Christian Kjærgaard;

    2009-01-01

    by directing the entire gas flow through the catalyst bed to a mass spectrometer, thus ensuring that nearly all reaction products are present in the analyzed gas flow. Although the device can be employed for testing a wide range of catalysts, the primary aim of the design is to allow characterization of model...... catalysts which can only be obtained in small quantities. Such measurements are of significant fundamental interest but are challenging because of the low surface areas involved. The relationship between the reaction zone gas flow and the pressure in the reaction zone is investigated experimentally......, it is found that platinum catalysts with areas as small as 15 mu m(2) are conveniently characterized with the device. (C) 2009 American Institute of Physics. [doi:10.1063/1.3270191]...

  14. Design and synthesis of copper-cobalt catalysts for the selective conversion of synthesis gas to ethanol and higher alcohols.

    Science.gov (United States)

    Prieto, Gonzalo; Beijer, Steven; Smith, Miranda L; He, Ming; Au, Yuen; Wang, Zi; Bruce, David A; de Jong, Krijn P; Spivey, James J; de Jongh, Petra E

    2014-06-16

    Combining quantum-mechanical simulations and synthesis tools allows the design of highly efficient CuCo/MoO(x) catalysts for the selective conversion of synthesis gas (CO+H2) into ethanol and higher alcohols, which are of eminent interest for the production of platform chemicals from non-petroleum feedstocks. Density functional theory calculations coupled to microkinetic models identify mixed Cu-Co alloy sites, at Co-enriched surfaces, as ideal for the selective production of long-chain alcohols. Accordingly, a versatile synthesis route is developed based on metal nanoparticle exsolution from a molybdate precursor compound whose crystalline structure isomorphically accommodates Cu(2+) and Co(2+) cations in a wide range of compositions. As revealed by energy-dispersive X-ray nanospectroscopy and temperature-resolved X-ray diffraction, superior mixing of Cu and Co species promotes formation of CuCo alloy nanocrystals after activation, leading to two orders of magnitude higher yield to high alcohols than a benchmark CuCoCr catalyst. Substantiating simulations, the yield to high alcohols is maximized in parallel to the CuCo alloy contribution, for Co-rich surface compositions, for which Cu phase segregation is prevented.

  15. Hydrogenation Reactions of CO and CO2: New Insights through In Situ X-ray Spectroscopy and Chemical Transient Kinetics Experiments on Cobalt Catalysts

    Science.gov (United States)

    Ralston, Walter Thomas

    The catalytic hydrogenations of CO and CO2 to more useful chemicals is not only beneficial in producing more valuable products and reducing dependence on fossil fuels, but present a scientific challenge in how to control the selectivity of these reactions. Using colloidal chemistry techniques, a high level of control over the synthesis of nanomaterials can be achieved, and by exploiting this fact a simple model system can be realized to understand the reaction of CO and CO2 on a molecular level. Specifically, this dissertation focuses on understanding cobalt materials for the conversion of CO and CO2 into more useful, valuable chemicals. Colloidally prepared cobalt nanoparticles with a narrow size distribution were supported in mesoporous SiO2 and TiO2 to study the effect of the support on the Co catalyzed hydrogenation of CO and CO2. The 10nm Co/SiO2 and Co/TiO2 catalysts were tested for CO and CO2 hydrogenation at 5 bar with a ratio to hydrogen of 1:2 and 1:3, respectively. In addition, the effect of Co oxidation state was studied by using different reduction pretreatment temperatures (250°C and 450°C). The results showed that for both hydrogenation reactions, Co/TiO2 had a high activity at both reduction temperatures compared to Co/SiO2. However, unlike Co/SiO2 which showed higher activity after 450°C reduction, Co/TiO2 had a higher activity after reduction at 250°C. Through synchrotron x-ray spectroscopy, it was concluded that the TiO2 was wetting the Co particle at higher reduction temperatures and dewetting at lower reduction temperatures. In addition to the wetting, CoO was observed to be the surface species on Co/TiO2 catalyst after reduction at low temperatures, which catalyzed both CO and CO2 hydrogenation reactions with higher activity than the Co metal obtained after reduction at 450°C. Classical steady-state measurements are limited in so much as they are often unable to provide information on individual reaction steps in complex reaction pathways

  16. Toward Highly Efficient Electrocatalyst for Li-O{sub 2} Batteries Using Biphasic N-Doping Cobalt@Graphene Multiple-Capsule Heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Guoqiang; Chong, Lina; Amine, Rachid; Lu, Jun; Liu, Cong; Yuan, Yifei; Wen, Jianguo; He, Kun; Bi, Xuanxuan; Guo, Yuanyuan; Wang, Hsien-Hau; Miller, Dean J.; Liu, Dijia; Amine, Khalil

    2017-05-01

    For the promotion of lithium oxygen batteries available for :practical applications, the development of advanced cathode catalysts with low-high activity, and stable structural properties is demanded. Such development is rooted on certain intelligent catalyst-electrode design that fundamentally facilitates electronic and ionic transport and improves oxygen diffusivity in a porous environment. Here we design a biphasic nitrogen-doped cobalt@grapbene Multiple-capsule heterostructure, combined with a flexible, stable porous electrode architecture, and apply it as promising cathodes for lithium oxygen cells. 'The biphasic nitrogen-doping feature improves the electric conductivity and catalytic activity; the multiple-nanocapsule configuration makes high/uniform electroactive zones possible; furthermore the colander-like porous electrode facilitates the oxygen diffusion, catalytic reaction,and stable deposition of discharge products. As a result, the electrode exhibits much improved electrocatalytic properties associated with unique morphologies of electrochemically grown lithium peroxides.

  17. Catalytic Behaviour of Mesoporous Cobalt-Aluminum Oxides for CO Oxidation

    Directory of Open Access Journals (Sweden)

    Ankur Bordoloi

    2014-01-01

    Full Text Available Ordered mesoporous materials are promising catalyst supports due to their uniform pore size distribution, high specific surface area and pore volume, tunable pore sizes, and long-range ordering of the pore packing. The evaporation-induced self-assembly (EISA process was applied to synthesize mesoporous mixed oxides, which consist of cobalt ions highly dispersed in an alumina matrix. The characterization of the mesoporous mixed cobalt-aluminum oxides with cobalt loadings in the range from 5 to 15 wt% and calcination temperatures of 673, 973, and 1073 K indicates that Co2+ is homogeneously distributed in the mesoporous alumina matrix. As a function of the Co loading, different phases are present comprising poorly crystalline alumina and mixed cobalt aluminum oxides of the spinel type. The mixed cobalt-aluminum oxides were applied as catalysts in CO oxidation and turned out to be highly active.

  18. Performance of Cobalt-Based Fischer-Tropsch Synthesis Catalysts Using Dielectric-Barrier Discharge Plasma as an Alternative to Thermal Calcination%Performance of Cobalt-Based Fischer-Tropsch Synthesis Catalysts Using Dielectric-Barrier Discharge Plasma as an Alternative to Thermal Calcination

    Institute of Scientific and Technical Information of China (English)

    白素丽; 黄承都; 吕静; 李振花

    2012-01-01

    Co-based catalysts were prepared by using dielectric-barrier discharge (DBD) plasma as an alternative method to conventional thermal calcination. The characterization results of N2-physisorption, temperature programmed reduction (TPR), transmission electron microscope (TEM), and X-ray diffraction (XRD) indicated that the catalysts prepared by DBD plasma had a higher specific surface area, lower reduction temperature, smaller particle size and higher cobalt dispersion as compared to calcined catalysts. The DBD plasma method can prevent the sintering and aggregation of active particles on the support due to the decreased treatment time (0.5 h) at lower temperature compared to the longer thermal calcination at higher temperature (at 500~C for 5 h). As a result, the catalytic performance of the Fischer-Tropsch synthesis on DBD plasma treated Co/Si02 catalyst showed an enhanced activity, C5+ selectivity and catalytic stability as compared to the conventional thermal calcined Co/SiO2 catalyst.

  19. High performance, high durability non-precious metal fuel cell catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Thomas E.; Atanasoski, Radoslav; Schmoeckel, Alison K.

    2016-03-15

    This invention relates to non-precious metal fuel cell cathode catalysts, fuel cells that contain these catalysts, and methods of making the same. The fuel cell cathode catalysts are highly nitrogenated carbon materials that can contain a transition metal. The highly nitrogenated carbon materials can be supported on a nanoparticle substrate.

  20. High-purity cobalt thin films with perpendicular magnetic anisotropy prepared by chemical vapor deposition

    Science.gov (United States)

    Ootera, Yasuaki; Shimada, Takuya; Kado, Masaki; Quinsat, Michael; Morise, Hirofumi; Nakamura, Shiho; Kondo, Tsuyoshi

    2015-11-01

    A study of the chemical vapor deposition (CVD) of high-purity cobalt thin films is described. The Co layer prepared by a thermal CVD technique with a Pt/Ta underlayer and a Pt cap layer shows a saturation magnetization (Ms) of ∼1.8 T and perpendicular magnetic anisotropy (PMA) with an anisotropy energy (Ku) of ∼105 J/m3. The cobalt thickness dependence of Ku reveals that the interfacial anisotropy at the Pt/Co interface is most likely the origin of the obtained PMA.

  1. Highly Stereoselective Heterogeneous Diene Polymerization by Co-MFU-4l: A Single-Site Catalyst Prepared by Cation Exchange.

    Science.gov (United States)

    Dubey, Romain J-C; Comito, Robert J; Wu, Zhenwei; Zhang, Guanghui; Rieth, Adam J; Hendon, Christopher H; Miller, Jeffrey T; Dincă, Mircea

    2017-09-13

    Molecular catalysts offer tremendous advantages for stereoselective polymerization because their activity and selectivity can be optimized and understood mechanistically using the familiar tools of organometallic chemistry. Yet, this exquisite control over selectivity comes at an operational price that is generally not justifiable for the large-scale manufacture of polyfolefins. In this report, we identify Co-MFU-4l, prepared by cation exchange in a metal-organic framework, as a solid catalyst for the polymerization of 1,3-butadiene with high stereoselectivity (>99% 1,4-cis). To our knowledge, this is the highest stereoselectivity achieved with a heterogeneous catalyst for this transformation. The polymer's low polydispersity (PDI ≈ 2) and the catalyst's ready recovery and low leaching indicate that our material is a structurally resilient single-site heterogeneous catalyst. Further characterization of Co-MFU-4l by X-ray absorption spectroscopy provided evidence for discrete, tris-pyrazolylborate-like coordination of Co(II). With this information, we identify a soluble cobalt complex that mimics the structure and reactivity of Co-MFU-4l, thus providing a well-defined platform for studying the catalytic mechanism in the solution phase. This work underscores the capacity for small molecule-like tunability and mechanistic tractability available to transition metal catalysis in metal-organic frameworks.

  2. Selective adsorption of manganese onto cobalt for optimized Mn/Co/TiO2 Fischer-Tropsch catalysts

    NARCIS (Netherlands)

    Feltes, T.E.; Espinosa-Alonso, L.; de Smit, E.; D'Souza, L.; Meyer, R.J.; Weckhuysen, B.M.; Regalbuto, J.R.

    2013-01-01

    The Strong Electrostatic Adsorption (SEA) method was applied to the rational design of a promoted Co catalyst for Fischer–Tropsch (FT) synthesis. A series of Mn/Co/TiO2 catalysts were prepared by selective deposition of the [MnO4] anion onto the supported Co3O4 phase. Qualitative ICP-OES and XPS mea

  3. Critical phenomena in ethylbenzene oxidation in acetic acid solution at high cobalt(II) concentrations

    NARCIS (Netherlands)

    Gavrichkov, AA; Zakharov, [No Value

    2005-01-01

    Critical phenomena in ethylbenzene oxidation in an acetic acid solution at high cobalt(ill) concentrations (from 0.01 to 0.2 mol L-1) were studied at 60-90 degrees C by the gasometric (O-2 absorption), spectrophotometric (Co-III accumulation), and chemiluminescence (relative concentration of radical

  4. Pudding-typed cobalt sulfides/nitrogen and sulfur dual-doped hollow carbon spheres as a highly efficient and stable oxygen reduction electrocatalyst

    Science.gov (United States)

    Xiao, Junwu; Zhao, Chen; Hu, Chencheng; Xi, Jiangbo; Wang, Shuai

    2017-04-01

    Metal organic frameworks (MOFs) are rarely reported to be grown at the templates due to the strong inherent driving force for crystallization. Herein, we report a pathway to successfully synthesize Zeolitic imidazolate framework-67 (ZIF-67) grown at the unmodified SiO2 spheres from amorphous precursors, and further construct Pudding-typed electrocatalysts, where cobalt sulfides (CoSx) nanocrystals are embedded into nitrogen and sulfur dual-doped hollow carbon spheres (N, S-HCS). CoSx/N, S-HCS show good catalytic activity toward the oxygen reduction reaction (ORR), and the optimized performance is achieved with (CoSx/N, S-HCS)700 with the positive half-wave potentials of 0.90 V vs RHE, high selectivity, good long-term stability, and excellent tolerance against methanol-crossover effect in alkaline medium, which are even superior to that of the as-reported MOFs-derived catalysts and commercial Pt/C catalysts. The remarkable catalytic performance is originated from high reactivity of catalytic active sites composed of cobalt sulfides and nitrogen and sulfur dual-doped carbon matrices, and Pudding-typed hollow structure with proper graphitization degree to facilitate fast electron and ion transport and limit the dissolution and agglomeration of active sites during long-term operation.

  5. A novel fused iron catalyst for ammonia synthesis promoted with rare earth gangue

    Institute of Scientific and Technical Information of China (English)

    YU Xiujin; LIN Bingyu; LIN Jianxin; WANG Rong; WEI Kemei

    2008-01-01

    Rare earth gangue, which mainly consists of mixtures of fight rare earths such as lanthana, ceda, neodymium oxide and praseo-dymium oxide, was used as the promoter of fused iron catalysts for ammonia synthesis. The result showed that the activity of the catalyst promoted with rare earth gangue was comparable with those of commercial iron catalysts with high amount of cobalt. The role of rare earths was owed to their advantages for favoring the deep reduction of the main composite in catalyst, i.e., iron oxide. This finding indicated that the use of rare earth gangue could decrease the content of cobalt or even completely replace cobalt, which was used to be regarded as unsub-stitutable promoters for high performance ammonia catalyst; therefore, the cost of fused iron catalysts would decrease significantly.

  6. CATALYSTS FOR HIGH CETANE ETHERS AS DIESEL FUELS

    Energy Technology Data Exchange (ETDEWEB)

    Kamil Klier; Richard G. Herman; Heock-Hoi Kwon; James G. C. Shen; Qisheng Ma; Robert A. Hunsicker; Andrew P. Butler; Scott J. Bollinger

    2003-03-01

    A tungstena-zirconia (WZ) catalyst has been investigated for coupling methanol and isobutanol to unsymmetrical ethers, i.e. methyl isobutyl ether (MIBE) and compared with earlier studied sulfated-zirconia (SZ) and Nafion-H catalysts. In all cases, the ether synthesis mechanism is a dual site S{sub N}2 process involving competitive adsorption of reactants on proximal acid sites. At low reaction temperatures, methylisobutylether (MIBE) is the predominant product. However, at temperatures >135 C the WZ catalyst is very good for dehydration of isobutanol to isobutene. The surface acid sites of the WZ catalyst and a Nafion-H catalyst were diagnosed by high resolution X-ray photoelectron spectroscopy (XPS) of N 1s shifts after adsorption of amines. Using pyridine, ethylenediamine, and triethylamine, it is shown that WZ has heterogeneous strong Broensted acid sites. Theoretical study located the transition state of the alcohol coupling reaction on proximal Broensted acid sites and accounted well for XPS core-level shifts upon surface acid-base interactions. While computations have not been carried out with WZ, it is shown that the SZ catalyst is a slightly stronger acid than CF{sub 3}SO{sub 3}H (a model for Nafion-H) by 1.3-1.4 kcal/mol. A novel sulfated zirconia catalyst having proximal strong Broensted acid sites was synthesized and shown to have significantly enhanced activity and high selectivity in producing MIBE or isobutene from methanol/isobutanol mixtures. The catalyst was prepared by anchoring 1,2-ethanediol bis(hydrogen sulfate) salt precursor onto zirconium hydroxide, followed by calcination to remove the -(CH{sub 2}CH{sub 2})- bridging residues.

  7. CO2 Reforming of CH4 over Nickel and Cobalt Catalysts Prepared from La-Based Perovskite Precursors

    Institute of Scientific and Technical Information of China (English)

    Jianjun Guo; Hui Lou; Yinghong Zhu; Xiaoming Zheng

    2003-01-01

    Four perovskite-type complex oxides (LaNiO3, La2NiO4, LaCoO3 and La2CoO4) were suc-cessfully prepared using two sol-gel methods, the Pechini method (PC) and the citric acid complexingmethod (CC). The catalysts were characterized by XRD and TPR. After reduction, the activity of thecatalysts in the CO2 reforming of methane was tested. Ni-based catalysts from La2NiO4 precursors werethe most active and stable catalyst after calcination above 850 ℃, which gave a methane conversion of0.025 mmol/(g@s) for those prepared by the PC method and 0.020 mmol/(g.s) by the CC method. Itwas proposed that the well-defined structure and lower reducibility is responsible for the unusual catalyticbehavior observed over the pre-reduced La2NiO4 catalyst.

  8. Cobalt salophen complex supported on magnetic nanoparticles as an efficient reusable catalyst for oxidation of benzylic alcohols

    Directory of Open Access Journals (Sweden)

    Mozhgan Afshari

    2014-01-01

    Full Text Available A novel and general method has been developed for oxidation of benzylic alcohols using magnetic nanoparticles immobilized salophen Co(II as an efficient and recyclable catalyst. The structural and magnetic properties of catalyst are identified by transmission electron microscopy (TEM, vibrating sample magnetometer (VSM instruments. FT-IR, and XRD. Nanocatalyst can be easily recovered by a magnetic field and reused for subsequent reactions for at least 5 times with less deterioration in catalytic activity.

  9. Correlation between Fischer-Tropsch catalytic activity and composition of catalysts

    Directory of Open Access Journals (Sweden)

    Subbarao Duvvuri

    2011-11-01

    Full Text Available Abstract This paper presents the synthesis and characterization of monometallic and bimetallic cobalt and iron nanoparticles supported on alumina. The catalysts were prepared by a wet impregnation method. Samples were characterized using temperature-programmed reduction (TPR, temperature-programmed oxidation (TPO, CO-chemisorption, transmission electron microscopy (TEM, field emission scanning electron microscopy (FESEM-EDX and N2-adsorption analysis. Fischer-Tropsch synthesis (FTS was carried out in a fixed-bed microreactor at 543 K and 1 atm, with H2/CO = 2 v/v and space velocity, SV = 12L/g.h. The physicochemical properties and the FTS activity of the bimetallic catalysts were analyzed and compared with those of monometallic cobalt and iron catalysts at similar operating conditions. H2-TPR analysis of cobalt catalyst indicated three temperature regions at 506°C (low, 650°C (medium and 731°C (high. The incorporation of iron up to 30% into cobalt catalysts increased the reduction, CO chemisorption and number of cobalt active sites of the catalyst while an opposite trend was observed for the iron-riched bimetallic catalysts. The CO conversion was 6.3% and 4.6%, over the monometallic cobalt and iron catalysts, respectively. Bimetallic catalysts enhanced the CO conversion. Amongst the catalysts studied, bimetallic catalyst with the composition of 70Co30Fe showed the highest CO conversion (8.1% while exhibiting the same product selectivity as that of monometallic Co catalyst. Monometallic iron catalyst showed the lowest selectivity for C5+ hydrocarbons (1.6%.

  10. Boron nitride: A high potential support for combustion catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Postole, G. [Institut de Recherches sur la Catalyse, CNRS, 69626 Villeurbanne Cedex (France); ' I.G.Murgulescu' Institute of Physical Chemistry of the Romanian Academy Spl. Independentei 202, 060041 Bucharest (Romania); Caldararu, M. [' I.G.Murgulescu' Institute of Physical Chemistry of the Romanian Academy Spl. Independentei 202, 060041 Bucharest (Romania); Ionescu, N.I. [' I.G.Murgulescu' Institute of Physical Chemistry of the Romanian Academy Spl. Independentei 202, 060041 Bucharest (Romania); Bonnetot, B. [Laboratoire des Multimateriaux et Interfaces, UMR CNRS 5615, bat Berthollet, UCB Lyon I, 69622 Villeurbanne Cedex (France); Auroux, A. [Institut de Recherches sur la Catalyse, CNRS, 69626 Villeurbanne Cedex (France)]. E-mail: auroux@catalyse.cnrs.fr; Guimon, C. [LCPM, 2 Av. President Angot, 64053 Pau Cedex 9 (France)

    2005-08-15

    High surface area BN powders have been prepared from different precursors to be used as supports for noble metal catalysts. The more suitable boron nitride powders were obtained using polytrichoroborazine, pTCB, as precursor, leading to a surface area higher than 150 m{sup 2}/g. The BN powders were characterized by XRD, XPS, TG, SEM and adsorption microcalorimetry measurements (aniline and ammonia). The preliminary results showed a remarkable stability of the BN supports, even in the presence of moisture. Palladium impregnation of the BN powders was performed using a classical method and the obtained catalysts exhibited a high dispersion with Pd particles of about 4 nm.

  11. Catalyst for the oxidation of sulfur-containing compounds based on a polyamide membrane modified with cobalt phthalocyanine

    Science.gov (United States)

    Ziyadova, T. M.; Burmistrov, V. A.; Maizlish, V. E.; Koifman, O. I.

    2017-03-01

    The catalytic activity of phthalocyanine metal complex immobilized on the surface of a porous polyamide membrane is studied in the oxidation reaction of n-propyl mercaptan. Since noncatalytic oxidation is possible in the presence of oxygen, the kinetics of n-propyl mercaptan oxidation is analyzed as its aqueous alkaline solution passes through unmodified membranes. Characteristics of the catalyst's performance are selected to evaluate the efficiency of the catalytic process. It is shown that the modified membranes with pore diameters of 1 and 2 μm are the most effective catalysts.

  12. Lanthanum(III) catalysts for highly efficient and chemoselective transesterification.

    Science.gov (United States)

    Hatano, Manabu; Ishihara, Kazuaki

    2013-03-11

    A facile, atom-economical, and chemoselective esterification is crucial in modern organic synthesis, particularly in the areas of pharmaceutical, polymer, and material science. However, a truly practical catalytic transesterification of carboxylic esters with various alcohols has not yet been well established, since, with many conventional catalysts, the substrates are limited to 1°- and cyclic 2°-alcohols. In sharp contrast, if we take advantage of the high catalytic activities of La(Oi-Pr)(3), La(OTf)(3), and La(NO(3))(3) as ligand-free catalysts, ligand-assisted or additive-enhanced lanthanum(III) catalysts can be highly effective acid-base combined catalysts in transesterification. A highly active dinuclear La(III) catalyst, which is prepared in situ from lanthanum(III) isopropoxide and 2-(2-methoxyethoxy)ethanol, is effective for the practical transesterification of methyl carboxylates, ethyl acetate, weakly reactive dimethyl carbonate, and much less-reactive methyl carbamates with 1°-, 2°-, and 3°-alcohols. As the second generation, nearly neutral "lanthanum(III) nitrate alkoxide", namely La(OR)(m)(NO(3))(3-m), has been developed. This catalyst is prepared in situ from inexpensive, stable, low-toxic lanthanum(III) nitrate hydrate and methyltrioctylphosphonium methyl carbonate, and is highly useful in the non-epimerized transesterification of α-substituted chiral carboxylic esters, even under azeotropic reflux conditions. In these practical La(III)-catalyzed transesterifications, colorless esters can be obtained in small- to large-scale synthesis without the need for inconvenient work-up or careful purification procedures.

  13. Slurry phase Fischer-Tropsch synthesis: Cobalt plus a water-gas shift catalyst. [Quarterly] report, July 1, 1990--September 30, 1990

    Energy Technology Data Exchange (ETDEWEB)

    Chanenchuk, C.A.; Yates, I.C.; Satterfield, C.N.

    1990-12-31

    A Co/MgO/SiO{sub 2} Fischer-Tropsch catalyst was operated simultaneously with a Cu/ZnO/Al{sub 2}O{sub 3} water-gas-shift catalyst in a slurry reactor for over 400 hours. The process conditions were held constant at a temperature of 240{degrees}C, a pressure of 0.79 MPa, and a 1.1 H{sub 2}/CO feed of 0.065 Nl/min-g.cat. The Fischer-Tropsch activity remained constant at the level predicted by the operation of the Co/MgO/SiO{sub 2} catalyst alone. The water-gas-shift reaction was near equilibrium. The hydrocarbon product distribution of the combined catalyst system was stable and matched that of the CO/MgO/SiO{sub 2} operating alone under similar conditions. The combined catalyst system exhibited a high selectivity to n-alkanes. Neither catalysts`s operation appeared to have a detrimental effect on that of the other, showing promise for future option.

  14. Silicon carbide coated with TiO2 with enhanced cobalt active phase dispersion for Fischer-Tropsch synthesis.

    Science.gov (United States)

    Liu, Yuefeng; Florea, Ileana; Ersen, Ovidiu; Pham-Huu, Cuong; Meny, Christian

    2015-01-04

    The introduction of a thin layer of TiO2 on β-SiC allows a significant improvement of the cobalt dispersion. This catalyst exhibits an excellent and stable catalytic activity for the Fischer-Tropsch synthesis (FTS) with high C5+ selectivity, which contributes to the development of a new active catalyst family in the gas-to-liquid process.

  15. Control and impact of the nanoscale distribution of supported cobalt particles used in fischer-tropsch catalysis

    NARCIS (Netherlands)

    Munnik, Peter; De Jongh, Petra E.; De Jong, Krijn P.

    2014-01-01

    The proximity of nanoparticles may affect the performance, in particular the stability, of supported metal catalysts. Short interparticle distances often arise during catalyst preparation by formation of aggregates. The cause of aggregation of cobalt nanoparticles during the synthesis of highly load

  16. In situ cobalt-cobalt oxide/N-doped carbon hybrids as superior bifunctional electrocatalysts for hydrogen and oxygen evolution.

    Science.gov (United States)

    Jin, Haiyan; Wang, Jing; Su, Diefeng; Wei, Zhongzhe; Pang, Zhenfeng; Wang, Yong

    2015-02-25

    Remarkable hydrogen evolution reaction (HER) or superior oxygen evolution reaction (OER) catalyst has been applied in water splitting, however, utilizing a bifunctional catalyst for simultaneously generating H2 and O2 is still a challenging issue, which is crucial for improving the overall efficiency of water electrolysis. Herein, inspired by the superiority of carbon conductivity, the propitious H atom binding energy of metallic cobalt, and better OER activity of cobalt oxide, we synthesized cobalt-cobalt oxide/N-doped carbon hybrids (CoOx@CN) composed of Co(0), CoO, Co3O4 applied to HER and OER by simple one-pot thermal treatment method. CoOx@CN exhibited a small onset potential of 85 mV, low charge-transfer resistance (41 Ω), and considerable stability for HER. Electrocatalytic experiments further indicated the better performance of CoOx@CN for HER can be attributed to the high conductivity of carbon, the synergistic effect of metallic cobalt and cobalt oxide, the stability of carbon-encapsulated Co nanoparticles, and the introduction of electron-rich nitrogen. In addition, when used as catalysts of OER, the CoOx@CN hybrids required 0.26 V overpotential for a current density of 10 mA cm(-2), which is comparable even superior to many other non-noble metal catalysts. More importantly, an alkaline electrolyzer that approached ∼20 mA cm(-2) at a voltage of 1.55 V was fabricated by applying CoOx@CN as cathode and anode electrocatalyst, which opened new possibilities for exploring overall water splitting catalysts.

  17. Durable Catalysts for High Temperature Proton Exchange Membrane Fuel Cells

    DEFF Research Database (Denmark)

    Durability of proton exchange membrane fuel cells (PEMFCs) is recognized as one of the most important issues to be addressed before the commercialization. The failure mechanisms are not well understood, however, degradation of carbon supported noble metal catalysts is identified as a major failure...... corrosion, in turn, triggers the agglomeration of platinum particles resulting in reduction of the active surface area and catalytic activity. This is a major mechanism of the catalyst degradation and a key challenge to the PEMFC long-term durability. High temperature PEMFC, on the other hand, has attached...... the selectivity for platinum loading. Fuel cell durability tests in term of performance degradation were performed with acid doped polybenzimidazole membrane fuel cells at temperatures of up to 160°C. The tests were focused on catalyst degradation by means of a potential cycling protocol. The electrochemical...

  18. The consortium of heterogeneous cobalt phthalocyanine catalyst and bicarbonate ion as a novel platform for contaminants elimination based on peroxymonosulfate activation.

    Science.gov (United States)

    Huang, Zhenfu; Yao, Yuyuan; Lu, Jiateng; Chen, Chenhui; Lu, Wangyang; Huang, Sanqing; Chen, Wenxing

    2016-01-15

    The design of catalytic oxidation processes with high efficiency has attracted considerable attention for a long while in environmental catalysis. In this work, a novel oxidation system, CFs-CoPc/PMS, was developed by coupling cellulosic fibers-bonded cobalt phthalocyanine (CFs-CoPc) with peroxymonosulfate (PMS). CFs-CoPc/PMS system could effectively decolorize azo dyes such as Acid Red 1 (AR1) with almost 100% decolorization efficiency in 35 min, suggesting that the CFs-CoPc/PMS system was a highly efficient oxidation process. In addition, bicarbonate ion (HCO3(-)) was further introduced to CFs-CoPc/PMS to construct a combined system, CFs-CoPc/PMS/HCO3(-). Remarkably, this system turned the negative effect of HCO3(-) observed in most reported Co/PMS systems into a positive one, which enhanced the AR1 decolorization with over 2-fold increase of the rate constant. The main factor responsible for the enhancement was high-valent cobalt-oxo intermediates (PcCo(IV)=O), which was presumably generated via the heterolytic cleavage of the PMS OO bond by CoPc-HCO3(-) complex. It is noteworthy that high-valent cobalt-oxo intermediates as the major active species is different from most reported mechanisms in Co/PMS systems, in which hydroxyl and sulfate radicals are recognized as the dominant active species. This study paves an avenue for developing highly efficient catalytic oxidation technology for wastewater remediation. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Metastable cobalt nitride structures with high magnetic anisotropy for rare-earth free magnets.

    Science.gov (United States)

    Zhao, Xin; Ke, Liqin; Wang, Cai-Zhuang; Ho, Kai-Ming

    2016-11-23

    Metastable structures of cobalt nitrides and Fe-substituted cobalt nitrides are explored as possible candidates for rare-earth free permanent magnets. Through crystal structure searches using an adaptive genetic algorithm, new structures of ConN (n = 3…8) are found to have lower energies than those previously discovered by experiments. Some structures exhibit large magnetic anisotropy energy, reaching as high as 200 μeV per Co atom (or 2.45 MJ m(-3)) based on first-principles density functional calculation. Substituting a fraction of Co with Fe helps in stabilizing new structures and at the same time further improves the magnetic properties. Our theoretical predictions provide useful insights into a promising system for the discovery of new rare-earth free magnets by experiment.

  20. Facile and large-scale synthesis of high quality few-layered graphene nano-platelets via methane decomposition over unsupported iron family catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Awadallah, Ahmed E., E-mail: ahmedelsayed_epri@yahoo.com [Process Development Division, Egyptian Petroleum Research Institute, 11727 Cairo (Egypt); Aboul-Enein, Ateyya A. [Process Development Division, Egyptian Petroleum Research Institute, 11727 Cairo (Egypt); Kandil, Usama F. [Petroleum Application Department, Egyptian Petroleum Research Institute, 11727 Cairo (Egypt); Taha, Mahmoud Reda [Department of Civil Engineering, University of New Mexico, Albuquerque, NM 87131 (United States)

    2017-04-15

    High quality few-layered graphene nano-platelets (GNPs) were successfully prepared via catalytic chemical vapor deposition of methane under ambient pressure using substrate-free unsupported iron, cobalt, and nickel metallic sheets as catalysts. The bulk catalysts were prepared via combustion method using citric acid as a fuel. Various analytical techniques, including high-resolution transmission electron microscopy (TEM), X-ray diffraction (XRD), thermogravimetric analysis (TGA), temperature programmed reduction (TPR) and Raman spectroscopy were employed to characterize the fresh and reduced catalysts and to identify the morphological structure of the as-grown GNPs. TEM images of the reduced metal catalysts showed that polycrystalline metallic sheets were easily produced after complete reduction of unsupported metal oxides. The data demonstrated that the formation of zero-valent metallic sheets could effectively promote the growth of GNPs on their surfaces. The unsupported Ni catalyst exhibits higher catalytic growth activity in terms of GNPs yield (254 wt%) compared with all other catalysts. Raman spectra and TEM results established that a few layers of GNPs with high crystallinity and good graphitization were produced. TGA results further demonstrated that the as-grown GNPs exhibit significantly higher thermal stability in air atmosphere compared with other synthesis methods. - Highlights: • Few-layered graphene nanoplatelets were prepared via methane catalytic decomposition. • Metallic sheets of iron group metals were used as novel catalysts. • The surfaces of metallic sheets were found to be very effective for GNPs growth. • The number of layers is dependent on the morphological structure of the catalysts. • The unsupported metallic Ni catalyst exhibited higher catalytic growth activity.

  1. An Efficient and Stable Hydrophobic Molecular Cobalt Catalyst for Water Electro-oxidation at Neutral pH

    KAUST Repository

    Chen, Ba-Tian

    2016-06-14

    The synthesis of a library of molecular water oxidation catalysts based on the Co complex of tris(2-benzimidazolylmethyl)amine is described. Hydrophobicity was identified as the key variable in mediating the catalytic competence of the complexes. The change in this parameter correlates with both the conformational mobility of the ligand core and the structural changes in the local solvent environment around the metal site. The optimal Co complex identified is hydrophobic, because of three semifluorinated side chains. It catalyzes water electro-oxidation efficiently at neutral pH, with an overpotential of 390 mV and a turnover frequency (TOF) of 1.83 s-1 in the absence of soluble Co salts. The catalyst can be immobilized through physisorption, and it remains stable in prolonged electrolysis experiments. © 2016 American Chemical Society.

  2. Mechanistic studies of the oxygen evolution reaction by a cobalt-phosphate catalyst at neutral pH.

    Science.gov (United States)

    Surendranath, Yogesh; Kanan, Matthew W; Nocera, Daniel G

    2010-11-24

    The mechanism of the oxygen evolution reaction (OER) by catalysts prepared by electrodepositions from Co(2+) solutions in phosphate electrolytes (Co-Pi) was studied at neutral pH by electrokinetic and (18)O isotope experiments. Low-potential electrodepositions enabled the controlled preparation of ultrathin Co-Pi catalyst films (oxygen from water in neutral solutions. The electrochemical rate law exhibits an inverse first order dependence on proton activity and a zeroth order dependence on phosphate for [Pi] ≥ 0.03 M. In the absence of phosphate buffer, the Tafel slope is increased ∼3-fold and the overall activity is greatly diminished. Together, these electrokinetic studies suggest a mechanism involving a rapid, one electron, one proton equilibrium between Co(III)-OH and Co(IV)-O in which a phosphate species is the proton acceptor, followed by a chemical turnover-limiting process involving oxygen-oxygen bond coupling.

  3. Hydrogenation of carbon monoxide over the mixed catalysts composed of cobalt-nickel/manganese oxide-zirconium oxide and zeolite catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Ishihara, Tatsumi; Iwakuni, Hideharu; Eguchi, Koichi; Arai, Hiromichi (Kyushu Univ., Fukuoka (Japan))

    1991-08-15

    Mechanical mixtures of Co-Ni/MnO-ZrO2 and zeolite were used as catalysts for the selective synthesis of gasoline by carbon monoxide hydrogenation. Formation of branched alkanes was promoted, but that of hydrocarbons higher than a carbon number of 10 was suppressed by a combination with zeolite. The reactivity of zeolite for higher hydrocarbons has the decisive role in the product distribution as result of using these mixed catalysts, and thus the product distribution strongly depends on the type of zeolite. Since the hydrogenolysis of higher hydrocarbons proceeds on the strong acid sites, the formation of branched alkanes was promoted by increasing the aluminium content in the zeolite. Ammonia temperature-programmed desorption suggests that increasing the aluminium content in the zeolite increases the number of strong acid sites, but weakens the average strength of the acid sites. Pentasil zeolite with an aluminium content of 1.32 mmolg{sup -1} is effective for enhancing the yield of gasoline as well as its octane number. 8 figs., 1 tab., 20 refs.

  4. Elasticity of hcp cobalt at high pressure and temperature: a quasi-harmonic case

    Energy Technology Data Exchange (ETDEWEB)

    Antonangeli, D; Krisch, M; Farber, D L; Ruddle, D G; Fiquet, G

    2007-11-30

    We performed high-resolution inelastic x-ray scattering measurements on a single crystal of hcp cobalt at simultaneous high pressure and high temperature, deriving 4 of the 5 independent elements of the elastic tensor. Our experiments indicate that the elasticity of hcp-Co is well described within the frame of a quasi-harmonic approximation and that anharmonic high-temperature effects on the elastic moduli, sound velocities and elastic anisotropy are minimal at constant density. These results support the validity of the Birch's law and represent an important benchmark for ab initio thermal lattice dynamics and molecular-dynamics simulations.

  5. Structure and magnetism of cobalt at high pressure and low temperature

    Science.gov (United States)

    Torchio, R.; Marini, C.; Kvashnin, Y. O.; Kantor, I.; Mathon, O.; Garbarino, G.; Meneghini, C.; Anzellini, S.; Occelli, F.; Bruno, P.; Dewaele, A.; Pascarelli, S.

    2016-07-01

    The magnetic and structural properties of cobalt were investigated under high pressure (160 GPa) and low temperature (50 K), by synchrotron K-edge x-ray magnetic circular dichroism and x-ray diffraction. A quasihydrostatic equation of state was measured up to 160 GPa. We found that uniaxial stress plays a role in the hexagonal close packed-face centered cubic (hcp-fcc) structural transition pressure. Also, our data provide the first experimental evidence that changes of the c /a ratio pressure derivative are related to the magnetic behavior. The complete extinction of ferromagnetism is observed above 130 GPa in a mixed hcp-fcc phase with no recovery upon cooling to 50 K, indicating that cobalt at 150 GPa is very likely nonmagnetic, i.e., characterized by zero local spin polarization. Density functional theory calculations point out that the K-edge x-ray magnetic circular dichroism (XMCD) signal is related to the 4 p orbital moment rather than to the total spin moment and allow us to get a deeper insight into the K-edge XMCD measurements interpretation. The combination of novel theoretical results and experimental outputs provides a detailed scenario of the structural and magnetic properties of cobalt at these extreme conditions answering some previously unsolved issues.

  6. Water reduction by a p-GaInP2 photoelectrode stabilized by an amorphous TiO2 coating and a molecular cobalt catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Jing; Yan, Yong; Young, James L.; Steirer, K. Xerxes; Neale, Nathan R.; Turner, John A.

    2015-12-21

    Producing hydrogen through solar water splitting requires the coverage of large land areas. Abundant metal-based molecular catalysts offer scalability, but only if they match noble metal activities. We report on a highly active p-GaInP2 photocathode protected through a 35-nm TiO2 layer functionalized by a cobaloxime molecular catalyst (GaInP2-TiO2-cobaloxime). This photoelectrode mediates H2 production with a current density of ~9"0mA"0cm-2 at a potential of 0"0V versus RHE under 1-sun illumination at pH"013. The calculated turnover number for the catalyst during a 20-h period is 139,000, with an average turnover frequency of 1.9"0s-1. Bare GaInP2 shows a rapid current decay, whereas the GaInP2-TiO2-cobaloxime electrode shows catalyst particle-modified interface. The activity and corrosion resistance of the GaInP2-TiO2-cobaloxime photocathode in basic solution is made possible by an atomic layer-deposited TiO2 and an attached cobaloxime catalyst.

  7. CoFe{sub 2}O{sub 4} magnetic nanoparticles as a highly active heterogeneous catalyst of oxone for the degradation of diclofenac in water

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Jing [State Key Laboratory of Pollution Control Reuse, Tongji University, Shanghai 200092 (China); Shao, Yisheng, E-mail: shaoyisheng2011@163.com [State Key Laboratory of Pollution Control Reuse, Tongji University, Shanghai 200092 (China); China Academy of Urban Planning and Design, Beijing 100037 (China); Gao, Naiyun; Tan, Chaoqun; Zhou, Shiqing; Hu, Xuhao [State Key Laboratory of Pollution Control Reuse, Tongji University, Shanghai 200092 (China)

    2013-11-15

    Highlights: • CoFe{sub 2}O{sub 4} MNPs tested as heterogeneous catalyst for the activation of oxone. • The catalytic performance was typically affected by several key operating parameters. • The catalyst exhibited good stability and easily recovered with excellent reusability. • Degradation pathway was proposed according to the results of LC-MS/MS analysis. -- Abstract: A magnetic nanoscaled catalyst cobalt ferrite (CoFe{sub 2}O{sub 4}) was successfully prepared and used for the activation of oxone to generate sulfate radicals for the degradation of diclofenac. The catalyst was characterized by transmission electron microscopy, X-ray diffractometry, Fourier transform infrared spectroscopy and vibrating sample magnetometer. The effects of calcination temperature, initial pH, catalyst and oxone dosage on the degradation efficiency were investigated. Results demonstrated that CoFe{sub 2}O{sub 4}-300 exhibited the best catalytic performance and almost complete removal of diclofenac was obtained in 15 min. The degradation efficiency increased with initial pH decreasing in the pH range of 5–9. The increase of catalyst and oxone dosage both had the positive effect on the degradation of diclofenac. Moreover, CoFe{sub 2}O{sub 4} could retain high degradation efficiency even after being reused for five cycles. Finally, the major diclofenac degradation intermediates were identified and the primary degradation pathways were proposed.

  8. Novel, high-activity hydroprocessing catalysts: Iron group phosphides

    Science.gov (United States)

    Wang, Xianqin

    A series of iron, cobalt and nickel transition metal phosphides was synthesized by means of temperature-programmed reduction (TPR) of the corresponding phosphates. The same materials, Fe2P, CoP and NO, were also prepared on a silica (SiO2) support. The phase purity of these catalysts was established by x-ray diffraction (XRD), and the surface properties were determined by N2 BET specific surface area (Sg) measurements and CO chemisorption. The activities of the silica-supported catalysts were tested in a three-phase trickle bed reactor for the simultaneous hydrodenitrogenation (HDN) of quinoline and hydrodesulfurization (HDS) of dibenzothiophene using a model liquid feed at realistic conditions (30 atm, 370°C). The reactivity studies showed that the nickel phosphide (Ni2P/SiO2) was the most active of the catalysts. Compared with a commercial Ni-Mo-S/gamma-Al 2O3 catalyst at the same conditions, Ni2P/silica had a substantially higher HDS activity (100% vs. 76%) and HDN activity (82% vs. 38%). Because of their good hydrotreating activity, an extensive study of the preparation of silica supported nickel phosphides, Ni2P/SiO 2, was carried out. The parameters investigated were the phosphorus content and the weight loading of the active phase. The most active composition was found to have a starting synthesis Ni/P ratio close to 1/2, and the best loading of this sample on silica was observed to be 18 wt.%. Extended x-ray absorption fine structure (EXAFS) and x-ray absorption near edge spectroscopy (XANES) measurements were employed to determine the structures of the supported samples. The main phase before and after reaction was found to be Ni2P, but some sulfur was found to be retained after reaction. A comprehensive scrutiny of the HDN reaction mechanism was also made over the Ni2P/SiO2 sample (Ni/P = 1/2) by comparing the HDN activity of a series of piperidine derivatives of different structure. It was found that piperidine adsorption involved an alpha-H activation

  9. Performance characterization of CNTs and γ-Al2O3 supported cobalt catalysts in Fischer-Tropsch reaction

    Science.gov (United States)

    Ali, Sardar; Zabidi, Noor Asmawati Mohd; Subbarao, Duvvuri

    2014-10-01

    Catalysts were prepared via a wet impregnation method. Different physicochemical properties of the samples were revealed by transmission electron microscope (TEM), temperature programmed reduction (H2-TPR) and carbon dioxide desorption (CO2-desorption). Fischer-Tropsch reaction (FTS) was carried out in a fixed-bed microreactor at 220°C and 1 atm, with H2/ CO = 2v / v and space velocity, SV of 12L/g.h for 5 h. Various characterization techniques revealed that there was a stronger interaction between Co and Al2O3 support compared to that of CNTs support. CNTs support increased the reducibility and decreased Co particle size. A significant increase in % CO conversion and FTS reaction rate was observed over CNTs support compared to that of Co / Al2O3. Co/CNTs resulted in higher C5+ hydrocarbons selectivity compared to that of Co / Al2O3 catalyst. CNTs are a better support for Co compared to Al2O3.

  10. Acoustic anisotropy of hcp metals at high pressure: the example of cobalt

    Science.gov (United States)

    Antonangeli, D.; Occelli, F.; Aracne, C.; Farber, D.; Guyot, F.; Requardt, H.; Fiquet, G.; Krisch, M.

