WorldWideScience

Sample records for high co2 pressure

  1. CO2-helium and CO2-neon mixtures at high pressures.

    Science.gov (United States)

    Mallick, B; Ninet, S; Le Marchand, G; Munsch, P; Datchi, F

    2013-01-28

    The properties of mixtures of carbon dioxide with helium or neon have been investigated as a function of CO(2) concentration and pressure up to 30 GPa at room temperature. The binary phase diagrams of these mixtures are determined over the full range of CO(2) concentrations using visual observations and Raman scattering measurements. Both diagrams are of eutectic type, with a fluid-fluid miscibility gap for CO(2) concentrations in the range [5, 75] mol. % for He and [8, 55] mol. % for Ne, and a complete separation between the two components in the solid phase. The absence of alloys or stoichiometric compounds for these two binary systems is consistent with the Hume-Rothery rules of hard sphere mixtures. The Raman spectra and x-ray diffraction patterns of solid CO(2) embedded in He or Ne for various initial concentrations have been measured up to 30 GPa and 12 GPa, respectively. The frequencies of the Raman modes and the volume of solid phase I are identical, within error bars, to those reported for 100% CO(2) samples, thus confirming the total immiscibility of CO(2) with He and Ne in the solid phase. These results demonstrate the possibility to perform high-pressure experiments on solid CO(2) under (quasi-)hydrostatic conditions using He or Ne as pressure transmitting medium.

  2. Study of the thermohydraulics of CO2 discharge from a high pressure reservoir

    NARCIS (Netherlands)

    Ahmad, M.; Osch, M.B.V.; Buit, L.; Florisson, O.; Hulsbosch-Dam, C.; Spruijt, M.; Davolio, F.

    2013-01-01

    An experimental test set up has been constructed to carry out controlled CO2 release experiments from a high pressure vessel. The test set up is made up of a 500l stainless steel vessel where CO2 can be introduced up to high pressures and where controlled releases can be conducted. The work objectiv

  3. Pressure-induced alteration in effects of high CO2 on marine bacteria

    Science.gov (United States)

    Yamada, N.; Tsukasaki, A.; Tsurushima, N.; Suzumura, M.

    2013-12-01

    Carbon capture and storage (CCS) is a key mitigation technology to reduce the release of carbon dioxide (CO2) into the atmosphere. Current CCS research is dominated by improvements of the efficiency of the capturing, transport or storage of CO2. Also, it is important to estimate potential impacts on marine environments related to potential CO2 leakage. It has been demonstrated that seawater acidification effects on marine community structure and food chains. Bacteria are the basis of marine microbial food web and responsible for a significant part of marine biogeochemical cycles in both water column and bottom sediments. We used a high pressure incubation system which is composed of an HPLC pump and stainless-steel pressure vessels. The system could maintain stably the pressure up to 30 MPa. Using the system, we investigated the effects of high CO2 concentration on a deep-sea bacterium, Pseudoalteromonas sp., isolated from the western North Pacific Ocean. The isolate was incubated in acidified seawaters at various CO2 concentrations under simulated pressure conditions between 0.1 MPa and 30 MPa. We determined bacterial growth rate and live/dead cell viability. It was found that both CO2 concentration and pressure influenced substantially the growth rate of the isolate. In order to assess potential effects of leaked CO2 on microbial assemblages in marine environments, it was suggested that hydraulic pressure is one essential variable to be considered.

  4. High Materials Performance in Supercritical CO2 in Comparison with Atmospheric Pressure CO2 and Supercritical Steam

    Energy Technology Data Exchange (ETDEWEB)

    Holcomb, Gordon [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Tylczak, Joseph [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Carney, Casey [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Dogan, Omer N. [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States)

    2017-02-26

    This presentation covers environments (including advanced ultra-supercritical (A-USC) steam boiler/turbine and sCO2 indirect power cycle), effects of pressure, exposure tests, oxidation results, and mechanical behavior after exposure.

  5. Limitations and high pressure behavior of MOF-5 for CO2 capture.

    Science.gov (United States)

    Jung, Joo Young; Karadas, Ferdi; Zulfiqar, Sonia; Deniz, Erhan; Aparicio, Santiago; Atilhan, Mert; Yavuz, Cafer T; Han, Seung Min

    2013-09-14

    Porous network structures (e.g. metal-organic frameworks, MOFs) show considerable potential in dethroning monoethanol amine (MEA) from being the dominant scrubber for CO2 at the fossil-fuel-burning power generators. In contrast to their promise, structural stability and high-pressure behavior of MOFs are not well documented. We herein report moisture stability, mechanical properties and high-pressure compression on a model MOF structure, MOF-5. Our results show that MOF-5 can endure all tested pressures (0-225 bar) without losing its structural integrity, however, its moist air stability points at a 3.5 hour safety window (at 21.6 °C and 49% humidity) for an efficient CO2 capture. Isosteric heats of CO2 adsorption at high pressures show moderate interaction energy between CO2 molecules and the MOF-5 sorbent, which combined with the large sorption ability of MOF-5 in the studied pressure-temperature ranges show the viability of this sorbent for CO2 capturing purposes. The combination of the physicochemical methods we used suggests a generalized analytical standard for measuring viability in CO2 capture operations.

  6. Experimental study of CO2 dissolution a convection phenomenon at high pressure

    Science.gov (United States)

    Ben Salem, Imen; Chevalier, Sylvie; Faisal, Titly Farhana; Abderrahmane, Hamid; Sassi, Mohamed

    2016-05-01

    The density driven convection phenomenon has a significant role in enhancing the CO2 geological storage capacity. Deep saline aquifers are targeted for large scale geological sequestration. Once the CO2 is injected in saline aquifer, the supercritical CO2 rises up, forms a thin layer of free phase CO2, and the dissolution and molecular diffusion of the dissolved CO2 in brine begins. The CO2 saturated brine is denser than the original brine leading to gravitational convection of CO2 saturated brine. Convection accelerates the dissolution process and thus improves the safety and the efficiency of the sequestration. Laboratory experiments have been previously performed with experimental set-ups allowing the visualization of the phenomenon (1) eventually combined to the measurements of the dissolved CO2 mass transfer (2) as a function of the permeability of the medium. The visualization of the process was possible as Hele-Shaw cells at atmospheric pressure were used. Pressurized cylindrical vessel containing porous media allows measuring mass transfer of CO2 using the pressure decay concept (3) but visualization of the convection/dissolution was not possible for these setups. In this work, we performed experiments in a pressurized transparent cell similar to a Hele-Shaw cell but with bigger aperture. Permeability was varied by changing the size of the glass beads filling the cell. Bromocrysol green was used as a dye to track the pH change due to the presence of dissolved CO2 (1). The phenomenon is captured by a high resolution camera. We studied the effect of the pressure and of the permeability on the fingering pattern, the onset and the timescale of the phenomenon and the quantitative mass transfer of dissolved CO2. Experiments were validated on numerical simulations performed using STOMP (Subsurface Transport Over Multiple Phases) developed by the PNNL (Pacific Northwest National Laboratory) Hydrology group of the Department of Energy, USA. (1) Kneafsey, T

  7. Methods for determining the CO2 sorption capacity of coal: Experimental and theoretical high pressure isotherms

    Science.gov (United States)

    Weishauptová, Zuzana; Přibyl, Oldřich

    2016-04-01

    One way to reduce CO2 emissions discharged into the atmosphere is by trapping it and storing it in suitable repositories, including coal-bearing strata. The history of coal mining in the Czech Republic is very rich but most of the mines have been closed down in recent years. However, the unmined coal seams are interesting for the purposes of CO2 storage, especially due the opportunities they offer for recovering coal-bed methane. Mine structures of this kind can be found in large parts of the Upper Silesian Basin, where the total storage capacity has been estimated at about 380 Mt CO2. This is an interesting storage potential. In order to identify a suitable high-capacity locality for CO2 storage within a coal seam, it is necessary to study not only the geological conditions within the seam, but also the textural properties of the coal, which control the mechanism and the extent of the storage. The major storage mechanism is by sorption processes that take place in the coal porous system (adsorption in micropores and on the surface of meso/macropores, and absorption in the macromolecular structure). The CO2 sorption capacity is generally indirectly determined in a laboratory by measuring the amount of carbon dioxide captured in a coal sample at a pressure and temperature corresponding to the in situ conditions, using high pressure sorption techniques. The low pressure sorption technique can be used, by setting the partial volumes of CO2 according to its binding and storage mode. The sorption capacity is determined by extrapolation to the saturation pressure as the sum of the individual partially sorbed volumes. The aim of the study was to determine the partial volumes of CO2 bound by different mechanisms in the individual parts of the porous system of the coal, and to compare the sum with the results obtained by the high pressure isotherm. The study was carried out with 3 samples from a borehole survey in the Czech part of the Upper Silesian Basin. A high pressure

  8. High-pressure Phase Equilibria for Binary Ethanol System Containing Supercritical CO2

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    High-pressure phase behavior of supercritical (SC) CO2+ethanol system was investigated at 333.2 K, 348.2 K, 353.2 K, 368.2 K, 413.2 K and 453.2 K and pressure from 2.0 MPa to 14.3 MPa. The measurement was carried out in a cylindrical autoclave with a moveable piston and a window for adjustment and observation of phase equilibria at given T and p. The samples were taken from two coexisting phases and were analyzed to obtain their compositions. It is shown that the solubility of SC CO2 in ethanol increases drastically with pressures at the given temperature, but the content of ethanol in CO2-rich phase increase faintly.

  9. High-pressure Phase Equilibria for Binary Ethanol System Containing Supercriticai CO2

    Institute of Scientific and Technical Information of China (English)

    朱虎刚; 田宜灵; 陈丽; 秦颖; 冯季军

    2001-01-01

    High-pressure phase behavior of supercritical (SC) CO2+ethanol system was investigated at 333.2 K,348.2K, 353.2K, 368.2K, 413.2K and 453.2K and pressure from 2.0MPa to 14.3MPa. The measurement was carried out in a cylindrical autoclave with a moveable piston and a window for adjustment and observation of phase equilibria at given T and p. The samples were taken from two coexisting phases and were analyzed to obtain their compositions. It is shown that the solubility of SC CO2 in ethanol increases drastically with pressures at the given temperature, but the content of ethanol in CO2-rich phase increase faintly.

  10. Silicate minerals for CO2 scavenging from biogas in Autogenerative High Pressure Digestion.

    Science.gov (United States)

    Lindeboom, Ralph E F; Ferrer, Ivet; Weijma, Jan; van Lier, Jules B

    2013-07-01

    Autogenerative High Pressure Digestion (AHPD) is a novel concept that integrates gas upgrading with anaerobic digestion by selective dissolution of CO2 at elevated biogas pressure. However, accumulation of CO2 and fatty acids after anaerobic digestion of glucose resulted in pH 3-5, which is incompatible with the commonly applied high-rate methanogenic processes. Therefore, we studied the use of wollastonite, olivine and anorthosite, with measured composition of CaSi1.05O3.4, Mg2Fe0.2Ni0.01Si1.2O5.3 and Na0.7Ca1K0.1Mg0.1Fe0.15Al3.1Si4O24, respectively, to scavenge CO2 during batch AHPD of glucose. Depending on the glucose to mineral ratio the pH increased to 6.0-7.5. Experiments with wollastonite showed that Ca(2+)-leaching was caused by volatile fatty acid (VFA) production during glucose digestion. At 1, 3 and 9 bar, the CH4 content reached 74%, 86% and 88%, respectively, indicating CO2 scavenging. Fixation of produced CO2 by CaCO3 precipitation in the sludge was confirmed by Fourier Transferred-InfraRed, Combined Field emission Scanning Electron Microscopy-Energy-dispersive X-ray spectroscopy and Thermogravimetric Analysis-Mass Spectroscopy.

  11. Hydrolases in supercritical CO2 and their use in a high-pressure membrane reactor.

    Science.gov (United States)

    Knez, Z; Habulin, M; Primozic, M

    2003-03-01

    The thermal stability and activity of enzymes in supercritical carbon dioxide (SC CO(2)) and near-critical propane were studied at a pressure of 300 bar in the temperature range 20-90 degrees C. Proteinase from Carica papaya was incubated in microaqueous SC CO(2) at atmospheric pressure in a nonaqueous system. Lipase stability in an aqueous medium at atmospheric pressure and in SC CO(2) as well as near-critical propane at 100 bar and 40 degrees C was studied. In order to investigate the impact of solvent on lipases, these were chosen from different sources: Pseudomonas fluorescences, Rhizpous javanicus, Rhizopus niveus and porcine pancreas. On the basis of our previous study on lipase activities in dense gases, a high-pressure continuous flat-shape membrane reactor was designed. The hydrolysis of sunflower oil in SC CO(2) was performed as a model reaction in this reactor. The reaction was catalyzed by the lipase preparation Lipolase 100T and was performed at 50 degrees C and 200 bar.

  12. Design of experimental setup for supercritical CO2 jet under high ambient pressure conditions.

    Science.gov (United States)

    Shi, Huaizhong; Li, Gensheng; He, Zhenguo; Wang, Haizhu; Zhang, Shikun

    2016-12-01

    With the commercial extraction of hydrocarbons in shale and tight reservoirs, efficient methods are needed to accelerate developing process. Supercritical CO2 (SC-CO2) jet has been considered as a potential way due to its unique fluid properties. In this article, a new setup is designed for laboratory experiment to research the SC-CO2 jet's characteristics in different jet temperatures, pressures, standoff distances, ambient pressures, etc. The setup is composed of five modules, including SC-CO2 generation system, pure SC-CO2 jet system, abrasive SC-CO2 jet system, CO2 recovery system, and data acquisition system. Now, a series of rock perforating (or case cutting) experiments have been successfully conducted using the setup about pure and abrasive SC-CO2 jet, and the results have proven the great perforating efficiency of SC-CO2 jet and the applications of this setup.

  13. Exploring the Phase Diagram SiO2-CO2 at High Pressures and Temperatures

    Science.gov (United States)

    Kavner, A.

    2015-12-01

    CO2 is an important volatile system relevant for planetary sciences and fundamental chemistry. Molecular CO2 has doubly bonded O=C=O units but high pressure-high temperature (HP-HT) studies have recently shown its transformation into a three-dimensional network of corner-linked [CO4] units analogous to the silica mineral polymorphs, through intermediate non-molecular phases. Here, we report P-V-T data on CO2-IV ice from time-of-flight neutron diffraction experiments, which allow determining the compressibility and thermal expansivity of this intermediate molecular-to-non-molecular phase.1 Aditionally, we have explored the SiO2-CO2 phase diagram and the potential formation of silicon carbonate compounds. New data obtained by laser-heating diamond-anvil experiments in CO2-filled microporous silica polymorphs will be shown. In particular, these HP-HT experiments explore the existence of potential CO2/SiO2 compounds with tetrahedrally-coordinated C/Si atoms by oxygens, which are predicted to be stable (or metastable) by state-of-the-art ab initio simulations.2,3 These theoretical predictions were supported by a recent study that reports the formation of a cristobalite-type Si0.4C0.6O2 solid solution at high-pressures and temperatures, which can be retained as a metastable solid down to ambient conditions.4 Entirely new families of structures could exist based on [CO4]4- units in various degrees of polymerisation, giving rise to a range of chain, sheet and framework solids like those found in silicate chemistry. References[1] S. Palaich et al., Am. Mineral. Submitted (2015) [2] A. Morales-Garcia et al., Theor. Chem. Acc. 132, 1308 (2013) [3] R. Zhou et al., Phys. Rev. X, 4, 011030 (2014) [4] M. Santoro et al. Nature Commun. 5, 3761 (2014)

  14. Phase Behavior at High Pressure of the Ternary System: CO2, Ionic Liquid and Disperse Dye

    Directory of Open Access Journals (Sweden)

    Helen R. Mazzer

    2012-01-01

    Full Text Available High pressure phase behavior experimental data have been measured for the systems carbon dioxide (CO2 + 1-butyl-3-methylimidazolium hexafluorophosphate ([bmim] [PF6] and carbon dioxide (CO2 + 1-butyl-3-methylimidazolium hexafluorophosphate ([bmim] [PF6] + 1-amino-2-phenoxy-4-hydroxyanthraquinone (C.I. Disperse Red 60. Measurements were performed in the pressure up to 18 MPa and at the temperature (323 to 353 K. As reported in the literature, at higher concentrations of carbon dioxide the phase transition pressure increased very steeply. The experimental data for the binary and ternary systems were correlated with good agreement using the Peng-Robinson equation of state. The amount of water in phase behavior of the systems was evaluated.

  15. High pressurized CO2 release CFD calculations from onshore pipeline leakages

    Science.gov (United States)

    Herzog, Nicoleta; Gorenz, Paul; Egbers, Christoph

    2013-04-01

    Emissions from high pressurized pipelines can be determined on the basis of hydrodynamical and thermophysical calculations of the escaped fluid. If a rupture occurs when CO2 is onshore transported in liquid form there will be initially a large pressure drop in the pipeline, the pressure will fall until the liquid becomes a mixture of saturated vapor/liquid. In the vicinity of the rupture, liquid CO2 will escape and immediately vaporize and expand, some of the liquid will desublimate into dry ice, which will precipitate onto the ground [1, 2]. The period of time taken for a large amount of carbon dioxide to be discharged would be short. Initially CO2 will escape by pushing the overlying soil upwards at an explosion-like speed. After the pressure in the pipe fell the flow profile of the escaping gas will almost be as described for gaseous material transport. The expansion of carbon dioxide will occur at sonic speed and will continue to do so until the pressure ratio between the CO2 and the ambient air is lower than about 1.9 [3]. As a result of the expansion also the temperature of the escaping gas will fall drastically and a cloud of cold gas will form which is then dispersed and slowly mixed with ambient air. The rate of emptying the pipeline is controlled by the pipe cross-section area and the speed of the escaping gas, or by the pressure difference between the pipeline and the atmosphere. Therefore the mass flow will be largest immediately after the accident with an exponential decay in time. In this study a two-phase model is applied to a high pressurized pipeline through which liquid carbon dioxide flows. A leakage is considered to be at different positions along the pipeline and the release pressure is calculated over several parameter ranges. It is also intended to characterize from hydrodynamical point of view the dispersion of released CO2 in the ambient medium by means of CFD simulations which includes multiphase flow treatment. For that a turbulent two

  16. Effects of high-pressure CO2 processing on flavor, texture, and color of foods.

    Science.gov (United States)

    Zhou, Linyan; Bi, Xiufang; Xu, Zenghui; Yang, Yingjie; Liao, Xiaojun

    2015-01-01

    High-pressure CO2 (HPCD) is a pasteurization method that inactivates microorganism and enzymes through molecular effects of CO2 under pressures below 50 MPa without exposing foods to adverse effects of heat. Thermal pasteurization can impart undesirable changes on organoleptic and nutritional quality of the foods, which can reduce sensory perception and consumer acceptance of the foods. As a novel nonthermal processing technique, HPCD does avoid drawbacks such as loss of flavor, denaturation of nutrients, production of side toxic reactions, as well as changes in physical, mechanical, and optical properties of the food materials involved in the processing. This review gives a survey and analysis of recent publications regarding the effects of HPCD on the flavor, texture and color of processed foods, and possible mechanisms explaining HPCD technique on the flavor, texture, and color of the foods were discussed.

  17. Modelling ruptures of buried high pressure dense phase CO2 pipelines in carbon capture and storage applications - Part I. Validation

    OpenAIRE

    Wareing, CJ; Fairweather, M.; Falle, SAEG; Woolley, RM

    2015-01-01

    Carbon dioxide (CO2) capture and storage presents a short-term option for significantly reducing the amount of CO2 released into the atmosphere and mitigating the effects of climate change. To this end, National Grid initiated the COOLTRANS research programme to consider the pipeline transportation of high pressure dense phase CO2, including the development and application of a mathematical model for predicting the sonic near-field dispersion of pure CO2 following the venting or failure of su...

  18. Interfacial Tension of CO2 and Organic Liquid under High Pressure and Temperature☆

    Institute of Scientific and Technical Information of China (English)

    Zihao Yang; Mingyuan Li; Bo Peng; Meiqin Lin; Zhaoxia Dong; Yong Ling

    2014-01-01

    In order to investigate the effect of organic liquid molecular structure and the intermolecular force operating with CO2 molecules and organic liquid molecules on interfacial tension (IFT) between CO2 and organic liquid at the first contact, the interfacial tension between CO2 and hexane, octane, ethanol and cyclohexane at different tem-peratures and pressures is measured by using the pendant drop method and the axisymmetric drop shape anal-ysis (ADSA). The results show that the interfacial tension between CO2 and organic liquids is affected by the polarity and the structure of the organic liquid molecule obviously. The intermolecular force operating within CO2 molecules or organic liquid, and that between CO2 and organic liquids molecules play a dominate role on the interfacial tension between CO2 and the organic liquids.

  19. Preparation of porous poly(trimethylene carbonate structures for controlled release applications using high pressure CO2

    NARCIS (Netherlands)

    Nalawade, S.P.; Hennink, W.E.; Westerman, D.; Feijen, J.; Sam, A.P.; Leeke, G.; Santos, R.C.D.; Grijpma, Dirk W.; Feijen, Jan

    2008-01-01

    Porous poly(trimethylene carbonate) structures can readily be prepared using high pressure CO2. Differences in CO2 solubility in the polymer matrix at the different processing temperatures and pressures lead to different pore morphologies upon depressurization. Furthermore, crystallization of the

  20. Preparation of porous poly(trimethylene carbonate) structures for controlled release applications using high pressure CO2

    NARCIS (Netherlands)

    Nalawade, S.P.; Westerman, D.; Leeke, G.; Santos, R.C.D.; Grijpma, D.W.; Feijen, J.

    2008-01-01

    Porous poly(trimethylene carbonate) structures can readily be prepared using high pressure CO2. Differences in CO2 solubility in the polymer matrix at the different processing temperatures and pressures lead to different pore morphologies upon depressurization. Furthermore, crystallization of the in

  1. High-pressure sapphire cell for phase equilibria measurements of CO2/organic/water systems.

    Science.gov (United States)

    Pollet, Pamela; Ethier, Amy L; Senter, James C; Eckert, Charles A; Liotta, Charles L

    2014-01-24

    The high pressure sapphire cell apparatus was constructed to visually determine the composition of multiphase systems without physical sampling. Specifically, the sapphire cell enables visual data collection from multiple loadings to solve a set of material balances to precisely determine phase composition. Ternary phase diagrams can then be established to determine the proportion of each component in each phase at a given condition. In principle, any ternary system can be studied although ternary systems (gas-liquid-liquid) are the specific examples discussed herein. For instance, the ternary THF-Water-CO2 system was studied at 25 and 40 °C and is described herein. Of key importance, this technique does not require sampling. Circumventing the possible disturbance of the system equilibrium upon sampling, inherent measurement errors, and technical difficulties of physically sampling under pressure is a significant benefit of this technique. Perhaps as important, the sapphire cell also enables the direct visual observation of the phase behavior. In fact, as the CO2 pressure is increased, the homogeneous THF-Water solution phase splits at about 2 MPa. With this technique, it was possible to easily and clearly observe the cloud point and determine the composition of the newly formed phases as a function of pressure. The data acquired with the sapphire cell technique can be used for many applications. In our case, we measured swelling and composition for tunable solvents, like gas-expanded liquids, gas-expanded ionic liquids and Organic Aqueous Tunable Systems (OATS)(1-4). For the latest system, OATS, the high-pressure sapphire cell enabled the study of (1) phase behavior as a function of pressure and temperature, (2) composition of each phase (gas-liquid-liquid) as a function of pressure and temperature and (3) catalyst partitioning in the two liquid phases as a function of pressure and composition. Finally, the sapphire cell is an especially effective tool to gather

  2. High-pressure vapor-liquid equilibrium data for CO2-orange peel oil

    Directory of Open Access Journals (Sweden)

    G.R. Stuart

    2000-06-01

    Full Text Available Recently, there has been a growing interest in fractionating orange peel oil by the use of supercritical carbon dioxide (SCCO2. However, progress in this area has been hindered by the lack of more comprehensive work concerning the phase equilibrium behavior of the SCCO2-orange peel oil system. In this context, the aim of this work is to provide new phase equilibrium data for this system over a wide range of temperatures and pressures, permitting the construction of coexistence PT-xy curves as well as the P-T diagram. The experiments were performed in a high-pressure variable-volume view cell in the temperature range of 50-70ºC from 70 to 135 atm and in the CO2 mass fraction composition range of 0.35-0.98. Based on the experimental phase equilibrium results, appropriate operating conditions can be set for high-pressure fractionation purposes.

  3. Comparison of melting and crystallization behaviors of polylactide under high-pressure CO2, N2, and He

    Science.gov (United States)

    Nofar, M.; Tabatabaei, A.; Ameli, A.; Park, C. B.

    2014-05-01

    This study investigated the melting and crystallization behaviors of polylactide (PLA) under high-pressure CO2, N2, and helium (He) using a high-pressure differential scanning calorimeter. The results showed that the PLA's melting temperature was depressed only in contact with pressurized CO2 where at high CO2 pressures the lubricating gas molecules induced more imperfect melt and cold crystals during the cooling and heating cycles, respectively. PLA's melt crystallization was analyzed during nonisothermal processes. Despite the effect of dissolved CO2 that expedited the PLA's crystallization rate, N2 showed almost a neutral impact on the PLA's crystallization kinetics. Because of the lower solubility, N2 gas content dissolved in the PLA had a diminutive plasticization effect, and thereby it could only counterbalance its negative hydraulic pressure effect. Moreover, as the helium pressure increased, the PLA's final crystallinity was reduced due to the dominant effect of helium's hydraulic pressure.

  4. Effect of High-pressure CO2 Processing on Bacterial Spores.

    Science.gov (United States)

    Rao, Lei; Bi, Xiufang; Zhao, Feng; Wu, Jihong; Hu, Xiaosong; Liao, Xiaojun

    2016-08-17

    High-pressure CO2 (HPCD) is a nonthermal technology that can effectively inactivate the vegetative forms of pathogenic and spoilage bacteria, yeasts, and molds at pressures less than 30 MPa and temperatures in the range of 20°C to 40°C. However, HPCD alone at moderate temperatures (20-40°C) is often insufficient to obtain a substantial reduction in bacterial spore counts because their structures are more complex than those of vegetative cells. In this review, we first thoroughly summarized and discussed the inactivation effect of HPCD treatment on bacterial spores. We then presented and discussed the kinetics by which bacterial spores are inactivated by HPCD treatment. We also summarized hypotheses drawn by different researchers to explain the mechanisms of spore inactivation by HPCD treatment. We then summarized the current research status and future challenges of spore inactivation by HPCD treatment.

  5. Solubilities of CO2 in some glycol ethers under high pressure by experimental determination and correlation☆

    Institute of Scientific and Technical Information of China (English)

    Wei Wang; Zhi Yun; Zhigang Tang; Xia Gui

    2016-01-01

    The binary vapor–liquid equilibrium data of CO2 in diethylene glycol (monomethyl, monoethyl, monobutyl, di-methyl, diethyl, dibutyl) ether were determined from 288.15 to 318.15 K at pressure up to 6 MPa based on the constant-volume method. It was found by contrast that the ether group in solvents can promote the CO2 absorp-tion, but the hydroxyl group will inhibit the CO2 absorption. Furthermore, the solubilities of CO2 showed an up-ward trend with the increasing molecular lengths of absorbents. The experimental data were also correlated with a modified Patel–Teja equation of state (PT EOS) combined with the traditional van der Waals one-fluid mixing rules and the results showed a satisfactory agreement between the model and the experimental data.

  6. Removal of high concentration CO2 from natural gas at elevated pressure via absorption process in packed column

    Institute of Scientific and Technical Information of China (English)

    L.S.Tan; K.K.Lau; M.A.Bustam; A.M.Shariff

    2012-01-01

    Carbon dioxide (CO2) removal is an essential step in natural gas (NG) processing to provide high quality gas stream products and minimize operational difficulties.This preliminary study aims to investigate the removal of CO2 at high concentration level from the mixture of CO2-NG gas stream at elevated pressure via absorption process.This is to explore the possibility of exploring high CO2 content natural gas reserves by treatment at offshore platform.A mixed amine solvent,Stonvent-Ⅱ,was used for the absorption of approximately 75 vol% CO2 in CO2-NG stream at a pressure of 10 barg.The initial solvent temperature was varied in order to study the impact of initial temperature on the absorption performance.Preliminary study at temperatures of 35 ℃ and 45 ℃ indicates that Stonvent-Ⅱ was able to perform almost 100% removal of CO2 under both conditions.However,the CO2 absorption effect took place faster when the initial liquid temperature was lower.This is because when the initial liquid temperature is high,the temperature increase in the packing bed caused by the reaction heat is high which impacts the efficiency of absorption negatively.

  7. Adsorptive separation of CO2/CH4/CO gas mixtures at high pressures

    NARCIS (Netherlands)

    Krishna, R.

    2012-01-01

    The major objective of this communication is to compare the performance of three metal-organic frameworks (MOFs): CuBTC, MIL-101, and Zn(bdc)dabco, with that of NaX zeolite for selective adsorption of CO2 from mixtures containing CH4 and CO in a pressure swing adsorption (PSA) unit operating at

  8. Positron Annihilation Spectroscopy of High Performance Polymer Films under CO2 Pressure

    Energy Technology Data Exchange (ETDEWEB)

    C.A. Quarles; John R. Klaehn; Eric S. Peterson; Jagoda M. Urban-Klaehn

    2010-08-01

    Positron annihilation Lifetime and Doppler broadening measurements are reported for six polymer films as a function of carbon dioxide absolute pressure ranging from 0 to 45 psi. Since the polymer films were thin and did not absorb all positrons, corrections were made in the lifetime analysis for the absorption of positrons in the positron source and sample holder using the Monte Carlo transport code MCNP. Different polymers are found to behave differently. Some polymers studied form positronium and some, such as the polyimide structures, do not. For those samples that form positronium an interpretation in terms of free volume is possible; for those that don’t form positronium, further work is needed to determine how best to describe the behavior in terms of the bulk positron annihilation parameters. Some polymers exhibit changes in positron lifetime and intensity under CO2 pressure which may be described by the Henry or Langmuir sorption models, while the positron response of other polymers is rather insensitive to the CO2 pressure. The results demonstrate the usefulness of positron annihilation spectroscopy in investigating the sorption of CO2 into various polymers at pressures up to about 3 atm.

  9. High-Calorific Biogas Production by Selective CO2 Retention at Autogenerated Biogas Pressures up to 20 Bar

    NARCIS (Netherlands)

    Lindeboom, R.E.F.; Weijma, J.; Lier, van J.B.

    2012-01-01

    Autogenerative high pressure digestion (AHED) is a novel configuration of anaerobic digestion, in which micro-organisms produce autogenerated biogas pressures up to 90 bar with >90% CH4-content in a single step reactor. The less than 10% CO2-content was postulated to be resulting from

  10. Interfacial Evolution of Cement and Steel in CO2 Dissolved Solution Under High Temperature and High Pressure

    Science.gov (United States)

    Ren, Chengqiang; Peng, Ye; Li, Bing; Wang, Shuliang; Shi, Taihe

    2016-09-01

    The experiments were operated for the cylindrical sample (cement/steel) in high temperature and high pressure (HTHP) CO2 environment to simulate surrounding CO2 attack in oil and gas well. The interfacial evolutions between well cement and casing steel were measured, including mechanical property, structure alteration, chemical change and electrochemical character. The interfacial behaviors are attributed to the competition of hydration and degradation of Portland cement. The damage at the interface was faster than the cement bulk deterioration by carbonation. Thus, the interface provided a potential flow leakage pathway for the HTHP gas and fluid in the well, so improving interfacial stability between well cement and casing steel is the key issue to long-term zonal isolation.

  11. Mineral Carbonation in Wet Supercritical CO2: An in situ High-Pressure Magic Angle Spinning Nuclear Magnetic Resonance Study

    Science.gov (United States)

    Turcu, R. V.; Hoyt, D. H.; Sears, J. A.; Rosso, K. M.; Felmy, A. R.; Hu, J. Z.

    2011-12-01

    Understanding the mechanisms and kinetics of mineral carbonation reactions relevant to sequestering carbon dioxide as a supercritical fluid (scCO2) in geologic formations is crucial for accurately predicting long-term storage risks. In situ probes that provide molecular-level information at geologically relevant temperatures and pressures are highly desirable and challenging to develop. Magic angle spinning nuclear magnetic resonance (MAS NMR) is a powerful tool for obtaining detailed molecular structure and dynamics information of a system regardless whether the system is in a solid, a liquid, a gaseous, a supercritical state, or a mixture thereof. However, MAS NMR under scCO2 conditions has never been realized due to the tremendous technical difficulties of achieving and maintaining high pressure within a fast spinning MAS sample rotor. In this work, we report development of a unique high pressure MAS NMR capability capable of handling fluid pressure exceeding 170 bars and temperatures up to 80°C, and its application to mineral carbonation in scCO2 under geologically relevant temperatures and pressures. Mineral carbonation reactions of the magnesium silicate mineral forsterite and the magnesium hydroxide brucite reacted with scCO2 (up to 170 bar) and containing variable content of H2O (at, below, and above saturation in scCO2) were investigated at 50 to 70°C. In situ 13C MAS NMR spectra show peaks corresponding to the reactants, intermediates, and the magnesium carbonation products in a single spectrum. For example, Figure 1 shows the reaction dynamics, i.e., the formation and conversion of reaction intermediates, i.e., HCO3- and nesquehonite, to magnesite as a function of time at 70°C. This capability offers a significant advantage over traditional ex situ 13C MAS experiments on similar systems, where, for example, CO2 and HCO3- are not directly observable.

  12. Monte Carlo simulations of high-pressure phase equilibria of CO2-H2O mixtures.

    Science.gov (United States)

    Liu, Yang; Panagiotopoulos, Athanassios Z; Debenedetti, Pablo G

    2011-05-26

    Histogram-reweighting grand canonical Monte Carlo simulations were used to obtain the phase behavior of CO(2)-H(2)O mixtures over a broad temperature and pressure range (50 °C ≤ T ≤ 350 °C, 0 ≤ P ≤ 1000 bar). We performed a comprehensive test of several existing water (SPC, TIP4P, TIP4P2005, and exponential-6) and carbon dioxide (EPM2, TraPPE, and exponential-6) models using conventional Lorentz-Berthelot combining rules for the unlike-pair parameters. None of the models we studied reproduce adequately experimental data over the entire temperature and pressure range, but critical assessments were made on the range of T and P where particular model pairs perform better. Away from the critical region (T ≤ 250 °C), the exponential-6 model combination yields the best predictions for the CO(2)-rich phase, whereas the TraPPE/TIP4P2005 model combination provides the most accurate coexistence composition and pressure for the H(2)O-rich phase. Near the critical region (250 °C < T ≤ 350 °C), the critical points are not accurately estimated by any of the models studied, but the exponential-6 models are able to qualitatively capture the critical loci and the shape of the phase envelopes. Local improvements can be achieved at specific temperatures by introducing modification factors to the Lorentz-Berthelot combining rules, but the modified combining rule is still not able to achieve global improvements over the entire temperature and pressure range. Our work points to the challenge and importance of improving current atomistic models so as to accurately predict the phase behavior of this important binary mixture.

  13. Particle image velocimetry for quantification of high pressure CO 2 release

    NARCIS (Netherlands)

    Jong, A. de; Spruijt, M.

    2013-01-01

    In the current work evaluation of CO2 release velocity profiles is determined using Particle Image Velocimetry (PIV). The formation of solid CO2 particles using the rapid expansion of nozzle flow is used as a seeder particle, making the method truly nonintrusive and negates the use of special seeder

  14. Capillary pressure and saturation relations for supercritical CO2 and brine in sand: High-pressure Pc(Sw) controller/meter measurements and capillary scaling predictions

    Science.gov (United States)

    Tokunaga, Tetsu K.; Wan, Jiamin; Jung, Jong-Won; Kim, Tae Wook; Kim, Yongman; Dong, Wenming

    2013-08-01

    In geologic carbon sequestration, reliable predictions of CO2 storage require understanding the capillary behavior of supercritical (sc) CO2. Given the limited availability of measurements of the capillary pressure (Pc) dependence on water saturation (Sw) with scCO2 as the displacing fluid, simulations of CO2 sequestration commonly rely on modifying more familiar air/H2O and oil/H2O Pc(Sw) relations, adjusted to account for differences in interfacial tensions. In order to test such capillary scaling-based predictions, we developed a high-pressure Pc(Sw) controller/meter, allowing accurate Pc and Sw measurements. Drainage and imbibition processes were measured on quartz sand with scCO2-brine at pressures of 8.5 and 12.0 MPa (45°C), and air-brine at 21°C and 0.1 MPa. Drainage and rewetting at intermediate Sw levels shifted to Pc values that were from 30% to 90% lower than predicted based on interfacial tension changes. Augmenting interfacial tension-based predictions with differences in independently measured contact angles from different sources led to more similar scaled Pc(Sw) relations but still did not converge onto universal drainage and imbibition curves. Equilibrium capillary trapping of the nonwetting phases was determined for Pc = 0 during rewetting. The capillary-trapped volumes for scCO2 were significantly greater than for air. Given that the experiments were all conducted on a system with well-defined pore geometry (homogeneous sand), and that scCO2-brine interfacial tensions are fairly well constrained, we conclude that the observed deviations from scaling predictions resulted from scCO2-induced decreased wettability. Wettability alteration by scCO2 makes predicting hydraulic behavior more challenging than for less reactive fluids.

  15. How do polymerized room-temperature ionic liquid membranes plasticize during high pressure CO2 permeation?

    NARCIS (Netherlands)

    Simons, K.; Nijmeijer, D.C.; Bara, J.B.; Noble, R.D.; Wessling, M.

    2010-01-01

    Room-temperature ionic liquids (RTILs) are a class of organic solvents that have been explored as novel media for CO2 separations. Polymerized RTILs (poly(RTILs)) can be synthesized from RTIL monomers to form dense, solid gas selective membranes. It is of interest to understand the permeation proper

  16. Experimental determination of carbonation rate in Portland cement at 25°C and relatively high CO2 partial pressure

    Science.gov (United States)

    Hernández-Rodríguez, Ana; Montegrossi, Giordano; Huet, Bruno; Virgili, Giorgio; Orlando, Andrea; Vaselli, Orlando; Marini, Luigi

    2016-04-01

    The aim of this work is to study the alteration of Portland class G Cement at ambient temperature under a relatively high CO2 partial pressure through suitably designed laboratory experiments, in which cement hydration and carbonation are taken into account separately. First, the hydration process was carried out for 28 days to identify and quantify the hydrated solid phases formed. After the completion of hydration, accompanied by partial carbonation under atmospheric conditions, the carbonation process was investigated in a stirred micro-reactor (Parr instrument) with crushed cement samples under 10 bar or more of pure CO2(g) and MilliQ water adopting different reaction times. The reaction time was varied to constrain the reaction kinetics of the carbonation process and to investigate the evolution of secondary solid phases. Chemical and mineralogical analyses (calcimetry, chemical composition, SEM and X-ray Powder Diffraction) were carried out to characterize the secondary minerals formed during cement hydration and carbonation. Water analyses were also performed at the end of each experimental run to measure the concentrations of relevant solutes. The specific surface area of hydrated cement was measured by means of the BET method to obtain the rates of cement carbonation. Experimental outcomes were simulated by means of the PhreeqC software package. The obtained results are of interest to understand the comparatively fast cement alteration in CO2 production wells with damaged casing.

  17. Analysis on CO2 Refrigeration Cycle with High Pressure Gas Vortex Expansion for Low Temperature%高压气体涡流膨胀的CO2低温制冷循环分析

    Institute of Scientific and Technical Information of China (English)

    赵家华; 宁静红

    2016-01-01

    通过设计高压气体涡流膨胀的CO2低温制冷循环,对其进行热力性能分析,并与两级节流中间完全冷却的CO2低温制冷循环的性能进行对比,得出高压气体涡流膨胀的CO2低温制冷循环存在获得最大性能系数的最优的高压压力。提高蒸发温度与中间压力,增大冷气流质量比,减少进入蒸发器的冷气流质量比,降低气体冷却器出口温度,均可提高高压气体涡流膨胀的CO2低温制冷循环的性能系数。在冷气流的质量比为0.6,冷气流进入蒸发器的质量比为0.2时,高压气体涡流膨胀的CO2低温制冷循环的最佳的性能系数较两级节流中间完全冷却的CO2低温制冷循环最佳的性能系数提高36.4%。随着气体冷却器出口温度的升高,高压气体涡流膨胀的CO2低温制冷循环的性能系数较两级节流中间完全冷却的CO2低温制冷循环的性能系数降低的幅度小。%The CO2 refrigeration cycle with high pressure gas vortex expansion for low temperature is designed. The thermal performances of this CO2 refrigeration cycle with high pressure gas vortex expansion for low temperature are analyzed and compared with that of the CO2 low temperature refrigeration cycle of two-stage throttle and complete cooling in middle. The following conclusions are obtained. The CO2 refrigeration cycle with high pressure gas vortex expansion for low temperature has the maximum coefficient of performance ( COP) at the optimal high pressure. The coefficient of performances of the CO2 refrigeration cycle with high pressure gas vortex expansion for low temperature can be improved by increasing the evaporation temperature, the middle pressure and the mass ratio of cold gas, by reducing the mass ratio of cold gas into evaporator, as well as by decreasing the temperature of gas-cooler out-let. At the mass ratio of cold gas is 0. 6 and the mass ratio of cold gas into evaporator is 0. 2, the maximum coeffi-cient of performance of

  18. Modelling ruptures of buried high-pressure dense-phase CO2 pipelines in carbon capture and storage applications - Part II. A full-scale rupture

    OpenAIRE

    Wareing, CJ; Fairweather, M.; Falle, SAEG; Woolley, RM

    2015-01-01

    Carbon capture and storage (CCS) presents a short-term option for significantly reducing the amount of carbon dioxide (CO2) released into the atmosphere. National Grid initiated the COOLTRANS research programme to consider the CCS pipeline transportation of high-pressure dense-phase CO2, including the development and application of a mathematical model for predicting the sonic near-field dispersion of pure CO2 following pipeline venting or failure. In Part I (Wareing et al., 2015a) validation...

  19. Flow of CO2 ethanol and of CO2 methanol in a non-adiabatic microfluidic T-junction at high pressures

    NARCIS (Netherlands)

    Blanch Ojea, R.; Tiggelaar, Roald M.; Pallares, J.; Grau, F.X.; Gardeniers, Johannes G.E.

    2012-01-01

    In this work, an experimental investigation of the single- and multiphase flows of two sets of fluids, CO2–ethanol and CO2–methanol, in a non-adiabatic microfluidic T-junction is presented. The operating conditions ranged from 7 to 18 MPa, and from 294 to 474 K. The feed mass fraction of CO2 in the

  20. CO2压缩机高压缸振值高原因分析及处理%Analysis and treatment of CO2 compressor high pressure cylinder vibration value high

    Institute of Scientific and Technical Information of China (English)

    皮亿蛟; 李辉; 粟升

    2014-01-01

    The paper briefly describes high pressure cylinder appears problem of high vibration value in production process of Tarim large chemical fertilizer urea plant of CO2 compressor K101. It also analyses these problems, after taking measures to overhaul, solved problem of high vibration value of high pressure cylinder, which could provide reference to operation and problem handling of similar equipment.%简述了塔里木大化肥尿素装置CO2压缩机K101在生产过程中出现的高压缸振值高问题,针对问题进行了分析,经采取措施检修后解决了高压缸振值高的问题,可为同类设备的生产运行、问题的处理提供参考。

  1. Comparison of CO2 trapping in highly heterogeneous reservoirs with Brooks-Corey and van Genuchten type capillary pressure curves

    CERN Document Server

    Gershenzon, Naum I; Dominic, David F; Mehnert, Edward; Okwen, Roland T

    2015-01-01

    Geological heterogeneities essentially affect the dynamics of a CO2 plume in subsurface environments. Previously we showed how the dynamics of a CO2 plume is influenced by the multi-scale stratal architecture in deep saline reservoirs. The results strongly suggest that representing small-scale features is critical to understanding capillary trapping processes. Here we present the result of simulation of CO2 trapping using two different conventional approaches, i.e. Brooks-Corey and van Genuchten, for the capillary pressure curves. We showed that capillary trapping and dissolution rates are very different for the Brooks-Corey and van Genuchten approaches when heterogeneity and hysteresis are both represented.

  2. Biological CO2 conversion to acetate in subsurface coal-sand formation using a high-pressure reactor system

    Directory of Open Access Journals (Sweden)

    Yoko eOhtomo

    2013-12-01

    Full Text Available Geological CO2 sequestration in unmineable subsurface oil/gas fields and coal formations has been proposed as a means of reducing anthropogenic greenhouse gasses in the atmosphere. However, the feasibility of injecting CO2 into subsurface depends upon a variety of geological and economic conditions, and the ecological consequences are largely unpredictable. In this study, we developed a new flow-through-type reactor system to examine potential geophysical, geochemical and microbiological impacts associated with CO2 injection by simulating in situ pressure (0–100 MPa and temperature (0–70°C conditions. Using the reactor system, anaerobic artificial fluid and CO2 (flow rate: 0.002 and 0.00001 mL/min, respectively were continuously supplemented into a column comprised of bituminous coal and sand under a pore pressure of 40 MPa (confined pressure: 41 MPa at 40°C for 56 days. 16S rRNA gene analysis of the bacterial components showed distinct spatial separation of the predominant taxa in the coal and sand over the course of the experiment. Cultivation experiments using sub-sampled fluids revealed that some microbes survived, or were metabolically active, under CO2-rich conditions. However, no methanogens were activated during the experiment, even though hydrogenotrophic and methylotrophic methanogens were obtained from conventional batch-type cultivation at 20°C. During the reactor experiment, the acetate and methanol concentration in the fluids increased while the δ13Cacetate, H2 and CO2 concentrations decreased, indicating the occurrence of homo-acetogenesis. 16S rRNA genes of homo-acetogenic spore-forming bacteria related to the genus Sporomusa were consistently detected from the sandstone after the reactor experiment. Our results suggest that the injection of CO2 into a natural coal-sand formation preferentially stimulates homo-acetogenesis rather than methanogenesis, and that this process is accompanied by biogenic CO2 conversion to

  3. Stable solid and aqueous H2CO3 from CO2 and H2O at high pressure and high temperature.

    Science.gov (United States)

    Wang, Hongbo; Zeuschner, Janek; Eremets, Mikhail; Troyan, Ivan; Willams, Jonathan

    2016-01-27

    Carbonic acid (H2CO3) forms in small amounts when CO2 dissolves in H2O, yet decomposes rapidly under ambient conditions of temperature and pressure. Despite its fleeting existence, H2CO3 plays an important role in the global carbon cycle and in biological carbonate-containing systems. The short lifetime in water and presumed low concentration under all terrestrial conditions has stifled study of this fundamental species. Here, we have examined CO2/H2O mixtures under conditions of high pressure and high temperature to explore the potential for reaction to H2CO3 inside celestial bodies. We present a novel method to prepare solid H2CO3 by heating CO2/H2O mixtures at high pressure with a CO2 laser. Furthermore, we found that, contrary to present understanding, neutral H2CO3 is a significant component in aqueous CO2 solutions above 2.4 GPa and 110 °C as identified by IR-absorption and Raman spectroscopy. This is highly significant for speciation of deep C-O-H fluids with potential consequences for fluid-carbonate-bearing rock interactions. As conditions inside subduction zones on Earth appear to be most favorable for production of aqueous H2CO3, a role in subduction related phenomena is inferred.

  4. Stable solid and aqueous H2CO3 from CO2 and H2O at high pressure and high temperature

    Science.gov (United States)

    Wang, Hongbo; Zeuschner, Janek; Eremets, Mikhail; Troyan, Ivan; Willams, Jonathan

    2016-01-01

    Carbonic acid (H2CO3) forms in small amounts when CO2 dissolves in H2O, yet decomposes rapidly under ambient conditions of temperature and pressure. Despite its fleeting existence, H2CO3 plays an important role in the global carbon cycle and in biological carbonate-containing systems. The short lifetime in water and presumed low concentration under all terrestrial conditions has stifled study of this fundamental species. Here, we have examined CO2/H2O mixtures under conditions of high pressure and high temperature to explore the potential for reaction to H2CO3 inside celestial bodies. We present a novel method to prepare solid H2CO3 by heating CO2/H2O mixtures at high pressure with a CO2 laser. Furthermore, we found that, contrary to present understanding, neutral H2CO3 is a significant component in aqueous CO2 solutions above 2.4 GPa and 110 °C as identified by IR-absorption and Raman spectroscopy. This is highly significant for speciation of deep C-O-H fluids with potential consequences for fluid-carbonate-bearing rock interactions. As conditions inside subduction zones on Earth appear to be most favorable for production of aqueous H2CO3, a role in subduction related phenomena is inferred.

  5. Numerical simulation of CO2 dispersion from punctures and ruptures of buried high-pressure dense phase CO2 pipelines with experimental validation

    OpenAIRE

    Wareing, CJ; Fairweather, M.; Woolley, RM; Falle, SAEG

    2014-01-01

    Carbon capture and storage (CCS) presents an option for significantly reducing the amount of carbon dioxide (CO2) released into the atmosphere and mitigating the effects of climate change. Pipelines are considered to be the most likely method for transporting captured CO2 and their safe operation is of paramount importance as their contents are likely to be in the region of several thousand tonnes and CO2 poses a number of concerns upon release due to its unusual physical properties. To this ...

  6. Asymmetric Hollow Fiber Membranes for Separation of CO 2 from Hydrocarbons and Fluorocarbons at High-Pressure Conditions Relevant to C 2 F 4 Polymerization

    KAUST Repository

    Kosuri, Madhava R.

    2009-12-02

    Separation of high-pressure carbon dioxide from fluorocarbons is important for the production of fluoropolymers such as poly(tetrafluoroethylene). Typical polymeric membranes plasticize under high CO2 partial pressure conditions and fail to provide adequate selective separations. Torlon, a polyamide-imide polymer, with the ability to form interchain hydrogen bonding, is shown to provide stability against aggressive CO2 plasticization. Torlon membranes in the form of asymmetric hollow fibers (the most productive form of membranes) are considered for an intended separation of CO 2/C2F4. To avoid safety issues with tetrafluoroethylene (C2F4), which could detonate under testing conditions, safer surrogate mixtures (C2H2F 2 and C2H4) are considered in this paper. Permeation measurements (at 35 °C) indicate that the Torlon membranes are not plasticized even up to 1250 psi of CO2. The membranes provide mixed gas CO2/C2H2F2 and CO 2/C2H4 selectivities of 100 and 30, respectively, at 1250 psi partial pressures of CO2. On the basis of the measured separation performances of CO2/C2H 2F2 and CO2/C2H4 mixtures, the selectivity of the CO2/C2F4 mixture is expected to be greater than 100. Long-term stability studies indicate that the membranes provide stable separations over a period of 5 days at 1250 psi partial pressures of CO2, thereby making the membrane approach attractive. © 2009 American Chemical Society.

  7. Drawing Nylon 6,6 Fibers in High Pressure CO2

    Science.gov (United States)

    2005-12-07

    studies have been performed on various fibers using supercritical carbon dioxide treatments. In these studies, Nylon6,6, PBO ( Zylon ) and...Supercritical carbon dioxide, High Performance Fibers , Nylon6,6, PBO ( Zylon ), Polyester Fibers 15. NUMBER OF PAGES...conducted on poly-p-phenylenebenzobisoxazole (PBO) currently manufactured by Toyobo under the commercial name Zylon . These fibers were selected because of

  8. High-Pressure Phase Equilibria in Systems Containing CO2 and Ionic Liquid of the [Cnmim][Tf2N] Type

    OpenAIRE

    Sedláková, Z.; Wagner, Z.

    2012-01-01

    In this review, we present a comparison of the high-pressure phase behaviour of binary systems constituted of CO2 and ionic liquids of the [Cn(m)mim][Tf2N] type. The comparative study shows that the solubility of CO2 in ionic liquids of the [Cnmim][Tf2N] type generally increases with increasing pressure and decreasing temperature, but some peculiarities have been observed. The solubility of CO2 in ionic liquid solvents was correlated using the Soave–Redlich–Kwong equation of state. The result...

  9. Using TOUGH2/ECO2H for modeling high-pressure and high-temperature CO2-enhanced geothermal energy extraction from saline systems

    Science.gov (United States)

    Borgia, A.; Pruess, K.; Kneafsey, T. J.; Oldenburg, C. M.

    2011-12-01

    Conventional geothermal energy uses water as the fluid to transport heat to the surface. This has a number of drawbacks principally related to strong water-rock chemical reactions, but also in terms of environmental impacts through overdraft of shallow aquifers with valuable water resources. Various authors have proposed the use of CO2 instead of water to transfer heat because such use may result in better rate of heat extraction, less fluid-rock reactivity, and less demand for scarce ground or surface water resources. TOUGH2/ECO2H was developed to study the behavior of high-pressure high-temperature H2O-CO2-NaCl geothermal systems. To demonstrate and test the code, we have modeled an idealized fractured geothermal system. Based on a five-spot well pattern and its inherent symmetry, we use a model grid of 1/8 of a square with sides of 1 km. In the model, CO2 is injected at the four corner-wells at 20 °C and constant pressure of 2.1*10^7 Pa into a variable salinity reservoir which is initially at 200 °C. The center well produces fluid at a constant pressure of 1.9*10^7 Pa. Initially, H2O + NaCl are produced, followed by a mixture of H2O + CO2 + NaCl and, finally only CO2. As soon as the injected CO2 reaches the production well, usually less than 2 months after injection begins, there is a drastic drop in heat production. This decrease occurs because of a reduced flow rate induced by reduction in effective permeability associated with two-phase flow (liquid + gas) in the reservoir. As the liquid phase dries out, the CO2 flow rate increases slowly over about 2-3 years and the heat production reaches a maximum rate that is about 40% larger than the initial rate of production with just water. Our modeling suggests that this same behavior occurs for highly saline geothermal reservoirs, even though the absolute rate of heat production is about 30% lower than the non-saline models. The decrease in production for saline systems is due to a marked reduction in permeability

  10. Soret Effect Study on High-Pressure CO2-Water Solutions Using UV-Raman Spectroscopy and a Concentric-Tube Optical Cell

    Energy Technology Data Exchange (ETDEWEB)

    Windisch, Charles F.; McGrail, B. Peter; Maupin, Gary D.

    2012-01-01

    Spatially resolved deep-UV Raman spectroscopy was applied to solutions of CO2 and H2O (or D2O), which were subject to a temperature gradient in a thermally regulated high-pressure concentric-tube Raman cell in an attempt to measure a Soret effect in the vicinity of the critical point of CO2. Although Raman spectra of solutions of CO2 dissolved in D2O at 10 MPa and temperatures near the critical point of CO2 had adequate signal-to-noise and spatial resolution to observe a Soret effect with a Soret coefficient with magnitude of |ST| > 0.03, no evidence for an effect of this size was obtained for applied temperature gradients up to 19oC. The presence of 1 M NaCl did not make a difference. In contrast, the concentration of CO2 dissolved in H2O was shown to vary significantly across the temperature gradient when excess CO2 was present, but the results could be explained simply by the variation in CO2 solubility over the temperature range and not to kinetic factors. For mixtures of D2O dissolved in scCO2 at 10 MPa and temperatures close to the critical point of CO2, the Raman peaks for H2O were too weak to measure with confidence even at the limit of D2O solubility.

  11. The use of high pressure CO2 -facilitated pH swings to enhance in situ product recovery of butyric acid in a two-phase partitioning bioreactor.

    Science.gov (United States)

    Peterson, Eric C; Daugulis, Andrew J

    2014-11-01

    Through the use of high partial pressures of CO2 (pCO2 ) to facilitate temporary pH reductions in two-phase partitioning bioreactors (TPPBs), improved pH dependent partitioning of butyric acid was observed which achieved in situ product recovery (ISPR), alleviating end-product inhibition (EPI) during the production of butyric acid by Clostridium tyrobutyricum (ATCC 25755). Through high pressure pCO2 studies, media buffering effects were shown to be substantially overcome at 60 bar pCO2 , resulting in effective extraction of the organic acid by the absorptive polymer Pebax® 2533, yielding a distribution coefficient (D) of 2.4 ± 0.1 after 1 h of contact at this pressure. Importantly, it was also found that C. tyrobutyricum cultures were able to withstand 60 bar pCO2 for 1 h with no decrease in growth ability when returned to atmospheric pressure in batch reactors after several extraction cycles. A fed-batch reactor with cyclic high pCO2 polymer extraction recovered 92 g of butyric acid to produce a total of 213 g compared to 121 g generated in a control reactor. This recovery reduced EPI in the TPPB, resulting in both higher productivity (0.65 vs. 0.33 g L(-1)  h(-1) ) and yield (0.54 vs. 0.40). Fortuitously, it was also found that repeated high pCO2 -facilitated polymer extractions of butyric acid during batch growth of C. tyrobutyricum lessened the need for pH control, and reduced base requirements by approximately 50%. Thus, high pCO2 -mediated absorptive polymer extraction presents a novel method for improving process performance in butyric acid fermentation, and this technique could be applied to the bioproduction of other organic acids as well.

  12. Biological CO2 conversion to acetate in subsurface coal-sand formation using a high-pressure reactor system

    Science.gov (United States)

    Ohtomo, Y.; Ijiri, A.; Ikegawa, Y.; Tsutsumi, M.; Imachi, H.; Uramoto, G.; Hoshino, T.; Morono, Y.; Tanikawa, W.; Hirose, T.; Inagaki, F.

    2013-12-01

    The geological CO2 sequestration into subsurface unmineable oil/gas fields and coal formations has been considered as one of the possible ways to reduce dispersal of anthropogenic greenhouse gasses into the atmosphere. However, feasibility of CO2 injection largely depends on a variety of geological and economical settings, and its ecological consequences have remained largely unpredictable. To address these issues, we developed a new flow-through-type CO2 injection system designated as the 'geobio-reactor system' to examine possible geophysical, geochemical and microbiological impact caused by CO2 injection under in-situ pressure (0-100 MPa) and temperature (0-70°C) conditions. In this study, we investigated Eocene bituminous coal-sandstones in the northwestern Pacific coast, Hokkaido, Japan, using the geobio-reactor system. Anaerobic artificial fluid and CO2 (flow rate: 0.002 and 0.00001 mL/min, respectively) were continuously supplemented into the coal-sand column under the pore pressure of 40 MPa (confined pressure: 41 MPa) at 40°C for 56 days. Molecular analysis of bacterial 16S rRNA genes showed that predominant bacterial components were physically dispersed from coal to sand as the intact form during experiment. Cultivation experiments from sub-sampling fluids indicated that some terrestrial microbes could preserve their survival in subsurface condition. Molecular analysis of archaeal 16S rRNA genes also showed that no methanogens were activated during experiment. We also anaerobically incubated the coal sample using conventional batch-type cultivation technique with a medium for methanogens. After one year of the batch incubation at 20°C, methane could be detected from the cultures except for the acetate-fed culture. The sequence of archaeal 16S rRNA genes via PCR amplification obtained from the H2 plus formate-fed culture was affiliated with a hydrogenotrophic methanogen within the genus Methanobacterium, whereas the methanol plus trimethylamine culture

  13. The Synergistic Effect of High Pressure CO2 and Nisin on Inactivation of Bacillus subtilis Spores in Aqueous Solutions

    Science.gov (United States)

    Rao, Lei; Wang, Yongtao; Chen, Fang; Liao, Xiaojun

    2016-01-01

    The inactivation effects of high pressure CO2 + nisin (simultaneous treatment of HPCD and nisin, HPCD + nisin), HPCD→nisin (HPCD was followed by nisin), and nisin→HPCD (nisin was followed by HPCD) treatments on Bacillus subtilis spores in aqueous solutions were compared. The spores were treated by HPCD at 6.5 or 20 MPa, 84–86°C and 0–30 min, and the concentration of nisin was 0.02%. Treated spores were examined for the viability, the permeability of inner membrane (IM) using flow cytometry method and pyridine-2, 6-dicarboxylic acid (DPA) release, and structural damage by transmission electron microscopy. A synergistic effect of HPCD + nisin treatment on inactivation of the spores was found, and the inactivation efficiency of the spores was HPCD + nisin > HPCD→nisin or nisin→HPCD. Moreover, HPCD + nisin caused higher IM permeability and DPA release of the spores than HPCD. A possible action mode of nisin-enhanced inactivation of the spores was suggested as that HPCD firstly damaged the coat and cortex of spores, and nisin penetrated into and acted on the IM of spores, which increased the damage to the IM of spores, and resulted in higher inactivation of the spores. PMID:27708639

  14. Raman spectroscopic measurements of CO2 density: Experimental calibration with high-pressure optical cell (HPOC) and fused silica capillary capsule (FSCC) with application to fluid inclusion observations

    Science.gov (United States)

    Wang, X.; Chou, I.-Ming; Hu, W.; Burruss, R.C.; Sun, Q.; Song, Y.

    2011-01-01

    Raman spectroscopy is a powerful method for the determination of CO2 densities in fluid inclusions, especially for those with small size and/or low fluid density. The relationship between CO2 Fermi diad split (??, cm-1) and CO2 density (??, g/cm3) has been documented by several previous studies. However, significant discrepancies exist among these studies mainly because of inconsistent calibration procedures and lack of measurements for CO2 fluids having densities between 0.21 and 0.75g/cm3, where liquid and vapor phases coexist near room temperature.In this study, a high-pressure optical cell and fused silica capillary capsules were used to prepare pure CO2 samples with densities between 0.0472 and 1.0060g/cm3. The measured CO2 Fermi diad splits were calibrated with two well established Raman bands of benzonitrile at 1192.6 and 1598.9cm-1. The relationship between the CO2 Fermi diad split and density can be represented by: ??=47513.64243-1374.824414????+13.25586152????2-0.04258891551????3 (r2=0.99835, ??=0.0253g/cm3), and this relationship was tested by synthetic fluid inclusions and natural CO2-rich fluid inclusions. The effects of temperature and the presence of H2O and CH4 on this relationship were also examined. ?? 2011 Elsevier Ltd.

  15. Probing the Structural Stability of and Enhanced CO2 Storage in MOF MIL-68(In) under High Pressures by FTIR Spectroscopy.

    Science.gov (United States)

    Hu, Yue; Lin, Bin; He, Peng; Li, Youyong; Huang, Yining; Song, Yang

    2015-12-14

    The unique structural topology of metal-organic framework (MOF) MIL-68, featuring two types of channels with distinct pore sizes, makes it a promising candidate for application in gas storage and separation. In this study, the behavior of as-made and activated MIL-68(In) was investigated in a diamond-anvil cell under high pressure by in situ IR spectroscopy. The framework exhibits high stability under compression up to 9 GPa, whereas the bridging OH groups appear to be very sensitive to compression. Pressure-induced structural modifications were found to be completely reversible for as-made MIL-68(In) but irreversible for the activated framework. Moreover, the addition of Nujol as pressure-transmitting medium makes the framework more resilient to pressure. Finally, when loaded with CO2, the framework exhibited interesting differential binding affinities with CO2 in the hexagonal and triangular pores at different pressures. The pressure-enhanced CO2 storage behavior and the guest-host interaction mechanism between CO2 and the MOF framework were explored with the aid of Monte Carlo simulations. These studies demonstrated great potential for MIL-68(In) in gas-storage applications that require extreme loading pressures. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Silicate Carbonation in Supercritical CO2 Containing Dissolved H2O: An in situ High Pressure X-Ray Diffraction Study

    Energy Technology Data Exchange (ETDEWEB)

    Schaef, Herbert T.; Miller, Quin RS; Thompson, Christopher J.; Loring, John S.; Bowden, Mark E.; Arey, Bruce W.; McGrail, B. Peter; Rosso, Kevin M.

    2013-06-30

    Technological advances have been significant in recent years for managing environmentally harmful emissions (mostly CO2) resulting from combustion of fossil fuels. Deep underground geologic formations are emerging as reasonable options for long term storage of CO2 but mechanisms controlling rock and mineral stability in contact with injected supercritical fluids containing water are relatively unknown. In this paper, we discuss mineral transformation reactions occurring between supercritical CO2 containing water and the silicate minerals forsterite (Mg2SiO4), wollastonite (CaSiO3), and enstatite (MgSiO3). This study utilizes newly developed in situ high pressure x-ray diffraction (HXRD) and in situ infra red (IR) to examine mineral transformation reactions. Forsterite and enstatite were selected as they are important minerals present in igneous and mafic rocks and have been the subject of a large number of aqueous dissolution studies that can be compared with non-aqueous fluid tests in this study. Wollastonite, classified as a pyroxenoid (similar to a pyroxene), was chosen as a suitably fast reacting proxy for examining silicate carbonation processes associated with a wet scCO2 fluid as related to geologic carbon sequestration. The experiments were conducted under modest pressures (90 to 160 bar), temperatures between 35° to 70° C, and varying concentrations of dissolved water. Under these conditions scCO2 contains up to 3,500 ppm dissolved water.

  17. An Improved CO2-Crude Oil Minimum Miscibility Pressure Correlation

    Directory of Open Access Journals (Sweden)

    Hao Zhang

    2015-01-01

    Full Text Available Minimum miscibility pressure (MMP, which plays an important role in miscible flooding, is a key parameter in determining whether crude oil and gas are completely miscible. On the basis of 210 groups of CO2-crude oil system minimum miscibility pressure data, an improved CO2-crude oil system minimum miscibility pressure correlation was built by modified conjugate gradient method and global optimizing method. The new correlation is a uniform empirical correlation to calculate the MMP for both thin oil and heavy oil and is expressed as a function of reservoir temperature, C7+ molecular weight of crude oil, and mole fractions of volatile components (CH4 and N2 and intermediate components (CO2, H2S, and C2~C6 of crude oil. Compared to the eleven most popular and relatively high-accuracy CO2-oil system MMP correlations in the previous literature by other nine groups of CO2-oil MMP experimental data, which have not been used to develop the new correlation, it is found that the new empirical correlation provides the best reproduction of the nine groups of CO2-oil MMP experimental data with a percentage average absolute relative error (%AARE of 8% and a percentage maximum absolute relative error (%MARE of 21%, respectively.

  18. Effect of Chromium on Corrosion Behavior of P110 Steels in CO2-H2S Environment with High Pressure and High Temperature

    Directory of Open Access Journals (Sweden)

    Jianbo Sun

    2016-03-01

    Full Text Available The novel Cr-containing low alloy steels have exhibited good corrosion resistance in CO2 environment, mainly owing to the formation of Cr-enriched corrosion film. In order to evaluate whether it is applicable to the CO2 and H2S coexistence conditions, the corrosion behavior of low-chromium steels in CO2-H2S environment with high pressure and high temperature was investigated using weight loss measurement and surface characterization. The results showed that P110 steel suffered localized corrosion and both 3Cr-P110 and 5Cr-P110 steels exhibited general corrosion. However, the corrosion rate of 5Cr-P110 was the highest among them. The corrosion process of the steels was simultaneously governed by CO2 and H2S. The outer scales on the three steels mainly consisted of FeS1−x crystals, whereas the inner scales on Cr-containing steels comprised of amorphous FeS1−x, Cr(OH3 and FeCO3, in contrast with the amorphous FeS1−x and FeCO3 mixture film of P110 steel. The more chromium the steel contains, the more chromium compounds the corrosion products contain. The addition of chromium in steels increases the uniformity of the Cr-enriched corrosion scales, eliminates the localized corrosion, but cannot decrease the general corrosion rates. The formation of FeS1−x may interfere with Cr-enriched corrosion scales and lowering the corrosion performance of 3Cr-P110 and 5Cr-P110 steels.

  19. Phase equilibria and physical properties of CO2-saturated cocoa butter mixtures at elevated pressures

    NARCIS (Netherlands)

    Venter, M.J.; Willems, P.; Kareth, S.; Weidner, E.; Kuipers, N.J.M.; de Haan, A.B.

    2007-01-01

    The melting point and phase behaviour of cocoa butter under CO2 pressure were observed in a high-pressure view cell. The melting point decreases from 35 to 23 °C at CO2 pressures higher than 5 MPa. A static analytical procedure was used to measure the solubility of CO2 in cocoa butter at 40, 80 and

  20. Phase equilibria and physical properties of CO2-saturated cocoa butter mixtures at elevated pressures

    NARCIS (Netherlands)

    Venter, M.J.; Willems, P.; Kareth, S.; Weidner, E.; Kuipers, N.J.M.; Haan, de A.B.

