WorldWideScience

Sample records for high chemical reactivity

  1. The Hazards of Reactive Chemicals in High School Laboratories.

    Science.gov (United States)

    Forlin, Peter

    Chemical reactivity is a major area of risk in high school laboratories. This paper reports on a study that has provided a research-based framework for risk management in Australian chemical education. The chemical practice model of risk management is considered with respect to kinetic factors; catalysts; concentrations and proportions;…

  2. Studies on high chemical reactivity of nano-NaH

    Institute of Scientific and Technical Information of China (English)

    FAN Yinheng; ZOU Yunling; JIN Dan; WU Qiang; LIU Tong; XU Jie

    2007-01-01

    A comparison between the initial reaction rates of nanometric and commercial Nail has been studied in four test reactions: 1) hydrogenolysis of chlorobenzene; 2) selec-tive reduction of cinnamaldehyde to cinnamyl alcohol; 3)metallation of dimethyl sulfoxide; and 4) catalytic hydroge-nation ofolefins. The experimental results indicate that when Nail is used as a chemical reagent in the first three reactions,the initial reaction rates of nano-NaH is 230, 120 and 110 times higher than those of the commercial ones respectively,and it is in agreement with the difference in specific surface areas between these two forms of Nail. When Nail is used as a catalyst component together with Cp2TiCl2 in the fourth reaction, catalyst with nano-NaH gives extremely high activity in the hydrogenation of olefins, while the one with commercial Nail gives no activity at all even ifa large amount of the commercial Nail is used to make the total surface area equivalent to that of nano-NaH. Thus, it is evident that although large specific surface area is important for nano-Nail to be used as a catalyst component, high surface energy with surface defects seems to be more important. The largespecific surface and the activated surface of nano-NaH withhigh surface energy should be the main factors for thei rextremely high chemical reactivity, while whether the former or the latter one plays a leading role depends on the type of reactions involved.

  3. Chemical Reactivity Test (CRT)

    Energy Technology Data Exchange (ETDEWEB)

    Zaka, F. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-12-13

    The Chemical Reactivity Test (CRT) is used to determine the thermal stability of High Explosives (HEs) and chemical compatibility between (HEs) and alien materials. The CRT is one of the small-scale safety tests performed on HE at the High Explosives Applications Facility (HEAF).

  4. On the Inclusion of Inorganic Chemical Reactivity in High School Chemistry: The Reactivity Network.

    Science.gov (United States)

    Mellon, E. K.

    1989-01-01

    Reports the function of the Reactivity Network which is to translate reactivity data from the primary literature into some 30 reviews for high school teachers and curriculum developers and to disseminate that information nationwide. Discusses a needs assessment done for the project. (MVL)

  5. Interactive chemical reactivity exploration.

    Science.gov (United States)

    Haag, Moritz P; Vaucher, Alain C; Bosson, Maël; Redon, Stéphane; Reiher, Markus

    2014-10-20

    Elucidating chemical reactivity in complex molecular assemblies of a few hundred atoms is, despite the remarkable progress in quantum chemistry, still a major challenge. Black-box search methods to find intermediates and transition-state structures might fail in such situations because of the high-dimensionality of the potential energy surface. Here, we propose the concept of interactive chemical reactivity exploration to effectively introduce the chemist's intuition into the search process. We employ a haptic pointer device with force feedback to allow the operator the direct manipulation of structures in three dimensions along with simultaneous perception of the quantum mechanical response upon structure modification as forces. We elaborate on the details of how such an interactive exploration should proceed and which technical difficulties need to be overcome. All reactivity-exploration concepts developed for this purpose have been implemented in the samson programming environment. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Interactive Chemical Reactivity Exploration

    CERN Document Server

    Haag, Moritz P; Bosson, Mael; Redon, Stephane; Reiher, Markus

    2014-01-01

    Elucidating chemical reactivity in complex molecular assemblies of a few hundred atoms is, despite the remarkable progress in quantum chemistry, still a major challenge. Black-box search methods to find intermediates and transition-state structures might fail in such situations because of the high-dimensionality of the potential energy surface. Here, we propose the concept of interactive chemical reactivity exploration to effectively introduce the chemist's intuition into the search process. We employ a haptic pointer device with force-feedback to allow the operator the direct manipulation of structures in three dimensions along with simultaneous perception of the quantum mechanical response upon structure modification as forces. We elaborate on the details of how such an interactive exploration should proceed and which technical difficulties need to be overcome. All reactivity-exploration concepts developed for this purpose have been implemented in the Samson programming environment.

  7. THE HIGH TEMPERATURE CHEMICAL REACTIVITY OF LI2O

    Energy Technology Data Exchange (ETDEWEB)

    Kessinger, G.; Missimer, D.

    2009-11-13

    ) It is likely that some or all of the past high temperature phase behavior and vaporization experiments involving Li{sub 2}O(s) at temperatures above 1250 C have actually involved Li{sub 2}O(l). If these past measurements were actually measurements performed on Li{sub 2}O(l) instead of the solid, the thermochemical data for phases and species in the Li-O system will require reevaluation.

  8. The chemical and mechanical behaviors of polymer / reactive metal systems under high strain rates

    Science.gov (United States)

    Shen, Yubin

    As one category of energetic materials, impact-initiated reactive materials are able to release a high amount of stored chemical energy under high strain rate impact loading, and are used extensively in civil and military applications. In general, polymers are introduced as binder materials to trap the reactive metal powders inside, and also act as an oxidizing agent for the metal ingredient. Since critical attention has been paid on the metal / metal reaction, only a few types of polymer / reactive metal interactions have been studied in the literature. With the higher requirement of materials resistant to different thermal and mechanical environments, the understanding and characterization of polymer / reactive metal interactions are in great demand. In this study, PTFE (Polytetrafluoroethylene) 7A / Ti (Titanium) composites were studied under high strain rates by utilizing the Taylor impact and SHPB tests. Taylor impact tests with different impact velocities, sample dimensions and sample configurations were conducted on the composite, equipped with a high-speed camera for tracking transient images during the sudden process. SHPB and Instron tests were carried out to obtain the stress vs. strain curves of the composite under a wide range of strain rates, the result of which were also utilized for fitting the constitutive relations of the composite based on the modified Johnson-Cook strength model. Thermal analyses by DTA tests under different flow rates accompanied with XRD identification were conducted to study the reaction mechanism between PTFE 7A and Ti when only heat was provided. Numerical simulations on Taylor impact tests and microstructural deformations were also performed to validate the constitutive model built for the composite system, and to investigate the possible reaction mechanism between two components. The results obtained from the high strain rate tests, thermal analyses and numerical simulations were combined to provide a systematic study on

  9. Peptide reactivity assay using spectrophotometric method for high-throughput screening of skin sensitization potential of chemical haptens.

    Science.gov (United States)

    Jeong, Yun Hyeok; An, Susun; Shin, Kyeho; Lee, Tae Ryong

    2013-02-01

    Haptens must react with cellular proteins to be recognized by antigen presenting cells. Therefore, monitoring reactivity of chemicals with peptide/protein has been considered an in vitro skin sensitization testing method. The reactivity of peptides with chemicals (peptide reactivity) has usually been monitored by chromatographic methods like HPLC or LC/MS, which are robust tools for monitoring common chemical reactions but are rather expensive and time consuming. Here, we examined the possibility of using spectrophotometric methods to monitor peptide reactivity. Two synthetic peptides, Ac-RWAACAA and Ac-RWAAKAA, were reacted with 48 chemicals (34 sensitizers and 14 non-sensitizers). Peptide reactivity was measured by monitoring unreacted peptides with UV-Vis spectrophotometer using 5,5'-dithiobis-2-nitrobenzoic acid as a detection reagent for the free thiol group of cysteine-containing peptide or fluorometer using fluorescamine™ as a detection reagent for the free amine group of lysine-containing peptide. Chemicals were categorized as sensitizers when they induced more than 10% depletion of cysteine-containing peptide or 20% depletion of lysine-containing peptide. The sensitivity, specificity, and accuracy of this method were 82.4%, 85.7%, and 83.3%, respectively. These results demonstrate that spectrophotometric methods can be easy, fast, and high-throughput screening tools for the prediction of the skin sensitization potential of chemical haptens. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Green chemical engineering aspects of reactive distillation.

    Science.gov (United States)

    Malone, Michael F; Huss, Robert S; Doherty, Michael F

    2003-12-01

    Reactive or catalytic distillation technology combines chemical synthesis steps with separations by distillation. This combination can lead to intensified, high-efficiency process systems with significant green engineering attributes. New applications and understanding have prompted growth in the use of reactive distillation for a variety of chemical syntheses, especially esterifications and etherifications involving oxygenated hydrocarbons. We describe several applications and the potential and tradeoffs for reactive distillation technology in the context of green engineering principles.

  11. Evaluation of a High-Throughput Peptide Reactivity Format Assay for Assessment of the Skin Sensitization Potential of Chemicals

    Science.gov (United States)

    Wong, Chin Lin; Lam, Ai-Leen; Smith, Maree T.; Ghassabian, Sussan

    2016-01-01

    The direct peptide reactivity assay (DPRA) is a validated method for in vitro assessment of the skin sensitization potential of chemicals. In the present work, we describe a peptide reactivity assay using 96-well plate format and systematically identified the optimal assay conditions for accurate and reproducible classification of chemicals with known sensitizing capacity. The aim of the research is to ensure that the analytical component of the peptide reactivity assay is robust, accurate, and reproducible in accordance with criteria that are used for the validation of bioanalytical methods. Analytical performance was evaluated using quality control samples (QCs; heptapeptides at low, medium, and high concentrations) and incubation of control chemicals (chemicals with known sensitization capacity, weak, moderate, strong, extreme, and non-sensitizers) with each of three synthetic heptapeptides, viz Cor1-C420 (Ac-NKKCDLF), cysteine- (Ac-RFAACAA), and lysine- (Ac-RFAAKAA) containing heptapeptides. The optimal incubation temperature for all three heptapeptides was 25°C. Apparent heptapeptide depletion was affected by vial material composition. Incubation of test chemicals with Cor1-C420, showed that peptide depletion was unchanged in polypropylene vials over 3-days storage in an autosampler but this was not the case for borosilicate glass vials. For cysteine-containing heptapeptide, the concentration was not stable by day 3 post-incubation in borosilicate glass vials. Although the lysine-containing heptapeptide concentration was unchanged in both polypropylene and borosilicate glass vials, the apparent extent of lysine-containing heptapeptide depletion by ethyl acrylate, differed between polypropylene (24.7%) and glass (47.3%) vials. Additionally, the peptide-chemical complexes for Cor1-C420-cinnamaldehyde and cysteine-containing heptapeptide-2, 4-dinitrochlorobenzene were partially reversible during 3-days of autosampler storage. These observations further highlight

  12. Evaluation of a high-throughput peptide reactivity format assay for assessment of the skin sensitization potential of chemicals

    Directory of Open Access Journals (Sweden)

    Chin Lin eWong

    2016-03-01

    Full Text Available The direct peptide reactivity assay (DPRA is a validated method for in vitro assessment of the skin sensitization potential of chemicals. In the present work, we describe a peptide reactivity assay using 96-well plate format and systematically identified the optimal assay conditions for accurate and reproducible classification of chemicals with known sensitizing capacity. The aim of the research is to ensure that the analytical component of the peptide reactivity assay is robust, accurate and reproducible in accordance with criteria that are used for the validation of bioanalytical methods. Analytical performance was evaluated using quality control samples (QCs; heptapeptides at low, medium and high concentrations and incubation of control chemicals (chemicals with known sensitization capacity, weak, moderate, strong, extreme and non-sensitizers with each of three synthetic heptapeptides, viz Cor1-C420 (Ac-NKKCDLF, cysteine- (Ac-RFAACAA and lysine- (Ac-RFAAKAA containing heptapeptides. The optimal incubation temperature for all three heptapeptides was 25°C. Apparent heptapeptide depletion was affected by vial material composition. Incubation of test chemicals with Cor1-C420, showed that peptide depletion was unchanged in polypropylene vials over 3-days storage in an autosampler but this was not the case for borosilicate glass vials. For cysteine-containing heptapeptide, the concentration was not stable by day 3 post-incubation in borosilicate glass vials. Although the lysine-containing heptapeptide concentration was unchanged in both polypropylene and borosilicate glass vials, the apparent extent of lysine-containing heptapeptide depletion by ethyl acrylate, differed between polypropylene (24.7% and glass (47.3% vials. Additionally, the peptide-chemical complexes for Cor1-C420-cinnamaldehyde and cysteine-containing heptapeptide-2,4-dinitrochlorobenzene were partially reversible during 3-days of autosampler storage. These observations further

  13. Studying chemical reactivity in a virtual environment.

    Science.gov (United States)

    Haag, Moritz P; Reiher, Markus

    2014-01-01

    Chemical reactivity of a set of reactants is determined by its potential (electronic) energy (hyper)surface. The high dimensionality of this surface renders it difficult to efficiently explore reactivity in a large reactive system. Exhaustive sampling techniques and search algorithms are not straightforward to employ as it is not clear which explored path will eventually produce the minimum energy path of a reaction passing through a transition structure. Here, the chemist's intuition would be of invaluable help, but it cannot be easily exploited because (1) no intuitive and direct tool for the scientist to manipulate molecular structures is currently available and because (2) quantum chemical calculations are inherently expensive in terms of computational effort. In this work, we elaborate on how the chemist can be reintroduced into the exploratory process within a virtual environment that provides immediate feedback and intuitive tools to manipulate a reactive system. We work out in detail how this immersion should take place. We provide an analysis of modern semi-empirical methods which already today are candidates for the interactive study of chemical reactivity. Implications of manual structure manipulations for their physical meaning and chemical relevance are carefully analysed in order to provide sound theoretical foundations for the interpretation of the interactive reactivity exploration.

  14. Quantum Entanglement and Chemical Reactivity.

    Science.gov (United States)

    Molina-Espíritu, M; Esquivel, R O; López-Rosa, S; Dehesa, J S

    2015-11-10

    The water molecule and a hydrogenic abstraction reaction are used to explore in detail some quantum entanglement features of chemical interest. We illustrate that the energetic and quantum-information approaches are necessary for a full understanding of both the geometry of the quantum probability density of molecular systems and the evolution of a chemical reaction. The energy and entanglement hypersurfaces and contour maps of these two models show different phenomena. The energy ones reveal the well-known stable geometry of the models, whereas the entanglement ones grasp the chemical capability to transform from one state system to a new one. In the water molecule the chemical reactivity is witnessed through quantum entanglement as a local minimum indicating the bond cleavage in the dissociation process of the molecule. Finally, quantum entanglement is also useful as a chemical reactivity descriptor by detecting the transition state along the intrinsic reaction path in the hypersurface of the hydrogenic abstraction reaction corresponding to a maximally entangled state.

  15. Chemical reactivity of CVC and CVD SiC with UO{sub 2} at high temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Chinthaka M., E-mail: silvagw@ornl.gov [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Katoh, Yutai [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Voit, Stewart L. [Fusion and Materials for Nuclear Systems Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Snead, Lance L. [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States)

    2015-05-15

    Two types of silicon carbide (SiC) synthesized using two different vapor deposition processes were embedded in UO{sub 2} pellets and evaluated for their potential chemical reaction with UO{sub 2}. While minor reactivity between chemical-vapor-composited (CVC) SiC and UO{sub 2} was observed at comparatively low temperatures of 1100 and 1300 °C, chemical-vapor-deposited (CVD) SiC did not show any such reactivity. However, both CVD and CVC SiCs showed some reaction with UO{sub 2} at a higher temperature (1500 °C). Elemental maps supported by phase maps obtained using electron backscatter diffraction indicated that CVC SiC was more reactive than CVD SiC at 1500 °C. Furthermore, this investigation indicated the formation of uranium carbides and uranium silicide chemical phases such as UC, USi{sub 2}, and U{sub 3}Si{sub 2} as a result of SiC reaction with UO{sub 2}.

  16. Hydrophobic interactions and chemical reactivity

    NARCIS (Netherlands)

    Otto, Sijbren; Engberts, Jan B.F.N.

    2003-01-01

    This perspective describes how kinetic studies of organic reactions can be used to increase our understanding of hydrophobic interactions. In turn, our understanding of hydrophobic interactions can be used as a tool to influence chemical reactions.

  17. Hydrophobic interactions and chemical reactivity

    NARCIS (Netherlands)

    Otto, Sijbren; Engberts, Jan B.F.N.

    2003-01-01

    This perspective describes how kinetic studies of organic reactions can be used to increase our understanding of hydrophobic interactions. In turn, our understanding of hydrophobic interactions can be used as a tool to influence chemical reactions.

  18. Investigating the influence of subsurface heterogeneity on chemical weathering in the critical zone using high resolution reactive transport models

    Science.gov (United States)

    Pandey, S.; Rajaram, H.

    2014-12-01

    The critical zone (CZ) represents a major life-sustaining realm of the terrestrial surface. The processes controlling the development and transformation of the CZ are important to continued health of the planet as human influence continues to grow. The CZ encompasses the shallow subsurface, a region of reaction, unsaturated flow, and transport. Chemical weathering in the subsurface is one of the important processes involved in the formation and functioning of the CZ. We present two case studies of reactive transport modeling to investigate the influence of subsurface heterogeneity and unsaturated flow on chemical weathering processes in the CZ. The model is implemented using the reactive transport code PFLOTRAN. Heterogeneity in subsurface flow is represented using multiple realizations of conductive fracture networks in a hillslope cross-section. The first case study is motivated by observations at the Boulder Creek Critical Zone Observatory (BCCZO) including extensive hydrologic and geochemical datasets. The simulations show that fractures greatly enhance weathering as compared to a homogeneous porous medium. Simulations of north-facing slope hydrology with prolonged snowmelt pulses also increases weathering rates, showing the importance of slope aspect on weathering intensity. Recent work elucidates deteriorating water quality caused by climate change in the CZ of watersheds where acid rock drainage (ARD) occurs. The more complex reactions of ARD require a customized kinetic reaction module with PFLOTRAN. The second case study explores the mechanisms by which changes in hydrologic forcing, air and ground temperatures, and water table elevations influence ARD. For instance, unreacted pyrite exposed by a water table drop was shown to produce a 125% increase in annual pyrite oxidization rate, which provides one explanation for increased ARD.

  19. Steam-chemical reactivity for irradiated beryllium

    Energy Technology Data Exchange (ETDEWEB)

    Anderl, R.A.; McCarthy, K.A.; Oates, M.A.; Petti, D.A.; Pawelko, R.J.; Smolik, G.R. [Idaho National Engineering and Environmental Lab., Idaho Falls, ID (United States)

    1998-01-01

    This paper reports the results of an experimental investigation to determine the influence of neutron irradiation effects and annealing on the chemical reactivity of beryllium exposed to steam. The work entailed measurements of the H{sub 2} generation rates for unirradiated and irradiated Be and for irradiated Be that had been previously annealed at different temperatures ranging from 450degC to 1200degC. H{sub 2} generation rates were similar for irradiated and unirradiated Be in steam-chemical reactivity experiments at temperatures between 450degC and 600degC. For irradiated Be exposed to steam at 700degC, the chemical reactivity accelerated rapidly and the specimen experienced a temperature excursion. Enhanced chemical reactivity at temperatures between 400degC and 600degC was observed for irradiated Be annealed at temperatures of 700degC and higher. This reactivity enhancement could be accounted for by the increased specific surface area resulting from development of a surface-connected porosity in the irradiated-annealed Be. (author)

  20. Haptenation: Chemical Reactivity and Protein Binding

    Directory of Open Access Journals (Sweden)

    Itai Chipinda

    2011-01-01

    Full Text Available Low molecular weight chemical (LMW allergens are commonly referred to as haptens. Haptens must complex with proteins to be recognized by the immune system. The majority of occupationally related haptens are reactive, electrophilic chemicals, or are metabolized to reactive metabolites that form covalent bonds with nucleophilic centers on proteins. Nonelectrophilic protein binding may occur through disulfide exchange, coordinate covalent binding onto metal ions on metalloproteins or of metal allergens, themselves, to the major histocompatibility complex. Recent chemical reactivity kinetic studies suggest that the rate of protein binding is a major determinant of allergenic potency; however, electrophilic strength does not seem to predict the ability of a hapten to skew the response between Th1 and Th2. Modern proteomic mass spectrometry methods that allow detailed delineation of potential differences in protein binding sites may be valuable in predicting if a chemical will stimulate an immediate or delayed hypersensitivity. Chemical aspects related to both reactivity and protein-specific binding are discussed.

  1. Chemical Reactivity Dynamics and Quantum Chaos in Highly Excited Hydrogen Atoms in an External Field: A Quantum Potential Approach

    Directory of Open Access Journals (Sweden)

    B. Maiti

    2002-04-01

    Full Text Available Abstract: Dynamical behavior of chemical reactivity indices like electronegativity, hardness, polarizability, electrophilicity and nucleophilicity indices is studied within a quantum fluid density functional framework for the interactions of a hydrogen atom in its ground electronic state (n = 1 and an excited electronic state (n = 20 with monochromatic and bichromatic laser pulses. Time dependent analogues of various electronic structure principles like the principles of electronegativity equalization, maximum hardness, minimum polarizability and maximum entropy have been found to be operative. Insights into the variation of intensities of the generated higher order harmonics on the color of the external laser field are obtained. The quantum signature of chaos in hydrogen atom has been studied using a quantum theory of motion and quantum fluid dynamics. A hydrogen atom in the electronic ground state (n = 1 and in an excited electronic state ( n = 20 behaves differently when placed in external oscillating monochromatic and bichromatic electric fields. Temporal evolutions of Shannon entropy, quantum Lyapunov exponent and Kolmogorov – Sinai entropy defined in terms of the distance between two initially close Bohmian trajectories for these two cases show marked differences. It appears that a larger uncertainty product and a smaller hardness value signal a chaotic behavior.

  2. Chemical reactivity evaluation: The CCPS program. [CCPS (Center for Chemical Process Safety)

    Energy Technology Data Exchange (ETDEWEB)

    West, A.S. (American Institute of Chemical Engineers, New York, NY (United States))

    1993-01-01

    A summary is presented of the chemical reactivity evaluation aspects of the soon to be published [open quotes]Guidelines for Chemical Reactivity Evaluation and Application to Process Design[close quotes] developed under the sponsorship of the Center for Chemical Process Safety. Emphasis is placed on strategies for thermochemical evaluation of industrial chemical substances. Certain structural entities, for example, high degrees of unsaturation and nitrogen-halogen linkages, will likely identify hazardous reactive chemicals. The effects of impurities in the chemicals, as well as, for example, incidental contact with water and air (oxygen), must also be considered in the evaluation of potential reactivity hazards, representing undesired reactions. Various test methods are indicated briefly along with the rationale for use of specific methods in hazard evaluation. 30 refs., 1 fig., 9 tabs.

  3. Exploring the Chemical Reactivity between Carbon Dioxide and Three Transition Metals (Au, Pt, and Re) at High-Pressure, High-Temperature Conditions.

    Science.gov (United States)

    Santamaría-Pérez, David; McGuire, Chris; Makhluf, Adam; Kavner, Abby; Chuliá-Jordán, Raquel; Pellicer-Porres, Julio; Martinez-García, Domingo; Doran, Andrew; Kunz, Martin; Rodríguez-Hernández, Plácida; Muñoz, Alfonso

    2016-10-06

    The role of carbon dioxide, CO2, as oxidizing agent at high pressures and temperatures is evaluated by studying its chemical reactivity with three transition metals: Au, Pt, and Re. We report systematic X-ray diffraction measurements up to 48 GPa and 2400 K using synchrotron radiation and laser-heating diamond-anvil cells. No evidence of reaction was found in Au and Pt samples in this pressure-temperature range. In the Re + CO2 system, however, a strongly-driven redox reaction occurs at P > 8 GPa and T > 1500 K, and orthorhombic β-ReO2 is formed. This rhenium oxide phase is stable at least up to 48 GPa and 2400 K and was recovered at ambient conditions. Raman spectroscopy data confirm graphite as a reaction product. Ab-initio total-energy structural and compressibility data of the β-ReO2 phase shows an excellent agreement with experiments, altogether accurately confirming CO2 reduction P-T conditions in the presence of rhenium metal and the β-ReO2 equation of state.

  4. Synthesis, chemical reactivity as Michael acceptors, and biological potency of monocyclic cyanoenones, novel and highly potent anti-inflammatory and cytoprotective agents.

    Science.gov (United States)

    Zheng, Suqing; Santosh Laxmi, Y R; David, Emilie; Dinkova-Kostova, Albena T; Shiavoni, Katherine H; Ren, Yanqing; Zheng, Ying; Trevino, Isaac; Bumeister, Ronald; Ojima, Iwao; Wigley, W Christian; Bliska, James B; Mierke, Dale F; Honda, Tadashi

    2012-05-24

    Novel monocyclic cyanoenones examined to date display unique features regarding chemical reactivity as Michael acceptors and biological potency. Remarkably, in some biological assays, the simple structure is more potent than pentacyclic triterpenoids (e.g., CDDO and bardoxolone methyl) and tricycles (e.g., TBE-31). Among monocyclic cyanoenones, 1 is a highly reactive Michael acceptor with thiol nucleophiles. Furthermore, an important feature of 1 is that its Michael addition is reversible. For the inhibition of NO production, 1 shows the highest potency. Notably, its potency is about three times higher than CDDO, whose methyl ester (bardoxolone methyl) is presently in phase III clinical trials. For the induction of NQO1, 1 also demonstrated the highest potency. These results suggest that the reactivity of these Michael acceptors is closely related to their biological potency. Interestingly, in LPS-stimulated macrophages, 1 causes apoptosis and inhibits secretion of TNF-α and IL-1β with potencies that are higher than those of bardoxolone methyl and TBE-31.

  5. Chemical reactivity assessments in R&D.

    Science.gov (United States)

    Leggett, David

    2004-11-11

    The evaluation of reactive chemical hazards at the pilot and manufacturing scale, using laboratory testing, is increasingly used and has been well documented. However, reactive chemical hazard evaluation at the R&D scale presents special challenges. The typical hazard testing program requires a significant amount of sample, often takes time (>3 days) to complete, and is can be quite costly. On the other hand, the synthesis of new molecules in the R&D environment often produces only a few grams, occurs quickly (R&D stage of product development to define the critical limits of temperature, pressure, concentration, and safe dosing rates of processes it is possible to identify the potential hazards of the planned synthesis. This paper describes a staged approach for chemical reactivity hazard evaluation and assessment applicable to an R&D environment. We will describe these initial phases of the R&D hazard evaluation process that rely on only data that can be obtained from the open literature. We will also indicate how the need for additional assessments can be determined from this initial hazard review.

  6. PSI's 1kW imaging furnace-A tool for high-temperature chemical reactivity studies

    Energy Technology Data Exchange (ETDEWEB)

    Guesdon, C.; Alxneit, I.; Tschudi, H.R.; Wuillemin, D.; Brunner, Y.; Winkel, L.; Sturzenegger, M. [Laboratory for High-Temperature Solar Technology, Paul Scherrer Institut, 5232 Villigen PSI (Switzerland); Petrasch, J. [Professorship for Renewable Energy Carriers, ETHZ Zentrum, 8092 Zurich (Switzerland)

    2006-10-15

    A new experiment has been installed to conduct studies at temperatures as high as 2500K on chemical reactions that involve solids or melts and the release of condensable gases. The sample is radiatively heated by a 1kW xenon short arc lamp placed in the upper focus of a vertically oriented ellipsoid of revolution. The optimal optical configuration has been determined by a Monte-Carlo Ray tracing method. Several methods to machine the reflector have been evaluated by experimentally determining the optical quality of the surface of plane test pieces. In the imaging furnace the sample is placed on a water-cooled support and heated by the concentrated radiation. This arrangement allows for fast heating and impedes the reaction of the sample with crucible material. A remotely controlled hammer allows for freezing the high-temperature composition of the sample by a fast quench. Thus, the sample can be later analyzed by conventional methods such as XRD or TEM. To allow for measurements under defined atmospheres and to protect the ellipsoidal reflector from liberated condensable products, the entire sample stage is enclosed by a hemispherical glass dome. The dome itself is protected from condensable compounds by a laminar flow of inert gas. Experiments with an incense cone at the place of the sample to visualize the gas flow showed that a steady layer of inert gas protects the dome from smoke, if the inert gas flow is properly adjusted. Measured peak flux densities clearly exceed 500Wcm{sup -2} required to access temperatures of at least 2500K. Decomposition experiments on copper sulfides confirmed the operation of the furnace. In the near future flash assisted multi-wavelength pyrometry (FAMP) will be implemented to measure sample temperatures online. Though the imaging furnace was developed to study the decomposition of metal sulfides it is obviously suited to conduct high-temperature studies on most materials relevant for high-temperature solar technology. (author)

  7. Simulations of highly reactive fluids

    Energy Technology Data Exchange (ETDEWEB)

    Fried, L E; Manaa, M R; Reed, E J

    2005-07-21

    We report density functional molecular dynamics simulations to determine the early chemical events of hot (T = 3000 K) and dense (1.97 g/cm{sup 3}, V/V{sub 0} = 0.68) nitromethane (CH{sub 3}NO{sub 2}). The first step in the decomposition process is an intermolecular proton abstraction mechanism that leads to the formation of CH{sub 3}NO{sub 2}H and the aci ion H{sub 2}CNO{sub 2}{sup -}, in support of evidence from static high-pressure and shock experiments. An intramolecular hydrogen transfer that transforms nitromethane into the aci acid form, CH{sub 2}NO{sub 2}H, accompanies this event. This is the first confirmation of chemical reactivity with bond selectivity for an energetic material near the condition of fully reacted specimen. We also report the decomposition mechanism followed up to the formation of H{sub 2}O as the first stable product.

  8. Tailoring protein nanomechanics with chemical reactivity.

    Science.gov (United States)

    Beedle, Amy E M; Mora, Marc; Lynham, Steven; Stirnemann, Guillaume; Garcia-Manyes, Sergi

    2017-06-06

    The nanomechanical properties of elastomeric proteins determine the elasticity of a variety of tissues. A widespread natural tactic to regulate protein extensibility lies in the presence of covalent disulfide bonds, which significantly enhance protein stiffness. The prevalent in vivo strategy to form disulfide bonds requires the presence of dedicated enzymes. Here we propose an alternative chemical route to promote non-enzymatic oxidative protein folding via disulfide isomerization based on naturally occurring small molecules. Using single-molecule force-clamp spectroscopy, supported by DFT calculations and mass spectrometry measurements, we demonstrate that subtle changes in the chemical structure of a transient mixed-disulfide intermediate adduct between a protein cysteine and an attacking low molecular-weight thiol have a dramatic effect on the protein's mechanical stability. This approach provides a general tool to rationalize the dynamics of S-thiolation and its role in modulating protein nanomechanics, offering molecular insights on how chemical reactivity regulates protein elasticity.

  9. Tailoring protein nanomechanics with chemical reactivity

    Science.gov (United States)

    Beedle, Amy E. M.; Mora, Marc; Lynham, Steven; Stirnemann, Guillaume; Garcia-Manyes, Sergi

    2017-06-01

    The nanomechanical properties of elastomeric proteins determine the elasticity of a variety of tissues. A widespread natural tactic to regulate protein extensibility lies in the presence of covalent disulfide bonds, which significantly enhance protein stiffness. The prevalent in vivo strategy to form disulfide bonds requires the presence of dedicated enzymes. Here we propose an alternative chemical route to promote non-enzymatic oxidative protein folding via disulfide isomerization based on naturally occurring small molecules. Using single-molecule force-clamp spectroscopy, supported by DFT calculations and mass spectrometry measurements, we demonstrate that subtle changes in the chemical structure of a transient mixed-disulfide intermediate adduct between a protein cysteine and an attacking low molecular-weight thiol have a dramatic effect on the protein's mechanical stability. This approach provides a general tool to rationalize the dynamics of S-thiolation and its role in modulating protein nanomechanics, offering molecular insights on how chemical reactivity regulates protein elasticity.

  10. Reactivity of Tourmaline by Quantum Chemical Calculations

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    ZnAb initio calculations on reactivity of tourmaline were performed using both Gaussian and density function theory discrete variation method (DFT-DVM). The HF, B3LYP methods and basis sets STO-3G(3d,3p),6-31G(3d,3p) and 6-311++G(3df,3pd) were used in the calculations. The experimental results show energy value obtained from B3LYP and 6-31++1G(3df,3pd) basis sets is more accurate than those from other methods. The highest occupied molecular orbital (HOMO) of the tourmaline cluster mainly consists of O atom of hydroxyl group with relative higher energy level, suggesting that chemical bond between those of electron acceptor and this site may readily form, indicating the higher reactivity of hydroxyl group. The lowest unoccupied molecular orbital (LUMO) of the tourmaline cluster are dominantly composed of Si, O of tetrahedron and Na with relative lower energy level, suggesting that these atoms may tend to form chemical bond with those of electron donor. The results also prove that the O atoms of the tourmaline cluster have stronger reactivity than other atoms.

  11. Application of voltammetric techniques at microelectrodes to the study of the chemical stability of highly reactive species.

    Science.gov (United States)

    Laborda, Eduardo; Olmos, José-Manuel; Torralba, Encarnación; Molina, Angela

    2015-02-03

    The application of voltammetric techniques to the study of chemical speciation and stability is addressed both theoretically and experimentally in this work. In such systems, electrode reactions are coupled to homogeneous chemical equilibria (complexations, protonations, ion associations, ...) that can be studied in a simple, economical, and accurate way by means of electrochemical methods. These are of particular interest when some of the participating species are unstable given that the generation and characterization of the species are performed in situ and on a short time scale. With the above aim, simple explicit solutions are presented in this article for quantitative characterization with any voltammetric technique and with the most common electrode geometries. From the theoretical results obtained, it is pointed out that the use of square-wave voltammetry in combination with microelectrodes is very suitable. Finally, the theory is applied to the investigation of the ion association between the anthraquinone radical monoanion and the tetrabutylammonium cation in acetonitrile medium.

  12. 具有高比表面积的稻壳灰的制备及其化学活性的研究%Study on Preparation of Rice Husk Ash with High Specific Surface Area and Its Chemical Reactivity

    Institute of Scientific and Technical Information of China (English)

    冯庆革; 林清宇; 童张法; S.Sugita

    2004-01-01

    Preparation of rice husk ash with high specific surface area and chemical reactivity of the product are reported in this paper. The amorphous rice husk ash with high specific surface area of 311 m2·g-1 was produced by heating acid treated rice husk at 700℃ for 4 h. The isotherms of rice husk ash are similar in shape to type Ⅱof Brunaner's classification with mesopores being predominant. The rice husk ash has a high chemical reactivity,especially that pretreated with acid. This chemical reactivity depends on ashing temperature and pretreatment conditions. There is an exponential relation between the specific surface area of rice husk ash and the change in the conductivity of saturated Ca(OH)2 solution with rice husk ash, from which the specific surface area can be known according to the conductivity change.

  13. Direct atomic-level observation and chemical analysis of ZnSe synthesized by in situ high-throughput reactive fiber drawing.

    Science.gov (United States)

    Hou, Chong; Jia, Xiaoting; Wei, Lei; Stolyarov, Alexander M; Shapira, Ofer; Joannopoulos, John D; Fink, Yoel

    2013-03-13

    We demonstrate a high-throughput method for synthesizing zinc selenide (ZnSe) in situ during fiber drawing. Central to this method is a thermally activated chemical reaction occurring across multiple interfaces between alternately layered elemental zinc- (Zn-) and selenium- (Se-) rich films embedded in a preform and drawn into meters of fiber at a temperature well below the melting temperature of either Zn or ZnSe. By depositing 50 nm thick layers of Zn interleaved between 1 μm thick Se layers, a controlled breakup of the Zn sheet is achieved, thereby enabling a complete and controlled chemical reaction. The thermodynamics and kinetics of this synthesis process are studied using thermogravimetric analysis and differential scanning calorimetry, and the in-fiber compound is analyzed by a multiplicity of materials characterization tools, including transmission electron microscopy, Raman microscopy, energy-dispersive X-ray spectroscopy, and X-ray diffraction, all resulting in unambiguous identification of ZnSe as the compound produced from the reactive fiber draw. Furthermore, we characterize the in-fiber ZnSe/Se97S3 heterojunction to demonstrate the prospect of ZnSe-based fiber optoelectronic devices. The ability to synthesize new compounds during fiber drawing at nanometer scale precision and to characterize them at the atomic-level extends the architecture and materials selection compatible with multimaterial fiber drawing, thus paving the way toward more complex and sophisticated functionality.

  14. An autonomous organic reaction search engine for chemical reactivity

    Science.gov (United States)

    Dragone, Vincenza; Sans, Victor; Henson, Alon B.; Granda, Jaroslaw M.; Cronin, Leroy

    2017-06-01

    The exploration of chemical space for new reactivity, reactions and molecules is limited by the need for separate work-up-separation steps searching for molecules rather than reactivity. Herein we present a system that can autonomously evaluate chemical reactivity within a network of 64 possible reaction combinations and aims for new reactivity, rather than a predefined set of targets. The robotic system combines chemical handling, in-line spectroscopy and real-time feedback and analysis with an algorithm that is able to distinguish and select the most reactive pathways, generating a reaction selection index (RSI) without need for separate work-up or purification steps. This allows the automatic navigation of a chemical network, leading to previously unreported molecules while needing only to do a fraction of the total possible reactions without any prior knowledge of the chemistry. We show the RSI correlates with reactivity and is able to search chemical space using the most reactive pathways.

  15. An autonomous organic reaction search engine for chemical reactivity.

    Science.gov (United States)

    Dragone, Vincenza; Sans, Victor; Henson, Alon B; Granda, Jaroslaw M; Cronin, Leroy

    2017-06-09

    The exploration of chemical space for new reactivity, reactions and molecules is limited by the need for separate work-up-separation steps searching for molecules rather than reactivity. Herein we present a system that can autonomously evaluate chemical reactivity within a network of 64 possible reaction combinations and aims for new reactivity, rather than a predefined set of targets. The robotic system combines chemical handling, in-line spectroscopy and real-time feedback and analysis with an algorithm that is able to distinguish and select the most reactive pathways, generating a reaction selection index (RSI) without need for separate work-up or purification steps. This allows the automatic navigation of a chemical network, leading to previously unreported molecules while needing only to do a fraction of the total possible reactions without any prior knowledge of the chemistry. We show the RSI correlates with reactivity and is able to search chemical space using the most reactive pathways.

  16. Reactive Chemical Transport Under Multiphase System

    Science.gov (United States)

    Fang, Y.; Yeh, G.

    2001-12-01

    A numerical model, HYDROBIOGEOCHEM, is developed for modeling reactive chemical transport under multiphase flow systems. The chemistry part of this model is derived from BIOGEOCHEM, which is a general computer code that simulates biogeochemial processes from a reaction-based mechanistic point of view. To reduce primary dependent variables (PDVs), Gauss-Jordan decomposition is applied to the governing matrix equations for transport, resulting in mobile components and mobile kinetic variables as PDVs. Options of sequential iteration approach (SIA), predictor corrector and operator splitting method are incorporated in the code to make it versatile. The model is a practical tool for assessing migration of subsurface contamination and proper designing of remediation technologies. Examples are presented to demonstrate the capability of the new model.

  17. Chemical Reactivity as Described by Quantum Chemical Methods

    Directory of Open Access Journals (Sweden)

    F. De Proft

    2002-04-01

    Full Text Available Abstract: Density Functional Theory is situated within the evolution of Quantum Chemistry as a facilitator of computations and a provider of new, chemical insights. The importance of the latter branch of DFT, conceptual DFT is highlighted following Parr's dictum "to calculate a molecule is not to understand it". An overview is given of the most important reactivity descriptors and the principles they are couched in. Examples are given on the evolution of the structure-property-wave function triangle which can be considered as the central paradigm of molecular quantum chemistry to (for many purposes a structure-property-density triangle. Both kinetic as well as thermodynamic aspects can be included when further linking reactivity to the property vertex. In the field of organic chemistry, the ab initio calculation of functional group properties and their use in studies on acidity and basicity is discussed together with the use of DFT descriptors to study the kinetics of SN2 reactions and the regioselectivity in Diels Alder reactions. Similarity in reactivity is illustrated via a study on peptide isosteres. In the field of inorganic chemistry non empirical studies of adsorption of small molecules in zeolite cages are discussed providing Henry constants and separation constants, the latter in remarkable good agreement with experiments. Possible refinements in a conceptual DFT context are presented. Finally an example from biochemistry is discussed : the influence of point mutations on the catalytic activity of subtilisin.

  18. Chemical Reactivity Perspective into the Group 2B Metals Halides.

    Science.gov (United States)

    Özen, Alimet Sema; Akdeniz, Zehra

    2016-06-30

    Chemical reactivity descriptors within the conceptual density functional theory can be used to understand the nature of the interactions between two monomers of the Group 2B metal halides. This information might be valuable in the development of adequate force law parameters for simulations in the liquid state. In this study, MX2 monomers and dimers, where M = Zn, Cd, Hg and X = F, Cl, Br, I, were investigated in terms of chemical reactivity descriptors. Relativistic effects were taken into account using the effective core potential (ECP) approach. Correlations were produced between global and local reactivity descriptors and dimerization energies. Results presented in this work represent the first systematic investigation of Group 2B metal halides in the literature from a combined point of view of both relativistic effects and chemical reactivity descriptors. Steric effects were found to be responsible for the deviation from the chemical reactivity principles. They were introduced into the chemical reactivity descriptors such as local softness.

  19. Fluxes of chemically reactive species inferred from mean concentration measurements

    NARCIS (Netherlands)

    Galmarini, S.; Vilà-Guerau De Arellano, J.; Duyzer, J.H.

    1997-01-01

    A method is presented for the calculation of the fluxes of chemically reactive species on the basis of routine measurements of meteorological variables and chemical species. The method takes explicity into account the influence of chemical reactions on the fluxes of the species. As a demonstration o

  20. Effect of chemical reactivity on the detonation initiation in shock accelerated flow in a confined space

    Institute of Scientific and Technical Information of China (English)

    Yue-Jin Zhu; Gang Dong; Yi-Xin Liu; Bao-Chun Fan; Hua Jiang

    2013-01-01

    The interactions of a spherical flame with an incident shock wave and its reflected shock wave in a confined space were investigated using the three-dimensional reactive Navier-Stokes equations,with emphasis placed on the effect of chemical reactivity of mixture on the flame distortion and detonation initiation after the passage of the reflected shock wave.It is shown that the spatio-temporal characteristics of detonation initiation depend highly on the chemical reactivity of the mixture.When the chemical reactivity enhances,the flame can be severely distorted to form a reactive shock bifurcation structure with detonations initiating at different three-dimensional spatial locations.Moreover,the detonation initiation would occur earlier in a mixture of more enhanced reactivity.The results reveal that the detonations arise from hot spots in the unburned region which are initiated by the shock-detonation-transition mechanism.

  1. Electronegativity, Bond Energy, and Chemical Reactivity.

    Science.gov (United States)

    Myers, R. Thomas

    1979-01-01

    Discusses the Pauling electronegativity concept which rationalizes several kinds of chemical reactions of covalent substances. Electronegativity differences applied to some reactions are demonstrated. (SA)

  2. Use and Misuse of Chemical Reactivity Spreadsheets

    Energy Technology Data Exchange (ETDEWEB)

    Simmons, F

    2005-09-20

    Misidentifying chemical hazards can have serious deleterious effects. Consequences of not identifying a chemical are obvious and include fires, explosions, injury to workers, etc. Consequences of identifying hazards that are really not present can be equally as bad. Misidentifying hazards can result in increased work with loss of productivity, increased expenses, utilization/consumption of scarce resources, and the potential to modify the work to include chemicals or processes that are actually more hazardous than those originally proposed. For these reasons, accurate hazard identification is critical to any safety program. Hazard identification in the world of chemistry is, at best, a daunting task. The knowing or understanding, of the reactions between any of approximately twelve million known chemicals that may be hazardous, is the reason for this task being so arduous. Other variables, such as adding other reactants/contaminants or changing conditions (e.g., temperature, pressure, or concentration), make hazard determination something many would construe as being more than impossibly difficult. Despite these complexities, people who do not have an extensive background in the chemical sciences can be called upon to perform chemical hazard identification. Because hazard identification in the area of chemical safety is so burdensome and because people with a wide variety of training are called upon to perform this work, tools are required to aid in chemical hazard identification. Many tools have been developed. Unfortunately, many of these tools are not seen as the limited resource that they are and are used inappropriately.

  3. Chemical reactor modeling multiphase reactive flows

    CERN Document Server

    Jakobsen, Hugo A

    2014-01-01

    Chemical Reactor Modeling closes the gap between Chemical Reaction Engineering and Fluid Mechanics.  The second edition consists of two volumes: Volume 1: Fundamentals. Volume 2: Chemical Engineering Applications In volume 1 most of the fundamental theory is presented. A few numerical model simulation application examples are given to elucidate the link between theory and applications. In volume 2 the chemical reactor equipment to be modeled are described. Several engineering models are introduced and discussed. A survey of the frequently used numerical methods, algorithms and schemes is provided. A few practical engineering applications of the modeling tools are presented and discussed. The working principles of several experimental techniques employed in order to get data for model validation are outlined. The monograph is based on lectures regularly taught in the fourth and fifth years graduate courses in transport phenomena and chemical reactor modeling, and in a post graduate course in modern reactor m...

  4. Ultraviolet Spectrum And Chemical Reactivity Of CIO Dimer

    Science.gov (United States)

    Demore, William B.; Tschuikow-Roux, E.

    1992-01-01

    Report describes experimental study of ultraviolet spectrum and chemical reactivity of dimer of chlorine monoxide (CIO). Objectives are to measure absorption cross sections of dimer at near-ultraviolet wavelengths; determine whether asymmetrical isomer (CIOCIO) exists at temperatures relevant to Antarctic stratosphere; and test for certain chemical reactions of dimer. Important in photochemistry of Antarctic stratosphere.

  5. Using Protein-Confined Proximity To Determine Chemical Reactivity.

    Science.gov (United States)

    Kobayashi, Tomonori; Hoppmann, Christian; Yang, Bing; Wang, Lei

    2016-11-16

    Chemical reactivity is essential for functional modification of biomolecules with small molecules and the development of covalent drugs. The reactivity between a chemical functional group of a small molecule and that of a large biomolecule cannot be reliably predicted from the reactivity of the corresponding functional groups separately installed on two small molecules, because the proximity effect on reactivity resulting from the binding of the small molecule to the biomolecule is challenging to achieve by mixing two small molecules. Here we present a new strategy to determine the chemical reactivity of two functional groups in the context of close proximity afforded by proteins. The functional groups to be tested were separately installed at the interface of two interacting proteins in the format of amino acid side chains via the expansion of the genetic code. Reaction of the two functional groups resulted in covalent cross-linking of interacting proteins, readily detectable by gel electrophoresis. Using this strategy, we evolved new synthetases to genetically encode N(ε)-fluoroacetyllysine (FAcK), an isosteric fluorine analogue of acetyllysine. We demonstrated that fluoroacetamide installed on FAcK, previously thought inert to biological functional groups, actually reacted with the thiol group of cysteine when in proximity. This strategy should be valuable for accurately evaluating chemical reactivity of small molecules toward large biomolecules, which will help avoid undesired side reactions of drugs and expand the repertoire of functional groups to covalently target biomolecules.

  6. To Model Chemical Reactivity in Heterogeneous Emulsions, Think Homogeneous Microemulsions.

    Science.gov (United States)

    Bravo-Díaz, Carlos; Romsted, Laurence Stuart; Liu, Changyao; Losada-Barreiro, Sonia; Pastoriza-Gallego, Maria José; Gao, Xiang; Gu, Qing; Krishnan, Gunaseelan; Sánchez-Paz, Verónica; Zhang, Yongliang; Dar, Aijaz Ahmad

    2015-08-25

    Two important and unsolved problems in the food industry and also fundamental questions in colloid chemistry are how to measure molecular distributions, especially antioxidants (AOs), and how to model chemical reactivity, including AO efficiency in opaque emulsions. The key to understanding reactivity in organized surfactant media is that reaction mechanisms are consistent with a discrete structures-separate continuous regions duality. Aggregate structures in emulsions are determined by highly cooperative but weak organizing forces that allow reactants to diffuse at rates approaching their diffusion-controlled limit. Reactant distributions for slow thermal bimolecular reactions are in dynamic equilibrium, and their distributions are proportional to their relative solubilities in the oil, interfacial, and aqueous regions. Our chemical kinetic method is grounded in thermodynamics and combines a pseudophase model with methods for monitoring the reactions of AOs with a hydrophobic arenediazonium ion probe in opaque emulsions. We introduce (a) the logic and basic assumptions of the pseudophase model used to define the distributions of AOs among the oil, interfacial, and aqueous regions in microemulsions and emulsions and (b) the dye derivatization and linear sweep voltammetry methods for monitoring the rates of reaction in opaque emulsions. Our results show that this approach provides a unique, versatile, and robust method for obtaining quantitative estimates of AO partition coefficients or partition constants and distributions and interfacial rate constants in emulsions. The examples provided illustrate the effects of various emulsion properties on AO distributions such as oil hydrophobicity, emulsifier structure and HLB, temperature, droplet size, surfactant charge, and acidity on reactant distributions. Finally, we show that the chemical kinetic method provides a natural explanation for the cut-off effect, a maximum followed by a sharp reduction in AO efficiency with

  7. Reactivity indicators for degenerate states in the density-functional theoretic chemical reactivity theory.

    Science.gov (United States)

    Cárdenas, Carlos; Ayers, Paul W; Cedillo, Andrés

    2011-05-07

    Density-functional-theory-based chemical reactivity indicators are formulated for degenerate and near-degenerate ground states. For degenerate states, the functional derivatives of the energy with respect to the external potential do not exist, and must be replaced by the weaker concept of functional variation. The resultant reactivity indicators depend on the specific perturbation. Because it is sometimes impractical to compute reactivity indicators for a specific perturbation, we consider two special cases: point-charge perturbations and Dirac delta function perturbations. The Dirac delta function perturbations provide upper bounds on the chemical reactivity. Reactivity indicators using the common used "average of degenerate states approximation" for degenerate states provide a lower bound on the chemical reactivity. Unfortunately, this lower bound is often extremely weak. Approximate formulas for the reactivity indicators within the frontier-molecular-orbital approximation and special cases (two or three degenerate spatial orbitals) are presented in the supplementary material. One remarkable feature that arises in the frontier molecular orbital approximation, and presumably also in the exact theory, is that removing electrons sometimes causes the electron density to increase at the location of a negative (attractive) Dirac delta function perturbation. That is, the energetic response to a reduction in the external potential can increase even when the number of electrons decreases.

  8. Enhanced chemical reactivity of graphene induced by mechanical strain.

    Science.gov (United States)

    Bissett, Mark A; Konabe, Satoru; Okada, Susumu; Tsuji, Masaharu; Ago, Hiroki

    2013-11-26

    Control over chemical reactivity is essential in the field of nanotechnology. Graphene is a two-dimensional atomic sheet of sp(2) hybridized carbon with exceptional properties that can be altered by chemical functionalization. Here, we transferred single-layer graphene onto a flexible substrate and investigated the functionalization using different aryl diazonium molecules while applying mechanical strain. We found that mechanical strain can alter the structure of graphene, and dramatically increase the reaction rate, by a factor of up to 10, as well as increase the final degree of functionalization. Furthermore, we demonstrate that mechanical strain enables functionalization of graphene for both p- and n-type dopants, where unstrained graphene showed negligible reactivity. Theoretical calculations were also performed to support the experimental findings. Our findings offer a simple approach to control the chemical reactivity of graphene through the application of mechanical strain, allowing for a tuning of the properties of graphene.

  9. Modeling food matrix effects on chemical reactivity: Challenges and perspectives.

    Science.gov (United States)

    Capuano, Edoardo; Oliviero, Teresa; van Boekel, Martinus A J S

    2017-06-29

    The same chemical reaction may be different in terms of its position of the equilibrium (i.e., thermodynamics) and its kinetics when studied in different foods. The diversity in the chemical composition of food and in its structural organization at macro-, meso-, and microscopic levels, that is, the food matrix, is responsible for this difference. In this viewpoint paper, the multiple, and interconnected ways the food matrix can affect chemical reactivity are summarized. Moreover, mechanistic and empirical approaches to explain and predict the effect of food matrix on chemical reactivity are described. Mechanistic models aim to quantify the effect of food matrix based on a detailed understanding of the chemical and physical phenomena occurring in food. Their applicability is limited at the moment to very simple food systems. Empirical modeling based on machine learning combined with data-mining techniques may represent an alternative, useful option to predict the effect of the food matrix on chemical reactivity and to identify chemical and physical properties to be further tested. In such a way the mechanistic understanding of the effect of the food matrix on chemical reactions can be improved.

  10. Effect of chemical degradation on fluxes of reactive compounds

    Directory of Open Access Journals (Sweden)

    J. Rinne

    2011-12-01

    Full Text Available In the analyses of VOC fluxes measured above plant canopies, one usually assumes the flux above canopy to equal the emission at the surface. Thus one assumes the chemical degradation to be much slower than the turbulent transport. We used a stochastic Lagrangian transport model in which the chemical degradation was described as first order decay in order to study the effect of the chemical degradation on above canopy fluxes of chemically reactive species. With the model we explored the sensitivity of the ratio of the above canopy flux to the surface emission on several parameters such as chemical lifetime of the compound, friction velocity, stability, and canopy density. Our results show that friction velocity and chemical lifetime affected the loss during transport the most. The canopy density had a significant effect if the chemically reactive compound was emitted from the forest floor. We used the results of the simulations together with oxidant data measured during HUMPPA-COPEC-2010 campaign at a Scots pine site to estimate the effect of the chemistry on fluxes of three typical biogenic VOCs, isoprene, α-pinene, and β-caryophyllene. Of these, the chemical degradation had a~major effect on the fluxes of the most reactive species β-caryophyllene, while the fluxes of α-pinene were affected during nighttime. For these two compounds representing the mono- and sesquiterpenes groups, the effect of chemical degradation had also a significant diurnal cycle with the highest chemical loss at night. The different day and night time loss terms need to be accounted for, when measured fluxes of reactive compounds are used to reveal relations between primary emission and environmental parameters.

  11. Reactive chemical dynamics through conical intersections

    Indian Academy of Sciences (India)

    S Ghosal; B Jayachander Rao; S Mahapatra

    2007-09-01

    Reaction dynamics of prototypical, D + H2 and Cl (2P) + H2, chemical reactions occurring through the conical intersections of the respective coupled multi-sheeted potential energy surfaces is examined here. In addition to the electronic coupling, nonadiabatic effects due to relativistic spin-orbit coupling are also considered for the latter reaction. A time-dependent wave packet propagation approach is undertaken and the quantum dynamical observables viz., energy resolved reaction probabilities, integral reaction cross-sections and thermal rate constants are reported.

  12. Spinodal decomposition of chemically reactive binary mixtures

    Science.gov (United States)

    Lamorgese, A.; Mauri, R.

    2016-08-01

    We simulate the influence of a reversible isomerization reaction on the phase segregation process occurring after spinodal decomposition of a deeply quenched regular binary mixture, restricting attention to systems wherein material transport occurs solely by diffusion. Our theoretical approach follows a diffuse-interface model of partially miscible binary mixtures wherein the coupling between reaction and diffusion is addressed within the frame of nonequilibrium thermodynamics, leading to a linear dependence of the reaction rate on the chemical affinity. Ultimately, the rate for an elementary reaction depends on the local part of the chemical potential difference since reaction is an inherently local phenomenon. Based on two-dimensional simulation results, we express the competition between segregation and reaction as a function of the Damköhler number. For a phase-separating mixture with components having different physical properties, a skewed phase diagram leads, at large times, to a system converging to a single-phase equilibrium state, corresponding to the absolute minimum of the Gibbs free energy. This conclusion continues to hold for the critical phase separation of an ideally perfectly symmetric binary mixture, where the choice of final equilibrium state at large times depends on the initial mean concentration being slightly larger or less than the critical concentration.

  13. Chemical Reactivity Theory Study of Advanced Glycation Endproduct Inhibitors.

    Science.gov (United States)

    Frau, Juan; Glossman-Mitnik, Daniel

    2017-02-02

    Several compounds with the known ability to perform as inhibitors of advanced glycation endproducts (AGE) have been studied with Density Functional Theory (DFT) through the use of anumberofdensityfunctionalswhoseaccuracyhasbeentestedacrossabroadspectrumofdatabases in Chemistry and Physics. The chemical reactivity descriptors for these systems have been calculated through Conceptual DFT in an attempt to relate their intrinsic chemical reactivity with the ability to inhibit the action of glycating carbonyl compounds on amino acids and proteins. This knowledge could be useful in the design and development of new drugs which can be potential medicines for diabetes and Alzheimer's disease.

  14. Chemical Safety Alert: Identifying Chemical Reactivity Hazards Preliminary Screening Method

    Science.gov (United States)

    Introduces small-to-medium-sized facilities to a method developed by Center for Chemical Process Safety (CCPS), based on a series of twelve yes-or-no questions to help determine hazards in warehousing, repackaging, blending, mixing, and processing.

  15. Chemical reactivity of the Martian soil

    Science.gov (United States)

    Zent, A. P.; Mckay, C. P.

    1992-01-01

    The Viking life sciences experimental packages detected extraordinary chemical activity in the martian soil, probably the result of soil-surface chemistry. At least one very strong oxidant may exist in the martian soil. The electrochemical nature of the martian soil has figured prominently in discussions of future life sciences research on Mars. Putative oxidants in the martian soil may be responsible for the destruction of organic material to considerable depth, precluding the recovery of reducing material that may be relic of early biological forms. Also, there have been serious expressions of concern regarding the effect that soil oxidants may have on human health and safety. The concern here has centered on the possible irritation of the respiratory system due to dust carried into the martian habitat through the air locks.

  16. The direct peptide reactivity assay: selectivity of chemical respiratory allergens.

    Science.gov (United States)

    Lalko, Jon F; Kimber, Ian; Gerberick, G Frank; Foertsch, Leslie M; Api, Anne Marie; Dearman, Rebecca J

    2012-10-01

    It is well known that some chemicals are capable of causing allergic diseases of the skin and respiratory tract. Commonly, though not exclusively, chemical allergens are associated with the selective development of skin or respiratory sensitization. The reason for this divergence is unclear, although it is hypothesized that the nature of interactions between the chemical hapten and proteins is influential. The direct peptide reactivity assay (DPRA) has been developed as a screen for the identification of skin-sensitizing chemicals, and here we describe the use of this method to explore whether differences exist between skin and respiratory allergens with respect to their peptide-binding properties. Known skin and respiratory sensitizers were reacted with synthetic peptides containing either lysine (Lys) or cysteine (Cys) for 24 h. The samples were analyzed by HPLC/UV, and the loss of peptide from the reaction mixture was expressed as the percent depletion compared with the control. The potential for preferential reactivity was evaluated by comparing the ratio of Lys to Cys depletion (Lys:Cys ratio). The results demonstrate that the majority of respiratory allergens are reactive in the DPRA, and that in contrast to most skin-sensitizing chemicals, preferentially react with the Lys peptide. These data suggest that skin and respiratory chemical allergens can result in different protein conjugates, which may in turn influence the quality of induced immune responses. Overall, these investigations reveal that the DPRA has considerable potential to be incorporated into tiered testing approaches for the identification and characterization of chemical respiratory allergens.

  17. Tracking thermal fronts with temperature-sensitive, chemically reactive tracers

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, B.A.; Birdsell, S.A.

    1987-01-01

    Los Alamos is developing tracer techniques using reactive chemicals to track thermal fronts in fractured geothermal reservoirs. If a nonadsorbing tracer flowing from the injection to production well chemically reacts, its reaction rate will be a strong function of temperature. Thus the extent of chemical reaction will be greatest early in the lifetime of the system, and less as the thermal front progresses from the injection to production well. Early laboratory experiments identified tracers with chemical kinetics suitable for reservoirs in the temperature range of 75 to 100/sup 0/C. Recent kinetics studies have focused on the kinetics of hydrolysis of derivatives of bromobenzene. This class of reactions can be used in reservoirs ranging in temperature from 150 to 275/sup 0/C, which is of greater interest to the geothermal industry. Future studies will include laboratory adsorption experiments to identify possibly unwanted adsorption on granite, development of sensitive analytical techniques, and a field demonstration of the reactive tracer concept.

  18. Cross diffusion and MHD effects on a high order chemically reactive micropolar fluid of naturally convective heat and mass transfer past through an infinite vertical porous medium with a constant heat sink

    Science.gov (United States)

    Arifuzzaman, S. M.; Rana, B. M. Jewel; Ahmed, R.; Ahmmed, S. F.

    2017-06-01

    High order chemically reactive micropolar fluid flow through an infinite vertical porous medium with thermal diffusion, mass diffusion, MHD, thermal radiation and heat sink has been studied. A flow model is established by employing the well-known boundary layer approximations. In order to obtain non-dimensional system of equations, a similarity transformation is applied on the flow model. The stability and convergence analysis have been analyzed. The obtained non-dimensional equations have been solved by explicit finite difference method. The effects of various parameters entering into the problem on velocity, angular velocity, temperature and concentration are shown graphically.

  19. Chemical reactivity in the framework of pair density functional theories.

    Science.gov (United States)

    Otero, Nicolás; Mandado, Marcos

    2012-05-15

    Chemical reactivity descriptors are derived within the framework of the pair density functional theory. These indices provide valuable information about bonding rearrangements and activating mechanisms upon electrophilic or nucleophilic reactions. Indices derived and tested in this work represent nonlocal counterparts of the local reactivity indices derived in the context of conceptual density functional theory (CDFT) and frequently used in reactivity studies; the Fukui function, the local softness and the dual descriptor. In this work, we show how these nonlocal indices provide a quantum chemical basis to explain the success of qualitative resonance models in chemical reactivity predictions. Also, local information is implicitly contained as CDFT indices are obtained by simple integration. As illustrative examples, we have considered in this work the Markovnikov's rule, the reactivity of enolate anion, the nucleophilic conjugate addition to α,β-unsaturated compounds and the electrophilic aromatic substitution of benzene derivatives. The densities used in this work were obtained with Hartree-Fock, Kohn-Sham DFT, and singles and doubles configuration interaction (CISD) approaches. Copyright © 2012 Wiley Periodicals, Inc.

  20. Lunar Dust Chemical, Electrical, and Mechanical Reactivity: Simulation and Characterization

    Science.gov (United States)

    VanderWal, Randy L.

    2008-01-01

    Lunar dust is recognized to be a highly reactive material in its native state. Many, if not all Constellation systems will be affected by its adhesion, abrasion, and reactivity. A critical requirement to develop successful strategies for dealing with lunar dust and designing tolerant systems will be to produce similar material for ground-based testing.

  1. Local Chemical Reactivity of a Metal Alloy Surface

    DEFF Research Database (Denmark)

    Hammer, Bjørk; Scheffler, Matthias

    1995-01-01

    The chemical reactivity of a metal alloy surface is studied by density functional theory investigating the interaction of H2 with NiAl(110). The energy barrier for H2 dissociation is largely different over the Al and Ni sites without, however, reflecting the barriers over the single component metal...

  2. Reactivity of chemical respiratory allergens in the Peroxidase Peptide Reactivity Assay.

    Science.gov (United States)

    Lalko, J F; Dearman, R J; Gerberick, G F; Troutman, J A; Api, A M; Kimber, I

    2013-03-01

    Sensitizing chemicals are commonly associated primarily with either skin or respiratory sensitization. In the Direct Peptide Reactivity Assay (DPRA), when compared with skin sensitizers, respiratory allergens have been demonstrated to selectively react with lysine rather than cysteine. The Peroxidase Peptide Reactivity Assay (PPRA) has been developed as a refinement to the DPRA. The PPRA incorporates dose-response analyses, mass spectroscopy for peptide detection and a horseradish peroxidase-hydrogen peroxide enzymatic system, increasing the potential to identify pro-haptens. In the investigations reported here, the PPRA was evaluated to determine whether it provides advantages for the identification of respiratory allergens. Twenty respiratory sensitizers, including five predicted to be pre-/pro-haptens were evaluated. The PPRA performed similarly to the DPRA with respect to identifying inherently reactive respiratory sensitizers. However, three respiratory sensitizers predicted to be pre-/pro-haptens (chlorhexidine, ethylenediamine and piperazine) were non-reactive and the general selectivity of the respiratory allergens for lysine was lost in the PPRA. Overall, the data indicate that the PPRA does not provide an advantage over the DPRA for discriminating allergens as either contact or respiratory sensitizers. Nevertheless, the PPRA provides a number of refinements to the DPRA that allow for an enhanced characterization of reactivity for both classes of chemical allergens. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Extension of the Dermal Sensitisation Threshold (DST) approach to incorporate chemicals classified as reactive.