    2003-04-01

    Beyond studies of the bulk properties of the Earth's core, seismological studies show that the inner core is elastically anisotropic (e.g. Woodhouse et al., Geophys. Res. Lett. 13, 1549, 1986). with an axial symmetry and an amplitude of about 3%, with the fast direction oriented parallel to the Earth's rotation axis. Several hypotheses have been proposed to explain this feature, however the anisotropy of hcp iron at very high pressure is not quantitatively known. Indeed, theoretical results predict a rather low intrinsic anisotropy, almost requiring a perfect alignment of iron hcp crystals in order to account for the observed seismic anisotropy (Stixrude and Cohen, Science, 267, 1972, 1995). On the other hand, texture x-ray diffraction measurements of iron at very high-pressure (Mao et al., Nature 399, 280, 1999; Wenk et al., Nature 405, 1044, 2000) indicate a large compressional-wave anisotropy which relieves the "perfect alignment" textural constraint. The anisotropy proposed by texture measurements, when compared to calculations, is not only different in magnitude, but as well in direction. In order to settle these discrepancies among the various indirect experimental techniques and theory, a direct experimental determination of the elastic constants of hcp iron and their evolution with pressure and temperature is needed. However, obtaining single crystals of hcp-Fe at high pressure is currently not possible. To address the issue of elastic anisotropy, we present results obtained on cobalt. Unlike iron, hcp cobalt is stable at room temperature and ambient pressure to at least 79 GPa (Fujihisa and Takemura, Phys. Rev. B 54, 5, 1996). Cobalt is located next to iron in the 3d transition metals classification and exhibits similar thermo-elastic behaviour in its highly compact hcp-structure, which should make of cobalt a good proxy for iron at high-pressure. The five independent elastic constants (C11, C33, C44, C12, C13) and their pressure dependence have been

  11. High Electrocatalytic Hydrogen Evolution Activity of an Anomalous Ruthenium Catalyst

    KAUST Repository

    Zheng, Yao

    2016-11-28

    Hydrogen evolution reaction (HER) is a critical process due to its fundamental role in electrocatalysis. Practically, the development of high-performance electrocatalysts for HER in alkaline media is of great importance for the conversion of renewable energy to hydrogen fuel via photoelectrochemical water splitting. However, both mechanistic exploration and materials development for HER under alkaline conditions are very limited. Precious Pt metal, which still serves as the state-of-the-art catalyst for HER, is unable to guarantee a sustainable hydrogen supply. Here we report an anomalously structured Ru catalyst that shows 2.5 times higher hydrogen generation rate than Pt and is among the most active HER electrocatalysts yet reported in alkaline solutions. The identification of new face-centered cubic crystallographic structure of Ru nanoparticles was investigated by high-resolution transmission electron microscopy imaging, and its formation mechanism was revealed by spectroscopic characterization and theoretical analysis. For the first time, it is found that the Ru nanocatalyst showed a pronounced effect of the crystal structure on the electrocatalytic activity tested under different conditions. The combination of electrochemical reaction rate measurements and density functional theory computation shows that the high activity of anomalous Ru catalyst in alkaline solution originates from its suitable adsorption energies to some key reaction intermediates and reaction kinetics in the HER process.

  12. Cobalt nanoparticles-embedded magnetic ordered mesoporous carbon for highly effective adsorption of rhodamine B

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Lin, E-mail: tanglin@hnu.edu.cn [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082 (China); Cai, Ye; Yang, Guide; Liu, Yuanyuan [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082 (China); Zeng, Guangming, E-mail: zgming@hnu.edu.cn [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082 (China); Zhou, Yaoyu; Li, Sisi; Wang, Jiajia; Zhang, Sheng; Fang, Yan; He, Yibin [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082 (China)

    2014-09-30

    Highlights: • Cobalt nanoparticles-embedded magnetic ordered mesoporous carbon (Co/OMC) was applied as a novel adsorption material to remove rhodamine B. • Co/OMC was synthesized by directly introducing cobalt into OMC through a simple infusing method. • High removal capacity of rhodamine B: maximum adsorption capacity reaches 468 mg/g at 200 mg/L initial rhodamine B concentration. • Very quick adsorption property: 96% of rhodamine B can be removed within 25 min. - Abstract: Cobalt nanoparticles-embedded magnetic ordered mesoporous carbon (Co/OMC), prepared through a simple method involving infusing and calcination, was used as a highly effective adsorbent for rhodamine B (Rh B) removal. Several techniques, including SEM, HRTEM, nitrogen adsorption–desorption isotherms, XRD, Raman spectra, EDX, zeta potential and VSM measurement, were applied to characterize the adsorbent. Batch tests were conducted to investigate the adsorption performance. The adsorption capacity of the resultant adsorbent was relatively high compared with raw ordered mesoporous carbon (OMC) and reached an equilibrium value of 468 mg/g at 200 mg/L initial Rh B concentration. Removal efficiency even reached 96% within 25 min at 100 mg/L initial Rh B concentration. Besides, the adsorption amount increased with the increase of solution pH, adsorbent dose and initial Rh B concentration. Kinetics study showed that the adsorption agreed well with pseudo-second-order model (R{sup 2} = 0.999) and had a significant correlation with intra-particle diffusion model in the both two adsorption periods. Furthermore, thermodynamics research indicated that the adsorption process was endothermic and spontaneous in nature. The adsorption isotherms fitted well with Langmuir model, demonstrating the formation of mono-molecular layer on the surface of Co/OMC during adsorption process. The results confirmed that Co/OMC has the potential superiority in removal of Rh B from aqueous solution.

  13. Sensitivity of Fischer-Tropsch Synthesis and Water-Gas Shift Catalysts to Poisons from High-Temperature High-Pressure Entrained-Flow (EF) Oxygen-Blown Gasifier Gasification of Coal/Biomass Mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Burton Davis; Gary Jacobs; Wenping Ma; Dennis Sparks; Khalid Azzam; Janet Chakkamadathil Mohandas; Wilson Shafer; Venkat Ramana Rao Pendyala

    2011-09-30

    There has been a recent shift in interest in converting not only natural gas and coal derived syngas to Fischer-Tropsch synthesis products, but also converting biomass-derived syngas, as well as syngas derived from coal and biomass mixtures. As such, conventional catalysts based on iron and cobalt may not be suitable without proper development. This is because, while ash, sulfur compounds, traces of metals, halide compounds, and nitrogen-containing chemicals will likely be lower in concentration in syngas derived from mixtures of coal and biomass (i.e., using entrained-flow oxygen-blown gasifier gasification gasification) than solely from coal, other compounds may actually be increased. Of particular concern are compounds containing alkali chemicals like the chlorides of sodium and potassium. In the first year, University of Kentucky Center for Applied Energy Research (UK-CAER) researchers completed a number of tasks aimed at evaluating the sensitivity of cobalt and iron-based Fischer-Tropsch synthesis (FT) catalysts and a commercial iron-chromia high temperature water-gas shift catalyst (WGS) to alkali halides. This included the preparation of large batches of 0.5%Pt-25%Co/Al{sub 2}O{sub 3} and 100Fe: 5.1Si: 3.0K: 2.0Cu (high alpha) catalysts that were split up among the four different entities participating in the overall project; the testing of the catalysts under clean FT and WGS conditions; the testing of the Fe-Cr WGS catalyst under conditions of co-feeding NaCl and KCl; and the construction and start-up of the continuously stirred tank reactors (CSTRs) for poisoning investigations. In the second and third years, researchers from the University of Kentucky Center for Applied Energy Research (UK-CAER) continued the project by evaluating the sensitivity of a commercial iron-chromia high temperature water-gas shift catalyst (WGS) to a number of different compounds, including KHCO{sub 3}, NaHCO{sub 3}, HCl, HBr, HF, H{sub 2}S, NH{sub 3}, and a combination of H

  14. Electrochemically fabricated polypyrrole-cobalt-oxygen coordination complex as high-performance lithium-storage materials.

    Science.gov (United States)

    Guo, Bingkun; Kong, Qingyu; Zhu, Ying; Mao, Ya; Wang, Zhaoxiang; Wan, Meixiang; Chen, Liquan

    2011-12-23

    Current lithium-ion battery (LIB) technologies are all based on inorganic electrode materials, though organic materials have been used as electrodes for years. Disadvantages such as limited thermal stability and low specific capacity hinder their applications. On the other hand, the transition metal oxides that provide high lithium-storage capacity by way of electrochemical conversion reaction suffer from poor cycling stability. Here we report a novel high-performance, organic, lithium-storage material, a polypyrrole-cobalt-oxygen (PPy-Co-O) coordination complex, with high lithium-storage capacity and excellent cycling stability. Extended X-ray absorption fine structure and Raman spectroscopy and other physical and electrochemical characterizations demonstrate that this coordination complex can be electrochemically fabricated by cycling PPy-coated Co(3)O(4) between 0.0 V and 3.0 V versus Li(+)/Li. Density functional theory (DFT) calculations indicate that each cobalt atom coordinates with two nitrogen atoms within the PPy-Co coordination layer and the layers are connected with oxygen atoms between them. Coordination weakens the C-H bonds on PPy and makes the complex a novel lithium-storage material with high capacity and high cycling stability.

  15. High power density aqueous hybrid supercapacitor combining activated carbon and highly conductive spinel cobalt oxide

    Science.gov (United States)

    Godillot, G.; Taberna, P.-L.; Daffos, B.; Simon, P.; Delmas, C.; Guerlou-Demourgues, L.

    2016-11-01

    The remarkable electrochemical behavior of complete activated carbon/cobalt oxide cells is reported in the present work. Among the various weight ratios between the positive and negative electrodes evaluated, the best features are obtained with an overcapacitive cobalt oxide electrode. The energy densities obtained by this system (20 Wh kg-1 for a power density of 209 W kg-1) are twice higher than those measured for a activated carbon/activated carbon symmetric cell, in the same operating conditions. With discharge capacities around 62 F g-1, this system is among the best ones reported in the literature for this category.

  16. Synthesis of Highly Stable Cobalt Nanomaterial Using Gallic Acid and Its Application in Catalysis

    OpenAIRE

    Saba Naz; Abdul Rauf Khaskheli; Abdalaziz Aljabour; Huseyin Kara; Farah Naz Talpur; Syed Tufail Hussain Sherazi; Abid Ali Khaskheli; Sana Jawaid

    2014-01-01

    We report the room temperature (25–30°C) green synthesis of cobalt nanomaterial (CoNM) in an aqueous medium using gallic acid as a reducing and stabilizing agent. pH 9.5 was found to favour the formation of well dispersed flower shaped CoNM. The optimization of various parameters in preparation of nanoscale was studied. The AFM, SEM, EDX, and XRD characterization studies provide detailed information about synthesized CoNM which were of 4–9 nm in dimensions. The highly stable CoNM were used to...

  17. High surface area ThO/sub 2/ catalyst

    Science.gov (United States)

    Colmenares, C.A.; Somorjai, G.A.; Maj, J.J.

    1983-06-21

    A ThO/sub 2/ catalyst having a high surface area of about 80 to 125m/sup 2//g is synthesized. The compound is synthesized by simultaneously mixing an aqueous solution of ThNO/sub 3/(NO/sub 3/)/sub 4/.4H/sub 2/O with an aqueous solution of Na/sub 2/CO/sub 3/.H/sub 2/O, to produce a solution and solid ThOCO/sub 3/. The solid ThOCO/sub 3/ is separated from the solution, and then calcined at a temperature of about 225 to 300/sup 0/C for about 40 to 55 hours to produce ThO/sub 2/. The ThO/sub 2/ catalyst produced includes Na present as a substitutional cation in an amount equal to about 5 to 10 at. %.

  18. CATALYSTS FOR HIGH CETANE ETHERS AS DIESEL FUELS

    Energy Technology Data Exchange (ETDEWEB)

    Kamil Klier; Richard G. Herman; James G.C. Shen; Qisheng Ma

    2000-08-31

    A novel 1,2-ethanediol, bis(hydrogen sulfate), disodium salt precursor-based solid acid catalyst with a zirconia substrate was synthesized and demonstrated to have significantly enhanced activity and high selectivity in producing methyl isobutyl ether (MIBE) or isobutene from methanol-isobutanol mixtures. The precursor salt was synthesized and provided by Dr. T. H. Kalantar of the M.E. Pruitt Research Center, Dow Chemical Co., Midland, MI 48674. Molecular modeling of the catalyst synthesis steps and of the alcohol coupling reaction is being carried out. A representation of the methyl transfer from the surface activated methanol molecule (left) to the activated oxygen of the isobutanol molecule (right) to form an ether linkage to yield MIBE is shown.

  19. High-pressure transformation in the cobalt spinel ferrites

    Energy Technology Data Exchange (ETDEWEB)

    Blasco, J., E-mail: jbc@posta.unizar.es [Instituto de Ciencia de Materiales de Aragón and Departamento de Física de la Materia Condensada, Consejo Superior de Investigaciones Científicas y Universidad de Zaragoza, 50009 Zaragoza (Spain); Subías, G.; García, J. [Instituto de Ciencia de Materiales de Aragón and Departamento de Física de la Materia Condensada, Consejo Superior de Investigaciones Científicas y Universidad de Zaragoza, 50009 Zaragoza (Spain); Popescu, C. [CELLS-ALBA Synchrotron Light Facility, Ctra. BP1413 km 3.3, 08290 Cerdanyola del Vallès, Barcelona (Spain); Cuartero, V. [European Synchrotron Radiation Facility, F-38043 Grenoble Cedex 9 (France)

    2015-01-15

    We report high pressure angle-dispersive x-ray diffraction measurements on Co{sub x}Fe{sub 3−x}O{sub 4} (x=1, 1.5, 1.75) spinels at room temperature up to 34 GPa. The three samples show a similar structural phase transformation from the cubic spinel structure to an analogous post-spinel phase at around 20 GPa. Spinel and post-spinel phases coexist in a wide pressure range (∼20–25 GPa) and the transformation is irreversible. The equation of state of the three cubic spinel ferrites was determined and our results agree with the data obtained in related oxide spinels showing the role of the pressure-transmitting medium for the accurate determination of the equation of state. Measurements releasing pressure revealed that the post-spinel phase is stable down to 4 GPa when it decomposes yielding a new phase with poor crystallinity. Later compression does not recover either the spinel or the post-spinel phases. This phase transformation induced by pressure explains the irreversible lost of the ferrimagnetic behavior reported in these spinels. - Graphical abstract: Pressure dependence of the unit cell volume per formula unit for Co{sub 1.5}Fe{sub 1.5}O{sub 4} spinel. Circles and squares stand for spinel and postspinel phases, respectively. Dark (open) symbols: determination upon compression (decompression). - Highlights: • The pressure induces similar phase transformation in Co{sub 3−x}Fe{sub x}O{sub 4} spinels (1≤x≤2). • The postspinel phases decompose after releasing pressure. • The irreversibility of this phase transformation explains the disappearance of magnetism in these spinels after applying pressure. • Accurate equation of state can be obtained up to 10 GPa using an alcohol mixture as pressure transmitting medium. • The equation of state suggests similar elastic properties for these spinels in this composition range.

  20. Simultaneous determination of seven impurities in high-purity cobalt oxide by ICP-AES after matrix separation using 1-nitroso-2-naphthol as a precipitant

    Institute of Scientific and Technical Information of China (English)

    王艳; 周春山; 段青兵; 陈萍

    2002-01-01

    A method was developed for the simultaneous determination of seven trace impurities (Cd, Mn, Pb, Zn, Cu, Fe and Ni) in high-purity cobalt oxide by ICP-AES. The matrix effect was eliminated by preci- pitation with 1-nitroso-2-naphthol. The matrix effect of cobalt on the absorptions of trace impurities, the effects of reaction time, pH value, dosage of precipitant on the formation of cobalt-1-nitroso-2-naphthol complex, the effects of hydrochloric acid on the stability of this complex and masking of elements were studied. Recoveries of the impurities in spiked sample are from 90% to 110% with a precision of 1.1%-5.0% RSD. The detection limits of the seven elements are in the range of 0.01-0.24μg/g. The method can be applied to the analysis of high-purity cobalt metal, cobalt oxide and other cobalt compounds.

  1. Chelate bis(imino)pyridine cobalt complexes: synthesis, reduction, and evidence for the generation of ethene polymerization catalysts by Li+ cation activation.

    Science.gov (United States)

    Kleigrewe, Nina; Steffen, Winfried; Blömker, Tobias; Kehr, Gerald; Fröhlich, Roland; Wibbeling, Birgit; Erker, Gerhard; Wasilke, Julia-Christina; Wu, Guang; Bazan, Guillermo C

    2005-10-12

    Treatment of the bis(iminobenzyl)pyridine chelate Schiff-base ligand 8 (ligPh) with FeCl2 or CoCl2 yielded the corresponding (ligPh)MCl2 complexes 9 (Fe) and 10 (Co). The reaction of 10 with methyllithium or "butadiene-magnesium" resulted in reduction to give the corresponding (ligPh)Co(I)Cl product 11. Similarly, the bis(aryliminoethyl)pyridine ligand (ligMe) was reacted with CoCl2 to yield (ligMe)CoCl2 (12). Reduction to (ligMe)CoCl (13) was effected by treatment with "butadiene-magnesium". Complex 13 reacted with Li[B(C6F5)4] in toluene followed by treatment with pyridine to yield [(ligMe)Co+-pyridine] (15). The reaction of the Co(II) complexes 10 or 12 with ca. 3 molar equiv of methyllithium gave the cobalt(I) complexes 16 and 17, respectively. Treatment of the (ligMe)CoCH3 (17) with Li[B(C6F5)4] gave a low activity ethene polymerization catalyst. Likewise, complex 16 produced polyethylene (activity = 33 g(PE) mmol(cat)(-1) h(-1) bar(-1) at room temperature) upon treatment with a stoichiometric amount of Li[B(C6F5)4]. A third ligand (lig(OMe)) was synthesized featuring methoxy groups in the ligand backbone (22). Coordination to FeCl2 and CoCl2 yielded the desired compounds 23 and 24. Reaction with MeLi gave (ligOMe)CoMe (25/26). Treatment of 25/26 with excess B(C6F5)3 gave the eta6-arene cation complex 27, where one Co-N linkage was cleaved. Activation of 25/26 with Li[B(C6F5)4] again gave a catalytically active species.

  2. Cobalt oxide acicular nanorods with high sensitivity for the non-enzymatic detection of glucose.

    Science.gov (United States)

    Kung, Chung-Wei; Lin, Chia-Yu; Lai, Yi-Hsuan; Vittal, R; Ho, Kuo-Chuan

    2011-09-15

    Acicular cobalt oxide nanorods (CoONRs) were prepared for the non-enzymatic detection of glucose, first by directly growing layered cobalt carbonate hydroxide (LCCH) on a conducting fluorine-doped tin oxide (FTO) substrate using a simple chemical bath deposition (CBD) technique and then by transforming the LCCH into CoONRs through pyrolysis. The composition and grain size of the films of LCCH and CoONRs were verified by X-ray diffraction (XRD); their morphologies were examined by scanning electron microscopic (SEM) and transmission electron microscopic (TEM) images. CoONRs showed high electrocatalytic activity for the electro-oxidation of glucose in alkaline media, and the activity was strongly influenced by NaOH concentration, annealing temperature of CoONRs, and thickness of CoONRs film. The pertinent sensor could be successfully used for the quantification of glucose by amperometric method. The sensing parameters include wide linear range up to 3.5 mM, a high sensitivity of 571.8 μA/(cm(2) mM), and a remarkable low detection limit of 0.058 μM. The CoONRs modified electrode exhibited a high selectivity for glucose in human serum, against ascorbic acid, uric acid, and acetaminophen.

  3. Sensitivity of Fischer-Tropsch Synthesis and Water-Gas Shift Catalystes to Poisons form High-Temperature High-Pressure Entrained-Flow (EF) Oxygen-Blown Gasifier Gasification of Coal/Biomass Mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Burton Davis; Gary Jacobs; Wenping Ma; Khalid Azzam; Janet ChakkamadathilMohandas; Wilson Shafer

    2009-09-30

    There has been a recent shift in interest in converting not only natural gas and coal derived syngas to Fischer-Tropsch synthesis products, but also converting biomass-derived syngas, as well as syngas derived from coal and biomass mixtures. As such, conventional catalysts based on iron and cobalt may not be suitable without proper development. This is because, while ash, sulfur compounds, traces of metals, halide compounds, and nitrogen-containing chemicals will likely be lower in concentration in syngas derived from mixtures of coal and biomass (i.e., using entrained-flow oxygen-blown gasifier gasification gasification) than solely from coal, other compounds may actually be increased. Of particular concern are compounds containing alkali chemicals like the chlorides of sodium and potassium. In the first year, University of Kentucky Center for Applied Energy Research (UK-CAER) researchers completed a number of tasks aimed at evaluating the sensitivity of cobalt and iron-based Fischer-Tropsch synthesis (FT) catalysts and a commercial iron-chromia high temperature water-gas shift catalyst (WGS) to alkali halides. This included the preparation of large batches of 0.5%Pt-25%Co/Al{sub 2}O{sub 3} and 100Fe: 5.1Si: 3.0K: 2.0Cu (high alpha) catalysts that were split up among the four different entities participating in the overall project; the testing of the catalysts under clean FT and WGS conditions; the testing of the Fe-Cr WGS catalyst under conditions of co-feeding NaCl and KCl; and the construction and start-up of the continuously stirred tank reactors (CSTRs) for poisoning investigations.

  4. Non-metallic catalysts for diamond synthesis under high pressure and high temperature

    Institute of Scientific and Technical Information of China (English)

    孙力玲; 吴奇; 戴道扬; 张君; 秦志成; 王文魁

    1999-01-01

    Recent results on conversion from graphite to diamond by aid of non-metallic catalysts are reviewed. The current status of experimental advances is presented and typical examples from relevant literature are provided for understanding the mechanism of the graphite-diamond conversion by aid of these non-metallic catalysts. Furthermore, a tendency of graphite-diamond transformation assisted by carbonates, sulfates or phosphorus under high pressure and high temperature has been investigated by calculating the activation energy and transformation probability of the carbon atoms over a potential barrier. It was found that the activation energy is highly sensitive to the catalyst chosen. The probability sequence of graphite-diamond transformation with these catalysts was put forward.

  5. Sensitivity of Fischer-Tropsch Synthesis and Water-Gas Shift Catalysts to Poisons from High-Temperature High-Pressure Entrained-Flow (EF) Oxygen-Blown Gasifier Gasification of Coal/Biomass Mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Burtron Davis; Gary Jacobs; Wenping Ma; Khalid Azzam; Dennis Sparks; Wilson Shafer

    2010-09-30

    The successful adaptation of conventional cobalt and iron-based Fischer-Tropsch synthesis catalysts for use in converting biomass-derived syngas hinges in part on understanding their susceptibility to byproducts produced during the biomass gasification process. With the possibility that oil production will peak in the near future, and due to concerns in maintaining energy security, the conversion of biomass-derived syngas and syngas derived from coal/biomass blends to Fischer-Tropsch synthesis products to liquid fuels may provide a sustainable path forward, especially considering if carbon sequestration can be successfully demonstrated. However, one current drawback is that it is unknown whether conventional catalysts based on iron and cobalt will be suitable without proper development because, while ash, sulfur compounds, traces of metals, halide compounds, and nitrogen-containing chemicals will likely be lower in concentration in syngas derived from mixtures of coal and biomass (i.e., using an entrained-flow oxygen-blown gasifier) than solely from coal, other byproducts may be present in higher concentrations. The current project examines the impact of a number of potential byproducts of concern from the gasification of biomass process, including compounds containing alkali chemicals like the chlorides of sodium and potassium. In the second year, researchers from the University of Kentucky Center for Applied Energy Research (UK-CAER) continued the project by evaluating the sensitivity of a commercial iron-chromia high temperature water-gas shift catalyst (WGS) to a number of different compounds, including KHCO{sub 3}, NaHCO{sub 3}, HCl, HBr, HF, H{sub 2}S, NH{sub 3}, and a combination of H{sub 2}S and NH{sub 3}. Cobalt and iron-based Fischer-Tropsch synthesis (FT) catalysts were also subjected to a number of the same compounds in order to evaluate their sensitivities.

  6. High capacity magnetic mesoporous carbon-cobalt composite adsorbents for removal of methylene green from aqueous solutions.

    Science.gov (United States)

    Dai, Mingzhi; Vogt, Bryan D

    2012-12-01

    Mesoporous carbons containing cobalt nanoparticles are synthesized by tri-or quad-constituent self assembly of Pluronic F127, phenol-formaldehyde oligomer (resol), cobalt acetylacetonate (acac), and optionally tetraethyl orthosilicate (TEOS, optional). Upon pyrolysis in N(2) atmosphere, the resol provides sufficient carbon yield to maintain the ordered structure, while decomposition of the Co(acac) yields cobalt nanoparticles. To provide increased surface area, the dispersed silicate from condensation of TEOS can be etched after carbonization to yield micropores, Without silica templated micropores, the surface area decreases as the cobalt content increases, but there is a concurrent increase in the volume-average pore diameter (BHJ) and a dramatic increase in the adsorption capacity of methylene green with the equilibrium adsorption capacity from 2 to 90 mg/g with increasing Co content. Moreover, the surface area and pore size of mesoporous composites can be dramatically increased by addition of TEOS and subsequent etching. These composites exhibit extremely high adsorption capacity up to 1151 mg/g, which also increases with increases in the Co content. Additionally, the inclusion of cobalt nanoparticles provides magnetic separation from aqueous suspension. The in situ synthesis of the Co nanoparticles yields to a carbon shell that can partially protect the Co from leaching in acidic media; after 96 h in 2 M HCl, the powders remain magnetic.

  7. A combined in situ XAS-XRPD-Raman study of Fischer-Tropsch synthesis over a carbon supported Co catalyst

    DEFF Research Database (Denmark)

    Tsakoumis, Nikolaos E.; Dehghan, Roya; Johnsen, Rune

    2013-01-01

    A cobalt based Fischer-Tropsch synthesis (FTS) catalyst, supported on a carbon nanofibers/carbon felt composite (Co/CNF/CF) was studied in situ at realistic conditions. The catalyst was monitored by Xray absorption spectroscopy (XAS), high-resolution X-ray powder diffraction (HR-XRPD) and Raman s...

  8. 费-托合成制清洁燃料用担载纳米钴基催化剂制备中热处理对其结构和催化性能的影响%Effect of Thermal Treatment on Structure and Catalytic Activity of Supported Fischer-Tropsch Nano-Cobalt Catalysts for Clean Fuels

    Institute of Scientific and Technical Information of China (English)

    储伟; 洪景萍; A.Khodakov; E.Payan; 戴晓雁

    2007-01-01

    A series of 15%Co/Al2O3 catalysts were prepared by incipient wetness impregnation under various calcination conditions (90-500 ℃), and were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy experiments (XPS), temperature programmed reduction, and catalytic measurements of hydrogenation of carbon monoxide to long-chained hydrocarbons leading to clean fuels (Fischer-Tropsch synthesis). The results of XPS show the presence of incompletely decomposed cobalt nitrate for catalysts calcined at 90-200 ℃,and the presence of Co3O4 for catalysts calcined at 200-500 ℃. For the four alumina-supported nanocobalt catalysts with different thermal treatment (200-500 ℃), XRD and XPS results illustrated that there were mainly nano Co3O4 crystalite phases of 9-10 nm and the size of cobalt nano-particles did almost not change with the different temperature of thermal treatment. This was different from that of silica-supported cobalt catalysts. The supported cobalt catalyst (CoAp340 sample) calcinated at 340 ℃ presented a better activity for Fischer Tropsch synthesis to clean fuels, at mild conditions like atmospheric pressure (100 kPa),1800 mL/g/h and 190 ℃; rather than high pressure (2 MPa or more).%应用浸渍法在不同的焙烧条件(90~500℃)制备了一系列Al2O3担载钴基催化剂(质量含量为15%);采用XRD、XPS、程序升温还原对其进行了结构表征和分析,考察其在一氧化碳选择加氢制备清洁燃料用长链烷烃的反应中的催化性能.XPS结果表明,对于在90~200℃焙烧的催化剂,仍可观察到未完全分解的硝酸钻的存在;对于在200~500℃焙烧的几个催化剂可观察到Co3O4的物相.对于经过几种热处理制备的氧化铝担载的四个纳米钴基催化剂(200~500℃热处理),XRD和XPS结果表明四个样品中主要是9~10 nm的纳米Co3O4晶相,而且钻纳米粒子的尺寸在上述热处理温度范制内几乎不随处理温度的升高而变化.这与SiO2

  9. Highly Active Carbene Ruthenium Catalyst for Metathesis of 1-Hexene

    Institute of Scientific and Technical Information of China (English)

    BAI Chen-Xi; ZHANG Zhi-Qiang; L(U) Xiao-Bing; HE Ren; ZHANG Wen-Zhen; LU Shu-Lai

    2006-01-01

    A new carbene ruthenium complex, 1,3-bis(2,6-dimethylphenyl)-4,5-dihydroimidazol-2-ylidene)(PPh3)Cl2-Ru=CHPh, was synthesized and used as catalyst for the metathesis of 1-hexene. The resulting complex exhibited very high catalytic activity whose TOF is up to 6680 h-1. However, at the same time significant olefin isomerization was observed and could be surpressed by changing reaction conditions, such as temperature, time, alkene/Ru molar ratio and solvent.

  10. Highly Durable Catalysts for Ignition of Advanced Monopropellants Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Monopropellants are readily ignited or decomposed over a bed of solid catalyst. A serious limitation of existing catalysts in the ignition of advanced...

  11. High quality thin films of thermoelectric misfit cobalt oxides prepared by a chemical solution method

    Science.gov (United States)

    Rivas-Murias, Beatriz; Manuel Vila-Fungueiriño, José; Rivadulla, Francisco

    2015-01-01

    Misfit cobaltates ([Bi/Ba/Sr/Ca/CoO]nRS[CoO2]q) constitute the most promising family of thermoelectric oxides for high temperature energy harvesting. However, their complex structure and chemical composition makes extremely challenging their deposition by high-vacuum physical techniques. Therefore, many of them have not been prepared as thin films until now. Here we report the synthesis of high-quality epitaxial thin films of the most representative members of this family of compounds by a water-based chemical solution deposition method. The films show an exceptional crystalline quality, with an electrical conductivity and thermopower comparable to single crystals. These properties are linked to the epitaxial matching of the rock-salt layers of the structure to the substrate, producing clean interfaces free of amorphous phases. This is an important step forward for the integration of these materials with complementary n-type thermoelectric oxides in multilayer nanostructures. PMID:26153533

  12. High quality thin films of thermoelectric misfit cobalt oxides prepared by a chemical solution method.

    Science.gov (United States)

    Rivas-Murias, Beatriz; Manuel Vila-Fungueiriño, José; Rivadulla, Francisco

    2015-07-08

    Misfit cobaltates ([Bi/Ba/Sr/Ca/CoO]n(RS)[CoO2]q) constitute the most promising family of thermoelectric oxides for high temperature energy harvesting. However, their complex structure and chemical composition makes extremely challenging their deposition by high-vacuum physical techniques. Therefore, many of them have not been prepared as thin films until now. Here we report the synthesis of high-quality epitaxial thin films of the most representative members of this family of compounds by a water-based chemical solution deposition method. The films show an exceptional crystalline quality, with an electrical conductivity and thermopower comparable to single crystals. These properties are linked to the epitaxial matching of the rock-salt layers of the structure to the substrate, producing clean interfaces free of amorphous phases. This is an important step forward for the integration of these materials with complementary n-type thermoelectric oxides in multilayer nanostructures.

  13. Hydrogen Evolution from Water under Aerobic Conditions Catalyzed by a Cobalt ATCUN Metallopeptide.

    Science.gov (United States)

    Kandemir, Banu; Kubie, Lenore; Guo, Yixing; Sheldon, Brian; Bren, Kara L

    2016-02-15

    The cobalt complex of an amino-terminal copper and nickel (ATCUN) motif model tripeptide (CoGGH) is shown to act as an electrocatalyst for hydrogen evolution from water near neutral pH with high Faradaic efficiency. The catalyst performance is not significantly impacted by exposure to oxygen. CoGGH represents a new class of hydrogen evolution catalyst that is straightforward to prepare and to modify.

  14. Synthesis of SWNTs over nanoporous Co-Mo/MgO and using as a catalyst support for selective hydrogenation of syngas to hydrocarbon

    Institute of Scientific and Technical Information of China (English)

    A.M.Rashidi; A.Karimi; H.R.Bozorgzadeh; K.Kashefi; M.Zare

    2010-01-01

    Single-wall carbon nanotubes(SWNTs)with high surface area were synthesized over nanoporous Co-Mo/MgO by a chemical vapor deposition(CVD)method.The SWNTs were used as catalyst support for selective hydrogenation of syngas to hydrocarbons.Here an extensive study of Fischer-Tropsch synthesis(FTS)on CNT-supported cobalt catalysts with different amounts of cobalt loading up to 40 wt% is reported.The catalysts were characterized by different methods including N2 adsorption-desorption,X-ray diffraction,hydrogen chemisorption,inductively coupled plasma(ICP)and temperature-programmed reduction.Enhancement of the reducibility of Co3O4 to CoO,CoO to Co° and small cobalt oxide particles,dispersion of the cobalt,and activity and selectivity of FTS were investigated and compared with a conventional support.The CNT supported catalysts achieve a high dispersion and high loading of the active metal,cobalt in particular,so that the bulk formation of cobalt metal,which tends to occur in conventional support,can be avoided.The results showed that the specific activity of CNT supported catalysts increase significantly(there is a two fold increase in CO Conversion per gram of the active metal)with respect to the conventional supported catalyst.

  15. In situ synthesis of cobalt ferrites-embedded hollow N-doped carbon as an outstanding catalyst for elimination of organic pollutants.

    Science.gov (United States)

    Zeng, Tao; Yu, Mingdong; Zhang, Haiyan; He, Zhiqiao; Zhang, Xiaole; Chen, Jianmeng; Song, Shuang

    2017-09-01

    Using polydopamine-metal ions complex as precursor, hollow mesoporous N-doped carbon microspheres encapsulating spinel ferrites nanocrystals (HM-NC/CoFe2O4) were facilely prepared with the aim of creating a novel heterogeneous catalyst for sulfate radical-based oxidation of organic contaminants. The surface morphology, structure and composition of HM-NC/CoFe2O4 catalyst were thoroughly investigated. The applicability of the catalyst was systematically assessed through numerous controlled trials, several operating parameters, as well as different model pollutants by means of peroxymonosulfate (PMS) activation. Outstanding efficiency and excellent reusability were achieved due to the unique structure and composition of HM-NC/CoFe2O4. The HM-NC scaffold with high porosity and surface area not only stabilizes the CoFe2O4 nanoparticles but also greatly facilitates the accessibility and adsorption of substrates to the active sites. In addition, both HM-NC and CoFe2O4 on the material surface can act as active sites. Sulfate radicals and hydroxyl radicals are identified as main active species and a possible enhancement mechanism of catalytic performance is also proposed. Due to the simple synthesis method, low-cost precursors, unique structure and excellent catalytic activity and stability, this novel composite have great potential as new strategic materials for remediation of water pollution. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. High performance Pd-based catalysts for oxidation of formic acid

    Science.gov (United States)

    Wang, Rongfang; Liao, Shijun; Ji, Shan

    Two novel catalysts for anode oxidation of formic acid, Pd 2Co/C and Pd 4Co 2Ir/C, were prepared by an organic colloid method with sodium citrate as a complexing agent. These two catalysts showed better performance towards the anodic oxidation of formic acid than Pd/C catalyst and commercial Pt/C catalyst. Compared with Pd/C catalyst, potentials of the anodic peak of formic acid at the Pd 2Co/C and Pd 4Co 2Ir/C catalyst electrodes shifted towards negative value by 140 and 50 mV, respectively, meanwhile showed higher current densities. At potential of 0.05 V (vs. SCE), the current density for Pd 4Co 2Ir/C catalyst is as high as up to 13.7 mA cm -2, which is twice of that for Pd/C catalyst, and six times of that for commercial Pt/C catalyst. The alloy catalysts were nanostructured with a diameter of ca. 3-5 nm and well dispersed on carbon according to X-ray diffraction (XRD) and transmission electron microscopy (TEM) measurements. The composition of alloy catalysts was analyzed by energy dispersive X-ray analysis (EDX). Pd 4Co 2Ir/C catalyst showed the highest activity and best stability making it the best potential candidate for application in a direct formic acid fuel cell (DFAFC).

  17. Hydrogen-induced Ostwald ripening of cobalt nanoparticles on carbon nanotubes

    NARCIS (Netherlands)

    Di Vece, Marcel; Zoican-Loebick, Codruta; Pfefferle, Lisa D.

    2014-01-01

    Nanoparticles on carbon nanotubes can be used as a high surface area catalyst or as a means to produce well-defined particles. In this study, cobalt nanoparticles were formed on xxsingle-walled carbon nanotubes during hydrogen exposure at an elevated temperature. The average particle size increased

  18. High-temperature Thermoelectric and Microstructural Characteristics of Ga Substituted on the Co-site in Cobalt-based Oxides

    DEFF Research Database (Denmark)

    Van Nong, Ngo; Yanagiya, S.; Sonne, Monica;

    2011-01-01

    The effects of Ga substitution on the Co-site on the high-temperature thermoelectric properties and microstructure are investigated for the misfitlayered Ca3Co4O9 and the complex perovskite-related Sr3RECo4O10.5 (RE = rare earth) cobalt-based oxides. For both systems, substitution of Ga for Co re...

  19. Microstructure and mechanical properties of bulk highly faulted fcc/hcp nanostructured cobalt microstructures

    Energy Technology Data Exchange (ETDEWEB)

    Barry, Aliou Hamady [Université Paris 13, Sorbonne Paris Cité, LSPM CNRS UPR 3407, 93430 Villetaneuse (France); Laboratoire Chimie des Matériaux, Département de Chimie, Faculté des Sciences et Technique, Université de Nouakchott (Mauritania, Islamic Republic of); Dirras, Guy, E-mail: dirras@unv-paris13.fr [Université Paris 13, Sorbonne Paris Cité, LSPM CNRS UPR 3407, 93430 Villetaneuse (France); Schoenstein, Frederic; Tétard, Florent; Jouini, Noureddine [Université Paris 13, Sorbonne Paris Cité, LSPM CNRS UPR 3407, 93430 Villetaneuse (France)

    2014-05-01

    Nanostructured cobalt powders with an average particle size of 50 nm were synthesized using a polyol method and subsequently consolidated by spark plasma sintering (SPS). SPS experiments performed at 650 °C with sintering times ranging from 5 to 45 min under a pressure of 100 MPa, yielded to dense bulk nanostructured cobalt (relative density greater than 97%). X-ray diffraction patterns of the as-prepared powders showed only a face centered cubic (fcc) crystalline phase, whereas the consolidated samples exhibited a mixture of both fcc and hexagonal close packed (hcp) phases. Transmission electron microscopy observations revealed a lamellar substructure with a high density of nanotwins and stacking faults in every grain of the sintered samples. Room temperature compression tests, carried out at a strain rate of 10{sup −3} s{sup −1}, yielded to highest strain to fracture values of up to 5% for sample of holding time of 15 min, which exhibited a yield strength of 1440 MPa, an ultimate strength as high as 1740 MPa and a Young's modulus of 205 GPa. The modulus of elasticity obtained from the nanoindentation tests, ranges from 181 to 218 GPa. The lowest modulus value of 181 GPa was obtained for the sample with the highest sintering time (45 min), which could be related to mass density loss as a consequence of trapped gases releasing. - Highlights: • Co nanopowder (50 nm) was prepared by reduction in polyol medium. • SPS was used to process bulk nanostructured Co specimens. • Microstructures were made of intricate fcc/hcp, along with nanotwins and SFs. • High strengths and moderate compressive ductility were obtained. • Deformation mechanisms related to complex interplay of different length scales.

  20. On the degradation of fuel cell catalyst. From model systems to high surface area catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Arenz, M. [Copenhagen Univ. (Denmark). Dept. of Chemistry

    2010-07-01

    In the presented work, as an alternative accelerated degradation tests in the form of half-cell measurements combined with identical location transmission electron microscopy (IL-TEM){sup 10,} {sup 11} are presented. It is demonstrated that for different catalysts the degradation mechanism can be scrutinized in detail. Thus this approach enables the systematic investigation of fuel cell catalyst degradation in a reduced period of time. (orig.)

  1. Directed magnetic field induced assembly of high magnetic moment cobalt nanowires

    DEFF Research Database (Denmark)

    Srivastava, Akhilesh Kumar; Madhavi, S.; Ramanujan, R.V.

    2010-01-01

    A directed magnetic field induced assembly technique was employed to align two phase (h.c.p. + f.c.c.) cobalt nanoparticles in a mechanically robust long wire morphology. Co nanoparticles with an average size of 4.3 nm and saturation magnetization comparable to bulk cobalt were synthesized...

  2. Highly active and efficient catalysts for alkoxycarbonylation of alkenes

    Science.gov (United States)

    Dong, Kaiwu; Fang, Xianjie; Gülak, Samet; Franke, Robert; Spannenberg, Anke; Neumann, Helfried; Jackstell, Ralf; Beller, Matthias

    2017-01-01

    Carbonylation reactions of alkenes constitute the most important industrial processes in homogeneous catalysis. Despite the tremendous progress in this transformation, the development of advanced catalyst systems to improve their activity and widen the range of feedstocks continues to be essential for new practical applications. Herein a palladium catalyst based on 1,2-bis((tert-butyl(pyridin-2-yl)phosphanyl)methyl)benzene L3 (pytbpx) is rationally designed and synthesized. Application of this system allows a general alkoxycarbonylation of sterically hindered and demanding olefins including all kinds of tetra-, tri- and 1,1-disubstituted alkenes as well as natural products and pharmaceuticals to the desired esters in excellent yield. Industrially relevant bulk ethylene is functionalized with high activity (TON: >1,425,000 TOF: 44,000 h-1 for initial 18 h) and selectivity (>99%). Given its generality and efficiency, we expect this catalytic system to immediately impact both the chemical industry and research laboratories by providing a practical synthetic tool for the transformation of nearly any alkene into a versatile ester product.

  3. Quantification of Trace Amounts of Impurities in High Purity Cobalt by High Resolution Inductively Coupled Plasma Mass Spectrometry

    Institute of Scientific and Technical Information of China (English)

    Hua Lin XIE; Xi Du NIE; You Gen TANG

    2006-01-01

    An analytical method using high resolution inductively coupled plasma mass spectrometry (HR-ICP-MS) for rapid simultaneous determination of Be, Mg, Al, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Ga, Ge, As, Se, Mo, Ag, Cd, Sn, Sb, Ba, Pt, Au and Pb in high purity cobalt was described. Sample digestions were performed in closed microwave vessels using HNO3 and HCl. The matrix effects due to thc presence of excess HCl and Co were evaluated. The usefulness of high mass resolution for overcoming some spectral interference was demonstrated. The optimum conditions for the determination was tested and discussed. Correction for matrix effects, Sc, Rh and Bi were used as internal standards. The detection limits is 0.003-0.57 μg/g, the recovery ratio is 92.2%- 111.2%, and the RSD is less than 3.6%. The method is accurate, quick and convenient. It has been applied to the determination of trace impurities in high purity cobalt with satisfactory results.

  4. Quantification of trace amounts of impurities in high purity cobalt by high resolution inductively coupled plasma mass spectrometry

    Institute of Scientific and Technical Information of China (English)

    XIE Hualin; HUANG Kelong; NIE Xidu; TANG Yougen

    2007-01-01

    An analytical method using high resolution inductively coupled plasma mass spectrometry (HR-ICP-MS) for rapid simultaneous determination of 24 elements (Be, Mg, Al, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Ga, Ge, As, Se, Mo, Ag, Cd, Sn,Sb, Ba, Pt, Au, and Pb) in high purity cobalt was described. Sample digestions were performed in closed microwave vessels using HNO3 and HCl. The matrix effects because of the presence of excess HCl and Co were evaluated. The usefulness of high mass resolution for overcoming some spectral interference was demonstrated. The optimum conditions for the determination were tested and discussed. The standard addition method was employed for quantitative analysis. The detection limits were 0.016-1.50 μg.g-1, the recovery ratios were 92.2%-111.2%, and the RSD was less than 3.6%. The method was accurate, quick, and convenient. It was applied to the determination of trace impurities in high purity cobalt with satisfactory results.

  5. Design of a high activity and selectivity alcohol catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Foley, H.C.; Mills, G.A.

    1992-11-30

    Efforts to synthesize bimetallic cluster-derived Rh-Mo catalysts for CO and CO[sub 2] hydrogenation to preferentially produce oxygenates. The rhodium-molybdenum cluster, (PPh[sub 3])[sub 2]RhMO(CO)([mu]-CO)[sub 2]Cp, was employed as a precursor to alumina- and silica-supported catalysts which were in CO hydrogenation. When compared to catalysts made from the distinct organometallic complexes, RhH(CO)(PPh[sub 3])[sub 3] and [MO(CO)[sub 3]Cp][sub 2], the catalysts derived from a binuclear precursor show higher activities for CO hydrogenation and superior selectivities towards oxygenates, namely, methanol, dimethyl ether and ethanol. Their product distributions depend on the support. Fourier transform infrared spectroscopy studies indicate that CO chemisorbs on cluster-derived catalysts as gem-dicarbonyls while it is chemisorbed only in the linear-carbonyl configuration on catalysts made from separate rhodium and molybdenum complexes. The particular oxygenate selectivity of the cluster-derived catalysts may be correlated to the strong electronic interaction between Rh and Mo. Carbon dioxide hydrogenation has also been carried out on the catalysts mentioned above. Again, the cluster-derived catalysts show higher oxygenate selectivities. Finally, the catalysts were studied with regard to both CO and CO[sub 2] hydrogenation kinetics, apparent activation energies inferred.