    2007-01-01

    The melting point and phase behaviour of cocoa butter under CO2 pressure were observed in a high-pressure view cell. The melting point decreases from 35 to 23 °C at CO2 pressures higher than 5 MPa. A static analytical procedure was used to measure the solubility of CO2 in cocoa butter at 40, 80 and

  1. CO2 Exsolution from CO2 Saturated Water: Core-Scale Experiments and Focus on Impacts of Pressure Variations.

    Science.gov (United States)

    Xu, Ruina; Li, Rong; Ma, Jin; Jiang, Peixue

    2015-12-15

    For CO2 sequestration and utilization in the shallow reservoirs, reservoir pressure changes are due to the injection rate changing, a leakage event, and brine withdrawal for reservoir pressure balance. The amounts of exsolved CO2 which are influenced by the pressure reduction and the subsequent secondary imbibition process have a significant effect on the stability and capacity of CO2 sequestration and utilization. In this study, exsolution behavior of the CO2 has been studied experimentally using a core flooding system in combination with NMR/MRI equipment. Three series of pressure variation profiles, including depletion followed by imbibitions without or with repressurization and repetitive depletion and repressurization/imbibition cycles, were designed to investigate the exsolution responses for these complex pressure variation profiles. We found that the exsolved CO2 phase preferentially occupies the larger pores and exhibits a uniform spatial distribution. The mobility of CO2 is low during the imbibition process, and the residual trapping ratio is extraordinarily high. During the cyclic pressure variation process, the first cycle has the largest contribution to the amount of exsolved CO2. The low CO2 mobility implies a certain degree of self-sealing during a possible reservoir depletion.

  2. In situ investigation of supercritical CO2 assisted impregnation of drugs into a polymer by high pressure FTIR micro-spectroscopy.

    Science.gov (United States)

    Champeau, M; Thomassin, J-M; Jérôme, C; Tassaing, T

    2015-02-01

    An original experimental set-up combining a FTIR micro-spectrometer with a high pressure cell has been built in order to analyze in situ the impregnation of a solute into microscopic polymer samples, such as fibers or films, subjected to supercritical CO2. Thanks to this experimental set-up, key factors governing the impregnation process can be simultaneously followed such as the swelling of the polymeric matrix, the CO2 sorption, the kinetics of impregnation and the drug loading into the matrix. Moreover, the solute/polymer interactions and the speciation of the solute can be analyzed. We have monitored in situ the impregnation of aspirin and ketoprofen into PEO (Polyethylene Oxide) platelets at T = 40 °C and P = 5; 10 and 15 MPa. The kinetics of impregnation of aspirin was quicker than the one of ketoprofen and the final drug loading was also higher in the case of aspirin. Whereas the CO2 sorption and the PEO swelling remain constant when PEO is just subjected to CO2 under isobaric conditions, we noticed that both parameters can increase while the drug impregnates PEO. Coupling these results with DSC measurements, we underlined the plasticizing effect of the drug that also leads to a decrease in the crystallinity of PEO in situ thus favoring the sorption of CO2 molecules into the matrix and the swelling of the matrix. The plasticizing effect increases with the drug loading. Finally, the speciation of drugs was investigated considering the shift of the carboxyl bands of the drugs. Both drugs were found to be mainly homogeneously dispersed into PEO.

  3. 高H2S高CO2高Cl-天然气压力容器设计%Design of pressure vessel for natural gas with high H 2 S,CO2 and Cl- contents

    Institute of Scientific and Technical Information of China (English)

    刘文广; 张毅; 张波

    2014-01-01

    The basic designing practices of pressure vessels for natural gas field with high H2S ,CO2 and Cl- contents were introduced .Meanwhile ,handling of problems appeared during manufacture and inspection process ,as well as basic situations of the pressure vessels after put into production were explained .These measures ensured the safety of the pressure vessels and the successful start-up of the devices to produce qualified natural gas ,condensate oil and corre-sponding affiliated products .All of above made a breakthrough in the large gas field development both at home and abroad ,and the unit was successfully commissioned abroad .The practices and processing suggestions in the approaches also provided new safe and convenient ways to imple-ment in the development of similar gas field abroad ,and provided references in design and con-struction for similar units .%介绍了三高气田(高H2 S、高CO2、高Cl-)压力容器设计的基本作法,同时对制造检验过程中出现问题的处理和试运投产的基本情况作了说明,确保了压力容器的安全,装置一次投运成功,最终生产出合格的天然气、凝析油、相应附属产品。该压力容器突破了国内外大型气田的开发,在国外一次投产成功,为今后国外三高气田的开发走出了一条安全可靠、便利实施的新路,这些作法和处理意见为同行们今后的设计、施工提供了参考。

  4. Surface Properties of Poly[2-perfluorooctyl)ethyl acrylate] Deposited from Liquid CO2 High-Pressure Fee Meniscus Coating

    Energy Technology Data Exchange (ETDEWEB)

    Kim,J.; Efimenko, K.; Genzer, J.; Carbonell, R.

    2007-01-01

    The surface characteristics of poly[2-(perfluorooctyl)ethyl acrylate] (PFOEA) films deposited using a high-pressure free meniscus coating (hFMC) process with liquid CO{sub 2} (l-CO{sub 2}) as the coating solvent on 12.5 cm diameter silicon wafer substrates were investigated using contact angle measurements, atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), and near-edge X-ray adsorption fine structure (NEXAFS) spectroscopy. The results were compared with surface property measurements of PFOEA films deposited from 1,1,2-trichlorotrifluoroethane (Freon 113) under normal dip coating conditions at atmospheric pressure. NEXAFS measurements showed that perfluoroalkyl groups in the films from l-CO{sub 2} and Freon 113 were well-organized and oriented normal to the substrate at the air/polymer interface. AFM images and XPS measurements revealed that a terrace-like structure of the PFOEA film from l-CO{sub 2} resulted in carbonyl group exposure at the air/polymer interface. This leads to smaller contact angles on the films cast from l-CO{sub 2} relative to the specimens deposited from Freon 113. Annealing the films deposited from the solvents resulted in droplet formation on the surface due to dewetting. The critical surface tension ({gamma}{sub c}) after annealing the film prepared from Freon 113 increased from 6.5 to 8.5 mJ/m{sup 2}, whereas {gamma}{sub c} of the film deposited from l-CO{sub 2} decreased slightly from 9.7 to 8.9 mJ/m{sup 2}. We discuss how surface morphology changes before and after annealing play a role in the variation of {gamma}{sub c}.

  5. CO2 dissolution and its impact on reservoir pressure behavior

    NARCIS (Netherlands)

    Peters, E.; Egberts, P.J.P.; Loeve, D.; Hofstee, C.

    2015-01-01

    Geological storage of CO2 in large, saline aquifers needs to be monitored for safety purposes. In particular the observation of the pressure behavior of a storage site is relevant for the indication of CO2 leakage. However, interpretation of observed pressure is not straightforward in these systems,

  6. CO2 dissolution and its impact on reservoir pressure behavior

    NARCIS (Netherlands)

    Peters, E.; Egberts, P.J.P.; Loeve, D.; Hofstee, C.

    2015-01-01

    Geological storage of CO2 in large, saline aquifers needs to be monitored for safety purposes. In particular the observation of the pressure behavior of a storage site is relevant for the indication of CO2 leakage. However, interpretation of observed pressure is not straightforward in these systems,

  7. Compact, High Accuracy CO2 Monitor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This Small Business Innovative Research Phase II proposal seeks to develop a low cost, robust, highly precise and accurate CO2 monitoring system. This system will...

  8. Compact, High Accuracy CO2 Monitor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This Small Business Innovative Research Phase I proposal seeks to develop a low cost, robust, highly precise and accurate CO2 monitoring system. This system will...

  9. Enhancing Magnesite Formation at Low Temperature and High CO2 Pressure: The Impact of Seed Crystals and Minor Components

    Energy Technology Data Exchange (ETDEWEB)

    Felmy, Andrew R.; Qafoku, Odeta; Arey, Bruce W.; Kovarik, Libor; Liu, Jia; Perea, Daniel E.; Ilton, Eugene S.

    2015-02-24

    The formation of magnesite was followed in aqueous solution containing initially added Mg(OH)2 equilibrated with supercritical carbon dioxide (90 atm pressure, 50°C) in the presence of introduced magnesite particles and minor components, Co(II). As expected, the introduction of magnesite particles accelerated the formation of magnesite from solution. However, the formation rate of magnesite was even greater when small concentrations of Co(II) were introduced, indicating that the increased rate of magnesite formation in the presence of Co(II) was not solely due to the addition of a growth promoting surface. Detailed analysis of the magnesite particles by scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), and atom probe tomography (APT) revealed that the originally added Co(II) was concentrated in the center but also present throughout the growing magnesite particles. Addition of the Co(II) in different chemical forms (i.e. as solid phase CoCO3 or Co(OH)2) could alter the growth rate of magnesite depending upon the addition of bicarbonate to the starting solution. Geochemical modeling calculations indicate that this difference is related to the thermodynamic stability of these different phases in the initial solutions. More broadly, these results indicate that the presence of even small concentrations of foreign ions that form carbonate compounds with a similar structure as magnesite can be incorporated into the magnesite lattice, accelerating the formation of anhydrous carbonates in natural environments.

  10. FORTRAN programs for generating fluid inclusion isochores and fugacity coefficients for the system H 2O-CO 2-NaCl at high pressures and temperatures

    Science.gov (United States)

    Bowers, Teresa Suter; Helgeson, Harold C.

    Program DENFIND permits calculation of pressures and temperatures corresponding to isochores for H 2O-CO 2-NaCl fluids which can be used to generate pressure corrections of fluid inclusion homogenization temperatures. Program FUGCO facilitates calculation of fugacity coefficients in the system H 2O-CO 2-NaCl as a function of pressure, temperature and fluid composition. Both programs employ a modified Redlich-Kwong equation of state for the ternary system (Bowers and Helgeson, 1983a), which is applicable to fluids containing up to 35 wt. % NaCl (relative to H 2O + NaCl) at pressures above 500 bars and temperature from 350 to 600°C.

  11. Effects of hydroxyl-functionalization and sub-Tg thermal annealing on high pressure pure- and mixed-gas CO2/CH4 separation by polyimide membranes based on 6FDA and triptycene-containing dianhydrides

    KAUST Repository

    Swaidan, Raja

    2015-02-01

    A sub-Tg thermally-annealed (250°C, 24h) ultra-microporous PIM-polyimide bearing a 9,10-diisopropyl-triptycene contortion center and hydroxyl-functionalized diamine (2,2-bis(3-amino-4-hydroxyphenyl)-hexafluoropropane, APAF) exhibited plasticization resistance up to 50bar for a 1:1 CO2/CH4 feed mixture, with a 9-fold higher CO2 permeability (30Barrer) and 2-fold increase in CO2/CH4 permselectivity (~50) over conventional dense cellulose acetate membranes at 10bar CO2 partial pressure. Interestingly, mixed-gas CO2/CH4 permselectivities were 10-20% higher than those evaluated under pure-gas conditions due to reduction of mixed-gas CH4 permeability by co-permeation of CO2. Gas transport, physisorption and fluorescence studies indicated a sieving pore-structure engaged in inter-chain charge transfer complexes (CTCs), similar to that of low-free-volume 6FDA-APAF polyimide. The isosteric heat of adsorption of CO2 as well as CO2/CH4 solubility selectivities varied negligibly upon replacement of OH with CH3 but CTC formation was hindered, CO2 sorption increased, CO2 permeability increased ~3-fold, CO2/CH4 permselectivity dropped to ~30 and CH4 mixed-gas co-permeation increased. These results suggest that hydroxyl-functionalization did not cause preferential polymer-gas interactions but primarily elicited diffusion-dominated changes owing to a tightened microstructure more resistant to CO2-induced dilations. Solution-processable hydroxyl-functionalized PIM-type polyimides provide a new platform of advanced materials that unites the high selectivities of low-free-volume polymers with the high permeabilities of PIM-type materials particularly for natural gas sweetening applications.

  12. DME-CO2-CH3OH和DME-CO2-C2H5OH体系的高压汽液相平衡研究%High-pressure Vapor-Liquid Equilibrium Studies for DME-CO2-CH3OH and DME-CO2-C2H5OH Systems

    Institute of Scientific and Technical Information of China (English)

    郑丹星; 武向红; 曹文; 王宁

    2006-01-01

    In this study, the Gibbs-Duhem equation was applied to make the thermodynamic consistency test and thermodynamic model estimation for systems of CO2-DME (dimethyl ether), DME-CH3OH, CO2-CH3OH and DME-C2H5OH systems on the basis of the vapor-liquid equilibrium (VLE) experimental data in published reports.And the NRTL binary interaction parameters of the systems mentioned above were regressed by the VLE data and were subjected to a thermodynamic consistency test because the study showed that PR-NRTL model combination was appropriate for the four systems mentioned above. The regressed binary interaction parameters were used to estimate the VLE for DME-CO2-CH3OH at temperatures of 313.15K and 333.15K, and the estimated result was coincident with the experimental data. On the basis of the predicted VLE data for systems of DME-CO2-CH3OH and DME-CO2-C2H5OH, the VLE behaviors of the two systems were studied by the phase diagrams of these two ternary systems, with the forms of both the two dimensional and three dimensional phase diagrams, respectively.

  13. 高温高压CO2环境介质中X60钢的腐蚀%Corrosion Behavior of X60 Steel in CO2 Environment at High Temperature and High Pressure

    Institute of Scientific and Technical Information of China (English)

    周琦; 贾建刚; 南雪丽; 赵红顺; 孟倩

    2008-01-01

    利用高温高压釜,通过失重法、SEM、XRD以及电子探针微观结构分析等方法,研究了X60钢在不同高温条件下及2MPa分压的饱和CO2的环境介质中的腐蚀行为.结果表明:在90℃、120℃、150℃温度下,X60钢发生了严重的CO2腐蚀,表现出高的腐蚀速率,且腐蚀速率随着温度的升高呈先上升再下降的趋势,120℃时最大,表面腐蚀产物膜的主要成分为Fe3C和FeCO3.腐蚀过程显示局部腐蚀特征,为不同程度的点蚀和条状腐蚀.研究发现,Clˉ为点蚀的"激发剂",促进了点蚀的发生和发展.CO2腐蚀受温度、腐蚀产物膜、钢的显微组织、Clˉ等影响,是各种因素相互作用的结果.

  14. A novel high-pressure vessel for simultaneous observations of seismic velocity and in situ CO2 distribution in a porous rock using a medical X-ray CT scanner

    Science.gov (United States)

    Jiang, Lanlan; Nishizawa, Osamu; Zhang, Yi; Park, Hyuck; Xue, Ziqiu

    2016-12-01

    Understanding the relationship between seismic wave velocity or attenuation and CO2 saturation is essential for CO2 storage in deep saline formations. In the present study, we describe a novel upright high-pressure vessel that is designed to keep a rock sample under reservoir conditions and simultaneously image the entire sample using a medical X-ray CT scanner. The pressure vessel is composed of low X-ray absorption materials: a carbon-fibre-enhanced polyetheretherketone (PEEK) cylinder and PEEK vessel closures supported by carbon-fibre-reinforced plastic (CFRP) joists. The temperature was controlled by a carbon-coated film heater and an aramid fibre thermal insulator. The assembled sample cell allows us to obtain high-resolution images of rock samples during CO2 drainage and brine imbibition under reservoir conditions. The rock sample was oriented vertical to the rotation axis of the CT scanner, and seismic wave paths were aligned parallel to the rotation axis to avoid shadows from the acoustic transducers. The reconstructed CO2 distribution images allow us to calculate the CO2 saturation in the first Fresnel zone along the ray path between transducers. A robust relationship between the seismic wave velocity or attenuation and the CO2 saturation in porous rock was obtained from experiments using this pressure vessel.

  15. CO2 Corrosion Resistance of Common 13Cr Steel under High Temperature and High Pressure%普通13Cr钢在高温高压下的抗CO2腐蚀性能

    Institute of Scientific and Technical Information of China (English)

    陈尧; 白真权; 林冠发

    2007-01-01

    针对普通13Cr钢的CO2腐蚀性能,在模拟大庆油田井下的腐蚀环境,通过高温高压釜进行了13Cr钢的腐蚀试验,采用SEM、EDS和XPS测试手段分析研究所获得CO2腐蚀产物膜的形貌和化学组成.结果表明,在所试验的三个温度下,13Cr钢液相、气相的腐蚀类型都主要为均匀腐蚀.13Cr钢的腐蚀膜主要成分是晶态FeCO3和非晶态的Cr(OH)3,还含有少量的Fe或Cr的氧化物、碳化物和单质Fe等.在85℃和110℃下,13Cr钢的液相腐蚀速率属于中度腐蚀,基体表面形成了一层深褐色腐蚀膜层且表面平整均匀,晶粒细小,膜层较薄;在170℃下其腐蚀速率靠近严重腐蚀的下限,接近中度腐蚀的上限;气相腐蚀与液相腐蚀腐蚀过程相似,属于中度腐蚀,腐蚀产物膜表面则为较大颗粒的晶粒,但很不规则.

  16. Effect of high power CO2 and Yb:YAG laser radiation on the characteristics of TIG arc in atmospherical pressure argon and helium

    Science.gov (United States)

    Wu, Shikai; Xiao, Rongshi

    2015-04-01

    The effects of laser radiation on the characteristics of the DC tungsten inert gas (TIG) arc were investigated by applying a high power slab CO2 laser and a Yb:YAG disc laser. Experiment results reveal that the arc voltage-current curve shifts downwards, the arc column expands, and the arc temperature rises while the high power CO2 laser beam vertically interacts with the TIG arc in argon. With the increase of the laser power, the voltage-current curve of the arc shifts downwards more significantly, and the closer the laser beam impingement on the arc to the cathode, the more the decrease in arc voltage. Moreover, the arc column expansion and the arc temperature rise occur mainly in the region between the laser beam incident position and the anode. However, the arc characteristics hardly change in the cases of the CO2 laser-helium arc and YAG laser-arc interactions. The reason is that the inverse Bremsstrahlung absorption coefficients are greatly different due to the different electron densities of the argon and helium arcs and the different wave lengths of CO2 and YAG lasers.

  17. 高温高压及醋酸环境中H2S对油管钢CO2腐蚀行为的影响%Effect of H2S on CO2 Corrosion of Oil Tube Steel in High Temperature and High Pressure Environments Containing Acetic Acid

    Institute of Scientific and Technical Information of China (English)

    钱进森; 陈长风; 燕铸; 郑树启; 翁永基

    2011-01-01

    利用美国Cortest公司高温高压反应釜模拟高含硫油气田H2S/CO2及醋酸共存环境,在流动高矿化度饱和H2S/CO2介质中进行试验,辅以SEM、XRD、动电位扫描及交流阻抗等表面分析和电化学技术,探讨了高温高压及醋酸环境中H2S对油管钢CO2腐蚀行为的影响.结果表明:普通N80油管钢在单一CO2腐蚀速率较高,达到5.1 mm/a,加入H2S后腐蚀速率明显受到抑制,降幅最大的点出现在H2S分压最小处,低至0.28 mm/a,随着H2S分压的继续增大,腐蚀速率略有增加,但远低于单一CO2腐蚀速率.加入H2S后腐蚀产物以四方晶系的FeS (Mackinawite)为主,未出现FeCO3,腐蚀过程转变为H2S控制.试样的腐蚀形态以局部腐蚀为主,试样表面均出现了严重的点蚀,醋酸的存在增大了油管钢在H2S/CO2环境中产生局部腐蚀的倾向性.%Solution immersion environments containing H2S/CO2 and acetic acid were simulated in a high temperature and high pressure autoclave manufactured by UAS Cortest Company, and test was conducted in flowing H2S/CO2 medium with high salinity. The Effect of H2S on CO2 corrosion of oil tube steel were analyzed and discussed by the following electrochemistry technologies, such as SEM, XRD, dynamic potential scanning, AC impedance and etc. The results showed that the corrosion rate of N80 oil tube steel is very high, up to 5.1mm/a, when solution immersion environment contain only CO2 and acetic acid. However, with the addition of H2S, the corrosion rate is restrained obviously and the largest decreasing point is observed at the lowest partial pressure of H2S, down to 0.28 mm/a. With H2S partial pressure increasing, the corrosion rate slightly increased, but is far lower than simplex CO2 corrosion rate. With the presence of H2S, the corrosion products are mainly FeS (Mackinawite), FeCO3 doesn't appear, and corrosion is controlled by H2S. The corrosion forms of samples are mainly localized corrosion, severe pitting presents

  18. EOS7Cm: An improved TOUGH2 module for simulating non-isothermal multiphase and multicomponent flow in CO2-H2S-CH4-brine systems with high pressure, temperature and salinity

    Science.gov (United States)

    Lei, Hongwu; Li, Jun; Li, Xiaochun; Jiang, Zhenjiao

    2016-09-01

    Understanding the non-isothermal multiphase and multicomponent flow in a CO2-H2S-CH4-brine system is of critical importance in projects such as CO2 storage in deep saline aquifers, natural gas extraction using CO2 as the displacement fluid, and heat extraction from hot dry rocks using CO2 as the working fluid. Numerical simulation is a necessary tool to evaluate the chemical evolution in these systems. However, an accurate thermodynamic model for CO2-H2S-CH4-brine systems appropriate for high pressure, temperature, and salinity is still lacking. This study establishes the mutual solubility model for CO2-H2S-CH4-brine systems based on the fugacity-activity method for phase equilibrium. The model can predict mutual solubilities for pressure up to 1000 bar for CO2 and CH4, and 200 bar for H2S, for temperature up to 200 °C, and for salinity up to 6 mol/kg water. We incorporated the new model into TOUGH2/EOS7C, forming a new improved module we call EOS7Cm. Compared to the original EOS7C, EOS7Cm considers the effects of H2S and covers a larger range of temperature and salinity. EOS7Cm is employed in five examples, including CO2 injection with and without impurities (CH4 and/or H2S) into deep aquifers, CH4 extraction from aquifers by CO2 injection, and heat extraction from hot dry rock. The results are compared to those from TOUGH2/ECO2N, EOS7C and CMG, agreement among which serves to verify EOS7Cm.

  19. 超高压联合高密度 CO2处理钝化对虾多酚氧化酶%Inactivation of polyphenol oxidase from Litopenaeus vannamei treated by ultra high pressure combined dense phase carbon dioxide

    Institute of Scientific and Technical Information of China (English)

    邓倩琳; 刘书成; 刘蒙娜; 刘媛; 郭明慧; 吉宏武; 李承勇; 高静

    2016-01-01

    Ultra high pressure (UHP) and dense phase carbon dioxide (DPCD) processes are effective non-thermal pasteurization methods that have gained increasing attention in inactivation of undesired enzymes and microorganisms in food industry. The advantage of UHP is to process foods that are already packaged and therefore are not liable to post-process contamination. Although UHP effectively eliminates microorganisms, it does not inactivate some key enzymes that reduce the product quality. For example, UHP may increase the activities of polyphenol oxidase (PPO) at lower pressure. As a continuous operation, DPCD needs aseptic filling to containers, but can inactivate enzymes. Therefore it is logical to combine these technologies to benefit from their individual advantages. The presence of carbon dioxide (CO2) in the sample medium might create a more acidic environment and synergistically interact with pressure to damage or alter the structures of enzymes and microbial cells. In order to make up for the disadvantage of UHP in inactivating PPO and use the advantage of DPCD in inactivating PPO, the inactivation effect of PPO from Litopenaeus vannamei treated by UHP combined with CO2 (UHP+CO2) was studied, and the feasibility of developing new shrimp products by UHP+CO2 was explored. The crude PPO extracts of 2 mL were treated with 2% CO2 (v/v) package alone, or UHP alone, or UHP + 2% CO2 (v/v). The treatment temperature was 30±2 ℃. The treatment pressure was 100, 200, 300, 400 and 500 MPa, respectively. The treatment time was 5, 10, 15, 20, 25 and 30 min, respectively. The results showed that: The PPO was inactivated more effectively by UHP+CO2 than CO2 treatment and UHP treatment alone. Treated at 100 MPa for 30 min by UHP+CO2, PPO activity dropped to 18.92%±1.52%. At 200 MPa for 10 min by UHP+CO2, PPO activity dropped to 10.91%±1.08%. At 300 MPa for 10 min by UHP+CO2, 95% PPO was inactivated. At 400 MPa for 5 min by UHP+CO2, the residual activity of PPO was less than 3

  20. Study on the CO2 Corrosion Electrochemical Characteristics of 13Cr Steel at High Temperature and High Pressure%13Cr钢高温高压CO2腐蚀电化学特性研究

    Institute of Scientific and Technical Information of China (English)

    吕祥鸿; 赵国仙; 杨延清; 马志军; 陈长风; 路民旭

    2004-01-01

    通过模拟塔里木油田环境进行腐蚀实验,利用电化学方法研究高温高压条件下13Cr油井管钢的CO2腐蚀的电化学特性.结果表明:在150℃时, 13Cr钢的自腐蚀电位较低,而自腐蚀电流密度很高,钝化区间不太明显;24,48,72,96h时的交流阻抗图谱均具有三个时间常数,并且随腐蚀时间的延长,腐蚀孔内溶液的粘度不断加大,使电荷传递和扩散传质的阻力越来越大,Warburg阻抗逐渐增加,整个电极表面金属/钝化膜与溶液之间的双电层电容Cf随着时间的延长而逐渐减小.

  1. CO2 Corrosion Resistance of Common 13 Cr Steel under High Temperature and High Pressure%普通13Cr钢在高温高压下的抗CO2腐蚀性能

    Institute of Scientific and Technical Information of China (English)

    陈尧; 白真权; 林冠发

    2007-01-01

    针对普通13Cr钢的CO2抗腐蚀性能,模拟大庆油田井下的腐蚀环境,通过高温高压釜进行了13Cr钢的腐蚀试验.采用SEM、EDS和XPS测试手段分析研究所获得C02腐蚀产物膜的形貌和化学组成.结果表明,在所试验的三个温度下,13Cr钢液相、气相的腐蚀类型都主要为均匀腐蚀.其腐蚀膜的主要成分是晶态FeCO3和非晶态的Cr(OH)3,还含有少量的Fe或Cr的氧化物、碳化物和单质Fe等.在85℃和110℃下,13Cr钢的液相腐蚀速率属于中度腐蚀,基体表面形成了一层深褐色腐蚀膜层且表面平整均匀、晶粒细小、膜层较薄.在170℃下,其腐蚀速率靠近严重腐蚀的下限,接近中度腐蚀的上限.气相腐蚀与液相腐蚀腐蚀过程相似,属于中度腐蚀,腐蚀产物膜表面则为较大颗粒的晶粒,但很不规则.

  2. Unconventional, highly selective CO2 adsorption in zeolite SSZ-13.

    Science.gov (United States)

    Hudson, Matthew R; Queen, Wendy L; Mason, Jarad A; Fickel, Dustin W; Lobo, Raul F; Brown, Craig M

    2012-02-01

    Low-pressure adsorption of carbon dioxide and nitrogen was studied in both acidic and copper-exchanged forms of SSZ-13, a zeolite containing an 8-ring window. Under ideal conditions for industrial separations of CO(2) from N(2), the ideal adsorbed solution theory selectivity is >70 in each compound. For low gas coverage, the isosteric heat of adsorption for CO(2) was found to be 33.1 and 34.0 kJ/mol for Cu- and H-SSZ-13, respectively. From in situ neutron powder diffraction measurements, we ascribe the CO(2) over N(2) selectivity to differences in binding sites for the two gases, where the primary CO(2) binding site is located in the center of the 8-membered-ring pore window. This CO(2) binding mode, which has important implications for use of zeolites in separations, has not been observed before and is rationalized and discussed relative to the high selectivity for CO(2) over N(2) in SSZ-13 and other zeolites containing 8-ring windows.

  3. 油管钢在高温高压H2S/CO2环境中的二次腐蚀行为研究%Research on Second Corrosion Behavior of Oil Tube Steel in High Temperature and High Pressure Environments Containing H2S/CO2

    Institute of Scientific and Technical Information of China (English)

    燕铸; 钱进森; 李振东; 刘建彬; 李小波

    2014-01-01

    利用美国CORTEST公司高温高压反应釜模拟高含S油气田H2S/CO2腐蚀环境,在流动高矿化度饱和H2S/CO2介质中进行试验,辅以SEM、 XRD、动电位扫描及交流阻抗等表面分析和电化学技术,探讨了油管钢在高温高压H2S/CO2环境中的二次腐蚀行为。结果表明,普通N80油管钢单一CO2腐蚀速率较高,为1.89 mm/a;先CO2腐蚀后H2S腐蚀,腐蚀速率减小为1.38 mm/a,材料的腐蚀类型表现出严重的局部腐蚀,先生成的FeCO3膜转变为FeS膜,转变过程中腐蚀产物膜的晶格发生畸变,导致腐蚀产物膜分层、疏松且容易脱落;先H2S腐蚀后再CO2腐蚀,腐蚀速率明显减小至0.27 mm/a,腐蚀产物膜未发生转变,通过腐蚀产物膜电化学测试分析, FeCO3膜对基体的保护性差,而FeS膜对基体的保护性相对较好。%H2S/CO2 corrosion environments in oil and gas field containing rich S were simulated in a high temperature and high pressure autoclave manufactured by USA Cortest Company,and tests were conducted in flowing medium with high salinity. Second corrosion behavior of oil tube steel in high temperature and high pressure H2S/CO2 corrosion environments was analyzed and discussed by the following technologies,such as SEM,XRD,dynamic potential scanning,AC impedance and electrochemical techniques. The results showed that corrosion rate of N80 oil tube steel was very high,up to 1.89 mm/a. when solution immersion environment contain only CO2. If H2S corrosion was conducted after CO2 corrosion, the corrosion rate reduced to 1.38 mm/a. The corrosion type showed distinct characteristic of local corrosion. FeCO3 corrosion film formed firstly would be transformed to FeS film,in this process,aberration of crystal lattice happened,which would result in delamination and loosen of film. If CO2 corrosion was conducted after H2S corrosion, the corrosion rate decreased a lot,up to 0.27 mm/a, FeS film formed firstly would not

  4. ARD remediation with limestone in a CO2 pressurized reactor

    Science.gov (United States)

    Sibrell, Philip L.; Watten, Barnaby J.; Friedrich, Andrew E.; Vinci, Brian J.

    2000-01-01

    We evaluated a new process for remediation of acid rock drainage (ARD). The process treats ARD with intermittently fluidized beds of granular limestone maintained within a continuous flow reactor pressurized with CO2. Tests were performed over a thirty day period at the Toby Creek mine drainage treatment plant, Elk County, Pennsylvania in cooperation with the Pennsylvania Department of Environmental Protection. Equipment performance was established at operating pressures of 0, 34, 82, and 117 kPa using an ARD flow of 227 L/min. The ARD had the following characteristics: pH, 3.1; temperature, 10 °C; dissolved oxygen, 6.4 mg/L; acidity, 260 mg/L; total iron, 21 mg/L; aluminum, 22 mg/L; manganese, 7.5 mg/L; and conductivity, 1400 μS/cm. In all cases tested, processed ARD was net alkaline with mean pH and alkalinities of 6.7 and 59 mg/L at a CO2 pressure of 0 kPa, 6.6 and 158 mg/L at 34 kPa, 7.4 and 240 mg/L at 82 kPa, and 7.4 and 290 mg/L at 117 kPa. Processed ARD alkalinities were correlated to the settled bed depth (pIron, aluminum, and manganese removal efficiencies of 96%, 99%, and 5%, respectively, were achieved with filtration following treatment. No indications of metal hydroxide precipitation or armoring of the limestone were observed. The surplus alkalinity established at 82 kPa was successful in treating an equivalent of 1136 L/min (five-fold dilution) of the combined three ARD streams entering the Toby Creek Plant. This side-stream capability provides savings in treatment unit scale as well as flexibility in treatment effect. The capability of the system to handle higher influent acidity was tested by elevating the acidity to 5000 mg/L with sulfuric acid. Net alkaline effluent was produced, indicating applicability of the process to highly acidic ARD.

  5. Dependence of CO2-Brine Interfacial Tension on Aquifer Pressure, Temperature and Water Salinity

    Science.gov (United States)

    Bachu, S.; Bennion, B.

    2007-12-01

    Carbon dioxide storage in deep saline aquifers is a climate-change mitigation strategy that has significant potential in the short-to-medium term. The displacement of formation water by CO2 (drainage) and of CO2 by invading aquifer brine (imbibition) depend on the interfacial tension (IFT) of the CO2-brine system. To provide needed data, an extensive laboratory program was conducted for the measurement of the interfacial tension between CO2 and water or brine covering the ranges of 2 to 27 MPa pressure, 20°C to 125°C temperature, and 0 to 334,000 mg/l water salinity. The laboratory experiments were conducted using the pendant drop method combined with the Laplace solution for the profile of the brine drop in the CO2-rich environment. The analysis of the resulting set of 294 IFT measurements reveals that: 1) for conditions of constant temperature and water salinity, IFT decreases steeply with increasing pressure in the range PPc, with an asymptotic trend towards a constant value for high pressures; 2) for the same conditions of constant pressure and temperature, IFT increases with increasing water salinity, reflecting decreasing CO2 solubility in brine as salinity increases; 3) the dependence of IFT on temperature is more complex, depending on the CO2 phase. For TTc, with an asymptotic trend towards a constant value for high temperatures. These results indicate that, in the case of CO2 storage in deep saline aquifers, the formation water displacement by injected CO2 during the injection phase of CO2 storage and the CO2 displacement by invading brine during the CO2 migration phase depend on the in-situ conditions of pressure, temperature and water salinity through the effects that these primary variables have on the IFT between CO2 and aquifer brine. Since the IFT of CO2-brine systems affects relative permeability and capillary pressure, it is essential that the in-situ conditions and their effect of secondary variables are properly taken into account when

  6. Enhanced biological carbon consumption in a high CO2 ocean.

    Science.gov (United States)

    Riebesell, U; Schulz, K G; Bellerby, R G J; Botros, M; Fritsche, P; Meyerhöfer, M; Neill, C; Nondal, G; Oschlies, A; Wohlers, J; Zöllner, E

    2007-11-22

    The oceans have absorbed nearly half of the fossil-fuel carbon dioxide (CO2) emitted into the atmosphere since pre-industrial times, causing a measurable reduction in seawater pH and carbonate saturation. If CO2 emissions continue to rise at current rates, upper-ocean pH will decrease to levels lower than have existed for tens of millions of years and, critically, at a rate of change 100 times greater than at any time over this period. Recent studies have shown effects of ocean acidification on a variety of marine life forms, in particular calcifying organisms. Consequences at the community to ecosystem level, in contrast, are largely unknown. Here we show that dissolved inorganic carbon consumption of a natural plankton community maintained in mesocosm enclosures at initial CO2 partial pressures of 350, 700 and 1,050 microatm increases with rising CO2. The community consumed up to 39% more dissolved inorganic carbon at increased CO2 partial pressures compared to present levels, whereas nutrient uptake remained the same. The stoichiometry of carbon to nitrogen drawdown increased from 6.0 at low CO2 to 8.0 at high CO2, thus exceeding the Redfield carbon:nitrogen ratio of 6.6 in today's ocean. This excess carbon consumption was associated with higher loss of organic carbon from the upper layer of the stratified mesocosms. If applicable to the natural environment, the observed responses have implications for a variety of marine biological and biogeochemical processes, and underscore the importance of biologically driven feedbacks in the ocean to global change.

  7. Synthesis of Size-Tunable CO2-Philic Imprinted Polymeric Particles (MIPs) for Low-Pressure CO2 Capture Using Oil-in-Oil Suspension Polymerization.

    Science.gov (United States)

    Nabavi, Seyed Ali; Vladisavljević, Goran T; Zhu, Yidi; Manović, Vasilije

    2017-10-03

    Highly selective molecularly imprinted poly[acrylamide-co-(ethylene glycol dimethacrylate)] polymer particles (MIPs) for CO2 capture were synthesized by suspension polymerization via oil-in-oil emulsion. Creation of CO2-philic, amide-decorated cavities in the polymer matrix led to a high affinity to CO2. At 0.15 bar CO2 partial pressure, the CO2/N2 selectivity was 49 (corresponding to 91% purity of the gas stream after regeneration), and reached 97 at ultralow CO2 partial pressures. The imprinted polymers showed considerably higher CO2 uptakes compared to their nonimprinted counterparts, and the maximum equilibrium CO2 capture capacity of 1.1 mmol g(-1) was achieved at 273 K. The heat of adsorption was below 32 kJ mol(-1) and the temperature of onset of intense thermal degradation was 351-376 °C. An increase in monomer-to-cross-linker molar ratio in the dispersed phase up to 1:2.5 led to a higher affinity toward CO2 due to higher density of selective amide groups in the polymer network. MIPs are a promising option for industrial packed and fluidized bed CO2 capture systems due to large particles with a diameter up to 1200 μm and irregular oblong shapes formed due to arrested coalescence during polymerization, occurring as a result of internal elasticity of the partially polymerized semisolid drops.

  8. 温度对13Cr不锈钢在高 CO2 分压环境中腐蚀行为的影响%Effect of temperature on the corrosion behavior of 13Cr stainless steel under a high CO2 partial pressure environment

    Institute of Scientific and Technical Information of China (English)

    李大朋; 张雷; 石凤仙; 王竹; 李辉; 路民旭

    2015-01-01

    通过高温高压电化学测试,获得不同实验温度下13Cr不锈钢的循环伏安曲线、交流阻抗谱和Mott-Schottky曲线,结合ZSIMPWIN软件和扫描电子显微镜分析,研究高温高CO2 分压环境下,温度对13Cr不锈钢腐蚀电化学行为的影响. 在高温高CO2 分压环境下,随温度升高,13Cr不锈钢发生腐蚀的倾向增加,表面钝化膜稳定性下降,点蚀敏感度增加.%This article is focused on the effect of temperature on the corrosion electrochemical behavior of 13Cr martensitic stain-less steel under a high temperature and high CO2 partial pressure environment. Cyclic polarization ( CP) measurements, electrochemi-cal impedance spectroscopy ( EIS ) , Mott- Schottky plot measurements, ZSIMPWIN software, and scanning electron microscopy (SEM) are used in this study. The results show that the stability of passive films formed on the 13Cr stainless steel surface decreases with increasing temperature under a high temperature and high CO2 partial pressure environment. This leads to increases in the corro-sion rate and pitting susceptibility.

  9. Versatile high pressure CO2 capture test facility for solvent development: set-up for gaining accurate knowledge of solvent systems

    NARCIS (Netherlands)

    Runstraat, A. van de; Goetheer, E.L.V.; Giling, E.J.M.

    2013-01-01

    Solvent based technology is the state of the art method for the removal of CO2 from natural gas or from shifted syn gas (pre-combustion CO2-capture). In this typical upgrading technology, CO2 is removed from the gas mixture by absorption using physical or reactive solvents. There is an increasing tr

  10. Impact of pressure and temperature on CO2-brine-mica contact angles and CO2-brine interfacial tension: Implications for carbon geo-sequestration.

    Science.gov (United States)

    Arif, Muhammad; Al-Yaseri, Ahmed Z; Barifcani, Ahmed; Lebedev, Maxim; Iglauer, Stefan

    2016-01-15

    Precise characterization of wettability of CO2-brine-rock system and CO2-brine interfacial tension at reservoir conditions is essential as they influence capillary sealing efficiency of caprocks, which in turn, impacts the structural and residual trapping during CO2 geo-sequestration. In this context, we have experimentally measured advancing and receding contact angles for brine-CO2-mica system (surface roughness ∼12nm) at different pressures (0.1MPa, 5MPa, 7MPa, 10MPa, 15MPa, 20MPa), temperatures (308K, 323K, and 343K), and salinities (0wt%, 5wt%, 10wt%, 20wt% and 30wt% NaCl). For the same experimental matrix, CO2-brine interfacial tensions have also been measured using the pendant drop technique. The results indicate that both advancing and receding contact angles increase with pressure and salinity, but decrease with temperature. On the contrary, CO2-brine interfacial tension decrease with pressure and increase with temperature. At 20MPa and 308K, the advancing angle is measured to be ∼110°, indicating CO2-wetting. The results have been compared with various published literature data and probable factors responsible for deviations have been highlighted. Finally we demonstrate the implications of measured data by evaluating CO2 storage heights under various operating conditions. We conclude that for a given storage depth, reservoirs with lower pressures and high temperatures can store larger volumes and thus exhibit better sealing efficiency.

  11. Evidence of pressure enhanced CO2 storage in ZIF-8 probed by FTIR spectroscopy.

    Science.gov (United States)

    Hu, Yue; Liu, Zhenxian; Xu, Jun; Huang, Yining; Song, Yang

    2013-06-26

    Due to the large porosity and unique framework stability, ZIF-8, a representative zeolitic imidazolate based member of metal-organic framework (MOF) family exhibited excellent adsorption capacities for a wide range of gases, including greenhouse gases. Using in situ FTIR spectroscopy, ZIF-8 framework was investigated when loaded with CO2 in a diamond anvil cell at high pressures far beyond the conventional gas adsorption pressure. The IR profile of CO2 as well as the ZIF-8 shows direct evidence of the interactions between CO2 and ZIF-8, indicating enhanced storage of CO2 in the framework. In addition, the storage behavior was found to be strongly pressure dependent, and the interaction mechanism was explored. These findings demonstrated great potential in the greenhouse gases storage applications using MOF based materials.

  12. Multiwell CO2 injectivity: impact of boundary conditions and brine extraction on geologic CO2 storage efficiency and pressure buildup.

    Science.gov (United States)

    Heath, Jason E; McKenna, Sean A; Dewers, Thomas A; Roach, Jesse D; Kobos, Peter H

    2014-01-21

    CO2 storage efficiency is a metric that expresses the portion of the pore space of a subsurface geologic formation that is available to store CO2. Estimates of storage efficiency for large-scale geologic CO2 storage depend on a variety of factors including geologic properties and operational design. These factors govern estimates on CO2 storage resources, the longevity of storage sites, and potential pressure buildup in storage reservoirs. This study employs numerical modeling to quantify CO2 injection well numbers, well spacing, and storage efficiency as a function of geologic formation properties, open-versus-closed boundary conditions, and injection with or without brine extraction. The set of modeling runs is important as it allows the comparison of controlling factors on CO2 storage efficiency. Brine extraction in closed domains can result in storage efficiencies that are similar to those of injection in open-boundary domains. Geomechanical constraints on downhole pressure at both injection and extraction wells lower CO2 storage efficiency as compared to the idealized scenario in which the same volumes of CO2 and brine are injected and extracted, respectively. Geomechanical constraints should be taken into account to avoid potential damage to the storage site.

  13. Mineralogical changes of a well cement in various H2S-CO2(-brine) fluids at high pressure and temperature.

    Science.gov (United States)

    Jacquemet, Nicolas; Pironon, Jacques; Saint-Marc, Jérémie

    2008-01-01

    The reactivity of a crushed well cement in contact with (1) a brine with dissolved H2S-CO2; (2) a dry H2S-CO2 supercritical phase; (3) a two-phase fluid associating a brine with dissolved H2S-CO2 and a H2S-CO2 supercritical phase was investigated in batch experiments at 500 bar and 120, 200 degrees C. All of the experiments showed that following 15-60 days cement carbonation occurred. The H2S reactivity with cement is limited since it only transformed the ferrites (minor phases) by sulfidation. It appeared that the primary parameter controlling the degree of carbonation (i.e., the rate of calcium carbonates precipitation and CSH (Calcium Silicate Hydrates) decalcification) is the physical state of the fluid phase contacting the minerals. The carbonation degree is complete when the minerals contact at least the dry H2S-CO2 supercritical phase and partial when they contactthe brine with dissolved H2S-CO2. Aragonite (calcium carbonate polymorph) precipitated specifically within the dry H2S-CO2 supercritical phase. CSH cristallinity is improved by partial carbonation while CSH are amorphized by complete carbonation. However, the features evidenced in this study cannot be directly related to effective features of cement as a monolith. Further studies involving cement as a monolith are necessary to ascertain textural, petrophysical, and mechanical evolution of cement.

  14. Active CO2 Reservoir Management: A Strategy for Controlling Pressure, CO2 and Brine Migration in Saline-Formation CCS

    Science.gov (United States)

    Buscheck, T. A.; Sun, Y.; Hao, Y.; Court, B.; Celia, M. A.; Wolery, T.; Tompson, A. F.; Aines, R. D.; Friedmann, J.

    2010-12-01

    CO2 capture and sequestration (CCS) in deep geological formations is regarded as a promising means of lowering the amount of CO2 emitted to the atmosphere and thereby mitigate global warming. The most promising systems for CCS are depleted oil reservoirs, particularly those suited to CO2-based Enhanced Oil Recovery (CCS-EOR), and deep saline formations, both of which are well separated from the atmosphere. For conventional, industrial-scale, saline-formation CCS, pressure buildup can have a limiting effect on CO2 storage capacity. To address this concern, we analyze Active CO2 Reservoir Management (ACRM), which combines brine extraction and residual-brine reinjection with CO2 injection, comparing it with conventional saline-formation CCS. We investigate the influence of brine extraction on pressure response and CO2 and brine migration using the NUFT code. By extracting brine from the lower portion of the storage formation, from locations progressively further from the center of injection, we can counteract buoyancy that drives CO2 to the top of the formation, which is useful in dipping formations. Using “push-pull” manipulation of the CO2 plume, we expose less of the caprock seal to CO2 and more of the storage formation to CO2, with more of the formation utilized for trapping mechanisms. Plume manipulation can also counteract the influence of heterogeneity. We consider the impact of extraction ratio, defined as net extracted brine volume (extraction minus reinjection) divided by injected CO2 volume. Pressure buildup is reduced with increasing extraction ratio, which reduces CO2 and brine migration, increases CO2 storage capacity, and reduces other risks, such as leakage up abandoned wells, caprock fracturing, fault activation, and induced seismicity. For a 100-yr injection period, a 10-yr delay in brine extraction does not diminish the magnitude of pressure reduction. Moreover, it is possible to achieve pressure management with just a few brine-extraction wells

  15. MgCo2-D2 and MgCoNi-D2 systems synthesized at high pressures and interaction mechanism during the HDDR processing

    Directory of Open Access Journals (Sweden)

    Chubin Wan

    2017-02-01

    MgCo2 is a new example of the hydrogen storage alloy, in which a successful HDDR processing results in the reversible formation of the initial intermetallic at much lower temperatures than in the equilibrium phase diagram of the Mg-Co system.

  16. Substantial rate enhancements of the esterification reaction of phthalic anhydride with methanol at high pressure and using supercritical CO2 as a co-solvent in a glass microreactor

    NARCIS (Netherlands)

    Benito-Lopez, F.; Tiggelaar, Roald M.; Salblut, K.; Huskens, Jurriaan; Egberink, Richard J.M.; Reinhoudt, David; Gardeniers, Johannes G.E.; Verboom, Willem

    2007-01-01

    The esterification reaction of phthalic anhydride with methanol was performed at different temperatures in a continuous flow glass microreactor at pressures up to 110 bar and using supercritical CO2 as a co-solvent. The design is such that supercritical CO2 can be generated inside the microreactor.

  17. Effects of CO2 Partial Pressure on CO2 Corrosion Behavior of N80 Tubular Steel%CO2分压对 N80油管钢 CO2腐蚀行为的影响

    Institute of Scientific and Technical Information of China (English)

    高纯良; 刘明亮; 李大朋; 张雷; 马文海; 路民旭

    2014-01-01

    利用高温高压反应釜进行腐蚀模拟试验。采用失重法、SEM 和 XRD 等手段研究了 CO2分压对 N80油管钢在100℃下 CO2腐蚀行为的影响。结果表明,N80钢的腐蚀速率随 CO2分压升高而上升。不同 CO2分压下腐蚀类型与腐蚀产物膜宏观形貌的变化相对应,在低 CO2分压下腐蚀产物膜完整覆盖。随着 CO2分压的进一步升高,腐蚀产物膜由局部覆盖转而重新完整覆盖。相应地,N80钢在低 CO2分压下发生全面腐蚀,然后随 CO2分压的进一步升高,腐蚀类型由局部腐蚀向全面腐蚀过渡。%The effects of CO2 partial pressure on CO2 corrosion behavior of N80 steel at 100 ℃ were studied by autoclave test,together with weight loss method,SEM,and XRD.The results showed that the corrosion rate of N80 steel rose with the increase of CO2 pressure corresponding to the change of corrosion product film macro-morphology. At the low partial pressure of CO2 ,the corrosion product film was complete,then with the further increase of CO2 partial pressure,corrosion product film turned from incomplete to complete.Accordingly,at low CO2 partial pressure,the corrosion of N80 steel was general corrosion,and then with the further increase of CO2 partial pressure, corrosion characteristics were transformed from localized corrosion to general corrosion.

  18. Dolomite-magnesian calcite relations at elevated temperatures and CO2 pressures

    Science.gov (United States)

    Graf, D.L.; Goldsmith, J.R.

    1955-01-01

    The equilibrium thermal decomposition curve of dolomite has been determined up to a CO2 pressure of 20,000 lb/in.2, at which pressure dolomite decomposes at 857??C. Equilibrium was approached from both directions, by the breakdown and by the solid-state synthesis of dolomite. At elevated temperatures and pressures, calcites in equilibrium with periclase as well as those in equilibrium with dolomite contain Mg in solid solution. In the former, the Mg content increases with increasing CO2 pressure, and decreases with increasing temperature. In the latter, it is a function of temperature only. The exsolution curve of dolomite and magnesian calcite has been determined between 500?? and 800??C; at 500?? dolomite is in equilibrium with a magnesian calcite containing ~6 mol per cent MgCO2; at 800??, ~22 mol per cent. There appears to be a small but real deviation from the ideal 1 : 1 Ca : Mg ratio of dolomite, in the direction of excess Ca, for material in equilibrium with magnesian calcite at high temperature. The experimental findings indicate that very little Mg is stable in the calcites of sedimentary environments, but that an appreciable amount is stable under higher-temperature metamorphic conditions, if sufficient CO2 pressure is maintained. ?? 1955.

  19. Vapor-liquid Phase Equilibria for CO2+Tertpentanol Binary System at Elevated Pressures

    Institute of Scientific and Technical Information of China (English)

    WANG Lin; LUO Jian-cheng; YANG Hao; CHEN Kai-xun

    2011-01-01

    Vapor-liquid phase equilibrium data of tertpentanol in carbon dioxide were measured at temperatures of 313.4,323.4,333.5 and 343.5 K and in the pressure range of 4.56-11.44 MPa.The phase equilibium apparatus used in the work was a variable-volume high-pressure cell.The experimental data were reasonably correlated with Peng-Robinson equation of state(PR-EOS) together with van der Waals-2 two-parameter mixing rules.Henry's Law constants and partial molar volumes of CO2 at infinite dilution were estimated with Krichevsky-Kasarnovsky equation,and Henry's Law constants increase with increasing temperature,however,partial molar volumes of CO2 at infinite dilution are negative whose magnitudes decrease with temperature.Partial molar volumes of CO2 and tertpentanol in liquid phase at equilibrium were calculated.

  20. The electrical conductivity of CO2-bearing pore waters at elevated pressure and temperature: a laboratory study and its implications in CO2 storage monitoring and leakage detection

    Science.gov (United States)

    Börner, Jana H.; Herdegen, Volker; Repke, Jens-Uwe; Spitzer, Klaus

    2015-11-01

    The electrical rock conductivity is a sensitive indicator for carbon dioxide (CO2) injection and migration processes. For a reliable balancing of the free CO2 in pore space with petrophysical models such as Archie's law or for the detection of migrating CO2, detailed knowledge of the pore water conductivity during interaction with CO2 is essential but not available yet. Contrary to common assumptions, pore water conductivity cannot be assumed constant since CO2 is a reactive gas that dissolves into the pore water in large amounts and provides additional charge carriers due to the dissociation of carbonic acid. We consequently carried out systematic laboratory experiments to quantify and analyse the changes in saline pore water conductivity caused by CO2 at thermodynamic equilibrium. Electrical conductivity is measured on pore water samples for pressures up to 30 MPa and temperatures up to 80 °C. The parameter range covers the gaseous, liquid and supercritical state of the CO2 involved. Pore water salinities from 0.006 up to 57.27 g L-1 sodium chloride were investigated as well as selective other ion species. At the same time, the CO2 concentration in the salt solution was determined by a wet-chemical procedure. A two-regime behaviour appears: for small salinities, we observe an increase of up to more than factor 3 in the electrical pore water conductivity, which strongly depends on the solution salinity (low-salinity regime). This is an expected behaviour, since the additional ions originating from the dissociation of carbonic acid positively contribute to the solution conductivity. However, when increasing salinities are considered this effect is completely diminished. For highly saline solutions, the increased mutual impeding causes the mobility of all ions to decrease, which may result in a significant reduction of conductivity by up to 15 per cent despite the added CO2 (high-salinity regime). We present the data set covering the pressure, temperature, salinity

  1. Pitot pressure analyses in CO2 condensing rarefied hypersonic flows

    Science.gov (United States)

    Ozawa, T.; Suzuki, T.; Fujita, K.

    2016-11-01

    In order to improve the accuracy of rarefied aerodynamic prediction, a hypersonic rarefied wind tunnel (HRWT) was developed at Japan Aerospace Exploration Agency. While this wind tunnel has been limited to inert gases, such as nitrogen or argon, we recently extended the capability of HRWT to CO2 hypersonic flows for several Mars missions. Compared to our previous N2 cases, the condensation effect may not be negligible for CO2 rarefied aerodynamic measurements. Thus, in this work, we have utilized both experimental and numerical approaches to investigate the condensation and rarefaction effects in CO2 hypersonic nozzle flows.

  2. CO2–CH4 permeation in high zeolite 4A loading mixed matrix membranes

    KAUST Repository

    Adams, Ryan T.

    2011-02-01

    Mixed matrix membranes (MMMs) with low particle loadings have been shown to improve the properties of pure polymers for many gas separations. Comparatively few reports have been made for high particle loading (≥50vol.%) MMMs. In this work, CO2-CH4 feeds were used to study the potential of 50vol.% zeolite 4A-poly(vinyl acetate) (PVAc) MMMs for natural gas separations. A low CO2 partial pressure mixed feed probed MMM performance below the plasticization pressure of PVAc and a high CO2 partial pressure mixed feed probed MMM performance at industrially relevant conditions above the plasticization pressure.Under both mixed feed conditions at 35°C, substantial improvements in overall separation performance were observed. At low CO2 partial pressures, CO2 permeability roughly doubled with a nearly 50% increase in selectivity versus pure PVAc under the same conditions. For the high CO2 partial pressure feed, CO2 permeability remained effectively unchanged with a 63% increase in selectivity versus pure PVAc. Surprisingly, the performance of these PVAc based MMMs approached the properties of current " upper bound" polymers. Overall, this work shows that significantly improved performance MMMs can be made with traditional techniques from a low cost, low performance polymer without costly adhesion promoters. © 2010.

  3. Determining CO2-brine relative permeability and capillary pressure simultaneously: an insight to capillary entrance and end effects

    Science.gov (United States)

    Chen, X.; Kianinejad, A.; DiCarlo, D. A.

    2014-12-01

    CO2-brine relative permeability relations are important parameters in modeling scenarios such as CO2 sequestration in saline aquifers and CO2 enhanced recovery in oil reservoir. Many steady-state experimental studies on CO2-brine relative permeability showed that the CO2-brine relative permeability differs greatly from typical oil-brine relative permeability. Particularly, they reported a very small endpoint CO2 relative permeability of 0.1~0.2 at a relative high residual water saturation of 0.4~0.6. In this study, we hypothesize the measured low endpoint CO2 relative permeability in previous studies was an experimental artifact that is primary due to low CO2 viscosity. We conducted steady-state CO2 drainage experiments by co-injecting equlibrated CO2 and brine into a long (60.8 cm) and low permeability (116-mD) Berea sandstone core at 20 °C and 1500 psi. During every experiment, both the overall pressure drop across the core and the pressure drops of the five independent and continuous sections of the core were monitored. The in-situ saturation was measured with a medical X-ray Computed Tomography (CT) scanner. In the center three sections where saturation was uniform, we determined the relative permeability to both brine and CO2 phases. In the entrance and exit sections, both measured pressure gradients and saturation were non-uniform. To cope with this, we make several self-consistent assumptions that reveal the nature of capillary entrance and effect in steady-state two-phase core flooding experiments. Based on these assumptions we determined the relative permeability to CO2 and CO2-brine capillary pressure simultaneously using measured pressure drops. We found: (1) a much higher endpoint CO2 relative permeability of 0.58 at a water saturation of 48%, (2) the entrance region with non-uniform saturation expanded CO2 relative permeability data to much lower water saturation, (3) the determined CO2-brine capillary pressure curve is self-consistent and matches

  4. CO2分压对碳钢海底管道CO2/H2S腐蚀的影响%Effect of Partial Pressure of CO2 on Corrosion of Carbon Steel Subsea Pipeline in CO2/H2S Environment

    Institute of Scientific and Technical Information of China (English)

    胡丽华; 常炜; 余晓毅; 田永芹; 于湉; 张雷; 路民旭

    2016-01-01

    ABSTRACT:Objective To study the effect of partial pressure of CO2 on the corrosion in CO2/H2S environment, in order to guide the material selection of subsea pipeline.Methods Corrosion simulation test was carried out in the high-pressure high-temperature autoclave, the weight of the specimen was tested before and after corrosion simulation experiment, then the corrosion rate was calculated, and the morphologies and chemical composition of corrosion product scales were characterized by SEM and XRD.Results When the ratio of CO2/H2S was high (1200), at the partial pressure of CO2 of 0.3 MPa, 0.5 MPa, 1.0 MPa, the corrosion rates were 1.87 mm/a, 3.22 mm/a, 5.35 mm/a, respectively, and the corrosion rate increased almost linearly with the increase of CO2partial pressure. When the ratio of CO2/H2S was low (200), at the partial pressure of CO2 of 0.3 MPa, 0.5 MPa, 1.0 MPa, the corrosion rates were 3.47 mm/a, 3.64 mm/a, 3.71 mm/a, and the influence of CO2 partial pressure on corrosion rate was not significant. When the ratio of CO2/H2S was high (1200), the main chemical composition of corrosion product scale was FeCO3, the corrosion was controlled by CO2; the corrosion product scale was compact under low partial pres-sure of CO2, the scale was easy to be ruptured, and the protection of the substrate was decreased, so the corrosion rate increased with the increase of partial pressure of CO2. When the ratio of CO2/H2S was low (200), the main chemical composition of corro-sion product scale was FeS, the corrosion was controlled by H2S; the corrosion product scale was compact under different partial pressure of CO2, so the corrosion rate was relatively low, and there was no significant increase with the increase of partial pres-sure of CO2.Conclusion the effect of partial pressure of CO2 on the corrosion in CO2/H2S Environment was closely related to the ratio of CO2/H2S. We need to consider the effects of partial pressure of CO2 and the ratio of CO2/H2S on corrosion when we

  5. Measurement of CO2 concentration at high-temperature based on tunable diode laser absorption spectroscopy

    Science.gov (United States)

    Chen, Jiuying; Li, Chuanrong; Zhou, Mei; Liu, Jianguo; Kan, Ruifeng; Xu, Zhenyu

    2017-01-01

    A diode laser sensor based on absorption spectroscopy has been developed for sensitive measurement of CO2 concentration at high-temperature. Measurement of CO2 can provide information about the extent of combustion and mix in a combustor that may be used to improve fuel efficiency. Most methods of in-situ combustion measurement of CO2 use the spectroscopic parameters taken from database like HITEMP which is mainly derived from the theoretical calculation and remains a high degree of uncertainty in the spectroscopic parameters. A fiber-coupled diode laser system for measurement of CO2 in combustion environment by use of the high-temperature spectroscopic parameters which are obtained by experiment was proposed. Survey spectra of the R(50) line of CO2 at 5007.787 cm-1 were recorded at high-temperature and various pressures to determine line intensities. The line intensities form the theoretical foundation for future applications of this diode laser sensor system. Survey spectra of four test gas mixtures containing 5.01%CO2, 10.01%CO2, 20.08%CO2, and 49.82%CO2 were measured to verify the accuracy of the diode laser sensor system. The measured results indicate that this sensor can measure CO2 concentration with 2% uncertainty in high temperatures.

  6. Effects of CO 2 on a High Performance Hollow-Fiber Membrane for Natural Gas Purification

    KAUST Repository

    Omole, Imona C.

    2010-05-19

    A 6FDA-based, cross-linkable polyimide was characterized in the form of a defect-free asymmetric hollow-fiber membrane. The novel membrane was cross-linked at various temperatures and tested for natural gas purification in the presence of high CO2 partial pressures. The cross-linked membrane material shows high intrinsic separation performance for CO2 and CH4 (selectivity ∼49, CO2 permeability ∼161 barrer, with a feed at 65 psia, 35 °C, and 10% CO2). Cross-linked asymmetric hollow-fiber membranes made from the material show good resistance to CO2-induced plasticization. Carbon dioxide partial pressures as high as ∼400 psia were employed, and the membrane was shown to be promisingly stable under these aggressive conditions. The performance of the membrane was also analyzed using the dual-mode sorption/transport model. © 2010 American Chemical Society.

  7. Different CO2 absorbents-modified SBA-15 sorbent for highly selective CO2 capture

    Science.gov (United States)

    Liu, Xiuwu; Zhai, Xinru; Liu, Dongyang; Sun, Yan

    2017-05-01

    Different CO2 absorbents-modified SBA-15 materials are used as CO2 sorbent to improve the selectivity of CH4/CO2 separation. The SBA-15 sorbents modified by physical CO2 absorbents are very limited to increasing CO2 adsorption and present poor selectivity. However, the SBA-15 sorbents modified by chemical CO2 absorbents increase CO2 adsorption capacity obviously. The separation coefficients of CO2/CH4 increase in this case. The adsorption and regeneration properties of the SBA-15 sorbents modified by TEA, MDEA and DIPA have been compared. The SBA-15 modified by triethanolamine (TEA) presents better CO2/CH4 separation performance than the materials modified by other CO2 absorbents.

  8. High-precision gas gain and energy transfer measurements in Ar–CO2 mixtures

    CERN Document Server

    Şahin, Özkan; Veenhof, Rob

    2014-01-01

    Ar–CO2 is a Penning mixture since a fraction of the energy stored in Ar 3p53d3p53d and higher excited states can be transferred to ionize CO2 molecules. In the present work, concentration and pressure dependence of Penning transfer rate and photon feedback parameter in Ar–CO2 mixtures have been investigated with recent systematic high-precision gas gain measurements which cover the range 1–50% CO2 at 400, 800, 1200, 1800 hPa and gas gain from 1 to 5×105.

  9. CO2 corrosion morphology of X70 pipeline steel under jet impingement at high temperature and high pressure environment%高温高压喷射条件下X70管线钢的CO2腐蚀形貌

    Institute of Scientific and Technical Information of China (English)

    蔡峰; 柳伟; 樊学华; 张晶; 路民旭

    2014-01-01

    利用自主研发的高温高压环路喷射装置并结合流体动力学模拟计算,研究了高温高压CO2环境流体喷射条件下X70钢的腐蚀产物微观形貌、基体表面三维形貌、腐蚀减薄量及其统计规律,并探讨了与流体状态之间的关系。结果表明,高温高压流体喷射条件下,不同流态区域内流体传质速率和壁面切应力的差异是造成X70钢腐蚀产物、基体表面三维形貌及腐蚀减薄量差异的主要原因。按照层流区→壁面喷射区→过渡区的顺序,流体壁面切应力逐渐增加,不断减薄腐蚀产物膜直至其脱落,造成传质过程阻力减小,传质速率增大,腐蚀过程不断加剧。因此,按照层流区→壁面喷射区→过渡区的顺序,X70钢表面腐蚀产物膜由完整致密向疏松多孔变化,基体表面三维形貌呈现平坦→陡峭→非常陡峭的特征,三维表面高度偏差和均方根偏差、腐蚀减薄量平均值和标准差均呈现逐渐增大的趋势。在高温高压流体喷射条件下,X70钢的CO2腐蚀速率与壁面切应力之间较好地满足指数关系。%The CO2 corrosion behavior of X70 pipeline steel, including the corrosion product's morphology, three-dimensional sur-face topography, and corrosion thickness reduction as well as its statistical analysis, was investigated in high temperature and high pres-sure CO2 environment using self-developed loop jet impingement apparatus and computation fluid dynamic ( CFD) technique. The rela-tionship between the obtained results and flow regimes under jet impingement was also discussed. It is found that the differences of fluid mass transfer and wall shear stress distributed on the steel surface located at different flow regimes are the main reason for the differ-ences of the corrosion product's morphology, three-dimensional surface topography and corrosion thickness reduction. According to the order of the laminar zone, the wall jet zone and the transition zone, the

  10. CO2-Philic polymer membrane with extremely high separation performance

    KAUST Repository

    Yave, Wilfredo

    2010-01-12

    Polymeric membranes are attractive for CO2 separation and concentration from different gas streams because of their versatility and energy efficiency; they can compete with, and they may even replace, traditional absorption processes. Here we describe a simple and powerful method for developing nanostructured and CO2-philic polymer membranes for CO2 separation. A poly(ethylene oxide)-poly(butylene terephthalate) multiblock copolymer is used as membrane material. Smart additives such as polyethylene glycol dibutyl ether are incorporated as spacers or fillers for producing nanostructured materials. The addition of these specific additives produces CO2-philic membranes and increases the CO2 permeability (750 barrer) up to five-fold without the loss of selectivity. The membranes present outstanding performance for CO2 separation, and the measured CO2 flux is extremely high ( > 2 m3 m -2 h-1 bar-1) with selectivity over H2 and N2 of 10 and 40, respectively, making them attractive for CO 2 capture. © 2009 American Chemical Society.

  11. Application of GC–MS chromatography for the analysis of the oil fractions extracted by supercritical CO2 at high pressure

    DEFF Research Database (Denmark)

    Rudyk, Svetlana Nikolayevna; Spirov, Pavel; Søgaard, Erik Gydesen

    2013-01-01

    GC–MS chromatographic analysis has been applied for the investigation of the fractions of oil extracted by supercritical carbon dioxide at a temperature of 60 °C and at pressure values ranging from 22 to 56 MPa. The observations revealed, that the whole extraction process is clearly reflected...... of the chromatographic method for the quantitative evaluation of oil recovery. --------------------------------------------------------------------------------...

  12. Caprock compressibility and permeability and the consequences for pressure development in CO2 storage sites

    DEFF Research Database (Denmark)

    Mbia, Ernest Ncha; Frykman, Peter; Nielsen, Carsten Møller;

    2014-01-01

    Large scale CO2 storage has previously been considered for the Vedsted structure located in the Northern part of Jylland in Denmark. Pressure buildup in the Gassum reservoir and transmission to the shallower Chalk Group where the brine-fresh water interface resides need to be investigated as part...... Formation from the samples measured. The sensitivity of pressure development for the caprock permeability has been studied by varying from one to three orders of magnitude higher and one to two orders of magnitude lower than the measured permeability of 0.1μD. Injecting 60 million tons (Mt) of CO2 at a rate...... study and the results indicate that higher overpressure is created in the reservoir and the caprock. Overestimating caprock compressibility can therefore underestimate overpressure within the storage and sealing formations and this can have significant implication in the presence of highly permeable...

  13. Changes in sparkling wine aroma during the second fermentation under CO2 pressure in sealed bottle.

    Science.gov (United States)

    Martínez-García, Rafael; García-Martínez, Teresa; Puig-Pujol, Anna; Mauricio, Juan Carlos; Moreno, Juan

    2017-12-15

    High quality sparkling wine made by the traditional method requires a second alcoholic fermentation of a base wine in sealed bottles, followed by an aging time in contact with yeast lees. The CO2 overpressure released during this second fermentation has an important effect on the yeast metabolism and therefore on the wine aroma composition. This study focuses on the changes in chemical composition and 43 aroma compounds released by yeast during this fermentation carried out under two pressure conditions. The data were subjected to statistical analysis allowing differentiating between the base wine and the wine samples taken in the middle and at the end of fermentation. The differentiation among wines obtained to the end of fermentation with or without CO2 pressure is only achieved by a principal component analysis of 15 selected minor compounds (mainly ethyl dodecanoate, ethyl tetradecanoate, hexyl acetate, ethyl butanoate and ethyl isobutanoate). Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Change in cap rock porosity triggered by pressure and temperature dependent CO2–water–rock interactions in CO2 storage systems

    Directory of Open Access Journals (Sweden)

    Christina Hemme

    2017-03-01

    Full Text Available Carbon capture and storage in deep geological formations is a method to reduce greenhouse gas emissions. Supercritical CO2 is injected into a reservoir and dissolves in the brine. Under the impact of pressure and temperature (P–T the aqueous species of the CO2-acidified brine diffuse through the cap rock where they trigger CO2–water–rock interactions. These geochemical reactions result in mineral dissolution and precipitation along the CO2 migration path and are responsible for a change in porosity and therefore for the sealing capacity of the cap rock. This study focuses on the diffusive mass transport of CO2 along a gradient of decreasing P–T conditions. The process is retraced with a one-dimensional hydrogeochemical reactive mass transport model. The semi-generic hydrogeochemical model is based on chemical equilibrium thermodynamics. Based on a broad variety of scenarios, including different initial mineralogical, chemical and physical parameters, the hydrogeochemical parameters that are most sensitive for safe long-term CO2 storage are identified. The results demonstrate that P–T conditions have the strongest effect on the change in porosity and the effect of both is stronger at high P–T conditions because the solubility of the mineral phases involved depends on P–T conditions. Furthermore, modeling results indicate that the change in porosity depends strongly on the initial mineralogical composition of the reservoir and cap rock as well as on the brine compositions. Nevertheless, a wide range of conditions for safe CO2 storage is identified.