    Science.gov (United States)

    Safford, Robert J; Api, Anne Marie; Roberts, David W; Lalko, Jon F

    2015-08-01

    The evaluation of chemicals for their skin sensitising potential is an essential step in ensuring the safety of ingredients in consumer products. Similar to the Threshold of Toxicological Concern, the Dermal Sensitisation Threshold (DST) has been demonstrated to provide effective risk assessments for skin sensitisation in cases where human exposure is low. The DST was originally developed based on a Local Lymph Node Assay (LLNA) dataset and applied to chemicals that were not considered to be directly reactive to skin proteins, and unlikely to initiate the first mechanistic steps leading to the induction of sensitisation. Here we have extended the DST concept to protein reactive chemicals. A probabilistic assessment of the original DST dataset was conducted and a threshold of 64 μg/cm(2) was derived. In our accompanying publication, a set of structural chemistry based rules was developed to proactively identify highly reactive and potentially highly potent materials which should be excluded from the DST approach. The DST and rule set were benchmarked against a test set of chemicals with LLNA/human data. It is concluded that by combining the reactive DST with knowledge of chemistry a threshold can be established below which there is no appreciable risk of sensitisation for protein-reactive chemicals.

  4. The unique chemical reactivity of a graphene nanoribbon's zigzag edge

    CERN Document Server

    Jiang, D; Sumpter, B G; Dai, Sheng; Jiang, De-en; Sumpter, Bobby G.

    2007-01-01

    The zigzag edge of a graphene nanoribbon possesses a unique electronic state that is near the Fermi level and localized at the edge carbon atoms. We investigate the chemical reactivity of these zigzag edge sites by examining their reaction energetics with common radicals from first principles. A "partial radical" concept for the edge carbon atoms is introduced to characterize their chemical reactivity, and the validity of this concept is verified by comparing the dissociation energies of edge-radical bonds with similar bonds in molecules. In addition, the uniqueness of the zigzag-edged graphene nanoribbon is further demonstrated by comparing it with other forms of sp2 carbons, including a graphene sheet, nanotubes, and an armchair-edged graphene nanoribbon.

  5. Role of tip chemical reactivity on atom manipulation process in dynamic force microscopy.

    Science.gov (United States)

    Sugimoto, Yoshiaki; Yurtsever, Ayhan; Abe, Masayuki; Morita, Seizo; Ondráček, Martin; Pou, Pablo; Pérez, Ruben; Jelínek, Pavel

    2013-08-27

    The effect of tip chemical reactivity on the lateral manipulation of intrinsic Si adatoms toward a vacancy site on a Si(111)-(7 × 7) surface has been investigated by noncontact atomic force microscopy at room temperature. Here we measure the atom-hopping probabilities associated with different manipulation processes as a function of the tip-surface distance by means of constant height scans with chemically different types of tips. The interactions between different tips and Si atoms are evaluated by force spectroscopic measurements. Our results demonstrate that the ability to manipulate Si adatoms depends extremely on the chemical nature of the tip apex and is correlated with the maximal attractive force measured over Si adatoms. We rationalize the observed dependence of the atom manipulation process on tip-apex chemical reactivity by means of density functional theory calculations. The results of these calculations suggest that the ability to reduce the energy barrier associated with the Si adatom movement depends profoundly on tip chemical reactivity and that the level of energy barrier reduction is higher with tips that exhibit high chemical reactivity with Si adatoms. The results of this study provide a better way to control the efficiency of the atomic manipulation process for chemisorption systems.

  6. Quantum chemical studies on the reactivity of oxazole derivatives

    Science.gov (United States)

    Hosseinzadeh, Behzad; Eskandari, Khalil; Zarandi, Maryam; Asli, Reza

    2016-11-01

    The quantum chemical study of the reactivity of a series of oxazole derivatives substituted at 2, 4, and 5 positions was performed using B3LYP/6-311++G( d, p) and MP2/6-311++G( d, p) levels of theory. Different substituents have been applied to cover a wide range of electronic effects. On the basis of Fukui functions, oxazole derivatives in the gas phase are found to be suitable nucleophilic sites. For the most of studied substituents, it was observed that the calculated Fukui function f k - values at the N-position are small in case of electron-withdrawing substituents, resulting a preferred N-position for hard reactions. In contrast, large f k - values in case of electron-donating groups show a preferred N-position for soft reactions. These two local reactivity descriptors predicted the reactivity of the electron-rich oxazoles sequence to be 2-substituted oxazoles > 5-substituted oxazoles > 4-substituted oxazoles, where due to resonance effect, the reactivity toward electrophilic attack at the pyridine nitrogen atom is enhanced by electron donor substituents.

  7. Reactive iron(III) in sediments: Chemical versus microbial extractions

    Science.gov (United States)

    Hyacinthe, C.; Bonneville, S.; Van Cappellen, P.

    2006-08-01

    The availability of particulate Fe(III) to iron reducing microbial communities in sediments and soils is generally inferred indirectly by performing chemical extractions. In this study, the bioavailability of mineral-bound Fe(III) in intertidal sediments of a eutrophic estuary is assessed directly by measuring the kinetics and extent of Fe(III) utilization by the iron reducing microorganism Shewanella putrefaciens, in the presence of excess electron donor. Microbial Fe(III) reduction is compared to chemical dissolution of iron from the same sediments in buffered ascorbate-citrate solution (pH 7.5), ascorbic acid (pH 2), and 1 M HCl. The results confirm that ascorbate at near-neutral pH selectively reduces the reactive Fe(III) pool, while the acid extractants mobilize additional Fe(II) and less reactive Fe(III) mineral phases. Furthermore, the maximum concentrations of Fe(III) reducible by S. putrefaciens correlate linearly with the iron concentrations extracted by buffered ascorbate-citrate solution, but not with those of the acid extractions. However, on average, only 65% of the Fe(III) reduced in buffered ascorbate-citrate solution can be utilized by S. putrefaciens, probably due to physical inaccessibility of the remaining fraction of reactive Fe(III) to the cells. While the microbial and abiotic reaction kinetics further indicate that reduction by ascorbate at near-neutral pH most closely resembles microbial reduction of the sediment Fe(III) pool by S. putrefaciens, the results also highlight fundamental differences between chemical reductive dissolution and microbial utilization of mineral-bound ferric iron.

  8. The chemical biology of hydropersulfides (RSSH): Chemical stability, reactivity and redox roles.

    Science.gov (United States)

    Saund, Simran S; Sosa, Victor; Henriquez, Stephanie; Nguyen, Q Nhu N; Bianco, Christopher L; Soeda, Shuhei; Millikin, Robert; White, Corey; Le, Henry; Ono, Katsuhiko; Tantillo, Dean J; Kumagai, Yoshito; Akaike, Takaaki; Lin, Joseph; Fukuto, Jon M

    2015-12-15

    Recent reports indicate the ubiquitous prevalence of hydropersulfides (RSSH) in mammalian systems. The biological utility of these and related species is currently a matter of significant speculation. The function, lifetime and fate of hydropersulfides will be assuredly based on their chemical properties and reactivity. Thus, to serve as the basis for further mechanistic studies regarding hydropersulfide biology, some of the basic chemical properties/reactivity of hydropersulfides was studied. The nucleophilicity, electrophilicity and redox properties of hydropersulfides were examined under biological conditions. These studies indicate that hydropersulfides can be nucleophilic or electrophilic, depending on the pH (i.e. the protonation state) and can act as good one- and two-electron reductants. These diverse chemical properties in a single species make hydropersulfides chemically distinct from other, well-known sulfur containing biological species, giving them unique and potentially important biological function. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Reactive solute transport in physically and chemically heterogeneous porous media with multimodal reactive mineral facies: The Lagrangian approach

    CERN Document Server

    Soltanian, Mohamad Reza; Dai, Zhenxue; Huang, Chaocheng

    2014-01-01

    Physical and chemical heterogeneities have a large impact on reactive transport in porous media. Examples of heterogeneous attributes affecting reactive mass transport are the hydraulic conductivity (K), and the equilibrium sorption distribution coefficient (Kd). This paper uses the Deng et al. (2013) conceptual model for multimodal reactive mineral facies and a Lagrangian-based stochastic theory in order to analyze the reactive solute dispersion in three-dimensional anisotropic heterogeneous porous media with hierarchical organization of reactive minerals. An example based on real field data is used to illustrate the time evolution trends of reactive solute dispersion. The results show that the correlation between the hydraulic conductivity and the equilibrium sorption distribution coefficient does have a significant effect on reactive solute dispersion. The anisotropy ratio does not have a significant effect on reactive solute dispersion. Furthermore, through a sensitivity analysis we investigate the impact...

  10. Revisiting the chemical reactivity indices as the state function derivatives. The role of classical chemical hardness.

    Science.gov (United States)

    Malek, Ali; Balawender, Robert

    2015-02-07

    The chemical reactivity indices as the equilibrium state-function derivatives are revisited. They are obtained in terms of the central moments (fluctuation formulas). To analyze the role of the chemical hardness introduced by Pearson [J. Am. Chem. Soc. 105, 7512 (1983)], the relations between the derivatives up to the third-order and the central moments are obtained. As shown, the chemical hardness and the chemical potential are really the principal indices of the chemical reactivity theory. It is clear from the results presented here that the chemical hardness is not the derivative of the Mulliken chemical potential (this means also not the second derivative of the energy at zero-temperature limit). The conventional quadratic dependence of energy, observed at finite temperature, reduces to linear dependence on the electron number at zero-temperature limit. The chemical hardness plays a double role in the admixture of ionic states to the reference neutral state energy: it determines the amplitude of the admixture and regulates the damping of its thermal factor.

  11. Self-organised synthesis of Rh nanostructures with tunable chemical reactivity

    Directory of Open Access Journals (Sweden)

    Lizzit S

    2007-01-01

    Full Text Available AbstractNonequilibrium periodic nanostructures such as nanoscale ripples, mounds and rhomboidal pyramids formed on Rh(110 are particularly interesting as candidate model systems with enhanced catalytic reactivity, since they are endowed with steep facets running along nonequilibrium low-symmetry directions, exposing a high density of undercoordinated atoms. In this review we report on the formation of these novel nanostructured surfaces, a kinetic process which can be controlled by changing parameters such as temperature, sputtering ion flux and energy. The role of surface morphology with respect to chemical reactivity is investigated by analysing the carbon monoxide dissociation probability on the different nanostructured surfaces.

  12. Chemical reactivity drives spatiotemporal organisation of bacterial metabolism.

    Science.gov (United States)

    de Lorenzo, Víctor; Sekowska, Agnieszka; Danchin, Antoine

    2015-01-01

    In this review, we examine how bacterial metabolism is shaped by chemical constraints acting on the material and dynamic layout of enzymatic networks and beyond. These are moulded not only for optimisation of given metabolic objectives (e.g. synthesis of a particular amino acid or nucleotide) but also for curbing the detrimental reactivity of chemical intermediates. Besides substrate channelling, toxicity is avoided by barriers to free diffusion (i.e. compartments) that separate otherwise incompatible reactions, along with ways for distinguishing damaging vs. harmless molecules. On the other hand, enzymes age and their operating lifetime must be tuned to upstream and downstream reactions. This time dependence of metabolic pathways creates time-linked information, learning and memory. These features suggest that the physical structure of existing biosystems, from operon assemblies to multicellular development may ultimately stem from the need to restrain chemical damage and limit the waste inherent to basic metabolic functions. This provides a new twist of our comprehension of fundamental biological processes in live systems as well as practical take-home lessons for the forward DNA-based engineering of novel biological objects. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permission@oup.com.

  13. Local chemical potential, local hardness, and dual descriptors in temperature dependent chemical reactivity theory.

    Science.gov (United States)

    Franco-Pérez, Marco; Ayers, Paul W; Gázquez, José L; Vela, Alberto

    2017-05-31

    In this work we establish a new temperature dependent procedure within the grand canonical ensemble, to avoid the Dirac delta function exhibited by some of the second order chemical reactivity descriptors based on density functional theory, at a temperature of 0 K. Through the definition of a local chemical potential designed to integrate to the global temperature dependent electronic chemical potential, the local chemical hardness is expressed in terms of the derivative of this local chemical potential with respect to the average number of electrons. For the three-ground-states ensemble model, this local hardness contains a term that is equal to the one intuitively proposed by Meneses, Tiznado, Contreras and Fuentealba, which integrates to the global hardness given by the difference in the first ionization potential, I, and the electron affinity, A, at any temperature. However, in the present approach one finds an additional temperature-dependent term that introduces changes at the local level and integrates to zero. Additionally, a τ-hard dual descriptor and a τ-soft dual descriptor given in terms of the product of the global hardness and the global softness multiplied by the dual descriptor, respectively, are derived. Since all these reactivity indices are given by expressions composed of terms that correspond to products of the global properties multiplied by the electrophilic or nucleophilic Fukui functions, they may be useful for studying and comparing equivalent sites in different chemical environments.

  14. Assessment of the extended Koopmans' theorem for the chemical reactivity: Accurate computations of chemical potentials, chemical hardnesses, and electrophilicity indices.

    Science.gov (United States)

    Yildiz, Dilan; Bozkaya, Uğur

    2016-01-30

    The extended Koopmans' theorem (EKT) provides a straightforward way to compute ionization potentials and electron affinities from any level of theory. Although it is widely applied to ionization potentials, the EKT approach has not been applied to evaluation of the chemical reactivity. We present the first benchmarking study to investigate the performance of the EKT methods for predictions of chemical potentials (μ) (hence electronegativities), chemical hardnesses (η), and electrophilicity indices (ω). We assess the performance of the EKT approaches for post-Hartree-Fock methods, such as Møller-Plesset perturbation theory, the coupled-electron pair theory, and their orbital-optimized counterparts for the evaluation of the chemical reactivity. Especially, results of the orbital-optimized coupled-electron pair theory method (with the aug-cc-pVQZ basis set) for predictions of the chemical reactivity are very promising; the corresponding mean absolute errors are 0.16, 0.28, and 0.09 eV for μ, η, and ω, respectively. © 2015 Wiley Periodicals, Inc.

  15. Chemical reactivity in nucleophilic cycloaddition to C70: vibronic coupling density and vibronic coupling constants as reactivity indices.

    Science.gov (United States)

    Haruta, Naoki; Sato, Tohru; Tanaka, Kazuyoshi

    2012-11-02

    The chemical reactivity in nucleophilic cycloaddition to C70 is investigated on the basis of vibronic (electron-vibration) coupling density and vibronic coupling constants. Because the e1″ LUMOs of C70 are doubly degenerate and delocalized throughout the molecule, it is difficult to predict the regioselectivity by frontier orbital theory. It is found that vibronic coupling density analysis for the effective mode as a reaction mode illustrates the idea of a functional group embedded in the reactive sites. Furthermore, the vibronic coupling constants for localized stretching vibrational modes enable us to estimate the quantitative reactivity. These calculated results agree well with the experimental findings. The principle of chemical reactivity proposed by Parr and Yang is modified as follows: the preferred direction is the one for which the initial vibronic coupling density for a reaction mode of the isolated reactant is a minimum.

  16. Phthalides: Distribution in Nature, Chemical Reactivity, Synthesis, and Biological Activity.

    Science.gov (United States)

    León, Alejandra; Del-Ángel, Mayela; Ávila, José Luis; Delgado, Guillermo

    oxidation, reduction, addition, elimination, and cycloaddition reactions, and treatments with Lewis acids of (Z)-ligustilide have afforded linear dimers. Some intramolecular condensations and differentiated cyclizations of the dimeric phthalides have been carried out, providing evidences for the particular chemical reactivity of these compounds.Several structural modifications of phthalides have been carried out subjecting them to microbial transformations by different species of bacteria, fungi and algae, and these included resolutions of racemic mixtures and oxidations, among others.The [π4s + π2s] and [π2s + π2s] cycloadditions of (Z)-ligustilide for the synthesis of dimeric phthalides have been reported, and different approaches involving cyclizations, Alder-Rickert reactions, Sharpless asymmetric hydroxylations, or Grignard additions have been used for the synthesis of monomeric phthalides. The use of phthalides as building blocks for divergent oriented synthesis has been proven.Many of the naturally occurring phthalides display different biological activities including antibacterial, antifungal, insecticidal, cytotoxic, and anti-inflammatory effects, among many others, with a considerable recent research on the topic. In the case of compounds isolated from the Apiaceae, the bioactivities correlate with the traditional medicinal uses of the natural sources. Some monomeric phthalides have shown their ability to attenuate certain neurological diseases, including stroke, Alzheimer's and Parkinson's diseases.The present contribution covers the distribution of phthalides in nature and the findings in the structural diversity, chemical reactivity, biotransformations, syntheses, and bioactivity of natural and semisynthetic phthalides.

  17. Chemical reactivity of graphene oxide towards amines elucidated by solid-state NMR

    Science.gov (United States)

    Vacchi, Isabella A.; Spinato, Cinzia; Raya, Jésus; Bianco, Alberto; Ménard-Moyon, Cécilia

    2016-07-01

    Graphene oxide (GO) is an attractive nanomaterial for many applications. Controlling the functionalization of GO is essential for the design of graphene-based conjugates with novel properties. But, the chemical composition of GO has not been fully elucidated yet. Due to the high reactivity of the oxygenated moieties, mainly epoxy, hydroxyl and carboxyl groups, several derivatization reactions may occur concomitantly. The reactivity of GO with amine derivatives has been exploited in the literature to design graphene-based conjugates, mainly through amidation. However, in this study we undoubtedly demonstrate using magic angle spinning (MAS) solid-state NMR that the reaction between GO and amine functions occurs via ring opening of the epoxides, and not by amidation. We also prove that there is a negligible amount of carboxylic acid groups in two GO samples obtained by a different synthesis process, hence eliminating the possibility of amidation reactions with amine derivatives. This work brings additional insights into the chemical reactivity of GO, which is fundamental to control its functionalization, and highlights the major role of MAS NMR spectroscopy for a comprehensive characterization of derivatized GO.Graphene oxide (GO) is an attractive nanomaterial for many applications. Controlling the functionalization of GO is essential for the design of graphene-based conjugates with novel properties. But, the chemical composition of GO has not been fully elucidated yet. Due to the high reactivity of the oxygenated moieties, mainly epoxy, hydroxyl and carboxyl groups, several derivatization reactions may occur concomitantly. The reactivity of GO with amine derivatives has been exploited in the literature to design graphene-based conjugates, mainly through amidation. However, in this study we undoubtedly demonstrate using magic angle spinning (MAS) solid-state NMR that the reaction between GO and amine functions occurs via ring opening of the epoxides, and not by

  18. Encoding of Fundamental Chemical Entities of Organic Reactivity Interest using chemical ontology and XML.

    Science.gov (United States)

    Durairaj, Vijayasarathi; Punnaivanam, Sankar

    2015-09-01

    Fundamental chemical entities are identified in the context of organic reactivity and classified as appropriate concept classes namely ElectronEntity, AtomEntity, AtomGroupEntity, FunctionalGroupEntity and MolecularEntity. The entity classes and their subclasses are organized into a chemical ontology named "ChemEnt" for the purpose of assertion, restriction and modification of properties through entity relations. Individual instances of entity classes are defined and encoded as a library of chemical entities in XML. The instances of entity classes are distinguished with a unique notation and identification values in order to map them with the ontology definitions. A model GUI named Entity Table is created to view graphical representations of all the entity instances. The detection of chemical entities in chemical structures is achieved through suitable algorithms. The possibility of asserting properties to the entities at different levels and the mechanism of property flow within the hierarchical entity levels is outlined. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Chemical reactivity of quinmerac herbicide through the Fukui function.

    Science.gov (United States)

    Mendoza-Huizar, Luis Humberto

    2014-01-01

    In the present work we have calculated DFT reactivity descriptors for quinmerac (7-chloro-3-methylquinoline-8-carboxylic acid) at the MP2/6-311++G(d,p)//B3LYP/6-311++G(2d,2p) level of theory to analyze its reactivity. Reactivity descriptors such as ionization energy, molecular hardness, electrophilicity, condensed Fukui function and total energies were calculated to predict changes in its reactivity. The Fukui function values predict that electrophilic and free radical attacks on quinmerac might cause aromatic substitutions, while nucleophilic attacks would cause cleavage of the C=N bond.

  20. Accelerating Wave Function Convergence in Interactive Quantum Chemical Reactivity Studies

    CERN Document Server

    Mühlbach, Adrian H; Reiher, Markus

    2015-01-01

    The inherently high computational cost of iterative self-consistent-field (SCF) methods proves to be a critical issue delaying visual and haptic feedback in real-time quantum chemistry. In this work, we introduce two schemes for SCF acceleration. They provide a guess for the initial density matrix of the SCF procedure generated by extrapolation techniques. SCF optimizations then converge in fewer iterations, which decreases the execution time of the SCF optimization procedure. To benchmark the proposed propagation schemes, we developed a test bed for performing quantum chemical calculations on sequences of molecular structures mimicking real-time quantum chemical explorations. Explorations of a set of six model reactions employing the semi-empirical methods PM6 and DFTB3 in this testing environment showed that the proposed propagation schemes achieved speedups of up to thirty percent as a consequence of a reduced number of SCF iterations.

  1. Conservative or reactive? Mechanistic chemical perspectives on organic matter stability

    Science.gov (United States)

    Koch, Boris

    2016-04-01

    Carbon fixation by terrestrial and marine primary production has a fundamental seasonal effect on the atmospheric carbon content and it profoundly contributes to long-term carbon storage in form of organic matter (OM) in soils, water, and sediments. The efficacy of this sequestration process strongly depends on the degree of OM persistence. Therefore, one of the key issues in dissolved and particulate OM research is to assess the stability of reservoirs and to quantify their contribution to global carbon fluxes. Incubation experiments are helpful to assess OM stability during the first, early diagenetic turnover induced by sunlight or microbes. However, net carbon fluxes within the global carbon cycle also act on much longer time scales, which are not amenable in experiments. It is therefore critical to improve our mechanistic understanding to be able to assess potential future changes in the organic matter cycle. This session contribution highlights some achievements and open questions in the field. An improved mechanistic understanding of OM turnover particularly depends on the molecular characterization of biogeochemical processes and their kinetics: (i) in soils and sediments, aggregation/disaggregation of OM is primarily controlled by its molecular composition. Hence, the chemical composition determines the transfer of organic carbon from the large particulate to the small dissolved organic matter reservoir - an important substrate for microbial metabolism. (ii) In estuaries, dissolved organic carbon gradients usually suggest conservative behavior, whereas molecular-level studies reveal a substantial chemical modification of terrestrial DOM along the land-ocean interface. (iii) In the ocean, previous studies have shown that the recalcitrance of OM depends on bulk concentration and energy yield. However, ultrahigh resolution mass spectrometry in combination with radiocarbon analyses also emphasized that stability is tightly connected to molecular composition

  2. Chemical modification of peanut conglutin reduces IgE reactivity but not T cell reactivity in peanut-allergic patients.

    Science.gov (United States)

    van Hoffen, E; van der Kleij, H P M; den Hartog Jager, C F; van Doorn, W A; Knol, E F; Opstelten, D-J; Koppelman, S J; Knulst, A C

    2014-12-01

    Specific immunotherapy for peanut allergy is associated with significant side-effects. Chemically modified allergens may provide a safer alternative. This study aimed to analyse the immunogenicity and allergenicity of modified peanut conglutin. Native peanut conglutin and two modifications thereof were generated (RA and RAGA). Conglutin-specific T cell lines from 11 peanut-allergic patients were analysed for proliferation and cytokine production. Sera from 14 patients were analysed for IgE/IgG1/IgG4 binding by immunoblot and ELISA. IgE reactivity was analysed by direct and indirect basophil activation test (BAT), in presence and absence of patient plasma or CD32-blocking antibodies. T cell proliferation to RA was unchanged, and proliferation to RAGA was reduced compared to native conglutin. Cytokine profiles remained unchanged. IgE, IgG1 and IgG4 binding to RA and RAGA was significantly reduced. In the direct BAT, the relative potency of modified conglutin was decreased in 67% and increased/similar in 33% of the patients. In the indirect BAT, RA and RAGA were 10-100 times less potent than native conglutin. Addition of plasma to the indirect BAT increased the relative potency of modified conglutin in patients with high peanut-specific IgG levels. This was mediated via blocking of the response to native conglutin, most likely by soluble IgG, and not via CD32. Chemical modification of peanut conglutin by RA retains immunogenicity and reduces allergenicity and may be a promising approach for development of a curative treatment for peanut allergy. In a subgroup of patients, where the reactivity of native conglutin is already partially blocked by IgG, the effect of the modification of conglutin is less pronounced. © 2014 John Wiley & Sons Ltd.

  3. Investigation of opening switch mechanisms based on chemically reactive plasmas

    Science.gov (United States)

    Lapatovich, W. P.; Piejak, R. B.; Proud, J. M.

    1985-11-01

    An investigation of discharge-induced chemical reactions resulting in high-density product vapors containing strongly attaching gases has been conducted to evaluate the feasibility and potential of such reactions in rapid opening plasma switches. This new concept of employing such reactions to limit and/or interrupt large currents on a microsecond time scale was studied in two element (electrodeless and electroded) devices and in three element (electroded) devices. Bimolecular and unimolecular reactions were considered. The plasma reaction between AlCl sub 3 and SiO sub 2 was studied. The electrical properties of one of the reaction products (SiCl sub 4) is reported.

  4. Chemical reactivity of graphene oxide towards amines elucidated by solid-state NMR.

    Science.gov (United States)

    Vacchi, Isabella A; Spinato, Cinzia; Raya, Jésus; Bianco, Alberto; Ménard-Moyon, Cécilia

    2016-07-14

    Graphene oxide (GO) is an attractive nanomaterial for many applications. Controlling the functionalization of GO is essential for the design of graphene-based conjugates with novel properties. But, the chemical composition of GO has not been fully elucidated yet. Due to the high reactivity of the oxygenated moieties, mainly epoxy, hydroxyl and carboxyl groups, several derivatization reactions may occur concomitantly. The reactivity of GO with amine derivatives has been exploited in the literature to design graphene-based conjugates, mainly through amidation. However, in this study we undoubtedly demonstrate using magic angle spinning (MAS) solid-state NMR that the reaction between GO and amine functions occurs via ring opening of the epoxides, and not by amidation. We also prove that there is a negligible amount of carboxylic acid groups in two GO samples obtained by a different synthesis process, hence eliminating the possibility of amidation reactions with amine derivatives. This work brings additional insights into the chemical reactivity of GO, which is fundamental to control its functionalization, and highlights the major role of MAS NMR spectroscopy for a comprehensive characterization of derivatized GO.

  5. XCHEM-1D: A Heat Transfer/Chemical Kinetics Computer Program for multilayered reactive materials

    Energy Technology Data Exchange (ETDEWEB)

    Gross, R.J.; Baer, M.R.; Hobbs, M.L.

    1993-10-01

    An eXplosive CHEMical kinetics code, XCHEM, has been developed to solve the reactive diffusion equations associated with thermal ignition of energetic materials. This method-of-lines code uses stiff numerical methods and adaptive meshing to resolve relevant combustion physics. Solution accuracy is maintained between multilayered materials consisting of blends of reactive components and/or inert materials. Phase change and variable properties are included in one-dimensional slab, cylindrical and spherical geometries. Temperature-dependent thermal properties have been incorporated and the modification of thermal conductivities to include decomposition effects are estimated using solid/gas volume fractions determined by species fractions. Gas transport properties, including high pressure corrections, have also been included. Time varying temperature, heat flux, convective and thermal radiation boundary conditions, and layer to layer contact resistances have also been implemented.

  6. Atomistic Simulations of Chemical Reactivity of TATB Under Thermal and Shock Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Manaa, M R; Reed, E J; Fried, L E

    2009-09-23

    The study of chemical transformations that occur at the reactive shock front of energetic materials provides important information for the development of predictive models at the grain-and continuum scales. A major shortcoming of current high explosives models is the lack of chemical kinetics data of the reacting explosive in the high pressure and temperature regimes. In the absence of experimental data, long-time scale atomistic molecular dynamics simulations with reactive chemistry become a viable recourse to provide an insight into the decomposition mechanism of explosives, and to obtain effective reaction rate laws. These rates can then be incorporated into thermo-chemical-hydro codes (such as Cheetah linked to ALE3D) for accurate description of the grain and macro scales dynamics of reacting explosives. In this talk, I will present quantum simulations of 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) crystals under thermal decomposition (high density and temperature) and shock compression conditions. This is the first time that condensed phase quantum methods have been used to study the chemistry of insensitive high explosives. We used the quantum-based, self-consistent charge density functional tight binding method (SCC{_}DFTB) to calculate the interatomic forces for reliable predictions of chemical reactions, and to examine electronic properties at detonation conditions for a relatively long time-scale on the order of several hundreds of picoseconds. For thermal decomposition of TATB, we conducted constant volume-temperature simulations, ranging from 0.35 to 2 nanoseconds, at {rho} = 2.87 g/cm{sup 3} at T = 3500, 3000, 2500, and 1500 K, and {rho} = 2.9 g/cm{sup 3} and 2.72 g/cm{sup 3}, at T = 3000 K. We also simulated crystal TATB's reactivity under steady overdriven shock compression using the multi-scale shock technique. We conducted shock simulations with specified shock speeds of 8, 9, and 10 km/s for up to 0.43 ns duration, enabling us to track the

  7. Chemical reactivity parameters (HSAB) applied to magma evolution and ore formation

    Science.gov (United States)

    Vigneresse, Jean-Louis

    2012-11-01

    Magmas are commonly described through the usual content of 10 major oxides. This requires a complex dimensional plot. Concepts of hard-soft acid-base (HSAB) interactions allow estimating chemical reactivity of elements, such as electronegativity, i.e. the chemical potential changed of sign, hardness and electrophilicity. For complex system, those values result from equalization methods, i.e. the equalization of the respective chemical potentials, or from ab-initio computations through density functional theory (DFT). They help to characterize silicate magmas by a single value describing their reactivity. Principles of minimum electrophilicity (mEP), maximum hardness (MHP) and minimum polarizability (mPP) indicate trends towards regions of higher stability. Those parameters are plotted within a fitness landscape diagram, highlighting toward which principle reactions trend. Major oxides, main minerals and magmas determine the respective fields in which evolve natural rocks. Three poles are identified, represented by silica and alkalis, whereas oxidation forms the third trend. Mantle-derived rocks show a large variation in electrophilicity compared to hardness. They present all characters of a closed chemical system, being simply described by the free Gibbs energy. Conversely, rocks contaminated within the continental crust show a large variation in hardness between a silica pole and an alkaline, defining two separate trends. The trends show the character of an open chemical system, requiring a Grand Potential description (i.e. taking into account the difference in chemical potential). The terms open and closed systems refer to thermodynamical description, implying contamination for the crust and recycling for the mantle. The specific role of alkalis contrasts with other cations, pointing to their behavior in modifying silicate polymer structures. A second application deals with the reactivity of the melt and its fluid phase. It leads to a better understanding on the

  8. Modeling the reactivities of hydroxyl radical and ozone towards atmospheric organic chemicals using quantitative structure-reactivity relationship approaches.

    Science.gov (United States)

    Gupta, Shikha; Basant, Nikita; Mohan, Dinesh; Singh, Kunwar P

    2016-07-01

    The persistence and the removal of organic chemicals from the atmosphere are largely determined by their reactions with the OH radical and O3. Experimental determinations of the kinetic rate constants of OH and O3 with a large number of chemicals are tedious and resource intensive and development of computational approaches has widely been advocated. Recently, ensemble machine learning (EML) methods have emerged as unbiased tools to establish relationship between independent and dependent variables having a nonlinear dependence. In this study, EML-based, temperature-dependent quantitative structure-reactivity relationship (QSRR) models have been developed for predicting the kinetic rate constants for OH (kOH) and O3 (kO3) reactions with diverse chemicals. Structural diversity of chemicals was evaluated using a Tanimoto similarity index. The generalization and prediction abilities of the constructed models were established through rigorous internal and external validation performed employing statistical checks. In test data, the EML QSRR models yielded correlation (R (2)) of ≥0.91 between the measured and the predicted reactivities. The applicability domains of the constructed models were determined using methods based on descriptors range, Euclidean distance, leverage, and standardization approaches. The prediction accuracies for the higher reactivity compounds were relatively better than those of the low reactivity compounds. Proposed EML QSRR models performed well and outperformed the previous reports. The proposed QSRR models can make predictions of rate constants at different temperatures. The proposed models can be useful tools in predicting the reactivities of chemicals towards OH radical and O3 in the atmosphere.

  9. The selective peptide reactivity of chemical respiratory allergens under competitive and non-competitive conditions.

    Science.gov (United States)

    Lalko, Jon F; Kimber, Ian; Dearman, Rebecca J; Api, Anne Marie; Gerberick, G Frank

    2013-01-01

    It is well established that certain chemicals cause respiratory allergy. In common with contact allergens, chemicals that induce sensitization of the respiratory tract must form stable associations with host proteins to elicit an immune response. Measurement of the reactivity of chemical allergens to single nucleophilic peptides is increasingly well-described, and standardized assays have been developed for use in hazard assessment. This study employed standard and modified peptide reactivity assays to investigate the selectivity of chemical respiratory allergens for individual amino acids under competitive and non-competitive conditions. The reactivity of 20 known chemical respiratory sensitizers (including diisocyanates, anhydrides, and reactive dyes) were evaluated for reactivity towards individual peptides containing cysteine, lysine, histidine, arginine, or tyrosine. Respiratory allergens exhibited the common ability to deplete both lysine and cysteine peptides; however, reactivity for histidine, arginine, and tyrosine varied between chemicals, indicating differences in relative binding affinity toward each nucleophile. To evaluate amino acid selectivity for cysteine and lysine under competitive conditions a modified assay was used in which reaction mixtures contained different relative concentrations of the target peptides. Under these reaction conditions, the binding preferences of reference respiratory and contact allergens (dinitrochlorobenzene, dinitrofluorobenzene) were evaluated. Discrete patterns of reactivity were observed showing various levels of competitive selectivity between the two allergen classes.

  10. Chemical exposure-response relationship between air pollutants and reactive oxygen species in the human respiratory tract

    OpenAIRE

    Lakey, Pascale S. J.; Thomas Berkemeier; Haijie Tong; Arangio, Andrea M.; Kurt Lucas; Ulrich Pöschl; Manabu Shiraiwa

    2016-01-01

    Air pollution can cause oxidative stress and adverse health effects such as asthma and other respiratory diseases, but the underlying chemical processes are not well characterized. Here we present chemical exposure-response relations between ambient concentrations of air pollutants and the production rates and concentrations of reactive oxygen species (ROS) in the epithelial lining fluid (ELF) of the human respiratory tract. In highly polluted environments, fine particulate matter (PM2.5) con...

  11. Reactive hydro- end chlorocarbons in the troposphere and lower stratosphere : sources, distributions, and chemical impact

    NARCIS (Netherlands)

    Scheeren, H.A.

    2003-01-01

    The work presented in this thesis focuses on measurements of chemical reactive C2 C7 non-methane hydrocarbons (NMHC) and C1 C2 chlorocarbons with atmospheric lifetimes of a few hours up to about a year. The group of reactive chlorocarbons includes the most abundant atmospheric species with large

  12. PREDICTION OF CHEMICAL REACTIVITY PARAMETERS AND PHYSICAL PROPERTIES OF ORGANIC COMPOUNDS FROM MOLECULAR STRUCTURE USING SPARC

    Science.gov (United States)

    The computer program SPARC (SPARC Performs Automated Reasoning in Chemistry) has been under development for several years to estimate physical properties and chemical reactivity parameters of organic compounds strictly from molecular structure. SPARC uses computational algorithms...

  13. PREDICTION OF CHEMICAL REACTIVITY PARAMETERS AND PHYSICAL PROPERTIES OF ORGANIC COMPOUNDS FROM MOLECULAR STRUCTURE USING SPARC

    Science.gov (United States)

    The computer program SPARC (SPARC Performs Automated Reasoning in Chemistry) has been under development for several years to estimate physical properties and chemical reactivity parameters of organic compounds strictly from molecular structure. SPARC uses computational algorithms...

  14. Mechanism of flue gas simultaneous desulfurization and denitrification using the highly reactive absorbent

    Institute of Scientific and Technical Information of China (English)

    ZHAO Yi; SUN Xiaojun; XU Peiyao; MA Shuangchen; WANG Lidong; LIU Feng

    2005-01-01

    Fly ash, industry-grade lime and a few oxidizing manganese compound additive were used to prepare the "Oxygen-riched" highly reactive absorbent for simultaneous desulfurization and denitrification. Experiments of simultaneous desulfurization and denitrification were carried out using the highly reactive absorbent in the flue gas circulating fluidized bed (CFB) system. Removal efficiencies of 94.5% for SO2 and 64.2% for NO were obtained respectively. The scanning electron microscope (SEM) and accessory X-ray energy spectrometer were used to observe micro-properties of the samples, including fly ash, common highly reactive absorbent, "Oxygen-riched" highly reactive absorbent and spent absorbent. The white flake layers were observed in the SEM images about surfaces of the common highly reactive absorbent and "Oxygen- riched" one, and the particle surfaces of the spent absorbent were porous. The content of calcium on surface was higher than that of the average in the highly reactive absorbent. The manganese compound additive dispersed uniformly on the surfaces of the "Oxygen- riched" highly reactive absorbent. There was a sulfur peak in the energy spectra pictures of the spent absorbent. The component of the spent absorbent was analyzed with chemical analysis methods, and the results indicated that more nitrogen species appeared in the absorbent except sulfur species, and SO2 and NO were removed by chemical absorption according to the experimental results of X-ray energy spectrometer and the chemical analysis. Sulfate being the main desulfurization products, nitrite was the main denitrification ones during the process, in which NO was oxidized rapidly to NO2 and absorbed by the chemical reaction.

  15. Chemical reactivity of the compressed noble gas atoms and their reactivity dynamics during collisions with protons

    Indian Academy of Sciences (India)

    P K Chattaraj; B Maiti; U Sarkar

    2003-06-01

    Attempts are made to gain insights into the effect of confinement of noble gas atoms on their various reactivity indices. Systems become harder, less polarizable and difficult to excite as the compression increases. Ionization also causes similar effects. A quantum fluid density functional technique is adopted in order to study the dynamics of reactivity parameters during a collision between protons and He atoms in different electronic states for various projectile velocities and impact parameters. Dynamical variants of the principles of maximum hardness, minimum polarizability and maximum entropy are found to be operative.

  16. Chemical reactivity and skin sensitization potential for benzaldehydes: can Schiff base formation explain everything?

    Science.gov (United States)

    Natsch, Andreas; Gfeller, Hans; Haupt, Tina; Brunner, Gerhard

    2012-10-15

    Skin sensitizers chemically modify skin proteins rendering them immunogenic. Sensitizing chemicals have been divided into applicability domains according to their suspected reaction mechanism. The widely accepted Schiff base applicability domain covers aldehydes and ketones, and detailed structure-activity-modeling for this chemical group was presented. While Schiff base formation is the obvious reaction pathway for these chemicals, the in silico work was followed up by limited experimental work. It remains unclear whether hydrolytically labile Schiff bases can form sufficiently stable epitopes to trigger an immune response in the living organism with an excess of water being present. Here, we performed experimental studies on benzaldehydes of highly differing skin sensitization potential. Schiff base formation toward butylamine was evaluated in acetonitrile, and a detailed SAR study is presented. o-Hydroxybenzaldehydes such as salicylaldehyde and the oakmoss allergens atranol and chloratranol have a high propensity to form Schiff bases. The reactivity is highly reduced in p-hydroxy benzaldehydes such as the nonsensitizing vanillin with an intermediate reactivity for p-alkyl and p-methoxy-benzaldehydes. The work was followed up under more physiological conditions in the peptide reactivity assay with a lysine-containing heptapeptide. Under these conditions, Schiff base formation was only observable for the strong sensitizers atranol and chloratranol and for salicylaldehyde. Trapping experiments with NaBH₃CN showed that Schiff base formation occurred under these conditions also for some less sensitizing aldehydes, but the reaction is not favored in the absence of in situ reduction. Surprisingly, the Schiff bases of some weaker sensitizers apparently may react further to form stable peptide adducts. These were identified as the amides between the lysine residues and the corresponding acids. Adduct formation was paralleled by oxidative deamination of the parent

  17. Models for risk assessment of reactive chemicals in aquatic toxicology

    NARCIS (Netherlands)

    Freidig, Andreas Peter

    2001-01-01

    A quantitative structure property relationship (QSPR) for a,b-unsaturated carboxylates (mainly acrylates and methacrylates) was established in chapter 2. Chemical reaction rate constants were measured for 12 different chemicals with three different nucleophiles, namely H 2 O, OH - and glutathione (G

  18. Modification of chemical reactivity of enzymatic hydrolysis lignin by ultrasound treatment in dilute alkaline solutions.

    Science.gov (United States)

    Ma, Zhuoming; Li, Shujun; Fang, Guizhen; Patil, Nikhil; Yan, Ning

    2016-12-01

    In this study, we have explored various ultrasound treatment conditions for structural modification of enzymatic hydrolysis lignin (EHL) for enhanced chemical reactivity. The key structural modifications were characterized by using a combination of analytical methods, including, Fourier Transform-Infrared spectroscopy (FTIR), Proton Nuclear Magnetic Resonance ((1)H NMR), Gel permeation chromatography (GPC), X-ray photoelectron spectroscopy (XPS), and Folin-Ciocalteu (F-C) method. Chemical reactivity of the modified EHL samples was determined by both 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging activity and their reactivity towards formaldehyde. It was observed that the modified EHL had a higher phenolic hydroxyl group content, a lower molecular weight, a higher reactivity towards formaldehyde, and a greater antioxidant property. The higher reactivity demonstrated by the samples after treatment suggesting that ultrasound is a promising method for modifying enzymatic hydrolysis lignin for value-added applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Reactive skin decontamination lotion (RSDL) for the decontamination of chemical warfare agent (CWA) dermal exposure.

    Science.gov (United States)

    Schwartz, M D; Hurst, C G; Kirk, M A; Reedy, S J D; Braue, E H

    2012-08-01

    Rapid decontamination of the skin is the single most important action to prevent dermal absorption of chemical contaminants in persons exposed to chemical warfare agents (CWA) and toxic industrial chemicals (TICs) as a result of accidental or intentional release. Chemicals on the skin may be removed by mechanical means through the use of dry sorbents or water. Recent interest in decontamination systems which both partition contaminants away from the skin and actively neutralize the chemical has led to the development of several reactive decontamination solutions. This article will review the recently FDA-approved Reactive Skin Decontamination Lotion (RSDL) and will summarize the toxicity and efficacy studies conducted to date. Evidence of RSDL's superior performance against vesicant and organophosphorus chemical warfare agents compared to water, bleach, and dry sorbents, suggests that RSDL may have a role in mass human exposure chemical decontamination in both the military and civilian arenas.

  20. The influence of condensed tannin structure on rate of microbial mineralization and reactivity to chemical assays.

    Science.gov (United States)

    Norris, Charlotte E; Preston, Caroline M; Hogg, Karen E; Titus, Brian D

    2011-03-01

    We examined how tannin structure influences reactivity in tannin assays and carbon and nitrogen mineralization. Condensed tannins from the foliage of ten tree and shrub species and from pecan shells (Carya illinoensis) had different proportions of: (a) epicatechin (cis) and catechin (trans) isomers, (b) procyanidin (PC) and prodelphinidin (PD) monomers, and (c) different chain lengths. The response of each tannin to several widely used tannin assays was determined. Although there was some variation in response to proanthocyanidin (butanol/HCl) and Folin Ciocalteu assays, we did not deduce any predictable relationship between tannin structure and response to either assay. There was little variation in protein precipitation among the different tannins. To assess biological activity, six of the tannins were incubated with forest humus for 22 days. We determined that, while PC-based tannins remained at least partly extractable for the duration of the incubation, tannins with a high proportion of PD subunits rapidly became unextractable from soil. There was a positive correlation between net nitrogen mineralization and cis chemical structure. Carbon mineralization was enhanced initially by the addition of tannins to humus, but after 22 days, a negative correlation between the proportion of cis subunits and respiration was determined. Overall, we were not able to demonstrate consistent effects of structure on either microbial mineralization or reactivity to chemical assays; such relationships remain elusive.

  1. The synergistic effect of chemical carcinogens enhances Epstein-Barr virus reactivation and tumor progression of nasopharyngeal carcinoma cells.

    Directory of Open Access Journals (Sweden)

    Chih-Yeu Fang

    Full Text Available Seroepidemiological studies imply a correlation between Epstein-Barr virus (EBV reactivation and the development of nasopharyngeal carcinoma (NPC. N-nitroso compounds, phorbols, and butyrates are chemicals found in food and herb samples collected from NPC high-risk areas. These chemicals have been reported to be risk factors contributing to the development of NPC, however, the underlying mechanism is not fully understood. We have demonstrated previously that low dose N-methyl-N'-nitro-N-nitrosoguanidine (MNNG, 0.1 µg/ml had a synergistic effect with 12-O-tetradecanoylphorbol-13-acetate (TPA and sodium butyrate (SB in enhancing EBV reactivation and genome instability in NPC cells harboring EBV. Considering that residents in NPC high-risk areas may contact regularly with these chemical carcinogens, it is vital to elucidate the relation between chemicals and EBV and their contributions to the carcinogenesis of NPC. In this study, we constructed a cell culture model to show that genome instability, alterations of cancer hallmark gene expression, and tumorigenicity were increased after recurrent EBV reactivation in NPC cells following combined treatment of TPA/SB and MNNG. NPC cells latently infected with EBV, NA, and the corresponding EBV-negative cell, NPC-TW01, were periodically treated with MNNG, TPA/SB, or TPA/SB combined with MNNG. With chemically-induced recurrent reactivation of EBV, the degree of genome instability was significantly enhanced in NA cells treated with a combination of TPA/SB and MNNG than those treated individually. The Matrigel invasiveness, as well as the tumorigenicity in mouse, was also enhanced in NA cells after recurrent EBV reactivation. Expression profile analysis by microarray indicates that many carcinogenesis-related genes were altered after recurrent EBV reactivation, and several aberrations observed in cell lines correspond to alterations in NPC lesions. These results indicate that cooperation between chemical

  2. A Conceptual Framework for Predicting the Toxicity of Reactive Chemicals: Modeling Soft Electrophilicity

    Science.gov (United States)

    Although the literature is replete with QSAR models developed for many toxic effects caused by reversible chemical interactions, the development of QSARs for the toxic effects of reactive chemicals lacks a consistent approach. While limitations exit, an appropriate starting-point...

  3. A Conceptual Framework for Predicting the Toxicity of Reactive Chemicals: Modeling Soft Electrophilicity

    Science.gov (United States)

    Although the literature is replete with QSAR models developed for many toxic effects caused by reversible chemical interactions, the development of QSARs for the toxic effects of reactive chemicals lacks a consistent approach. While limitations exit, an appropriate starting-point...

  4. Self-Decontaminating Fibrous Materials Reactive toward Chemical Threats.

    Science.gov (United States)

    Bromberg, Lev; Su, Xiao; Martis, Vladimir; Zhang, Yunfei; Hatton, T Alan

    2016-07-13

    Polymers that possess highly nucleophilic pyrrolidinopyridine (Pyr) and primary amino (vinylamine, VAm) groups were prepared by free-radical copolymerization of N,N-diallylpyridin-4-amine (DAAP) and N-vinylformamide (NVF) followed by acidic hydrolysis of NVF into VAm. The resulting poly(DAAP-co-VAm-co-NVF) copolymers were water-soluble and reacted with water-dispersible polyurethane possessing a high content of unreacted isocyanate groups. Spray-coating of the nylon-cotton (NYCO), rayon, and poly(p-phenylene terephthalamide) (Kevlar 119) fibers pretreated with phosphoric acid resulted in covalent bonding of the polyurethane with the hydroxyl groups on the fiber surface. A second spray-coating of aqueous solutions of poly(DAAP-co-VAm-co-NVF) on the polyurethane-coated fiber enabled formation of urea linkages between unreacted isocyanate groups of the polyurethane layer and the amino groups of poly(DAAP-co-VAm-co-NVF). Fibers with poly(DAAP-co-VAm-co-NVF) attached were compared with fibers modified by adsorption of water-insoluble poly(butadiene-co-pyrrolidinopyridine) (polyBPP) in terms of the stability against polymer leaching in aqueous washing applications. While the fibers modified by attachment of poly(DAAP-co-VAm-co-NVF) exhibited negligible polymer leaching, over 65% of adsorbed polyBPP detached and leached from the fibers within 7 days. Rayon fibers modified by poly(DAAP-co-VAm-co-NVF) were tested for sorption of dimethyl methylphosphonate (DMMP) in the presence of moisture using dynamic vapor sorption technique. Capability of the fibers modified with poly(DAAP-co-VAm-co-NVF) to facilitate hydrolysis of the sorbed DMMP in the presence of moisture was uncovered. The self-decontaminating property of the modified fibers against chemical threats was tested using a CWA simulant diisopropylfluorophosphate (DFP) in aqueous media at pH 8.7. Fibers modified with poly(DAAP-co-VAm-co-NVF) facilitated hydrolysis of DFP with the half-lives up to an order of magnitude

  5. Chemically reactive species in liquids generated by atmospheric-pressure plasmas and their roles in plasma medicine

    Energy Technology Data Exchange (ETDEWEB)

    Hamaguchi, Satoshi [Center for Atomic and Molecular Technologies, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan)

    2013-07-11

    Plasmas whose gas temperatures are close to room temperature may be generated in ambient air or a gas at atmospheric pressure with the use of low-frequency high voltage or low-power radio-frequency (RF) or microwave power applied to electrodes. Such plasmas can serve as a powerful source of free radicals and/or chemically reactive species that arise from atoms and molecules of the ambient gas. Recently use of such plasmas for medical purposes has attracted much attention as they can be implemented in possible medical devices that can cause blood coagulation, heal wounds, facilitate angiogenesis, sterilize surgical devices as well as living tissues without harming healthy cells, and selectively inactivate cancer cells. Especially of interest among reactive species generated by atmospheric-pressure plasmas (APP) are reactive oxygen species (ROS) and reactive nitrogen species (RNS) that are generated in liquid phase. Since most living tissues and cells are immersed in liquids (such as blood or culture media), reactive species generated by APPs in the gas phase are transported to the liquid phase and possibly converted to different types of reactive species therein before causing some influence on the tissues or cells. In this study, the rate equations are solved to evaluate concentrations of various reactive species in pure water that are originated by plasma reactions in atmosphere and possible effects of such species (including ROS/RNS) on living tissues and cells are discussed.

  6. Chemical Reactivity as a Probe of Ionic-Liquid Surfaces

    Science.gov (United States)

    2009-04-30

    In practice, four ionic liquids have been investigated so far [EMIM] [Im], [ BMIM ] [Im], [PMIM] [Im] and [DMIM] [Im] (see Fig. 2 for definitions), with...N S CF3 O OS CF3 O O [Rmim] [Im] [EMIM] [Im] R = C2H5 [MMIM] [Im] R = CH3 [ BMIM ] [Im] R = C4H9 [PMIM] [Im] R = C5H11 [OMIM] [Im] R = C8H17 [DMIM... BMIM ] [Im] (B = butyl) and [PMIM] [Im] (P = pentyl) have also been measured and the relevant reactivity ratios are given in Table 1. Fig. 4

  7. Communication: Enhanced chemical reactivity of graphene on a Ni(111) substrate.

    Science.gov (United States)

    Ambrosetti, Alberto; Silvestrelli, Pier Luigi

    2016-03-21

    Due to the unique combination of structural, mechanical, and transport properties, graphene has emerged as an exceptional candidate for catalysis applications. The low chemical reactivity caused by sp(2) hybridization and strongly delocalized π electrons, however, represents a main challenge for straightforward use of graphene in its pristine, free-standing form. Following recent experimental indications, we show that due to charge hybridization, a Ni(111) substrate can enhance the chemical reactivity of graphene, as exemplified by the interaction with the CO molecule. While CO only physisorbs on free-standing graphene, chemisorption of CO involving formation of ethylene dione complexes is predicted in Ni(111)-graphene. Higher chemical reactivity is also suggested in the case of oxidized graphene, opening the way to a simple and efficient control of graphene chemical properties, devoid of complex defect patterning or active metallic structures deposition.

  8. High temperature chemically resistant polymer concrete

    Science.gov (United States)

    Sugama, T.; Kukacka, L.E.

    High temperature chemically resistant, non-aqueous polymer concrete composites consist of about 12 to 20% by weight of a water-insoluble polymer binder. The binder is polymerized in situ from a liquid vinyl-type monomer or mixture of vinyl containing monomers such as triallylcyanurate, styrene, acrylonitrile, acrylamide, methacrylamide, methyl-methacrylate, trimethylolpropane trimethacrylate and divinyl benzene. About 5 to 40% by weight of a reactive inorganic filler selected from the group consisting of tricalcium silicate and dicalcium silicate and mixtures containing less than 2% free lime, and about 48 to 83% by weight of silica sand/ and a free radical initiator such as di-tert-butyl peroxide, azobisisobutyronitrile, benzoyl peroxide, lauryl peroxide, other orgaic peroxides and combinations to initiate polymerization of the monomer in the presence of the inorganic filers are used.

  9. Reactivity of Dual-Use Decontaminants with Chemical Warfare Agents

    Science.gov (United States)

    2016-07-01

    decrease the logistical burden associated with transport and storage of decontaminants. The experiments in this study were focused on evaluating...propanediammonium dichloride, isopropanol, inert ingredients/water, hydrogen peroxide, diacetin Decontaminant formulated for chemical warfare agents F...potassium bisulfate, potassium sulfate, dipotassium peroxodisulfate, magnesium carbonate Acidic oxidative chemistry, used for VX laboratory waste

  10. A Multiphilic Descriptor for Chemical Reactivity and Selectivity

    CERN Document Server

    Padmanabhan, J; Elango, M; Subramanian, V; Krishnamoorthy, B S; Gutierrez-Oliva, S; Toro-Labbe, A; Roy, D R; Chattaraj, P K

    2007-01-01

    In line with the local philicity concept proposed by Chattaraj et al. (Chattaraj, P. K.; Maiti, B.; Sarkar, U. J. Phys. Chem. A. 2003, 107, 4973) and a dual descriptor derived by Toro-Labbe and coworkers (Morell, C.; Grand, A.; Toro-Labbe, A. J. Phys. Chem. A. 2005, 109, 205), we propose a multiphilic descriptor. It is defined as the difference between nucleophilic (Wk+) and electrophilic (Wk-) condensed philicity functions. This descriptor is capable of simultaneously explaining the nucleophilicity and electrophilicity of the given atomic sites in the molecule. Variation of these quantities along the path of a soft reaction is also analyzed. Predictive ability of this descriptor has been successfully tested on the selected systems and reactions. Corresponding force profiles are also analyzed in some representative cases. Also, to study the intra- and intermolecular reactivities another related descriptor namely, the nucleophilicity excess (DelW-+) for a nucleophile, over the electrophilicity in it has been d...

  11. Reactive schedule modification in multipurpose batch chemical plants

    Energy Technology Data Exchange (ETDEWEB)

    Kanakamedala, K.B.; Reklaitis, G.V.; Venkatasubramanian, V. (Purdue Univ., West Lafayette, IN (United States). School of Chemical Engineering)

    1994-01-01

    A new scheme is described for reactive schedule modification in the face of unexpected deviations in processing times and unit availabilities of a multipurpose batch plant (MBP). Schedule modification is done using at least impact heuristic beam search which proceeds in two levels: creation of a decision tree which makes use of possible reroutings of the product that is causing a conflict, and heuristic pruning of the search space to contain the combinatorial complexity. The heuristic chooses a path among all possible reroutings for a product such that the impact of each decision on the rest of the schedule is kept as small as possible. This approach has been implemented and tested on a number of simulated deviations in a MBP case study with three products. The proposed least impact heuristic was found to perform better than the earliest finishing unit heuristic in all the cases considered.

  12. Chemical composition and photochemical reactivity of exhaust from aircraft turbine engines

    Directory of Open Access Journals (Sweden)

    T. F. Lyon

    Full Text Available Assessment of the environmental impact of aircraft emissions is required by planners and policy makers. Seveal areas of concern are: 1. exposure of airport workers and urban residents to toxic chemicals emitted when the engines operate at low power (idle and taxi on the ground; 2. contributions to urban photochemical air pollution of aircraft volatile organic and nitrogen oxides emissions from operations around airports; and 3. emissions of nitrogen oxides and particles during high-altitude operation. The environmental impact of chemicals emitted from jet aircraft turbine engines has not been firmly established due to lack of data regarding emission rates and identities of the compounds emitted. This paper describes an experimental study of two different aircraft turbine engines designed to determine detailed organic emissions, as well as emissions of inorganic gases. Emissions were measured at several engine power settings. Measurements were made of detailed organic composition from C1 through C17, CO, CO2, NO, NOx, and polycyclic aromatic hydrocarbons. Measurements were made using a multi-port sampling pro be positioned directly behind the engine in the exhaust exit plane. The emission measurements have been used to determine the organic distribution by carbon number and the distribution by compound class at each engine power level. The sum of the organic species was compared with an independent measurement of total organic carbon to assess the carbon mass balance. A portion of the exhaust was captured and irradiated in outdoor smog chambers to assess the photochemical reactivity of the emissions with respect to ozone formation. The reactivity of emissions from the two engines was apportioned by chemical compound class.

  13. Improved Understanding of In Situ Chemical Oxidation Soil Reactivity

    Science.gov (United States)

    2007-12-01

    This technique is dependent on measuring gamma radiation induced in the sample by irradiation with neutrons. The primary source of neutrons for...that TOC is related to NODmax (as indicated by Eq. 26) and its primary effects have been removed as part of the normalization. The parameter a...chemical remediation of contaminated sites. The presence of iron minerals (e.g., goethite, magnetite, and hematite ) or other transition metals (Mn

  14. Reactive formulations for a neutralization of toxic industrial chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Tucker, Mark D. (Albuqueruqe, NM); Betty, Rita G. (Rio Rancho, NM)

    2006-10-24

    Decontamination formulations for neutralization of toxic industrial chemicals, and methods of making and using same. The formulations are effective for neutralizing malathion, hydrogen cyanide, sodium cyanide, butyl isocyanate, carbon disulfide, phosgene gas, capsaicin in commercial pepper spray, chlorine gas, anhydrous ammonia gas; and may be effective at neutralizing hydrogen sulfide, sulfur dioxide, formaldehyde, ethylene oxide, methyl bromide, boron trichloride, fluorine, tetraethyl pyrophosphate, phosphorous trichloride, arsine, and tungsten hexafluoride.

  15. Reactive hydro- end chlorocarbons in the troposphere and lower stratosphere : sources, distributions, and chemical impact

    OpenAIRE

    H. A. Scheeren

    2003-01-01

    The work presented in this thesis focuses on measurements of chemical reactive C2 C7 non-methane hydrocarbons (NMHC) and C1 C2 chlorocarbons with atmospheric lifetimes of a few hours up to about a year. The group of reactive chlorocarbons includes the most abundant atmospheric species with large natural sources, which are chloromethane (CH3Cl), dichloromethane (CH2Cl2), and trichloromethane (CHCl3), and tetrachloroethylene (C2Cl4) with mainly anthropogenic sources. The NMHC and chlorocarbons ...

  16. Importance of asparagine on the conformational stability and chemical reactivity of selected anti-inflammatory peptides

    Energy Technology Data Exchange (ETDEWEB)

    Soriano-Correa, Catalina, E-mail: csorico@comunidad.unam.mx [Química Computacional, Facultad de Estudios Superiores (FES)-Zaragoza, Universidad Nacional Autónoma de México (UNAM), Iztapalapa, C.P. 09230 México, D.F. (Mexico); Barrientos-Salcedo, Carolina [Laboratorio de Química Médica y Quimiogenómica, Facultad de Bioanálisis Campus Veracruz-Boca del Río, Universidad Veracruzana, C.P. 91700 Veracruz (Mexico); Campos-Fernández, Linda; Alvarado-Salazar, Andres [Química Computacional, Facultad de Estudios Superiores (FES)-Zaragoza, Universidad Nacional Autónoma de México (UNAM), Iztapalapa, C.P. 09230 México, D.F. (Mexico); Esquivel, Rodolfo O. [Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa (UAM-Iztapalapa), C.P. 09340 México, D.F. (Mexico)

    2015-08-18

    Highlights: • Asparagine plays an important role to anti-inflammatory effect of peptides. • The electron-donor substituent groups favor the formation of the hydrogen bonds, which contribute in the structural stability of peptides. • Chemical reactivity and the physicochemical features are crucial in the biological functions of peptides. - Abstract: Inflammatory response events are initiated by a complex series of molecular reactions that generate chemical intermediaries. The structure and properties of peptides and proteins are determined by the charge distribution of their side chains, which play an essential role in its electronic structure and physicochemical properties, hence on its biological functionality. The aim of this study was to analyze the effect of changing one central amino acid, such as substituting asparagine for aspartic acid, from Cys–Asn–Ser in aqueous solution, by assessing the conformational stability, physicochemical properties, chemical reactivity and their relationship with anti-inflammatory activity; employing quantum-chemical descriptors at the M06-2X/6-311+G(d,p) level. Our results suggest that asparagine plays a more critical role than aspartic acid in the structural stability, physicochemical features, and chemical reactivity of these tripeptides. Substituent groups in the side chain cause significant changes on the conformational stability and chemical reactivity, and consequently on their anti-inflammatory activity.

  17. Developing high-performance concrete incorporating highly-reactive rice husk ash

    Directory of Open Access Journals (Sweden)

    Andrés Salas

    2012-10-01

    Full Text Available The aim of this study is to present results of an investigation about the developing of a highperformance concrete (HPC using a highly reactive pozzolan made from chemically treated rice husk ash (ChRHA prepared by a chemical-thermal attack to the rice husk. This particular rice husk ash (RHA consists of 99% of silica, highly amorphous, white in color and of greater pozzolanic activity than the silica fume and another rice husk ash prepared with only by a thermal treatment. The results of the physical, chemical and mineralogical characteristics of ChRHA are analyzed. In this study, the compressive strength, flexural strength, water absorption, resistance to carbonation, total charge-passed derived from rapid chloride permeability test (RCPT and modulus of elasticity of hardened concrete were determined in the laboratory. Test results indicate that it is possible to produce HPC with the incorporation the chemically treated RHA. The incorporation of the chemically treated rice husk ash into the concrete enhances the compressive strengthand the durability properties being comparable to the properties of high performance concretes with silica fume (SF made with the same replacement levels.

  18. Solution-phase synthesis of inorganic nanostructures by chemical transformation from reactive templates

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The solution-phase synthesis by chemical transformation from reactive templates has proved to be very effective in morphology-controlled synthesis of inorganic nanostructures. This review paper summarizes the recent progress in solution-phase synthesis of one-dimensional and hollow inorganic nanostructures via reactive templates, focusing on the approaches developed in our lab. The formation mechanisms based on reactive templates are discussed in depth to show the general concepts for the preparation processes. An outlook on the future development in this area is also presented.

  19. A tutorial for understanding chemical reactivity through the valence bond approach.

    Science.gov (United States)

    Usharani, Dandamudi; Lai, Wenzhen; Li, Chunsen; Chen, Hui; Danovich, David; Shaik, Sason

    2014-07-21

    This is a tutorial on the usage of valence bond (VB) diagrams for understanding chemical reactivity in general, and hydrogen atom transfer (HAT) reactivity in particular. The tutorial instructs the reader how to construct the VB diagrams and how to estimate HAT barriers from raw data, starting with the simplest reaction H + H2 and going all the way to HAT in the enzyme cytochrome P450. Other reactions are treated as well, and some unifying principles are outlined. The tutorial projects the unity of reactivity treatments, following Coulson's dictum "give me insight, not numbers", albeit with its modern twist: giving numbers and insight.