  6. Recycling cobalt from spent lithium ion battery

    Institute of Scientific and Technical Information of China (English)

    Zhi-dong XIA; Xiao-qian XIE; Yao-wu SHI; Yong-ping LEI; Fu GUO

    2008-01-01

    Spent lithium ion battery is a useful resource of cobalt. In this paper, cobalt was recovered by a chemical process based upon the analysis of the structure and com-position of the lithium ion battery. X-ray diffraction results show that cobalt oxalate and cobaltous sulfate have been obtained in two different processes. Compared with the cobaltous oxalate process, the cobaltous sulfate process was characterized by less chemical substance input and a cobalt recovery rate of as much as 88%. A combination of these two processes in the recycling industry may win in the aspects of compact process and high recovery rate.

  7. CoFe2O4 magnetic nanoparticles as a highly active heterogeneous catalyst of oxone for the degradation of diclofenac in water.

    Science.gov (United States)

    Deng, Jing; Shao, Yisheng; Gao, Naiyun; Tan, Chaoqun; Zhou, Shiqing; Hu, Xuhao

    2013-11-15

    A magnetic nanoscaled catalyst cobalt ferrite (CoFe2O4) was successfully prepared and used for the activation of oxone to generate sulfate radicals for the degradation of diclofenac. The catalyst was characterized by transmission electron microscopy, X-ray diffractometry, Fourier transform infrared spectroscopy and vibrating sample magnetometer. The effects of calcination temperature, initial pH, catalyst and oxone dosage on the degradation efficiency were investigated. Results demonstrated that CoFe2O4-300 exhibited the best catalytic performance and almost complete removal of diclofenac was obtained in 15 min. The degradation efficiency increased with initial pH decreasing in the pH range of 5-9. The increase of catalyst and oxone dosage both had the positive effect on the degradation of diclofenac. Moreover, CoFe2O4 could retain high degradation efficiency even after being reused for five cycles. Finally, the major diclofenac degradation intermediates were identified and the primary degradation pathways were proposed.

  8. Highly Durable Catalysts for Ignition of Advanced Monopropellants Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposed SBIR Phase I addresses the development of catalysts and technology for the ignition of advanced monopropellants consisting of mixtures of...

  9. Microwave-assisted synthesis of high-loading, highly dispersed Pt/carbon aerogel catalyst for direct methanol fuel cell

    Indian Academy of Sciences (India)

    Zhijun Guo; Hong Zhu; Xinwei Zhang; Fanghui Wang; Yubao Guo; Yongsheng Wei

    2011-06-01

    A Pt supported on carbon aerogel catalyst has been synthesized by the microwave-assisted polyol process. The Pt supported on carbon aerogel catalyst was characterized by high resolution transmission electron microscopy and X-ray diffraction. The results show a uniform dispersion of spherical Pt nanoparticles 2.5–3.0 nm in diameter. Cyclic voltammetry and chronoamperometry were used to evaluate the electrocatalytic activity of the Pt/carbon aerogel catalyst for methanol oxidation at room temperature. The Pt/carbon aerogel catalyst shows higher electrochemical catalytic activity and stability for methanol oxidation than a commercial Pt/C catalyst of the same Pt loading.

  10. Catalysts with Cerium in a Membrane Reactor for the Removal of Formaldehyde Pollutant from Water Effluents

    OpenAIRE

    2016-01-01

    We report the synthesis of cerium oxide, cobalt oxide, mixed cerium, and cobalt oxides and a Ce–Co/Al2O3 membrane, which are employed as catalysts for the catalytic wet oxidation (CWO) reaction process and the removal of formaldehyde from industrial effluents. Formaldehyde is present in numerous waste streams from the chemical industry in a concentration low enough to make its recovery not economically justified but high enough to create an environmental hazard. Common biological degradation ...

  11. Highly selective PdCu/amorphous silica-alumina (ASA) catalysts for groundwater denitration.

    Science.gov (United States)

    Xie, Yongbing; Cao, Hongbin; Li, Yuping; Zhang, Yi; Crittenden, John C

    2011-05-01

    Catalytic nitrate reduction is a promising technology in groundwater purification. In this study, PdCu bimetallic catalysts supported on an industrial amorphous silica-alumina (ASA) were synthesized and used to simulate catalytic removal of nitrate in groundwater. The catalysts exhibited very high activity and the highest catalytic selectivity toward N₂O and N₂ was 90.2%. The optimal Pd/Cu weight ratio was four. Relatively low reduction temperature was found benefit the catalytic stability and 300 °C was the appropriate reduction temperature during catalyst preparation. With an average particle size 5.4 nm, the metal particles were very uniformly distributed on the catalyst surface prepared with the codeposition method. This kept the catalyst more stable than the PdCu/Al₂O₂ catalyst with larger metal particles. According to XRD, TEM, and XPS results, the metals maintained zero-valence but aggregated by about 2 nm during the denitration reaction, which caused gradual deactivation of the catalysts. Little leaching of Cu and Pd from the catalyst might also have a slightly negative impact to the stability of the catalysts. A simple treatment was found to redistribute the particles on the deactivated catalysts, and high catalytic activity was recovered after this process.

  12. Design of highly active binary catalyst systems for CO2/epoxide copolymerization: polymer selectivity, enantioselectivity, and stereochemistry control.

    Science.gov (United States)

    Lu, Xiao-Bing; Shi, Lei; Wang, Yi-Ming; Zhang, Rong; Zhang, Ying-Ju; Peng, Xiao-Jun; Zhang, Zhi-Chao; Li, Bo

    2006-02-01

    Asymmetric, regio- and stereoselective alternating copolymerization of CO(2) and racemic aliphatic epoxides proceeds effectively under mild temperature and pressure by using a binary catalyst system of a chiral tetradentate Schiff base cobalt complex [SalenCo(III)X] as the electrophile in conjunction with an ionic organic ammonium salt or a sterically hindered strong organic base as the nucleophile. The substituent groups on the aromatic rings, chiral diamine backbone, and axial X group of the electrophile, as well as the nucleophilicity, leaving ability, and coordination ability of the nucleophile, all significantly affect the catalyst activity, polymer selectivity, enantioselectivity, and stereochemistry. A bulky chiral cyclohexenediimine backbone complex [SalcyCo(III)X] with an axial X group of poor leaving ability as the electrophile, combined with a bulky nuclephile with poor leaving ability and low coordination ability, is an ideal binary catalyst system for the copolymerization of CO(2) and a racemic aliphatic epoxide to selectively produce polycarbonates with relatively high enantioselectivity, >95% head-to-tail connectivity, and >99% carbonate linkages. A fast copolymerization of CO(2) and epoxides was observed when the concentration of the electrophile or/and the nucleophile was increased, and the number of polycarbonate chains was proportional to the concentration of the nucleophile. Electrospray ionization mass spectrometry, in combination with a kinetic study, showed that the copolymerization involved the coordination activation of the monomer by the electrophile and polymer chain growth predominately occurring in the nucleophile. Both the enantiomorphic site effect resulting from the chiral electrophile and the polymer chain end effect mainly from the bulky nucleophile cooperatively control the stereochemistry of the CO(2)/epoxide copolymerization.

  13. High-performance nickel-cobalt-boron material for an asymmetric supercapacitor with an ultrahigh energy density

    Science.gov (United States)

    Chen, Rongna; Liu, Lei; Zhou, Junshuang; Hou, Li; Gao, Faming

    2017-02-01

    Nickel-cobalt-borons are synthesized using a facile and cost-effective reduction method. The effects of Ni/Co molar ratios and crystallinity on its supercapacitive performance are systematically investigated. It was found that nickel-cobalt-borons with the Ni/Co ratio being 2:1 and amorphous structure manifest the optimum specific capacitance of 2226.96 F/g at a current density of 1 A/g and still remain 1879.2 F/g with a high discharge current density of 20 A/g. An asymmetric supercapacitor device (ASC) has been fabricated with nickel-cobalt-borons (Ni-Co-B) as the positive electrode and commercial activated carbon (CAC) as the negative electrode material. The Ni-Co-B//CAC delivers an ultrahigh energy density of 66.40 Wh/kg at a power density of 788.91 W/kg. This ASC remains 85.76% of its initial capacitance even after 5000 charge-discharge cycles. The results demonstrate that amorphous nickel-cobalt-boron material is a promising candidate for energy storage application.

  14. Covalent organic frameworks comprising cobalt porphyrins for catalytic CO2 reduction in water

    Energy Technology Data Exchange (ETDEWEB)

    Lin, S.; Diercks, C. S.; Zhang, Y. -B.; Kornienko, N.; Nichols, E. M.; Zhao, Y.; Paris, A. R.; Kim, D.; Yang, P.; Yaghi, O. M.; Chang, C. J.

    2015-08-20

    Conversion of carbon dioxide (CO2) to carbon monoxide (CO) and other value-added carbon products is an important challenge for clean energy research. Here we report modular optimization of covalent organic frameworks (COFs), in which the building units are cobalt porphyrin catalysts linked by organic struts through imine bonds, to prepare a catalytic material for aqueous electrochemical reduction of CO2 to CO. The catalysts exhibit high Faradaic efficiency (90%) and turnover numbers (up to 290,000, with initial turnover frequency of 9400 hour-1) at pH 7 with an overpotential of –0.55 volts, equivalent to a 26-fold improvement in activity compared with the molecular cobalt complex, with no degradation over 24 hours. X-ray absorption data reveal the influence of the COF environment on the electronic structure of the catalytic cobalt centers.

  15. Effects of catalyst height on diamond crystal morphology under high pressure and high temperature

    Science.gov (United States)

    Ya-Dong, Li; Xiao-Peng, Jia; Bing-Min, Yan; Ning, Chen; Chao, Fang; Yong, Li; Hong-An, Ma

    2016-04-01

    The effect of the catalyst height on the morphology of diamond crystal is investigated by means of temperature gradient growth (TGG) under high pressure and high temperature (HPHT) conditions with using a Ni-based catalyst in this article. The experimental results show that the morphology of diamond changes from an octahedral shape to a cub-octahedral shape as the catalyst height rises. Moreover, the finite element method (FEM) is used to simulate the temperature field of the melted catalyst/solvent. The results show that the temperature at the location of the seed diamond continues to decrease with the increase of catalyst height, which is conducive to changing the morphology of diamond. This work provides a new way to change the diamond crystal morphology. Project supported by the National Natural Science Foundation of China (Grant No. 51172089), the Program for New Century Excellent Talents in University, the Natural Science Foundation of Guizhou Provincial Education Department (Grant No. KY[2013]183), and the Collaborative Fund of Science and Technology Office of Guizhou Province, China (Grant No. LH[2015]7232).

  16. Surface-oxidized cobalt phosphide used as high efficient electrocatalyst in activated carbon air-cathode microbial fuel cell

    Science.gov (United States)

    Yang, Tingting; Wang, Zhong; Li, Kexun; Liu, Yi; Liu, Di; Wang, Junjie

    2017-09-01

    Herein, we report a simplistic method to fabricate the surface-oxidized cobalt phosphide (CoP) nanocrystals (NCs), which is used as electrocatalyst for oxygen reduction reaction (ORR) in microbial fuel cell (MFC) for the first time. The corallite-like CoP NCs are successfully prepared by a hydrothermal reaction following a phosphating treatment in N2 atmosphere. When used as an ORR catalyst, cobalt phosphide shows comparable onset potential, inferior resistance, as well as a small Tafel slope with long-term stability in neutral media. The maximum power density of MFC embellished with 10% CoP reached 1914.4 ± 59.7 mW m-2, which is 108.5% higher than the control. The four-electron pathway, observed by the RDE, plays a crucial role in electrochemical catalytic activity. In addition, material characterizations indicate that the surface oxide layer (CoOx) around the metallic CoP core is important and beneficial for ORR. Accordingly, it can be expected that the as-synthesized CoP will be a promising candidate of the non-precious metal ORR electrocatalysts for electrochemical energy applications.

  17. Biphasic catalysis using amphiphilic polyphenols-chelated noble metals as highly active and selective catalysts

    Science.gov (United States)

    Mao, Hui; Yu, Hong; Chen, Jing; Liao, Xuepin

    2013-07-01

    In the field of catalysis, it is highly desired to develop novel catalysts that combine the advantages of both homogeneous and heterogeneous catalysts. Here we disclose that the use of plant pholyphenol as amphiphilic large molecule ligand/stabilizer allows for the preparation of noble metal complex and noble metal nanoparticle catalysts. These catalysts are found to be highly selective and active in aqueous-organic biphasic catalysis of cinnamaldehyde and quinoline, and can be reused at least 3 times without significant loss of activity. Moreover, the catalytic activity and reusability of the catalysts can be rationally controlled by simply adjusting the content of polyphenols in the catalysts. Our strategy may be extended to design a wide range of aqueous-organic biphasic catalysis system.

  18. A Robust, Environmentally Benign Catalyst for Highly Selective Hydroformylation.

    Science.gov (United States)

    Sandee; van Der Veen LA; Reek; Kamer; Lutz; Spek; van Leeuwen PW

    1999-11-02

    By a sol-gel process a rhodium complex containing a diphosphane with a large natural P-Rh-P bite angle is covalently anchored in a silica matrix (see picture). The immobilized catalyst is a very selective hydroformylation catalyst that is completely and conveniently separated from the product and can be reused in numerous cycles.

  19. Sonochemical degradation of textile dyes in aqueous solution using sulphate radicals activated by immobilized cobalt ions.

    Science.gov (United States)

    Gayathri, P; Praveena Juliya Dorathi, R; Palanivelu, K

    2010-03-01

    Decolorisation of dye solutions by cobalt activated persulphate and ultrasonication has been investigated. Rhodamine B, Methylene Blue dye (basic dyes) and Acid orange II, Acid scarlet red 3R (acid dyes) were used as model compounds in this study. Immobilized cobalt ions, activated the persulphate to form highly reactive sulphate radicals. The degradation studies were conducted with only persulphate (PS), cobalt activated persulphate (PS+Co), persulphate+ultrasonication (PS+US) and cobalt activated persulphate+ultrasonication (PS+US+Co). The decolorisation efficiency were in the order of PScatalyst and contact time was investigated. Under the optimum condition, the decolorisation obeyed first-order kinetics. Nearly 90-97% of decolorisation was achieved with COD and TOC removal of about 65-73% and 53-62%, respectively, were achieved within an hour.

  20. Highly active carbon supported Pd cathode catalysts for direct formic acid fuel cells

    Science.gov (United States)

    Mikolajczuk-Zychora, A.; Borodzinski, A.; Kedzierzawski, P.; Mierzwa, B.; Mazurkiewicz-Pawlicka, M.; Stobinski, L.; Ciecierska, E.; Zimoch, A.; Opałło, M.

    2016-12-01

    One of the drawbacks of low-temperature fuel cells is high price of platinum-based catalysts used for the electroreduction of oxygen at the cathode of the fuel cell. The aim of this work is to develop the palladium catalyst that will replace commonly used platinum cathode catalysts. A series of palladium catalysts for oxygen reduction reaction (ORR) were prepared and tested on the cathode of Direct Formic Acid Fuel Cell (DFAFC). Palladium nanoparticles were deposited on the carbon black (Vulcan) and on multiwall carbon nanotubes (MWCNTs) surface by reduction of palladium(II) acetate dissolved in ethanol. Hydrazine was used as a reducing agent. The effect of functionalization of the carbon supports on the catalysts physicochemical properties and the ORR catalytic activity on the cathode of DFAFC was studied. The supports were functionalized by treatment in nitric acid for 4 h at 80 °C. The structure of the prepared catalysts has been characterized by thermogravimetric analysis (TGA), X-ray diffraction (XRD), transmission electron microscope (TEM) and cyclic voltammetry (CV). Hydrophilicity of the catalytic layers was determined by measuring contact angles of water droplets. The performance of the prepared catalysts has been compared with that of the commercial 20 wt.% Pt/C (Premetek) catalyst. The maximum power density obtained for the best palladium catalyst, deposited on the surface of functionalized carbon black, is the same as that for the commercial Pt/C (Premetek). Palladium is cheaper than platinum, therefore the developed cathode catalyst is promising for future applications.

  1. Facile electrochemical co-deposition of a graphene-cobalt nanocomposite for highly efficient water oxidation in alkaline media: direct detection of underlying electron transfer reactions under catalytic turnover conditions.

    Science.gov (United States)

    Guo, Si-Xuan; Liu, Yuping; Bond, Alan M; Zhang, Jie; Esakki Karthik, P; Maheshwaran, I; Senthil Kumar, S; Phani, K L N

    2014-09-21

    A facile electrochemical co-deposition method has been developed for the fabrication of graphene-cobalt nanocomposite modified electrodes that achieve exceptionally efficient water oxidation in highly alkaline media. In the method reported, a graphene-cobalt nanocomposite film was deposited electrochemically from a medium containing 1 mg ml(-1) graphene oxide, 0.8 mM cobalt nitrate and 0.05 M phytic acid (pH 7). The formation of the nanocomposite film was confirmed using electrochemical, Raman spectroscopic and scanning electron microscopic techniques. The nanocomposite film exhibits excellent activity and stability towards water oxidation to generate oxygen in 1 M NaOH aqueous electrolyte media. A turn over frequency of 34 s(-1) at an overpotential of 0.59 V and a faradaic efficiency of 97.7% were deduced from analysis of data obtained by rotating ring disk electrode voltammetry. Controlled potential electrolysis data suggests that the graphene supported catalyst exhibits excellent stability under these harsh conditions. Phytate anion acts as stabilizer for the electrochemical formation of cobalt nanoparticles. Fourier transformed ac voltammetry allowed the redox chemistry associated with catalysis to be detected directly under catalytic turnover conditions. Estimates of formal reversible potentials obtained from this method and derived from the overall reactions 3Co(OH)2 + 2OH(-) ⇌ Co3O4 + 4H2O + 2e(-), Co3O4 + OH(-) ⇌ 3CoOOH + e(-) and CoOOH + OH(-) ⇌ CoO2 + H2O + e(-) are 0.10, 0.44 and 0.59 V vs. Ag/AgCl, respectively.

  2. Studies on the Displacement Reaction of Trialkylaluminum with Ethylene Catalyzed by Nitrogen Chelate Cobalt Complexes

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The catalytic properties of a series of cobalt complexes containing bidenated nitrogen ligand for displacement reaction of trialkylaluminum with ethylene is reported. Effect of different reaction time, temperature and cobalt complexes containing different ligand on catalyst performance has been investigated.

  3. One-Step Electrodeposited Nickel Cobalt Sulfide Nanosheet Arrays for High-Performance Asymmetric Supercapacitors

    KAUST Repository

    Chen, Wei

    2014-09-23

    A facile one-step electrodeposition method is developed to prepare ternary nickel cobalt sulfide interconnected nanosheet arrays on conductive carbon substrates as electrodes for supercapacitors, resulting in exceptional energy storage performance. Taking advantages of the highly conductive, mesoporous nature of the nanosheets and open framework of the three-dimensional nanoarchitectures, the ternary sulfide electrodes exhibit high specific capacitance (1418 F g(-1) at 5 A g(-1) and 1285 F g(-1) at 100 A g(-1)) with excellent rate capability. An asymmetric supercapacitor fabricated by the ternary sulfide nanosheet arrays as positive electrode and porous graphene film as negative electrode demonstrates outstanding electrochemical performance for practical energy storage applications. Our asymmetric supercapacitors show a high energy density of 60 Wh kg(-1) at a power density of 1.8 kW kg(-1). Even when charging the cell within 4.5 s, the energy density is still as high as 33 Wh kg(-1) at an outstanding power density of 28.8 kW kg(-1) with robust long-term cycling stability up to 50 000 cycles.

  4. Atomic structure of high-coercivity cobalt-carbide nanoparticles ensembles

    Science.gov (United States)

    Arena, D. A.; Sterbinsky, G.; Stephens, P. W.; Carroll, K. J.; Yoon, H.; Meng, S.; Huba, Z.; Carpenter, E. E.

    2013-03-01

    Permanent magnets are increasingly important in numerous applications, including the quickly expanding area of green technologies (e . g . high efficiency electric car motors and wind turbine power systems). We present studies of novel permanent magnet materials based on cobalt carbide nanoparticles (NPs), where the energy product (BHmax) exceeds 20 kJ / m3. The NPs are synthesized via a polyol process, which offers a flexible approach to modify the Co-carbide phase (Co2C and Co3C), and NP morphology, size and size dispersion. The Co2C and Co3C phases have unique magnetic properties, and the combination exhibits the high BHmax . We present a detailed assessment of the structure of mixtures of Co2C and Co3 NPs, measured by high-resolution, synchrotron based powder x-ray diffraction (p-XRD). Both the Co2C and Co3 phases exhibit an orthorhombic structure (Pnnm and Pnma space groups, respectively). The high-resolution p-XRD facilitates identification of mixed phase samples, enabling detailed comparisons of the atomic structure with the magnetic properties, measured by both lab-based magnetometry and x-ray spectroscopy (soft x-ray XAS & XMCD).

  5. Hierarchical manganese cobalt sulfide core-shell nanostructures for high-performance asymmetric supercapacitors

    Science.gov (United States)

    Liu, Shude; Jun, Seong Chan

    2017-02-01

    High electrical conductivity and rational design of structures are two crucial routes to improving the electrochemical performance of electrode materials. However, highly conductive electrode materials with short ion-transport paths remain a challenge in energy storage. Here, we propose manganese cobalt sulfide (MnCo2S4) nanowire wrapping by a flocculent shell layer using a facile hydrothermal method with post-sulfurization treatment. The resultant MnCo2S4 electrode employed for supercapacitor delivered a remarkable specific capacitance of 2067 F g-1 at the current density of 1 A g-1, good rate capability, and excellent cycling stability. Moreover, an asymmetric supercapacitor device was successfully assembled using MnCo2S4 and reduced graphene oxide (rGO) as electrodes, achieving a high energy density of 31.3 W kg-1 at a power density of 800 W kg-1. With such outstanding electrochemical performance, this asymmetric supercapacitor device holds great potential in developing high-energy-storage applications.

  6. Discovery of a cobalt complex with high MEK1 binding affinity.

    Science.gov (United States)

    Li, Hongyue; Zhou, Tongliang; Liu, Hui; Xu, Fengrong; Niu, Yan; Wang, Chao; Liang, Lei; Xu, Ping

    2017-05-15

    A series of Schiff base ligands (L(1)-L(5)) and their cobalt(II) complexes (1-5) were designed and synthesized for MEK1 binding experiment. The biological evaluation results showed that Bis(N,N'-disalicylidene)-3,4-phenylenediamine-cobalt(II) 1 and Bis(N,N'-disalicylidene)-1,2-cyclohexanediamine-cobalt(II) 2 are much more effective than the parent Schiff bases (L(1) and L(2)). Importantly, 2 exhibited MEK1 binding affinity with IC5071nM, which is so far the best result for metal complexes and more potent than U0126 (7.02μM) and AZD6244 (2.20μM). Docking study was used to elucidate the binding modes of complex 2 with MEK1. Thus cobalt(II) complex 2 may be further developed as a novel MEK1 inhibitor. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. High surface area graphite as alternative support for proton exchange membrane fuel cell catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira-Aparicio, P.; Folgado, M.A. [Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas (CIEMAT), Avda. Complutense 22, E-28040 Madrid (Spain); Daza, L. [Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas (CIEMAT), Avda. Complutense 22, E-28040 Madrid (Spain); Instituto de Catalisis y Petroleoquimica (CSIC), C/Marie Curie, 2 Campus de Cantoblanco, E-28049 Madrid (Spain)

    2009-07-01

    The suitability of a high surface area graphite (HSAG) as proton exchange membrane fuel cell (PEMFC) catalyst support has been evaluated and compared with that of the most popular carbon black: the Vulcan XC72. It has been observed that Pt is arranged on the graphite surface resulting in different structures which depend on the catalysts synthesis conditions. The influence that the metal particle size and the metal-support interaction exert on the catalysts degradation rate is analyzed. Temperature programmed oxidation (TPO) under oxygen containing streams has been shown to be a useful method to assess the resistance of PEMFC catalysts to carbon corrosion. The synthesized Pt/HSAG catalysts have been evaluated in single cell tests in the cathode catalytic layer. The obtained results show that HSAG can be a promising alternative to the traditionally used Vulcan XC72 carbon black when suitable catalysts synthesis conditions are used. (author)

  8. Facile synthesis of nickel–cobalt double hydroxide nanosheets with high rate capability for application in supercapacitor

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Minmin; Xue, Junying; Zhang, Fangming; Ma, Wenle; Cui, Hongtao, E-mail: htcui@ytu.edu.cn [Yantai University, Shandong Provincial Engineering Research Center for Comprehensive Utilization of Light Hydrocarbons, College of Chemistry and Chemical Engineering (China)

    2015-02-15

    In this work, nickel–cobalt double hydroxide nanosheets with high rate capability are prepared by a facile epoxide precipitation route. The synthetic procedure includes an oxidization step using ammonium persulfate as oxidant and a precipitation step using propylene oxide as precipitation agent. As shown in the results of electrochemical characterization, high specific capacitance of 2548 F g{sup −1} for this material can be obtained at current density of 0.9 A g{sup −1} in aqueous solution of 3 mol L{sup −1 }KOH. It is surprising to notice that the capacitance of material still remains 1587 F g{sup −1} at high current density of 35.7 A g{sup −1}. These results demonstrate that the as-prepared nickel–cobalt double hydroxide nanosheets are promising electrode material for supercapacitor application as a primary power source.

  9. Microstructural Changes during High Temperature Service of a Cobalt-Based Superalloy First Stage Nozzle

    Directory of Open Access Journals (Sweden)

    A. Luna Ramírez

    2016-01-01

    Full Text Available Superalloys are a group of alloys based on nickel, iron, or cobalt, which are used to operate at high temperatures (T > 540°C and in situations involving very high stresses like in gas turbines, particularly in the manufacture of blades, nozzles, combustors, and discs. Besides keeping its high resistance to temperatures which may approach 85% of their melting temperature, these materials have excellent corrosion resistance and oxidation. However, after long service, these components undergo mechanical and microstructural degradation; the latter is considered a major cause for replacement of the main components of gas turbines. After certain operating time, these components are very expensive to replace, so the microstructural analysis is an important tool to determine the mode of microstructure degradation, residual lifetime estimation, and operating temperature and most important to determine the method of rehabilitation for extending its life. Microstructural analysis can avoid catastrophic failures and optimize the operating mode of the turbine. A case study is presented in this paper.

  10. Simple and highly Z-selective ruthenium-based olefin metathesis catalyst.

    Science.gov (United States)

    Occhipinti, Giovanni; Hansen, Fredrik R; Törnroos, Karl W; Jensen, Vidar R

    2013-03-01

    A one-step substitution of a single chloride anion of the Grubbs-Hoveyda second-generation catalyst with a 2,4,6-triphenylbenzenethiolate ligand resulted in an active olefin metathesis catalyst with remarkable Z selectivity, reaching 96% in metathesis homocoupling of terminal olefins. High turnover numbers (up to 2000 for homocoupling of 1-octene) were obtained along with sustained appreciable Z selectivity (>85%). Apart from the Z selectivity, many properties of the new catalyst, such as robustness toward oxygen and water as well as a tendency to isomerize substrates and react with internal olefin products, resemble those of the parent catalyst.

  11. Highly loaded Ni-based catalysts for low temperature ethanol steam reforming

    Science.gov (United States)

    Wang, Tuo; Ma, Hongyan; Zeng, Liang; Li, Di; Tian, Hao; Xiao, Shengning; Gong, Jinlong

    2016-05-01

    This paper describes the design of high-loading Ni/Al2O3 catalysts (78 wt% Ni) for low temperature ethanol steam reforming. The catalysts were synthesized via both co-precipitation (COP) and impregnation (IMP) methods. All the catalysts were measured by N2 adsorption-desorption, XRD, H2-TPR, and H2 pulse chemisorption. The characterization results demonstrated that the preparation method and the loading significantly affected the nickel particle size, active nickel surface area and catalytic performance. Over COP catalysts, large nickel particles were presented in nickel aluminum mixed oxides. In comparison, IMP catalysts gained more ``free'' NiO particles with weak interaction with the aluminum oxide. Consequently, COP catalysts yielded smaller nickel particles and larger active nickel surface areas than those of IMP catalysts. High loading is beneficial for obtaining sufficient active nickel sites when nickel particles are dispersed via COP, whereas excessive nickel content is not desired for catalysts prepared by IMP. Specifically, the 78 wt% nickel loaded catalyst synthesized by COP possessed small nickel particles (~6.0 nm) and an abundant active nickel area (35.1 m2 gcat-1). Consequently, COP-78 achieved superior stability with 92% ethanol conversion and ~35% H2 selectivity at 673 K for 30 h despite the presence of a considerable amount of coke.

  12. Hydrometallurgical route to recover molybdenum, nickel, cobalt and aluminum from spent hydrotreating catalysts in acid medium; Rota hidrometalurgica de recuperacao de molibdenio, cobalto, niquel e aluminio de catalisadores gastos de hidrotratamento em meio acido

    Energy Technology Data Exchange (ETDEWEB)

    Valverde Junior, Ivam Macedo; Paulino, Jessica Frontino; Afonso, Julio Carlos [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Inst. de Quimica. Dept. de Quimica Analitica]. E-mail: julio@iq.ufrj.br

    2008-07-01

    This work describes a hydrometallurgical route for processing spent commercial catalysts (CoMo and NiMo/Al{sub 2}O{sub 3}). Samples were preoxidized (500 deg C, 5 h) in order to eliminate coke and other volatile species present. The calcined solid was dissolved in concentrated H{sub 2}SO{sub 4} and water (1:1 vol/vol) at 90 de C; the insoluble matter was separated from the solution. Molybdenum was recovered by solvent extraction using tertiary amines at pH around 1.8. Cobalt (or nickel) was separated by addition of aqueous ammonium oxalate at the above pH. Phosphorus was removed by passing the liquid through a strong anion exchange column. Aluminum was recovered by neutralizing the solution with NaOH. The route presented in this work generates less final aqueous wastes because it is not necessary to use alkaline medium during the metal recovery steps. (author)

  13. Batch reactor kinetic studies on the reductive dechlorination of chlorinated ethylenes by tetrakis-(4-sulfonatophenyl)porphyrin cobalt.

    Science.gov (United States)

    Barnett, Brandon R; Evans, Alexandra L; Roberts, Courtney C; Fritsch, Joseph M

    2011-01-01

    Tetrakis-(4-sulfonatophenyl)porphyrin cobalt was identified as a highly-active reductive dechlorination catalyst for chlorinated ethylenes. Through batch reactor kinetic studies, degradation of chlorinated ethylenes proceeded in a step-wise fashion with the sequential replacement of Cl by H. For perchloroethylene (PCE) and trichloroethylene (TCE), the dechlorination products were quantified and the C₂ mass was accounted for. Degradation of the chlorinated ethylenes was found to be first-order in substrate. Dechlorination trials with increasing catalyst concentration showed a linearly increasing pseudo first-order rate constant which yielded rate laws for PCE and TCE degradation that are first-order in catalyst. The dechlorination activity of this catalyst was compared to that of another water-soluble cobalt porphyrin under the same reaction conditions and found to be comparable for PCE and TCE. Copyright © 2010 Elsevier Ltd. All rights reserved.

  14. Ammonia synthesis over multi-promoted iron catalysts obtained by high-energy ball-milling

    DEFF Research Database (Denmark)

    Jacobsen, C.J.H.; Jiang, Jianzhong; Mørup, Steen

    1999-01-01

    The feasibility of producing ammonia synthesis catalysts from high-energy ball-milling of a simple mixture of the constituent oxides has been investigated. The effect of ball-milling the fused oxidic precursor of the industrial KM1 ammonia synthesis catalyst has also been studied. The results show...

  15. A Highly Efficient and Self-Stabilizing Metallic-Glass Catalyst for Electrochemical Hydrogen Generation.

    Science.gov (United States)

    Hu, Yuan Chao; Wang, Yi Zhi; Su, Rui; Cao, Cheng Rong; Li, Fan; Sun, Chun Wen; Yang, Yong; Guan, Peng Fei; Ding, Da Wei; Wang, Zhong Lin; Wang, Wei Hua

    2016-12-01

    A multicomponent metallic glass (MG) with highly efficient and anomalous durability for catalyzing water splitting is reported. The outstanding performance of the MG catalyst contributed by self-optimized active sites originates from the intrinsic chemical heterogeneity and selective dealloying on the disordered surface; thus, a new mechanism for improving the durability of catalysts is uncovered.

  16. High CO methanation activity on zirconia-supported molybdenum sulfide catalyst

    Institute of Scientific and Technical Information of China (English)

    Zhenhua Li; Ye Tian; Jia He; Baowei Wang; Xinbin Ma

    2014-01-01

    In this study, different methods were used to prepare MoO3/ZrO2 catalysts for sulfur resistant methanation reaction. It was found that MoO3/ZrO2 catalyst prepared by one-step co-precipitation method achieved high methanation performance. CO conversion could reach up to 90%on 25 wt%MoO3/ZrO2 catalyst, much higher than that on the conventional 25 wt%MoO3/Al2O3 catalyst. The Mo-based catalysts were characterized by XRF, XRD, Raman, BET, TEM and H2-TPR etc. It was found that MoO3 particles were highly dispersed on ZrO2 support for 25 wt%MoO3/ZrO2 catalyst prepared at 65-85◦C because of its relatively larger pore size, which contributed to a high CO conversion. Meanwhile, when MoO3 loading exceeded the monolayer coverage, the formed crystalline MoO3 and ZrMo2 O8 might block the micropores of the catalyst and make the methanation activity declined. These results are useful for preparing highly efficient catalyst for CO methanation process.

  17. Effects of manganese oxide promoter on the CO and H2 adsorption properties of titania-supported cobalt Fischer–Tropsch catalysts

    NARCIS (Netherlands)

    Morales, F.; de Smit, E.; de Groot, F.M.F.; Visser, T.; Weckhuysen, B.M.

    2007-01-01

    The adsorption properties of manganese-promoted Co/TiO2 Fischer–Tropsch (FT) catalysts were investigated by diffuse reflectance infrared spectroscopy (DRIFTS) using CO and H2 as probe molecules. Manganese was found to be closely associated to the FT active Co0 sites at the surface of the catalysts.

  18. Cobalt poisoning

    Science.gov (United States)

    ... against the metal cup when you walk. These metal particles (ions) can get released into the hip socket and ... Cobalt may also be found in: Alloys Batteries Chemistry/crystal ... Magnets Some metal-on-metal hip implants Tires Cobalt was once ...

  19. Synthesis of Highly Stable Cobalt Nanomaterial Using Gallic Acid and Its Application in Catalysis

    Directory of Open Access Journals (Sweden)

    Saba Naz

    2014-01-01

    Full Text Available We report the room temperature (25–30°C green synthesis of cobalt nanomaterial (CoNM in an aqueous medium using gallic acid as a reducing and stabilizing agent. pH 9.5 was found to favour the formation of well dispersed flower shaped CoNM. The optimization of various parameters in preparation of nanoscale was studied. The AFM, SEM, EDX, and XRD characterization studies provide detailed information about synthesized CoNM which were of 4–9 nm in dimensions. The highly stable CoNM were used to study their catalytic activity for removal of azo dyes by selecting methyl orange as a model compound. The results revealed that 0.4 mg of CoNM has shown 100% removal of dye from 50 μM aqueous solution of methyl orange. The synthesized CoNM can be easily recovered and recycled several times without decrease in their efficiency.

  20. High magnetostriction parameters for low-temperature sintered cobalt ferrite obtained by two-stage sintering

    Energy Technology Data Exchange (ETDEWEB)

    Khaja Mohaideen, K.; Joy, P.A., E-mail: pa.joy@ncl.res.in

    2014-12-15

    From the studies on the magnetostriction characteristics of two-stage sintered polycrystalline CoFe{sub 2}O{sub 4} made from nanocrystalline powders, it is found that two-stage sintering at low temperatures is very effective for enhancing the density and for attaining higher magnetostriction coefficient. Magnetostriction coefficient and strain derivative are further enhanced by magnetic field annealing and relatively larger enhancement in the magnetostriction parameters is obtained for the samples sintered at lower temperatures, after magnetic annealing, despite the fact that samples sintered at higher temperatures show larger magnetostriction coefficients before annealing. A high magnetostriction coefficient of ∼380 ppm is obtained after field annealing for the sample sintered at 1100 °C, below a magnetic field of 400 kA/m, which is the highest value so far reported at low magnetic fields for sintered polycrystalline cobalt ferrite. - Highlights: • Effect of two-stage sintering on the magnetostriction characteristics of CoFe{sub 2}O{sub 4} is studied. • Two-stage sintering is very effective for enhancing the density and the magnetostriction parameters. • Higher magnetostriction for samples sintered at low temperatures and after magnetic field annealing. • Highest reported magnetostriction of 380 ppm at low fields after two-stage, low-temperature sintering.

  1. Fabrication of cobalt-nickel binary nanowires in a highly ordered alumina template via AC electrodeposition.

    Science.gov (United States)

    Ali, Ghafar; Maqbool, Muhammad

    2013-08-14

    Cobalt-nickel (Co-Ni) binary alloy nanowires of different compositions were co-deposited in the nanopores of highly ordered anodic aluminum oxide (AAO) templates from a single sulfate bath using alternating current (AC) electrodeposition. AC electrodeposition was accomplished without modifying or removing the barrier layer. Field emission scanning electron microscope was used to study the morphology of templates and alloy nanowires. Energy-dispersive X-ray analysis confirmed the deposition of Co-Ni alloy nanowires in the AAO templates. Average diameter of the alloy nanowires was approximately 40 nm which is equal to the diameter of nanopore. X-ray diffraction analysis showed that the alloy nanowires consisted of both hexagonal close-packed and face-centered cubic phases. Magnetic measurements showed that the easy x-axis of magnetization is parallel to the nanowires with coercivity of approximately 706 Oe. AC electrodeposition is very simple, fast, and is useful for the homogenous deposition of various secondary nanostuctured materials into the nanopores of AAO.

  2. Facile synthesis of cobalt-doped zinc oxide thin films for highly efficient visible light photocatalysts

    Science.gov (United States)

    Altintas Yildirim, Ozlem; Arslan, Hanife; Sönmezoǧlu, Savaş

    2016-12-01

    Cobalt-doped zinc oxide (Co:ZnO) thin films with dopant contents ranging from 0 to 5 at.% were prepared using the sol-gel method, and their structural, morphological, optical, and photocatalytic properties were characterized. The effect of the dopant content on the photocatalytic properties of the films was investigated by examining the degradation behavior of methylene blue (MB) under visible light irradiation, and a detailed investigation of their photocatalytic activities was performed by determining the apparent quantum yields (AQYs). Co2+ ions were observed to be substitutionally incorporated into Zn2+ sites in the ZnO crystal, leading to lattice parameter constriction and band gap narrowing due to the photoinduced carriers produced under the visible light irradiation. Thus, the light absorption range of the Co:ZnO films was improved compared with that of the undoped ZnO film, and the Co:ZnO films exhibited highly efficient photocatalytic activity (∼92% decomposition of MB after 60-min visible light irradiation for the 3 at.% Co:ZnO film). The AQYs of the Co:ZnO films were greatly enhanced under visible light irradiation compared with that of the undoped ZnO thin film, demonstrating the effect of the Co doping level on the photocatalytic activity of the films.

  3. Active Edge Sites Engineering in Nickel Cobalt Selenide Solid Solutions for Highly Efficient Hydrogen Evolution

    KAUST Repository

    Xia, Chuan

    2017-01-06

    An effective multifaceted strategy is demonstrated to increase active edge site concentration in NiCoSe solid solutions prepared by in situ selenization process of nickel cobalt precursor. The simultaneous control of surface, phase, and morphology result in as-prepared ternary solid solution with extremely high electrochemically active surface area (C = 197 mF cm), suggesting significant exposure of active sites in this ternary compound. Coupled with metallic-like electrical conductivity and lower free energy for atomic hydrogen adsorption in NiCoSe, identified by temperature-dependent conductivities and density functional theory calculations, the authors have achieved unprecedented fast hydrogen evolution kinetics, approaching that of Pt. Specifically, the NiCoSe solid solutions show a low overpotential of 65 mV at -10 mV cm, with onset potential of mere 18 mV, an impressive small Tafel slope of 35 mV dec, and a large exchange current density of 184 μA cm in acidic electrolyte. Further, it is shown that the as-prepared NiCoSe solid solution not only works very well in acidic electrolyte but also delivers exceptional hydrogen evolution reaction (HER) performance in alkaline media. The outstanding HER performance makes this solid solution a promising candidate for mass hydrogen production.

  4. Study of cobalt mononitride thin films prepared using DC and high power impulse magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Rachana, E-mail: dr.rachana.gupta@gmail.com [Institute of Engineering & Technology, DAVV, Khandwa Road, Indore – 452 017 (India); Pandey, Nidhi; Behera, Layanta; Gupta, Mukul [UGC-DAE Consortium for Scientific Research, Khandwa Road, University Campus, Indore-452001 (India)

    2016-05-23

    In this work we studied cobalt mononitride (CoN) thin films deposited using dc magnetron sputtering (dcMS) and high power impulse magnetron sputtering (HiPIMS). A Co target was sputtered using pure N{sub 2} gas alone as the sputtering medium. Obtained long-range structural ordering was studies using x-ray diffraction (XRD), short-range structure using Co L{sub 2,3} and N K absorption edges using soft x-ray absorption spectroscopy (XAS) and the surface morphology using atomic force microscopy (AFM). It was found that HiPIMS deposited films have better long-range ordering, better stoichiometric ratio for mononitride composition and smoother texture as compared to dcMS deposited films. In addition, the thermal stability of HiPIMS deposited CoN film seems to be better. On the basis of different type of plasma conditions generated in HiPIMS and dcMS process, obtained results are presented and discussed.

  5. Cobalt-doped graphitic carbon nitride photocatalysts with high activity for hydrogen evolution

    Science.gov (United States)

    Chen, Pei-Wen; Li, Kui; Yu, Yu-Xiang; Zhang, Wei-De

    2017-01-01

    Cobalt-doped graphitic carbon nitride (Cosbnd CN) was synthesized by one-step thermal polycondensation using cobalt phthalocyanine (CoPc) and melamine as precursors. The π-π interaction between melamine and CoPc promotes cobalt doping into the framework of g-C3N4. The prepared samples were carefully characterized and the results demonstrated that Co-doped graphitic carbon nitride inhibited the crystal growth of graphitic carbon nitride (CN), leading to larger specific surface area (33.1 m2 g-1) and abundant Co-Nx active sites, narrower band gap energy and more efficient separation of photogenerated electrons and holes. 0.46% Cosbnd CN exhibited higher hydrogen evolution rate (28.0 μmol h-1) under visible light irradiation, which is about 3.0 times of that over the pure CN and about 2.2 times of that over cobalt-doped CN using CoCl2 • 6H2O as a cobalt source. This study provides a valuable strategy to modify CN with enhanced photocatalytic performance.

  6. Heterogenized homogeneous catalyst. 3. Oxidation of benzaldehyde in a semibatch tubular wall reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kuo, M.C.; Chou, T.C.

    1987-06-01

    The author's previous works showed that the surface of the heterogenized homogeneous catalyst significantly affects both the initiation and termination of free radicals. To minimize free-radical termination by the surface of catalyst and avoid separation of catalyst from the products in a slurry reactor, a tubular reactor was designed in this work. The termination of free radicals by the surface of catalyst is negligible when the tubular wall reactor is used. The selectivity of perbenzoic acid is very high and the maximum yield of perbenzoic acid is 63%. During the experimental period, no leakage of cobaltic ions was found.

  7. High performance catalytic distillation using CNTs-based holistic catalyst for production of high quality biodiesel

    Science.gov (United States)

    Zhang, Dongdong; Wei, Dali; Li, Qi; Ge, Xin; Guo, Xuefeng; Xie, Zaiku; Ding, Weiping

    2014-01-01

    For production of biodiesel from bio oils by heterogeneous catalysis, high performance catalysts of transesterification and the further utilization of glycerol have been the two points of research. The process seemed easy, however, has never been well established. Here we report a novel design of catalytic distillation using hierachically integrated CNTs-based holistic catalyst to figure out the two points in one process, which shows high performance both for the conversion of bio oils to biodiesel and, unexpectedly, for the conversion of glycerol to more valuable chemicals at the same time. The method, with integration of nano, meso to macro reactor, has overwhelming advantages over common technologies using liquid acids or bases to catalyze the reactions, which suffer from the high cost of separation and unsolved utilization of glycerol. PMID:24503897

  8. High performance catalytic distillation using CNTs-based holistic catalyst for production of high quality biodiesel

    Science.gov (United States)

    Zhang, Dongdong; Wei, Dali; Li, Qi; Ge, Xin; Guo, Xuefeng; Xie, Zaiku; Ding, Weiping

    2014-02-01

    For production of biodiesel from bio oils by heterogeneous catalysis, high performance catalysts of transesterification and the further utilization of glycerol have been the two points of research. The process seemed easy, however, has never been well established. Here we report a novel design of catalytic distillation using hierachically integrated CNTs-based holistic catalyst to figure out the two points in one process, which shows high performance both for the conversion of bio oils to biodiesel and, unexpectedly, for the conversion of glycerol to more valuable chemicals at the same time. The method, with integration of nano, meso to macro reactor, has overwhelming advantages over common technologies using liquid acids or bases to catalyze the reactions, which suffer from the high cost of separation and unsolved utilization of glycerol.