  15. Effects of Capillary Pressure on Multiphase Flow during CO2 Injection in Saline Aquifer

    Directory of Open Access Journals (Sweden)

    Pau J.S.

    2014-07-01

    Full Text Available This paper focused on supercritical CO2 injection into saline aquifer, in particular its capillarity’s effects on the plume migration, reservoir pressure alteration and CO2 flux density. The numerical method used to solve the incompressible two-phase flow equations is based on the mimetic method, which conserves the mass and fluxes simultaneously. The investigation showed that exclusion of capillarity can greatly underestimate the CO2 plume migration and resulted in distinctive reservoir pressure distribution. It is found that capillarity showed no significant effect on the flux intensity of CO2.

  16. Sorbents for CO2 capture from high carbon fly ashes.

    Science.gov (United States)

    Maroto-Valer, M Mercedes; Lu, Zhe; Zhang, Yinzhi; Tang, Zhong

    2008-11-01

    Fly ashes with high-unburned-carbon content, referred to as fly ash carbons, are an increasing problem for the utility industry, since they cannot be marketed as a cement extender and, therefore, have to be disposed. Previous work has explored the potential development of amine-enriched fly ash carbons for CO2 capture. However, their performance was lower than that of commercially available sorbents, probably because the samples investigated were not activated prior to impregnation and, therefore, had a very low surface area. Accordingly, the work described here focuses on the development of activated fly ash derived sorbents for CO2 capture. The samples were steam activated at 850 degrees C, resulting in a significant increase of the surface area (1075 m2/g). The activated samples were impregnated with different amine compounds, and the resultant samples were tested for CO2 capture at different temperatures. The CO2 adsorption of the parent and activated samples is typical of a physical adsorption process. The impregnation process results in a decrease of the surface areas, indicating a blocking of the porosity. The highest adsorption capacity at 30 and 70 degrees C for the amine impregnated activated carbons was probably due to a combination of physical adsorption inherent from the parent sample and chemical adsorption of the loaded amine groups. The CO2 adsorption capacities for the activated amine impregnated samples are higher than those previously published for fly ash carbons without activation (68.6 vs. 45 mg CO2/g sorbent).

  17. Sulfur Tolerant Pd/Cu and Pd/Au Alloy Membranes for H2 Separation with High Pressure CO2 for Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Yi Hua Ma; Natalie Pomerantz; Chao-Huang Chen

    2008-09-30

    The effect of H{sub 2}S poisoning on Pd, Pd/Cu, and Pd/Au alloy composite membranes prepared by the electroless deposition method on porous Inconel supports was investigated to provide a fundamental understanding of the durability and preparation of sulfur tolerant membranes. X-ray photoelectron spectroscopy (XPS) studies showed that the exposure of pure Pd to 50 ppm H{sub 2}S/H{sub 2} mixtures caused bulk sulfide formation at lower temperatures and surface sulfide formation at higher temperatures. Lower temperatures, longer exposure times, and higher H{sub 2}S concentrations resulted in a higher degree of sulfidation. In a Pd membrane, the bulk sulfide formation caused a drastic irrecoverable H{sub 2} permeance decline and an irreparable loss in selectivity. Pd/Cu and Pd/Au alloy membranes exhibited permeance declines due to surface sulfide formation upon exposure to 50 ppm H{sub 2}S/H{sub 2} gas mixtures. However in contrast to the pure Pd membrane, the permeances of the Pd/Cu and Pd/Au alloy membranes were mostly recovered in pure H{sub 2} and the selectivity of the Pd alloy layers remained essentially intact throughout the characterization in H{sub 2}, He and H{sub 2}S/H{sub 2} mixtures which lasted several thousand hours. The amount of irreversible sulfur poisoning decreased with increasing temperature due to the exothermicity of H{sub 2}S adsorption. Longer exposure times increased the amount of irreversible poisoning of the Pd/Cu membrane but not the Pd/Au membrane. Pd/Au coupon studies of the galvanic displacement method showed that higher Au{sup 3+} concentrations, lower pH values, higher bath temperatures and stirring the bath at a rate of 200 rpm yielded faster displacement rates, more uniform depositions, and a higher Au content within the layers. While 400 C was found to be sufficient to form a Pd/Au alloy on the surface, high temperature X-ray diffraction (HTXRD) studies showed that even after annealing between 500-600 C, the Pd/Cu alloys could have

  18. Solubility of CO2 in solid-state PET measured by pressure-decay method

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The solubility of CO2 in solid-state PET was measured using a pressure-decay method.In order to calculate the solubility of CO2 in the amorphous region of PET,the crystallinity of solid state PET dissolved in CO2 at different pressures and temperatures was measured by differential scanning calorimetry (DSC).The solubility increases with increasing pressure and it follows a linear relationship and obeys Henry's law when the pressure is below 8 MPa.The effect of temperature on solubility is weak and the solubilities at different temperatures are almost the same under low pressures.At higher pressure,the solubility decreases with an increase in temperature.The solubility of CO2 in the amorphous region of PET at 373.15 K,398.15 K and 423.15 K was correlated with the Sanchez-Lacombe equation of state with a maximal correlation error of 6.69%.

  19. Analytical solution for pressure buildup and plume evolution during injection of CO2 into saline aquifers

    Science.gov (United States)

    Mathias, S. A.; Hardisty, P. E.; Trudell, M. R.; Zimmerman, R. W.

    2008-12-01

    If geo-sequestration of CO2 is to be employed as a key greenhouse gas reduction method in the global effort to mitigate climate change, simple yet robust methods must be available to help design and monitor injection into saline aquifers. There has been significant development of simple analytical and semi-analytical techniques to support screening analysis and performance assessment for potential carbon sequestration sites. These techniques have generally been used to estimate the size of CO2 plumes for the purpose of leakage rate estimation. A common assumption of previous has been that both the fluids and the geological formation are incompressible. Consequently, calculation of pressure distribution requires the specification of an arbitrary radius of influence. In the present work, we relax this restriction by incorporating fluid and formation compressibility into our governing equations. These equations are transformed into ordinary differential equations using a similarity transformation, and are then solved using the method of matched asymptotic expansions. By allowing for compressibility in the fluids and formation, the solutions improve on previous work by not requiring the specification of an arbitrary radius of influence. Our solution is also capable of accounting for non-Darcy inertial effects modeled by the Forchheimer equation. These analytical solutions are validated by comparison with finite difference solutions. Our analysis leads to a simple yet highly accurate algebraic equation for estimating the evolution of a CO2 plume, and the associated pressure buildup, as a function of time.

  20. Pressure-induced collapsed-tetragonal phase in SrCo2As2

    Energy Technology Data Exchange (ETDEWEB)

    Jayasekara, W. T.; Kaluarachchi, U. S.; Ueland, B.; Pandey, Abhishek; Lee, Y. B.; Taufour, V.; Sapkota, A.; Kothapalli, K.; Sangeetha, N. S.; Feng, Yejun

    2015-12-08

    We present high-energy x-ray diffraction data under applied pressures up to p = 29 GPa, neutron diffraction measurements up to p = 1.1GPa, and electrical resistance measurements up to p = 5.9GPa, on SrCo2As2. Our x-ray diffraction data demonstrate that there is a first-order transition between the tetragonal (T) and collapsed-tetragonal (cT) phases, with an onset above approximately 6 GPa at T = 7K. The pressure for the onset of the cT phase and the range of coexistence between the T and cT phases appears to be nearly temperature independent. The compressibility along the a axis is the same for the T and cT phases, whereas, along the c axis, the cT phase is significantly stiffer, which may be due to the formation of an As-As bond in the cT phase. Our resistivity measurements found no evidence of superconductivity in SrCo2As2 for p 5.9 GPa and T 1.8 K. The resistivity data also show signatures consistent with a pressure-induced phase transition for p 5.5 GPa. Single-crystal neutron diffraction measurements performed up to 1.1 GPa in the T phase found no evidence of stripe-type or A-type antiferromagnetic ordering down to 10 K. Spin-polarized total-energy calculations demonstrate that the cT phase is the stable phase at high pressure with a c a ratio of 2.54. Furthermore, these calculations indicate that the cT phase of SrCo2As2 should manifest either A-type antiferromagnetic or ferromagnetic order.

  1. Systematic errors in global air-sea CO2 flux caused by temporal averaging of sea-level pressure

    Directory of Open Access Journals (Sweden)

    H. Kettle

    2005-01-01

    Full Text Available Long-term temporal averaging of meteorological data, such as wind speed and air pressure, can cause large errors in air-sea carbon flux estimates. Other researchers have already shown that time averaging of wind speed data creates large errors in flux due to the non-linear dependence of the gas transfer velocity on wind speed (Bates and Merlivat, 2001. However, in general, wind speed is negatively correlated with air pressure, and a given fractional change in the pressure of dry air produces an equivalent fractional change in the atmospheric partial pressure of carbon dioxide (pCO2air. Thus low pressure systems cause a drop in pCO2air, which together with the associated high winds, promotes outgassing/reduces uptake of CO2 from the ocean. Here we quantify the errors in global carbon flux estimates caused by using monthly or climatological pressure data to calculate pCO2air (and thus ignoring the covariance of wind and pressure over the period 1990-1999, using two common parameterisations for gas transfer velocity. Results show that on average, compared with estimates made using 6 hourly pressure data, the global oceanic sink is systematically overestimated by 7% (W92 and 10% (WM99 when monthly mean pressure is used, and 9% (W92 and 12% (WM99 when climatological pressure is used.

  2. Systematic errors in global air-sea CO2 flux caused by temporal averaging of sea-level pressure

    Directory of Open Access Journals (Sweden)

    C. J. Merchant

    2005-01-01

    Full Text Available Long-term temporal averaging of meteorological data, such as wind speed and air pressure, can cause large errors in air-sea carbon flux estimates. Other researchers have already shown that time averaging of wind speed data creates large errors in flux due to the non-linear dependence of the gas transfer velocity on wind speed (Bates and Merlivat, 2001. However, in general, wind speed is negatively correlated with air pressure, and a given fractional change in the pressure of dry air produces an equivalent fractional change in the atmospheric partial pressure of carbon dioxide (pCO2air. Thus low pressure systems cause a drop in pCO2air, which together with the associated high winds, promotes outgassing/reduces uptake of CO2 from the ocean. Here we quantify the errors in global carbon flux estimates caused by using monthly or climatological pressure data to calculate pCO2air (and thus ignoring the covariance of wind and pressure over the period 1990–1999, using two common parameterisations for gas transfer velocity (Wanninkhof, 1992 (W92 and Wanninkhof and McGillis, 1999 (WM99. Results show that on average, compared with estimates made using 6 hourly pressure data, the global oceanic sink is systematically overestimated by 7% (W92 and 10% (WM99 when monthly mean pressure is used, and 9% (W92 and 12% (WM99 when climatological pressure is used.

  3. Effects of elevated CO2 partial pressure and temperature on the coccolithophore Syracosphaera pulchra

    NARCIS (Netherlands)

    Fiorini, S.; Middelburg, J.J.; Gattuso, J.-P.

    2011-01-01

    The effects of elevated partial pressure of CO2 (pCO2) and temperature on the cocco - lithophore Syracosphaera pulchra were investigated in isolation and in combination. Both the diploid and the haploid life stages were studied. Batch cultures were grown under 4 conditions: 400 μatm and 19°C; 400

  4. Phenol-Formaldehyde Resin-Based Carbons for CO2 Separation at Sub-Atmospheric Pressures

    Directory of Open Access Journals (Sweden)

    Noelia Álvarez-Gutiérrez

    2016-03-01

    Full Text Available The challenge of developing effective separation and purification technologies that leave much smaller energy footprints is greater for carbon dioxide (CO2 than for other gases. In addition to its involvement in climate change, CO2 is present as an impurity in biogas and bio-hydrogen (biological production by dark fermentation, in post-combustion processes (flue gas, CO2-N2 and many other gas streams. Selected phenol-formaldehyde resin-based activated carbons prepared in our laboratory have been evaluated under static conditions (adsorption isotherms as potential adsorbents for CO2 separation at sub-atmospheric pressures, i.e., in post-combustion processes or from biogas and bio-hydrogen streams. CO2, H2, N2, and CH4 adsorption isotherms at 25 °C and up to 100 kPa were obtained using a volumetric equipment and were correlated by applying the Sips model. Adsorption equilibrium was then predicted for multicomponent gas mixtures by extending the multicomponent Sips model and the Ideal Adsorbed Solution Theory (IAST in conjunction with the Sips model. The CO2 uptakes of the resin-derived carbons from CO2-CH4, CO2-H2, and CO2-N2 at atmospheric pressure were greater than those of the reference commercial carbon (Calgon BPL. The performance of the resin-derived carbons in terms of equilibrium of adsorption seems therefore relevant to CO2 separation in post-combustion (flue gas, CO2-N2 and in hydrogen fermentation (CO2-H2, CO2-CH4.

  5. Multipoint Pressure and Temperature Sensing Fiber Optic Cable for Monitoring CO2 Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Challener, William

    2014-12-31

    This report describes the work completed on contract DE-FE0010116. The goal of this two year project was to develop and demonstrate in the laboratory a highly accurate multi-point pressure measurement fiber optic cable based on MEMS pressure sensors suitable for downhole deployment in a CO2 sequestration well. The sensor interrogator was also to be demonstrated in a remote monitoring system and environmental testing was to be completed to indicate its downhole survivability over a lengthy period of time (e.g., 20 years). An interrogator system based on a pulsed laser excitation was shown to be capable of multiple (potentially 100+) simultaneous sensor measurements. Two sensors packages were completed and spliced in a cable onto the same fiber and measured. One sensor package was subsequently measured at high temperatures and pressures in supercritical CO2, while the other package was measured prior and after being subjected to high torque stresses to mimic downhole deployment. The environmental and stress tests indicated areas in which the package design should be further improved.

  6. High pressure pure- and mixed-gas separation of CO2/CH4 by thermally-rearranged and carbon molecular sieve membranes derived from a polyimide of intrinsic microporosity

    KAUST Repository

    Swaidan, Raja

    2013-11-01

    Natural gas sweetening, one of the most promising venues for the growth of the membrane gas separation industry, is dominated by polymeric materials with relatively low permeabilities and moderate selectivities. One strategy towards improving the gas transport properties of a polymer is enhancement of microporosity either by design of polymers of intrinsic microporosity (PIMs) or by thermal treatment of polymeric precursors. For the first time, the mixed-gas CO2/CH4 transport properties are investigated for a complete series of thermally-rearranged (TR) (440°C) and carbon molecular sieve (CMS) membranes (600, 630 and 800°C) derived from a polyimide of intrinsic microporosity (PIM-6FDA-OH). The pressure dependence of permeability and selectivity is reported up to 30bar for 1:1, CO2:CH4 mixed-gas feeds at 35°C. The TR membrane exhibited ~15% higher CO2/CH4 selectivity relative to pure-gas feeds due to reductions in mixed-gas CH4 permeability reaching 27% at 30bar. This is attributed to increased hindrance of CH4 transport by co-permeation of CO2. Interestingly, unusual increases in mixed-gas CH4 permeabilities relative to pure-gas values were observed for the CMS membranes, resulting in up to 50% losses in mixed-gas selectivity over the applied pressure range. © 2013 Elsevier B.V.

  7. CO2 breakthrough pressure and permeability for unsaturated low-permeability sandstone of the Ordos Basin

    Science.gov (United States)

    Zhao, Yan; Yu, Qingchun

    2017-07-01

    With rising threats from greenhouse gases, capture and injection of CO2 into suitable underground formations is being considered as a method to reduce anthropogenic emissions of CO2 to the atmosphere. As the injected CO2 will remain in storage for hundreds of years, the safety of CO2 geologic sequestration is a major concern. The low-permeability sandstone of the Ordos Basin in China is regarded as both caprock and reservoir rock, so understanding the breakthrough pressure and permeability of the rock is necessary. Because part of the pore volume experiences a non-wetting phase during the CO2 injection and migration process, the rock may be in an unsaturated condition. And if accidental leakage occurs, CO2 will migrate up into the unsaturated zone. In this study, breakthrough experiments were performed at various degrees of water saturation with five core samples of low-permeability sandstone obtained from the Ordos Basin. The experiments were conducted at 40 °C and pressures of >8 MPa to simulate the geological conditions for CO2 sequestration. The results indicate that the degree of water saturation and the pore structure are the main factors affecting the rock breakthrough pressure and permeability, since the influence of calcite dissolution and clay mineral swelling during the saturation process is excluded. Increasing the average pore radius or most probable pore radius leads to a reduction in the breakthrough pressure and an increase by several orders of magnitude in scCO2 effective permeability. In addition, the breakthrough pressure rises and the scCO2 effective permeability decreases when the water saturation increases. However, when the average pore radius is greater than 0.151 μm, the degree of water saturation will has a little effect on the breakthrough pressure. On this foundation, if the most probable pore radius of the core sample reaches 1.760 μm, the breakthrough pressure will not be impacted by the increasing water saturation. We establish

  8. Thermodynamic and Kinetic Response of Microbial Reactions to High CO2

    Science.gov (United States)

    Jin, Qusheng; Kirk, Matthew F.

    2016-01-01

    Geological carbon sequestration captures CO2 from industrial sources and stores the CO2 in subsurface reservoirs, a viable strategy for mitigating global climate change. In assessing the environmental impact of the strategy, a key question is how microbial reactions respond to the elevated CO2 concentration. This study uses biogeochemical modeling to explore the influence of CO2 on the thermodynamics and kinetics of common microbial reactions in subsurface environments, including syntrophic oxidation, iron reduction, sulfate reduction, and methanogenesis. The results show that increasing CO2 levels decreases groundwater pH and modulates chemical speciation of weak acids in groundwater, which in turn affect microbial reactions in different ways and to different extents. Specifically, a thermodynamic analysis shows that increasing CO2 partial pressure lowers the energy available from syntrophic oxidation and acetoclastic methanogenesis, but raises the available energy of microbial iron reduction, hydrogenotrophic sulfate reduction and methanogenesis. Kinetic modeling suggests that high CO2 has the potential of inhibiting microbial sulfate reduction while promoting iron reduction. These results are consistent with the observations of previous laboratory and field studies, and highlight the complexity in microbiological responses to elevated CO2 abundance, and the potential power of biogeochemical modeling in evaluating and quantifying these responses. PMID:27909425

  9. Thermodynamic and kinetic response of microbial reactions to high CO2

    Directory of Open Access Journals (Sweden)

    Qusheng Jin

    2016-11-01

    Full Text Available Geological carbon sequestration captures CO2 from industrial sources and stores the CO2 in subsurface reservoirs, a viable strategy for mitigating global climate change. In assessing the environmental impact of the strategy, a key question is how microbial reactions respond to the elevated CO2 concentration. This study uses biogeochemical modeling to explore the influence of CO2 on the thermodynamics and kinetics of common microbial reactions in subsurface environments, including syntrophic oxidation, iron reduction, sulfate reduction, and methanogenesis. The results show that increasing CO2 levels decreases groundwater pH and modulates chemical speciation of weak acids in groundwater, which in turn affect microbial reactions in different ways and to different extents. Specifically, a thermodynamic analysis shows that increasing CO2 partial pressure lowers the energy available from syntrophic oxidation and acetoclastic methanogenesis, but raises the available energy of microbial iron reduction, hydrogenotrophic sulfate reduction and methanogenesis. Kinetic modeling suggests that high CO2 has the potential of inhibiting microbial sulfate reduction while promoting iron reduction. These results are consistent with the observations of previous laboratory and field studies, and highlight the complexity in microbiological responses to elevated CO2 abundance, and the potential power of biogeochemical modeling in evaluating and quantifying these responses.

  10. Decreased pCO(2) accumulation by eliminating bicarbonate addition to high cell-density cultures.

    Science.gov (United States)

    Goudar, Chetan T; Matanguihan, Ricaredo; Long, Edward; Cruz, Christopher; Zhang, Chun; Piret, James M; Konstantinov, Konstantin B

    2007-04-15

    High-density perfusion cultivation of mammalian cells can result in elevated bioreactor CO(2) partial pressure (pCO(2)), a condition that can negatively influence growth, metabolism, productivity, and protein glycosylation. For BHK cells in a perfusion culture at 20 x 10(6) cells/mL, the bioreactor pCO(2) exceeded 225 mm Hg with approximate contributions of 25% from cellular respiration, 35% from medium NaHCO(3), and 40% from NaHCO(3) added for pH control. Recognizing the limitations to the practicality of gas sparging for CO(2) removal in perfusion systems, a strategy based on CO(2) reduction at the source was investigated. The NaHCO(3) in the medium was replaced with a MOPS-Histidine buffer, while Na(2)CO(3) replaced NaHCO(3) for pH control. These changes resulted in 63-70% pCO(2) reductions in multiple 15 L perfusion bioreactors, and were reproducible at the manufacturing-scale. Bioreactor pCO(2) values after these modifications were in the 68-85 mm Hg range, pCO(2) reductions consistent with those theoretically expected. Low bioreactor pCO(2) was accompanied by both 68-123% increased growth rates and 58-92% increased specific productivity. Bioreactor pCO(2) reduction and the resulting positive implications for cell growth and productivity were brought about by process changes that were readily implemented and robust. This philosophy of pCO(2) reduction at the source through medium and base modification should be readily applicable to large-scale fed-batch cultivation of mammalian cells.

  11. Heterogeneous Phase Microwave-Assisted Reactions under CO2 or CO Pressure

    Directory of Open Access Journals (Sweden)

    Emanuela Calcio Gaudino

    2016-02-01

    Full Text Available The present review deals with the recent achievements and impressive potential applications of microwave (MW heating to promote heterogeneous reactions under gas pressure. The high versatility of the latest generation of professional reactors combines extreme reaction conditions with safer and more efficient protocols. The double aims of this survey are to provide a panoramic snapshot of MW-assisted organic reactions with gaseous reagents, in particular CO and CO2, and outline future applications. Stubborn and time-consuming carbonylation-like heterogeneous reactions, which have not yet been studied under dielectric heating, may well find an outstanding ally in the present protocol.

  12. 高含CO2气井产能计算新方法%A new method of productivity prediction for high CO2-content gas wells

    Institute of Scientific and Technical Information of China (English)

    严谨; 刘传喜

    2011-01-01

    Productivity of gas wells in Songnan volcanic gas reservoir is difficult to predict as high CO2 content has great influences on PVT of natural gas, resulting in large difference between the measured and predicted productivity. Based on laboratory experiments, this paper studied the effects of temperature, pressure and CO2 content on PVT of gas with high CO2 content and established the relational expressions of gas viscosity and Z-facto to pressure for gas with different CO2 contents. A new prediction model considering PVT variations of gas with high CO2 content was built based on gas percolation theory. The case study results indicate that the productivity reduces with the CO2 content increasing; the effect of Μz factor changes on productivity prediction should be considered when CO2 content is above 20 %; and the impacts of CO2 content on productivity lowers to a level that can be neglect in late production period. The new method is accurate and practical for the high CO2-content gas reservoirs.%松南火山岩气藏高含CO2,这种气体的存在对天然气的高压物性产生很大影响,使得气井产能预测与实际相差较大.在高含CO2气体高压物性分析(PVT)实验的基础上,研究了温度、压力和CO2含量对天然气高压物性参数的影响规律,建立了不同CO2含量下天然气粘度和偏差因子与压力的相关关系,并结合气体渗流理论建立了考虑高含CO2天然气高压物性变化的产能预测新模型.实例计算表明:①气井产能随着CO2含量的增高而降低;②当CO2含量大于20%时,气井产能评价必须考虑μΖ值(天然气粘度与偏差因子的乘积)变化的影响;③开发中后期可以忽略CO2含量对气井产能的影响.新的产能计算方法能反映CO2含量对产能计算的影响,精确度更高,对于高含CO2天然气田的产能评价和生产制度的制定具有重要的指导意义.

  13. Impact of salinity on threshold pressure of mudstone in sealing integrity processes of CO2.

    Science.gov (United States)

    Fujii, T.; Sorai, M.

    2015-12-01

    CO2 capture and storage (CCS) technology is a vital tool for deep reduction of CO2 emission from large point sources (e.g., Power generations, Cement and Steel manufacturing plants etc.), and understanding of fate of storing CO2 migration into reservoirs is significantly an important step for CO2 geological storage safety. Several measurements of CO2/water/solid (rock) contact angle related strongly to CO2 migration into pores of rocks have been conducted so far. These findings indicated commonly that water wetting onto mineral surface changes in supercritical CO2 (scCO2) state even though using both pendant and sessile drops and its effect increases as salinity increases, leading to decrease a sealing integrity i.e., threshold pressure of caprock including mudstone and/or shale. However, such mechanisms of scCO2/water/rock interaction are now still being uncleared. Our objective of this study is to investigate an effect of salinity on threshold pressure of natural mudstone, which takes from Kazusa group of Boso peninsula in Japan, in CO2/brine system in order to provide an insight for better understanding of mechanisms of CO2/water (brine)/rock interaction at temperature of 40° and pore pressures of 10 MPa for both CO2 and brine (NaCl), ranging from 0 to 2 molal. Our results demonstrated that threshold pressure value is consist until 0.5 molal NaCl corresponding to density of sea water, but when the salinity exceeds, its value shows a significant drop. It is further indicated that based on comparison results with a modified Young-Laplace eq. using interfacial tension and contact angle values proposed by several researchers, predicted values of threshold pressure increase linearly with increasing salinity and deviate from our experimental data. Thus, model prediction suggests that variation of threshold pressure related to salinity could not be explained fully by changes in interfacial tension and contact angle values with salinity. The present results should

  14. CO2 as an Oxidant for High Temperature Reactions

    Directory of Open Access Journals (Sweden)

    Sibudjing eKawi

    2015-03-01

    Full Text Available This paper presents a review on the developments in catalyst technology for the reactions utilizing CO2 for high temperature applications. These include dehydrogenation of alkanes to olefins, the dehydrogenation of ethylbenzene to styrene and finally CO2 reforming of hydrocarbon feedstock (i.e. methane and alcohols. Aspects on the various reaction pathways are also highlighted. The literature on the role of promoters and catalyst development is critically evaluated. Most of the reactions discussed in this review are exploited in industries and related to on-going processes, thus providing extensive data from literature. However some reactions, such as CO2 reforming of ethanol and glycerol which have not reached industrial scale are also reviewed owing to their great potential in terms of sustainability which are essential as energy for the future. This review further illustrates the building-up of knowledge which shows the role of support and catalysts for each reaction and the underlying linkage between certain catalysts which can be adapted for the multiple CO2-related reactions.

  15. Study of optimal discharge pressure of compressor in CO2 refrigerating trans-critical cycle

    Institute of Scientific and Technical Information of China (English)

    Fu Liehu; Wang Ruixiang; Li Qingdong; Wu Yezheng

    2008-01-01

    In this paper, a carbon dioxide trans-critical refrigerating system which is different from a conventional subcritical refrigerating cycle was studied. The trans-critical carbon dioxide refrigerating systems are based on the Gustav Lorntzen cycle. Emphasis was focused on how to determine the optimal discharge pressure of compressor in CO2 trans-critical cycle. The factors related with the optimal discharge pressure were analyzed. A formula was developed based on cycle simulation, which could be used to predict the optimal discharge pressure of a basic CO2 trans-critical cycle. After further studies on CO2 trans-critical cycles with a regenerator or expander, two more formulas were also developed. These formulas could provide an access to improve the COP of CO2 trans-critical cycle.

  16. Highly flexible NiCo2O4/CNTs doped carbon nanofibers for CO2 adsorption and supercapacitor electrodes.

    Science.gov (United States)

    Iqbal, Nousheen; Wang, Xianfeng; Ahmed Babar, Aijaz; Yu, Jianyong; Ding, Bin

    2016-08-15

    Controllable synthesis of carbon nanofibers (CNFs) with hierarchical porosity and high flexibility are extremely desirable for CO2 adsorption and energy storage applications. Herein, we report a nickel cobaltite/carbon nanotubes doped CNFs (NiCo2O4/CNTs CNFs) mesoporous membrane that shows well-developed flexibility, tailored pore structure, hydrophobic character, and high stability. Ascribed to these unique features, NiCo2O4/CNTs CNFs membrane shows high CO2 capture of 1.54mmol/g at 25°C and 1.0bar, and electrochemical measurements for supercapacitors exhibit good performance with specific capacitances of 220F/g (in 1M KOH) at a current density of 1A/g. The successful synthesis of such hybrid membrane provides new insight into development of various multifunctional applications.

  17. Kinetics and rate-limiting mechanisms of dolomitedissolution at various CO2 partial pressures

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Techniques of rotating-disk and catalyst were used in investigating the kinetics of dolo-mite dissolution in flowing CO2-H2O system. Experiments run in the solutions equilibrated withvarious CO2 partial pressures (PCO2) from 30 to 100000 Pa. It shows that dissolution rates ofdolomite are related with rotating speeds at conditions far from equilibrium. This was explained bymodified diffusion boundary layer (DBL) model. In addition, the dissolution rates increase after ad-dition of carbonic anhydrase (CA) to solutions, where the CA catalyzes CO2 conversion. However,great differences occur among various CO2 partial pressures. The experimental observations givea conclusion that the modified DBL model enables one to predict dissolution rates and their be-haviour at various PCO2 with satisfactory precision at least far from equilibrium.

  18. Highly stable CO2/N2 and CO2/CH4 selectivity in hyper-cross-linked heterocyclic porous polymers.

    Science.gov (United States)

    Saleh, Muhammad; Lee, Han Myoung; Kemp, K Christian; Kim, Kwang S

    2014-05-28

    The largest obstacles for landfill/flue gas separation using microporous materials are small adsorption values and low selectivity ratios. This study demonstrates that these adsorption and selectivity challenges can be overcome by utilizing a series of hyper-cross-linked heterocyclic polymer networks. These microporous organic polymers (MOPs) were synthesized in a single step by inexpensive Friedel-Crafts-catalyzed reactions using dimethoxymethane as an external linker. The amorphous networks show moderate Brunauer-Emmett-Teller surface areas up to 1022 m(2) g(-1), a narrow pore size distribution in the range from 6 to 8 Å, and high physicochemical stability. Owing to the presence of the heteroatomic pore surfaces in the networks, they exhibit maximum storage capacities for CO2 of 11.4 wt % at 273 K and 1 atm. Additionally, remarkable selectivity ratios for CO2 adsorption over N2 (100) and CH4 (15) at 273 K were obtained. More importantly, as compared with any other porous materials, much higher selectivity for CO2/N2 (80) and CO2/CH4 (15) was observed at 298 K, showing that these selectivity ratios remain high at elevated temperature. The very high CO2/N2 selectivity values are ascribed to the binding affinity of abundantly available electron-rich basic heteroatoms, high CO2 isoteric heats of adsorption (49-38 kJ mol(-1)), and the predominantly microporous nature of the MOPs. Binding energies calculated using the high level of ab initio theory showed that the selectivity is indeed attributed to the heteroatom-CO2 interactions. By employing an easy and economical synthesis procedure these MOPs with high thermochemical stability are believed to be a promising candidate for selective CO2 capture.

  19. 高压下CO_2稀释的CO/H_2/Air火焰贫可燃极限处的辐射重吸收效应的数值研究%Numerical Investigation of Radiation Re-Absorption Influences on Flame Behaviors of CO/H_2/Air Mixtures With CO_2 Diluted Near Lean Flammability Limits at High Pressures

    Institute of Scientific and Technical Information of China (English)

    陶志强; 艾育华; 孔文俊

    2012-01-01

    One-dimensional laminar premixed flames for CO/H_2/air mixtures were investigated numerically for a wide range of pressures with different CO_2 diluted ratios.Re-absorption-included radiation model called statistical narrow-band correlated-k(SNBCK)model and re-absorption-excluded radiation model called optically thin(OPT)model were used respectively in order to assess the impacts of re-absorption on flame behaviors near lean flammability limits.Results revealed that re-absorption extended lean flammability limits and these effects increased with increasing CO2 addition or ratios of CO/H_2.Effect of re-absorption strengthened as pressures increased.The maximum flames temperature at lean flammability limits increased first and then decreased with a peak value at near 10atm as pressures increased.%本文分别采用考虑辐射重吸收的谱带辐射(SNBCK)模型及未考虑辐射重吸收的光学薄辐射(OPT)模型,对0.1~4 MPa,CO_2稀释比为0%和20%的一维预混层流合成气/空气火焰进行数值分析,研究辐射重吸收效应对可燃极限及极限处的火焰传播速度和温度的影响。结果表明,辐射重吸收效应能有效拓宽贫可燃极限,提高燃料中CO_2比例或提高CO/H_2比例都会加剧上述效果。辐射重吸收效应随压力增大而逐渐增强,并造成可燃极限处最大火焰温度随压力先增加后减小,在1 MPa左右达到峰值。

  20. Influence of pressure and time on extraction process using supercritical CO2

    Directory of Open Access Journals (Sweden)

    Mićić V.

    2008-01-01

    Full Text Available The supercritical fluid extraction (SFE by carbon dioxide (CO2 of Salvia officinalis L. was investigated. SFE by CO2 was performed at different pressure (80, 100, 150, 200 and 300 bar and constant temperature of 40ºC (all other extraction conditions, such are flow rate, particle diameter of Salvia officinalis, extraction time were kept constant. The GC-MS method was used for determination of qualitative and quantitative composition of obtained extracts and essential oils.

  1. Implications of Sub-Hydrostatic Pressures in the Bravo Dome Natural CO2 Reservoir for the Long-Term Security of Geological Carbon Dioxide Storage

    Science.gov (United States)

    Akhbari, D.; Hesse, M. A.; Larson, T.

    2014-12-01

    The Bravo Dome field in northeast New Mexico is one of the largest gas accumulations worldwide and the largest natural CO2 accumulation in North America. The field is only 580-900 m deep and located in the Permian Tubb sandstone that unconformably overlies the granitic basement. Sathaye et al. (2014) estimated that 1.3 Gt of CO2 is stored at the reservoir. A major increase in the pore pressure relative to the hydrostatic pressure is expected due to the large amount of CO2 injected into the reservoir. However, the pre-production gas pressures indicate that most parts of the reservoir are approximately 5 MPa below hydrostatic pressure. Three processes could explain the under pressure in the Bravo Dome reservoir; 1) erosional unloading, 2) CO2 dissolution into the ambient brine, 3) cooling of CO2after injection. Analytical solutions suggest that an erosion rate of 180 m/Ma is required to reduce the pore pressures to the values observed at Bravo Dome. Given that the current erosion rate is only 5 m/Ma (Nereson et al. 2013); the sub-hydrostatic pressures at Bravo Dome are likely due to CO2dissolution and cooling. To investigate the impact of CO2 dissolution on the pore pressure we have developed new analytical solutions and conducted laboratory experiments. We assume that gaseous CO2 was confined to sandstones during emplacement due to the high entry pressure of the siltstones. After emplacement the CO2 dissolves in to the brine contained in the siltstones and the pressure in the sandstones declines. Assuming the sandstone-siltstone system is closed, the pressure decline due to CO2 dissolution is controlled by a single dimensionless number, η = KHRTVw /Vg. Herein, KH is Henry's constant, R is ideal gas constant, T is temperature, Vw is water volume, and Vg is CO2 volume. The pressure drop is controlled by the ratio of water volume to CO2 volume and η varies between 0.1 to 8 at Bravo Dome. This corresponds to pressure drops between 0.8-7.5 MPa and can therefore account

  2. Liposome fluidization and melting point depression by pressurized CO2 determined by fluorescence anisotropy.

    Science.gov (United States)

    Bothun, Geoffrey D; Knutson, Barbara L; Strobel, Herbert J; Nokes, Sue E

    2005-01-18

    The influence of CO2 on the bilayer fluidity of liposomes, which are representative of model cellular membranes, was examined for the first time at the elevated pressures (up to 13.9 MPa) associated with CO2-based processing of liposomes and microbial sterilization. Fluidization and melting point depression of aqueous dipalmitoylphosphatidylcholine (DPPC) liposomes by pressurized CO2 (present as an excess phase) were studied by steady-state fluorescence anisotropy using the membrane probe 1,6-diphenyl-1,3,5-hexatriene (DPH). Isothermal experiments revealed reversible, pressure-dependent fluidization of DPPC bilayers at temperatures corresponding to near-gel (295 K) and fluid (333 K) phases at atmospheric pressure, where the gel-to-fluid phase transition (Tm) occurs at approximately 315 K. Isobaric measurements (PCO2 =1.8, 7.0, and 13.9 MPa) of DPH anisotropy demonstrate substantial melting point depression (DeltaTm = -4.8 to -18.5 K) and a large broadening of the gel-fluid phase transition region, which were interpreted using conventional theories of melting point depression. Liposome fluidity is influenced by CO2 accumulation in the hydrocarbon core and polar headgroup region, as well as the formation of carbonic acid and/or the presence of buffering species under elevated CO2 pressure.

  3. Cellulose-Supported Ionic Liquids for Low-Cost Pressure Swing CO2 Capture

    Directory of Open Access Journals (Sweden)

    Daniel G. Reed

    2017-07-01

    Full Text Available Reducing the cost of capturing CO2 from point source emitters is a major challenge facing carbon capture, utilization, and storage. While solid ionic liquids (SoILs have been shown to allow selective and rapid CO2 capture by pressure swing separation of flue gases, expectations of their high cost hinders their potential application. Cellulose is found to be a reliable, cheap, and sustainable support for a range of SoILs, reducing the total sorbent cost by improving the efficiency of the ionic liquid (IL through increased ionic surface area that results from coating. It was also found that cellulose support imparts surface characteristics, which increased total sorbent uptake. Combined, these effects allowed a fourfold to eightfold improvement in uptake per gram of IL for SoILs that have previously shown high uptake and a 9- to 39-fold improvement for those with previously poor uptake. This offers the potential to drastically reduce the amount of IL required to separate a given gas volume. Furthermore, the fast kinetics are retained, with adsorb–desorb cycles taking place over a matter of seconds. This means that rapid cycling can be achieved, which results in high cumulative separation capacity relative to a conventional temperature swing process. The supported materials show an optimum at 75% cellulose:25% IL as a result of even coating of the cellulose surface. The projected reduction in plant size and operational costs represents a potentially ground-breaking step forward in carbon dioxide capture technologies.

  4. Cracking Sensibility of Super 13Cr Pipeline Steel in Environment with Low H2S and High CO2 Pressure%超级13Cr管材在低H2S高CO2环境中的开裂敏感性研究

    Institute of Scientific and Technical Information of China (English)

    陶杉; 徐燕东; 杜春朝

    2016-01-01

    ABSTRACT:Objective Aimed at the service restrictions of super 13Cr-110 martensite stainless steel in standard IS15156 and the various viewpoints of its cracking condition, cracking sensibility of super 13Cr-110 martensite stainless steel at different temperatures and diverse low H2S partial pressures was studied. Methods The experiments of weight loss and three point bend-ing test were carried out in the simulated corrosion environment based on acid oilfield containing low H2S and high CO2 in West China. High temperature and pressure autoclave was used during the test. ResultsThe corrosion rate of super 13Cr-110 marten-site stainless steel diminished with the decrease of temperature. It was 0.0031 mm/a at 80℃. Nevertheless, the stress corrosion cracking sensibility increased. The corrosion rate changed a little when H2S partial pressure rose from 6 kPa to 165 kPa at 210℃. Meanwhile, the cracking sensibility of super 13Cr-110 martensite stainless steel decreased. But fissures also appeared in long-term test. Conclusion Under low H2S partial pressure, the cracking type of super 13Cr-110 martensite stainless steel showed hydrogen embrittlement sulfide-stress cracking according to the analysis on the pattern of fissure and fracture. Firstly, local passive film was damaged and then pitting corrosion occured which led to the assembling of H. Finally, hydrogen embrit-tlement happened. With the H2S partial pressure lifting from 6 kPa to 165 kPa, the cracking sensibility of 13Cr-110 caused by pitting corrosion reduced due to the restraining of pitting corrosion. Super 13Cr-110 martensite stainless steel might not be ap-plicable in the environment containing no more than 10 kPa H2S as recommended in the standard.%目的:针对IS15156标准中对超级13Cr-110马氏体不锈钢使用条件的限制,及不同研究者对其开裂条件的不同观点,研究超级13Cr-110马氏体不锈钢在不同温度、不同低H2S分压条件下的开裂敏感性。方法通过

  5. CO2 uptake capacity of coal fly ash: Influence of pressure and temperature on direct gas-solid carbonation

    DEFF Research Database (Denmark)

    Mazzella, Alessandro; Errico, Massimiliano; Spiga, Daniela

    2016-01-01

    range 1 ÷ 7.5 bar the CO2 uptake increased with temperature, shortening the time required to capture higher percentage of CO2. Conversely, in the pressure range 10 ÷ 15 bar, the carbonation kinetics slowed down and the effect of temperature was less evident. The best CO2 uptake was found to be 18.2 wt......-solid carbonation treatment on coal fly ash in order to assess the potential of the process in terms of sequestration of CO2 as well as its influence on the leaching behavior of metals and soluble salts. Laboratory tests, performed under different pressure and temperature conditions, showed that in the pressure......% corresponding to a maximum carbonation efficiency of 74%, estimated on the basis of the initial CaO content. The high degree of ash carbonation achieved in the present research, which was conducted under mild conditions, without add of water and without stirring, showed the potential use of coal fly ash in CO2...

  6. High indoor CO2 concentrations in an office environment increases the transcutaneous CO2 level and sleepiness during cognitive work.

    Science.gov (United States)

    Vehviläinen, Tommi; Lindholm, Harri; Rintamäki, Hannu; Pääkkönen, Rauno; Hirvonen, Ari; Niemi, Olli; Vinha, Juha

    2016-01-01

    The purpose of this study is to perform a multiparametric analysis on the environmental factors, the physiological stress reactions in the body, the measured alertness, and the subjective symptoms during simulated office work. Volunteer male subjects were monitored during three 4-hr work meetings in an office room, both in a ventilated and a non-ventilated environment. The environmental parameters measured included CO(2), temperature, and relative humidity. The physiological test battery consisted of measuring autonomic nervous system functions, salivary stress hormones, blood's CO(2)- content and oxygen saturation, skin temperatures, thermal sensations, vigilance, and sleepiness. The study shows that we can see physiological changes caused by high CO(2) concentration. The findings support the view that low or moderate level increases in concentration of CO(2) in indoor air might cause elevation in the blood's transcutaneously assessed CO(2). The observed findings are higher CO(2) concentrations in tissues, changes in heart rate variation, and an increase of peripheral blood circulation during exposure to elevated CO(2) concentration. The subjective parameters and symptoms support the physiological findings. This study shows that a high concentration of CO(2) in indoor air seem to be one parameter causing physiological effects, which can decrease the facility user's functional ability. The correct amount of ventilation with relation to the number of people using the facility, functional air distribution, and regular breaks can counteract the decrease in functional ability. The findings of the study suggest that merely increasing ventilation is not necessarily a rational solution from a technical-economical viewpoint. Instead or in addition, more comprehensive, anthropocentric planning of space is needed as well as instructions and new kinds of reference values for the design and realization of office environments.

  7. Investigational study of the CO2 balance in high temperature CO2 separation technology; Nisanka tanso koon bunri gijutsu ni okeru CO2 balance ni kansuru chosa kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    An investigational study was conducted to clarify the adaptable environment and effectivity of technologies of high temperature separation/recovery/reutilization of CO2. In the study, data collection, arrangement and comparison were made of various separation technologies such as the membrane method, absorption method, adsorption method, and cryogenic separation method. With the LNG-fired power generation as an example, the adaptable environment and effectivity were made clear by making models by a process simulator, ASPEN PLUS. Moreover, using this simulator, effects of replacing the conventional steam reforming of hydrocarbon with the CO2 reforming were made clear with the methanol synthesis as an example. As to the rock fixation treatment of high temperature CO2, collection/arrangement were made of the data on the fixation treatment of the CO2 separated at high temperature into basic rocks such as peridotite and serpentinite in order to clarify the adaptable environment and effectivity of the treatment. Besides, a potentiality of the fixation to concrete waste was made clear. 57 refs., 57 figs., 93 tabs.

  8. High Resolution X-ray CMT Imaging of Supercritical CO2 in Porous Media: Experimental Challenges, Solutions, and Results

    Science.gov (United States)

    Herring, A. L.; Andersson, L.; Newell, D. L.; Carey, J. W.; Wildenschild, D.

    2013-12-01

    temperature and pressure measurement is necessary, and temperature and pressure uniformity throughout flow lines and other system components is crucial for flow experiments. Additional challenges associated with the imaging process include allowing for 180° of rotation of the sample and connected fluid lines and pressure sensing devices, and ensuring physical stability of the sample during scanning; all while maintaining uniform high pressure and temperature conditions. We present our methods to address these concerns, as well as preliminary results from the supercritical CO2 experiments conducted during July 2013 at the Advanced Photon Source at Argonne National Laboratory.

  9. Fluorous Metal-Organic Frameworks with Enhanced Stability and High H2/CO2 Storage Capacities

    Science.gov (United States)

    Zhang, Da-Shuai; Chang, Ze; Li, Yi-Fan; Jiang, Zhong-Yi; Xuan, Zhi-Hong; Zhang, Ying-Hui; Li, Jian-Rong; Chen, Qiang; Hu, Tong-Liang; Bu, Xian-He

    2013-01-01

    A new class of metal-organic frameworks (MOFs) has been synthesized by ligand-functionalization strategy. Systematic studies of their adsorption properties were performed at low and high pressure. Importantly, when fluorine was introduced into the framework via the functionalization, both the framework stabilities and adsorption capacities towards H2/CO2 were enhanced significantly. This consequence can be well interpreted by theoretical studies of these MOFs structures. In addition, one of these MOFs TKL-107 was used to fabricate mixed matrix membranes, which exhibit great potential for the application of CO2 separation. PMID:24264725

  10. Sulfonate-grafted porous polymer networks for preferential CO2 adsorption at low pressure.

    Science.gov (United States)

    Lu, Weigang; Yuan, Daqiang; Sculley, Julian; Zhao, Dan; Krishna, Rajamani; Zhou, Hong-Cai

    2011-11-16

    A porous polymer network (PPN) grafted with sulfonic acid (PPN-6-SO(3)H) and its lithium salt (PPN-6-SO(3)Li) exhibit significant increases in isosteric heats of CO(2) adsorption and CO(2)-uptake capacities. IAST calculations using single-component-isotherm data and a 15/85 CO(2)/N(2) ratio at 295 K and 1 bar revealed that the sulfonate-grafted PPN-6 networks show exceptionally high adsorption selectivity for CO(2) over N(2) (155 and 414 for PPN-6-SO(3)H and PPN-6-SO(3)Li, respectively). Since these PPNs also possess ultrahigh physicochemical stability, practical applications in postcombustion capture of CO(2) lie well within the realm of possibility.

  11. CO2 exposure at pressure impacts metabolism and stress responses in the model sulfate-reducing bacterium Desulfovibrio vulgaris strain Hildenborough

    Energy Technology Data Exchange (ETDEWEB)

    Wilkins, Michael J.; Hoyt, David W.; Marshall, Matthew J.; Alderson, Paul A.; Plymale, Andrew E.; Markillie, Lye Meng; Tucker, Abigail E.; Walter, Eric D.; Linggi, Bryan E.; Dohnalkova, Alice; Taylor, Ronald C.

    2014-09-01

    Geologic carbon dioxide (CO2) sequestration drives physical and geochemical changes in deep subsurface environments that impact indigenous microbial activities. The combined effects of pressurized CO2 on a model sulfate-reducing microorganism, Desulfovibrio vulgaris, have been assessed using a suite of genomic and kinetic measurements. Novel high-pressure NMR time-series measurements using 13C-lactate were used to track D. vulgaris metabolism. We identified cessation of respiration at CO2 pressures of 10 bar, 25 bar, 50 bar, and 80 bar. Concurrent experiments using N2 as the pressurizing phase had no negative effect on microbial respiration, as inferred from reduction of sulfate to sulfide. Complementary pressurized batch incubations and fluorescence microscopy measurements supported NMR observations, and indicated that non-respiring cells were mostly viable at 50 bar CO2 for at least four hours, and at 80 bar CO2 for two hours. The fraction of dead cells increased rapidly after four hours at 80 bar CO2. Transcriptomic (RNA-Seq) measurements on mRNA transcripts from CO2-incubated biomass indicated that cells up-regulated the production of certain amino acids (leucine, isoleucine) following CO2 exposure at elevated pressures, likely as part of a general stress response. Evidence for other poorly understood stress responses were also identified within RNA-Seq data, suggesting that while pressurized CO2 severely limits the growth and respiration of D. vulgaris cells, biomass retains intact cell membranes at pressures up to 80 bar CO2. Together, these data show that geologic sequestration of CO2 may have significant impacts on rates of sulfate reduction in many deep subsurface environments where this metabolism is a key respiratory process.

  12. CO2 exposure at pressure impacts metabolism and stress responses in the model sulfate-reducing bacterium Desulfovibrio vulgaris strain Hildenborough

    Directory of Open Access Journals (Sweden)

    Michael J Wilkins

    2014-09-01

    Full Text Available Geologic carbon dioxide (CO2 sequestration drives physical and geochemical changes in deep subsurface environments that impact indigenous microbial activities. The combined effects of pressurized CO2 on a model sulfate-reducing microorganism, Desulfovibrio vulgaris, have been assessed using a suite of genomic and kinetic measurements. Novel high-pressure NMR time-series measurements using 13C-lactate were used to track D. vulgaris metabolism. We identified cessation of respiration at CO2 pressures of 10 bar, 25 bar, 50 bar, and 80 bar. Concurrent experiments using N2 as the pressurizing phase had no negative effect on microbial respiration, as inferred from reduction of sulfate to sulfide. Complementary pressurized batch incubations and fluorescence microscopy measurements supported NMR observations, and indicated that non-respiring cells were mostly viable at 50 bar CO2 for at least four hours, and at 80 bar CO2 for two hours. The fraction of dead cells increased rapidly after four hours at 80 bar CO2. Transcriptomic (RNA-Seq measurements on mRNA transcripts from CO2-incubated biomass indicated that cells up-regulated the production of certain amino acids (leucine, isoleucine following CO2 exposure at elevated pressures, likely as part of a general stress response. Evidence for other poorly understood stress responses were also identified within RNA-Seq data, suggesting that while pressurized CO2 severely limits the growth and respiration of D. vulgaris cells, biomass retains intact cell membranes at pressures up to 80 bar CO2. Together, these data show that geologic sequestration of CO2 may have significant impacts on rates of sulfate reduction in many deep subsurface environments where this metabolism is a key respiratory process.

  13. Pressure-Saturation Effects from AVO Attributes in CO2 Monitoring of Weyburn Reservoir, Saskatchewan, Canada

    Science.gov (United States)

    Gao, L.; Morozov, I. B.

    2011-12-01

    In order to measure pore-pressure and saturation effects due to CO2 injection, amplitude variation with offset (AVO) could be a most valuable discriminator. The AVO technique is applied to monitoring the Weyburn reservoir, located in southeast Saskatchewan, using 3D/3C surface seismic datasets. A baseline (1999) and two monitor surveys (2001 and 2002) acquired by EnCana as part of the International Energy Agency GHG Weyburn-Midale CO2 Monitoring and Storage Project are included in this study. Two-term linear AVO attributes including the intercept (I), gradient (G), S-wave reflectivity (I-G)/2 and I+G are derived. Attribute I - G is shown to be most sensitive to pressure variations, and I + G - to CO2 saturation. In addition, several secondary attributes based on statistical distributions of (I, G) values are also examined. The time-lapse AVO attributes indicate areas of pore-pressure and potentially CO2 saturation variations between the horizontal injection wells. The results indicate that AVO technology allows estimating reservoir pressure and fluid saturation variations from time-lapse seismic data.

  14. Study of optimal discharge pressure of compressor in CO_2 refrigerating trans-critical cycle

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    In this paper, a carbon dioxide trans-critical refrigerating system which is different from a conventional subcritical refrigerating cycle was studied. The trans-critical carbon dioxide refrigerating systems are based on the Gustav Lorntzen cycle. Emphasis was focused on how to determine the optimal discharge pressure of compressor in CO2 trans-critical cycle. The factors related with the optimal discharge pressure were analyzed. A formula was developed based on cycle simulation, which could be used to pred...

  15. Calibration of Relative Humidity Devices in Low-pressure, Low-temperature CO2 Environment

    Science.gov (United States)

    Genzer, Maria; Polkko, Jouni; Nikkanen, Timo; Hieta, Maria; Harri, Ari-Matti

    2017-04-01

    Calibration of relative humidity devices requires in minimum two humidity points - dry (0%RH) and (near)saturation (95-100%RH) - over the expected operational temperature and pressure range of the device. In terrestrial applications these are relatively easy to achieve using for example N2 gas as dry medium, and water vapor saturation chambers for producing saturation and intermediate humidity points. But for example in applications intended for meteorological measurements on Mars there is a need to achieve at least dry and saturation points in low-temperature, low-pressure CO2 environment. We have developed a custom-made, small, relatively low-cost calibration chamber able to produce both dry points and saturation points in Martian range pressure CO2, in temperatures down to -70°C. The system utilizes a commercially available temperature chamber for temperature control, vacuum vessels and pumps. The main pressure vessel with the devices under test inside is placed inside the temperature chamber, and the pressure inside is controlled by pumps and manual valves and monitored with a commercial pressure reference with calibration traceable to national standards. Air, CO2, or if needed another gas like N2, is used for filling the vessel until the desired pressure is achieved. Another pressure vessel with a dedicated pressure pump is used as the saturation chamber. This vessel is placed in the room outside the temperature chamber, partly filled with water and used for achieving saturated water vapor in room-temperature low-pressure environment. The saturation chamber is connected to the main pressure vessel via valves. In this system dry point, low-pressure CO2 environment is achieved by filling the main pressure vessel with dry CO2 gas until the desired pressure is achieved. A constant flow of gas is maintained with the pump and valves and monitored with the pressure reference. The saturation point is then achieved by adding some water vapor from the saturation

  16. High-Temperature CO2 Sorption on Hydrotalcite Having a High Mg/Al Molar Ratio.

    Science.gov (United States)

    Kim, Suji; Jeon, Sang Goo; Lee, Ki Bong

    2016-03-09

    Hydrotalcites having a Mg/Al molar ratio between 3 and 30 have been synthesized as promising high-temperature CO2 sorbents. The existence of NaNO3 in the hydrotalcite structure, which originates from excess magnesium nitrate in the precursor, markedly increases CO2 sorption uptake by hydrotalcite up to the record high value of 9.27 mol kg(-1) at 240 °C and 1 atm CO2.

  17. A perfluorinated covalent triazine-based framework for highly selective and water-tolerant CO2 capture

    KAUST Repository

    Zhao, Yunfeng

    2013-01-01

    We designed and synthesized a perfluorinated covalent triazine-based framework (FCTF-1) for selective CO2 capture. The incorporation of fluorine (F) groups played multiple roles in improving the framework\\'s CO 2 adsorption and separation capabilities. Thermodynamically, the strongly polar C-F bonds promoted CO2 adsorption via electrostatic interactions, especially at low pressures. FCTF-1\\'s CO2 uptake was 1.76 mmol g-1 at 273 K and 0.1 bar through equilibrium adsorption, exceeding the CO2 adsorption capacity of any reported porous organic polymers to date. In addition, incorporating F groups produced a significant amount of ultra-micropores (<0.5 nm), which offered not only high gas adsorption potential but also kinetic selectivity for CO2-N 2 separation. In mixed-gas breakthrough experiments, FCTF-1 exhibited an exceptional CO2-N2 selectivity of 77 under kinetic flow conditions, much higher than the selectivity (31) predicted from single-gas equilibrium adsorption data. Moreover, FCTF-1 proved to be tolerant to water and its CO2 capture performance remained excellent when there was moisture in the gas mixture, due to the hydrophobic nature of the C-F bonds. In addition, the moderate adsorbate-adsorbent interaction allowed it to be fully regenerated by pressure swing adsorption processes. These attributes make FCTF-1 a promising sorbent for CO2 capture from flue gas. © 2013 The Royal Society of Chemistry.

  18. Gravimetric analysis of CO2 adsorption on activated carbon at various pressures and temperatures using piezoelectric microcantilevers.

    Science.gov (United States)

    Jin, Yusung; Lee, Dongkyu; Lee, Sangkyu; Moon, Wonkyu; Jeon, Sangmin

    2011-09-15

    We investigated the adsorption and desorption of CO(2) on activated carbon using piezoelectric microcantilevers. After coating the free end of a cantilever with activated carbon, variations in the resonance frequency of the cantilever were measured as a function of CO(2) pressure, which is related to mass changes due to the adsorption or desorption of CO(2). The pressure-dependent viscous damping effects were compensated in the calculation of the CO(2) adsorption capacity of the activated carbon by comparing the frequency differences between the coated and uncoated cantilevers. The mass sensitivity of the piezoelectric cantilever was found to be better than 1 pg. The fractional coverage of CO(2) agreed with a Langmuir adsorption isotherm, indicating that a submonolayer of adsorbed CO(2) occurred on the surface of the activated carbon under the experimental conditions. The heat of adsorption was determined using the Clausius-Clapeyron relation and the fractional coverage of CO(2) at various temperatures and pressures.

  19. Highly porous organic polymers bearing tertiary amine group and their exceptionally high CO2 uptake capacities

    Science.gov (United States)

    Gomes, Ruth; Bhaumik, Asim

    2015-02-01

    We report a very simple and unique strategy for synthesis of a tertiary amine functionalized high surface area porous organic polymer (POP) PDVTA-1 through the co-polymerization of monomers divinylbenzene (DVB) and triallylamine (TAA) under solvothermal reaction conditions. Two different PDVTA-1 samples have been synthesized by varying the molar ratio of the monomers. The porous polymeric materials have been thoroughly characterized by solid state 13C CP MAS-NMR, FT-IR and UV-vis spectroscopy, N2 sorption, HR TEM and FE SEM to understand its chemical environment, nanostructure, bonding, morphology and related surface properties. PDVTA-1 with higher amine content (DVB/TAA=4.0) showed exceptionally high CO2 uptake capacity of 85.8 wt% (19.5 mmol g-1) at 273 K and 43.69 wt% (9.93 mmol g-1) at 298 K under 3 bar pressure, whereas relatively low amine loaded material (DVB/TAA=7.0) shows uptake capacity of 59.2 wt% (13.45 mmol g-1) at 273 K and 34.36 wt% (7.81 mmol g-1) at 298 K. Highly porous nanostructure together with very high surface area and basicity at the surface due to the presence of abundant basic tertiary amine N-sites in the framework of PDVTA-1 could be responsible for very high CO2 adsorption.

  20. Reactor Design for CO2 Photo-Hydrogenation toward Solar Fuels under Ambient Temperature and Pressure

    Directory of Open Access Journals (Sweden)

    Chun-Ying Chen

    2017-02-01

    Full Text Available Photo-hydrogenation of carbon dioxide (CO2 is a green and promising technology and has received much attention recently. This technique could convert solar energy under ambient temperature and pressure into desirable and sustainable solar fuels, such as methanol (CH3OH, methane (CH4, and formic acid (HCOOH. It is worthwhile to mention that this direction can not only potentially depress atmospheric CO2, but also weaken dependence on fossil fuel. Herein, 1 wt % Pt/CuAlGaO4 photocatalyst was successfully synthesized and fully characterized by ultraviolet-visible light (UV-vis spectroscopy, X-ray diffraction (XRD, Field emission scanning electron microscopy using energy dispersive spectroscopy analysis (FE-SEM/EDS, transmission electron microscopy (TEM, X-ray photoelectron spectroscopy (XPS, and Brunauer-Emmett-Teller (BET, respectively. Three kinds of experimental photo-hydrogenation of CO2 in the gas phase, liquid phase, and gas-liquid phase, correspondingly, were conducted under different H2 partial pressures. The remarkable result has been observed in the gas-liquid phase. Additionally, increasing the partial pressure of H2 would enhance the yield of product. However, when an extra amount of H2 is supplied, it might compete with CO2 for occupying the active sites, resulting in a negative effect on CO2 photo-hydrogenation. For liquid and gas-liquid phases, CH3OH is the major product. Maximum total hydrocarbons 8.302 µmol·g−1 is achieved in the gas-liquid phase.

  1. Ethylene: Response of Fruit Dehiscence to CO2 and Reduced Pressure 1

    Science.gov (United States)

    Lipe, John A.; Morgan, Page W.

    1972-01-01

    These studies were conducted to determine whether ethylene serves as a natural regulator of fruit wall dehiscence, a major visible feature of ripening in some fruits. We employed treatments to inhibit ethylene action or remove ethylene and observed their effect on fruit dehiscence. CO2 (13%), a competitive inhibitor of ethylene action in many systems, readily delayed dehiscence of detached fruits of cotton (Gossypium hirsutum L.), pecan (Carya illinoensis [Wang.] K. Koch), and okra (Hibiscus esculentus L.). The CO2 effect was duplicated by placing fruits under reduced pressure (200 millimeters mercury), to promote the escape of ethylene from the tissue. Dehiscence of detached fruits of these species as well as attached cotton fruits was delayed. The delay of dehiscence of cotton and okra by both treatments was achieved with fruit harvested at intervals from shortly after anthesis until shortly before natural dehiscence. Pecan fruits would not dehisce until approximately 1 month before natural dehiscence, and during that time, CO2 and reduced pressure delayed dehiscence. CO2 and ethylene were competitive in their effects on cotton fruit dehiscence. All of the results are compatible with a hypothetical role of ethylene as a natural regulator of dehiscence, a dominant aspect of ripening of cotton, pecan, and some other fruits. PMID:16658260

  2. Ethylene: Response of Fruit Dehiscence to CO(2) and Reduced Pressure.

    Science.gov (United States)

    Lipe, J A; Morgan, P W

    1972-12-01

    These studies were conducted to determine whether ethylene serves as a natural regulator of fruit wall dehiscence, a major visible feature of ripening in some fruits. We employed treatments to inhibit ethylene action or remove ethylene and observed their effect on fruit dehiscence. CO(2) (13%), a competitive inhibitor of ethylene action in many systems, readily delayed dehiscence of detached fruits of cotton (Gossypium hirsutum L.), pecan (Carya illinoensis [Wang.] K. Koch), and okra (Hibiscus esculentus L.). The CO(2) effect was duplicated by placing fruits under reduced pressure (200 millimeters mercury), to promote the escape of ethylene from the tissue. Dehiscence of detached fruits of these species as well as attached cotton fruits was delayed. The delay of dehiscence of cotton and okra by both treatments was achieved with fruit harvested at intervals from shortly after anthesis until shortly before natural dehiscence. Pecan fruits would not dehisce until approximately 1 month before natural dehiscence, and during that time, CO(2) and reduced pressure delayed dehiscence. CO(2) and ethylene were competitive in their effects on cotton fruit dehiscence. All of the results are compatible with a hypothetical role of ethylene as a natural regulator of dehiscence, a dominant aspect of ripening of cotton, pecan, and some other fruits.

  3. Microbial cell disruption for improving lipid recovery using pressurized CO2 : Role of CO2 solubility in cell suspension, sugar broth, and spent media.

    Science.gov (United States)

    Howlader, Md Shamim; French, William Todd; Shields-Menard, Sara A; Amirsadeghi, Marta; Green, Magan; Rai, Neeraj

    2017-05-01

    The study of in situ gas explosion to lyse the triglyceride-rich cells involves the solubilization of gas (e.g., carbon dioxide, CO2 ) in lipid-rich cells under pressure followed by a rapid decompression, which allows the gas inside the cell to rapidly expand and rupture the cell from inside out. The aim of this study was to perform the cell disruption using pressurized CO2 as well as to determine the solubility of CO2 in Rhodotorula glutinis cell suspension, sugar broth media, and spent media. Cell disruption of R. glutinis was performed at two pressures of 2,000 and 3,500 kPa, respectively, at 295.2 K, and it was found from both scanning electron microscopy (SEM) and plate count that a substantial amount of R. glutinis was disrupted due to the pressurized CO2 . We also found a considerable portion of lipid present in the aqueous phase after the disruption at P = 3,500 kPa compared to control (no pressure) and P = 2,000 kPa, which implied that more intracellular lipid was released due to the pressurized CO2 . Solubility of CO2 in R. glutinis cell suspension was found to be higher than the solubility of CO2 in both sugar broth media and spent media. Experimental solubility was correlated using the extended Henry's law, which showed a good agreement with the experimental data. Enthalpy and entropy of dissolution of CO2 were found to be -14.22 kJ mol(-1) and 48.10 kJ mol(-1)  K(-1) , 9.64 kJ mol(-1) and 32.52 kJ mol(-1)  K(-1) , and 7.50 kJ mol(-1) and 25.22 kJ mol(-1)  K(-1) in R. glutinis, spent media, and sugar broth media, respectively. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:737-748, 2017. © 2017 American Institute of Chemical Engineers.

  4. A Cationic MOF with High Uptake and Selectivity for CO2 due to Multiple CO2 -Philic Sites.

    Science.gov (United States)

    Wang, Hai-Hua; Shi, Wen-Juan; Hou, Lei; Li, Gao-Peng; Zhu, Zhonghua; Wang, Yao-Yu

    2015-11-09

    The reaction of N-rich pyrazinyl triazolyl carboxyl ligand 3-(4-carboxylbenzene)-5-(2-pyrazinyl)-1H-1,2,4-triazole (H2 cbptz) with MnCl2 afforded 3D cationic metal-organic framework (MOF) [Mn2 (Hcbptz)2 (Cl)(H2 O)]Cl⋅DMF⋅0.5 CH3 CN (1), which has an unusual (3,4)-connected 3,4T1 topology and 1D channels composed of cavities. MOF 1 has a very polar framework that contains exposed metal sites, uncoordinated N atoms, narrow channels, and Cl(-) basic sites, which lead to not only high CO2 uptake, but also remarkably selective adsorption of CO2 over N2 and CH4 at 298-333 K. The multiple CO2 -philic sites were identified by grand canonical Monte Carlo simulations. Moreover, 1 shows excellent stability in natural air environment. These advantages make 1 a very promising candidate in post-combustion CO2 capture, natural-gas upgrading, and landfill gas-purification processes. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. 13Cr和N80钢高温高压抗腐蚀性能比较%Compare of CO2 Corrosion Resistance of 13Cr and N80 Steel under High Temperature and High Pressure

    Institute of Scientific and Technical Information of China (English)

    陈尧; 白真权

    2007-01-01

    在石油、天然气的开采与集输过程中,地层中的CO2会对油套管及集输管线造成严重腐蚀.在我国,CO2腐蚀已导致多起重大事故,经济损失十分严重.模拟了大庆油田井下的腐蚀环境,通过高温高压釜进行了13Cr和N80钢的腐蚀实验,采用SEM、EDS和XPS测试手段,分析获得了CO2腐蚀产物膜的形貌和化学组成.结果表明,在所试验的三个温度下,13Cr钢液相腐蚀类型主要为均匀腐蚀,N80钢主要是局部腐蚀.85℃和110℃时,13Cr钢的液相腐蚀速率属于中度腐蚀,基体表面形成了一层深褐色腐蚀膜层且表面平整均匀,晶粒细小,膜层较薄;N80钢的液相腐蚀速率属于严重腐蚀,腐蚀膜呈现双层结构,表层为较粗大的规则的晶粒堆积而成,内层则是由细小晶粒紧密堆积而成.在170℃时,13Cr钢的腐蚀速率属严重腐蚀的下限,接近中度腐蚀的上限,而N80钢属于中度腐蚀.

  6. An asymmetric tubular ceramic-carbonate dual phase membrane for high temperature CO2 separation.

    Science.gov (United States)

    Dong, Xueliang; Ortiz Landeros, José; Lin, Y S

    2013-10-25

    For the first time, a tubular asymmetric ceramic-carbonate dual phase membrane was prepared by a centrifugal casting technique and used for high temperature CO2 separation. This membrane shows high CO2 permeation flux and permeance.

  7. In situ X-ray ptychography imaging of high-temperature CO2 acceptor particle agglomerates

    DEFF Research Database (Denmark)

    Høydalsvik, Kristin; Fløystad, Jostein Bø; Zhao, Tiejun

    2014-01-01

    be used for in situ phase contrast imaging in structure studies at atmospheric pressure and elevated temperatures. Lithium zirconate, a candidate CO2 capture material, was studied at a pressure of one atmosphere in air and in CO2, at temperatures exceeding 600 °C. Images with a spatial resolution better...