  20. Effect of mechanical activation on structure changes and reactivity in further chemical modification of lignin.

    Science.gov (United States)

    Zhao, Xiaohong; Zhang, Yanjuan; Hu, Huayu; Huang, Zuqiang; Yang, Mei; Chen, Dong; Huang, Kai; Huang, Aimin; Qin, Xingzhen; Feng, Zhenfei

    2016-10-01

    Lignin was treated by mechanical activation (MA) in a customized stirring ball mill, and the structure and reactivity in further esterification were studied. The chemical structure and morphology of MA-treated lignin and the esterified products were analyzed by chemical analysis combined with UV/vis spectrometer, FTIR,NMR, SEM and particle size analyzer. The results showed that MA contributed to the increase of aliphatic hydroxyl, phenolic hydroxyl, carbonyl and carboxyl groups but the decrease of methoxyl groups. Moreover, MA led to the decrease of particle size and the increase of specific surface area and roughness of surface in lignin. The reactivity of lignin was enhanced significantly for the increase of hydroxyl content and the improvement of mass transfer in chemical reaction caused by the changes of molecular structure and morphological structure. The process of MA is green and simple, and is an effective method for enhancing the reactivity of lignin. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Modeling turbulence structure. Chemical kinetics interaction in turbulent reactive flows

    Energy Technology Data Exchange (ETDEWEB)

    Magnussen, B.F. [The Norwegian Univ. of Science and Technology, Trondheim (Norway)

    1997-12-31

    The challenge of the mathematical modelling is to transfer basic physical knowledge into a mathematical formulation such that this knowledge can be utilized in computational simulation of practical problems. The combustion phenomena can be subdivided into a large set of interconnected phenomena like flow, turbulence, thermodynamics, chemical kinetics, radiation, extinction, ignition etc. Combustion in one application differs from combustion in another area by the relative importance of the various phenomena. The difference in fuel, geometry and operational conditions often causes the differences. The computer offers the opportunity to treat the individual phenomena and their interactions by models with wide operational domains. The relative magnitude of the various phenomena therefore becomes the consequence of operational conditions and geometry and need not to be specified on the basis of experience for the given problem. In mathematical modelling of turbulent combustion, one of the big challenges is how to treat the interaction between the chemical reactions and the fluid flow i.e. the turbulence. Different scientists adhere to different concepts like the laminar flamelet approach, the pdf approach of the Eddy Dissipation Concept. Each of these approaches offers different opportunities and problems. All these models are based on a sound physical basis, however none of these have general validity in taking into consideration all detail of the physical chemical interaction. The merits of the models can only be judged by their ability to reproduce physical reality and consequences of operational and geometric conditions in a combustion system. The presentation demonstrates and discusses the development of a coherent combustion technology for energy conversion and safety based on the Eddy Dissipation Concept by Magnussen. (author) 30 refs.

  2. Preparation of Reactive Oligo(p-Phenylene Vinylene) Materials for Spatial Profiling of the Chemical Reactivity of Intracellular Compartments.

    Science.gov (United States)

    Nie, Chenyao; Li, Shengliang; Wang, Bing; Liu, Libing; Hu, Rong; Chen, Hui; Lv, Fengting; Dai, Zhihui; Wang, Shu

    2016-05-01

    An oligo(p-phenylene vinylene) derivative (OPV-pfp) functionalized with pentafluorophenol active ester is designed and synthesized. The high reactivity of OPV-pfp with biological small molecules or macromolecules containing amino groups under physiological conditions leads to spectral changes of OPV-pfp; thus, spatial reactivity discrimination for different subcellular structures inside cells is realized by triggering and imaging the fluorescence signal change of the OPV-pfp. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Improvement of the chemical inhibition phenotyping assay by cross-reactivity correction.

    Science.gov (United States)

    Njuguna, Nicholas M; Umehara, Ken-Ichi; Huth, Felix; Schiller, Hilmar; Chibale, Kelly; Camenisch, Gian

    2016-12-01

    The fraction of an absorbed drug metabolized by the different hepatic cytochrome P450 (CYP) enzymes, relative to total hepatic CYP metabolism (fmCYP), can be estimated by measuring the inhibitory effects of presumably selective CYP inhibitors on the intrinsic metabolic clearance of a drug using human liver microsomes. However, the chemical inhibition data are often affected by cross-reactivities of the chemical inhibitors used in this assay. To overcome this drawback, the cross-reactivities exhibited by six chemical inhibitors (furafylline, montelukast, sulfaphenazole, ticlopidine, quinidine and ketoconazole) were quantified using specific CYP enzyme marker reactions. The determined cross-reactivities were used to correct the in vitro fmCYPs of nine marketed drugs. The corrected values were compared with reference data obtained by physiologically based pharmacokinetics simulation using the software SimCYP. Uncorrected in vitro fmCYPs of the nine drugs showed poor linear correlation with their reference data (R2=0.443). Correction by factoring in inhibitor cross-reactivities significantly improved the correlation (R2=0.736). Correcting in vitro chemical inhibition results for cross-reactivities appear to offer a straightforward and easily adoptable approach to provide improved fmCYP data for a drug.

  4. Chemical synthesis and biochemical reactivity of bacteriophage lambda PR promoter.

    OpenAIRE

    1983-01-01

    By a combination of chemical and enzymatic methods, a 75 base pair DNA duplex containing the sequence of the lambda PR promoter including the OR1 and OR2 cI repressor binding sites was synthesized. The solid support phosphite triester procedure (Caruthers, M. H. et al., Cold Spring Harbor Symposia on Quantitative Biology XLVII, in press) was used for the synthesis of oligonucleotides comprising the sequence. We report here an adaptation of the method of DNA synthesis in test tubes. Assembly o...

  5. Chemical stability and in chemico reactivity of 24 fragrance ingredients of concern for skin sensitization risk assessment.

    Science.gov (United States)

    Avonto, Cristina; Wang, Mei; Chittiboyina, Amar G; Vukmanovic, Stanislav; Khan, Ikhlas A

    2017-09-16

    Twenty-four pure fragrance ingredients have been identified as potential concern for skin sensitization. Several of these compounds are chemically unstable and convert into reactive species upon exposure to air or light. In the present work, a systematic investigation of the correlation between chemical stability and reactivity has been undertaken. The compounds were subjected to forced photodegradation for three months and the chemical changes were studied with GC-MS. At the end of the stability study, two-thirds of the samples were found to be unstable. The generation of chemically reactive species was investigated using the in chemico HTS-DCYA assay. Eleven and fourteen compounds were chemically reactive before and after three months, respectively. A significant increase in reactivity upon degradation was found for isoeugenol, linalool, limonene, lyral, citronellol and geraniol; in the same conditions, the reactivity of hydroxycitronellal decreased. The non-reactive compounds α-isomethyl ionone, benzyl alcohol, amyl cinnamal and farnesol became reactive after photo-oxidative degradation. Overall, forced degradation resulted in four of non-reactive fragrance compounds to display in chemico thiol reactivity, while ten out of 24 compounds remained inactive. Chemical degradation thus not necessarily occurs with generation of reactive species. Non-chemical activation may be involved for the 10 stable unreactive compounds. Copyright © 2017. Published by Elsevier Ltd.

  6. Reactive species and DNA damage in chronic inflammation: reconciling chemical mechanisms and biological fates.

    Science.gov (United States)

    Lonkar, Pallavi; Dedon, Peter C

    2011-05-01

    Chronic inflammation has long been recognized as a risk factor for many human cancers. One mechanistic link between inflammation and cancer involves the generation of nitric oxide, superoxide and other reactive oxygen and nitrogen species by macrophages and neutrophils that infiltrate sites of inflammation. Although pathologically high levels of these reactive species cause damage to biological molecules, including DNA, nitric oxide at lower levels plays important physiological roles in cell signaling and apoptosis. This raises the question of inflammation-induced imbalances in physiological and pathological pathways mediated by chemical mediators of inflammation. At pathological levels, the damage sustained by nucleic acids represents the full spectrum of chemistries and likely plays an important role in carcinogenesis. This suggests that DNA damage products could serve as biomarkers of inflammation and oxidative stress in clinically accessible compartments such as blood and urine. However, recent studies of the biotransformation of DNA damage products before excretion point to a weakness in our understanding of the biological fates of the DNA lesions and thus to a limitation in the use of DNA lesions as biomarkers. This review will address these and other issues surrounding inflammation-mediated DNA damage on the road to cancer.

  7. Prediction of the Chapman–Jouguet chemical equilibrium state in a detonation wave from first principles based reactive molecular dynamics

    OpenAIRE

    Guo, Dezhou; Zybin, Sergey V.; An, Qi; Goddard, William A.; Huang, Fenglei

    2016-01-01

    The combustion or detonation of reacting materials at high temperature and pressure can be characterized by the Chapman–Jouguet (CJ) state that describes the chemical equilibrium of the products at the end of the reaction zone of the detonation wave for sustained detonation. This provides the critical properties and product kinetics for input to macroscale continuum simulations of energetic materials. We propose the ReaxFF Reactive Dynamics to CJ point protocol (Rx2CJ) for predicting the CJ s...

  8. Chemical Modification on Reactive Dye Adsorption Capacity of Castor Seeds

    Directory of Open Access Journals (Sweden)

    V. Dharmalingam

    2011-01-01

    Full Text Available Abstract: The roles played by four major functional groups (amine, carboxyl, azo, hydroxyl groups in the biomass of castor seeds in adsorption of seven dyes were investigated. These functional groups in castor seeds were chemically modified individually to determine their contribution to the adsorption of ionic dyes. The dyes used were remazol red B, procino yellow, fast green FCF, brilliant cresyl blue, methylene blue, neutral red, red-141. It was found that hydroxyl group inhibited the adsorption of anionic dyes but it was major functional group in the adsorption of cationic dyes, hydroxyl group was important functional group in the adsorption of all seven dyes and the effect of methylation of amino group was not significant on the adsorption of seven dyes.

  9. Understanding chemical reactivity for homo- and heterobifunctional protein cross-linking agents.

    Science.gov (United States)

    Chen, Fan; Nielsen, Simone; Zenobi, Renato

    2013-07-01

    Chemical cross-linking, combined with mass spectrometry, has been applied to map three-dimensional protein structures and protein-protein interactions. Proper choice of the cross-linking agent, including its reactive groups and spacer arm length, is of great importance. However, studies to understand the details of reactivity of the chemical cross-linkers with proteins are quite sparse. In this study, we investigated chemical cross-linking from the aspects of the protein structures and the cross-linking reagents involved, by using two structurally well-known proteins, glyceraldehyde 3-phosohate dehydrogenase and ribonuclease S. Chemical cross-linking reactivity was compared using a series of homo- and hetero-bifunctional cross-linkers, including bis(sulfosuccinimidyl) suberate, dissuccinimidyl suberate, bis(succinimidyl) penta (ethylene glycol), bis(succinimidyl) nona (ethylene glycol), m-maleimidobenzoyl-N-hydroxysulfosuccinimide ester, 2-pyridyldithiol-tetraoxaoctatriacontane-N-hydrosuccinimide and succinimidyl-[(N-maleimidopropionamido)-tetracosaethyleneglycol]ester. The protein structure itself, especially the distances between target amino acid residues, was found to be a determining factor for the cross-linking efficiency. Moreover, the reactive groups of the chemical cross-linker also play an important role; a higher cross-linking reaction efficiency was found for maleimides compared to 2-pyrimidyldithiols. The reaction between maleimides and sulfhydryl groups is more favorable than that between N-hydroxysuccinimide esters and amine groups, although cysteine residues are less abundant in proteins compared to lysine residues. Copyright © 2013 John Wiley & Sons, Ltd.

  10. Reactive Plasticizers for High Temperature Quinoxaline Thermoplastics

    Science.gov (United States)

    1976-06-01

    involves essentially two steps, consolidation of boardy prepreg into sheet stock and thermoforming the sheet stock into structural components. A...problem associated with the fabrication process is the high temperatures required in both the consolidation and thermoforming operations. High processing

  11. Basic and Reactive Dyes Sorption Enhancement of Rice Hull through Chemical Modification

    Directory of Open Access Journals (Sweden)

    Siew-Teng Ong

    2010-01-01

    Full Text Available Problem statement: Many studies have been conducted on the removal of either anionic or cationic dyes. However, as a mixture of dyes does commonly exist together in wastewater, therefore it is of great interest to have a material that can remove both types of dyes. Approach: To prepare an inexpensive and efficient sorbent by chemically modifying rice hull for the removal of both basic and reactive dyes. Different chemical modifications were performed on rice hull and a comparison study on the uptake of dyes was carried out. Optimization study was carried out on most promising modified rice hull. Surface morphology of modified rice hull was examined and the functional groups present were determined using FTIR. Results: From the results, it appeared that by using EDA modified rice hull, an appreciable amount of both dyes could be sorbed. Varying the EDA/NRH ratios and heating temperatures affected the uptake of BB3 and RO16. The investigated sorbents were non-porous materials, due to the absence of pores and cavities. Sorption-desorption study showed that a complete recovery of BB3 can be obtained using high concentrations of H2SO4 and HCl but the desorption experiments of RO16 using NH3 and NaOH were not successful. Conclusion: The modification of rice hull with EDA under the optimum conditions (in a ratio of 1.00 g of NRH to 0.02 mole of EDA in a well stirred water bath at 80°C for 2 h resulted in the formation of a sorbent (MRH that could be used successfully to remove Both Basic (BB3 and Reactive dyes (RO16.

  12. Formation and chemical reactivity of carbon fibers prepared by defluorination of graphite fluoride

    Science.gov (United States)

    Hung, Ching-Cheh

    1994-01-01

    Defluorination of graphite fluoride (CFX) by heating to temperatures of 250 to 450 C in chemically reactive environments was studied. This is a new and possibly inexpensive process to produce new carbon-based materials. For example, CF 0.68 fibers, made from P-100 carbon fibers, can be defluorinated in BrH2C-CH = CH-CH2Br (1,4-dibromo-2butene) heated to 370 C, and graphitized to produce fibers with an unusually high modulus and a graphite layer structure that is healed and cross-linked. Conversely, a sulfur-doped, visibly soft carbon fiber was produced by defluorinating CF 0.9 fibers, made from P-25, in sulfur (S) vapor at 370 C and then heating to 660 C in nitrogen (N2). Furthermore, defluorination of the CF 0.68 fibers in bromine (Br2) produced fragile, structurally damaged carbon fibers. Heating these fragile fibers to 1100 C in N2 caused further structural damage, whereas heating to 150 C in bromoform (CHBr3) and then to 1100 C in N2 healed the structural defects. The defluorination product of CFX, tentatively called activated graphite, has the composition and molecular structure of graphite, but is chemically more reactive. Activated graphite is a scavenger of manganese (Mn), and can be intercalated with magnesium (Mg). Also, it can easily collect large amounts of an alloy made from copper (Cu) and type 304 stainless steel to form a composite. Finally, there are indications that activated graphite can wet metals or ceramics, thereby forming stronger composites with them than the pristine carbon fibers can form.

  13. Chemical Characterization and Reactivity of Fuel-Oxidizer Reaction Product

    Science.gov (United States)

    David, Dennis D.; Dee, Louis A.; Beeson, Harold D.

    1997-01-01

    Fuel-oxidizer reaction product (FORP), the product of incomplete reaction of monomethylhydrazine and nitrogen tetroxide propellants prepared under laboratory conditions and from firings of Shuttle Reaction Control System thrusters, has been characterized by chemical and thermal analysis. The composition of FORP is variable but falls within a limited range of compositions that depend on three factors: the fuel-oxidizer ratio at the time of formation; whether the composition of the post-formation atmosphere is reducing or oxidizing; and the reaction or post-reaction temperature. A typical composition contains methylhydrazinium nitrate, ammonium nitrate, methylammonium nitrate, and trace amounts of hydrazinium nitrate and 1,1-dimethylhydrazinium nitrate. Thermal decomposition reactions of the FORP compositions used in this study were unremarkable. Neither the various compositions of FORP, the pure major components of FORP, nor mixtures of FORP with propellant system corrosion products showed any unusual thermal activity when decomposed under laboratory conditions. Off-limit thruster operations were simulated by rapid mixing of liquid monomethylhydrazine and liquid nitrogen tetroxide in a confined space. These tests demonstrated that monomethylhydrazine, methylhydrazinium nitrate, ammonium nitrate, or Inconel corrosion products can induce a mixture of monomethylhydrazine and nitrogen tetroxide to produce component-damaging energies. Damaging events required FORP or metal salts to be present at the initial mixing of monomethylhydrazine and nitrogen tetroxide.

  14. Absorbent pads for Containment, Neutralization, and Clean-Up of Environmental Spills Containing Chemically-Reactive Agents

    Science.gov (United States)

    Davis, Dennis D. (Inventor)

    1997-01-01

    A pad for cleaning up liquid spills is described which contains a porous surface covering, and an absorbent interior containing chemically reactive reagents for neutralizing noxious chemicals within the spilled liquid. The porous surface and the absorbent component would normally consist of chemically resistant materials allowing tentative spill to pass. The absorbent interior which contains the neutralizing reagents can but is not required to be chemically resilient and conducts the liquid chemical spill towards the absorbent interior containing the chemically reactive reagents where the dangerous and undesirable chemicals within the chemical spill are then neutralized as well as removed from the premises.

  15. EFFECTS OF THERMAL TREATMENTS ON THE CHEMICAL REACTIVITY OF TRICHLOROETHYLENE

    Science.gov (United States)

    A series of experiments was completed to investigate abiotic degradation and reaction product formation of trichloroethylene (TCE) when heated. A quartz-tube apparatus was used to study short residence time and high temperature conditions that are thought to occur during thermal ...

  16. Electronic Structure of Pi Systems: Part III--Applications in Spectroscopy and Chemical Reactivity.

    Science.gov (United States)

    Fox, Marye Anne; Matsen, F. A.

    1985-01-01

    Shows that electronic structure diagrams make more accurate predictions of spectral properties and chemical reactivity for simple pi systems than do either Huckel molecular orbital or valence bond theory alone. Topics addressed include absorption and photoelectron spectra, spin density distribution in radicals, and several problems regarding…

  17. Test results of chemical reactivity test (CRT) analysis of structural materials and explosives

    Energy Technology Data Exchange (ETDEWEB)

    Back, P.S.; Barnhart, B.V.; Walters, R.R.; Haws, L.D.; Collins, L.W.

    1980-03-21

    The chemical reactivity test, CRT, is a procedure used to screen the compatibility of component structure materials with explosives. This report contains the results of CRT materials evaluations conducted at Mound Facility. Data about materials combinations are catalogued both under the name of the explosive and the nonexplosive.

  18. Chemical stability of high-temperature superconductors

    Science.gov (United States)

    Bansal, Narottam P.

    1992-01-01

    A review of the available studies on the chemical stability of the high temperature superconductors (HTS) in various environments was made. The La(1.8)Ba(0.2)CuO4 HTS is unstable in the presence of H2O, CO2, and CO. The YBa2Cu3O(7-x) superconductor is highly susceptible to degradation in different environments, especially water. The La(2-x)Ba(x)CuO4 and Bi-Sr-Ca-Cu-O HTS are relatively less reactive than the YBa2Cu3O(7-x). Processing of YBa2Cu3O(7-x) HTS in purified oxygen, rather than in air, using high purity noncarbon containing starting materials is recommended. Exposure of this HTS to the ambient atmosphere should also be avoided at all stages during processing and storage. Devices and components made out of these oxide superconductors would have to be protected with an impermeable coating of a polymer, glass, or metal to avoid deterioration during use.

  19. Chemical reactivity and biological activity of chalcones and other α,β-unsaturated carbonyl compounds.

    Science.gov (United States)

    Maydt, Daniela; De Spirt, Silke; Muschelknautz, Christian; Stahl, Wilhelm; Müller, Thomas J J

    2013-08-01

    Abstract 1. Chalcones are structural analogues of benzalacetophenone (BAP). Several derivatives have been identified in plants and anticarcinogenic and anti-inflammatory properties were attributed to the compounds, probably related to their direct antioxidant activity or stimulatory effects on the expression of endogenous defence enzymes like hemeoxygenase-1 (HO-1). HO-1 expression is triggered by the Nrf2-Keap1 signalling pathway, initiated by the addition of chalcones to thiol groups of Keap1 via Michael-type reaction. 2. The present study used a model system estimating the reactivity of different synthetic chalcones and other α,β-unsaturated carbonyl compounds with thiols and compared the chemical reactivity with the biological activity, measured by HO-1 expression in human dermal fibroblasts. 3. Chemical reactivity with the thiol group of N-acetylcysteine was determined with 5,5'-dithiobis-(2-nitrobenzoic acid) and followed chemical principles of structure-reactivity relationship. Most reactive were sulforaphane, dimethylfumarate, chalcone 3 ((2E)-1-phenyl-3-pyrimidin-2-ylprop-2-en-1-one) and chalcone 7 (1,3-diphenylprop-2-yn-1-one). This result demonstrates that α,β-unsaturated carbonyl derivatives react with thiols differently. All compounds were also biologically active; however, expression of HO-1 was not only related to the chemical reactivity but also to the lipophilicity of the molecules which likely affected transmembrane uptake. Most efficient inducers of HO-1 expression were BAP, 4-hydroxynonenal and chalcone 1 (4-[(1E)-3-oxo-3-phenylprop-1-en-1-yl]benzonitrile), chalcone 5 ((2E)-1-phenyl-3-[4-(trifluoromethyl)-phenyl]prop-2-en-1-one) and chalcone 7.

  20. Dynamics and Kinetics Study of "In-Water" Chemical Reactions by Enhanced Sampling of Reactive Trajectories.

    Science.gov (United States)

    Zhang, Jun; Yang, Y Isaac; Yang, Lijiang; Gao, Yi Qin

    2015-11-12

    High potential energy barriers and engagement of solvent coordinates set challenges for in silico studies of chemical reactions, and one is quite commonly limited to study reactions along predefined reaction coordinate(s). A systematic protocol, QM/MM MD simulations using enhanced sampling of reactive trajectories (ESoRT), is established to quantitatively study chemical transitions in complex systems. A number of trajectories for Claisen rearrangement in water and toluene were collected and analyzed, respectively. Evidence was found that the bond making and breaking during this reaction are concerted processes in solutions, preferentially through a chairlike configuration. Water plays an important dynamic role that helps stabilize the transition sate, and the dipole-dipole interaction between water and the solute also lowers the transition barrier. The calculated rate coefficient is consistent with the experimental measurement. Compared with water, the reaction pathway in toluene is "narrower" and the reaction rate is slower by almost three orders of magnitude due to the absence of proper interactions to stabilize the transition state. This study suggests that the "in-water" nature of the Claisen rearrangement in aqueous solution influences its thermodynamics, kinetics, as well as dynamics.

  1. Flow of Chemically Reactive non-Newtonian Fluids in Twin-Screw Extruders

    Science.gov (United States)

    Zhu, Weimin; Jaluria, Yogesh

    1998-11-01

    Many applications of twin-screw extruders are found in the processing of food, plastics, pharmaceutical materials and other highly viscous materials. In reactive extrusion, complex interactions in which the flow pattern, and the heat and mass transfer are affected by viscous dissipation, reaction energy, convection, residence time distribution and rheology of the materials may occur. The fluid flow, heat transfer and chemical reactions in a fully intermeshing, corotating and self wiping twin screw extruder were investigated numerically by using the finite volume method. The screw channel of a twin screw extruder are approximated as translation (parabolic) domain and intermeshing (elliptic) domain. The full governing equations were solved to determine the velocity components in the three coordinate directions. The energy equation is coupled with the equations of motion through viscosity. The Residence Time Distribution (RTD), was obtained by using a particle tracking method. The flow field, temperature field, pressure as well as RTD and chemical conversion were obtained by numerical simulation and the results yielded agreement with experimental measurements and expected physical characteristic of the process.

  2. Multidimensional fully-coupled thermal/chemical/mechanical response of reactive materials

    Energy Technology Data Exchange (ETDEWEB)

    Hobbs, M.L.; Baer, M.R.

    1995-11-01

    A summary of multidimensional modeling is presented which describes coupled thermals chemical and mechanical response of reactive and nonreactive materials. This modeling addresses cookoff of energetic material (EM) prior to the onset of ignition. Cookoff, lasting from seconds to days, sensitizes the EM whereupon combustion of confined, degraded material determines the level of violence. Such processes are dynamic, occurring over time scales of millisecond to microsecond, and thus more amenable for shock physics analysis. This work provides preignition state estimates such as the amount of decomposition, morphological changes, and quasistatic stress states for subsequent dynamic analysis. To demonstrate a fully-coupled thermal/chemical/quasistatic mechanical capability, several example simulations have been performed: (1) the one-dimensional time-to-explosion experiments, (2) the Naval Air Weapon Center`s (NAWC) small scale cookoff bomb, (3) a small hot cell experiment and (4) a rigid, highly porous, closed-cell polyurethane foam. Predictions compared adequately to available data. Deficiencies in the model and future directions are discussed.

  3. Advanced Diagnostics and Instrumentation for Chemically Reactive Flow Systems.

    Science.gov (United States)

    1981-09-01

    AO-Aill 912 STANFORD UNIV CA DEPT OF MECHANICAL ENINEERING F/S 20/5 ADVANCED IAGNOSTICS AN ZNSYR%0TATON FOR CHMICALLY R9[ACT!VY-fTCU) SP 1 R K HANSON...fused silica fiber optics. 2. development of hardware and software to modulate the dye laser wave- length, transfer detector signals to a dedicated...color display monitor, the high speed Versatec graphics printer and the CAMAC 4 M~z A/D system. We have installed the com- puter software system and

  4. Reactive high power impulse magnetron sputtering: combining simulation and experiment

    Science.gov (United States)

    Kozak, Tomas; Vlcek, Jaroslav

    2016-09-01

    Reactive high-power impulse magnetron sputtering (HiPIMS) has recently been used for preparation of various oxide films with high application potential, such as TiO2, ZrO2, Ta2O5, HfO2, VO2. Using our patented method of pulsed reactive gas flow control with an optimized reactive gas inlet, we achieved significantly higher deposition rates compared to typical continuous dc magnetron depositions. We have developed a time-dependent model of the reactive HiPIMS. The model includes a depth-resolved description of the sputtered target (featuring sputtering, implantation and knock-on implantation processes) and a parametric description of the discharge plasma (dissociation of reactive gas, ionization and return of sputtered atoms and gas rarefaction). The model uses a combination of experimental and simulation data as input. We have calculated the composition of the target and substrate for several deposition conditions. The simulations predict a reduced compound coverage of the target in HiPIMS compared to the continuous dc sputtering regime which explains the increased deposition rate. The simulations show that an increased dissociation of oxygen in a HiPIMS discharge is beneficial to achieve stoichiometric films on the substrate at high deposition rates.

  5. Chemical Reactivity and Liquid/Nonliquid States of Secondary Organic Material.

    Science.gov (United States)

    Li, Yong Jie; Liu, Pengfei; Gong, Zhaoheng; Wang, Yan; Bateman, Adam P; Bergoend, Clara; Bertram, Allan K; Martin, Scot T

    2015-11-17

    The reactivity of secondary organic material (SOM) of variable viscosity, ranging from nonliquid to liquid physical states, was studied. The SOM, produced in aerosol form from terpenoid and aromatic precursor species, was reacted with ammonia at variable relative humidity (RH). The ammonium-to-organic mass ratio (MNH4+/MOrg) increased monotonically from reactivity limited by diffusion at low RH to one limited by other factors at higher RH. For the studied size distributions and reaction times, the transition corresponded to a diffusivity above 10-17.5 ± 0.5 m2 s-1. The threshold RH values for the transition were 90% for β-caryophyllene-derived SOM. The transition RH for reactivity differed in all cases from the transition RH of a nonliquid to a liquid state. For instance, for α-pinene-derived SOM the transition for chemical reactivity of 35-45% RH can be compared to the nonliquid to liquid transition of 65-90% RH. These differences imply that chemical transport models of atmospheric chemistry should not use the SOM liquid to nonliquid phase transition as one-to-one surrogates of SOM reactivity.

  6. High resolution NMR theory and chemical applications

    CERN Document Server

    Becker, Edwin D

    1969-01-01

    High Resolution NMR: Theory and Chemical Applications focuses on the applications of nuclear magnetic resonance (NMR), as well as chemical shifts, lattices, and couplings. The book first offers information on the theory of NMR, including nuclear spin and magnetic moment, spin lattice relaxation, line widths, saturation, quantum mechanical description of NMR, and ringing. The text then ponders on instrumentation and techniques and chemical shifts. Discussions focus on the origin of chemical shifts, reference compounds, empirical correlations of chemical shifts, modulation and phase detection,

  7. The reactivation of tabun-inhibited mutant AChE with Ortho-7: steered molecular dynamics and quantum chemical studies.

    Science.gov (United States)

    Lo, Rabindranath; Chandar, Nellore Bhanu; Ghosh, Shibaji; Ganguly, Bishwajit

    2016-04-01

    A highly toxic nerve agent, tabun, can inhibit acetylcholinesterase (AChE) at cholinergic sites, which leads to serious cardiovascular complications, respiratory compromise and death. We have examined the structural features of the tabun-conjugated AChE complex with an oxime reactivator, Ortho-7, to provide a strategy for designing new and efficient reactivators. Mutation of mAChE within the choline binding site by Y337A and F338A and its interaction with Ortho-7 has been investigated using steered molecular dynamics (SMD) and quantum chemical methods. The overall study shows that after mutagenesis (Y337A), the reactivator can approach more freely towards the phosphorylated active site of serine without any significant steric hindrance in the presence of tabun compared to the wild type and double mutant. Furthermore, the poor binding of Ortho-7 with the peripheral residues of mAChE in the case of the single mutant compared to that of the wild-type and double mutant (Y337A/F338A) can contribute to better efficacy in the former case. Ortho-7 has formed a greater number of hydrogen bonds with the active site surrounding residues His447 and Phe295 in the case of the single mutant (Y337A), and that stabilizes the drug molecule for an effective reactivation process. The DFT M05-2X/6-31+G(d) level of theory shows that the binding energy of Ortho-7 with the single mutant (Y337A) is energetically more preferred (-19.8 kcal mol(-1)) than the wild-type (-8.1 kcal mol(-1)) and double mutant (Y337A/F338A) (-16.0 kcal mol(-1)). The study reveals that both the orientation of the oxime reactivator for nucleophilic attack and the stabilization of the reactivator at the active site would be crucial for the design of an efficient reactivator.

  8. Biochar and hydrochar reactivity assessed by chemical, physical and biological methods

    Science.gov (United States)

    Naisse, Christophe; Alexis, Marie; Wiedner, Katja; Glaser, Bruno; pozzi, Alessandro; Carcaillet, Christopher; Criscuoli, Irene; Miglietta, Franco; Rumpel, Cornelia

    2014-05-01

    Field application of biochar is intended to increase soil carbon (C) storage. The assessment of C storage potential of biochars lacks methods and standard materials. In this study, we compared the chemical reactivity of biochars and hydrochars and their potential mineralisation before and after physical weathering as one possibility to evaluate their environmental stability. We used biochars produced by gasification (GSs) and hydrochars produced by hydrothermal carbonisation (HTCs) produced from three different feedstocks as well as Holocene charcoals (150 and 2000 yr old). Their chemical reactivity was analysed after acid dichromate oxidation and their mineralisation potential after laboratory incubations before and after physical weathering. Our results showed that use of acid dichromate oxidation may allow for differentiation of the reactivity of modern biochars but that chemical reactivity of biochars is poorly suited to assess their environmental residence time because it may change with exposure time in soil. Physical weathering induced a carbon loss and increased biological stability of biochar, while reducing its positive priming effect on native soil organic matter. Model extrapolations based on our data showed that decadal C sequestration potential of GS and HTC is globally equivalent when all losses including those due to priming and physical weathering were taken into account. However, at century scale only GS may have the potential to increase soil C storage.

  9. A new extension of the polarizable continuum model: Toward a quantum chemical description of chemical reactions at extreme high pressure.

    Science.gov (United States)

    Cammi, Roberto

    2015-11-15

    A quantum chemical method for studying potential energy surfaces of reactive molecular systems at extreme high pressures is presented. The method is an extension of the standard Polarizable Continuum Model that is usually used for Quantum Chemical study of chemical reactions at a standard condition of pressure. The physical basis of the method and the corresponding computational protocol are described in necessary detail, and an application of the method to the dimerization of cyclopentadiene (up to 20 GPa) is reported.

  10. Chemical modelling of Alkali Silica reaction: Influence of the reactive aggregate size distribution

    Energy Technology Data Exchange (ETDEWEB)

    Poyet, S. [CEA Saclay, DEN/DANS/DPC/SCCME/LECBA, F-91191 Gif Sur Yvette, (France); Sellier, A. [UPS, LMDC, INSA Toulouse, F-33077 Bordeaux 4, (France); Capra, B. [Oxand SA, F-77210 Avon (France); Foray, G. [Univ Lyon 1, L2MS, PETRA GC, F-69622 Villeurbanne (France); Torrenti, J.M. [IRSN, F-92262 Fontenay Aux Roses (France); Cognon, H. [EdF/DER Les Renardieres, F-77818 Moret Sur Loing (France); Bourdarot, E. [CIH Savoie Technolac, F-73373 Le Bourget du Lac (France)

    2007-07-01

    This article presents a new model which aims at predicting the expansion induced by Alkali Silica Reaction (ASR) and describing the chemical evolution of affected concretes. It is based on the description of the transport and reaction of alkalis and calcium ions within a Relative Elementary Volume (REV). It takes into account the influence of the reactive aggregate size grading on ASR, i.e. the effect of the simultaneous presence of different sized reactive aggregates within concrete. The constitutive equations are detailed and fitted using experimental results. Results from numerical simulations are presented and compared with experiments. (authors)

  11. Effect of discontinuities in Kohn-Sham-based chemical reactivity theory

    CERN Document Server

    Hellgren, M

    2012-01-01

    We provide a new derivation of a formula for the Fukui function of density-functional chemical reactivity theory which incorporates the discontinuities in the Kohn-Sham reference system. Orbital relaxations are described in terms of the exchange-correlation (XC) kernel, i.e., the derivative of the XC potential with respect to the density and it is shown that in order to correctly measure the reactivity toward a nucleophilic reagent a discontinuity of the XC kernel has to be taken into account. The importance of this finding is illustrated in model molecular systems.

  12. Force-activated reactivity switch in a bimolecular chemical reaction at the single molecule level

    Science.gov (United States)

    Szoszkiewicz, Robert; Garcia-Manyes, Sergi; Liang, Jian; Kuo, Tzu-Ling; Fernandez, Julio M.

    2010-03-01

    Mechanical force can deform the reacting molecules along a well-defined direction of the reaction coordinate. However, the effect of mechanical force on the free-energy surface that governs a chemical reaction is still largely unknown. The combination of protein engineering with single-molecule AFM force-clamp spectroscopy allows us to study the influence of mechanical force on the rate at which a protein disulfide bond is reduced by some reducing agents in a bimolecular substitution reaction (so-called SN2). We found that cleavage of a protein disulfide bond by hydroxide anions exhibits an abrupt reactivity ``switch'' at 500 pN, after which the accelerating effect of force on the rate of an SN2 chemical reaction greatly diminishes. We propose that an abrupt force-induced conformational change of the protein disulfide bond shifts its ground state, drastically changing its reactivity in SN2 chemical reactions. Our experiments directly demonstrate the action of a force-activated switch in the chemical reactivity of a single molecule. References: Sergi Garcia-Manyes, Jian Liang, Robert Szoszkiewicz, Tzu-Ling Kuo and Julio M. Fernandez, Nature Chemistry, 1, 236-242, 2009.

  13. The influence of zero-flux surface motion on chemical reactivity.

    Science.gov (United States)

    Morgenstern, Amanda; Morgenstern, Charles; Miorelli, Jonathan; Wilson, Tim; Eberhart, M E

    2016-02-21

    Visualizing and predicting the response of the electron density, ρ(r), to an external perturbation provides a portion of the insight necessary to understand chemical reactivity. One strategy used to portray electron response is the electron pushing formalism commonly utilized in organic chemistry, where electrons are pictured as flowing between atoms and bonds. Electron pushing is a powerful tool, but does not give a complete picture of electron response. We propose using the motion of zero-flux surfaces (ZFSs) in the gradient of the charge density, ∇ρ(r), as an adjunct to electron pushing. Here we derive an equation rooted in conceptual density functional theory showing that the movement of ZFSs contributes to energetic changes in a molecule undergoing a chemical reaction. Using a substituted acetylene, 1-iodo-2-fluoroethyne, as an example, we show the importance of both the boundary motion and the change in electron counts within the atomic basins of the quantum theory of atoms in molecules for chemical reactivity. This method can be extended to study the ZFS motion between smaller gradient bundles in ρ(r) in addition to larger atomic basins. Finally, we show that the behavior of ∇ρ(r) within atomic basins contains information about electron response and can be used to predict chemical reactivity.

  14. Computational Study of Chemical Reactivity Using Information-Theoretic Quantities from Density Functional Reactivity Theory for Electrophilic Aromatic Substitution Reactions.

    Science.gov (United States)

    Wu, Wenjie; Wu, Zemin; Rong, Chunying; Lu, Tian; Huang, Ying; Liu, Shubin

    2015-07-23

    The electrophilic aromatic substitution for nitration, halogenation, sulfonation, and acylation is a vastly important category of chemical transformation. Its reactivity and regioselectivity is predominantly determined by nucleophilicity of carbon atoms on the aromatic ring, which in return is immensely influenced by the group that is attached to the aromatic ring a priori. In this work, taking advantage of recent developments in quantifying nucleophilicity (electrophilicity) with descriptors from the information-theoretic approach in density functional reactivity theory, we examine the reactivity properties of this reaction system from three perspectives. These include scaling patterns of information-theoretic quantities such as Shannon entropy, Fisher information, Ghosh-Berkowitz-Parr entropy and information gain at both molecular and atomic levels, quantitative predictions of the barrier height with both Hirshfeld charge and information gain, and energetic decomposition analyses of the barrier height for the reactions. To that end, we focused in this work on the identity reaction of the monosubstituted-benzene molecule reacting with hydrogen fluoride using boron trifluoride as the catalyst in the gas phase. We also considered 19 substituting groups, 9 of which are ortho/para directing and the other 9 meta directing, besides the case of R = -H. Similar scaling patterns for these information-theoretic quantities found for stable species elsewhere were disclosed for these reactions systems. We also unveiled novel scaling patterns for information gain at the atomic level. The barrier height of the reactions can reliably be predicted by using both the Hirshfeld charge and information gain at the regioselective carbon atom. The energy decomposition analysis ensued yields an unambiguous picture about the origin of the barrier height, where we showed that it is the electrostatic interaction that plays the dominant role, while the roles played by exchange-correlation and

  15. Chemical exposure-response relationship between air pollutants and reactive oxygen species in the human respiratory tract

    Science.gov (United States)

    Lakey, Pascale S. J.; Berkemeier, Thomas; Tong, Haijie; Arangio, Andrea M.; Lucas, Kurt; Pöschl, Ulrich; Shiraiwa, Manabu

    2016-09-01

    Air pollution can cause oxidative stress and adverse health effects such as asthma and other respiratory diseases, but the underlying chemical processes are not well characterized. Here we present chemical exposure-response relations between ambient concentrations of air pollutants and the production rates and concentrations of reactive oxygen species (ROS) in the epithelial lining fluid (ELF) of the human respiratory tract. In highly polluted environments, fine particulate matter (PM2.5) containing redox-active transition metals, quinones, and secondary organic aerosols can increase ROS concentrations in the ELF to levels characteristic for respiratory diseases. Ambient ozone readily saturates the ELF and can enhance oxidative stress by depleting antioxidants and surfactants. Chemical exposure-response relations provide a quantitative basis for assessing the relative importance of specific air pollutants in different regions of the world, showing that aerosol-induced epithelial ROS levels in polluted megacity air can be several orders of magnitude higher than in pristine rainforest air.

  16. QSAR classification of metabolic activation of chemicals into covalently reactive species.

    Science.gov (United States)

    Liew, Chin Yee; Pan, Chuen; Tan, Andre; Ang, Ke Xin Magneline; Yap, Chun Wei

    2012-05-01

    Metabolic activation of chemicals into covalently reactive species might lead to toxicological consequences such as tissue necrosis, carcinogenicity, teratogenicity, or immune-mediated toxicities. Early prediction of this undesirable outcome can help in selecting candidates with increased chance of success, thus, reducing attrition at all stages of drug development. The ensemble modelling of mixed features was used for the development of a model to classify the metabolic activation of chemicals into covalently reactive species. The effects of the quality of base classifiers and performance measure for sorting were examined. An ensemble model of 13 naive Bayes classifiers was built from a diverse set of 1,479 compounds. The ensemble model was validated internally with five-fold cross validation and it has achieved sensitivity of 67.4% and specificity of 93.4% when tested on the training set. The final ensemble model was made available for public use.

  17. A Molecular Electron Density Theory Study of the Chemical Reactivity of Cis- and Trans-Resveratrol.

    Science.gov (United States)

    Frau, Juan; Muñoz, Francisco; Glossman-Mitnik, Daniel

    2016-12-01

    The chemical reactivity of resveratrol isomers with the potential to play a role as inhibitors of the nonenzymatic glycation of amino acids and proteins, both acting as antioxidants and as chelating agents for metallic ions such as Cu, Al and Fe, have been studied by resorting to the latest family of Minnesota density functionals. The chemical reactivity descriptors have been calculated through Molecular Electron Density Theory encompassing Conceptual DFT. The active sites for nucleophilic and electrophilic attacks have been chosen by relating them to the Fukui function indices, the dual descriptor f ( 2 ) ( r ) and the electrophilic and nucleophilic Parr functions. The validity of "Koopmans' theorem in DFT" has been assessed by means of a comparison between the descriptors calculated through vertical energy values and those arising from the HOMO and LUMO values.

  18. The chemical reactivity and structure of collagen studied by neutron diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Wess, T.J.; Wess, L.; Miller, A. [Univ. of Stirling (United Kingdom)

    1994-12-31

    The chemical reactivity of collagen can be studied using neutron diffraction (a non-destructive technique), for certain reaction types. Collagen contains a number of lysine and hydroxylysine side chains that can react with aldehydes and ketones, or these side chains can themselves be converted to aldehydes by lysyl oxidase. The reactivity of these groups not only has an important role in the maintenance of mechanical strength in collagen fibrils, but can also manifest pathologically in the cases of aging, diabetes (reactivity with a variety of sugars) and alcoholism (reactivity with acetaldehyde). The reactivity of reducing groups with collagen can be studied by neutron diffraction, since the crosslink formed in the adduction process is initially of a Schiff base or keto-imine nature. The nature of this crosslink allows it to be deuterated, and the position of this relatively heavy scattering atom can be used in a process of phase determination by multiple isomorphous replacement. This process was used to study the following: the position of natural crosslinks in collagen; the position of adducts in tendon from diabetic rats in vivo and the in vitro position of acetaidehyde adducts in tendon.

  19. Shielding the chemical reactivity using graphene layers for controlling the surface properties of carbon materials.

    Science.gov (United States)

    Sedykh, A E; Gordeev, E G; Pentsak, E O; Ananikov, V P

    2016-02-14

    Graphene can efficiently shield chemical interactions and gradually decrease the binding to reactive defect areas. In the present study, we have used the observed graphene shielding effect to control the reactivity patterns on the carbon surface. The experimental findings show that a surface coating with a tiny carbon layer of 1-2 nm thickness is sufficient to shield the defect-mediated reactivity and create a surface with uniform binding ability. The shielding effect was directly observed using a combination of microscopy techniques and evaluated with computational modeling. The theoretical calculations indicate that a few graphene layers can drastically reduce the binding energy of the metal centers to the surface defects by 40-50 kcal mol(-1). The construction of large carbon areas with controlled surface reactivity is extremely difficult, which is a key limitation in many practical applications. Indeed, the developed approach provides a flexible and simple tool to change the reactivity patterns on large surface areas within a few minutes.

  20. Electrospray Ionization Mass Spectrometric Analysis of Highly Reactive Glycosyl Halides

    Directory of Open Access Journals (Sweden)

    Lajos Kovács

    2012-07-01

    Full Text Available Highly reactive glycosyl chlorides and bromides have been analysed by a routine mass spectrometric method using electrospray ionization and lithium salt adduct-forming agents in anhydrous acetonitrile solution, providing salient lithiated molecular ions [M+Li]+, [2M+Li]+ etc. The role of other adduct-forming salts has also been evaluated. The lithium salt method is useful for accurate mass determination of these highly sensitive compounds.

  1. Amino-terminated biphenylthiol self-assembled monolayers as highly reactive molecular templates

    Energy Technology Data Exchange (ETDEWEB)

    Meyerbroeker, N.; Waske, P.; Zharnikov, M., E-mail: Michael.Zharnikov@urz.uni-heidelberg.de

    2015-03-14

    Self-assembled monolayers (SAMs) with amino tail groups are of interest due to their ability of coupling further compounds. Such groups can be, in particular, created by electron irradiation of nitro- or nitrile-substituted aromatic SAMs, which provide a basis for chemical nanolithography and the fabrication of functionalized nanomembranes. An estimate of reactivity of the created amino groups requires a reference system of homogeneous, amino-terminated aromatic SAMs, which can also be used as a highly reactive molecular template. Here, we describe the synthesis of 4′-aminobiphenyl-4-thiol (ABPT) and SAMs prepared from this precursor on Au(111). The monolayers were characterized by X-ray photoelectron spectroscopy and near edge X-ray absorption fine structure spectroscopy, which revealed that they are well defined, chemically uniform, densely packed, and highly ordered. To examine the influence of electron irradiation on the reactivity of the terminal amino groups, ABPT SAMs were exposed to low energy (50 eV) electrons up to a dose of 40 mC/cm{sup 2} and, subsequently, immersed in either trifluoroacetic, pentafluoropropionic, or heptafluorobutyric anhydride. Analysing the amount of the attached anhydride species made it possible to determine the percentage of reactive amino groups as well as the effect of steric hindrance upon the coupling reaction. The above results are compared with those obtained for the well-established nitro-substituted biphenylthiol monolayers.

  2. Amino-terminated biphenylthiol self-assembled monolayers as highly reactive molecular templates.

    Science.gov (United States)

    Meyerbroeker, N; Waske, P; Zharnikov, M

    2015-03-14

    Self-assembled monolayers (SAMs) with amino tail groups are of interest due to their ability of coupling further compounds. Such groups can be, in particular, created by electron irradiation of nitro- or nitrile-substituted aromatic SAMs, which provide a basis for chemical nanolithography and the fabrication of functionalized nanomembranes. An estimate of reactivity of the created amino groups requires a reference system of homogeneous, amino-terminated aromatic SAMs, which can also be used as a highly reactive molecular template. Here, we describe the synthesis of 4'-aminobiphenyl-4-thiol (ABPT) and SAMs prepared from this precursor on Au(111). The monolayers were characterized by X-ray photoelectron spectroscopy and near edge X-ray absorption fine structure spectroscopy, which revealed that they are well defined, chemically uniform, densely packed, and highly ordered. To examine the influence of electron irradiation on the reactivity of the terminal amino groups, ABPT SAMs were exposed to low energy (50 eV) electrons up to a dose of 40 mC/cm(2) and, subsequently, immersed in either trifluoroacetic, pentafluoropropionic, or heptafluorobutyric anhydride. Analysing the amount of the attached anhydride species made it possible to determine the percentage of reactive amino groups as well as the effect of steric hindrance upon the coupling reaction. The above results are compared with those obtained for the well-established nitro-substituted biphenylthiol monolayers.

  3. Unorthodox chemistry for an unorthodox challenge:Exploration of new chemical reactivities for a sustainable future

    Institute of Scientific and Technical Information of China (English)

    LI Chao-Jun

    2012-01-01

    The sustainable development of our future represents an unorthodox challenge in sciences and technologies.The exploration of unconventional chemical reactivities that could potentially result in more sustainable chemical productions with efficient utilization of resource and inherent prevention of waste will provide the foundation for the synthetic chemistry of our future.As part of this endeavor,we have explored metal-mediated reactions in water to minimize protection-deprotection and the use of organic solvents,catalytic nucleophilic additions via C-H reactions to avoid generation and use of stoichiometric organic halides and metal in water,and Cross-Dehydrogenative-Coupling (CDC) reactions to minimize overall transformation steps.

  4. Silicon-doping in carbon nanotubes: formation energies, electronic structures, and chemical reactivity.

    Science.gov (United States)

    Bian, Ruixin; Zhao, Jingxiang; Fu, Honggang

    2013-04-01

    By carrying out density functional theory (DFT) calculations, we have studied the effects of silicon (Si)-doping on the geometrical and electronic properties, as well as the chemical reactivity of carbon nanotubes (CNTs). It is found that the formation energies of these nanotubes increase with increasing tube diameters, indicating that the embedding of Si into narrower CNTs is more energetically favorable. For the given diameters, Si-doping in a (n, 0) CNT is slightly easier than that of in (n, n) CNT. Moreover, the doped CNTs with two Si atoms are easier to obtain than those with one Si atom. Due to the introduction of impurity states after Si-doping, the electronic properties of CNTs have been changed in different ways: upon Si-doping into zigzag CNTs, the band gap of nanotube is decreased, while the opening of band gap in armchair CNTs is found. To evaluate the chemical reactivity of Si-doped CNTs, the adsorption of NH3 and H2O on this kind of material is explored. The results show that N-H bond of NH3 and O-H bond of H2O can be easily split on the surface of doped CNTs. Of particular interest, the novel reactivity makes it feasible to use Si-doped CNT as a new type of splitter for NH3 and H2O bond, which is very important in chemical and biological processes. Future experimental studies are greatly desired to probe such interesting processes.

  5. Advanced Chemical Reduction of Reduced Graphene Oxide and Its Photocatalytic Activity in Degrading Reactive Black 5

    Directory of Open Access Journals (Sweden)

    Christelle Pau Ping Wong

    2015-10-01

    Full Text Available Textile industries consume large volumes of water for dye processing, leading to undesirable toxic dyes in water bodies. Dyestuffs are harmful to human health and aquatic life, and such illnesses as cholera, dysentery, hepatitis A, and hinder the photosynthetic activity of aquatic plants. To overcome this environmental problem, the advanced oxidation process is a promising technique to mineralize a wide range of dyes in water systems. In this work, reduced graphene oxide (rGO was prepared via an advanced chemical reduction route, and its photocatalytic activity was tested by photodegrading Reactive Black 5 (RB5 dye in aqueous solution. rGO was synthesized by dispersing the graphite oxide into the water to form a graphene oxide (GO solution followed by the addition of hydrazine. Graphite oxide was prepared using a modified Hummers’ method by using potassium permanganate and concentrated sulphuric acid. The resulted rGO nanoparticles were characterized using ultraviolet-visible spectrophotometry (UV-Vis, X-ray powder diffraction (XRD, Raman, and Scanning Electron Microscopy (SEM to further investigate their chemical properties. A characteristic peak of rGO-48 h (275 cm−1 was observed in the UV spectrum. Further, the appearance of a broad peak (002, centred at 2θ = 24.1°, in XRD showing that graphene oxide was reduced to rGO. Based on our results, it was found that the resulted rGO-48 h nanoparticles achieved 49% photodecolorization of RB5 under UV irradiation at pH 3 in 60 min. This was attributed to the high and efficient electron transport behaviors of rGO between aromatic regions of rGO and RB5 molecules.

  6. Inorganic chemical composition and chemical reactivity of settled dust generated by the World Trade Center building collapse: Chapter 12

    Science.gov (United States)

    Plumlee, Geoffrey S.; Hageman, Philip L.; Lamothe, Paul J.; Ziegler, Thomas L.; Meeker, Gregory P.; Theodorakos, Peter M.; Brownfield, Isabelle; Adams, Monique G.; Swayze, Gregg A.; Hoefen, Todd M.; Taggart, Joseph E.; Clark, Roger N.; Wilson, S.; Sutley, Stephen J.

    2009-01-01

    Samples of dust deposited around lower Manhattan by the September 11, 2001, World Trade Center (WTC) collapse have inorganic chemical compositions that result in part from the variable chemical contributions of concrete, gypsum wallboard, glass fibers, window glass, and other materials contained in the buildings. The dust deposits were also modified chemically by variable interactions with rain water or water used in street washing and fire fighting. Chemical leach tests using deionized water as the extraction fluid show the dust samples can be quite alkaline, due primarily to reactions with calcium hydroxide in concrete particles. Calcium and sulfate are the most soluble components in the dust, but many other elements are also readily leached, including metals such as Al, Sb, Mo Cr, Cu, and Zn. Indoor dust samples produce leachates with higher pH, alkalinity, and dissolved solids than outdoor dust samples, suggesting most outdoor dust had reacted with water and atmospheric carbon dioxide prior to sample collection. Leach tests using simulated lung fluids as the extracting fluid suggest that the dust might also be quite reactive in fluids lining the respiratory tract, resulting in dissolution of some particles and possible precipitation of new phases such as phosphates, carbonates, and silicates. Results of these chemical characterization studies can be used by health scientists as they continue to track and interpret health effects resulting from the short-term exposure to the initial dust cloud and the longer-term exposure to dusts resuspended during cleanup.

  7. Inorganic chemical composition and chemical reactivity of settled dust generated by the World Trade Center building collapse

    Science.gov (United States)

    Plumlee, Geoffrey S.; Hageman, Philip L.; Lamothe, Paul J.; Ziegler, Thomas L.; Meeker, Gregory P.; Theodorakos, Peter M.; Brownfield, Isabelle; Adams, Monique G.; Swayze, Gregg A.; Hoefen, Todd M.; Taggart, Joseph E.; Clark, Roger N.; Wilson, S.; Sutley, Stephen J.

    2009-01-01

    Samples of dust deposited around lower Manhattan by the September 11, 2001, World Trade Center (WTC) collapse have inorganic chemical compositions that result in part from the variable chemical contributions of concrete, gypsum wallboard, glass fibers, window glass, and other materials contained in the buildings. The dust deposits were also modified chemically by variable interactions with rain water or water used in street washing and fire fighting. Chemical leach tests using deionized water as the extraction fluid show the dust samples can be quite alkaline, due primarily to reactions with calcium hydroxide in concrete particles. Calcium and sulfate are the most soluble components in the dust, but many other elements are also readily leached, including metals such as Al, Sb, Mo Cr, Cu, and Zn. Indoor dust samples produce leachates with higher pH, alkalinity, and dissolved solids than outdoor dust samples, suggesting most outdoor dust had reacted with water and atmospheric carbon dioxide prior to sample collection. Leach tests using simulated lung fluids as the extracting fluid suggest that the dust might also be quite reactive in fluids lining the respiratory tract, resulting in dissolution of some particles and possible precipitation of new phases such as phosphates, carbonates, and silicates. Results of these chemical characterization studies can be used by health scientists as they continue to track and interpret health effects resulting from the short-term exposure to the initial dust cloud and the longer-term exposure to dusts resuspended during cleanup.

  8. Absorption and desorption mass transfer rates in chemically enhanced reactive systems. Part I : Chemical enhancement factors

    NARCIS (Netherlands)

    Hamborg, Espen S.; Versteeg, Geert F.

    2012-01-01

    The chemical enhancement factors have been measured in a controlled environment for absorption and desorption mass transfer processes in aqueous 2.0 M MDEA solutions at temperatures of 298.15, 313.15, and 333.15 K and the loading of CO2 ranging from 0 to 0.8 in a batch-operated stirred tank reactor.

  9. CFD modeling of reactive pollutant dispersion in simplified urban configurations with different chemical mechanisms

    Science.gov (United States)

    Sanchez, Beatriz; Santiago, Jose-Luis; Martilli, Alberto; Palacios, Magdalena; Kirchner, Frank

    2016-09-01

    An accurate understanding of urban air quality requires considering a coupled behavior between the dispersion of reactive pollutants and atmospheric dynamics. Currently, urban air pollution is mostly dominated by traffic emission, where nitrogen oxides (NOx) and volatile organic compounds (VOCs) are the primary emitted pollutants. However, modeling reactive pollutants with a large set of chemical reactions, using a computational fluid dynamic (CFD) model, requires a large amount of computational (CPU) time. In this sense, the selection of the chemical reactions needed in different atmospheric conditions becomes essential in finding the best compromise between CPU time and accuracy. The purpose of this work is to assess the differences in NO and NO2 concentrations by considering three chemical approaches: (a) passive tracers (non-reactive), (b) the NOx-O3 photostationary state and (c) a reduced complex chemical mechanism based on 23 species and 25 reactions. The appraisal of the effects of chemical reactions focuses on studying the NO and NO2 dispersion in comparison with the tracer behavior within the street. In turn, the effect of including VOC reactions is also analyzed taking into account several VOC / NOx ratios of traffic emission. Given that the NO and NO2 dispersion can also be affected by atmospheric conditions, such as wind flow or the background concentration from season-dependent pollutants, in this work the influence of wind speeds and background O3 concentrations are studied. The results show that the presence of ozone in the street plays an important role in NO and NO2 concentrations. Therefore, greater differences linked to the chemical approach used are found with higher O3 concentrations and faster wind speeds. This bears relation to the vertical flux as a function of ambient wind speed since it increases the pollutant exchange between the street and the overlying air. This detailed study allows one to ascertain under which atmospheric conditions

  10. Sampling reactive pathways with random walks in chemical space: Applications to molecular dissociation and catalysis

    Science.gov (United States)

    Habershon, Scott

    2015-09-01

    Automatically generating chemical reaction pathways is a significant computational challenge, particularly in the case where a given chemical system can exhibit multiple reactants and products, as well as multiple pathways connecting these. Here, we outline a computational approach to allow automated sampling of chemical reaction pathways, including sampling of different chemical species at the reaction end-points. The key features of this scheme are (i) introduction of a Hamiltonian which describes a reaction "string" connecting reactant and products, (ii) definition of reactant and product species as chemical connectivity graphs, and (iii) development of a scheme for updating the chemical graphs associated with the reaction end-points. By performing molecular dynamics sampling of the Hamiltonian describing the complete reaction pathway, we are able to sample multiple different paths in configuration space between given chemical products; by periodically modifying the connectivity graphs describing the chemical identities of the end-points we are also able to sample the allowed chemical space of the system. Overall, this scheme therefore provides a route to automated generation of a "roadmap" describing chemical reactivity. This approach is first applied to model dissociation pathways in formaldehyde, H2CO, as described by a parameterised potential energy surface (PES). A second application to the HCo(CO)3 catalyzed hydroformylation of ethene (oxo process), using density functional tight-binding to model the PES, demonstrates that our graph-based approach is capable of sampling the intermediate paths in the commonly accepted catalytic mechanism, as well as several secondary reactions. Further algorithmic improvements are suggested which will pave the way for treating complex multi-step reaction processes in a more efficient manner.

  11. Theoretical Approaches for Understanding the Interplay Between Stress and Chemical Reactivity.

    Science.gov (United States)

    Kochhar, Gurpaul S; Heverly-Coulson, Gavin S; Mosey, Nicholas J

    2015-01-01

    The use of mechanical stresses to induce chemical reactions has attracted significant interest in recent years. Computational modeling can play a significant role in developing a comprehensive understanding of the interplay between stresses and chemical reactivity. In this review, we discuss techniques for simulating chemical reactions occurring under mechanochemical conditions. The methods described are broadly divided into techniques that are appropriate for studying molecular mechanochemistry and those suited to modeling bulk mechanochemistry. In both cases, several different approaches are described and compared. Methods for examining molecular mechanochemistry are based on exploring the force-modified potential energy surface on which a molecule subjected to an external force moves. Meanwhile, it is suggested that condensed phase simulation methods typically used to study tribochemical reactions, i.e., those occurring in sliding contacts, can be adapted to study bulk mechanochemistry.

  12. Chemical Reactivity Descriptor for the Oxide-Electrolyte Interface in Li-Ion Batteries.

    Science.gov (United States)

    Giordano, Livia; Karayaylali, Pinar; Yu, Yang; Katayama, Yu; Maglia, Filippo; Lux, Simon; Shao-Horn, Yang

    2017-08-17

    Understanding electrochemical and chemical reactions at the electrode-electrolyte interface is of fundamental importance for the safety and cycle life of Li-ion batteries. Positive electrode materials such as layered transition metal oxides exhibit different degrees of chemical reactivity with commonly used carbonate-based electrolytes. Here we employed density functional theory methods to compare the energetics of four different chemical reactions between ethylene carbonate (EC) and layered (LixMO2) and rocksalt (MO) oxide surfaces. EC dissociation on layered oxides was found energetically more favorable than nucleophilic attack, electrophilic attack, and EC dissociation with oxygen extraction from the oxide surface. In addition, EC dissociation became energetically more favorable on the oxide surfaces with transition metal ions from left to right on the periodic table or by increasing transition metal valence in the oxides, where higher degree of EC dissociation was found as the Fermi level was lowered into the oxide O 2p band.

  13. Ultraviolet light photobiology of the protozoan Tetrahymena pyriformis and chemical reactivation of DNA damage

    Energy Technology Data Exchange (ETDEWEB)

    Wheeler, J.S.

    1988-01-01

    The tunable dye laser was developed in order to perform UV-B and UV-C (254-320 nm) action spectra studies on several different organisms. Using the laser, action spectra studies have been performed for Escherichia coli, Saccharomyces, Chlamydomonas, Caenorhabditis elegans, Paramecium, and Tetrahymena pyriformis. Studies generally indicate increasing LD{sub 50} values with increasing wavelength. Two notable findings were made: (1) The action spectra does not follow the DNA absorption spectra at 280, 290 and 295 nm; (2) The repair competent/repair defective sensitization factor does not remain constant throughout the wavelength region. In addition it was found that the repair defective strain of E. coli, Bs-1, showed an increase in survival with increasing UV irradiation, at certain dose levels. Further experiments were designed to better characterize the reactivation. Tetrahymena were exposed to UV-C and reactivated with methyl methanesulfonate (MMS) and 4-nitro quinoline oxide (4-NQO). In both cases survival was seen to increase after chemical exposure. Likewise, UV-C was found to reactivate chemical damage (MMS).

  14. Changes in the chemical reactivity of metals exposed to an inert gas glow discharge

    Energy Technology Data Exchange (ETDEWEB)

    Klemperer, D.F.; Williams, D.J. (Bristol Univ. (UK). Dept. of Physical Chemistry)

    1983-05-01

    From time to time the literature mentions curious effects on the chemical reactivity of metals due to inert gas ion bombardment: reactivity in corrosive environments is variously said to be inhibited or enhanced. Although there is no obvious explanation for such effects, some possible mechanisms have been suggested. Some simple experiments have been carried out to demonstrate that reactivity effects really do exist and to test such mechanisms. The results are qualitative because a glow discharge was used to implant the rare gas ions. Evaporated films of aluminium and nickel become amorphous after bombardment with xenon ions and the films resisted gaseous and liquid corrosion. On the other hand, aluminium foil bombarded with xenon ions in a Penning pump arrangement was attacked more heavily than unbombarded aluminium. Passivation is attributed to the known lack of reactivity of amorphous metals. Glassy materials appear to lack the normal routes of attack between their subsurface regions and the attacking medium. On the other hand, when a metal surface is heavily ion bombarded the surface is probably damaged to such an extent that the attacking medium gains physical access to the interior and corrosion proceeds rapidly.

  15. Ligand field effect at oxide-metal interface on the chemical reactivity of ultrathin oxide film surface.

    Science.gov (United States)

    Jung, Jaehoon; Shin, Hyung-Joon; Kim, Yousoo; Kawai, Maki

    2012-06-27

    Ultrathin oxide film is currently one of the paramount candidates for a heterogeneous catalyst because it provides an additional dimension, i.e., film thickness, to control chemical reactivity. Here, we demonstrate that the chemical reactivity of ultrathin MgO film grown on Ag(100) substrate for the dissociation of individual water molecules can be systematically controlled by interface dopants over the film thickness. Density functional theory calculations revealed that adhesion at the oxide-metal interface can be addressed by the ligand field effect and is linearly correlated with the chemical reactivity of the oxide film. In addition, our results indicate that the concentration of dopant at the interface can be controlled by tuning the drawing effect of oxide film. Our study provides not only profound insight into chemical reactivity control of ultrathin oxide film supported by a metal substrate but also an impetus for investigating ultrathin oxide films for a wider range of applications.

  16. Constitutive Relations for Reactive Transport Modeling: Effects of Chemical Reactions on Multi-Phase Flow Properties

    Science.gov (United States)

    Zhang, S.; Liu, H. H.; van Dijke, M. I.; Geiger, S.; Agar, S. M.