  9. Reagents for selective extraction of nickel(II), cobalt(II) and copper(II) from highly acidic sulfate feeds containing iron

    OpenAIRE

    Roebuck, James William

    2015-01-01

    This thesis focuses on development of new regents which are suitable for recovering nickel, cobalt and copper from laterite leach solutions, specifically focusing on reagent requirements for novel base metal flowsheets developed by Anglo American. The work aims to design reagents which can extract nickel(II), cobalt(II) and copper(II) from a highly acidic aqueous sulfate solutions whilst showing selectivity over iron(II) and iron(III). Chapter 1 reviews current extractive metallur...

  10. High-Performance Flexible Organic Nano-Floating Gate Memory Devices Functionalized with Cobalt Ferrite Nanoparticles.

    Science.gov (United States)

    Jung, Ji Hyung; Kim, Sunghwan; Kim, Hyeonjung; Park, Jongnam; Oh, Joon Hak

    2015-10-07

    Nano-floating gate memory (NFGM) devices are transistor-type memory devices that use nanostructured materials as charge trap sites. They have recently attracted a great deal of attention due to their excellent performance, capability for multilevel programming, and suitability as platforms for integrated circuits. Herein, novel NFGM devices have been fabricated using semiconducting cobalt ferrite (CoFe2O4) nanoparticles (NPs) as charge trap sites and pentacene as a p-type semiconductor. Monodisperse CoFe2O4 NPs with different diameters have been synthesized by thermal decomposition and embedded in NFGM devices. The particle size effects on the memory performance have been investigated in terms of energy levels and particle-particle interactions. CoFe2O4 NP-based memory devices exhibit a large memory window (≈73.84 V), a high read current on/off ratio (read I(on)/I(off)) of ≈2.98 × 10(3), and excellent data retention. Fast switching behaviors are observed due to the exceptional charge trapping/release capability of CoFe2O4 NPs surrounded by the oleate layer, which acts as an alternative tunneling dielectric layer and simplifies the device fabrication process. Furthermore, the NFGM devices show excellent thermal stability, and flexible memory devices fabricated on plastic substrates exhibit remarkable mechanical and electrical stability. This study demonstrates a viable means of fabricating highly flexible, high-performance organic memory devices. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Functional Species Encapsulated in Nitrogen-Doped Porous Carbon as a Highly Efficient Catalyst for the Oxygen Reduction Reaction.

    Science.gov (United States)

    Song, Li; Wang, Tao; Ma, Yiou; Xue, Hairong; Guo, Hu; Fan, Xiaoli; Xia, Wei; Gong, Hao; He, Jianping

    2017-03-08

    The scarcity, high cost, and poor stability of precious metal-based electrocatalysts have stimulated the development of novel non-precious metal catalysts for the oxygen reduction reaction (ORR) for use in fuel cells and metal-air batteries. Here, we fabricated in situ a hybrid material (Co-W-C/N) with functional species (tungsten carbide and cobalt nanoparticles) encapsulated in an N-doped porous carbon framework, through a facile multi-constituent co-assembly method combined with subsequent annealing treatment. The unique structure favors the anchoring active nanoparticles and facilitates mass transfer steps. The homogenously distributed carbide nanoparticles and adjacent Co-N-C sites lead to the electrocatalytic synergism for the ORR. The existence of Co and W can promote the graphitization of the carbon matrix. Benefiting from its structural and material superiority, the Co-W-C/N electrocatalyst exhibits excellent electrocatalytic activity (with a half-wave potential of 0.774 V vs. reversible hydrogen electrode (RHE)), high stability (96.3 % of the initial current remaining after 9000 s of continuous operation), and good immunity against methanol in alkaline media.

  12. N-Co-O Triply Doped Highly Crystalline Porous Carbon: An Acid-Proof Nonprecious Metal Oxygen Evolution Catalyst.

    Science.gov (United States)

    Yang, Shiliu; Zhan, Yi; Li, Jingfa; Lee, Jim Yang

    2016-02-10

    In comparison with nonaqueous Li-air batteries, aqueous Li-air batteries are kinetically more facile and there is more variety of non-noble metal catalysts available for oxygen electrocatalysis, especially in alkaline solution. The alkaline battery environment is however vulnerable to electrolyte carbonation by atmospheric CO2 resulting in capacity loss over time. The acid aqueous solution is immune to carbonation but is limited by the lack of effective non-noble metal catalysts for the oxygen evolution reaction (OER). This is contrary to the oxygen reduction reaction (ORR) in acid solution where a few good candidates exist. We report here the development of a N-Co-O triply doped carbon catalyst with substantial OER activity in acid solution by the thermal codecomposition of polyaniline, cobalt salt and cyanamide in nitrogen. Cyanamide and the type of cobalt precursor salt were found to determine the structure, crystallinity, surface area, extent of Co doping and consequently the OER activity of the final carbon catalyst in acid solution. We have also put forward some hypotheses about the active sites that may be useful for guiding further work.

  13. High cycle life, cobalt free, AB{5} metal hydride electrodes [Revised 11/10/98

    Energy Technology Data Exchange (ETDEWEB)

    Vogt, Tom; Reilly, J.J.; Johnson, J.R.; Adzic, G.D.; Ticianelli, E.A.; Mukerjee, S.; McBreen, J.

    1998-11-10

    Cobalt-free La(Ni,Sn)5+x alloys have been identified as low cost, corrosion resistant electrodes for nickel-metal-hydride batteries. The structure of theses alloys are similar to non-stoichiometric La(Ni,Cu)5+x compounds; i.e., they retain the P6/mmm space group while Ni dumbbells occupy La sites. Electrodes fabricated from some of these novel alloys have capacities and cycle lives equivalent to those made from commercial, battery grade, AB5 alloys with cobalt.

  14. Hydrogen embrittlement of high strength steel electroplated with zincâ  cobalt allo

    OpenAIRE

    Hillier, Elizabeth M. K.; Robinson, M. J.

    2004-01-01

    Slow strain rate tests were performed on quenched and tempered AISI 4340 steel to measure the extent of hydrogen embrittlement caused by electroplating with zincâ  cobalt alloys. The effects of bath composition and pH were studied and compared with results for electrodeposited cadmium and zincâ  10%nickel. It was found that zincâ  1%cobalt alloy coatings caused serious hydrogen embrittlement (EI 0.63); almost as severe as that of cadmium (EI 0.78). Baking cadmium plate...

  15. A synthesis method for cobalt doped carbon aerogels with high surface area and their hydrogen storage properties

    Energy Technology Data Exchange (ETDEWEB)

    Tian, H.Y.; Buckley, C.E. [Department of Imaging and Applied Physics, Curtin University of Technology, GPO Box U 1987, Perth 6845, WA (Australia); CSIRO National Hydrogen Materials Alliance, CSIRO Energy Centre, 10 Murray Dwyer Circuit, Steel River Estate, Mayfield West, NSW 2304 (Australia); Sheppard, D.A.; Paskevicius, M. [Department of Imaging and Applied Physics, Curtin University of Technology, GPO Box U 1987, Perth 6845, WA (Australia); Hanna, N. [CSIRO Process Science and Engineering, Waterford, WA (Australia)

    2010-12-15

    Carbon aerogels doped with nanoscaled Co particles were prepared by first coating activated carbon aerogels using a wet-thin layer coating process. The resulting metal-doped carbon aerogels had a higher surface area ({proportional_to}1667 m{sup 2} g{sup -1}) and larger micropore volume ({proportional_to}0.6 cm{sup 3} g{sup -1}) than metal-doped carbon aerogels synthesised using other methods suggesting their usefulness in catalytic applications. The hydrogen adsorption behaviour of cobalt doped carbon aerogel was evaluated, displaying a high {proportional_to}4.38 wt.% H{sub 2} uptake under 4.6 MPa at -196 C. The hydrogen uptake capacity with respect to unit surface area was greater than for pure carbon aerogel and resulted in {proportional_to}1.3 H{sub 2} (wt. %) per 500 m{sup 2} g{sup -1}. However, the total hydrogen uptake was slightly reduced as compared to pure carbon aerogel due to a small reduction in surface area associated with cobalt doping. The improved adsorption per unit surface area suggests that there is a stronger interaction between the hydrogen molecules and the cobalt doped carbon aerogel than for pure carbon aerogel. (author)

  16. Copper(Ⅱ) and Cobalt(Ⅱ) Dinuclear Complexes with Oxime-based Ligand as Catalysts for the Hydrolysis of Phosphate Diester

    Institute of Scientific and Technical Information of China (English)

    DU Juan; MENG Xiang-Guang; ZENG Xian-Cheng

    2008-01-01

    Dinuclear copper(Ⅱ) and cobalt(Ⅱ) complexes were prepared and investigated with respect to their effects on hydrolysis of bis(4-nitrophenyl) phosphate (BNPP). The kinetic data indicated that the mono-deprotonated oxime group could act as an effective intramolecular nucleophile in the reaction. The higher reactivity of dinuclear copper(Ⅱ) complex than that of its mononuclear analogues illustrated the probability of double Lewis acid activation by two metal centers in the former complex.

  17. A trinuclear ruthenium complex as a highly efficient molecular catalyst for water oxidation.

    Science.gov (United States)

    Zhang, L L; Gao, Y; Liu, Z; Ding, X; Yu, Z; Sun, L C

    2016-03-01

    A trinuclear ruthenium complex, 3, was designed and synthesized with the ligand 2,2'-bipyridine-6,6'-dicarboxylic acid (bda) and we found that this complex could function as a highly efficient molecular catalyst for water oxidation in homogeneous systems. This trinuclear molecular water oxidation catalyst, 3, displayed much higher efficiencies in terms of turnover numbers and initial oxygen evolution rate than its counterparts, a binuclear catalyst, 2, and a mononuclear catalyst, 1, in both chemically driven and photochemically driven water oxidation based on either the whole catalytic molecules or just the active Ru centers. The reasons for the superior performance of catalyst 3 were discussed and we believe that multiple Ru centers in a single molecule are indeed beneficial for increasing the probability of the formation of O-O bonds through an intramolecular radical coupling pathway.

  18. Calcium chloride doped zinc-cobalt metal-cyanide complex: Unexpected highly activity towards ring-opening polymerization of propylene oxide

    Institute of Scientific and Technical Information of China (English)

    Yi Jun Huang; Xing Hong Zhang; Zheng Jiang Hua; Guo Rong Qi

    2010-01-01

    Highly active calcium chloride (CaCl2) doped Zn-CoⅢ double metal-cyanide (Ca-DMC) catalysts were firstly reported. Ca-DMCs presented a very higher polymer yield (54 kg polymer/g catalyst) at relative low temperature (80-115 ℃) toward ring-opening polymerization (ROP) of propylene oxide (PO) than did DMC catalysts without modification.

  19. Thermal effect on magnetic parameters of high-coercivity cobalt ferrite

    Energy Technology Data Exchange (ETDEWEB)

    Chagas, E. F., E-mail: efchagas@fisica.ufmt.br; Ponce, A. S.; Prado, R. J.; Silva, G. M. [Instituto de Física, Universidade Federal de Mato Grosso, 78060-900 Cuiabá-MT (Brazil); Bettini, J. [Laboratório Nacional de Nanotecnologia, Centro Nacional de Pesquisa em Energia e Materiais, 13083-970 Campinas (Brazil); Baggio-Saitovitch, E. [Centro Brasileiro de Pesquisas Físicas, Rua Xavier Sigaud 150 Urca. Rio de Janeiro (Brazil)

    2014-07-21

    We prepared very high-coercivity cobalt ferrite nanoparticles synthesized by a combustion method and using short-time high-energy mechanical milling to increase strain and the structural defects density. The coercivity (H{sub C}) of the milled sample reached 3.75 kOe—a value almost five times higher than that obtained for the non-milled material (0.76 kOe). To investigate the effect of the temperature on the magnetic behavior of the milled sample, we performed a thermal treatment on the milled sample at 300, 400, and 600 °C for 30 and 180 min. We analyzed the changes in the magnetic behavior of the nanoparticles due to the thermal treatment using the hysteresis curves, Williamson-Hall analysis, and transmission electron microscopy. The thermal treatment at 600 °C causes decreases in the microstructural strain and density of structural defects resulting in a significant decrease in H{sub C}. Furthermore, this thermal treatment increases the size of the nanoparticles and, as a consequence, there is a substantial increase in the saturation magnetization (M{sub S}). The H{sub C} of the samples treated at 600 °C for 30 and 180 min were 2.24 and 1.93 kOe, respectively, and the M{sub S} of these same samples increased from 57 emu/g to 66 and 70 emu/g, respectively. The H{sub C} and the M{sub S} are less affected by the thermal treatment at 300 and 400 °C.

  20. Effect study of the support in nickel and cobalt catalysts for obtaining hydrogen from ethanol steam reforming; Estudo do efeito do suporte em catalisadores de cobalto e niquel para obtencao de hidrogenio a partir da reforma a vapor do etanol

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Sirlane Gomes da

    2013-09-01

    A range of oxide-supported metal catalysts have been investigated for the steam reforming of ethanol for the production of hydrogen and subsequent application in fuel cells. The catalysts were synthesized by the co-precipitation and internal gelification methods using cobalt and nickel as active metals supported on aluminum, zirconium, lanthanum and cerium oxides. After prepared and calcined at 550 C Masculine-Ordinal-Indicator the solids were fully characterized by different techniques such as X-rays diffraction(DRX), energy-dispersive X-ray spectroscopy (EDS), scanning electron microscopy, nitrogen adsorption (B.E.T), temperature-programmed reduction in H2 (TPR-H2) and thermogravimetric analysis. The catalytic tests were performed in a monolithic quartz reactor and submitted to different thermodynamic conditions of steam reforming of ethanol at temperatures varying from 500 Masculine-Ordinal-Indicator C to 800 Masculine-Ordinal-Indicator C. The product gas streams from the reactor were analyzed by an on-line gas chromatograph. The cobalt/nickel catalyst supported on a ceria-lanthania mixture (Co{sub 10%} / Ni{sub 5%} - CeO{sub 2}La{sub 2}O{sub 3}) showed good catalytic performance in hydrogen selectivity reaching a concentration greater than 65%, when compared to other catalytic systems such as: Co{sub 10%} / Ni5% - CeO{sub 2}; Co{sub 10%} / Ni{sub 5%} - CeO{sub 2}ZrO{sub 2}; Co{sub 10%} / Ni{sub 5%} - ZrO{sub 2}; Co{sub 10%} / Ni{sub 5%} - La{sub 2}O{sub 3}; Co{sub 10%} / Ni{sub 5%} - CeO{sub 2}La{sub 2}O{sub 3}/K{sub 2%}; Co{sub 10}% / Ni{sub 5%} - CeO{sub 2}La{sub 2}O{sub 3} / Na{sub 2%}; Ni{sub 10%} / Co{sub 5%} - CeO{sub 2}La{sub 2}O{sub 3}; Co-Al{sub 2}O{sub 3} e Co-Al{sub 2}O{sub 3}CeO{sub 2}. (author)

  1. High Cobalt, Copper And Zinc Smelting Practice Of High Raw Material%高钴、高铜锌原料冶炼的实践

    Institute of Scientific and Technical Information of China (English)

    韦庭胜

    2012-01-01

    This article mainly introduced in the process of zinc hydrometallurgy how successful treatment of high cobalt, copper refined zinc and treatment effect. Through the introduction of cobalt, copper impurity in the process of zinc hydrometallurgy of zinc electrolysis process hazard and affect the quality of refined zinc, and cobalt, copper impurity in the process of zinc hydrometallurgy leaching, purification, electrolytic process behavior, make the production process and process conditions. Simple description of roasting, leaching process conditions and basis. Focuses on the purification mechanism, antimony trioxide purification method mechanism. Presents a selection of inverse antimony trioxide purification method basis, Narrative Choice purification process and technological conditions. At the same time for cobalt impurities high case, prevent cobalt impurities accumulation in production system, puts forward the method and effect of cobalt impurities control. Finally, introduces the application of formulation of the production process and application in hydrometallurgical zinc production in treatment of high cobalt, some experience of high copper.%文章主要介绍在湿法炼锌中如何成功处理高钴、高铜精锌矿及处理效果。通过介绍钴、铜杂质在湿法炼锌中电解过程的危害及对锌锭质量的影响,以及分析了精锌矿中钴、铜杂质在湿法炼锌中浸出、净化、电解过程中的行为,制定了生产工艺流程和工艺条件。简单地叙述沸腾焙烧、浸出的工艺条件和制定依据。重点叙述净化工艺机理、锑盐净化法机理。提出了选择逆锑盐净化法的依据,叙述所选择净化工艺流程和工艺条件。同时针对钴杂质特高情况下,防止钴杂质在生产系统积累,提出了钴杂质控制的方法及效果。最后介绍应用制定的工艺生产应用效果及在湿法炼锌生产中处理高钴、高铜矿几点心得。

  2. In-situ reduction of promoted cobalt oxide supported on alumina by environmental transmission electron microscopy

    DEFF Research Database (Denmark)

    Dehghan, Roya; Hansen, Thomas Willum; Wagner, Jakob Birkedal

    2011-01-01

    Reduction of 12wt.%Co/0.5wt.%Re/α-Al2O3 Fischer–Tropsch catalyst has been studied in-situ in an environmental transmission electron microscope. Reduction of Co3O4 to metallic cobalt was observed dynamically at 360 °C under 3.4 mbar H2. Structural and morphological changes were observed by high...... resolution transmission electron microscopy and scanning transmission electron microscopy imaging. The cobalt particles were mainly face centred cubic while some hexagonal close packed particles were also found. Reoxidation of the sample upon cooling to room temperature, still under flowing H2, underlines...

  3. KINETIC MODELING OF A FISCHER-TROPSCH REACTION OVER A COBALT CATALYST IN A SLURRY BUBBLE COLUMN REACTOR FOR INCORPORATION INTO A COMPUTATIONAL MULTIPHASE FLUID DYNAMICS MODEL

    Energy Technology Data Exchange (ETDEWEB)

    Anastasia Gribik; Doona Guillen, PhD; Daniel Ginosar, PhD

    2008-09-01

    Currently multi-tubular fixed bed reactors, fluidized bed reactors, and slurry bubble column reactors (SBCRs) are used in commercial Fischer Tropsch (FT) synthesis. There are a number of advantages of the SBCR compared to fixed and fluidized bed reactors. The main advantage of the SBCR is that temperature control and heat recovery are more easily achieved. The SBCR is a multiphase chemical reactor where a synthesis gas, comprised mainly of H2 and CO, is bubbled through a liquid hydrocarbon wax containing solid catalyst particles to produce specialty chemicals, lubricants, or fuels. The FT synthesis reaction is the polymerization of methylene groups [-(CH2)-] forming mainly linear alkanes and alkenes, ranging from methane to high molecular weight waxes. The Idaho National Laboratory is developing a computational multiphase fluid dynamics (CMFD) model of the FT process in a SBCR. This paper discusses the incorporation of absorption and reaction kinetics into the current hydrodynamic model. A phased approach for incorporation of the reaction kinetics into a CMFD model is presented here. Initially, a simple kinetic model is coupled to the hydrodynamic model, with increasing levels of complexity added in stages. The first phase of the model includes incorporation of the absorption of gas species from both large and small bubbles into the bulk liquid phase. The driving force for the gas across the gas liquid interface into the bulk liquid is dependent upon the interfacial gas concentration in both small and large bubbles. However, because it is difficult to measure the concentration at the gas-liquid interface, coefficients for convective mass transfer have been developed for the overall driving force between the bulk concentrations in the gas and liquid phases. It is assumed that there are no temperature effects from mass transfer of the gas phases to the bulk liquid phase, since there are only small amounts of dissolved gas in the liquid phase. The product from the

  4. Porous bimetallic PdNi catalyst with high electrocatalytic activity for ethanol electrooxidation.

    Science.gov (United States)

    Feng, Yue; Bin, Duan; Yan, Bo; Du, Yukou; Majima, Tetsuro; Zhou, Weiqiang

    2017-05-01

    Porous bimetallic PdNi catalysts were fabricated by a novel method, namely, reduction of Pd and Ni oxides prepared via calcining the complex chelate of PdNi-dimethylglyoxime (PdNi-dmg). The morphology and composition of the as-prepared PdNi were investigated by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). Furthermore, the electrochemical properties of PdNi catalysts towards ethanol electrooxidation were also studied by electrochemical impedance spectrometry (EIS), cyclic voltammetry (CV) and chronoamperometry (CA) measurement. In comparison with porous Pd and commercial Pd/C catalysts, porous structural PdNi catalysts showed higher electrocatalytic activity and durability for ethanol electrooxidation, which may be ascribed to Pd and Ni property, large electroactive surface area and high electron transfer property. The Ni exist in the catalyst in the form of the nickel hydroxides (Ni(OH)2 and NiOOH) which have a high electron and proton conductivity enhances the catalytic activity of the catalysts. All results highlight the great potential application of the calcination-reduction method for synthesizing high active porous PdNi catalysts in direct ethanol fuel cells.

  5. Boron-doped diamond synthesized at high-pressure and high-temperature with metal catalyst

    Science.gov (United States)

    Shakhov, Fedor M.; Abyzov, Andrey M.; Kidalov, Sergey V.; Krasilin, Andrei A.; Lähderanta, Erkki; Lebedev, Vasiliy T.; Shamshur, Dmitriy V.; Takai, Kazuyuki

    2017-04-01

    The boron-doped diamond (BDD) powder consisting of 40-100 μm particles was synthesized at 5 GPa and 1500-1600 °C from a mixture of 50 wt% graphite and 50 wt% Ni-Mn catalyst with an addition of 1 wt% or 5 wt% boron powder. The size of crystal domains of doped and non-doped diamond was evaluated as a coherent scattering region by X-ray diffraction (XRD) and using small-angle neutron scattering (SANS), being ≥180 nm (XRD) and 100 nm (SANS). Magnetic impurities of NiMnx originating from the catalyst in the synthesis, which prevent superconductivity, were detected by magnetization measurements at 2-300 K. X-ray photoelectron spectroscopy, the temperature dependence of the resistivity, XRD, and Raman spectroscopy reveal that the concentration of electrically active boron is as high as (2±1)×1020 cm-3 (0.1 at%). To the best of our knowledge, this is the highest boron content for BDD synthesized in high-pressure high-temperature process with metal catalysts.

  6. Carbon nanocages: a new support material for Pt catalyst with remarkably high durability.

    Science.gov (United States)

    Wang, Xiao Xia; Tan, Zhe Hua; Zeng, Min; Wang, Jian Nong

    2014-03-24

    Low durability is the major challenge hindering the large-scale implementation of proton exchange membrane fuel cell (PEMFC) technology, and corrosion of carbon support materials of current catalysts is the main cause. Here, we describe the finding of remarkably high durability with the use of a novel support material. This material is based on hollow carbon nanocages developed with a high degree of graphitization and concurrent nitrogen doping for oxidation resistance enhancement, uniform deposition of fine Pt particles, and strong Pt-support interaction. Accelerated degradation testing shows that such designed catalyst possesses a superior electrochemical activity and long-term stability for both hydrogen oxidation and oxygen reduction relative to industry benchmarks of current catalysts. Further testing under conditions of practical fuel cell operation reveals almost no degradation over long-term cycling. Such a catalyst of high activity, particularly, high durability, opens the door for the next-generation PEMFC for "real world" application.

  7. Bioaccessibility testing of cobalt compounds.

    Science.gov (United States)

    Stopford, Woodhall; Turner, John; Cappellini, Danielle; Brock, Tom

    2003-08-01

    Testing of metal compounds for solubility in artificial fluids has been used for many years to assist determining human health risk from exposure to specific compounds of concern. In lieu of obtaining bioavailability data from samples of urine, blood, or other tissues, these studies measured solubility of compounds in various artificial fluids as a surrogate for bioavailability. In this context, the measurement of metal "bioaccessibility" can be used as an in vitro substitute for measuring metal bioavailability. Bioaccessibility can be defined as a value representing the availability of metal for absorption when dissolved in in vitro surrogates of body fluids or juices. The aim of this study was to measure and compare the bioaccessibility of selected cobalt compounds in artificial human tissue fluids and human serum. A second aim was to initiate studies to experimentally validate an in vitro methodology that would provide a conservative estimate of cobalt bioavailability in the assessment of dose from human exposure to various species of cobalt compounds. This study evaluated the bioaccessibility of cobalt(II) from 11 selected cobalt compounds and an alloy in 2 physical forms in 5 surrogate human tissue fluids and human serum. Four (4) separate extraction times were used up to 72 hours. The effect of variables such as pH, dissolution time, and mass-ion effect on cobalt bioaccessibility were assessed as well. We found that the species of cobalt compound as well as the physico-chemical properties of the surrogate fluids, especially pH, had a major impact on cobalt solubility. Cobalt salts such as cobalt(II) sulfate heptahydrate were highly soluble, whereas cobalt alloys used in medical implants and cobalt aluminate spinels used as pigments, showed minimal dissolution over the period of the assay.

  8. Silylation of Dinitrogen Catalyzed by Hydridodinitrogentris(TriphenylphosphineCobalt(I

    Directory of Open Access Journals (Sweden)

    Wojciech I. Dzik

    2016-07-01

    Full Text Available Recently, homogeneous cobalt systems were reported to catalyze the reductive silylation of dinitrogen. In this study the investigations on the silylation of dinitrogen catalyzed by CoH(PPh33N2 are presented. We show that in the presence of the title compound, the reaction of N2 with trimethylsilylchloride and sodium yields, on average, 6.7 equivalents of tris(trimethylsilylamine per Co atom in THF (tetrahydrofuran. The aim was to elucidate whether the active catalyst is: (a the [Co(PPh33N2]− anion formed after two-electron reduction of the title compound; or (b a species formed via decomposition of CoH(PPh33N2 in the presence of the highly reactive substrates. Time profile, and IR and EPR spectroscopic investigations show instability of the pre-catalyst under the applied conditions which suggests that the catalytically active species is formed through in situ modification of the pre-catalyst.

  9. Robust acenaphthoimidazolylidene palladium complexes: highly efficient catalysts for Suzuki-Miyaura couplings with sterically hindered substrates.

    Science.gov (United States)

    Tu, Tao; Sun, Zheming; Fang, Weiwei; Xu, Mizhi; Zhou, Yunfei

    2012-08-17

    Robust acenaphthoimidazolylidene palladium complexes have been demonstrated as highly efficient and general catalysts for the sterically hindered Suzuki-Miyaura cross-coupling reactions in excellent yields even with low catalyst loadings under mild reaction conditions. The high catalytic activity of these complexes highlights that, besides the "flexible steric bulky" concept, σ-donor properties of the NHC ligands are also crucial to accelerate the transformations.

  10. Accelerating process and catalyst development in reforming reactions with high throughput technologies under industrially relevant conditions

    Energy Technology Data Exchange (ETDEWEB)

    Schunk, S.A.; Bollmann, G.; Froescher, A.; Kaiser, H.; Lange de Oliveira, A.; Roussiere, T.; Wasserschaff, G. [hte Aktiengesellschaft, Heidelberg (Germany); Domke, I. [BASF SE, Ludwigshafen (Germany)

    2010-12-30

    The generation of hydrogen via reforming of a variety of carbon containing feed-stocks in the presence of water is up to date one of the most versatile technologies for the production of hydrogen and syngas. Although these reforming technologies are in principle well established, understood and commercialized, there are still a number of technological challenges that are not solved up to a satisfactorily degree and there is a constant demand for appropriate answers to the challenges posed. High throughput experimentation can be a valuable tool in helping accelerate the development of suitable solutions on the catalyst and process development side. In order to be able to generate test data that are close or identical to process relevant conditions, hte has developed a new technology portfolio of test technologies named Stage-IV technology. In contrast to earlier developments which address more small scale testing on the basis of catalyst volumes of 1ml up to 10 ml under isothermal conditions, our new technology portfolio offers the advantage of test volumes at sub-pilot scale also realizing reactor dimensions close to technical applications. This does not only ensure a good mimic of the hydrodynamic conditions of the technical scale, but also allows a fingerprinting of features like temperature gradients in the catalyst bed which play a large role for catalyst performance. Apart from catalyst tests with granulates when screening for optimized catalyst compositions, the units are designed to accommodate tests with shaped catalysts. In order to demonstrate how these technologies can accelerate catalyst and process development we have chosen technically challenging application examples: (I) Pre-reforming and reforming of methane based feeds which accelerate coking and catalyst deactivation. Higher reaction pressures, high CO{sub 2} contents in the feedgas (which occur typically in sources like bio-gas or certain types of natural gas), the presence of higher alkanes

  11. High-Performance Pd3Pb Intermetallic Catalyst for Electrochemical Oxygen Reduction.

    Science.gov (United States)

    Cui, Zhiming; Chen, Hao; Zhao, Mengtian; DiSalvo, Francis J

    2016-04-13

    Extensive efforts to develop highly active and strongly durable electrocatalyst for oxygen reduction are motivated by a need for metal-air batteries and fuel cells. Here, we report a very promising catalyst prototype of structurally ordered Pd-based alloys, Pd3Pb intermetallic compound. Such structurally ordered Pd3Pb/C exhibits a significant increase in mass activity. More importantly, compared to the conventional Pt/C catalysts, ordered Pd3Pb/C is highly durable and exhibits a much longer cycle life and higher cell efficiency in Zn-air batteries. Interestingly, ordered Pd3Pb/C possesses very high methanol tolerance during electrochemical oxygen reduction, which make it an excellent methanol-tolerant cathode catalyst for alkaline polymer electrolyte membrane fuel cells. This study provides a promising route to optimize the synthesis of ordered Pd-based intermetallic catalysts for fuel cells and metal-air batteries.

  12. Unusual behaviour of perflurorinated cobalt phthalocyanine compared to unsubstituted cobalt phthalocyanine for the electrocatalytic oxidation of hydrazine. Effect of the surface concentration of the catalyst on the graphite surface

    Directory of Open Access Journals (Sweden)

    Zagal José H.

    2013-01-01

    Full Text Available We have found that CoPc and 16(FCoPc when adsorbed on graphite electrode exhibit voltammograms in alkaline solution (0.2M NaOH that show the typical redox peaks attributed to the Co(II/(I reversible. The peak potential for CoPc is independent of surface concentration of the catalyst. In contrast, for 16(FCoPc the Co(II/(I redox process shifts to more negative potentials when the surface concentration of the catalyst increases. In a volcano correlation of log (i/GE (activity per active site versus Co (II/(I formal potential of catalyst (using several CoN4 chelates CoPc appears in the ascending portion (activity increases with the Co (II/(I redox potential whereas 16(FCoPc appears in the region where activity decreases with the redox potential. In a plot of log (i/GE versus the Co(II/(I formal potential of 16(FCoPc the declining portion of the volcano is reproduced for one single complex. So 16(FCoPc at different surface concentrations behaves as Co complexes having different redox potential in the declining portion of the volcano plot, when the activity is normalized for the surface concentration. This is not observed for CoPc.

  13. Carbon-Carbon Bond Formation in a Weak Ligand Field: Leveraging Open Shell First Row Transition Metal Catalysts.

    Science.gov (United States)

    Chirik, Paul James

    2017-01-12

    Unique features of Earth abundant transition metal catalysts are reviewed in the context of catalytic carbon-carbon bond forming reactions. Aryl-substituted bis(imino)pyridine iron and cobalt dihalide compounds, when activated with alkyl aluminum reagents, form highly active catalysts for the polymerization of ethylene. Open shell iron and cobalt alkyl complexes have been synthesized that serve as single component olefin polymerization catalysts. Reduced bis(imino)pyridine iron- and cobalt dinitrogen compounds have also been discovered that promote the unique [2+2] cycloaddition of unactivated terminal alkenes. Electronic structure studies support open shell intermediates, a deviation from traditional strong field organometallic compounds that promote catalytic C-C bond formation.

  14. Effects of cobalt precursor on pyrolyzed carbon-supported cobalt-polypyrrole as electrocatalyst toward oxygen reduction reaction

    Science.gov (United States)

    Yuan, Xianxia; Hu, Xin-Xin; Ding, Xin-Long; Kong, Hai-Chuan; Sha, Hao-Dong; Lin, He; Wen, Wen; Shen, Guangxia; Guo, Zhi; Ma, Zi-Feng; Yang, Yong

    2013-11-01

    A series of non-precious metal electrocatalysts, namely pyrolyzed carbon-supported cobalt-polypyrrole, Co-PPy-TsOH/C, are synthesized with various cobalt precursors, including cobalt acetate, cobalt nitrate, cobalt oxalate, and cobalt chloride. The catalytic performance towards oxygen reduction reaction (ORR) is comparatively investigated with electrochemical techniques of cyclic voltammogram, rotating disk electrode and rotating ring-disk electrode. The results are analyzed and discussed employing physiochemical techniques of X-ray diffraction, transmission electron microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy, inductively coupled plasma, elemental analysis, and extended X-ray absorption fine structure. It shows that the cobalt precursor plays an essential role on the synthesis process as well as microstructure and performance of the Co-PPy-TsOH/C catalysts towards ORR. Among the studied Co-PPy-TsOH/C catalysts, that prepared with cobalt acetate exhibits the best ORR performance. The crystallite/particle size of cobalt and its distribution as well as the graphitization degree of carbon in the catalyst greatly affects the catalytic performance of Co-PPy-TsOH/C towards ORR. Metallic cobalt is the main component in the active site in Co-PPy-TsOH/C for catalyzing ORR, but some other elements such as nitrogen are probably involved, too.

  15. High pressure stability of the monosilicides of cobalt and the platinum group elements

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez, J.A., E-mail: jeanalexis.hernandez@ens-lyon.fr [Laboratoire de géologie de Lyon, CNRS UMR 5276, École Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, 46 Allée d’Italie, 69364 Lyon Cedex 07 (France); Vočadlo, L.; Wood, I.G. [Department of Earth Sciences, University College London, WC1E 6BT (United Kingdom)

    2015-03-25

    Highlights: • We model the high-pressure phases of cobalt- and platinum-group-monosilicides. • CoSi, RuSi, OsSi transform with pressure from the ε-FeSi to the CsCl structure. • RhSi and IrSi transform with pressure from the MnP structure to the ε-FeSi structure. • PdSi and PtSi transform with pressure from the MnP structure to the CuTi structure. - Abstract: The high pressure stability of CoSi, RuSi, RhSi, PdSi, OsSi, IrSi and PtSi was investigated by static first-principles calculations up to 300 GPa at 0 K. As found experimentally, at atmospheric pressure, CoSi, RuSi and OsSi were found to adopt the cubic ε-FeSi structure (P2{sub 1}3) whereas RhSi, PdSi, IrSi and PtSi were found to adopt the orthorhombic MnP (Pnma) structure. At high pressure, CoSi, RuSi and OsSi show a phase transition to the CsCl structure (Pm3{sup ¯}m) structure at 270 GPa, 7 GPa and 6 GPa respectively. RhSi and IrSi were found to transform to an ε-FeSi structure at 10 GPa and 25 GPa. For PdSi and PtSi, a transformation from the MnP structure to the tetragonal CuTi structure (P4/nmm) occurs at 13 GPa and 20 GPa. The pressure dependence of the electronic density of states reveals that RuSi and OsSi are semiconductors in the ε-FeSi structure and become metallic in the CsCl structure. RhSi and IrSi are metals in the MnP structure and become semimetals in their high pressure ε-FeSi form. CoSi in the ε-FeSi configuration is a semimetal. PdSi and PtSi remain metallic throughout up to 300 GPa.

  16. Fischer-Tropsch Catalyst for Aviation Fuel Production

    Science.gov (United States)

    DeLaRee, Ana B.; Best, Lauren M.; Bradford, Robyn L.; Gonzalez-Arroyo, Richard; Hepp, Aloysius F.

    2012-01-01

    As the oil supply declines, there is a greater need for cleaner alternative fuels. There will undoubtedly be a shift from crude oil to nonpetroleum sources as a feedstock for aviation (and other transportation) fuels. The Fischer-Tropsch process uses a gas mixture of carbon monoxide and hydrogen which is converted into various liquid hydrocarbons; this versatile gas-to-liquid technology produces a complex product stream of paraffins, olefins, and oxygenated compounds such as alcohols and aldehydes. The Fischer-Tropsch process can produce a cleaner diesel oil fraction with a high cetane number (typically above 70) without any sulfur and aromatic compounds. It is most commonly catalyzed by cobalt supported on alumina, silica, or titania or unsupported alloyed iron powders. Cobalt is typically used more often than iron, in that cobalt is a longer-active catalyst, has lower water-gas shift activity, and lower yield of modified products. Promoters are valuable in improving Fischer-Tropsch catalyst as they can increase cobalt oxide dispersion, enhance the reduction of cobalt oxide to the active metal phase, stabilize a high metal surface area, and improve mechanical properties. Our goal is to build up the specificity of the Fischer-Tropsch catalyst while adding less-costly transition metals as promoters; the more common promoters used in Fischer-Tropsch synthesis are rhenium, platinum, and ruthenium. In this report we will describe our preliminary efforts to design and produce catalyst materials to achieve our goal of preferentially producing C8 to C18 paraffin compounds in the NASA Glenn Research Center Gas-To-Liquid processing plant. Efforts at NASA Glenn Research Center for producing green fuels using non-petroleum feedstocks support both the Sub-sonic Fixed Wing program of Fundamental Aeronautics and the In Situ Resource Utilization program of the Exploration Technology Development and Demonstration program.

  17. Highly coercive cobalt ferrite nanoparticles-CuTl-1223 superconductor composites

    Energy Technology Data Exchange (ETDEWEB)

    Jabbar, Abdul; Qasim, Irfan; Khan, Shahid A.; Nadeem, K.; Waqee-ur-Rehman, M.; Mumtaz, M., E-mail: mmumtaz75@yahoo.com; Zeb, F.

    2015-03-01

    We explored the effects of highly coercive cobalt ferrite (CoFe{sub 2}O{sub 4}) nanoparticles addition on structural, morphological, and superconducting properties of Cu{sub 0.5}Tl{sub 0.5}Ba{sub 2}Ca{sub 2}Cu{sub 3}O{sub 10-δ} (CuTl-1223) matrix. Series of (CoFe{sub 2}O{sub 4}){sub x}/CuTl-1223 (x=0 ∼2.0 wt%) composites samples were synthesized and were characterized by x-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared (FTIR) absorption spectroscopy, and dc-resistivity versus temperature measurements. The magnetic behavior of CoFe{sub 2}O{sub 4} nanoparticles was determined by MH-loops with the help of superconducting quantum interference device (SQUID). MH-loops analysis showed that these nanoparticles exhibit high saturation magnetization (86 emu/g) and high coercivity (3350 Oe) at 50 K. The tetragonal structure of host CuTl-1223 superconducting matrix was not altered after the addition of CoFe{sub 2}O{sub 4} nanoparticles, which gave us a clue that these nanoparticles had occupied the inter-granular sites (grain-boundaries) and had filled the pores. The increase of mass density with increasing content of these nanoparticles in composites can also be an evidence of filling up the voids in the matrix. The resistivity versus temperature measurements showed an increase in zero resistivity critical {T_c(0)}, which could be most probably due to improvement of weak-links by the addition of these nanoparticles. But the addition of these nanoparticles beyond an optimum level caused the agglomeration and produced additional stresses in material and suppressed the superconductivity. - Highlights: • T{sub c}(0) increased with increasing CoFe{sub 2}O{sub 4} nanoparticles up to x=1.5. • CoFe{sub 2}O{sub 4} nanoparticles addition has not affected the structure of CuTl-1223. • Addition of CoFe{sub 2}O{sub 4} nanoparticles has improved inter-grains weak links. • Non-monotonic variation of ρ{sub (300} {sub K)} (Ω-cm) is due to

  18. High-performance PdRu bimetallic catalyst supported on mesoporous silica nanoparticles for phenol hydrogenation

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Chao [The Key Laboratory of Fuel Cell Technology of Guangdong Province and The Key Laboratory for New Energy of Guangdong Universities, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou (China); Yang, Xu [Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou (China); Yang, Hui; Huang, Peiyan; Song, Huiyu [The Key Laboratory of Fuel Cell Technology of Guangdong Province and The Key Laboratory for New Energy of Guangdong Universities, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou (China); Liao, Shijun, E-mail: chsjliao@scut.edu.cn [The Key Laboratory of Fuel Cell Technology of Guangdong Province and The Key Laboratory for New Energy of Guangdong Universities, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou (China)

    2014-10-01

    Graphical abstract: The addition of Ru could significantly improve the performance of the mesoporous silica nanoparticles supported PdRu/MSN catalyst, which showed over 5 times higher mass activity than the mono-Pd/MSN towards the liquid-phase hydrogenation of phenol. The improved dispersion and the electronic interaction contributed to the enhanced catalytic activity for the catalyst towards phenol hydrogenation. - Highlights: • PdRu bimetal catalyst supported on mesoporous silica nanoparticles was prepared. • The average sizeof PdRu alloy is smaller than that of mono-Pd. • The addition of Ru to Pd modulates the electronic properties between Pd and Ru. • PdRu/MSN catalyst shows superior activity on phenol hydrogenation than Pd/MSN. • PdRu/MSN catalyst shows good selectivity for cyclohexanol to some extent. - Abstract: A high-performance PdRu bimetallic catalyst supported on mesoporous silica nanoparticles (MSN), PdRu/MSN, was prepared by a facile impregnation–hydrogen reduction method. It was found that PdRu/MSN showed 5 times higher activity than that of Pd/MSN towards the liquid-phase hydrogenation of phenol. The catalysts were characterized comprehensively by multiple techniques, X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and hydrogen temperature program reduction (TPR). It was revealed that adding Ru could effectively improve the Pd dispersion and promote the electronic interaction between the Pd and Ru, both of which contribute to enhancing the catalytic activity.

  19. Preparation of high dispersion and high performance PtRu/CNTs catalyst by an organic colloid method

    Institute of Scientific and Technical Information of China (English)

    王宁卡特; 刘军民; 廖世军; V.Birss

    2006-01-01

    A high dispersion and high performance PtRu catalyst supported on carbon nanotubes was prepared by an organic colloid method. The particle size of the active components could be as small as 1.0 nm,the active surface area was about 466 m2/g(Pt). The catalytic activity toward anodic oxidation of methanol was about 3 ~ 4 times higher than that of Johnson Matthey PtRu/XC-72R catalyst. The single testing showed that the performance of the prepared catalyst was higher than that of the commercial one.

  20. High performance of inverted polymer solar cells with cobalt oxide as hole-transporting layer

    Science.gov (United States)

    Wang, Xiangdong; Peng, Qing; Zhu, Weiguo; Lei, Gangtie

    2015-05-01

    Cobalt oxide (II, III) (CoOx) was inserted as efficient hole-transporting interlayer between the active layer and top electrode in inverted polymer solar cells (PSCs) with titanium (diisopropoxide) bis(2, 4-pentanedionate) (TIPD) as an electron selective layer. The work function of CoOx was measured by Kelvin probe and the device performances with different thicknesses of cobalt oxide were studied. The device with CoOx exhibited a remarkable improvement in power conversion efficiency compared with that without CoOx, which indicated that CoOx efficiently prevented the recombination of charge carriers at the organic/top electrode interface. The performance improvement was attributed to the fact that the CoOx thin film can module the Schottky barrier and form an ohmic contact at the organic/metal interface, which makes it a promising hole-transporting layer.

  1. Cobalt diselenide nanoparticles embedded within porous carbon polyhedra as advanced electrocatalyst for oxygen reduction reaction

    Science.gov (United States)

    Wu, Renbing; Xue, Yanhong; Liu, Bo; Zhou, Kun; Wei, Jun; Chan, Siew Hwa

    2016-10-01

    Highly efficient and cost-effective electrocatalyst for the oxygen reduction reaction (ORR) is crucial for a variety of renewable energy applications. Herein, strongly coupled hybrid composites composed of cobalt diselenide (CoSe2) nanoparticles embedded within graphitic carbon polyhedra (GCP) as high-performance ORR catalyst have been rationally designed and synthesized. The catalyst is fabricated by a convenient method, which involves the simultaneous pyrolysis and selenization of preformed Co-based zeolitic imidazolate framework (ZIF-67). Benefiting from the unique structural features, the resulting CoSe2/GCP hybrid catalyst shows high stability and excellent electrocatalytic activity towards ORR (the onset and half-wave potentials are 0.935 and 0.806 V vs. RHE, respectively), which is superior to the state-of-the-art commercial Pt/C catalyst (0.912 and 0.781 V vs. RHE, respectively).

  2. Microwave-assisted preparation of flower-like cobalt phosphate and its application as a new heterogeneous Fenton-like catalyst

    Science.gov (United States)

    Hu, Xiaoxia; Li, Rong; Zhao, Shuyu; Xing, Yanjun

    2017-02-01

    A novel flower-like 3D hierarchical cobalt phosphate Co3(PO4)2·8H2O (fCoP), and a plate-like cobalt phosphate (pCoP) were successfully synthesized via a microwave-assisted method at low temperature under atmospheric pressure using hexamethylene tetramine (HMTA) or urea as a template. All CoPs were characterized using XRD, FESEM, TEM, DRS and surface photovoltage spectra (SPS). The performance of the photocatalytic degradation of Rhodamine B (RhB) via a Fenton-like process on CoPs was evaluated both in the dark and under illumination. The results showed that the morphology and composition of the CoPs affected the RhB degradation. The flower-like hierarchical fCoP favored the photo degradation of RhB. fCoP was also confirmed to have the merits of easy recycling and good stability based on successive degradation experiments. The active species trapping experiments showed that the superoxide radical (rad O2-) was the dominant active species in the Fenton-like process. The catalytic activation was confirmed to be related to both the Co(II) on the surface and the fCoP framework.