  8. Effect of CO2 Partial Pressure on Corrosion Resistance of X80 Pipeline Steel%CO2分压对X80管线钢腐蚀性能的影响

    Institute of Scientific and Technical Information of China (English)

    刘晓玮; 蔡庆伍; 武会宾; 张杰

    2012-01-01

    模拟油田CO2驱油现场环境,利用高温高压反应釜,采用失重法、扫描电镜(SEM)、X射线衍射(XRD)等方法,研究了不同CO2分压对X80管线钢腐蚀性能的影响。结果表明,X80管线钢的腐蚀速率随着CO2分压的升高呈先升高后下降的趋势,在CO2分压为1.5MPa时达到最大值。当CO2分压为0 MPa和0.5 MPa时发生均匀腐蚀,当分压升高到1.5MPa和2MPa时发生了局部腐蚀。CO2分压为0MPa时的腐蚀产物为非晶态物质,其余各分压下的腐蚀产物均以FeCO3为主。随着CO2分压的升高,腐蚀产物与基体结合的紧密度随着CO2分压的升高越来越紧密;腐蚀产物膜厚度呈先升高后降低的趋势,与腐蚀速率的变化相对应。%The effect of CO2 partial pressure on corrosion resistance of X80 pipeline steel was investigated in high temperature and pressure autoclave simulating the downhole environment of an oil field,using the weight loss method,SEM and XRD.The results showed that with increasing CO2 partial pressure,the corrosion rate of X80 pipeline steel showed the tendency of fluctuation,and the maximum rate appeared at the CO2 partial pressure of 1.5 MPa.Uniform corrosion occurred when the CO2 partial pressure was 0 MPa and 0.5 MPa.When the CO2 partial pressure was 1.5 MPa and 2 MPa,localized corrosion occurred.The corrosion product was composed of noncrystalline substance at partial pressure of 0 MPa,and mainly composed of FeCO3 at other partial pressures.With increasing the CO2 partial pressure,the combination between corrosion product and substrate was increasingly close,and the thickness of corrosion product showed the tendency of fluctuation,corresponding to the change in corrosion rate.

  9. Application of Pressure Pulse Test Analysis in CO2 Leakage Detection and Monitoring

    Science.gov (United States)

    Shakiba, M.; Hosseini, S. A.

    2015-12-01

    Over the past decade, numerous research and industrial projects have been devoted to investigate the feasibility and efficiency of carbon dioxide capture, storage, and utilization. Besides the studies over the characteristics of candidate formations for CO2 injection, much attention has been paid to answer the environmental concerns regarding the CO2 leak to overlying formations. To first detect and then track a possible CO2 leak, different techniques have been proposed in the literature; however, most of them examine only a small portion of the formation and have a low resolution for early leak detection. To further increase the extent of the investigation zone and to monitor a large section of the formation in more detail, multi-well testing techniques have received a significant attention. Pressure pulse testing is a multi-well test technique in which a pressure signal generated by periods of injection and shut-in from a pulser well is propagated inside the formation, and the corresponding response is recorded at the observer wells. The recorded pressure response is then analyzed to measure the rock and fluid properties and to monitor the possible changes over the time. In this research study, we have applied frequency methods as well as superposition principle to interpret the pressure pulse test data and monitor the changes in transmissibility and storativity of the formation between the well pairs. We have used synthetic reservoir models and numerical reservoir simulations to produce the pressure pulse test data. The analysis of the simulation results indicated that even a small amount of CO2 leak in the investigation zone can have a measurable effect on the calculated storativity and transmissibility factors. This can be of a great importance when an early leak detection is of interest. Moreover, when multiple wells are available in the formation, the distribution of the calculated parameters can visualize the extent of CO2 leak, which has a great

  10. Two-phase flow effects on the CO2 injection pressure evolution and implications for the caprock geomechanical stability

    Directory of Open Access Journals (Sweden)

    Vilarrasa Víctor

    2016-01-01

    Full Text Available Geologic carbon storage is considered to be one of the main solutions to significantly reduce CO2 emissions to the atmosphere to mitigate climate change. CO2 injection in deep geological formations entails a two-phase flow, being CO2 the non-wetting phase. One of the main concerns of geologic carbon storage is whether the overpressure induced by CO2 injection may compromise the caprock integrity and faults stability. We numerically investigate the two-phase flow effects that govern the overpressure evolution generated by CO2 injection and how this overpressure affects the caprock geomechanical stability. We find that fluid pressure increases sharply at the beginning of injection because CO2 has to displace the brine that fills the pores around the injection well, which reduces the relative permeability. However, overpressure decreases subsequently because once CO2 fills the pores around the injection well, CO2 can flow easily due to its low viscosity and because the relative permeability to CO2 increases. Furthermore, the pressure drop that occurs in the capillary fringe due to two-phase flow interference decreases as the CO2 plume becomes larger. This overpressure evolution induced by CO2 injection, which remains practically constant with time after the initial peak, is very beneficial for maintaining caprock stability. Thus, the sealing capacity of the caprock will be maintained, preventing CO2 leakage to occur across the caprock.

  11. Molecular-level Insight into Unusual Low Pressure CO2 Affinity in Pillared Metal-Organic Frameworks

    NARCIS (Netherlands)

    Burtch, N.C.; Jasuja, H.; Dubbeldam, D.; Walton, K.S.

    2013-01-01

    Fundamental insight into how low pressure adsorption properties are affected by chemical functionalization is critical to the development of next-generation porous materials for postcombustion CO2 capture. In this work, we present a systematic approach to understanding low pressure CO2 affinity in i

  12. Molecular-level Insight into Unusual Low Pressure CO2 Affinity in Pillared Metal-Organic Frameworks

    NARCIS (Netherlands)

    Burtch, N.C.; Jasuja, H.; Dubbeldam, D.; Walton, K.S.

    2013-01-01

    Fundamental insight into how low pressure adsorption properties are affected by chemical functionalization is critical to the development of next-generation porous materials for postcombustion CO2 capture. In this work, we present a systematic approach to understanding low pressure CO2 affinity in i

  13. Effect of CO2 Partial Pressure on CO2/H2S Corrosion of Oil Tube Steel%CO2分压对油管钢CO2/H2S腐蚀的影响

    Institute of Scientific and Technical Information of China (English)

    张清; 李全安; 文九巴; 白真权

    2004-01-01

    采用高温高压釜、失重法和扫描电镜, 对不同CO2分压(310.264 2、 930.792 6、1 551.321 0、2 171.849 4 kPa)条件下油管钢N80和P110的CO2/H2S腐蚀进行了研究.结果表明,随着CO2分压的升高,两种钢的CO2/H2S腐蚀速率均单调增加;除了CO2分压极低的情况以外,P110钢的腐蚀速率总是大于N80钢.

  14. Quantification of the dissolved inorganic carbon species and of the pH of alkaline solutions exposed to CO2 under pressure: a novel approach by Raman scattering.

    Science.gov (United States)

    Beuvier, Thomas; Calvignac, Brice; Bardeau, Jean-François; Bulou, Alain; Boury, Frank; Gibaud, Alain

    2014-10-07

    Dissolved inorganic carbon (DIC) content of aqueous systems is a key function of the pH, of the total alkanility (TA), and of the partial pressure of CO2. However, common analytical techniques used to determine the DIC content in water are unable to operate under high CO2 pressure. Here, we propose to use Raman spectroscopy as a novel alternative to discriminate and quantitatively monitor the three dissolved inorganic carbon species CO2(aq), HCO3(-), and CO3(2-) of alkaline solutions under high CO2 pressure (from P = 0 to 250 bar at T = 40 °C). In addition, we demonstrate that the pH values can be extracted from the molalities of CO2(aq) and HCO3(-). The results are in very good agreement with those obtained from direct spectrophotometric measurements using colored indicators. This novel method presents the great advantage over high pressure conventional techniques of not using breakable electrodes or reference additives and appears of great interest especially in marine biogeochemistry, in carbon capture and storage and in material engineering under high CO2 pressure.

  15. Optical and Structural Properties of ZnO Nanoparticles Synthesized by CO2 Microwave Plasma at Atmospheric Pressure

    Directory of Open Access Journals (Sweden)

    Se Min Chun

    2014-01-01

    Full Text Available The results of carbon-doped zinc oxide nanoparticles synthesized by CO2 microwave plasma at atmospheric pressure are presented. The 2.45-GHz microwave plasma torch and feeder for injecting Zn granules are used in the synthesis of zinc oxide nanoparticles. The Zn granules (13.5 g/min were introduced into the microwave plasma by CO2 (5 l/min swirl gas. The microwave power delivered to the CO2 microwave plasma was 1 kW. The synthesis of carbon-doped zinc oxide nanoparticles was carried out in accordance with CO2 + Zn → carbon-doped ZnO + CO. The synthesized carbon-doped zinc oxide nanoparticles have a high purity hexagonal phase. The absorption edge of carbon-doped zinc oxide nanoparticles exhibited a red shift from a high-energy wavelength to lower in the UV-visible spectrum, due to band gap narrowing. A UV-NIR spectrometer, X-ray diffraction, emission scanning electron-microscopy, energy dispersive X-ray microanalysis, Fourier transform infrared spectroscopy, and a UV-Vis-NIR spectrophotometer were used for the characterization of the as-produced products.

  16. A low-cost sensor for high density urban CO2 monitoring

    Science.gov (United States)

    Zeng, N.; Martin, C.

    2015-12-01

    The high spatial-termporal variability of greenhouse gases and other pollution sources in an urban environment can not be easily resolved with current high-accuracy but expensive instruments. We have tested a small, low-cost NDIR CO2 sensor designed for potential use. It has a manufacturer's specified accuracy of +- 30 parts per million (ppm). However, initial results running parallel with a research-grade greenhouse gas analyzer have shown that the absolute accuracy of the sensor is within +-5ppm, suggesting their utility for sensing ambient air variations in carbon dioxide. Through a multivariate analysis, we have determined a correction procedure that when accounting for environmental temperature, humidity, air pressure, and the device's span and offset, we can further increase the accuracy of the collected data. We will show results from rooftop measurements over a period of one year and CO2 tracking data in the Washington-Baltimore Metropolitan area.

  17. Dual phase high-temperature membranes for CO2 separation - performance assessment in post- and pre-combustion processes.

    Science.gov (United States)

    Anantharaman, Rahul; Peters, Thijs; Xing, Wen; Fontaine, Marie-Laure; Bredesen, Rune

    2016-10-20

    Dual phase membranes are highly CO2-selective membranes with an operating temperature above 400 °C. The focus of this work is to quantify the potential of dual phase membranes in pre- and post-combustion CO2 capture processes. The process evaluations show that the dual phase membranes integrated with an NGCC power plant for CO2 capture are not competitive with the MEA process for post-combustion capture. However, dual phase membrane concepts outperform the reference Selexol technology for pre-combustion CO2 capture in an IGCC process. The two processes evaluated in this work, post-combustion NGCC and pre-combustion IGCC, represent extremes in CO2 partial pressure fed to the separation unit. Based on the evaluations it is expected that dual phase membranes could be competitive for post-combustion capture from a pulverized coal fired power plant (PCC) and pre-combustion capture from an Integrated Reforming Cycle (IRCC).

  18. Improved minimum miscibility pressure correlation for CO2 flooding using various oil components and their effects

    Science.gov (United States)

    Lai, Fengpeng; Li, Zhiping; Hu, Xiaoqing

    2017-03-01

    Carbon dioxide (CO2) flooding is an effective method of enhanced oil recovery (EOR) that has become one of the most important EOR processes. One of the key factors in the design of a CO2 injection project is the minimum miscibility pressure (MMP), whereas local sweeping efficiency during gas injection is dependent on the MMP. There are many empirical correlation analyses for the MMP calculation. However, these analyses focus on the molecular weight of the C5+ or C7+ fraction, and do not emphasize the effects of various components on MMP. Our study aims to develop an improved CO2-oil MMP correlation analysis that includes parameters such as reservoir temperature and various oil mole fractions. Here, correlation analysis was performed to define the influence of various components on the MMP using various data from 45 oilfields which have experimental CO2-oil MMP and oil compositions readily available. Thirty of the data sets were used to develop an improved correlation, and the other 15 data sets were used to verify the correlation. It was found that the mole fraction of C3 and C6 were the main factors that affected MMP. There was a good quadratic polynomial relationship between the mole fraction of C3 and MMP, and the relationship also existed between the mole fraction of C6 and MMP. The results do not include the molecular weight of the C5+ or C7+ fraction like other common correlations. Nine popular correlations were then used to also predict the MMP, and the comparison showed that the improved CO2-oil MMP correlation defined here was a better estimate. The correlation was then used in Dongshisi and Fuyu oilfields to assess EOR potential, the results also indicated that MMP increased over the course of the CO2 flooding process. This increase shows that it would be more difficult to achieve a mixed phase between crude oil and CO2, therefore the oil recovery would be difficult to further improve towards the end of injection.

  19. The application of transcutaneous CO2 pressure monitoring in the anesthesia of obese patients undergoing laparoscopic bariatric surgery.

    Directory of Open Access Journals (Sweden)

    Shijiang Liu

    Full Text Available To investigate the correlation and accuracy of transcutaneous carbon dioxide partial pressure (PTCCO2 with regard to arterial carbon dioxide partial pressure (PaCO2 in severe obese patients undergoing laparoscopic bariatric surgery. Twenty-one patients with BMI>35 kg/m(2 were enrolled in our study. Their PaCO2, end-tidal carbon dioxide partial pressure (PetCO2, as well as PTCCO2 values were measured at before pneumoperitoneum and 30 min, 60 min, 120 min after pneumoperitoneum respectively. Then the differences between each pair of values (PetCO2-PaCO2 and. (PTCCO2-PaCO2 were calculated. Bland-Altman method, correlation and regression analysis, as well as exact probability method and two way contingency table were employed for the data analysis. 21 adults (aged 19-54 yr, mean 29, SD 9 yr; weight 86-160 kg, mean 119.3, SD 22.1 kg; BMI 35.3-51.1 kg/m(2, mean 42.1,SD 5.4 kg/m(2 were finally included in this study. One patient was eliminated due to the use of vaso-excitor material phenylephrine during anesthesia induction. Eighty-four sample sets were obtained. The average PaCO2-PTCCO2 difference was 0.9 ± 1.3 mmHg (mean ± SD. And the average PaCO2-PetCO2 difference was 10.3 ± 2.3 mmHg (mean ± SD. The linear regression equation of PaCO2-PetCO2 is PetCO2 = 11.58+0.57 × PaCO2 (r(2 = 0.64, P<0.01, whereas the one of PaCO2-PTCCO2 is PTCCO2 = 0.60 + 0.97 × PaCO2 (r(2 = 0.89. The LOA (limits of agreement of 95% average PaCO2-PetCO2 difference is 10.3 ± 4.6 mmHg (mean ± 1.96 SD, while the LOA of 95% average PaCO2-PTCCO2 difference is 0.9 ± 2.6 mmHg (mean ± 1.96 SD. In conclusion, transcutaneous carbon dioxide monitoring provides a better estimate of PaCO2 than PetCO2 in severe obese patients undergoing laparoscopic bariatric surgery.

  20. A new frontier in CO2 flux measurements using a highly portable DIAL laser system

    Science.gov (United States)

    Queiβer, Manuel; Granieri, Domenico; Burton, Mike

    2016-01-01

    Volcanic CO2 emissions play a key role in the geological carbon cycle, and monitoring of volcanic CO2 fluxes helps to forecast eruptions. The quantification of CO2 fluxes is challenging due to rapid dilution of magmatic CO2 in CO2-rich ambient air and the diffuse nature of many emissions, leading to large uncertainties in the global magmatic CO2 flux inventory. Here, we report measurements using a new DIAL laser remote sensing system for volcanic CO2 (CO2DIAL). Two sites in the volcanic zone of Campi Flegrei (Italy) were scanned, yielding CO2 path-amount profiles used to compute fluxes. Our results reveal a relatively high CO2 flux from Campi Flegrei, consistent with an increasing trend. Unlike previous methods, the CO2DIAL is able to measure integrated CO2 path-amounts at distances up to 2000 m using virtually any solid surface as a reflector, whilst also being highly portable. This opens a new frontier in quantification of geological and anthropogenic CO2 fluxes. PMID:27652775

  1. Study on the CO2 Corrosion Resistance of Super 13Cr Martensitic Stainless Steel at High Temperature and High Pressure%超级13Cr钢在高温高压下的抗CO2腐蚀性能

    Institute of Scientific and Technical Information of China (English)

    刘艳朝; 赵国仙; 薛艳; 牛坤

    2011-01-01

    在模拟某油田腐蚀环境中,通过高温高压CO2腐蚀试验,采用SEM、EDS和XPS测试手段分析,研究温度变化对超级13Cr马氏体不锈钢的腐蚀行为的影响.研究结果表明,随着温度的升高,超级13Cr马氏体不锈钢的均匀腐蚀速率呈微上升的趋势,气相环境中试样的均匀腐蚀速率大于液相,但均远小于0.1 mm/a,局部腐蚀严重.在温度为150℃的气相环境中,超级13Cr钢最大局部腐蚀速率可达2.1379mm/a,其7天实验的最大局部腐蚀坑深度可达41μm.XPS检测结果显示,超级13Cr钢表面钝化膜主要成分是非晶态的Cr2O3.

  2. Highly optimized CO2 capture by inexpensive nanoporous covalent organic polymers and their amine composites.

    Science.gov (United States)

    Patel, Hasmukh A; Yavuz, Cafer T

    2015-01-01

    Carbon dioxide (CO2) storage and utilization requires effective capture strategies that limit energy penalties. Polyethylenimine (PEI)-impregnated covalent organic polymers (COPs) with a high CO2 adsorption capacity are successfully prepared in this study. A low cost COP with a high specific surface area is suitable for PEI loading to achieve high CO2 adsorption, and the optimal PEI loading is 36 wt%. Though the adsorbed amount of CO2 on amine impregnated COPs slightly decreased with increasing adsorption temperature, CO2/N2 selectivity is significantly improved at higher temperatures. The adsorption of CO2 on the sorbent is very fast, and a sorption equilibrium (10% wt) was achieved within 5 min at 313 K under the flow of simulated flue gas streams. The CO2 capture efficiency of this sorbent is not affected under repetitive adsorption-desorption cycles. The highest CO2 capture capacity of 75 mg g(-1) at 0.15 bar is achieved under dry CO2 capture however it is enhanced to 100 mg g(-1) in the mixed gas flow containing humid 15% CO2. Sorbents were found to be thermally stable up to at least 200 °C. TGA and FTIR studies confirmed the loading of PEIs on COPs. This sorbent with high and fast CO2 sorption exhibits a very promising application in direct CO2 capture from flue gas.

  3. Effect of atmospheric CO 2 enrichment on rubisco content in herbaceous species from high and low altitude

    Science.gov (United States)

    Sage, Rowan F.; Schäppi, Bernd; Körner, Christian

    Atmospheric CO 2 enrichment reduces Rubisco content in many species grown in controlled environments; however, relatively few studies have examined CO 2 effects on Rubisco content of plants grown in their natural habitat. We examined the response of Rubisco content to atmospheric CO 2 enrichment (600-680 μmol mol -1 in place of ppm) in 5 herbaceous species growing in a low altitude grassland (550 m) near Basel, Switzerland, and 3 herbaceous species from Swiss alpine grassland at 2470 m. At low elevation, the dominant grass Bromus erectus and the subdominant dicot Sanquisorba minor exhibited 20% to 25% reduction of Rubisco content following high CO 2 exposure; no CO 2 effect was observed in the subdominants Carex flacca, Lotus corniculatus and Trifolium repens. At the Alpine site, the subdominant grass Poa alpina maintained 27% less Rubisco content when grown at high CO 2 while the co-dominant forb Leontodon helveticus had 19% less Rubisco in high CO 2. Rubisco content was unaffected in the tundra dominant Carex curvula. Because the degree of Rubisco modulation was similar between high and low elevation sites, it does not appear that differences in local partial pressure of CO 2 (altitude) or differences in stress in general induce different patterns of modulation of photosynthetic capacity in response to high CO 2. In addition, the degree of Rubisco reduction (<30%) was less than might be indicated by the low biomass response to CO 2 enrichment previously observed at these sites. Thus, plants in Swiss lowland and alpine grassland appear to maintain greater Rubisco concentration and photosynthetic capacity than whole plants can effectively exploit in terms of harvestable biomass.

  4. High-CO2 tolerance in microalgae: possible mechanisms and implications for biotechnology and bioremediation.

    Science.gov (United States)

    Solovchenko, Alexei; Khozin-Goldberg, Inna

    2013-11-01

    Recent developments in the field of microalgal biotechnology, including CO2 biomitigation and the discovery of new species of microalgae that are tolerant to extremely high CO2 levels (40-100 vol%), have renewed interest in the physiological effects and mechanisms of high-CO2 tolerance in photoautotrophs. Photosynthetic apparatus state transitions that increase ATP generation, upregulation of H(+)-ATPases pumping protons out of the cell, rapid shutdown of CO2-concentrating mechanisms, and adjustment of membranes' fatty acid composition are currently believed to be the key mechanisms governing cellular pH homeostasis and hence microalgae's tolerance to high CO2 levels, which is especially characteristic of extremophile and symbiotic species. The mechanisms governing acclimation to high CO2 comprise the subject of this review and are discussed in view of the use of CO2 enrichment to increase the productivity of microalgal cultures, as well as the practice of carbon capture from flue gases.

  5. Acetone photolysis at 248 nm revisited: pressure dependence of the CO and CO2 quantum yields.

    Science.gov (United States)

    Somnitz, H; Ufer, T; Zellner, R

    2009-10-14

    Pressure dependent CO and CO2 quantum yields in the laser pulse photolysis of acetone at 248 nm and T = 298 K have been measured directly using quantitative infrared diode laser absorption. The experiments cover the pressure range from 50 to 900 mbar. It is found that the quantum yields show a significant dependence on total pressure, with Phi(CO) decreasing from around 0.5 at 20 mbar to approximately 0.3 at 900 mbar. The corresponding CO2 yields as observed when O2 exists in the reaction mixture, exhibit exactly the opposite behaviour. For the sum of both a value of 1.05(-0.05)(+0.02) independent of pressure is obtained, showing that the sum of (Phi(CO) + Phi(CO2)) is a measure for the primary quantum yield in the photolysis of acetone. In addition, CO quantum yields and corresponding pressure dependences were measured in experiments using different bath gases including He, Ar, Kr, SF6, and O2 as third body colliders. The theoretical framework in which we discuss these data is based on our previous findings that the pressure dependence of the CO yield is a consequence of a stepwise fragmentation mechanism during which acetone decomposes initially into methyl and a vibrationally 'hot' acetyl radical, with the latter being able to decompose promptly into methyl plus CO. The pressure dependence of the CO yield then originates from the second step and is modelled quantitatively via statistical dynamical calculations using a combination of RRKM theory with a time-dependent master equation (ME) approach. From a comparison of experiment with theory the amount of excess energy in the vibrationally hot acetyl radicals (E* approximately 65 kJ mol(-1)) as well as the characteristic collision parameters for interaction of acetyl with the different bath gases were derived. Values of 90, 280, 310, 545, 550 and 1800 cm(-1) for the average energy transferred per downward collision for the bath gases He, Ar, Kr, O2, N2, and SF6, respectively, are obtained. The calculations also

  6. 低分压CO2回收新技术捕集水泥窑气中CO2的侧线试验%Bypass experiment for capturing CO2 from cement furnace flue gas by low pressure CO2 recovery technology

    Institute of Scientific and Technical Information of China (English)

    黄汉根

    2011-01-01

    A bypass experiment facility for capturing CO2 from cement furnace flue gas is designed. A self-developed blended amine is used for CO2 capturing. The experimental results show that the CO2 volume content in the purified gas is lower than 1.41%, while the CO2 purity of the product gas is higher than 99 %. Using this technology, CO2 emission reduction can be realized. At the same time, CO2 product with high purity can be produced. This technology can be used as an effective technological support for enterprises to reduce CO2 emission.%设计了一套水泥窑气CO2捕集的侧线试验装置,利用自主研发的复合胺溶剂捕集窑气中的CO2.试验结果表明.新型复合胺溶剂能使净化气中CO2体积分数降至1.41%以下,产品气中CO2体积分数达到99%以上.采用该技术,可实现CO2减排并获得高纯度的CO2产品气,为企业的CO2减排提供技术支持.

  7. Pressurized Martian-Like Pure CO2 Atmosphere Supports Strong Growth of Cyanobacteria, and Causes Significant Changes in their Metabolism

    Science.gov (United States)

    Murukesan, Gayathri; Leino, Hannu; Mäenpää, Pirkko; Ståhle, Kurt; Raksajit, Wuttinun; Lehto, Harry J.; Allahverdiyeva-Rinne, Yagut; Lehto, Kirsi

    2016-03-01

    Surviving of crews during future missions to Mars will depend on reliable and adequate supplies of essential life support materials, i.e. oxygen, food, clean water, and fuel. The most economical and sustainable (and in long term, the only viable) way to provide these supplies on Martian bases is via bio-regenerative systems, by using local resources to drive oxygenic photosynthesis. Selected cyanobacteria, grown in adequately protective containment could serve as pioneer species to produce life sustaining substrates for higher organisms. The very high (95.3 %) CO2 content in Martian atmosphere would provide an abundant carbon source for photo-assimilation, but nitrogen would be a strongly limiting substrate for bio-assimilation in this environment, and would need to be supplemented by nitrogen fertilizing. The very high supply of carbon, with rate-limiting supply of nitrogen strongly affects the growth and the metabolic pathways of the photosynthetic organisms. Here we show that modified, Martian-like atmospheric composition (nearly 100 % CO2) under various low pressure conditions (starting from 50 mbar to maintain liquid water, up to 200 mbars) supports strong cellular growth. Under high CO2 / low N2 ratio the filamentous cyanobacteria produce significant amount of H2 during light due to differentiation of high amount of heterocysts.

  8. Pressurized Martian-Like Pure CO2 Atmosphere Supports Strong Growth of Cyanobacteria, and Causes Significant Changes in their Metabolism.

    Science.gov (United States)

    Murukesan, Gayathri; Leino, Hannu; Mäenpää, Pirkko; Ståhle, Kurt; Raksajit, Wuttinun; Lehto, Harry J; Allahverdiyeva-Rinne, Yagut; Lehto, Kirsi

    2016-03-01

    Surviving of crews during future missions to Mars will depend on reliable and adequate supplies of essential life support materials, i.e. oxygen, food, clean water, and fuel. The most economical and sustainable (and in long term, the only viable) way to provide these supplies on Martian bases is via bio-regenerative systems, by using local resources to drive oxygenic photosynthesis. Selected cyanobacteria, grown in adequately protective containment could serve as pioneer species to produce life sustaining substrates for higher organisms. The very high (95.3 %) CO2 content in Martian atmosphere would provide an abundant carbon source for photo-assimilation, but nitrogen would be a strongly limiting substrate for bio-assimilation in this environment, and would need to be supplemented by nitrogen fertilizing. The very high supply of carbon, with rate-limiting supply of nitrogen strongly affects the growth and the metabolic pathways of the photosynthetic organisms. Here we show that modified, Martian-like atmospheric composition (nearly 100 % CO2) under various low pressure conditions (starting from 50 mbar to maintain liquid water, up to 200 mbars) supports strong cellular growth. Under high CO2 / low N2 ratio the filamentous cyanobacteria produce significant amount of H2 during light due to differentiation of high amount of heterocysts.

  9. Opportunities for High-Efficiency Electricity Generation Inclusive of CO2 Capture

    Directory of Open Access Journals (Sweden)

    Giampaolo Manfrida

    1999-12-01

    Full Text Available Three basic options for advanced power plants, allowing energy conversion inclusive of CO2 capture, are discussed: the semi-closed gas turbine cycle with atmospheric base pressure, the integrated gassifier/combined cycle with pressurised absorption of CO2, and the supercritical semi-closed CO2/H2O cycle with liquid CO2 capture. The merits of the different options are discussed and compared, and improvements to the basic layouts are proposed. The results show that all three solutions have a good potential for application, depending on the size of the plant and on the near or medium-term future perspective.

  10. Ionic Effects on Supercritical CO2-Brine Interfacial Tensions: Molecular Dynamics Simulations and a Universal Correlation with Ionic Strength, Temperature, and Pressure.

    Science.gov (United States)

    Zhao, Lingling; Ji, Jiayuan; Tao, Lu; Lin, Shangchao

    2016-09-13

    For geological CO2 storage in deep saline aquifers, the interfacial tension (IFT) between supercritical CO2 and brine is critical for the storage security and design of the storage capacitance. However, currently, no predictive model exists to determine the IFT of supercritical CO2 against complex electrolyte solutions involving various mixed salt species at different concentrations and compositions. In this paper, we use molecular dynamics (MD) simulations to investigate the effect of salt ions on the incremental IFT at the supercritical CO2-brine interface with respect to that at the reference supercritical CO2-water interface. Supercritical CO2-NaCl solution, CO2-CaCl2 solution and CO2-(NaCl+CaCl2) mixed solution systems are simulated at 343 K and 20 MPa under different salinities and salt compositions. We find that the valence of the cations is the primary contributor to the variation in IFT, while the Lennard-Jones potentials for the cations pose a smaller impact on the IFT. Interestingly, the incremental IFT exhibits a general linear correlation with the ionic strength in the above three electrolyte systems, and the slopes are almost identical and independent of the solution types. Based on this finding, a universal predictive formula for IFTs of CO2-complex electrolyte solution systems is established, as a function of ionic strength, temperature, and pressure. The predicted IFTs using the established formula agree perfectly (with a high statistical confidence level of ∼96%) with a wide range of experimental data for CO2 interfacing with different electrolyte solutions, such as those involving MgCl2 and Na2SO4. This work provides an efficient and accurate route to directly predict IFTs in supercritical CO2-complex electrolyte solution systems for practical engineering applications, such as geological CO2 sequestration in deep saline aquifers and other interfacial systems involving complex electrolyte solutions.

  11. High CO2 in MORB - a link to explosive submarine eruptions?

    Science.gov (United States)

    Helo, C.; Longpré, M.; Shimizu, N.; Clague, D. A.; Stix, J.

    2009-12-01

    We analyzed volatile (CO2, H2O, S, F, Cl), and other trace elements, using the Cameca IMS 1280 and the Cameca 3F secondary ion mass spectrometer, in carefully selected plagioclase-hosted melt inclusions and matrix glass from mid-ocean ridge basalt (MORB) hyaloclastite sequences erupted from Axial caldera, Juan de Fuca Ridge (JdFR). The hyaloclastites were sampled at 1400 m below sea-level, and are inferred to result from a series of small pyroclastic eruptions. The trace elements reveal variations from normal to transitional MORB for Axial caldera (e.g., Nb = 1.1-6.5 ppm, Zr/Nb = 9-39). The CO2 concentrations in the melt inclusions range from 260 to 9160 ppm, with 16 out of 47 analyzed inclusions reaching > 1000 ppm. Surface contamination was ruled out by very low CO2 concentrations measured in adjacent plagioclase hosts (Journal of Volcanology and Geothermal Research 98]. When plotted together, CO2 and H2O define a vertical trend suggesting decompression degassing, with apparent vapour saturation pressures ranging from 57 to > 600 MPa. We recognize two possible scenarios: (1) limited degassing during early stages of magma ascent, culminating in supersaturation and sudden, rapid bubble growth at shallower levels, or (2) open-system degassing accompanied by bubble growth and separation as magma rises. The close spatial occurrence of high- and low-CO2 inclusions (crystals may argue towards the first interpretation. Saturation pressures for low-CO2 inclusions are consistent with pressures expected within the present day magma reservoir beneath Axial (~ 70-160 MPa). The matrix glass is oversaturated with respect to the depth of eruption; CO2 concentrations vary from 87 to 248 ppm, yielding saturation pressures between 14 MPa and 54 MPa. Water concentrations in the inclusions range from 0.05 to 0.39 wt %. Such low concentrations will not be affected significantly by degassing. H2O does not covary with incompatible elements such as Nb, or Zr; we interpret the variability

  12. Deep Sea Memory of High Atmospheric CO2 Concentration

    Science.gov (United States)

    Mathesius, Sabine; Hofmann, Matthias; Caldeira, Ken; Schellnhuber, Hans Joachim

    2015-04-01

    Carbon dioxide removal (CDR) from the atmosphere has been proposed as a powerful measure to mitigate global warming and ocean acidification. Planetary-scale interventions of that kind are often portrayed as "last-resort strategies", which need to weigh in if humankind keeps on enhancing the climate-system stock of CO2. Yet even if CDR could restore atmospheric CO2 to substantially lower concentrations, would it really qualify to undo the critical impacts of past emissions? In the study presented here, we employed an Earth System Model of Intermediate Complexity (EMIC) to investigate how CDR might erase the emissions legacy in the marine environment, focusing on pH, temperature and dissolved oxygen. Against a background of a world following the RCP8.5 emissions path ("business-as-usual") for centuries, we simulated the effects of two massive CDR interventions with CO2 extraction rates of 5 GtC yr-1 and 25 GtC yr-1, respectively, starting in 2250. We found that the 5 GtC yr-1 scheme would have only minor ameliorative influence on the oceans, even after several centuries of application. By way of contrast, the extreme 25 GtC yr-1 scheme eventually leads to tangible improvements. However, even with such an aggressive measure, past CO2 emissions leave a substantial legacy in the marine environment within the simulated period (i.e., until 2700). In summary, our study demonstrates that anthropogenic alterations of the oceans, caused by continued business-as-usual emissions, may not be reversed on a multi-centennial time scale by the most aspirational geoengineering measures. We also found that a transition from the RCP8.5 state to the state of a strong mitigation scenario (RCP2.6) is not possible, even under the assumption of extreme extraction rates (25 GtC yr-1). This is explicitly demonstrated by simulating additional scenarios, starting CDR already in 2150 and operating until the atmospheric CO2 concentration reaches 280 ppm and 180 ppm, respectively. The simulated

  13. Pressure-induced Co2+ photoluminescence quenching in MgAl2O4

    Science.gov (United States)

    Nataf, Lucie; Rodríguez, Fernando; Valiente, Rafael

    2012-09-01

    This work investigates the electronic structure and photoluminescence (PL) of Co2+-doped MgAl2O4 and their pressure dependence by time-resolved spectroscopy. The variations of the visible absorption band and its associated emission at 663 nm (τ = 130 ns at ambient conditions) with pressure/temperature can be explained on the basis of a configurational energy model. It provides an interpretation for both the electronic structure and the excited-state phenomena yielding photoluminescence emission and the subsequent quenching. We show that there is an excited-state crossover (ESCO) [4T1(P)↔2E(G)] at ambient pressure, which is responsible for the evolution of the emission spectrum from a broadband emission between 300 K and 100 K to a narrow-line emission at lower temperatures. Contrary to expectations from the Tanabe-Sugano diagram, instead of enhancing ESCO phenomena, pressure reduces PL and even suppresses it (PL quenching) above 6 GPa. We explain such variations in terms of pressure-induced nonradiative relaxation to lower excited states: 2E(G)→4T1(F). The variation of PL intensity and its associated lifetime with pressure supports the proposed interpretation.

  14. Effect of air pressure on propulsion with TEA CO2 laser

    Science.gov (United States)

    Pakhomov, Andrew V.; Lin, Jun; Herren, Kenneth A.

    2004-09-01

    The assessment of energy partition between air and solid propellant has been conducted using a TEA CO2 laser. The experiments were performed by focusing output pulses of the laser (200 ns pulsewidth at 10.6 μm wavelength and ~10.6 J pulse energy) on aluminum targets mounted on a ballistic pendulum. Coupling coefficients and mass removal rates were determined as functions of air pressure, which varied from 1 atm to 3.5 mTorr. The data from both coupling coefficients and mass removal rates show that there is a sharp transition region ranging between 1.0 and 10 Torr. In this region the momentum imparted to the target via air breakdown appears comparable and, at higher pressures, dominating the momentum due to the breakdown on the target surface.

  15. High-performance Polymer Membranes with Multi-functional Amphiphilic Micelles for CO2 Capture.

    Science.gov (United States)

    Kim, Sang Jin; Jeon, Harim; Kim, Dong Jun; Kim, Jong Hak

    2015-11-01

    Herein, we report a high performance polymer membrane with simultaneously large improvements in the CO2 permeability and CO2/N2 selectivity. These improvements are obtained by incorporation of a multi-functional amphiphilic comb copolymer micelle, that is, poly(dimethylsiloxane)-g-poly(oxyethylene methacrylate) (PDMS-g-POEM), into a poly(amide-b-ethylene oxide) (Pebax) matrix. Both CO2 and N2 permeabilities continuously increased with PDMS-g-POEM content, whereas the CO2/N2 selectivity increased up to 40 wt % of PDMS-g-POEM, which enabled the maximum performance to approach the upper bound limit (2008). The membranes with PDMS-g-POEM exhibited greater CO2 permeability and CO2/N2 selectivity than those with a zeolitic imidazolate framework (ZIF-8), a well-known expensive inorganic filler, indicating the effectiveness of PDMS-g-POEM micelles for CO2 capture.

  16. High Efficiency Low Cost CO2 Compression Using Supersonic Shock Wave Technology

    Energy Technology Data Exchange (ETDEWEB)

    Williams, J; Aarnio, M; Grosvenor, A; Taylor, D; Bucher, J

    2010-12-31

    Development and testing results from a supersonic compressor are presented. The compressor achieved record pressure ratio for a fully-supersonic stage and successfully demonstrated the technology potential. Several tasks were performed in compliance with the DOE award objectives. A high-pressure ratio compressor was retrofitted to improve rotordynamics behavior and successfully tested. An outside review panel confirmed test results and design approach. A computational fluid dynamics code used to analyze the Ramgen supersonic flowpath was extensively and successfully modified to improve use on high-performance computing platforms. A comprehensive R&D implementation plan was developed and used to lay the groundwork for a future full-scale compressor demonstration. Conceptual design for a CO2 demonstration compressor was developed and reviewed.

  17. Effects of high CO2 levels on dynamic photosynthesis: carbon gain, mechanisms, and environmental interactions.

    Science.gov (United States)

    Tomimatsu, Hajime; Tang, Yanhong

    2016-05-01

    Understanding the photosynthetic responses of terrestrial plants to environments with high levels of CO2 is essential to address the ecological effects of elevated atmospheric CO2. Most photosynthetic models used for global carbon issues are based on steady-state photosynthesis, whereby photosynthesis is measured under constant environmental conditions; however, terrestrial plant photosynthesis under natural conditions is highly dynamic, and photosynthetic rates change in response to rapid changes in environmental factors. To predict future contributions of photosynthesis to the global carbon cycle, it is necessary to understand the dynamic nature of photosynthesis in relation to high CO2 levels. In this review, we summarize the current body of knowledge on the photosynthetic response to changes in light intensity under experimentally elevated CO2 conditions. We found that short-term exposure to high CO2 enhances photosynthetic rate, reduces photosynthetic induction time, and reduces post-illumination CO2 burst, resulting in increased leaf carbon gain during dynamic photosynthesis. However, long-term exposure to high CO2 during plant growth has varying effects on dynamic photosynthesis. High levels of CO2 increase the carbon gain in photosynthetic induction in some species, but have no significant effects in other species. Some studies have shown that high CO2 levels reduce the biochemical limitation on RuBP regeneration and Rubisco activation during photosynthetic induction, whereas the effects of high levels of CO2 on stomatal conductance differ among species. Few studies have examined the influence of environmental factors on effects of high levels of CO2 on dynamic photosynthesis. We identified several knowledge gaps that should be addressed to aid future predictions of photosynthesis in high-CO2 environments.

  18. Transient pore pressure response to confining stress excursions in Berea sandstone flooded with an aqueous solution of CO2

    Science.gov (United States)

    Crews, Jackson B.; Cooper, Clay A.

    2014-06-01

    We measured the pore pressure response due to carbon dioxide (CO2) gas bubble nucleation and growth in a Berea sandstone core flooded with an initially subsaturated aqueous solution of CO2, in response to a rapid drop in confining stress, under conditions representative of a confined aquifer. A portion of the CO2 in the Earth's crust, derived from volcanic, magmatic, and biogenic sources, dissolves in groundwater. Sudden reductions in confining stress in the Earth's crust occur due to dilational strain generated by the propagation of seismic Rayleigh and P waves, or aseismic slip in the near field of earthquakes. A drop in confining stress produces a proportional drop in pore fluid pressure. When the pore fluid contains dissolved CO2, the pore pressure responds to a drop in confining stress like it does in the dissolved gas-free case, until the pore pressure falls below the bubble pressure. Gas bubble nucleation and diffusive growth in the pore space trigger spontaneous, transient buildup of the pore fluid pressure, and reduction of effective stress. We measured the rate of pore fluid pressure buildup in the 100 s immediately following the confining stress drop, as a function of the saturation with respect to CO2 at the lowest pore pressure realized during the confining stress drop, using five different CO2 partial pressures. The rate scales with the saturation with respect to dissolved CO2, from 10 kPa/min at 1.25 to 166 kPa/min at 1.8. The net pore pressure rise was as large as 0.7 MPa (100 psi) over 5 h.

  19. A bio-metal-organic framework for highly selective CO(2) capture: A molecular simulation study.

    Science.gov (United States)

    Chen, Yifei; Jiang, Jianwen

    2010-08-23

    A recently synthesized bio-metal-organic framework (bio-MOF-11) is investigated for CO(2) capture by molecular simulation. The adenine biomolecular linkers in bio-MOF-11 contain Lewis basic amino and pyrimidine groups as the preferential adsorption sites. The simulated and experimental adsorption isotherms of pure CO(2), H(2), and N(2) are in perfect agreement. Bio-MOF-11 exhibits larger adsorption capacities compared to numerous zeolites, activated carbons, and MOFs, which is attributed to the presence of multiple Lewis basic sites and nano-sized channels. The results for the adsorption of CO(2)/H(2) and CO(2)/N(2) mixtures in bio-MOF-11 show that CO(2) is more dominantly adsorbed than H(2) and N(2). With increasing pressure, the selectivity of CO(2)/H(2) initially increases owing to the strong interactions between CO(2) and the framework, and then decreases as a consequence of the entropy effect. However, the selectivity of CO(2)/N(2) monotonically increases with increasing pressure and finally reaches a constant. The selectivities in bio-MOF-11 are higher than in many nanoporous materials. The simulation results also reveal that a small amount of H(2)O has a negligible effect on the separation of CO(2)/H(2) and CO(2)/N(2) mixtures. The simulation study provides quantitative microscopic insight into the adsorption mechanism in bio-MOF-11 and suggests that bio-MOF-11 may be interesting for pre- and post-combustion CO(2) capture.

  20. Physiological and molecular alterations in plants exposed to high [CO2] under phosphorus stress.

    Science.gov (United States)

    Pandey, Renu; Zinta, Gaurav; AbdElgawad, Hamada; Ahmad, Altaf; Jain, Vanita; Janssens, Ivan A

    2015-01-01

    Atmospheric [CO2] has increased substantially in recent decades and will continue to do so, whereas the availability of phosphorus (P) is limited and unlikely to increase in the future. P is a non-renewable resource, and it is essential to every form of life. P is a key plant nutrient controlling the responsiveness of photosynthesis to [CO2]. Increases in [CO2] typically results in increased biomass through stimulation of net photosynthesis, and hence enhance the demand for P uptake. However, most soils contain low concentrations of available P. Therefore, low P is one of the major growth-limiting factors for plants in many agricultural and natural ecosystems. The adaptive responses of plants to [CO2] and P availability encompass alterations at morphological, physiological, biochemical and molecular levels. In general low P reduces growth, whereas high [CO2] enhances it particularly in C3 plants. Photosynthetic capacity is often enhanced under high [CO2] with sufficient P supply through modulation of enzyme activities involved in carbon fixation such as ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). However, high [CO2] with low P availability results in enhanced dry matter partitioning towards roots. Alterations in below-ground processes including root morphology, exudation and mycorrhizal association are influenced by [CO2] and P availability. Under high P availability, elevated [CO2] improves the uptake of P from soil. In contrast, under low P availability, high [CO2] mainly improves the efficiency with which plants produce biomass per unit P. At molecular level, the spatio-temporal regulation of genes involved in plant adaptation to low P and high [CO2] has been studied individually in various plant species. Genome-wide expression profiling of high [CO2] grown plants revealed hormonal regulation of biomass accumulation through complex transcriptional networks. Similarly, differential transcriptional regulatory networks are involved in P

  1. The influence of CO2 in biogas flammability limit and laminar burning velocity in spark ignited premix combustion at various pressures

    Science.gov (United States)

    Anggono, W.; Wardana, I. N. G.; Lawes, M.; Hughes, K. J.; Wahyudi, S.; Hamidi, N.; Hayakawa, A.

    2016-03-01

    Biogas is an alternative energy source that is sustainable and renewable containing more than 50% CH4 and its biggest impurity or inhibitor is CO2. Demands for replacing fossil fuels require an improved fundamental understanding of its combustion processes. Flammability limits and laminar burning velocities are important characteristics in these processes. Thus, this research focused on the effects of CO2 on biogas flammability limits and laminar burning velocities in spark ignited premixed combustion. Biogas was burned in a spark ignited spherical combustion bomb. Spherically expanding laminar premixed flames, freely propagating from spark ignition in initial, were continuously recorded by a high-speed digital camera. The combustion bomb was filled with biogas-air mixtures at various pressures, CO2 levels and equivalence ratios (ϕ) at ambient temperature. The results were also compared to those of the previous study into inhibitorless biogas (methane) at various pressures and equivalence ratios (ϕ). Either the flammable areas become narrower with increased percentages of carbon dioxide or the pressure become lower. In biogas with 50% CO2 content, there was no biogas flame propagation for any equivalence ratio at reduced pressure (0.5 atm). The results show that the laminar burning velocity at the same equivalence ratio declined in respect with the increased level of CO2. The laminar burning velocities were higher at the same equivalence ratio by reducing the initial pressure.

  2. Highly efficient CO2 sorbents: development of synthetic, calcium-rich dolomites.

    Science.gov (United States)

    Filitz, Rainer; Kierzkowska, Agnieszka M; Broda, Marcin; Müller, Christoph R

    2012-01-03

    The reaction of CaO with CO(2) is a promising approach for separating CO(2) from hot flue gases. The main issue associated with the use of naturally occurring CaCO(3), that is, limestone, is the rapid decay of its CO(2) capture capacity over repeated cycles of carbonation and calcination. Interestingly, dolomite, a naturally occurring equimolar mixture of CaCO(3) and MgCO(3), possesses a CO(2) uptake that remains almost constant with cycle number. However, owing to the large quantity of MgCO(3) in dolomite, the total CO(2) uptake is comparatively small. Here, we report the development of a synthetic Ca-rich dolomite using a coprecipitation technique, which shows both a very high and a stable CO(2) uptake over repeated cycles of calcination and carbonation. To obtain such an excellent CO(2) uptake characteristic it was found to be crucial to mix the Ca(2+) and Mg(2+) on a molecular level, that is, within the crystalline lattice. For sorbents which were composed of mixtures of microscopic crystals of CaCO(3) and MgCO(3), a decay behavior similar to natural limestone was observed. After 15 cycles, the CO(2) uptake of the best sorbent was 0.51 g CO(2)/g sorbent exceeding the CO(2) uptake of limestone by almost 100%.

  3. Highly integrated CO2 capture and conversion: Direct synthesis of cyclic carbonates from industrial flue gas

    KAUST Repository

    Barthel, Alexander

    2016-02-08

    Robust and selective catalytic systems based on early transition metal halides (Y, Sc, Zr) and organic nucleophiles were found able to quantitatively capture CO2 from diluted streams via formation of hemicarbonate species and to convert it to cyclic organic carbonates under ambient conditions. This observation was exploited in the direct and selective chemical fixation of flue gas CO2 collected from an industrial exhaust, affording high degrees of CO2 capture and conversion.

  4. STRUCTURAL EFFECTS ON THE HIGH TEMPERATURE ADSORPTION OF CO2 ON A SYNTHETIC HYDROTALCITE

    Science.gov (United States)

    Hydrotalcite-like compounds (HTlcs) are solid sorbents that may potentially be used for high temperature separation and capture of CO2. The high-temperature adsorption of CO2 on Mg-Al-CO3 HTlc is affected by structural changes that take place upo...

  5. High resolution infrared spectroscopy of carbon dioxide clusters up to (CO2)13

    OpenAIRE

    Norooz Oliaee, J.; Dehghany, M.; McKellar, A. R. W.; Moazzen-Ahmadi, N.

    2011-01-01

    Thirteen specific infrared bands in the 2350 cm−1 region are assigned to carbon dioxide clusters, (CO2)N, with N = 6, 7, 9, 10, 11, 12 and 13. The spectra are observed in direct absorption using a tuneable infrared laser to probe a pulsed supersonic jet expansion of a dilute mixture of CO2 in He carrier gas. Assignments are aided by cluster structure calculations made using two reliable CO2 intermolecular potential functions. For (CO2)6, two highly symmetric isomers are observed, one with S6 ...

  6. Electronic and magnetic properties of the Co2-based Heusler compounds under pressure: first-principles and Monte Carlo studies

    Science.gov (United States)

    Zagrebin, M. A.; Sokolovskiy, V. V.; Buchelnikov, V. D.

    2016-09-01

    Structural, magnetic and electronic properties of stoichiometric Co2 YZ Heusler alloys (Y  =  Cr, Fe, Mn and Z  =  Al, Si, Ge) have been studied by means of ab initio calculations and Monte Carlo simulations. The investigations were performed in dependence on different levels of approximations in DFT (FP and ASA modes, as well as GGA and GGA  +  U schemes) and external pressure. It is shown that in the case of the GGA scheme the half-metallic behavior is clearly observed for compounds containing Cr and Mn transition metals, while Co2FeZ alloys demonstrate the pseudo half-metallic behavior. It is demonstrated that an applied pressure and an account of Coulomb repulsion (U) lead to the stabilization of the half-metallic nature for Co2 YZ alloys. The strongest ferromagnetic inter-sublattice (Co-Y) interactions together with intra-sublattice (Co-Co and Y-Y) interactions explain the high values of the Curie temperature obtained by Monte Carlo simulations using the Heisenberg model. It is observed that a decrease in valence electrons of Y atoms (i.e. Fe substitution by Mn and Cr) leads to the weakening of the exchange interactions and to the reduction of the Curie temperature. Besides, in the case of the FP mode Curie temperatures were found in a good agreement with available experimental and theoretical data, where the latter were obtained by applying the empirical relation between the Curie temperature and the total magnetic moment.

  7. Characterization of the CO2 fluid adsorption in coal as a function of pressure using neutron scattering techniques (SANS and USANS)

    Science.gov (United States)

    Melnichenko, Y.B.; Radlinski, A.P.; Mastalerz, Maria; Cheng, G.; Rupp, J.

    2009-01-01

    Small angle neutron scattering techniques have been applied to investigate the phase behavior of CO2 injected into coal and possible changes in the coal pore structure that may result from this injection. Three coals were selected for this study: the Seelyville coal from the Illinois Basin (Ro = 0.53%), Baralaba coal from the Bowen Basin (Ro = 0.67%), and Bulli 4 coal from the Sydney Basin (Ro = 1.42%). The coals were selected from different depths to represent the range of the underground CO2 conditions (from subcritical to supercritical) which may be realized in the deep subsurface environment. The experiments were conducted in a high pressure cell and CO2 was injected under a range of pressure conditions, including those corresponding to in-situ hydrostatic subsurface conditions for each coal. Our experiments indicate that the porous matrix of all coals remains essentially unchanged after exposure to CO2 at pressures up to 200??bar (1??bar = 105??Pa). Each coal responds differently to the CO2 exposure and this response appears to be different in pores of various sizes within the same coal. For the Seelyville coal at reservoir conditions (16????C, 50??bar), CO2 condenses from a gas into liquid, which leads to increased average fluid density in the pores (??pore) with sizes (r) 1 ?? 105 ??? r ??? 1 ?? 104???? (??pore ??? 0.489??g/cm3) as well as in small pores with size between 30 and 300???? (??pore ??? 0.671??g/cm3). These values are by a factor of three to four higher than the density of bulk CO2 (??CO2) under similar thermodynamic conditions (??CO2 ??? 0.15??g/cm3). At the same time, in the intermediate size pores with r ??? 1000???? the average fluid density is similar to the density of bulk fluid, which indicates that adsorption does not occur in these pores. At in situ conditions for the Baralaba coal (35 OC, 100??bar), the average fluid density of CO2 in all pores is lower than that of the bulk fluid (??pore / ??CO2 ??? 0.6). Neutron scattering from the

  8. Mechanisms and Influencing Factors of Bacterial Spore Sterilization by High Pressure CO2%高压二氧化碳杀灭细菌芽胞的作用机制和影响因素

    Institute of Scientific and Technical Information of China (English)

    史智佳; 李兴民; 刘毅; 刘萍

    2008-01-01

    细菌芽胞对于外界物理或化学处理抗性很强,如何有效杀灭细菌茅胞是食品灭菌的重要难题.高压二氧化碳(high pressure carbon dioxide,HPGD)杀菌技术协同热处理对细菌芽胞有很好的杀灭作用.此外,辅助试剂的加入可以大幅增强其杀灭作用,并保持HPCD的处理条件温和、对食品破坏作用小和易于操控等优点.本文主要从茅胞结构与抗性关系、HPCD杀灭茅胞的机理以及影响因素三个方面,介绍了HPCD杀灭茅胞作用研究的进展.

  9. Facile Carbonization of Microporous Organic Polymers into Hierarchically Porous Carbons Targeted for Effective CO2 Uptake at Low Pressures.

    Science.gov (United States)

    Gu, Shuai; He, Jianqiao; Zhu, Yunlong; Wang, Zhiqiang; Chen, Dongyang; Yu, Guipeng; Pan, Chunyue; Guan, Jianguo; Tao, Kai

    2016-07-20

    The advent of microporous organic polymers (MOPs) has delivered great potential in gas storage and separation (CCS). However, the presence of only micropores in these polymers often imposes diffusion limitations, which has resulted in the low utilization of MOPs in CCS. Herein, facile chemical activation of the single microporous organic polymers (MOPs) resulted in a series of hierarchically porous carbons with hierarchically meso-microporous structures and high CO2 uptake capacities at low pressures. The MOPs precursors (termed as MOP-7-10) with a simple narrow micropore structure obtained in this work possess moderate apparent BET surface areas ranging from 479 to 819 m(2) g(-1). By comparing different activating agents for the carbonization of these MOPs matrials, we found the optimized carbon matrials MOPs-C activated by KOH show unique hierarchically porous structures with a significant expansion of dominant pore size from micropores to mesopores, whereas their microporosity is also significantly improved, which was evidenced by a significant increase in the micropore volume (from 0.27 to 0.68 cm(3) g(-1)). This maybe related to the collapse and the structural rearrangement of the polymer farmeworks resulted from the activation of the activating agent KOH at high temperature. The as-made hierarchically porous carbons MOPs-C show an obvious increase in the BET surface area (from 819 to 1824 m(2) g(-1)). And the unique hierarchically porous structures of MOPs-C significantly contributed to the enhancement of the CO2 capture capacities, which are up to 214 mg g(-1) (at 273 K and 1 bar) and 52 mg g(-1) (at 273 K and 0.15 bar), superior to those of the most known MOPs and porous carbons. The high physicochemical stabilities and appropriate isosteric adsorption heats as well as high CO2/N2 ideal selectivities endow these hierarchically porous carbon materials great potential in gas sorption and separation.

  10. Effect of CO 2 Partial Pressure on CO 2 Corrosion of X70 Steel at Multiphase Flow%多相流动状态下 CO 2分压对X70钢 CO 2腐蚀的影响

    Institute of Scientific and Technical Information of China (English)

    崔铭伟; 封子艳; 韩建红; 曹学文

    2015-01-01

    应用自制实验装置,模拟起伏管路段塞流动条件下 X70钢 CO 2腐蚀问题,通过电子显微镜、腐蚀挂片以及电化学在线监测等对挂片表面形貌、腐蚀速率以及挂片在线腐蚀情况进行分析,研究了多相流动状态下 CO 2分压对 X70钢 CO 2腐蚀速率的影响。结果表明,CO 2分压对 X70钢 CO 2腐蚀存在正反两方面的影响:随着 CO 2分压的增加,一方面腐蚀介质酸性增强,加快腐蚀;另一方面,CO 2-3的浓度升高,与 Mg2+、Ca2+、Fe2+等阳离子在腐蚀挂片表面形成了一层腐蚀产物膜,降低了腐蚀速度;CO 2分压对 X70钢 CO 2腐蚀的影响与温度息息相关,随着温度的升高,腐蚀速率达到最高值的 CO 2分压越来越低,CO 2分压对 X70钢基体的保护作用大过腐蚀作用的 CO 2分压越来越低。%The corrosion of X70 steel was simulated at plug flow using the homemade experimental apparatus.The effect of CO 2 partial pressure on CO 2 corrosion of X70 steel was studied by analysis of the bolt surface morphology,corrosion rate,and online coupon corrosion situation using electronic microscope,bolt and electrochemical corrosion online monitoring.The results showed there was two effect of the pros and cons on of CO 2 partial pressure on CO 2 corrosion of X70 steel.On the one hand, enhances of corrosive medium acidity accelerated the corrosion rate,on the other hand,CO 2-3 combined with Mg2+ ,Ca2+ and Fe2+ and a layer of corrosion product film was formed which reduced the corrosion rate when concentration of CO 2-3 increased. The effect of CO 2 partial pressure on CO 2 corrosion of X70 steel was closely related to the temperature.The CO 2 partial pressure reduced when the corrosion rate achieved the highest point and protection role was greater than corrosion role for X70 steel substrate with the increasing of temperature.

  11. Effects of immersion in water containing high concentrations of CO2 (CO2-water) at thermoneutral on thermoregulation and heart rate variability in humans

    Science.gov (United States)

    Sato, Maki; Kanikowska, Dominika; Iwase, Satoshi; Nishimura, Naoki; Shimizu, Yuuki; de Chantemele, Eric Belin; Matsumoto, Takaaki; Inukai, Yoko; Taniguchi, Yumiko; Ogata, Akihiro; Sugenoya, Junichi

    2009-01-01

    Immersion in high concentrations of CO2 dissolved in freshwater (CO2-water) might induce peripheral vasodilatation in humans. In this study, we investigated whether such immersion could affect the autonomic nervous system in humans using spectral analysis of heart rate variability. Ten healthy men participated in this study. Tympanic temperature, cutaneous blood flow and electrocardiogram (ECG) were measured continuously during 20 min of immersion in CO2-water. The ECG was analyzed by spectral analysis of R-R intervals using the maximal entropy method. The decrease in tympanic temperature was significantly greater in CO2-water immersion than in freshwater immersion. Cutaneous blood flow at the immersed site was significantly increased with CO2-water immersion compared to freshwater. The high frequency component (HF: 0.15-0.40 Hz) was significantly higher in CO2-water immersion than in freshwater immersion, but the low frequency (LF: 0.04-0.15 Hz) /high frequency ratio (LF/HF ratio) was significantly lower in CO2-water immersion than in freshwater immersion. The present study contributes evidence supporting the hypothesis that CO2-water immersion activates parasympathetic nerve activity in humans.

  12. Role of Fluid Pressure in the Production Behavior of EnhancedGeothermal Systems with CO2 as Working Fluid

    Energy Technology Data Exchange (ETDEWEB)

    Pruess, Karsten

    2007-04-13

    Numerical simulation is used to evaluate mass flow and heatextraction rates from enhanced geothermal injection-production systemsthat are operated using either CO2 or water as heat transmission fluid.For a model system patterned after the European hot dry rock experimentat Soultz, we find significantly greater heat extraction rates for CO2 ascompared to water. The strong dependence of CO2 mobility (=density/viscosity) upon temperature and pressure may lead to unusualproduction behavior, where heat extraction rates can actually increasefor a time, even as the reservoir is subject to thermaldepletion.

  13. Reactions in a Mixture of CH4 and CO2 under the Aciton of Microwave Discharge at Atmospheric Pressure

    Institute of Scientific and Technical Information of China (English)

    YunpengXu; ZhijianTian; 等

    2002-01-01

    Reactions between CH4 and CO2 under the action of continuous microwave discharge at atmospheric pressure were studied in a special homemade reactor,The main products were CO and H2,while acetylene and ethylene were also found in the products.Experimental results show that conversions of CH4 and CO2 could be higher than 90% without the presence of any catalyst,Effects of CO2/CH4 molar ratio and total flow rate of the feed gas on the reaction were also investigated.

  14. Potassium-based sorbents from fly ash for high-temperature CO2 capture.

    Science.gov (United States)

    Sanna, Aimaro; Maroto-Valer, M Mercedes

    2016-11-01

    Potassium-fly ash (K-FA) sorbents were investigated for high-temperature CO2 sorption. K-FAs were synthesised using coal fly ash as source of silica and aluminium. The synthesised materials were also mixed with Li2CO3 and Ca(OH)2 to evaluate their effect on CO2 capture. Temperature strongly affected the performance of the K-FA sorbents, resulting in a CO2 uptake of 1.45 mmol CO2/g sorbent for K-FA 1:1 at 700 °C. The CO2 sorption was enhanced by the presence of Li2CO3 (10 wt%), with the K-FA 1:1 capturing 2.38 mmol CO2/g sorbent at 700 °C in 5 min. This sorption was found to be similar to previously developed Li-Na-FA (2.54 mmol/g) and Li-FA (2.4 mmol/g) sorbents. The presence of 10 % Li2CO3 also accelerated sorption and desorption. The results suggest that the increased uptake of CO2 and faster reaction rates in presence of K-FA can be ascribed to the formation of K-Li eutectic phase, which favours the diffusion of potassium and CO2 in the material matrix. The cyclic experiments showed that the K-FA materials maintained stable CO2 uptake and reaction rates over 10 cycles.

  15. High-accuracy C-14 measurements for atmospheric CO2 samples by AMS

    NARCIS (Netherlands)

    Meijer, H.A.J.; Pertuisot, M.H.; van der Plicht, J.

    2006-01-01

    In this paper, we investigate how to achieve high-accuracy radiocarbon measurements by accelerator mass spectrometry (ANIS) and present measurement series (performed on archived CO2) of (CO2)-C-14 between 1985 and 1991 for Point Barrow (Alaska) and the South Pole. We report in detail the measurement

  16. A 5 cm single-discharge CO2 laser having high power output

    NARCIS (Netherlands)

    Ernst, G.J.; Boer, A.G.

    1980-01-01

    A single-discharge self-sustained CO2 laser has been constructed with a gap distance of 5 cm. The system has a very simple construction; it produces a very uniform discharge with an output power of 50 Joules per liter for a CO2 : N2 : He = 1 : 1 : 3 mixture. The efficiency can be as high as 19%.

  17. End-tidal arterial CO2 partial pressure gradient in patients with severe hypercapnia undergoing noninvasive ventilation

    Directory of Open Access Journals (Sweden)

    Defilippis V

    2013-06-01

    Full Text Available Vito Defilippis,1 Davide D’Antini,2 Gilda Cinnella,2 Michele Dambrosio,2 Fernando Schiraldi,3 Vito Procacci1 1Emergency Department, Riuniti Hospital, 2Department of Anaesthesiology and Intensive Care, University of Foggia, Foggia, 3Emergency Department, San Paolo Hospital, Naples, Italy Background: Patients with severe hypercapnia represent a particularly serious condition in an emergency department (ED, requiring immediate attention. Noninvasive ventilation (NIV is an integral part of the treatment for acute respiratory failure. The present study aimed to validate the measurement of end-tidal CO2 (EtCO2 as a noninvasive technique to evaluate the effectiveness of NIV in acute hypercapnic respiratory failure. Methods: Twenty consecutive patients admitted to the ED with severe dyspnea were enrolled in the study. NIV by means of bilevel positive airway pressure, was applied to the patients simultaneously with standard medical therapy and continued for 12 hours; the arterial blood gases and side-stream nasal/oral EtCO2 were measured at subsequent times: T0 (admission to the ED, T1h (after 1 hour, T6h (after 6 hours, and T12h (after 12 hours during NIV treatment. Results: The arterial CO2 partial pressure (PaCO2–EtCO2 gradient decreased progressively, reaching at T6h and T12h values lower than baseline (P < 0.001, while arterial pH increased during the observation period (P < 0.001. A positive correlation was found between EtCO2 and PaCO2 values (r = 0.89, P < 0.001 at the end of the observation period. Conclusion: In our hypercapnic patients, the effectiveness of the NIV was evidenced by the progressive reduction of the PaCO2–EtCO2 gradient. The measurement of the CO2 gradient could be a reliable method in monitoring the effectiveness of NIV in acute hypercapnic respiratory failure in the ED. Keywords: arterial end-tidal CO2 gradient, noninvasive ventilation, bilevel positive airway pressure, acute respiratory failure

  18. High precision dual-inlet IRMS measurements of the stable isotopes of CO2 and the N2O/CO2 ratio from polar ice core samples

    Directory of Open Access Journals (Sweden)

    T. K. Bauska

    2014-07-01

    Full Text Available An important constraint on mechanisms of past carbon cycle variability is provided by the stable isotopic composition of carbon in atmospheric carbon dioxide (δ13C-CO2 trapped in polar ice cores, but obtaining very precise measurements has proven to be a significant analytical challenge. Here we describe a new technique to determine the δ13C of CO2 at exceptional precision, as well as measuring the CO2 and N2O mixing ratios. In this method, ancient air is extracted from relatively large ice samples (~ 400 grams with a dry-extraction "ice-grater" device. The liberated air is cryogenically purified to a CO2 and N2O mixture and analyzed with a micro-volume equipped dual-inlet IRMS (Thermo MAT 253. The reproducibility of the method, based on replicate analysis of ice core samples, is 0.02‰ for δ13C-CO2 and 2 ppm and 4 ppb for the CO2 and N2O mixing ratios, respectively (1-sigma pooled standard deviation. Our experiments show that minimizing water vapor pressure in the extraction vessel by housing the grating apparatus in a ultra-low temperature freezer (−60 °C improves the precision and decreases the experimental blank of the method. We describe techniques for accurate calibration of small samples and the application of a mass spectrometric method based on source fragmentation for reconstructing the N2O history of the atmosphere. The oxygen isotopic composition of CO2 is also investigated, confirming previous observations of oxygen exchange between gaseous CO2 and solid H2O within the ice archive. These data offer a possible constraint on oxygen isotopic fractionation during H2O and CO2 exchange below the H2O bulk melting temperature.

  19. High-resolution estimates of net community production and air-sea CO2 flux in the northeast Pacific

    Science.gov (United States)

    Lockwood, Deirdre; Quay, Paul D.; Kavanaugh, Maria T.; Juranek, Lauren W.; Feely, Richard A.

    2012-12-01

    Rates of net community production (NCP) and air-sea CO2 flux in the Northeast Pacific subarctic, transition zone and subtropical regions (22°N-50°N, 145°W-152°W) were determined on a cruise in August-September 2008 by continuous measurement of surface values of the ratio of dissolved oxygen to argon (O2/Ar) and the partial pressure of CO2 (pCO2). These estimates were compared with simultaneous measurements of sea surface temperature (SST), chlorophyll-a (chl-a), flow cytometry, and discrete surface nutrient concentrations. NCP and CO2 influx were greatest in the subarctic (45°N-50°N, 25.8 ± 4.6 and 4.1 ± 0.9 mmol C m-2 d-1) and northern transition zone (40°N-45°N, 17.1 ± 4.4 and 2.1 ± 0.5 mmol C m-2 d-1), with mean NCP ˜6-8× greater than mean CO2 invasion (error estimates reflect 1 σ confidence intervals). Contrastingly, the southern transition zone (32°N-40°N) and subtropics (22°N-32°N) had lower mean NCP (5.4 ± 1.8 and 8.1 ± 2.1 mmol C m-2 d-1, respectively) and mean CO2 efflux (3.0 ± 0.5 and 0.1 ± 0.0 mmol C m-2 d-1, respectively). In the subarctic and transition zone, NCP was highly correlated with surface chl-a and CO2 influx, indicating strong coupling between the biological pump and CO2 uptake. Meridional trends in our NCP estimates in the transition zone and subtropics were similar to those for integrated summertime NCP along the cruise track determined using an upper ocean climatological carbon budget.

  20. Pore-lining composition and capillary breakthrough pressure of mudstone caprocks : sealing efficiency at geologic CO2 storage sites.

    Energy Technology Data Exchange (ETDEWEB)

    Heath, Jason E.; Nemer, Martin B.; McPherson, Brian J. O. L. (University of Utah, Salt Lake City, UT); Dewers, Thomas A.; Kotula, Paul Gabriel

    2010-12-01

    Subsurface containment of CO2 is predicated on effective caprock sealing. Many previous studies have relied on macroscopic measurements of capillary breakthrough pressure and other petrophysical properties without direct examination of solid phases that line pore networks and directly contact fluids. However, pore-lining phases strongly contribute to sealing behavior through interfacial interactions among CO2, brine, and the mineral or non-mineral phases. Our high resolution (i.e., sub-micron) examination of the composition of pore-lining phases of several continental and marine mudstones indicates that sealing efficiency (i.e., breakthrough pressure) is governed by pore shapes and pore-lining phases that are not identifiable except through direct characterization of pores. Bulk X-ray diffraction data does not indicate which phases line the pores and may be especially lacking for mudstones with organic material. Organics can line pores and may represent once-mobile phases that modify the wettability of an originally clay-lined pore network. For shallow formations (i.e., < {approx}800 m depth), interfacial tension and contact angles result in breakthrough pressures that may be as high as those needed to fracture the rock - thus, in the absence of fractures, capillary sealing efficiency is indicated. Deeper seals have poorer capillary sealing if mica-like wetting dominates the wettability. We thank the U.S. Department of Energy's National Energy Technology Laboratory and the Office of Basic Energy Sciences, and the Southeast and Southwest Carbon Sequestration Partnerships for supporting this work.