    2016-12-01

    The relationship between flow properties and chemical reactions is key to modeling subsurface reactive transport. This study develops closed-form equations to describe the effects of mineral precipitation and dissolution on multiphase flow properties (capillary pressure and relative permeabilities) of porous media. The model accounts for the fact that precipitation/dissolution only takes place in the water-filled part of pore space. The capillary tube concept was used to connect pore-scale changes to macroscopic hydraulic properties. Precipitation/dissolution induces changes in the pore radii of water-filled pores and consequently in the pore-size distribution. The updated pore-size distribution is converted back to a new capillary pressure-water saturation relation from which the new relative permeabilities are calculated. Pore network modeling is conducted on a Berea sandstone to validate the new continuum-scale relations. The pore network modeling results are satisfactorily predicted by the new closed-form equations. Currently the effects of chemical reactions on flow properties are represented as a relation between permeability and porosity in reactive transport modeling. Porosity is updated after chemical calculations from the change of mineral volumes, then permeability change is calculated from the porosity change using an empirical permeability-porosity relation, most commonly the Carman-Kozeny relation, or the Verma-Pruess relation. To the best of our knowledge, there are no closed-form relations available yet for the effects of chemical reactions on multi-phase flow properties, and thus currently these effects cannot be accounted for in reactive transport modeling. This work presents new constitutive relations to represent how chemical reactions affect multi-phase flow properties on the continuum scale based on the conceptual model of parallel capillary tubes. The parameters in our new relations are either pre-existing input in a multi-phase flow

  17. Nitrous oxide production from reactive nitrification intermediates: a concerted action of biological and chemical processes

    Science.gov (United States)

    Brüggemann, Nicolas; Heil, Jannis; Liu, Shurong; Wei, Jing; Vereecken, Harry

    2017-04-01

    This contribution tries to open up a new perspective on biogeochemical N2O production processes, taking the term bio-geo-chemistry literally. What if a major part of N2O is produced from reactive intermediates of microbiological N turnover processes ("bio…") leaking out of the involved microorganisms into the soil ("…geo…") and then reacting chemically ("…chemistry") with the surrounding matrix? There are at least two major reactive N intermediates that might play a significant role in these coupled biological-chemical reactions, i.e. hydroxylamine (NH2OH) and nitrite (NO2-), both of which are produced during nitrification under oxic conditions, while NO2- is also produced during denitrification under anoxic conditions. Furthermore, NH2OH is assumed to be also a potential intermediate of DNRA and/or anammox. First, this contribution will summarize information about several chemical reactions involving NH2OH and NO2- leading to the formation of N2O. These abiotic reactions are: reactions of NO2- with reduced metal cations, nitrosation reactions of NO2- and soil organic matter (SOM), the reaction between NO2- and NH2OH, and the oxidation of NH2OH by oxidized metal ions. While these reactions can occur over a broad range of soil characteristics, they are ignored in most current N trace gas studies in favor of biological processes only. Disentangling microbiological from purely chemical N2O production is further complicated by the fact that the chemically formed N2O is either undiscernible from N2O produced during nitrification, or shows an intermediate 15N site preference between that of N2O from nitrification and denitrification, respectively. Results from experiments with live and sterilized soil samples, with artificial soil mixtures and with phenolic lignin decomposition model compounds will be presented that demonstrate the potential contribution of these abiotic processes to soil N trace gas emissions, given a substantial leakage rate of these reactive

  18. Specific chemical reactivities of spatially separated 3-aminophenol conformers with cold Ca$^+$ ions

    CERN Document Server

    Chang, Yuan-Pin; Küpper, Jochen; Rösch, Daniel; Wild, Dieter; Willitsch, Stefan

    2013-01-01

    Many molecules exhibit multiple rotational isomers (conformers) that interconvert thermally and are difficult to isolate. Consequently, a precise characterization of their role in chemical reactions has proven challenging. We have probed the reactivity of specific conformers using an experimental technique based on their spatial separation in a molecular beam by electrostatic deflection. The separated conformers react with a target of Coulomb-crystallized ions in a trap. In the reaction of Ca$^+$ with 3-aminophenol, we find a twofold larger rate constant for the \\textit{cis}- compared to the \\textit{trans}-conformer (differentiated by the O-H bond orientation). This result is explained by conformer-specific differences in the long-range ion-molecule interaction potentials. Our approach demonstrates the possibility of controlling reactivity through selection of conformational states.

  19. Optical and Chemical Properties of Mixed-valent Rhenium Oxide Films Synthesized by Reactive DC Magnetron Sputtering

    Science.gov (United States)

    2015-04-03

    AFRL-RX-WP-JA-2015-0178 OPTICAL AND CHEMICAL PROPERTIES OF MIXED- VALENT RHENIUM OXIDE FILMS SYNTHESIZED BY REACTIVE DC MAGNETRON...To) 06 May 2010 – 16 March 2015 4. TITLE AND SUBTITLE OPTICAL AND CHEMICAL PROPERTIES OF MIXED-VALENT RHENIUM OXIDE FILMS SYNTHESIZED BY REACTIVE ...DC MAGNETRON SPUTTERING (POSTPRINT) 5a. CONTRACT NUMBER In-house 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 62102F 6. AUTHOR(S) (see

  20. Prediction of monomer reactivity in radical copolymerizations from transition state quantum chemical descriptors

    Directory of Open Access Journals (Sweden)

    Zhengde Tan

    2013-01-01

    Full Text Available In comparison with the Q-e scheme, the Revised Patterns Scheme: the U, V Version (the U-V scheme has greatly improved both its accessibility and its accuracy in interpreting and predicting the reactivity of a monomer in free-radical copolymerizations. Quantitative structure-activity relationship (QSAR models were developed to predict the reactivity parameters u and v of the U-V scheme, by applying genetic algorithm (GA and support vector machine (SVM techniques. Quantum chemical descriptors used for QSAR models were calculated from transition state species with structures C¹H3 - C²HR³• or •C¹H2 - C²H2R³ (formed from vinyl monomers C¹H²=C²HR³ + H•, using density functional theory (DFT, at the UB3LYP level of theory with 6-31G(d basis set. The optimum support vector regression (SVR model of the reactivity parameter u based on Gaussian radial basis function (RBF kernel (C = 10, ε = 10- 5 and γ = 1.0 produced root-mean-square (rms errors for the training, validation and prediction sets being 0.220, 0.326 and 0.345, respectively. The optimal SVR model for v with the RBF kernel (C = 20, ε = 10- 4 and γ = 1.2 produced rms errors for the training set of 0.123, the validation set of 0.206 and the prediction set of 0.238. The feasibility of applying the transition state quantum chemical descriptors to develop SVM models for reactivity parameters u and v in the U-V scheme has been demonstrated.

  1. Modeling non-isothermal multiphase multi-species reactive chemical transport in geologic media

    Energy Technology Data Exchange (ETDEWEB)

    Tianfu Xu; Gerard, F.; Pruess, K.; Brimhall, G.

    1997-07-01

    The assessment of mineral deposits, the analysis of hydrothermal convection systems, the performance of radioactive, urban and industrial waste disposal, the study of groundwater pollution, and the understanding of natural groundwater quality patterns all require modeling tools that can consider both the transport of dissolved species as well as their interactions with solid (or other) phases in geologic media and engineered barriers. Here, a general multi-species reactive transport formulation has been developed, which is applicable to homogeneous and/or heterogeneous reactions that can proceed either subject to local equilibrium conditions or kinetic rates under non-isothermal multiphase flow conditions. Two numerical solution methods, the direct substitution approach (DSA) and sequential iteration approach (SIA) for solving the coupled complex subsurface thermo-physical-chemical processes, are described. An efficient sequential iteration approach, which solves transport of solutes and chemical reactions sequentially and iteratively, is proposed for the current reactive chemical transport computer code development. The coupled flow (water, vapor, air and heat) and solute transport equations are also solved sequentially. The existing multiphase flow code TOUGH2 and geochemical code EQ3/6 are used to implement this SIA. The flow chart of the coupled code TOUGH2-EQ3/6, required modifications of the existing codes and additional subroutines needed are presented.

  2. Modeling and analysis of time-dependent processes in a chemically reactive mixture

    Science.gov (United States)

    Ramos, M. P.; Ribeiro, C.; Soares, A. J.

    2017-08-01

    In this paper, we study the propagation of sound waves and the dynamics of local wave disturbances induced by spontaneous internal fluctuations in a reactive mixture. We consider a non-diffusive, non-heat conducting and non-viscous mixture described by an Eulerian set of evolution equations. The model is derived from the kinetic theory in a hydrodynamic regime of a fast chemical reaction. The reactive source terms are explicitly computed from the kinetic theory and are built in the model in a proper way. For both time-dependent problems, we first derive the appropriate dispersion relation, which retains the main effects of the chemical process, and then investigate the influence of the chemical reaction on the properties of interest in the problems studied here. We complete our study by developing a rather detailed analysis using the Hydrogen-Chlorine system as reference. Several numerical computations are included illustrating the behavior of the phase velocity and attenuation coefficient in a low-frequency regime and describing the spectrum of the eigenmodes in the small wavenumber limit.

  3. A theory for bioinorganic chemical reactivity of oxometal complexes and analogous oxidants: the exchange and orbital-selection rules.

    Science.gov (United States)

    Usharani, Dandamudi; Janardanan, Deepa; Li, Chunsen; Shaik, Sason

    2013-02-19

    Over the past decades metalloenzymes and their synthetic models have emerged as an area of increasing research interest. The metalloenzymes and their synthetic models oxidize organic molecules using oxometal complexes (OMCs), especially oxoiron(IV)-based ones. Theoretical studies have helped researchers to characterize the active species and to resolve mechanistic issues. This activity has generated massive amounts of data on the relationship between the reactivity of OMCs and the transition metal's identity, oxidation state, ligand sphere, and spin state. Theoretical studies have also produced information on transition state (TS) structures, reaction intermediates, barriers, and rate-equilibrium relationships. For example, the experimental-theoretical interplay has revealed that nonheme enzymes carry out H-abstraction from strong C-H bonds using high-spin (S = 2) oxoiron(IV) species with four unpaired electrons on the iron center. However, other reagents with higher spin states and more unpaired electrons on the metal are not as reactive. Still other reagents carry out these transformations using lower spin states with fewer unpaired electrons on the metal. The TS structures for these reactions exhibit structural selectivity depending on the reactive spin states. The barriers and thermodynamic driving forces of the reactions also depend on the spin state. H-Abstraction is preferred over the thermodynamically more favorable concerted insertion into C-H bonds. Currently, there is no unified theoretical framework that explains the totality of these fascinating trends. This Account aims to unify this rich chemistry and understand the role of unpaired electrons on chemical reactivity. We show that during an oxidative step the d-orbital block of the transition metal is enriched by one electron through proton-coupled electron transfer (PCET). That single electron elicits variable exchange interactions on the metal, which in turn depend critically on the number of

  4. Spectroscopic and chemical reactivity analysis of D-Myo-Inositol using quantum chemical approach and its experimental verification

    Indian Academy of Sciences (India)

    DEVENDRA P MISHRA; ANCHAL SRIVASTAVA; R K SHUKLA

    2017-07-01

    This paper describes the spectroscopic ($_{1}\\rm{H}$ and $_{13}\\rm{C NMR}$, FT-IR and UV–Visible), chemical, nonlinear optical and thermodynamic properties of D-Myo-Inositol using quantum chemical technique and its experimental verification. The structural parameters of the compound are determined from the optimized geometry by B3LYP method with $6-311++G(d,p)$ basis set. It was found that the optimized parameters thus obtained are almost in agreement with the experimental ones. A detailed interpretation of the infrared spectra of D-Myo-Inositol is also reported in the present work. After optimization, the proton and carbon NMR chemical shifts of the studied compound are calculated using GIAO and 6-311++G(d,p) basis set. The search of organic materials with improved charge transfer properties requires precise quantum chemical calculations of space-charge density distribution, state and transition dipole moments and HOMO–LUMO states. The nature of the transitions in the observed UV–Visible spectrum of the compound has been studied by the time-dependent density functional theory (TD-DFT). The global reactivity descriptors like chemical potential, electronegativity, hardness, softness and electrophilicity index, have been calculated using DFT. The thermodynamic calculation related to the title compound was also performed at $B3LYP/6-311++G(d,p)$ level of theory. The standard statistical thermodynamic functions like heat capacity at constant pressure, entropy and enthalpy change were obtained from the theoretical harmonic frequencies of the optimized molecule. It is observed that the values of heat capacity, entropy and enthalpy increase with increase intemperature from 100 to 1000 K, which is attributed to the enhancement of molecular vibration with the increase in temperature.

  5. Spectroscopic and chemical reactivity analysis of D-Myo-Inositol using quantum chemical approach and its experimental verification

    Science.gov (United States)

    Mishra, Devendra P.; Srivastava, Anchal; Shukla, R. K.

    2017-07-01

    This paper describes the spectroscopic (^1H and ^{13}C NMR, FT-IR and UV-Visible), chemical, nonlinear optical and thermodynamic properties of D-Myo-Inositol using quantum chemical technique and its experimental verification. The structural parameters of the compound are determined from the optimized geometry by B3LYP method with 6 {-}311{+}{+}G(d,p) basis set. It was found that the optimized parameters thus obtained are almost in agreement with the experimental ones. A detailed interpretation of the infrared spectra of D-Myo-Inositol is also reported in the present work. After optimization, the proton and carbon NMR chemical shifts of the studied compound are calculated using GIAO and 6 {-}311{+}{+}G(d,p) basis set. The search of organic materials with improved charge transfer properties requires precise quantum chemical calculations of space-charge density distribution, state and transition dipole moments and HOMO-LUMO states. The nature of the transitions in the observed UV-Visible spectrum of the compound has been studied by the time-dependent density functional theory (TD-DFT). The global reactivity descriptors like chemical potential, electronegativity, hardness, softness and electrophilicity index, have been calculated using DFT. The thermodynamic calculation related to the title compound was also performed at B3LYP/ 6 {-}311{+}{+}G(d,p) level of theory. The standard statistical thermodynamic functions like heat capacity at constant pressure, entropy and enthalpy change were obtained from the theoretical harmonic frequencies of the optimized molecule. It is observed that the values of heat capacity, entropy and enthalpy increase with increase in temperature from 100 to 1000 K, which is attributed to the enhancement of molecular vibration with the increase in temperature.

  6. Computational Nutraceutics: Chemical Reactivity Properties of the Flavonoid Naringin by Means of Conceptual DFT

    Directory of Open Access Journals (Sweden)

    Jorge Ignacio Martínez-Araya

    2013-01-01

    Full Text Available The M06 family of density functionals has been assessed for the calculation of the molecular structure and properties of the Naringin molecule. The chemical reactivity descriptors have been calculated through Conceptual DFT. The active sites for nucleophilic and electrophilic attacks have been chosen by relating them to the Fukui function indices and the dual descriptor f(2(r. A comparison between the descriptors calculated through vertical energy values and those arising from the Koopmans' theorem approximation has been performed in order to check for the validity of the last procedure.

  7. Chemical Reactivity Testing for the National Spent Nuclear Fuel Program. Quality Assurance Project Plan

    Energy Technology Data Exchange (ETDEWEB)

    Newsom, H.C.

    1999-01-24

    This quality assurance project plan (QAPjP) summarizes requirements used by Lockheed Martin Energy Systems, Incorporated (LMES) Development Division at Y-12 for conducting chemical reactivity testing of Department of Energy (DOE) owned spent nuclear fuel, sponsored by the National Spent Nuclear Fuel Program (NSNFP). The requirements are based on the NSNFP Statement of Work PRO-007 (Statement of Work for Laboratory Determination of Uranium Hydride Oxidation Reaction Kinetics.) This QAPjP will utilize the quality assurance program at Y-12, QA-101PD, revision 1, and existing implementing procedures for the most part in meeting the NSNFP Statement of Work PRO-007 requirements, exceptions will be noted.

  8. Predicting Chemical Reactivity from the Charge Density through Gradient Bundle Analysis: Moving beyond Fukui Functions.

    Science.gov (United States)

    Morgenstern, Amanda; Wilson, Timothy R; Eberhart, M E

    2017-06-08

    Predicting chemical reactivity is a major goal of chemistry. Toward this end, atom condensed Fukui functions of conceptual density functional theory have been used to predict which atom is most likely to undergo electrophilic or nucleophilic attack, providing regioselectivity information. We show that the most probable regions for electrophilic attack within each atom can be predicted through analysis of gradient bundle volumes, a property that depends only on the charge density of the neutral molecules. We also introduce gradient bundle condensed Fukui functions to compare the stereoselectivity information obtained from gradient bundle volume analysis. We demonstrate this method using the test set of molecular fluorine, oxygen, nitrogen, carbon monoxide, and hydrogen cyanide.

  9. The role of charge transfer in the stability and reactivity of chemical systems from experimental findings.

    Science.gov (United States)

    Falcinelli, S; Candori, P; Pirani, F; Vecchiocattivi, F

    2017-03-08

    A variety of phenomena, of apparently different natures, are described within a unifying picture, by properly isolating the role of charge/electron transfer as an interaction component triggering chemical reactivity. This basic quantity is isolated by analyzing, with advanced theoretical methods developed by our group, experimental findings characterized with different techniques, such as double photo-ionization spectra, scattering cross sections and auto-ionization reaction probabilities. Suitable rationalization of such phenomena appears to be crucial for modeling the selectivity of basic elementary processes occurring in systems at increasing complexity of fundamental/applied interest, such as plasmas, flames, interstellar media, planetary atmospheres and biological environments.

  10. Chemical modification of cotton fabrics for improving utilization of reactive dyes.

    Science.gov (United States)

    Fang, Long; Zhang, Xiaodong; Sun, Deshuai

    2013-01-02

    The cotton fabric was chemically modified with the acrylamide through Michael addition reaction and Hoffman degradation reaction. And the optimum chemical modification conditions were determined. The molecular structure of the modified cotton fabric was identified by Fourier transform infrared spectroscopy (FTIR). The structures of both the raw and modified cotton fabrics were investigated by X-ray diffraction and scanning electronic microscopy. The raw and modified cotton fabrics were dyed using commercial reactive dyes with vinyl-sulfone groups. The results showed that the total dye utilization of modified cotton fabrics in the salt-free dyeing was higher than that of raw cotton fabrics in the conventional dyeing. And the color fastness properties and tear strength of modified fabrics were both satisfactory.

  11. Chemically Reactive Solute Distribution in a Steady MHD Boundary Layer Flow over a Stretching Surface

    Directory of Open Access Journals (Sweden)

    M.S Uddin

    2011-01-01

    Full Text Available The paper is concerned to find the distribution of the chemically reactant solute in the MHD flow of an electrically conducting viscous incompressible fluid over a stretching surface. The first order chemical reaction and the variable solute distribution along the surface are taken into consideration. The governing partial differential equations along with appropriate boundary conditions for flow field and reactive solute are transformed into a set of non-linear self-similar ordinary differential equations by using scaling group of transformations. An exact analytic solution is obtained for the velocity field. Using this velocity field, we obtain numerical solution for the reactant concentration field. It reveals from the study that the values of concentration profile enhances with the increase of the magnetic field and decreases with increase of Schmidt number as well as the reaction rate parameter. Most importantly, when the solute distribution along the surface increases then the concentration profile decreases.

  12. Process safety management for highly hazardous chemicals

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-02-01

    Purpose of this document is to assist US DOE contractors who work with threshold quantities of highly hazardous chemicals (HHCs), flammable liquids or gases, or explosives in successfully implementing the requirements of OSHA Rule for Process Safety Management of Highly Hazardous Chemicals (29 CFR 1910.119). Purpose of this rule is to prevent releases of HHCs that have the potential to cause catastrophic fires, explosions, or toxic exposures.

  13. Interactions between ingredients in IMX-101: Reactive Chemical Processes Control Insensitive Munitions Properties

    Energy Technology Data Exchange (ETDEWEB)

    Maharrey, Sean P.; Wiese-Smith, Deneille; Highley, Aaron M.; Behrens, Richard,; Kay, Jeffrey J

    2014-03-01

    Simultaneous Thermogravimetric Modulated Beam Mass Spectrometry (STMBMS) measurements have been conducted on a new Insensitive Munitions (IM) formulation. IMX-101 is the first explosive to be fully IM qualified under new NATO STANAG guidelines for fielded munitions. The formulation uses dinitroanisole (DNAN) as a new melt cast material to replace TNT, and shows excellent IM performance when formulated with other energetic ingredients. The scope of this work is to explain this superior IM performance by investigating the reactive processes occurring in the material when subjected to a well-controlled thermal environment. The dominant reactive processes observed were a series of complex chemical interactions between the three main ingredients (DNAN, NQ, and NTO) that occurs well below the onset of the normal decomposition process of any of the individual ingredients. This process shifts the thermal response of the formulations to a much lower temperature, where the kinetically controlled reaction processes are much slower. This low temperature shift has the effect of allowing the reactions to consume the reactive solids (NQ, NTO) well before the reaction rates increase and reach thermal runaway, resulting in a relatively benign response to the external stimuli. The main findings on the interaction processes are presented.

  14. Theoretical studies of chemical reactivity of metabolically activated forms of aromatic amines toward DNA.

    Science.gov (United States)

    Shamovsky, Igor; Ripa, Lena; Blomberg, Niklas; Eriksson, Leif A; Hansen, Peter; Mee, Christine; Tyrchan, Christian; O'Donovan, Mike; Sjö, Peter

    2012-10-15

    The metabolism of aromatic and heteroaromatic amines (ArNH₂) results in nitrenium ions (ArNH⁺) that modify nucleobases of DNA, primarily deoxyguanosine (dG), by forming dG-C8 adducts. The activated amine nitrogen in ArNH⁺ reacts with the C8 of dG, which gives rise to mutations in DNA. For the most mutagenic ArNH₂, including the majority of known genotoxic carcinogens, the stability of ArNH⁺ is of intermediate magnitude. To understand the origin of this observation as well as the specificity of reactions of ArNH⁺ with guanines in DNA, we investigated the chemical reactivity of the metabolically activated forms of ArNH₂, that is, ArNHOH and ArNHOAc, toward 9-methylguanine by DFT calculations. The chemical reactivity of these forms is determined by the rate constants of two consecutive reactions leading to cationic guanine intermediates. The formation of ArNH⁺ accelerates with resonance stabilization of ArNH⁺, whereas the formed ArNH⁺ reacts with guanine derivatives with the constant diffusion-limited rate until the reaction slows down when ArNH⁺ is about 20 kcal/mol more stable than PhNH⁺. At this point, ArNHOH and ArNHOAc show maximum reactivity. The lowest activation energy of the reaction of ArNH⁺ with 9-methylguanine corresponds to the charge-transfer π-stacked transition state (π-TS) that leads to the direct formation of the C8 intermediate. The predicted activation barriers of this reaction match the observed absolute rate constants for a number of ArNH⁺. We demonstrate that the mutagenic potency of ArNH₂ correlates with the rate of formation and the chemical reactivity of the metabolically activated forms toward the C8 atom of dG. On the basis of geometric consideration of the π-TS complex made of genotoxic compounds with long aromatic systems, we propose that precovalent intercalation in DNA is not an essential step in the genotoxicity pathway of ArNH₂. The mechanism-based reasoning suggests rational design strategies to

  15. Application of LC-high-resolution MS with 'intelligent' data mining tools for screening reactive drug metabolites.

    Science.gov (United States)

    Ma, Shuguang; Chowdhury, Swapan K

    2012-03-01

    Biotransformation of chemically stable compounds to reactive metabolites that can bind covalently to macromolecules (such as proteins and DNA) is considered an undesirable property of drug candidates. Due to the possible link, which has not yet been conclusively demonstrated, between reactive metabolites and adverse drug reactions, screening for metabolic activation of lead compounds through in vitro chemical trapping experiments has become an integral part of the drug discovery process in many laboratories. In this review, we provide an overview of the recent advances in the application of high-resolution MS. These advances facilitated the development of accurate-mass-based data mining tools for high-throughput screening of reactive drug metabolites in drug discovery.

  16. Differences in the chemical reactivity of individual molecules of an enzyme

    Science.gov (United States)

    Xue, Qifeng; Yeung, Edward S.

    1995-02-01

    MUCH attention has been focused recently on the detection and physical characterization of individual molecules1-11. Using such methods to study the chemical properties, such as reactivity, of single molecules offers the potential to investigate how these might vary from molecule to molecule, and for individual molecules as a function of time. The complex structures of biomolecules such as enzymes make them particularly attractive targets for studying how subtle changes or differences at the molecular level might influence chemical reactivity. We have shown previously12,13 that very small (zeptomole) amounts of enzymes can be studied using a fluorescence microassay; single enzyme molecules have also been detected in oil-dispersed droplets by fluorescence microscopy14,15. Here we report the observation of reactions of individual molecules of lactate dehydrogenase (LDH-1), which produces NADH from lactate and nicotinamide adenine dinucleotide (NAD+). When they are present at very low concentrations in a narrow capillary, each enzyme molecule produces a discrete zone of NADH; these can be manipulated electrophoretically and monitored by fluorescence spectroscopy. We find that the activity of individual electrophoretically pure enzyme molecules can vary by up to a factor of four, and that these activities remain unchanged over a two-hour period. We suggest that the origin of the activity differences may lie in the presence of several stable forms of the enzyme.

  17. Biological and chemical reactivity and phosphorus forms of buffalo manure compost, vermicompost and their mixture with biochar.

    Science.gov (United States)

    Ngo, Phuong-Thi; Rumpel, Cornelia; Ngo, Quoc-Anh; Alexis, Marie; Velásquez Vargas, Gabriela; Mora Gil, Maria de la Luz; Dang, Dinh-Kim; Jouquet, Pascal

    2013-11-01

    This study characterized the carbon and phosphorus composition of buffalo manure, its compost and vermicompost and investigated if presence of bamboo biochar has an effect on their chemical and biological reactivity. The four substrates were characterized for chemical and biochemical composition and P forms. The biological stability of the four substrates and their mixtures were determined during an incubation experiment. Their chemical reactivity was analyzed after acid dichromate oxidation. Biological reactivity of these substrates was related to their soluble organic matter content, which decreased in the order buffalo manure>compost>vermicompost. Phosphorus was labile in all organic substrates and composting transformed organic P into plant available P. The presence of biochar led to a protection of organic matter against chemical oxidation and changed their susceptibility to biological degradation, suggesting that biochar could increase the carbon sequestration potential of compost, vermicompost and manure, when applied in mixture.

  18. Reactivity boundaries for chemical reactions associated with higher-index and multiple saddles.

    Science.gov (United States)

    Nagahata, Yutaka; Teramoto, Hiroshi; Li, Chun-Biu; Kawai, Shinnosuke; Komatsuzaki, Tamiki

    2013-10-01

    Reactivity boundaries that divide the origin and destination of trajectories are of crucial importance to reveal the mechanism of reactions, which was recently found to exist robustly even at high energies for index 1 saddles [Phys. Rev. Lett. 105, 048304 (2010)]. Here we revisit the concept of the reactivity boundary and propose a more general definition that can involve a single reaction associated with a bottleneck composed of higher-index saddles and/or several saddle points with different indices, where the normal form theory, based on expansion around a single stationary point, does not work. We numerically demonstrate the reactivity boundary by using a reduced model system of the H(5)(+) cation where the proton exchange reaction takes place through a bottleneck composed of two index 2 saddle points and two index 1 saddle points. The cross section of the reactivity boundary in the reactant region of the phase space reveals which initial conditions are effective in making the reaction happen and thus sheds light on the reaction mechanism.

  19. Chemical weathering rates in deep-sea sediments: Comparison of multicomponent reactive transport models and estimates based on 234U

    Science.gov (United States)

    Maher, K.; Steefel, C. I.; Depaolo, D. J.

    2004-12-01

    Chemical weathering rates in natural systems are typically much slower than expected based on experiments and theory. There are several possible explanations. However, because it has been difficult to determine what effects in particular reduce the rates in specific settings, natural rates remain difficult to predict. Silicate-rich deep-sea sediments provide an ideal in-situ laboratory for investigating weathering rates because certain potentially important factors, such as advective transport through heterogeneous media, limitations on the availability of reactive surface area due to low porosity and/or cementation, unsaturated flow conditions, and seasonal variations in fluid flux and temperature, do not occur in this setting. Geochemical profiles from Site 984 in the North Atlantic are modeled using a multi-component reactive transport model (CRUNCH) to determine in-situ rates of plagioclase dissolution and other diagenetic processes, including sulfate reduction and anaerobic methane oxidation. Various possible processes which might contribute to slower rates in the field are considered, including the effect of mineral saturation state, secondary precipitation of clays, inhibition by dissolved aluminum, and the availability of reactive surface area. The reactive transport model includes an isotopic solid-solution formulation that tracks the isotopic composition of precipitating (calcite) and dissolving (plagioclase and calcite) phases, thus allowing the determination of plagioclase dissolution rates. The rate constants for plagioclase determined by geochemical transport modeling of major element profiles are within the same range determined from U-series calculations and suggest that natural weathering rates for this system are on the order of 10-17.5 to 10-17.7 mol/m2/sec assuming estimates of reactive surface area are correct, several orders of magnitude slower than laboratory-derived rates. The slow plagioclase rates are most likely due to the fact that

  20. Method for generating a highly reactive plasma for exhaust gas after treatment and enhanced catalyst reactivity

    Energy Technology Data Exchange (ETDEWEB)

    Whealton, John H.; Hanson, Gregory R.; Storey, John M.; Raridon, Richard J.; Armfield, Jeffrey S.; Bigelow, Timothy S.; Graves, Ronald L.

    2000-07-01

    This patent application describes a method and apparatus of exhaust gas remediation that enhance the reactivity of the material catalysts found within catalytic converters of cars, trucks, and power stations.

  1. Symptoms from masked acrolein exposure suggest altered trigeminal reactivity in chemical intolerance.

    Science.gov (United States)

    Claeson, Anna-Sara; Andersson, Linus

    2017-05-01

    Chemical intolerance (CI) is a widespread occupational and public health problem characterized by symptoms that reportedly result from low-levels of chemical exposure. The mechanisms behind CI are unknown, however modifications of the chemical senses (rather than toxic processes) have been suggested as key components. The aim of this study was to investigate whether individuals with self-reported CI report more sensory irritation during masked acrolein exposure compared to controls without CI. Individuals with CI (n=18) and controls without CI (n=19) were exposed in an exposure chamber. Each participant took part in two exposure conditions - one with heptane (the masking compound), and one with heptane and acrolein at a dose below previously reported sensory irritation thresholds. The exposures lasted for 60min. Symptoms and confidence ratings were measured continuously throughout the exposure as were measurements of electrodermal activity and self-reported tear-film break-up time. Participants were blind to exposure condition. Individuals with CI, compared with controls reported greater sensory irritation in the eyes, nose and throat when exposed to acrolein masked with heptane. There was no difference during exposure to heptane. Masked exposure to acrolein at a concentration below the previously reported detection threshold is perceived as more irritating by individuals with CI compared with controls. The results indicate that there is altered trigeminal reactivity in those with CI compared to controls. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. STUDY ON HIGH ACID LEACHING REACTIVE CALCINED KAOLIN

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    Leaching experiments on metakaolin show that the final Al extraction ratio reached in a batch reaction is strikingly influenced by the inferior pore structure geometry of the metakaolin pellets. By calcining kaolin particles adhered in low humidity state,a variety of metakaolin pellet,inside which a large openings structure developed,has been prepared. The structure remarkably benefits leachant ion transference,so,the variety has high acid leaching reactivity,even coarse as the pellets are,its aluminum extracted ratio still has a linear relationship with leaching time,and the leaching kinetics is maintained zero order up to a significant conversion degree. A revised Pellet-Particle Model has been developed to interpret the structure influence on Al extraction ratio.

  3. The removal of reactive dyes using high-ash char

    Directory of Open Access Journals (Sweden)

    Moreira R.F.P.M.

    2001-01-01

    Full Text Available The thermodynamics and kinetics of adsorption of reactive dyes on high-ash char was studied. Equilibrium data were obtained using the static method with controlled agitation at temperatures in the range of 30 to 60ºC. The Langmuir isotherm model was used to describe the equilibrium of adsorption, and the equilibrium parameters, R L, in the range of 0 to 1 indicate favorable adsorption. The amount of dye adsorbed increased as temperature increased from 30 to 40ºC, but above 40ºC the increase in temperature resulted in a decrease in the amount of dye adsorbed. The kinetic data presented are for controlled agitation at 50 rpm and constant temperature with dye concentrations in the range of 10 ppm to50 ppm. The film mass transfer coefficient, Kf, and the effective diffusivity inside the particle, De, were fitted to the experimental data. The results indicate that internal diffusion governs the adsorption rate.

  4. Highly reactive free radicals in electronic cigarette aerosols.

    Science.gov (United States)

    Goel, Reema; Durand, Erwann; Trushin, Neil; Prokopczyk, Bogdan; Foulds, Jonathan; Elias, Ryan J; Richie, John P

    2015-09-21

    Electronic cigarette (EC) usage has increased exponentially, but limited data are available on its potential harmful effects. We tested for the presence of reactive, short-lived free radicals in EC aerosols by electron paramagnetic resonance spectroscopy (EPR) using the spin-trap phenyl-N-tert-butylnitrone (PBN). Radicals were detected in aerosols from all ECs and eliquids tested (2.5 × 10(13) to 10.3 × 10(13) radicals per puff at 3.3 V) and from eliquid solvents propylene glycol and glycerol and from "dry puffing". These results demonstrate, for the first time, the production of highly oxidizing free radicals from ECs which may present a potential toxicological risk to EC users.

  5. The chemical reactivity of the Martian soil and implications for future missions

    Science.gov (United States)

    Zent, Aaron P.; Mckay, Christopher P.

    1994-01-01

    Possible interpretations of the results of the Viking Biology Experiments suggest that greater than 1 ppm of a thermally labile oxidant, perhaps H2O2, and about 10 ppm of a thermally stable oxidant are present in the martian soil. We reexamine these results and discuss implications for future missions, the search for organics on Mars, and the possible health and engineering effects for human exploration. We conclude that further characterization of the reactivity of the martian regolith materials is warrented-although if our present understanding is correct the oxidant does not pose a hazard to humans. There are difficulties in explaining the reactivity of the Martian soil by oxidants. Most bulk phase compounds that are capable of oxidizing H2O to O2 per the Gas Exchange Experiment (GEx) are thermally labile or unstable against reduction by atmospheric CO2. Models invoking trapped O2 or peroxynitrates (NOO2(-)) require an unlikely geologic history for the Viking Lander 2 site. Most suggested oxidants, including H2O2, are expected to decompose rapidly under martian UV. Nonetheless, we conclude that the best model for the martian soil contains oxidants produced by heterogeneous chemical reactions with a photochemically produced atmospheric oxidant. The GEx results may be due to catalytic decomposition of an unstable oxidizing material by H2O. We show that interfacial reaction sites covering less than 1% of the available soil surfaces could explain the Viking Biology Experiments results.

  6. The chemical reactivity of the Martian soil and implications for future missions

    Science.gov (United States)

    Zent, Aaron P.; Mckay, Christopher P.

    1994-01-01

    Possible interpretations of the results of the Viking Biology Experiments suggest that greater than 1 ppm of a thermally labile oxidant, perhaps H2O2, and about 10 ppm of a thermally stable oxidant are present in the martian soil. We reexamine these results and discuss implications for future missions, the search for organics on Mars, and the possible health and engineering effects for human exploration. We conclude that further characterization of the reactivity of the martian regolith materials is warrented-although if our present understanding is correct the oxidant does not pose a hazard to humans. There are difficulties in explaining the reactivity of the Martian soil by oxidants. Most bulk phase compounds that are capable of oxidizing H2O to O2 per the Gas Exchange Experiment (GEx) are thermally labile or unstable against reduction by atmospheric CO2. Models invoking trapped O2 or peroxynitrates (NOO2(-)) require an unlikely geologic history for the Viking Lander 2 site. Most suggested oxidants, including H2O2, are expected to decompose rapidly under martian UV. Nonetheless, we conclude that the best model for the martian soil contains oxidants produced by heterogeneous chemical reactions with a photochemically produced atmospheric oxidant. The GEx results may be due to catalytic decomposition of an unstable oxidizing material by H2O. We show that interfacial reaction sites covering less than 1% of the available soil surfaces could explain the Viking Biology Experiments results.

  7. Reactive Ion Etching as Cleaning Method Post Chemical Mechanical Polishing for Phase Change Memory Device

    Institute of Scientific and Technical Information of China (English)

    ZHONG Min; SONG Zhi-Tang; LIU Bo; FENG Song-Lin; CHEN Bomy

    2008-01-01

    In order to improve nano-scale phase change memory performance,a super-clean interface should be obtained after chemical mechanical polishing (CMP) of Ge2Sb2Te5 phase change films.We use reactive ion etching (RIE) as the cleaning method.The cleaning effect is analysed by scanning electron microscopy and an energy dispersive spectrometer.The results show that particle residue on the surface has been removed.Meanwhile,Ge2 Sb2 Te5 material stoichiometric content ratios are unchanged.After the top electrode is deposited,currentvoltage characteristics test demonstrates that the set threshold voltage is reduced from 13 V to 2.7V and the threshold current from 0.1 mA to 0.025 mA.Furthermore,we analyse the RIE cleaning principle and compare it with the ultrasonic method.

  8. On the chemical state and distribution of Zr- and V-based additives in reactive hydride composites

    Science.gov (United States)

    Bösenberg, U.; Vainio, U.; Pranzas, P. K.; Bellosta von Colbe, J. M.; Goerigk, G.; Welter, E.; Dornheim, M.; Schreyer, A.; Bormann, R.

    2009-05-01

    Reactive hydride composites (RHCs) are very promising hydrogen storage materials for future applications due to their reduced reaction enthalpies and high gravimetric capacities. At present, the materials' functionality is limited by the reaction kinetics. A significant positive influence can be observed with addition of transition-metal-based additives. To understand the effect of these additives, the chemical state and changes during the reaction as well as the microstructural distribution were investigated using x-ray absorption near-edge structure (XANES) spectroscopy and anomalous small-angle x-ray scattering (ASAXS). In this work, zirconium- and vanadium-based additives were added to 2LiBH4-MgH2 composites and 2LiH-MgB2 composites and measured in the vicinity of the corresponding absorption edge. The measurements reveal the formation of finely distributed zirconium diboride and vanadium-based nanoparticles. The potential mechanisms for the observed influence on the reaction kinetics are discussed.

  9. Thermal-mechanical-chemical responses of polymer-bonded explosives using a mesoscopic reactive model under impact loading.

    Science.gov (United States)

    Wang, XinJie; Wu, YanQing; Huang, FengLei

    2017-01-05

    A mesoscopic framework is developed to quantify the thermal-mechanical-chemical responses of polymer-bonded explosive (PBX) samples under impact loading. A mesoscopic reactive model is developed for the cyclotetramethylenetetranitramine (HMX) crystal, which incorporates nonlinear elasticity, crystal plasticity, and temperature-dependent chemical reaction. The proposed model was implemented in the finite element code ABAQUS by the user subroutine VUMAT. A series of three-dimensional mesoscale models were constructed and calculated under low-strength impact loading scenarios from 100m/s to 600m/s where only the first wave transit is studied. Crystal anisotropy and microstructural heterogeneity are responsible for the nonuniform stress field and fluctuations of the stress wave front. At a critical impact velocity (≥300m/s), a chemical reaction is triggered because the temperature contributed by the volumetric and plastic works is sufficiently high. Physical quantities, including stress, temperature, and extent of reaction, are homogenized from those across the microstructure at the mesoscale to compare with macroscale measurements, which will advance the continuum-level models. The framework presented in this study has important implications in understanding hot spot ignition processes and improving predictive capabilities in energetic materials.

  10. Chemical Characterization and Reactivity Testing of Fuel-Oxidizer Reaction Product (Test Report)

    Science.gov (United States)

    1996-01-01

    The product of incomplete reaction of monomethylhydrazine (MMH) and nitrogen tetroxide (NTO) propellants, or fuel-oxidizer reaction product (FORP), has been hypothesized as a contributory cause of an anomaly which occurred in the chamber pressure (PC) transducer tube on the Reaction Control Subsystem (RCS) aft thruster 467 on flight STS-51. A small hole was found in the titanium-alloy PC tube at the first bend below the pressure transducer. It was surmised that the hole may have been caused by heat and pressure resulting from ignition of FORP. The NASA Johnson Space Center (JSC) White Sands Test Facility (WSTF) was requested to define the chemical characteristics of FORP, characterize its reactivity, and simulate the events in a controlled environment which may have lead to the Pc-tube failure. Samples of FORP were obtained from the gas-phase reaction of MMH with NTO under laboratory conditions, the pulsed firings of RCS thrusters with modified PC tubes using varied oxidizer or fuel lead times, and the nominal RCS thruster firings at WSTF and Kaiser-Marquardt. Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), accelerating rate calorimetry (ARC), ion chromatography (IC), inductively coupled plasma (ICP) spectrometry, thermogravimetric analysis (TGA) coupled to FTIR (TGA/FTIR), and mechanical impact testing were used to qualitatively and quantitatively characterize the chemical, thermal, and ignition properties of FORP. These studies showed that the composition of FORP is variable but falls within a limited range of compositions that depends on the fuel loxidizer ratio at the time of formation, composition of the post-formation atmosphere (reducing or oxidizing), and reaction or postreaction temperature. A typical composition contains methylhydrazinium nitrate (MMHN), ammonium nitrate (AN), methylammonium nitrate (MAN), and trace amounts of hydrazinium nitrate and 1,1-dimethylhydrazinium nitrate. The thermal decomposition

  11. Effect of chemical degradation on fluxes of reactive compounds – a study with a stochastic Lagrangian transport model

    Directory of Open Access Journals (Sweden)

    J. Rinne

    2012-06-01

    Full Text Available In the analyses of VOC fluxes measured above plant canopies, one usually assumes the flux above canopy to equal the exchange at the surface. Thus one assumes the chemical degradation to be much slower than the turbulent transport. We used a stochastic Lagrangian transport model in which the chemical degradation was described as first order decay in order to study the effect of the chemical degradation on above canopy fluxes of chemically reactive species. With the model we explored the sensitivity of the ratio of the above canopy flux to the surface emission on several parameters such as chemical lifetime of the compound, friction velocity, stability, and canopy density. Our results show that friction velocity and chemical lifetime affected the loss during transport the most. The canopy density had a significant effect if the chemically reactive compound was emitted from the forest floor. We used the results of the simulations together with oxidant data measured during HUMPPA-COPEC-2010 campaign at a Scots pine site to estimate the effect of the chemistry on fluxes of three typical biogenic VOCs, isoprene, α-pinene, and β-caryophyllene. Of these, the chemical degradation had a major effect on the fluxes of the most reactive species β-caryophyllene, while the fluxes of α-pinene were affected during nighttime. For these two compounds representing the mono- and sesquiterpenes groups, the effect of chemical degradation had also a significant diurnal cycle with the highest chemical loss at night. The different day and night time loss terms need to be accounted for, when measured fluxes of reactive compounds are used to reveal relations between primary emission and environmental parameters.

  12. Reactive hydro- end chlorocarbons in the troposphere and lower stratosphere : sources, distributions, and chemical impact

    Science.gov (United States)

    Scheeren, H. A.

    2003-09-01

    The work presented in this thesis focuses on measurements of chemical reactive C2 C7 non-methane hydrocarbons (NMHC) and C1 C2 chlorocarbons with atmospheric lifetimes of a few hours up to about a year. The group of reactive chlorocarbons includes the most abundant atmospheric species with large natural sources, which are chloromethane (CH3Cl), dichloromethane (CH2Cl2), and trichloromethane (CHCl3), and tetrachloroethylene (C2Cl4) with mainly anthropogenic sources. The NMHC and chlorocarbons are present at relatively low quantities in our atmosphere (10-12 10-9 mol mol-1 of air). Nevertheless, they play a key role in atmospheric photochemistry. For example, the oxidation of NMHC plays a dominant role in the formation of ozone in the troposphere, while the photolysis of chlorocarbons contributes to enhanced ozone depletion in the stratosphere. In spite of their important role, however, their global source and sinks budgets are still poorly understood. Hence, this study aims at improving our understanding of the sources, distribution, and chemical role of reactive NMHC and chlorocarbons in the troposphere and lower stratosphere. To meet this aim, a comprehensive data set of selected C2 C7 NMHC and chlorocarbons has been analyzed, derived from six aircraft measurement campaigns with two different jet aircrafts (the Dutch TUD/NLR Cessna Citation PH-LAB, and the German DLR Falcon) conducted between 1995 and 2001 (STREAM 1995 and 1997 and 1998, LBA-CLAIRE 1998, INDOEX 1999, MINOS 2001). The NMHC and chlorocarbons have been detected by gas-chromatography (GC-FID/ECD) in pre-concentrated whole air samples collected in stainless steel canister on-board the measurement aircrafts. The measurement locations include tropical (Maldives/Indian Ocean and Surinam), midlatitude (Western Europe and Canada) and polar regions (Lapland/northern Sweden) between the equator to about 70ºN, covering different seasons and pollution levels in the troposphere and lower stratosphere. Of

  13. The mystery of gold's chemical activity: local bonding, morphology and reactivity of atomic oxygen.

    Science.gov (United States)

    Baker, Thomas A; Liu, Xiaoying; Friend, Cynthia M

    2011-01-07

    Recently, gold has been intensely studied as a catalyst for key synthetic reactions. Gold is an attractive catalyst because, surprisingly, it is highly active and very selective for partial oxidation processes suggesting promise for energy-efficient "green" chemistry. The underlying origin of the high activity of Au is a controversial subject since metallic gold is commonly thought to be inert. Herein, we establish that one origin of the high activity for gold catalysis is the extremely reactive nature of atomic oxygen bound in 3-fold coordination sites on metallic gold. This is the predominant form of O at low concentrations on the surface, which is a strong indication that it is most relevant to catalytic conditions. Atomic oxygen bound to metallic Au in 3-fold sites has high activity for CO oxidation, oxidation of olefins, and oxidative transformations of alcohols and amines. Among the factors identified as important in Au-O interaction are the morphology of the surface, the local binding site of oxygen, and the degree of order of the oxygen overlayer. In this Perspective, we present an overview of both theory and experiments that identify the reactive forms of O and their associated charge density distributions and bond strengths. We also analyze and model the release of Au atoms induced by O binding to the surface. This rough surface also has the potential for O(2) dissociation, which is a critical step if Au is to be activated catalytically. We further show the strong parallels between product distributions and reactivity for O-covered Au at low pressure (ultrahigh vacuum) and for nanoporous Au catalysts operating at atmospheric pressure as evidence that atomic O is the active species under working catalytic conditions when metallic Au is present. We briefly discuss the possible contributions of oxidants that may contain intact O-O bonds and of the Au-metal oxide support interface in Au catalysis. Finally, the challenges and future directions for fully

  14. Reactivity of iron oxide with methane in a laboratory fluidized bed : application of chemical-looping combustion

    Energy Technology Data Exchange (ETDEWEB)

    Cho, P. [Chalmers Univ. of Technology, Goteborg (Sweden). Dept. of Inorganic and Environmental Chemistry; Mattisson, T.; Lyngfelt, A. [Chalmers Univ. of Technology, Goteborg (Sweden). Dept. of Energy Conversion

    2002-07-01

    Chemical looping combustion (CLC) is a promising method for separating carbon dioxide from flue gases during combustion. A study was conducted in which cyclic reduction-oxidation experiments were conducted with synthetic oxygen carrier particles under fluidized conditions. Two interconnected fluidized beds were used as reactors in which a metal oxide was used as an oxygen carrier providing oxygen from the combustion air to the fuel. In particular, this study examined the feasibility of using iron oxide as an oxygen carrier in repeated cycles of methane and air at 950 degrees C. The advantage of CLC compared to normal combustion is that carbon dioxide can be separated from the other components of the flue gas, nitrogen and unreacted oxygen. This avoids efficiency losses and the need for costly equipment for carbon dioxide separation. The reduction rates measured in this experiment were lower than in previous tests with fixed beds due to less efficient contact between gas and particles under fluidized bed conditions. High reactivities were still observed, suggesting that the particles should have sufficient reactivity for use in the proposed CLC system. 10 refs., 1 tab., 5 figs.

  15. Prediction of the Chapman-Jouguet chemical equilibrium state in a detonation wave from first principles based reactive molecular dynamics.

    Science.gov (United States)

    Guo, Dezhou; Zybin, Sergey V; An, Qi; Goddard, William A; Huang, Fenglei

    2016-01-21

    The combustion or detonation of reacting materials at high temperature and pressure can be characterized by the Chapman-Jouguet (CJ) state that describes the chemical equilibrium of the products at the end of the reaction zone of the detonation wave for sustained detonation. This provides the critical properties and product kinetics for input to macroscale continuum simulations of energetic materials. We propose the ReaxFF Reactive Dynamics to CJ point protocol (Rx2CJ) for predicting the CJ state parameters, providing the means to predict the performance of new materials prior to synthesis and characterization, allowing the simulation based design to be done in silico. Our Rx2CJ method is based on atomistic reactive molecular dynamics (RMD) using the QM-derived ReaxFF force field. We validate this method here by predicting the CJ point and detonation products for three typical energetic materials. We find good agreement between the predicted and experimental detonation velocities, indicating that this method can reliably predict the CJ state using modest levels of computation.

  16. Octazethrene and Its Isomer with Different Diradical Characters and Chemical Reactivity: The Role of the Bridge Structure.

    Science.gov (United States)

    Hu, Pan; Lee, Sangsu; Park, Kyu Hyung; Das, Soumyajit; Herng, Tun Seng; Gonçalves, Théo P; Huang, Kuo-Wei; Ding, Jun; Kim, Dongho; Wu, Jishan

    2016-04-01

    The fundamental relationship between structure and diradical character is important for the development of open-shell diradicaloid-based materials. In this work, we synthesized two structural isomers bearing a 2,6-naphthoquinodimethane or a 1,5-naphthoquinodimethane bridge and demonstrated that their diradical characters and chemical reactivity are quite different. The mesityl-or pentafluorophenyl-substituted octazethrene derivatives OZ-M/OZ-F and their isomer OZI-M (with mesityl substituents) were synthesized via an intramolecular Friedel-Crafts alkylation followed by oxidative dehydrogenation strategy from the key building blocks 4 and 11. Our detailed experimental and theoretical studies showed that both isomers have an open-shell singlet ground state with a remarkable diradical character (y0 = 0.35 and 0.34 for OZ-M and OZ-F, and y0 = 0.58 for OZI-M). Compounds OZ-M and OZ-F have good stability in an ambient environment, while OZI-M has high reactivity and can be easily oxidized to a dioxo product 15, which can be correlated to their different diradical characters. Additionally, we investigated the physical properties of OZ-M, OZ-F, and 15.

  17. Octazethrene and Its Isomer with Different Diradical Characters and Chemical Reactivity: The Role of the Bridge Structure

    KAUST Repository

    Hu, Pan

    2016-03-11

    The fundamental relationship between structure and diradical character is important for the development of open-shell diradicaloid-based materials. In this work, we synthesized two structural isomers bearing a 2,6-naphthoquinodimethane or a 1,5-naphthoquinodimethane bridge and demonstrated that their diradical characters and chemical reactivity are quite different. The mesityl or pentafluorophenyl substituted octazethrene derivatives OZ-M/OZ-F and their isomer OZI-M (with mesityl substituents) were synthesized via an intramolecular Friedel-Crafts alkylation followed by oxidative dehydrogenation strategy from the key building blocks 4 and 11. Our detailed experimental and theoretical studies showed that both isomers have an open-shell singlet ground state with a remarkable diradical character (y0 = 0.35 and 0.34 for OZ-M and OZ-F, and y0 = 0.58 for OZI-M). Compounds OZ-M and OZ-F have good stability under the ambient environment while OZI-M has high reactivity and can be easily oxidized to a dioxo-product 15, which can be correlated to their different diradical characters. Additionally, we investigated the physical properties of OZ-M, OZ-F and 15.

  18. Global chemical reactivity parameters for several chiral beta-blockers from the Density Functional Theory viewpoint.

    Science.gov (United States)

    Talmaciu, Mona Maria; Bodoki, Ede; Oprean, Radu

    2016-01-01

    Beta-adrenergic antagonists have been established as first line treatment in the medical management of hypertension, acute coronary syndrome and other cardiovascular diseases, as well as for the prevention of initial episodes of gastrointestinal bleeding in patients with cirrhosis and esophageal varices, glaucoma, and have recently become the main form of treatment of infantile hemangiomas. The aim of the present study is to calculate for 14 beta-blockers several quantum chemical descriptors in order to interpret various molecular properties such as electronic structure, conformation, reactivity, in the interest of determining how such descriptors could have an impact on our understanding of the experimental observations and describing various aspects of chemical binding of beta-blockers in terms of these descriptors. The 2D chemical structures of the beta-blockers (14 molecules with one stereogenic center) were cleaned in 3D, their geometry was preoptimized using the software MOPAC2012, by PM6 method, and then further refined using standard settings in MOE; HOMO and LUMO descriptors were calculated using semi-empirical molecular orbital methods AM1, MNDO and PM3, for the lowest energy conformers and the quantum chemical descriptors (HLG, electronegativity, chemical potential, hardness and softness, electrophilicity) were then calculated. According to HOMO-LUMO gap and the chemical hardness the most stable compounds are alprenolol, bisoprolol and esmolol. The softness values calculated for the study molecules revolve around 0.100. Propranolol, sotalol and timolol have among the highest electrophilicity index of the studied beta-blocker molecules. Results obtained from calculations showed that acebutolol, atenolol, timolol and sotalol have the highest values for the electronegativity index. The future aim is to determine whether it is possible to find a valid correlation between these descriptors and the physicochemical behavior of the molecules from this class. The

  19. Local and linear chemical reactivity response functions at finite temperature in density functional theory.

    Science.gov (United States)

    Franco-Pérez, Marco; Ayers, Paul W; Gázquez, José L; Vela, Alberto

    2015-12-28

    We explore the local and nonlocal response functions of the grand canonical potential density functional at nonzero temperature. In analogy to the zero-temperature treatment, local (e.g., the average electron density and the local softness) and nonlocal (e.g., the softness kernel) intrinsic response functions are defined as partial derivatives of the grand canonical potential with respect to its thermodynamic variables (i.e., the chemical potential of the electron reservoir and the external potential generated by the atomic nuclei). To define the local and nonlocal response functions of the electron density (e.g., the Fukui function, the linear density response function, and the dual descriptor), we differentiate with respect to the average electron number and the external potential. The well-known mathematical relationships between the intrinsic response functions and the electron-density responses are generalized to nonzero temperature, and we prove that in the zero-temperature limit, our results recover well-known identities from the density functional theory of chemical reactivity. Specific working equations and numerical results are provided for the 3-state ensemble model.

  20. Local and linear chemical reactivity response functions at finite temperature in density functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Franco-Pérez, Marco, E-mail: francopj@mcmaster.ca, E-mail: ayers@mcmaster.ca, E-mail: jlgm@xanum.uam.mx, E-mail: avela@cinvestav.mx [Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4M1 (Canada); Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, México, D.F. 09340 (Mexico); Ayers, Paul W., E-mail: francopj@mcmaster.ca, E-mail: ayers@mcmaster.ca, E-mail: jlgm@xanum.uam.mx, E-mail: avela@cinvestav.mx [Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4M1 (Canada); Gázquez, José L., E-mail: francopj@mcmaster.ca, E-mail: ayers@mcmaster.ca, E-mail: jlgm@xanum.uam.mx, E-mail: avela@cinvestav.mx [Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, México, D.F. 09340 (Mexico); Vela, Alberto, E-mail: francopj@mcmaster.ca, E-mail: ayers@mcmaster.ca, E-mail: jlgm@xanum.uam.mx, E-mail: avela@cinvestav.mx [Departamento de Química, Centro de Investigación y de Estudios Avanzados (Cinvestav), Av. Instituto Politécnico Nacional 2508, México, D.F. 07360 (Mexico)

    2015-12-28

    We explore the local and nonlocal response functions of the grand canonical potential density functional at nonzero temperature. In analogy to the zero-temperature treatment, local (e.g., the average electron density and the local softness) and nonlocal (e.g., the softness kernel) intrinsic response functions are defined as partial derivatives of the grand canonical potential with respect to its thermodynamic variables (i.e., the chemical potential of the electron reservoir and the external potential generated by the atomic nuclei). To define the local and nonlocal response functions of the electron density (e.g., the Fukui function, the linear density response function, and the dual descriptor), we differentiate with respect to the average electron number and the external potential. The well-known mathematical relationships between the intrinsic response functions and the electron-density responses are generalized to nonzero temperature, and we prove that in the zero-temperature limit, our results recover well-known identities from the density functional theory of chemical reactivity. Specific working equations and numerical results are provided for the 3-state ensemble model.

  1. Accelerating moderately stiff chemical kinetics in reactive-flow simulations using GPUs

    CERN Document Server

    Niemeyer, Kyle E

    2014-01-01

    The chemical kinetics ODEs arising from operator-split reactive-flow simulations were solved on GPUs using explicit integration algorithms. Nonstiff chemical kinetics of a hydrogen oxidation mechanism (9 species and 38 irreversible reactions) were computed using the explicit fifth-order Runge-Kutta-Cash-Karp method, and the GPU-accelerated version performed faster than single- and six-core CPU versions by factors of 126 and 25, respectively, for 524,288 ODEs. Moderately stiff kinetics, represented with mechanisms for hydrogen/carbon-monoxide (13 species and 54 irreversible reactions) and methane (53 species and 634 irreversible reactions) oxidation, were computed using the stabilized explicit second-order Runge-Kutta-Chebyshev (RKC) algorithm. The GPU-based RKC implementation demonstrated an increase in performance of nearly 59 and 10 times, for problem sizes consisting of 262,144 ODEs and larger, than the single- and six-core CPU-based RKC algorithms using the hydrogen/carbon-monoxide mechanism. With the met...

  2. Reactive chemical transport in ground-water hydrology: Challenges to mathematical modeling

    Energy Technology Data Exchange (ETDEWEB)

    Narasimhan, T.N.; Apps, J.A.

    1990-07-01

    For a long time, earth scientists have qualitatively recognized that mineral assemblages in soils and rocks conform to established principles of chemistry. In the early 1960's geochemists began systematizing this knowledge by developing quantitative thermodynamic models based on equilibrium considerations. These models have since been coupled with advective-dispersive-diffusive transport models, already developed by ground-water hydrologists. Spurred by a need for handling difficult environmental issues related to ground-water contamination, these models are being improved, refined and applied to realistic problems of interest. There is little doubt that these models will play an important role in solving important problems of engineering as well as science over the coming years. Even as these models are being used practically, there is scope for their improvement and many challenges lie ahead. In addition to improving the conceptual basis of the governing equations, much remains to be done to incorporate kinetic processes and biological mediation into extant chemical equilibrium models. Much also remains to be learned about the limits to which model predictability can be reasonably taken. The purpose of this paper is to broadly assess the current status of knowledge in modeling reactive chemical transport and to identify the challenges that lie ahead.

  3. Optimization of integrated chemical-biological degradation of a reactive azo dye using response surface methodology

    Energy Technology Data Exchange (ETDEWEB)

    Sudarjanto, Gatut [Advanced Wastewater Management Centre, The University of Queensland, Qld 4072 (Australia); Keller-Lehmann, Beatrice [Advanced Wastewater Management Centre, The University of Queensland, Qld 4072 (Australia); Keller, Jurg [Advanced Wastewater Management Centre, The University of Queensland, Qld 4072 (Australia)]. E-mail: j.keller@awmc.uq.edu.au

    2006-11-02

    The integrated chemical-biological degradation combining advanced oxidation by UV/H{sub 2}O{sub 2} followed by aerobic biodegradation was used to degrade C.I. Reactive Azo Red 195A, commonly used in the textile industry in Australia. An experimental design based on the response surface method was applied to evaluate the interactive effects of influencing factors (UV irradiation time, initial hydrogen peroxide dosage and recirculation ratio of the system) on decolourisation efficiency and optimizing the operating conditions of the treatment process. The effects were determined by the measurement of dye concentration and soluble chemical oxygen demand (S-COD). The results showed that the dye and S-COD removal were affected by all factors individually and interactively. Maximal colour degradation performance was predicted, and experimentally validated, with no recirculation, 30 min UV irradiation and 500 mg H{sub 2}O{sub 2}/L. The model predictions for colour removal, based on a three-factor/five-level Box-Wilson central composite design and the response surface method analysis, were found to be very close to additional experimental results obtained under near optimal conditions. This demonstrates the benefits of this approach in achieving good predictions while minimising the number of experiments required.

  4. Chemical Imaging and Dynamical Studies of Reactivity and Emergent Behavior in Complex Interfacial Systems. Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Sibener, Steven J. [University of Chicago, IL (United States)

    2014-03-11

    This research program explored the efficacy of using molecular-level manipulation, imaging and scanning tunneling spectroscopy in conjunction with supersonic molecular beam gas-surface scattering to significantly enhance our understanding of chemical processes occurring on well-characterized interfaces. One program focus was on the spatially-resolved emergent behavior of complex reaction systems as a function of the local geometry and density of adsorbate-substrate systems under reaction conditions. Another focus was on elucidating the emergent electronic and related reactivity characteristics of intentionally constructed single and multicomponent atom- and nanoparticle-based materials. We also examined emergent chirality and self-organization in adsorbed molecular systems where collective interactions between adsorbates and the supporting interface lead to spatial symmetry breaking. In many of these studies we combined the advantages of scanning tunneling (STM) and atomic force (AFM) imaging, scanning tunneling local electronic spectroscopy (STS), and reactive supersonic molecular beams to elucidate precise details of interfacial reactivity that had not been observed by more traditional surface science methods. Using these methods, it was possible to examine, for example, the differential reactivity of molecules adsorbed at different bonding sites in conjunction with how reactivity is modified by the local configuration of nearby adsorbates. At the core of this effort was the goal of significantly extending our understanding of interfacial atomic-scale interactions to create, with intent, molecular assemblies and materials with advanced chemical and physical properties. This ambitious program addressed several key topics in DOE Grand Challenge Science, including emergent chemical and physical properties in condensed phase systems, novel uses of chemical imaging, and the development of advanced reactivity concepts in combustion and catalysis including carbon

  5. High Temperature Chemical Kinetic Combustion Modeling of Lightly Methylated Alkanes

    Energy Technology Data Exchange (ETDEWEB)

    Sarathy, S M; Westbrook, C K; Pitz, W J; Mehl, M

    2011-03-01

    Conventional petroleum jet and diesel fuels, as well as alternative Fischer-Tropsch (FT) fuels and hydrotreated renewable jet (HRJ) fuels, contain high molecular weight lightly branched alkanes (i.e., methylalkanes) and straight chain alkanes (n-alkanes). Improving the combustion of these fuels in practical applications requires a fundamental understanding of large hydrocarbon combustion chemistry. This research project presents a detailed high temperature chemical kinetic mechanism for n-octane and three lightly branched isomers octane (i.e., 2-methylheptane, 3-methylheptane, and 2,5-dimethylhexane). The model is validated against experimental data from a variety of fundamental combustion devices. This new model is used to show how the location and number of methyl branches affects fuel reactivity including laminar flame speed and species formation.

  6. The designability of protein switches by chemical rescue of structure: mechanisms of inactivation and reactivation

    Science.gov (United States)

    Xia, Yan; DiPrimio, Nina; Keppel, Theodore R.; Vo, Binh; Fraser, Keith; Battaile, Kevin P.; Egan, Chet; Bystroff, Christopher; Lovell, Scott; Weis, David D.; Anderson, J. Christopher; Karanicolas, John

    2014-01-01

    The ability to selectively activate function of particular proteins via pharmacological agents is a longstanding goal in chemical biology. Recently, we reported an approach for designing a de novo allosteric effector site directly into the catalytic domain of an enzyme. This approach is distinct from traditional chemical rescue of enzymes in that it relies on disruption and restoration of structure, rather than active site chemistry, as a means to achieve modulate function. However, rationally identifying analogous de novo binding sites in other enzymes represents a key challenge for extending this approach to introduce allosteric control into other enzymes. Here we show that mutation sites leading to protein inactivation via tryptophan-to-glycine substitution and allowing (partial) reactivation by the subsequent addition of indole are remarkably frequent. Through a suite of methods including a cell-based reporter assay, computational structure prediction and energetic analysis, fluorescence studies, enzymology, pulse proteolysis, x-ray crystallography and hydrogen-deuterium mass spectrometry we find that these switchable proteins are most commonly modulated indirectly, through control of protein stability. Addition of indole in these cases rescues activity not by reverting a discrete conformational change, as we had observed in the sole previously reported example, but rather rescues activity by restoring protein stability. This important finding will dramatically impact the design of future switches and sensors built by this approach, since evaluating stability differences associated with cavity-forming mutations is a far more tractable task than predicting allosteric conformational changes. By analogy to natural signaling systems, the insights from this study further raise the exciting prospect of modulating stability to design optimal recognition properties into future de novo switches and sensors built through chemical rescue of structure. PMID:24313858

  7. Controls on the surface chemical reactivity of volcanic ash investigated with probe gases

    Science.gov (United States)

    Maters, Elena C.; Delmelle, Pierre; Rossi, Michel J.; Ayris, Paul M.; Bernard, Alain

    2016-09-01

    Increasing recognition that volcanic ash emissions can have significant impacts on the natural and human environment calls for a better understanding of ash chemical reactivity as mediated by its surface characteristics. However, previous studies of ash surface properties have relied on techniques that lack the sensitivity required to adequately investigate them. Here we characterise at the molecular monolayer scale the surfaces of ash erupted from Eyjafjallajökull, Tungurahua, Pinatubo and Chaitén volcanoes. Interrogation of the ash with four probe gases, trimethylamine (TMA; N(CH3)3), trifluoroacetic acid (TFA; CF3COOH), hydroxylamine (HA; NH2OH) and ozone (O3), reveals the abundances of acid-base and redox sites on ash surfaces. Measurements on aluminosilicate glass powders, as compositional proxies for the primary constituent of volcanic ash, are also conducted. We attribute the greater proportion of acidic and oxidised sites on ash relative to glass surfaces, evidenced by comparison of TMA/TFA and HA/O3 uptake ratios, in part to ash interaction with volcanic gases and condensates (e.g., H2O, SO2, H2SO4, HCl, HF) during the eruption. The strong influence of ash surface processing in the eruption plume and/or cloud is further supported by particular abundances of oxidised and reduced sites on the ash samples resulting from specific characteristics of their eruptions of origin. Intense interaction with water vapour may result in a higher fraction of oxidised sites on ash produced by phreatomagmatic than by magmatic activity. This study constitutes the first quantification of ash chemical properties at the molecular monolayer scale, and is an important step towards better understanding the factors that govern the role of ash as a chemical agent within atmospheric, terrestrial, aquatic or biotic systems.