  3. Co-occurrence of Superparamagnetism and Anomalous Hall Effect in Highly Reduced Cobalt Doped Rutile TiO2 Films

    OpenAIRE

    2004-01-01

    We report a detailed magnetic and structural analysis of highly reduced Co doped rutile TiO2 films displaying an anomalous Hall effect (AHE). The temperature and field dependence of magnetization, and transmission electron microscopy clearly establish the presence of nano-sized superparamagnetic cobalt clusters of 8-10 nm size in the films at the interface. The co-occurrence of superparamagnetism and AHE raises questions regarding the use of the AHE as a test of the intrinsic nature of ferrom...

  4. On the instability threshold of cobalt substituted Ni-Al ferrite at high-microwave-power levels

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharyya, N.S. E-mail: nidhi@tezu.ernet.in; Srivastava, G.P

    2003-06-01

    Parallel-pump spin-wave instability in polycrystalline Ni-Al ferrite has been measured at 9.384 GHz. The ground degeneracy of Co{sup 2+} ions with concentration between 0.01 and 0.025 ions/f.u. added stoichiometrically, gives minimum losses and high-instability threshold values. Generalized instability theory for oblique pumping is used to reproduce the experimental butterfly curves. Results show a strong dependence of spin-wave linewidth on wave vector and crystalline anisotropy of cobalt.

  5. High Coke-Resistance Pt/Mg1-xNixO Catalyst for Dry Reforming of Methane.

    Science.gov (United States)

    Al-Doghachi, Faris A J; Islam, Aminul; Zainal, Zulkarnain; Saiman, Mohd Izham; Embong, Zaidi; Taufiq-Yap, Yun Hin

    2016-01-01

    A highly active and stable nano structured Pt/Mg1-xNixO catalysts was developed by a simple co-precipitation method. The obtained Pt/Mg1-xNixO catalyst exhibited cubic structure nanocatalyst with a size of 50-80 nm and realized CH4 and CO2 conversions as high as 98% at 900°C with excellent stability in the dry reforming of methane. The characterization of catalyst was performed using various kinds of analytical techniques including XRD, BET, XRF, TPR-H2, TGA, TEM, FESEM, FT-IR, and XPS analyses. Characterization of spent catalyst further confirms that Pt/Mg1-xNixO catalyst has high coke-resistance for dry reforming. Thus, the catalyst demonstrated in this study, offers a promising catalyst for resolving the dilemma between dispersion and reducibility of supported metal, as well as activity and stability during high temperature reactions.

  6. High Coke-Resistance Pt/Mg1-xNixO Catalyst for Dry Reforming of Methane.

    Directory of Open Access Journals (Sweden)

    Faris A J Al-Doghachi

    Full Text Available A highly active and stable nano structured Pt/Mg1-xNixO catalysts was developed by a simple co-precipitation method. The obtained Pt/Mg1-xNixO catalyst exhibited cubic structure nanocatalyst with a size of 50-80 nm and realized CH4 and CO2 conversions as high as 98% at 900°C with excellent stability in the dry reforming of methane. The characterization of catalyst was performed using various kinds of analytical techniques including XRD, BET, XRF, TPR-H2, TGA, TEM, FESEM, FT-IR, and XPS analyses. Characterization of spent catalyst further confirms that Pt/Mg1-xNixO catalyst has high coke-resistance for dry reforming. Thus, the catalyst demonstrated in this study, offers a promising catalyst for resolving the dilemma between dispersion and reducibility of supported metal, as well as activity and stability during high temperature reactions.

  7. Glutamine is highly effective in preventing in vivo cobalt-induced oxidative stress in rat liver

    Institute of Scientific and Technical Information of China (English)

    Soledad Gonzales; Ariel H. Polizio; María A. Erario; María L. Tomaro

    2005-01-01

    AIM: To evaluate the in vivo effect of glutamine on cobaltgenerated oxidative stress and (HO-1) induction in rat liver.METHODS: Fasted female Wistar rats received a single injection of cobalt chloride (375 μmol/kg body weight) and then were killed at different times. Lipid peroxidation and soluble and enzymatic antioxidant defense system (reduced glutathione (GSH), catalase (CAT), glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD)) were measured in liver homogenates. Ferritin and ferritin iron contents as well as heme oxygenase-1 (HO-1) activity and expression were also determined. The antioxidant properties of glutamine (Gin) were also evaluated. RESULTS: Cobalt chloride increased lipid peroxidation (50% over control values) 1 h after treatment. GSH reached a minimum at 3 h (40%) increasing thereafter. Twelve hours after CoCl2 injection, the antioxidant enzymes CAT, GSH-Px and SOD also diminished by about 30%. Heme oxygenase-1 induction was observed 6 h after treatment reaching a maximum value of 14-fold over the controls, 12 h after cobalt treatment. A 1.7-fold increase in ferritin and ferritin-bound iron 24 h after treatment were also obtained. Administration of glutamine (300 mg/kg body weight) by gavage 24 h before CoCl2 treatment entirely prevented the increase in thiobarbituric acid reactive substances (TBARS) content, the decrease in GSH levels, and partially reverted heme oxygenase-1 induction. CONCLUSION: These results suggested that a natural product such as glutamine prevents glutathione depletion and consequently heme oxygenase induction.

  8. X-ray Spectroscopy and Microscopy of Cobalt and Nickel in CoMoS and CoNiMoS Hydrodesulfurization Catalysts

    NARCIS (Netherlands)

    Al Samarai, M.

    2016-01-01

    In recent years, there has been growing interest in understanding the catalysis background for the hydrodesulfurization (HDS) reaction. Strict regulations have been introduced surrounding the production of ultra-low-sulfur fuels (<10 ppm), and as a result, the HDS catalyst has become a favorite topi

  9. X-ray Spectroscopy and Microscopy of Cobalt and Nickel in CoMoS and CoNiMoS Hydrodesulfurization Catalysts

    NARCIS (Netherlands)

    Al Samarai, M.|info:eu-repo/dai/nl/345517407

    2016-01-01

    In recent years, there has been growing interest in understanding the catalysis background for the hydrodesulfurization (HDS) reaction. Strict regulations have been introduced surrounding the production of ultra-low-sulfur fuels (<10 ppm), and as a result, the HDS catalyst has become a favorite topi

  10. Liquid phase conversion of Glycerol to Propanediol over highly active Copper/Magnesia catalysts

    Indian Academy of Sciences (India)

    Satyanarayana Murty Pudi; Abdul Zoeb; Prakash Biswas; Shashi Kumar

    2015-05-01

    In this work, a series of Cu/MgO catalysts with different copper metal loading were prepared by the precipitation-deposition method. Their catalytic behaviour was investigated for glycerol hydrogenolysis to 1,2-propanediol (1,2-PDO). The physico-chemical properties of the catalysts were characterized by various techniques such as BET surface area, X-ray diffraction (XRD), temperature programmed reduction (TPR), NH3-temperature programmed desorption (NH3-TPD) and scanning electron microscopy (SEM) methods. The characterization results showed that the copper metal was well-dispersed over MgO support and a new phase Cu-MgO was also identified from XRD results after calcination. The 25Cu/MgO (Cu:25 wt%) catalyst exhibited the highest glycerol conversion of 88.7% and 1,2-PDO selectivity of 91.7% at 210°C, 4.5MPa of hydrogen pressure after 12 h. The high glycerol conversion was mainly due to the Cu dispersion on MgO support and high acidic strength. Further, the effects of temperature, hydrogen pressure, catalyst loading and glycerol concentration were studied over 25Cu/MgO catalyst for optimization of reaction parameters. Kinetic study over highly active 25Cu/MgO catalyst showed that the reaction followed the pseudo second order rate with respect to glycerol and the apparent activation energy was found to be 28.7 ± 0.8 kcal/mol.

  11. Synthesis of High-Quality Biodiesel Using Feedstock and Catalyst Derived from Fish Wastes.

    Science.gov (United States)

    Madhu, Devarapaga; Arora, Rajan; Sahani, Shalini; Singh, Veena; Sharma, Yogesh Chandra

    2017-03-15

    A low-cost and high-purity calcium oxide (CaO) was prepared from waste crab shells, which were extracted from the dead crabs, was used as an efficient solid base catalyst in the synthesis of biodiesel. Raw fish oil was extracted from waste parts of fish through mechanical expeller followed by solvent extraction. Physical as well as chemical properties of raw fish oil were studied, and its free fatty acid composition was analyzed with GC-MS. Stable and high-purity CaO was obtained when the material was calcined at 800 °C for 4 h. Prepared catalyst was characterized by XRD, FT-IR, and TGA/DTA. The surface structure of the catalyst was analyzed with SEM, and elemental composition was determined by EDX spectra. Esterification followed by transesterification reactions were conducted for the synthesis of biodiesel. The effect of cosolvent on biodiesel yield was studied in each experiment using different solvents such as toluene, diethyl ether, hexane, tetrahydrofuran, and acetone. High-quality and pure biodiesel was synthesized and characterized by (1)H NMR and FT-IR. Biodiesel yield was affected by parameters such as reaction temperature, reaction time, molar ratio (methanol:oil), and catalyst loading. Properties of synthesized biodiesel such as density, kinematic viscosity, and cloud point were determined according to ASTM standards. Reusability of prepared CaO catalyst was checked, and the catalyst was found to be stable up to five runs without significant loss of catalytic activity.

  12. The Structure and Mechanical Properties of High-Strength Bulk Ultrafine-Grained Cobalt Prepared Using High-Energy Ball Milling in Combination with Spark Plasma Sintering

    Directory of Open Access Journals (Sweden)

    Ivo Marek

    2016-05-01

    Full Text Available In this study, bulk ultrafine-grained and micro-crystalline cobalt was prepared using a combination of high-energy ball milling and subsequent spark plasma sintering. The average grain sizes of the ultrafine-grained and micro-crystalline materials were 200 nm and 1 μm, respectively. Mechanical properties such as the compressive yield strength, the ultimate compressive strength, the maximum compressive deformation and the Vickers hardness were studied and compared with those of a coarse-grained as-cast cobalt reference sample. The bulk ultrafine-grained sample showed an ultra-high compressive yield strength that was greater than 1 GPa, which is discussed with respect to the preparation technique and a structural investigation.

  13. Highly selective oxidative dehydrogenation of ethane with supported molten chloride catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Gaertner, C.A.; Veen, A.C. van; Lercher, J.A. [Technische Univ. Muenchen (Germany). Catalysis Research Center

    2011-07-01

    Ethene production is one of the most important transformations in chemical industry, given that C{sub 2}H{sub 4} serves as building block for many mass-market products. Besides conventional thermal processes like steam cracking of ethane, ethane can be produced selectively by catalytic processes. One of the classes of catalysts that have been reported in literature as active and highly selective for the oxidative dehydrogenation of ethane is that of supported molten chloride catalysts, containing an alkali chloride overlayer on a solid support. This work deals with fundamental aspects of the catalytic action in latter class of catalysts. Results from kinetic reaction studies are related to observations in detailed characterization and lead to a comprehensive mechanistic understanding. Of fundamental importance towards mechanistic insights is the oxygen storage capacity of the catalysts that has been determined by transient step experiments. (orig.)

  14. Pt Monolayer Shell on Nitrided Alloy Core—A Path to Highly Stable Oxygen Reduction Catalyst

    Directory of Open Access Journals (Sweden)

    Jue Hu

    2015-07-01

    Full Text Available The inadequate activity and stability of Pt as a cathode catalyst under the severe operation conditions are the critical problems facing the application of the proton exchange membrane fuel cell (PEMFC. Here we report on a novel route to synthesize highly active and stable oxygen reduction catalysts by depositing Pt monolayer on a nitrided alloy core. The prepared PtMLPdNiN/C catalyst retains 89% of the initial electrochemical surface area after 50,000 cycles between potentials 0.6 and 1.0 V. By correlating electron energy-loss spectroscopy and X-ray absorption spectroscopy analyses with electrochemical measurements, we found that the significant improvement of stability of the PtMLPdNiN/C catalyst is caused by nitrogen doping while reducing the total precious metal loading.

  15. A Highly Efifcient and Selective Water-Soluble Bimetallic Catalyst for Hydrogenation of Chloronitrobenzene to Chloroaniline

    Institute of Scientific and Technical Information of China (English)

    Zhou Yafen; Yang Wenjuan; Zhou Limei; Wang Manman; Ma Xiaoyan

    2015-01-01

    Selective hydrogenation of chloronitrobenzene (CNB) to chloroaniline (CAN) catalyzed by water-soluble Ru/Pt bimetallic catalyst in an aqueous-organic biphasic system was studied. It was found that the catalytic activity increased ob-viously due to the addition of platinum. Ru/Pt bimetallic catalysts exhibited a strong synergistic effect when the molar ratio of Pt was in the range of 5%—80%. Under the mild conditions including a temperature of 25℃, a hydrogen pressure of 1.0 MPa and a Pt molar ratio of 20%, the conversion of p-chloronitrobenzene (p-CNB) reached 99.9%, with the selectivity to p-chloroaniline (p-CAN) equating to 99.4%. The Ru/Pt catalyst also showed high activity and selectivity for the hydrogena-tion of other chloro-and dichloro-nitrobenzenes with different substituted positions. In addition, the catalyst can be recycled ifve times without signiifcant loss of activity.

  16. thesis of high-purity carbon nanotubes over alumina and silica supported bimetallic catalysts

    Directory of Open Access Journals (Sweden)

    Sanja Ratković

    2009-10-01

    Full Text Available Carbon nanotubes (CNTs were synthesized by a catalytic chemical vapor deposition method (CCVD of ethylene over alumina and silica supported bimetallic catalysts based on Fe, Co and Ni. The catalysts were prepared by a precipitation method, calcined at 600 °C and in situ reduced in hydrogen flow at 700 °C. The CNTs growth was carried out by a flow the mixture of C2H4 and nitrogen over the catalyst powder in a horizontal oven. The structure and morphology of as-synthesized CNTs were characterized using SEM. The as-synthesized nanotubes were purified by acid and basic treatments in order to remove impurities such as amorphous carbon, graphite nanoparticles and metal catalysts. XRD and DTA/TG analyses showed that the amounts of by-products in the purified CNTs samples were reduced significantly. According to the observed results, ethylene is an active carbon source for growing high-density CNTs with high yield but more on alumina-supported catalysts than on their silica- supported counterparts. The last might be explained by SMSI formed in the case of alumina-supported catalysts, resulting in higher active phase dispersion.

  17. Highly Active Chiral Ruthenium Catalysts for Asymmetric Ring-Closing Olefin Metathesis

    Science.gov (United States)

    Funk, Timothy W.; Berlin, Jacob M.

    2008-01-01

    The synthesis of olefin metathesis catalysts containing chiral, monodentate N-heterocyclic carbenes and their application to asymmetric ring-closing metathesis (ARCM) is reported. These catalysts retain the high levels of reactivity found in the related achiral variants (1a and 1b). Using the parent chiral catalysts 2a and 2b and derivatives that contain steric bulk in the meta positions of the N-bound aryl rings (catalysts 3-5), five- through seven-membered rings were formed in up to 92% ee. The addition of sodium iodide to catalysts 2a-4a (to form 2b-4bin situ) caused a dramatic increase in enantioselectivity for many substrates. Catalyst 5a, which gave high enantiomeric excesses for certain substrates without the addition of NaI, could be used in loadings of ≤1 mol %. Mechanistic explanations for the large sodium iodide effect as well as possible mechanistic pathways leading to the observed products are discussed. PMID:16464082

  18. Effect of Modification of SBA-15 by Carbon Films on Textural and Catalytic Properties of Supported Cobalt Catalysts%SBA-15的孔壁碳膜修饰对钴基催化剂结构与催化性能的影响

    Institute of Scientific and Technical Information of China (English)

    朱海燕; 周朝华; 马兰; 程振兴; 沈俭一

    2011-01-01

    Carbon coated mesoporous SBA-15, named SBA-15C, was obtained from as-synthesized SBA-15 after graphitization in inert gas. With SBA-15 and SBA-15C as supports and cobalt nitrate aqueous solution as precursor, the supported cobalt-based catalyst samples were prepared by a wet impregnation method. The catalyst samples were characterized by X-ray diffraction, N2 physisorption, temperature-programmed reduction, and NH3 microcalorimetric adsorption. The results suggested that upon doping the inner walls of SBA-15 with carbon, the hexagonal ordered mesoporous framework was retained while the surface area decreased a little and the thickness of pore wall increased. The supported cobalt-based catalyst retained the mesoporous characteristics with decreased surface area and pore volume. The average particle size of CO3O4 on SBA-15C was smaller than that on SBA-15, which suggested that the existence of carbon improved the dispersion of CO3O4 particles. However, the modification of SBA-15 with carbon films did not seem to increase the reducibility of CO3O4. Both Co/SBA-15 and Co/SBA-15C exhibited high selectivity for Cs+ hydrocarbons (-80%), but Co/SBA-15C showed higher stability in the F-T synthesis reactions.%在惰性气体中焙烧SBA-15制得孔壁被碳修饰的SBA- 15C样品,以它和SBA-15为载体,采用等量浸渍法制备了负载型Co基催化剂,并运用X射线衍射、N2物理吸附、程序升温还原、NH3吸附量热等手段对样品进行了表征.结果表明,SBA- 15C仍保持原有的六方有序的中孔结构,但其孔壁经碳修饰后发生增厚,比表面积略有下降.Co的负载使得SBA-15和SBA-15C样品的孔径基本不变,但比表面积和孔体积下降,仍保持其中孔分子筛的特征.CO3O4在SBA- 15C上的晶粒较小,但还原度较低,表明碳的存在有利于Co物种的分散.比较了Co/SBA- 15和Co/SBA-15C上的费托合成反应性能,发现两者对C5+的选择性均较高(达80%左右),但Co/SBA- 15C

  19. Encapsulated heterogeneous base catalysts onto SBA-15 nanoporous material as highly active catalysts in the transesterification of sunflower oil to biodiesel

    Energy Technology Data Exchange (ETDEWEB)

    Albayati, Talib M., E-mail: talib-albyati@yahoo.com [University of Technology, Department of Chemical Engineering (Iraq); Doyle, Aidan M., E-mail: a.m.doyle@mmu.ac.uk [Manchester Metropolitan University, Division of Chemistry and Environmental Science (United Kingdom)

    2015-02-15

    Alkali metals and their hydroxides, Na, NaOH, Li, and LiOH, were encapsulated onto SBA-15 nanoporous material as highly active catalysts for the production of biodiesel fuel from sunflower oil. The incipient wetness impregnation method was adopted for the prepared catalysts. The characterization properties of the catalysts and unmodified SBA-15 were determined using X-ray diffraction, scanning electron microscopy, EDAX, nitrogen adsorption–desorption porosimetry (Brunauer–Emmett–Teller), Fourier-transform infrared spectroscopy, and transmission electron microscopy. Transesterification was conducted in a batch reactor at atmospheric pressure and 65 °C. The catalysts were highly active with yields of fatty acid methyl ester (FAME) in the range 96–99 %. Na/SBA-15 catalyst was reused for seven consecutive cycles under the same reaction conditions; the yield to FAME on the final cycle was 96 %. This study shows that the alkali metals and their hydroxides supported on SBA-15-based catalyst are excellent catalysts for the biodiesel reaction.

  20. Encapsulated heterogeneous base catalysts onto SBA-15 nanoporous material as highly active catalysts in the transesterification of sunflower oil to biodiesel

    Science.gov (United States)

    Albayati, Talib M.; Doyle, Aidan M.

    2015-02-01

    Alkali metals and their hydroxides, Na, NaOH, Li, and LiOH, were encapsulated onto SBA-15 nanoporous material as highly active catalysts for the production of biodiesel fuel from sunflower oil. The incipient wetness impregnation method was adopted for the prepared catalysts. The characterization properties of the catalysts and unmodified SBA-15 were determined using X-ray diffraction, scanning electron microscopy, EDAX, nitrogen adsorption-desorption porosimetry (Brunauer-Emmett-Teller), Fourier-transform infrared spectroscopy, and transmission electron microscopy. Transesterification was conducted in a batch reactor at atmospheric pressure and 65 °C. The catalysts were highly active with yields of fatty acid methyl ester (FAME) in the range 96-99 %. Na/SBA-15 catalyst was reused for seven consecutive cycles under the same reaction conditions; the yield to FAME on the final cycle was 96 %. This study shows that the alkali metals and their hydroxides supported on SBA-15-based catalyst are excellent catalysts for the biodiesel reaction.

  1. Superior mercury-free catalysts for acetylene hydrochlorination to VCM. Achieving high productivities and long catalyst life-time

    Energy Technology Data Exchange (ETDEWEB)

    Liebens, A.T.; Piccinini, M. [Solvay S.A., Bruxelles (Belgium)

    2013-11-01

    New mercury-free catalytic systems based on the use of ionic liquids (IL) and noble metals (e.g. Pd, Au) have been evaluated for the hydrochlorination reaction of acetylene to produce Vinyl Chloride Monomer (VCM). Two different approaches have been investigated: gas-liquid homogeneous catalytic systems in the presence of molten IL/Metal and heterogeneous gas-solid ones using solid materials. For the latter case, very positive results have been obtained using SILP-type catalysts (SILP: Supported Ionic Liquid Phase) where IL/Metal were deposited onto a solid mesoporous support. Remarkably, both systems display very high Space Time Yield (STY) and breakthrough life-time stability. No deactivation is observed even after 500 h on stream indicating the strong advantages of these new materials compared to most investigated Au/C supported systems. The development of heterogeneous catalysts was preferred as the scale-up of gas-liquid technology implies important CAPEX investments to convert current plants from gas-solid to gas-liquid equipment. (orig.)

  2. Catalyst systems and uses thereof

    Science.gov (United States)

    Ozkan, Umit S.; Holmgreen, Erik M.; Yung, Matthew M.

    2012-07-24

    A method of carbon monoxide (CO) removal comprises providing an oxidation catalyst comprising cobalt supported on an inorganic oxide. The method further comprises feeding a gaseous stream comprising CO, and oxygen (O.sub.2) to the catalyst system, and removing CO from the gaseous stream by oxidizing the CO to carbon dioxide (CO.sub.2) in the presence of the oxidation catalyst at a temperature between about 20 to about 200.degree. C.

  3. Catalytic hydrogenation of carbon monoxide to alkenes over partially degraded iron-cobalt complexes

    NARCIS (Netherlands)

    Snel, R.

    1989-01-01

    Complex-derived iron-cobalt alloy catalysts have been studied under conditions similar to those normally prevailing in industry. Despite reports in the literature indicating unusual selectivities with iron-cobalt alloy catalysts under atmospheric pressure conditions, no deviations from normal select

  4. Characterization of High-Velocity Solution Precursor Flame-Sprayed Manganese Cobalt Oxide Spinel Coatings for Metallic SOFC Interconnectors

    Science.gov (United States)

    Puranen, Jouni; Laakso, Jarmo; Kylmälahti, Mikko; Vuoristo, Petri

    2013-06-01

    A modified high-velocity oxy-fuel spray (HVOF) thermal spray torch equipped with liquid feeding hardware was used to spray manganese-cobalt solutions on ferritic stainless steel grade Crofer 22 APU substrates. The HVOF torch was modified in such a way that the solution could be fed axially into the combustion chamber through 250- and 300-μm-diameter liquid injector nozzles. The solution used in this study was prepared by diluting nitrates of manganese and cobalt, i.e., Mn(NO3)2·4H2O and Co(NO3)2·6H2O, respectively, in deionized water. The as-sprayed coatings were characterized by X-ray diffraction and field-emission scanning electron microscopy operating in secondary electron mode. Chemical analyses were performed on an energy dispersive spectrometer. Coatings with remarkable density could be prepared by the novel high-velocity solution precursor flame spray (HVSPFS) process. Due to finely sized droplet formation in the HVSPFS process and the use of as delivered Crofer 22 APU substrate material having very low substrate roughness ( R a < 0.5 μm), thin and homogeneous coatings, with thicknesses lower than 10 μm could be prepared. The coatings were found to have a crystalline structure equivalent to MnCo2O4 spinel with addition of Co-oxide phases. Crystallographic structure was restored back to single-phase spinel structure by heat treatment.

  5. Binary Nickel-Cobalt Oxides Electrode Materials for High-Performance Supercapacitors: Influence of its Composition and Porous Nature.

    Science.gov (United States)

    Zhang, J; Liu, F; Cheng, J P; Zhang, X B

    2015-08-19

    Nickel-cobalt oxides were prepared by coprecipitation of their hydroxides precursors and a following thermal treatment under a moderate temperature. The preformed nickel-cobalt bimetallic hydroxide exhibited a flower-like morphology with single crystalline nature and composed of many interconnected nanosheets. The ratio of Ni to Co in the oxides could easily be controlled by adjusting the composition of the original reactants for the preparation of hydroxide precursors. It was found that both the molecular ratio of Ni to Co and the annealing temperature had significant effects on their porous structure and electrochemical properties. The effect of the Ni/Co ratio on the pseudocapacitive properties of the binary oxide was investigated in this work. The binary metal oxide with the exact molar ratio of Ni:Co = 0.8:1 annealed at 300 °C, showing an optimum specific capacitance of 750 F/g. However, too high an annealing temperature would lead to a large crystal size, a low specific surface area, as well as a much lower pore volume. With the use of the binary metal oxide with Ni:Co = 0.8:1 and activated carbon as the positive and negative electrode, respectively, the assembled hybrid capacitor could exhibit a high-energy density of 34.9 Wh/kg at the power density of 875 W/kg and long cycling life (86.4% retention of the initial value after 10000 cycles).

  6. Development of chiral metal amides as highly reactive catalysts for asymmetric [3 + 2] cycloadditions

    Science.gov (United States)

    Yamashita, Yasuhiro; Yoshimoto, Susumu; Dutton, Mark J

    2016-01-01

    Summary Highly efficient catalytic asymmetric [3 + 2] cycloadditions using a chiral copper amide are reported. Compared with the chiral CuOTf/Et3N system, the CuHMDS system showed higher reactivity, and the desired reactions proceeded in high yields and high selectivities with catalyst loadings as low as 0.01 mol %. PMID:27559396

  7. Nickel-Cobalt Diselenide 3D Mesoporous Nanosheet Networks Supported on Ni Foam: An All-pH Highly Efficient Integrated Electrocatalyst for Hydrogen Evolution.

    Science.gov (United States)

    Liu, Bin; Zhao, Yu-Fei; Peng, Hui-Qing; Zhang, Zhen-Yu; Sit, Chun-Kit; Yuen, Muk-Fung; Zhang, Tie-Rui; Lee, Chun-Sing; Zhang, Wen-Jun

    2017-05-01

    Novel 3D Ni1-x Cox Se2 mesoporous nanosheet networks with tunable stoichiometry are successfully synthesized on Ni foam (Ni1-x Cox Se2 MNSN/NF with x ranging from 0 to 0.35). The collective effects of special morphological design and electronic structure engineering enable the integrated electrocatalyst to have very high activity for hydrogen evolution reaction (HER) and excellent stability in a wide pH range. Ni0.89 Co0.11 Se2 MNSN/NF is revealed to exhibit an overpotential (η10 ) of 85 mV at -10 mA cm(-2) in alkaline medium (pH 14) and η10 of 52 mV in acidic solution (pH 0), which are the best among all selenide-based electrocatalysts reported thus far. In particular, it is shown for the first time that the catalyst can work efficiently in neutral solution (pH 7) with a record η10 of 82 mV for all noble metal-free electrocatalysts ever reported. Based on theoretical calculations, it is further verified that the advanced all-pH HER activity of Ni0.89 Co0.11 Se2 is originated from the enhanced adsorption of both H(+) and H2 O induced by the substitutional doping of cobalt at an optimal level. It is believed that the present work provides a valuable route for the design and synthesis of inexpensive and efficient all-pH HER electrocatalysts. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Molybdenum sulfide/carbide catalysts

    Science.gov (United States)

    Alonso, Gabriel; Chianelli, Russell R.; Fuentes, Sergio; Torres, Brenda

    2007-05-29

    The present invention provides methods of synthesizing molybdenum disulfide (MoS.sub.2) and carbon-containing molybdenum disulfide (MoS.sub.2-xC.sub.x) catalysts that exhibit improved catalytic activity for hydrotreating reactions involving hydrodesulfurization, hydrodenitrogenation, and hydrogenation. The present invention also concerns the resulting catalysts. Furthermore, the invention concerns the promotion of these catalysts with Co, Ni, Fe, and/or Ru sulfides to create catalysts with greater activity, for hydrotreating reactions, than conventional catalysts such as cobalt molybdate on alumina support.

  9. High performance vanadia-anatase nanoparticle catalysts for the selective catalytic reduction of NO by ammonia

    DEFF Research Database (Denmark)

    Kristensen, Steffen Buus; Kunov-Kruse, Andreas Jonas; Riisager, Anders;

    2011-01-01

    Highly active nanoparticle SCR deNO(x) catalysts composed of amorphous vanadia on crystalline anatase have been prepared by a sol-gel, co-precipitation method using decomposable crystallization seeds. The catalysts were characterized by means of XRPD, TEM/SEM, FT-IR, nitrogen physisorption and NH(3......)-TPD. Due to the high-surface area anatase particles, loading of 20 wt% vanadia could be obtained without exceeding monolayer coverage of V(2)O(5). This resulted in unprecedented high deNO(x) SCR activity corresponding to a factor of two compared to an industrial reference and to other V(2)O(5)/TiO(2...

  10. A highly selective and sensitive fluorescence assay for determination of copper(II) and cobalt(II) ions in environmental water and toner samples.

    Science.gov (United States)

    Tsai, Chia-Yi; Lin, Yang-Wei

    2013-02-21

    In this study, a highly selective and sensitive fluorescence assay has been proposed for the determination of copper(II) and cobalt(II) ions in environmental water and toner samples. In the presence of hydrogen peroxide, copper(II) reacted with a new fluorescence reagent Amplex® UltraRed (AUR), forming a fluorescence product only at pH 7.0, while the fluorescence product of cobalt(II) with AUR formed only at pH 9.0. The fluorescence signal obtained was linear with respect to the copper(II) concentration over the range of 1.6-12.0 μM (R(2) = 0.988) and was linear with respect to the cobalt(II) concentration over the range of 45.0 nM to 1.0 μM (R(2) = 0.992). The limits of detection (at a signal-to-noise ratio of 3) for copper(II) and cobalt(II) were 0.17 μM and 14.0 nM, respectively. Our present approach is simpler, faster, and more cost-effective than other techniques for the detection of copper(II) and cobalt(II) ions in environmental water samples and that of copper(II) ions in toner samples.

  11. Nickel cobalt oxide/carbon nanotubes hybrid as a high-performance electrocatalyst for metal/air battery

    Science.gov (United States)

    Zhang, Hui; Qiao, Hang; Wang, Haiyan; Zhou, Nan; Chen, Jiajie; Tang, Yougen; Li, Jingsha; Huang, Chenghuan

    2014-08-01

    High-performance, low cost catalyst for oxygen reduction reaction (ORR) remains a big challenge. Herein, nanostructured NiCo2O4/CNTs hybrid was proposed as a high-performance catalyst for metal/air battery for the first time. The well-formed NiCo2O4/CNTs hybrid was studied by steady-state linear polarization curves and galvanostatic discharge curves in comparison with CNTs-free NiCo2O4 and commercial carbon-supported Pt. Because of the synergistic effect, NiCo2O4/CNTs hybrid exhibited significant improvement of catalytic performance in comparison with NiCo2O4 or CNTs alone, even outperforming Pt/C hybrid in ORR process. In addition, the benefits of Ni incorporation were demonstrated by the improved catalytic performance of NiCo2O4/CNTs compared to Co3O4/CNTs, which should be attributed to improved electrical conductivity and new, highly efficient, active sites created by Ni cation incorporation into the spinel structure. NiCo2O4/CNTs hybrid could be used as a promising catalyst for high power metal/air battery.High-performance, low cost catalyst for oxygen reduction reaction (ORR) remains a big challenge. Herein, nanostructured NiCo2O4/CNTs hybrid was proposed as a high-performance catalyst for metal/air battery for the first time. The well-formed NiCo2O4/CNTs hybrid was studied by steady-state linear polarization curves and galvanostatic discharge curves in comparison with CNTs-free NiCo2O4 and commercial carbon-supported Pt. Because of the synergistic effect, NiCo2O4/CNTs hybrid exhibited significant improvement of catalytic performance in comparison with NiCo2O4 or CNTs alone, even outperforming Pt/C hybrid in ORR process. In addition, the benefits of Ni incorporation were demonstrated by the improved catalytic performance of NiCo2O4/CNTs compared to Co3O4/CNTs, which should be attributed to improved electrical conductivity and new, highly efficient, active sites created by Ni cation incorporation into the spinel structure. NiCo2O4/CNTs hybrid could be used as a

  12. NiO-PTA supported on ZIF-8 as a highly effective catalyst for hydrocracking of Jatropha oil.

    Science.gov (United States)

    Liu, Jing; He, Jing; Wang, Luying; Li, Rong; Chen, Pan; Rao, Xin; Deng, Lihong; Rong, Long; Lei, Jiandu

    2016-03-29

    Nickel oxide (NiO) and phosphotungstic acid (PTA) supported on a ZIF-8 (NiO-PTA/ZIF-8) catalyst was first synthesized and it showed high activity and good selectivity for the hydrocracking of Jatropha oil. The catalyst was characterized by SEM, SEM-EDS, TEM, N2 adsorption, FT-IR, XRD and XPS. Compared with the NiO-PTA/Al2O3 catalyst, the selectivity of C15-C18 hydrocarbon increased over 36%, and catalytic efficiency increased 10 times over the NiO-PTA/ZIF-8 catalyst. The prepared NiO-PTA/ZIF-8 catalyst was stable for a reaction time of 104 h and the kinetic behavior was also analyzed. This catalyst was found to bypass the presulfurization process, showing promise as an alternative to sulfided catalysts for green diesel production.

  13. Development of Hydrocracking Catalyst to Produce High Quality Clean Middle Distillates

    Institute of Scientific and Technical Information of China (English)

    Zhang Xuejun; Zhang Zhihua

    2004-01-01

    A novel hydrocracking Ni-W binary catalyst was tentatively designed and prepared by means of impregnation on mixed supports of modified Y zeolite and amorphous aluminosilicate. The structure and properties of catalyst were extensively characterized by XRD, NH3-TPD, IR and XRF techniques. The performance of catalyst was evaluated by a 100-ml hydrogenation laboratory test unit with two single-stage fixed-bed reactors connected in series. The characterization results showed that the catalyst has a developed and concentrated mesopores distribution, suitable acid sites and acid strength distribution, and uniform and high dispersion of metal sites. Under a high conversion rate of 73.8% with the >350℃ feedstock, a 98. 1m% of C5+yield and 83.5% of middle distillates selectivity were obtained. The yield of middle distillates boiling between 140℃and 370℃ was 68.70m% and its quality could meet the WWFC category Ⅲ specification. It means that this catalyst could be used to produce more high quality clean middle distillates derived from heavy oil hydrocracking. The potential aromatic content of heavy naphtha from 65℃ to 140℃ was 37.5m%. The BMCI value of >370℃ tail oil was 6.6. The heavy naphtha and tail oil are premium feedstocks for catalytic reforming and steam cracker units.

  14. 壳聚糖席夫碱钴催化环己烯烯丙位氧化反应的研究%Allylic oxidation of cyclohexene catalyzed by chitosan Schiff base cobalt catalyst

    Institute of Scientific and Technical Information of China (English)

    刘丽君; 慈英倩; 刘翠娥; 高洪霞; 崔庆新

    2014-01-01

    制备了壳聚糖( CS)水杨醛席夫碱钴配合物,利用X射线粉末衍射( XRD)、红外( IR)等方法对其结构特征进行了分析,并以氧气为氧化剂,评价了该配合物的环己烯氧化催化性能,初步考察了催化剂用量、反应温度以及反应时间等因素对氧化反应的影响。实验结果表明:CS-席夫碱钴配合物具有良好的环己烯催化氧化活性和较高的烯丙位氧化选择性,在较优条件下,环己烯转化率和烯丙位氧化选择性分别达到85.3%和81.3%;催化剂具有较好的稳定性,易分离可多次重复使用。%A chitosan-schiff base cobalt comples( CS-Schiff base-Co) was prepared and characterized by X-ray diffraction,infrared spectroscopy and TG method,as well as the catalytic properties of this complex in oxidation of cyclohexene were studied in the pres-ence of oxygen. And the influences of the amount of catalyst,reaction temperature and reaction time on oxidation were also investiga-ted. These results indicated that CS-Schiff base-Co catalyst had excellent catalytic activity and selectivity for the allylic oxidation in cyclohexene. The conversion and selectivity were 85. 3%and 81. 3%under suitable conditons,respectively. The catalyst was perfect-ly leach-proof and could be resued at least four times.

  15. Catalysts for converting syngas into liquid hydrocarbons and methods thereof

    Science.gov (United States)

    Yu, Fei; Yan, Qiangu; Batchelor, William

    2016-03-15

    The presently-disclosed subject matter includes methods for producing liquid hydrocarbons from syngas. In some embodiments the syngas is obtained from biomass and/or comprises a relatively high amount of nitrogen and/or carbon dioxide. In some embodiments the present methods can convert syngas into liquid hydrocarbons through a one-stage process. Also provided are catalysts for producing liquid hydrocarbons from syngas, wherein the catalysts include a base material, a transition metal, and a promoter. In some embodiments the base material includes a zeolite-iron material or a cobalt-molybdenum carbide material. In still further embodiments the promoter can include an alkali metal.

  16. Diatomite as high performance and environmental friendly catalysts for phenol hydroxylation with H2O2

    Directory of Open Access Journals (Sweden)

    Yuxin Jia et al

    2007-01-01

    Full Text Available A series of diatomite catalysts were treated and characterized. For the first time, the resulting materials were used in catalysis for the hydroxylation of phenol with H2O2 and showed very high hydroxylation activity due to the Fe species in the diatomite. The effect of HCl treatment, contents of catalysts and H2O2 were investigated and the active components of diatomite were discussed. The results show that diatomite is the promising candidate for industrial output due to their high catalytic activity, easy physical separation and very low costs.

  17. Host-mediated synthesis of cobalt aluminate/γ-alumina nanoflakes: a dispersible composite pigment with high catalytic activities.

    Science.gov (United States)

    Dandapat, Anirban; De, Goutam

    2012-01-01

    Cobalt aluminate/γ-alumina (CoAl(2)O(4)/γ-Al(2)O(3)) nanocomposite pigment with mesoporous structure has been synthesized. The method simply involves adsorption of Co(2+) ion on the surface of a commercially available boehmite (AlOOH) powder followed by the reaction of Co(2+) and AlOOH at relatively low temperature (500 °C) to obtain CoAl(2)O(4)/γ-Al(2)O(3) composite nanopowders. The formation of γ-Al(2)O(3) from boehmite induces the in situ generation of isostructural CoAl(2)O(4) (both crystallize as cubic spinel) at such a low temperature. The obtained intense blue powder of optimal composition (53.6 wt % CoAl(2)O(4) in γ-Al(2)O(3)) can be dispersed in glycerol and characterized by UV-visible, X-ray diffraction, Raman spectroscopy, TEM, and nitrogen sorption analyses. Raman studies confirm the formation of CoAl(2)O(4) phase in γ-Al(2)O(3). TEM studies reveal the formation of flake shaped (5-10 nm in width and 10-25 nm in length) nanopowders, and these flakes are assembled to form mesoporous structure. The specific surface area, total pore volume and average pore diameter of this powder are estimated to be ~118 m(2) g(-1), 0.1375 cm(3) g(-1), and 4.65 nm, respectively. This composite nanopowder has been used as an active catalyst for the decomposition of H(2)O(2) at room temperature and the decomposition follows the first order kinetics with rate constant value close to 2.3 × 10(-2) min(-1). This pigment nanopowder can be reused for several cycles without noticeable degradation of its original catalytic activity.

  18. Performance characterization of CNTs and γ-Al{sub 2}O{sub 3} supported cobalt catalysts in Fischer-Tropsch reaction

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Sardar, E-mail: alikhan-635@yahoo.com [Centralized Analytical Laboratory, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak (Malaysia); Zabidi, Noor Asmawati Mohd, E-mail: noorasmawati-mzabidi@petronas.com.my [Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak (Malaysia); Subbarao, Duvvuri, E-mail: duvvuri-subbarao@petronas.com.my [Department of Chemical Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak (Malaysia)

    2014-10-24

    Catalysts were prepared via a wet impregnation method. Different physicochemical properties of the samples were revealed by transmission electron microscope (TEM), temperature programmed reduction (H{sub 2}-TPR) and carbon dioxide desorption (CO{sub 2}-desorption). Fischer-Tropsch reaction (FTS) was carried out in a fixed-bed microreactor at 220°C and 1 atm, with H{sub 2}/CO = 2v/v and space velocity, SV of 12L/g.h for 5 h. Various characterization techniques revealed that there was a stronger interaction between Co and Al{sub 2}O{sub 3} support compared to that of CNTs support. CNTs support increased the reducibility and decreased Co particle size. A significant increase in % CO conversion and FTS reaction rate was observed over CNTs support compared to that of Co/Al{sub 2}O{sub 3}. Co/CNTs resulted in higher C{sub 5+} hydrocarbons selectivity compared to that of Co/Al{sub 2}O{sub 3} catalyst. CNTs are a better support for Co compared to Al{sub 2}O{sub 3}.

  19. Synthesis of High Coercivity Core–Shell Nanorods Based on Nickel and Cobalt and Their Magnetic Properties

    Directory of Open Access Journals (Sweden)

    Shaijumon MM

    2009-01-01

    Full Text Available Abstract Hybrid magnetic nanostructures with high coercivity have immense application potential in various fields. Nickel (Ni electrodeposited inside Cobalt (Co nanotubes (a new system named Ni @ Co nanorods were fabricated using a two-step potentiostatic electrodeposition method. Ni @ Co nanorods were crystalline, and they have an average diameter of 150 nm and length of ~15 μm. The X-ray diffraction studies revealed the existence of two separate phases corresponding to Ni and Co. Ni @ Co nanorods exhibited a very high longitudinal coercivity. The general mobility-assisted growth mechanism proposed for the growth of one-dimensional nanostructures inside nano porous alumina during potentiostatic electrodeposition is found to be valid in this case too.

  20. Radiochemical separation of Cobalt

    NARCIS (Netherlands)

    Erkelens, P.C. van

    1961-01-01

    A method is described for the radiochemical separation of cobalt based on the extraordinary stability of cobalt diethyldithiocarbamate. Interferences are few; only very small amounts of zinc and iron accompany cobalt, which is important in neutron-activation analysis.

  1. Radiochemical separation of Cobalt

    NARCIS (Netherlands)

    Erkelens, P.C. van

    1961-01-01

    A method is described for the radiochemical separation of cobalt based on the extraordinary stability of cobalt diethyldithiocarbamate. Interferences are few; only very small amounts of zinc and iron accompany cobalt, which is important in neutron-activation analysis.

  2. Highly active mesoporous ferrihydrite supported pt catalyst for formaldehyde removal at room temperature.

    Science.gov (United States)

    Yan, Zhaoxiong; Xu, Zhihua; Yu, Jiaguo; Jaroniec, Mietek

    2015-06-01

    Ferrihydrite (Fh) supported Pt (Pt/Fh) catalyst was first prepared by combining microemulsion and NaBH4 reduction methods and investigated for room-temperature removal of formaldehyde (HCHO). It was found that the order of addition of Pt precursor and ferrihydrite in the preparation process has an important effect on the microstructure and performance of the catalyst. Pt/Fh was shown to be an efficient catalyst for complete oxidation of HCHO at room temperature, featuring higher activity than magnetite supported Pt (Pt/Fe3O4). Pt/Fh and Pt/Fe3O4 exhibited much higher catalytic activity than Pt supported over calcined Fh and TiO2. The abundance of surface hydroxyls, high Pt dispersion and excellent adsorption performance of Fh are responsible for superior catalytic activity and stability of the Pt/Fh catalyst. This work provides some indications into the design and fabrication of the cost-effective and environmentally benign catalysts with excellent adsorption and catalytic oxidation performances for HCHO removal at room temperature.

  3. The high performance of tungsten carbides/porous bamboo charcoals supported Pt catalysts for methanol electrooxidation

    Science.gov (United States)

    Ma, Chun-an; Xu, Chenbin; Shi, Meiqin; Song, Guanghui; Lang, Xiaoling

    2013-11-01

    In this paper, a kind of environmental friendly and cost-effective bamboo charcoal (BC) is used as catalyst support in DMFCs instead of carbon nanotubes (CNTs), which is toxic and expensive. After special treatments, we obtain a sponge-like three-dimensional (3D) BC, which can provide high specific surface area (1264.5 m2 g-1) and porous matrices. Then, tungsten carbide (WC) and Pt are loaded on the BCs with microwave-assisted technique and 3D structural Pt/WC/BCs electro-catalyst is finally fabricated. Subsequently, the catalyst is characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). In the further electrochemical investigation, it was found that Pt/WC/BCs catalyst has higher performance (2.76 mA cm-2) and better CO-tolerance for methanol oxidation compared with Pt/WC/CNTs and commercial Pt/C. Herein, we believe that the as-synthesized 3D Pt/WC/BCs catalyst has great promising application in DMFCs.

  4. Research of special carbon nanobeads supported Pt catalyst for fuel cell through high temperature pyrolysis and deposition from novel phthalocyanine

    Institute of Scientific and Technical Information of China (English)

    GUO Yanchuan; YUE Jun; PAN Zhongxiao; XU Haitao; ZHANG Bing; HAN Fengmei; CHEN Lijuan; PENG Bixian; XIE Wenwei; QIAN Haisheng; YAN Tiantang

    2004-01-01

    The carbon nanobeads were prepared through high temperature pyrolysis and deposition from phthaiocyanine. After surface's functionalization treatment of the carbon beads, the carbon nanobeads supported Pt catalyst was produced. The Pt/C catalyst was characterized by SEM,TEM, Raman spectrum, EDS and XRD methods. Combining the carbonaceous paper spreaded up with the catalyst with Nafion membrane, we made MEA electrode. The discharge curves indicated that this carbon nanobeads supported Pt is a good fuel cell catalyst with excellent performance, high activity and sign of a long-time life.