  1. Phenol-Formaldehyde Resin-Based Carbons for CO2 Separation at Sub-Atmospheric Pressures

    OpenAIRE

    2016-01-01

    The challenge of developing effective separation and purification technologies that leave much smaller energy footprints is greater for carbon dioxide (CO2) than for other gases. In addition to its involvement in climate change, CO2 is present as an impurity in biogas and bio-hydrogen (biological production by dark fermentation), in post-combustion processes (flue gas, CO2-N2) and many other gas streams. Selected phenol-formaldehyde resin-based activated carbons prepared in our laboratory hav...

  2. Embedding NiCo2O4 nanoparticles into a 3DHPC assisted by CO2-expanded ethanol: a potential lithium-ion battery anode with high performance.

    Science.gov (United States)

    Wang, Lingyan; Zhuo, Linhai; Zhang, Chao; Zhao, Fengyu

    2014-07-09

    A high-performance anode material, NiCo2O4/3DHPC composite, for lithium-ion batteries was developed through direct nanoparticles nucleation on a three-dimensional hierarchical porous carbon (3DHPC) matrix and cation substitution of spinel Co3O4 nanoparticles. It was synthesized via a supercritical carbon dioxide (scCO2) expanded ethanol solution-assisted deposition method combined with a subsequent heat-treatment process. The NiCo2O4 nanoparticles were uniformly embedded into the porous carbon matrix and efficiently avoided free-growth in solution or aggregation in the pores even at a high content of 55.0 wt %. In particular, the 3DHPC was directly used without pretreatment or surfactant assistance. As an anode material for lithium-ion batteries, the NiCo2O4/3DHPC composite showed high reversible capacity and improved rate capability that outperformed those composites formed with single metal oxides (NiO/3DHPC, Co3O4/3DHPC), their physical mixture, and the composite prepared in pure ethanol (NiCo2O4/3DHPC-E). The superior performance is mainly contributed to the unique advantages of the scCO2-expanded ethanol medium, and the combination of high utilization efficiency and improved electrical conductivity of NiCo2O4 as well as the electronic and ionic transport advantages of 3DHPC.

  3. Investigation of Microseismicity Triggered by Raised Pore Pressure through Laboratory CO2 Injection Tests in Berea Sandstone

    Science.gov (United States)

    Lee, S.; Chang, C.

    2014-12-01

    One of the critical problems for carbon dioxide capture and storage projects is the occurrence of microseismicity due to increased pore pressure during CO2 injection. The mechanism of microseismicity can be explained by the notion that the injection-induced pore pressure increase can potentially alter the reservoir rock in the form of either creating fractures or triggering slip on pre-existing discontinuities by reducing the effective normal stress. Therefore, it is important to estimate the critical pore pressure (Pcr) to prevent excessive seismicity. The purpose of this study is to attempt to simulate the microseismicity induced from increased pore pressure by CO2 injection into Berea sandstone. Cylindrical specimens were saw-cut at 30° from the specimen axis. Specimens were either dry or saturated by tap water. The frictional coefficients of the fractures were determined from triaxial shear tests to be 0.71 (dry) and 0.65 (water-saturated). With the frictional coefficients known, we then injected CO2 (either gaseous of liquid state) into the specimens (either dry or water-saturated) subjected to triaxial stress conditions. Under the conditions of constant confining pressures and axial stresses, we increased pore pressure in steps by injecting CO2 using a syringe pump. We monitored shear slip along the fracture using axial LVDTs and microseismicity using an acoustic emission sensor. The critical pore pressure that would initiate shear slip along the fracture was calculated from the Coulomb friction law. When CO2 was injected into dry specimens, shear slip and associated microseismicity started to occur at the pore pressure levels exactly estimated from the Coulomb theory. However, when CO2 (both gaseous and liquid states) was injected into water-saturated specimens, the same were initiated at pore pressures slightly higher (by 1.2-3.7 MPa) than that estimated from the Coulomb friction law. These results suggest that the presence of water and associated water-CO

  4. An effective medium of H2O and low-pressure CO2 for the selective hydrogenation of aromatic nitro compounds to anilines

    OpenAIRE

    2011-01-01

    Chemoselective hydrogenation of water-insoluble aromatic nitro compounds can be achieved over Ni catalysts in a H2O-compressed CO2 system at 35-50℃ without using any environmentally harmful solvent. The effective CO2 pressure is much lower than the critical pressure of CO2. The hydrogenation of nitro group should be the rate-determining step.

  5. Chemical Fixation of CO2 with Highly Efficient ZnCl/[BMIm]Br Catalyst System

    Institute of Scientific and Technical Information of China (English)

    Li Fuwei; Xia Chungu

    2004-01-01

    The search for environmentally benign and economic process has been the impetus for much of the research involving epoxide and carbon dioxide coupling in view of the so called "green chemistry" and" atom economy ", since CO2 is a renewable resource and can be used as a safe and cheap C 1 building block to synthesize useful organic compounds without producing any coproducts.[1-2] One of the most attractive synthetic goals starting from carbon dioxide is the chemical fixation of CO2 onto epoxide to afford the five-membered cyclic carbonates (Scheme 1),which are excellent aprotic polar solvents and are used extensively as intermediates in the production of pharmaceuticals and fine chemicals.[3] In the last decades of the twentieth century numerous catalytic systems have been developed for this transformation. While some advances have been obtained, all suffer from either low catalyst stability/reactivity, the need for co-solvent, or the requirement for high pressure and/or catalyst costing expensive.[4] Therefore, to find an effective,not exrensive, environmentally benign and economic catalyst system is urgent.In this paper, chemical fixation of CO2 with mono-substituted terminal epoxides or cyclohexene oxide to form cyclic carbonates under the ZnCl2/[BMIm]Br Catalyst System without using additional organic solvents was achieved in excellent selectivity (>98%) and TOF(5410h-1) Besides,the pure cis-cyclic carbonate of cyclohexene oxide was obtained in this catalyst system.It was important to note that the catalyst could be recovered by simple vacuum distillation of the corresponding cyclic carbonates and could be used six times almost without losing its catalytic activity and selectivity. The catalyst system was found to be applicable to a variety of terminal epoxides and cyclohexene oxide, forming the corresponding cyclic carbonates in very high TOF and more than 98% selectivity. Based on the obtained results, we also propose the plausible mechanism for this

  6. High efficiency nanocomposite sorbents for CO2 capture based on amine-functionalized mesoporous capsules

    KAUST Repository

    Qi, Genggeng

    2011-01-01

    A novel high efficiency nanocomposite sorbent for CO2 capture has been developed based on oligomeric amine (polyethylenimine, PEI, and tetraethylenepentamine, TEPA) functionalized mesoporous silica capsules. The newly synthesized sorbents exhibit extraordinary capture capacity up to 7.9 mmol g-1 under simulated flue gas conditions (pre-humidified 10% CO 2). The CO2 capture kinetics were found to be fast and reached 90% of the total capacities within the first few minutes. The effects of the mesoporous capsule features such as particle size and shell thickness on CO2 capture capacity were investigated. Larger particle size, higher interior void volume and thinner mesoporous shell thickness all improved the CO2 capacity of the sorbents. PEI impregnated sorbents showed good reversibility and stability during cyclic adsorption-regeneration tests (50 cycles). © 2011 The Royal Society of Chemistry.

  7. High efficiency of CO2-activated graphite felt as electrode for vanadium redox flow battery application

    Science.gov (United States)

    Chang, Yu-Chung; Chen, Jian-Yu; Kabtamu, Daniel Manaye; Lin, Guan-Yi; Hsu, Ning-Yih; Chou, Yi-Sin; Wei, Hwa-Jou; Wang, Chen-Hao

    2017-10-01

    A simple method for preparing CO2-activated graphite felt as an electrode in a vanadium redox flow battery (VRFB) was employed by the direct treatment in a CO2 atmosphere at a high temperature for a short period. The CO2-activated graphite felt demonstrates excellent electrochemical activity and reversibility. The VRFB using the CO2-activated graphite felts in the electrodes has coulombic, voltage, and energy efficiencies of 94.52%, 88.97%, and 84.15%, respectively, which is much higher than VRFBs using the electrodes of untreated graphite felt and N2-activated graphite felt. The efficiency enhancement was attributed to the higher number of oxygen-containing functional groups on the graphite felt that are formed during the CO2-activation, leading to improving the electrochemical behaviour of the resultant VRFB.

  8. Subtarget Effect on Laser Plasma Generated by Transversely Excited Atmospheric CO2 Laser at Atmospheric Gas Pressure

    Science.gov (United States)

    Kagawa, Kiichiro; Lie, Tjung Jie; Hedwig, Rinda; Abdulmajid, Syahrun Nur; Suliyanti, Maria Margaretha; Kurniawan, Hendrik

    2000-05-01

    An experimental study has been carried out on the dynamical process taking place in the laser plasma generated by Transversely Excited Atmospheric CO2 laser (100 mJ, 50 ns) irradiation of a soft sample at surrounding helium pressure of 1 atm. It is shown that the presence of a copper subtarget behind the soft sample is crucial in raising the gushing speed of the atoms to the level adequate for the generation of shock wave laser plasma even at atmospheric pressure. It is also found that the time profiles of spatially integrated emission intensity of the target’s atoms and gas atoms exhibit a characteristic dynamical process that consists of successive excitation and cooling stages even at such a high pressure, which is typical of shock wave laser plasma. It is therefore suggested that the generation of the laser plasma at atmospheric pressure is more likely due to the shock wave mechanism than to the widely known breakdown mechanism. Initial spectrochemical analysis of water from the blow off of a boiler system was also carried out, showing a detection limit of as low as 5 ppm for calcium.

  9. Wear Resistance of CO2 Corrosion Product Scale Formed at High Temperature

    Institute of Scientific and Technical Information of China (English)

    LIN Guan-fa; ZHENG Mao-sheng; BAI Zhen-quan; FENG Yao-rong

    2006-01-01

    To investigate the correlation between structure characteristics and wear resistance of CO2 corrosion product scales at high temperature and high pressure, an autoclave was used to prepare CO2 corrosion product scales on N80 steel in carbon dioxide corrosion environment. The correlation between wear resistance of the scales and many other factors, such as temperature, pressure, morphology, structure, velocity of fluid medium, sand grain size, and so on, was comparatively analyzed by a self-assembled wear device, and the scale morphologies before or after being worn were observed by scanning electron microscope (SEM). And then the surface grain size and thickness of scale were measured. The results showed that the cross-section of the corrosion scale was of a double-layer structure, the outer layer of which was composed of regular crystals, whereas the inner layer was a thin scale of fine grains. The outer grain size and thickness of scale varied with temperature, and the initial wear loss was consistent with the surface grain size; at the same time, the total wear loss corresponded to the thickness of scale. Compared to wear resistance in different depths of the scale, it was found that the structure of scale was a double-layer structure in cross-section, and the wear resistance of inner layer was better than that of the outer layer; the closer the scale to the matrix, the greater was the wear resistance of scale; and the larger the size or the higher the rotary speed of solid grain in multiphase flowing medium, the more was the wear loss of scale.

  10. TiO(OH)2 - highly effective catalysts for optimizing CO2 desorption kinetics reducing CO2 capture cost: A new pathway.

    Science.gov (United States)

    Yao, Hongbao; Toan, Sam; Huang, Liang; Fan, Maohong; Wang, Yujun; Russell, Armistead G; Luo, Guangsheng; Fei, Weiyang

    2017-06-07

    The objective is to find a new pathway for significant reduction in CO2 capture energy consumption. Specifically, nanoporous TiO(OH)2 was used to realize the objective, which was desired as a catalyst to significantly accelerate the decomposition of aqueous NaHCO3, essentially CO2 desorption - the key step of Na2CO3/NaHCO3 based CO2 capture technologies from overall CO2 energy consumption perspective. Effects of several important factors on TiO(OH)2-catalyzed NaHCO3 decomposition were investigated. The quantity of CO2 generated from 0.238 mol/L NaHCO3 at 65 °C with catalyst is ~800% of that generated without the presence of catalyst. When a 12 W vacuum pump was used for carrying the generated CO2 out of reactor, the total amount of CO2 released was improved by ~2,500% under the given experimental conditions. No significant decrease in the catalytic effect of TiO(OH)2 was observed after five cyclic CO2 activated tests. In addition, characterizations with in-situ Fourier transform infrared spectroscopy, thermal gravity analysis and Brunauer-Emmett-Teller of TiO(OH)2 indicate that TiO(OH)2 is quite stable. The discovery in this research could inspire scientists' interests in starting to focus on a new pathway instead of making huge effort or investment in designing high-capacity but expensive CO2 sorbent for developing practical or cost-effective CO2 technologies.

  11. Capillary pressure heterogeneity and hysteresis for the supercritical CO2/water system in a sandstone

    Science.gov (United States)

    Pini, Ronny; Benson, Sally M.

    2017-10-01

    We report results from an experimental investigation on the hysteretic behaviour of the capillary pressure curve for the supercritical CO2-water system in a Berea Sandstone core. Previous observations have highlighted the importance of subcore-scale capillary heterogeneity in developing local saturations during drainage; we show in this study that the same is true for the imbibition process. Spatially distributed drainage and imbibition scanning curves were obtained for mm-scale subsets of the rock sample non-invasively using X-ray CT imagery. Core- and subcore-scale measurements are well described using the Brooks-Corey formalism, which uses a linear trapping model to compute mobile saturations during imbibition. Capillary scaling yields two separate universal drainage and imbibition curves that are representative of the full subcore-scale data set. This enables accurate parameterisation of rock properties at the subcore-scale in terms of capillary scaling factors and permeability, which in turn serve as effective indicators of heterogeneity at the same scale even when hysteresis is a factor. As such, the proposed core-analysis workflow is quite general and provides the required information to populate numerical models that can be used to extend core-flooding experiments to conditions prevalent in the subsurface, which would be otherwise not attainable in the laboratory.

  12. Development and Evaluation of a High Sensitivity DIAL System for Profiling Atmospheric CO2

    Science.gov (United States)

    Ismail, Syed; Koch, Grady J.; Refaat, Tamer F.; Abedin, M. N.; Yu, Jirong; Singh, Upendra N.

    2008-01-01

    A ground-based 2-micron Differential Absorption Lidar (DIAL) CO2 profiling system for atmospheric boundary layer studies and validation of space-based CO2 sensors is being developed and tested at NASA Langley Research Center as part of the NASA Instrument Incubator Program. To capture the variability of CO2 in the lower troposphere a precision of 1-2 ppm of CO2 (less than 0.5%) with 0.5 to 1 km vertical resolution from near surface to free troposphere (4-5 km) is one of the goals of this program. In addition, a 1% (3 ppm) absolute accuracy with a 1 km resolution over 0.5 km to free troposphere (4-5 km) is also a goal of the program. This DIAL system leverages 2-micron laser technology developed under NASA's Laser Risk Reduction Program (LRRP) and other NASA programs to develop new solid-state laser technology that provides high pulse energy, tunable, wavelength-stabilized, and double-pulsed lasers that are operable over pre-selected temperature insensitive strong CO2 absorption lines suitable for profiling of lower tropospheric CO2. It also incorporates new high quantum efficiency, high gain, and relatively low noise phototransistors, and a new receiver/signal processor system to achieve high precision DIAL measurements. This presentation describes the capabilities of this system for atmospheric CO2 and aerosol profiling. Examples of atmospheric measurements in the lidar and DIAL mode will be presented.

  13. High Energy 2-Micron Solid-State Laser Transmitter for NASA's Airborne CO2 Measurements

    Science.gov (United States)

    Singh, Upendra N.; Yu, Jirong; Petros, Mulugeta; Bai, Yingxin

    2012-01-01

    A 2-micron pulsed, Integrated Path Differential Absorption (IPDA) lidar instrument for ground and airborne atmospheric CO2 concentration measurements via direct detection method is being developed at NASA Langley Research Center. This instrument will provide an alternate approach to measure atmospheric CO2 concentrations with significant advantages. A high energy pulsed approach provides high-precision measurement capability by having high signal-to-noise level and unambiguously eliminates the contamination from aerosols and clouds that can bias the IPDA measurement.

  14. Mapping of CO2 at High Spatiotemporal Resolution using Satellite Observations: Global distributions from OCO-2

    Science.gov (United States)

    Hammerling, Dorit M.; Michalak, Anna M.; Kawa, S. Randolph

    2012-01-01

    Satellite observations of CO2 offer new opportunities to improve our understanding of the global carbon cycle. Using such observations to infer global maps of atmospheric CO2 and their associated uncertainties can provide key information about the distribution and dynamic behavior of CO2, through comparison to atmospheric CO2 distributions predicted from biospheric, oceanic, or fossil fuel flux emissions estimates coupled with atmospheric transport models. Ideally, these maps should be at temporal resolutions that are short enough to represent and capture the synoptic dynamics of atmospheric CO2. This study presents a geostatistical method that accomplishes this goal. The method can extract information about the spatial covariance structure of the CO2 field from the available CO2 retrievals, yields full coverage (Level 3) maps at high spatial resolutions, and provides estimates of the uncertainties associated with these maps. The method does not require information about CO2 fluxes or atmospheric transport, such that the Level 3 maps are informed entirely by available retrievals. The approach is assessed by investigating its performance using synthetic OCO-2 data generated from the PCTM/ GEOS-4/CASA-GFED model, for time periods ranging from 1 to 16 days and a target spatial resolution of 1deg latitude x 1.25deg longitude. Results show that global CO2 fields from OCO-2 observations can be predicted well at surprisingly high temporal resolutions. Even one-day Level 3 maps reproduce the large-scale features of the atmospheric CO2 distribution, and yield realistic uncertainty bounds. Temporal resolutions of two to four days result in the best performance for a wide range of investigated scenarios, providing maps at an order of magnitude higher temporal resolution relative to the monthly or seasonal Level 3 maps typically reported in the literature.

  15. Dual Phase Membrane for High Temperature CO2 Separation

    Energy Technology Data Exchange (ETDEWEB)

    Jerry Lin

    2007-06-30

    This project aimed at synthesis of a new inorganic dual-phase carbonate membrane for high temperature CO{sub 2} separation. Metal-carbonate dual-phase membranes were prepared by the direct infiltration method and the synthesis conditions were optimized. Permeation tests for CO{sub 2} and N{sub 2} from 450-750 C showed very low permeances of those two gases through the dual-phase membrane, which was expected due to the lack of ionization of those two particular gases. Permeance of the CO{sub 2} and O{sub 2} mixture was much higher, indicating that the gases do form an ionic species, CO{sub 3}{sup 2-}, enhancing transport through the membrane. However, at temperatures in excess of 650 C, the permeance of CO{sub 3}{sup 2-} decreased rapidly, while predictions showed that permeance should have continued to increase with temperature. XRD data obtained from used membrane indicated that lithium iron oxides formed on the support surface. This lithium iron oxide layer has a very low conductivity, which drastically reduces the flow of electrons to the CO{sub 2}/O{sub 2} gas mixture; thus limiting the formation of the ionic species required for transport through the membrane. These results indicated that the use of stainless steel supports in a high temperature oxidative environment can lead to decreased performance of the membranes. This revelation created the need for an oxidation resistant support, which could be gained by the use of a ceramic-type membrane. Work was extended to synthesize a new inorganic dual-phase carbonate membrane for high temperature CO{sub 2} separation. Helium permeance of the support before and after infiltration of molten carbonate are on the order of 10{sup -6} and 10{sup -10} moles/m{sup 2} {center_dot} Pa {center_dot} s respectively, indicating that the molten carbonate is able to sufficiently infiltrate the membrane. It was found that La{sub 0.6}Sr{sub 0.4}Co{sub 0.8}Fe{sub 0.2}O{sub 3-{delta}} (LSCF) was a suitable candidate for the support

  16. Monitoring of injected CO2 at two commercial geologic storage sites with significant pressure depletion and/or re-pressurization histories: A case study

    Directory of Open Access Journals (Sweden)

    Dayanand Saini

    2017-03-01

    The monitoring technologies that have been used/deployed/tested at both the normally pressured West Hastings and the subnormally pressured Bell Creek storage sites appear to adequately address any of the potential “out of zone migration” of injected CO2 at these sites. It would be interesting to see if any of the collected monitoring data at the West Hastings and the Bell Creek storage sites could also be used in future to better understand the viability of initially subnormally pressured and subsequently depleted and re-pressurized oil fields as secure geologic CO2 storage sites with relatively large storage CO2 capacities compared to the depleted and re-pressurized oil fields that were initially discovered as normally pressured.

  17. Predicting CO2 Minimum Miscibility Pressure (MMP Using Alternating Conditional Expectation (ACE Algorithm

    Directory of Open Access Journals (Sweden)

    Alomair O.

    2015-11-01

    Full Text Available Miscible gas injection is one of the most important enhanced oil recovery (EOR approaches for increasing oil recovery. Due to the massive cost associated with this approach a high degree of accuracy is required for predicting the outcome of the process. Such accuracy includes, the preliminary screening parameters for gas miscible displacement; the “Minimum Miscibility Pressure” (MMP and the availability of the gas. All conventional and stat-of-art MMP measurement methods are either time consuming or decidedly cost demanding processes. Therefore, in order to address the immediate industry demands a nonparametric approach, Alternating Conditional Expectation (ACE, is used in this study to estimate MMP. This algorithm Breiman and Friedman [Brieman L., Friedman J.H. (1985 J. Am. Stat. Assoc. 80, 391, 580-619]estimates the transformations of a set of predictors (here C1, C2, C3, C4, C5, C6, C7+, CO2, H2S, N2, Mw5+, Mw7+ and T and a response (here MMP that produce the maximum linear effect between these transformed variables. One hundred thirteen MMP data points are considered both from the relevant published literature and the experimental work. Five MMP measurements for Kuwaiti Oil are included as part of the testing data. The proposed model is validated using detailed statistical analysis; a reasonably good value of correlation coefficient 0.956 is obtained as compare to the existing correlations. Similarly, standard deviation and average absolute error values are at the lowest as 139 psia (8.55 bar and 4.68% respectively. Hence, it reveals that the results are more reliable than the existing correlations for pure CO2 injection to enhance oil recovery. In addition to its accuracy, the ACE approach is more powerful, quick and can handle a huge data.

  18. Coral energy reserves and calcification in a high-CO2 world at two temperatures.

    Science.gov (United States)

    Schoepf, Verena; Grottoli, Andréa G; Warner, Mark E; Cai, Wei-Jun; Melman, Todd F; Hoadley, Kenneth D; Pettay, D Tye; Hu, Xinping; Li, Qian; Xu, Hui; Wang, Yongchen; Matsui, Yohei; Baumann, Justin H

    2013-01-01

    Rising atmospheric CO2 concentrations threaten coral reefs globally by causing ocean acidification (OA) and warming. Yet, the combined effects of elevated pCO2 and temperature on coral physiology and resilience remain poorly understood. While coral calcification and energy reserves are important health indicators, no studies to date have measured energy reserve pools (i.e., lipid, protein, and carbohydrate) together with calcification under OA conditions under different temperature scenarios. Four coral species, Acropora millepora, Montipora monasteriata, Pocillopora damicornis, Turbinaria reniformis, were reared under a total of six conditions for 3.5 weeks, representing three pCO2 levels (382, 607, 741 µatm), and two temperature regimes (26.5, 29.0 °C) within each pCO2 level. After one month under experimental conditions, only A. millepora decreased calcification (-53%) in response to seawater pCO2 expected by the end of this century, whereas the other three species maintained calcification rates even when both pCO2 and temperature were elevated. Coral energy reserves showed mixed responses to elevated pCO2 and temperature, and were either unaffected or displayed nonlinear responses with both the lowest and highest concentrations often observed at the mid-pCO2 level of 607 µatm. Biweekly feeding may have helped corals maintain calcification rates and energy reserves under these conditions. Temperature often modulated the response of many aspects of coral physiology to OA, and both mitigated and worsened pCO2 effects. This demonstrates for the first time that coral energy reserves are generally not metabolized to sustain calcification under OA, which has important implications for coral health and bleaching resilience in a high-CO2 world. Overall, these findings suggest that some corals could be more resistant to simultaneously warming and acidifying oceans than previously expected.

  19. Coral energy reserves and calcification in a high-CO2 world at two temperatures.

    Directory of Open Access Journals (Sweden)

    Verena Schoepf

    Full Text Available Rising atmospheric CO2 concentrations threaten coral reefs globally by causing ocean acidification (OA and warming. Yet, the combined effects of elevated pCO2 and temperature on coral physiology and resilience remain poorly understood. While coral calcification and energy reserves are important health indicators, no studies to date have measured energy reserve pools (i.e., lipid, protein, and carbohydrate together with calcification under OA conditions under different temperature scenarios. Four coral species, Acropora millepora, Montipora monasteriata, Pocillopora damicornis, Turbinaria reniformis, were reared under a total of six conditions for 3.5 weeks, representing three pCO2 levels (382, 607, 741 µatm, and two temperature regimes (26.5, 29.0 °C within each pCO2 level. After one month under experimental conditions, only A. millepora decreased calcification (-53% in response to seawater pCO2 expected by the end of this century, whereas the other three species maintained calcification rates even when both pCO2 and temperature were elevated. Coral energy reserves showed mixed responses to elevated pCO2 and temperature, and were either unaffected or displayed nonlinear responses with both the lowest and highest concentrations often observed at the mid-pCO2 level of 607 µatm. Biweekly feeding may have helped corals maintain calcification rates and energy reserves under these conditions. Temperature often modulated the response of many aspects of coral physiology to OA, and both mitigated and worsened pCO2 effects. This demonstrates for the first time that coral energy reserves are generally not metabolized to sustain calcification under OA, which has important implications for coral health and bleaching resilience in a high-CO2 world. Overall, these findings suggest that some corals could be more resistant to simultaneously warming and acidifying oceans than previously expected.

  20. Polyethyleneimine Incorporated Metal-Organic Frameworks Adsorbent for Highly Selective CO2 Capture

    Science.gov (United States)

    Lin, Yichao; Yan, Qiuju; Kong, Chunlong; Chen, Liang

    2013-01-01

    A series of polyethyleneimine (PEI) incorporated MIL-101 adsorbents with different PEI loadings were reported for the first time in the present work. Although the surface area and pore volume of MIL-101 decreased significantly after loading PEI, all the resulting composites exhibited dramatically enhanced CO2 adsorption capacity at low pressures. At 100 wt% PEI loading, the CO2 adsorption capacity at 0.15 bar reached a very competitive value of 4.2 mmol g−1 at 25°C, and 3.4 mmol g−1 at 50°C. More importantly, the resulting adsorbents displayed rapid adsorption kinetics and ultrahigh selectivity for CO2 over N2 in the designed flue gas with 0.15 bar CO2 and 0.75 bar N2. The CO2 over N2 selectivity was up to 770 at 25°C, and 1200 at 50°C. We believe that the PEI based metal-organic frameworks is an attractive adsorbent for CO2 capture. PMID:23681218

  1. Painted Goby Larvae under High-CO2 Fail to Recognize Reef Sounds

    Science.gov (United States)

    Castro, Joana M.; Amorim, M. Clara P.; Oliveira, Ana P.; Gonçalves, Emanuel J.; Munday, Philip L.; Simpson, Stephen D.

    2017-01-01

    Atmospheric CO2 levels have been increasing at an unprecedented rate due to anthropogenic activity. Consequently, ocean pCO2 is increasing and pH decreasing, affecting marine life, including fish. For many coastal marine fishes, selection of the adult habitat occurs at the end of the pelagic larval phase. Fish larvae use a range of sensory cues, including sound, for locating settlement habitat. This study tested the effect of elevated CO2 on the ability of settlement-stage temperate fish to use auditory cues from adult coastal reef habitats. Wild late larval stages of painted goby (Pomatoschistus pictus) were exposed to control pCO2 (532 μatm, pH 8.06) and high pCO2 (1503 μatm, pH 7.66) conditions, likely to occur in nearshore regions subjected to upwelling events by the end of the century, and tested in an auditory choice chamber for their preference or avoidance to nighttime reef recordings. Fish reared in control pCO2 conditions discriminated reef soundscapes and were attracted by reef recordings. This behaviour changed in fish reared in the high CO2 conditions, with settlement-stage larvae strongly avoiding reef recordings. This study provides evidence that ocean acidification might affect the auditory responses of larval stages of temperate reef fish species, with potentially significant impacts on their survival. PMID:28125690

  2. Longitudinally excited CO2 laser with short laser pulse operating at high repetition rate

    Science.gov (United States)

    Li, Jianhui; Uno, Kazuyuki; Akitsu, Tetsuya; Jitsuno, Takahisa

    2016-11-01

    A short-pulse longitudinally excited CO2 laser operating at a high repetition rate was developed. The discharge tube was made of a 45 cm-long or 60 cm-long dielectric tube with an inner diameter of 16 mm and two metallic electrodes at the ends of the tube. The optical cavity was formed by a ZnSe output coupler with a reflectivity of 85% and a high-reflection mirror. Mixed gas (CO2:N2:He = 1:1:2) was flowed into the discharge tube. A high voltage of about 33 kV with a rise time of about 200 ns was applied to the discharge tube. At a repetition rate of 300 Hz and a gas pressure of 3.4 kPa, the 45 cm-long discharge tube produced a short laser pulse with a laser pulse energy of 17.5 mJ, a spike pulse energy of 0.2 mJ, a spike width of 153 ns, and a pulse tail length of 90 μs. The output power was 5.3 W. The laser pulse waveform did not depend on the repetition rate, but the laser beam profile did. At a low repetition rate of less than 50 Hz, the laser beam had a doughnut-like shape. However, at a high repetition rate of more than 150 Hz, the discharge concentrated at the center of the discharge tube, and the intensity at the center of the laser beam was higher. The laser beam profile depended on the distribution of the discharge. An output power of 7.0 W was achieved by using the 60 cm-long tube.

  3. High spin-polarization in ultrathin Co2MnSi/CoPd multilayers

    Science.gov (United States)

    Galanakis, I.

    2015-03-01

    Half-metallic Co2MnSi finds a broad spectrum of applications in spintronic devices either in the form of thin films or as spacer in multilayers. Using state-of-the-art ab-initio electronic structure calculations we exploit the electronic and magnetic properties of ultrathin Co2MnSi/CoPd multilayers. We show that these heterostructures combine high values of spin-polarization at the Co2MnSi spacer with the perpendicular magnetic anisotropy of binary compounds such as CoPd. Thus they could find application in spintronic/magnetoelectronic devices.

  4. Gravity waves and high-altitude CO$_2$ ice cloud formation in the Martian atmosphere

    CERN Document Server

    Yiğit, Erdal; Hartogh, Paul

    2015-01-01

    We present the first general circulation model simulations that quantify and reproduce patches of extremely cold air required for CO$_2$ condensation and cloud formation in the Martian mesosphere. They are created by subgrid-scale gravity waves (GWs) accounted for in the model with the interactively implemented spectral parameterization. Distributions of GW-induced temperature fluctuations and occurrences of supersaturation conditions are in a good agreement with observations of high-altitude CO$_2$ ice clouds. Our study confirms the key role of GWs in facilitating CO$_2$ cloud formation, discusses their tidal modulation, and predicts clouds at altitudes higher than have been observed to date.

  5. Photorespiration and carbon concentrating mechanisms: two adaptations to high O2, low CO2 conditions.

    Science.gov (United States)

    Moroney, James V; Jungnick, Nadine; Dimario, Robert J; Longstreth, David J

    2013-11-01

    This review presents an overview of the two ways that cyanobacteria, algae, and plants have adapted to high O2 and low CO2 concentrations in the environment. First, the process of photorespiration enables photosynthetic organisms to recycle phosphoglycolate formed by the oxygenase reaction catalyzed by ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). Second, there are a number of carbon concentrating mechanisms that increase the CO2 concentration around Rubisco which increases the carboxylase reaction enhancing CO2 fixation. This review also presents possibilities for the beneficial modification of these processes with the goal of improving future crop yields.

  6. Using pressure and volumetric approaches to estimate CO2 storage capacity in deep saline aquifers

    OpenAIRE

    Thibeau, S.; Bachu, S.; Birkholzer, J.; Holloway, S; Neele, F.P.; Zou, Q

    2014-01-01

    Various approaches are used to evaluate the capacity of saline aquifers to store CO2, resulting in a wide range of capacity estimates for a given aquifer. The two approaches most used are the volumetric “open aquifer” and “closed aquifer” approaches. We present four full-scale aquifer cases, where CO2 storage capacity is evaluated both volumetrically (with “open” and/or “closed” approaches) and through flow modeling. These examples show that the “open aquifer” CO2 storage capacity estimation ...

  7. Highly CO2-supersaturated melts in the Pannonian lithospheric mantle - A transient carbon reservoir?

    Science.gov (United States)

    Créon, Laura; Rouchon, Virgile; Youssef, Souhail; Rosenberg, Elisabeth; Delpech, Guillaume; Szabó, Csaba; Remusat, Laurent; Mostefaoui, Smail; Asimow, Paul D.; Antoshechkina, Paula M.; Ghiorso, Mark S.; Boller, Elodie; Guyot, François

    2017-08-01

    Subduction of carbonated crust is widely believed to generate a flux of carbon into the base of the continental lithospheric mantle, which in turn is the likely source of widespread volcanic and non-volcanic CO2 degassing in active tectonic intracontinental settings such as rifts, continental margin arcs and back-arc domains. However, the magnitude of the carbon flux through the lithosphere and the budget of stored carbon held within the lithospheric reservoir are both poorly known. We provide new constraints on the CO2 budget of the lithospheric mantle below the Pannonian Basin (Central Europe) through the study of a suite of xenoliths from the Bakony-Balaton Highland Volcanic Field. Trails of secondary fluid inclusions, silicate melt inclusions, networks of melt veins, and melt pockets with large and abundant vesicles provide numerous lines of evidence that mantle metasomatism affected the lithosphere beneath this region. We obtain a quantitative estimate of the CO2 budget of the mantle below the Pannonian Basin using a combination of innovative analytical and modeling approaches: (1) synchrotron X-ray microtomography, (2) NanoSIMS, Raman spectroscopy and microthermometry, and (3) thermodynamic models (Rhyolite-MELTS). The three-dimensional volumes reconstructed from synchrotron X-ray microtomography allow us to quantify the proportions of all petrographic phases in the samples and to visualize their textural relationships. The concentration of CO2 in glass veins and pockets ranges from 0.27 to 0.96 wt.%, higher than in typical arc magmas (0-0.25 wt.% CO2), whereas the H2O concentration ranges from 0.54 to 4.25 wt.%, on the low end for estimated primitive arc magmas (1.9-6.3 wt.% H2O). Trapping pressures for vesicles were determined by comparing CO2 concentrations in glass to CO2 saturation as a function of pressure in silicate melts, suggesting pressures between 0.69 to 1.78 GPa. These values are generally higher than trapping pressures for fluid inclusions

  8. Mycorrhizas improve nitrogen nutrition of Trifolium repens after 8 yr of selection under elevated atmospheric CO2 partial pressure.

    Science.gov (United States)

    Gamper, Hannes; Hartwig, Ueli A; Leuchtmann, Adrian

    2005-08-01

    Altered environmental conditions may change populations of arbuscular mycorrhizal fungi and thereby affect mycorrhizal functioning. We investigated whether 8 yr of free-air CO2 enrichment has selected fungi that differently influence the nutrition and growth of host plants. In a controlled pot experiment, two sets of seven randomly picked single spore isolates, originating from field plots of elevated (60 Pa) or ambient CO2 partial pressure (pCO2), were inoculated on nodulated Trifolium repens (white clover) plants. Fungal isolates belonged to the Glomus claroideum or Glomus intraradices species complex, and host plants were clonal micropropagates derived from nine genets. Total nitrogen (N) concentration was increased in leaves of plants inoculated with fungal isolates from elevated-pCO2 plots. These isolates took up nearly twice as much N from the soil as isolates from ambient-pCO2 plots and showed much greater stimulation of biological N2 fixation. The morpho-species identity of isolates had a more pronounced effect on N2 fixation and on root length colonized than isolate identity. We conclude that rising atmospheric pCO2 may select for fungal strains that will help their host plants to meet increased N demands. Copyright New Phytologist (2005).

  9. Influence of shielding gas pressure on welding characteristics in CO2 laser-MIG hybrid welding process

    Institute of Scientific and Technical Information of China (English)

    Yanbin Chen; Zhenglong Lei; Liqun Li; Lin Wu

    2006-01-01

    The droplet transfer behavior and weld characteristics have been investigated under different pressures of shielding gas in CO2 laser and metal inert/active gas (laser-MIG) hybrid welding process. The experimental results indicate that the inherent droplet transfer frequency and stable welding range of conventional MIG arc are changed due to the interaction between CO2 laser beam and MIG arc in laser-MIG hybrid welding process, and the shielding gas pressure has a crucial effect on welding characteristics. When the pressure of shielding gas is low in comparison with MIG welding, the frequency of droplet transfer decreases, and thedroplet transfer becomes unstable in laser-MIG hybrid welding. So the penetration depth decreases, which shows the characteristic of unstable hybrid welding. However, when the pressure of shielding gas increases to a critical value, the hybrid welding characteristic is changed from unstable hybrid welding to stablehybrid welding, and the frequency of droplet transfer and the penetration depth increase significantly.

  10. Carbon assimilation in Eucalyptus urophylla grown under high atmospheric CO2 concentrations: A proteomics perspective.

    Science.gov (United States)

    Santos, Bruna Marques Dos; Balbuena, Tiago Santana

    2017-01-06

    Photosynthetic organisms may be drastically affected by the future climate projections of a considerable increase in CO2 concentrations. Growth under a high concentration of CO2 could stimulate carbon assimilation-especially in C3-type plants. We used a proteomics approach to test the hypothesis of an increase in the abundance of the enzymes involved in carbon assimilation in Eucalyptus urophylla plants grown under conditions of high atmospheric CO2. Our strategy allowed the profiling of all Calvin-Benson cycle enzymes and associated protein species. Among the 816 isolated proteins, those involved in carbon fixation were found to be the most abundant ones. An increase in the abundance of six key enzymes out of the eleven core enzymes involved in carbon fixation was detected in plants grown at a high CO2 concentration. Proteome changes were corroborated by the detection of a decrease in the stomatal aperture and in the vascular bundle area in Eucalyptus urophylla plantlets grown in an environment of high atmospheric CO2. Our proteomics approach indicates a positive metabolic response regarding carbon fixation in a CO2-enriched atmosphere. The slight but significant increase in the abundance of the Calvin enzymes suggests that stomatal closure did not prevent an increase in the carbon assimilation rates.

  11. Assessment of Well Safety from Pressure and Temperature-Induced Damage during CO2 Injection in Deep Saline Aquifers

    Science.gov (United States)

    Singh, A. K.; Delfs, J.; Goerke, U.; Kolditz, O.

    2013-12-01

    Carbon dioxide Capture and Storage (CCS) technology is known for disposing a specific amount of CO2 from industrial release of flue gases into a suitable storage where it stays for a defined period of time in a safe way. Types of storage sites for CO2 are depleted hydrocarbon reservoirs, unmineable coal seams and saline aquifers. In this poster, we address the problem of CO2 sequestration into deep saline aquifers. The main advantage of this kind of site for the CO2 sequestration is its widespread geographic distribution. However, saline aquifers are very poorly characterized and typically located at one kilometer depth below the earth's surface. To demonstrate that supercritical CO2 injection into deep saline aquifers is technically and environmentally safe, it is required to perform thermo-hydro-mechanical analysis of failure moods with numerical models. In the poster, we present simple process-catching benchmark for testing the scenario of compressed CO2 injection into a multi- layered saline aquifer.The pores of the deformable matrix are initially filled with saline water at hydrostatic pressure and geothermal temperature conditions. This benchmark investigates (i) how the mechanical and thermal stresses enhance the permeability for CO2 migration; and (ii) subsequent failures mode, i.e., tensile, and shear failures. The tensile failure occurs when pore fluid pressure exceeds the principle stress whereas the Mohr-Coulomb failure criterion defines the shear failure mode. The thermo-hydro-mechanical (THM) model is based on a ';multi-componential flow' module . The coupled system of balance equations is solvedin the monolithic way. The Galerkin finite element approach is used for spatial discretization, whereas temporal discretization is performed with a generalized single step scheme. This numerical module has been implemented in the open-source scientific software OpenGeoSys.

  12. High resolution modeling of CO2 over Europe: implications for representation errors of satellite retrievals

    Directory of Open Access Journals (Sweden)

    T. Koch

    2010-01-01

    Full Text Available Satellite retrievals for column CO2 with better spatial and temporal sampling are expected to improve the current surface flux estimates of CO2 via inverse techniques. However, the spatial scale mismatch between remotely sensed CO2 and current generation inverse models can induce representation errors, which can cause systematic biases in flux estimates. This study is focused on estimating these representation errors associated with utilization of satellite measurements in global models with a horizontal resolution of about 1 degree or less. For this we used simulated CO2 from the high resolution modeling framework WRF-VPRM, which links CO2 fluxes from a diagnostic biosphere model to a weather forecasting model at 10×10 km2 horizontal resolution. Sub-grid variability of column averaged CO2, i.e. the variability not resolved by global models, reached up to 1.2 ppm with a median value of 0.4 ppm. Statistical analysis of the simulation results indicate that orography plays an important role. Using sub-grid variability of orography and CO2 fluxes as well as resolved mixing ratio of CO2, a linear model can be formulated that could explain about 50% of the spatial patterns in the systematic (bias or correlated error component of representation error in column and near-surface CO2 during day- and night-times. These findings give hints for a parameterization of representation error which would allow for the representation error to taken into account in inverse models or data assimilation systems.

  13. Skeletal mineralogy of coral recruits under high temperature and pCO2

    Directory of Open Access Journals (Sweden)

    T. Foster

    2016-03-01

    Our results show that elevated pCO2 alone is unlikely to drive changes in the skeletal mineralogy of young corals. Not having an ability to switch from aragonite to calcite precipitation may leave corals and ultimately coral reef ecosystems more susceptible to predicted ocean acidification. An important area for prospective research would be the investigation of the combined impact of high pCO2 and reduced Mg ∕ Ca ratio on coral skeletal mineralogy.

  14. High temporal resolution tracing of xylem CO2 transport in oak trees

    Science.gov (United States)

    Bloemen, Jasper; Ingrisch, Johannes; Bahn, Michael

    2016-04-01

    Carbon (C) allocation defines the flows of C between plant organs and their storage pools and metabolic processes and is therefore considered as an important determinant of forest C budgets and their responses to climate change. In trees, assimilates derived from leaf photosynthesis are transported via the phloem to above- and belowground sink tissues, where partitioning between growth, storage, and respiration occurs. At the same time, root- and aboveground respired CO2 can be dissolved in water and transported in the xylem tissue, thereby representing a C flux of large magnitude whose role in C allocation yet is unresolved. In this study, we infused 13C labeled water into the stem base of five year old potted oak (Quercus rubra) trees as a surrogate for respired CO2 to investigate the role of respired CO2 transport in trees in C allocation. We used high-resolution laser-based measurements of the isotopic composition of stem and soil CO2 efflux combined with stem gas probes to monitor the transport of 13C label. The high enrichment of the gas probes in the stem at the bottom of the canopy showed that the label was transported upwards from the base of the tree toward the top. During its ascent, the 13C label was removed from the transpiration stream and lost to the atmosphere at stem level, as was observed using the stem CO2 efflux laser-based measurements. This study is the first to show results from tracing xylem CO2 transport in trees at high temporal resolution using a 13C labeling approach. Moreover, they extend results from previous studies on internal CO2 transport in species with high transpiration rates like poplar to species with lower transpiration rates like oak. Internal transport of CO2 indicates that the current concepts of the tree C allocation need to be revisited, as they show that current gas exchange approach to estimating above- and belowground autotrophic respiration is inadequate.

  15. Facile synthesis of hybrid CNTs/NiCo2S4 composite for high performance supercapacitors.

    Science.gov (United States)

    Li, Delong; Gong, Youning; Pan, Chunxu

    2016-07-11

    In this work, a novel carbon nanotubes (CNTs)/NiCo2S4 composite for high performance supercapacitors was prepared via a simple chemical bath deposition combined with a post-anion exchange reaction. The morphologies and phase structures of the composites were characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD), Raman spectroscopy (Raman), X-ray photoelectron spectroscopy (XPS) and low-temperature sorption of nitrogen (BET). The electro-chemical tests revealed that the CNT/NiCo2S4 composite exhibited high electrochemical performance, because the CNTs were used as a conductive network for the NiCo2S4 hexagonal nanoplates. Compared with pure NiCo2S4 and the mechanically mixed CNTs/NiCo2S4 composite, the CNTs/NiCo2S4 composite electrode material exhibited excellent supercapacitive performance, such as a high specific capacitance up to 1537 F/g (discharge current density of 1 A/g) and an outstanding rate capability of 78.1% retention as the discharge current density increased to 100 A/g. It is therefore expected to be a promising alternative material in the area of energy storage.

  16. Experimental and modeling study of NO emission under high CO2 concentration

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    An experimental and numerical study of the NOx formation and reduction process in a designed coal combustion furnace under both traditional air atmosphere and O2/CO2 atmosphere was conducted, in an attempt to explore the chemistry mechanism of the experimentally observed NOx suppression under high CO2 concentration atmospheres. A simplified ‘chemically oriented’ approach, computational fluid dynamics (CFD)-chemical kinetics modeling method, was validated and used to model the experimental process. The high CO2 concentration’s chemical effect on NO reduction has been studied, and the differences in NOx reaction behaviors between O2/CO2 atmosphere and air atmosphere were analyzed by detailed chemical kinetic model. On the basis of investigations through elementary chemical reactions, it can be concluded that high CO2 concentration plays an important role on NOx conversion process during oxy-fuel combustion. Moreover, the dominant reaction steps and the most important reactions for NO conversion under different atmospheres were discussed. Under O2/CO2 atmosphere, the main active sequence for NO reaction includes: NO→N→N2, and the main active path for NO reaction under air atmosphere is through N2→N→NO.

  17. Pressurization Risk Assessment of CO2 Reservoirs Utilizing Design of Experiments and Response Surface Methods

    Science.gov (United States)

    Guyant, E.; Han, W. S.; Kim, K. Y.; Park, E.; Han, K.

    2015-12-01

    Monitoring of pressure buildup can provide explicit information on reservoir integrity and is an appealing tool, however pressure variation is dependent on a variety of factors causing high uncertainty in pressure predictions. This work evaluated pressurization of a reservoir system in the presence of leakage pathways as well as exploring the effects of compartmentalization of the reservoir utilizing design of experiments (Definitive Screening, Box Behnken, Central Composite, and Latin Hypercube designs) and response surface methods. Two models were developed, 1) an idealized injection scenario in order to evaluate the performance of multiple designs, and 2) a complex injection scenario implementing the best performing design to investigate pressurization of the reservoir system. A holistic evaluation of scenario 1, determined that the Central Composite design would be used for the complex injection scenario. The complex scenario evaluated 5 risk factors: reservoir, seal, leakage pathway and fault permeabilities, and horizontal position of the pathway. A total of 60 response surface models (RSM) were developed for the complex scenario with an average R2 of 0.95 and a NRMSE of 0.067. Sensitivity to the input factors was dynamic through space and time; at the earliest time (0.05 years) the reservoir permeability was dominant, and for later times (>0.5 years) the fault permeability became dominant for all locations. The RSM's were then used to conduct a Monte Carlo Analysis to further analyze pressurization risks, identifying the P10, P50, P90 values. This identified the in zone (lower) P90 values as 2.16, 1.77, and 1.53 MPa and above zone values of 1.35, 1.23, 1.09 MPa for monitoring locations 1, 2, and 3, respectively. In summary, the design of experiments and response surface methods allowed for an efficient sensitivity and uncertainty analysis to be conducted permitting a complete evaluation of the pressurization across the entire parameter space.

  18. Controlling mechanisms of surface partial pressure of CO2 in Jiaozhou Bay during summer and the influence of heavy rain

    Science.gov (United States)

    Li, Yunxiao; Yang, Xufeng; Han, Ping; Xue, Liang; Zhang, Longjun

    2017-09-01

    Due to the combined effects of natural processes and human activities, carbon source/sink processes and mechanisms in the coastal ocean are becoming more and more important in current ocean carbon cycle research. Based on differences in the ratio of total alkalinity (TA) to dissolved inorganic carbon (DIC) associated with terrestrial input, biological process (production and respiration), calcium carbonate (CaCO3) process (precipitation and dissolution) and CO2 evasion/invasion, we discuss the mechanisms controlling the surface partial pressure of CO2 (pCO2) in Jiaozhou Bay (JZB) during summer and the influence of heavy rain, via three cruises performed in mid-June, early July and late July of 2014. In mid-June and in early July, without heavy rain or obvious river input, sea surface pCO2 ranged from 521 to 1080 μatm and from 547 to 998 μatm, respectively. The direct input of DIC from sewage and the intense respiration produced large DIC additions and the highest pCO2 values in the northeast of the bay near the downtown of Qingdao. However, in the west of the bay, significant CaCO3 precipitation led to DIC removal but no obvious increase in pCO2, which was just close to that in the central area. Due to the shallow depth and longer water residence time in this region, this pattern may be related to the sustained release of CO2 into the atmosphere. In late July, heavy rain promoted river input in the western and eastern portions of JZB. Strong primary production led to a significant decrease in pCO2 in the western area, with the lowest pCO2 value of 252 μatm. However, in the northeastern area, the intense respiration remained, and the highest pCO2 value was 1149 μatm. The average air-sea CO2 flux in mid-June and early July was 20.23 mmol m- 2 d- 1 and 23.56 mmol m- 2 d- 1, respectively. In contrast, in late July, sources became sinks for atmospheric CO2 in the western and central areas of the bay, halving the average air-sea CO2 flux to a value of 10.58 mmol m- 2

  19. High Precision 2.0 μm Photoacoustic Spectrometer for Determination of the ^{13}CO_{2}/^{12}CO_{2} Isotope Ratio

    Science.gov (United States)

    Reed, Zachary; Hodges, Joseph T.

    2017-06-01

    We have developed a portable photoacoustic spectrometer for high precision measurements of the ^{13}CO_{2}/^{12}CO_{2} isotope ratio and the absolute molar concentration of each isotope. The spectrometer extends on our previous work at 1.57 μm [1], and now employs two separate intensity modulated distributed feedback lasers and a fiber amplifier, operating in the 2.0 μm wavelength region. Each DFB is selected to probe individual spectrally isolated ro-vibrational transitions for ^{12}CO_{2} and ^{13}CO_{2}. The spectrometer is actively temperature controlled, mitigating variations in the two spectral line intensities and the temperature dependent system response. For measurements of ambient concentrations of carbon dioxide at nominally natural abundance in dry air, we demonstrate a measurement precision of 140 ppb for ^{12}CO_{2} with a 1 s averaging time and 10 ppb for ^{13}CO_{2} with a 60 s averaging time. Precision in δ13C of better than 0.1 permil is demonstrated. The analyzer response is calibrated in terms of certified gas mixtures and compared to characterization by cavity ringdown spectroscopy. We also investigate how water vapor affects the photoacoustic signals by promoting collisional relaxation for each isotope. [1] Z.D. Reed, B. Sperling, et al. App. Phys. B. 117, 645-657, 2014

  20. Reversible hydrogen storage using CO2 and a proton-switchable iridium catalyst in aqueous media under mild temperatures and pressures.

    Science.gov (United States)

    Hull, Jonathan F; Himeda, Yuichiro; Wang, Wan-Hui; Hashiguchi, Brian; Periana, Roy; Szalda, David J; Muckerman, James T; Fujita, Etsuko

    2012-03-18

    Green plants convert CO(2) to sugar for energy storage via photosynthesis. We report a novel catalyst that uses CO(2) and hydrogen to store energy in formic acid. Using a homogeneous iridium catalyst with a proton-responsive ligand, we show the first reversible and recyclable hydrogen storage system that operates under mild conditions using CO(2), formate and formic acid. This system is energy-efficient and green because it operates near ambient conditions, uses water as a solvent, produces high-pressure CO-free hydrogen, and uses pH to control hydrogen production or consumption. The extraordinary and switchable catalytic activity is attributed to the multifunctional ligand, which acts as a proton-relay and strong π-donor, and is rationalized by theoretical and experimental studies.

  1. Boron-Functionalized Graphene Oxide-Organic Frameworks for Highly Efficient CO2 Capture.

    Science.gov (United States)

    Haque, Enamul; Islam, Md Monirul; Pourazadi, Ehsan; Sarkar, Shuranjan; Harris, Andrew T; Minett, Andrew I; Yanmaz, Ekrem; Alshehri, Saad M; Ide, Yusuke; Wu, Kevin C-W; Kaneti, Yusuf Valentino; Yamauchi, Yusuke; Hossain, Md Shahriar A

    2017-02-01

    The capture and storage of CO2 have been suggested as an effective strategy to reduce the global emissions of greenhouse gases. Hence, in recent years, many studies have been carried out to develop highly efficient materials for capturing CO2 . Until today, different types of porous materials, such as zeolites, porous carbons, N/B-doped porous carbons or metal-organic frameworks (MOFs), have been studied for CO2 capture. Herein, the CO2 capture performance of new hybrid materials, graphene-organic frameworks (GOFs) is described. The GOFs were synthesized under mild conditions through a solvothermal process using graphene oxide (GO) as a starting material and benzene 1,4-diboronic acid as an organic linker. Interestingly, the obtained GOF shows a high surface area (506 m(2)  g(-1) ) which is around 11 times higher than that of GO (46 m(2)  g(-1) ), indicating that the organic modification on the GO surface is an effective way of preparing a porous structure using GO. Our synthetic approach is quite simple, facile, and fast, compared with many other approaches reported previously. The synthesized GOF exhibits a very large CO2 capacity of 4.95 mmol g(-1) at 298 K (1 bar), which is higher those of other porous materials or carbon-based materials, along with an excellent CO2 /N2 selectivity of 48.8.

  2. High CO2 levels impair alveolar epithelial function independently of pH.

    Directory of Open Access Journals (Sweden)

    Arturo Briva

    Full Text Available BACKGROUND: In patients with acute respiratory failure, gas exchange is impaired due to the accumulation of fluid in the lung airspaces. This life-threatening syndrome is treated with mechanical ventilation, which is adjusted to maintain gas exchange, but can be associated with the accumulation of carbon dioxide in the lung. Carbon dioxide (CO2 is a by-product of cellular energy utilization and its elimination is affected via alveolar epithelial cells. Signaling pathways sensitive to changes in CO2 levels were described in plants and neuronal mammalian cells. However, it has not been fully elucidated whether non-neuronal cells sense and respond to CO2. The Na,K-ATPase consumes approximately 40% of the cellular metabolism to maintain cell homeostasis. Our study examines the effects of increased pCO2 on the epithelial Na,K-ATPase a major contributor to alveolar fluid reabsorption which is a marker of alveolar epithelial function. PRINCIPAL FINDINGS: We found that short-term increases in pCO2 impaired alveolar fluid reabsorption in rats. Also, we provide evidence that non-excitable, alveolar epithelial cells sense and respond to high levels of CO2, independently of extracellular and intracellular pH, by inhibiting Na,K-ATPase function, via activation of PKCzeta which phosphorylates the Na,K-ATPase, causing it to endocytose from the plasma membrane into intracellular pools. CONCLUSIONS: Our data suggest that alveolar epithelial cells, through which CO2 is eliminated in mammals, are highly sensitive to hypercapnia. Elevated CO2 levels impair alveolar epithelial function, independently of pH, which is relevant in patients with lung diseases and altered alveolar gas exchange.

  3. Experimental determination and prediction of the compressibility factor of high CO2 content natural gas with and without water vapor

    Institute of Scientific and Technical Information of China (English)

    Xiaoqiang Bian; Zhimin Du; YongTang

    2011-01-01

    In order to study the effect of different CO2 contents on gas compressibility factor (Z-factor),the JEFRI-PVT apparatus has been used to measure the Z-factor of dry natural gas with CO2 content range from 10.74 to 70.42 mol% at the temperature range from 301.2 to 407.3 K and pressure range from 7 to 44 MPa.The results show that Z-factor decreases with increasing CO2 content in natural gas at constant temperature and increases with increasing temperature for natural gas with the same CO2 content.In addition,the Z-factor of water-saturated natural gas with high CO2 content has been measured.A comparison of the Z-factor between natural gas with and without saturated water vapor indicates that the former shows a higher Z-factor than the latter.Furthermore,Peng-Robinson,Hall-Yarborough,and Soave-Benedict-WebbRubin equations of state (EoS) are used for the calculation of Z-factor of high CO2 content natural gas with and without water vapor.The optimal binary interaction parameters (BIP) for PR EoS are presented.The measured Z-factor is compared with the calculated Z-factor based on three models,which shows that PR EoS combined with van der Waals mixing rule for gas without water and Huron-Vidal mixing rule for water-saturated gas,are in good agreement with the experimental data.

  4. Hypertension (High Blood Pressure)

    Science.gov (United States)

    ... Surgery? A Week of Healthy Breakfasts Shyness Hypertension (High Blood Pressure) KidsHealth > For Teens > Hypertension (High Blood Pressure) Print ... rest temperature diet emotions posture medicines Why Is High Blood Pressure Bad? High blood pressure means a person's heart ...

  5. 新型高重复频率脉冲CO2激光器%Novel high repetition-rate pulse CO2 laser

    Institute of Scientific and Technical Information of China (English)

    郑义军; 刁伟伦; 谭荣清; 王东雷; 张阔海; 黄文武; 刘世明; 李能文; 孙科; 卢远添

    2013-01-01

    A novel transversely excited atmospheric (TEA) CO2 laser with high repetition- rate was reported. The size of laser is 300 mmí300 mmí300 mm. The discharge volume is 12í103 mm3, the length of cavity is 310 mm. The ultraviolet preionization makes the discharge even and stable, the output energy can be as high as 15 mJ under the circumstance of free oscillation, and the full width at half maximum of the light pulse is 70 ns. To acquire the high wind velocity, a turbocharger was used in the system of the fast- gas flow cycle. When the pressure in the cavity is 100 kPa, the wind speed is 100 m/s, and the repetition rate of the TEA CO2 laser is up to 1.5 kHz. On the basis of preliminary experiment, the system of the grating tuning line selection can be applied to the high repetition- rate pulse laser to abtain the output of grating line selection accurately and fast.%报道了一种新型高重复频率的脉冲CO2激光器。该型激光器结构紧凑,激光器外型尺寸为300 mm×300 mm×300 mm,工作气体放电增益体积为12×103 mm3,谐振腔的长度为310 mm。为了获得大体积均匀稳定的气体放电,激光器采用了紫外电晕预电离方式。在激光器自由运转时,单脉冲激光的输出能量达到15 mJ ,输出脉冲的半高全宽为70 ns。激光器采用紧凑型高速涡轮增压风机,在一个大气压的条件下,气流循环速度超过100 m/s,激光脉冲重复频率为1.5 kHz,采用大体积强迫冷却和气体主动置换技术,可以获得较长时间激光稳定输出。在已有的实验基础上,采用光栅调谐,可快速准确地实现高重复频率脉冲CO2激光器的谱线选支输出。

  6. High CO2-capture ability of a porous organic polymer bifunctionalized with carboxy and triazole groups.

    Science.gov (United States)

    Xie, Lin-Hua; Suh, Myunghyun Paik

    2013-08-26

    A new porous organic polymer, SNU-C1, incorporating two different CO2 -attracting groups, namely, carboxy and triazole groups, has been synthesized. By activating SNU-C1 with two different methods, vacuum drying and supercritical-CO2 treatment, the guest-free phases, SNU-C1-va and SNU-C1-sca, respectively, were obtained. Brunauer-Emmett-Teller (BET) surface areas of SNU-C1-va and SNU-C1-sca are 595 and 830 m(2) g(-1), respectively, as estimated by the N2-adsorption isotherms at 77 K. At 298 K and 1 atm, SNU-C1-va and SNU-C1-sca show high CO2 uptakes, 2.31 mmol  g(-1) and 3.14 mmol  g(-1), respectively, the high level being due to the presence of abundant polar groups (carboxy and triazole) exposed on the pore surfaces. Five separation parameters for flue gas and landfill gas in vacuum-swing adsorption were calculated from single-component gas-sorption isotherms by using the ideal adsorbed solution theory (IAST). The data reveal excellent CO2-separation abilities of SNU-C1-va and SNU-C1-sca, namely high CO2-uptake capacity, high selectivity, and high regenerability. The gas-cycling experiments for the materials and the water-treated samples, experiments that involved treating the samples with a CO2-N2 gas mixture (15:85, v/v) followed by a pure N2 purge, further verified the high regenerability and water stability. The results suggest that these materials have great potential applications in CO2 separation.

  7. Modelling Plant and Soil Nitrogen Feedbacks Affecting Forest Carbon Gain at High CO2

    Science.gov (United States)

    McMurtrie, R. E.; Norby, R. J.; Franklin, O.; Pepper, D. A.

    2007-12-01

    Short-term, direct effects of elevated atmospheric CO2 concentrations on plant carbon gain are relatively well understood. There is considerable uncertainty, however, about longer-term effects, which are influenced by various plant and ecosystem feedbacks. A key feedback in terrestrial ecosystems occurs through changes in plant carbon (C) allocation patterns. For instance, if high CO2 were to increase C allocation to roots, then plants may experience positive feedback through improved plant nutrition. A second type of feedback, associated with decomposition of soil-organic matter, may reduce soil-nutrient availability at high CO2. This paper will consider mechanistic models of both feedbacks. Effects of high CO2 on plant C allocation will be investigated using a simple model of forest net primary production (NPP) that incorporates the primary mechanisms of plant carbon and nitrogen (N) balance. The model called MATE (Model Any Terrestrial Ecosystem) includes an equation for annual C balance that depends on light- saturated photosynthetic rate and therefore on [CO2], and an equation for N balance incorporating an expression for N uptake as a function of root mass. The C-N model is applied to a Free Air CO2 Exchange (FACE) experiment at Oak Ridge National Laboratory (ORNL) in Tennessee, USA, where closed-canopy, monoculture stands of the deciduous hardwood sweetgum ( Liquidambar styraciflua) have been growing at [CO2] of 375 and 550 ppm for ten years. Features of this experiment are that the annual NPP response to elevated CO2 has averaged approximately 25% over seven years, but that annual fine-root production has almost doubled on average, with especially large increases in later years of the experiment (Norby et al. 2006). The model provides a simple graphical approach for analysing effects of elevated CO2 and N supply on leaf/root/wood C allocation and productivity. It simulates increases in NPP and fine-root production at the ORNL FACE site that are consistent

  8. Facilely synthesized porous NiCo2O4 flowerlike nanostructure for high-rate supercapacitors

    Science.gov (United States)

    Chen, Haichao; Jiang, Jianjun; Zhang, Li; Qi, Tong; Xia, Dandan; Wan, Houzhao

    2014-02-01

    We have developed a facile and scalable method to grow porous NiCo2O4 nanostructure. The conductivity is measured by a linear sweep voltammetry, which indicates that the conductivity of the NiCo2O4 sample is at least two orders of magnitude higher than those of NiO and Co3O4 samples. The conductive NiCo2O4 hybrid electrode delivers an enhanced specific capacitance of 658 F g-1 at 1 A g-1 compared to NiO and Co3O4. Excellent rate capability, 78% specific capacitance retention for a 20-time current density increase and 77% specific capacitance retention for a 50-time scan rate rise, is achieved. The NiCo2O4 sample demonstrates ultralong cycling lifespan, no observable degradation is found for the total cycle numbers as high as 10000 cycles. Furthermore, the excellent capacitive performance of porous NiCo2O4 electrode is also evaluated by a two-electrode asymmetric supercapacitor device. The asymmetric supercapacitor device delivers a 64% rate property for the current density increase 20 times. Remarkably, the asymmetric supercapacitor device also shows ultrahigh long-term stability, 93.5% of specific capacitance can still be retained after 10,000 cycles cycling. These excellent capacitive performances indicate the as-fabricated porous NiCo2O4 flowerlike nanostructure a promising electrode materials for supercapacitors.

  9. Finely tuning MOFs towards high-performance post-combustion CO2 capture materials.

    Science.gov (United States)

    Wang, Qian; Bai, Junfeng; Lu, Zhiyong; Pan, Yi; You, Xiaozeng

    2016-01-11

    CO2 capture science and technology, particularly for the post-combustion CO2 capture, has become one of very important research fields, due to great concern of global warming. Metal-organic frameworks (MOFs) with a unique feature of structural fine-tunability, unlike the traditional porous solid materials, can provide many and powerful platforms to explore high-performance adsorbents for post-combustion CO2 capture. Until now, several strategies for finely tuning MOF structures have been developed, in which either the larger quadrupole moment and polarizability of CO2 are considered: metal ion change (I), functional groups attachment (II) and functional group insertion (III), vary the electronic nature of the pore surface; or targeting the smaller kinetic diameter of CO2 over N2 is focused on: framework interpenetration (IV), ligand shortening (V) and coordination site shifting (VI) contract the pore size of frameworks to improve their CO2 capture properties. In this review, from the viewpoint of synthetic materials scientists/chemists, we would like to introduce and summarize these strategies based upon recent work published by other groups and ourselves.

  10. Highly conductive NiCo2S4 urchin-like nanostructures for high-rate pseudocapacitors

    Science.gov (United States)

    Chen, Haichao; Jiang, Jianjun; Zhang, Li; Wan, Houzhao; Qi, Tong; Xia, Dandan

    2013-09-01

    A 3D highly conductive urchin-like NiCo2S4 nanostructure has been successfully prepared using a facile precursor transformation method. Remarkably, the NiCo2S4 electroactive material demonstrates superior electrochemical performance with ultrahigh high-rate capacitance, very high specific capacitance, and excellent cycling stability.A 3D highly conductive urchin-like NiCo2S4 nanostructure has been successfully prepared using a facile precursor transformation method. Remarkably, the NiCo2S4 electroactive material demonstrates superior electrochemical performance with ultrahigh high-rate capacitance, very high specific capacitance, and excellent cycling stability. Electronic supplementary information (ESI) available: Experimental details, and the electrochemical performances of NiCo2O4, Co9S8 and NiS. See DOI: 10.1039/c3nr02958a

  11. "EFFECTIVENESS OF ABDOMINAL WALL ELEVATOR IN REDUCING INTRA-ABDOMINAL PRESSURE AND CO2 VOLUME DURING LAPAROSCOPIC CHOLECYSTECTOMY"

    Directory of Open Access Journals (Sweden)

    A. Yaghoobi Notash

    2004-06-01

    Full Text Available Since CO2 pneumoperitoneum is the dominant method of laparoscopic exposure due to facility and good view, its physiologic effects are most relevant to the surgeons. CO2 pneumoperitoneum may affects hemodynamics by increased intra-abdominal pressure (IAP and the physiologic effects of absorbed CO2. The adverse effects of both mechanisms relate directly to the duration of the pneumoperitoneum and the elevation of IAP. Gasless laparoscopy involves obtaining exposure for laparoscopy by placing an internal retracting device through a small incision and lifting the anterior abdominal wall. We designed and made a mechanical wall elevator and used it in 24 patients, compared with a control group (52 cases using a conventional laparoscopic cholecystectomy. A prospective trial was undertaken in Sina Hospital, Tehran University of Medical Sciences from 1998 to 2000. The patients were assigned randomly to two groups. There was a significant decrease in IAP and CO2 consumption in the group using mechanical wall elevator as compared to conventional laparoscopic cholecystectomy, (mean IAP of 3.5 mmHg compared to 11.4 mmHg in the control group, mean CO2 volume 17 liters compared to 73 liters in the control group. We recommend this semigasless method in laparoscopy due to safety in performance and significant reduction in IAP through the surgery. This method provides a satisfactory view and easy performance without any increase in time or complications. The hospital stay and costs did not increase.

  12. Can CO2 be Used as a Pressurizing Gas for Mars Greenhouses?

    Science.gov (United States)

    Wheeler, Raymond M.

    2000-01-01

    The possibility of using plants to provide oxygen (O2) and food during space travel has been discussed and studied for nearly 50 years. The concept is based on the process of photosynthesis, which uses CO2 as a substrate and is driven by light (photosynthetically active radiation - PAR0 in the 400 to 700 nm waveband. In addition to the CO2 and light, the plants would require a controlled environment with acceptable temperatures (approx. 10 to 35 C) and humidities (approx. 40 to 85 %), adequate supplies of water and mineral nutrients, and minimum levels of oxygen to sustain respiration.