  8. A reaction-based paradigm to model reactive chemical transport in groundwater with general kinetic and equilibrium reactions

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Fan [ORNL; Yeh, Gour-Tsyh [University of Central Florida, Orlando; Parker, Jack C [ORNL; Brooks, Scott C [ORNL; Pace, Molly [ORNL; Kim, Young Jin [ORNL; Jardine, Philip M [ORNL; Watson, David B [ORNL

    2007-01-01

    This paper presents a reaction-based water quality transport model in subsurface flow systems. Transport of chemical species with a variety of chemical and physical processes is mathematically described by M partial differential equations (PDEs). Decomposition via Gauss-Jordan column reduction of the reaction network transforms M species reactive transport equations into two sets of equations: a set of thermodynamic equilibrium equations representing NE equilibrium reactions and a set of reactive transport equations of M-NE kinetic-variables involving no equilibrium reactions (a kinetic-variable is a linear combination of species). The elimination of equilibrium reactions from reactive transport equations allows robust and efficient numerical integration. The model solves the PDEs of kinetic-variables rather than individual chemical species, which reduces the number of reactive transport equations and simplifies the reaction terms in the equations. A variety of numerical methods are investigated for solving the coupled transport and reaction equations. Simulation comparisons with exact solutions were performed to verify numerical accuracy and assess the effectiveness of various numerical strategies to deal with different application circumstances. Two validation examples involving simulations of uranium transport in soil columns are presented to evaluate the ability of the model to simulate reactive transport with complex reaction networks involving both kinetic and equilibrium reactions.

  9. A reaction-based paradigm to model reactive chemical transport in groundwater with general kinetic and equilibrium reactions

    Science.gov (United States)

    Zhang, Fan; Yeh, Gour-Tsyh; Parker, Jack C.; Brooks, Scott C.; Pace, Molly N.; Kim, Young-Jin; Jardine, Philip M.; Watson, David B.

    2007-06-01

    This paper presents a reaction-based water quality transport model in subsurface flow systems. Transport of chemical species with a variety of chemical and physical processes is mathematically described by M partial differential equations (PDEs). Decomposition via Gauss-Jordan column reduction of the reaction network transforms M species reactive transport equations into two sets of equations: a set of thermodynamic equilibrium equations representing NE equilibrium reactions and a set of reactive transport equations of M- NE kinetic-variables involving no equilibrium reactions (a kinetic-variable is a linear combination of species). The elimination of equilibrium reactions from reactive transport equations allows robust and efficient numerical integration. The model solves the PDEs of kinetic-variables rather than individual chemical species, which reduces the number of reactive transport equations and simplifies the reaction terms in the equations. A variety of numerical methods are investigated for solving the coupled transport and reaction equations. Simulation comparisons with exact solutions were performed to verify numerical accuracy and assess the effectiveness of various numerical strategies to deal with different application circumstances. Two validation examples involving simulations of uranium transport in soil columns are presented to evaluate the ability of the model to simulate reactive transport with complex reaction networks involving both kinetic and equilibrium reactions.

  10. Chemical thermodynamics as a predictive tool in the reactive metal brazing of ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Wang, G. [Edison Welding Inst., Columbus, OH (United States); Lannutti, J.J. [Ohio State Univ., Columbus, OH (United States)

    1995-06-01

    Thermodynamics have long been applied to the understanding of the reactive wetting phenomena in metal-ceramic joining. The authors postulate the existence of a ``solvent effect`` due to the interaction between the reactive element addition and the brazing alloy. This effect plays a significant role in reactive wetting. By taking this effect into account, more realistic reactivities of different reactive element additions into a given brazing base alloy are predicted. Irreversible thermodynamics are also used to characterize the driving forces for reactive metal-ceramic joining.

  11. Chemical thermodynamics as a predictive tool in the reactive metal brazing of ceramics

    Science.gov (United States)

    Wang, G.; Lannutti, J. J.

    1995-06-01

    Thermodynamics have long been applied to our understanding of the reactive wetting phenomena in metal-ceramic joining. We postulate the existence of a “solvent effect” due to the interaction between the reactive element addition and the brazing alloy. This effect plays a significant role in reactive wetting. By taking this effect into account, more realistic reactivities of different reactive element additions into a given brazing base alloy are predicted. Irreversible thermodynamics are also used to characterize the driving forces for reactive metal-ceramic joining.

  12. Impact of Lewis base on chemical reactivity and separation efficiency for hydrated fourth-row transition metal (II) complexes: an ONIOM DFT/MM study.

    Science.gov (United States)

    He, Dingsheng; Ma, Ming

    2014-04-24

    In this paper, two-layer ONIOM combinations of high-level quantum mechanics (QM) and inexpensive molecular mechanics (MM) are successfully used to investigate the structural characters of metal (M, all the transition metals in the fourth period)-H2O-Lewis base (A(-)) complexes. Global and local descriptors of chemical reactivity and selectivity from conceptual density functional theory are employed to show the properties of the active complexes of M(H2O)2A2 and to study the effect of the Lewis base for the separation of transition metal ions. It is shown that chemical potential, hardness, electrophilicity, as well as the dual and multiphilic descriptors are adequate for characterizing the global and local reactivity trends of the M(H2O)2A2 complex. It is found that the reactivity is well localized at the metallic center in M(H2O)2A2 and the dual descriptor (ΔfM(r)) can also be used to characterize the directional attack of the electrophile and nucleophile except for the selectivity of the reaction. On the basis of the values of ωM and Δsk, and the sign of ΔfM(r), the selectivity of the nucleophilic reagent (R(-)) for M(II) in M(H2O)2A2 (from high to low) follows this order: Cu(II) > Ni(II) > Co(II) > Fe(II) ≫ Mn(II) > Zn(II) > Cr(II). The Lewis base (A(-)) improves chemical reactivity and selectivity because of changing the reaction path and forming an intermediate, which possesses the higher antibonding character and the larger HOMO/LUMO gap. NBO or AIMALL analysis and Frontier orbital theory results presented here provided more theoretical support for the above reactivity and selectivity studies.

  13. Chemical tracers of high-metallicity environments

    CERN Document Server

    Bayet, E; Bell, T A; Viti, S

    2012-01-01

    We present for the first time a detailed study of the properties of molecular gas in metal-rich environments such as early-type galaxies (ETGs). We have explored Photon-Dominated Region (PDR) chemistry for a wide range of physical conditions likely to be appropriate for these sources. We derive fractional abundances of the 20 most chemically reactive species as a function of the metallicity, as a function of the optical depth and for various volume number gas densities, Far-Ultra Violet (FUV) radiation fields and cosmic ray ionisation rates. We also investigate the response of the chemistry to the changes in $\\alpha-$element enhancement as seen in ETGs. We find that the fractional abundances of CS, H$_{2}$S, H$_{2}$CS, H$_{2}$O, H$_{3}$O$^{+}$, HCO$^{+}$ and H$_{2}$CN seem invariant to an increase of metallicity whereas C$^{+}$, CO, C$_{2}$H, CN, HCN, HNC and OCS appear to be the species most sensitive to this change. The most sensitive species to the change in the fractional abundance of $\\alpha-$elements ar...

  14. Visualizing the enhanced chemical reactivity of mesoporous ceria; simulating templated crystallization in silica scaffolds at the atomic level.

    Science.gov (United States)

    Sayle, Thi X T; Sayle, Dean C

    2014-03-12

    Unique physical, chemical, and mechanical properties can be engineered into functional nanomaterials via structural control. However, as the hierarchical structural complexity of a nanomaterial increases, so do the challenges associated with generating atomistic models, which are sufficiently realistic that they can be interrogated to reliably predict properties and processes. The structural complexity of a functional nanomaterial necessarily emanates during synthesis. Accordingly, to capture such complexity, we have simulated each step in the synthetic protocol. Specifically, atomistic models of mesoporous ceria were generated by simulating the infusion and confined crystallization of ceria in a mesoporous silica scaffold. After removing the scaffold, the chemical reactivity of the templated mesoporous ceria was calculated and predicted to be more reactive compared to mesoporous ceria generated without template; visual "reactivity fingerprints" are presented. The strategy affords a general method for generating atomistic models, with hierarchical structural complexity, which can be used to predict a variety of properties and processes enabling the nanoscale design of functional materials.

  15. Chemical exposure-response relationship between air pollutants and reactive oxygen species in the human respiratory tract

    Science.gov (United States)

    Lakey, P. S. J.; Berkemeier, T.; Tong, H.; Arangio, A. M.; Lucas, K.; Poeschl, U.; Shiraiwa, M.

    2016-12-01

    The inhalation of air pollutants such as O3 and particulate matter can lead to the formation of reactive oxygen species (ROS) which can cause damage to biosurfaces such as the lung epithelium unless they are effectively scavenged. Although the chemical processes that lead to ROS formation within the ELF upon inhalation of pollutants are well understood qualitatively, ROS concentrations within the ELF have hardly been quantified so far. The kinetic multi-layer model of surface and bulk chemistry in the epithelial lining fluid (KM-SUB-ELF) has been developed to describe chemical reactions and mass transport and to quantify ROS production rates and concentrations within the epithelial lining fluid. KM-SUB-ELF simulations suggest that O3 will rapidly saturate the ELF whereas antioxidants and surfactant species are effective scavengers of OH. High ambient concentrations of O3 can lead to the depletion of surfactants and antioxidants within the ELF, potentially leading to oxidative stress. KM-SUB-ELF reproduced measurements for the formation of H2O2 and OH due to the presence of iron, copper and quinones in surrogate lung lining fluid. This enabled ROS production rates and concentrations in the ELF to be quantified. We found that in polluted megacities the ROS concentration in the ELF due to inhalation of pollutants was at least as high as the concentrations in the ELF of patients suffering from respiratory diseases. Cu and Fe are found to be the most important redox-active aerosol components for ROS production upon inhalation of PM2.5 in polluted regions. Therefore, a reduction in the emission of Cu and Fe should be major targets of air pollution control. Chemical exposure-response relations provide a quantitative basis for assessing the relative importance of specific air pollutants in different regions of the world, showing that aerosol-induced epithelial ROS levels in polluted megacity air can be several orders of magnitude higher than in pristine rainforest air.

  16. Colloidal stability and chemical reactivity of complex colloids containing Fe3+

    NARCIS (Netherlands)

    van Leeuwen, Y.M.|info:eu-repo/dai/nl/314850139; Velikov, K. P.; Kegel, W.K.|info:eu-repo/dai/nl/113729464

    2014-01-01

    The reactivity of iron contained within insoluble colloidal metal-pyrophosphate salts was determined and compared to the reactivity of a soluble iron salt (FeCl3). As a model system for the reactivity of iron in food products, the formation of an iron–polyphenol complex was followed with

  17. Evolution of sputtering target surface composition in reactive high power impulse magnetron sputtering

    Science.gov (United States)

    Kubart, T.; Aijaz, A.

    2017-05-01

    The interaction between pulsed plasmas and surfaces undergoing chemical changes complicates physics of reactive High Power Impulse Magnetron Sputtering (HiPIMS). In this study, we determine the dynamics of formation and removal of a compound on a titanium surface from the evolution of discharge characteristics in an argon atmosphere with nitrogen and oxygen. We show that the time response of a reactive process is dominated by surface processes. The thickness of the compound layer is several nm and its removal by sputtering requires ion fluence in the order of 1016 cm-2, much larger than the ion fluence in a single HiPIMS pulse. Formation of the nitride or oxide layer is significantly slower in HiPIMS than in dc sputtering under identical conditions. Further, we explain very high discharge currents in HiPIMS by the formation of a truly stoichiometric compound during the discharge off-time. The compound has a very high secondary electron emission coefficient and leads to a large increase in the discharge current upon target poisoning.

  18. Mechanical properties and spalling at elevated temperature of high performance concrete made with reactive and waste inert powders

    OpenAIRE

    Ali, Msheer Hasan; Dinkha, Youkhanna Zayia; James H. Haido

    2017-01-01

    In this article, the efficiency of waste glass powder was investigated in enhancing the mechanical properties of concrete at high temperature. Chemical composition of this powder reveals that it plays good role as effective inert very fine material in concrete strength improvement. Conventional reactive pozzolanic powder of silica fume was used also in present work to show the degradation degree in concrete strength under firing in comparison to concrete made with waste glass powder. The expe...

  19. Assessment of reactivity transient experiments with high burnup fuel

    Energy Technology Data Exchange (ETDEWEB)

    Ozer, O.; Yang, R.L.; Rashid, Y.R.; Montgomery, R.O.

    1996-03-01

    A few recent experiments aimed at determining the response of high-burnup LWR fuel during a reactivity initiated accident (RIA) have raised concerns that existing failure criteria may be inappropriate for such fuel. In particular, three experiments (SPERT CDC-859, NSRR HBO-1 and CABRI REP Na-1) appear to have resulted in fuel failures at only a fraction of the anticipated enthalpy levels. In evaluating the results of such RIA simulation experiments, however, it is necessary that the following two key considerations be taken into account: (1) Are the experiments representative of conditions that LWR fuel would experience during an in-reactor RIA event? (2) Is the fuel that is being utilized in the tests representative of the present (or anticipated) population of LWR fuel? Conducting experiments under conditions that can not occur in-reactor can trigger response modes that could not take place during in-reactor operation. Similarly, using unrepresentative fuel samples for the tests will produce failure information that is of limited relevance to commercial LWR fuel. This is particularly important for high-burnup fuel since the manner under which the test samples are base-irradiated prior to the test will impact the mechanical properties of the cladding and will therefore affect the RIA response. A good example of this effect can be seen in the results of the SPERT CDC-859 test and in the NSRR JM-4 and JM-5 tests. The conditions under which the fuel used for these tests was fabricated and/or base-irradiated prior to the RIA pulse resulted in the formation of multiple cladding defects in the form of hydride blisters. When this fuel was subjected to the RIA power pulse, it failed by developing multiple cracks that were closely correlated with the locations of the pre-existing hydride blisters. In the case of the JM tests, many of the cracks formed within the blisters themselves and did not propagate beyond the heavily hydrided regions.

  20. Reactive molecular dynamics simulation and chemical kinetic modeling of pyrolysis and combustion of n-dodecane

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Quan-De [College of Chemistry, Sichuan University, Chengdu (China); Wang, Jing-Bo; Li, Juan-Qin; Tan, Ning-Xin; Li, Xiang-Yuan [College of Chemical Engineering, Sichuan University, Chengdu (China)

    2011-02-15

    The initiation mechanisms and kinetics of pyrolysis and combustion of n-dodecane are investigated by using the reactive molecular dynamics (ReaxFF MD) simulation and chemical kinetic modeling. From ReaxFF MD simulations, we find the initiation mechanisms of pyrolysis of n-dodecane are mainly through two pathways, (1) the cleavage of C-C bond to form smaller hydrocarbon radicals, and (2) the dehydrogenation reaction to form an H radical and the corresponding n-C{sub 12}H{sub 25} radical. Another pathway is the H-abstraction reactions by small radicals including H, CH{sub 3}, and C{sub 2}H{sub 5}, which are the products after the initiation reaction of n-dodecane pyrolysis. ReaxFF MD simulations lead to reasonable Arrhenius parameters compared with experimental results based on first-order kinetic analysis of n-dodecane pyrolysis. The density/pressure effects on the pyrolysis of n-dodecane are also analyzed. By appropriate mapping of the length and time from macroscopic kinetic modeling to ReaxFF MD, a simple comparison of the conversion of n-dodecane from ReaxFF MD simulations and that from kinetic modeling is performed. In addition, the oxidation of n-dodecane is studied by ReaxFF MD simulations. We find that formaldehyde molecule is an important intermediate in the oxidation of n-dodecane, which has been confirmed by kinetic modeling, and ReaxFF leads to reasonable reaction pathways for the oxidation of n-dodecane. These results indicate that ReaxFF MD simulations can give an atomistic description of the initiation mechanism and product distributions of pyrolysis and combustion for hydrocarbon fuels, and can be further used to provide molecular based robust kinetic reaction mechanism for chemical kinetic modeling of hydrocarbon fuels. (author)

  1. Chemical and Molecular Descriptors for the Reactivity of Amines with CO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Anita S.; Kitchin, John R.

    2012-10-24

    Amine-based solvents are likely to play an important role in CO{sub 2} capture applications in the future, and the identification of amines with superior performance will facilitate their use in CO{sub 2} capture. While some improvements in performance will be achieved through process modifications, modifying the CO{sub 2} capture performance of an amine also implies in part an ability to modify the reactions between the amine and CO{sub 2} through development of new functionalized amines. We present a computational study of trends in the reactions between CO{sub 2} and functionalized amines with a focus on identifying molecular descriptors that determine trends in reactivity. We examine the formation of bicarbonate and carbamate species on three classes of functionalized amines: alkylamines, alkanolamines, and fluorinated alkylamines including primary, secondary and tertiary amines in each class. These functional groups span electron-withdrawing to donating behavior, hydrogen-bonding, extent of functionalization, and proximity effects of the functional groups. Electron withdrawing groups tend to destabilize CO{sub 2} reaction products, whereas electron-donating groups tend to stabilize CO{sub 2} reaction products. Hydrogen bonding stabilizes CO{sub 2} reaction products. Electronic structure descriptors based on electronegativity were found to describe trends in the bicarbonate formation energy. A chemical correlation was observed between the carbamate formation energy and the carbamic acid formation energy. The local softness on the reacting N in the amine was found to partially explain trends carbamic acid formation energy.

  2. Towards Tetraradicaloid: The Effect of Fusion Mode on Radical Character and Chemical Reactivity

    KAUST Repository

    Hu, Pan

    2015-12-30

    Open-shell singlet diradicaloids display unique electronic, non-linear optical and magnetic activity and could become novel molecular materials for organic electronics, photonics and spintronics. However, design and synthesis of diradicaloids with a significant polyradical character is a challenging task for chemists. In this article, we report our efforts toward tetraradicaloid system. A series of potential tetraradicaloids by fusion of two p-quinodimethane (p-QDM) units with naphthalene or benzene rings in different modes were synthesized. Their model compounds containing one p-QDM moiety were also prepared and compared. Their ground-state structures, physical properties and chemical reactivity were systematically investigated by various exper-imental methods such as steady-state and transient absorption, two-photon absorption, X-ray crystallographic analysis, electron spin resonance, superconducting quantum interference device and electrochemistry, assisted by density functional theory calculations. It was found that their diradical and tetraradical characters show a clear dependence on the fusion mode. Upon the introducing of more five-membered rings, the diradical characters greatly decrease. This difference can be explained by the pro-aromaticity/anti-aromaticity of the molecules as well as the intramolecular charge transfer. Our comprehensive studies provide a guideline for the design and synthesis of stable open-shell singlet polycyclic hydrocarbons with significant polyradical characters.

  3. Chemical reactivity testing for the National Spent Nuclear Fuel Program. Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    Koester, L.W.

    2000-02-08

    This quality assurance project plan (QAPjP) summarizes requirements used by Lockheed Martin Energy Systems, Incorporated (LMES) Development Division at Y-12 for conducting chemical reactivity testing of Department of Energy (DOE) owned spent nuclear fuel, sponsored by the National Spent Nuclear Fuel Program (NSNFP). The requirements are based on the NSNFP Statement of work PRO-007 (Statement of Work for Laboratory Determination of Uranium Hydride Oxidation Reaction Kinetics.) This QAPjP will utilize the quality assurance program at Y-12, Y60-101PD, Quality Program Description, and existing implementing procedures for the most part in meeting the NSNFP Statement of Work PRO-007 requirements, exceptions will be noted. The project consists of conducting three separate series of related experiments, ''Passivation of Uranium Hydride Powder With Oxygen and Water'', '''Passivation of Uranium Hydride Powder with Surface Characterization'', and ''Electrochemical Measure of Uranium Hydride Corrosion Rate''.

  4. Chemical Reactivity Probes for Assessing Abiotic Natural Attenuation by Reducing Iron Minerals.

    Science.gov (United States)

    Fan, Dimin; Bradley, Miranda J; Hinkle, Adrian W; Johnson, Richard L; Tratnyek, Paul G

    2016-02-16

    Increasing recognition that abiotic natural attenuation (NA) of chlorinated solvents can be important has created demand for improved methods to characterize the redox properties of the aquifer materials that are responsible for abiotic NA. This study explores one promising approach: using chemical reactivity probes (CRPs) to characterize the thermodynamic and kinetic aspects of contaminant reduction by reducing iron minerals. Assays of thermodynamic CRPs were developed to determine the reduction potentials (ECRP) of suspended minerals by spectrophotometric determination of equilibrium CRP speciation and calculations using the Nernst equation. ECRP varied as expected with mineral type, mineral loading, and Fe(II) concentration. Comparison of ECRP with reduction potentials measured potentiometrically using a Pt electrode (EPt) showed that ECRP was 100-150 mV more negative than EPt. When EPt was measured with small additions of CRPs, the systematic difference between EPt and ECRP was eliminated, suggesting that these CRPs are effective mediators of electron transfer between mineral and electrode surfaces. Model contaminants (4-chloronitrobenzene, 2-chloroacetophenone, and carbon tetrachloride) were used as kinetic CRPs. The reduction rate constants of kinetic CRPs correlated well with the ECRP for mineral suspensions. Using the rate constants compiled from literature for contaminants and relative mineral reduction potentials based on ECRP measurements, qualitatively consistent trends were obtained, suggesting that CRP-based assays may be useful for estimating abiotic NA rates of contaminants in groundwater.

  5. Chemical reactivity predictions: use of data mining techniques for analyzing regioselective azidolysis of epoxides.

    Science.gov (United States)

    Borghini, Alice; Crotti, Paolo; Pietra, Daniele; Favero, Lucilla; Bianucci, Anna Maria

    2010-11-15

    Azidolysis of epoxides followed by reduction of the intermediate azido alcohols constitutes a valuable synthetic tool for the construction of beta-amino alcohols, an important chemical functionality occurring in many biologically active compounds of natural origin. However, depending on conditions under which the azidolysis is carried out, two regioisomeric products can be formed, as a consequence of the nucleophilic attack on both the oxirane carbon atoms. In this work, predictive models for quantitative structure-reactivity relationships were developed by means of multiple linear regression, k-nearest neighbor, locally weighted regression, and Gaussian Process regression algorithms. The specific nature of the problem at hand required the creation of appropriate new descriptors, able to properly reflect the most relevant features of molecular moieties directly involved in the opening process. The models so obtained are able to predict the regioselectivity of the azidolysis of epoxides promoted by sodium azide, in the presence of lithium perchlorate, on the basis of steric hindrance, and charge distribution of the substituents directly attached to the oxirane ring.

  6. Investigation of the Reactivity of Oligodeoxynucleotides with Glyoxal and KMnO4 Chemical Probes by Electrospray Ionization Mass Spectrometry

    Science.gov (United States)

    Parr, Carol; Pierce, Sarah E.; Smith, Suncerae I.; Brodbelt, Jennifer S.

    2010-01-01

    The reactions of two well-known chemical probes, glyoxal and potassium permanganate (KMnO4), with oligodeoxynucleotides were monitored by electrospray ionization (ESI) mass spectrometry to evaluate the influence of the sequence of DNA, its secondary structure, and interactions with associated ligands on the reactivity of the two probes. Glyoxal, a guanine-reactive probe, incorporated a mass shift of 58 Da, and potassium permanganate (KMnO4) is a thymine-reactive probe that resulted in a mass shift of 34 Da. The reactions depended on the accessibility of the nucleobases, and the peak abundances of the adducts in the ESI-mass spectra were used to quantify the extent of the chemical probe reactions. In this study, both mixed-base sequences were studied as well as control sequences in which one reactive site was located at the terminus or center of the oligodeoxynucleotide while the surrounding bases were a second, different nucleobase. In addition, the reactions of the chemical probes with non-covalent complexes formed between DNA and either actinomycin D or ethidium bromide, both known to interact with single strand DNA, were evaluated. PMID:21743793

  7. Minimizing the risk of chemically reactive metabolite formation of new drug candidates: implications for preclinical drug design.

    Science.gov (United States)

    Brink, Andreas; Pähler, Axel; Funk, Christoph; Schuler, Franz; Schadt, Simone

    2016-11-27

    Many pharmaceutical companies aim to reduce reactive metabolite formation by chemical modification at early stages of drug discovery. A practice often applied is the detection of stable trapping products of electrophilic intermediates with nucleophilic trapping reagents to guide rational structure-based drug design. This contribution delineates this strategy to minimize the potential for reactive metabolite formation of clinical candidates during preclinical drug optimization, exemplified by the experience at Roche over the past decade. For the majority of research programs it was possible to proceed with compounds optimized for reduced covalent binding potential. Such optimized candidates are expected to have a higher likelihood of succeeding throughout the development processes, resulting in safer drugs.

  8. Computational nanochemistry report on the oxicams--conceptual DFT indices and chemical reactivity.

    Science.gov (United States)

    Martínez-Araya, Jorge Ignacio; Salgado-Morán, Guillermo; Glossman-Mitnik, Daniel

    2013-05-30

    A density functional theory study of eight oxicams was carried out in order to determine their global and local reactivities. These types of reactivities were measured by means of global and local reactivity descriptors coming from the conceptual density functional theory. Net electrophilicity as a global reactivity descriptor and local hypersoftness as a local reactivity descriptor were the used tools to distinguish reactivity and selectivity among these oxicams. Globally, isoxicam presents the highest electron donating capacity; meanwhile, the highest electron accepting capacity is exhibited by droxicam. Locally, two oxicams present neither nucleophilic nor electrophilic relevant reactivity in their peripheral pyridine ring, droxicam and tenoxicam, so that their more reactive zones are found on the respective fused rings. Oxicams have been divided into two subgroups in order to facilitate the local analysis of reactivity. One group is characterized because their most important condensed values for local hypersoftnes are well-separated: 4-meloxicam, lornoxicam, meloxicam, and normeloxicam. Meanwhile, the opposite situation is found in droxicam, isoxicam, piroxicam, and tenoxicam. As a whole, the nucleophilic characteristic noticeably predominates in these eight oxicams instead of an electrophilic behavior, thus meaning a greater tendency to donate electrons rather than withdrawing them; a consequence of this behavior implies a favorable interaction with a hypothetical receptor bearing one or more electron acceptor functional groups rather than electron donor functional groups; this would imply a maximization of this interaction from the covalent point of view.

  9. From simple to complex and backwards. Chemical reactions under very high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Bini, Roberto [Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino (Italy); LENS - European Laboratory of Non linear Spectroscopy, University of Florence, Via Nello Carrara 1, 50019 Sesto Fiorentino (Italy); Ceppatelli, Matteo; Citroni, Margherita [LENS - European Laboratory of Non linear Spectroscopy, University of Florence, Via Nello Carrara 1, 50019 Sesto Fiorentino (Italy); Schettino, Vincenzo, E-mail: vincenzo.schettino@unifi.it [LENS - European Laboratory of Non linear Spectroscopy, University of Florence, Via Nello Carrara 1, 50019 Sesto Fiorentino (Italy)

    2012-04-04

    Highlights: Black-Right-Pointing-Pointer High pressure reactivity of several molecular systems. Black-Right-Pointing-Pointer Reaction kinetics and dynamics in high density conditions. Black-Right-Pointing-Pointer Key role of optical pumping and electronic excitation. Black-Right-Pointing-Pointer Perspectives for the synthesis of hydrogen. - Abstract: High pressure chemical reactions of molecular systems are discussed considering the various factors that can affect the reactivity. These include steric hindrance and geometrical constraints in the confined environment of crystals at high pressure, changes of the free energy landscape with pressure, photoactivation by two-photon absorption, local and collective effects. A classification of the chemical reactions at high pressure is attempted on the basis of the prevailing factors.

  10. Charge transfer effects on the chemical reactivity of PdxCu1-x nanoalloys

    Science.gov (United States)

    Castegnaro, M. V.; Gorgeski, A.; Balke, B.; Alves, M. C. M.; Morais, J.

    2015-12-01

    This work reports on the synthesis and characterization of PdxCu1-x (x = 0.7, 0.5 and 0.3) nanoalloys obtained via an eco-friendly chemical reduction method based on ascorbic acid and trisodium citrate. The average size of the quasi-spherical nanoparticles (NPs) obtained by this method was about 4 nm, as observed by TEM. The colloids containing different NPs were then supported on carbon in order to produce powder samples (PdxCu1-x/C) whose electronic and structural properties were probed by different techniques. XRD analysis indicated the formation of crystalline PdCu alloys with a nanoscaled crystallite size. Core-level XPS results provided a fingerprint of a charge transfer process between Pd and Cu and its dependency on the nanoalloy composition. Additionally, it was verified that alloying was able to change the NP's reactivity towards oxidation and reduction. Indeed, the higher the amount of Pd in the nanoalloy, less oxidized are both the Pd and the Cu atoms in the as-prepared samples. Also, in situ XANES experiments during thermal treatment under a reducing atmosphere showed that the temperature required for a complete reduction of the nanoalloys depends on their composition. These results envisage the control at the atomic level of novel catalytic properties of such nanoalloys.This work reports on the synthesis and characterization of PdxCu1-x (x = 0.7, 0.5 and 0.3) nanoalloys obtained via an eco-friendly chemical reduction method based on ascorbic acid and trisodium citrate. The average size of the quasi-spherical nanoparticles (NPs) obtained by this method was about 4 nm, as observed by TEM. The colloids containing different NPs were then supported on carbon in order to produce powder samples (PdxCu1-x/C) whose electronic and structural properties were probed by different techniques. XRD analysis indicated the formation of crystalline PdCu alloys with a nanoscaled crystallite size. Core-level XPS results provided a fingerprint of a charge transfer process

  11. Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon

    Science.gov (United States)

    Weishaar, J.L.; Aiken, G.R.; Bergamaschi, B.A.; Fram, M.S.; Fujii, R.; Mopper, K.

    2003-01-01

    Specific UV absorbance (SUVA) is defined as the UV absorbance of a water sample at a given wavelength normalized for dissolved organic carbon (DOC) concentration. Our data indicate that SUVA, determined at 254 nm, is strongly correlated with percent aromaticity as determined by 13C NMR for 13 organic matter isolates obtained from a variety of aquatic environments. SUVA, therefore, is shown to be a useful parameter for estimating the dissolved aromatic carbon content in aquatic systems. Experiments involving the reactivity of DOC with chlorine and tetramethylammonium hydroxide (TMAH), however, show a wide range of reactivity for samples with similar SUVA values. These results indicate that, while SUVA measurements are good predictors of general chemical characteristics of DOC, they do not provide information about reactivity of DOC derived from different types of source materials. Sample pH, nitrate, and iron were found to influence SUVA measurements.

  12. In situ visualisation and characterisation of the capacity of highly reactive minerals to preserve soil organic matter (SOM) in colloids at submicron scale.

    Science.gov (United States)

    Xiao, Jian; Wen, Yongli; Li, Huan; Hao, Jialong; Shen, Qirong; Ran, Wei; Mei, Xinlan; He, Xinhua; Yu, Guanghui

    2015-11-01

    Mineral-organo associations (MOAs) are a mixture of identifiable biopolymers associated with highly reactive minerals and microorganisms. However, the in situ characterization and correlation between soil organic matter (SOM) and highly reactive Al and Fe minerals are still unclear for the lack of technologies, particularly in the long-term agricultural soil colloids at submicron scale. We combined several novel techniques, including nano-scale secondary ion mass spectrometry (NanoSIMS), X-ray absorption near edge structure (XANES) and confocal laser scanning microscopy (CLSM) to characterise the capacity of highly reactive Al and Fe minerals to preserve SOM in Ferralic Cambisol in south China. Our results demonstrated that: (1) highly reactive minerals were strongly related to SOM preservation, while SOM had a more significant line correlation with the highly reactive Al minerals than the highly reactive Fe minerals, according to the regions of interest correlation analyses using NanoSIMS; (2) allophane and ferrihydrite were the potential mineral species to determine the SOM preservation capability, which was evaluated by the X-ray photoelectron spectroscopy (XPS) and Fe K-edge XANES spectroscopy techniques; and (3) soil organic biopolymers with dominant compounds, such as proteins, polysaccharides and lipids, were distributed at the rough and clustered surface of MOAs with high chemical and spatial heterogeneity according to the CLSM observation. Our results also promoted the understanding of the roles played by the highly reactive Al and Fe minerals in the spatial distribution of soil organic biopolymers and SOM sequestration.

  13. High Resolution Magic Angle Spinning Nuclear Magnetic Resonance (HRMAS NMR) for Studies of Reactive Fabrics

    Science.gov (United States)

    2015-11-01

    Magnetic Resonance (HRMAS NMR) for Studies of Reactive Fabrics 5a. CONTRACT NUMBER W911SR-11-C-0047 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER...ECBC-TR-1326 HIGH RESOLUTION MAGIC ANGLE SPINNING NUCLEAR MAGNETIC RESONANCE (HRMAS NMR) FOR STUDIES OF REACTIVE FABRICS David J. McGarvey...unlimited. 13. SUPPLEMENTARY NOTES 14. ABSTRACT An analytical chemistry method is described for measuring the reactivity and permeation of

  14. Colloidal stability and chemical reactivity of complex colloids containing Fe³⁺.

    Science.gov (United States)

    van Leeuwen, Y M; Velikov, K P; Kegel, W K

    2014-07-15

    The reactivity of iron contained within insoluble colloidal metal-pyrophosphate salts was determined and compared to the reactivity of a soluble iron salt (FeCl3). As a model system for the reactivity of iron in food products, the formation of an iron-polyphenol complex was followed with spectrophotometry. Three types of systems were prepared and their colloidal stability and reactivity studied: Fe(3+) pyrophosphate, protein-coated Fe(3+) pyrophosphate and mixed-metal pyrophosphates containing Fe(3+) and a second cation M. The additional cation used was either monovalent (sodium) or divalent (M(2+)). It was found that: (i) incorporating iron in a colloidal salt reduced its reactivity compared to free Fe(3+) ions; (ii) coating the particles with a layer of hydrophobic protein (zein) increased stability and further decreased the reactivity. Finally, the most surprising result was that (iii) a mixed system containing more Fe(3+) than M actually increased the reactivity of the contained iron, while the reverse, a system containing excess M, inhibited the reactivity completely.

  15. An Experiment with Manifold Purposes: The Chemical Reactivity of Crystal Defects upon Crystal Dissolution.

    Science.gov (United States)

    Lazzarini, Annaluisa Fantola; Lazzarini, Ennio

    1983-01-01

    Background information and procedures are provided for an experiment designed to introduce (1) crystal defects and their reactivity upon crystal dissolution; (2) hydrates electron and its reactivity; (3) application of radiochemical method of analysis; and (4) the technique of competitive kinetics. Suggested readings and additional experiments are…

  16. Analysis of chemical reactivity of aminocyclopyrachlor herbicide through the Fukui function

    Directory of Open Access Journals (Sweden)

    Mendoza-Huizar Luis Humberto

    2015-01-01

    Full Text Available We have calculated global and local DFT reactivity descriptors for aminocyclopyrachlor herbicide at the MP2/6-311++G (2d,2p level of theory in the aqueous phase. Global reactivity descriptors such as ionization energy, molecular hardness, electrophilicity, and total energies were calculated to evaluate the aminocyclopyrachlor reactivity. Local reactivity was evaluated through the Fukui function. Our results suggest that the cationic and dipolar forms of aminocyclopyrachlor exhibit similar global reactivity and they are susceptible to deamination and decarboxylation. Also, the opening of the ring might become factible through free radical attacks to the neutral form, while a similar process is caused by nucleophilic attacks on the anionic form.

  17. High throughput assay for evaluation of reactive carbonyl scavenging capacity

    Directory of Open Access Journals (Sweden)

    N. Vidal

    2014-01-01

    Full Text Available Many carbonyl species from either lipid peroxidation or glycoxidation are extremely reactive and can disrupt the function of proteins and enzymes. 4-hydroxynonenal and methylglyoxal are the most abundant and toxic lipid-derived reactive carbonyl species. The presence of these toxics leads to carbonyl stress and cause a significant amount of macromolecular damages in several diseases. Much evidence indicates trapping of reactive carbonyl intermediates may be a useful strategy for inhibiting or decreasing carbonyl stress-associated pathologies. There is no rapid and convenient analytical method available for the assessment of direct carbonyl scavenging capacity, and a very limited number of carbonyl scavengers have been identified to date, their therapeutic potential being highlighted only recently. In this context, we have developed a new and rapid sensitive fluorimetric method for the assessment of reactive carbonyl scavengers without involvement glycoxidation systems. Efficacy of various thiol- and non-thiol-carbonyl scavenger pharmacophores was tested both using this screening assay adapted to 96-well microplates and in cultured cells. The scavenging effects on the formation of Advanced Glycation End-product of Bovine Serum Albumin formed with methylglyoxal, 4-hydroxynonenal and glucose-glycated as molecular models were also examined. Low molecular mass thiols with an α-amino-β-mercaptoethane structure showed the highest degree of inhibitory activity toward both α,β-unsaturated aldehydes and dicarbonyls. Cysteine and cysteamine have the best scavenging ability toward methylglyoxal. WR-1065 which is currently approved for clinical use as a protective agent against radiation and renal toxicity was identified as the best inhibitor of 4-hydroxynonenal.

  18. Structure and chemical reactivity of the polar three-fold surfaces of GaPd: a density-functional study.

    Science.gov (United States)

    Krajčí, M; Hafner, J

    2013-03-28

    the lowest energy has been found for a bilayer with three Ga atoms per surface cell in the upper layer and one Ga and one Pd in the lower part. The calculated surface energies are in agreement with a simulated cleavage experiment. However, cleavage does not result in the formation of the lowest-energy surfaces, because all possible {111} cleavage planes expose a low-energy surface on one, and a high-energy surface on the other side. The prediction of Ga-terminated surfaces has been tested against the available experimental information. The calculated surface electronic density of states is in very good agreement with photo-emission spectroscopy. Calculated STM images of the most stable surfaces agree with all details of the available experimental images. The chemical reactivity of the most stable surfaces has been studied by the adsorption of CO molecules. The adsorption energies and maximum coverages calculated for the Ga-terminated surfaces permit a reasonable interpretation of the observed thermal desorption spectra, whereas for the Pd-terminated surfaces the calculated adsorption energies are far too high.

  19. Characterization of Dimethylsulfoxide / Glycerol Mixtures: A Binary Solvent System for the Study of "Friction-Dependent" Chemical Reactivity

    CERN Document Server

    Angulo, Gonzalo; Gerecke, Mario; Grampp, Günter; Jeannerat, Damien; Milkiewicz, Jadwiga; Mitrev, Yavor; Radzewicz, Czesław; Rosspeintner, Arnulf; Vauthey, Eric; Wnuk, Paweł

    2016-01-01

    The properties of binary mixtures of dimethylsulfoxide and glycerol, measured by several techniques, are reported. Special attention is given to those properties contributing or affecting chemical reactions. In this respect the investigated mixture behaves as a relatively simple solvent and it is especially well suited for studies on the influence of viscosity in chemical reactivity. This is due to the relative invariance of the dielectric properties of the mixture. However, special caution must be taken with specific solvation, as the hydrogen-bonding properties of the solvent changes with the molar fraction of glycerol.

  20. Characterization of dimethylsulfoxide/glycerol mixtures: a binary solvent system for the study of "friction-dependent" chemical reactivity.

    Science.gov (United States)

    Angulo, Gonzalo; Brucka, Marta; Gerecke, Mario; Grampp, Günter; Jeannerat, Damien; Milkiewicz, Jadwiga; Mitrev, Yavor; Radzewicz, Czesław; Rosspeintner, Arnulf; Vauthey, Eric; Wnuk, Paweł

    2016-07-21

    The properties of binary mixtures of dimethylsulfoxide and glycerol, measured using several techniques, are reported. Special attention is given to those properties contributing or affecting chemical reactions. In this respect the investigated mixture behaves as a relatively simple solvent and it is especially well suited for studies on the influence of viscosity on chemical reactivity. This is due to the relative invariance of the dielectric properties of the mixture. However, special caution must be taken with specific solvation, as the hydrogen-bonding properties of the solvent change with the molar fraction of glycerol.

  1. Determining Chemical Reactivity Driving Biological Activity from SMILES Transformations: The Bonding Mechanism of Anti-HIV Pyrimidines

    Directory of Open Access Journals (Sweden)

    Mihai V. Putz

    2013-07-01

    Full Text Available Assessing the molecular mechanism of a chemical-biological interaction and bonding stands as the ultimate goal of any modern quantitative structure-activity relationship (QSAR study. To this end the present work employs the main chemical reactivity structural descriptors (electronegativity, chemical hardness, chemical power, electrophilicity to unfold the variational QSAR though their min-max correspondence principles as applied to the Simplified Molecular Input Line Entry System (SMILES transformation of selected uracil derivatives with anti-HIV potential with the aim of establishing the main stages whereby the given compounds may inhibit HIV infection. The bonding can be completely described by explicitly considering by means of basic indices and chemical reactivity principles two forms of SMILES structures of the pyrimidines, the Longest SMILES Molecular Chain (LoSMoC and the Branching SMILES (BraS, respectively, as the effective forms involved in the anti-HIV activity mechanism and according to the present work, also necessary intermediates in molecular pathways targeting/docking biological sites of interest.

  2. Determining chemical reactivity driving biological activity from SMILES transformations: the bonding mechanism of anti-HIV pyrimidines.

    Science.gov (United States)

    Putz, Mihai V; Dudaş, Nicoleta A

    2013-07-30

    Assessing the molecular mechanism of a chemical-biological interaction and bonding stands as the ultimate goal of any modern quantitative structure-activity relationship (QSAR) study. To this end the present work employs the main chemical reactivity structural descriptors (electronegativity, chemical hardness, chemical power, electrophilicity) to unfold the variational QSAR though their min-max correspondence principles as applied to the Simplified Molecular Input Line Entry System (SMILES) transformation of selected uracil derivatives with anti-HIV potential with the aim of establishing the main stages whereby the given compounds may inhibit HIV infection. The bonding can be completely described by explicitly considering by means of basic indices and chemical reactivity principles two forms of SMILES structures of the pyrimidines, the Longest SMILES Molecular Chain (LoSMoC) and the Branching SMILES (BraS), respectively, as the effective forms involved in the anti-HIV activity mechanism and according to the present work, also necessary intermediates in molecular pathways targeting/docking biological sites of interest.

  3. Nanoscale multilayered and porous carbide interphases prepared by pressure-pulsed reactive chemical vapor deposition for ceramic matrix composites

    Energy Technology Data Exchange (ETDEWEB)

    Jacques, S., E-mail: jacques@lcts.u-bordeaux1.fr [LCTS, University of Bordeaux 1, CNRS, Herakles-Safran, CEA, 3 allee de la Boetie, F-33600 Pessac (France); Jouanny, I.; Ledain, O.; Maillé, L.; Weisbecker, P. [LCTS, University of Bordeaux 1, CNRS, Herakles-Safran, CEA, 3 allee de la Boetie, F-33600 Pessac (France)

    2013-06-15

    In Ceramic Matrix Composites (CMCs) reinforced by continuous fibers, a good toughness is achieved by adding a thin film called “interphase” between the fiber and the brittle matrix, which acts as a mechanical fuse by deflecting the matrix cracks. Pyrocarbon (PyC), with or without carbide sub-layers, is typically the material of choice to fulfill this role. The aim of this work was to study PyC-free nanoscale multilayered carbide coatings as interphases for CMCs. Nanoscale multilayered (SiC–TiC){sub n} interphases were deposited by pressure-Pulsed Chemical Vapor Deposition (P-CVD) on single filament Hi-Nicalon fibers and embedded in a SiC matrix sheath. The thicknesses of the carbide interphase sub-layers could be made as low as a few nanometers as evidenced by scanning and transmission electron microscopy. By using the P-ReactiveCVD method (P-RCVD), in which the TiC growth involves consumption of SiC, it was not only possible to obtain multilayered (SiC–TiC){sub n} films but also TiC films with a porous multilayered microstructure as a result of the Kirkendall effect. The porosity in the TiC sequences was found to be enhanced when some PyC was added to SiC prior to total RCVD consumption. Because the porosity volume fraction was still not high enough, the role of mechanical fuse of the interphases could not be evidenced from the tensile curves, which remained fully linear even when chemical attack of the fiber surface was avoided.

  4. Toddlers at High Risk of Chemical Eye Burns

    Science.gov (United States)

    ... fullstory_160258.html Toddlers at High Risk of Chemical Eye Burns: Study Access to household cleaning products to blame, ... and 2 years have relatively high rates of chemical eye burns, with everyday cleaners a common cause, researchers say. ...

  5. Chemical Analysis of Organic Aerosols Using Reactive Nanospray Desorption Electrospray Ionization Mass Spectrometry

    Science.gov (United States)

    Laskin, A.; Laskin, J.; Nizkorodov, S.

    2013-12-01

    Nanospray Desorption Electrospray Ionization (nano-DESI) technique integrated with high resolution mass spectrometry (HR-MS) enables molecular level analysis of organic aerosol (OA) samples. In nano-DESI, analyte is desorbed into a small volume solvent bridge formed between two capillaries positioned in contact with analyte and enables fast and efficient characterization of OA collected on substrates without sample preparation. We report applications of the nano-DESI/HR-MS approach in a number of our recent studies focused on molecular identification of organic compounds in laboratory and in field collected OA samples. Reactive nano-DESI approach where selected reagent is added to the solvent is used for examining the presence of individual species containing specific functional groups and for their quantification within complex mixtures of OA. Specifically, we use the Girard's reagent T (GT) to probe and quantify carbonyl compounds in the SOA mixtures. We estimate for the first time the amounts of dimers and trimers in the SOA mixtures. We found that the most abundant dimer in limonene/O3 SOA was detected at the ˜0.5 pg level and the total amount of dimers and trimers in the analyzed sample was ˜11 pg. Understanding of the OA composition at the molecular level allowed us to identify key aging reactions, including the transformation of carbonyls to imines and carbonyl-imine oligomerization, that may contribute to the formation of brown carbon in the atmosphere.

  6. Subsurface Multiphase Flow and Multicomponent Reactive Transport Modeling using High-Performance Computing

    Energy Technology Data Exchange (ETDEWEB)

    Hammond, Glenn E.; Lichtner, Peter C.; Lu, Chuan

    2007-08-01

    Numerical modeling has become a critical tool to the Department of Energy for evaluating the environmental impact of alternative energy sources and remediation strategies for legacy waste sites. Unfortunately, the physical and chemical complexity of many sites overwhelms the capabilities of even most “state of the art” groundwater models. Of particular concern are the representation of highly-heterogeneous stratified rock/soil layers in the subsurface and the biological and geochemical interactions of chemical species within multiple fluid phases. Clearly, there is a need for higher-resolution modeling (i.e. more spatial, temporal, and chemical degrees of freedom) and increasingly mechanistic descriptions of subsurface physicochemical processes. We present research being performed in the development of PFLOTRAN, a parallel multiphase flow and multicomponent reactive transport model. Written in Fortran90, PFLOTRAN is founded upon PETSc data structures and solvers and has exhibited impressive strong scalability on up to 4000 processors on the ORNL Cray XT3. We are employing PFLOTRAN in the simulation of uranium transport at the Hanford 300 Area, a contaminated site of major concern to the Department of Energy, the State of Washington, and other government agencies where overly-simplistic historical modeling erroneously predicted decade removal times for uranium by ambient groundwater flow. By leveraging the billions of degrees of freedom available through high-performance computation using tens of thousands of processors, we can better characterize the release of uranium into groundwater and its subsequent transport to the Columbia River, and thereby better understand and evaluate the effectiveness of various proposed remediation strategies.

  7. Location change method for imaging chemical reactivity and catalysis with single-molecule and -particle fluorescence microscopy.

    Science.gov (United States)

    Blum, S A

    2014-08-21

    In the last eight years, it has become possible to image chemical reactivity at the single-molecule and -particle level with fluorescence microscopy. This Perspective describes one of the imaging techniques that enabled this state-of-the-art application: imaging by the location change of molecules and particles. In this method, the microscope and experiment are configured to produce a signal when an individual molecule or particle changes location or changes mobility concurrently with a chemical change. This imaging technique has enabled observation of single chemical reactions and unraveled mechanisms of complex chemical and physical processes in transition metal and polymerization systems. This Perspective has three major goals: (1) to unify studies of different chemical processes or of different chemical questions, which, in spite of these differences, employ a similar microscopy detection method, (2) to explain the technique to nonexperts and those who might be interested in joining this nascent field, and (3) to highlight unique information available through this cross-disciplinary technique and the value this information has for chemical reaction development generally and catalysis specifically. To this end, application of the location change method to the investigation of polymerization reactions with radical initiators and separately with metal catalysts, and to ligand exchange reactions at platinum complexes are described.

  8. Surface reactivity and layer analysis of chemisorbed reaction films in the surface-chemical environment of alkyl octadecenoates

    Indian Academy of Sciences (India)

    R B Choudhary; O N Anand; O S Tyagi

    2009-05-01

    Studies on surface reactivity of substrate iron (Fe-particles) were made in the tribo-chemical environment of alkyl octadecenoates. Two alkyl octadecenoates namely ethyl octadecenoate and methyl 12-hydroxy octadecenoate, slightly different in their chemical nature, were taken for preparing the chemisorbed reaction films (CRF) at the temperature 100 ± 5°C. The reaction products collected in the composite (amorphous) phase were isolated into three different solvent-soluble fractions (sub-layer films) using polar solvents of increasing polar strength. The FTIR analysis of these films showed that these were primarily organic in nature and were composed of alkyl and/or aryl hydroxy ethers, unsaturated hydroxy ketones, and aromatic structures chemically linked with iron surface. These reaction films also contained large amount of iron (Fe). Further, these film fractions also showed varying thermal behaviour during thermal decomposition in the temperature range of 50-800°C when thermally evaluated in the nitrogen environment.

  9. Combustion Mode Design with High Efficiency and Low Emissions Controlled by Mixtures Stratification and Fuel Reactivity

    Directory of Open Access Journals (Sweden)

    Hu eWang

    2015-08-01

    Full Text Available This paper presents a review on the combustion mode design with high efficiency and low emissions controlled by fuel reactivity and mixture stratification that have been conducted in the authors’ group, including the charge reactivity controlled homogeneous charge compression ignition (HCCI combustion, stratification controlled premixed charge compression ignition (PCCI combustion, and dual-fuel combustion concepts controlled by both fuel reactivity and mixture stratification. The review starts with the charge reactivity controlled HCCI combustion, and the works on HCCI fuelled with both high cetane number fuels, such as DME and n-heptane, and high octane number fuels, such as methanol, natural gas, gasoline and mixtures of gasoline/alcohols, are reviewed and discussed. Since single fuel cannot meet the reactivity requirements under different loads to control the combustion process, the studies related to concentration stratification and dual-fuel charge reactivity controlled HCCI combustion are then presented, which have been shown to have the potential to achieve effective combustion control. The efforts of using both mixture and thermal stratifications to achieve the auto-ignition and combustion control are also discussed. Thereafter, both charge reactivity and mixture stratification are then applied to control the combustion process. The potential and capability of thermal-atmosphere controlled compound combustion mode and dual-fuel reactivity controlled compression ignition (RCCI/highly premixed charge combustion (HPCC mode to achieve clean and high efficiency combustion are then presented and discussed. Based on these results and discussions, combustion mode design with high efficiency and low emissions controlled by fuel reactivity and mixtures stratification in the whole operating range is proposed.

  10. Two-phase reactive transport of an oil-soluble chemical: an NMR study

    NARCIS (Netherlands)

    Castelijns, H.J.

    2007-01-01

    An oil-soluble chemical (OSC) is a chemical substance which is soluble and chemically inert in oil, but reacts with water to form a gel. Application of an OSC can be found in oil- and gas production. An increased water production, which usually occurs in mature oil fields, can be remedied by

  11. Two-phase reactive transport of an oil-soluble chemical: an NMR study

    NARCIS (Netherlands)

    Castelijns, H.J.

    2007-01-01

    An oil-soluble chemical (OSC) is a chemical substance which is soluble and chemically inert in oil, but reacts with water to form a gel. Application of an OSC can be found in oil- and gas production. An increased water production, which usually occurs in mature oil fields, can be remedied by injecti

  12. Two-phase reactive transport of an oil-soluble chemical: an NMR study

    NARCIS (Netherlands)

    Castelijns, H.J.

    2007-01-01

    An oil-soluble chemical (OSC) is a chemical substance which is soluble and chemically inert in oil, but reacts with water to form a gel. Application of an OSC can be found in oil- and gas production. An increased water production, which usually occurs in mature oil fields, can be remedied by injecti

  13. HIGH PREVALENCE OF REACTIVE ARTHRITIS IN RUSSIA: OVERDIAGNOSIS OR REALITY?

    Directory of Open Access Journals (Sweden)

    R. M. Balabanova

    2015-01-01

    Full Text Available Reactive arthritis (ReA is one of the types of spondyloarthritis. According to the statistics reports by the Ministry of Health of Russia, the prevalence of ReA in 2013 was 42.8 per 100,000 adult population, 99, and 172.4 per 100,000 children aged 0–14 and 15–17 years, respectively. There is a wide scatter of ReA detection rates in both the federal districts and subjects of the Russian Federation, which may be associated with both the spread of sexually transmitted infections, asymptomatic trigger Chlamydia infection, and overdiagnosis of ReA.

  14. High metal reactivity and environmental risks at a site contaminated by glass waste.

    Science.gov (United States)

    Augustsson, A; Åström, M; Bergbäck, B; Elert, M; Höglund, L O; Kleja, D B

    2016-07-01

    This study addresses the reactivity and risks of metals (Ba, Cd, Co, Cr, Cu, Ni, Pb, Zn, As and Sb) at a Swedish site with large glass waste deposits. Old glassworks sites typically have high total metal concentrations, but as the metals are mainly bound within the glass waste and considered relatively inert, environmental investigations at these kinds of sites are limited. In this study, soil and landfill samples were subjected to a sequential chemical extraction procedure. Data from batch leaching tests and groundwater upstream and downstream of the waste deposits were also interpreted. The sequential extraction revealed that metals in metals are released from pristine glass and subsequently largely retained in the surrounding soil and/or on secondary mineral coatings on fine glass particles. From the approximately 12,000 m(3) of coarse glass waste at the site, almost 4000 kg of Pb is estimated to have been lost through corrosion, which, however, corresponds to only a small portion of the total amount of Pb in the waste. Metal sorption within the waste deposits or in underlying soil layers is supported by fairly low metal concentrations in groundwater. However, elevated concentrations in downstream groundwater and in leachates of batch leaching tests were observed for several metals, indicating on-going leaching. Taken together, the high metal concentrations in geochemically active forms and the high amounts of as yet uncorroded metal-rich glass, indicate considerable risks to human health and the environment.

  15. High-temperature high-pressure calorimeter for studying gram-scale heterogeneous chemical reactions

    Science.gov (United States)

    MacLeod, B. P.; Schauer, P. A.; Hu, K.; Lam, B.; Fork, D. K.; Berlinguette, C. P.

    2017-08-01

    We present an instrument for measuring pressure changes and heat flows of physical and chemical processes occurring in gram-scale solid samples under high pressures of reactive gases. Operation is demonstrated at 1232 °C under 33 bars of pure hydrogen. Calorimetric heat flow is inferred using a grey-box non-linear lumped-element heat transfer model of the instrument. Using an electrical calibration heater to deliver 900 J/1 W pulses at the sample position, we demonstrate a dynamic calorimetric power resolution of 50 mW when an 80-s moving average is applied to the signal. Integration of the power signal showed that the 900 J pulse energy could be measured with an average accuracy of 6.35% or better over the temperature range 150-1100 °C. This instrument is appropriate for the study of high-temperature metal hydride materials for thermochemical energy storage.

  16. Principles for identification of High Potency Category Chemicals for which the Dermal Sensitisation Threshold (DST) approach should not be applied.

    Science.gov (United States)

    Roberts, David W; Api, Anne Marie; Safford, Robert J; Lalko, Jon F

    2015-08-01

    An essential step in ensuring the toxicological safety of chemicals used in consumer products is the evaluation of their skin sensitising potential. The sensitising potency, coupled with information on exposure levels, can be used in a Quantitative Risk Assessment (QRA) to determine an acceptable level of a given chemical in a given product. Where consumer skin exposure is low, a risk assessment can be conducted using the Dermal Sensitisation Threshold (DST) approach, avoiding the need to determine potency experimentally. Since skin sensitisation involves chemical reaction with skin proteins, the first step in the DST approach is to assess, on the basis of the chemical structure, whether the chemical is expected to be reactive or not. Our accompanying publication describes the probabilistic derivation of a DST of 64 μg/cm(2) for chemicals assessed as reactive. This would protect against 95% of chemicals assessed as reactive, but the remaining 5% would include chemicals with very high potency. Here we discuss the chemical properties and structural features of high potency sensitisers, and derive an approach whereby they can be identified and consequently excluded from application of the DST.

  17. High Temperature Materials for Chemical Propulsion Applications

    Science.gov (United States)

    Elam, Sandra; Hickman, Robert; O'Dell, Scott

    2007-01-01

    Radiation or passively cooled thrust chambers are used for a variety of chemical propulsion functions including apogee insertion, reaction control for launch vehicles, and primary propulsion for planetary spacecraft. The performance of these thrust chambers is limited by the operating temperature of available materials. Improved oxidation resistance and increased operating temperatures can be achieved with the use of thermal barrier coatings such as zirconium oxide (ZrO2) and hafnium oxide (HfO2). However, previous attempts to include these materials showed cracking and spalling of the oxide layer due to poor bonding. Current research at NASA's Marshall Space Flight Center (MSFC) has generated unique, high temperature material options for in-space thruster designs that are capable of up to 2500 C operating temperatures. The research is focused on fabrication technologies to form low cost Iridium,qF_.henium (Ir/Re) components with a ceramic hot wall created as an integral, functionally graded material (FGM). The goal of this effort is to further de?celop proven technologies for embedding a protective ceramic coating within the Ir/Re liner to form a robust functional gradient material. Current work includes the fabrication and testing of subscale samples to evaluate tensile, creep, thermal cyclic/oxidation, and thermophysical material properties. Larger test articles have also being fabricated and hot-fire tested to demonstrate the materials in prototype thrusters at 1O0 lbf thrust levels.

  18. Spectroscopic link between adsorption site occupation and local surface chemical reactivity

    DEFF Research Database (Denmark)

    Baraldi, A.; Lizzit, S.; Comelli, G.;

    2004-01-01

    In this Letter we show that sequences of adsorbate-induced shifts of surface core level (SCL) x-ray photoelectron spectra contain profound information on surface changes of electronic structure and reactivity. Energy shifts and intensity changes of time-lapsed spectral components follow simple...... rules, from which adsorption sites are directly determined. Theoretical calculations rationalize the results for transition metal surfaces in terms of the energy shift of the d-band center of mass and this proves that adsorbate-induced SCL shifts provide a spectroscopic measure of local surface...... reactivity....

  19. Fluctuations in reactive networks subject to extrinsic noise studied in the framework of the Chemical Langevin Equation

    CERN Document Server

    Berthoumieux, Hélène

    2016-01-01

    Theoretical and experimental studies have shown that the fluctuations of in vivo systems break the fluctuation-dissipation theorem. One can thus ask what information is contained in the correlation functions of protein concentrations and how they relate to the response of the reactive network to a perturbation. Answers to these questions are of prime importance to extract meaningful parameters from the in vivo fluorescence correlation spectroscopy data. In this paper we study the fluctuations of the concentration of a reactive species involved in a cyclic network that is in a non-equilibrium steady state perturbed by a noisy force, taking into account both the breaking of detailed balance and extrinsic noises. Using a generic model for the network and the extrinsic noise, we derive a Chemical Langevin Equation that describes the dynamics of the system, we determine the expressions of the correlation functions of the concentrations, estimate the deviation of the fluctuation-dissipation theorem and the range of...

  20. Hot spot formation and chemical reaction initiation in shocked HMX crystals with nanovoids: a large-scale reactive molecular dynamics study.

    Science.gov (United States)

    Zhou, Tingting; Lou, Jianfeng; Zhang, Yangeng; Song, Huajie; Huang, Fenglei

    2016-07-14

    We report million-atom reactive molecular dynamic simulations of shock initiation of β-cyclotetramethylene tetranitramine (β-HMX) single crystals containing nanometer-scale spherical voids. Shock induced void collapse and subsequent hot spot formation as well as chemical reaction initiation are observed which depend on the void size and impact strength. For an impact velocity of 1 km s(-1) and a void radius of 4 nm, the void collapse process includes three stages; the dominant mechanism is the convergence of upstream molecules toward the centerline and the downstream surface of the void forming flowing molecules. Hot spot formation also undergoes three stages, and the principal mechanism is kinetic energy transforming to thermal energy due to the collision of flowing molecules on the downstream surface. The high temperature of the hot spot initiates a local chemical reaction, and the breakage of the N-NO2 bond plays the key role in the initial reaction mechanism. The impact strength and void size have noticeable effects on the shock dynamical process, resulting in a variation of the predominant mechanisms leading to void collapse and hot spot formation. Larger voids or stronger shocks result in more intense hot spots and, thus, more violent chemical reactions, promoting more reaction channels and generating more reaction products in a shorter duration. The reaction products are mainly concentrated in the developed hot spot, indicating that the chemical reactivity of the hmx crystal is greatly enhanced by void collapse. The detailed information derived from this study can aid a thorough understanding of the role of void collapse in hot spot formation and the chemical reaction initiation of explosives.

  1. Methyl Salicylate: A Reactive Chemical Warfare Agent Surrogate to Detect Reaction with Hypochlorite (POSTPRINT)

    Science.gov (United States)

    2011-05-01

    acid (Fisher Scientific, Fair Lawn, NJ) was diluted to 1.0 M in water purified by reverse osmosis . Methods. Reactions were initially examined by...reactivity of hypochlorite neutralizants delivered onto a substrate is strongly diffusion limited, an observation likely to be useful as a

  2. A Simple Visualization of Double Bond Properties: Chemical Reactivity and UV Fluorescence

    Science.gov (United States)

    Grayson, Scott M.

    2012-01-01

    A simple, easily visualized thin-layer chromatography (TLC) staining experiment is presented that highlights the difference in reactivity between aromatic double bonds and nonaromatic double bonds. Although the stability of aromatic systems is a major theme in organic chemistry, the concept is rarely reinforced "visually" in the undergraduate…

  3. A Simple Visualization of Double Bond Properties: Chemical Reactivity and UV Fluorescence

    Science.gov (United States)

    Grayson, Scott M.

    2012-01-01

    A simple, easily visualized thin-layer chromatography (TLC) staining experiment is presented that highlights the difference in reactivity between aromatic double bonds and nonaromatic double bonds. Although the stability of aromatic systems is a major theme in organic chemistry, the concept is rarely reinforced "visually" in the undergraduate…

  4. Supercharging SpyCatcher toward an intrinsically disordered protein with stimuli-responsive chemical reactivity.

    Science.gov (United States)

    Cao, Yang; Liu, Dong; Zhang, Wen-Bin

    2017-08-03

    We report a supercharged, intrinsically disordered protein, SpyCatcher(-), possessing stimuli-responsive reactivity toward SpyTag with tunable yields ranging from 4% to 98% depending on pH, temperature, ionic strength, etc. The CD and NMR studies reveal that the reaction occurs through a folded intermediate formed probably via a different mechanism from that of SpyCatcher.

  5. In situ chemical behaviour of methylisothiazolinone (MI) and methylchloroisothiazolinone (MCI) in reconstructed human epidermis: a new approach to the cross-reactivity issue.