  5. Natural phosphate-supported palladium: A highly efficient and recyclable catalyst for the suzuki-miyaura coupling under microwave irradiation

    KAUST Repository

    Hassine, Ayoub

    2015-01-19

    This report explores Suzuki-Miyaura coupling under microwave irradiation, using a new generation of catalyst that is based on natural phosphate (NP) impregnated by palladium. This catalyst was prepared by the treatment of natural phosphate with bis(benzonitrile)palladium(II) chloride in acetone at room temperature. The catalyst displayed high catalytic activity for the Suzuki-Miyaura coupling of aryl bromides and chlorides with aryl boronic acids in pure water and with the use of microwave irradiation. The low-cost and availability of the solid support, mild reaction conditions, high yields of desired products, recyclability of the catalyst and short reaction times are the notable features of these methods.

  6. Characterization of feline serum-cobalt binding.

    Science.gov (United States)

    Schnelle, Amy N; Barger, Anne M; MacNeill, Amy L; Mitchell, Mark M; Solter, Philip

    2015-06-01

    Oxidative stress inhibits albumin's ability to complex with cobalt. Feline serum-cobalt binding has not been described. The objective was to develop a cobalt binding test for use with feline serum, and correlate the results with other biochemical and cellular constituents in blood, and with clinical diseases of cats. A colorimetric test of cobalt binding, based on the oxidation-reduction reaction of Co(+2) and dithiothreitol, was developed using feline serum. The test was used to measure cobalt binding in stored serum from 176 cats presented to the University of Illinois Veterinary Teaching Hospital for a variety of disease conditions. Time-matched hematology and biochemical data, and clinical information, were obtained from the medical record of each cat and correlated with the serum-cobalt binding results. Serial dilution of feline serum with phosphate-buffered saline resulted in a highly linear decrease in serum-cobalt binding (r(2)  = .9984). Serum-cobalt binding of the clinical samples also correlated with albumin concentrations in a stepwise linear regression model (r(2)  = .425), and both cobalt binding and albumin were significantly decreased in cases of inflammation. Albumin and cobalt binding also shared significant correlations with several erythron variables, and serum concentration of total calcium and bilirubin. The correlation of cobalt binding measured by a colorimetric test with albumin concentration in the clinical samples and with serum dilution is consistent with feline albumin-cobalt complex formation. Hypoalbuminemia is the likely cause of reduced serum-cobalt binding in inflammation and the correlations observed between cobalt binding and other variables. © 2015 American Society for Veterinary Clinical Pathology.

  7. Cobalt complexes with pyrazole ligands as catalyst precursors for the peroxidative oxidation of cyclohexane: X-ray absorption spectroscopy studies and biological applications.

    Science.gov (United States)

    Silva, Telma F S; Martins, Luísa M D R S; Guedes da Silva, M Fátima C; Kuznetsov, Maxim L; Fernandes, Alexandra R; Silva, Ana; Pan, Chun-Jern; Lee, Jyh-Fu; Hwang, Bing-Joe; Pombeiro, Armando J L

    2014-04-01

    [CoCl(μ-Cl)(Hpz(Ph))3]2 (1) and [CoCl2(Hpz(Ph))4] (2) were obtained by reaction of CoCl2 with HC(pz(Ph))3 and Hpz(Ph), respectively (Hpz(Ph)=3-phenylpyrazole). The compounds were isolated as air-stable solids and fully characterized by IR and far-IR spectroscopy, MS(ESI+/-), elemental analysis, cyclic voltammetry (CV), controlled potential electrolysis, and single-crystal X-ray diffraction. Electrochemical studies showed that 1 and 2 undergo single-electron irreversible Co(II)→Co(III) oxidations and Co(II)→Co(I) reductions at potentials measured by CV, which also allowed, in the case of dinuclear complex 1, the detection of electronic communication between the Co centers through the chloride bridging ligands. The electrochemical behavior of models of 1 and 2 were also investigated by density functional theory (DFT) methods, which indicated that the vertical oxidation of 1 and 2 (that before structural relaxation) affects mostly the chloride and pyrazolyl ligands, whereas adiabatic oxidation (that after the geometry relaxation) and reduction are mostly metal centered. Compounds 1 and 2 and, for comparative purposes, other related scorpionate and pyrazole cobalt complexes, exhibit catalytic activity for the peroxidative oxidation of cyclohexane to cyclohexanol and cyclohexanone under mild conditions (room temperature, aqueous H2O2). In situ X-ray absorption spectroscopy studies indicated that the species derived from complexes 1 and 2 during the oxidation of cyclohexane (i.e., Ox-1 and Ox-2, respectively) are analogous and contain a Co(III) site. Complex 2 showed low in vitro cytotoxicity toward the HCT116 colorectal carcinoma and MCF7 breast adenocarcinoma cell lines.

  8. Molybdenum carbide as a highly selective deoxygenation catalyst for converting furfural to 2-methylfuran.

    Science.gov (United States)

    Xiong, Ke; Lee, Wen-Sheng; Bhan, Aditya; Chen, Jingguang G

    2014-08-01

    Selectively cleaving the C=O bond outside the furan ring of furfural is crucial for converting this important biomass-derived molecule to value-added fuels such as 2-methylfuran. In this work, a combination of density functional theory (DFT) calculations, surface science studies, and reactor evaluation identified molybdenum carbide (Mo2 C) as a highly selective deoxygenation catalyst for converting furfural to 2-methylfuran. These results indicate the potential application of Mo2 C as an efficient catalyst for the selective deoxygenation of biomass-derived oxygenates including furanics and aromatics.

  9. STUDY ON HIGHLY ACTIVE ZIEGLER-NATTA CATALYSTS FOR POLYMERIZATION OF OLEFINS

    Institute of Scientific and Technical Information of China (English)

    WANG Li; FENG Linxian; XU Junting; YANG Shilin

    1995-01-01

    In this paper, highly active Ziegler-Natta catalysts of MgCl2 supported TiCl4 for synthesis of polyolefins, using di-n-butyl phthalate(DNBP) as internal donor and diphenyl dimethoxyl silane (DPDMS) as external donor, have been prepared. The conditions controlling the treatment of support were studied. The interactions of various components present in the catalysts and their influences on catalytic performance were investigated. It is found that by using DNBP and DPDMS as internal and external donors together the polymer products with higher isotactic index can be obtained. Plausible structure model and mechanism were proposed.

  10. Highly practical copper(I)/TEMPO catalyst system for chemoselective aerobic oxidation of primary alcohols.

    Science.gov (United States)

    Hoover, Jessica M; Stahl, Shannon S

    2011-10-26

    Aerobic oxidation reactions have been the focus of considerable attention, but their use in mainstream organic chemistry has been constrained by limitations in their synthetic scope and by practical factors, such as the use of pure O(2) as the oxidant or complex catalyst synthesis. Here, we report a new (bpy)Cu(I)/TEMPO catalyst system that enables efficient and selective aerobic oxidation of a broad range of primary alcohols, including allylic, benzylic, and aliphatic derivatives, to the corresponding aldehydes using readily available reagents, at room temperature with ambient air as the oxidant. The catalyst system is compatible with a wide range of functional groups and the high selectivity for 1° alcohols enables selective oxidation of diols that lack protecting groups.

  11. Catalyst Degradation in High Temperature Proton Exchange Membrane Fuel Cells Based on Acid Doped Polybenzimidazole Membranes

    DEFF Research Database (Denmark)

    Cleemann, Lars Nilausen; Buazar, F.; Li, Qingfeng;

    2013-01-01

    Degradation of carbon supported platinum catalysts is a major failure mode for the long term durability of high temperature proton exchange membrane fuel cells based on phosphoric acid doped polybenzimidazole membranes. With Vulcan carbon black as a reference, thermally treated carbon black...... and multi‐walled carbon nanotubes were used as supports for electrode catalysts and evaluated in accelerated durability tests under potential cycling at 150 °C. Measurements of open circuit voltage, area specific resistance and hydrogen permeation through the membrane were carried out, indicating little...... contribution of the membrane degradation to the performance losses during the potential cycling tests. As the major mechanism of the fuel cell performance degradation, the electrochemical active area of the cathodic catalysts showed a steady decrease in the cyclic voltammetric measurements, which was also...

  12. Palladium-tin catalysts for the direct synthesis of H₂O₂ with high selectivity.

    Science.gov (United States)

    Freakley, Simon J; He, Qian; Harrhy, Jonathan H; Lu, Li; Crole, David A; Morgan, David J; Ntainjua, Edwin N; Edwards, Jennifer K; Carley, Albert F; Borisevich, Albina Y; Kiely, Christopher J; Hutchings, Graham J

    2016-02-26

    The direct synthesis of hydrogen peroxide (H2O2) from H2 and O2 represents a potentially atom-efficient alternative to the current industrial indirect process. We show that the addition of tin to palladium catalysts coupled with an appropriate heat treatment cycle switches off the sequential hydrogenation and decomposition reactions, enabling selectivities of >95% toward H2O2. This effect arises from a tin oxide surface layer that encapsulates small Pd-rich particles while leaving larger Pd-Sn alloy particles exposed. We show that this effect is a general feature for oxide-supported Pd catalysts containing an appropriate second metal oxide component, and we set out the design principles for producing high-selectivity Pd-based catalysts for direct H2O2 production that do not contain gold.

  13. High efficient acetalization of carbonyl compounds with diols catalyzed by novel carbon-based solid strong acid catalyst

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The novel carbon-based acid catalyst has been applied to catalyzing the acetalization and ketalization. The results showed that the catalyst was very efficient with the average yield over 93%. The novel heterogeneous catalyst has the advantages of high activity, wide applicability even to 7-membered ring acetals, strikingly simple workup procedure, non-pollution, and reusability, which will contribute to the green process greatly.

  14. Polymer nanocomposite membranes with hierarchically structured catalysts for high throughput dehalogenation

    Science.gov (United States)

    Crock, Christopher A.

    Halogenated organics are categorized as primary pollutants by the Environmental Protection Agency. Trichloroethylene (TCE), which had broad industrial use in the past, shows persistence in the environment because of its chemical stability. The large scale use and poor control of TCE resulted in its prolonged release into the environment before the carcinogenic risk associated with TCE was fully understood. TCE pollution stemmed from industrial effluents and improper disposal of solvent waste. Membrane reactors are promising technology for treating TCE polluted groundwater because of the high throughput, relatively low cost of membrane fabrication and facile retrofitting of existing membrane based water treatment facilities with catalytic membrane reactors. Compared to catalytic fluidized or fixed bed reactors, catalytic membrane reactors feature minimal diffusional limitation. Additionally, embedding catalyst within the membrane avoids the need for catalyst recovery and can prevent aggregation of catalytic nanoparticles. In this work, Pd/xGnP, Pd-Au/xGnP, and commercial Pd/Al2O3 nanoparticles were employed in batch and flow-through membrane reactors to catalyze the dehalogenation of TCE in the presence of dissolved H2. Bimetallic Pd-Au/xGnP catalysts were shown to be more active than monometallic Pd/xGnP or commercial Pd/Al 2O3 catalysts. In addition to synthesizing nanocomposite membranes for high-throughput TCE dehalogenation, the membrane based dehalogenation process was designed to minimize the detrimental impact of common catalyst poisons (S2-, HS-, and H2S -) by concurrent oxidation of sulfide species to gypsum in the presence of Ca2+ and removal of gypsum through membrane filtration. The engineered membrane dehalogenation process demonstrated that bimetallic Pd-Au/xGnP catalysts resisted deactivation by residual sulfide species after oxidation, and showed complete removal of gypsum during membrane filtration.

  15. Highly Selective Continuous Gas-Phase Methoxycarbonylation of Ethylene with Supported Ionic Liquid Phase (SILP) Catalysts

    DEFF Research Database (Denmark)

    Khokarale, Santosh Govind; Garcia Suárez, Eduardo José; Fehrmann, Rasmus

    2017-01-01

    Supported ionic liquid phase (SILP) technology was applied for the first time to the Pd-catalyzed continuous, gas-phase methoxycarbonylation of ethylene to selectively produce methyl propanoate (MP) in high yields. The influence of catalyst and reaction parameters such as, for example, ionic liqu...

  16. Enhanced High- and Low-Temperature Performance of NOx Reduction Catalyst Materials

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Feng; Muntean, George G.; Peden, Charles HF; Howden, Ken; Currier, Neal; Kamasamudram, Krishna; Kumar, Ashok; Li, Junhui; Luo, Jinyong; Stafford, Randy; Yezerets, Aleksey; Castagnola, Mario; Chen, Hai-Ying; Hess, Howard ..

    2014-12-09

    In this annual CRADA program report, we will briefly highlight results from our recent studies of the stability of candidate K-based high temperature NSR materials, and comparative studies of low temperature performance of SSZ-13 and SAPO-34 CHA catalysts; in particular, recent results comparing Fe- and Cu-based CHA materials.

  17. Mesoporous vanadium nitride as a high performance catalyst support for formic acid electrooxidation.

    Science.gov (United States)

    Yang, Minghui; Cui, Zhiming; DiSalvo, Francis J

    2012-11-04

    Mesoporous vanadium nitride (VN) with high surface area and good electrical conductivity was prepared by a solid-solid phase separation method from a Zn containing vanadium oxide, Zn(3)V(2)O(8). The VN supported Pd catalyst exhibited significant catalytic activity for formic acid oxidation.

  18. Calcium Oxide Supported on Monoclinic Zirconia as a Highly Active Solid Base Catalyst

    NARCIS (Netherlands)

    Frey, A.M.; Haasterecht, van T.; Jong, de K.P.; Bitter, J.H.

    2013-01-01

    Calcium oxide supported on ZrO2 is a highly active catalyst for base-catalyzed reactions such as aldol-type reactions and transesterification reactions. The role of key parameters during preparation, that is, impregnation versus precipitation, heat treatment, and metal oxide loading on the basicity

  19. Novel high-activity catalysts for partial oxidation of methane to formaldehyde

    CSIR Research Space (South Africa)

    Parmaliana, A

    1993-05-07

    Full Text Available Vanadium oxide-silica catalysts can effect the partial oxidation of methane to formaldehyde with extremely high activities and the space time yield (STY) can reach a value in excess of 800 g kg-1cat h-1; bare silica also shows appreciable STY value...

  20. Highly Selective Liquid-Phase Benzylation of Anisole with Solid-Acid Zeolite Catalysts

    DEFF Research Database (Denmark)

    Poreddy, Raju; Shunmugavel, Saravanamurugan; Riisager, Anders

    2015-01-01

    Zeolites were evaluated as solid acid catalysts for the liquid-phase benzylation of anisole with benzyl alcohol, benzyl bromide, and benzyl chloride at 80 °C. Among the examined zeolites, H-mordenite-10 (H-MOR-10) demonstrated particular high activity (>99 %) and excellent selectivity (>96...

  1. The challenges of treating high strength wastewaters: CWAO using MWNT supported ruthenium catalysts

    Energy Technology Data Exchange (ETDEWEB)

    GarcIa, J.; Gomes, H.T.; Figueiredo, J.L.; Faria, J.L. [Porto Univ., Lab. de Catalise e Materiais, Dept. de Engenharia Quimica, Faculdade de Engenharia (Portugal); Garcia, J. [Madrid Univ. Complutense, Grupo de Catalisis y Operaciones de Separacion, Dept. de Ingenieria Quimica, Facultad de Ciencias (Spain); Serp, P.; Kalck, P. [Ecole Nationale Superieure des Ingenieurs en Arts Chimiques et Technologiques, Lab. de Catalyse, Chimie Fine et Polymeres, 31 - Toulouse (France)

    2005-07-01

    High strength wastewaters containing aromatic compounds are normally not efficiently treated by conventional methods, including the common biological treatment. In these cases a more sophisticated approach is necessary to attain the desired levels of purification. Catalytic wet air oxidation (CWAO) using carbon based catalysts is employed worldwide as effective pre-treatment of effluents with these characteristics. Carbon materials are preferred as active catalysts or support for preparing them due to their morphological and structural characteristics. In the last 10 years, due to a tremendous development in materials production and processing, carbon nano-structures are becoming more accessible and common widening their range of applications [1]. In this context, the scope of the present work is to illustrate a potential use of multi-walled carbon nano-tubes (MWNT) supported ruthenium catalysts for catalytic wet air oxidation of aniline polluted wastewaters. The metal was supported by incipient wetness and excess impregnation, starting from liquid solutions of three different Ru precursors. Impregnation was carried out on modified MWNT, namely on MWNT-COOH (HNO{sub 3} modified) and MWNT-COONa (HNO{sub 3}/Na{sub 2}CO{sub 3} modified). For the 1% weight Ru/MWNT catalysts, the order of activities decreased in the sequence Ru(COD)(COT){>=}RuCl{sub 3}{>=}Ru(C{sub 5}H{sub 5}){sub 2}. The conversion of aniline after 45 min of reaction was 100% for the catalyst prepared with Ru(COD)(COT). The influence of the Ru precursor, preparation method and the support surface modification was studied comparing the conversion of aniline obtained for the different prepared Ru/MWNT catalysts (Figure 1). MWNT as support material, provide a significant metal dispersion with very small Ru nanoparticles (Figure 2) being observed. This will induce an efficient surface contact between the aniline molecule and the active sites [2]. The excellent catalytic performances of Ru/MWNT are explained

  2. Highly Active Carbon Supported Pd-Ag Nanofacets Catalysts for Hydrogen Production from HCOOH.

    Science.gov (United States)

    Wang, Wenhui; He, Ting; Liu, Xuehua; He, Weina; Cong, Hengjiang; Shen, Yangbin; Yan, Liuming; Zhang, Xuetong; Zhang, Jinping; Zhou, Xiaochun

    2016-08-17

    Hydrogen is regarded as a future sustainable and clean energy carrier. Formic acid is a safe and sustainable hydrogen storage medium with many advantages, including high hydrogen content, nontoxicity, and low cost. In this work, a series of highly active catalysts for hydrogen production from formic acid are successfully synthesized by controllably depositing Pd onto Ag nanoplates with different Ag nanofacets, such as Ag{111}, Ag{100}, and the nanofacet on hexagonal close packing Ag crystal (Ag{hcp}). Then, the Pd-Ag nanoplate catalysts are supported on Vulcan XC-72 carbon black to prevent the aggregation of the catalysts. The research reveals that the high activity is attributed to the formation of Pd-Ag alloy nanofacets, such as Pd-Ag{111}, Pd-Ag{100}, and Pd-Ag{hcp}. The activity order of these Pd-decorated Ag nanofacets is Pd-Ag{hcp} > Pd-Ag{111} > Pd-Ag{100}. Particularly, the activity of Pd-Ag{hcp} is up to an extremely high value, i.e., TOF{hcp} = 19 000 ± 1630 h(-1) at 90 °C (lower limit value), which is more than 800 times higher than our previous quasi-spherical Pd-Ag alloy nanocatalyst. The initial activity of Pd-Ag{hcp} even reaches (3.13 ± 0.19) × 10(6) h(-1) at 90 °C. This research not only presents highly active catalysts for hydrogen generation but also shows that the facet on the hcp Ag crystal can act as a potentially highly active catalyst.

  3. Session 4: Heterogeneous catalysts formation under high-voltage electric discharge

    Energy Technology Data Exchange (ETDEWEB)

    Kuzmina, R.I.; Sevostyanov, V.P.; Ivanova, Y.V.; Dogadina, N.V.; Rakitin, S.A. [Saratov State Univ. (Russian Federation)

    2004-07-01

    Energetic and environmental problems of today place heavy demands on both technologies of motor fuels production and exhaust gases cleaning. In this connection, main technological processes of petrochemistry and environmental catalysis require high-efficient and selective catalysts. The essence of EHB is short-time (1-2 {mu}sec) intense impact on an object to be processed that takes place under high-voltage pulse electric discharge in condensed matter. This paper is devoted to formation of aluminum-platinum-copper catalysts of hydrocarbons reforming and aluminum-platinum-nickel catalysts of redox cleaning of exhausted gases. In both cases catalyst formation takes place under EHB in steep media where catalyst carrier is set in. EHB treatment is fulfilled under discharge voltage 25-30 kV and variable electrode gap in the range from 1 to 30 mm. Under the treatment, 'carrier + steep solution' system is exposed to the number of acting factors, namely ultraviolet, cavitation and percussion waves, electric and magnetic influences. In our research, EHB was imposed to heterogeneous system of 2.5% Cu/Al{sub 2}O{sub 3} and water solution of H{sub 2}PtCl{sub 6}. It is shown that EHB catalyst provides yield of the target product (benzene) at a level of about 64 % (w.) under 550 C in comparison of 30.8 % (w.) level provided by traditional Cu,Pt/Al{sub 2}O{sub 3} catalyst. It is necessary to note change of n-hexane conversion mechanism in presence of aluminum-platinum-copper catalyst (EHB). Catalysate contains nearly no products of C5-dehydrocyclization (C5-DHC) whereas their yield reaches 20 % (w.) for traditional catalysts under similar conditions (550 C). This fact points to formation of aromatic hydrocarbons from n-paraffins by direct C6-dehydrocyclization omitting C5-dehydrocyclization and isomerization. EHB catalyst is characterized by drop in hydrocracking reaction output that increases selectivity of n-hexane reforming in aromatization. In order to find out EHB

  4. Study on Highly Active Catalysts and a Once-Through Process for Methanol Synthesis from Syngas

    Institute of Scientific and Technical Information of China (English)

    Xin Dong; Bingshun Shen; Hongbin Zhang; Guodong Lin; Youzhu Yuan

    2003-01-01

    Highly active CNT-promoted co-precipitated Cu-ZnO-Al2O3 catalysts, symbolized asCuiZnjAlk-x%CNTs, were prepared, and their catalytic activity for once-through methanol synthesis fromsyngas was investigated. The results illustrated that, under the reaction conditions (at 493 K, 5.0 MPa, thevolume ratio of H2/CO/CO2/N2= 62/30/5/3, GHSV= 4000 h-1), the observed single-pass CO-conversionand methanol-STY over a Cu6Zn3Al1-12.5%CNTs catalyst reached 64% and 1210 mg/(h@g), which wasabout 68% and 66% higher than those (38% and 730 mg/(h@g)) over the corresponding CNT-free catalyst,Cu6Zn3Al1, respectively. The characteristic studies of the catalysts revealed that appropriate incorporationof a minor amount of the CNTs into the CuiZnjAlk brought about little change in the apparent activationenergy of the methanol synthesis reaction, however, led to a considerable increase in the catalyst's active Cusurface area and pronouncedly enhanced the stationary-state concentration of active hydrogen-adspecieson the surface of the functioning catalyst, which would be favorable to increasing the rate of the CO hydro-genation reactions. Moreover, the operation temperature for methanol synthesis over the CNT-promotedcatalysts can be 10-20 degrees lower than that over the corresponding CNT-free contrast system, whichwould contribute considerably to an increase in equilibrium CO-conversion and CH3OH-yield.

  5. Unravelling the mechanisms behind mixed catalysts for the high yield production of single-walled carbon nanotubes.

    Science.gov (United States)

    Tetali, Sailaja; Zaka, Mujtaba; Schönfelder, Ronny; Bachmatiuk, Alicja; Börrnert, Felix; Ibrahim, Imad; Lin, Jarrn H; Cuniberti, Gianaurelio; Warner, Jamie H; Büchner, Bernd; Rümmeli, Mark H

    2009-12-22

    The use of mixed catalysts for the high-yield production of single-walled carbon nanotubes is well-known. The mechanisms behind the improved yield are poorly understood. In this study, we systematically explore different catalyst combinations from Ni, Co, and Mo for the synthesis of carbon nanotubes via laser evaporation. Our findings reveal that the mixing of catalysts alters the catalyst cluster size distribution, maximizing the clusters' potential to form a hemispherical cap at nucleation and, hence, form a single-walled carbon nanotube. This process significantly improves the single-walled carbon nanotube yields.

  6. Application of the Solvothermal Process in the Synthesis of High-performance Ag/γ-Al2O3 Catalysts

    Institute of Scientific and Technical Information of China (English)

    TANG Qing; LI Rui-xing; YIN Shu; Shingo Goto; Daisuke Nagai; Tsugio Sato

    2006-01-01

    Ag/γ-Al2O3 is a kind of promising catalyst with the relatively lower cost compared with those using noble metals,good resistance against catalytic poisoning and excellent behaviour for NOx removal. In the present study, Ag/γ-Al2O3 catalysts were synthesized by the solvothermal process and characterized by XRD, TG-DTA, TEM, UV-Vis and FT-IR. It was found that high-performance Ag/γ-Al2O3 catalysts could be synthesized by properly selecting starting materials,controlling the composition of solvent and other reaction conditions. The microstructure evolution of the catalysts was also discussed.

  7. High activity of Pd-WO3/C catalyst as anodic catalyst for direct formic acid fuel cell

    Science.gov (United States)

    Feng, Ligang; Yan, Liang; Cui, Zhiming; Liu, Changpeng; Xing, Wei

    2011-03-01

    Pd nanoparticles supported on the WO3/C hybrid are prepared by a two-step procedure and the catalysts are studied for the electrooxidation of formic acid. For the purpose of comparison, phosphotungstic acid (PWA) and sodium tungstate are used as the precursor of WO3. Both the Pd-WO3/C catalysts have much higher catalytic activity for the electrooxidation of formic acid than the Pd/C catalyst. The Pd-WO3/C catalyst prepared from PWA shows the best catalytic activity and stability for formic acid oxidation; it also shows the maximum power density of approximately 7.6 mW cm-2 when tested with a small single passive fuel cell. The increase of electrocatalytic activity and stability is ascribed to the interaction between the Pd and WO3, which promotes the oxidation of formic acid in the direct pathway. The precursors used for the preparation of the WO3/C hybrid support have a great effect on the performance of the Pd-WO3/C catalyst. The WO3/C hybrid support prepared from PWA is beneficial to the dispersion of Pd nanoparticles, and the catalyst has potential application for direct formic acid fuel cell.

  8. Robust CoAl Alloy: Highly Active, Reusable and Green Catalyst in the Hydrogenolysis of Glycerol%Robust CoAl Alloy: Highly Active, Reusable and Green Catalyst in the Hydrogenolysis of Glycerol

    Institute of Scientific and Technical Information of China (English)

    郭晓洋; 尹安远; 郭晓东; 郭秀英; 戴维林; 范康年

    2011-01-01

    CoAl alloy catalyst is found, for the first time, to be highly active, selective and reusable for the synthesis of diols via the hydrogenolysis of glycerol under mild conditions. The products and the catalyst could be self-separated from the reaction system through a simple reactor.

  9. Chlorination of Carbon Nanotubes Obtained on the Different Metal Catalysts

    OpenAIRE

    Iwona Pełech; Robert Pełech; Urszula Narkiewicz; Dariusz Moszyński; Anna Jędrzejewska; Bartłomiej Witkowski

    2013-01-01

    In this paper, a chlorination method is proposed for simultaneous purification and functionalization of carbon nanotubes, thus increasing their ability to use. Carbon nanotubes were obtained by CVD method through ethylene decomposition on the nanocrystalline iron or cobalt or bimetallic iron-cobalt catalysts. The effects of temperature (50, 250, and 450°C) in the case of carbon nanotubes obtained on the Fe-Co catalyst and type of catalyst (Fe, Co, Fe/Co) on the effectiveness of the treatment ...

  10. A Novel Catalyst for Isobutene Oligomerization to High Quality Gasoline

    Institute of Scientific and Technical Information of China (English)

    周硼; 安增建; 蔡天锡; 蹇锡高

    2003-01-01

    Dimerization of isobutene in liquid state to form high-octane value gasoline components was investigated over a homemade novel ion exchange resin,SPPESK,which shows high activity and selectivity in isobutene dimerization under mild conditions.

  11. Electronic Coupling of Cobalt Nanoparticles to Nitrogen-Doped Graphene for Oxygen Reduction and Evolution Reactions.

    Science.gov (United States)

    Xu, Chaohe; Lu, Meihua; Yan, Binggong; Zhan, Yi; Balaya, Palani; Lu, Li; Lee, Jim Yang

    2016-11-09

    The rational design of nonprecious-metal electrocatalysts with activities comparable to or greater than that of platinum is extremely valuable to the development of high energy density metal-air batteries. Herein, the two-step preparation of a highly active oxygen electrocatalyst based on ultrasmall cobalt nanoparticles stabilized in a nitrogen-doped graphene matrix is reported. The catalyst performs as well as the commercial Pt/C catalyst in the oxygen reduction reaction, and better than the Pt/C catalyst in the oxygen evolution reaction. This particular electrocatalyst could significantly lower the overpotentials of oxygen electrochemical reactions in aqueous lithium-air batteries to attain a round-trip efficiency of about 79.0 % at a current density of 0.1 mA cm(-2) , thereby surpassing the performance of the commercial Pt/C catalyst. The good performance may be attributed to strong metal-support interactions, maximized by a high dispersion of ultrasmall cobalt nanocrystals in a nitrogen-doped graphene matrix, which yields electrocatalytic properties greater than the sum of its parts. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Cobalt: for strength and color

    Science.gov (United States)

    Boland, Maeve A.; Kropschot, S.J.

    2011-01-01

    Cobalt is a shiny, gray, brittle metal that is best known for creating an intense blue color in glass and paints. It is frequently used in the manufacture of rechargeable batteries and to create alloys that maintain their strength at high temperatures. It is also one of the essential trace elements (or "micronutrients") that humans and many other living creatures require for good health. Cobalt is an important component in many aerospace, defense, and medical applications and is a key element in many clean energy technologies. The name cobalt comes from the German word kobold, meaning goblin. It was given this name by medieval miners who believed that troublesome goblins replaced the valuable metals in their ore with a substance that emitted poisonous fumes when smelted. The Swedish chemist Georg Brandt isolated metallic cobalt-the first new metal to be discovered since ancient times-in about 1735 and identified some of its valuable properties.

  13. Nickel doped cobalt sulfide as a high performance counter electrode for dye-sensitized solar cells

    Science.gov (United States)

    Kim, Hee-Je; Kim, Chul-Woo; Punnoose, Dinah; Gopi, Chandu. V. V. M.; Kim, Soo-Kyoung; Prabakar, K.; Rao, S. Srinivasa

    2015-02-01

    The use of cells based on cobalt sulfide (CoS2) and nickel sulfide (NiS) has found a steep upsurge in solar cell applications and as a substitute for conventional Pt-based cells owing to their low cost, low-temperature processing ability, and promising electro-catalytic activity. In this study, CoS2, NiS and Ni-doped CoS2 nanoparticles were incorporated on a fluorine-doped tin oxide (FTO) substrate by simple chemical bath deposition (CBD). The surface morphology of the obtained films was analyzed by scanning electron microscope. Tafel polarization, electrochemical impedance spectroscopy and cyclic voltammograms of the Ni-doped CoS2 (Ni 15%) films indicated enhanced electro-catalytic activity for I3- reduction in dye sensitized solar cells (DSSCs) compared to a Pt CE. The Ni-doped CoS2 CE also showed an impressive photovoltaic conversion efficiency of 5.50% under full sunlight illumination (100 mW cm-2, AM 1.5 G), exceeding that of DSSCs using a Pt CE (5.21%). We show that the highest conversion efficiency mainly depends on the charge transfer resistance and adequate Ni ion doping with CoS2 nanoparticles.

  14. New triarylamine sensitizers for high efficiency dye-sensitized solar cells: Recombination kinetics of cobalt(III) complexes at titania/dye interface

    Science.gov (United States)

    Gao, Weixue; Liang, Mao; Tan, Yulin; Wang, Min; Sun, Zhe; Xue, Song

    2015-06-01

    A new generation of dye-sensitized solar cells (DSCs) is based on a combination of D-π-A organic dyes in conjunction with cobalt-based redox mediators. Here, two new triarylamine organic dyes (M36 and M37) toward cobalt electrolytes are constructed and employed as photosensitizers for dye-sensitized solar cells. The photoelectrochemical properties and photovoltaic performance of dyes are sensitive to the slightly structural modification of the terminal donor in triarylamine. Recombination kinetics of cobalt(III) complexes at titania/dye interface are also studied using electrochemical impedance spectroscopy and controlled intensity modulated photovoltage spectroscopy measurements. Our results show that, for M36 sensitized DSCs, a Marcus inverted region can be reached for the charge recombination kinetics behavior of cobalt(III) species. While that for DSCs based on M37 just lies in the Marcus normal region. The results can be attributed to differences in the retarding charge recombination ability of the dye layer. Benefiting from a Marcus inverted region behavior, the M36 dye exhibits a good compatibility with the [Co(phen)3]2+/3+ redox couples, achieving a high overall power conversion efficiency (PCE) of 9.58% under full sun illumination.

  15. Rota hidrometalúrgica de recuperação de molibdênio, cobalto, níquel e alumínio de catalisadores gastos de hidrotratamento em meio ácido Hydrometallurgical route to recover molybdenum, nickel, cobalt and aluminum from spent hydrotreating catalysts in acid medium

    OpenAIRE

    Ivam Macedo Valverde Júnior; Jéssica Frontino Paulino; Julio Carlos Afonso

    2008-01-01

    This work describes a hydrometallurgical route for processing spent commercial catalysts (CoMo and NiMo/Al2O3). Samples were preoxidized (500 ºC, 5 h) in order to eliminate coke and other volatile species present. The calcined solid was dissolved in concentrated H2SO4 and water (1:1 vol/vol) at 90 ºC; the insoluble matter was separated from the solution. Molybdenum was recovered by solvent extraction using tertiary amines at pH around 1.8. Cobalt (or nickel) was separated by addition of aqueo...

  16. Preliminary study of a solar selective coating system using black cobalt oxide for high temperature solar collectors

    Science.gov (United States)

    Mcdonald, G.

    1980-01-01

    Black cobalt oxide coatings were deposited on thin layers of silver or gold which had been deposited on oxidized stainless steel substrates. The reflectance properties of these coatings were measured at various thicknesses of cobalt oxide for integrated values of the solar and infrared spectrum. The values of absorptance and emittance were calculated from the measured reflectance values before and after exposure in air at 650 C for 1000 hours. Also, these cobalt oxide/noble metal/oxide diffusion barrier coatings have absorptances greater than 0.90 and emittances of approximately 0.20 even after about 1000 hours at 650 C.

  17. Synthesis of three-dimensional reduced graphene oxide layer supported cobalt nanocrystals and their high catalytic activity in F-T CO2 hydrogenation.

    Science.gov (United States)

    He, Fei; Niu, Na; Qu, Fengyu; Wei, Shuquan; Chen, Yujin; Gai, Shili; Gao, Peng; Wang, Yan; Yang, Piaoping

    2013-09-21

    The reduced graphene oxide (rGO) supported cobalt nanocrystals have been synthesized through an in situ crystal growth method using Co(acac)2 under solvothermal conditions by using DMF as the solvent. By carefully controlling the reaction temperature, the phase transition of the cobalt nanocrystals from the cubic phase to the hexagonal phase has been achieved. Moreover, the microscopic structure and morphology as well as the reduction process of the composite have been investigated in detail. It is found that oxygen-containing functional groups on the graphene oxide (GO) can greatly influence the formation process of the Co nanocrystals by binding the Co(2+) cations dissociated from the Co(acac)2 in the initial reaction solution at 220 °C, leading to the 3D reticular structure of the composite. Furthermore, this is the first attempt to use a Co/rGO composite as the catalyst in the F-T CO2 hydrogenation process. The catalysis testing results reveal that the as-synthesized 3D structured composite exhibits ideal catalytic activity and good stability, which may greatly extend the scope of applications for this kind of graphene-based metal hybrid material.

  18. H2SO4-SiO2: Highly efficient and novel catalyst for the Ferrier-type glycosylation

    Institute of Scientific and Technical Information of China (English)

    Jia Fen Zhou; Xuan Chen; Qing Bing Wang; Bo Zhang; Li Yan Zhang; Abdullah Yusulf; Zhong Fu Wang; Jian Bo Zhang; Jie Tang

    2010-01-01

    Sulfuric acid immobilized on silica gel is designed as a very useful catalyst for synthesis of 2,3-unsaturated glycopyranosides.This handy,metal-free,environment friendly transformation provides high yields and α-stereoselectivities in a very few amount (<0.02 eq.= of catalyst and in short reaction times (<10 min).

  19. KF-loaded mesoporous Mg-Fe bi-metal oxides: high performance transesterification catalysts for biodiesel production.

    Science.gov (United States)

    Tao, Guiju; Hua, Zile; Gao, Zhe; Zhu, Yan; Zhu, Yan; Chen, Yu; Shu, Zhu; Zhang, Lingxia; Shi, Jianlin

    2013-09-21

    Using newly developed mesoporous Mg-Fe bi-metal oxides as supports, a novel kind of high performance transesterification catalysts for biodiesel production has been synthesized. More importantly, the impregnation solvent was for the first time found to substantially affect the structures and catalytic performances of the resultant transesterification catalysts.

  20. Hydrogen production by low-temperature reforming of bioethanol over ZnO-supported Co-Ni and Co-Cu catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Llorca, J.; Homs, N.; Ramirez de la Piscina, P.

    2005-07-01

    The use of a renewable, non-toxic biomass-derived source, like bioethanol, to produce hydrogen is actually very attractive. In such domain, the search of a catalytic system highly effective for the selective steam-reforming process is of current research interest, CH3CH2OH+3H2O.6H2+2CO2. The steam-reforming of ethanol involves numerous steps and usually competes with several parallel reactions that originate undesired products like CO and CH4, resulting in lower hydrogen yields and difficult practical application. Copper- and nickel-based catalysts, including catalysts containing both metals, have been extensively studied in the steam-reforming of ethanol [1-3]. It has been well established that copper favours the dehydrogenation reaction and nickel the breaking of C-C bonds. Moreover, the presence of basic supports and Cu-Ni alloys prevent the formation of carbon deposits [1-3]. On the other hand, we have shown that ZnO-supported cobalt catalysts are very selective to hydrogen and CO2 from the steam reforming of bioethanol mixtures below 673 K [4]. In addition, sodium addition to ZnO-supported cobalt catalysts results in a major stability by suppressing the deposition of carbon [5]. Here we present the catalytic behaviour at low temperature of sodium-promoted, bimetallic cobalt-nickel and cobalt copper catalysts supported on ZnO and compare their performance with mono metallic ZnO-supported Ni and Cu samples. Catalysts have been tested in the steam-reforming reaction of bioethanol at atmospheric pressure (C2H5OH:H2O1:4 v/v) and characterised by means of X-ray diffraction (XRD), transmission electron microscopy techniques (TEM) and X-ray photoelectron spectroscopy (XPS) before and after reaction. The effect of introduction of copper or nickel on cobalt-based catalysts is discussed in relation to their catalytic performances. (Author)

  1. Stereoselective Synthesis of Highly Functionalized 2,3-Dihydro-4-pyranones Using Phosphine Oxide as Catalyst.

    Science.gov (United States)

    Kotani, Shunsuke; Miyazaki, Shiki; Kawahara, Kazuya; Shimoda, Yasushi; Sugiura, Masaharu; Nakajima, Makoto

    2016-01-01

    2,3-Dihydro-4-pyranones were synthesized stereoselectively using a chiral phosphine oxide as the catalyst. The phosphine oxide sequentially activated silicon tetrachloride and promoted the double aldol reaction of 4-methoxy-3-buten-2-one with aldehydes. Subsequent stereoselective cyclization afforded the corresponding highly functionalized 2,3-dihydro-4-pyranones bearing three contiguous chiral centers in good yields and with high diastereo- and enantioselectivities.

  2. Controlled free radical polymerization of vinyl acetate with cobalt acetoacetonate

    Indian Academy of Sciences (India)

    Mohammad Ali Semsarzadeh; Sahar Amiri

    2012-03-01

    The polymerization of vinyl acetate with the complex catalyst of cobalt acetoacetonate [Co (acac)2] and DMF ligand with benzoyl peroxide initiator has been successfully carried out in bulk and in solution. The bulk polymerization has been used in a new route consisting of a one-step polymer formation in a fine capillary tube. In this process, the high rate of propagation was used to carry out the reaction in a microcapillary tube. Under 60°C, the colour-free reaction without solid catalyst impurity was 95% complete within a few hours. The high molecular weight of polyvinyl acetate (PVAc) with its relatively low molecular distribution without unreacted monomer provided a new method in microprocessing of the controlled radical polymerization of vinyl acetate in a one-step polymerization process. PVAc polymerization systems showed induction time, which was reduced in this reaction with using complex of DMF/ Co(acac)2. The kinetics of the reaction with a smaller degree of branching from this catalyst indicated that the electronegativity of the transition metal and diffusion of the homogeneous catalyst with DMF are important factors of fast polymerization in the bulk. Thermal properties of the polymer indicated a lower glass transition state. The easily reformed or stretched microsolid polymer demonstrated 20% crystallinity.

  3. Incorporation of Molecular Catalysts in Metal-Organic Frameworks for Highly Efficient Heterogeneous Catalysis.

    Science.gov (United States)

    Wu, Chuan-De; Zhao, Min

    2017-04-01

    Porous metal-organic frameworks (MOFs) are built from periodically alternate organic moieties and metal ions/clusters. The unique features of the open framework structures, the high surface areas, the permanent porosity, and the appropriate hydrophilic and hydrophobic pore nature mean that MOF materials are a class of ideal host matrices for immobilization of molecular catalysts. The emerging porous materials can not only retain but are also able to enhance the catalytic functions of the single individuals. MOF catalysts have the following super characters: i) uniformly dispersed catalytic sites on the pore surfaces to improve the utility, ii) appropriate hydrophilic and hydrophobic pore nature to facilitate the recognition and transportation of reactant and product molecules, iii) a collaborative microenvironment to realize synergistic catalysis, and iv) simple separation and recovery for long-term usage. Accompanying the development of the synthetic strategies and the technologies for the characterization of MOF materials, MOF catalysis has undergone an upsurge, which has transcended the stage of opportunism. Here, the rational design and synthesis of MOF catalysts are discussed, along with the key factors of active sites, microenvironments, and transmission channels that lead to the distinct catalytic properties of MOF catalysts. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Thioetherification of chloroheteroarenes: a binuclear catalyst promotes wide scope and high functional-group tolerance.

    Science.gov (United States)

    Platon, Mélanie; Wijaya, Novi; Rampazzi, Vincent; Cui, Luchao; Rousselin, Yoann; Saeys, Mark; Hierso, Jean-Cyrille

    2014-09-22

    A constrained binuclear palladium catalyst system affords selective thioetherification of a wide range of functionalized arenethiols with chloroheteroaromatic partners with the highest turnover numbers (TONs) reported to date and tolerates a large variety of reactive functions. The scope of this system includes the coupling of thiophenols with six- and five-membered 2-chloroheteroarenes (i.e., functionalized pyridine, pyrazine, quinoline, pyrimidine, furane, and thiazole) and 3-bromoheteroarenes (i.e., pyridine and furane). Electron-rich congested thiophenols and fluorinated thiophenols are also suitable partners. The coupling of unprotected amino-2-chloropyridines with thiophenol and the successful employment of synthetically valuable chlorothiophenols are described with the same catalyst system. DFT studies attribute the high performance of this binuclear palladium catalyst to the decreased stability of thiolate-containing resting states. Palladium loading was as low as 0.2 mol %, which is important for industrial application and is a step forward in solving catalyst activation/deactivation problems. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. High Performance Heteroatoms Quaternary-doped Carbon Catalysts Derived from Shewanella Bacteria for Oxygen Reduction

    Science.gov (United States)

    Guo, Zhaoyan; Ren, Guangyuan; Jiang, Congcong; Lu, Xianyong; Zhu, Ying; Jiang, Lei; Dai, Liming

    2015-11-01

    A novel heteroatoms (N, P, S and Fe) quaternary-doped carbon (HQDC-X, X refers to the pyrolysis temperature) can be fabricated by directly pyrolyzing a gram-negative bacteria, S. oneidensis MR-1 as precursors at 800 °C, 900 °C and 1000 °C under argon atmosphere. These HQDC-X catalysts maintain the cylindrical shape of bacteria after pyrolysis under high temperatures, while heteroatoms including N, P, S and Fe distribute homogeneously on the carbon frameworks. As a result, HQDC-X catalysts exhibit excellent electrocatalytic activity for ORR via a dominant four-electron oxygen reduction pathway in alkaline medium, which is comparable with that of commercial Pt/C. More importantly, HQDC-X catalysts show better tolerance for methanol crossover and CO poisoning effects, long-term durability than commercial Pt/C, which could be promising alternatives to costly Pt-based electrocatalysts for ORR. The method may provide a promising avenue to develop cheap ORR catalysts from inexpensive, scalable and biological recursors.