  13. A direct detection 1.6μm DIAL with three wavelengths for high accuracy measurements of vertical CO2 concentration and temperature profiles

    Science.gov (United States)

    Shibata, Yasukuni; Nagasawa, Chikao; Abo, Makoto

    2013-10-01

    The accurate vertical CO2 profiles in the troposphere are highly desirable in the inverse techniques to improve quantification and understanding of the global budget of CO2 and also global climate changes. Moreover, wind information is an important parameter for transport simulations and inverse estimation of surface CO2 flux. A differential absorption lidar (DIAL) is an attractive method for obtaining vertical CO2 profiles and we have developed an 1.6μm DIAL system to perform simultaneous measurements of CO2 concentration, atmospheric temperature profile and wind profile. The absorption cross sections of gas and air density depends on atmospheric temperature and pressure. Then precise temperature and pressure profiles are necessary for accurate CO2 mixing ratio measurement by DIAL. Laser beams of three wavelengths around a CO2 absorption line are transmitted alternately to the atmosphere for simultaneous measurements of CO2 concentration and temperature. The receiving optics include the near-infrared photomultiplier tube and a fiber Bragg grating (FBG) filter to detect a Doppler shift.

  14. A new set-up for simultaneous high-precision measurements of CO2, δ13C-CO2 and δ18O-CO2 on small ice core samples

    Science.gov (United States)

    Jenk, Theo Manuel; Rubino, Mauro; Etheridge, David; Ciobanu, Viorela Gabriela; Blunier, Thomas

    2016-08-01

    Palaeoatmospheric records of carbon dioxide and its stable carbon isotope composition (δ13C) obtained from polar ice cores provide important constraints on the natural variability of the carbon cycle. However, the measurements are both analytically challenging and time-consuming; thus only data exist from a limited number of sampling sites and time periods. Additional analytical resources with high analytical precision and throughput are thus desirable to extend the existing datasets. Moreover, consistent measurements derived by independent laboratories and a variety of analytical systems help to further increase confidence in the global CO2 palaeo-reconstructions. Here, we describe our new set-up for simultaneous measurements of atmospheric CO2 mixing ratios and atmospheric δ13C and δ18O-CO2 in air extracted from ice core samples. The centrepiece of the system is a newly designed needle cracker for the mechanical release of air entrapped in ice core samples of 8-13 g operated at -45 °C. The small sample size allows for high resolution and replicate sampling schemes. In our method, CO2 is cryogenically and chromatographically separated from the bulk air and its isotopic composition subsequently determined by continuous flow isotope ratio mass spectrometry (IRMS). In combination with thermal conductivity measurement of the bulk air, the CO2 mixing ratio is calculated. The analytical precision determined from standard air sample measurements over ice is ±1.9 ppm for CO2 and ±0.09 ‰ for δ13C. In a laboratory intercomparison study with CSIRO (Aspendale, Australia), good agreement between CO2 and δ13C results is found for Law Dome ice core samples. Replicate analysis of these samples resulted in a pooled standard deviation of 2.0 ppm for CO2 and 0.11 ‰ for δ13C. These numbers are good, though they are rather conservative estimates of the overall analytical precision achieved for single ice sample measurements. Facilitated by the small sample requirement

  15. In Situ 13C NMR at Elevated-Pressures and -Temperatures Investigating the Conversion of CO2 to Magnesium and Calcium Carbonate Minerals

    Science.gov (United States)

    Surface, J. A.; Conradi, M. S.; Skemer, P. A.; Hayes, S. E.

    2013-12-01

    Measurement of Magnesium Carbonate Formation from CO2 Using Static High-Pressure and -Temperature 13C NMR' J. Andrew Surface, Philip Skemer, Sophia E. Hayes, and Mark S. Conradi, Environ. Sci. Technol. 2013, 47, 119-125. DOI: 10.1021/es301287n

  16. Cross-Linking Amine-Rich Compounds into High Performing Selective CO2 Absorbents

    Science.gov (United States)

    Andreoli, Enrico; Dillon, Eoghan P.; Cullum, Laurie; Alemany, Lawrence B.; Barron, Andrew R.

    2014-12-01

    Amine-based absorbents play a central role in CO2 sequestration and utilization. Amines react selectively with CO2, but a drawback is the unproductive weight of solvent or support in the absorbent. Efforts have focused on metal organic frameworks (MOFs) reaching extremely high CO2 capacity, but limited selectivity to N2 and CH4, and decreased uptake at higher temperatures. A desirable system would have selectivity (cf. amine) and high capacity (cf. MOF), but also increased adsorption at higher temperatures. Here, we demonstrate a proof-of-concept where polyethyleneimine (PEI) is converted to a high capacity and highly selective CO2 absorbent using buckminsterfullerene (C60) as a cross-linker. PEI-C60 (CO2 absorption of 0.14 g/g at 0.1 bar/90°C) is compared to one of the best MOFs, Mg-MOF-74 (0.06 g/g at 0.1 bar/90°C), and does not absorb any measurable amount of CH4 at 50 bar. Thus, PEI-C60 can perform better than MOFs in the sweetening of natural gas.

  17. Estimation of minimum miscibility pressure (MMP) of CO2 and liquid n-alkane systems using an improved MRI technique.

    Science.gov (United States)

    Liu, Yu; Jiang, Lanlan; Song, Yongchen; Zhao, Yuechao; Zhang, Yi; Wang, Dayong

    2016-02-01

    Minimum miscible pressure (MMP) of gas and oil system is a key parameter for the injection system design of CO2 miscible flooding. Some industrial standard approaches such as the experiment using a rising bubble apparatus (RBA), the slim tube tests (STT), the pressure-density diagram (PDD), etc. have been applied for decades to determine the MMP of gas and oil. Some theoretical or experiential calculations of the MMP were also applied to the gas-oil miscible system. In the present work, an improved technique based on our previous research for the estimation of the MMP by using magnetic resonance imaging (MRI) was proposed. This technique was then applied to the CO2 and n-alkane binary and ternary systems to observe the mixing procedure and to study the miscibility. MRI signal intensities, which represent the proton concentration of n-alkane in both the hydrocarbon rich phase and the CO2 rich phase, were plotted as a reference for determining the MMP. The accuracy of the MMP obtained by using this improved technique was enhanced comparing with the data obtained from our previous works. The results also show good agreement with other established techniques (such as the STT) in previous published works. It demonstrates increases of MMPs as the temperature rise from 20 °C to 37.8 °C. The MMPs of CO2 and n-alkane systems are also found to be proportional to the carbon number in the range of C10 to C14.

  18. Using pressure and volumetric approaches to estimate CO2 storage capacity in deep saline aquifers

    NARCIS (Netherlands)

    Thibeau, S.; Bachu, S.; Birkholzer, J.; Holloway, S.; Neele, F.P.; Zou, Q.

    2014-01-01

    Various approaches are used to evaluate the capacity of saline aquifers to store CO2, resulting in a wide range of capacity estimates for a given aquifer. The two approaches most used are the volumetric “open aquifer” and “closed aquifer” approaches. We present four full-scale aquifer cases, where C

  19. Using pressure and volumetric approaches to estimate CO2 storage capacity in deep saline aquifers

    NARCIS (Netherlands)

    Thibeau, S.; Bachu, S.; Birkholzer, J.; Holloway, S.; Neele, F.P.; Zou, Q.

    2014-01-01

    Various approaches are used to evaluate the capacity of saline aquifers to store CO2, resulting in a wide range of capacity estimates for a given aquifer. The two approaches most used are the volumetric “open aquifer” and “closed aquifer” approaches. We present four full-scale aquifer cases, where

  20. Phenotypic plasticity of coralline algae in a High CO2 world.

    Science.gov (United States)

    Ragazzola, Federica; Foster, Laura C; Form, Armin U; Büscher, Janina; Hansteen, Thor H; Fietzke, Jan

    2013-09-01

    It is important to understand how marine calcifying organisms may acclimatize to ocean acidification to assess their survival over the coming century. We cultured the cold water coralline algae, Lithothamnion glaciale, under elevated pCO2 (408, 566, 770, and 1024 μatm) for 10 months. The results show that the cell (inter and intra) wall thickness is maintained, but there is a reduction in growth rate (linear extension) at all elevated pCO2. Furthermore a decrease in Mg content at the two highest CO2 treatments was observed. Comparison between our data and that at 3 months from the same long-term experiment shows that the acclimation differs over time since at 3 months, the samples cultured under high pCO2 showed a reduction in the cell (inter and intra) wall thickness but a maintained growth rate. This suggests a reallocation of the energy budget between 3 and 10 months and highlights the high degree plasticity that is present. This might provide a selective advantage in future high CO2 world.

  1. Modification of surface layers of copper under the action of the volumetric discharge initiated by an avalanche electron beam in nitrogen and CO2 at atmospheric pressure

    Science.gov (United States)

    Shulepov, M. A.; Akhmadeev, Yu. Kh.; Tarasenko, V. F.; Kolubaeva, Yu. A.; Krysina, O. V.; Kostyrya, I. D.

    2011-05-01

    The results of experimental investigations of the action of the volumetric discharge initiated by an avalanche electron beam on the surface of copper specimens are presented. The volumetric (diffuse) discharge in nitrogen and CO2 at atmospheric pressure was initiated by applying high voltage pulses of nanosecond duration to a tubular foil cathode. It has been found that the treatment of a copper surface by this type of discharge increases the hardness of the surface layer due to oxidation.

  2. Atomic Layer Deposition of High-k Dielectrics Using Supercritical CO2

    Science.gov (United States)

    Shende, Rajesh

    2005-03-01

    Atomic layer deposition (ALD) of high-κdielectric was performed in supercritical CO2 (SCCO2), using a two-step reaction sequence. In step one, tetraethoxy silane (TEOS) precursor was injected in SCCO2 at 80-100 C and 50 MPa pressure to obtain a chemisorbed surface monolayer, which was then oxidized into SiO2 using peroxide entrained in SCCO2. ALD process was controlled by estimating precursor solubility and its mass transport with respect to the density of SCCO2, and correlating these parameters with precursor injection volume. In the ALD process, 7 pulses of precursor were used anticipating deposition of one atomic layer in each of the pulses. The thickness of the SiO2 atomic layers deposited using SCCO2 was measured by variable angle spectroscopic ellipsometry (VASE), and the C-V measurements were also performed. The result obtained using VASE indicates that there were 7 monolayers of SiO2 with total thickness of 35 å, and the dielectric constant of the deposited layers was 4.0±0.1. Our initial findings clearly demonstrate that SCCO2 is capable of atomic layer deposition of high quality dielectric films at very low process temperatures preventing interface reaction. More research is in progress to achieve ALD of HfO2 and TiO2 in SCCO2.

  3. Development of a mobile and high-precision atmospheric CO2 monitoring station

    Science.gov (United States)

    Molnár, M.; Haszpra, L.; Major, I.; Svingor, É.; Veres, M.

    2009-04-01

    Nowadays one of the most burning questions for the science is the rate and the reasons of the recent climate change. Greenhouse gases (GHG), mainly CO2 and CH4 in the atmosphere could affect the climate of our planet. However, the relation between the amount of atmospheric GHG and the climate is complex, full with interactions and feedbacks partly poorly known even by now. The only way to understand the processes, to trace the changes, to develop and validate mathematical models for forecasts is the extensive, high precision, continuous monitoring of the atmosphere. Fossil fuel CO2 emissions are a major component of the European carbon budget. Separation of the fossil fuel signal from the natural biogenic one in the atmosphere is, therefore, a crucial task for quantifying exchange flux of the continental biosphere through atmospheric observations and inverse modelling. An independent method to estimate trace gas emissions is the top-down approach, using atmospheric CO2 concentration measurements combined with simultaneous radiocarbon (14C) observations. As adding fossil fuel CO2 to the atmosphere, therefore, leads not only to an increase in the CO2 content of the atmosphere but also to a decrease in the 14C/12C ratio in atmospheric CO2. The ATOMKI has more than two decade long experience in atmospheric 14CO2 monitoring. As a part of an ongoing research project being carried out in Hungary to investigate the amount and temporal and spatial variations of fossil fuel CO2 in the near surface atmosphere we developed a mobile and high-precision atmospheric CO2 monitoring station. We describe the layout and the operation of the measuring system which is designed for the continuous, unattended monitoring of CO2 mixing ratio in the near surface atmosphere based on an Ultramat 6F (Siemens) infrared gas analyser. In the station one atmospheric 14CO2 sampling unit is also installed which is developed and widely used since more than one decade by ATOMKI. Mixing ratio of CO2 is

  4. PREPARATION OF EPA AND DHA ESTERS WITH HIGH PURITY BY SUPERCRITICAL CO2 EXTRACTION AND RECTIFICATION%超临界CO2萃取精馏制取高纯度EPA乙酯和DHA乙酯

    Institute of Scientific and Technical Information of China (English)

    邱榕; 范维澄; 陈钧

    2001-01-01

    Fish oil ethyl esters complexed with aqueous silver nitrate solution were extracted and rectified by supercritical CO2 to obtain DHA ester and EPA ester with high purity. The effects of some independent variables,such as extraction pressure, temperature gradient of rectifying column and programmed pressure,on rectification were investigated.The results showed that programmed pressure is suitable for purification of EPA and DHA esters. Increase of column temperature gradient from bottom to top is one of the key elements in rectification. Furthermore, higher temperature gradient leads to better separation effect.

  5. Retrieval of Atmospheric CO2 Concentration above Clouds and Cloud Top Pressure from Airborne Lidar Measurements during ASCENDS Science Campaigns

    Science.gov (United States)

    Mao, J.; Ramanathan, A. K.; Rodriguez, M.; Allan, G. R.; Hasselbrack, W. E.; Abshire, J. B.; Riris, H.; Kawa, S. R.

    2014-12-01

    NASA Goddard is developing an integrated-path, differential absorption (IPDA) lidar approach to measure atmospheric CO2 concentrations from space as a candidate for NASA's ASCENDS (Active Sensing of CO2 Emissions over Nights, Days, and Seasons) mission. The approach uses pulsed lasers to measure both CO2 and O2 absorption simultaneously in the vertical path to the surface at a number of wavelengths across a CO2 line at 1572.335 nm and an O2 line doublet near 764.7 nm. Measurements of time-resolved laser backscatter profiles from the atmosphere allow the technique to estimate column CO2 and O2 number density and range to cloud tops in addition to those to the ground. This allows retrievals of CO2 column above clouds and cloud top pressure, and all-sky measurement capability from space. This additional information can be used to evaluate atmospheric transport processes and other remote sensing carbon data in the free atmosphere, improve carbon data assimilation in models and help global and regional carbon flux estimates. We show some preliminary results of this capability using airborne lidar measurements from the summers of 2011 and 2014 ASCENDS science campaigns. These show simultaneous retrievals of CO2 and O2 column densities for laser returns from low-level marine stratus clouds in the west coast of California. This demonstrates the supplemental capability of the future space carbon mission to measure CO2 above clouds, which is valuable particularly for the areas with persistent cloud covers, e.g, tropical ITCZ, west coasts of continents with marine layered clouds and southern ocean with highest occurrence of low-level clouds, where underneath carbon cycles are active but passive remote sensing techniques using the reflected short wave sunlight are unable to measure accurately due to cloud scattering effect. We exercise cloud top pressure retrieval from O2 absorption measurements during the flights over the low-level marine stratus cloud decks, which is one of

  6. The CO2 absorption spectrum in the 2.3 μm transparency window by high sensitivity CRDS: (II) Self-absorption continuum

    Science.gov (United States)

    Mondelain, D.; Vasilchenko, S.; Čermák, P.; Kassi, S.; Campargue, A.

    2017-01-01

    The CO2 absorption continuum near 2.3 μm is determined for a series of sub atmospheric pressures (250-750 Torr) by high sensitivity Cavity Ring Down Spectroscopy. An experimental procedure consisting in injecting successively a gas flow of CO2 and synthetic air, keeping constant the gas pressure in the CRDS cell, has been developed. This procedure insures a high stability of the spectra baseline by avoiding changes of the optical alignment due to pressure changes. The CO2 continuum was obtained as the difference between the CO2 absorption coefficient and a local lines simulation using a Voigt profile truncated at ±25 cm-1. Following the results of the preceding analysis of the CO2 rovibrational lines (Vasilchenko S et al. J Quant Spectrosc Radiat Transfer 10.1016/j.jqsrt.2016.07.002, a CO2 line list with intensities obtained by variational calculations and empirical line positions was preferred to the HITRAN line list. A quadratic pressure dependence of the absorption continuum is observed, with an average binary absorption coefficient increasing from 2 to 4×10-8 cm-1 amagat-2 between 4320 and 4380 cm-1. The obtained continuum is found in good agreement with a previous measurement using much higher densities (20 amagat) and a low resolution grating spectrograph and is consistent with values currently used in the analysis of Venus spectra.

  7. Sharing global CO2 emission reductions among one billion high emitters.

    Science.gov (United States)

    Chakravarty, Shoibal; Chikkatur, Ananth; de Coninck, Heleen; Pacala, Stephen; Socolow, Robert; Tavoni, Massimo

    2009-07-21

    We present a framework for allocating a global carbon reduction target among nations, in which the concept of "common but differentiated responsibilities" refers to the emissions of individuals instead of nations. We use the income distribution of a country to estimate how its fossil fuel CO(2) emissions are distributed among its citizens, from which we build up a global CO(2) distribution. We then propose a simple rule to derive a universal cap on global individual emissions and find corresponding limits on national aggregate emissions from this cap. All of the world's high CO(2)-emitting individuals are treated the same, regardless of where they live. Any future global emission goal (target and time frame) can be converted into national reduction targets, which are determined by "Business as Usual" projections of national carbon emissions and in-country income distributions. For example, reducing projected global emissions in 2030 by 13 GtCO(2) would require the engagement of 1.13 billion high emitters, roughly equally distributed in 4 regions: the U.S., the OECD minus the U.S., China, and the non-OECD minus China. We also modify our methodology to place a floor on emissions of the world's lowest CO(2) emitters and demonstrate that climate mitigation and alleviation of extreme poverty are largely decoupled.

  8. An Innovative Configuration for CO2 Capture by High Temperature Fuel Cells

    Directory of Open Access Journals (Sweden)

    Federico Rossi

    2014-09-01

    Full Text Available Many technological solutions have been proposed for CO2 capture in the last few years. Most of them are characterized by high costs in terms of energy consumption and, consequently, higher fossil fuel use and higher economic costs. High temperature fuel cells are technological solutions currently developed for energy production with low environmental impact. In CIRIAF—University of Perugia labs, cylindrical geometry, small-sized molten carbonate fuel cell (MCFC prototypes were built and tested with good energy production and lifetime performances. In the present work, an innovative application for MCFCs is proposed, and an innovative configuration for CO2 capture/separation is investigated. The plant scheme is based on a reformer and a cylindrical MCFC. MCFCs are the most suitable solutions, because CO2 is used in their operating cycle. An analysis in terms of energy consumption/kgCO2 captured is made by coupling the proposed configuration with a gas turbine plant. The proposed configuration is characterized by a theoretical energy consumption of about 500 kJ/kgCO2, which is quite lower than actual sequestration technologies. An experimental campaign will be scheduled to verify the theoretical findings.

  9. Kinetics and rate-limiting mechanisms of dolomitedissolution at various CO2 partial pressures

    Institute of Scientific and Technical Information of China (English)

    LIU; Zaihua

    2001-01-01

    [1]Lund, K., Fogler, H. S., McCune, C. C., Acidization I. The dissolution of dolomite in hydrochloric acid, Chem. Eng.Sci., 1973.28: 691-700.[2]Herman, J. S., The dissolution kinetics of calcite, dolomite and dolomite rocks in carbon dioxide water system, PH. D.Thes., Pennsylvania State Univ., 1982.[3]Busenberg, E., Plummer, L. N., The kinetics of dissolution of dolomite in CO2-H2O systems at 1.5 to 65℃ and 0 to 1atm Pco2, Amer. Jour. Sci., 1982, 282: 45-78.[4]Chou, L., Garrels, R. M., Wollast, R., Comparative study of the kinetics and mechanisms of dissolution of carbonate minerals, Chem. Geol., 1989, 78: 269-282.[5]Liu, Z., Yuan, D., He, S. et al. Geochemical features of the geothermal CO2-water-carbonate rock system and analysis on its CO2 Sources, Science in China, Series D, 2000, 43(6): 569-576.[6]Shangguan, Z., Bai, C., Sun M., Mantle-derived magmatic gas releasing features at the Rehai area, Tengchong County,Yunnan Province, China, Science in China, Series D, 2000, 43(2): 132-140.[7]Dreybrodt, W., Lauckner, J., Liu, Z. et al., The kinetics of the reaction CO2+ H2O→H++ HCO3-as one of the rate limiting steps for the dissolution of calcite in the system H2O-CO2-CaCO3, Geochim. Cosmochim. Acta, 1996, 60:3375-3381.[8]Liu, Z., Dreybrodt, W., Dissolution kinetics of calcium carbonate minerals in H2O-CO2 solutions in turbulent flow: the roleof the diffusion boundary layer and the slow reaction H2O+CO2→H++HCO3-, Geochim. Cosmochim. Acta, 1997, 61:2879-2889.[9]Dreybrodt, W., Eisenlohr, L., Madry, B. et al., Precipitation kinetics of calcite in the system CaCO3-H2O-CO2: The conversion to CO2 by the slow process H++HCO3-~ CO2 + H2O as a rate limiting step, Geochim. Cosmochim. Acta, 1997,61: 3897-3904.[10]Dreybrodt, W., Buhmann, D., A mass transfer model for dissolution and precipitation of calcite from solutions in turbulent motion, Chem. Geol., 1991, 90: 107-122.[11]Dreybrodt, W., Processes in Karst Systems, Springer

  10. CO2 pressure broadening and shift coefficients for the 2-0 band of 12C16O

    Science.gov (United States)

    Hashemi, R.; Predoi-Cross, A.; Dudaryonok, A. S.; Lavrentieva, N. N.; Vandaele, A. C.; Vander Auwera, J.

    2016-08-01

    Fourier transform absorption spectra of the 2-0 band of 12C16O mixed with CO2 have been recorded at total pressures from 156 to 1212 hPa and at 4 different temperatures between 240 K and 283 K. CO2 pressure-induced line broadening and line shift coefficients, and the temperature dependence of the former have been measured including line mixing using a multi-spectrum non-linear least squares fitting technique. Different line shape models have been considered to take into account the Dicke narrowing or speed dependence effects. Measured line-shape parameters were compared with theoretical values, calculated for individual temperatures using a semi-empirical method and the Exponential Power Gap (EPG) law.

  11. Microbes under pressure: A comparison of CO2 stress responses on three model organisms and their implications for geologic carbon sequestration

    Science.gov (United States)

    Santillan, E. U.; Franks, M. A.; Omelon, C. R.; Bennett, P.

    2011-12-01

    When carbon dioxide is captured and stored in deep saline aquifers, many biogeochemical changes will occur in these reservoirs. High concentrations of aqueous CO2 itself can be toxic to microorganisms as the gas easily enters cell membranes and alters intracellular cell functions. Because of this, we expect CO2 to be a perturbation that will alter microbial community composition. Microbes that are capable of withstanding CO2 stress will be selected for and their subsequent growth and metabolism will further affect brine chemistry. For this study, we examined three organisms representing metabolic functions and cellular structures potentially found in deep saline aquifers: the Gram-negative dissimilatory iron reducing bacterium Shewanella oneidensis strain MR-1, the aerobic Gram-positive hydrocarbon degrading Geobacillus stearothermophilus, and the methanogenic archaeon Methanothermobacter thermoautotrophicus. Organisms were grown in batch cultures and subsequently exposed to high PCO2 ranging from 25 atm to 60 atm for 2 to 24 hours. Cultures were then plated for viability or tested for metabolic activity such as methane production. Following CO2 stress, organisms were also examined for membrane changes through phospholipid fatty acid analysis and for morphological changes by transmission electron microscopy. After only 2 hours of incubation in 30 atm of CO2, no viable cells were found in planktonic cultures of Shewanella. In contrast, cultures of Geobacillus remained viable (less than a log 2 reduction from initial counts) even after exposure to double the CO2 pressure and for 17 hours. However, when grown in the presence of quartz sandstone, biofilm formation on the rock surface occurred in Shewanella cultures, resulting in survival times greater than 8 hours. Our results suggest that biofilm formation and cell wall thickness may be two very important factors in resisting CO2 toxicity as they create a reactive barrier that slows the diffusion of CO2 into

  12. Chemical effects of a high CO2 concentration in oxy-fuel combustion of methane

    DEFF Research Database (Denmark)

    Glarborg, Peter; Bentzen, L.L.B.

    2008-01-01

    in terms of a detailed chemical kinetic mechanism for hydrocarbon oxidation. On the basis of results of the present study, it can be expected that oxy-fuel combustion will lead to strongly increased CO concentrations in the near-burner region. The CO2 present will compete with O-2 for atomic hydrogen......The oxidation of methane in an atmospheric-pres sure flow reactor has been studied experimentally under highly diluted conditions in N-2 and CO2, respectively. The stoichiometry was varied from fuel-lean to fuel-rich, and the temperatures covered the range 1200-1800 K. The results were interpreted...... and lead to formation of CO through the reaction CO2 + H reversible arrow CO + OH. Reactions of CO2 with hydrocarbon radicals may also contribute to CO formation. The most important steps are those of singlet and triplet CH2 with CO2, while other radicals such as CH3 and CH are less important for consuming...

  13. High resolution infrared spectroscopy of carbon dioxide clusters up to (CO2)13.

    Science.gov (United States)

    Norooz Oliaee, J; Dehghany, M; McKellar, A R W; Moazzen-Ahmadi, N

    2011-07-28

    Thirteen specific infrared bands in the 2350 cm(-1) region are assigned to carbon dioxide clusters, (CO(2))(N), with N = 6, 7, 9, 10, 11, 12 and 13. The spectra are observed in direct absorption using a tuneable infrared laser to probe a pulsed supersonic jet expansion of a dilute mixture of CO(2) in He carrier gas. Assignments are aided by cluster structure calculations made using two reliable CO(2) intermolecular potential functions. For (CO(2))(6), two highly symmetric isomers are observed, one with S(6) symmetry (probably the more stable form), and the other with S(4) symmetry. (CO(2))(13) is also symmetric (S(6)), but the remaining clusters are asymmetric tops with no symmetry elements. The observed rotational constants tend to be slightly (≈2%) smaller than those from the predicted structures. The bands have increasing vibrational blueshifts with increasing cluster size, similar to those predicted by the resonant dipole-dipole interaction model but significantly larger in magnitude.

  14. High quality electron bunch generation with CO2-laser plasma accelerator

    CERN Document Server

    Zhang, L G; Xu, J C; Ji, L L; Zhang, X M; Wang, W P; Zhao, X Y; Yi, L Q; Yu, Y H; Shi, Y; Xu, T J; Xu, Z Z

    2014-01-01

    CO2 laser-driven electron acceleration is demonstrated with particle-in-cell simulation in low-density plasma. An intense CO2 laser pulse with long wavelength excites wakefield. The bubble behind it has a broad space to sustain a large amount of electrons before reaching its charge saturation limit. A transversely propagating inject pulse is used to induce and control the ambient electron injection. The accelerated electron bunch with total charge up to 10 nC and the average charge per energy interval of more than 0.6 nC/MeV are obtained. Plasma-based electron acceleration driven by intense CO2 laser provides a new potential way to generate high-charge electron bunch with low energy spread, which has broad applications, especially for X-ray generation by table-top FEL and bremsstrahlung.

  15. High quality electron bunch generation with CO2-laser-plasma interaction

    Science.gov (United States)

    Zhang, Lingang; Shen, Baifei; Xu, Jiancai; Ji, Liangliang; Zhang, Xiaomei; Wang, Wenpeng; Zhao, Xueyan; Yi, Longqing; Yu, Yahong; Shi, Yin; Xu, Tongjun; Xu, Zhizhan

    2015-02-01

    CO2 laser-driven electron acceleration in low-density plasma is demonstrated using particle-in-cell simulation. An intense CO2 laser pulse of long wavelength excites a wake bubble that has a large elongated volume for accelerating a large number of electrons before reaching the charge saturation limit. A transversely injected laser pulse is used to induce and control the electron injection. It is found that an electron bunch with total charge up to 10 nC and absolute energy spread less than 16 MeV can be obtained. As a result, the charge per energy interval of the bunch reaches up to 0.6 nC/MeV. Intense CO2-laser based electron acceleration can provide a new direction for generating highly charged electron bunches with low energy spread, which is of much current interest, especially for table-top X-ray generation.

  16. Low Overpotential and High Current CO2 Reduction with Surface Reconstructed Cu Foam Electrodess

    KAUST Repository

    Min, Shixiong

    2016-06-23

    While recent reports have demonstrated that oxide-derived Cu-based electrodes exhibit high selectivity for CO2 reduction at low overpotential, the low catalytic current density (<2 mA/cm2 at -0.45 V vs. RHE) still largely limits its applications for large-scale fuel synthesis. Here we report an extremely high current density for CO2 reduction at low overpotential using a Cu foam electrode prepared by air-oxidation and subsequent electroreduction. Apart from possessing three-dimensional (3D) open frameworks, the resulting Cu foam electrodes prepared at higher temperatures exhibit enhanced electrochemically active surface area and distinct surface structures. In particular, the Cu foam electrode prepared at 500 °C exhibits an extremely high geometric current density of ~9.4 mA/cm2 in CO2-satrurated 0.1 M KHCO3 aqueous solution and achieving ~39% CO and ~23% HCOOH Faradaic efficiencies at -0.45 V vs. RHE. The high activity and significant selectivity enhancement are attributable to the formation of abundant grain-boundary supported active sites and preferable (100) and (111) facets as a result of reconstruction of Cu surface facets. This work demonstrates that the structural integration of Cu foam with open 3D frameworks and the favorable surface structures is a promising strategy to develop an advanced Cu electrocatalyst that can operate at high current density and low overpotential for CO2 reduction.

  17. Kinetic modeling of a high power fast-axial-flow CO2 laser with computational fluid dynamics method

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    A new computational fluid dynamics (CFD) method for the simulation of fast-axial-flow CO2 laser is developed.The model which is solved by CFD software uses a set of dynamic differential equations to describe the dynamic process in one discharge tube.The velocity,temperature,pressure and turbulence energy distributions in discharge passage are presented.There is a good agreement between the theoretical prediction and the experimental results.This result indicates that the parameters of the laser have significant effect on the flow distribution in the discharge passage.It is helpful to optimize the output of high power CO2 laser by mastering its kinetic characteristics.

  18. VUV-absorption cross section of CO2 at high temperatures and impact on exoplanet atmospheres

    Directory of Open Access Journals (Sweden)

    Venot Olivia

    2014-02-01

    Full Text Available Ultraviolet (UV absorption cross sections are an essential ingredient of photochemical atmosphere models. Exoplanet searches have unveiled a large population of short-period objects with hot atmospheres, very different from what we find in our solar system. Transiting exoplanets whose atmospheres can now be studied by transit spectroscopy receive extremely strong UV fluxes and have typical temperatures ranging from 400 to 2500 K. At these temperatures, UV photolysis cross section data are severely lacking. Our goal is to provide high-temperature absorption cross sections and their temperature dependency for important atmospheric compounds. This study is dedicated to CO2, which is observed and photodissociated in exoplanet atmospheres. We performed these measurements for the 115 - 200 nm range at 300, 410, 480, and 550 K. In the 195 - 230 nm range, we worked at seven temperatures between 465 and 800 K. We found that the absorption cross section of CO2 is very sensitive to temperature, especially above 160 nm. Within the studied range of temperature, the CO2 cross section can vary by more than two orders of magnitude. This, in particular, makes the absorption of CO2 significant up to wavelengths as high as 230 nm, while it is negligible above 200 nm at 300 K. To investigate the influence of these new data on the photochemistry of exoplanets, we implemented the measured cross section into a 1D photochemical model. The model predicts that accounting for this temperature dependency of CO2 cross section can affect the computed abundances of NH3, CO2, and CO by one order of magnitude in the atmospheres of hot Jupiter and hot Neptune.

  19. Homogeneous bubble nucleation in H2O- and H2O-CO2-bearing basaltic melts: Results of high temperature decompression experiments

    Science.gov (United States)

    Le Gall, Nolwenn; Pichavant, Michel

    2016-11-01

    High pressure and temperature decompression experiments were conducted to provide experimental information on the conditions of homogeneous bubble nucleation in basaltic melts. Experiments were performed on H2O- and H2O-CO2-bearing natural melts from Stromboli. Three starting volatile compositions were investigated: series #1 (4.91 wt% H2O, no CO2), series #2 (2.37-2.45 wt% H2O, 901-1011 ppm CO2) and series #3 (0.80-1.09 wt% H2O, 840-923 ppm CO2). The volatile-bearing glasses were first synthesized at 1200 °C and 200 MPa, and second continuously decompressed in the pressure range 150-25 MPa and rapidly quenched. A fast decompression rate of 78 kPa/s (or 3 m/s) was applied to limit the water loss from the glass cylinder and the formation of a H2O-depleted rim. Post-decompression glasses were characterized texturally by X-ray microtomography. The results demonstrate that homogenous bubble nucleation requires supersaturation pressures (difference between saturation pressure and pressure at which homogeneous bubble nucleation is observed, ∆ PHoN) ≤ 50-100 MPa. ∆ PHoN varies with the dissolved CO2 concentration, from ≪ 50 MPa (no CO2, series #1) to ≤ 50 MPa (872 ± 45 ppm CO2, series #3) to < 100 MPa (973 ± 63 ppm CO2, series #2). In series #1 melts, homogeneous bubble nucleation occurs as two distinct events, the first at high pressure (200 < P < 150 MPa) and the second at low pressure (50 < P < 25 MPa), just below the fragmentation level. In contrast, homogenous nucleation in series #2 and #3 melts is a continuous process. As well, chemical near-equilibrium degassing occurs in the series #1 melts, unlike in the series #2 and #3 melts which retain high CO2 concentrations even for higher vesicularities (up to 23% at 25 MPa). Thus, our experimental observations underline a significant effect of CO2 on the physical mechanisms of bubble vesiculation in basaltic melts. Our experimental decompression textures either reproduce or approach the characteristics of

  20. Intertidal oysters reach their physiological limit in a future high-CO2 world.

    Science.gov (United States)

    Scanes, Elliot; Parker, Laura M; O'Connor, Wayne A; Stapp, Laura S; Ross, Pauline M

    2017-03-01

    Sessile marine molluscs living in the intertidal zone experience periods of internal acidosis when exposed to air (emersion) during low tide. Relative to other marine organisms, molluscs have been identified as vulnerable to future ocean acidification; however, paradoxically it has also been shown that molluscs exposed to high CO2 environments are more resilient compared with those molluscs naive to CO2 exposure. Two competing hypotheses were tested using a novel experimental design incorporating tidal simulations to predict the future intertidal limit of oysters in a high-CO2 world; either high-shore oysters will be more tolerant of elevated PCO2 because of their regular acidosis, or elevated PCO2  will cause high-shore oysters to reach their limit. Sydney rock oysters, Saccostrea glomerata, were collected from the high-intertidal and subtidal areas of the shore and exposed in an orthogonal design to either an intertidal or a subtidal treatment at ambient or elevated PCO2 , and physiological variables were measured. The combined treatment of tidal emersion and elevated PCO2  interacted synergistically to reduce the haemolymph pH (pHe) of oysters, and increase the PCO2  in the haemolymph (Pe,CO2 ) and standard metabolic rate. Oysters in the intertidal treatment also had lower condition and growth. Oysters showed a high degree of plasticity, and little evidence was found that intertidal oysters were more resilient than subtidal oysters. It is concluded that in a high-CO2 world the upper vertical limit of oyster distribution on the shore may be reduced. These results suggest that previous studies on intertidal organisms that lacked tidal simulations may have underestimated the effects of elevated PCO2.

  1. CO2-Neutral Fuels

    NARCIS (Netherlands)

    Goede, A.; van de Sanden, M. C. M.

    2016-01-01

    Mimicking the biogeochemical cycle of System Earth, synthetic hydrocarbon fuels are produced from recycled CO2 and H2O powered by renewable energy. Recapturing CO2 after use closes the carbon cycle, rendering the fuel cycle CO2 neutral. Non-equilibrium molecular CO2 vibrations are key to high energy

  2. CO2-Neutral Fuels

    Science.gov (United States)

    Goede, Adelbert; van de Sanden, Richard

    2016-06-01

    Mimicking the biogeochemical cycle of System Earth, synthetic hydrocarbon fuels are produced from recycled CO2 and H2O powered by renewable energy. Recapturing CO2 after use closes the carbon cycle, rendering the fuel cycle CO2 neutral. Non-equilibrium molecular CO2 vibrations are key to high energy efficiency.

  3. CO2-Neutral Fuels

    NARCIS (Netherlands)

    Goede, A.; van de Sanden, M. C. M.

    2016-01-01

    Mimicking the biogeochemical cycle of System Earth, synthetic hydrocarbon fuels are produced from recycled CO2 and H2O powered by renewable energy. Recapturing CO2 after use closes the carbon cycle, rendering the fuel cycle CO2 neutral. Non-equilibrium molecular CO2 vibrations are key to high energy

  4. Abiotic formation of O2 and O3 in high-CO2 terrestrial atmospheres

    CERN Document Server

    Segura, A; Kasting, J F; Crisp, D; Cohen, M

    2007-01-01

    Previous research has indicated that high amounts of ozone (O3) and oxygen (O2) may be produced abiotically in atmospheres with high concentrations of CO2. The abiotic production of these two gases, which are also characteristic of photosynthetic life processes, could pose a potential "false-positive" for remote-sensing detection of life on planets around other stars.We show here that such false positives are unlikely on any planet that possesses abundant liquid water, as rainout of oxidized species onto a reduced planetary surface should ensure that atmospheric H2 concentrations remain relatively high, and that O2 and O3 remain low. Our aim is to determine the amount of O3 and O2 formed in a high CO2 atmosphere for a habitable planet without life. We use a photochemical model that considers hydrogen (H2) escape and a detailed hydrogen balance to calculate the O2 and O3 formed on planets with 0.2 of CO2 around the Sun, and 0.02, 0.2 and 2 bars of CO2 around a young Sun-like star with higher UV radiation. The ...

  5. Hierarchical porous NiCo2O4 nanowires for high-rate supercapacitors.

    Science.gov (United States)

    Jiang, Hao; Ma, Jan; Li, Chunzhong

    2012-05-11

    We demonstrate a simple and scalable strategy for synthesizing hierarchical porous NiCo(2)O(4) nanowires which exhibit a high specific capacitance of 743 F g(-1) at 1 A g(-1) with excellent rate performance (78.6% capacity retention at 40 A g(-1)) and cycling stability (only 6.2% loss after 3000 cycles).

  6. Design of an Optical System for High Power CO2 Laser Cutting

    DEFF Research Database (Denmark)

    de Lange, D.F.; Meijer, J.; Nielsen, Jakob Skov

    2003-01-01

    The results of a design study for the optical system for cutting with high power CO2 lasers (6 kW and up) will be presented. As transparent materials cannot be used for these power levels, mirrors have been applied. A coaxial cutting gas supply has been designed with a laser beam entrance into th...

  7. Stratospheric and mesospheric pressure-temperature profiles from rotational analysis of CO2 lines in atmospheric trace molecule spectroscopy/ATLAS 1 infrared solar occultation spectra

    Science.gov (United States)

    Stiller, G. P.; Gunson, M. R.; Lowes, L. L.; Abrams, M. C.; Raper, O. F.; Farmer, C. B.; Zander, R.; Rinsland, C. P.

    1995-01-01

    A simple, classical, and expedient method for the retrieval of atmospheric pressure-temperature profiles has been applied to the high-resolution infrared solar absorption spectra obtained with the atmospheric trace molecule spectroscopy (ATMOS) instrument. The basis for this method is a rotational analysis of retrieved apparent abundances from CO2 rovibrational absorption lines, employing existing constituent concentration retrieval software used in the analysis of data returned by ATMOS. Pressure-temperature profiles derived from spectra acquired during the ATLAS 1 space shuttle mission of March-April 1992 are quantitatively evaluated and compared with climatological and meteorological data as a means of assessing the validity of this approach.

  8. Winners always win: growth of a wide range of plant species from low to future high CO2.

    Science.gov (United States)

    Temme, Andries A; Liu, Jin Chun; Cornwell, William K; Cornelissen, Johannes H C; Aerts, Rien

    2015-11-01

    Evolutionary adaptation to variation in resource supply has resulted in plant strategies that are based on trade-offs in functional traits. Here, we investigate, for the first time across multiple species, whether such trade-offs are also apparent in growth and morphology responses to past low, current ambient, and future high CO 2 concentrations. We grew freshly germinated seedlings of up to 28 C3 species (16 forbs, 6 woody, and 6 grasses) in climate chambers at 160 ppm, 450 ppm, and 750 ppm CO 2. We determined biomass, allocation, SLA (specific leaf area), LAR (leaf area ratio), and RGR (relative growth rate), thereby doubling the available data on these plant responses to low CO 2. High CO 2 increased RGR by 8%; low CO 2 decreased RGR by 23%. Fast growers at ambient CO 2 had the greatest reduction in RGR at low CO 2 as they lost the benefits of a fast-growth morphology (decoupling of RGR and LAR [leaf area ratio]). Despite these shifts species ranking on biomass and RGR was unaffected by CO 2, winners continued to win, regardless of CO 2. Unlike for other plant resources we found no trade-offs in morphological and growth responses to CO 2 variation, changes in morphological traits were unrelated to changes in growth at low or high CO 2. Thus, changes in physiology may be more important than morphological changes in response to CO 2 variation.

  9. High resolution fossil fuel combustion CO2 emission fluxes for the United States.

    Science.gov (United States)

    Gurney, Kevin R; Mendoza, Daniel L; Zhou, Yuyu; Fischer, Marc L; Miller, Chris C; Geethakumar, Sarath; de la Rue du Can, Stephane

    2009-07-15

    Quantification of fossil fuel CO2 emissions at fine space and time resolution is emerging as a critical need in carbon cycle and climate change research. As atmospheric CO2 measurements expand with the advent of a dedicated remote sensing platform and denser in situ measurements, the ability to close the carbon budget at spatial scales of approximately 100 km2 and daily time scales requires fossil fuel CO2 inventories at commensurate resolution. Additionally, the growing interest in U.S. climate change policy measures are best served by emissions that are tied to the driving processes in space and time. Here we introduce a high resolution data product (the "Vulcan" inventory: www.purdue.edu/eas/carbon/vulcan/) that has quantified fossil fuel CO2 emissions for the contiguous U.S. at spatial scales less than 100 km2 and temporal scales as small as hours. This data product completed for the year 2002, includes detail on combustion technology and 48 fuel types through all sectors of the U.S. economy. The Vulcan inventory is built from the decades of local/regional air pollution monitoring and complements these data with census, traffic, and digital road data sets. The Vulcan inventory shows excellent agreement with national-level Department of Energy inventories, despite the different approach taken by the DOE to quantify U.S. fossil fuel CO2 emissions. Comparison to the global 1degree x 1 degree fossil fuel CO2 inventory, used widely by the carbon cycle and climate change community prior to the construction of the Vulcan inventory, highlights the space/time biases inherent in the population-based approach.

  10. Bubble Stripping as a Tool To Reduce High Dissolved CO2 in Coastal Marine Ecosystems.

    Science.gov (United States)

    Koweek, David A; Mucciarone, David A; Dunbar, Robert B

    2016-04-01

    High dissolved CO2 concentrations in coastal ecosystems are a common occurrence due to a combination of large ecosystem metabolism, shallow water, and long residence times. Many important coastal species may have adapted to this natural variability over time, but eutrophication and ocean acidification may be perturbing the water chemistry beyond the bounds of tolerance for these organisms. We are currently limited in our ability to deal with the geochemical changes unfolding in our coastal ocean. This study helps to address this deficit of solutions by introducing bubble stripping as a novel geochemical engineering approach to reducing high CO2 in coastal marine ecosystems. We use a process-based model to find that air/sea gas exchange rates within a bubbled system are 1-2 orders of magnitude higher than within a nonbubbled system. By coupling bubbling-enhanced ventilation to a coastal ecosystem metabolism model, we demonstrate that strategically timed bubble plumes can mitigate exposure to high CO2 under present-day conditions and that exposure mitigation is enhanced in the more acidic conditions predicted by the end of the century. We argue that shallow water CO2 bubble stripping should be considered among the growing list of engineering approaches intended to increase coastal resilience in a changing ocean.

  11. Altered Carbon Isotope Discrimination of C3 Plants Under Very High pCO2 Levels

    Science.gov (United States)

    Panetta, R. J.; Schubert, B.; Jahren, H.

    2009-12-01

    Various modeling and proxy-based reconstructions of atmospheric pCO2 levels for the last 120 Ma have estimated RCO2 as high as 12x for the Early Cretaceous, generally decreasing into the Cenozoic, and decreasing further into the Quaternary. Multiple ecological studies to assess the effect of elevated CO2 on plant biomass and δ13C value have been spurred on by recent increases in greenhouse gases, however these studies typically grow plants under only slightly elevated CO2 levels (i.e., the twenty foremost studies published since 1990 involved 550 to 750 ppm pCO2, which equals RCO2 = 1.4 to 1.9x). In order to recreate the highest pCO2 environments of the last 120 Ma, we grew radish (Raphanus sativus L.) in growth chambers that maintained controlled environmental conditions and pCO2 levels ranging from ~5 to 11x that of today’s atmosphere (1791 to 4200 ppm); upon harvest we measured total biomass and stable carbon isotope ratio (δ13Cplant) in both above and below ground plant tissue. Unlike the 1:1 relationship between stable isotopes of atmospheric CO2 (δ13Catm) and δ13Cplant observed at lower pCO2 levels (i.e., RCO2 = 1x to 3x; Jahren et al., 2008), the δ13Cplant of biomass grown at more elevated RCO2 was dependent upon δ13Catm according to the linear relationship: δ13Cplant = 1.9(δ13Cplant) - 12.2 ‰ (r2 = 0.71). Concomitantly, we see a highly significant (p sativus L. from -27.0 to -28.0 ‰ at RCO2 = 5x to 11x, respectively. We will discuss possible mechanisms for changing isotope discrimination at very high pCO2 levels that may not be operative at lower concentrations. For example, we noted a striking reduction in the variability of biomass between plants grown at the same (very high) level of pCO2. This variability (calculated as the standard deviation of the log-transformed biomass data after Poorter and Garnier, 1996) decreased by 37 % (above-ground) and 48 % (below-ground) for plants grown at RCO2 > 5x compared to plants grown at RCO2 = 1x to 3x

  12. Corrosion Behavior of 110S Tube Steel in Environments of High H2S and CO2 Content

    Institute of Scientific and Technical Information of China (English)

    LI W en-fei; ZHOU Yan-jun; XUE Yan

    2012-01-01

    The corrosion behavior of the 110S tube steel in the environments of high H2 S and CO2 content was inves- tigated by using a high-temperature and high-pressure autoclave, and the corrosion products were characterized by scanning electron microscopy and X ray diffraction technique. The results showed that all of the corrosion products under the test conditions mainly consisted of different types of iron sulfides such as pyrrhotite of Fe0.95 S, mackinaw- ite of FeS0.9, Fe0. 985 S and FeS, and the absence of iron carbonate in the corrosion scales indicated that the corrosion process was controlled by H2S corrosion. The corrosion rate of the 110S steel decreased firstly and then increased with the rising of temperature. The minimum corrosion rate occurred at 110 ℃. When the H2 S partial pressure PH2s below 9 MPa, the corrosion rate declined with the increase of PH2s. While over 9 MPa, a higher PH2s resulted in a faster corrosion process. With the increasing of the CO2 partial pressure, the corrosion rate had an increasing trend. The morphologies of the corrosion scales had a good accordance with the corrosion rates.

  13. High Blood Pressure

    Science.gov (United States)

    ... normal blood pressure 140/90 or higher is high blood pressure Between 120 and 139 for the top number, ... prehypertension. Prehypertension means you may end up with high blood pressure, unless you take steps to prevent it. High ...

  14. High Blood Pressure (Hypertension)

    Science.gov (United States)

    ... Print Page Text Size: A A A Listen High Blood Pressure (Hypertension) Nearly 1 in 3 American adults has ... weight. How Will I Know if I Have High Blood Pressure? High blood pressure is a silent problem — you ...

  15. Research and survey report of FY 1997 on the CO2 balance for high-temperature CO2 fixation and utilization technology; 1997 nendo chosa hokokusho (nisanka tanso koon bunri gijutsu ni okeru CO2 balance ni kansuru chosa kenkyu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    The purpose of this research is to clarify the application condition and effectiveness of high-temperature CO2 fixation and utilization technology. To evaluate the present process, it was compared with others, such as separation using a polymer membrane, physico-chemical absorption process, adsorption process, hydrogen contact reduction process, and biological fixation. The development trends of absorption, membrane, adsorption, and cryogenic separation were investigated. The questionnaire was carried out about the separation technologies which are in the stage of performance test using actual gas, to arrange and compare the data and information. The current trends of chemical and biological CO2 fixation and utilization technology were also investigated for arranging the subjects. High-temperature CO2 disposal by the carbonation in concrete waste has been studied, to clarify its application conditions and effectiveness. In order to compare the separation technologies, treatment processes of CO2 in the exhaust gas from boilers of LNG power generation and coal fired power generation were simulated. These processes were simulated by ASPEN PLUS for the modeling. Trends of application of ASPEN PLUS and collection of information were surveyed by participating in the ASPEN WORLD. 103 refs., 51 figs., 55 tabs.

  16. Skeletal mineralogy of coral recruits under high temperature and pCO2

    Directory of Open Access Journals (Sweden)

    T. Foster

    2015-08-01

    Full Text Available Aragonite, which is the polymorph of CaCO3 precipitated by modern corals during skeletal formation, has a higher solubility than the more stable polymorph calcite. This higher solubility leaves animals that produce aragonitic skeletons more vulnerable to anthropogenic ocean acidification. It is therefore, important to determine whether scleractinian corals have the plasticity to adapt and produce calcite in their skeletons in response to changing environmental conditions. Both high pCO2 and lower Mg / Ca ratios in seawater are thought to have driven changes in the skeletal mineralogy of major marine calcifiers in the past ∼540 myr. Experimentally reduced Mg / Ca ratios in ambient seawater have been shown to induce some calcite precipitation in both adult and newly settled modern corals, however, the impact of high pCO2 on the mineralogy of recruits is unknown. Here we determined the skeletal mineralogy of one-month old Acropora spicifera coral recruits grown under high temperature (+3 °C and pCO2 (∼900 μatm conditions, using X-ray diffraction and Raman spectroscopy. We found that newly settled coral recruits produced entirely aragonitic skeletons regardless of the treatment. Our results show that elevated pCO2 alone is unlikely to drive changes in the skeletal mineralogy of young corals. Not having an ability to switch from aragonite to calcite precipitation may leave corals and ultimately coral reef ecosystems more susceptible to predicted ocean acidification. An important area for prospective research would be to investigate the combined impact of high pCO2 and reduced Mg / Ca ratio on coral skeletal mineralogy.

  17. Porous materials as high performance adsorbents for CO2 capture, gas separation and purification

    Science.gov (United States)

    Wang, Jun

    Global warming resulted from greenhouse gases emission has received a widespread attention. Among the greenhouse gases, CO2 contributes more than 60% to global warming due to its huge emission amount. The flue gas contains about 15% CO2 with N2 as the balance. If CO2 can be separated from flue gas, the benefit is not only reducing the global warming effect, but also producing pure CO2 as a very useful industry raw material. Substantial progress is urgent to be achieved in an industrial process. Moreover, energy crisis is one of the biggest challenges for all countries due to the short life of fossil fuels, such as, petroleum will run out in 50 years and coal will run out in 150 years according to today's speed. Moreover, the severe pollution to the environment caused by burning fossil fuels requires us to explore sustainable, environment-friendly, and facile energy sources. Among several alternative energy sources, natural gas is one of the most promising alternative energy sources due to its huge productivity, abundant feed stock, and ease of generation. In order to realize a substantial adsorption process in industry, synthesis of new adsorbents or modification of existing adsorbent with improved properties has become the most critical issue. This dissertation reports systemic characterization and development of five serials of novel adsorbents with advanced adsorption properties. In chapter 2, nitrogen-doped Hypercross-linking Polymers (HCPs) have been synthesized successfully with non-carcinogenic chloromethyl methyl ether (CME) as the cross-linking agent within a single step. Texture properties, surface morphology, CO2/N2 selectivity, and adsorption heat have been presented and demonstrated properly. A comprehensive discussion on factors that affect the CO2 adsorption and CO2/N 2 separation has also been presented. It was found that high micropore proportion and N-content could effectively enhance CO2 uptake and CO2/N2 separation selectivity. In chapter 3, a

  18. Ultrathin porous NiCo2O4 nanosheet arrays on flexible carbon fabric for high-performance supercapacitors.

    Science.gov (United States)

    Du, Jun; Zhou, Gang; Zhang, Haiming; Cheng, Chao; Ma, Jianmin; Wei, Weifeng; Chen, Libao; Wang, Taihong

    2013-08-14

    NiCo2O4 with higher specific capacitance is an excellent pseudocapacitive material. However, the bulk NiCo2O4 material prevents the achievement of high energy desity and great rate performance due to the limited electroactive surface area. In this work, NiCo2O4 nanosheet arrays were deposited on flexible carbon fabric (CF) as a high-performance electrode for supercapacitors. The NiCo2O4 arrays were constructed by interconnected ultrathin nanosheets (10 nm) with many interparticle pores. The porous feature of NiCo2O4 nanosheets increases the amount of electroactive sites and facilitates the electrolyte penetration. Hence, the NiCo2O4/CF composites exhibited a high specific capacitance of 2658 F g(-1) (2 A g(-1)), good rate performance, and superior cycling life, suggesting the NiCo2O4/CF is a promising electrode material for flexible electrochemical capacitors.

  19. Advanced concepts for high-power, short-pulse CO2 laser development

    Science.gov (United States)

    Gordon, Daniel F.; Hasson, Victor; von Bergmann, Hubertus; Chen, Yu-hsin; Schmitt-Sody, A.; Penano, Joseph R.

    2016-06-01

    Ultra-short pulse lasers are dominated by solid-state technology, which typically operates in the near-infrared. Efforts to extend this technology to longer wavelengths are meeting with some success, but the trend remains that longer wavelengths correlate with greatly reduced power. The carbon dioxide (CO2) laser is capable of delivering high energy, 10 micron wavelength pulses, but the gain structure makes operating in the ultra-short pulse regime difficult. The Naval Research Laboratory and Air Force Research Laboratory are developing a novel CO2 laser designed to deliver ~1 Joule, ~1 picosecond pulses, from a compact gain volume (~2x2x80 cm). The design is based on injection seeding an unstable resonator, in order to achieve high energy extraction efficiency, and to take advantage of power broadening. The unstable resonator is seeded by a solid state front end, pumped by a custom built titanium sapphire laser matched to the CO2 laser bandwidth. In order to access a broader range of mid infrared wavelengths using CO2 lasers, one must consider nonlinear frequency multiplication, which is non-trivial due to the bandwidth of the 10 micron radiation.

  20. Molecular template-directed synthesis of microporous polymer networks for highly selective CO2 capture.

    Science.gov (United States)

    Shi, Yao-Qi; Zhu, Jing; Liu, Xiao-Qin; Geng, Jian-Cheng; Sun, Lin-Bing

    2014-11-26

    Porous polymer networks have great potential in various applications including carbon capture. However, complex monomers and/or expensive catalysts are commonly used for their synthesis, which makes the process complicated, costly, and hard to scale up. Herein, we develop a molecular template strategy to fabricate new porous polymer networks by a simple nucleophilic substitution reaction of two low-cost monomers (i.e., chloromethylbenzene and ethylene diamine). The polymerization reactions can take place under mild conditions in the absence of any catalysts. The resultant materials are interconnected with secondary amines and show well-defined micropores due to the structure-directing role of solvent molecules. These properties make our materials highly efficient for selective CO2 capture, and unusually high CO2/N2 and CO2/CH4 selectivities are obtained. Furthermore, the adsorbents can be completely regenerated under mild conditions. Our materials may provide promising candidates for selective capture of CO2 from mixtures such as flue gas and natural gas.

  1. A Highly Stable Microporous Covalent Imine Network Adsorbent for Natural Gas Upgrading and Flue Gas CO2 Capture

    KAUST Repository

    Das, Swapan Kumar

    2016-06-06

    The feasible capture and separation of CO2 and N2 from CH4 is an important task for natural gas upgrading and the control of greenhouse gas emissions. Here, we studied the microporous covalent imine networks (CIN) material prepared through Schiff base condensation and exhibited superior chemical robustness under both acidic and basic conditions and high thermal stability. The material possesses a relatively uniform nanoparticle size of approximately 70 to 100 nm. This network featured permanent porosity with a high surface area (722 m2g-1) and micropores. A single-component gas adsorption study showed enhanced CO2 and CH4 uptakes of 3.32 mmol/g and 1.14 mmol/g, respectively, at 273 K and 1 bar, coupled with high separation selectivities for CO2/CH4, CH4/N2, and CO2/N2 of 23, 11.8 and 211, respectively. The enriched Lewis basicity in the porous skeletons favours the interaction of quadrupolar CO2 and polarizable CH4, resulting in enhanced CH4 and CO2 uptake and high CH4/N2, CO2/CH4 and CO2/N2 selectivities. Breakthrough experiments showed high CO2/CH4, CH4/N2 and CO2/N2 selectivities of 7.29, 40 and 125, respectively, at 298 K and 1 bar. High heats of adsorption for CH4 and CO2 (QstCH4; 32.61 kJ mol-1 and QstCO2; 42.42 kJ mol-1) provide the ultimate validation for the high selectivity. To the best of our knowledge, such a versatile adsorbent material that displays both enhanced uptake and selectivity for a variety of binary gas mixtures, including CO2/ CH4, CO2/N2 and CH4/N2, has not been extensively explored.

  2. High light-induced hydrogen peroxide production in Chlamydomonas reinhardtii is increased by high CO2 availability.

    Science.gov (United States)

    Roach, Thomas; Na, Chae Sun; Krieger-Liszkay, Anja

    2015-03-01

    The production of reactive oxygen species (ROS) is an unavoidable part of photosynthesis. Stress that accompanies high light levels and low CO2 availability putatively includes enhanced ROS production in the so-called Mehler reaction. Such conditions are thought to encourage O2 to become an electron acceptor at photosystem I, producing the ROS superoxide anion radical (O2·-) and hydrogen peroxide (H2 O2 ). In contrast, here it is shown in Chlamydomonas reinhardtii that CO2 depletion under high light levels lowered cellular H2 O2 production, and that elevated CO2 levels increased H2 O2 production. Using various photosynthetic and mitochondrial mutants of C. reinhardtii, the chloroplast was identified as the main source of elevated H2 O2 production under high CO2 availability. High light levels under low CO2 availability induced photoprotective mechanisms called non-photochemical quenching, or NPQ, including state transitions (qT) and high energy state quenching (qE). The qE-deficient mutant npq4 produced more H2 O2 than wild-type cells under high light levels, although less so under high CO2 availability, whereas it demonstrated equal or greater enzymatic H2 O2 -degrading capacity. The qT-deficient mutant stt7-9 produced the same H2 O2 as wild-type cells under high CO2 availability. Physiological levels of H2 O2 were able to hinder qT and the induction of state 2, providing an explanation for why under high light levels and high CO2 availability wild-type cells behaved like stt7-9 cells stuck in state 1. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.

  3. Modeling The Anthropogenic CO2 Footprint in Europe Using a High Resolution Atmospheric Model

    Science.gov (United States)

    Liu, Yu; Gruber, Nicolas; Brunner, Dominik

    2015-04-01

    The localized nature of most fossil fuel emission sources leaves a distinct footprint on atmospheric CO2 concentrations, yet to date, most studies have used relatively coarse atmospheric transport models to simulate this footprint, causing an excess amount of spatial smoothing. In addition, most studies have considered only monthly variations in emissions, neglecting their substantial diurnal and weekly fluctuations. With the fossil fuel emission fluxes dominating the carbon balance in Europe and many other industrialized countries, it is paramount to simulate the fossil fuel footprint in atmospheric CO2 accurately in time and space in order to discern the footprint of the terrestrial biosphere. Furthermore, a good understanding of the fossil fuel footprint also provides the opportunity to monitor and verify any change in fossil fuel emission. We use here a high resolution (7 km) atmospheric model setup for central Europe based on the operational weather forecast model COSMO and simulate the atmospheric CO2 concentrations separately for 5 fossil fuel emission sectors (i.e., power generation, heating, transport, industrial processes, and rest), and for 10 different country-based regions. The emissions were based on high-resolution emission inventory data (EDGAR(10km) and MeteoTest(500m)), to which we have added detailed time functions for each process and country. The total anthropogenic CO2 footprint compares well with observational estimates based on radiocarbon (C14) and CO for a number of sites across Europe, providing confidence in the emission inventory and atmospheric transport. Despite relatively rapid atmospheric mixing, the fossil fuel footprint shows strong annual mean structures reflecting the point-source nature of most emissions. Among all the processes, the emissions from power plants dominates the fossil fuel footprint, followed by industry, while traffic emissions are less distinct, largely owing to their spatially more distributed nature. However

  4. CO(2) partial pressure and calcite saturation in springs - useful data for identifying infiltration areas in mountainous environments.

    Science.gov (United States)

    Hilberg, Sylke; Brandstätter, Jennifer; Glück, Daniel

    2013-04-01

    Mountainous regions such as the Central European Alps host considerable karstified or fractured groundwater bodies, which meet many of the demands concerning drinking water supply, hydropower or agriculture. Alpine hydrogeologists are required to describe the dynamics in fractured aquifers in order to assess potential impacts of human activities on water budget and quality. Delineation of catchment areas by means of stable isotopes and hydrochemical data is a well established method in alpine hydrogeology. To achieve reliable results, time series of (at least) one year and spatial and temporal close-meshed data are necessary. In reality, test sites in mountainous regions are often inaccessible due to the danger of avalanches in winter. The aim of our work was to assess a method based on the processes within the carbonic acid system to delineate infiltration areas by means of single datasets consisting of the main hydrochemical parameters of each spring. In three geologically different mountainous environments we managed to classify the investigated springs into four groups. (1) High PCO2 combined with slight super-saturation in calcite, indicating relatively low infiltration areas. (2) Low PCO2 near atmospheric conditions in combination with calcite saturation, which is indicative of relatively high infiltration areas and a fractured aquifer which is not covered by topsoil layers. (3) High PCO2 in combination with sub-saturation in calcite, representing a shallow aquifer with a significant influence of the topsoil layer. (4) The fourth group of waters is characterized by low PCO2 and sub-saturation in calcite, which is interpreted as evidence for a shallow aquifer without significant influence of any hard rock aquifer or topsoil layer. This study shows that CO2-partial pressure can be an ideal natural tracer to estimate the elevation of infiltration areas, especially in non-karstified fractured groundwater bodies.

  5. In-operando elucidation of bimetallic CoNi nanoparticles during high-temperature CH 4 /CO 2 reaction

    KAUST Repository

    AlSabban, Bedour

    2017-05-02

    Dry reforming of methane (DRM) proceeds via CH4 decomposition to leave surface carbon species, followed by their removal with CO2-derived species. Reactivity tuning for stoichiometric CH4/CO2 reactants was attempted by alloying the non-noble metals Co and Ni, which have high affinity with CO2 and high activity for CH4 decomposition, respectively. This study was focused on providing evidence of the capturing surface coverage of the reactive intermediates and the associated structural changes of the metals during DRM at high temperature using in-operando X-ray absorption spectroscopy (XAS). On the Co catalysts, the first-order effects with respect to CH4 pressure and negative-order effects with respect to CO2 pressure on the DRM rate are consistent with the competitive adsorption of the surface oxygen species on the same sites as the CH4 decomposition reaction. The Ni surface provides comparatively higher rates of CH4 decomposition and the resultant DRM than the Co catalyst but leaves some deposited carbon on the catalyst surface. In contrast, the bimetallic CoNi catalyst exhibits reactivity towards the DRM but with kinetic orders resembling Co catalyst, producing negligible carbon deposition by balancing CH4 and CO2 activation. The in-operando X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) measurements confirmed that the Co catalyst was progressively oxidized from the surface to the bulk with reaction time, whereas CoNi and Ni remained relatively reduced during DRM. Density functional theory (DFT) calculation considering the high reaction temperature for DRM confirmed the unselective site arrangement between Co and Ni atoms in both the surface and bulk of the alloy nanoparticle (NP). The calculated heat of oxygen chemisorption became more exothermic in the order of Ni, CoNi, Co, consistent with the catalytic behavior. The comprehensive experimental and theoretical evidence provided herein clearly suggests

  6. Seagrass (Posidonia oceanica) seedlings in a high-CO2 world: from physiology to herbivory

    KAUST Repository

    Hernán, Gema

    2016-12-01

    Under future increased CO2 concentrations, seagrasses are predicted to perform better as a result of increased photosynthesis, but the effects in carbon balance and growth are unclear and remain unexplored for early life stages such as seedlings, which allow plant dispersal and provide the potential for adaptation under changing environmental conditions. Furthermore, the outcome of the concomitant biochemical changes in plant-herbivore interactions has been poorly studied, yet may have important implications in plant communities. In this study we determined the effects of experimental exposure to current and future predicted CO2 concentrations on the physiology, size and defense strategies against herbivory in the earliest life stage of the Mediterranean seagrass Posidonia oceanica. The photosynthetic performance of seedlings, assessed by fluorescence, improved under increased pCO2 conditions after 60 days, although these differences disappeared after 90 days. Furthermore, these plants exhibited bigger seeds and higher carbon storage in belowground tissues, having thus more resources to tolerate and recover from stressors. Of the several herbivory resistance traits measured, plants under high pCO2 conditions had a lower leaf N content but higher sucrose. These seedlings were preferred by herbivorous sea urchins in feeding trials, which could potentially counteract some of the positive effects observed.

  7. Seagrass (Posidonia oceanica) seedlings in a high-CO2 world: from physiology to herbivory

    Science.gov (United States)

    Hernán, Gema; Ramajo, Laura; Basso, Lorena; Delgado, Antonio; Terrados, Jorge; Duarte, Carlos M.; Tomas, Fiona

    2016-01-01

    Under future increased CO2 concentrations, seagrasses are predicted to perform better as a result of increased photosynthesis, but the effects in carbon balance and growth are unclear and remain unexplored for early life stages such as seedlings, which allow plant dispersal and provide the potential for adaptation under changing environmental conditions. Furthermore, the outcome of the concomitant biochemical changes in plant-herbivore interactions has been poorly studied, yet may have important implications in plant communities. In this study we determined the effects of experimental exposure to current and future predicted CO2 concentrations on the physiology, size and defense strategies against herbivory in the earliest life stage of the Mediterranean seagrass Posidonia oceanica. The photosynthetic performance of seedlings, assessed by fluorescence, improved under increased pCO2 conditions after 60 days, although these differences disappeared after 90 days. Furthermore, these plants exhibited bigger seeds and higher carbon storage in belowground tissues, having thus more resources to tolerate and recover from stressors. Of the several herbivory resistance traits measured, plants under high pCO2 conditions had a lower leaf N content but higher sucrose. These seedlings were preferred by herbivorous sea urchins in feeding trials, which could potentially counteract some of the positive effects observed. PMID:27905514

  8. Technology of discharge and laser resonators for high power CO2 lasers. Koshutsuryoku CO2 laser ni tsukawareru hoden reiki laser kyoshinki gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    Takenaka, Y.; Kuzumoto, M. (Mitsubishi Electric Corp., Tokyo (Japan))

    1994-03-20

    This paper describes discharge excitation technology and resonator technology as basic technologies for high power CO2 lasers. As a result of progress in high-frequency power element techniques, the discharge excitation technology now generally uses laser excitation using AC discharge of capacity coupling type. Its representative example is silent discharge (SD) excitation. This is a system to excite laser by applying high voltages with as high frequency as 100 kHz to 1 MHz across a pair of electrodes covered with a dielectric material. The system maintains stability in discharge even if power supply voltage amplitude is modulated, and easily provides pulse outputs. Discharge excitation for diffusion cooled type CO2 laser generates a discharge in a gap with a gap length of about 2 mm, and can perform gas cooling by means of thermal conduction of gas, whereas a compact resonator can be fabricated. A resonator for the diffusion cooled type CO2 laser eliminates gas circulation and cooling systems, hence the device can be made more compact. A report has been given that several of these compact resonators were combined, from which a laser output of 85W was obtained by using RF discharge of 2kW. 43 refs., 21 figs.

  9. Surface Pressure Dependencies in the GEOS-Chem-Adjoint System and the Impact of the GEOS-5 Surface Pressure on CO2 Model Forecast

    Science.gov (United States)

    Lee, Meemong; Weidner, Richard

    2016-01-01

    In the GEOS-Chem Adjoint (GCA) system, the total (wet) surface pressure of the GEOS meteorology is employed as dry surface pressure, ignoring the presence of water vapor. The Jet Propulsion Laboratory (JPL) Carbon Monitoring System (CMS) research team has been evaluating the impact of the above discrepancy on the CO2 model forecast and the CO2 flux inversion. The JPL CMS research utilizes a multi-mission assimilation framework developed by the Multi-Mission Observation Operator (M2O2) research team at JPL extending the GCA system. The GCA-M2O2 framework facilitates mission-generic 3D and 4D-variational assimilations streamlining the interfaces to the satellite data products and prior emission inventories. The GCA-M2O2 framework currently integrates the GCA system version 35h and provides a dry surface pressure setup to allow the CO2 model forecast to be performed with the GEOS-5 surface pressure directly or after converting it to dry surface pressure.