    Science.gov (United States)

    Debeuckelaere, Camille; Moussallieh, François-Marie; Elbayed, Karim; Namer, Izzie-Jacques; Berl, Valérie; Giménez-Arnau, Elena; Lepoittevin, Jean-Pierre

    2016-03-01

    Methylisothiazolinone (MI) [with methylchloroisothiazolinone (MCI) in a ratio of 1:3, a well-recognized allergenic preservative] was released as an individual preservative in the 2000s for industrial products and in 2005 for cosmetics. The high level of exposure to MI since then has provoked an epidemic of contact allergy to MI, and an increase in MI/MCI allergy. There are questions concerning the MI/MCI cross-reaction pattern. To bring a new perspective on the MI/MCI cross-reactivity issue by studying their in situ chemical behaviour in 3D reconstructed human epidermis (RHE). MI and MCI were synthesized with (13) C substitution at positions C-4/C-5 and C-5, respectively. Their in situ chemical behaviours in an RHE model were followed by use of the high-resolution magic angle spinning nuclear magnetic resonance technique. MI was found to react exclusively with cysteine thiol residues, whereas MCI reacted with histidines and lysines. The reaction mechanisms were found to be different for MI and MCI, and the adducts formed had different molecular structures. In RHE, different MI/MCI reactions towards different nucleophilic amino acids were observed, making it difficult to explain cross-reactivity between MI and MCI. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. Nanoporous Hybrid Electrolytes for High-Energy Batteries Based on Reactive Metal Anodes

    KAUST Repository

    Tu, Zhengyuan

    2017-01-06

    Successful strategies for stabilizing electrodeposition of reactive metals, including lithium, sodium, and aluminum are a requirement for safe, high-energy electrochemical storage technologies that utilize these metals as anodes. Unstable deposition produces high-surface area dendritic structures at the anode/electrolyte interface, which causes premature cell failure by complex physical and chemical processes that have presented formidable barriers to progress. Here, it is reported that hybrid electrolytes created by infusing conventional liquid electrolytes into nanoporous membranes provide exceptional ability to stabilize Li. Electrochemical cells based on γ-Al2O3 ceramics with pore diameters below a cut-off value above 200 nm exhibit long-term stability even at a current density of 3 mA cm−2. The effect is not limited to ceramics; similar large enhancements in stability are observed for polypropylene membranes with less monodisperse pores below 450 nm. These findings are critically assessed using theories for ion rectification and electrodeposition reactions in porous solids and show that the source of stable electrodeposition in nanoporous electrolytes is fundamental.

  7. SYNTHESIS OF HIGHLY REACTIVE POLYISOBUTYLENES WITH BF3·CYCLOHEXANOL INITIATING SYSTEM

    Institute of Scientific and Technical Information of China (English)

    Lai-bao Zhang; Yi-xian Wu; Peng Zhou; Guan-ying Wu; Wan-tai Yang; Ding-sheng Yu

    2011-01-01

    The selective cationic polymerization of isobutylene (IB) initiated by a BF3·cyclohexanol (CL) complex was carried out from the mixed C4 fraction feed containing the 4C saturated and unsaturated hydrocarbons at -20℃. The effects of CL concentration, BF3 concentration, solvent for preparing BF3·CL complex and polymerization time on the chemical structure of end groups, number-average molecular weight (Mn) and molecular weight distribution (MWD, Mw/Mn) of the resulting polymers were investigated. The experimental results indicate that the BF3·CL complex initiating system exhibited an extremely high selectivity toward the cationic polymerization of IB in the mixed C4 fraction feed and low molecular weight (Mn = 900-3600) polyisobutylenes (PIBs) with large proportion of exo-double bond end groups were obtained. The exo-double bond content in PIB chain ends increased by increasing CL concentration or by decreasing solvent polarity in initiating system, BF3 concentration and polymerization time. The Mn and MWD of the resulting PIBs were dependent on the concentrations of CL and BF3. Highly reactive PIBs with around 90 mol% of exo-double bonds were successfully synthesized by the selective polymerization of IB from the mixed C4 fraction feed, providing a potentially practical process for its simplicity and low costs.

  8. High density plasma reactive ion etching of Ru thin films using non-corrosive gas mixture

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Su Min; Garay, Adrian Adalberto; Lee, Wan In; Chung, Chee Won, E-mail: cwchung@inha.ac.kr

    2015-07-31

    Inductively coupled plasma reactive ion etching (ICPRIE) of Ru thin films patterned with TiN hard masks was investigated using a CH{sub 3}OH/Ar gas mixture. As the CH{sub 3}OH concentration in CH{sub 3}OH/Ar increased, the etch rates of Ru thin films and TiN hard masks decreased. However, the etch selectivity of Ru films on TiN hard masks increased and the etch slope of Ru film improved at 25% CH{sub 3}OH/Ar. With increasing ICP radiofrequency power and direct current bias voltage and decreasing process pressure, the etch rates of Ru films increased, and the etch profiles were enhanced without redeposition on the sidewall. Optical emission spectroscopy and X-ray photoelectron spectroscopy were employed to analyze the plasma and surface chemistry. Based on these results, Ru thin films were oxidized to RuO{sub 2} and RuO{sub 3} compounds that were removed by sputtering of ions and the etching of Ru thin films followed a physical sputtering with the assistance of chemical reaction. - Highlights: • Etching of Ru films in CH{sub 3}OH/Ar was investigated. • High selectivity and etch profile with high degree of anisotropy were obtained. • XPS analysis was examined to identify the etch chemistry. • During etching Ru was oxidized to RuO{sub 2} and RuO{sub 3} can be easily sputtered off.

  9. Chemical reactivity of {alpha}-isosaccharinic acid in heterogeneous alkaline systems

    Energy Technology Data Exchange (ETDEWEB)

    Glaus, M. A.; Loon, L. R. Van

    2009-05-15

    Cellulose degradation under alkaline conditions is of relevance for the mobility of many radionuclides in the near-field of a cementitious repository for radioactive waste, because metal-binding degradation products may be formed. Among these, {alpha}- isosaccharinic acid ({alpha}-ISA) is the strongest complexant. The prediction of the equilibrium concentration of {alpha}-ISA in cement pore water is therefore an important step in the assessment of the influence of cellulose degradation products on the speciation of radionuclides in such environments. The present report focuses on possible chemical transformation reactions of {alpha}-ISA in heterogeneous alkaline model systems containing either Ca(OH){sub 2} or crushed hardened cement paste. The transformation reactions were monitored by measuring the concentration of {alpha}-ISA by high performance anion exchange chromatography and the formation of reaction products by high performance ion exclusion chromatography. The overall loss of organic species from solution was monitored by measuring the concentration of non-purgeable organic carbon. The reactions were examined in diluted and compacted suspensions, at either 25 {sup o}C or 90 {sup o}C, and under anaerobic atmospheres obtained by various methods. It was found that {alpha}-ISA was transformed under all conditions tested to some extent. Reaction products, such as glycolate, formate, lactate and acetate, all compounds with less complexing strength than {alpha}-ISA, were detected. The amount of reaction products identified by the chromatographic technique applied was {approx} 50 % of the amount of {alpha}-ISA reacted. Sorption of {alpha}-ISA to Ca(OH){sub 2} contributed only to a minor extent to the loss of {alpha}-ISA from the solution phase. As the most important conclusion of the present work it was demonstrated that the presence of oxidising agents had a distinctive influence on the turnover of {alpha}-ISA. Under aerobic conditions {alpha}-ISA was

  10. Supra-molecular structure and chemical reactivity of cellulose I studied using CP/MAS (sup)13 C-NMR

    CSIR Research Space (South Africa)

    Chunilall, Viren

    2013-08-01

    Full Text Available medium, provided the original work is properly cited. Supra-Molecular Structure and Chemical Reactivity of Cellulose I Studied Using CP/MAS 13C-NMR Viren Chunilall, Tamara Bush and Per Tomas Larsson Additional information is available at the end... of Cellulose I Studied Using CP/MAS 13C-NMR 71 1.1.2. Dissolving pulp The unbleached pulp that results after acid bi-sulphite pulping is used as raw material for dissolving pulp production. Lignin and hemicelluloses in the unbleached pulp are considered...

  11. Deposition of highly textured AlN thin films by reactive high power impulse magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Moreira, Milena A. [Department of Solid State Electronics, Ångström Laboratory, Uppsala University, Box 534, SE-752 21 Uppsala, Sweden and School of Electrical and Computer Engineering, University of Campinas, CEP 13.083-852 Campinas-SP (Brazil); Törndahl, Tobias; Katardjiev, Ilia; Kubart, Tomas, E-mail: tomas.kubart@angstrom.uu.se [Department of Solid State Electronics, Ångström Laboratory, Uppsala University, Box 534, SE-752 21 Uppsala (Sweden)

    2015-03-15

    Aluminum nitride thin films were deposited by reactive high power impulse magnetron sputtering (HiPIMS) and pulsed direct-current on Si (100) and textured Mo substrates, where the same deposition conditions were used for both techniques. The films were characterized by x-ray diffraction and atomic force microscopy. The results show a pronounced improvement in the AlN crystalline texture for all films deposited by HiPIMS on Si. Already at room temperature, the HiPIMS films exhibited a strong preferred (002) orientation and at 400 °C, no contributions from other orientations were detected. Despite the low film thickness of only 200 nm, an ω-scan full width at half maximum value of 5.1° was achieved on Si. The results are attributed to the high ionization of sputtered material achieved in HiPIMS. On textured Mo, there was no significant difference between the deposition techniques.

  12. Biological detection and tagging using tailorable, reactive, highly fluorescent chemosensors.

    Energy Technology Data Exchange (ETDEWEB)

    Shepodd, Timothy J.; Zifer, Thomas; McElhanon, James Ross; Rahn, Larry A.

    2006-11-01

    This program was focused on the development of a fluorogenic chemosensor family that could tuned for reaction with electrophilic (e.g. chemical species, toxins) and nucleophilic (e.g. proteins and other biological molecules) species. Our chemosensor approach utilized the fluorescent properties of well-known berberine-type alkaloids. In situ chemosensor reaction with a target species transformed two out-of-plane, weakly conjugated, short-wavelength chromophores into one rigid, planar, conjugated, chromophore with strong long wavelength fluorescence (530-560 nm,) and large Stokes shift (100-180 nm). The chemosensor was activated with an isourea group which allowed for reaction with carboxylic acid moieties found in amino acids.

  13. Development of an apparatus to study chemical reactions at high temperature - a progress report

    Energy Technology Data Exchange (ETDEWEB)

    Sturzenegger, M.; Schelling, Th.; Steiner, E.; Wuillemin, D. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    TREMPER is an apparatus that was devised to study kinetic and thermodynamic aspects of high-temperature reactions under concentrated solar irradiation. The design allows investigations on solid or liquid samples under inert or reactive atmospheres. The working temperature is adjustable; the upper limit that has yet been reached is about 1900 K. TREMPER will facilitate chemical reactivity studies on a temperature level that is difficult to access by other means. First experiments were conducted to study the decomposition of manganese oxide MnO{sub 2}. Chemical analysis of exposed samples confirmed that the parent MnO{sub 2} was decomposed to mixtures of Mn O and Mn{sub 3}O{sub 4}. The amount of Mn O ranged from 60 mol-% in air to 86 mol-% under inert atmosphere. (author) 1 fig., 1 tab., 2 refs.

  14. Chemical reactivity of hypervalent silicon compounds: The local hard and soft acids and bases principle viewpoint

    Indian Academy of Sciences (India)

    Francisco Méndez; María De L Romero; José L Gazquez

    2005-09-01

    The silicon atom may increase its coordination number to values greater than four, to form pentacoordinated compounds. It has been observed experimentally that, in general, pentacoordinated compounds show greater reactivity than tetracoordinated compounds. In this work, density functional theory is used to calculate the global softness and the condensed softness of the silicon atom for SiHF4- and SiHF$^{1-}_{5-n}$. The values obtained show that the global and condensed softness are greater in the pentacoordinated compounds than in the tetracoordinated compounds, a result that explains the enhanced reactivity. If the results are analysed through a local version of the hard and soft acids and bases principle, it is possible to suggest that in nucleophilic substitution reactions, soft nucleophiles preferably react with SiHF$^{1-}_{5-n}$, and hard nucleophiles with SiHF4-.

  15. Chemical Cleaning of Metal Surfaces in Vacuum Systems by Exposure to Reactive Gases.

    Science.gov (United States)

    1987-11-10

    Phys. Letters 39 (1976) 113. 196. P.E. Luscher , Surface Sci. 66 (1977) 167. 197. M. Housley and C.A. King, Surface Sci. 62 (1977) 81, 93. 193. M.K. Debe... Physics and Astronomy Barrows Hall University of Maine Orono, ME 04469 ............... November 10, 1987 Reproduction in whole or in part is permitted...Exposure to Reactive Gases M. Grunze*, H. Ruppender and 0. Elshazly Laboratory for Surface Science and Technology and Department of Physics and

  16. Control of Convective Dissolution by Chemical Reactions: General Classification and Application to CO2 Dissolution in Reactive Aqueous Solutions

    Science.gov (United States)

    Loodts, V.; Thomas, C.; Rongy, L.; De Wit, A.

    2014-09-01

    In partially miscible two-layer systems within a gravity field, buoyancy-driven convective motions can appear when one phase dissolves with a finite solubility into the other one. We investigate the influence of chemical reactions on such convective dissolution by a linear stability analysis of a reaction-diffusion-convection model. We show theoretically that a chemical reaction can either enhance or decrease the onset time of the convection, depending on the type of density profile building up in time in the reactive solution. We classify the stabilizing and destabilizing scenarios in a parameter space spanned by the solutal Rayleigh numbers. As an example, we experimentally demonstrate the possibility to enhance the convective dissolution of gaseous CO2 in aqueous solutions by a classical acid-base reaction.

  17. Development of chiral metal amides as highly reactive catalysts for asymmetric [3 + 2] cycloadditions

    Science.gov (United States)

    Yamashita, Yasuhiro; Yoshimoto, Susumu; Dutton, Mark J

    2016-01-01

    Summary Highly efficient catalytic asymmetric [3 + 2] cycloadditions using a chiral copper amide are reported. Compared with the chiral CuOTf/Et3N system, the CuHMDS system showed higher reactivity, and the desired reactions proceeded in high yields and high selectivities with catalyst loadings as low as 0.01 mol %. PMID:27559396

  18. Chemical Reactivity of alpha-Pinene-derived Products in the Aqueous Phase: Implications on the Fate of Organic Nitrates

    Science.gov (United States)

    Rindelaub, J. D.; Hostetler, M. A.; Lipton, M. A.; Shepson, P. B.

    2014-12-01

    The production of organic nitrates has significant atmospheric importance due to the impact on regional air quality by influencing NOx lifetimes and ozone formation. Additionally, these low volatility compounds readily partition into the particle phase and are important contributors to secondary organic aerosol. Once in the aerosol phase, organic nitrates undergo further chemical reactions that govern their fate in the atmosphere and, consequently, their impact on air quality. Recent research indicates that the presence of water on aerosol particles has a major impact on the reactivity of organic nitrates and that condensed phase hydrolysis leads to the destruction of organic nitrate species, depending on structure. Despite this knowledge, the chemical mechanisms, products, product reactivity and volatility are still uncertain, negatively impacting our understanding of aerosol phase processing and the contribution to air quality. To further understand the atmospheric impact of aerosol phase hydrolysis, we analyzed both condensed phase hydrolysis reactions involving alpha-pinene-derived standards and alpha-pinene photochemical chamber reaction filter samples, using a suite of spectroscopic and mass spectrometric techniques. We were able to measure the pH-dependent hydrolysis rate constants for several types of organic nitrates and identify specific reaction products. The chemistry involved exhibits a strong dependence on pH, providing important mechanistic clues. The results of this study will significantly contribute to our knowledge of aerosol phase chemistry and the impact on regional air quality with respect to the fate of organic nitrate species.

  19. Comparison of C-reactive protein and high-sensitivity C-reactive protein levels in patients on hemodialysis

    Directory of Open Access Journals (Sweden)

    Imed Helal

    2012-01-01

    Full Text Available Chronic inflammation is highly prevalent in patients on hemodialysis (HD, as evidenced by increased levels of C-reactive protein (CRP. We compared CRP to high-sensitivity C-reactive protein (hs-CRP to determine whether it has any clinical implications and prognostic significance in terms of mortality. CRP was measured using a standard immunoturbidometric assay on the COBAS; INTEGRA system and hs-CRP was measured using the Dade Behring on the Konelab Nephelometer in 50 patients on HD. CRP (≥6 mg/L and hs-CRP (≥3 mg/L levels were elevated in 30% and 54% of the patients, respectively. A significant correlation was noted between hs-CRP and CRP levels (r = 0.98, P <0.001. Deming regression analysis showed that the slope was near one (r = 0.90; 0.83-0.94 and that the intercept was small. Multivariate regression confirmed that age above 40 years (RR = 3.69, P = 0.027 and duration on HD greater than five years (RR = 3.71, P = 0.028 remained significant independent predictors of serum hs-CRP. Thirteen patients died during follow-up (26%. Multivariate Cox regression demonstrated that hs-CRP (RR = 1.062, P = 0.03 and CRP levels (RR = 1.057, P = 0.009 and age (RR = 1.078, P = 0.001 were the most powerful predictors of mortality. The CRP standard assay presents a reasonable alternative to the hs-CRP assay in patients on HD. The advantages of the CRP standard assay are its online and real-time availability as well as lower costs, particularly in developing countries.

  20. Comparison of C-reactive protein and high-sensitivity C-reactive protein levels in patients on hemodialysis.

    Science.gov (United States)

    Helal, Imed; Zerelli, Lilia; Krid, Madiha; ElYounsi, Fethi; Ben Maiz, Hedi; Zouari, Bechir; Adelmoula, Jaouida; Kheder, Adel

    2012-05-01

    Chronic inflammation is highly prevalent in patients on hemodialysis (HD), as evidenced by increased levels of C-reactive protein (CRP). We compared CRP to high-sensitivity C-reactive protein (hs-CRP) to determine whether it has any clinical implications and prognostic significance in terms of mortality. CRP was measured using a standard immunoturbidometric assay on the COBAS® INTEGRA system and hs-CRP was measured using the Dade Behring on the Konelab Nephelometer in 50 patients on HD. CRP (≥6 mg/L) and hs-CRP (≥3 mg/L) levels were elevated in 30% and 54% of the patients, respectively. A significant correlation was noted between hs-CRP and CRP levels (r = 0.98, P <0.001). Deming regression analysis showed that the slope was near one (r = 0.90; 0.83-0.94) and that the intercept was small. Multivariate regression confirmed that age above 40 years (RR = 3.69, P = 0.027) and duration on HD greater than five years (RR = 3.71, P = 0.028) remained significant independent predictors of serum hs-CRP. Thirteen patients died during follow-up (26%). Multivariate Cox regression demonstrated that hs-CRP (RR = 1.062, P = 0.03) and CRP levels (RR = 1.057, P = 0.009) and age (RR = 1.078, P = 0.001) were the most powerful predictors of mortality. The CRP standard assay presents a reasonable alternative to the hs-CRP assay in patients on HD. The advantages of the CRP standard assay are its online and real-time availability as well as lower costs, particularly in developing countries.

  1. Programmable Thermal Dissociation of Reactive Gaseous Mercury, a Potential Approach to Chemical Speciation: Results from a Field Study§

    Directory of Open Access Journals (Sweden)

    Cheryl Tatum Ernest

    2014-08-01

    Full Text Available Programmable Thermal Dissociation (PTD has been used to investigate the chemical speciation of Reactive Gaseous Mercury (RGM, Hg2+. RGM was collected on denuders and analyzed using PTD. The technique was tested in a field campaign at a coal-fired power plant in Pensacola, Florida. Stack gas samples were collected from ducts located after the electrostatic precipitator and prior to entering the stack. An airship was used to sample from the stack plume, downwind of the stack exit. The PTD profiles from these samples were compared with PTD profiles of HgCl2. Comparison of stack and in-plume samples suggest that the chemical speciation are the same and that it is possible to track a specific chemical form of RGM from the stack and follow its evolution in the stack plume. Comparison of the measured plume RGM with the amount calculated from in-stack measurements and the measured plume dilution suggest that the stack and plume RGM concentrations are consistent with dilution. The PTD profiles of the stack and plume samples are consistent with HgCl2 being the chemical form of the sampled RGM. Comparison with literature PTD profiles of reference mercury compounds suggests no other likely candidates for the speciation of RGM.

  2. Heavy Grignard Reagents: Synthesis, Physical and Structural Properties, Chemical Behavior, and Reactivity.

    Science.gov (United States)

    Westerhausen, Matthias; Koch, Alexander; Görls, Helmar; Krieck, Sven

    2017-01-31

    The Grignard reaction offers a straight forward atom-economic synthesis of organomagnesium halides, which undergo redistribution reactions (Schlenk equilibrium) yielding diorganylmagnesium and magnesium dihalides. The homologous organocalcium complexes (heavy Grignard reagents) gained interest only quite recently owing to several reasons. The discrepancy between the inertness of this heavy alkaline earth metal and the enormous reactivity of its organometallics hampered a vast and timely development after the first investigation more than 100 years ago. In this overview the synthesis of organocalcium reagents is described as is the durability in ethereal solvents. Aryl-, alkenyl-, and alkylcalcium halides are prepared by direct synthesis. Characteristic structural features and NMR parameters are discussed. Ligand redistribution reactions can be performed by addition of potassium tert-butanolate to ethereal solutions of arylcalcium iodides yielding soluble diarylcalcium, whereas sparingly soluble potassium iodide and calcium bis(tert-butanolate) precipitate. Furthermore, reactivity studies with respect to metalation and addition to unsaturated organic compounds and metal-based Lewis acids, leading to the formation of heterobimetallic complexes, are presented. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Correlated Electrochemical and Optical Detection Reveals the Chemical Reactivity of Individual Silver Nanoparticles.

    Science.gov (United States)

    Brasiliense, Vitor; Patel, Anisha N; Martinez-Marrades, Ariadna; Shi, Jian; Chen, Yong; Combellas, Catherine; Tessier, Gilles; Kanoufi, Frédéric

    2016-03-16

    Electrochemical (EC) impacts of single nanoparticles (NPs) on an ultramicroelectrode are coupled with optics to identify chemical processes at the level of individual NPs. While the EC signals characterize the charge transfer process, the optical monitoring gives a complementary picture of the transport and chemical transformation of the NPs. This is illustrated in the case of electrodissolution of Ag NPs. In the simplest case, the optically monitored dissolution of individual NPs is synchronized with individual EC spikes. Optics then validates in situ the concept of EC nanoimpacts for sizing and counting of NPs. Chemical complexity is introduced by using a precipitating agent, SCN(-), which tunes the overall electrodissolution kinetics. Particularly, the charge transfer and dissolution steps occur sequentially as the synchronicity between the EC and optical signals is lost. This demonstrates the level of complexity that can be revealed from such electrochemistry/optics coupling.

  4. Subcritical crack growth in a chemically reactive environment-implications for caprock integrity for CO2 storage

    Science.gov (United States)

    Fan, Z.; Eichhubl, P.; Callahan, O. A.; Major, J. R.; Chen, X.

    2015-12-01

    Seal integrity of cap-rock is a critical constraint on the long term performance of CO2 containment site. During fluid migration, the coupled geochemical reaction of minerals and geomechanical deformation of rock matrix may affect the seal integrity. The potential leakage of injected CO2 from cap-rock through preexisting fractures/faults represents a major concern associated with geological storage of CO2. To address the fundamental question of CO2 leakage through subcritical growth of fractures driven by chemically reactive fluid across caprocks, we build a Dugdale cohesive model. Ahead of the physical crack tip, a narrow band of cohesive zone is assumed to exist with the upper and lower cohesive surfaces held by the cohesive traction. In the vicinity of the crack tip, minerals dissolve due to the acidic environment and migrate from the physical crack tip into the cohesive zone causing damage of rock matrix in the form of a reduction of cohesive traction.Focusing on the dissolution of calcite and following the stress corrosion theory, we assume the degradation of cohesive traction is linearly proportional to the concentration of Ca2+whose evolution follows the reactive diffusion equation. Using a critical crack opening displacement criterion, the subcritical propagation behavior of crack due to stress corrosion is captured and the rate-limiting effects including the chemical reactions to produce the Ca2+ and the transport of minerals along the newly generated fracture cohesive zone are incorporated. Subcritical crack growth rate under different chemical environment conditions is examined and compared with the experimental fracture mechanics testing.

  5. Topological analysis (BCP) of vibrational spectroscopic studies, docking, RDG, DSSC, Fukui functions and chemical reactivity of 2-methylphenylacetic acid.

    Science.gov (United States)

    Kavimani, M; Balachandran, V; Narayana, B; Vanasundari, K; Revathi, B

    2017-09-07

    Experimental FT-IR and FT-Raman spectra of 2-methylphenylacetic acid (MPA) were recorded and theoretical values are also analyzed. The non-linear optical (NLO) properties were evaluated by determination of first (5.5053×10(-30) e.s.u.) and second hyper-polarizabilities (7.6833×10(-36) e.s.u.) of the title compound. The Multiwfn package is used to find the weak non-covalent interaction (Van der Wall interaction) and strong repulsion (steric effect) of the molecule and examined by reduced density gradient. The molecular electrostatic potential (MEP) analysis used to find the most reactive sites for the electrophilic and nucleophilic attack. The chemical activity (electronegativity, hardness, chemical softness and chemical potential) of the title compound was predicted with the help of HOMO-LUMO energy values. The natural bond orbital (NBO) has been analyzed the stability of the molecule arising from the hyper-conjugative interaction. DSSCs were discussed in structural modifications that improve the electron injection efficiency of the title compound (MPA). The Fukui functions are calculated in order to get information associated with the local reactivity properties of the title compound. The binding sites of the two receptors were reported by molecular docking field and active site bond distance is same 1.9Å. The inhibitor of the title compound forms a stable complex with 1QYV and 2H1K proteins at the binding energies are -5.38 and -5.85 (∆G in kcal/mol). Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Cognitive response to a cold pressor challenge in high and low blood pressure reactive subjects.

    Science.gov (United States)

    Heiden, L A; Larkin, K T; Knowlton, G E

    1991-01-01

    To examine the relationship between cognitive and cardiovascular reactions to a cold pressor challenge, 20 high and 20 low blood-pressure-reactive males were identified. Subjects were trained using a think-aloud procedure and asked to report their thoughts aloud during task presentation. In comparison to low-reactors, high-reactive subjects exhibited greater increases in systolic and diastolic blood pressure, but not heart rate, in response to the task. High-reactive subjects reported fewer distracting self-statements than low-reactors during the task. No group differences in positive, neutral, or negative self-statements were observed. These findings corroborate the importance of distraction strategies in mediating acute cardiovascular reactions to stress.

  7. The importance of narcissism in predicting proactive and reactive aggression in moderately to highly aggressive children.

    Science.gov (United States)

    Barry, Tammy D; Thompson, Alice; Barry, Christopher T; Lochman, John E; Adler, Kristy; Hill, Kwoneathia

    2007-01-01

    The present study examined the importance of psychopathy-linked narcissism in predicting proactive and reactive aggression and conduct problems in a group of 160 moderately to highly aggressive children (mean age of 10 years, 9 months). Children's self-report of self-esteem and parent and teacher report of dimensions of psychopathy [narcissism, callous-unemotional (CU) traits, and impulsivity], proactive and reactive aggression, and conduct problems were collected. Composites of parent and teacher ratings of children's behavior were used. Consistent with the study's hypotheses, narcissism predicted unique variance in both proactive and reactive aggression, even when controlling for other dimensions of psychopathy, demographic variables associated with narcissism, and the alternative subtype of aggression. As hypothesized, impulsivity was significantly associated with only reactive aggression. CU traits were not related to proactive or reactive aggression once the control variables were entered. All dimensions of psychopathy predicted unique variance in conduct problems. Consistent with prediction, narcissism was not significantly related to general self-esteem, providing support that narcissism and self-esteem are different constructs. Furthermore, narcissism and self-esteem related differentially to proactive aggression, reactive aggression, and conduct problems. Furthermore, narcissism but not self-esteem accounted for unique variance in aggression and conduct problems. The importance of narcissism in the prediction of aggressive behaviors and clinical implications are discussed.

  8. Development of a QSAR for worst case estimates of acute toxicity of chemically reactive compounds

    NARCIS (Netherlands)

    Freidig, A.P.; Dekkers, S.; Verwei, M.; Zvinavashe, E.; Bessems, J.G.M.; Sandt, J.J.M. van de

    2007-01-01

    Future EU legislations enforce a fast hazard and risk assessment of thousands of existing chemicals. If conducted by means of present data requirements, this assessment will use a huge number of test animals and will be neither cost nor time effective. The purpose of the current research was to

  9. Development of a QSAR for worst case estimates of acute toxicity of chemically reactive compounds

    NARCIS (Netherlands)

    Freidig, A.P.; Dekkers, S.; Verwei, M.; Zvinavashe, E.; Bessems, J.G.M.; Sandt, J.J.M. van de

    2007-01-01

    Future EU legislations enforce a fast hazard and risk assessment of thousands of existing chemicals. If conducted by means of present data requirements, this assessment will use a huge number of test animals and will be neither cost nor time effective. The purpose of the current research was to deve

  10. Cross-reactivity virtual profiling of the human kinome by X-react(KIN): a chemical systems biology approach.

    Science.gov (United States)

    Brylinski, Michal; Skolnick, Jeffrey

    2010-12-06

    Many drug candidates fail in clinical development due to their insufficient selectivity that may cause undesired side effects. Therefore, modern drug discovery is routinely supported by computational techniques, which can identify alternate molecular targets with a significant potential for cross-reactivity. In particular, the development of highly selective kinase inhibitors is complicated by the strong conservation of the ATP-binding site across the kinase family. In this paper, we describe X-React(KIN), a new machine learning approach that extends the modeling and virtual screening of individual protein kinases to a system level in order to construct a cross-reactivity virtual profile for the human kinome. To maximize the coverage of the kinome, X-React(KIN) relies solely on the predicted target structures and employs state-of-the-art modeling techniques. Benchmark tests carried out against available selectivity data from high-throughput kinase profiling experiments demonstrate that, for almost 70% of the inhibitors, their alternate molecular targets can be effectively identified in the human kinome with a high (>0.5) sensitivity at the expense of a relatively low false positive rate (cross-reactivity profiles for the human kinome are freely available to the academic community at http://cssb.biology.gatech.edu/kinomelhm/ .

  11. Enhancing CaP biomimetic growth on TiO2 cuboids nanoparticles via highly reactive facets.

    Science.gov (United States)

    Ruso, Juan M; Verdinelli, Valeria; Hassan, Natalia; Pieroni, Olga; Messina, Paula V

    2013-02-19

    Pure decahedral anatase TiO(2) particles with high content of reactive {001} facets were obtained from titanium(IV) tetrachloride (TiCl(4)) using a microemulsions droplet system at specific conditions as chemical microreactor. The product was systematically characterized by X-ray diffraction, field-emission scanning and transmission electron microscopy (FE-SEM, TEM), N(2) adsorption-desorption isotherms, FT-IR and UV-vis spectroscopy, and photoluminescence studies. The obtained cuboids around 90 nm in size have a uniform and dense surface morphology with a BET specific surface area of 11.91 m(2) g(-1) and a band gap energy (3.18 eV) slightly inferior to the anatase dominated by the less-reactive {101} surface (3.20 eV). The presence of reactive facets on titania anatase favors the biomimetic growth of amorphous tricalcium phosphate after the first day of immersion in simulated human plasma. The results presented here can facilitate and improve the integration of anchored implants and enhance the biological responses to the soft tissues.

  12. Chemical reactivity of hydrogen, nitrogen, and oxygen atoms at temperatures below 100 k

    Science.gov (United States)

    Mcgee, H. A., Jr.

    1973-01-01

    The synthesis of unusual compounds by techniques employing cryogenic cooling to retard their very extreme reactivity was investigated. Examples of such species that were studied are diimide (N2H2), cyclobutadiene (C4H4), cyclopropanone (C3H4O), oxirene (C2H2O), and many others. Special purpose cryogenically cooled inlet arrangements were designed such that the analyses incurred no warm-up of the cold, and frequently explosively unstable, compounds. Controlled energy electron impact techniques were used to measure critical potentials and to develop the molecular energetics and thermodynamics of these molecules and to gain some insight into their kinetic characteristics as well. Three and four carbon strained ring molecules were studied. Several reactions of oxygen and hydrogen atoms with simple molecules of H, N, C, and O in hard quench configurations were studied. And the quench stabilization of BH3 was explored as a model system in cryochemistry.

  13. Fullerene C70 as a Nanoflask that Reveals the Chemical Reactivity of Atomic Nitrogen.

    Science.gov (United States)

    Morinaka, Yuta; Zhang, Rui; Sato, Satoru; Nikawa, Hidefumi; Kato, Tatsuhisa; Furukawa, Ko; Yamada, Michio; Maeda, Yutaka; Murata, Michihisa; Wakamiya, Atsushi; Nagase, Shigeru; Akasaka, Takeshi; Murata, Yasujiro

    2017-06-01

    To investigate the intrinsic reactivity of atomic nitrogen, which had previously been accomplished only by examining its decay in the gas phase using special equipment, a nitrogen atom was inserted into a series of molecule-encapsulating C60 and C70 fullerenes. Among the studied endofullerenes, H2 @C70 was able to encapsulate an additional nitrogen atom within the fullerene cage under radiofrequency plasma conditions. The product was analyzed by ESR spectroscopy and mass spectrometry in solution, which revealed that the nitrogen atom with a quartet ground state does not react but weakly interact with the H2 molecule, thus demonstrating the utility of such fullerenes as "nanoflasks". © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Development of Highly Durable and Reactive Regenerable Magnesium-Based Sorbents for CO2 Separation in Coal Gasification Process

    Energy Technology Data Exchange (ETDEWEB)

    Javad Abbasian; Armin Hassanzadeh Khayyat; Rachid B. Slimane

    2005-06-01

    The specific objective of this project was to develop physically durable and chemically regenerable MgO-based sorbents that can remove carbon dioxide from raw coal gas at operating condition prevailing in IGCC processes. A total of sixty two (62) different sorbents were prepared in this project. The sorbents were prepared either by various sol-gel techniques (22 formulations) or modification of dolomite (40 formulations). The sorbents were prepared in the form of pellets and in granular forms. The solgel based sorbents had very high physical strength, relatively high surface area, and very low average pore diameter. The magnesium content of the sorbents was estimated to be 4-6 % w/w. To improve the reactivity of the sorbents toward CO{sub 2}, The sorbents were impregnated with potassium salts. The potassium content of the sorbents was about 5%. The dolomite-based sorbents were prepared by calcination of dolomite at various temperature and calcination environment (CO{sub 2} partial pressure and moisture). Potassium carbonate was added to the half-calcined dolomite through wet impregnation method. The estimated potassium content of the impregnated sorbents was in the range of 1-6% w/w. In general, the modified dolomite sorbents have significantly higher magnesium content, larger pore diameter and lower surface area, resulting in significantly higher reactivity compared to the sol-gel sorbents. The reactivities of a number of sorbents toward CO{sub 2} were determined in a Thermogravimetric Analyzer (TGA) unit. The results indicated that at the low CO{sub 2} partial pressures (i.e., 1 atm), the reactivities of the sorbents toward CO{sub 2} are very low. At elevated pressures (i.e., CO{sub 2} partial pressure of 10 bar) the maximum conversion of MgO obtained with the sol-gel based sorbents was about 5%, which corresponds to a maximum CO{sub 2} absorption capacity of less than 1%. The overall capacity of modified dolomite sorbents were at least one order of magnitude

  15. A Graph Theoretical and Topological Approach to Chemical Structure, Reactivity, and Dynamics

    Science.gov (United States)

    1988-10-01

    chirality polynomial of the regular icosahedron, a problem previously assumed to be intractable. 2 7 Professor King has also expanded, extended, and...algebra to determine polynomials for the description of chirality observations. 6 0 This review presents a critical analysis of the limitations of...Surfaces: Such maps are generalizations of the convex polyhedra so common in chemical applications. During the last twenty years, Tutte and others have

  16. Transport and Reactivity of Decontaminants to Provide Hazard Mitigation of Chemical Warfare Agents from Materials

    Science.gov (United States)

    2016-06-01

    of Additives and Impurities from Polymeric Materials; EPA 560/5-85-015; U.S. Environmental Protection Agency, Office of Pesticides and Toxic...performance, a penetrating decontaminant may cause damage to the material, such as the swelling of polymers caused by solvents or any active...Chemical Warfare Agent Degradation Products. Environ . Health Perspect. 1999, 107 (12), 933–974. 5. Kim, K.; Tsay, O.G.; Atwood, D.A.; Churchill, D.G

  17. Residence time and conversion in the extrusion of chemically reactive materials

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, W.; Jaluria, Y.

    1999-07-01

    Extrusion is one of the most versatile and energy-efficient processes for the manufacture of polymer products, including food, pharmaceuticals and plastics. Many functions including mixing, cooking and chemical reaction can be performed in an extruder. Here, twin-screw extruders offer improved control of the residence time distribution (RTD) and mixing in materials such as plastics, rubber and food. Based on the flow and the heat transfer characteristics obtained for a self-wiping, co-rotating twin-screw extruder, the residence time and chemical reaction are studied by tracking the particles. For normally starve-fed twin-screw extruders, the length of the completely filled section is calculated as function of the process variables using the coupling of the flow with the die. With a model of the solid conveying section, the RTD for the whole extruder is calculated for corn meal at different screw speeds and flow rates. The calculated variation of RTD with the screw speed and the flow rate yields good agreement with observations from many experiments. The variation of the fully filled section length, chemical conversion and mixing effectiveness are also obtained under different operation conditions. Most of the results are in qualitative agreement with experimental results and may be used as guidelines for extruder design and determination of optimal operating condition.

  18. Fluctuations in reactive networks subject to extrinsic noise studied in the framework of the chemical Langevin equation

    Science.gov (United States)

    Berthoumieux, H.

    2016-07-01

    Theoretical and experimental studies have shown that the fluctuations of in vivo systems break the fluctuation-dissipation theorem. One can thus ask what information is contained in the correlation functions of protein concentrations and how they relate to the response of the reactive network to a perturbation. Answers to these questions are of prime importance to extract meaningful parameters from the in vivo fluorescence correlation spectroscopy data. In this paper we study the fluctuations of the concentration of a reactive species involved in a cyclic network that is in a nonequilibrium steady state perturbed by a noisy force, taking into account both the breaking of detailed balance and extrinsic noises. Using a generic model for the network and the extrinsic noise, we derive a chemical Langevin equation that describes the dynamics of the system, we determine the expressions of the correlation functions of the concentrations, and we estimate the deviation of the fluctuation-dissipation theorem and the range of parameters in which an effective temperature can be defined.

  19. Fluctuations in reactive networks subject to extrinsic noise studied in the framework of the chemical Langevin equation.

    Science.gov (United States)

    Berthoumieux, H

    2016-07-01

    Theoretical and experimental studies have shown that the fluctuations of in vivo systems break the fluctuation-dissipation theorem. One can thus ask what information is contained in the correlation functions of protein concentrations and how they relate to the response of the reactive network to a perturbation. Answers to these questions are of prime importance to extract meaningful parameters from the in vivo fluorescence correlation spectroscopy data. In this paper we study the fluctuations of the concentration of a reactive species involved in a cyclic network that is in a nonequilibrium steady state perturbed by a noisy force, taking into account both the breaking of detailed balance and extrinsic noises. Using a generic model for the network and the extrinsic noise, we derive a chemical Langevin equation that describes the dynamics of the system, we determine the expressions of the correlation functions of the concentrations, and we estimate the deviation of the fluctuation-dissipation theorem and the range of parameters in which an effective temperature can be defined.

  20. A comprehensive characterisation of Asian dust storm particles: chemical composition, reactivity to SO2, and hygroscopic property

    Directory of Open Access Journals (Sweden)

    H. He

    2010-04-01

    Full Text Available Mineral dust comprises of a significant fraction of the globe's aerosol loading. Yet it remains the largest uncertainty in future climate predictions due to the complexity in its components and physico-chemical properties. Multi-analysis methods, including SEM-EDX, FTIR, BET, TPD/mass, and Knudsen cell/mass, were used in the present study to characterise Asian dust storm particles. The morphology, element fraction, source distribution, true uptake coefficient of SO2 and hygroscopic behaviour were studied. The major components of Asian dust storm particles were found to consist of aluminosilicate, SiO2, and CaCO3, which were coated with organic compounds and inorganic nitrate. The dust storm particles have a low reactivity to SO2 (true uptake coefficient of 5.767×10−6 which limits the conversion of SO2 to sulfate during a dust storm period. The low reactivity also demonstrated that the heterogeneous reaction of SO2, in both dry and humid air conditions, had little effect on the hygroscopic behaviour of the dust particles. These results indicate that the impact of dust storms on atmospheric SO2 removal should not be overestimated.

  1. An alternative to fully coupled reactive transport simulations for long-term prediction of chemical reactions in complex geological systems

    Science.gov (United States)

    De Lucia, Marco; Kempka, Thomas; Kühn, Michael

    2014-05-01

    Fully-coupled reactive transport simulations involving multiphase hydrodynamics and chemical reactions in heterogeneous settings are extremely challenging from a computational point of view. This often leads to oversimplification of the investigated system: coarse spatial discretization, to keep the number of elements in the order of few thousands; simplified chemistry, disregarding many potentially important reactions. A novel approach for coupling non-reactive hydrodynamic simulations with the outcome of single batch geochemical simulations was therefore introduced to assess the potential long-term mineral trapping at the Ketzin pilot site for underground CO2 storage in Germany [1],[2]. The advantage of the coupling is the ability to use multi-million grid non-reactive hydrodynamics simulations on one side and few batch 0D geochemical simulations on the other, so that the complexity of both systems does not need to be reduced. This contribution shows the approach which was taken to validate this simplified coupling scheme. The procedure involved batch simulations of the reference geochemical model, then performing both non-reactive and fully coupled 1D and 3D reactive transport simulations and finally applying the simplified coupling scheme based on the non-reactive and geochemical batch model. The TOUGHREACT/ECO2N [3] simulator was adopted for the validation. The degree of refinement of the spatial grid and the complexity and velocity of the mineral reactions, along with a cut-off value for the minimum concentration of dissolved CO2 allowed to originate precipitates in the simplified approach were found out to be the governing parameters for the convergence of the two schemes. Systematic discrepancies between the approaches are not reducible, simply because there is no feedback between chemistry and hydrodynamics, and can reach 20 % - 30 % in unfavourable cases. However, even such discrepancy is completely acceptable, in our opinion, given the amount of

  2. Molecular Beam Studies of Hot Atom Chemical Reactions: Reactive Scattering of Energetic Deuterium Atoms

    Science.gov (United States)

    Continetti, R. E.; Balko, B. A.; Lee, Y. T.

    1989-02-01

    A brief review of the application of the crossed molecular beams technique to the study of hot atom chemical reactions in the last twenty years is given. Specific emphasis is placed on recent advances in the use of photolytically produced energetic deuterium atoms in the study of the fundamental elementary reactions D + H{sub 2} -> DH + H and the substitution reaction D + C{sub 2}H{sub 2} -> C{sub 2}HD + H. Recent advances in uv laser and pulsed molecular beam techniques have made the detailed study of hydrogen atom reactions under single collision conditions possible.

  3. Diffusion of chemically reactive species in Casson fluid flow over an unsteady permeable stretching surface

    Institute of Scientific and Technical Information of China (English)

    MUKHOPADHYAY Swati; VAJRAVELU Kuppalapalle

    2013-01-01

    In this paper we investigate the two-dimensional flow of a non-Newtonian fluid over an unsteady stretching permeable surface.The Casson fluid model is used to characterize the non-Newtonian fluid behavior.First-order constructive/destructive chemical reaction is considered.With the help of a shooting method,numerical solutions for a class of nonlinear coupled differential equations subject to appropriate boundary conditions are obtained.For the steady flow,the exact solution is obtained.The flow features and the mass transfer characteristics for different values of the governing parameters are analyzed and discussed in detail.

  4. Coupling Chemical Kinetics and Flashes in Reactive, Thermal and Compositional Reservoir Simulation

    DEFF Research Database (Denmark)

    Kristensen, Morten Rode; Gerritsen, Margot G.; Thomsen, Per Grove;

    2007-01-01

    of convergence and error test failures by more than 50% compared to direct integration without the new algorithm. To facilitate the algorithmic development we construct a virtual kinetic cell model. We use implicit one-step ESDIRK (Explicit Singly Diagonal Implicit Runge-Kutta) methods for integration...... of the kinetics. The kinetic cell model serves both as a tool for the development and testing of tailored solvers as well as a testbed for studying the interactions between chemical kinetics and phase behavior. A comparison between a Kvalue correlation based approach and a more rigorous equation of state based...

  5. Prognostic value of high sensitive C-reactive protein in subjects with silent myocardial ischemia

    DEFF Research Database (Denmark)

    Mouridsen, Mette; Intzilakis, Theodoros; Binici, Zeynep

    2012-01-01

    OBJECTIVES: The aim of this study was to evaluate the prognostic value of high sensitive C-reactive protein (CRP) in subjects with silent myocardial ischemia (SMI). DESIGN: In total, 678 healthy men and women aged 55 to 75 years with no history of cardiovascular disease or stroke were included...

  6. High-sensitive C-reactive protein is associated with reduced lung function in young adults

    DEFF Research Database (Denmark)

    Rasmussen, F; Mikkelsen, D; Hancox, R J;

    2009-01-01

    Systemic inflammation has been associated with reduced lung function. However, data on the interrelationships between lung function and inflammation are sparse, and it is not clear if low-grade inflammation leads to reduced lung function. Associations between high-sensitive C-reactive protein (CR...

  7. Modeling the Influence of Transport on Chemical Reactivity in Microbial Membranes: Mineral Precipitation/Dissolution Reactions.

    Science.gov (United States)

    Felmy, A. R.; Liu, C.; Clark, S.; Straatsma, T.; Rustad, J.

    2003-12-01

    It has long been known that microorganisms can alter the chemical composition of their immediate surroundings and influence such processes as ion uptake or adsorption and mineral precipitation dissolution. However, only recently have molecular imaging and molecular modeling capabilities been developed that begin to shed light on the nature of these processes at the nm to um scale at the surface of bacterial membranes. In this presentation we will show the results of recent molecular simulations of microbial surface reactions and describe our efforts to develop accurate non-equilibrium thermodynamic models for the microbial surface that can describe ion uptake and surface induced mineral precipitation. The thermodynamic models include the influence of the bacterial electrical double layer on the uptake of ions from solution and the removal, or exclusion, of ions from the surface of the cell, non-equilibrium diffusion and chemical reaction within the membrane, as well as a new thermodynamic approach to representing ion activities within the microbial membrane. In the latter case, the variability in the water content within the microbial membrane has a significant influence on the calculated mineral saturation indices. In such cases, we will propose the use of recently developed mixed solvent-electrolyte formalisms. Recent experimental data for mixed-solvent electrolyte systems will also be presented to demonstrate the potential impact of the variable water content on calculated ion activities within the membrane.

  8. Computational chemistry of natural products: a comparison of the chemical reactivity of isonaringin calculated with the M06 family of density functionals.

    Science.gov (United States)

    Glossman-Mitnik, Daniel

    2014-07-01

    The M06 family of density functionals has been assessed for the calculation of the molecular structure and properties of the Isonaringin flavonoid that can be an interesting material for dye-sensitized solar cells (DSSC). The chemical reactivity descriptors have been calculated through chemical reactivity theory within DFT (CR-DFT). The active sites for nucleophilic and electrophilic attacks have been chosen by relating them to the Fukui function indices and the dual descriptor f ((2))(r). A comparison between the descriptors calculated through vertical energy values and those arising from the Janak's theorem approximation have been performed in order to check for the validity of the last procedure.

  9. Comparative Studies on Dyeability with Direct, Acid and Reactive Dyes after Chemical Modification of Jute with Mixed Amino Acids Obtained from Extract of Waste Soya Bean Seeds

    Science.gov (United States)

    Bhaumik, Nilendu Sekhar; Konar, Adwaita; Roy, Alok Nath; Samanta, Ashis Kumar

    2017-06-01

    Jute fabric was treated with mixed natural amino acids obtained from waste soya bean seed extract for chemical modification of jute for its cataionization and to enhance its dyeability with anionic dyes (like direct, reactive and acid dye) as well enabling soya modified jute for salt free dyeing with anionic reactive dyes maintaining its eco-friendliness. Colour interaction parameters including surface colour strength were assessed and compared for both bleached and soya-modified jute fabric for reactive dyeing and compared with direct and acid dye. Improvement in K/S value (surface colour strength) was observed for soya-modified jute even in absence of salt applied in dye bath for reactive dyes as well as for direct and acid dyes. In addition, reactive dye also shows good dyeability even in acid bath in salt free conditions. Colour fastness to wash was evaluated for bleached and soya-modified jute fabric after dyeing with direct, acid and reactive dyes are reported. Treatment of jute with soya-extracted mixed natural amino acids showed anchoring of some amino/aldemine groups on jute cellulosic polymer evidenced from Fourier Transform Infra-Red (FTIR) Spectroscopy. This amino or aldemine group incorporation in bleached jute causes its cationization and hence when dyed in acid bath for reactive dye (instead of conventional alkali bath) showed dye uptake for reactive dyes. Study of surface morphology by Scanning Electron Microscopy (SEM) of said soya-modified jute as compared to bleached jute was studied and reported.

  10. Speciation and reactivity of lead and zinc in heavily and poorly contaminated soils: Stable isotope dilution, chemical extraction and model views.

    Science.gov (United States)

    Ren, Zong-Ling; Sivry, Yann; Tharaud, Mickaël; Cordier, Laure; Li, Yongtao; Dai, Jun; Benedetti, Marc F

    2017-06-01

    Correct characterization of metal speciation and reactivity is a prerequisite for the risk assessment and remedial activity management of contaminated soil. To better understand the intrinsic reactivity of Pb and Zn, nine heavily and poorly contaminated soils were investigated using the combined approaches of chemical extractions, multi-element stable isotopic dilution (ID) method, and multi-surface modelling. The ID results show that 0.1-38% of total Pb and 3-45% of total Zn in the studied soils are isotopically exchangeable after a 3-day equilibration. The intercomparison between experimental and modelling results evidences that single extraction with 0.43 M HNO3 solubilizes part of non-isotopically exchangeable fraction of Pb and Zn in the studied soils, and cannot be used as a surrogate for ID to assess labile Pb and Zn pools in soil. Both selective sequential extraction (SSE) and modelling reveal that Mn oxides are the predominant sorption surface for Pb in the studied soils; while Zn is predicted to be mainly associated with soil organic matter in the soil with low pH and Fe/Mn oxides in the soils with high pH. Multi-surface modelling can provide a reasonable prediction of Pb and Zn adsorption onto different soil constituents for the most of the studied soils. The modelling could be a promising tool to decipher the underlying mechanism that controls metal reactivity in soil, but the submodel for Mn oxides should be incorporated and the model parameters, especially for the 2-pK diffuse layer model for Mn oxides, should be updated in the further studies. Copyright © 2017. Published by Elsevier Ltd.

  11. Transient analysis of diffusive chemical reactive species for couple stress fluid flow over vertical cylinder

    Institute of Scientific and Technical Information of China (English)

    H. P. RANI; G. J. REDDY; C. N. KIM

    2013-01-01

    The unsteady natural convective couple stress fluid flow over a semi-infinite vertical cylinder is analyzed for the homogeneous first-order chemical reaction effect. The couple stress fluid flow model introduces the length dependent effect based on the material constant and dynamic viscosity. Also, it introduces the biharmonic operator in the Navier-Stokes equations, which is absent in the case of Newtonian fluids. The solution to the time-dependent non-linear and coupled governing equations is carried out with an unconditionally stable Crank-Nicolson type of numerical schemes. Numerical results for the transient flow variables, the average wall shear stress, the Nusselt number, and the Sherwood number are shown graphically for both generative and destructive reactions. The time to reach the temporal maximum increases as the reaction constant K increases. The average values of the wall shear stress and the heat transfer rate decrease as K increases, while increase with the increase in the Sherwood number.

  12. Similarity transformation approach for ferromagnetic mixed convection flow in the presence of chemically reactive magnetic dipole

    Science.gov (United States)

    Hayat, Tasawar; Ijaz Khan, Muhammad; Imtiaz, Maria; Alsaedi, Ahmed; Waqas, Muhammad

    2016-10-01

    A simple model of chemical reactions for two dimensional ferrofluid flows is constructed. The impact of magnetic dipole and mixed convection is further analyzed. Flow is caused by linear stretching of the sheet. Similarity transformation is adopted to convert the partial differential equations into ordinary differential equations and then solved by Euler's explicit method. The characteristics of sundry parameters on the velocity, temperature, and concentration fields are graphically elaborated. It is noted that the impact of magneto-thermomechanical interaction is to slow down the fluid motion. The skin friction coefficient enhances and affects the rate of heat transfer. For higher values of ferrohydrodynamics, the interaction velocity shows decreasing behavior. Further the Prandtl number on temperature has opposite behavior when compared with thermal radiation and ferrohydrodynamics interaction.

  13. Enhanced selection of high affinity DNA-reactive B cells following cyclophosphamide treatment in mice.

    Directory of Open Access Journals (Sweden)

    Daisuke Kawabata

    Full Text Available A major goal for the treatment of patients with systemic lupus erythematosus with cytotoxic therapies is the induction of long-term remission. There is, however, a paucity of information concerning the effects of these therapies on the reconstituting B cell repertoire. Since there is recent evidence suggesting that B cell lymphopenia might attenuate negative selection of autoreactive B cells, we elected to investigate the effects of cyclophosphamide on the selection of the re-emerging B cell repertoire in wild type mice and transgenic mice that express the H chain of an anti-DNA antibody. The reconstituting B cell repertoire in wild type mice contained an increased frequency of DNA-reactive B cells; in heavy chain transgenic mice, the reconstituting repertoire was characterized by an increased frequency of mature, high affinity DNA-reactive B cells and the mice expressed increased levels of serum anti-DNA antibodies. This coincided with a significant increase in serum levels of BAFF. Treatment of transgene-expressing mice with a BAFF blocking agent or with DNase to reduce exposure to autoantigen limited the expansion of high affinity DNA-reactive B cells during B cell reconstitution. These studies suggest that during B cell reconstitution, not only is negative selection of high affinity DNA-reactive B cells impaired by increased BAFF, but also that B cells escaping negative selection are positively selected by autoantigen. There are significant implications for therapy.

  14. Electron Transfer Reactivity Patterns at Chemically Modified Electrodes: Fundamentals and Application to the Optimization of Redox Recycling Amplification Systems

    Energy Technology Data Exchange (ETDEWEB)

    Bergren, Adam Johan [Iowa State Univ., Ames, IA (United States)

    2006-01-01

    Electroanalytical chemistry is often utilized in chemical analysis and Fundamental studies. Important advances have been made in these areas since the advent of chemically modified electrodes: the coating of an electrode with a chemical film in order to impart desirable, and ideally, predictable properties. These procedures enable the exploitation of unique reactivity patterns. This dissertation presents studies that investigate novel reaction mechanisms at self-assembled monolayers on gold. In particular, a unique electrochemical current amplification scheme is detailed that relies on a selective electrode to enable a reactivity pattern that results in regeneration of the analyte (redox recycling). This regenerating reaction can occur up to 250 times for each analyte molecule, leading to a notable enhancement in the observed current. The requirements of electrode selectivity and the resulting amplification and detection limit improvements are described with respect to the heterogeneous and homogeneous electron transfer rates that characterize the system. These studies revealed that the heterogeneous electrolysis of the analyte should ideally be electrochemically reversible, while that for the regenerating agent should be held to a low level. Moreover, the homogeneous reaction that recycles the analyte should occur at a rapid rate. The physical selectivity mechanism is also detailed with respect to the properties of the electrode and redox probes utilized. It is shown that partitioning of the analyte into/onto the adlayer leads to the extraordinary selectivity of the alkanethiolate monolayer modified electrode. Collectively, these studies enable a thorough understanding of the complex electrode mechanism required for successful redox recycling amplification systems, Finally, in a separate (but related) study, the effect of the akyl chain length on the heterogeneous electron transfer behavior of solution-based redox probes is reported, where an odd-even oscillation

  15. Molecular weight and chemical reactivity of dissolved trace metals (Cd, Cu, Ni) in surface waters from the Mississippi River to Gulf of Mexico

    Science.gov (United States)

    Wen, Liang-Saw; Santschi, Peter H.; Warnken, Kent W.; Davison, William; Zhang, Hao; Li, Hsiu-Ping; Jiann, Kuo-Tung

    2011-05-01

    It is generally assumed that estuarine mixing is continuous for metals from terrestrial sources, gradually decreasing towards the open ocean endmember. Here we show that, chemical reactivity, determined by ion exchange method, and molecular weight distributions, obtained using cross-flow ultrafiltration, of dissolved Cd, Cu, and Ni in the surface waters of the Gulf of Mexico varied systematically across the estuarine mixing zone of the Mississippi River. Most size or chemical affinity fractions of dissolved metals (warm core ring in the Gulf of Mexico. Dissolved Cd was mostly present as a truly dissolved (behavior between Cu and the other two metals might indicate differences in the biopolymeric nature of the metal-organic chelates. In particular, the anionic-organic Cd fractions accounted for just 3 ± 1%, on average. However, for Cu, it was 24 ± 4%, and for Ni, it was 9 ± 6%. The fractions of the total dissolved metal fractions that were "inert" averaged 31 ± 10% for Cu and 29 ± 12% for Ni. Small but noticeable amounts (6 ± 3%) of dissolved inert Cd fractions were also present. Apparent non-local transport processes, likely associated with cross-shelf sediment resuspension processes, could have been responsible for the relatively high concentrations of 'inert' and 'anionic' metal fractions in high salinity coastal waters, and accounting for the persistence of metals bound to humic substances in the Gulf of Mexico.

  16. A high-fat meal increases cardiovascular reactivity to psychological stress in healthy young adults.

    Science.gov (United States)

    Jakulj, Fabijana; Zernicke, Kristin; Bacon, Simon L; van Wielingen, Laura E; Key, Brenda L; West, Sheila G; Campbell, Tavis S

    2007-04-01

    The consumption of high levels of saturated fat over the course of several weeks may lead to exaggerated cardiovascular reactivity. The consumption of a single high-fat meal has been associated with a transient impairment of vascular function. In a randomized, repeated measures, crossover study we tested whether the consumption of a single high-fat meal by healthy, normotensive participants would affect cardiovascular reactivity when compared with an isocaloric, low-fat meal. Thirty healthy participants ate a high-fat (42 g) and a low-fat (1 g) meal on 2 separate occasions, and their cardiovascular response to 2 standard laboratory stressors was measured. Systolic blood pressure, diastolic blood pressure, and total peripheral resistance were greater in participants following the consumption of the high-fat meal relative to the low-fat meal. The findings of the present study are consistent with the hypothesis that even a single high-fat meal may be associated with heightened cardiovascular reactivity to stress and offer insight into the pathways through which a high-fat diet may affect cardiovascular function.

  17. Physico-chemical changes of the ground waters related to the 2011 El Hierro magmatic reactivation

    Science.gov (United States)

    Dionis, S.; Melián, G.; Padrón, E.; Padilla, G.; Nolasco, D.; Rodríguez, F.; Hernández, I.; Peraza, D.; Barrancos, J.; Hernández, P.; Calvo, D.; Pérez, N.

    2012-04-01

    The island of El Hierro (278 Km2), is the smallest, the southwesternmost and the youngest island (˜1.12 My) of the Canarian archipelago. The main geological characteristics of El Hierro consist on the presence of three convergent ridges of volcanic cones on a truncated trihedron shape and giant landslides between the three rift zones, being the most recent El Golfo on the northwest flank of the island. On July 2011 an anomalous seismic activity at Hierro Island started and suggested the initial stage of a volcanic unrest in the volcanic system. On October 10, after the occurrence of more than 10,000 earthquakes, a submarine eruption started. Evidences of this submarine volcanic eruption were visible on the sea surface to the south of La Restinga village, at the south of the island, in the form of large light-green coloured area, turbulent gas emission and the appearance of steamy volcanic fragments three days later. As part of its volcanic surveillance activities, the Instituto Volcanologico de Canarias (INVOLCAN) started a hydrogeochemical monitoring program on August 2011 in order to evaluate the temporal evolution of several physico-chemical parameters of the ground water system of El Hierro. Four observation sites were selected: three wells on the north of the island, where the seismic activity was located at the beginning of the volcano-seismic unrest (SIMO, FRON and PADO) and one horizontal well (gallery) in the south (TACO). Ground water sampling is being regularly collected, three times per week, at each observation site, and in-situ measurements of pH, conductivity and temperature measurements are performed. After 6 month of monitoring, no significant changes have been observed on pH and temperature measurements from all the observation sites. However, clear sharp decrease of conductivity was observed at SIMO on October 10 when the seismic tremor started. In addition, the strongest conductivity decrease pattern was observed later on at SIMO and PADO on

  18. Alpha reactivity to first names differs in subjects with high and low dream recall frequency

    OpenAIRE

    Perrine Marie RUBY; Camille eBlochet; Jean-Baptiste eEichenlaub; Olivier eBertrand; Dominique eMorlet; Aurélie eBidet-Caulet

    2013-01-01

    Studies in cognitive psychology showed that personality (openness to experience, thin boundaries, absorption), creativity, nocturnal awakenings, and attitude toward dreams are significantly related to dream recall frequency (DRF). These results suggest the possibility of neurophysiological trait differences between subjects with high and low DRF. To test this hypothesis we compared sleep characteristics and alpha reactivity to sounds in subjects with high and low DRF using polysomnographic re...

  19. Antidepressant treatment differentially affects the phenotype of high and low stress reactive mice.

    Science.gov (United States)

    Surget, Alexandre; Van Nieuwenhuijzen, Petra S; Heinzmann, Jan-Michael; Knapman, Alana; McIlwrick, Silja; Westphal, Willy-Paul; Touma, Chadi; Belzung, Catherine

    2016-11-01

    Modelling key endophenotypes can be a powerful approach to gain insight into mechanisms underlying the aetiology and pathophysiology of neuropsychiatric disorders. Based on evidence of stress hormone system dysregulations in depression, the Stress Reactivity (SR) mouse model has been generated by a selective breeding approach for extremes in HPA axis reactivity, resulting in high (HR), intermediate (IR) and low (LR) reactive mice. The characterisation of their phenotypic alterations has highlighted many similarities of HR and LR mice with the melancholic and atypical depression, respectively. We therefore aimed to examine whether the antidepressant fluoxetine (10 mg/kg/day i.p., 4-5 weeks) can ameliorate the phenotypic characteristics of HR and LR mice in neuroendocrine functions (HPA axis basal activity, stress reactivity, negative feedback), emotional reactivity/coping-strategy (open field, forced swim tests), spatial learning/memory (Morris water-maze) and hippocampal neurogenesis. Line differences in HPA axis reactivity were maintained under fluoxetine treatment. However, we observed fluoxetine effects on glucocorticoid-induced negative feedback, stress-coping behaviours, cognitive functions and neurogenesis. Specifically, our results revealed line-dependent consequences of fluoxetine treatment: (1) an amelioration of the 'melancholic-like' features of HR mice (reversing the negative feedback resistance, the hyperactive coping style and the memory deficits; increasing hippocampal neurogenesis); (2) an exacerbation of the phenotypic deviations of LR mice (increasing their pronounced negative feedback and passive coping style). Thus, these findings support the predictive validity of antidepressant treatment in the HR mouse line and emphasize the translational value of the SR mouse model for the development of therapeutic strategies based on endophenotype-driven classifications.

  20. Preparation of inhalable salbutamol sulphate using reactive high gravity controlled precipitation.

    Science.gov (United States)

    Hu, Tingting; Chiou, Herbert; Chan, Hak-Kim; Chen, Jian-Feng; Yun, Jimmy

    2008-02-01

    Reactive high gravity controlled precipitation (HGCP) was carried out to produce salbutamol sulphate (SS) particles suitable for inhalation. Aqueous solutions of free salbutamol base and sulphuric acid were mixed intensely inside a HGCP reactor to form the particles. Spray drying was employed to obtain dry powders. Physical properties of the powders were characterised by scanning electron microscopy, X-ray powder diffraction, thermal gravimetric analysis and dynamic water vapour sorption. Aerosol performance of the powders was measured using an Aeroliser connected to a multiple stage liquid impinger operating at 60 L/min. The results showed that the reactive HGCP powder, comprising primary SS sub-micron particles (approximately 100 nm in width and approximately 500 nm in length) packed into loose spherical agglomerates of about 2 microm in diameter, is of the same polymorphic form as the raw crystalline material, has a high specific surface area (24.7 +/- 0.1 m(2)/g), but a low moisture content (0.2%) and low moisture uptake (1.4% at RH 90%). The aerosol performance of the reactive HGCP powder is excellent, showing FPF(loaded) and FPF(emitted) of 76 +/- 5% and 83 +/- 7%, respectively, with low capsule and device retention. In conclusion, reactive HGCP followed by spray drying is suitable to produce stable crystalline powders of salbutamol with enhanced inhalation properties.