  6. Chemical Fixation of CO2 with Highly Efficient ZnCl/[BMIm]Br Catalyst System

    Institute of Scientific and Technical Information of China (English)

    Li Fuwei; Xia Chungu

    2004-01-01

    The search for environmentally benign and economic process has been the impetus for much of the research involving epoxide and carbon dioxide coupling in view of the so called "green chemistry" and" atom economy ", since CO2 is a renewable resource and can be used as a safe and cheap C 1 building block to synthesize useful organic compounds without producing any coproducts.[1-2] One of the most attractive synthetic goals starting from carbon dioxide is the chemical fixation of CO2 onto epoxide to afford the five-membered cyclic carbonates (Scheme 1),which are excellent aprotic polar solvents and are used extensively as intermediates in the production of pharmaceuticals and fine chemicals.[3] In the last decades of the twentieth century numerous catalytic systems have been developed for this transformation. While some advances have been obtained, all suffer from either low catalyst stability/reactivity, the need for co-solvent, or the requirement for high pressure and/or catalyst costing expensive.[4] Therefore, to find an effective,not exrensive, environmentally benign and economic catalyst system is urgent.In this paper, chemical fixation of CO2 with mono-substituted terminal epoxides or cyclohexene oxide to form cyclic carbonates under the ZnCl2/[BMIm]Br Catalyst System without using additional organic solvents was achieved in excellent selectivity (>98%) and TOF(5410h-1) Besides,the pure cis-cyclic carbonate of cyclohexene oxide was obtained in this catalyst system.It was important to note that the catalyst could be recovered by simple vacuum distillation of the corresponding cyclic carbonates and could be used six times almost without losing its catalytic activity and selectivity. The catalyst system was found to be applicable to a variety of terminal epoxides and cyclohexene oxide, forming the corresponding cyclic carbonates in very high TOF and more than 98% selectivity. Based on the obtained results, we also propose the plausible mechanism for this

  7. The role of the catalysts with highly dispersed and isolated active sites in the selective oxidation of light hydrocarbons

    Institute of Scientific and Technical Information of China (English)

    WANG Hongxuan; ZHAO Zhen

    2005-01-01

    This review summarizes the role of catalysts with highly dispersed and isolated active sites (active sites: supported atoms f≤0.5 % ) in the selective oxidation of light hydrocarbons, such as methane, ethane and propane, into oxygenatesand the epoxidation of olefins. The plausible structures of the highly dispersed and isolated active species, as well as their effects on the catalytic performances are discussed. The special physico-chemical properties and the functional mechanism of the catalysts with highly dispersed and isolated active sites, as well as the preparation, characterization of the catalysts with highly dispersed and isolated active sites and their applications in other types of reactions of lower hydrocarbons are summarized.

  8. SnFe2 O4 Nanocrystals as Highly Efficient Catalysts for Hydrogen-Peroxide Sensing.

    Science.gov (United States)

    Lee, Kuan-Ting; Liu, Dai-Ming; Lu, Shih-Yuan

    2016-07-25

    SnFe2 O4 nanocrystals (NC), prepared with a simple one-step carrier-solvent-assisted interfacial reaction process, were developed as highly efficient catalysts for hydrogen peroxide sensing. These NCs, with a size of around 7 nm, served as the sensing catalyst and were decorated onto the pore surfaces of a porous fluorine-doped tin oxide (PFTO) host electrode, prepared from commercial FTO glass with a simple anodic treatment, to form the sensing electrode for hydrogen peroxide. The SnFe2 O4 NCs-loaded PFTO electrode exhibited an ultra-high sensitivity of 1027 mA m(-1)  cm(-2) toward hydrogen peroxide, outperforming Pt NCs-loaded PFTO electrodes. The SnFe2 O4 NCs-loaded PFTO electrode proved a promising relatively low cost, high performance sensing electrode for hydrogen peroxide.

  9. In situ neutron diffraction under high pressure—Providing an insight into working catalysts

    Science.gov (United States)

    Kandemir, Timur; Wallacher, Dirk; Hansen, Thomas; Liss, Klaus-Dieter; Naumann d'Alnoncourt, Raoul; Schlögl, Robert; Behrens, Malte

    2012-05-01

    In the present work the construction and application of a continuous flow cell is presented, from which neutron diffraction data could be obtained during catalytic reactions at high pressure. By coupling an online gas detection system, parallel structure and activity investigations of working catalysts under industrial relevant conditions are possible. The flow cell can be operated with different feed gases in a wide range from room temperature to 603 K. Pressures from ambient up to 6 MPa are applicable. An exchangeable sample positioning system makes the flow cell suitable for several different goniomter types on a variety of instrument beam lines. Complementary operational test measurements were carried out monitoring reduction of and methanol synthesis over a Cu/ZnO/Al2O3 catalyst at the high-flux powder diffraction beamline D1B at ILL and high-resolution diffraction beamline Echidna at ANSTO.

  10. Nickel doped cobalt sulfide as a high performance counter electrode for dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hee-Je; Kim, Chul-Woo; Punnoose, Dinah; Gopi, Chandu V.V.M.; Kim, Soo-Kyoung; Prabakar, K.; Rao, S. Srinivasa, E-mail: srinu.krs@gmail.com

    2015-02-15

    Graphical abstract: - Highlights: • First ever employment of Ni doped CoS{sub 2} counter electrode as a replacement of Pt counter electrode. • Efficiency of 5.50% was achieved using Ni doped CoS{sub 2} counter electrode in contrast to 5.21% efficiency obtained using Pt electrode. • Dependency of efficiency on Ni dopant reported for the first time. • Cost effective chemical bath deposition was used for the fabrication of the counter electrode. - Abstract: The use of cells based on cobalt sulfide (CoS{sub 2}) and nickel sulfide (NiS) has found a steep upsurge in solar cell applications and as a substitute for conventional Pt-based cells owing to their low cost, low-temperature processing ability, and promising electro-catalytic activity. In this study, CoS{sub 2}, NiS and Ni-doped CoS{sub 2} nanoparticles were incorporated on a fluorine-doped tin oxide (FTO) substrate by simple chemical bath deposition (CBD). The surface morphology of the obtained films was analyzed by scanning electron microscope. Tafel polarization, electrochemical impedance spectroscopy and cyclic voltammograms of the Ni-doped CoS{sub 2} (Ni 15%) films indicated enhanced electro-catalytic activity for I{sub 3}{sup −} reduction in dye sensitized solar cells (DSSCs) compared to a Pt CE. The Ni-doped CoS{sub 2} CE also showed an impressive photovoltaic conversion efficiency of 5.50% under full sunlight illumination (100 mW cm{sup −2}, AM 1.5 G), exceeding that of DSSCs using a Pt CE (5.21%). We show that the highest conversion efficiency mainly depends on the charge transfer resistance and adequate Ni ion doping with CoS{sub 2} nanoparticles.

  11. Cobalt Oxide Porous Nanofibers Directly Grown on Conductive Substrate as a Binder/Additive-Free Lithium-Ion Battery Anode with High Capacity.

    Science.gov (United States)

    Liu, Hao; Zheng, Zheng; Chen, Bochao; Liao, Libing; Wang, Xina

    2017-12-01

    In order to reduce the amount of inactive materials, such as binders and carbon additives in battery electrode, porous cobalt monoxide nanofibers were directly grown on conductive substrate as a binder/additive-free lithium-ion battery anode. This electrode exhibited very high specific discharging/charging capacities at various rates and good cycling stability. It was promising as high capacity anode materials for lithium-ion battery.

  12. Cu–Co–O nano-catalysts as a burn rate modifier for composite solid propellants

    Directory of Open Access Journals (Sweden)

    D. Chaitanya Kumar Rao

    2016-08-01

    Full Text Available Nano-catalysts containing copper–cobalt oxides (Cu–Co–O have been synthesized by the citric acid (CA complexing method. Copper (II nitrate and Cobalt (II nitrate were employed in different molar ratios as the starting reactants to prepare three types of nano-catalysts. Well crystalline nano-catalysts were produced after a period of 3 hours by the calcination of CA–Cu–Co–O precursors at 550 °C. The phase morphologies and crystal composition of synthesized nano-catalysts were examined using Scanning Electron Microscope (SEM, Energy Dispersive Spectroscopy (EDS and Fourier Transform Infrared Spectroscopy (FTIR methods. The particle size of nano-catalysts was observed in the range of 90 nm–200 nm. The prepared nano-catalysts were used to formulate propellant samples of various compositions which showed high reactivity toward the combustion of HTPB/AP-based composite solid propellants. The catalytic effects on the decomposition of propellant samples were found to be significant at higher temperatures. The combustion characteristics of composite solid propellants were significantly improved by the incorporation of nano-catalysts. Out of the three catalysts studied in the present work, CuCo-I was found to be the better catalyst in regard to thermal decomposition and burning nature of composite solid propellants. The improved performance of composite solid propellant can be attributed to the high crystallinity, low agglomeration and lowering the decomposition temperature of oxidizer by the addition of CuCo-I nano-catalyst.

  13. Biological synthesis of cobalt ferrite nanoparticles

    Directory of Open Access Journals (Sweden)

    Anal K. Jha

    2012-01-01

    Full Text Available A low-cost green and reproducible yeast (Saccharomyces cerevisiae mediated biosynthesis of cobalt ferrite nanoparticles is reported. The synthesis is performed at close to room temperature in the laboratory. X-ray, Fourier transform infrared spectroscopy and high resolution transmission electron microscopy analyses are performed to ascertain the formation of cobalt ferrite nanoparticles. Individual nanoparticles, as well as a very few aggregate having the size of 3-15 nm, were found. The vibrating sample magnetometer measurement showed superparamagnetic behavior in cobalt ferrite nanoparticles. The mechanism involved in the biosynthesis of cobalt ferrite nanoparticles has also been discussed.

  14. Discovery of Novel NOx Catalysts for CIDI Applications by High-throughput Methods

    Energy Technology Data Exchange (ETDEWEB)

    Blint, Richard J. [General Motors Corporation, Warren, MI (United States)

    2007-12-31

    DOE project DE-PS26-00NT40758 has developed very active, lean exhaust, NOx reduction catalysts that have been tested on the discovery system, laboratory reactors and engine dynamometer systems. The goal of this project is the development of effective, affordable NOx reduction catalysts for lean combustion engines in the US light duty vehicle market which can meet Tier II emission standards with hydrocarbons based reductants for reducing NOx. General Motors (prime contractor) along with subcontractors BASF (Engelhard) (a catalytic converter developer) and ACCELRYS (an informatics supplier) carried out this project which began in August of 2002. BASF (Engelhard) has run over 16,000 tests of 6100 possible catalytic materials on a high throughput discovery system suitable for automotive catalytic materials. Accelrys developed a new database informatics system which allowed material tracking and data mining. A program catalyst was identified and evaluated at all levels of the program. Dynamometer evaluations of the program catalyst both with and without additives show 92% NOx conversions on the HWFET, 76% on the US06, 60% on the cold FTP and 65% on the Set 13 heavy duty test using diesel fuel. Conversions of over 92% on the heavy duty FTP using ethanol as a second fluid reductant have been measured. These can be competitive with both of the alternative lean NOx reduction technologies presently in the market. Conversions of about 80% were measured on the EUDC for lean gasoline applications without using active dosing to adjust the C:N ratio for optimum NOx reduction at all points in the certification cycle. A feasibility analysis has been completed and demonstrates the advantages and disadvantages of the technology using these materials compared with other potential technologies. The teaming agreements among the partners contain no obstacles to commercialization of new technologies to any potential catalyst customers.

  15. Nickel-Cobalt hydroxide microspheres electrodepositioned on nickel cobaltite nanowires grown on Ni foam for high-performance pseudocapacitors

    Science.gov (United States)

    Gong, Xuefei; Cheng, J. P.; Liu, Fu; Zhang, Li; Zhang, Xiaobin

    2014-12-01

    Nickel-Cobalt hydroxide microspheres are electrodepositioned on the films of NiCo2O4 nanowires grown on the current collector through a facile approach and the hierarchical structures are then investigated as an electrode material for high-performance supercapacitors. Owing to the superior electrical conductivity of NiCo2O4 nanowires, the porous structure of the (Ni-Co)(OH)2 microspheres and the synergic effect of the multi-components, the electrode can deliver a high areal capacitance of 6 F cm-2 and a corresponding specific capacitance of 1132 F g-1 at a current density of 2 mA cm-2, as well as a good rate capability (61.8% capacitance retention from 2 mA cm-2 to 50 mA cm-2), and excellent cycling stability (90% capacitance retention after 2000 cycles). The results suggest that our research opens up the possibility for the fabrication of high-performance energy-storage devices of binder-free electrodes.

  16. PolyHIPE Derived Freestanding 3D Carbon Foam for Cobalt Hydroxide Nanorods Based High Performance Supercapacitor

    Science.gov (United States)

    Patil, Umakant M.; Ghorpade, Ravindra V.; Nam, Min Sik; Nalawade, Archana C.; Lee, Sangrae; Han, Haksoo; Jun, Seong Chan

    2016-10-01

    The current paper describes enhanced electrochemical capacitive performance of chemically grown Cobalt hydroxide (Co(OH)2) nanorods (NRs) decorated porous three dimensional graphitic carbon foam (Co(OH)2/3D GCF) as a supercapacitor electrode. Freestanding 3D porous GCF is prepared by carbonizing, high internal phase emulsion (HIPE) polymerized styrene and divinylbenzene. The PolyHIPE was sulfonated and carbonized at temperature up to 850 °C to obtain graphitic 3D carbon foam with high surface area (389 m2 g-1) having open voids (14 μm) interconnected by windows (4 μm) in monolithic form. Moreover, entangled Co(OH)2 NRs are anchored on 3D GCF electrodes by using a facile chemical bath deposition (CBD) method. The wide porous structure with high specific surface area (520 m2 g-1) access offered by the interconnected 3D GCF along with Co(OH)2 NRs morphology, displays ultrahigh specific capacitance, specific energy and power. The Co(OH)2/3D GCF electrode exhibits maximum specific capacitance about ~1235 F g-1 at ~1 A g-1 charge-discharge current density, in 1 M aqueous KOH solution. These results endorse potential applicability of Co(OH)2/3D GCF electrode in supercapacitors and signifies that, the porous GCF is a proficient 3D freestanding framework for loading pseudocapacitive nanostructured materials.

  17. PolyHIPE Derived Freestanding 3D Carbon Foam for Cobalt Hydroxide Nanorods Based High Performance Supercapacitor

    Science.gov (United States)

    Patil, Umakant M.; Ghorpade, Ravindra V.; Nam, Min Sik; Nalawade, Archana C.; Lee, Sangrae; Han, Haksoo; Jun, Seong Chan

    2016-01-01

    The current paper describes enhanced electrochemical capacitive performance of chemically grown Cobalt hydroxide (Co(OH)2) nanorods (NRs) decorated porous three dimensional graphitic carbon foam (Co(OH)2/3D GCF) as a supercapacitor electrode. Freestanding 3D porous GCF is prepared by carbonizing, high internal phase emulsion (HIPE) polymerized styrene and divinylbenzene. The PolyHIPE was sulfonated and carbonized at temperature up to 850 °C to obtain graphitic 3D carbon foam with high surface area (389 m2 g−1) having open voids (14 μm) interconnected by windows (4 μm) in monolithic form. Moreover, entangled Co(OH)2 NRs are anchored on 3D GCF electrodes by using a facile chemical bath deposition (CBD) method. The wide porous structure with high specific surface area (520 m2 g−1) access offered by the interconnected 3D GCF along with Co(OH)2 NRs morphology, displays ultrahigh specific capacitance, specific energy and power. The Co(OH)2/3D GCF electrode exhibits maximum specific capacitance about ~1235 F g−1 at ~1 A g−1 charge-discharge current density, in 1 M aqueous KOH solution. These results endorse potential applicability of Co(OH)2/3D GCF electrode in supercapacitors and signifies that, the porous GCF is a proficient 3D freestanding framework for loading pseudocapacitive nanostructured materials. PMID:27762284

  18. Cobalt and sulfur co-doped nano-size TiO2 for photodegradation of various dyes and phenol

    KAUST Repository

    Siddiqa, Asima

    2015-11-01

    Various compositions of cobalt and sulfur co-doped titania nano-photocatalyst are synthesized via sol–gel method. A number of techniques including X-ray diffraction (XRD), ultraviolet–visible (UV–Vis), Rutherford backscattering spectrometry (RBS), thermal gravimetric analysis (TGA), Raman, N2 sorption, electron microscopy are used to examine composition, crystalline phase, morphology, distribution of dopants, surface area and optical properties of synthesized materials. The synthesized materials consisted of quasispherical nanoparticles of anatase phase exhibiting a high surface area and homogeneous distribution of dopants. Cobalt and sulfur co-doped titania demonstrated remarkable structural and optical properties leading to an efficient photocatalytic activity for degradation of dyes and phenol under visible light irradiations. Moreover, the effect of dye concentration, catalyst dose and pH on photodegradation behavior of environmental pollutants and recyclability of the catalyst is also examined to optimize the activity of nano-photocatalyst and gain a better understanding of the process.

  19. Cobalt and sulfur co-doped nano-size TiO2 for photodegradation of various dyes and phenol.

    Science.gov (United States)

    Siddiqa, Asima; Masih, Dilshad; Anjum, Dalaver; Siddiq, Muhammad

    2015-11-01

    Various compositions of cobalt and sulfur co-doped titania nano-photocatalyst are synthesized via sol-gel method. A number of techniques including X-ray diffraction (XRD), ultraviolet-visible (UV-Vis), Rutherford backscattering spectrometry (RBS), thermal gravimetric analysis (TGA), Raman, N2 sorption, electron microscopy are used to examine composition, crystalline phase, morphology, distribution of dopants, surface area and optical properties of synthesized materials. The synthesized materials consisted of quasispherical nanoparticles of anatase phase exhibiting a high surface area and homogeneous distribution of dopants. Cobalt and sulfur co-doped titania demonstrated remarkable structural and optical properties leading to an efficient photocatalytic activity for degradation of dyes and phenol under visible light irradiations. Moreover, the effect of dye concentration, catalyst dose and pH on photodegradation behavior of environmental pollutants and recyclability of the catalyst is also examined to optimize the activity of nano-photocatalyst and gain a better understanding of the process.

  20. Generation of Transparent Oxygen Evolution Electrode Consisting of Regularly Ordered Nanoparticles from Self-Assembly Cobalt Phthalocyanine as a Template

    KAUST Repository

    Ziani, Ahmed

    2016-11-04

    The decoration of (photo)electrodes for efficient photoresponse requires the use of electrocatalysts with good dispersion and high transparency for efficient light absorption by the photoelectrode. As a result of the ease of thermal evaporation and particulate self-assembly growth, the phthalocyanine molecular species can be uniformly deposited layer-by-layer on the surface of substrates. This structure can be used as a template to achieve a tunable amount of catalysts, high dispersion of the nanoparticles, and transparency of the catalysts. In this study, we present a systematic study of the structural and optical properties, surface morphologies, and electrochemical oxygen evolution reaction (OER) performance of cobalt oxide prepared from a phthalocyanine metal precursor. Cobalt phthalocyanine (CoPc) films with different thicknesses were deposited by thermal evaporation on different substrates. The films were annealed at 400 °C in air to form a material with the cobalt oxide phase. The final Co oxide catalysts exhibit high transparency after thermal treatment. Their OER measurements demonstrate well expected mass activity for OER. Thermally evaporated and treated transition metal oxide nanoparticles are attractive for the functionalization of (photo)anodes for water oxidation.

  1. Variability of Data in High Throughput Experimentation for Catalyst Studies in Fuel Processing

    Directory of Open Access Journals (Sweden)

    Niels T.J. Luchters

    2017-04-01

    Full Text Available The use of high throughout and combinatorial experimentation is becoming commonplace in catalytic research. The benefits of parallel experiments are not only limited to reducing the time-to-market, but also give an opportunity to study processes in more depth, by generating more data. To investigate the complete parameter space, multiple experiments must be performed and the variability between these experiments must be quantifiable. In this project, the reproducibility and variance in high throughput catalyst preparation and parallel testing were determined. High-performance equipment was used in a catalyst development program for fuel processing, the production of fuel cell-grade hydrogen from hydrocarbon fuels. Four studies, involving water-gas shift conversion and high-temperature steam methane reforming, were performed to determine the reproducibility of the workflow from automated catalyst preparation to parallel activity testing. Statistical analyses showed the standard deviation in catalytic activities as determined by conversion, to be less than 6% of the average value. Copyright © 2017 BCREC GROUP. All rights reserved Received: 23rd September 2016; Revised: 18th November 2016; Accepted: 22nd November 2016 How to Cite: Luchters, N.T.J., Fletcher, J.V., Roberts, S.J., Fletcher, J.C.Q. (2017. Variability of Data in High Throughput Experimentation for Catalyst Studies in Fuel Processing.  Bulletin of Chemical Reaction Engineering & Catalysis, 12 (1: 106-112 (doi:10.9767/bcrec.12.1.708.106-112 Permalink/DOI: http://dx.doi.org/10.9767/bcrec.12.1.708.106-112

  2. Highly efficient bioinspired molecular Ru water oxidation catalysts with negatively charged backbone ligands.

    Science.gov (United States)

    Duan, Lele; Wang, Lei; Li, Fusheng; Li, Fei; Sun, Licheng

    2015-07-21

    The oxygen evolving complex (OEC) of the natural photosynthesis system II (PSII) oxidizes water to produce oxygen and reducing equivalents (protons and electrons). The oxygen released from PSII provides the oxygen source of our atmosphere; the reducing equivalents are used to reduce carbon dioxide to organic products, which support almost all organisms on the Earth planet. The first photosynthetic organisms able to split water were proposed to be cyanobacteria-like ones appearing ca. 2.5 billion years ago. Since then, nature has chosen a sustainable way by using solar energy to develop itself. Inspired by nature, human beings started to mimic the functions of the natural photosynthesis system and proposed the concept of artificial photosynthesis (AP) with the view to creating energy-sustainable societies and reducing the impact on the Earth environments. Water oxidation is a highly energy demanding reaction and essential to produce reducing equivalents for fuel production, and thereby effective water oxidation catalysts (WOCs) are required to catalyze water oxidation and reduce the energy loss. X-ray crystallographic studies on PSII have revealed that the OEC consists of a Mn4CaO5 cluster surrounded by oxygen rich ligands, such as oxyl, oxo, and carboxylate ligands. These negatively charged, oxygen rich ligands strongly stabilize the high valent states of the Mn cluster and play vital roles in effective water oxidation catalysis with low overpotential. This Account describes our endeavors to design effective Ru WOCs with low overpotential, large turnover number, and high turnover frequency by introducing negatively charged ligands, such as carboxylate. Negatively charged ligands stabilized the high valent states of Ru catalysts, as evidenced by the low oxidation potentials. Meanwhile, the oxygen production rates of our Ru catalysts were improved dramatically as well. Thanks to the strong electron donation ability of carboxylate containing ligands, a seven

  3. Long term deactivation test of high dust SCR catalysts by straw co-firing

    Energy Technology Data Exchange (ETDEWEB)

    Weigang Lin; Degn Jensen, A.; Bjerkvig, J.

    2009-12-15

    The consequences of carbon dioxide induced global warming cause major concern worldwide. The consumption of energy produced with fossil fuels is the major factor that contributes to the global warming. Biomass is a renewable energy resource and has a nature of CO{sub 2} neutrality. Co-combustion of biomass in existing coal fired power plants can maintain high efficiency and reduce the emission of CO{sub 2} at same time. However, one of the problems faced by co-firing is deactivation of the SCR catalysts. Understanding of the mechanisms of deactivation of the catalyst elements at co-firing conditions is crucial for long term runs of the power plants. Twenty six SCR catalyst elements were exposed at two units (SSV3 and SSV4) in the Studstrup Power Plant for a long period. Both units co-fire coal and straw with a typical fraction of 8-10% straw on an energy basis during co-firing. SSV4 unit operated in co-firing mode most of the time; SSV3 unit co-fired straw half of the operating time. The main objective of this PSO-project is to gain knowledge of a long term influence on catalyst activity when co-firing straw in coal-fired power plants, thus, to improve the basis for operating the SCR-plants for NO{sub x}-reduction. The exposure time of the applied catalyst elements (HTAS and BASF) varied from approximately 5000 to 19000 hours in the power plant by exchanging the element two times. The activity of all elements was measured before and after exposure in a bench scale test rig at the Department of Chemical and Biochemical Engineering, Technical University of Denmark. The results show that the activity, estimated by exclusion of channel clogging of the elements, decreases gradually with the total exposure time. It appears that the exposure time under co-firing condition has little effect on the deactivation of the catalyst elements and no sharp decrease of the activity was observed. The average deactivation rate of the catalyst elements is 1.6 %/1000 hours. SEM

  4. Effect of precursor nature on the performance of palladium-cobalt electrocatalysts for direct methanol fuel cells

    Science.gov (United States)

    Serov, Alexey; Nedoseykina, Tatyana; Shvachko, Oleg; Kwak, Chan

    The performance of platinum-free palladium-cobalt catalysts in oxygen reduction was investigated for a direct methanol fuel cell. The dependence of catalytic activity on precursor nature was determined for two classes of precursors; namely, palladium chloride and palladium nitrate. The nitrate precursor exhibits much higher catalytic performance than the chloride precursor. X-ray absorption fine structure (XAFS) spectra indicate that the structure of palladium catalyst prepared from nitrate is much closer to Pd 3Co structure that can explain high catalytic activity. The MEA prepared from the nitrate catalyst achieved the peak power density of 125 mW cm -2, which is much higher than 19 mW cm -2 measured on the cell prepared from the chloride catalyst.

  5. In situ characterization of cofacial Co(IV) centers in Co4O4 cubane: Modeling the high-valent active site in oxygen-evolving catalysts.

    Science.gov (United States)

    Brodsky, Casey N; Hadt, Ryan G; Hayes, Dugan; Reinhart, Benjamin J; Li, Nancy; Chen, Lin X; Nocera, Daniel G

    2017-03-27

    The Co4O4 cubane is a representative structural model of oxidic cobalt oxygen-evolving catalysts (Co-OECs). The Co-OECs are active when residing at two oxidation levels above an all-Co(III) resting state. This doubly oxidized Co(IV)2 state may be captured in a Co(III)2(IV)2 cubane. We demonstrate that the Co(III)2(IV)2 cubane may be electrochemically generated and the electronic properties of this unique high-valent state may be probed by in situ spectroscopy. Intervalence charge-transfer (IVCT) bands in the near-IR are observed for the Co(III)2(IV)2 cubane, and spectroscopic analysis together with electrochemical kinetics measurements reveal a larger reorganization energy and a smaller electron transfer rate constant for the doubly versus singly oxidized cubane. Spectroelectrochemical X-ray absorption data further reveal systematic spectral changes with successive oxidations from the cubane resting state. Electronic structure calculations correlated to experimental data suggest that this state is best represented as a localized, antiferromagnetically coupled Co(IV)2 dimer. The exchange coupling in the cofacial Co(IV)2 site allows for parallels to be drawn between the electronic structure of the Co4O4 cubane model system and the high-valent active site of the Co-OEC, with specific emphasis on the manifestation of a doubly oxidized Co(IV)2 center on O-O bond formation.

  6. Influence of gradual cobalt substitution on lithium nickel phosphate nano-scale composites for high voltage applications

    Energy Technology Data Exchange (ETDEWEB)

    Örnek, Ahmet, E-mail: ahmetornek0302@hotmail.com [Kafkas University, Atatürk Vocational School of Healthcare, 36100 Kars (Turkey); Bulut, Emrah [Sakarya University, Department of Chemistry, 54187 Sakarya (Turkey); Can, Mustafa [Sakarya University, Arifiye Vocational School, 54580 Sakarya (Turkey)

    2015-08-15

    The carbon-free LiNiPO{sub 4} and cobalt doped LiNi{sub 1−x}Co{sub x}PO{sub 4}/C (x = 0.0–1.0) were synthesized and investigated for high voltage applications (> 4 V) for Li-ion batteries. Nano-scale composites were prepared by handy sol–gel approach using citric acid under slightly reductive gas atmosphere (Ar-H{sub 2}, 85:15%). Structural and morphological characteristics of the powders were revealed by X-ray powder diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), high resolution transmission electron microscopy (HR-TEM) and inductively coupled plasma (ICP). Except for a small impurity phase (Ni{sub 3}P), phase pure samples crystallized in the olivine-lattice structure with a linear relationship between lattice parameters (a, b and c) and chemical composition. The FE-SEM images proved that LiNiPO{sub 4}/C particles (50–80 nm) did not agglomerate, and showed that as the cobalt content was higher agglomeration had increased. The electrochemical properties of all electrodes were investigated by galvanostatic charge–discharge measurements. Substitution of Ni{sup 2} {sup +} by Co{sup 2} {sup +} caused higher electronic conductivities and showed more effective Li{sup +} ion mobility. When the cobalt content is 100%, the capacity reached to a higher level (146.2 mA h g{sup −} {sup 1}) and good capacity retention of 85.1% at the end of the 60 cycles was observed. The cycling voltammogram (CV) revealed that LiCoPO{sub 4}/C electrode improved the electrochemical properties. The Ni{sup 3} {sup +}–Ni{sup 2} {sup +} redox couple was not observed for carbon free LiNiPO{sub 4}. Nevertheless, it was observed that carbon coated LiNiPO{sub 4} sample exhibits a significant oxidation (5.26 V)–reduction (5.08 V) peaks. With this study, characteristics of the LiNi{sub 1−x}Co{sub x}PO{sub 4}/C series were deeply evaluated and discussed. - Highlights: • Structural, morphological and electrochemical effects of Co doped LiNi{sub 1−} {sub x

  7. L-prolinol as a highly enantioselective catalyst for Michael addition of cyclohexanone to nitroolefins.

    Science.gov (United States)

    Chua, Pei Juan; Tan, Bin; Zeng, Xiaofei; Zhong, Guofu

    2009-07-15

    Though many chiral amines such as l-proline and its derivatives have proven to be versatile catalysts in many reactions, L-prolinol was seldom used as organocatalyst for reactions. Herein, we report the first L-prolinol catalyzed asymmetric Michael addition of cyclohexanone to nitroolefins in the presence of benzoic acid to afford Michael adducts with high diastereoselectivities (87:13->99:1) and enantioselectivities (82-96%).

  8. Self-Assembled Hierarchical Formation of Conjugated 3D Cobalt Oxide Nanobead-CNT-Graphene Nanostructure Using Microwaves for High-Performance Supercapacitor Electrode.

    Science.gov (United States)

    Kumar, Rajesh; Singh, Rajesh Kumar; Dubey, Pawan Kumar; Singh, Dinesh Pratap; Yadav, Ram Manohar

    2015-07-15

    Here we report the electrochemical performance of a interesting three-dimensional (3D) structures comprised of zero-dimensional (0D) cobalt oxide nanobeads, one-dimensional (1D) carbon nanotubes and two-dimensional (2D) graphene, stacked hierarchically. We have synthesized 3D self-assembled hierarchical nanostructure comprised of cobalt oxide nanobeads (Co-nb), carbon nanotubes (CNTs), and graphene nanosheets (GNSs) for high-performance supercapacitor electrode application. This 3D self-assembled hierarchical nanostructure Co3O4 nanobeads-CNTs-GNSs (3D:Co-nb@CG) is grown at a large scale (gram) through simple, facile, and ultrafast microwave irradiation (MWI). In 3D:Co-nb@CG nanostructure, Co3O4 nanobeads are attached to the CNT surfaces grown on GNSs. Our ultrafast, one-step approach not only renders simultaneous growth of cobalt oxide and CNTs on graphene nanosheets but also institutes the intrinsic dispersion of carbon nanotubes and cobalt oxide within a highly conductive scaffold. The 3D:Co-nb@CG electrode shows better electrochemical performance with a maximum specific capacitance of 600 F/g at the charge/discharge current density of 0.7A/g in KOH electrolyte, which is 1.56 times higher than that of Co3O4-decorated graphene (Co-np@G) nanostructure. This electrode also shows a long cyclic life, excellent rate capability, and high specific capacitance. It also shows high stability after few cycles (550 cycles) and exhibits high capacitance retention behavior. It was observed that the supercapacitor retained 94.5% of its initial capacitance even after 5000 cycles, indicating its excellent cyclic stability. The synergistic effect of the 3D:Co-nb@CG appears to contribute to the enhanced electrochemical performances.

  9. Quantitation of low concentrations of polysorbates in high protein concentration formulations by solid phase extraction and cobalt-thiocyanate derivatization.

    Science.gov (United States)

    Kim, Justin; Qiu, Jinshu

    2014-01-02

    A spectrophotometric method was developed to quantify low polysorbate (PS) levels in biopharmaceutical formulations containing high protein concentrations. In the method, Oasis HLB solid phase extraction (SPE) cartridge was used to extract PS from high protein concentration formulations. After loading a sample, the cartridge was washed with 4M guanidine HCl and 10% (v/v) methanol, and the retained PS was eluted by acetonitrile. Following the evaporation of acetonitrile, aqueous cobalt-thiocyanate reagent was added to react with the polyoxyethylene oxide chain of polysorbates to form a blue colored PS-cobaltothiocyante complex. This colored complex was then extracted into methylene chloride and measured spectrophotometrically at 620 nm. The method performance was evaluated on three products containing 30-40 mg L(-1) PS-20 and PS-80 in ≤70 g L(-1) protein formulations. The method was specific (no matrix interference identified in three types of protein formulations), sensitive (quantitation limit of 10 mg L(-1) PS) and robust with good precision (relative standard deviation ≤6.4%) and accuracy (spike recoveries from 95% to 101%). The linear range of the method for both PS-20 and PS-80 was 10 to 80 mg L(-1) PS. By diluting samples with 6M guanidine HCl and/or using different methylene chloride volumes to extract the colored complexes of standards and samples, the method could accurately and precisely quantify 40 mg L(-1) PS in up to 300 g L(-1) protein formulations.

  10. A simple granulation technique for preparing high-porosity nano copper oxide(Ⅱ) catalyst beads

    Institute of Scientific and Technical Information of China (English)

    Seyed Javad Ahmadia; Mohammad Outokesh; Morteza Hosseinpour; Tahereh Mousavand

    2011-01-01

    A simple and efficient method was developed for fabricating spherical granules of CuO catalyst via a three-step procedure.In the first step,copper oxide nanoparticles were synthesized by hydrothermal decomposition of copper nitrate solution under supercritical condition.Then,they were immobilized in the polymeric matrix of calcium alginate,and followed by high-temperature calcination in an air stream as the third step,in which carbonaceous materials were oxidized,to result in a pebble-type catalyst of high porosity.The produced CuO nanoparticles were characterized by transmission electron microscopy (TEM) that revealed an average size of 5 nm,X-ray diffractometry (XRD),and thermo gravimetric (TG)analysis.The catalysts were further investigated by BET test for measurement of their surface area,and by temperature-programmed reduction analysis (H2-TPR) for determination of catalytic activity.The results demonstrated that immobilization of the CuO nanoparticle in the polymeric matrix of calcium alginate,followed by calcination at elevated temperatures,could result in notable mechanical strength and enhanced catalytic activity due to preservation of the high surface area,both valuable for practical applications.

  11. Cobalt: A vital element in the aircraft engine industry

    Science.gov (United States)

    Stephens, J. R.

    1981-01-01

    Recent trends in the United States consumption of cobalt indicate that superalloys for aircraft engine manufacture require increasing amounts of this strategic element. Superalloys consume a lion's share of total U.S. cobalt usage which was about 16 million pounds in 1980. In excess of 90 percent of the cobalt used in this country was imported, principally from the African countries of Zaire and Zambia. Early studies on the roles of cobalt as an alloying element in high temperature alloys concentrated on the simple Ni-Cr and Nimonic alloy series. The role of cobalt in current complex nickel base superalloys is not well defined and indeed, the need for the high concentration of cobalt in widely used nickel base superalloys is not firmly established. The current cobalt situation is reviewed as it applies to superalloys and the opportunities for research to reduce the consumption of cobalt in the aircraft engine industry are described.

  12. Nitrogen-doped Carbon Derived from ZIF-8 as a High-performance Metal-free Catalyst for Acetylene Hydrochlorination

    Science.gov (United States)

    Chao, Songlin; Zou, Fang; Wan, Fanfan; Dong, Xiaobin; Wang, Yanlin; Wang, Yuxuan; Guan, Qingxin; Wang, Guichang; Li, Wei

    2017-01-01

    Acetylene hydrochlorination is a major industrial technology for manufacturing vinyl chloride monomer in regions with abundant coal resources; however, it is plagued by the use of mercury(II) chloride catalyst. The development of a nonmercury catalyst has been extensively explored. Herein, we report a N-doped carbon catalyst derived from ZIF-8 with both high activity and quite good stability. The acetylene conversion reached 92% and decreased slightly during a 200 h test at 220 °C and atmospheric pressure. Experimental studies and theoretical calculations indicate that C atoms adjacent to the pyridinic N are the active sites, and coke deposition covering pyridinic N is the main reason for catalyst deactivation. The performance of those N-doped carbons makes it possible for practical applications with further effort. Furthermore, the result also provides guidance for designing metal-free catalysts for similar reactions.

  13. Efficient direct coal liquefaction of a premium brown coal catalyzed by cobalt-promoted fumed oxides

    Energy Technology Data Exchange (ETDEWEB)

    Trautmann, M.; Loewe, A.; Traa, Y. [Stuttgart Univ. (Germany). Inst. of Chemical Technology

    2013-11-01

    The search for alternatives in the fuel sector is an important technological challenge. An interim solution could be provided by direct coal liquefaction. Hydrogen economy and the lack of an efficient catalyst are the main obstacles for this process. We used a premium German brown coal with a high H/C molar ratio of 1.25 and nanostructured cobalt catalysts to improve the efficiency of direct coal liquefaction. We were able to recover and recycle the catalyst efficiently and reached good brown coal conversions and oil yields with single-stage coal liquefaction. The oil quality observed almost reached that of a conventional crude oil considering higher heating value (HHV), H/C molar ratio and aliphatic content. (orig.)

  14. Establishing efficient cobalt based catalytic sites for oxygen evolution on a Ta3N5 photocatalyst

    KAUST Repository

    Nurlaela, Ela

    2015-08-05

    In a photocatalytic suspension system with a powder semiconductor, the interface between the photocatalyst semiconductor and catalyst should be constructed to minimize resistance for charge transfer of excited carriers. This study demonstrates an in-depth understanding of pretreatment effects on the photocatalytic O2 evolution reaction (OER) activity of visible-light-responsive Ta3N5 decorated with CoOx nanoparticles. The CoOx/Ta3N5 sample was synthesized by impregnation followed by sequential heat treat-ments under NH3 flow and air flow at various temperatures. Various characterization techniques, including X-ray diffraction (XRD), X-ray absorption spectroscopy (XAS), scanning transmission electron microscopy (STEM), and X-ray photoelectron spec-troscopy (XPS), were used to clarify the state and role of cobalt. No improvement in photocatalytic activity for OER over the bare Ta3N5 was observed for the as-impregnated CoOx/Ta3N5, likely because of insufficient contact between CoOx and Ta3N5. When the sample was treated in NH3 at high temperature, a substantial improvement in the photocatalytic activity was observed. After NH3 treatment at 700 °C, the Co0-CoOx core-shell agglomerated cobalt structure was identified by XAS and STEM. No metallic cobalt species was evident after the photocatalytic OER, indicating that the metallic cobalt itself is not essential for the reaction. Accordingly, mild oxidation (200 °C) of the NH3-treated CoOx/Ta3N5 sample enhanced photocatalytic OER activity. Oxidation at higher temperatures drastically eliminated the photocatalytic activity, most likely because of unfavorable Ta3N5 oxidation. These results suggest that the intimate contact between cobalt species and Ta3N5 facilitated at high temperature is beneficial to enhancing hole transport and that the cobalt oxide provides electrocatalytic sites for OER.

  15. High-performance oxygen reduction catalyst derived from porous, nitrogen-doped carbon nanosheets

    Science.gov (United States)

    Wang, Hao; Chen, Kai; Cao, Yingjie; Zhu, Juntong; Jiang, Yining; Feng, Lai; Dai, Xiao; Zou, Guifu

    2016-10-01

    A facile, self-foaming strategy is reported to synthesize porous, nitrogen-doped carbon nanosheets (N-CNSs) as a metal-free electrocatalyst for oxygen reduction reaction (ORR). Benefiting from the synergistic functions of N-induced active sites, a highly specific surface area and continuous structure, the optimal N-CNS catalyst exhibits Pt-like ORR activity (positive onset potential of ˜0 V versus Ag/AgCl and limiting current density of 5 mA cm-2) through a four-electron transfer process in alkaline media with excellent cycle stability and methanol tolerance. This work not only provides a promising metal-free ORR catalyst but also opens up a new path for designing carbon-based materials towards broad applications.

  16. High-performance PdRu bimetallic catalyst supported on mesoporous silica nanoparticles for phenol hydrogenation

    Science.gov (United States)

    Huang, Chao; Yang, Xu; Yang, Hui; Huang, Peiyan; Song, Huiyu; Liao, Shijun

    2014-10-01

    A high-performance PdRu bimetallic catalyst supported on mesoporous silica nanoparticles (MSN), PdRu/MSN, was prepared by a facile impregnation-hydrogen reduction method. It was found that PdRu/MSN showed 5 times higher activity than that of Pd/MSN towards the liquid-phase hydrogenation of phenol. The catalysts were characterized comprehensively by multiple techniques, X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and hydrogen temperature program reduction (TPR). It was revealed that adding Ru could effectively improve the Pd dispersion and promote the electronic interaction between the Pd and Ru, both of which contribute to enhancing the catalytic activity.

  17. High-performance liquid-catalyst fuel cell for direct biomass-into-electricity conversion.

    Science.gov (United States)

    Liu, Wei; Mu, Wei; Deng, Yulin

    2014-12-01

    Herein, we report high-performance fuel cells that are catalyzed solely by polyoxometalate (POM) solution without any solid metal or metal oxide. The novel design of the liquid-catalyst fuel cells (LCFC) changes the traditional gas-solid-surface heterogeneous reactions to liquid-catalysis reactions. With this design, raw biomasses, such as cellulose, starch, and even grass or wood powders can be directly converted into electricity. The power densities of the fuel cell with switchgrass (dry powder) and bush allamanda (freshly collected) are 44 mW cm(-2) and 51 mW cm(-2) respectively. For the cellulose-based biomass fuel cell, the power density is almost 3000 times higher than that of cellulose-based microbial fuel cells. Unlike noble-metal catalysts, POMs are tolerant to most organic and inorganic contaminants. Therefore, almost any raw biomass can be used directly to produce electricity without prior purification.

  18. Removal of Formaldehyde Using Highly Active Pt/TiO2 Catalysts without Irradiation

    Directory of Open Access Journals (Sweden)

    Haibao Huang

    2013-01-01

    Full Text Available Formaldehyde (HCHO is one of the major indoor air pollutants. TiO2 supported Pt catalysts were prepared by sol-gel method and used to eliminate HCHO at room temperature without irradiation. The reduced Pt/TiO2 catalyst (denoted as Pt/TiO2-H2 showed much higher activity than that calcined in air (denoted as Pt/TiO2-air. More than 96% of the conversion of HCHO was obtained over 0.5 wt% Pt/TiO2-H2, on which highly dispersed metallic Pt nanoparticles with very small size (~2 nm were identified. Metallic Pt rather than cationic Pt nanoparticles provide the active sites for HCHO oxidation. Negatively charged metallic Pt nanoparticles facilitate the transfer of charge and oxygen species and the activation of oxygen.

  19. High surface area ThO.sub.2 catalyst and method of preparing it

    Science.gov (United States)

    Colmenares, Carlos A.; Somorjai, Gabor A.; Maj, Joseph J.

    1985-01-01

    A ThO.sub.2 catalyst having a high surface area of about 80-125 m.sup.2 /g is synthesized. The compound is synthesized by simultaneously mixing an aqueous solution of ThNO.sub.3 (NO.sub.3).sub.4.4H.sub.2 O with an aqueous solution of Na.sub.2 CO.sub.3.H.sub.2 O, to produce a solution and solid ThOCO.sub.3. The solid ThOCO.sub.3 is separated from the solution, and then calcined at a temperature of about 225.degree.-300.degree. C. for about 40-55 hours to produce ThO.sub.2. The ThO.sub.2 catalyst produced includes Na present as a substitutional cation in an amount equal to about 5-10 atom percent.

  20. Effect of cobalt on Escherichia coli metabolism and metalloporphyrin formation

    OpenAIRE

    Majtan, Tomas; Frerman, Frank E.; Kraus, Jan P.

    2010-01-01

    Toxicity in Escherichia coli resulting from high concentrations of cobalt has been explained by competition of cobalt with iron in various metabolic processes including Fe–S cluster assembly, sulfur assimilation, production of free radicals and reduction of free thiol pool. Here we present another aspect of increased cobalt concentrations in the culture medium resulting in the production of cobalt protoporphyrin IX (CoPPIX), which was incorporated into heme proteins including membrane-bound c...

  1. High throughput evaluation of perovskite-based anode catalysts for direct methanol fuel cells

    Science.gov (United States)

    Deshpande, Kishori; Mukasyan, Alexander; Varma, Arvind

    Liquid feed direct methanol fuel cells (DMFC) are promising candidates for portable power applications. However, owing to the problems associated with expensive Pt-based catalysts, viz., CO poisoning, a promising approach is to use complex oxides of the type ABO 3 (A = Sr, Ce, La, etc. and B = Co, Fe, Ni, Pt, Ru, etc.). In the current work, a variety of ABO 3 and A 2BO 4 type non-noble and partially substituted noble metal high surface area compounds were synthesized by an effective and rapid aqueous combustion synthesis (CS). Their catalytic activity was evaluated by using "High Throughput Screening Unit"-NuVant System, which compares up to 25 compositions simultaneously under DMFC conditions. It was found that the Sr-based perovskites showed performance comparable with the standard Pt-Ru catalyst. Further, it was observed that the method of doping SrRuO 3 with Pt influenced the activity. Specifically, platinum added during aqueous CS yielded better catalyst than when added externally at the ink preparation stage. Finally, it was also demonstrated that the presence of SrRuO 3 significantly enhanced the catalytic properties of Pt, leading to superior performance even at lower noble metal loadings.