  10. Pure- and Mixed-Gas Permeation Properties of Highly Selective and Plasticization Resistant Hydroxyl-Diamine-Based 6FDA Polyimides for CO2/CH4 Separation

    KAUST Repository

    Alaslai, Nasser Y.

    2016-01-05

    The effect of hydroxyl functionalization on the m-phenylene diamine moiety of 6FDA dianhydride-based polyimides was investigated for gas separation applications. Pure-gas permeability coefficients of He, H2, N2, O2, CH4, and CO2 were measured at 35 °C and 2 atm. The introduction of hydroxyl groups in the diamine moiety of 6FDA-diaminophenol (DAP) and 6FDA-diamino resorcinol (DAR) polyimides tightened the overall polymer structure due to increased charge transfer complex formation compared to unfunctionalized 6FDA-m-phenylene diamine (mPDA). The BET surface areas based on nitrogen adsorption of 6FDA-DAP (54 m2g−1) and of 6FDA-DAR (45 m2g−1) were ~18% and 32% lower than that of 6FDA-mPDA (66 m2g−1). 6FDA-mPDA had a pure-gas CO2 permeability of 14 Barrer and CO2/CH4 selectivity of 70. The hydroxyl-functionalized polyimides 6FDA-DAP and 6FDA-DAR exhibited very high pure-gas CO2/CH4 selectivities of 92 and 94 with moderate CO2 permeability of 11 and 8 Barrer, respectively. It was demonstrated that hydroxyl-containing polyimide membranes maintained very high CO2/CH4 selectivity (~ 75 at CO2 partial pressure of 10 atm) due to CO2 plasticization resistance when tested under high-pressure mixed-gas conditions. Functionalization with hydroxyl groups may thus be a promising strategy towards attaining highly selective polyimides for economical membrane-based natural gas sweetening.

  11. Covalent Triazine-Based Frameworks with Ultramicropores and High Nitrogen Contents for Highly Selective CO2 Capture.

    Science.gov (United States)

    Wang, Keke; Huang, Hongliang; Liu, Dahuan; Wang, Chang; Li, Jinping; Zhong, Chongli

    2016-05-03

    Porous organic frameworks (POFs) are a class of porous materials composed of organic precursors linked by covalent bonds. The objective of this work is to develop POFs with both ultramicropores and high nitrogen contents for CO2 capture. Specifically, two covalent triazine-based frameworks (CTFs) with ultramicropores (pores of width capture CO2 due to ultramicroporous nature. Especially, CTF-FUM-350 has the highest nitrogen content (27.64%) and thus the highest CO2 adsorption capacity (57.2 cc/g at 298 K) and selectivities for CO2 over N2 and CH4 (102.4 and 20.5 at 298 K, respectively) among all CTF-FUM and CTF-DCN. More impressively, as far as we know, the CO2/CH4 selectivity is larger than that of all reported CTFs and ranks in top 10 among all reported POFs. Dynamic breakthrough curves indicate that both CTFs could indeed separate gas mixtures of CO2/N2 and CO2/CH4 completely.

  12. Improvement of photosynthetic CO2 fixation at high light intensity through reduction of chlorophyll antenna size.

    Science.gov (United States)

    Lee, James W; Mets, Laurens; Greenbau, Elias

    2002-01-01

    At elevated light intensities (greater than approximately 200 microE/[m2 x s]), the kinetic imbalance between the rate of photon excitation and thermally activated electron transport results in saturation of the rate of photosynthesis. Since maximum terrestrial solar radiation can reach 200 microE/(m2 x s), a significant opportunity exists to improve photosynthetic efficiency at elevated light intensities by achieving a kinetic balance between photon excitation and electron transport, especially in designed large-scale photosynthetic reactors in which a low-cost and efficient biomass production system is desired. One such strategy is a reduction in chlorophyll (chl) antenna size in relation to the reaction center that it serves. In this article, we report recent progress in this area of research. Light-saturation studies for CO2 fixation were performed on an antenna-deficient mutant of Chlamydomonas (DS521) and the wild type (DES15) with 700 ppm of CO2 in air. The light-saturated rate for CO2 assimilation in the mutant DS521 was about two times higher (187 micromol/[h x mg of chl]) than that of the wild type, DES15 (95 micromol/[h x mg of chl]). Significantly, a partial linearization of the light-saturation curve was also observed. These results confirmed that DS521 has a smaller relative chl antenna size and demonstrated that reduction of relative antenna size can improve the overall efficiency of photon utilization at higher light intensities. The antenna-deficient mutant DS521 can provide significant resistance to photoinhibition, in addition to improvement in the overall efficiency of CO2 fixation at high light. The experimental data reported herein support the idea that reduction in chl antenna size could have significant implications for both fundamental understanding of photosynthesis and potential application to improve photosynthetic CO2 fixation efficiency.

  13. A method for screening the potential of MOFs as CO2 adsorbents in pressure swing adsorption processes.

    Science.gov (United States)

    Pirngruber, Gerhard D; Hamon, Lomig; Bourrelly, Sandrine; Llewellyn, Philip L; Lenoir, Estelle; Guillerm, Vincent; Serre, Christian; Devic, Thomas

    2012-04-01

    This work reports the adsorption and coadsorption data of CO(2)/CH(4)/CO mixtures on several metal-organic frameworks [MOFs; MIL-100(Cr), MIL-47(V), MIL-140(Zr)-A, Cu-btc, and MIL-53(Cr)] and compares them with reference adsorbents, that is, zeolite NaX and an activated carbon material, AC35. We also evaluate the effect of H(2)O on CO(2) adsorption and on the stability of the structures. Based on the experimental adsorption data, the performance potential of MOFs in several pressure swing adsorption processes is estimated by making a ranking of working capacities and separation factors. We discuss the separation of biogas, the purification of H(2) produced by steam reforming of methane, and the removal of CO(2) from synthesis gas in IGCC (integrated gasification combined cycle) systems. Some MOFs are very well placed in the ranking of (isothermal) working capacity vs. selectivity. Yet, performance is not the only criterion for the selection of MOFs. Ease and cost of synthesis and long-term stability are other important aspects that have to be taken into account.

  14. A multi-decade record of high-quality fCO2 data in version 3 of the Surface Ocean CO2 Atlas (SOCAT)

    Science.gov (United States)

    Bakker, Dorothee; Landa, Camilla S.; Pfeil, Benjamin; Metzl, Nicolas; O’Brien, Kevin; Olsen, Are; Smith, Karl; Cosca, Cathy; Harasawa, Sumiko; Nakaoka, Shin-ichiro; Jones, Stephen; Nojiri, Yukihiro; Steinhoff, Tobias; Sweeney, Colm; Schuster, Ute; Takahashi, Taro; Tilbrook, Bronte; Wada, Chisato; Wanninkhof, Rik; Alin, Simone R.; Balestrini, Carlos F.; Barbero, Leticia; Bates, Nicholas; Bianchi, Alejandro A.; Bonou, Frédéric; Boutin, Jacqueline; Bozec, Yann; Burger, Eugene F.; Cai, Wei-Jun; Castle, Robert D.; Chen, Liqi; Chierici, Melissa; Currie, Kim; Evans, Wiley; Featherstone, Charles; Feely, Richard; Fransson, Agneta; Goyet, Catherine; Greenwood, Naomi; Gregor, Luke; Hankin, Steven; Hardman-Mountford, Nick J.; Harlay, Jérôme; Hauck, Judith; Hoppema, Mario; Humphreys, Matthew P.; Hunt, Christopher W.; Huss, Betty; Ibánhez, J. Severino P.; Keeling, Ralph F.; Johannessen, Truls; Kitidis, Vassilis; Körtzinger, Arne; Kozyr, Alex; Krasakopoulou, Evangelia; Kuwata, Akira; Landschützer, Peter; Lauvset, Siv K.; Lefèvre, Nathalie; Lo Monaco, Claire; Manke, Ansley; Mathis, Jeremy T.; Merlivat, Liliane; Millero, Frank J.; Monteiro, Pedro M. S.; Munro, David R.; Murata, Akihiko; Newberger, Timothy; Omar, Abdirahman M.; Ono, Tsuneo; Paterson, Kristina; Pearce, David; Pierrot, Denis; Robbins, Lisa L.; Saito, Shu; Salisbury, Joe; Schlitzer, Reiner; Schneider, Bernd; Schweitzer, Roland; Sieger, Rainer; Skjelvan, Ingunn; Sullivan, Kevin F.; Sutherland, Stewart C.; Sutton, Adrienne J.; Tadokoro, Kazuaki; Telszewski, Maciej; Tuma, Matthias; van Heuven, Steven M. A. C.; Vandemark, Douglas; Ward, Brian; Watson, Andrew J.; Xu, Suqing

    2016-01-01

    The Surface Ocean CO2 Atlas (SOCAT) is a synthesis of quality-controlled f CO2 (fugacity of carbon dioxide) values for the global surface oceans and coastal seas with regular updates. Version 3 of SOCAT has 14.7 million f CO2 values from 3646 data sets covering the years 1957 to 2014. This latest version has an additional 4.6 million f CO2 values relative to version 2 and extends the record from 2011 to 2014. Version 3 also significantly increases the data availability for 2005 to 2013. SOCAT has an average of approximately 1.2 million surface water f CO2 values per year for the years 2006 to 2012. Quality and documentation of the data has improved. A new feature is the data set quality control (QC) flag of E for data from alternative sensors and platforms. The accuracy of surface water f CO2 has been defined for all data set QC flags. Automated range checking has been carried out for all data sets during their upload into SOCAT. The upgrade of the interactive Data Set Viewer (previously known as the Cruise Data Viewer) allows better interrogation of the SOCAT data collection and rapid creation of high-quality figures for scientific presentations. Automated data upload has been launched for version 4 and will enable more frequent SOCAT releases in the future. High-profile scientific applications of SOCAT include quantification of the ocean sink for atmospheric carbon dioxide and its long-term variation, detection of ocean acidification, as well as evaluation of coupled-climate and ocean-only biogeochemical models. Users of SOCAT data products are urged to acknowledge the contribution of data providers, as stated in the SOCAT Fair Data Use Statement. This ESSD (Earth System Science Data) “living data” publication documents the methods and data sets used for the assembly of this new version of the SOCAT data collection and compares these with those used for earlier versions of the data collection (Pfeil et al., 2013; Sabine et al., 2013; Bakker et al., 2014). 

  15. A multi-decade record of high-quality fCO2 data in version 3 of the Surface Ocean CO2 Atlas (SOCAT)

    Science.gov (United States)

    Bakker, Dorothee C. E.; Pfeil, Benjamin; Landa, Camilla S.; Metzl, Nicolas; O'Brien, Kevin M.; Olsen, Are; Smith, Karl; Cosca, Cathy; Harasawa, Sumiko; Jones, Stephen D.; Nakaoka, Shin-ichiro; Nojiri, Yukihiro; Schuster, Ute; Steinhoff, Tobias; Sweeney, Colm; Takahashi, Taro; Tilbrook, Bronte; Wada, Chisato; Wanninkhof, Rik; Alin, Simone R.; Balestrini, Carlos F.; Barbero, Leticia; Bates, Nicholas R.; Bianchi, Alejandro A.; Bonou, Frédéric; Boutin, Jacqueline; Bozec, Yann; Burger, Eugene F.; Cai, Wei-Jun; Castle, Robert D.; Chen, Liqi; Chierici, Melissa; Currie, Kim; Evans, Wiley; Featherstone, Charles; Feely, Richard A.; Fransson, Agneta; Goyet, Catherine; Greenwood, Naomi; Gregor, Luke; Hankin, Steven; Hardman-Mountford, Nick J.; Harlay, Jérôme; Hauck, Judith; Hoppema, Mario; Humphreys, Matthew P.; Hunt, Christopher W.; Huss, Betty; Ibánhez, J. Severino P.; Johannessen, Truls; Keeling, Ralph; Kitidis, Vassilis; Körtzinger, Arne; Kozyr, Alex; Krasakopoulou, Evangelia; Kuwata, Akira; Landschützer, Peter; Lauvset, Siv K.; Lefèvre, Nathalie; Lo Monaco, Claire; Manke, Ansley; Mathis, Jeremy T.; Merlivat, Liliane; Millero, Frank J.; Monteiro, Pedro M. S.; Munro, David R.; Murata, Akihiko; Newberger, Timothy; Omar, Abdirahman M.; Ono, Tsuneo; Paterson, Kristina; Pearce, David; Pierrot, Denis; Robbins, Lisa L.; Saito, Shu; Salisbury, Joe; Schlitzer, Reiner; Schneider, Bernd; Schweitzer, Roland; Sieger, Rainer; Skjelvan, Ingunn; Sullivan, Kevin F.; Sutherland, Stewart C.; Sutton, Adrienne J.; Tadokoro, Kazuaki; Telszewski, Maciej; Tuma, Matthias; van Heuven, Steven M. A. C.; Vandemark, Doug; Ward, Brian; Watson, Andrew J.; Xu, Suqing

    2016-09-01

    The Surface Ocean CO2 Atlas (SOCAT) is a synthesis of quality-controlled fCO2 (fugacity of carbon dioxide) values for the global surface oceans and coastal seas with regular updates. Version 3 of SOCAT has 14.7 million fCO2 values from 3646 data sets covering the years 1957 to 2014. This latest version has an additional 4.6 million fCO2 values relative to version 2 and extends the record from 2011 to 2014. Version 3 also significantly increases the data availability for 2005 to 2013. SOCAT has an average of approximately 1.2 million surface water fCO2 values per year for the years 2006 to 2012. Quality and documentation of the data has improved. A new feature is the data set quality control (QC) flag of E for data from alternative sensors and platforms. The accuracy of surface water fCO2 has been defined for all data set QC flags. Automated range checking has been carried out for all data sets during their upload into SOCAT. The upgrade of the interactive Data Set Viewer (previously known as the Cruise Data Viewer) allows better interrogation of the SOCAT data collection and rapid creation of high-quality figures for scientific presentations. Automated data upload has been launched for version 4 and will enable more frequent SOCAT releases in the future. High-profile scientific applications of SOCAT include quantification of the ocean sink for atmospheric carbon dioxide and its long-term variation, detection of ocean acidification, as well as evaluation of coupled-climate and ocean-only biogeochemical models. Users of SOCAT data products are urged to acknowledge the contribution of data providers, as stated in the SOCAT Fair Data Use Statement. This ESSD (Earth System Science Data) "living data" publication documents the methods and data sets used for the assembly of this new version of the SOCAT data collection and compares these with those used for earlier versions of the data collection (Pfeil et al., 2013; Sabine et al., 2013; Bakker et al., 2014). Individual

  16. Hypertension (High Blood Pressure)

    Science.gov (United States)

    ... Loss Surgery? A Week of Healthy Breakfasts Shyness Hypertension (High Blood Pressure) KidsHealth > For Teens > Hypertension (High Blood Pressure) A ... rest temperature diet emotions posture medicines Why Is High Blood Pressure Bad? High blood pressure means a person's heart ...

  17. High pressure technology 1994

    Energy Technology Data Exchange (ETDEWEB)

    Kapp, J.A.; Picqueuer, L.M. (eds.)

    1994-01-01

    This volume is divided into four sessions: fracture mechanics applications to high pressure vessels; high pressure code issues; high pressure design, analysis, and safety concerns; and military and other high pressure applications. Separate abstracts were prepared for eleven papers of this conference.

  18. Capillary pressure-saturation relations for supercritical CO2 and brine in limestone/dolomite sands: implications for geologic carbon sequestration in carbonate reservoirs.

    Science.gov (United States)

    Wang, Shibo; Tokunaga, Tetsu K

    2015-06-16

    In geologic carbon sequestration, capillary pressure (Pc)-saturation (Sw) relations are needed to predict reservoir processes. Capillarity and its hysteresis have been extensively studied in oil-water and gas-water systems, but few measurements have been reported for supercritical (sc) CO2-water. Here, Pc-Sw relations of scCO2 displacing brine (drainage), and brine rewetting (imbibition) were studied to understand CO2 transport and trapping behavior under reservoir conditions. Hysteretic drainage and imbibition Pc-Sw curves were measured in limestone sands at 45 °C under elevated pressures (8.5 and 12.0 MPa) for scCO2-brine, and in limestone and dolomite sands at 23 °C (0.1 MPa) for air-brine using a new computer programmed porous plate apparatus. scCO2-brine drainage and imbibition curves shifted to lower Pc relative to predictions based on interfacial tension, and therefore deviated from capillary scaling predictions for hydrophilic interactions. Fitting universal scaled drainage and imbibition curves show that wettability alteration resulted from scCO2 exposure over the course of months-long experiments. Residual trapping of the nonwetting phases was determined at Pc = 0 during imbibition. Amounts of trapped scCO2 were significantly larger than for those for air, and increased with pressure (depth), initial scCO2 saturation, and time. These results have important implications for scCO2 distribution, trapping, and leakage potential.

  19. Impact of high CO2 on the geochemistry of the coralline algae Lithothamnion glaciale

    Science.gov (United States)

    Ragazzola, F.; Foster, L. C.; Jones, C. J.; Scott, T. B.; Fietzke, J.; Kilburn, M. R.; Schmidt, D. N.

    2016-02-01

    Coralline algae are a significant component of the benthic ecosystem. Their ability to withstand physical stresses in high energy environments relies on their skeletal structure which is composed of high Mg-calcite. High Mg-calcite is, however, the most soluble form of calcium carbonate and therefore potentially vulnerable to the change in carbonate chemistry resulting from the absorption of anthropogenic CO2 by the ocean. We examine the geochemistry of the cold water coralline alga Lithothamnion glaciale grown under predicted future (year 2050) high pCO2 (589 μatm) using Electron microprobe and NanoSIMS analysis. In the natural and control material, higher Mg calcite forms clear concentric bands around the algal cells. As expected, summer growth has a higher Mg content compared to the winter growth. In contrast, under elevated CO2 no banding of Mg is recognisable and overall Mg concentrations are lower. This reduction in Mg in the carbonate undermines the accuracy of the Mg/Ca ratio as proxy for past temperatures in time intervals with significantly different carbonate chemistry. Fundamentally, the loss of Mg in the calcite may reduce elasticity thereby changing the structural properties, which may affect the ability of L. glaciale to efficiently function as a habitat former in the future ocean.

  20. A Highly Collimated, Young and Fast CO(2-1) Outflow in OMC1 South

    CERN Document Server

    Zapata, L A; Ho, P T P; Zhang, Q; Qi, C; Kurtz, S E; Zapata, Luis A.; Rodriguez, Luis F.; Ho, Paul T.P.; Zhang, Qizhou; Qi, Chunhua

    2005-01-01

    We present high angular resolution (~ 1''), sensitive CO(2-1) line observations of the region OMC1 South in the Orion Nebula made using the Submillimeter Array (SMA). We detect the CO(2-1) high velocity outflow that was first found by Rodriguez-Franco et al. (1999a) with the IRAM 30 m. Our observations resolve the outflow, whose velocity-integrated emission has a deconvolved width of 0.89'' \\pm 0.06'' (490 AU) and a projected length of ~ 48'' (21,000 AU) with very high redshifted and blueshifted gas with velocities of about \\pm 80 km/s. This outflow is among the most collimated (~ 3 degrees) and youngest outflows (600 yr) that have been reported. The data show that this collimated outflow has been blowing in the same direction during the last 600 yr. At high velocities, the CO(2-1) outflow traces an extremely collimated jet, while at lower velocities the CO emission traces an envelope possibly produced by entrainment of ambient gas. Furthermore, we also detect for the first time a millimeter wavelength contin...

  1. Impact of high CO2 on the geochemistry of the coralline algae Lithothamnion glaciale.

    Science.gov (United States)

    Ragazzola, F; Foster, L C; Jones, C J; Scott, T B; Fietzke, J; Kilburn, M R; Schmidt, D N

    2016-01-01

    Coralline algae are a significant component of the benthic ecosystem. Their ability to withstand physical stresses in high energy environments relies on their skeletal structure which is composed of high Mg-calcite. High Mg-calcite is, however, the most soluble form of calcium carbonate and therefore potentially vulnerable to the change in carbonate chemistry resulting from the absorption of anthropogenic CO2 by the ocean. We examine the geochemistry of the cold water coralline alga Lithothamnion glaciale grown under predicted future (year 2050) high pCO2 (589 μatm) using Electron microprobe and NanoSIMS analysis. In the natural and control material, higher Mg calcite forms clear concentric bands around the algal cells. As expected, summer growth has a higher Mg content compared to the winter growth. In contrast, under elevated CO2 no banding of Mg is recognisable and overall Mg concentrations are lower. This reduction in Mg in the carbonate undermines the accuracy of the Mg/Ca ratio as proxy for past temperatures in time intervals with significantly different carbonate chemistry. Fundamentally, the loss of Mg in the calcite may reduce elasticity thereby changing the structural properties, which may affect the ability of L. glaciale to efficiently function as a habitat former in the future ocean.

  2. Polar Ketone-Functionalized Metal-Organic Framework Showing a High CO2 Adsorption Performance.

    Science.gov (United States)

    Feng, Genfeng; Peng, Yuxin; Liu, Wei; Chang, Feifan; Dai, Yafei; Huang, Wei

    2017-03-06

    The incorporation of various functionalities into porous metal-organic frameworks (MOFs) represents an efficacious strategy to improving their gas adsorption properties. In this work, a carbonylated tetracarboxylic acid ligand (5,5'-carbonyldiisophthalic acid) was synthesized, and a ketone-functionalized MOF with exposed metal sites based on this ligand was formed successfully. Structural analysis reveals that the new MOF possesses channels decorated by the carbonyl groups and rhombicuboctahedral cages, with open Cu(II) sites pointing toward the cage center. The framework exhibits exceptionally high CO2 (46.7 wt % at 273 K and 1 bar) and H2 (2.8 wt % at 77 K and 1 bar) uptake. Furthermore, it displays high selectivities of CO2 adsorption over N2 and CH4 at 298 K.

  3. Enhancement of CO2 capture in limestone and dolomite granular beds by high intensity sound waves

    Science.gov (United States)

    Valverde, Jose Manuel; Perez-Ebri, Jose Manuel; Sanchez-Quintanilla, Miguel Angel

    2017-06-01

    The calcium looping (CaL) process, based on the calcination/carbonation of CaCO3 at high temperatures, has emerged in the last years as a potentially low cost technology for CO2 capture. In this work, we show that the application of high intensity sound waves to granular beds of limestone and dolomite in a CaL reactor enhances significantly their multicycle CO2 capture capacity. Sound waves are applied either during the calcination stage of each CaL cycle or in the carbonation stage. The effect of sound is to intensify the transfer of heat, mass and momentum and is more marked when sound is applied during calcination by promoting CaO regeneration. The application of sound would allow reducing the calcination temperature thereby mitigating the decay of capture capacity with the number of cycles and reducing the energy penalty of the technology.

  4. High Temperature PEM Fuel Cell Performance Characterisation with CO and CO2 using Electrochemical Impedance Spectroscopy

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl; Vang, Jakob Rabjerg; Kær, Søren Knudsen

    2011-01-01

    In this work, extensive electrochemical impedance measurements have been conducted on a 45 cm2 BASF Celtec P2100 high temperature PEM MEA. The fuel cell performance has been examined subject to some of the poisoning effects experienced when running on a reformate gas. The impedance is measured...... at different temperatures, currents, and different content of CO, CO2 and H2 in the anode gas. The impedance spectrum at each operating point is fitted to an equivalent circuit and an analysis to identify the different mechanisms governing the impedance is performed. The trends observed, when varying...... the operating conditions under pure H2, generally show good agreement with results from the literature. When adding CO and CO2 to the anode gas the entire frequency spectrum is affected, and especially the measurements conducted at low temperatures and high CO concentrations reveal undesirable transient effects....

  5. Analysis of Pacific oyster larval proteome and its response to high-CO2

    KAUST Repository

    Dineshram, R.

    2012-10-01

    Most calcifying organisms show depressed metabolic, growth and calcification rates as symptoms to high-CO2 due to ocean acidification (OA) process. Analysis of the global expression pattern of proteins (proteome analysis) represents a powerful tool to examine these physiological symptoms at molecular level, but its applications are inadequate. To address this knowledge gap, 2-DE coupled with mass spectrophotometer was used to compare the global protein expression pattern of oyster larvae exposed to ambient and to high-CO2. Exposure to OA resulted in marked reduction of global protein expression with a decrease or loss of 71 proteins (18% of the expressed proteins in control), indicating a wide-spread depression of metabolic genes expression in larvae reared under OA. This is, to our knowledge, the first proteome analysis that provides insights into the link between physiological suppression and protein down-regulation under OA in oyster larvae. © 2012 Elsevier Ltd.

  6. Are fern stomatal responses to different stimuli coordinated? Testing responses to light, vapor pressure deficit, and CO2 for diverse species grown under contrasting irradiances.

    Science.gov (United States)

    Creese, Chris; Oberbauer, Steve; Rundel, Phil; Sack, Lawren

    2014-10-01

    The stomatal behavior of ferns provides an excellent system for disentangling responses to different environmental signals, which balance carbon gain against water loss. Here, we measured responses of stomatal conductance (gs ) to irradiance, CO2 , and vapor pressure deficit (VPD) for 13 phylogenetically diverse species native to open and shaded habitats, grown under high- and low-irradiance treatments. We tested two main hypotheses: that plants adapted and grown in high-irradiance environments would have greater responsiveness to all stimuli given higher flux rates; and that species' responsiveness to different factors would be correlated because of the relative simplicity of fern stomatal control. We found that species with higher light-saturated gs had larger responses, and that plants grown under high irradiance were more responsive to all stimuli. Open habitat species showed greater responsiveness to irradiance and CO2 , but lower responsiveness to VPD; a case of plasticity and adaptation tending in different directions. Responses of gs to irradiance and VPD were positively correlated across species, but CO2 responses were independent and highly variable. The novel finding of correlations among stomatal responses to different stimuli suggests coordination of hydraulic and photosynthetic signaling networks modulating fern stomatal responses, which show distinct optimization at growth and evolutionary time-scales.

  7. Highly Regioselective Palladium-Catalyzed Carboxylation of Allylic Alcohols with CO2.

    Science.gov (United States)

    Mita, Tsuyoshi; Higuchi, Yuki; Sato, Yoshihiro

    2015-11-01

    Various allylic alcohols were carboxylated in the presence of a catalytic amount of PdCl2 and PPh3 using ZnEt2 as a stoichiometric transmetalation agent under a CO2 atmosphere (1 atm). This carboxylation proceeded in a highly regioselective manner to afford branched carboxylic acids predominantly. The β,γ-unsaturated carboxylic acid thus obtained was successfully converted into an optically active γ-butyrolactone, a known intermediate of (R)-baclofen.

  8. Effects of high CO2 and warming on a Baltic Sea microzooplankton community

    OpenAIRE

    Henriette G Horn; Boersma, Maarten; Garzke, Jessica; Löder, Martin G. J.; Sommer, Ulrich; Aberle, Nicole

    2016-01-01

    Global warming and ocean acidification are among the most important stressors for aquatic ecosystems in the future. To investigate their direct and indirect effects on a near-natural plankton community, a multiple-stressor approach is needed. Hence, we set up mesocosms in a full-factorial design to study the effects of both warming and high CO2 on a Baltic Sea autumn plankton community, concentrating on the impacts on microzooplankton (MZP). MZP abundance, biomass, and species composition wer...

  9. High Efficiency Mask Based Laser Materials Processing with TEA-CO2 - and Excimer Laser

    DEFF Research Database (Denmark)

    Bastue, Jens; Olsen, Flemmming Ove

    1997-01-01

    In general, mask based laser materials processing techniques suffer from a very low energy efficiency. We have developed a simple device called an energy enhancer, which is capable of increasing the energy efficiency of typical mask based laser materials processing systems. A short review...... line marking with TEA-CO2 laser of high speed canning lines. The second one is manufactured for marking or microdrilling with excimer laser....

  10. Hierarchical NiCo2O4@NiCo2O4 core/shell nanoflake arrays as high-performance supercapacitor materials.

    Science.gov (United States)

    Liu, Xiayuan; Shi, Shaojun; Xiong, Qinqin; Li, Lu; Zhang, Yijun; Tang, Hong; Gu, Changdong; Wang, Xiuli; Tu, Jiangping

    2013-09-11

    Hierarchical NiCo2O4@NiCo2O4 core/shell nanoflake arrays on nickel foam for high-performance supercapacitors are fabricated by a two-step solution-based method which involves in hydrothermal process and chemical bath deposition. Compared with the bare NiCo2O4 nanoflake arrays, the core/shell electrode displays better pseudocapacitive behaviors in 2 M KOH, which exhibits high areal specific capacitances of 1.55 F cm(-2) at 2 mA cm(-2) and 1.16 F cm(-2) at 40 mA cm(-2) before activation as well as excellent cycling stability. The specific capacitance can achieve a maximum of 2.20 F cm(-2) at a current density of 5 mA cm(-2), which can still retain 2.17 F cm(-2) (98.6% retention) after 4000 cycles. The enhanced pseudocapacitive performances are mainly attributed to its unique core/shell structure, which provides fast ion and electron transfer, a large number of active sites, and good strain accommodation.

  11. CO2 laser scribe of chemically strengthened glass with high surface compressive stress

    Science.gov (United States)

    Li, Xinghua; Vaddi, Butchi R.

    2011-03-01

    Chemically strengthened glass is finding increasing use in handheld, IT and TV cover glass applications. Chemically strengthened glass, particularly with high (>600MPa) compressive stress (CS) and deeper depth of layer (DOL), enable to retain higher strength after damage than non-strengthened glass when its surface is abraded. Corning Gorilla® Glass has particularly proven to be advantageous over competition in this attribute. However, due to high compressive stress (CS) and Central Tension (CT) cutting ion-exchanged glass is extremely difficult and often unmanageable where ever the applications require dicing the chemically strengthened mother glass into smaller parts. We at Corning have developed a CO2 laser scribe and break method (LSB) to separate a single chemically strengthened glass sheet into plurality of devices. Furthermore, CO2 laser scribe and break method enables debris-free separation of glass with high edge strength due to its mirror-like edge finish. We have investigated laser scribe and break of chemically strengthened glass with surface compressive stress greater than 600 MPa. In this paper we present the results of CO2 scribe and break method and underlying laser scribing mechanisms. We demonstrated cross-scribe repetitively on GEN 2 size chemically strengthened glass substrates. Specimens for edge strength measurements of different thickness and CS/DOL glass were prepared using the laser scribe and break technique. The specimens were tested using the standard 4-point bend method and the results are presented.

  12. Exploring highly porous Co2P nanowire arrays for electrochemical energy storage

    Science.gov (United States)

    Chen, Minghua; Zhou, Weiwei; Qi, Meili; Yin, Jinghua; Xia, Xinhui; Chen, Qingguo

    2017-02-01

    Controllable synthesis of mesoporous conductive metal phosphide nanowire arrays is critical for developing highly-active electrodes of alkaline batteries. Herein we develop a simple combined strategy for rational synthesis of mesoporous Co2P nanowire arrays by hydrothermal-phosphorization method. Free-standing mesoporous Co2P nanowires consisting of interconnected nanoparticles of 10-20 nm grow vertically to the substrate forming arrays. High electrical conductivity and large porosity are obtained in the arrays architecture. When characterized as the cathode of high-rate alkaline batteries, the designed Co2P nanowire arrays are proven with good electrochemical performance with a large capacity (133 mAh g-1 at 1 A g-1), stable cycling life with a capacity retention of almost 100% after 5000 cycles at 10 A g-1 owing to the mesoporous nanowire structure with short ion/electron transport path. Our synthetic approach can be useful for construction of other porous metal phosphide arrays for energy storage and conversion.

  13. Enhanced macroboring and depressed calcification drive net dissolution at high-CO2 coral reefs.

    Science.gov (United States)

    Enochs, Ian C; Manzello, Derek P; Kolodziej, Graham; Noonan, Sam H C; Valentino, Lauren; Fabricius, Katharina E

    2016-11-16

    Ocean acidification (OA) impacts the physiology of diverse marine taxa; among them corals that create complex reef framework structures. Biological processes operating on coral reef frameworks remain largely unknown from naturally high-carbon-dioxide (CO2) ecosystems. For the first time, we independently quantified the response of multiple functional groups instrumental in the construction and erosion of these frameworks (accretion, macroboring, microboring, and grazing) along natural OA gradients. We deployed blocks of dead coral skeleton for roughly 2 years at two reefs in Papua New Guinea, each experiencing volcanically enriched CO2, and employed high-resolution micro-computed tomography (micro-CT) to create three-dimensional models of changing skeletal structure. OA conditions were correlated with decreased calcification and increased macroboring, primarily by annelids, representing a group of bioeroders not previously known to respond to OA. Incubation of these blocks, using the alkalinity anomaly methodology, revealed a switch from net calcification to net dissolution at a pH of roughly 7.8, within Intergovernmental Panel on Climate Change's (IPCC) predictions for global ocean waters by the end of the century. Together these data represent the first comprehensive experimental study of bioerosion and calcification from a naturally high-CO2 reef ecosystem, where the processes of accelerated erosion and depressed calcification have combined to alter the permanence of this essential framework habitat. © 2016 The Authors.

  14. Design of highly active binary catalyst systems for CO2/epoxide copolymerization: polymer selectivity, enantioselectivity, and stereochemistry control.

    Science.gov (United States)

    Lu, Xiao-Bing; Shi, Lei; Wang, Yi-Ming; Zhang, Rong; Zhang, Ying-Ju; Peng, Xiao-Jun; Zhang, Zhi-Chao; Li, Bo

    2006-02-01

    Asymmetric, regio- and stereoselective alternating copolymerization of CO(2) and racemic aliphatic epoxides proceeds effectively under mild temperature and pressure by using a binary catalyst system of a chiral tetradentate Schiff base cobalt complex [SalenCo(III)X] as the electrophile in conjunction with an ionic organic ammonium salt or a sterically hindered strong organic base as the nucleophile. The substituent groups on the aromatic rings, chiral diamine backbone, and axial X group of the electrophile, as well as the nucleophilicity, leaving ability, and coordination ability of the nucleophile, all significantly affect the catalyst activity, polymer selectivity, enantioselectivity, and stereochemistry. A bulky chiral cyclohexenediimine backbone complex [SalcyCo(III)X] with an axial X group of poor leaving ability as the electrophile, combined with a bulky nuclephile with poor leaving ability and low coordination ability, is an ideal binary catalyst system for the copolymerization of CO(2) and a racemic aliphatic epoxide to selectively produce polycarbonates with relatively high enantioselectivity, >95% head-to-tail connectivity, and >99% carbonate linkages. A fast copolymerization of CO(2) and epoxides was observed when the concentration of the electrophile or/and the nucleophile was increased, and the number of polycarbonate chains was proportional to the concentration of the nucleophile. Electrospray ionization mass spectrometry, in combination with a kinetic study, showed that the copolymerization involved the coordination activation of the monomer by the electrophile and polymer chain growth predominately occurring in the nucleophile. Both the enantiomorphic site effect resulting from the chiral electrophile and the polymer chain end effect mainly from the bulky nucleophile cooperatively control the stereochemistry of the CO(2)/epoxide copolymerization.

  15. CO2 flux through a Wyoming seasonal snowpack: Diffusional and pressure pumping effects

    Science.gov (United States)

    William Massman; Richard Sommerfeld; Karl Zeller; Ted Hehn; Laura Hudnell; Shannon Rochelle

    1995-01-01

    The movement of trace gases through porous media results from a combination of molecular diffusion and natural convection forced by turbulent atmospheric pressure pumping. This study presents observational and modeling results of an experiment to estimate the C02 flux through a seasonal snowpack in the Rocky Mountains of southern Wyoming, USA. Profiles of C02 mole...

  16. VUV-absorption cross section of CO2 at high temperatures and impact on exoplanet atmospheres

    CERN Document Server

    Venot, Olivia; Bénilan, Yves; Gazeau, Marie-Claire; Hébrard, Eric; Larcher, Gwenaelle; Schwell, Martin; Dobrijevic, Michel; Selsis, Franck

    2015-01-01

    Ultraviolet (UV) absorption cross sections are an essential ingredient of photochemical atmosphere models. Exoplanet searches have unveiled a large population of short-period objects with hot atmospheres, very different from what we find in our solar system. Transiting exoplanets whose atmospheres can now be studied by transit spectroscopy receive extremely strong UV fluxes and have typical temperatures ranging from 400 to 2500 K. At these temperatures, UV photolysis cross section data are severely lacking. Our goal is to provide high-temperature absorption cross sections and their temperature dependency for important atmospheric compounds. This study is dedicated to CO2, which is observed and photodissociated in exoplanet atmospheres. We performed these measurements for the 115 - 200 nm range at 300, 410, 480, and 550 K. In the 195 - 230 nm range, we worked at seven temperatures between 465 and 800 K. We found that the absorption cross section of CO2 is very sensitive to temperature, especially above 160 nm....

  17. Advances in CO2 laser fabrication for high power fibre laser devices

    Science.gov (United States)

    Boyd, Keiron; Rees, Simon; Simakov, Nikita; Daniel, Jae M. O.; Swain, Robert; Mies, Eric; Hemming, Alexander; Clarkson, W. A.; Haub, John

    2016-03-01

    CO2 laser processing facilitates contamination free, rapid, precise and reproducible fabrication of devices for high power fibre laser applications. We present recent progress in fibre end-face preparation and cladding surface modification techniques. We demonstrate a fine feature CO2 laser process that yields topography significantly smaller than that achieved with typical mechanical cleaving processes. We also investigate the side processing of optical fibres for the fabrication of all-glass cladding light strippers and demonstrate extremely efficient cladding mode removal. We apply both techniques to fibres with complex designs containing multiple layers of doped and un-doped silica as well as shaped and circularly symmetric structures. Finally, we discuss the challenges and approaches to working with various fibre and glass-types.

  18. A rod-packing microporous hydrogen-bonded organic framework for highly selective separation of C2H2/CO2at room temperature

    KAUST Repository

    Li, Peng

    2014-11-13

    Self-assembly of a trigonal building subunit with diaminotriazines (DAT) functional groups leads to a unique rod-packing 3D microporous hydrogen-bonded organic framework (HOF-3). This material shows permanent porosity and demonstrates highly selective separation of C2H2/CO2 at ambient temperature and pressure.

  19. A microporous Cu-MOF with optimized open metal sites and pore spaces for high gas storage and active chemical fixation of CO2.

    Science.gov (United States)

    Gao, Chao-Ying; Tian, Hong-Rui; Ai, Jing; Li, Lei-Jiao; Dang, Song; Lan, Ya-Qian; Sun, Zhong-Ming

    2016-09-25

    A microporous Cu-MOF with optimized open metal sites and pore space was constructed based on a designed bent ligand; it exhibits high-capacity multiple gas storage under atmospheric pressure and efficient catalytic activity for chemical fixation of CO2 under mild conditions.

  20. A DC excited waveguide multibeam CO2 laser using high frequency pre-ionization technique

    Indian Academy of Sciences (India)

    S V Deshmukh; C Rajagopalan

    2003-12-01

    High power industrial multibeam CO2 lasers consist of a large number of closely packed parallel glass discharge tubes sharing a common plane parallel resonator. Every discharge tube forms an independent resonator. When discharge tubes of smaller diameter are used and the Fresnel number $ \\ll 1$ for all resonators, they operate in waveguide mode. Waveguide modes have excellent discrimination of higher order modes. A DC excited waveguide multibeam CO2 laser is reported having six glass discharge tubes. Simultaneous excitation of DC discharge in all sections is achieved by producing pre-ionization using an auxiliary high frequency pulsed discharge along with its other advantages. Maximum 170 W output power is obtained with all beams operating in EH11 waveguide mode. The specific power of 28 W/m is much higher as compared to similar AC excited waveguide multibeam CO2 lasers. Theoretical analysis shows that all resonators of this laser will support only EH11 mode. This laser is successfully used for woodcutting.

  1. Protective Response Mechanisms to Heat Stress in Interaction with High [CO2] Conditions in Coffea spp.

    Science.gov (United States)

    Martins, Madlles Q.; Rodrigues, Weverton P.; Fortunato, Ana S.; Leitão, António E.; Rodrigues, Ana P.; Pais, Isabel P.; Martins, Lima D.; Silva, Maria J.; Reboredo, Fernando H.; Partelli, Fábio L.; Campostrini, Eliemar; Tomaz, Marcelo A.; Scotti-Campos, Paula; Ribeiro-Barros, Ana I.; Lidon, Fernando J. C.; DaMatta, Fábio M.; Ramalho, José C.

    2016-01-01

    Modeling studies have predicted that coffee crop will be endangered by future global warming, but recent reports highlighted that high [CO2] can mitigate heat impacts on coffee. This work aimed at identifying heat protective mechanisms promoted by CO2 in Coffea arabica (cv. Icatu and IPR108) and Coffea canephora cv. Conilon CL153. Plants were grown at 25/20°C (day/night), under 380 or 700 μL CO2 L−1, and then gradually submitted to 31/25, 37/30, and 42/34°C. Relevant heat tolerance up to 37/30°C for both [CO2] and all coffee genotypes was observed, likely supported by the maintenance or increase of the pools of several protective molecules (neoxanthin, lutein, carotenes, α-tocopherol, HSP70, raffinose), activities of antioxidant enzymes, such as superoxide dismutase (SOD), ascorbate peroxidase (APX), glutathione reductase (GR), catalase (CAT), and the upregulated expression of some genes (ELIP, Chaperonin 20). However, at 42/34°C a tolerance threshold was reached, mostly in the 380-plants and Icatu. Adjustments in raffinose, lutein, β-carotene, α-tocopherol and HSP70 pools, and the upregulated expression of genes related to protective (ELIPS, HSP70, Chape 20, and 60) and antioxidant (CAT, CuSOD2, APX Cyt, APX Chl) proteins were largely driven by temperature. However, enhanced [CO2] maintained higher activities of GR (Icatu) and CAT (Icatu and IPR108), kept (or even increased) the Cu,Zn-SOD, APX, and CAT activities, and promoted a greater upregulation of those enzyme genes, as well as those related to HSP70, ELIPs, Chaperonins in CL153, and Icatu. These changes likely favored the maintenance of reactive oxygen species (ROS) at controlled levels and contributed to mitigate of photosystem II photoinhibition at the highest temperature. Overall, our results highlighted the important role of enhanced [CO2] on the coffee crop acclimation and sustainability under predicted future global warming scenarios. PMID:27446174

  2. Effect of Suction Nozzle Pressure Drop on the Performance of an Ejector-Expansion Transcritical CO2 Refrigeration Cycle

    Directory of Open Access Journals (Sweden)

    Zhenying Zhang

    2014-08-01

    Full Text Available The basic transcritical CO2 systems exhibit low energy efficiency due to their large throttling loss. Replacing the throttle valve with an ejector is an effective measure for recovering some of the energy lost in the expansion process. In this paper, a thermodynamic model of the ejector-expansion transcritical CO2 refrigeration cycle is developed. The effect of the suction nozzle pressure drop (SNPD on the cycle performance is discussed. The results indicate that the SNPD has little impact on entrainment ratio. There exists an optimum SNPD which gives a maximum recovered pressure and COP under a specified condition. The value of the optimum SNPD mainly depends on the efficiencies of the motive nozzle and the suction nozzle, but it is essentially independent of evaporating temperature and gas cooler outlet temperature. Through optimizing the value of SNPD, the maximum COP of the ejector-expansion cycle can be up to 45.1% higher than that of the basic cycle. The exergy loss of the ejector-expansion cycle is reduced about 43.0% compared with the basic cycle.

  3. Characterization of growth and photosynthesis of Synechocystis sp. PCC 6803 cultures under reduced atmospheric pressures and enhanced CO2 levels

    Science.gov (United States)

    Kanervo, Eira; Lehto, Kirsi; Ståhle, Kurt; Lehto, Harry; Mäenpää, Pirkko

    2005-01-01

    Efficient life support systems are needed to maintain adequate oxygen, water and food for humans in extraterrestrial conditions. On the near-Earth missions, these are supplied by transport from the Earth, and by physical and chemical cleaning and recycling, but on long-term missions to far-away destinations, such as Mars, on-site production of the consumables may be required. Molecular oxygen and organic biomass can be most efficiently produced biologically, i.e. by photosynthesis. The conditions on Mars are distinctly harsh, and they strictly limit the growth and survival of any photosynthetic organisms to artificially maintained containments. For obtaining most economical growth conditions, minimal parameters need to be determined which still allow efficient growth of photosynthetic organisms. In this work we are testing how reduced air pressures (hypobaria) and increased CO2 concentrations, i.e. features typical for Martian conditions, affect the durability, growth and photosynthesis of laboratory strains of cyanobacteria, a group of prokaryotic organisms capable of plant-like photosynthesis. Our preliminary results show that air pressures down to 0.1 atm or CO2 concentrations up to 20% have no harmful effect on the photosynthetic oxygen production or growth rate of the cyanobacterial model species, Synechocystis sp. PCC 6803.

  4. A Convective Cloud Feedback and Spring Arctic Sea Ice Forecasting at High CO2

    Science.gov (United States)

    Abbot, D. S.; Walker, C. C.; Tziperman, E.

    2008-12-01

    Winter and spring sea ice dramatically cool the Arctic climate during the the coldest seasons of the year and may have remote effects on global climate as well. Accurate forecasting of winter and spring sea ice has significant social and economic benefits. Such forecasting requires the identification and understanding of all the feedbacks that can affect sea ice. A novel convective cloud feedback has recently been proposed in the context of explaining equable climates, e.g., the climate of the Eocene, that might be important for determining future winter and spring sea ice. In this feedback CO2 -initiated warming leads to sea ice reduction, which which allows increased heat and moisture fluxes from the ocean surface, which destabilizes the atmosphere and leads to atmospheric convection. This atmospheric convection produces high and optically thick convective clouds and increases high-altitude moisture levels, both of which trap outgoing longwave radiation and therefore result in a further warming and sea ice loss. Here it is shown that this convective cloud feedback is active during winter in the coupled ocean-sea ice-land-atmosphere global climate models used for the 1%/year CO2 increase to quadrupling scenario of the Intergovernmental Panel on Climate Change (IPCC) fourth assessment report. It is further shown that the convective cloud feedback plays an essential role in the elimination of maximum seasonal (spring) sea ice in NCAR's CCSM model, one of the IPCC models that nearly completely loses spring sea ice. This is done by performing a sensitivity analysis using the atmospheric component of CCSM, run at a CO2 concentration of 1120 ppm, by selectively disabling the convective cloud feedback and the ocean heat transport feedback. The result is that both feedbacks are necessary for the elimination of spring sea ice at this CO2 concentration.

  5. Net ecosystem exchange of CO2 with rapidly changing high Arctic landscapes.

    Science.gov (United States)

    Emmerton, Craig A; St Louis, Vincent L; Humphreys, Elyn R; Gamon, John A; Barker, Joel D; Pastorello, Gilberto Z

    2016-03-01

    High Arctic landscapes are expansive and changing rapidly. However, our understanding of their functional responses and potential to mitigate or enhance anthropogenic climate change is limited by few measurements. We collected eddy covariance measurements to quantify the net ecosystem exchange (NEE) of CO2 with polar semidesert and meadow wetland landscapes at the highest latitude location measured to date (82°N). We coupled these rare data with ground and satellite vegetation production measurements (Normalized Difference Vegetation Index; NDVI) to evaluate the effectiveness of upscaling local to regional NEE. During the growing season, the dry polar semidesert landscape was a near-zero sink of atmospheric CO2 (NEE: -0.3 ± 13.5 g C m(-2) ). A nearby meadow wetland accumulated over 300 times more carbon (NEE: -79.3 ± 20.0 g C m(-2) ) than the polar semidesert landscape, and was similar to meadow wetland NEE at much more southerly latitudes. Polar semidesert NEE was most influenced by moisture, with wetter surface soils resulting in greater soil respiration and CO2 emissions. At the meadow wetland, soil heating enhanced plant growth, which in turn increased CO2 uptake. Our upscaling assessment found that polar semidesert NDVI measured on-site was low (mean: 0.120-0.157) and similar to satellite measurements (mean: 0.155-0.163). However, weak plant growth resulted in poor satellite NDVI-NEE relationships and created challenges for remotely detecting changes in the cycling of carbon on the polar semidesert landscape. The meadow wetland appeared more suitable to assess plant production and NEE via remote sensing; however, high Arctic wetland extent is constrained by topography to small areas that may be difficult to resolve with large satellite pixels. We predict that until summer precipitation and humidity increases enough to offset poor soil moisture retention, climate-related changes to productivity on polar semideserts may be restricted.

  6. Granular bamboo-derived activated carbon for high CO(2) adsorption: the dominant role of narrow micropores.

    Science.gov (United States)

    Wei, Haoran; Deng, Shubo; Hu, Bingyin; Chen, Zhenhe; Wang, Bin; Huang, Jun; Yu, Gang

    2012-12-01

    Cost-effective biomass-derived activated carbons with a high CO(2) adsorption capacity are attractive for carbon capture. Bamboo was found to be a suitable precursor for activated carbon preparation through KOH activation. The bamboo size in the range of 10-200 mesh had little effect on CO(2) adsorption, whereas the KOH/C mass ratio and activation temperature had a significant impact on CO(2) adsorption. The bamboo-derived activated carbon had a high adsorption capacity and excellent selectivity for CO(2) , and also the adsorption process was highly reversible. The adsorbed amount of CO(2) on the granular activated carbon was up to 7.0 mmol g(-1) at 273 K and 1 bar, which was higher than almost all carbon materials. The pore characteristics of activated carbons responsible for high CO(2) adsorption were fully investigated. Based on the analysis of narrow micropore size distribution of several activated carbons prepared under different conditions, a more accurate micropore range contributing to CO(2) adsorption was proposed. The volume of micropores in the range of 0.33-0.82 nm had a good linear relationship with CO(2) adsorption at 273 K and 1 bar, and the narrow micropores of about 0.55 nm produced the major contribution, which could be used to evaluate CO(2) adsorption on activated carbons.

  7. Test and Analysis on Phase Features of High-CO2 Condensate Gas%高含CO2凝析气相态测试及分析

    Institute of Scientific and Technical Information of China (English)

    余华杰; 王星; 谭先红; 田波

    2013-01-01

    To determine a suitable development mode and enhance condensate oil recovery in high-CO2 condensate gas reservoir, the phase changing behavior of condensate gas flow in the development process was identified. The HTHP Multi-functional Fluid Analyzer was used in single flash vaporization test,dew point pressure test, constant component expansion test, and constant volume depletion test for high-CO2 condensate gas samples with different mole fractions,and the impacts of such fractions on the phase behavior and HP physical parameters were also compared. With higher mole fraction of CO2, the rate of retrograde condensation dropped,the peak of retrograde condensation liquid decreased by about 15%,the recovery factor of condensate oil increased by about 20%,the recovery of natural gas was about 85%,and the phase envelope curve shrank inwards. CO2 in the system contributes to higher condensate recovery by inhibiting its retrograde condensation and enhancing the retrograde vaporization. It is significant for determining a reasonable production strategy.%为了制定高含CO2凝析气藏的合理开发方式、提高凝析油采收率,需要了解高含CO2的凝析气流体在开发过程中存在的复杂相变行为.采用高温高压多功能地层流体分析仪,对不同摩尔分数CO2凝析气体系样品进行了单次闪蒸实验、露点压力测试、等组分膨胀实验和定容衰竭实验,对比分析了CO2摩尔分数对凝析气体系高压物性参数和相态特征的影响.研究结果表明,随着CO2摩尔分数的增加,凝析油的反凝析速度减缓,且最大反凝析液量减小约15%、凝析油的采出程度增加约20%、天然气采出程度为85%左右、相包络线向内收缩.富含CO2凝析气体系中的CO2既有利于抑制凝析油的反凝析,又有利于增强凝析油的反蒸发,对于提高凝析油采收率具有显著效果.

  8. Development of a 1 J short pulse tunable TEA CO2 laser with high energy stability

    Science.gov (United States)

    Kumar, Manoj; Reghu, T.; Biswas, A. K.; Bhargav, Pankaj; Pakhare, J. S.; Kumar, Shailesh; Verma, Abrat; Mandloi, Vagesh; Kukreja, L. M.

    2014-12-01

    The design, development and operational characteristics of a 1 J, repetitively pulsed, line tunable TEA CO2 laser producing nearly tail free short pulses (~170 ns) suitable for laser isotope separation is discussed. Tail free short laser pulses were generated by employing a nitrogen lean gaseous active medium. Use of an indigenously developed stable pulsed power supply, uniform and intense UV spark pre-ionization and optimum gas purging with catalytic regeneration to control the deleterious oxygen accumulation helps generate laser pulses with high energy stability. Integration of a sensitive arc detection system allows long term arc-free operation of the laser and protects it from catastrophic failure. Laser pulses in more than 90 lines in 10.6 μm and 9.6 μm bands of CO2 laser spectrum with energy about 1 J in as many as 50 lines could be generated with a typical efficiency of about 4%. A typical pulse to pulse energy stability of ±1.4% was obtained during one hour of continuous operation of the TEA CO2 laser at 75 Hz.

  9. Study on Laser Transformation Hardening of HT250 by High Speed Axis Flow CO2 Laser

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    In this article, laser transformation hardening of HT250 material by high speed axis flow CO2 laser was investigated for first time in China. Appropriate laser hardening parameters, such as laser energy power P(W), laser scanning rate V(m/min),were optimized through a number of experiments. The effect of the mentioned parameters on the hardened zone, including its case depth, microhardness distributions etc., were analyzed. Through the factual experiments, it is proved that axial flow CO2 laser, which commonly outputs low mode laser beam, can also treat materials as long as the treating parameters used are rational. During the experiments, the surface qualities of some specimens treated by some parameters were found to be enhanced, which does not coincide with the former results. Furthermore in the article, the abnormal phenomenon observed in the experiments is discussed. According to the experimental results, the relationship between laser power density q and scanning rate V is shown in a curve and the corresponding formulation, which have been proved to be valuable for choosing the parameters of laser transformation hardening by axial flow CO2 lasers, was also given.

  10. Highly efficient photochemical HCOOH production from CO2 and water using an inorganic system

    Directory of Open Access Journals (Sweden)

    Satoshi Yotsuhashi

    2012-12-01

    Full Text Available We have constructed a system that uses solar energy to react CO2 with water to generate formic acid (HCOOH at an energy conversion efficiency of 0.15%. It consists of an AlGaN/GaN anode photoelectrode and indium (In cathode that are electrically connected outside of the reactor cell. High energy conversion efficiency is realized due to a high quantum efficiency of 28% at 300 nm, attributable to efficient electron-hole separation in the semiconductor's heterostructure. The efficiency is close to that of natural photosynthesis in plants, and what is more, the reaction product (HCOOH can be used as a renewable energy source.

  11. Edge-functionalized nanoporous carbons for high adsorption capacity and selectivity of CO2 over N2

    Science.gov (United States)

    Zhou, Sainan; Guo, Chen; Wu, Zhonghua; Wang, Maohuai; Wang, Zhaojie; Wei, Shuxian; Li, Shaoren; Lu, Xiaoqing

    2017-07-01

    Single-component adsorption and competitive behavior of binary CO2/N2 mixture in the edge-functionalized nanoporous carbons (NPCs) were investigated by grand canonical Monte Carlo simulation. Results demonstrated that edge-functionalization effectively improved the pore topology and morphological characteristics of NPCs. Evaluation of adsorption capacity and analyses of the isosteric heat and radial distribution functions confirmed that edge-functionalization can evidently enhance the single-component adsorption of CO2/N2. Temperature had a negative effect on the single-component adsorption of CO2/N2 whereas pressure had a positive effect before adsorption reaches a stable equilibrium state. Edge-functionalization can significantly increase the selectivity of CO2 over N2 in NPCs, which demonstrate the following sequence according to selectivity: NH2sbnd NPC > COOHsbnd NPC > OHsbnd NPC > Hsbnd NPC > NPC. The increased CO2 molar fraction in the binary CO2/N2 mixture decreased the selectivity and saturation pressure to reach a stable equilibrium state. Overall, this work highlighted the effects of edge-functionalization on the adsorption and separation of CO2/N2 in NPCs, and provided an effective strategy for designing and screening adsorbent materials for carbon capture and separation.

  12. High-performance modeling of CO2 sequestration by coupling reservoir simulation and molecular dynamics

    KAUST Repository

    Bao, Kai

    2013-01-01

    The present work describes a parallel computational framework for CO2 sequestration simulation by coupling reservoir simulation and molecular dynamics (MD) on massively parallel HPC systems. In this framework, a parallel reservoir simulator, Reservoir Simulation Toolbox (RST), solves the flow and transport equations that describe the subsurface flow behavior, while the molecular dynamics simulations are performed to provide the required physical parameters. Numerous technologies from different fields are employed to make this novel coupled system work efficiently. One of the major applications of the framework is the modeling of large scale CO2 sequestration for long-term storage in the subsurface geological formations, such as depleted reservoirs and deep saline aquifers, which has been proposed as one of the most attractive and practical solutions to reduce the CO2 emission problem to address the global-warming threat. To effectively solve such problems, fine grids and accurate prediction of the properties of fluid mixtures are essential for accuracy. In this work, the CO2 sequestration is presented as our first example to couple the reservoir simulation and molecular dynamics, while the framework can be extended naturally to the full multiphase multicomponent compositional flow simulation to handle more complicated physical process in the future. Accuracy and scalability analysis are performed on an IBM BlueGene/P and on an IBM BlueGene/Q, the latest IBM supercomputer. Results show good accuracy of our MD simulations compared with published data, and good scalability are observed with the massively parallel HPC systems. The performance and capacity of the proposed framework are well demonstrated with several experiments with hundreds of millions to a billion cells. To our best knowledge, the work represents the first attempt to couple the reservoir simulation and molecular simulation for large scale modeling. Due to the complexity of the subsurface systems

  13. CO2 as a regulator for the controllable preparation of highly dispersed chitosan-supported Pd catalysts in ionic liquids.

    Science.gov (United States)

    Xue, Zhimin; Sun, Xiaofu; Li, Zhonghao; Mu, Tiancheng

    2015-07-11

    A controllable synthetic route has been developed for the preparation of chitosan supported Pd catalysts in an ionic liquid, 1-butyl-3-methylimidazolium acetate ([Bmim]OAc), by using compressed CO2 as the anti-solvent and regulator. It was found that the dispersion of Pd particles on chitosan and the catalytic activity of the as-prepared catalysts for the hydrogenation of styrene could be tuned by changing the pressure of CO2.

  14. Sensitivity of CO2 migration estimation on reservoir temperature and pressure uncertainty

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, Preston; Doughty, Christine

    2008-11-01

    The density and viscosity of supercritical CO{sub 2} are sensitive to pressure and temperature (PT) while the viscosity of brine is sensitive primarily to temperature. Oil field PT data in the vicinity of WESTCARB's Phase III injection pilot test site in the southern San Joaquin Valley, California, show a range of PT values, indicating either PT uncertainty or variability. Numerical simulation results across the range of likely PT indicate brine viscosity variation causes virtually no difference in plume evolution and final size, but CO{sub 2} density variation causes a large difference. Relative ultimate plume size is almost directly proportional to the relative difference in brine and CO{sub 2} density (buoyancy flow). The majority of the difference in plume size occurs during and shortly after the cessation of injection.

  15. Effect of Different High CO2 Concentrations on the Development of 2-cell Mouse Embryos in vitro

    Institute of Scientific and Technical Information of China (English)

    Li-hua LU; Wei-jie ZHU

    2003-01-01

    Objective To investigate effects of different high CO2 concentrations on the development of 2-cell mouse embryos in vitroMethods At levels of 5% CO2 (control group), 5.7% CO2, 6.0% CO2 and 15% CO2, embryos were incubated in drops with CZB medium, respectively, and the drops were covered by paraffin oil which was treated with three-distilled water. In addition, at the level of 15% CO2, there were another two groups, in which paraffin oil was treated with phosphate-buffered saline (PBS) solution or the drops were uncovered. The development of embryos in all stages was noted.Results The developmental rates of blastocysts in five experimental groups were significantly lower than that of the control group (P0.05). At the level of 15% CO2, 15% embryos developed in the 4-cell stage with irregular blastomere and degenerated quickly in the group which paraffin oil was treated with distilled water; 2.2% embryos developed in the 4-cell stage in the group which paraffin oil was treated with PBS and the rest stagnated in the 2-cell stage. Conclusions High CO2 concentrations had toxic effect on the in vitro development of 2-cell mouse embryos, and was responsible for the inhibition of the embryos. It is important for the development of embryos in vitro to detect strictly CO2 concentration.

  16. Plant-plant interactions mediate the plastic and genotypic response of Plantago asiatica to CO2 : an experiment with plant populations from naturally high CO2 areas

    NARCIS (Netherlands)

    van Loon, Marloes P; Rietkerk, Max; Dekker, Stefan C; Hikosaka, Kouki; Ueda, Miki U; Anten, Niels P R

    2016-01-01

    Background and Aims The rising atmospheric CO2 concentration ([CO2]) is a ubiquitous selective force that may strongly impact species distribution and vegetation functioning. Plant–plant interactions could mediate the trajectory of vegetation responses to elevated [CO2], because some plants may bene

  17. High blood pressure medications

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/007484.htm High blood pressure medicines To use the sharing features on this page, please enable JavaScript. Treating high blood pressure will help prevent problems such as heart disease, ...

  18. High-Precision Instrumentation for CO2 Isotope Ratio Measurements Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Knowing atmospheric 13CO2/12CO2 ratios precisely is important to understanding biogenic and anthroprogenic sources and sinks for carbon. Currently available field...

  19. High-Yield Process for Selectively Converting CO2 to Aromatics and Olefins Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposed Phase I addresses the selective conversion of CO2 to hydrocarbons via integrated CO2-to-methanol, methanol-to-olefins, and olefins-to-aromatics...

  20. Design of an Optical System for High Power CO2 Laser Cutting

    DEFF Research Database (Denmark)

    de Lange, D.F.; Meijer, J.; Nielsen, Jakob Skov

    2003-01-01

    The results of a design study for the optical system for cutting with high power CO2 lasers (6 kW and up) will be presented. As transparent materials cannot be used for these power levels, mirrors have been applied. A coaxial cutting gas supply has been designed with a laser beam entrance into th...... independent of the entering beam angle or position. manufacturing tolerances have been compensated in a one time adjustment during the assembly of the optical system. Preliminary cutting results in 13 mm thick steel in a shipyard application show a signinficant improvement in the cutting performance....

  1. Response of High Latitude Coralline Algae to pCO2 and Thermal Stress

    Science.gov (United States)

    Garlick-Ott, K.; Williams, B.; Chan, P. T. W.; Westfield, I. T.; Rasher, D.; Ries, J. B.; Adey, W.; Halfar, J.

    2016-12-01

    The impacts of recent and future anthropogenic increases in atmospheric pCO2 causing ocean acidification and temperature on high-latitude oceans, and the marine organisms that inhabit them, are varied and poorly understood. The ecologically important crustose coralline alga Clathromorphum compactum may be particularly vulnerable to ocean acidification due to the relatively high solubility of its high Mg-calcite skeleton . This species of coralline algae is abundant throughout coastal mid-to-high latitude areas of the northern hemisphere, and calcifies annually-banded skeletons with longevities of up to 650 years. Here we used micro-computed tomography (micro-CT) to evaluate the impact of decreasing seawater pH and increasing temperature on skeletal density of algal specimens cultured in a fully crossed pCO2 (280, 400, 700, 2800 µatm) and temperature (6.5, 8.7, 12.4 °C) laboratory experiment. To examine the natural variability in coralline algal skeletal density, additional long-lived wild C. compactum specimens were collected along a latitudinal transect extending from the Gulf of Maine to the Canadian Arctic Archipelago. Density time series generated from the wild specimens spans the past several decades to century, and were used to evaluate other environmental parameters that may influence the skeletal density of coralline algae. This research will evaluate the resiliency of this alga to future environmental change.

  2. Treating High Blood Pressure

    Science.gov (United States)

    About High Blood Pressure Many people in the United States die from high blood pressure. This condition usually does not cause symptoms. Most ... until it is too late. A person has high blood pressure when the blood pushes against Visit your doctor ...

  3. High blood pressure - children

    Science.gov (United States)

    ... number is the diastolic pressure. This measures the pressure in the arteries when the heart is at rest. Blood pressure ... Medical Professional Call your child's provider if home monitoring shows that your child's blood pressure is still high. Prevention Your child's provider will ...

  4. Molecular basis for the high CO2 adsorption capacity of chabazite zeolites.

    Science.gov (United States)

    Pham, Trong D; Hudson, Matthew R; Brown, Craig M; Lobo, Raul F

    2014-11-01

    CO2 adsorption in Li-, Na-, K-CHA (Si/Al=6,=12), and silica chabazite zeolites was investigated by powder diffraction. Two CO2 adsorption sites were found in all chabazites with CO2 locating in the 8-membered ring (8MR) pore opening being the dominant site. Electric quadrupole-electric field gradient and dispersion interactions drive CO2 adsorption at the middle of the 8 MRs, while CO2 polarization due to interaction with cation sites controls the secondary CO2 site. In Si-CHA, adsorption is dominated by dispersion interactions with CO2 observed on the pore walls and in 8 MRs. CO2 adsorption complexes on dual cation sites were observed on K-CHA, important for K-CHA-6 samples due to a higher probability of two K(+) cations bridging CO2. Trends in isosteric heats of CO2 adsorption based on cation type and concentration can be correlated with adsorption sites and CO2 quantity. A decrease in the hardness of metal cations results in a decrease in the direct interaction of these cations with CO2.

  5. Metal nanoparticle-directed NiCo2O4 nanostructure growth on carbon nanofibers with high capacitance.

    Science.gov (United States)

    Chen, Long; Zhu, Jiahua

    2014-08-04

    Metal nanoparticles (Ni, Co) decorated on an electrospun carbon nanofiber surface directed the growth of NiCo2O4 into nanorod and nanosheet morphologies. These metal nanoparticles served as a transition layer to strengthen the interface and promote charge transfer between carbon and NiCo2O4 to achieve a high capacitance of 781 F g(-1).

  6. Modular structure of a robust microporous MOF based on Cu2 paddle-wheels with high CO2 selectivity.

    Science.gov (United States)

    Seco, José M; Fairen-Jimenez, David; Calahorro, Antonio J; Méndez-Liñán, Laura; Pérez-Mendoza, Manuel; Casati, Nicola; Colacio, Enrique; Rodríguez-Diéguez, Antonio

    2013-12-14

    The synthesis of a new MOF with Cu2 paddle-wheels connected to glutarate and 1,3-bis(4-pyridyl)propane linkers has been explored. Experimental gas adsorption measurements reveal that the MOF is essentially non-porous to methane whereas it presents a type III isotherm upon CO2 adsorption, leading to high capacity and outstanding CO2 selectivity.

  7. High nitrogen and elevated [CO2] effects on the growth, defense and photosynthetic performance of two eucalypt species.

    Science.gov (United States)

    Novriyanti, Eka; Watanabe, Makoto; Kitao, Mitsutoshi; Utsugi, Hajime; Uemura, Akira; Koike, Takayoshi

    2012-11-01

    Atmospheric nitrogen deposition and [CO(2)] are increasing and represent environmental problems. Planting fast-growing species is prospering to moderate these environmental impacts by fixing CO(2). Therefore, we examined the responses of growth, photosynthesis, and defense chemical in leaves of Eucalyptus urophylla (U) and the hybrid of E. deglupta × E. camadulensis (H) to different CO(2) and nitrogen levels. High nitrogen load significantly increased plant growth, leaf N, net photosynthetic rate (A(growth)), and photosynthetic water use efficiency (WUE). High CO(2) significantly increased A(growth), photosynthetic nitrogen use efficiency (PNUE) and WUE. Secondary metabolite (SM, i.e. total phenolics and condensed tannin) was specifically altered; as SM of U increased by high N load but not by elevated [CO(2)], and vice versa for SM of H.

  8. Chemical composition and antibacterial activity of Aloysia triphylla (L'Hérit Britton extracts obtained by pressurized CO2 extraction

    Directory of Open Access Journals (Sweden)

    Thaylise Vey Parodi

    2013-04-01

    Full Text Available This study investigated the chemical composition of five different extracts of Aloysia triphylla and their activity against Aeromonas sp. The extracts were obtained from the dried leaves by pressurized CO2 extraction at 30, 50 and 70ºC, and 100, 150, and 200 bar, and analyzed by GC/FID and GC-MS. The antibacterial activity was assayed by the microdilution method. The tested microorganisms comprised seven Aeromonas isolates obtained from the kidney of infected silver catfish, Rhamdia quelen. The yield, chemical composition and antibacterial activity of the extracts were dependent on the extraction conditions. Mono and sesquiterpenoids were the major constituents of all the extracts and the highest extraction yield was obtained at 70ºC and 200 bar. A. triphylla presented moderate antibacterial activity against Aeromonas sp.