  1. A manganese catalyst for highly reactive yet chemoselective intramolecular C(sp3)-H amination

    Science.gov (United States)

    Paradine, Shauna M.; Griffin, Jennifer R.; Zhao, Jinpeng; Petronico, Aaron L.; Miller, Shannon M.; Christina White, M.

    2015-12-01

    C-H bond oxidation reactions underscore the existing paradigm wherein high reactivity and high selectivity are inversely correlated. The development of catalysts capable of oxidizing strong aliphatic C(sp3)-H bonds while displaying chemoselectivity (that is, tolerance of more oxidizable functionality) remains an unsolved problem. Here, we describe a catalyst, manganese tert-butylphthalocyanine [Mn(tBuPc)], that is an outlier to the reactivity-selectivity paradigm. It is unique in its capacity to functionalize all types of C(sp3)-H bond intramolecularly, while displaying excellent chemoselectivity in the presence of π functionality. Mechanistic studies indicate that [Mn(tBuPc)] transfers bound nitrenes to C(sp3)-H bonds via a pathway that lies between concerted C-H insertion, observed with reactive noble metals such as rhodium, and stepwise radical C-H abstraction/rebound, as observed with chemoselective base metals such as iron. Rather than achieving a blending of effects, [Mn(tBuPc)] aminates even 1° aliphatic and propargylic C-H bonds, demonstrating reactivity and selectivity unusual for previously known catalysts.

  2. A manganese catalyst for highly reactive yet chemoselective intramolecular C(sp(3))-H amination.

    Science.gov (United States)

    Paradine, Shauna M; Griffin, Jennifer R; Zhao, Jinpeng; Petronico, Aaron L; Miller, Shannon M; Christina White, M

    2015-12-01

    C-H bond oxidation reactions underscore the existing paradigm wherein high reactivity and high selectivity are inversely correlated. The development of catalysts capable of oxidizing strong aliphatic C(sp(3))-H bonds while displaying chemoselectivity (that is, tolerance of more oxidizable functionality) remains an unsolved problem. Here, we describe a catalyst, manganese tert-butylphthalocyanine [Mn((t)BuPc)], that is an outlier to the reactivity-selectivity paradigm. It is unique in its capacity to functionalize all types of C(sp(3))-H bond intramolecularly, while displaying excellent chemoselectivity in the presence of π functionality. Mechanistic studies indicate that [Mn((t)BuPc)] transfers bound nitrenes to C(sp(3))-H bonds via a pathway that lies between concerted C-H insertion, observed with reactive noble metals such as rhodium, and stepwise radical C-H abstraction/rebound, as observed with chemoselective base metals such as iron. Rather than achieving a blending of effects, [Mn((t)BuPc)] aminates even 1° aliphatic and propargylic C-H bonds, demonstrating reactivity and selectivity unusual for previously known catalysts.

  3. Silicon epitaxy using tetrasilane at low temperatures in ultra-high vacuum chemical vapor deposition

    Science.gov (United States)

    Hazbun, Ramsey; Hart, John; Hickey, Ryan; Ghosh, Ayana; Fernando, Nalin; Zollner, Stefan; Adam, Thomas N.; Kolodzey, James

    2016-06-01

    The deposition of silicon using tetrasilane as a vapor precursor is described for an ultra-high vacuum chemical vapor deposition tool. The growth rates and morphology of the Si epitaxial layers over a range of temperatures and pressures are presented. The layers were characterized using transmission electron microscopy, x-ray diffraction, spectroscopic ellipsometry, Atomic Force Microscopy, and secondary ion mass spectrometry. Based on this characterization, high quality single crystal silicon epitaxy was observed. Tetrasilane was found to produce higher growth rates relative to lower order silanes, with the ability to deposit crystalline Si at low temperatures (T=400 °C), with significant amorphous growth and reactivity measured as low as 325 °C, indicating the suitability of tetrasilane for low temperature chemical vapor deposition such as for SiGeSn alloys.

  4. Applications of the Information Theory to Problems of Molecular Electronic Structure and Chemical Reactivity

    Directory of Open Access Journals (Sweden)

    Roman F. Nalewajski

    2002-04-01

    Full Text Available Abstract: Recent studies on applications of the information theoretic concepts to molecular systems are reviewed. This survey covers the information theory basis of the Hirshfeld partitioning of molecular electron densities, its generalization to many electron probabilities, the local information distance analysis of molecular charge distributions, the charge transfer descriptors of the donor-acceptor reactive systems, the elements of a “thermodynamic” description of molecular charge displacements, both “vertical” (between molecular fragments for the fixed overall density and “horizontal” (involving different molecular densities, with the entropic representation description provided by the information theory. The average uncertainty measures of bond multiplicities in molecular “communication” systems are also briefly summarized. After an overview of alternative indicators of the information distance (entropy deficiency, missing information between probability distributions the properties of the “stockholder” densities, which minimize the entropy deficiency relative to the promolecule reference, are summarized. In particular, the surprisal analysis of molecular densities is advocated as an attractive information-theoretic tool in the electronic structure theory, supplementary to the familiar density difference diagrams. The subsystem information density equalization rules satisfied by the Hirshfeld molecular fragments are emphasized: the local values of alternative information distance densities of subsystems are equal to the corresponding global value, characterizing the molecule as a whole. These local measures of the information content are semi-quantitatively related to the molecular density difference function. In the density functional theory the effective external potentials of molecular fragments are defined, for which

  5. High-temperature isothermal chemical cycling for solar-driven fuel production.

    Science.gov (United States)

    Hao, Yong; Yang, Chih-Kai; Haile, Sossina M

    2013-10-28

    The possibility of producing chemical fuel (hydrogen) from the solar-thermal energy input using an isothermal cycling strategy is explored. The canonical thermochemical reactive oxide, ceria, is reduced under high temperature and inert sweep gas, and in the second step oxidized by H2O at the same temperature. The process takes advantage of the oxygen chemical potential difference between the inert sweep gas and high-temperature steam, the latter becoming more oxidizing with increasing temperature as a result of thermolysis. The isothermal operation relieves the need to achieve high solid-state heat recovery for high system efficiency, as is required in a conventional two-temperature process. Thermodynamic analysis underscores the importance of gas-phase heat recovery in the isothermal approach and suggests that attractive efficiencies may be practically achievable on the system level. However, with ceria as the reactive oxide, the isothermal approach is not viable at temperatures much below 1400 °C irrespective of heat recovery. Experimental investigations show that an isothermal cycle performed at 1500 °C can yield fuel at a rate of ~9.2 ml g(-1) h(-1), while providing exceptional system simplification relative to two-temperature cycling.

  6. Screening and characterization of reactive compounds with in vitro peptide-trapping and liquid chromatography/high-resolution accurate mass spectrometry.

    Science.gov (United States)

    Wei, Cong; Chupak, Louis S; Philip, Thomas; Johnson, Benjamin M; Gentles, Robert; Drexler, Dieter M

    2014-02-01

    The present study describes a novel methodology for the detection of reactive compounds using in vitro peptide-trapping and liquid chromatography-high-resolution accurate mass spectrometry (LC-HRMS). Compounds that contain electrophilic groups can covalently bind to nucleophilic moieties in proteins and form adducts. Such adducts are thought to be associated with drug-mediated toxicity and therefore represent potential liabilities in drug discovery programs. In addition, reactive compounds identified in biological screening can be associated with data that can be misinterpreted if the reactive nature of the compound is not appreciated. In this work, to facilitate the triage of hits from high-throughput screening (HTS), a novel assay was developed to monitor the formation of covalent peptide adducts by compounds suspected to be chemically reactive. The assay consists of in vitro incubations of test compounds (under conditions of physiological pH) with synthetically prepared peptides presenting a variety of nucleophilic moieties such as cysteine, lysine, histidine, arginine, serine, and tyrosine. Reaction mixtures were analyzed using full-scan LC-HRMS, the data were interrogated using postacquisition data mining, and modified amino acids were identified by subsequent LC-HRMS/mass spectrometry. The study demonstrated that in vitro nucleophilic peptide trapping followed by LC-HRMS analysis is a useful approach for screening of intrinsically reactive compounds identified from HTS exercises, which are then removed from follow-up processes, thus obviating the generation of data from biochemical activity assays.

  7. Exact Solutions of Chemically Reactive Solute Distribution in MHD Boundary Layer Flow over a Shrinking Surface

    Institute of Scientific and Technical Information of China (English)

    Chandaneswar Midya

    2012-01-01

    An analytical study of the distribution of a reactant solute undergoing a first-order chemical reaction in the boundary layer flow of an electrically conducting incompressible Buid over a linearly shrinking surface is presented. The Row is permeated by an externally applied magnetic Geld normal to the plane of the flow. The equations governing the Row and concentration Reid are reduced into a set of nonlinear ordinary differential equations using similarity variables. Closed form exact solutions of the reduced concentration equation are obtained for both prescribed power-law surface concentration (PSC) and power-law wall mass flux (PMF) as boundary conditions. The study reveals that the concentration over a shrinking sheet is signiRcantly different from that of a stretching surface. It s found that te solute boundary layer thickness is enhanced with the increasing values of the Schmidt number and the power-law index parameter, but decreases with enhanced vaJues of magnetic and reaction rate parameters for the PSC case. For the PMF case, the solute boundary layer thickness decreases with the increase of the Schmidt number, magnetic and reaction rate parameter for power-law index parameter n = 0. Negative solute boundary layer thickness is observed for the PMF case when n = 1 and 2, and these facts may not be realized in real-world applications.%An analytical study of the distribution of a reactant solute undergoing a first-order chemical reaction in the boundary layer flow of an electrically conducting incompressible fluid over a linearly shrinking surface is presented.The flow is permeated by an externally applied magnetic field normal to the plane of the flow.The equations governing the flow and concentration field are reduced into a set of nonlinear ordinary differential equations using similarity variables.Closed form exact solutions of the reduced concentration equation are obtained for both prescribed power-law surface concentration (PSC) and power-law wall

  8. Structure, surface reactivity and physico-chemical degradation of fluoride containing phospho-silicate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Kansal, Ishu; Goel, Ashutosh; Tulyaganov, Dilshat U.; Santos, Luis F.; Ferreira, Jose M.

    2011-03-28

    We report on the structure, apatite-forming ability and physicochemical degradation of glasses along fluorapatite [FA; Ca5(PO4)3F] - diopside (Di; CaMgSi2O6) join. A series of glasses with varying FA/Di ratio have been synthesised by melt-quenching technique. The amorphous glasses could be obtained only for compositions up to 40 wt.% of FA. The detailed structural analysis of glasses has been made by infra-red spectroscopy (FTIR), Raman spectroscopy and magic angle spinning-nuclear magnetic resonance spectroscopy (MAS-NMR). Silicon was predominantly present as Q2 (Si) species while phosphorus was found in orthophosphate type environment in all the investigated glasses. The apatite forming ability of glasses was investigated by immersion of glass powders in simulated body fluid (SBF) for time durations varying between 1 h – 28 days. An extensive precipitation of calcite (CaCO3) after immersion in SBF was found in all the glasses which considerably masked the formation of hydroxyapatite [HA; Ca5(PO4)3OH] as depicted by X-ray diffraction (XRD) and FTIR. The possible mechanism favouring formation of calcite instead of HA has been explained on the basis of experimental results obtained for structure of glasses, leaching profile of glass powders in SBF solution and pH variation in SBF solution. Further, physico-chemical degradation of glasses has been studied in accordance with ISO 10993-14 “Biological evaluation of medical devices – Part 14: Identification and quantification of degradation products from ceramics” in Tris HCl and citric acid buffer. All the FA containing glasses exhibited a weight gain (instead of weight loss) after immersion in citric acid buffer due to the formation of different crystalline products.

  9. Synthesising highly reactive tin oxide using Tin(II2- ethylhexanoate polynucleation as precursor

    Directory of Open Access Journals (Sweden)

    Alejandra Montenegro Hernández

    2010-05-01

    Full Text Available Tin oxide is a widely used compound in technological applications, particularity as a catalyst, gas sensor and in making varistors, transparent conductors, electrocatalytic electrodes and photovoltaic cells. An ethylhexanoate tin salt, a carboxylic acid and poly-esterification were used for synthesising highly reactive tin oxide in the present study. Synthesis was controlled by Fourier transform infrared (FTIR spectroscopy and recording changes in viscosity. The tin oxide characteristics so obtained were determined using FTIR spectroscopy, X-ray diffraction (XRD and scanning electron microscopy (SEM. The SnO2 dust synthesised and heat-treated at 550°C yielded high density aggregates, having greater than 50 μm particle size. This result demonstrates the high reactivity of the ceramic powders synthesised here.

  10. Influence of the physicochemical and aromatic properties on the chemical reactivity and its relation with carcinogenic and anticoagulant effect of 17β-aminoestrogens

    Energy Technology Data Exchange (ETDEWEB)

    Soriano-Correa, Catalina, E-mail: socc@puma2.zaragoza.unam.mx [Química Computacional, FES-Zaragoza, Universidad Nacional Autónoma de México (UNAM), Iztapalapa, Mexico City (Mexico); Raya, Angélica [Unidad Profesional Interdisciplinaria de Ingeniería Campus Guanajuato, Instituto Politécnico Nacional (IPN), Silao de la Victoria, Guanajuato (Mexico); Barrientos-Salcedo, Carolina [Laboratorio de Química Médica y Quimiogenómica, Facultad de Bioanálisis Campus Veracruz - Boca del Río, Universidad Veracruzana, Veracruz (Mexico); Esquivel, Rodolfo O. [Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa (UAM-Iztapalapa), Mexico City (Mexico)

    2014-06-25

    Highlights: • The aromatic A-ring of 17β-aminoestrogens contribute to its anticoagulant effect. • The electron-donor substituent groups favored the basicity of 17β-aminoestrogens. • The physicochemical properties are important in the carcinogenic effect of anticoagulant molecules. - Abstract: Activity of steroid hormones is dependent upon a number of factors, as solubility, transport and metabolism. The functional differences caused by structural modifications could exert an influence on the chemical reactivity and biological effect. The goal of this work is to study the influence of the physicochemical and aromatic properties on the chemical reactivity and its relation with the carcinogenic risk that can associate with the anticoagulant effect of 17β-aminoestrogens using quantum-chemical descriptors at the DFT-B3LYP, BH and HLYP and M06-2X levels. The relative acidity of (H1) of the hydroxyl group increases with electron-withdrawing groups. Electron-donor groups favor the basicity. The steric hindrance of the substituents decreases the aromatic character and consequently diminution the carcinogenic effect. Density descriptors: hardness, electrophilic index, atomic charges, molecular orbitals, electrostatic potential and their geometric parameters permit analyses of the chemical reactivity and physicochemical features and to identify some reactive sites of 17β-aminoestrogens.

  11. High expression of CD26 accurately identifies human bacteria-reactive MR1-restricted MAIT cells.

    Science.gov (United States)

    Sharma, Prabhat K; Wong, Emily B; Napier, Ruth J; Bishai, William R; Ndung'u, Thumbi; Kasprowicz, Victoria O; Lewinsohn, Deborah A; Lewinsohn, David M; Gold, Marielle C

    2015-07-01

    Mucosa-associated invariant T (MAIT) cells express the semi-invariant T-cell receptor TRAV1-2 and detect a range of bacteria and fungi through the MHC-like molecule MR1. However, knowledge of the function and phenotype of bacteria-reactive MR1-restricted TRAV1-2(+) MAIT cells from human blood is limited. We broadly characterized the function of MR1-restricted MAIT cells in response to bacteria-infected targets and defined a phenotypic panel to identify these cells in the circulation. We demonstrated that bacteria-reactive MR1-restricted T cells shared effector functions of cytolytic effector CD8(+) T cells. By analysing an extensive panel of phenotypic markers, we determined that CD26 and CD161 were most strongly associated with these T cells. Using FACS to sort phenotypically defined CD8(+) subsets we demonstrated that high expression of CD26 on CD8(+)  TRAV1-2(+) cells identified with high specificity and sensitivity, bacteria-reactive MR1-restricted T cells from human blood. CD161(hi) was also specific for but lacked sensitivity in identifying all bacteria-reactive MR1-restricted T cells, some of which were CD161(dim) . Using cell surface expression of CD8, TRAV1-2, and CD26(hi) in the absence of stimulation we confirm that bacteria-reactive T cells are lacking in the blood of individuals with active tuberculosis and are restored in the blood of individuals undergoing treatment for tuberculosis.

  12. Moving Overlapping Grids with Adaptive Mesh Refinement for High-Speed Reactive and Non-reactive Flow

    Energy Technology Data Exchange (ETDEWEB)

    Henshaw, W D; Schwendeman, D W

    2005-08-30

    We consider the solution of the reactive and non-reactive Euler equations on two-dimensional domains that evolve in time. The domains are discretized using moving overlapping grids. In a typical grid construction, boundary-fitted grids are used to represent moving boundaries, and these grids overlap with stationary background Cartesian grids. Block-structured adaptive mesh refinement (AMR) is used to resolve fine-scale features in the flow such as shocks and detonations. Refinement grids are added to base-level grids according to an estimate of the error, and these refinement grids move with their corresponding base-level grids. The numerical approximation of the governing equations takes place in the parameter space of each component grid which is defined by a mapping from (fixed) parameter space to (moving) physical space. The mapped equations are solved numerically using a second-order extension of Godunov's method. The stiff source term in the reactive case is handled using a Runge-Kutta error-control scheme. We consider cases when the boundaries move according to a prescribed function of time and when the boundaries of embedded bodies move according to the surface stress exerted by the fluid. In the latter case, the Newton-Euler equations describe the motion of the center of mass of the each body and the rotation about it, and these equations are integrated numerically using a second-order predictor-corrector scheme. Numerical boundary conditions at slip walls are described, and numerical results are presented for both reactive and non-reactive flows in order to demonstrate the use and accuracy of the numerical approach.

  13. SOME ASPECTS OF THE REACTIVITY OF PULP INTENDED FOR HIGH-VISCOSITY VISCOSE

    Directory of Open Access Journals (Sweden)

    Linda Ostberg,

    2012-01-01

    Full Text Available The motivation for this study was to reduce the consumption of C2S when preparing high-viscosity viscose by pre-treating two softwood pulps with enzymes prior to the viscose stages. Reactivity was evaluated in two ways, Fock´s test of the pulp and the gamma number of the viscose solution prior to regeneration. Whilst the reactivity of a pulp that had been subjected to enzyme pretreatment increased according to Fock´s test, it did not increase according to the gamma number. This unexpected difference between the two reactivity tests was investigated. It was concluded that Fock´s test measures the extent to which C2S reacts with a pulp sample during a standardized test, whereas the gamma number measures the resulting degree of xanthate substitution on the cellulose backbone. The gamma number was judged to be the more relevant of the two tests, since it reflects the dissolution ability of a pulp in the viscose preparation. A higher gamma number also means that the coagulation time in the spinning process is prolonged; this is beneficial, as it can be used to increase the tenacity of the viscose fibres. Measuring the reactivity according to Fock´s test, on the contrary, provides more dubious results, as the test has no undisputed correlation to the viscose preparation process.

  14. Development of reactive artificial liner using recycled materials. 2. Chemical transport properties.

    Science.gov (United States)

    Chin, Johnnie Y; Asavanich, Pitch; Moon, Kyong-Whan; Park, Jae K

    2013-07-01

    Volatile organic compounds (VOCs) have so far been found to permeate through geomembranes within days and potentially pollute the surrounding groundwater if no sufficient depth of underlain soil barrier existed In order to cope with the fast breakthrough of VOCs through high-density polyethylene (HDPE) geomembrane in the composite liner system, a composite material made of recycled materials was proposed and its mechanical properties were analyzed in a previous study. This artificial liner was composed of crumb rubber, organo-clay, silica fume and epoxy binder together with an environmentally-friendly solvent recycled from paper pulping, and dimethyl sulfoxide as a plasticizer. In this study, the new artificial liner and a typical HDPE geomembrane were tested to compare their abilities to mitigate the movement of VOCs, specifically partition coefficient, diffusion coefficient and mass fluxes. It was found that this new artificial liner had 2-3 orders of magnitude less VOC mass flux than the HDPE geomembrane. The new artificial liner is thought to have a great potential for containing VOCs, even with a thickness of 2.5 cm, and as a substitute for the clay liner. The cost of installing the artificial liner was estimated to be $13.78/m(2). This is lower than the current geomembrane-related price of $19.70-26.91/m(2). The new liner might give a new perspective in future liner design and alleviate the concerning issue of groundwater pollution caused by landfill leachate, which might contain highly mobile VOCs.

  15. Thermal properties and chemical reactivity. Quarterly report, October 1971--December 1971

    Energy Technology Data Exchange (ETDEWEB)

    Myers, L.C.

    1998-12-31

    A very high boiling impurity was concentrated from a sample of FEFO with a hexane wash. Additional washing of this sample has increased the concentration of this impurity. A mass spectrum was obtained but an identification has not been made. The results of the analysis of the products from the thermal decomposition of FEFO at 120, 135, 150 C are discussed. A chromatogram of FEFO heated for 22 hours at 150 C shows a definite increase in low and high boiling impurities. The evaluation of the condition of the two coupon test assemblies aged at 80 C for 21 and 27 months are discussed. Thermal analysis of the LX-09 from these two coupon tests, a PASS A mechanical test specimen and a control sample are reported. A PDP-12/30 was interfaced with a Perkin Elmer DSC-1 to measure the heat of fusion of PETN. Some of the problems associated with getting reproducible data are discussed. The heat of fusion for six lots of LX-13 grade PETN are given.

  16. C-H bond activation by metal-superoxo species: what drives high reactivity?

    Science.gov (United States)

    Ansari, Azaj; Jayapal, Prabha; Rajaraman, Gopalan

    2015-01-01

    Metal-superoxo species are ubiquitous in metalloenzymes and bioinorganic chemistry and are known for their high reactivity and their ability to activate inert C-H bonds. The comparative oxidative abilities of M-O2(.-) species (M = Cr(III), Mn(III), Fe(III), and Cu(II)) towards C-H bond activation reaction are presented. These superoxo species generated by oxygen activation are found to be aggressive oxidants compared to their high-valent metal-oxo counterparts generated by O⋅⋅⋅O bond cleavage. Our calculations illustrate the superior oxidative abilities of Fe(III)- and Mn(III)-superoxo species compared to the others and suggest that the reactivity may be correlated to the magnetic exchange parameter.

  17. Structures, bonding and reactivity of iron and manganese high-valent metal-oxo complexes: A computational investigation

    Indian Academy of Sciences (India)

    Bhawana Pandey; Azaj Ansari; Nidhi Vyas; Gopalan Rajaraman

    2015-02-01

    Iron and manganese ions with terminal oxo and hydroxo ligands are discovered as key intermediates in several synthetic and biochemical catalytic cycles. Since many of these species possess vigorous catalytic abilities, they are extremely transient in nature and experiments which probe the structure and bonding on such elusive species are still rare. We present here comprehensive computational studies on eight iron and manganese oxo and hydroxo (FeIII/IV/V-O, FeIII-OH and MnIII/IV/V-O, MnIII-OH) species using dispersion corrected (B3LYP-D2) density functional method. By computing all the possible spin states for these eight species, we set out to determine the ground state S value of these species; and later on employing MO analysis, we have analysed the bonding aspects which contribute to the high reactivity of these species. Direct structural comparison to iron and manganese-oxo species are made and the observed similarity and differences among them are attributed to the intricate metal–oxygen bonding. By thoroughly probing the bonding in all these species, their reactivity towards common chemical reactions such as C–H activation and oxygen atom transfer are discussed.

  18. High-valent iron in chemical and biological oxidations.

    Science.gov (United States)

    Groves, John T

    2006-04-01

    Various aspects of the reactivity of iron(IV) in chemical and biological systems are reviewed. Accumulated evidence shows that the ferryl species [Fe(IV)O](2+) can be formed under a variety of conditions including those related to the ferrous ion-hydrogen peroxide system known as Fenton's reagent. Early evidence that such a species could hydroxylate typical aliphatic C-H bonds included regioselectivities and stereospecificities for cyclohexanol hydroxylation that could not be accounted for by a freely diffusing hydroxyl radical. Iron(IV) porphyrin complexes are also found in the catalytic cycles of cytochrome P450 and chloroperoxidase. Model oxo-iron(IV) porphyrin complexes have shown reactivity similar to the proposed enzymatic intermediates. Mechanistic studies using mechanistically diagnostic substrates have implicated a radical rebound scenario for aliphatic hydroxylation by cytochrome P450. Likewise, several non-heme diiron hydroxylases, AlkB (Omega-hydroxylase), sMMO (soluble methane monooxygenase), XylM (xylene monooxygenase) and T4moH (toluene monooxygenase) all show clear indications of radical rearranged products indicating that the oxygen rebound pathway is a ubiquitous mechanism for hydrocarbon oxygenation by both heme and non-heme iron enzymes.

  19. High temperature chemical reactivity in the system (U, Zr,Fe, O). A contribution to the study of zirconia as a ``core catcher``; Reactivite chimique a haute temperature dans le systeme (U, Zr, Fe, O) contribution a l`etude de la zircone comme recuperateur de ``corium``

    Energy Technology Data Exchange (ETDEWEB)

    Maurizi, A. [CEA Centre d`Etudes Nucleaires de Saclay, 91 -Gif-sur-Yvette (France)]|[CEA Centre d`Etudes de Saclay, 91 - Gif-sur-Yvette (France). Direction des Technologies Avancees

    1996-12-11

    Within the framework of the improvement of nuclear reactor safety, a device to recover corium is proposed to be installed under the reactor vessel to limit the consequences of a core melting. According to our bibliographic study, stabilised zirconia seems to be the best refractory material to play this role and to support the physicochemical, mechanical and thermal requirements imposed to the corium catcher. The nature of the chemical interactions between zirconia and iron of high temperature were established and experimental data on the (U, Fe, Zr, O) quaternary system which stands for the corium were determined. First of all, the Knudsen effusion mass-spectrometric method was used to establish the liquidus position for a (U, Zr, O) alloy representative of the corium (U/Zr = 1,5) at 2000 deg C. The oxygen solubility limit in a (U, Zr, O) liquid alloy is about 7 atomic %. In oxidising conditions, the reaction between zirconia and iron leads to the formation of a stabilised zirconia-iron oxide solid solution. Up to 10 atomic % of iron can be incorporated in the structure, leading to the stabilisation of cubic zirconia and a modification of lattice constants. The valence and localisation of those iron measured as a function of time and temperature from 1500 to 2400 deg C, after high frequency inductive heating, both on laboratory materials are commercial bricks. The reaction rate is governed by an activation energy of about 80 kJ/mol. Our results demonstrate that stabilised zirconia is able to efficiently absorb oxidised iron. (author). 169 refs.

  20. Transient Formation and Reactivity of a High-Valent Nickel(IV) Oxido Complex

    NARCIS (Netherlands)

    Padamati, Sandeep K.; Angelone, Davide; Draksharapu, Apparao; Primi, Gloria; Martin, David J.; Tromp, Moniek; Swart, Marcel; Browne, Wesley R.

    2017-01-01

    A reactive high-valent dinuclear nickel(IV) oxido bridged complex is reported that can be formed at room temperature by reaction of [(L)2Ni(II)2(μ-X)3]X (X = Cl or Br) with NaOCl in methanol or acetonitrile (where L = 1,4,7-trimethyl-1,4,7-triazacyclononane). The unusual Ni(IV) oxido species is

  1. A cryogenic beam of refractory, chemically reactive molecules with expansion cooling

    CERN Document Server

    Hutzler, Nicholas R; Gurevich, Yulia V; Hess, Paul W; Petrik, Elizabeth; Spaun, Ben; Vutha, Amar C; DeMille, David; Gabrielse, Gerald; Doyle, John M

    2011-01-01

    Cryogenically cooled buffer gas beam sources of the molecule thorium monoxide (ThO) are optimized and characterized. Both helium and neon buffer gas sources are shown to produce ThO beams with high flux, low divergence, low forward velocity, and cold internal temperature for a variety of stagnation densities and nozzle diameters. The beam operates with a buffer gas stagnation density of ~10^15-10^16 cm^-3 (Reynolds number ~1-100), resulting in expansion cooling of the internal temperature of the ThO to as low as 2 K. For the neon (helium) based source, this represents cooling by a factor of about 10 (2) from the initial nozzle temperature of about 20 K (4 K). These sources deliver ~10^11 ThO molecules in a single quantum state within a 1-3 ms long pulse at 10 Hz repetition rate. Under conditions optimized for a future precision spectroscopy application [A C Vutha et al 2010 J. Phys. B: At. Mol. Opt. Phys. 43 074007], the neon-based beam has the following characteristics: forward velocity of 170 m/s, internal ...

  2. Optical and chemical properties of mixed-valent rhenium oxide films synthesized by reactive DC magnetron sputtering

    Science.gov (United States)

    Murphy, Neil R.; Gallagher, Regina C.; Sun, Lirong; Jones, John G.; Grant, John T.

    2015-07-01

    Mixed-valent rhenium oxide thin films were deposited using reactive magnetron sputtering employing a metallic rhenium target within an oxygen-argon environment. The oxygen and argon flow rates were systematically varied, while the extinction coefficient, k, of the deposited layers was monitored using in situ spectroscopic ellipsometry. In situ monitoring was used to identify absorption features specific to ReO3, namely, the minimization of k brought on by the gap between interband absorption features in the UV at 310 nm and the onset of free electron absorption at wavelengths above 540 nm. Based on these results, oxygen flow ratios of 50% and 60% were shown to produce films having optical properties characteristic of ReO3, and thus, were selected for detailed ex situ characterization. Chemical analysis via X-ray photoelectron spectroscopy confirmed that all films consisted largely of ReO3, but had some contributions from Re2O3, ReO2 and Re2O7. Additional monitoring of the chemistry, as a function of environmental exposure time, indicated a correlation between structural instability and the presence of Re2O3 and Re2O7 in the films.

  3. A Sliding-Mode Triboelectric Nanogenerator with Chemical Group Grated Structure by Shadow Mask Reactive Ion Etching.

    Science.gov (United States)

    Shang, Wanyu; Gu, Guang Qin; Yang, Feng; Zhao, Lei; Cheng, Gang; Du, Zu-Liang; Wang, Zhong Lin

    2017-08-25

    The sliding-mode triboelectric nanogenerator (S-TENG) with grated structure has important applications in energy harvest and active sensors; however its concavo-convex structure leads to large frictional resistance and abrasion. Here, we developed a S-TENG with a chemical group grated structure (S-TENG-CGG), in which the triboelectric layer's triboelectric potential has a positive-negative alternating charged structure. The triboelectric layer of the S-TENG-CGG was fabricated through a reactive ion etching process with a metal shadow mask with grated structure. In the etched region, the nylon film, originally positively charged as in friction with stainless steel, gained opposite triboelectric potential and became negatively charged because of the change of surface functional groups. The output signals of the S-TENG-CGG are alternating and the frequency is determined by both the segment numbers and the moving speed. The applications of the S-TENG-CGG in the charging capacitor and driving calculator are demonstrated. In the S-TENG-CGG, since there is no concavo-convex structure, the frictional resistance and abrasion are largely reduced, which enhances its performances in better stability and longer working time.

  4. Molecular structure, IR spectra, and chemical reactivity of cisplatin and transplatin: DFT studies, basis set effect and solvent effect.

    Science.gov (United States)

    Wang, Yang; Liu, Qingzhu; Qiu, Ling; Wang, Tengfei; Yuan, Haoliang; Lin, Jianguo; Luo, Shineng

    2015-01-01

    Three different density functional theory (DFT) methods were employed to study the molecular structures of cis-diamminedichloroplatinum(II) (CDDP) and trans-diamminedichloroplatinum(II) (TDDP). The basis set effect on the structure was also investigated. By comparing the optimized structures with the experimental data, a relatively more accurate method was chosen for further study of the IR spectra and other properties as well as the solvent effect. Nineteen characteristic vibrational bands of the title compounds were assigned and compared with available experimental data. The number of characteristic peaks for the asymmetric stretching and deformation vibrations of N-H can serve as a judgment for the isomer between CDDP and TDDP. Significant solvent effect was observed on the molecular structures and IR spectra. The reduced density gradient analysis was performed to study the intramolecular interactions of CDDP and TDDP, and the nature of changes in the structures caused by the solvent was illustrated. Several descriptors determined from the energies of frontier molecular orbitals (HOMO and LUMO) were applied to describe the chemical reactivity of the title compounds. The molecular electrostatic potential (MESP) surfaces showed that the amino groups were the most favorable sites that nucleophilic reagents tend to attack, and CDDP was easier to be attacked by nucleophilic reagents than TDDP.

  5. Evaluation of molecular assembly, spectroscopic interpretation, intra-/inter molecular hydrogen bonding and chemical reactivity of two pyrrole precursors

    Science.gov (United States)

    Rawat, Poonam; Singh, R. N.

    2014-10-01

    This paper describes the evaluation of conformational, spectroscopic, hydrogen bonding and chemical reactivity of pyrrole precursor: ethyl 3,5 dimethyl-1H-pyrrole-2-carboxylate (EDPC) and ethyl 3,4-dimethyl-4-acetyl-1H-pyrrole-2-carboxylate (EDAPC) for the convenient characterization, synthetic usefulness and comparative evaluations. All experimental spectral values of 1H NMR, UV-Vis and FT-IR spectra coincide well with calculated values by DFT. The orbital interactions in EDPC and EDAPC are found to lengthen their Nsbnd H and Cdbnd O bonds and lowers their vibrational frequencies (red shift) resulting to dimer formation. The QTAIM and NBO analyses provide the strength of interactions and charge transfer in the hydrogen bonding unit and stability of dimers. The binding energy of EDPC and EDPAC dimer are found to be 9.92, 10.22 kcal/mol, respectively. In EDPAC and EDPC dimer, hyperconjugative interactions between monomer units is due to n1(O) → σ*(Nsbnd H) that stabilize the molecule up to 9.7 and 9.3 kcal/mol, respectively. On evaluation of molecular electrostatic potential (MEP) and electronic descriptors for EDPC it has been found that it is a good precursor for synthesis of formyl and acetyl derivatives whereas EDAPC has been found to be a good precursor for synthesis of schiff base, hydrazones, hydrazide-hydrazones and chalcones.

  6. Using the pseudophase kinetic model to interpret chemical reactivity in ionic emulsions: determining antioxidant partition constants and interfacial rate constants.

    Science.gov (United States)

    Gu, Qing; Bravo-Díaz, Carlos; Romsted, Laurence S

    2013-06-15

    Kinetic results obtained in cationic and anionic emulsions show for the first time that pseudophase kinetic models give reasonable estimates of the partition constants of reactants, here t-butylhydroquinone (TBHQ) between the oil and interfacial region, P(O)(I), and the water and interfacial region, P(W)(I), and of the interfacial rate constant, k(I), for the reaction with an arenediazonium ion in emulsions containing a 1:1 volume ratio of a medium chain length triglyceride, MCT, and aqueous acid or buffer. The results provide: (a) an explanation for the large difference in pH, >4 pH units, required to run the reaction in CTAB (pH 1.54, added HBr) and SDS (pH 5.71, acetate buffer) emulsions; (b) reasonable estimates of PO(I) and k(I) in the CTAB emulsions; (c) a sensible interpretation of added counterion effects based on ion exchange in SDS emulsions (Na(+)/H3O(+) ion exchange in the interfacial region) and Donnan equilibrium in CTAB emulsions (Br(-) increasing the interfacial H3O(+)); and (d) the significance of the effect of the much greater solubility of TBHQ in MCT versus octane, 1000/1, as the oil. These results should aid in interpreting the effects of ionic surfactants on chemical reactivity in emulsions in general and in selecting the most efficient antioxidant for particular food applications.

  7. Combined Chemical Activation and Fenton Degradation to Convert Waste Polyethylene into High-Value Fine Chemicals.

    Science.gov (United States)

    Chow, Cheuk-Fai; Wong, Wing-Leung; Ho, Keith Yat-Fung; Chan, Chung-Sum; Gong, Cheng-Bin

    2016-07-04

    Plastic waste is a valuable organic resource. However, proper technologies to recover usable materials from plastic are still very rare. Although the conversion/cracking/degradation of certain plastics into chemicals has drawn much attention, effective and selective cracking of the major waste plastic polyethylene is extremely difficult, with degradation of C-C/C-H bonds identified as the bottleneck. Pyrolysis, for example, is a nonselective degradation method used to crack plastics, but it requires a very high energy input. To solve the current plastic pollution crisis, more effective technologies are needed for converting plastic waste into useful substances that can be fed into the energy cycle or used to produce fine chemicals for industry. In this study, we demonstrate a new and effective chemical approach by using the Fenton reaction to convert polyethylene plastic waste into carboxylic acids under ambient conditions. Understanding the fundamentals of this new chemical process provides a possible protocol to solve global plastic-waste problems.

  8. Chemical Diversity in High-Mass Star Formation

    CERN Document Server

    Beuther, H; Bergin, E A; Sridharan, T K

    2008-01-01

    Massive star formation exhibits an extremely rich chemistry. However, not much evolutionary details are known yet, especially at high spatial resolution. Therefore, we synthesize previously published Submillimeter Array high-spatial-resolution spectral line observations toward four regions of high-mass star formation that are in various evolutionary stages with a range of luminosities. Estimating column densities and comparing the spatially resolved molecular emission allows us to characterize the chemical evolution in more detail. Furthermore, we model the chemical evolution of massive warm molecular cores to be directly compared with the data. The four regions reveal many different characteristics. While some of them, e.g., the detection rate of CH3OH, can be explained by variations of the average gas temperatures, other features are attributed to chemical effects. For example, C34S is observed mainly at the core-edges and not toward their centers because of temperature-selective desorption and successive g...

  9. Duty cycle control in reactive high-power impulse magnetron sputtering of hafnium and niobium

    Science.gov (United States)

    Ganesan, R.; Treverrow, B.; Murdoch, B.; Xie, D.; Ross, A. E.; Partridge, J. G.; Falconer, I. S.; McCulloch, D. G.; McKenzie, D. R.; Bilek, M. M. M.

    2016-06-01

    Instabilities in reactive sputtering have technological consequences and have been attributed to the formation of a compound layer on the target surface (‘poisoning’). Here we demonstrate how the duty cycle of high power impulse magnetron sputtering (HiPIMS) can be used to control the surface conditions of Hf and Nb targets. Variations in the time resolved target current characteristics as a function of duty cycle were attributed to gas rarefaction and to the degree of poisoning of the target surface. As the operation transitions from Ar driven sputtering to metal driven sputtering, the secondary electron emission changes and reduces the target current. The target surface transitions smoothly from a poisoned state at low duty cycles to a quasi-metallic state at high duty cycles. Appropriate selection of duty cycle increases the deposition rate, eliminates the need for active regulation of oxygen flow and enables stable reactive deposition of stoichiometric metal oxide films. A model is presented for the reactive HIPIMS process in which the target operates in a partially poisoned mode with different degrees of oxide layer distribution on its surface that depends on the duty cycle. Finally, we show that by tuning the pulse characteristics, the refractive indices of the metal oxides can be controlled without increasing the absorption coefficients, a result important for the fabrication of optical multilayer stacks.

  10. Mechanical properties and spalling at elevated temperature of high performance concrete made with reactive and waste inert powders

    Directory of Open Access Journals (Sweden)

    Msheer Hasan Ali

    2017-04-01

    Full Text Available In this article, the efficiency of waste glass powder was investigated in enhancing the mechanical properties of concrete at high temperature. Chemical composition of this powder reveals that it plays good role as effective inert very fine material in concrete strength improvement. Conventional reactive pozzolanic powder of silica fume was used also in present work to show the degradation degree in concrete strength under firing in comparison to concrete made with waste glass powder. The experimental program was comprised of tests for examining fire resistance and mechanical properties of high strength concrete (HSC after firing. Fifty-six concrete cylinders and prisms were manufactured for measuring their compressive and flexural strengths, modulus of elasticity and stress-strain behavior at high temperature. Failure modes were considered also for the specimens after fire exposure. Results demonstrate the great role of waste glass powder in conserving residual strength at high temperature. Accordingly, it is proved that the HSC made with waste glass powder has strength at high temperature more than that for concrete fabricated by silica fume.

  11. Non-equilibrium effects in high temperature chemical reactions

    Science.gov (United States)

    Johnson, Richard E.

    1987-01-01

    Reaction rate data were collected for chemical reactions occurring at high temperatures during reentry of space vehicles. The principle of detailed balancing is used in modeling kinetics of chemical reactions at high temperatures. Although this principle does not hold for certain transient or incubation times in the initial phase of the reaction, it does seem to be valid for the rates of internal energy transitions that occur within molecules and atoms. That is, for every rate of transition within the internal energy states of atoms or molecules, there is an inverse rate that is related through an equilibrium expression involving the energy difference of the transition.

  12. Application of Tin(II Chloride Catalyst for High FFA Jatropha Oil Esterification in Continuous Reactive Distillation Column

    Directory of Open Access Journals (Sweden)

    Ratna Dewi Kusumaningtyas

    2016-03-01

    , R.D., Aji, I.N., Hadiyanto, H., Budiman, A. (2016. Application of Tin(II Chloride Catalyst for High FFA Jatropha Oil Esterification in Continuous Reactive Distillation Column. Bulletin of Chemical Reaction Engineering & Catalysis, 11 (1: 66-74. (doi:10.9767/bcrec.11.1.417.66-74 Permalink/DOI: http://dx.doi.org/10.9767/bcrec.11.1.417.66-74

  13. High Ki-67 Immunohistochemical Reactivity Correlates With Poor Prognosis in Bladder Carcinoma

    Science.gov (United States)

    Luo, Yihuan; Zhang, Xin; Mo, Meile; Tan, Zhong; Huang, Lanshan; Zhou, Hong; Wang, Chunqin; Wei, Fanglin; Qiu, Xiaohui; He, Rongquan; Chen, Gang

    2016-01-01

    Abstract Ki-67 is considered as one of prime biomarkers to reflect cell proliferation and immunohistochemical Ki-67 staining has been widely applied in clinical pathology. To solve the widespread controversy whether Ki-67 reactivity significantly predicts clinical prognosis of bladder carcinoma (BC), we performed a comprehensive meta-analysis by combining results from different literature. A comprehensive search was conducted in the Chinese databases of WanFang, China National Knowledge Infrastructure and Chinese VIP as well as English databases of PubMed, ISI web of science, EMBASE, Science Direct, and Wiley online library. Independent studies linking Ki-67 to cancer-specific survival (CSS), disease-free survival (DFS), overall survival (OS), progression-free survival (PFS), and recurrence-free survival (RFS) were included in our meta-analysis. With the cut-off values literature provided, hazard ratio (HR) values between the survival distributions were extracted and later combined with STATA 12.0. In total, 76 studies (n = 13,053 patients) were eligible for the meta-analysis. It was indicated in either univariate or multivariate analysis for survival that high Ki-67 reactivity significantly predicted poor prognosis. In the univariate analysis, the combined HR for CSS, DFS, OS, PFS, and RFS were 2.588 (95% confidence interval [CI]: 1.623–4.127, P < 0.001), 2.697 (95%CI: 1.874–3.883, P < 0.001), 2.649 (95%CI: 1.632–4.300, P < 0.001), 3.506 (95%CI: 2.231–5.508, P < 0.001), and 1.792 (95%CI: 1.409–2.279, P < 0.001), respectively. The pooled HR of multivariate analysis for CSS, DFS, OS, PFS, and RFS were 1.868 (95%CI: 1.343–2.597, P < 0.001), 2.626 (95%CI: 2.089–3.301, P < 0.001), 1.104 (95%CI: 1.008–1.209, P = 0.032), 1.518 (95%CI: 1.299–1.773, P < 0.001), and 1.294 (95%CI: 1.203–1.392, P < 0.001), respectively. Subgroup analysis of univariate analysis by origin showed that Ki-67 reactivity significantly

  14. Nanometer scale high-aspect-ratio trench etching at controllable angles using ballistic reactive ion etching

    Energy Technology Data Exchange (ETDEWEB)

    Cybart, Shane; Roediger, Peter; Ulin-Avila, Erick; Wu, Stephen; Wong, Travis; Dynes, Robert

    2012-11-30

    We demonstrate a low pressure reactive ion etching process capable of patterning nanometer scale angled sidewalls and three dimensional structures in photoresist. At low pressure the plasma has a large dark space region where the etchant ions have very large highly-directional mean free paths. Mounting the sample entirely within this dark space allows for etching at angles relative to the cathode with minimal undercutting, resulting in high-aspect ratio nanometer scale angled features. By reversing the initial angle and performing a second etch we create three-dimensional mask profiles.

  15. Return of target material ions leads to a reduced hysteresis in reactive high power impulse magnetron sputtering: Model

    Science.gov (United States)

    Kadlec, Stanislav; Čapek, Jiří

    2017-05-01

    A tendency to disappearing hysteresis in reactive High Power Impulse Magnetron Sputtering (HiPIMS) has been reported previously without full physical explanation. An analytical model of reactive pulsed sputtering including HiPIMS is presented. The model combines a Berg-type model of reactive sputtering with the global HiPIMS model of Christie-Vlček. Both time and area averaging is used to describe the macroscopic steady state, especially the reactive gas balance in the reactor. The most important effect in the presented model is covering of reacted parts of target by the returning ionized metal, effectively lowering the target coverage by reaction product at a given partial pressure. The return probability of ionized sputtered metal has been selected as a parameter to quantify the degree of HiPIMS effects. The model explains the reasons for reduced hysteresis in HiPIMS. The critical pumping speed was up to a factor of 7 lower in reactive HiPIMS compared to the mid-frequency magnetron sputtering. The model predicts reduced hysteresis in HiPIMS due to less negative slope of metal flux to substrates and of reactive gas sorption as functions of reactive gas partial pressure. Higher deposition rate of reactive HiPIMS compared to standard reactive sputtering is predicted for some parameter combinations. Comparison of the model with experiment exhibits good qualitative and quantitative agreement for three material combinations, namely, Ti-O2, Al-O2, and Ti-N2.

  16. Analytical estimation of control rod shadowing effect for excess reactivity measurement of High Temperature Engineering Test Reactor (HTTR)

    Energy Technology Data Exchange (ETDEWEB)

    Nakano, Masaaki; Yamashita, Kiyonobu; Fujimoto, Nozomu; Nojiri, Naoki; Takeuchi, Mitsuo; Fujisaki, Shingo [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment; Tokuhara, Kazumi; Nakata, Tetsuo

    1998-05-01

    The control rod shadowing effect has been estimated analytically in application of the fuel addition method to excess reactivity measurement of High Temperature Engineering Test Reactor (HTTR). The movements of control rods in the procedure of the fuel addition method have been simulated in the analysis. The calculated excess reactivity obtained by the simulation depends on the combinations of measuring control rods and compensating control rods and varies from -10% to +50% in comparison with the excess reactivity calculated from the effective multiplication factor of the core where all control rods are fully withdrawn. The control rod shadowing effect is reduced by the use of plural number of measuring and compensation control rods because of the reduction in neutron flux deformation in the measuring procedure. As a result, following combinations of control rods are recommended; 1) Thirteen control rods of the center, first, and second rings will be used for the reactivity measurement. The reactivity of each control rod is measured by the use of the other twelve control rods for reactivity compensation. 2) Six control rods of the first ring will be used for the reactivity measurement. The reactivity of each control rod is measured by the use of the other five control rods for reactivity compensation. (author)

  17. The impact of snow nitrate photolysis on boundary layer chemistry and the recycling and redistribution of reactive nitrogen across Antarctica and Greenland in a global chemical transport model

    Science.gov (United States)

    Zatko, Maria; Geng, Lei; Alexander, Becky; Sofen, Eric; Klein, Katarina

    2016-03-01

    The formation and recycling of reactive nitrogen (NO, NO2, HONO) at the air-snow interface has implications for air quality and the oxidation capacity of the atmosphere in snow-covered regions. Nitrate (NO3-) photolysis in snow provides a source of oxidants (e.g., hydroxyl radical) and oxidant precursors (e.g., nitrogen oxides) to the overlying boundary layer, and alters the concentration and isotopic (e.g., δ15N) signature of NO3- preserved in ice cores. We have incorporated an idealized snowpack with a NO3- photolysis parameterization into a global chemical transport model (Goddard Earth Observing System (GEOS) Chemistry model, GEOS-Chem) to examine the implications of snow NO3- photolysis for boundary layer chemistry, the recycling and redistribution of reactive nitrogen, and the preservation of ice-core NO3- in ice cores across Antarctica and Greenland, where observations of these parameters over large spatial scales are difficult to obtain. A major goal of this study is to examine the influence of meteorological parameters and chemical, optical, and physical snow properties on the magnitudes and spatial patterns of snow-sourced NOx fluxes and the recycling and redistribution of reactive nitrogen across Antarctica and Greenland. Snow-sourced NOx fluxes are most influenced by temperature-dependent quantum yields of NO3- photolysis, photolabile NO3- concentrations in snow, and concentrations of light-absorbing impurities (LAIs) in snow. Despite very different assumptions about snowpack properties, the range of model-calculated snow-sourced NOx fluxes are similar in Greenland (0.5-11 × 108 molec cm-2 s-1) and Antarctica (0.01-6.4 × 108 molec cm-2 s-1) due to the opposing effects of higher concentrations of both photolabile NO3- and LAIs in Greenland compared to Antarctica. Despite the similarity in snow-sourced NOx fluxes, these fluxes lead to smaller factor increases in mean austral summer boundary layer mixing ratios of total nitrate (HNO3+ NO3-), NOx, OH

  18. High fluence laser irradiation induces reactive oxygen species generation in human lung adenocarcinoma cells

    Science.gov (United States)

    Wang, Fang; Xing, Da; Chen, Tong-Sheng

    2006-09-01

    Low-power laser irradiation (LPLI) has been used for therapies such as curing spinal cord injury, healing wound et al. Yet, the mechanism of LPLI remains unclear. Our previous study showed that low fluences laser irradiation induces human lung adenocarcinoma cells (ASTC-a-1) proliferation, but high fluences induced apoptosis and caspase-3 activation. In order to study the mechanism of apoptosis induced by high fluences LPLI further, we have measured the dynamics of generation of reactive oxygen species (ROS) using H IIDCFDA fluorescence probes during this process. ASTC-a-1 cells apoptosis was induced by He-Ne laser irradiation at high fluence of 120J/cm2. A confocal laser scanning microscope was used to perform fluorescence imaging. The results demonstrated that high fluence LPLI induced the increase of mitochondria ROS. Our studies contribute to clarify the biological mechanism of high fluence LPLI-induced cell apoptosis.

  19. Neither perceived job stress nor individual cardiovascular reactivity predict high blood pressure.

    Science.gov (United States)

    Fauvel, Jean Pierre; M'Pio, Ignasse; Quelin, Pierre; Rigaud, Jean-Pierre; Laville, Maurice; Ducher, Michel

    2003-12-01

    We have reported that high job strain was associated with a significantly higher diastolic blood pressure (DBP) of 4.5 mm Hg during the working hours, irrespective of BP reactivity to a stress test. We report the final results of the first 5-year follow-up study, which aimed to assess the respective influences of perception of professional strain and cardiovascular reactivity to a mental stress test on BP. A cohort of 292 healthy subjects (mean+/-SEM age, 38+/-1 years) was followed up for progression to hypertension outcome, which was defined as an increase in systolic blood pressure (SBP) or DBP >7 mm Hg or a DBP >95 mm Hg during follow-up. None of the subjects was lost to follow-up, and 209 subjects completed the study. The high-strain (HS) group, representing 20.9% of the subjects, was compared with the remaining subjects (non-high-strain [NHS]). Similarly, the subjects with the highest BP stress reactivity (HR; 20.9% of subjects) were compared with the remaining subjects (NHR). Progression to hypertension was reached by 93 subjects (31.8%). Kaplan-Meier survival estimates revealed that neither HS nor HR increased the incidence of progression to hypertension. End-of-follow-up 24-hour ambulatory BPs that were similar in HS and NHS (120+/-2 vs 120+/-1 mm Hg, respectively) and in HR and NHR (122+/-2 vs 120+/-1 mm Hg, respectively) confirmed our findings. Age, alcohol, salt diet, body mass index, and occupation did not interfere with our results. In conclusion, cardiovascular HR and HS do not appear to be major risk markers for future high BP in healthy, young adults.

  20. Chemical reactivity of C-F bonds attached to graphene with diamines depending on their nature and location.

    Science.gov (United States)

    Li, Baoyin; He, Taijun; Wang, Zaoming; Cheng, Zheng; Liu, Yang; Chen, Teng; Lai, Wenchuan; Wang, Xu; Liu, Xiangyang

    2016-06-29

    The attachment of fluorine to graphene is a facile means to activate the carbon bonds for subsequent covalent bonding to other molecules for the preparation of desired graphene derivatives. Therefore, an insight into the chemical reactivity of fluorinated graphene (FG) is very essential to enable precise control of the composition and structure of the final products. In this study, FG has been treated with various mass amounts of poly(oxypropylene)diamine (PEA) ranging from starvation to saturation to explore the dependence of a substitution reaction of diamines on the nature and location (attached onto the basal planes or along defects or edges) of C-F bonds. X-ray photoelectron spectroscopy directly tracked the atomic percentage of fluorine present and the carbon 1s bonding state, showing that the grafting ratio of diamines gradually increases with increased diamine mass ratio. The varying of the types and orientation of C-F bonds characterized by polarized attenuated total reflectance Fourier transform infrared spectroscopy indicates that "covalent" C-F bonds are more sensitive to the substitution reaction of diamines than ''semi-ionic'' C-F bonds, and the C-F bonds attached onto basal planes more preferably participate in the functionalization reaction of diamines than that of C-F bonded on non-coplanar regions (edges or defects). The one-dimensional expansion along the graphene c-axis shown by wide angle X-ray diffraction provides further evidence on the preferred functionalization reaction of C-F attached on the basal planes, resulting in a change of the average intersheet distance by various magnitudes.

  1. Chemical interferences when using high gradient magnetic separation for phosphate removal: consequences for lake restoration.

    Science.gov (United States)

    de Vicente, I; Merino-Martos, A; Guerrero, F; Amores, V; de Vicente, J

    2011-09-15

    A promising method for lake restoration is the treatment of lake inlets through the specific adsorption of phosphate (P) on strongly magnetizable particles (Fe) and their subsequent removal using in-flow high gradient magnetic separation (HGMS) techniques. In this work, we report an extensive investigation on the chemical interferences affecting P removal efficiencies in natural waters from 20 Mediterranean ponds and reservoirs. A set of three treatments were considered based on different Fe particles/P concentration ratios. High P removal efficiencies (>80%) were found in freshwater lakes (conductivities<600 μ S cm(-1)). However, a significant reduction in P removal was observed for extremely high mineralized waters. Correlation analysis showed that major cations (Mg(2+), Na(+) and K(+)) and anions (SO(4)(2-) and Cl(-)) played an essential role in P removal efficiency. Comparison between different treatments have shown that when increasing P and Fe concentrations at the same rate or when increasing Fe concentrations for a fixed P concentration, there exist systematic reductions in the slope of the regression lines relating P removal efficiency and the concentration of different chemical variables. These results evidence a general reduction in the chemical competition between P and other ions for adsorption sites on Fe particles. Additional analyses also revealed a reduction in water color, dissolved organic carbon (DOC) and reactive silicate (Si) concentrations with the addition of Fe microparticles.

  2. SiNx Coatings Deposited by Reactive High Power Impulse Magnetron Sputtering: Process Parameters Influencing the Nitrogen Content.

    Science.gov (United States)

    Schmidt, Susann; Hänninen, Tuomas; Goyenola, Cecilia; Wissting, Jonas; Jensen, Jens; Hultman, Lars; Goebbels, Nico; Tobler, Markus; Högberg, Hans

    2016-08-10

    Reactive high power impulse magnetron sputtering (rHiPIMS) was used to deposit silicon nitride (SiNx) coatings for biomedical applications. The SiNx growth and plasma characterization were conducted in an industrial coater, using Si targets and N2 as reactive gas. The effects of different N2-to-Ar flow ratios between 0 and 0.3, pulse frequencies, target power settings, and substrate temperatures on the discharge and the N content of SiNx coatings were investigated. Plasma ion mass spectrometry shows high amounts of ionized isotopes during the initial part of the pulse for discharges with low N2-to-Ar flow ratios of <0.16, while signals from ionized molecules rise with the N2-to-Ar flow ratio at the pulse end and during pulse-off times. Langmuir probe measurements show electron temperatures of 2-3 eV for nonreactive discharges and 5.0-6.6 eV for discharges in transition mode. The SiNx coatings were characterized with respect to their composition, chemical bond structure, density, and mechanical properties by X-ray photoelectron spectroscopy, X-ray reflectivity, X-ray diffraction, and nanoindentation, respectively. The SiNx deposition processes and coating properties are mainly influenced by the N2-to-Ar flow ratio and thus by the N content in the SiNx films and to a lower extent by the HiPIMS frequencies and power settings as well as substrate temperatures. Increasing N2-to-Ar flow ratios lead to decreasing growth rates, while the N content, coating densities, residual stresses, and the hardness increase. These experimental findings were corroborated by density functional theory calculations of precursor species present during rHiPIMS.

  3. Reactive Processing and Co-Extrusion of Ultra-High Temperature Ceramics and Composites

    Science.gov (United States)

    2006-02-28

    F materials. Green billets were prepared by cold isostatic pressing at 300 MPa. The green billets were then loaded into BN-coated graphite dies for...reactively formed ZrB2 in ZrB2-SiC batches had a mean particle size of -0 nm and a residual non-uniform strain compressive strain of-0.21% at the...studies. Initial studies used cylindrical pellets that were 10 mm in diameter and 3 mm high were formed by isostatic pressing at 300 MPa. For the

  4. High-sensitivity C-reactive protein in paediatric inflammatory bowel disease

    Institute of Scientific and Technical Information of China (English)

    Marianne; Sidoroff; Riitta; Karikoski; Taneli; Raivio; Erkki; Savilahti; Kaija-Leena; Kolho

    2010-01-01

    AIM:To study whether high-sensitivity C-reactive protein(hs-CRP) measurement can aid the assessment of disease activity and glucocorticoid treatment in paediatric inflammatory bowel disease(IBD).METHODS:CRP levels were measured in 39 children with IBD undergoing colonoscopy [median age 12.8 years,Crohn's disease(CD) n=20],in 22 other children with IBD followed for acute response to glucocorticoids,and in 33 paediatric non-IBD patients.When standard CRP level was below detection limit(<5mg/L),hs-CRP was anal...

  5. Densification behavior of high Nb containing TiAl alloys through reactive hot pressing

    Institute of Scientific and Technical Information of China (English)

    Yanhang Wang; Junpin Lin; Yuehui He; Yanli Wang; Guoliang Chen

    2007-01-01

    Densification behavior of high Nb containing TiAl alloys through reactive hot pressing was investigated. The results showed that the density of the sample hot pressed at 1400℃ could reach a near full density of 98.37%. However, the densification abnormality was observed at 1500℃. The diffusion of elemental Nb during microstructural evolution is an important aspect affecting densification,which will form pore nests. With the increase of hot pressing temperature, the diffusion of Nb becomes more adequate. HIP (Hot isostatic pressing) treatment can only decrease porosity to some extent, but cannot eliminate it completely.

  6. Respiratory allergies and skin test reactivity in high school students in Tenerife, Canary Islands, Spain.

    Science.gov (United States)

    García-Ramos Alonso, E; Fernández-Caldas, E; Seleznick, M J; Lockey, R F

    1992-01-01

    The prevalence of skin test reactivity to 22 aeroallergens and of allergic respiratory diseases was determined in 501 high school students on the island of Tenerife, Spain. Two hundred seventy-seven students (55.2%) had at least one positive prick skin test (wheal > or = 2 mm). Two hundred sixteen students (43.1%) had symptoms of upper or lower respiratory tract allergies [24 (4.7%) had asthma with or without rhinitis and 192 (38.3%) seasonal or perennial rhinitis alone]. Two hundred eighty-five students (56.8%) were asymptomatic. One hundred per cent of the students with asthma, 87.5% of the students with rhinitis and 27.7% of the asymptomatic students had at least one positive skin test. The prevalence of positive skin tests was significantly higher in symptomatic than in asymptomatic students (p = 0.0001). One hundred seventy students (33.9%) had a family history of respiratory allergic diseases. The prevalence of positive skin tests among these students was significantly higher than in students without such history (p = 0.0001). Thus, there is a high prevalence of allergic respiratory diseases and skin test reactivity to aeroallergens among high school students in Tenerife. Significant correlations were found between family history, positive skin tests and respiratory allergic symptoms.

  7. Statistical model for combustion of high-metal magnesium-based hydro-reactive fuel

    Institute of Scientific and Technical Information of China (English)

    Hu Jian-Xin; Han Chao; Xia Zhi-Xun; Huang Li-Ya; Huang Xu

    2012-01-01

    We investigate experimentally and analytically the combustion behavior of a high-metal magnesium-based hydro-reactive fuel under high temperature gaseous atmosphere.The fuel studied in this paper contains 73% magnesium powders.An experimental system is designed and experimeuts are carried out in both argon and water vapor atmospheres.It is found that the burning surface temperature of the fuel is higher in water vapor than that in argon and both of them are higher than the melting point of magnesium,which indicates the molten state of magnesium particles in the burning surface of the fuel.Based on physical considerations and experimental results,a mathematical one-dimensional model is formulated to describe the combustion behavior of the high-metal magnesium-based hydro-reactive fuel.The model enables the evaluation of the burning surface temperature,the burning rate and the flame standoff distance each as a function of chamber pressure and water vapor concentration.The results predicted by the model show that the burning rate and the surface temperature increase when the chamber pressure and the water vapor concentration increase,which are in agreement with the observed experimental trends.

  8. Cerebrovascular reactivity among native-raised high altitude residents: an fMRI study

    Directory of Open Access Journals (Sweden)

    Zhang Jiaxing

    2011-09-01

    Full Text Available Abstract Background The impact of long term residence on high altitude (HA on human brain has raised concern among researchers in recent years. This study investigated the cerebrovascular reactivity among native-born high altitude (HA residents as compared to native sea level (SL residents. The two groups were matched on the ancestral line, ages, gender ratios, and education levels. A visual cue guided maximum inspiration task with brief breath holding was performed by all the subjects while Blood-Oxygenation-Level-Dependent (BOLD functional Magnetic Resonance Imaging (fMRI data were acquired from them. Results Compared to SL controls, the HA group showed generally decreased cerebrovascular reactivity and longer delay in hemodynamic response. Clusters showing significant differences in the former aspect were located at the bilateral primary motor cortex, the right somatosensory association cortex, the right thalamus and the right caudate, the bilateral precuneus, the right cingulate gyrus and the right posterior cingulate cortex, as well as the left fusiform gyrus and the right lingual cortex; clusters showing significant differences in the latter aspect were located at the precuneus, the insula, the superior frontal and temporal gyrus, the somatosensory cortex (the postcentral gyrus and the cerebellar tonsil. Inspiratory reserve volume (IRV, which is an important aspect of pulmonary function, demonstrated significant correlation with the amount of BOLD signal change in multiple brain regions, particularly at the bilateral insula among the HA group. Conclusions Native-born HA residents generally showed reduced cerebrovascular reactivity as demonstrated in the hemodynamic response during a visual cue guided maximum inspiration task conducted with BOLD-fMRI. This effect was particularly manifested among brain regions that are typically involved in cerebral modulation of respiration.

  9. Application of non-thermal plasma reactor for degradation and detoxification of high concentrations of dye Reactive Black 5 in water

    Directory of Open Access Journals (Sweden)

    Dojčinović Biljana P.