  2. Dry re-forming of methane to synthesis gas over lignite semicokes catalyst at high pressure

    Directory of Open Access Journals (Sweden)

    Fengbo Guo

    2016-11-01

    Full Text Available Dry re-forming of methane has been carried out in a high temperature–pressure reactor at different pressures, using Hongce lignite semicokes catalyst. The results show that CH4 and CO2 conversions are decreased as the reaction pressure increased, but both of them kept basically stable when the reaction pressure is between 0.3 and 1 MPa. The comparison shows that the effects of the temperature and the flow of reactant gas on dry re-forming of methane are consistent with between high pressure and atmospheric pressure. The ratio of CO/H2 decreased as the ratio of CH4/CO2 increased, yet the value of CO/H2 is always more than 1 at different pressures. Hongce lignite semicokes catalyst is characterized by FTIR, XRD, SEM and BET, and the analysis results reveled that the physical specific adsorption peak of CO2 at 2350 cm−1 is strengthened significantly at different pressures, the micropore area and volume of Hongce lignite semicokes reduced form 40.2 m2  g−1 and 0.019 cm3  g−1 to 34.9 m2  g−1 and 0.017 cm3  g−1, respectively. Hongce lignite semicokes catalyst exhibited better activity and stability within 0.3–1 MPa range.

  3. A manganese catalyst for highly reactive yet chemoselective intramolecular C(sp3)-H amination

    Science.gov (United States)

    Paradine, Shauna M.; Griffin, Jennifer R.; Zhao, Jinpeng; Petronico, Aaron L.; Miller, Shannon M.; Christina White, M.

    2015-12-01

    C-H bond oxidation reactions underscore the existing paradigm wherein high reactivity and high selectivity are inversely correlated. The development of catalysts capable of oxidizing strong aliphatic C(sp3)-H bonds while displaying chemoselectivity (that is, tolerance of more oxidizable functionality) remains an unsolved problem. Here, we describe a catalyst, manganese tert-butylphthalocyanine [Mn(tBuPc)], that is an outlier to the reactivity-selectivity paradigm. It is unique in its capacity to functionalize all types of C(sp3)-H bond intramolecularly, while displaying excellent chemoselectivity in the presence of π functionality. Mechanistic studies indicate that [Mn(tBuPc)] transfers bound nitrenes to C(sp3)-H bonds via a pathway that lies between concerted C-H insertion, observed with reactive noble metals such as rhodium, and stepwise radical C-H abstraction/rebound, as observed with chemoselective base metals such as iron. Rather than achieving a blending of effects, [Mn(tBuPc)] aminates even 1° aliphatic and propargylic C-H bonds, demonstrating reactivity and selectivity unusual for previously known catalysts.

  4. A manganese catalyst for highly reactive yet chemoselective intramolecular C(sp(3))-H amination.

    Science.gov (United States)

    Paradine, Shauna M; Griffin, Jennifer R; Zhao, Jinpeng; Petronico, Aaron L; Miller, Shannon M; Christina White, M

    2015-12-01

    C-H bond oxidation reactions underscore the existing paradigm wherein high reactivity and high selectivity are inversely correlated. The development of catalysts capable of oxidizing strong aliphatic C(sp(3))-H bonds while displaying chemoselectivity (that is, tolerance of more oxidizable functionality) remains an unsolved problem. Here, we describe a catalyst, manganese tert-butylphthalocyanine [Mn((t)BuPc)], that is an outlier to the reactivity-selectivity paradigm. It is unique in its capacity to functionalize all types of C(sp(3))-H bond intramolecularly, while displaying excellent chemoselectivity in the presence of π functionality. Mechanistic studies indicate that [Mn((t)BuPc)] transfers bound nitrenes to C(sp(3))-H bonds via a pathway that lies between concerted C-H insertion, observed with reactive noble metals such as rhodium, and stepwise radical C-H abstraction/rebound, as observed with chemoselective base metals such as iron. Rather than achieving a blending of effects, [Mn((t)BuPc)] aminates even 1° aliphatic and propargylic C-H bonds, demonstrating reactivity and selectivity unusual for previously known catalysts.

  5. Static and dynamic cyclic oxidation of 12 nickel-, cobalt-, and iron-base high-temperature alloys

    Science.gov (United States)

    Barrett, C. A.; Johnston, J. R.; Sanders, W. A.

    1978-01-01

    Twelve typical high-temperature nickel-, cobalt-, and iron-base alloys were tested by 1 hr cyclic exposures at 1038, 1093, and 1149 C and 0.05 hr exposures at 1093 C. The alloys were tested in both a dynamic burner rig at Mach 0.3 gas flow and in static air furnace for times up to 100 hr. The alloys were evaluated in terms of specific weight loss as a function of time, and X-ray diffraction analysis and metallographic examination of the posttest specimens. A method previously developed was used to estimate specific metal weight loss from the specific weight change of the sample. The alloys were then ranked on this basis. The burner-rig test was more severe than a comparable furnace test and resulted in an increased tendency for oxide spalling due to volatility of Cr in the protective scale and the more drastic cooling due to the air-blast quench of the samples. Increased cycle frequency also increased the tendency to spall for a given test exposure. The behavior of the alloys in both types of tests was related to their composition and their tendency to form scales. The alloys with the best overall behavior formed alpha-Al2O3 aluminate spinels.

  6. Fast Response and High Sensitivity of ZnO Nanowires-Cobalt Phthalocyanine Heterojunction Based H2S Sensor.

    Science.gov (United States)

    Kumar, Ashwini; Samanta, Soumen; Singh, Ajay; Roy, Mainak; Singh, Surendra; Basu, Saibal; Chehimi, Mohmad M; Roy, Kallol; Ramgir, Niranjan; Navaneethan, M; Hayakawa, Y; Debnath, Anil K; Aswal, Dinesh K; Gupta, Shiv K

    2015-08-19

    The room temperature chemiresistive response of n-type ZnO nanowire (ZnO NWs) films modified with different thicknesses of p-type cobalt phthalocyanine (CoPc) has been studied. With increasing thickness of CoPc (>15 nm), heterojunction films exhibit a transition from n- to p-type conduction due to uniform coating of CoPc on ZnO. The heterojunction films prepared with a 25 nm thick CoPc layer exhibit the highest response (268% at 10 ppm of H2S) and the fastest response (26 s) among all samples. The X-ray photoelectron spectroscopy and work function measurements reveal that electron transfer takes place from ZnO to CoPc, resulting in formation of a p-n junction with a barrier height of 0.4 eV and a depletion layer width of ∼8.9 nm. The detailed XPS analysis suggests that these heterojunction films with 25 nm thick CoPc exhibit the least content of chemisorbed oxygen, enabling the direct interaction of H2S with the CoPc molecule, and therefore exhibit the fastest response. The improved response is attributed to the high susceptibility of the p-n junctions to the H2S gas, which manipulates the depletion layer width and controls the charge transport.

  7. Honeycomb-like Porous Carbon-Cobalt Oxide Nanocomposite for High-Performance Enzymeless Glucose Sensor and Supercapacitor Applications.

    Science.gov (United States)

    Madhu, Rajesh; Veeramani, Vediyappan; Chen, Shen-Ming; Manikandan, Arumugam; Lo, An-Ya; Chueh, Yu-Lun

    2015-07-29

    Herein, we report the preparation of Pongam seed shells-derived activated carbon and cobalt oxide (∼2-10 nm) nanocomposite (PSAC/Co3O4) by using a general and facile synthesis strategy. The as-synthesized PSAC/Co3O4 samples were characterized by a variety of physicochemical techniques. The PSAC/Co3O4-modified electrode is employed in two different applications such as high performance nonenzymatic glucose sensor and supercapacitor. Remarkably, the fabricated glucose sensor is exhibited an ultrahigh sensitivity of 34.2 mA mM(-1) cm(-2) with a very low detection limit (21 nM) and long-term durability. The PSAC/Co3O4 modified stainless steel electrode possesses an appreciable specific capacitance and remarkable long-term cycling stability. The obtained results suggest the as-synthesized PSAC/Co3O4 is more suitable for the nonenzymatic glucose sensor and supercapacitor applications outperforming the related carbon based modified electrodes, rendering practical industrial applications.

  8. High-resolution XAS/XES analyzing electronic structures of catalysts

    CERN Document Server

    Sa, Jacinto

    2014-01-01

    Photon-in-photon-out core level spectroscopy is an emerging approach to characterize the electronic structure of catalysts and enzymes, and it is either installed or planned for intense synchrotron beam lines and X-ray free electron lasers. This type of spectroscopy requires high-energy resolution spectroscopy not only for the incoming X-ray beam but also, in most applications, for the detection of the outgoing photons. Thus, the use of high-resolution X-ray crystal spectrometers whose resolving power ?E/E is typically about 10-4, is mandatory.High-Resolution XAS/XES: Analyzing Electronic Stru

  9. Conversion of dimethyl ether on zeolite catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Abramova, A.V.; Kulumbegov, R.V.; Khadzhiev, S.N. [Russian Academy of Sciences, Moscow (Russian Federation). A.V. Topchiev Inst. of Petrochemical Synthesis

    2006-07-01

    Catalytic conversion of dimethyl ether to hydrocarbons was investigated using zeolite catalyst ZSM-5 type. 2% MexOy - 60% HZVM(analogue of ZSM-5)/Al{sub 2}O{sub 3}, (Me = Zn, Ga, Fe, Co, V, Ni) catalyst samples have been obtained. The reaction was carried out in a fixed bed reaction set-up at 350-400 C, pressure 3 MPa, gas mix (% vol.): 24 DME, 76 N{sub 2}, WHSV=1300 l/l-{sub kat.}h. Most effective catalysts of DME conversion are pentasil based catalysts with promoter metals zinc, iron and cobalt by totality DME-conversion, gas and liquid hydrocarbon selectivity, ethylene and propylene content in gas. The best work temperatures are 350 and 375 C, thereupon increasing of temperature to 400 C leads to considerable growth of methane in hydrocarbon gas. Liquid hydrocarbons have high content of aromatics and iso-paraffins. Liquid hydrocarbon product is characterized by high octane number (RON) 90-98. (orig.)

  10. Adverse reactions to metal on polyethylene implants: Highly destructive lesions related to elevated concentration of cobalt and chromium in synovial fluid.

    Science.gov (United States)

    Eltit, Felipe; Assiri, Ali; Garbuz, Donald; Duncan, Clive; Masri, Bassam; Greidanus, Nelson; Bell, Robert; Sharma, Manju; Cox, Michael; Wang, Rizhi

    2017-07-01

    Adverse local tissue reactions (ALTR) are the primary cause of failure of metal on metal (MoM) hip implants, and fewer but not negligible number cases of nonmodular metal on polyethylene (MoP) implants. In this study, we analyzed 17 cases of MoP ALTR, and equal number of MoM, by histological observation, cobalt and chromium concentration in serum and synovial fluid and cytokine analysis in ALTR tissues. ALTRs in MoP are highly necrotic, affecting larger areas than MoM ALTRs. Degenerative changes in blood vessels' wall were seen in all MoP ALTRs. The concentration of cobalt and chromium was higher in synovial fluid but lower in serum of MoP patients compared to MoM patients. Elevated concentrations of chemokines were observed in ALTR tissues. We conclude that ALTRs in MoP systems are highly necrotizing lesions that seem to have a similar development to ALTRs in MoM. Alteration of vessels wall seems to have a role in the tissues necrosis, as well as the elevated concentration of cobalt and chromium in synovial fluid of MoP patients. Chemokines may be involved in the pathogenesis of ALTR and constitute possible diagnostic targets. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1876-1886, 2017. © 2017 Wiley Periodicals, Inc.

  11. Electrochemical dopamine sensor based on P-doped graphene: Highly active metal-free catalyst and metal catalyst support.

    Science.gov (United States)

    Chu, Ke; Wang, Fan; Zhao, Xiao-Lin; Wang, Xin-Wei; Tian, Ye

    2017-12-01

    Heteroatom doping is an effective strategy to enhance the catalytic activity of graphene and its hybrid materials. Despite a growing interest of P-doped graphene (P-G) in energy storage/generation applications, P-G has rarely been investigated for electrochemical sensing. Herein, we reported the employment of P-G as both metal-free catalyst and metal catalyst support for electrochemical detection of dopamine (DA). As a metal-free catalyst, P-G exhibited prominent DA sensing performances due to the important role of P doping in improving the electrocatalytic activity of graphene toward DA oxidation. Furthermore, P-G could be an efficient supporting material for loading Au nanoparticles, and resulting Au/P-G hybrid showed a dramatically enhanced electrocatalytic activity and extraordinary sensing performances with a wide linear range of 0.1-180μM and a low detection limit of 0.002μM. All these results demonstrated that P-G might be a very promising electrode material for electrochemical sensor applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Ruthenium promotion of Co/SBA-15 catalysts for Fischer-Tropsch synthesis in slurry-phase reactors

    Institute of Scientific and Technical Information of China (English)

    Jocielys Jovelino Rodrigues; Gina Pecchi; Fabiano André Narciso Fernandes; Meiry Gláucia Freire Rodrigues

    2012-01-01

    The aim of this work was to evaluate the catalytic properties of a Ru promoted Co/SBA-15 catalyst for Fischer-Tropsch synthesis (FTS).The Ru promoted Co/SBA-15 catalyst was prepared by wet impregnation method and was characterized by X-ray diffraction,X-ray energy dispersion spectrophotometer,N2 adsorption-desorption,temperature-programmed reduction and transmission electron microscopy.The Fischer-Tropsch synthesis using the catalyst was carried out to evaluate the catalyst activity and its effect on FTS product distribution.The synthesis was carried out in a slurry reactor operating at 513 K,20 atm,CO ∶ H2 molar ratio of 1 ∶ 1.X-ray diffraction showed that the calcined cobalt catalyst did not modify the structure of SBA-15,proving that Co was present in the form of Co3O4 in the catalyst.The addition of cobalt in SBA-15 decreased the specific superficial area of the molecular sieve.Fischer-Tropsch synthesis activity and C5+ hydrocarbon selectivity increased with the addition of Ru.The increases in activity and selectivity were attributed to the increased number of active sites resulting from higher reducibility and the synergetic effect of Ru and Co.Ru/Co/SBA-15 catalysts showed moderate conversion (40%) and high selectivity towards the production of C5+ (80 wt%).

  13. Pyrolysis-catalysis of waste plastic using a nickel-stainless-steel mesh catalyst for high-value carbon products.

    Science.gov (United States)

    Zhang, Yeshui; Nahil, Mohamad A; Wu, Chunfei; Williams, Paul T

    2017-02-03

    A stainless-steel mesh loaded with nickel catalyst was produced and used for the pyrolysis-catalysis of waste high-density polyethylene with the aim of producing high-value carbon products, including carbon nanotubes (CNTs). The catalysis temperature and plastic-to-catalyst ratio were investigated to determine the influence on the formation of different types of carbon deposited on the nickel-stainless-steel mesh catalyst. Increasing temperature from 700 to 900°C resulted in an increase in the carbon deposited on the nickel-loaded stainless-steel mesh catalyst from 32.5 to 38.0 wt%. The increase in sample-to-catalyst ratio reduced the amount of carbon deposited on the mesh catalyst in terms of g carbon g(-1) plastic. The carbons were found to be largely composed of filamentous carbons, with negligible disordered (amorphous) carbons. Transmission electron microscopy analysis of the filamentous carbons revealed them to be composed of a large proportion (estimated at ∼40%) multi-walled carbon nanotubes (MWCNTs). The optimum process conditions for CNT production, in terms of yield and graphitic nature, determined by Raman spectroscopy, was catalysis temperature of 800°C and plastic-to-catalyst ratio of 1:2, where a mass of 334 mg of filamentous/MWCNTs g(-1) plastic was produced.

  14. Designation of highly efficient catalysts for one pot conversion of glycerol to lactic acid

    Science.gov (United States)

    Tao, Meilin; Dan Zhang; Guan, Hongyu; Huang, Guohui; Wang, Xiaohong

    2016-07-01

    Production of lactic acid from glycerol is a cascade catalytic procedure using multifunctional catalysts combined with oxidative and acidic catalytic sites. Therefore, a series of silver-exchanged phosphomolybdic acid catalysts (AgxH3‑xPMo12O40, x = 1 ~ 3, abbreviated as AgxPMo) was designed and applied in glycerol oxidation with O2 as an oxidant to produce lactic acid (LA) without adding any base. Among all, total silver exchanged phosphomolybdic acid (Ag3PMo) was found to be the most active one with LA selectivity of 93% at 99% conversion under mild conditions of 5 h at 60 °C. The exceptionally high efficiency was contributed to the generation of strong Lewis acid sites, enhanced redox potentials and water-tolerance. More importantly, Ag3PMo was tolerant in crude glycerol from biodiesel production. And the reaction mechanism was also discussed. Meanwhile, Ag3PMo acted as a heterogeneous catalyst for 12 recycles without loss of activity.

  15. Cationic tungsten-oxo-alkylidene-N-heterocyclic carbene complexes: highly active olefin metathesis catalysts.

    Science.gov (United States)

    Schowner, Roman; Frey, Wolfgang; Buchmeiser, Michael R

    2015-05-20

    The synthesis, structure, and olefin metathesis activity of the first neutral and cationic W-oxo-alkylidene-N-heterocyclic carbene (NHC) catalysts are reported. Neutral W-oxo-alkylidene-NHC catalysts can be prepared in up to 90% isolated yield. Depending on the ligands used, they possess either an octahedral (Oh) or trigonal bipyramidal ligand sphere. They can be activated with excess AlCl3 to form cationic olefin metathesis-active W-complexes; however, these readily convert into neutral chloro-complexes. Well-defined, stable cationic species can be prepared by stoichiometric substitution of one chloro ligand in the parent, neutral W-oxo-alkylidene-NHC complexes with Ag(MeCN)2B(Ar(F))4 or NaB(Ar(F))4; B(Ar(F))4 = B(3,5-(CF3)2-C6H3)4. They are highly active olefin metathesis catalysts, allowing for turnover numbers up to 10,000 in various olefin metathesis reactions including alkenes bearing nitrile, sec-amine, and thioether groups.

  16. High-throughput reactor system with individual temperature control for the investigation of monolith catalysts.

    Science.gov (United States)

    Dellamorte, Joseph C; Vijay, Rohit; Snively, Christopher M; Barteau, Mark A; Lauterbach, Jochen

    2007-07-01

    A high-throughput parallel reactor system has been designed and constructed to improve the reliability of results from large diameter catalysts such as monoliths. The system, which is expandable, consists of eight quartz reactors, 23.5 mm in diameter. The eight reactors were designed with separate K type thermocouples and radiant heaters, allowing for the independent measurement and control of each reactor temperature. This design gives steady state temperature distributions over the eight reactors within 0.5 degrees C of a common setpoint from 50 to 700 degrees C. Analysis of the effluent from these reactors is performed using rapid-scan Fourier transform infrared (FTIR) spectroscopic imaging. The integration of this technique to the reactor system allows a chemically specific, truly parallel analysis of the reactor effluents with a time resolution of approximately 8 s. The capabilities of this system were demonstrated via investigation of catalyst preparation conditions on the direct epoxidation of ethylene, i.e., on the ethylene conversion and the ethylene oxide selectivity. The ethylene, ethylene oxide, and carbon dioxide concentrations were calibrated based on spectra from FTIR imaging using univariate and multivariate chemometric techniques. The results from this analysis showed that the calcination conditions significantly affect the ethylene conversion, with a threefold increase in the conversion when the catalyst was calcined for 3 h versus 12 h at 400 degrees C.

  17. The Glycolysis of Poly(ethylene terephthalate Waste: Lewis Acidic Ionic Liquids as High Efficient Catalysts

    Directory of Open Access Journals (Sweden)

    Mi Lin Zhang

    2013-11-01

    Full Text Available Poly(ethlyene terephthalate waste from a local market was depolymerized by ethylene glycol (EG in the presence of Lewis acidic ionic liquids [Bmim]ZnCl3 and the qualitative analysis showed that bis(hydroxyethyl terephthalate was the main product. Compared with ionic liquid [Bmim]Cl, the Lewis acidic ionic liquids showed highly catalytic activity in the glycolysis of poly(ethylene terephthalate PET. Significantly, the conversion of PET and the yield of bis(hydroxyethyl terephthalate were achieved at 100% and 83.8% with low catalyst ([Bmim]ZnCl3 loading (0.16 wt %. Investigation also showed that the catalytic activity of [Bmim]ZnCl3 was higher than that of [Bmim]MnCl3. Catalyst [Bmim]ZnCl3 can be reused up to five times and 1H-NMR results show that the recovered catalyst is similar to the fresh one. A mechanism of the glycolysis of PET catalyzed by [Bmim]ZnCl3 was proposed.

  18. Ni3Mo3C as anode catalyst for high-performance microbial fuel cells.

    Science.gov (United States)

    Zeng, Li-Zhen; Zhao, Shao-Fei; Li, Wei-Shan

    2015-03-01

    Ni3Mo3C was prepared by a modified organic colloid method and explored as anode catalyst for high-performance microbial fuel cell (MFC) based on Klebsiella pneumoniae (K. pneumoniae). The prepared sample was characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), and Brunauer-Emmett-Teller (BET). The activity of the sample as anode catalyst for MFC based on K. pneumoniae was investigated by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and polarization curve measurement. The results show that the adding of nickel in Mo2C increases the BET surface area of Mo2C and improves the electrocatalytic activity of Mo2C towards the oxidation of microbial fermentation products. The power density of MFC with 3 mg cm(-2) Ni3Mo3C anode is far higher than that of the MFC with carbon felt as anode without any catalyst, which is 19 % higher than that of Mo2C anode and produced 62 % as much as that of Pt anode, indicating that Ni3Mo3C is comparative to noble metal platinum as anode electrocatalyst for MFCs by increasing the loading.

  19. Chemoselective single-site Earth-abundant metal catalysts at metal–organic framework nodes

    Energy Technology Data Exchange (ETDEWEB)

    Manna, Kuntal; Ji, Pengfei; Lin, Zekai; Greene, Francis X.; Urban, Ania; Thacker, Nathan C.; Lin, Wenbin (UC)

    2016-08-30

    Earth-abundant metal catalysts are critically needed for sustainable chemical synthesis. Here we report a simple, cheap and effective strategy of producing novel earth-abundant metal catalysts at metal–organic framework (MOF) nodes for broad-scope organic transformations. The straightforward metalation of MOF secondary building units (SBUs) with cobalt and iron salts affords highly active and reusable single-site solid catalysts for a range of organic reactions, including chemoselective borylation, silylation and amination of benzylic C–H bonds, as well as hydrogenation and hydroboration of alkenes and ketones. Our structural, spectroscopic and kinetic studies suggest that chemoselective organic transformations occur on site-isolated, electron-deficient and coordinatively unsaturated metal centres at the SBUs via σ-bond metathesis pathways and as a result of the steric environment around the catalytic site. MOFs thus provide a novel platform for the development of highly active and affordable base metal catalysts for the sustainable synthesis of fine chemicals.

  20. Chemoselective single-site Earth-abundant metal catalysts at metal-organic framework nodes

    Science.gov (United States)

    Manna, Kuntal; Ji, Pengfei; Lin, Zekai; Greene, Francis X.; Urban, Ania; Thacker, Nathan C.; Lin, Wenbin

    2016-08-01

    Earth-abundant metal catalysts are critically needed for sustainable chemical synthesis. Here we report a simple, cheap and effective strategy of producing novel earth-abundant metal catalysts at metal-organic framework (MOF) nodes for broad-scope organic transformations. The straightforward metalation of MOF secondary building units (SBUs) with cobalt and iron salts affords highly active and reusable single-site solid catalysts for a range of organic reactions, including chemoselective borylation, silylation and amination of benzylic C-H bonds, as well as hydrogenation and hydroboration of alkenes and ketones. Our structural, spectroscopic and kinetic studies suggest that chemoselective organic transformations occur on site-isolated, electron-deficient and coordinatively unsaturated metal centres at the SBUs via σ-bond metathesis pathways and as a result of the steric environment around the catalytic site. MOFs thus provide a novel platform for the development of highly active and affordable base metal catalysts for the sustainable synthesis of fine chemicals.

  1. Perfluorinated cobalt phthalocyanine effectively catalyzes water electrooxidation

    KAUST Repository

    Morlanes, Natalia Sanchez

    2014-12-08

    Efficient electrocatalysis of water oxidation under mild conditions at neutral pH was achieved by a fluorinated cobalt phthalocyanine immobilized on fluorine-doped tin oxide (FTO) surfaces with an onset potential at 1.7 V vs. RHE. Spectroscopic, electrochemical, and inhibition studies indicate that phthalocyanine molecular species are the operational active sites. Neither free cobalt ions nor heterogeneous cobalt oxide particles or films were observed. During long-term controlled-potential electrolysis at 2 V vs. RHE (phosphate buffer, pH 7), electrocatalytic water oxidation was sustained for at least 8 h (TON ≈ 1.0 × 105), producing about 4 μmol O2 h-1 cm-2 with a turnover frequency (TOF) of about 3.6 s-1 and no measurable catalyst degradation.

  2. Pd Close Coupled Catalyst

    Institute of Scientific and Technical Information of China (English)

    Zhong Hua SHI; Mao Chu GONG; Yao Qiang CHEN

    2006-01-01

    A catalyst comprised novel high surface area alumina support was prepared to control emission of automobiles. The results showed that prepared catalyst could satisfy the requirements of a high performance close coupled catalyst for its good catalytic activity at low temperature and good stability at high temperature.

  3. Light Absorbers and Catalysts for Solar to Fuel Conversion

    Science.gov (United States)

    Kornienko, Nikolay I.

    Increasing fossil fuel consumption and the resulting consequences to the environment has propelled research into means of utilizing alternative, clean energy sources. Solar power is among the most promising of renewable energy sources but must be converted into an energy dense medium such as chemical bonds to render it useful for transport and energy storage. Photoelectrochemistry (PEC), the splitting of water into oxygen and hydrogen fuel or reducing CO 2 to hydrocarbon fuels via sunlight is a promising approach towards this goal. Photoelectrochemical systems are comprised of several components, including light absorbers and catalysts. These parts must all synergistically function in a working device. Therefore, the continual development of each component is crucial for the overall goal. For PEC systems to be practical for large scale use, the must be efficient, stable, and composed of cost effective components. To this end, my work focused on the development of light absorbing and catalyst components of PEC solar to fuel converting systems. In the direction of light absorbers, I focused of utilizing Indium Phosphide (InP) nanowires (NWs) as photocathodes. I first developed synthetic techniques for InP NW solution phase and vapor phase growth. Next, I developed light absorbing photocathodes from my InP NWs towards PEC water splitting cells. I studied cobalt sulfide (CoSx) as an earth abundant catalyst for the reductive hydrogen evolution half reaction. Using in situ spectroscopic techniques, I elucidated the active structure of this catalyst and offered clues to its high activity. In addition to hydrogen evolution catalysts, I established a new generation of earth abundant catalysts for CO2 reduction to CO fuel/chemical feedstock. I first worked with molecularly tunable homogeneous catalysts that exhibited high selectivity for CO2 reduction in non-aqueous media. Next, in order to retain molecular tunability while achieving stability and efficiency in aqueous

  4. Mechanical ball-milling preparation of fullerene/cobalt core/shell nanocomposites with high electrochemical hydrogen storage ability.

    Science.gov (United States)

    Bao, Di; Gao, Peng; Shen, Xiande; Chang, Cheng; Wang, Longqiang; Wang, Ying; Chen, Yujin; Zhou, Xiaoming; Sun, Shuchao; Li, Guobao; Yang, Piaoping

    2014-02-26

    The design and synthesis of new hydrogen storage nanomaterials with high capacity at low cost is extremely desirable but remains challenging for today's development of hydrogen economy. Because of the special honeycomb structures and excellent physical and chemical characters, fullerenes have been extensively considered as ideal materials for hydrogen storage materials. To take the most advantage of its distinctive symmetrical carbon cage structure, we have uniformly coated C60's surface with metal cobalt in nanoscale to form a core/shell structure through a simple ball-milling process in this work. The X-ray diffraction (XRD), scanning electron microscope (SEM), Raman spectra, high-solution transmission electron microscopy (HRTEM), energy-dispersive X-ray spectrometry (EDX) elemental mappings, and X-ray photoelectron spectroscopy (XPS) measurements have been conducted to evaluate the size and the composition of the composites. In addition, the blue shift of C60 pentagonal pinch mode demonstrates the formation of Co-C chemical bond, and which enhances the stability of the as-obtained nanocomposites. And their electrochemical experimental results demonstrate that the as-obtained C60/Co composites have excellent electrochemical hydrogen storage cycle reversibility and considerably high hydrogen storage capacities of 907 mAh/g (3.32 wt % hydrogen) under room temperature and ambient pressure, which is very close to the theoretical hydrogen storage capacities of individual metal Co (3.33 wt % hydrogen). Furthermore, their hydrogen storage processes and the mechanism have also been investigated, in which the quasi-reversible C60/Co↔C60/Co-Hx reaction is the dominant cycle process.

  5. Catalysts and conditions for the highly efficient, selective and stable heterogeneous oligomerisation of ethylene

    CSIR Research Space (South Africa)

    Heveling, J

    1998-10-11

    Full Text Available excluded. Further, calculation of the turnover numbers for the 0.76% and 1.56% nickel NiSA-II catalysts clearly indicate that the low loadings of metal cation result in a much more effective use of the nickel. In a separate experiment, the stability.... It can be observed that, with the exception of the bromine number, the speci?cation is met in all the properties listed, and that the very high cetane number indicates that a synthetic diesel fuel of high quality could be obtained from our catalytic...

  6. Manufacture of Raney Ni catalyst with metastable Ni2Al3 by high-energy milling

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    The Ni-Al alloy containing Cr, Fe additives were prepared as Raney Ni catalyst by high energy milling. The size and surface state of Ni-Al alloy powder were studied by particle size analyzer and sanning electron microscopy, the structure was analyzed by XRD and Mossbauer methods. The results showed that after a high-energy milling (HEM), the Ni-Al alloy transforms to a nano-scale NiAl structure with rich Al. Byannealing the alloy, a metastable Ni2Al3 phase can be obtained.

  7. Divergent Reactivity via Cobalt Catalysis: An Epoxide Olefination.

    Science.gov (United States)

    Jamieson, Megan L; Hume, Paul A; Furkert, Daniel P; Brimble, Margaret A

    2016-02-05

    Cobalt salts exert an unexpected and profound influence on the reactivity of epoxides with dimethylsulfoxonium methylide. In the presence of a cobalt catalyst, conditions for epoxide to an oxetane ring expansion instead deliver homoallylic alcohol products, corresponding to a two-carbon epoxide homologation/ring-opening tandem process. The observed reactivity change appears to be specifically due to cobalt salts and is broadly applicable to a variety of epoxides, retaining the initial stereochemistry. This transformation also provides operationally simple access to enantiopure homoallylic alcohols from chiral epoxides without use of organometallic reagents. Tandem epoxidation-homologation of aldehydes in a single step is also demonstrated.

  8. Electrochemical Detection of Transient Cobalt Hydride Intermediates of Electrocatalytic Hydrogen Production.

    Science.gov (United States)

    Wiedner, Eric S; Bullock, R Morris

    2016-07-06

    A large variety of molecular cobalt complexes are used as electrocatalysts for H2 production, but the key cobalt hydride intermediates are frequently difficult to detect and characterize due to their high reactivity. We report that a combination of variable scan rate cyclic voltammetry and foot-of-the-wave analysis (FOWA) can be used to detect transient Co(III)H and Co(II)H intermediates of electrocatalytic H2 production by [Co(II)(P(tBu)2N(Ph)2)(CH3CN)3](2+) and Co(II)(dmgBF2)2(CH3CN)2. In both cases, reduction of a transient catalytic intermediate occurs at a potential that coincides with the Co(II/I) couple. Each reduction displays quasireversible electron-transfer kinetics, consistent with reduction of a Co(III)H intermediate to Co(II)H, which is then protonated by acid to generate H2. A bridge-protonated Co(I) species was ruled out as a catalytic intermediate for Co(II)(dmgBF2)2(CH3CN)2 from voltammograms recorded at 1000 psi of H2. Density functional theory was used to calculate Co(III)-H and Co(II)-H bond strengths for both catalysts. Despite having very different ligands, the cobalt hydrides of both catalysts possess nearly identical heterolytic and homolytic Co-H bond strengths for the Co(III)H and Co(II)H intermediates.

  9. Immobilization of cobalt(II) Schiff base complexes on polystyrene resin and a study of their catalytic activity for the aerobic oxidation of alcohols.

    Science.gov (United States)

    Jain, Suman; Reiser, Oliver

    2008-01-01

    The copper-catalyzed [3+2] azide-alkyne cycloaddition and the Staudinger ligation are readily applicable and highly efficient for the immobilization of cobalt Schiff base complexes onto polystyrene resins. Stepwise synthesis of polymer-bound Schiff bases followed by their subsequent complexation with metal ions were successfully carried out. Direct covalent attachment of preformed homogeneous cobalt Schiff base complexes to the resins was also possible. The catalytic efficiency of the so-prepared polystyrene-bound cobalt Schiff bases was studied for the oxidation of alcohols to carbonyl compounds using molecular oxygen as oxidant. The immobilized complexes were highly efficient and even more reactive than the corresponding homogenous analogues, thus affording better yields of oxidized products within shorter reaction times. The supported catalysts could easily be recovered from the reaction mixture by simple filtration and reused for subsequent experiments with consistent catalytic activity.

  10. Biotic conversion of sulphate to sulphide and abiotic conversion of sulphide to sulphur in a microbial fuel cell using cobalt oxide octahedrons as cathode catalyst.

    Science.gov (United States)

    Chatterjee, Pritha; Ghangrekar, M M; Rao, Surampalli; Kumar, Senthil

    2017-02-08

    Varying chemical oxygen demand (COD) and sulphate concentrations in substrate were used to determine reaction kinetics and mass balance of organic matter and sulphate transformation in a microbial fuel cell (MFC). MFC with anodic chamber volume of 1 L, fed with wastewater having COD of 500 mg/L and sulphate of 200 mg/L, could harvest power of 54.4 mW/m(2), at a Coulombic efficiency of 14%, with respective COD and sulphate removals of 90 and 95%. Sulphide concentration, even up to 1500 mg/L, did not inhibit anodic biochemical reactions, due to instantaneous abiotic oxidation to sulphur, at high inlet sulphate. Experiments on abiotic oxidation of sulphide to sulphur revealed maximum oxidation taking place at an anodic potential of -200 mV. More than 99% sulphate removal could be achieved in a MFC with inlet COD/sulphate of 0.75, giving around 1.33 kg/m(3) day COD removal. Bioelectrochemical conversion of sulphate facilitating sulphur recovery in a MFC makes it an interesting pollution abatement technique.

  11. Highly Dispersed Pseudo-Homogeneous and Heterogeneous Catalysts Synthesized via Inverse Micelle Solutions for the Liquefaction of Coal

    Energy Technology Data Exchange (ETDEWEB)

    Hampden-Smith, M.; Kawola, J.S.; Martino, A.; Sault, A.G.; Yamanaka, S.A.

    1999-01-05

    The mission of this project was to use inverse micelle solutions to synthesize nanometer sized metal particles and test the particles as catalysts in the liquefaction of coal and other related reactions. The initial focus of the project was the synthesis of iron based materials in pseudo-homogeneous form. The frost three chapters discuss the synthesis, characterization, and catalyst testing in coal liquefaction and model coal liquefaction reactions of iron based pseudo-homogeneous materials. Later, we became interested in highly dispersed catalysts for coprocessing of coal and plastic waste. Bifunctional catalysts . to hydrogenate the coal and depolymerize the plastic waste are ideal. We began studying, based on our previously devised synthesis strategies, the synthesis of heterogeneous catalysts with a bifunctional nature. In chapter 4, we discuss the fundamental principles in heterogeneous catalysis synthesis with inverse micelle solutions. In chapter 5, we extend the synthesis of chapter 4 to practical systems and use the materials in catalyst testing. Finally in chapter 6, we return to iron and coal liquefaction now studied with the heterogeneous catalysts.

  12. Unusual coordination mode of tetradentate Schiff base cobalt(III) complexes.

    Science.gov (United States)

    Cyriac, Anish; Jeon, Jong Yeob; Varghese, Jobi Kodiyan; Park, Ji Hae; Choi, Soo Young; Chung, Young Keun; Lee, Bun Yeoul

    2012-02-07

    Contrary to the stereotype, Jacobsen's catalyst, chiral (salcy)Co(III)OAc adopts an unusual binding mode. The tetradentate {ONNO} ligand does not form a square plane but wraps cobalt in a cis-β fashion while acetate is chelating.

  13. Engineering hybrid between nickel oxide and nickel cobaltate to achieve exceptionally high activity for oxygen reduction reaction

    Science.gov (United States)

    Cui, Zhentao; Wang, Shuguang; Zhang, Yihe; Cao, Minhua

    2014-12-01

    The porous NiO/NiCo2O4 nanotubes are prepared via a coaxial electrospinning technique followed by an annealing treatment. The resultant NiO/NiCo2O4 hybrid is developed as a highly efficient electrocatalyst, which exhibits significantly enhanced electrocatalytic activity, long-term operation stability, and tolerance to crossover effect compared to NiO nanofibers, NiCo2O4 nanofibers and commercial Pt(20%)/C for oxygen reduction reactions (ORR) in alkaline environment. The excellent electrocatalytic performance may be attributed to the unique microstructures of the porous NiO/NiCo2O4 nanotubes, such as heterogeneous hybrid structure, open porous tubular structure, and the well dispersity of the two components. Moreover, the promising and straightforward coaxial electrospinning proves itself to be an efficient pathway for the preparation of nanomaterials with tubular architectures and it can be used for large-scale production of catalysts in fuel cells.

  14. Cobalt particle size effects on catalytic performance for ethanol steam reforming - Smaller is better

    NARCIS (Netherlands)

    Da Silva, Andre L M; Den Breejen, Johan P.; Mattos, Lisiane V.; Bitter, Johannes H.; De Jong, Krijn P.; Noronha, Fábio B.

    2014-01-01

    The effect of the cobalt particle size in the ethanol steam reforming reaction at 773 K for hydrogen production was investigated using cobalt on carbon nanofiber catalysts. It was found that the turnover frequency increases with decreasing Co particle size, which was attributed to the increasing fra

  15. Cobalt particle size effects on catalytic performance for ethanol steam reforming – Smaller is better

    NARCIS (Netherlands)

    Silva, da A.L.M.; Breejen, den J.P.; Mattos, L.V.; Bitter, J.H.; Jong, de K.P.; Noronha, F.B.

    2014-01-01

    The effect of the cobalt particle size in the ethanol steam reforming reaction at 773 K for hydrogen production was investigated using cobalt on carbon nanofiber catalysts. It was found that the turnover frequency increases with decreasing Co particle size, which was attributed to the increasing fra

  16. Tin-containing zeolites are highly active catalysts for the isomerization of glucose in water

    Energy Technology Data Exchange (ETDEWEB)

    Moliner, Manuel [California Inst. of Technology (CalTech), Pasadena, CA (United States); Roman-Leshkov, Yuriy [California Inst. of Technology (CalTech), Pasadena, CA (United States); Davis, Mark E. [California Inst. of Technology (CalTech), Pasadena, CA (United States)

    2010-04-06

    The isomerization of glucose into fructose is a large-scale reaction for the production of high-fructose corn syrup (HFCS; reaction performed by enzyme catalysts) and recently is being considered as an intermediate step in the possible route of biomass to fuels and chemicals. Here, it is shown that a large-pore zeolite that contains tin (Sn-Beta) is able to isomerize glucose to fructose in aqueous media with high activity and selectivity. Specifically, a 10% (wt/wt) glucose solution containing a catalytic amount of Sn-Beta (1:50 Sn:glucose molar ratio) gives product yields of approximately 46% (wt/wt) glucose, 31% (wt/wt) fructose, and 9% (wt/wt) mannose after 30 min and 12 min of reaction at 383 K and 413 K, respectively. This reactivity is achieved also when a 45 wt% glucose solution is used. The properties of the large-pore zeolite greatly influence the reaction behavior because the reaction does not proceed with a medium-pore zeolite, and the isomerization activity is considerably lower when the metal centers are incorporated in ordered mesoporous silica (MCM-41). The Sn-Beta catalyst can be used for multiple cycles, and the reaction stops when the solid is removed, clearly indicating that the catalysis is occurring heterogeneously. Most importantly, the Sn-Beta catalyst is able to perform the isomerization reaction in highly acidic, aqueous environments with equivalent activity and product distribution as in media without added acid. This enables Sn-Beta to couple isomerizations with other acid-catalyzed reactions, including hydrolysis/isomerization or isomerization/dehydration reaction sequences [starch to fructose and glucose to 5-hydroxymethylfurfural (HMF) demonstrated here].

  17. Inhalation cancer risk assessment of cobalt metal.

    Science.gov (United States)

    Suh, Mina; Thompson, Chad M; Brorby, Gregory P; Mittal, Liz; Proctor, Deborah M

    2016-08-01

    Cobalt compounds (metal, salts, hard metals, oxides, and alloys) are used widely in various industrial, medical and military applications. Chronic inhalation exposure to cobalt metal and cobalt sulfate has caused lung cancer in rats and mice, as well as systemic tumors in rats. Cobalt compounds are listed as probable or possible human carcinogens by some agencies, and there is a need for quantitative cancer toxicity criteria. The U.S. Environmental Protection Agency has derived a provisional inhalation unit risk (IUR) of 0.009 per μg/m(3) based on a chronic inhalation study of soluble cobalt sulfate heptahydrate; however, a recent 2-year cancer bioassay affords the opportunity to derive IURs specifically for cobalt metal. The mechanistic data support that the carcinogenic mode of action (MOA) is likely to involve oxidative stress, and thus, non-linear/threshold mechanisms. However, the lack of a detailed MOA and use of high, toxic exposure concentrations in the bioassay (≥1.25 mg/m(3)) preclude derivation of a reference concentration (RfC) protective of cancer. Several analyses resulted in an IUR of 0.003 per μg/m(3) for cobalt metal, which is ∼3-fold less potent than the provisional IUR. Future research should focus on establishing the exposure-response for key precursor events to improve cobalt metal risk assessment.

  18. Gold-supported two-dimensional cobalt oxyhydroxide (CoOOH) and multilayer cobalt oxide islands

    DEFF Research Database (Denmark)

    Fester, Jakob; Walton, Alexander; Li, Zheshen

    2017-01-01

    microscopy, X-ray photoemission spectroscopy (XPS) and valence band spectroscopy, and show that the cobalt oxidation state changes from Co2+ in bilayers to purely Co3+ in trilayers and a mixture of Co2+ and Co3+ in the multilayer morphology. In contrast to bilayers and multilayers, the trilayer structure...... morphology consisting of hydroxylated trilayer islands is identical to an exfoliated sheet of the [small beta]-CoOOH which is proposed to be the active phase of the cobalt oxide oxygen evolution reaction catalyst present in the electrochemical environment, and we note that this synthesized structure thus...

  19. Laser-Induced Fluorescence Detection in High-Throughput Screening of Heterogeneous Catalysts and Single Cells Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Hui Su

    2001-05-01

    Laser-induced fluorescence detection is one of the most sensitive detection techniques and it has found enormous applications in various areas. The purpose of this research was to develop detection approaches based on laser-induced fluorescence detection in two different areas, heterogeneous catalysts screening and single cell study. First, we introduced laser-induced imaging (LIFI) as a high-throughput screening technique for heterogeneous catalysts to explore the use of this high-throughput screening technique in discovery and study of various heterogeneous catalyst systems. This scheme is based on the fact that the creation or the destruction of chemical bonds alters the fluorescence properties of suitably designed molecules. By irradiating the region immediately above the catalytic surface with a laser, the fluorescence intensity of a selected product or reactant can be imaged by a charge-coupled device (CCD) camera to follow the catalytic activity as a function of time and space. By screening the catalytic activity of vanadium pentoxide catalysts in oxidation of naphthalene, we demonstrated LIFI has good detection performance and the spatial and temporal resolution needed for high-throughput screening of heterogeneous catalysts. The sample packing density can reach up to 250 x 250 subunits/cm{sub 2} for 40-{micro}m wells. This experimental set-up also can screen solid catalysts via near infrared thermography detection.

  20. Laser-Induced Fluorescence Detection in High-Throughput Screening of Heterogeneous Catalysts and Single Cells Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Su, Hui [Iowa State Univ., Ames, IA (United States)

    2001-01-01

    Laser-induced fluorescence detection is one of the most sensitive detection techniques and it has found enormous applications in various areas. The purpose of this research was to develop detection approaches based on laser-induced fluorescence detection in two different areas, heterogeneous catalysts screening and single cell study. First, we introduced laser-induced imaging (LIFI) as a high-throughput screening technique for heterogeneous catalysts to explore the use of this high-throughput screening technique in discovery and study of various heterogeneous catalyst systems. This scheme is based on the fact that the creation or the destruction of chemical bonds alters the fluorescence properties of suitably designed molecules. By irradiating the region immediately above the catalytic surface with a laser, the fluorescence intensity of a selected product or reactant can be imaged by a charge-coupled device (CCD) camera to follow the catalytic activity as a function of time and space. By screening the catalytic activity of vanadium pentoxide catalysts in oxidation of naphthalene, we demonstrated LIFI has good detection performance and the spatial and temporal resolution needed for high-throughput screening of heterogeneous catalysts. The sample packing density can reach up to 250 x 250 subunits/cm2 for 40-μm wells. This experimental set-up also can screen solid catalysts via near infrared thermography detection.