  9. High repetition ration solid state switched CO2 TEA laser employed in industrial ultrasonic testing of aircraft parts

    Science.gov (United States)

    von Bergmann, Hubertus; Morkel, Francois; Stehmann, Timo

    2015-02-01

    Laser Ultrasonic Testing (UT) is an important technique for the non-destructive inspection of composite parts in the aerospace industry. In laser UT a high power, short pulse probe laser is scanned across the material surface, generating ultrasound waves which can be detected by a second low power laser system and are used to draw a defect map of the part. We report on the design and testing of a transversely excited atmospheric pressure (TEA) CO2 laser system specifically optimised for laser UT. The laser is excited by a novel solid-state switched pulsing system and utilises either spark or corona preionisation. It provides short output pulses of less than 100 ns at repetition rates of up to 1 kHz, optimised for efficient ultrasonic wave generation. The system has been designed for highly reliable operation under industrial conditions and a long term test with total pulse counts in excess of 5 billion laser pulses is reported.

  10. Experimental and numerical simulations of bottom hole temperature and pre-ssure distributions of supercritical CO2 jet for well-drilling

    Institute of Scientific and Technical Information of China (English)

    王瑞和; 霍洪俊; 黄志远; 宋慧芳; 倪红坚

    2014-01-01

    The supercritical carbon dioxide (SC-CO2) drilling is a novel drilling technique developed in recent years. A detailed study of temperature and pressure distributions of the SC-CO2 jet on the bottom of a well is essensial to the SC-CO2 drilling. In this paper, the distributions of pressure and temperature on the bottom of the hole during the SC-CO2 jet drilling are simulated experimentally and numerically, and the impacts of the nozzle diameter, the jet length, and the inlet pressure of the SC-CO2 jet are analyzed. It is shown that, the bottom hole temperature and pressure increase with the increase of the nozzle diameter, and the bottom hole temperature reduces and the pressure increases first and then decreases with the increase of the jet length, indicating that the jet length has an optimum value. The increase of the inlet pressure can increase the temperature and pressure on the bottom, which has a positive effect on the drilling rate.

  11. Cryospray ablation using pressurized CO2 for ablation of Barrett’s esophagus with early neoplasia: early termination of a prospective series

    Science.gov (United States)

    Verbeek, Romy E.; Vleggaar, Frank P.; ten Kate, Fiebo J.; van Baal, Jantine W. P. M.; Siersema, Peter D.

    2015-01-01

    Background: Cryotherapy is a relatively novel ablation modality for the endoscopic ablation of Barrett’s esophagus (BE). Data on the use of pressurized carbon dioxide (CO2) gas for cryoablation are scarce. Study aim: To determine the efficacy and safety of cryospray ablation using pressurized CO2 gas in the treatment of BE with early neoplasia. Methods: In this prospective single center case series, we aimed to include 30 patients with BE and early neoplasia. Nodular neoplastic lesions were treated with endoscopic mucosal resection (EMR). Residual BE mucosa was treated with cryospray ablation every 4 weeks until the complete BE segment was eliminated or up to seven treatment sessions. If no reduction of the BE segment was observed after two subsequent treatment sessions, cryoablation was terminated. Patients were contacted at days 1 and 4 post-treatment to evaluate the level of discomfort. Endoscopic and histologic follow-up evaluations were performed up to 24 months post-treatment. Results: After the inclusion of 10 patients, insufficient effect of cryoablation was observed, resulting in early termination of the study. In total, seven patients with intramucosal carcinoma (IMC) and three with high grade dysplasia (HGD) were included. Prior EMR was performed in nine patients. A median of 2.5 (IQR 2.0 – 4.0) cryoablation sessions were performed. At 6 months of follow-up, complete eradication of intestinal metaplasia was observed in 11 % (1 /9; one patient died, not treatment or disease related) of the patients and complete eradication of dysplasia in 44 % (4 /9). In three patients, HGD or IMC was detected during follow-up, and was endoscopically treated. Apart from a gastric perforation as a result of gastric distension caused by CO2 gas during the first treatment, cryospray treatments were well tolerated. Conclusion: After a short learning curve, cryoablation using CO2 gas was found to be a safe and well tolerated treatment modality. However, in our

  12. 氨基改性吸附剂在低 CO2分压下吸附 CO2的热力学研究%Thermodynamic study on amine-modified adsorbent of CO2 adsorption at low CO2 partial pressures

    Institute of Scientific and Technical Information of China (English)

    刘之琳; 滕阳; 张锴

    2015-01-01

    为了减少温室效应,应采取有效措施减少温室气体CO2的排放。氨基改性吸附剂是捕获烟道气中CO2的重要吸附材料。建立了描述氨基改性MCM‐41吸附剂在低CO2压力下吸附等温线的平衡模型,并计算了吸附热力学参数。该模型基于Dual‐site Langmuir模型,同时假设CO2吸附具有两种独立的吸附机理,分别是氨基基团的化学吸附和吸附剂表面的物理吸附,提出了一种基于未改性介孔材料吸附容量和比表面积计算改性材料的物理吸附量方法。结果表明,该模型能较好地拟合吸附等温线,计算得到的物理化学吸附热分别为-25.4 kJ/mol和-41.9 kJ/mol ,总吸附热为-67.3 kJ/mol ,与实验数据一致,且氨基改性MCM‐41‐TEPA饱和吸附容量可达到7.79 mmol/g。%To reduce the greenhouse effect ,effective measures should be taken to reduce the emis‐sions of CO2 .Amine‐modified adsorbents are considered as important adsorbent materials to capture CO2 .In this paper ,a balance model was established to describe the adsorption isotherms of amine modified MCM‐41 under low CO2 partial pressure and the thermodynamic parameters was calculated . The model was based on Dual‐site Langmuir model and assumed that there were two independent ad‐sorption mechanisms :chemical adsorption on amine groups and physical adsorption via surface area . In order to distinguish the physical adsorption and chemical adsorption of amine modified adsorbents , a new method based on adsorption of non‐modified adsorbents and surface area was proposed .The re‐sults showed that the model could fit well with the measured adsorption isotherms .The calculated physical and chemical adsorption heats are -25 .4 kJ/mol and -41 .9 kJ/mol respectively ,the total adsorption heats is -67 .3 kJ/mol ,which were in accordance with the experimental data .The satura‐tion adsorption capacity of MCM‐41‐TEPA could reach 7

  13. Highly Stable Porous Covalent Triazine-Piperazine Linked Nanoflower as a Feasible Adsorbent for Flue Gas CO2 Capture

    KAUST Repository

    Das, Swapan Kumar

    2016-02-11

    Here, we report a porous covalent triazine-piperazine linked polymer (CTPP) featuring 3D nanoflower morphology and enhanced capture/removal of CO2, CH4 from air (N2), essential to control greenhouse gas emission and natural gas upgrading. 13C solid-state NMR and FTIR analyses and CHN and X-ray photoelectron spectroscopy (XPS) elemental analyses confirmed the integration of triazine and piperazine components in the network. Scanning electron microscopic (SEM) and transmission electron microscopic (TEM) analyses revealed a relatively uniform particle size of approximately 400 to 500 nm with 3D nanoflower microstructure, which was formed by the self-assembly of interwoven and slight bent nanoflake components. The material exhibited outstanding chemical robustness under acidic and basic medium and high thermal stability up to 773 K. The CTPP possess high surface area (779 m2/g) and single-component gas adsorption study exhibited enhanced CO2 and CH4 uptake of 3.48 mmol/g, 1.09 mmol/g, respectively at 273 K, 1 bar; coupled with high sorption selectivities for CO2/N2 and CH4/N2 of 128 and 17, respectively. The enriched Lewis basicity of the CTPP favors the interaction with CO2, which results in an enhanced CO2 adsorption capacity and high CO2/N2 selectivity. The binary mixture breakthrough study for the flue gas composition at 298 K showed a high CO2/N2 selectivity of 82. CO2 heats of adsorption for the CTPP (34 kJ mol−1) were realized at the borderline between strong physisorption and weak chemisorption (QstCO2; 25−50 kJ mol−1) and low Qst value for N2 (22.09 kJ mol−1), providing the ultimate validation for the high selectivity of CO2 over N2.

  14. Altered carbon turnover processes and microbiomes in soils under long-term extremely high CO2 exposure.

    Science.gov (United States)

    Beulig, Felix; Urich, Tim; Nowak, Martin; Trumbore, Susan E; Gleixner, Gerd; Gilfillan, Gregor D; Fjelland, Kristine E; Küsel, Kirsten

    2016-01-01

    There is only limited understanding of the impact of high p(CO2) on soil biomes. We have studied a floodplain wetland where long-term emanations of temperate volcanic CO2 (mofettes) are associated with accumulation of carbon from the Earth's mantle. With an integrated approach using isotope geochemistry, soil activity measurements and multi-omics analyses, we demonstrate that high (nearly pure) CO2 concentrations have strongly affected pathways of carbon production and decomposition and therefore carbon turnover. In particular, a promotion of dark CO2 fixation significantly increased the input of geogenic carbon in the mofette when compared to a reference wetland soil exposed to normal levels of CO2. Radiocarbon analysis revealed that high quantities of mofette soil carbon originated from the assimilation of geogenic CO2 (up to 67%) via plant primary production and subsurface CO2 fixation. However, the preservation and accumulation of almost undegraded organic material appeared to be facilitated by the permanent exclusion of meso- to macroscopic eukaryotes and associated physical and/or ecological traits rather than an impaired biochemical potential for soil organic matter decomposition. Our study shows how CO2-induced changes in diversity and functions of the soil community can foster an unusual biogeochemical profile.

  15. Investigation of heat transfer and pressure drop of CO(2) two-phase flow in a horizontal minichannel

    CERN Document Server

    Wu, J; Haug, F; Franke, C; Bremer, J; Eisel, T; Koettig, T

    2011-01-01

    An innovative cooling system based on evaporative CO(2) two-phase flow is under investigation for the tracker detectors upgrade at CERN (European Organization for Nuclear Research). The radiation hardness and the excellent thermodynamic properties emphasize carbon dioxide as a cooling agent in the foreseen minichannels. A circular stainless steel tube in horizontal orientation with an inner diameter of 1.42 mm and a length of 0.3 m has been used as a test section to perform the step-wise scanning of the vapor quality in the entire two-phase region. To characterize the heat transfer and the pressure drop depending on the vapor quality in the tube, measurements have been performed by varying the mass flux from 300 to 600 kg/m(2) s, the heat flux from 7.5 to 29.8 kW/m(2) and the saturation temperature from -40 to 0 degrees C (reduced pressures from 0.136 to 0.472). Heat transfer coefficients between 4 kW/m(2) K and 28 kW/m(2) K and pressure gradients up to 75 kPa/m were registered. The measured data was analyzed...

  16. The 'Nuts and Bolts' of 13C NMR Spectroscopy at Elevated-Pressures and -Temperatures for Monitoring In Situ CO2 Conversion to Metal Carbonates

    Science.gov (United States)

    Moore, J. K.; Surface, J. A.; Skemer, P. A.; Conradi, M. S.; Hayes, S. E.

    2013-12-01

    characterization of multiple metastable mineral phases in pure forms and in mixtures. Notably, NMR spectroscopy is able to observe signals from amorphous materials, and mixtures of both crystalline and amorphous species can be analyzed. NMR results are verified through a combination of Raman spectroscopy and powder XRD (of crystalline species). Further, we have examined the effects on mineralization reactions of pH gradients in the sample--also monitored in situ by NMR--and these results will be presented. Reference: 'In Situ Measurement of Magnesium Carbonate Formation from CO2 Using Static High-Pressure and -Temperature 13C NMR' J. Andrew Surface, Philip Skemer, Sophia E. Hayes, and Mark S. Conradi, Environ. Sci. Technol. 2013, 47, 119-125. DOI: 10.1021/es301287n

  17. Plasma decay in N2, CO2 and H2O excited by high-voltage nanosecond discharge

    Science.gov (United States)

    Aleksandrov, N. L.; Kindysheva, S. V.; Kirpichnikov, A. A.; Kosarev, I. N.; Starikovskaia, S. M.; Starikovskii, A. Yu

    2007-08-01

    Plasma decay after a high-voltage nanosecond discharge was studied experimentally and numerically in room temperature N2, CO2 and H2O for pressures between 1 and 10 Torr. The time-resolved electron density was measured by a microwave interferometer for initial electron densities in the range 8 × 1011-3 × 1012 cm-3 and the effective electron-ion recombination coefficient was determined. It was shown that this coefficient varies in time and depends on pressure. A numerical simulation was carried out to describe the temporal evolution of the densities of charged particles under the conditions considered. A good agreement was obtained between the calculated and the measured electron density histories. It was shown that the loss of electrons is governed by dissociative recombination with complex ions, their density being dependent on pressure. In N2 at low pressures, a hindered electron thermalization in collisions with molecules led to a delay in the plasma decay. This effect was observed both experimentally and theoretically.

  18. Heterogeneity of impacts of high CO2 on the North Western European Shelf

    Directory of Open Access Journals (Sweden)

    Y. Artioli

    2013-06-01

    Full Text Available The increase in atmospheric CO2 is a dual threat to the marine environment: from one side it drives climate change leading to changes in water temperature, circulation patterns and stratification intensity; on the other side it causes a decrease in pH (Ocean Acidification or OA due to the increase in dissolved CO2. Assessing the combined impact of climate change and OA on marine ecosystems is a challenging task: the response of the ecosystem to a single driver is highly variable and still uncertain, as well as the interaction between these that could be either synergistic or antagonistic. In this work we use the coupled oceanographic-ecosystem model POLCOMS-ERSEM driven by climate forcing to study the interaction between climate change and OA. We focus in particular on primary production and nitrogen speciation. The model has been run in three different configurations in order to separate the impacts of ocean acidification from those due to climate change. The model shows significant interaction among the drivers and high variability in the spatial response of the ecosystem. Impacts of climate change and of OA on primary production have similar magnitude, compensating in some area and exacerbating in others. On the contrary, the direct impact of OA on nitrification is much lower than the one imposed by climate change.

  19. Trajectory study of supercollision relaxation in highly vibrationally excited pyrazine and CO2.

    Science.gov (United States)

    Li, Ziman; Sansom, Rebecca; Bonella, Sara; Coker, David F; Mullin, Amy S

    2005-09-01

    Classical trajectory calculations were performed to simulate state-resolved energy transfer experiments of highly vibrationally excited pyrazine (E(vib) = 37,900 cm(-1)) and CO(2), which were conducted using a high-resolution transient infrared absorption spectrometer. The goal here is to use classical trajectories to simulate the supercollision energy transfer pathway wherein large amounts of energy are transferred in single collisions in order to compare with experimental results. In the trajectory calculations, Newton's laws of motion are used for the molecular motion, isolated molecules are treated as collections of harmonic oscillators, and intermolecular potentials are formed by pairwise Lennard-Jones potentials. The calculations qualitatively reproduce the observed energy partitioning in the scattered CO(2) molecules and show that the relative partitioning between bath rotation and translation is dependent on the moment of inertia of the bath molecule. The simulations show that the low-frequency modes of the vibrationally excited pyrazine contribute most to the strong collisions. The majority of collisions lead to small DeltaE values and primarily involve single encounters between the energy donor and acceptor. The large DeltaE exchanges result from both single impulsive encounters and chattering collisions that involve multiple encounters.

  20. High Repetition Rate Pulsed 2-Micron Laser Transmitter for Coherent CO2 DIAL Measurement

    Science.gov (United States)

    Singh, Uprendra N.; Bai, Yingxin; Yu, Jirong; Petros, Mulugeta; Petzar, Paul J.; Trieu, Bo C.; Lee, Hyung

    2009-01-01

    A high repetition rate, highly efficient, Q-switched 2-micron laser system as the transmitter of a coherent differential absorption lidar for CO2 measurement has been developed at NASA Langley Research Center. Such a laser transmitter is a master-slave laser system. The master laser operates in a single frequency, either on-line or off-line of a selected CO2 absorption line. The slave laser is a Q-switched ring-cavity Ho:YLF laser which is pumped by a Tm:fiber laser. The repetition rate can be adjusted from a few hundred Hz to 10 kHz. The injection seeding success rate is from 99.4% to 99.95%. For 1 kHz operation, the output pulse energy is 5.5mJ with the pulse length of approximately 50 ns. The optical-to-optical efficiency is 39% when the pump power is 14.5W. The measured standard deviation of the laser frequency jitter is about 3 MHz.

  1. High-pressure apparatus

    NARCIS (Netherlands)

    Schepdael, van L.J.M.; Bartels, P.V.; Berg, van den R.W.

    1999-01-01

    The invention relates to a high-pressure device (1) having a cylindrical high-pressure vessel (3) and prestressing means in order to exert an axial pressure on the vessel. The vessel (3) can have been formed from a number of layers of composite material, such as glass, carbon or aramide fibers which

  2. High repetition TEA CO2 laser with average output power of 3.3 kW%平均功率3.3kW高重复频率TEA CO2激光器

    Institute of Scientific and Technical Information of China (English)

    文康; 谭荣清; 张阔海; 刘世明; 朱玉峰; 徐程; 王东蕾; 卢远添; 赵志龙

    2011-01-01

    研制了一台平均功率3.3 kW横向激励大气压(TEA)CO2激光器.激光器采用单节放电体积为5 cm×4 cm×90 cm的两节腔体串连的形式,印刷板电路预电离结构和闸流管开关放电电路,实现了激光器单脉冲能量输出,高重复频率工作.在重复频率150 Hz条件下,获得了3.3 kW平均输出功率.获得32.8 J单脉冲输出能量,电光转换效率达到15.4%.%A high average power TEA CO2 laser has been developed. Average output power of 3.3 kW is achieved at a repetition of 150 Hz. The TEA CO2 laser consists of two same laser modules, each of which has a 5 cm x 4 cm× 90 cm discharge volume. Several special technologies including Printed Circuit Board (PCB) pre-ionization and thyratron switch discharging circuit are employed. The laser realized large energy output, high repetition operating and high average power output. Laser output pulse energy is measured. The relationship between laser pulse energy and voltage at different gas pressures is obtained. The maximum of output pulse energy is 32.8 J. Electro-optical efficiency is calculated and the maximum of electro-optical efficiency is 15.4%. The laser pulse waveforms are measured at different gas pressures.

  3. Pressure broadening of the electric dipole and Raman lines of CO2 by argon: Stringent test of the classical impact theory at different temperatures on a benchmark system

    Science.gov (United States)

    Ivanov, Sergey V.; Buzykin, Oleg G.

    2016-12-01

    A classical approach is applied to calculate pressure broadening coefficients of CO2 vibration-rotational spectral lines perturbed by Ar. Three types of spectra are examined: electric dipole (infrared) absorption; isotropic and anisotropic Raman Q branches. Simple and explicit formulae of the classical impact theory are used along with exact 3D Hamilton equations for CO2-Ar molecular motion. The calculations utilize vibrationally independent most accurate ab initio potential energy surface (PES) of Hutson et al. expanded in Legendre polynomial series up to lmax = 24. New improved algorithm of classical rotational frequency selection is applied. The dependences of CO2 half-widths on rotational quantum number J up to J=100 are computed for the temperatures between 77 and 765 K and compared with available experimental data as well as with the results of fully quantum dynamical calculations performed on the same PES. To make the picture complete, the predictions of two independent variants of the semi-classical Robert-Bonamy formalism for dipole absorption lines are included. This method. however, has demonstrated poor accuracy almost for all temperatures. On the contrary, classical broadening coefficients are in excellent agreement both with measurements and with quantum results at all temperatures. The classical impact theory in its present variant is capable to produce quickly and accurately the pressure broadening coefficients of spectral lines of linear molecules for any J value (including high Js) using full-dimensional ab initio - based PES in the cases where other computational methods are either extremely time consuming (like the quantum close coupling method) or give erroneous results (like semi-classical methods).

  4. Co-adsorption and separation of CO2-CH4 mixtures in the highly flexible MIL-53(Cr) MOF.

    Science.gov (United States)

    Hamon, Lomig; Llewellyn, Philip L; Devic, Thomas; Ghoufi, Aziz; Clet, Guillaume; Guillerm, Vincent; Pirngruber, Gerhard D; Maurin, Guillaume; Serre, Christian; Driver, Gordon; van Beek, Wouter; Jolimaître, Elsa; Vimont, Alexandre; Daturi, Marco; Férey, Gérard

    2009-12-02

    The present study attempts to understand the use of the flexible porous chromium terephthalate Cr(OH)(O(2)C-C(6)H(4)-CO(2)) denoted MIL-53(Cr) (MIL = Material from Institut Lavoisier) for the separation of mixtures of CO(2) and CH(4) at ambient temperature. The coadsorption of CO(2) and CH(4) was studied by a variety of different techniques. In situ synchrotron X-ray Powder Diffraction allowed study of the breathing of the solid upon adsorption of the gas mixtures and simultaneously measured Raman spectra yielded an estimation of the adsorbed quantities of CO(2) and CH(4), as well as a quantification of the fraction of the narrow pore (NP) and the large pore (LP) form of MIL-53. Quantitative coadsorption data were then measured by gravimetry and by breakthrough curves. In addition, computer simulation was performed to calculate the composition of the adsorbed phase in comparison with experimental equilibrium isotherms and breakthrough results. The body of results shows that the coadsorption of CO(2) and CH(4) leads to a similar breathing of MIL-53(Cr) as with pure CO(2). The breathing is mainly controlled by the partial pressure of CO(2), but increasing the CH(4) content progressively decreases the transformation of LP to NP. CH(4) seems to be excluded from the NP form, which is filled exclusively by CO(2) molecules. The consequences in terms of CO(2)/CH(4) selectivity and the possible use of MIL-53(Cr) in a PSA process are discussed.

  5. CO2, CH4, and DOC Flux During Long Term Thaw of High Arctic Tundra

    Science.gov (United States)

    Stackhouse, B. T.; Vishnivetskaya, T. A.; Layton, A.; Bennett, P.; Mykytczuk, N.; Lau, C. M.; Whyte, L.; Onstott, T. C.

    2013-12-01

    Arctic regions are expected to experience temperature increases of >4° C by the end of this century. This warming is projected to cause a drastic reduction in the extent of permafrost at high northern latitudes, affecting an estimated 1000 Pg of SOC in the top 3 m. Determining the effects of this temperature change on CO2 and CH4 emissions is critical for defining source constraints to global climate models. To investigate this problem, 18 cores of 1 m length were collected in late spring 2011 before the thawing of the seasonal active layer from an ice-wedge polygon near the McGill Arctic Research Station (MARS) on Axel Heiberg Island, Nunavut, Canada (N79°24, W90°45). Cores were collected from acidic soil (pH 5.5) with low SOC (~1%), summertime active layer depth between 40-70 cm (2010-2013), and sparse vegetation consisting primarily of small shrubs and sedges. Cores were progressively thawed from the surface over the course of 14 weeks to a final temperature of 4.5° C and held at that temperature for 15 months under the following conditions: in situ water saturation conditions versus fully water saturated conditions using artificial rain fall, surface light versus no surface light, cores from the polygon edge, and control cores with a permafrost table maintained at 70 cm depth. Core headspaces were measured weekly for CO2, CH4, H2, CO, and O2 flux during the 18 month thaw experiment. After ~20 weeks of thawing maximum, CO2 flux for the polygon edge and dark treatment cores were 3.0×0.7 and 1.7×0.4 mmol CO2 m-2 hr-1, respectively. The CO2 flux for the control, saturated, and in situ saturation cores reached maximums of 0.6×0.2, 0.9×0.5, and 0.9×0.1 mmol CO2 m-2 hr-1, respectively. Field measurements of CO2 flux from an adjacent polygon during the mid-summer of 2011 to 2013 ranged from 0.3 to 3.7 mmol CO2 m-2 hr-1. Cores from all treatments except water saturated were found to consistently oxidize CH4 at ~atmospheric concentrations (2 ppmv) with a maximum

  6. Thermogravimetric and model-free kinetic studies on CO2 gasification of low-quality, high-sulphur Indian coals

    Science.gov (United States)

    Das, Tonkeswar; Saikia, Ananya; Mahanta, Banashree; Choudhury, Rahul; Saikia, Binoy K.

    2016-10-01

    Coal gasification with CO2 has emerged as a cleaner and more efficient way for the production of energy, and it offers the advantages of CO2 mitigation policies through simultaneous CO2 sequestration. In the present investigation, a feasibility study on the gasification of three low-quality, high-sulphur coals from the north-eastern region (NER) of India in a CO2 atmosphere using thermogravimetric analysis (TGA-DTA) has been made in order to have a better understanding of the physical and chemical characteristics in the process of gasification of coal. Model-free kinetics was applied to determine the activation energies (E) and pre-exponential factors (A) of the CO2 gasification process of the coals. Multivariate non-linear regression analyses were performed to find out the formal mechanisms, kinetic model, and the corresponding kinetic triplets. The results revealed that coal gasification with CO2 mainly occurs in the temperature range of 800∘-1400∘C and a maximum of at around 1100∘C. The reaction mechanisms responsible for CO2 gasification of the coals were observed to be of the ` nth order with autocatalysis (CnB)' and ` nth order (Fn) mechanism'. The activation energy of the CO2 gasification was found to be in the range 129.07-146.81 kJ mol-1.

  7. An Experimental and Numerical Investigation of CO2 Distribution in the Upper Airways During Nasal High Flow Therapy.

    Science.gov (United States)

    Van Hove, S C; Storey, J; Adams, C; Dey, K; Geoghegan, P H; Kabaliuk, N; Oldfield, S D; Spence, C J T; Jermy, M C; Suresh, V; Cater, J E

    2016-10-01

    Nasal high flow (NHF) therapy is used to treat a variety of respiratory disorders to improve patient oxygenation. A CO2 washout mechanism is believed to be responsible for the observed increase in oxygenation. In this study, experimentally validated Computational Fluid Dynamics simulations of the CO2 concentration within the upper airway during unassisted and NHF assisted breathing were undertaken with the aim of exploring the existence of this washout mechanism. An anatomically accurate nasal cavity model was generated from a CT scan and breathing was reproduced using a Fourier decomposition of a physiologically measured breath waveform. Time dependent CO2 profiles were obtained at the entrance of the trachea in the experimental model, and were used as simulation boundary conditions. Flow recirculation features were observed in the anterior portion of the nasal cavity upon application of the therapy. This causes the CO2 rich gas to vent from the nostrils reducing the CO2 concentration in the dead space and lowering the inspired CO2 volume. Increasing therapy flow rate increases the penetration depth within the nasal cavity of the low CO2 concentration gas. A 65% decrease in inspired CO2 was observed for therapy flow rates ranging from 0 to 60 L min(-1) supporting the washout mechanism theory.

  8. Thermogravimetric and model-free kinetic studies on CO2 gasification of low-quality, high-sulphur Indian coals

    Indian Academy of Sciences (India)

    Tonkeswar Das; Ananya Saikia; Banashree Mahanta; Rahul Choudhury; Binoy K Saikia

    2016-10-01

    Coal gasification with CO$_2$ has emerged as a cleaner and more efficient way for the production of energy, and it offers the advantages of CO$_2$ mitigation policies through simultaneous CO$_2$ sequestration. In the present investigation, a feasibility study on the gasification of three low-quality, high-sulphur coals fromthe north-eastern region (NER) of India in a CO$_2$ atmosphere using thermogravimetric analysis (TGADTA) has been made in order to have a better understanding of the physical and chemical characteristics in the process of gasification of coal. Model-free kinetics was applied to determine the activation energies (E) and pre-exponential factors (A) of the CO$_2$ gasification process of the coals. Multivariate nonlinear regression analyses were performed to find out the formal mechanisms, kinetic model, and the corresponding kinetic triplets. The results revealed that coal gasification with CO$_2$ mainly occurs in the temperature range of 800◦–1400◦C and a maximum of at around 1100◦C. The reaction mechanisms responsible for CO$_2$ gasification of the coals were observed to be of the ‘nth order with autocatalysis (CnB)’ and ‘nth order (Fn) mechanism’. The activation energy of the CO$_2$ gasification was found to be in the range 129.07–146.81 kJ mol$^{−1}$.

  9. Dynamics of Magnesite Formation at Low-Temperature and High pCO2 in Aqueous Solution

    Energy Technology Data Exchange (ETDEWEB)

    Qafoku, Odeta; Dixon, David A.; Rosso, Kevin M.; Schaef, Herbert T.; Bowden, Mark E.; Arey, Bruce W.; Felmy, Andrew R.

    2015-09-17

    Like many metal carbonate minerals, despite conditions of supersaturation, precipitation of magnesite from aqueous solution is kinetically hindered at low temperatures, for reasons that remain poorly understood. The present study examines precipitation products from reaction of Mg(OH)2 in aqueous solutions saturated with supercritical CO2 at high pressures (90 atm and 110 atm) and low temperatures (35 °C and 50 °C). Traditional bulk characterization (X-ray diffraction) of the initial solid formed indicated the presence of hydrated magnesium carbonates (hydromagnesite and nesquehonite), thermodynamically metastable phases that were found to slowly react during ageing to the more stable anhydrous form, magnesite, at temperatures as low as 35 °C (135-140 days) and at a faster rate at 50 °C (56 days). Undetected by bulk measurements, detailed examination of the precipitates by scanning electron microscopy (SEM) showed that magnesite is present as a minor component at relatively early reaction times (7 days) at 50 °C. In addition to magnesite dominating the solid phases over time, we find that mangesite nucleation and growth occurs more quickly with increasing partial pressure of CO2, and in electrolyte solutions with high bicarbonate content. Furthermore, formation of magnesite was found to be enhanced in sulfate-rich solutions, compared to chloride-rich solutions. We speculate that much of this behavior is possibly due to sulfate serving as sink of protons generated during carbonation reactions. These results support the importance of integrating magnesite as an equilibrium phase in reactive transport calculations of the effects of carbon dioxide sequestration on subsurface formations at long time scales.

  10. A Preview of High-CO2 Fixation Technology by Microorganisms%微生物固定高浓度CO2技术的研究进展

    Institute of Scientific and Technical Information of China (English)

    杨闯; 岳丽宏; 康阿青

    2012-01-01

    The greenhouse effect, which is believed to occur primarily as a result of the accumulation of CO2 in the atmosphere by the combustion of fossil fuel, has become one of the major environmental concerns. This paper summarizes the research status of high-CO2 fixation by microorganisms, which includes the mechanism of CO2 fixation by microorganisms, the effect of high-CO2 on microorganisms and the optimization of photobioreactors.%大气中的CO2浓度升高主要是化石燃料燃烧造成的,CO2浓度升高引发的温室效应已经成为一个重大的环境问题.从微生物固定CO2机理及高浓度CO2对微生物的影响、固定高浓度CO2的微生物和生物反应器的优化等方面分析目前国内外微生物固定高浓度CO2的研究状况.

  11. Atmospheric pressure plasma produced inside a closed package by a dielectric barrier discharge in Ar/CO2 for bacterial inactivation of biological samples

    DEFF Research Database (Denmark)

    Chiper, Alina Silvia; Chen, Weifeng; Mejlholm, Ole

    2011-01-01

    The generation and evaluation of a dielectric barrier discharge produced inside a closed package made of a commercially available packaging film and filled with gas mixtures of Ar/CO2 at atmospheric pressure is reported. The discharge parameters were analysed by electrical measurements and optical...... times higher in the Ar/CO2 plasma compared with an Ar plasma. The efficiency of the produced plasma for the inactivation of bacteria on food inside the closed package was investigated....

  12. Long period gratings and rocking filters written with a CO 2 laser in highly-birefringent boron-doped photonic crystal fibers for sensing applications

    Science.gov (United States)

    Carvalho, J. P.; Anuszkiewicz, A.; Statkiewicz-Barabach, G.; Baptista, J. M.; Frazão, O.; Mergo, P.; Santos, J. L.; Urbanczyk, W.

    2012-02-01

    In this work, we demonstrate the possibility of fabricating short-length long-period gratings and rocking filters in highly birefringent Photonic Crystal Fiber using a CO 2 laser. In our experiments both kinds of gratings were made in the same Boron doped highly birefringent PCF using similar exposure parameters. We also present the sensing capabilities of both fabricated gratings to temperature, strain and hydrostatic pressure by interrogation of the wavelength shifts at different resonances.

  13. Fabrication of elliptic microfibers with CO2 laser for high-sensitivity refractive index sensing.

    Science.gov (United States)

    Sun, Li-Peng; Li, Jie; Gao, Shuai; Jin, Long; Ran, Yang; Guan, Bai-Ou

    2014-06-15

    We propose a convenient method for achieving highly birefringent (HiBi) elliptic microfibers by use of the CO2-laser machining and the flame-brushing techniques. With optimization of fabrication process, a high birefringence of up to 2.10×10(-2) is experimentally obtained. Especially, within a polarization Sagnac interferometer acting as a refractive index (RI) sensor, both positive and abnormal negative sensitivity is measured, dependent on the geometrical variables of the HiBi microfiber. The maximum RI sensitivity is ∼195,348  nm/RI-unit around RI=1.35887, which is the highest among the microfiber devices as reported, to our knowledge.

  14. High-Field Magnetization in PrCo2Si2 Single Crystals

    Science.gov (United States)

    Shigeoka, Toru; Fujii, Hironobu; Yonenobu, Kenji; Sugiyama, Kiyohiro; Date, Muneyuki

    1989-02-01

    Magnetic properties of PrCo2Si2 single crystals have been studied by measurements of high-field magnetization, magnetic susceptibility and electrical resistivity. Anomalous behaviors in the resistivity appear at three successive magnetic phase transition temperatures of 9, 17 and 30K. The magnetic susceptibility is highly anisotropic and is analyzed using the single-ion Hamiltonian, including the crystal-field and molecular-field effects. The thermal variations of the susceptibilities can be well reproduced by the crystal-field parameters estimated from the point-charge model. Metamagnetic transitions with four steps are observable in the c-axis magnetization process up to 300 kOe. The magnetization process is discussed in terms of the incommensurate exchange field model in the Ising system proposed by Date.

  15. Corrosion Behavior of Super 13Cr Stainless Steel in Environment with High CO2 Level%高CO2分压环境超级13Cr的腐蚀行为

    Institute of Scientific and Technical Information of China (English)

    冯桓榰; 邢希金; 谢仁军; 何松

    2016-01-01

    目的:研究超级13Cr 钢在高CO2分压条件下的腐蚀行为并评价其耐腐蚀能力,为存在类似工况的气田选材提供参考。方法模拟东方气田腐蚀环境(141℃,CO2分压27.9 MPa),通过高温高压腐蚀挂片实验和电化学实验对超级13Cr开展腐蚀行为研究。结果在东方气田高CO2分压腐蚀环境下,挂片腐蚀试验表明,超级13Cr的腐蚀形式为全面腐蚀,其均匀腐蚀速率为3×10-3 mm/a;电化学分析表明,13Cr不锈钢的自腐蚀电位(-0.785 V)和点蚀电位(-0.301 V)较超级13Cr不锈钢的(-0.580 V,-0.139 V)有明显负移,而自腐蚀电流密度和维钝电流密度明显更大。结论高CO2分压条件下,超级13Cr可满足气田油套管使用要求,超级13Cr不锈钢的耐蚀性能和抗点蚀敏感性均强于13Cr不锈钢。%ABSTRACT:Objective To analyze the corrosion behavior of super 13Cr and evaluate its anti-corrosion ability in high CO2 level condition. The result can support material selection work for similar gas fields.Methods High temperature/pressure corro-sion coupon test and electrochemical test were conducted in simulated Dong Fang gas field high CO2level environment (141℃, CO2 27.9 MPa).Results The corrosion coupon test result indicated that the corrosion type of super 13Cr was general corrosion with a corrosion rate of 3×10-3mm/a. The electrochemical test showed that the corrosion potential and pitting potential of 13Cr (-0.785 V,-0.301 V) had an obvious negative shift compared to super 13Cr (-0.580 V,-0.139 V). The corrosion current density and passivation current density of 13Cr were obviously higher than super 13Cr. Conclusion Super 13Cr could be applied to high CO2 level environment as tubing or casing. Super 13Cr was better than 13Cr in anti-corrosion and anti-pitting properties.

  16. Loss of genetic diversity as a consequence of selection in response to high pCO 2

    OpenAIRE

    Lloyd, Melanie M.; Makukhov, April D.; Pespeni, Melissa H.

    2016-01-01

    Abstract Standing genetic variation may allow for rapid evolutionary response to the geologically unprecedented changes in global conditions. However, there is little known about the consequences of such rapid evolutionary change. Here, we measure genetic responses to experimental low and high pCO 2 levels in purple sea urchin larvae, Strongylocentrotus purpuratus. We found greater loss of nucleotide diversity in high pCO 2 levels (18.61%; 900 μatm) compared to low pCO 2 levels (10.12%; 400 μ...

  17. High-performance composite membrane with enriched CO2-philic groups and improved adhesion at the interface.

    Science.gov (United States)

    Li, Yifan; Wang, Shaofei; Wu, Hong; Guo, Ruili; Liu, Ye; Jiang, Zhongyi; Tian, Zhizhang; Zhang, Peng; Cao, Xingzhong; Wang, Baoyi

    2014-05-14

    A novel strategy to design a high-performance composite membrane for CO2 capture via coating a thin layer of water-swellable polymers (WSPs) onto a porous support with enriched CO2-philic groups is demonstrated in this study. First, by employing a versatile platform technique combining non-solvent-induced phase separation and surface segregation, porous support membranes with abundant CO2-philic ethylene oxide (EO) groups at the surface are successfully prepared. Second, a thin selective layer composed of Pebax MH 1657 is deposited onto the support membranes via dip coating. Because of the water-swellable characteristic of Pebax and the enriched EO groups at the interface, the composite membranes exhibit high CO2 permeance above 1000 GPU with CO2/N2 selectivity above 40 at a humidified state (25 °C and 3 bar). By tuning the content of the PEO segment at the interface, the composite membranes can show either high CO2 permeance up to 2420 GPU with moderate selectivity of 46.0 or high selectivity up to 109.6 with fairly good CO2 permeance of 1275 GPU. Moreover, enrichment of the PEO segment at the interface significantly improves interfacial adhesion, as revealed by the T-peel test and positron annihilation spectroscopy measurement. In this way, the feasibility of designing WSP-based composite membranes by enriching CO2-philic groups at the interface is validated. We hope our findings may pave a generic way to fabricate high-performance composite membranes for CO2 capture using cost-effective materials and facile methods.

  18. Dependence of the absorption of pulsed CO2-laser radiation by silane on wavenumber, fluence, pulse duration, temperature, optical path length, and pressure of absorbing and nonabsorbing gases

    Science.gov (United States)

    Bl/aŻejowski, Jerzy; Gruzdiewa, Ludwika; Rulewski, Jacek; Lampe, Frederick W.

    1995-05-01

    The absorption of three lines [P(20), 944.2 cm-1; P(14), 949.2 cm-1; and R(24), 978.5 cm-1] of the pulsed CO2 laser (0001-1000 transition) by SiH4 was measured at various pulse energy, pulse duration, temperature, optical path length, and pressure of the compound and nonabsorbing foreign gases. In addition, low intensity infrared absorption spectrum of silane was compared with high intensity absorption characteristics for all lines of the pulsed CO2 laser. The experimental dependencies show deviations from the phenomenological Beer-Lambert law which can be considered as arising from the high intensity of an incident radiation and collisions of absorbing molecules with surroundings. These effects were included into the expression, being an extended form of the Beer-Lambert law, which reasonably approximates all experimental data. The results, except for extending knowledge on the interaction of a high power laser radiation with matter, can help understanding and planning processes leading to preparation of silicon-containing technologically important materials.

  19. High Blood Pressure Facts

    Science.gov (United States)

    ... More black women than men have high blood pressure. 2 Race of Ethnic Group Men (%) Women (%) African Americans 43.0 45.7 Mexican Americans 27.8 28.9 Whites 33.9 31.3 All 34.1 32.7 Top of Page Why Blood Pressure Matters View this graphic snapshot of blood pressure ...

  20. Effects of high CO2 treatment on green-ripening and peel senescence in banana and plantain fruits

    Institute of Scientific and Technical Information of China (English)

    SONG Mu-bo; TANG Lu-ping; ZHANG Xue-lian; BAI Mei; PANG Xue-qun; ZHANG Zhao-qi

    2015-01-01

    Banana fruit (Musa, AAA group, cv. Brazil) peel fails to ful y degreen but the pulp ripens normal y at temperatures above 24°C. This abnormal ripening, known as green-ripening, does not occur in plantains (Musa, ABB group, cv. Dajiao). Based on the fact that un-completely yel owing was also observed for bananas in poorly ventilated atmospheres, in the present study, the effect of high CO2 with regular O2 (21%) on banana ripening was investigated along with that on plantains at 20°C. The results showed that high CO2 conferred different effects on the color changing of bananas and plantains. After 6 d ripening in 20%CO2, plantains ful y yel owed, while bananas retained high chlorophyl content and stayed green. In contrast to the differentiated color changing patterns, the patterns of the softening, starch degradation and soluble sugar accumulation in the pulp of 20%CO2 treated bananas and plantains displayed similarly as the patterns in the fruits ripening in regular air, indicating that the pulp ripening was not inhibited by 20%CO2, and the abnormal ripening of bananas in 20%CO2 can be considered as green ripening. Similar expression levels of chlorophyl degradation related genes, SGR, NYC and PaO, were detected in the peel of the control and treated fruits, indicating that the repressed degreening in 20%CO2 treated bananas was not due to the down-regulation of the chlorophyl degradation related genes. Compared to the effect on plantains, 20%CO2 WUHDWmHQW GHOD\\HG WKH GHFOLQH LQ WKH FKORURSK\\O ÀRUHVFHQFH Fv/Fm) values and in the mRNA levels of a gene coding smal subunit of Rubisco (SSU), and postponed the disruption of the ultrastructure of chloroplast in the peel tissue of bananas, indicating that the senescence of the green cel s in the exocarp layer was delayed by 20%CO2, to more extent in bananas than in plantains. High CO2 reduced the ethylene production and the expression of the related biosynthesis gene, ACS, but elevated the respiration rates in both

  1. Suppression of CO2-plasticization by semiinterpenetrating polymer network formation

    NARCIS (Netherlands)

    Bos, A.; Pünt, I.G.M.; Wessling, M.; Strathmann, H.

    1998-01-01

    CO2-induced plasticization may significantly spoil the membrane performance in high-pressure CO2/CH4 separations. The polymer matrix swells upon sorption of CO2, which accelerates the permeation of CH4. The polymer membrane looses its selectivity. To make membranes attractive for, for example, natur

  2. Suppression of CO2-plasticization by semiinterpenetrating polymer network formation

    NARCIS (Netherlands)

    Bos, A.; Punt, Ineke G.M.; Wessling, Matthias; Strathmann, H.

    1998-01-01

    CO2-induced plasticization may significantly spoil the membrane performance in high-pressure CO2/CH4 separations. The polymer matrix swells upon sorption of CO2, which accelerates the permeation of CH4. The polymer membrane looses its selectivity. To make membranes attractive for, for example, natur

  3. Suppression of CO2-plasticization by semiinterpenetrating polymer network formation

    NARCIS (Netherlands)

    Bos, A.; Punt, Ineke G.M.; Wessling, Matthias; Strathmann, H.

    1998-01-01

    CO2-induced plasticization may significantly spoil the membrane performance in high-pressure CO2/CH4 separations. The polymer matrix swells upon sorption of CO2, which accelerates the permeation of CH4. The polymer membrane looses its selectivity. To make membranes attractive for, for example,

  4. Calcifying invertebrates succeed in a naturally CO2-rich coastal habitat but are threatened by high levels of future acidification

    Directory of Open Access Journals (Sweden)

    M. Wahl

    2010-11-01

    Full Text Available CO2 emissions are leading to an acidification of the oceans. Predicting marine community vulnerability towards acidification is difficult, as adaptation processes cannot be accounted for in most experimental studies. Naturally CO2 enriched sites thus can serve as valuable proxies for future changes in community structure. Here we describe a natural analogue site in the Western Baltic Sea. Seawater pCO2 in Kiel Fjord is elevated for large parts of the year due to upwelling of CO2 rich waters. Peak pCO2 values of >230 Pa (>2300 μatm and pHNBS values of pCO2 values are ~70 Pa (~700 μatm. In contrast to previously described naturally CO2 enriched sites that have suggested a progressive displacement of calcifying auto- and heterotrophic species, the macrobenthic community in Kiel Fjord is dominated by calcifying invertebrates. We show that blue mussels from Kiel Fjord can maintain control rates of somatic and shell growth at a pCO2 of 142 Pa (1400 μatm, pHNBS = 7.7. Juvenile mussel recruitment peaks during the summer months, when high water pCO2 values of ~100 Pa (~1000 μatm prevail. Our findings indicate that calcifying keystone species may be able to cope with surface ocean pHNBS values projected for the end of this century when food supply is sufficient. However, owing to non-linear synergistic effects of future acidification and upwelling of corrosive water, peak seawater pCO2 in Kiel Fjord and many other productive estuarine habitats could increase to values >400 Pa (>4000 μatm. These changes will most likely affect calcification and recruitment, and increase external shell dissolution.

  5. Calcifying invertebrates succeed in a naturally CO2 enriched coastal habitat but are threatened by high levels of future acidification

    Directory of Open Access Journals (Sweden)

    M. Wahl

    2010-07-01

    Full Text Available CO2 emissions are leading to an acidification of the oceans. Predicting marine community vulnerability towards acidification is difficult, as adaptation processes cannot be accounted for in most experimental studies. Naturally CO2 enriched sites thus can serve as valuable proxies for future changes in community structure. Here we describe a natural analogue site in the Western Baltic Sea. Seawater pCO2 in Kiel Fjord is elevated for large parts of the year due to upwelling of CO2 rich waters. Peak pCO2 values of >230 Pa (>2300 μatm and pH values of pCO2 values are ~70 Pa (~700 μatm. In contrast to previously described naturally CO2 enriched sites that have suggested a progressive displacement of calcifying auto- and heterotrophic species, the macrobenthic community in Kiel Fjord is dominated by calcifying invertebrates. We show that blue mussels from Kiel Fjord can maintain control rates of somatic and shell growth at a pCO2 of 142 Pa (1400 μatm, pH=7.7. Juvenile mussel recruitment peaks during the summer months, when high water pCO2 values of ~100 Pa (~1000 μatm prevail. Our findings indicate that calcifying keystone species may be able to cope with surface ocean pH values projected for the end of this century. However, owing to non-linear synergistic effects of future acidification and upwelling of corrosive water, peak seawater pCO2 in Kiel Fjord and many other productive estuarine habitats could increase to values >400 Pa (>4000 μatm. These changes will most likely affect calcification and recruitment, and increase external shell dissolution.

  6. Seasonally varying contributions to urban CO2 in the Chicago, Illinois, USA region: Insights from a high-resolution CO2 concentration and δ13C record

    Directory of Open Access Journals (Sweden)

    Joel Moore

    2015-06-01

    Full Text Available Abstract Understanding urban carbon cycling is essential given that cities sustain 54% of the global population and contribute 70% of anthropogenic CO2 emissions. When combined with CO2 concentration measurements ([CO2], stable carbon isotope analyses (δ13C can differentiate sources of CO2, including ecosystem respiration and combustion of fossil fuels, such as petroleum and natural gas. In this study, we used a wavelength scanned-cavity ringdown spectrometer to collect ∼2x106 paired measurements for [CO2] and δ13C values in Evanston, IL for August 2011 through February 2012. Evanston is located immediately north of Chicago, IL, the third largest city in the United States. The measurements represent one of the longest records of urban [CO2] and δ13C values thus far reported. We also compiled local meteorological information, as well as complementary [CO2] and δ13C data for background sites in Park Falls, WI and Mauna Loa, HI. We use the dataset to examine how ecosystem processes, fossil fuel usage, wind speed, and wind direction control local atmospheric [CO2] and δ13C in a midcontinent urban setting on a seasonal to daily basis. On average, [CO2] and δ13C values in Evanston were 16–23 ppm higher and 0.97–1.13‰ lower than the background sites. While seasonal [CO2] and δ13C values generally followed broader northern hemisphere trends, the difference between Evanston and the background sites was larger in winter versus summer. Mixing calculations suggest that ecosystem respiration and petroleum combustion equally contributed CO2 in excess of background during the summer and that natural gas combustion contributed 80%–94% of the excess CO2 in winter. Wind speed and direction strongly influenced [CO2] and δ13C values on an hourly time scale. The highest [CO2] and lowest δ13C values occurred at wind speeds <3 m s−1 and when winds blew from the northwest, west, and south over densely populated neighborhoods.

  7. Experimental study on circulation pressurization of carbon dioxide hydration reaction%CO2水合反应循环增压实验研究

    Institute of Scientific and Technical Information of China (English)

    胡祥江; 祁影霞; 施军锞

    2014-01-01

    Based on the excellent cooling characteristics of CO 2 as a natural working substance and development prospects in the field of many hydrate technology ,using the characteristics of pressure rising sharply under the phase equilibrium transition temperature of hydrate ,through the innovation design of process ,the carbon dioxide hydrate formation and decomposition alter-nate process is used to realize the pressurization system .Based on thermodynamic analysis of car-bon dioxide level cascade refrigeration and combining with the phase equilibrium temperature ,the experiment results show that the dynamics of 0 .3w t% SDS additives is more advantageous to promote the formation of carbon dioxide hydrate in double-tube reactor compare with 4w t% T HF thermodynamics additive .The synthesis time is 60 minutes at 1 .4 MPa and -2 ℃ .In SDS solu-tion of 0 .3wt% ,lower temperature is more beneficial to the formation of hydrate ,the critical temperature is close to -2 ℃ .When it is lower than -2 ℃ ,the solution icing may block pipe . When the two sets of tube reactors are used alternately ,the optimum cyclic temperature is as fol-low s :the synthesis temperature is -2 ℃ ,the decomposition temperature is 10 ℃ ,and the shor-test cycle time is 55 minutes .The carbon dioxide gas under high pressure is decomposed by con-densation throttle to a low temperature of -36 ℃ .%针对CO2作为天然工质优越的制冷特性以及水合物技术在多领域的发展前景,利用水合物相平衡转折温度下压力急剧上升的特点,通过流程的创新设计,提出了一种利用CO2水合物交替生成与分解的过程来实现增压的循环系统。基于CO2复叠制冷低温级的热力学分析,结合对相平衡转折温度的考虑,通过实验表明,在套管式反应器中,0.3%(质量分数)SDS的动力学添加剂较之4%(质量分数)T HF热力学添加剂更能促进CO2水合物的生成,在-2℃、1.4 M Pa的

  8. Three-dimensional welding and cutting using high-power CO2 or YAG laser

    Science.gov (United States)

    Zuo, Tiechuan; Chen, Jiming; Xiao, Rongshi; Bao, Yong

    2000-10-01

    In this paper, the theory of 3D laser welding and cutting was established firstly. Then the expert system for 3D laser processing and software of 3D laser processing CAD/CAM were developed, respectively. Under the guidance of these software, with high power CO2 laser, the 3D covers of a car have been cut and edge smoothed, which decrease the number of models and shorten the period of production. With adoption of this technology, the covers of extended Hong Qi cars and furthermore Da Hong Qi cars have been processed successfully, which will bring out the innovation of production design and the revolution of processing technology in manufacture industry.

  9. Impact of high pCO2 on shell structure of the bivalve Cerastoderma edule.

    Science.gov (United States)

    Milano, Stefania; Schöne, Bernd R; Wang, Schunfeng; Müller, Werner E

    2016-08-01

    Raised atmospheric emissions of carbon dioxide (CO2) result in an increased ocean pCO2 level and decreased carbonate saturation state. Ocean acidification potentially represents a major threat to calcifying organisms, specifically mollusks. The present study focuses on the impact of elevated pCO2 on shell microstructural and mechanical properties of the bivalve Cerastoderma edule. The mollusks were collected from the Baltic Sea and kept in flow-through systems at six different pCO2 levels from 900 μatm (control) to 24,400 μatm. Extreme pCO2 levels were used to determine the effects of potential leaks from the carbon capture and sequestration sites where CO2 is stored in sub-seabed geological formations. Two approaches were combined to determine the effects of the acidified conditions: (1) Shell microstructures and dissolution damage were analyzed using scanning electron microscopy (SEM) and (2) shell hardness was tested using nanoindentation. Microstructures of specimens reared at different pCO2 levels do not show significant changes in their size and shape. Likewise, the increase of pCO2 does not affect shell hardness. However, dissolution of ontogenetically younger portions of the shell becomes more severe with the increase of pCO2. Irrespective of pCO2, strong negative correlations exist between microstructure size and shell mechanics. An additional sample from the North Sea revealed the same microstructural-mechanical interdependency as the shells from the Baltic Sea. Our findings suggest that the skeletal structure of C. edule is not intensely influenced by pCO2 variations. Furthermore, our study indicates that naturally occurring shell mechanical property depends on the shell architecture at μm-scale.

  10. Supercritical CO2 Extraction of Ethanol

    OpenAIRE

    GÜVENÇ, A.; MEHMETOĞLU, Ü.; ÇALIMLI, A.

    1999-01-01

    Extraction of ethanol was studied from both synthetic ethanol solution and fermentation broth using supercritical CO2 in an extraction apparatus in ranges of 313 to 333 K and 80 to 160 atmospheres, for varying extraction times. The experimental system consists mainly of four parts: a CO2 storage system, a high-pressure liquid pump, an extractor and a product collection unit. Samples were analyzed by gas chromatography. Effects of temperature, pressure, extraction time, initial ethan...

  11. Evidence of wintertime CO2 emission from snow-covered grounds in high latitudes

    Institute of Scientific and Technical Information of China (English)

    方精云; 唐艳鸿KOIZUMI; Hiroshi(Division; of; Plant; Ecology; National; Institute; of; Agro-Environmental; Sciences; Tsukuba; 305; Japan)BEKKU; Yukiko(National; Polar; Institute; Tokyo; 192; Japan)

    1999-01-01

    In order to measure CO2 flux in wintertime arctic ecosystems, CO2 gas was sampled from various snow-covered grounds by using a closed chamber method during the First China Arctic Scientific Expedition from March to May in 1995. The CO2 gas samples were measured by using an infra-red analyzer (IRGA). The results showed that (ⅰ) CO2 emission was detected from all kinds of the snow-covered grounds, which provides direct evidence that the arctic tundra is functioning as a source of atmospheric CO2; (ⅱ) CO2 release was also detected from the permanent ice profile and icecap, and (ⅲ) CO2 evolution from terrestrial ecosystems in higher latitudes increased with an increase of surface temperature in accordance with the exponential function. This indicates a close coincidence with that under normal temperature conditions, and provides a useful method for predicting change in CO2 flux in the arctic ecosystems with the global climate change.

  12.  Winter time burst of CO2 from the High Arctic soils of Svalbard

    DEFF Research Database (Denmark)

    Friborg, Thomas; Hansen, Birger; Elberling, Bo;

    of relatively few measurements which appear to give small and constant emission rates. Further, most studies of the processes behind winter time emission of CO2 conclude that the flux during this time of year can be linked to the respiratory release of CO2 from soil micro organisms, which is temperature...

  13. Two-phase flow effects on the CO2 injection pressure evolution and implications for the caprock geomechanical stability

    OpenAIRE

    Vilarrasa Víctor; Carrera Jesús; Olivella Sebastià

    2016-01-01

    Geologic carbon storage is considered to be one of the main solutions to significantly reduce CO2 emissions to the atmosphere to mitigate climate change. CO2 injection in deep geological formations entails a two-phase flow, being CO2 the non-wetting phase. One of the main concerns of geologic carbon storage is whether the overpressure induced by CO2 injection may compromise the caprock integrity and faults stability. We numerically investigate the two-phase flow effects that govern the overpr...

  14. Flexible and High Performance Supercapacitors Based on NiCo2O4for Wide Temperature Range Applications

    Science.gov (United States)

    Gupta, Ram K.; Candler, John; Palchoudhury, Soubantika; Ramasamy, Karthik; Gupta, Bipin Kumar

    2015-10-01

    Binder free nanostructured NiCo2O4 were grown using a facile hydrothermal technique. X-ray diffraction patterns confirmed the phase purity of NiCo2O4. The surface morphology and microstructure of the NiCo2O4 analyzed by scanning electron microscopy (SEM) showed flower-like morphology composed of needle-like structures. The potential application of binder free NiCo2O4 as an electrode for supercapacitor devices was investigated using electrochemical methods. The cyclic voltammograms of NiCo2O4 electrode using alkaline aqueous electrolytes showed the presence of redox peaks suggesting pseudocapacitance behavior. Quasi-solid state supercapacitor device fabricated by sandwiching two NiCo2O4 electrodes and separating them by ion transporting layer. The performance of the device was tested using cyclic voltammetry, galvanostatic charge-discharge and electrochemical impedance spectroscopy. The device showed excellent flexibility and cyclic stability. The temperature dependent charge storage capacity was measured for their variable temperature applications. Specific capacitance of the device was enhanced by ~150% on raising the temperature from 20 to 60 °C. Hence, the results suggest that NiCo2O4 grown under these conditions could be a suitable material for high performance supercapacitor devices that can be operated at variable temperatures.

  15. Numerical Simulation of Vacuum Pressure Swing Adsorption Process for CO_2 Capture from Flue Gas%真空变压吸附过程捕获烟道气中CO_2的数值模拟

    Institute of Scientific and Technical Information of China (English)

    沈春枝; 孙玉柱; 李平; 于建国

    2011-01-01

    真空变压吸附(VPSA)过程的影响因素很多,且为一组复杂的非线性关系。通过计算来了解各变量对过程分离性能的影响有着实验无法替代的作用。采用沥青基活性碳小球为吸附剂,建立了VPSA过程及其能耗计算的模型,模拟研究了P/F、真空压力和CO2进料浓度对VPSA过程分离性能及其总能耗的影响。研究结果表明:P/F存在一个最佳值,使得VPSA过程的总能耗最小;随着真空压力的减小,产品气的纯度和回收率均增大,风机能耗减小,真空泵能耗增大,总能耗增大;随着CO2进料浓度的增加,产品气的纯度和回收率均增大,相反地,风机、真空泵及过程总能耗均减小。%Simulation study of effects of operating parameters on vacuum pressure swing adsorption(VPSA) process is very important since there are many influential parameters on VPSA which are of non-linear.Mathematical models were derived to describe VPSA process for CO2 capture from flue gas using pitch-based spherical activated carbon beads.Effects of P/F,evacuation pressure and CO2 feed concentration on the performance of VPSA were studied.The simulation results show that there is an optimum P/F resulting in minimum total energy consumption(Wt).Product purity,recovery and Wt of VPSA process increase with the decrease of vacuum pressure.With the increase of CO2 feed concentration,both product purity and recovery increase while the energy consumption of vacuum pump,blower and Wt decrease.

  16. Three-dimensional nickel foam/graphene/NiCo2O4 as high-performance electrodes for supercapacitors

    Science.gov (United States)

    Nguyen, Van Hoa; Shim, Jae-Jin

    2015-01-01

    A facile and efficient two-step method for the decoration of graphene sheets and nickel cobalt oxide (NiCo2O4) nanoparticles on conducting nickel foam was developed. First, graphene and a bimetallic (Ni, Co) hydroxide precursor were deposited on a Ni foam support by electrodeposition followed by a thermal transformation of the bimetallic hydroxide to NiCo2O4. The graphene layer with a thickness of a few nanometers was decorated with NiCo2O4 nanoparticles, ranging in size from 3 to 5 nm. The nickel foam electrode supported graphene and NiCo2O4 exhibited rapid electron and ion transport, large electroactive surface area, and excellent structural stability. The specific capacitance of the obtained electrode was as high as 1950 F g-1 at a high current density of 7.5 A g-1, suggesting its promising applications as an efficient electrode for electrochemical capacitors.

  17. Absorption measurements for highly sensitive diode laser of CO2 near 1.3μm at room temperature

    Institute of Scientific and Technical Information of China (English)

    Shao Jie; Zhang Wei-Jun; Gao Xiao-Ming; Ning Li-Xin; Yuan Yi-Qian

    2005-01-01

    Fifteen new absorption lines were observed when studing CO2 absorption spectroscopy by wavelength modulation technique with a distributed feedback lase. The overtone spectra of CO2 around 1.3μm and the corresponding spectral parameters (i.e. positions, intensities, self-broadening coefficients) are presented. The intensity of the weakest line detected is 2.25163×-27cm-1/(molecule·cm-2) at the pressure of 667Pa, with a corresponding absorption of 3.88×10-8.

  18. Effect of CO2 partial pressure on SCC behavior of welded X80 pipeline in simulated soil solution

    Institute of Scientific and Technical Information of China (English)

    Ming WU; Xu CHEN; Chuan HE; Jun XIAO

    2011-01-01

    The stress corrosion cracking (SCC) behavior of welded X80 pipeline steel in simulated Ku'erle soil solution was studied by means of electrochemical impedance spectroscopy (EIS) and slow strain rate tests (SSRT). The microstructure of the welded steel was observed by optical microscopy (OM). It is demonstrated that the microstructure of the weld metal consists of acicular ferrite and grain boundary ferrite,while that of heat affected zone (HAZ) is a mixture of acicular ferrite and bainitic ferrite microconstituents. The microstructure of the base steel is composed of ferrite and pearlite.The anodic dissolution of X80 pipeline steel in simulated Ku'erle soil solution could be enhanced and the SCC sensitivity increased with the increase of CO2 partial pressure. The SCC mechanism of X80 pipeline is a mixing mechanism of hydrogen embrittlement combined with anodic dissolution,and the hydrogen embrittlement plays a leading role. The higher SCC sensitivity of the weld metal was attributed to the metallurgical transformation,local hardening and residual stress.

  19. Low Pressure CO2 Hydrogenation to Methanol over Gold Nanoparticles Activated on a CeO(x)/TiO2 Interface.

    Science.gov (United States)

    Yang, Xiaofang; Kattel, Shyam; Senanayake, Sanjaya D; Boscoboinik, J Anibal; Nie, Xiaowa; Graciani, Jesús; Rodriguez, José A; Liu, Ping; Stacchiola, Darío J; Chen, Jingguang G

    2015-08-19

    Capture and recycling of CO2 into valuable chemicals such as alcohols could help mitigate its emissions into the atmosphere. Due to its inert nature, the activation of CO2 is a critical step in improving the overall reaction kinetics during its chemical conversion. Although pure gold is an inert noble metal and cannot catalyze hydrogenation reactions, it can be activated when deposited as nanoparticles on the appropriate oxide support. In this combined experimental and theoretical study, it is shown that an electronic polarization at the metal-oxide interface of Au nanoparticles anchored and stabilized on a CeO(x)/TiO2 substrate generates active centers for CO2 adsorption and its low pressure hydrogenation, leading to a higher selectivity toward methanol. This study illustrates the importance of localized electronic properties and structure in catalysis for achieving higher alcohol selectivity from CO2 hydrogenation.

  20. Los Angeles megacity: a high-resolution land-atmosphere modelling system for urban CO2 emissions

    Science.gov (United States)

    Feng, Sha; Lauvaux, Thomas; Newman, Sally; Rao, Preeti; Ahmadov, Ravan; Deng, Aijun; Díaz-Isaac, Liza I.; Duren, Riley M.; Fischer, Marc L.; Gerbig, Christoph; Gurney, Kevin R.; Huang, Jianhua; Jeong, Seongeun; Li, Zhijin; Miller, Charles E.; O'Keeffe, Darragh; Patarasuk, Risa; Sander, Stanley P.; Song, Yang; Wong, Kam W.; Yung, Yuk L.

    2016-07-01

    Megacities are major sources of anthropogenic fossil fuel CO2 (FFCO2) emissions. The spatial extents of these large urban systems cover areas of 10 000 km2 or more with complex topography and changing landscapes. We present a high-resolution land-atmosphere modelling system for urban CO2 emissions over the Los Angeles (LA) megacity area. The Weather Research and Forecasting (WRF)-Chem model was coupled to a very high-resolution FFCO2 emission product, Hestia-LA, to simulate atmospheric CO2 concentrations across the LA megacity at spatial resolutions as fine as ˜ 1 km. We evaluated multiple WRF configurations, selecting one that minimized errors in wind speed, wind direction, and boundary layer height as evaluated by its performance against meteorological data collected during the CalNex-LA campaign (May-June 2010). Our results show no significant difference between moderate-resolution (4 km) and high-resolution (1.3 km) simulations when evaluated against surface meteorological data, but the high-resolution configurations better resolved planetary boundary layer heights and vertical gradients in the horizontal mean winds. We coupled our WRF configuration with the Vulcan 2.2 (10 km resolution) and Hestia-LA (1.3 km resolution) fossil fuel CO2 emission products to evaluate the impact of the spatial resolution of the CO2 emission products and the meteorological transport model on the representation of spatiotemporal variability in simulated atmospheric CO2 concentrations. We find that high spatial resolution in the fossil fuel CO2 emissions is more important than in the atmospheric model to capture CO2 concentration variability across the LA megacity. Finally, we present a novel approach that employs simultaneous correlations of the simulated atmospheric CO2 fields to qualitatively evaluate the greenhouse gas measurement network over the LA megacity. Spatial correlations in the atmospheric CO2 fields reflect the coverage of individual measurement sites when a

  1. Long-term changes in CO2 emissions in Austria and Czechoslovakia—Identifying the drivers of environmental pressures

    Science.gov (United States)

    Gingrich, Simone; Kušková, Petra; Steinberger, Julia K.

    2011-01-01

    This study presents fossil-fuel related CO2 emissions in Austria and Czechoslovakia (current Czech Republic and Slovakia) for 1830–2000. The drivers of CO2 emissions are discussed by investigating the variables of the standard Kaya identity for 1920–2000 and conducting a comparative Index Decomposition Analysis. Proxy data on industrial production and household consumption are analysed to understand the role of the economic structure. CO2 emissions increased in both countries in the long run. Czechoslovakia was a stronger emitter of CO2 throughout the time period, but per-capita emissions significantly differed only after World War I, when Czechoslovakia and Austria became independent. The difference in CO2 emissions increased until the mid-1980s (the period of communism in Czechoslovakia), explained by the energy intensity and the composition effects, and higher industrial production in Czechoslovakia. Counterbalancing factors were the income effect and household consumption. After the Velvet revolution in 1990, Czechoslovak CO2 emissions decreased, and the energy composition effect (and industrial production) lost importance. Despite their different political and economic development, Austria and Czechoslovakia reached similar levels of per-capita CO2 emissions in the late 20th century. Neither Austrian “eco-efficiency” nor Czechoslovak restructuring have been effective in reducing CO2 emissions to a sustainable level. PMID:21461052

  2. Long-term changes in CO(2) emissions in Austria and Czechoslovakia-Identifying the drivers of environmental pressures.

    Science.gov (United States)

    Gingrich, Simone; Kušková, Petra; Steinberger, Julia K

    2011-02-01

    This study presents fossil-fuel related CO(2) emissions in Austria and Czechoslovakia (current Czech Republic and Slovakia) for 1830-2000. The drivers of CO(2) emissions are discussed by investigating the variables of the standard Kaya identity for 1920-2000 and conducting a comparative Index Decomposition Analysis. Proxy data on industrial production and household consumption are analysed to understand the role of the economic structure. CO(2) emissions increased in both countries in the long run. Czechoslovakia was a stronger emitter of CO(2) throughout the time period, but per-capita emissions significantly differed only after World War I, when Czechoslovakia and Austria became independent. The difference in CO(2) emissions increased until the mid-1980s (the period of communism in Czechoslovakia), explained by the energy intensity and the composition effects, and higher industrial production in Czechoslovakia. Counterbalancing factors were the income effect and household consumption. After the Velvet revolution in 1990, Czechoslovak CO(2) emissions decreased, and the energy composition effect (and industrial production) lost importance. Despite their different political and economic development, Austria and Czechoslovakia reached similar levels of per-capita CO(2) emissions in the late 20th century. Neither Austrian "eco-efficiency" nor Czechoslovak restructuring have been effective in reducing CO(2) emissions to a sustainable level.

  3. Physiological and genetic control mechanisms for plant adaptation to high temperature and elevated CO2

    Energy Technology Data Exchange (ETDEWEB)

    Zeiger, Eduardo

    2001-02-01

    Acclimations of the stomatal response to CO2 were characterized. Stomata from the model plant used, Vicia faba, are very sensitive to ambient CO2 when grown in growth chambers as compared to stomata from green house grown leaves. The different CO2 sensitivities of growth chamber and green house grown guard cells was confirmed by reciprocal transfer experiments. Stomata acclimated to their new environment and acquired the CO2 sensitivity typical of that environment. A mechanism for CO2 sensing was also characterized. Results show that CO2 concentration alters the concentration of zeaxanthin in the guard cell chloroplast, thus modifying the light response of the guard cells. This mechanism accounts for the well characterized interactions of light and CO2 in the stomatal responses. The xanthophyll cycle in the stomata of the facultative CAM plant, Mesembryanthemum crystallinum, was characterized. In the C3 mode, zeaxanthin is formed in the light and stomata open. Upon induction of the CAM mode, zeaxanthin synthesis is blocked and stomata no longer respond to light. These results implicate the regulation of the xanthophyll cycle of guard cells in the CAM adaptation.

  4. Implications of high amplitude atmospheric CO2 fluctuations on past millennium climat