    2016-01-01

    Full Text Available Degradation and detoxification efficiency of high concentrations of commercially available reactive textile dye Reactive Black 5 solution (40, 80, 200, 500, 1000 mg L-1, were studied. Advanced oxidation processes in water falling film based dielectric barrier discharge as a non-thermal plasma reactor were used. For the first time, this reactor was used for the treatment of high concentrations of organic pollutants such as reactive textile dye Reactive Black 5 in water. Solution of the dye is treated by plasma as thin water solution film that is constantly regenerated. Basically, the reactor works as a continuous flow reactor and the electrical discharge itself takes place at the gas-liquid interphase. The dye solution was recirculated through the reactor with an applied energy density of 0-374 kJ L-1. Decolorization efficiency (% was monitored by UV-VIS spectrophotometric technique. Samples were taken after every recirculation (~ 22 kJ L-1 and decolorization percent was measured after 5 min and 24 h of plasma treatment. The efficiency of degradation (i.e. mineralization and possible degradation products were also tracked by determination of the chemical oxygen demand (COD and by ion chromatography (IC. Initial toxicity and toxicity of solutions after the treatment were studied with Artemia salina test organisms. Efficiency of decolorization decreased with the increase of the dye concentration. Complete decolorization, high mineralization and non-toxicity of the solution (<10 % were acomplished after plasma treatment using energy density of 242 kJ L-1, while the initial concentrations of Reactive Black 5 were 40 and 80 mg L-1. [Projekat Ministarstva nauke Republike Srbije, br. 172030 i br. 171034

  10. Affective and neural reactivity to criticism in individuals high and low on perceived criticism.

    Science.gov (United States)

    Hooley, Jill M; Siegle, Greg; Gruber, Staci A

    2012-01-01

    People who have remitted from depression are at increased risk for relapse if they rate their relatives as being critical of them on a simple self-report measure of Perceived Criticism (PC). To explore neural mechanisms associated with this we used functional magnetic resonance imaging (fMRI) to examine how people with different levels of PC responded to hearing criticism from their own mothers. To maximize variability in affective reactivity, depressed, recovered depressed, and healthy control participants (n = 33) were classified as high or low in PC based on a median split. They were then exposed to personally-relevant critical and praising comments from their mothers. Perceived Criticism levels were unrelated to depression status and to negative mood change after hearing criticism. However, compared to low PC participants, those who scored high on PC showed differential activation in a network of regions associated with emotion reactivity and regulation, including increased amygdala activity and decreased reactions in prefrontal regulatory regions when they heard criticism. This was not the case for praise. Criticism may be a risk factor for relapse because it helps to "train" pathways characteristic of depressive information processing. The Perceived Criticism measure may help identify people who are more susceptible to this vulnerability.

  11. Reactivity Boundaries to Separate the Fate of a Chemical Reaction Associated with an Index-two saddle

    CERN Document Server

    Nagahata, Yutaka; Li, Chun-Biu; Kawai, Shinnosuke; Komatsuzaki, Tamiki

    2013-01-01

    Reactivity boundaries that divide the destination and the origin of trajectories are of crucial importance to reveal the mechanism of reactions. We investigate whether such reactivity boundaries can be extracted for higher index saddles in terms of a nonlinear canonical transformation successful for index-one saddles by using a model system with an index-two saddle. It is found that the true reactivity boundaries do not coincide with those extracted by the transformation taking into account a nonlinearity in the region of the saddle even for small perturbations, and the discrepancy is more pronounced for the less repulsive direction of the index-two saddle system. The present result indicates an importance of the global properties of the phase space to identify the reactivity boundaries, relevant to the question of what reactant and product are in phase space, for saddles with index more than one.

  12. Reactivity boundaries to separate the fate of a chemical reaction associated with an index-two saddle.

    Science.gov (United States)

    Nagahata, Yutaka; Teramoto, Hiroshi; Li, Chun-Biu; Kawai, Shinnosuke; Komatsuzaki, Tamiki

    2013-06-01

    Reactivity boundaries that divide the destination and the origin of trajectories are of crucial importance to reveal the mechanism of reactions. We investigate whether such reactivity boundaries can be extracted for higher index saddles in terms of a nonlinear canonical transformation successful for index-one saddles by using a model system with an index-two saddle. It is found that the true reactivity boundaries do not coincide with those extracted by the transformation taking into account a nonlinearity in the region of the saddle even for small perturbations, and the discrepancy is more pronounced for the less repulsive direction of the index-two saddle system. The present result indicates an importance of the global properties of the phase space to identify the reactivity boundaries, relevant to the question of what reactant and product are in phase space, for saddles with index more than one.

  13. Reactivity Accountability Attributed to Reflector Poisons in the High Flux Isotope Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Chandler, David [ORNL; Maldonado, G Ivan [ORNL; Primm, Trent [ORNL

    2009-12-01

    The objective of this study is to develop a methodology to predict the reactivity impact as a function of outage time between cycles of 3He, 6Li, and other poisons in the High Flux Isotope Reactor s (HFIR) beryllium reflector. The reactivity worth at startup of the HFIR has been incorrectly predicted in the past after the reactor has been shut-down for long periods of time. The incorrect prediction was postulated to be due to the erroneous calculation of 3He buildup in the beryllium reflector. It is necessary to develop a better estimate of the start-of-cycle symmetric critical control element positions since if the estimated and actual symmetrical critical control element positions differ by more than $1.55 in reactivity (approximately one-half inch in control element startup position), HFIR is to be shutdown and a technical evaluation is performed to resolve the discrepancy prior to restart. 3He is generated and depleted during operation, but during an outage, the depletion of 3He ceases because it is a stable isotope. 3He is born from the radioactive decay of tritium, and thus the concentration of 3He increases during shutdown. SCALE, specifically the TRITON and CSAS5 control modules including the KENO V.A, COUPLE, and ORIGEN functional modules were utilized in this study. An equation relating the down time (td) to the change in symmetric control element position was generated and validated against measurements for approximately 40 HFIR operating cycles. The newly-derived correlation was shown to improve accuracy of predictions for long periods of down time.

  14. Revealing the importance of linkers in K-series oxime reactivators for tabun-inhibited AChE using quantum chemical, docking and SMD studies

    Science.gov (United States)

    Ghosh, Shibaji; Chandar, Nellore Bhanu; Jana, Kalyanashis; Ganguly, Bishwajit

    2017-08-01

    Inhibition of acetylcholinesterase (AChE) with organophosphorus compounds has a detrimental effect on human life. Oxime K203 seems to be one of the promising reactivators for tabun-inhibited AChE than (K027, K127, and K628). These reactivators differ only in the linker units between the two pyridinium rings. The conformational analyses performed with quantum chemical RHF/6-31G* level for K027, K127, K203 and K628 showed that the minimum energy conformers have different orientations of the active and peripheral pyridinium rings for these reactivator molecules. K203 with (-CH2-CH=CH-CH2-) linker unit possesses more open conformation compared to the other reactivators. Such orientation of K203 experiences favorable interaction with the surrounding residues of catalytic anionic site (CAS) and peripheral anionic site (PAS) of tabun-inhibited AChE. From the steered molecular dynamics simulations, it has been observed that the oxygen atom of the oxime group of K203 reactivator approaches nearest to the P-atom of the SUN203 (3.75 Å) at lower time scales (less than 1000 ps) as compared to the other reactivators. K203 experiences less number of hydrophobic interaction with the PAS residues which is suggested to be an important factor for the efficient reactivation process. In addition, K203 crates large number of H-bonding with CAS residues SUN203, Phe295, Tyr337, Phe338 and His447. K203 barely changes its conformation during the SMD simulation process and hence the energy penalty to adopt any other conformation is minimal in this case as compared to the other reactivators. The molecular mechanics and Poisson-Boltzmann surface area binding energies obtained for the interaction of K203 inside the gorge of tabun inhibited AChE is substantially higher (-290.2 kcal/mol) than the corresponding K628 reactivator (-260.4 kcal/mol), which also possess unsaturated aromatic linker unit.

  15. QCD Effective action at high temperature and small chemical potential

    CERN Document Server

    Villavicencio, C

    2007-01-01

    We present a construction of an effective Yang-Mills action for QCD, from the expansion of the fermionic determinant in terms of powers of the chemical potential at high temperature, for the case of massless quarks. We analyze this expansion in the perturbative region and find that it gives extra spurious information. We propose for the non-perturbative sector a simplified effective action which, in principle, contains only the relevant information.

  16. Surface Reactivity in Tropical Highly Weathered Soils and Implications for Rational Soil Management

    Institute of Scientific and Technical Information of China (English)

    R. MOREAU; J. PETARD

    2004-01-01

    Highly weathered soils are distributed in the humid and wet-dry tropics, as well as in the humid subtropics. As a result of strong weathering, these soils are characterized by low activity clays, which develop variable surface charge and related specific properties. Surface reactions regarding base exchange and soil acidification, heavy metal sorption and mobility, and phosphorus sorption and availability of the tropical highly weathered soils are reviewed in this paper.Factors controlling surface reactivity towards cations and anions, including ion exchange and specific adsorption processes, are discussed with consideration on practical implications for rational management of these soils. Organic matter content and pH value are major basic factors that should be controlled through appropriate agricultural practices, in order to optimise favorable effects of colloid surface properties on soil fertility and environmental quality.

  17. Ice sheets as a significant source of highly reactive nanoparticulate iron to the oceans.

    Science.gov (United States)

    Hawkings, Jon R; Wadham, Jemma L; Tranter, Martyn; Raiswell, Rob; Benning, Liane G; Statham, Peter J; Tedstone, Andrew; Nienow, Peter; Lee, Katherine; Telling, Jon

    2014-05-21

    The Greenland and Antarctic Ice Sheets cover ~ 10% of global land surface, but are rarely considered as active components of the global iron cycle. The ocean waters around both ice sheets harbour highly productive coastal ecosystems, many of which are iron limited. Measurements of iron concentrations in subglacial runoff from a large Greenland Ice Sheet catchment reveal the potential for globally significant export of labile iron fractions to the near-coastal euphotic zone. We estimate that the flux of bioavailable iron associated with glacial runoff is 0.40-2.54 Tg per year in Greenland and 0.06-0.17 Tg per year in Antarctica. Iron fluxes are dominated by a highly reactive and potentially bioavailable nanoparticulate suspended sediment fraction, similar to that identified in Antarctic icebergs. Estimates of labile iron fluxes in meltwater are comparable with aeolian dust fluxes to the oceans surrounding Greenland and Antarctica, and are similarly expected to increase in a warming climate with enhanced melting.

  18. Cardiovascular Reactivity in Patients With Major Depressive Disorder With High- or Low-Level Depressive Symptoms: A Cross-Sectional Comparison of Cardiovascular Reactivity to Laboratory-Induced Mental Stress.

    Science.gov (United States)

    Wang, Mei-Yeh; Chiu, Chen-Huan; Lee, Hsin-Chien; Su, Chien-Tien; Tsai, Pei-Shan

    2016-03-01

    Depression increases the risk of adverse cardiac events. Cardiovascular reactivity is defined as the pattern of cardiovascular responses to mental stress. An altered pattern of cardiovascular reactivity is an indicator of subsequent cardiovascular disease. Because depression and adverse cardiac events may have a dose-dependent association, this study examined the differences in cardiovascular reactivity to mental stress between patients with major depressive disorder (MDD) with high depression levels and those with low depression levels. Moreover, autonomic nervous system regulation is a highly plausible biological mechanism for the pattern of cardiovascular reactivity to mental stress. The association between cardiovascular reactivity and parameters of heart rate variability (HRV), an index for quantifying autonomic nervous system activity modulation, was thus examined. This study included 88 patients with MDD. HRV was measured before stress induction. The Stroop Color and Word Test and mirror star-tracing task were used to induce mental stress. We observed no significant association between depressive symptom level and any of the cardiovascular reactivity parameters. Cardiovascular reactivity to mental stress was comparable between patients with MDD with high-level depressive symptoms and those with low-level depressive symptoms. After adjusting for confounding variables, the high-frequency domain of HRV was found to be an independent predictor of the magnitude of heart rate reactivity (β = -.33, p = .002). In conclusion, the magnitude of cardiovascular reactivity may be independent of depression severity in patients with MDD. The autonomic regulation of cardiovascular responses to mental stress primarily influences heart rate reactivity in patients with MDD.

  19. Association of high-sensitive C-reactive protein and dialysis adequacy with uremic pruritus.

    Science.gov (United States)

    Malekmakan, Leila; Malekmakan, Alireza; Sayadi, Mehrab; Pakfetrat, Maryam; Sepaskhah, Mozhdeh; Roozbeh, Jamshid

    2015-09-01

    Uremic pruritus is a difficult symptom in chronic hemodialysis (HD) patients, and its patho-physiological mechanism remains unknown. To determine the relationship between pruritus and C-reactive protein as well as dialysis adequacy among the HD patients, we studied 241 chronic HD patients in Shiraz dialysis centers, Iran. The patients were selected by convenient sampling and the data were collected using a checklist, interview and lab tests. The mean age of our patients was 53.9 ± 16.3 years and 128 (53.1%) of them were male. There were 97 (40.2%) patients who complained of pruritus. A significant association was found between high-sensitive C-reactive protein and pruritus (P = 0.004). Also, a significant positive relationship was observed between pruritus and dialysis adequacy (P dialysis adequacy and pruritus. A better understanding of the factors implicated in the cause of uremic pruritus is essential in the development of more-effective treatments and improved quality of life in HD patients.

  20. Highly sensitive SnO2 sensor via reactive laser-induced transfer

    Science.gov (United States)

    Palla Papavlu, Alexandra; Mattle, Thomas; Temmel, Sandra; Lehmann, Ulrike; Hintennach, Andreas; Grisel, Alain; Wokaun, Alexander; Lippert, Thomas

    2016-04-01

    Gas sensors based on tin oxide (SnO2) and palladium doped SnO2 (Pd:SnO2) active materials are fabricated by a laser printing method, i.e. reactive laser-induced forward transfer (rLIFT). Thin films from tin based metal-complex precursors are prepared by spin coating and then laser transferred with high resolution onto sensor structures. The devices fabricated by rLIFT exhibit low ppm sensitivity towards ethanol and methane as well as good stability with respect to air, moisture, and time. Promising results are obtained by applying rLIFT to transfer metal-complex precursors onto uncoated commercial gas sensors. We could show that rLIFT onto commercial sensors is possible if the sensor structures are reinforced prior to printing. The rLIFT fabricated sensors show up to 4 times higher sensitivities then the commercial sensors (with inkjet printed SnO2). In addition, the selectivity towards CH4 of the Pd:SnO2 sensors is significantly enhanced compared to the pure SnO2 sensors. Our results indicate that the reactive laser transfer technique applied here represents an important technical step for the realization of improved gas detection systems with wide-ranging applications in environmental and health monitoring control.

  1. A STUDY OF HIGH SENSITIVITY C-REACTIVE PROTEIN IN UNSTABLE ANGINA

    Directory of Open Access Journals (Sweden)

    Satish

    2014-11-01

    Full Text Available BACKGROUND: Unstable angina has a wide variability in its natural history, changing concepts of Pathophysiology, and newer approaches to its management strategies. So, unstable angina still has importance and prime interest in research work. Various ongoing research works has provided newer insights in pathophysiology of unstable angina syndrome and helps in recognition of clinical variability and unpredictability of it. C - reactive protein being the most sensitive acute phase reactant currently held. A recent previous study has estimated the levels and values of high-sensitivity C - reactive protein in both stable and unstable angina pectoris. Data provided by the study indicated need for further studies in this field. With all these facts, the present study is carried out to estimated Hs CRP levels as a marker of inflammation in patient of unstable angina. AIMS AND OBJECTIVES: The present study was carried out with the following Aims and Objectives. To estimate Hs-CRP levels as a marker of inflammation in patients of unstable angina. To compare Hs-CRP levels in cases of unstable angina, with Hs-CRP levels in patients of stable angina and in healthy age and sex matched controls. MATERIAL AND METHODS: This study was carried out at Basaveshwar Teaching and General Hospital, Gulbarga, MRMC Gulbarga. Approximate duration of study was 1 ½ year from June-2008 to November, 2010. OBSERVATION: Following are the conclusions drawn from the present study.

  2. Thermochemical process for seasonal storage of solar energy: characterization and modeling of a high-density reactive bed

    OpenAIRE

    Michel, Benoit; Mazet, Nathalie; Mauran, Sylvain; Stitou, Driss; Jing XU

    2012-01-01

    International audience; This paper focuses on the characterization and modeling of a solid/gas thermochemical reaction between a porous reactive bed and moist air flowing through it. The aim is the optimization of both energy density and permeability of the reactive bed, in order to realize a high density thermochemical system for seasonal thermal storage for house heating application. Several samples with different implementation parameters (density, binder, diffuser, porous bed texture) hav...

  3. Advances in the MQDT approach of electron/molecular cation reactive collisions: High precision extensive calculations for applications

    Directory of Open Access Journals (Sweden)

    Motapon O.

    2015-01-01

    Full Text Available Recent advances in the stepwise multichannel quantum defect theory approach of electron/molecular cation reactive collisions have been applied to perform computations of cross sections and rate coefficients for dissociative recombination and electron-impact ro-vibrational transitions of H2+, BeH+ and their deuterated isotopomers. At very low energy, rovibronic interactions play a significant role in the dynamics, whereas at high energy, the dissociative excitation strongly competes with all other reactive processes.

  4. Effects of fluxing agents on gasification reactivity and gas composition of high ash fusion temperature coal

    Directory of Open Access Journals (Sweden)

    Zhao Ruifang

    2015-01-01

    Full Text Available A Na-based fluxing agent Na2O (NBFA and a composite fluxing agent (mixture of CaO and Fe2O3 with mass ratio of 3:1, CFA for short were used to decrease the ash fusion temperature of the Dongshan and Xishan coal from Shanxi of China and make these coal meet the requirements of the specific gasification process. The main constituents of the fluxing agents used in this study can play a catalyst role in coal gasification. So it is necessary to understand the effect of fluxing agents on coal gasification reactivity and gas composition. The results showed that the ash fusion temperature of the two coal used decreased to the lowest point due to the eutectic phenomenon when 5 wt% of CFA or NBFA was added. Simultaneously, the gas molar ratio of H2/CO changed when CFA was added. A key application was thus found where the gas molar ratio of H2/CO can be adjusted by controlling the fluxing agent amount to meet the synthetic requirements for different chemical products.

  5. Exploring site-specific chemical interactions at surfaces: a case study on highly ordered pyrolytic graphite

    Science.gov (United States)

    Dagdeviren, Omur E.; Götzen, Jan; Altman, Eric I.; Schwarz, Udo D.

    2016-12-01

    A material’s ability to interact with approaching matter is governed by the structural and chemical nature of its surfaces. Tailoring surfaces to meet specific needs requires developing an understanding of the underlying fundamental principles that determine a surface’s reactivity. A particularly insightful case occurs when the surface site exhibiting the strongest attraction changes with distance. To study this issue, combined noncontact atomic force microscopy and scanning tunneling microscopy experiments have been carried out, where the evolution of the local chemical interaction with distance leads to a contrast reversal in the force channel. Using highly ordered pyrolytic graphite surfaces and metallic probe tips as a model system, we find that at larger tip-sample distances, carbon atoms exhibit stronger attractions than hollow sites while upon further approach, hollow sites become energetically more favorable. For the tunneling current that is recorded at large tip-sample separations during acquisition of a constant-force image, the contrast is dominated by the changes in tip-sample distance required to hold the force constant (‘cross-talk’) at smaller separations the contrast turns into a convolution of this cross-talk and the local density of states. Analysis shows that the basic factors influencing the force channel contrast reversal are locally varying decay lengths and an onset of repulsive forces that occurs for distinct surface sites at different tip-sample distances. These findings highlight the importance of tip-sample distance when comparing the relative strength of site-specific chemical interactions.

  6. From solution to in-cell study of the chemical reactivity of acid sensitive functional groups: a rational approach towards improved cleavable linkers for biospecific endosomal release.

    Science.gov (United States)

    Jacques, Sylvain A; Leriche, Geoffray; Mosser, Michel; Nothisen, Marc; Muller, Christian D; Remy, Jean-Serge; Wagner, Alain

    2016-06-07

    pH-Sensitive linkers designed to undergo selective hydrolysis at acidic pH compared to physiological pH can be used for the selective release of therapeutics at their site of action. In this paper, the hydrolytic cleavage of a wide variety of molecular structures that have been reported for their use in pH-sensitive delivery systems was examined. A wide variety of hydrolytic stability profiles were found among the panel of tested chemical functionalities. Even within a structural family, a slight modification of the substitution pattern has an unsuspected outcome on the hydrolysis stability. This work led us to establish a first classification of these groups based on their reactivities at pH 5.5 and their relative hydrolysis at pH 5.5 vs. pH 7.4. From this classification, four representative chemical functions were selected and studied in-vitro. The results revealed that only the most reactive functions underwent significant lysosomal cleavage, according to flow cytometry measurements. These last results question the acid-based mechanism of action of known drug release systems and advocate for the importance of an in-depth structure-reactivity study, using a tailored methodology, for the rational design and development of bio-responsive linkers.

  7. The coordination chemistry of boron porphyrin complexes B2OX2 (TYPP) (X = OH, F; Y = Cl, CH3) and their chemical reactivities

    Indian Academy of Sciences (India)

    G I Cárdenas-Jirón; F Espinoza-Leyton; T L Sordo

    2005-09-01

    The structure and coordination chemistry of boron porphyrin complexes B2OX2 (TYPP) (X = OH, F; Y = Cl, CH3) in connection with its chemical reactivity are analyzed at ab initio density functional theory B3LYP/6-31G∗ and restricted Hartree-Fock RHF/6-31G∗ levels of theory. Global reactivity and local selectivity descriptors are used as adequate tools to analyze the isomerism effect ( or isomer) and the substitution effect (X: in axial ligand; or Y: in porphyrin ligand). In all the cases, we find that the conformation is the most stable one, in agreement with X-ray results, and that a principle of maximum hardness in the isomerism analysis is fullfilled. In the substitution analysis, we find that the three global reactivity indexes (, , ) and the two local reactivity indexes (, electrostatic potential) used in this paper predict the same trend when an electron-withdrawing substituent is replaced by an electron donor. Finally, we show that substitution in the porphyrin ligand is slightly more significant than that in the axial ligand.

  8. Catchment Very-High Frequency Hydrochemistry: the Critex Chemical House

    Science.gov (United States)

    Floury, P.; Gaillardet, J.; Tallec, G.; Blanchouin, A.; Ansart, P.

    2015-12-01

    Exploring the variations of river quality at very high frequency is still a big challenge that has fundamental implications both for understanding catchment ecosystems and for water quality monitoring. Within the French Critical Zone program CRITEX, we have proposed to develop a prototype called "Chemical House", applying the "lab on field" concept to one of the stream of the Orgeval Critical Zone Observatory. The Orgeval catchment (45 km2) is part of the Critical Zone RBV ("Réseau des bassins versants") network. It is a typical temperate agricultural catchment that has been intensively monitored for the last 50 years for hydrology and nutrient chemistry. Agricultural inputs and land use are also finely monitored making Orgeval an ideal basin to test the response of the Critical Zone to agricultural forcing. Geology consists of a typical sedimentary basin of Cenozoic age with horizontal layers of limestones, silcrete and marls, covered by a thin loamy layer. Two main aquifers are present within the catchment: the Brie and the Champigny aquifers. Mean runoff is 780 mm/yr. The Chemical House is a fully automated lab and installed directly along the river, which performs measurement of all major dissolved elements such as Na, Cl, Mg, Ca, NO3, SO4 and K every half hour. It also records all physical parameters (Temperature, pH, conductivity, O2 dissolved, Turbidity) of the water every minute. Orgeval Chemical House started to measure river chemistry on June 12, 2015 and has successfully now recorded several months of data. We will present the architecture of the Chemical House and the first reproducibility and accuracy tests made during the summer drought 2015 period. Preliminary results show that the chemical house is recoding significant nychtemeral (day/night) cycles for each element. We also observe that each element has its own behaviour along a day. First results open great prospects.

  9. Gene Transfer of Tumor-Reactive TCR Confers Both High Avidity and Tumor Reactivity to Nonreactive Peripheral Blood Mononuclear Cells and Tumor-Infiltrating Lymphocytes1

    Science.gov (United States)

    Johnson, Laura A.; Heemskerk, Bianca; Powell, Daniel J.; Cohen, Cyrille J.; Morgan, Richard A.; Dudley, Mark E.; Robbins, Paul F.; Rosenberg, Steven A.

    2007-01-01

    Cell-based antitumor immunity is driven by CD8+ cytotoxic T cells bearing TCR that recognize specific tumor-associated peptides bound to class I MHC molecules. Of several cellular proteins involved in T cell:target-cell interaction, the TCR determines specificity of binding; however, the relative amount of its contribution to cellular avidity remains unknown. To study the relationship between TCR affinity and cellular avidity, with the intent of identifying optimal TCR for gene therapy, we derived 24 MART-1:27–35 (MART-1) melanoma Ag-reactive tumor-infiltrating lymphocyte (TIL) clones from the tumors of five patients. These MART-1-reactive clones displayed a wide variety of cellular avidities. α and β TCR genes were isolated from these clones, and TCR RNA was electroporated into the same non-MART-1-reactive allogeneic donor PBMC and TIL. TCR recipient cells gained the ability to recognize both MART-1 peptide and MART-1-expressing tumors in vitro, with avidities that closely corresponded to the original TCR clones (p = 0.018–0.0003). Clone DMF5, from a TIL infusion that mediated tumor regression clinically, showed the highest avidity against MART-1 expressing tumors in vitro, both endogenously in the TIL clone, and after RNA electroporation into donor T cells. Thus, we demonstrated that the TCR appeared to be the core determinant of MART-1 Ag-specific cellular avidity in these activated T cells and that nonreactive PBMC or TIL could be made tumor-reactive with a specific and predetermined avidity. We propose that inducing expression of this highly avid TCR in patient PBMC has the potential to induce tumor regression, as an “off-the-shelf” reagent for allogeneic melanoma patient gene therapy. PMID:17056587

  10. Characterization of the chemical reactivity and nephrotoxicity of N-acetyl-S-(1,2-dichlorovinyl)-L-cysteine sulfoxide, a potential reactive metabolite of trichloroethylene.

    Science.gov (United States)

    Irving, Roy M; Pinkerton, Marie E; Elfarra, Adnan A

    2013-02-15

    N-Acetyl-S-(1,2-dichlorovinyl)-L-cysteine (NA-DCVC) has been detected in the urine of humans exposed to trichloroethylene and its related sulfoxide, N-acetyl-S-(1,2-dichlorovinyl)-L-cysteine sulfoxide (NA-DCVCS), has been detected as hemoglobin adducts in blood of rats dosed with S-(1,2-dichlorovinyl)-L-cysteine (DCVC) or S-(1,2-dichlorovinyl)-L-cysteine sulfoxide (DCVCS). Because the in vivo nephrotoxicity of NA-DCVCS was unknown, in this study, male Sprague-Dawley rats were dosed (i.p.) with 230 μmol/kg b.w. NA-DCVCS or its potential precursors, DCVCS or NA-DCVC. At 24 h post treatment, rats given NA-DCVC or NA-DCVCS exhibited kidney lesions and effects on renal function distinct from those caused by DCVCS. NA-DCVC and NA-DCVCS primarily affected the cortico-medullary proximal tubules (S(2)-S(3) segments) while DCVCS primarily affected the outer cortical proximal tubules (S(1)-S(2) segments). When NA-DCVCS or DCVCS was incubated with GSH in phosphate buffer pH 7.4 at 37°C, the corresponding glutathione conjugates were detected, but NA-DCVC was not reactive with GSH. Because NA-DCVCS exhibited a longer half-life than DCVCS and addition of rat liver cytosol enhanced GSH conjugate formation, catalysis of GSH conjugate formation by the liver could explain the lower toxicity of NA-DCVCS in comparison with DCVCS. Collectively, these results provide clear evidence that NA-DCVCS formation could play a significant role in DCVC, NA-DCVC, and trichloroethylene nephrotoxicity. They also suggest a role for hepatic metabolism in the mechanism of NA-DCVC nephrotoxicity.

  11. Analysis of chemical composition of high viscous oils

    Directory of Open Access Journals (Sweden)

    Irina Germanovna Yashchenko

    2014-07-01

    Full Text Available The spatial distribution of viscous oils which are considered as an important reserve for oil-production in future were studied on base of information from global database on oil physical and chemical properties. Changes in chemical composition of viscous oils in different basins and continents were analyzed as well. It is shown, on average, viscous oils are sulfur-bearing, low paraffin, highly resinous oils with an average content of asphaltenes and low content of the fraction boiling at 200 C. Study results of viscous oils peculiarities of Canada, Russia and Venezuela are given. The analysis results can be used to determine the optimal layouts and conditions of oil transportation, to improve the search methods of geochemical exploration, and to solve other problems in the oil chemistry.

  12. Highly functionalized organic nitrates in the southeast United States: Contribution to secondary organic aerosol and reactive nitrogen budgets

    Science.gov (United States)

    Mohr, Claudia; Lopez-Hilfiker, Felipe D.; Lutz, Anna; Hallquist, Mattias; Lee, Lance; Romer, Paul; Cohen, Ronald C.; Iyer, Siddharth; Kurtén, Theo; Hu, Weiwei; Day, Douglas A.; Campuzano-Jost, Pedro; Jimenez, Jose L.; Xu, Lu; Ng, Nga Lee; Guo, Hongyu; Weber, Rodney J.; Wild, Robert J.; Brown, Steven S.; Koss, Abigail; de Gouw, Joost; Olson, Kevin; Goldstein, Allen H.; Seco, Roger; Kim, Saewung; McAvey, Kevin; Shepson, Paul B.; Starn, Tim; Baumann, Karsten; Edgerton, Eric S.; Liu, Jiumeng; Shilling, John E.; Miller, David O.; Brune, William; Schobesberger, Siegfried; D'Ambro, Emma L.; Thornton, Joel A.

    2016-01-01

    Speciated particle-phase organic nitrates (pONs) were quantified using online chemical ionization MS during June and July of 2013 in rural Alabama as part of the Southern Oxidant and Aerosol Study. A large fraction of pONs is highly functionalized, possessing between six and eight oxygen atoms within each carbon number group, and is not the common first generation alkyl nitrates previously reported. Using calibrations for isoprene hydroxynitrates and the measured molecular compositions, we estimate that pONs account for 3% and 8% of total submicrometer organic aerosol mass, on average, during the day and night, respectively. Each of the isoprene- and monoterpenes-derived groups exhibited a strong diel trend consistent with the emission patterns of likely biogenic hydrocarbon precursors. An observationally constrained diel box model can replicate the observed pON assuming that pONs (i) are produced in the gas phase and rapidly establish gas–particle equilibrium and (ii) have a short particle-phase lifetime (∼2–4 h). Such dynamic behavior has significant implications for the production and phase partitioning of pONs, organic aerosol mass, and reactive nitrogen speciation in a forested environment. PMID:26811465

  13. Highly functionalized organic nitrates in the southeast United States: Contribution to secondary organic aerosol and reactive nitrogen budgets.

    Science.gov (United States)

    Lee, Ben H; Mohr, Claudia; Lopez-Hilfiker, Felipe D; Lutz, Anna; Hallquist, Mattias; Lee, Lance; Romer, Paul; Cohen, Ronald C; Iyer, Siddharth; Kurtén, Theo; Hu, Weiwei; Day, Douglas A; Campuzano-Jost, Pedro; Jimenez, Jose L; Xu, Lu; Ng, Nga Lee; Guo, Hongyu; Weber, Rodney J; Wild, Robert J; Brown, Steven S; Koss, Abigail; de Gouw, Joost; Olson, Kevin; Goldstein, Allen H; Seco, Roger; Kim, Saewung; McAvey, Kevin; Shepson, Paul B; Starn, Tim; Baumann, Karsten; Edgerton, Eric S; Liu, Jiumeng; Shilling, John E; Miller, David O; Brune, William; Schobesberger, Siegfried; D'Ambro, Emma L; Thornton, Joel A

    2016-02-09

    Speciated particle-phase organic nitrates (pONs) were quantified using online chemical ionization MS during June and July of 2013 in rural Alabama as part of the Southern Oxidant and Aerosol Study. A large fraction of pONs is highly functionalized, possessing between six and eight oxygen atoms within each carbon number group, and is not the common first generation alkyl nitrates previously reported. Using calibrations for isoprene hydroxynitrates and the measured molecular compositions, we estimate that pONs account for 3% and 8% of total submicrometer organic aerosol mass, on average, during the day and night, respectively. Each of the isoprene- and monoterpenes-derived groups exhibited a strong diel trend consistent with the emission patterns of likely biogenic hydrocarbon precursors. An observationally constrained diel box model can replicate the observed pON assuming that pONs (i) are produced in the gas phase and rapidly establish gas-particle equilibrium and (ii) have a short particle-phase lifetime (∼2-4 h). Such dynamic behavior has significant implications for the production and phase partitioning of pONs, organic aerosol mass, and reactive nitrogen speciation in a forested environment.

  14. A travel time-based approach to model kinetic sorption in highly heterogeneous porous media via reactive hydrofacies

    Science.gov (United States)

    Finkel, Michael; Grathwohl, Peter; Cirpka, Olaf A.

    2016-12-01

    We present a semianalytical model for the transport of solutes being subject to sorption in porous aquifers. We couple a travel time-based model of advective transport with a spherical diffusion model of kinetic sorption in nonuniform material mixtures. The model is formulated in the Laplace domain and transformed to the time domain by numerical inversion. By this, three-dimensional transport of solutes undergoing mass transfer between aqueous and solid phases can be simulated very efficiently. The model addresses both hydraulic and reactive heterogeneity of porous aquifers by means of hydrofacies, which function as homogeneous but nonuniform subunits. The total exposure time to each of these subunits controls the magnitude of sorption effects, whereas the particular sequence of facies through which the solute passes is irrelevant. We apply the model to simulate the transport of phenanthrene in a fluvio-glacial aquifer, for which the hydrofacies distribution is known at high resolution, the lithological composition of each facies has been analyzed, and sorption properties of the lithological components are available. Taking the fully resolved hydrofacies model as reference, we evaluate different approximations referring to lower information levels, reflecting shortcomings in typical modeling projects. The most important feature for a good description of both the main breakthrough and tailing of phenanthrene is the nonuniformity of the porous medium. While spatial heterogeneity of chemical properties might be neglected without introducing a large error, an approximation of the facies' composition in terms of a uniform substitute material considerably compromises the quality of the modeling result.

  15. Reactive scalar field near the turbulent/non-turbulent interface in a planar jet with a second-order chemical reaction

    Science.gov (United States)

    Watanabe, T.; Sakai, Y.; Nagata, K.; Ito, Y.; Hayase, T.

    2014-10-01

    The reactive scalar field near the turbulent/non-turbulent (T/NT) interface is analyzed using a direct numerical simulation (DNS) of a planar jet with an isothermal second-order chemical reaction A + B → P. Reactants A and B are supplied from the jet and ambient flows, respectively. The DNS of the reactive jet is performed for Damköhler numbers Da = 0.1, 1, and 10. A visualization of the T/NT interface shows that most of the product P is contained in the turbulent region. The conditional mean concentrations of the reactive species change sharply near the T/NT interface. The width of the jump in the conditional mean concentration is almost independent of the chemical species and the Damköhler number. For the slow reaction (Da = 0.1), the conditional average of the chemical production rate gradually increases from the non-turbulent region toward the turbulent region. In contrast, the conditional average of the production rate for Da = 1 and 10 has a large peak value slightly inside the T/NT interface. The chemical reaction near the T/NT interface strongly depends on the interface orientation. The reactant A is deficient near the T/NT interface. The production rate is large near the interface toward which the deficient reactant A is frequently transported by the velocity fields. The transport due to the velocity relative to the interface movement strongly depends on the relationship between the interface geometry and the mean flow field. The dependence of the chemical reaction on the interface orientation becomes strong as Da increases. When the interface propagates toward the non-turbulent region, the reactant A and product P are contained in the turbulent region although the molecular diffusion and reaction contribute to the increase in the concentrations of A (non-reactive case) and P in the non-turbulent region. In contrast, the interface propagation toward the turbulent region leaves the fluids containing A and P in the non-turbulent region.

  16. Analyzing relationships between surface perturbations and local chemical reactivity of metal sites: Alkali promotion of O2 dissociation on Ag(111).

    Science.gov (United States)

    Xin, Hongliang; Linic, Suljo

    2016-06-21

    Many commercial heterogeneous catalysts are complex structures that contain metal active sites promoted by multiple additives. Developing fundamental understanding about the impact of these perturbations on the local surface reactivity is crucial for catalyst development and optimization. In this contribution, we develop a general framework for identifying underlying mechanisms that control the changes in the surface reactivity of a metal site (more specifically the adsorbate-surface interactions) upon a perturbation in the local environment. This framework allows us to interpret fairly complex interactions on metal surfaces in terms of specific, physically transparent contributions that can be evaluated independently of each other. We use Cs-promoted dissociation of O2 as an example to illustrate our approach. We concluded that the Cs adsorbate affects the outcome of the chemical reaction through a strong alkali-induced electric field interacting with the static dipole moment of the O2/Ag(111) system.

  17. Charting the Chemical Reactivity Space of 2,3-Substituted Furo[2,3-b]pyridines Synthesized via the Heterocyclization of Pyridine-N-oxide Derivatives.

    Science.gov (United States)

    Fumagalli, Fernando; da Silva Emery, Flavio

    2016-11-04

    A concise strategy for the synthesis of 2,3-substituted furo[2,3-b]pyridines is described. Mild, metal-free conditions were successfully applied to produce a range of 2-(alkyl or aryl)-3-ethylcarboxylate-furo[2,3-b]pyridines in yields of 50-91%. Then, the chemical reactivity of this heterocyclic framework was explored to develop straightforward methods for its functionalization. The pyridine moiety reactivity was successfully explored by C-H amination and borylation reactions, although C-H fluorination and radical C-H arylation processes were not as efficient. In addition, while the furopyridine core proved stable under basic conditions, the ring-opening reaction of the furan moiety with hydrazine generated a valuable new pyridine-dihydropyrazolone scaffold.

  18. Analyzing relationships between surface perturbations and local chemical reactivity of metal sites: Alkali promotion of O2 dissociation on Ag(111)

    Science.gov (United States)

    Xin, Hongliang; Linic, Suljo

    2016-06-01

    Many commercial heterogeneous catalysts are complex structures that contain metal active sites promoted by multiple additives. Developing fundamental understanding about the impact of these perturbations on the local surface reactivity is crucial for catalyst development and optimization. In this contribution, we develop a general framework for identifying underlying mechanisms that control the changes in the surface reactivity of a metal site (more specifically the adsorbate-surface interactions) upon a perturbation in the local environment. This framework allows us to interpret fairly complex interactions on metal surfaces in terms of specific, physically transparent contributions that can be evaluated independently of each other. We use Cs-promoted dissociation of O2 as an example to illustrate our approach. We concluded that the Cs adsorbate affects the outcome of the chemical reaction through a strong alkali-induced electric field interacting with the static dipole moment of the O2/Ag(111) system.

  19. Relationship between high-sensitivity C-reactive protein level and angiographical characteristics of coronary atherosclerosis

    Institute of Scientific and Technical Information of China (English)

    JIA En-zhi; HUANG Jun; MA Wen-zhu; YANG Zhi-jian; YUAN Biao; ZANG Xiao-ling; WANG Rong-hu; ZHU Tie-bing; WANG Lian-sheng; CHEN Bo; CAO Ke-jiang

    2006-01-01

    @@ Arole for inflammation has become well established over the past decade or more in theories describing the atherosclerotic disease process.1,2 From a pathological viewpoint, all stages, ie, initiation, growth, and complication of the atherosclerotic plaque,3,4 might be considered to be an inflammatory response to injury. Several prospective studies 5-7 recently showed that plasma high sensitivity C-reactive protein (hsCRP) levels, which are one of the markers of systemic inflammation, are a powerful predictor of future myocardial infarction and cardiac death among apparently healthy individuals. However, the association between the plasma hsCRP levels and the extent of coronary stenosis in subjects remains controversial. Some studies previously demon- strated such associations,8,9 whereas other could not found.10,11 Gensini's score assigns a severity score for a stenosed vessel depending on the degree of luminal narrowing and the importance of its location.12

  20. High-temperature thermal degradation of polyethylene from reactive molecular dynamics

    Science.gov (United States)

    Lane, J. Matthew D.; Moore, Nathan W.

    Thermal degradation of polyethylene is studied under extremely high-rate temperature ramp rates from 1014 to 1010 K/s in isochoric, condensed phases. The molecular evolution and macroscopic state variables are extracted as a function of density from reactive molecular dynamics simulations using the ReaxFF potential. These results are used to parameterize a kinetic rate model for the dissociation and coalescence of hydrocarbons as a function of temperature, temperature ramp rate, and density. The results are contrasted to first-order random-scission macrokinetic models often assumed for pyrolysis of linear polyethylene under ambient conditions. Sandia National Laboratories is a multi program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04- 94AL85000.

  1. No relationship between lung function and high-sensitive C-reactive protein in adolescence.

    Science.gov (United States)

    Nybo, Mads; Hansen, Henrik Steen; Siersted, Hans Christian; Rasmussen, Finn

    2010-10-01

      Several studies on adults have indicated that lower spirometric lung function may be associated with increased systemic inflammation, but no studies have investigated if this association is already present in adolescence.   We explored the temporal relationship between changes in lung function and concentrations of plasma C-reactive protein (CRP) in a population-based cohort study at ages 14 and 20 years using a high-sensitivity CRP assay.   CRP measurements were performed in a total of 420 subjects at mean age of 13.9 years. Of these, 262 subjects (62%) participated in the follow-up investigation at mean age of 20.1 years.   Levels of log-CRP at age 14 were not significantly associated with forced expiratory volume (FEV(1) ) or FEV(1) / forced vital capacity (FVC) ratio at age 20, nor with the change in FEV(1) , FVC or FEV(1) /FVC ratio between 14 and 20 years after controlling for body mass index (BMI), airway hyperresponsiveness (AHR), eosinophil cationic protein (ECP), asthma, smoking, sex, and height at 14 years, and change in height between 14 and 20 years. Sex, BMI, AHR, ECP and change in height between 14 and 20 years were identified as independent factors associated with the change in FEV(1) , FVC and FEV(1) /FVC ratio in adolescence.   We did not find an association between CRP levels at age 14 and change in lung function by age 20; whereas, sex, change in height, BMI, AHR and ECP were associated with lung function change in adolescence. Our findings indicate that systemic inflammation is of less importance for change in lung function in adolescence. Please cite this paper as: Nybo M, Hansen HS, Siersted HC and Rasmussen F. No relationship between lung function and high-sensitive C-reactive protein in adolescence. © 2009 Blackwell Publishing Ltd.

  2. Effects of Biomass Feedstock on the Yield and Reactivity of Soot from Fast Pyrolysis at High Temperatures

    DEFF Research Database (Denmark)

    Trubetskaya, Anna; Jensen, Peter A.; Glarborg, Peter

    This study investigated the effect of feedstock on the yield, nanostructure and reactivity of soot. Woody and herbaceous biomass were pyrolyzed at high heating rates and temperatures of 1250 and 1400°C in a drop tube furnace. The collected solid residues were structurally characterized by electron...... microscopy techniques, X-ray diffraction and N2-adsorption. The reactivity of soot was investigated by thermogravimetric analysis. The results showed that the reactivity of soot, generated at 1400°C was higher than that at 1250°C for all biomass types. Wood and wheat straw soot demonstrated differences...... with respect to the alkali content, particle size and nanostructure. Potassium was incorporated in the soot matrix and to a significant extent influenced the soot reactivity. The particle size distribution of pinewood soot produced at 1250°C was in the range from 27.2 to 263 nm which was broader compared...

  3. Distillation and isolation of commodity chemicals from Bio-oil made by tail-gas reactive prolysis

    Science.gov (United States)

    Owing to instabilities, very little has been accomplished with regards to simple cost-effective separations of fast-pyrolysis bio-oil. However, recent developments in the use of tail-gas reactive pyrolysis (TGRP) (Mullen and Boateng 2013) provide higher quality bio-oils that are thermally stable. We...

  4. Assessment of conformational, spectral, antimicrobial activity, chemical reactivity and NLO application of Pyrrole-2,5-dicarboxaldehyde bis(oxaloyldihydrazone)

    Science.gov (United States)

    Rawat, Poonam; Singh, R. N.

    2015-04-01

    An orange colored pyrrole dihydrazone: Pyrrole-2,5-dicarboxaldehyde bis(oxaloyldihydrazone) (PDBO) has been synthesized by reaction of oxalic acid dihydrazide with 2,5 diformyl-1H-pyrrole and has been characterized by spectroscopic analysis (1H, 13C NMR, UV-visible, FT-IR and DART Mass). The properties of the compound has been evaluated using B3LYP functional and 6-31G(d,p)/6-311+G(d,p) basis set. The symmetric (3319, 3320 cm-1) and asymmetric (3389, 3382 cm-1) stretching wave number confirm free NH2 groups in PDBO. NBO analysis shows, inter/intra molecular interactions within the molecule. Topological parameters have been analyzed by QTAIM theory and provide the existence of intramolecular hydrogen bonding (N-H⋯O). The local reactivity descriptors analyses determine the reactive sites within molecule. The calculated first hyperpolarizability value (β0 = 23.83 × 10-30 esu) of pyrrole dihydrazone shows its suitability for non-linear optical (NLO) response. The preliminary bioassay suggested that the PDBO exhibits relatively good antibacterial and fungicidal activity against Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Streptococcus pyogenes, Candida albicans, Aspergillus niger. The local reactivity descriptors - Fukui functions (fk+, fk-), local softnesses (sk+, sk-) and electrophilicity indices (ωk+, ωk-) analyses have been used to determine the reactive sites within molecule.

  5. Assessment of conformational, spectral, antimicrobial activity, chemical reactivity and NLO application of Pyrrole-2,5-dicarboxaldehyde bis(oxaloyldihydrazone).

    Science.gov (United States)

    Rawat, Poonam; Singh, R N

    2015-04-05

    An orange colored pyrrole dihydrazone: Pyrrole-2,5-dicarboxaldehyde bis(oxaloyldihydrazone) (PDBO) has been synthesized by reaction of oxalic acid dihydrazide with 2,5 diformyl-1H-pyrrole and has been characterized by spectroscopic analysis (1H, 13C NMR, UV-visible, FT-IR and DART Mass). The properties of the compound has been evaluated using B3LYP functional and 6-31G(d,p)/6-311+G(d,p) basis set. The symmetric (3319, 3320 cm(-1)) and asymmetric (3389, 3382 cm(-1)) stretching wave number confirm free NH2 groups in PDBO. NBO analysis shows, inter/intra molecular interactions within the molecule. Topological parameters have been analyzed by QTAIM theory and provide the existence of intramolecular hydrogen bonding (N-H⋯O). The local reactivity descriptors analyses determine the reactive sites within molecule. The calculated first hyperpolarizability value (β0=23.83×10(-30) esu) of pyrrole dihydrazone shows its suitability for non-linear optical (NLO) response. The preliminary bioassay suggested that the PDBO exhibits relatively good antibacterial and fungicidal activity against Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Streptococcus pyogenes, Candida albicans, Aspergillus niger. The local reactivity descriptors--Fukui functions (fk+, fk-), local softnesses (sk+, sk-) and electrophilicity indices (ωk+, ωk-) analyses have been used to determine the reactive sites within molecule. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. High surface area graphene foams by chemical vapor deposition

    Science.gov (United States)

    Drieschner, Simon; Weber, Michael; Wohlketzetter, Jörg; Vieten, Josua; Makrygiannis, Evangelos; Blaschke, Benno M.; Morandi, Vittorio; Colombo, Luigi; Bonaccorso, Francesco; Garrido, Jose A.

    2016-12-01

    Three-dimensional (3D) graphene-based structures combine the unique physical properties of graphene with the opportunity to get high electrochemically available surface area per unit of geometric surface area. Several preparation techniques have been reported to fabricate 3D graphene-based macroscopic structures for energy storage applications such as supercapacitors. Although reaserch has been focused so far on achieving either high specific capacitance or high volumetric capacitance, much less attention has been dedicated to obtain high specific and high volumetric capacitance simultaneously. Here, we present a facile technique to fabricate graphene foams (GF) of high crystal quality with tunable pore size grown by chemical vapor deposition. We exploited porous sacrificial templates prepared by sintering nickel and copper metal powders. Tuning the particle size of the metal powders and the growth temperature allow fine control of the resulting pore size of the 3D graphene-based structures smaller than 1 μm. The as-produced 3D graphene structures provide a high volumetric electric double layer capacitance (165 mF cm-3). High specific capacitance (100 Fg-1) is obtained by lowering the number of layers down to single layer graphene. Furthermore, the small pore size increases the stability of these GFs in contrast to the ones that have been grown so far on commercial metal foams. Electrodes based on the as-prepared GFs can be a boost for the development of supercapacitors, where both low volume and mass are required.

  7. Chemical Vapor Deposition at High Pressure in a Microgravity Environment

    Science.gov (United States)

    McCall, Sonya; Bachmann, Klaus; LeSure, Stacie; Sukidi, Nkadi; Wang, Fuchao

    1999-01-01

    In this paper we present an evaluation of critical requirements of organometallic chemical vapor deposition (OMCVD) at elevated pressure for a channel flow reactor in a microgravity environment. The objective of using high pressure is to maintain single-phase surface composition for materials that have high thermal decomposition pressure at their optimum growth temperature. Access to microgravity is needed to maintain conditions of laminar flow, which is essential for process analysis. Based on ground based observations we present an optimized reactor design for OMCVD at high pressure and reduced gravity. Also, we discuss non-intrusive real-time optical monitoring of flow dynamics coupled to homogeneous gas phase reactions, transport and surface processes. While suborbital flights may suffice for studies of initial stages of heteroepitaxy experiments in space are essential for a complete evaluation of steady-state growth.

  8. Pasteurization of food by hydrostatic high pressure: chemical aspects.

    Science.gov (United States)

    Tauscher, B

    1995-01-01

    Food pasteurized by hydrostatic high pressure have already been marketed in Japan. There is great interest in this method also in Europe and USA. Temperature and pressure are the essential parameters influencing the state of substances including foods. While the influence of temperature on food has been extensively investigated, effects of pressure, also in combination with temperature, are attracting increasing scientific attention now. Processes and reactions in food governed by Le Chatelier's principle are of special interest; they include chemical reactions of both low- and macromolecular compounds. Theoretical fundamentals and examples of pressure affected reactions are presented.

  9. Development of High Temperature/High Sensitivity Novel Chemical Resistive Sensor

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chonglin; Nash, Patrick; Ma, Chunrui; Enriquez, Erik; Wang, Haibing; Xu, Xing; Bao, Shangyong; Collins, Gregory

    2013-08-13

    The research has been focused to design, fabricate, and develop high temperature/high sensitivity novel multifunctional chemical sensors for the selective detection of fossil energy gases used in power and fuel systems. By systematically studying the physical properties of the LnBaCo{sub 2}O{sub 5+d} (LBCO) [Ln=Pr or La] thin-films, a new concept chemical sensor based high temperature chemical resistant change has been developed for the application for the next generation highly efficient and near zero emission power generation technologies. We also discovered that the superfast chemical dynamic behavior and an ultrafast surface exchange kinetics in the highly epitaxial LBCO thin films. Furthermore, our research indicates that hydrogen can superfast diffuse in the ordered oxygen vacancy structures in the highly epitaxial LBCO thin films, which suggest that the LBCO thin film not only can be an excellent candidate for the fabrication of high temperature ultra sensitive chemical sensors and control systems for power and fuel monitoring systems, but also can be an excellent candidate for the low temperature solid oxide fuel cell anode and cathode materials.

  10. Consensus and future directions on the definition of high on-treatment platelet reactivity to adenosine diphosphate.

    Science.gov (United States)

    Bonello, Laurent; Tantry, Udaya S; Marcucci, Rossella; Blindt, Ruediger; Angiolillo, Dominick J; Becker, Richard; Bhatt, Deepak L; Cattaneo, Marco; Collet, Jean Philippe; Cuisset, Thomas; Gachet, Christian; Montalescot, Gilles; Jennings, Lisa K; Kereiakes, Dean; Sibbing, Dirk; Trenk, Dietmar; Van Werkum, Jochem W; Paganelli, Franck; Price, Matthew J; Waksman, Ron; Gurbel, Paul A

    2010-09-14

    The addition of clopidogrel to aspirin treatment reduces ischemic events in a wide range of patients with cardiovascular disease. However, recurrent ischemic event occurrence during dual antiplatelet therapy, including stent thrombosis, remains a major concern. Platelet function measurements during clopidogrel treatment demonstrated a variable and overall modest level of P2Y(12) inhibition. High on-treatment platelet reactivity to adenosine diphosphate (ADP) was observed in selected patients. Multiple studies have now demonstrated a clear association between high on-treatment platelet reactivity to ADP measured by multiple methods and adverse clinical event occurrence. However, the routine measurement of platelet reactivity has not been widely implemented and recommended in the guidelines. Reasons for the latter include: 1) a lack of consensus on the optimal method to quantify high on-treatment platelet reactivity and the cutoff value associated with clinical risk; and 2) limited data to support that alteration of therapy based on platelet function measurements actually improves outcomes. This review provides a consensus opinion on the definition of high on-treatment platelet reactivity to ADP based on various methods reported in the literature and proposes how this measurement may be used in the future care of patients. Copyright © 2010 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  11. Communication: Ro-vibrational control of chemical reactivity in H+CH₄→ H₂+CH₃: full-dimensional quantum dynamics calculations and a sudden model.

    Science.gov (United States)

    Welsch, Ralph; Manthe, Uwe

    2014-08-07

    The mode-selective chemistry of the title reaction is studied by full-dimensional quantum dynamics simulation on an accurate ab initio potential energy surface for vanishing total angular momentum. Using a rigorous transition state based approach and multi-configurational time-dependent Hartree wave packet propagation, initial state-selected reaction probabilities for many ro-vibrational states of methane are calculated. The theoretical results are compared with experimental trends seen in reactions of methane. An intuitive interpretation of the ro-vibrational control of the chemical reactivity provided by a sudden model based on the quantum transition state concept is discussed.

  12. Gamma glutamyltransferase levels and its association with high sensitive C-reactive protein in patients with acute coronary syndromes

    Science.gov (United States)

    Emiroglu, Mehmet Yunus; Esen, Özlem Batukan; Bulut, Mustafa; Karapinar, Hekim; Kaya, Zekeriya; Akcakoyun, Mustafa; Kargin, Ramazan; Aung, Soe Moe; Alızade, Elnur; Pala, Selcuk; Esen, Ali Metin

    2010-01-01

    Background: Elevated Gamma-glutamyltransferase (GGT) level is independently correlated with conditions associatedwith increased atherosclerosis, such as obesity, elevated serum cholesterol, high blood pressure and myocardial infarction. It is also demonstrated that serum gamma-glutamyltransferase activity is an independent risk factor for myocardial infarction and cardiac death in patients with coronary artery disease. Although the relationship between gamma-glutamyltransferase and coronary artery disease has been reported, not many studies have shown the relationship between changes ofgamma-glutamyltransferase in acute coronary syndromes and a well established coronary risk factor high sensitive C-reactive protein. (hs-CRP). Aims: In this study, how gamma-glutamyltransferase levels changed in acute coronary syndromes and its relationship with high sensitive C-reactive protein if any were studied. Patients & Methods: This trial was carried out at Kosuyolu Cardiovascular Training and Research Hospital and Van Yuksek Ihtisas Hospital, Turkey. 219 patients (177 males and 42 females) presenting with acute coronary syndrome, and 51 control subjects between September 2007 and September 2008 were included in the study. Serum gamma-glutamyltransferase, high sensitive C-reactive protein, serum lipoprotein levels and troponin I were determined. Results: Serum gamma-glutamyltransferase and high sensitive C-reactive protein levels were higher in acute coronary syndrome patients compared to control. There was also correlation between gamma-glutamyltransferase and high sensitive C-reactive protein levels. Conclusion: Serum gamma-glutamyltransferase and high sensitive C-reactive protein levels were higher in acute coronary syndrome patients. In subgroup analyses, the higher difference with Non-ST elevation myocardial infarction and ST elevation myocardial infarction groups than unstable angina oectoris group proposes a relationship between gamma-glutamyltransferase and severity

  13. Gamma glutamyltransferase levels and its association with high sensitive C-reactive protein in patients with acute coronary syndromes

    Directory of Open Access Journals (Sweden)

    Mehmet Yunus Emiroglu

    2010-07-01

    Full Text Available Background: Elevated Gamma-glutamyltransferase (GGT level is independently correlated with conditions associatedwith increased atherosclerosis, such as obesity, elevated serum cholesterol, high blood pressure and myocardial infarction. It is also demonstrated that serum gamma-glutamyltransferase activity is an independent risk factor for myocardial infarction and cardiac death in patients with coronary artery disease. Although the relationship between gamma-glutamyltransferase and coronary artery disease has been reported, not many studies have shown the relationship between changes ofgamma-glutamyltransferase in acute coronary syndromes and a well established coronary risk factor high sensitive C-reactive protein. (hs-CRP. Aims: In this study, how gamma-glutamyltransferase levels changed in acute coronary syndromes and its relationship with high sensitive C-reactive protein if any were studied. Patients & Methods:This trial was carried out at Kosuyolu Cardiovascular Training and Research Hospital and Van Yuksek Ihtisas Hospital, Turkey. 219 patients (177 males and 42 females presenting with acute coronary syndrome, and 51 control subjects between September 2007 and September 2008 were included in the study. Serum gamma-glutamyltransferase, high sensitive C-reactive protein, serum lipoprotein levels and troponin I were determined. Results: Serum gamma-glutamyltransferase and high sensitive C-reactive protein levels were higher in acute coronary syndrome patients compared to control. There was also correlation between gamma-glutamyltransferase and high sensitive C-reactive protein levels. Conclusion: Serum gamma-glutamyltransferase and high sensitive C-reactive protein levels were higher in acute coronary syndrome patients. In subgroup analyses, the higher difference with Non-ST elevation myocardial infarction and ST elevation myocardial infarction groups than unstable angina oectoris group proposes a relationship between gamma

  14. Gamma glutamyltransferase levels and its association with high sensitive C-reactive protein in patients with acute coronary syndromes

    Directory of Open Access Journals (Sweden)

    Mehmet Yunus Emiroglu

    2010-01-01

    Full Text Available Background: Elevated Gamma-glutamyltransferase (GGT level is independently correlated with conditions associatedwith increased atherosclerosis, such as obesity, elevated serum cholesterol, high blood pressure and myocardial infarction. It is also demonstrated that serum gamma-glutamyltransferase activity is an independent risk factor for myocardial infarction and cardiac death in patients with coronary artery disease. Although the relationship between gamma-glutamyltransferase and coronary artery disease has been reported, not many studies have shown the relationship between changes ofgamma-glutamyltransferase in acute coronary syndromes and a well established coronary risk factor high sensitive C-reactive protein. (hs-CRP. Aims: In this study, how gamma-glutamyltransferase levels changed in acute coronary syndromes and its relationship with high sensitive C-reactive protein if any were studied. Patients & Methods: This trial was carried out at Kosuyolu Cardiovascular Training and Research Hospital and Van Yuksek Ihtisas Hospital, Turkey. 219 patients (177 males and 42 females presenting with acute coronary syndrome, and 51 control subjects between September 2007 and September 2008 were included in the study. Serum gamma-glutamyltransferase, high sensitive C-reactive protein, serum lipoprotein levels and troponin I were determined. Results: Serum gamma-glutamyltransferase and high sensitive C-reactive protein levels were higher in acute coronary syndrome patients compared to control. There was also correlation between gamma-glutamyltransferase and high sensitive C-reactive protein levels. Conclusion: Serum gamma-glutamyltransferase and high sensitive C-reactive protein levels were higher in acute coronary syndrome patients. In subgroup analyses, the higher difference with Non-ST elevation myocardial infarction and ST elevation myocardial infarction groups than unstable angina oectoris group proposes a relationship between gamma

  15. High-sensitivity C-reactive protein and risk of sepsis.

    Directory of Open Access Journals (Sweden)

    Henry E Wang

    Full Text Available BACKGROUND: Conventional C-reactive protein assays have been used to detect or guide the treatment of acute sepsis. The objective of this study was to determine the association between elevated baseline high-sensitivity C-reactive protein (hsCRP and the risk of future sepsis events. METHODS: We studied data from 30,239 community dwelling, black and white individuals, age ≥45 years old enrolled in the REasons for Geographic and Racial Differences in Stroke (REGARDS cohort. Baseline hsCRP and participant characteristics were determined at the start of the study. We identified sepsis events through review of hospital records. Elevated hsCRP was defined as values >3.0 mg/L. Using Cox regression, we determined the association between elevated hsCRP and first sepsis event, adjusting for sociodemographic factors (age, sex, race, region, education, income, health behaviors (tobacco and alcohol use, chronic medical conditions (coronary artery disease, diabetes, dyslipidemia, hypertension, chronic kidney disease, chronic lung disease and statin use. RESULTS: Over the mean observation time of 5.7 years (IQR 4.5-7.1, 974 individuals experienced a sepsis event, and 11,447 (37.9% had elevated baseline hsCRP (>3.0 mg/L. Elevated baseline hsCRP was independently associated with subsequent sepsis (adjusted HR 1.56; 95% CI 1.36-1.79, adjusted for sociodemographics, health behaviors, chronic medical conditions and statin use. CONCLUSION: Elevated baseline hsCRP was associated with increased risk of future sepsis events. hsCRP may help to identify individuals at increased risk for sepsis.

  16. THE EFFECT OF DEPOSITION PARAMETERS ON THE CHEMICAL COMPOSITION AND CORROSION RESISTANCE OF TICXNY COATINGS PRODUCED ON HIGH-SPEED STEEL SUBSTRATES

    Directory of Open Access Journals (Sweden)

    Senna L.F.

    2001-01-01

    Full Text Available TiCxNy coatings deposited on high-speed steel substrates have been used to enhance the tribological properties of cutting tools (hardness, wear resistance, etc. as well as their corrosion resistance in an aggressive environment. These layers are usually produced by plasma deposition techniques (PVD or CVD, and different coating properties can be obtained with each method. In this work, TiCxNy films were deposited on AISI M2 high-speed steel substrates by the reactive magnetron sputtering technique. A series of samples with a variety of reactive gas mixtures (nitrogen and methane, substrate biases, and deposition temperatures was produced. As a result, coatings with different chemical compositions were deposited for each group of deposition parameters. Gas mixture composition and substrate bias directly affected the chemical composition of the coating, while deposition temperature influenced the chemical composition of TiCxNy layers to a very low extent.

  17. Synthesis, structure, and reactivity of high oxidation state silver fluorides and related compounds

    Energy Technology Data Exchange (ETDEWEB)

    Lucier, George Michael [Univ. of California, Berkeley, CA (United States)

    1995-05-01

    This thesis has been largely concerned with defining the oxidizing power of Ag(III) and Ag(II) in anhydrous hydrogen fluoride (aHF) solution. Emphasis was on cationic species, since in a cation the electronegativity of a given oxidation state is greatest. Cationic Ag(III) solv has a short half life at ordinary temperatures, oxidizing the solvent to elemental fluorine with formation of Ag(II). Salts of such a cation have not yet been preparable, but solutions which must contain such a species have proved to be effective and powerful oxidizers. In presence of PtF6-, RuF6-, or RhF6-, Ag(III) solv effectively oxidizes the anions to release the neutral hexafluorides. Such reactivity ranks cationic Ag(III) as the most powerfully oxidizing chemical agent known as far. Unlike its trivalent relative Ag (II) solv is thermodynamically stable in acid aHF. Nevertheless, it oxidizes IrF6- to IrF6 at room temperature, placing its oxidizing potential not more than 2 eV below that of cationic Ag(III). Range of Ag2+ (MF6-2 salts attainable in aHF has been explored. An anion must be stable with respect to electron loss to Ag2+. The anion must also be a poor F- donor; otherwise, either AgF+ salts or AgF2 are generated.

  18. High-frequency behavior of FeN thin films fabricated by using reactive sputtering

    Science.gov (United States)

    Hwang, Tae-Jong; Lee, Joonsik; Kim, Ki Hyeon; Kim, Dong Ho

    2016-08-01

    We used ferromagnetic resonance (FMR) and its relationship with the static magnetic properties to investigate the high-frequency behavior of FeN thin films prepared by using reactive sputtering. The FMR was observed in the frequency range from 2 to 18 GHz in the FeN films fabricated at a proper nitrogen flow rate (NFR). In those FeN thin films, a decrease in the saturation magnetization and a corresponding decrease of the FMR frequency were observed as the NFR was increased during the deposition. The external field dependences of the FMR frequencies fit the Kittel formula well, and the Landé g-factors determined from the fit were found to be very close to the free electron value. The high-field damping parameters were almost insensitive to the NFR. However, the lowfield damping parameters exhibited a high sensitivity to the NFR very similar to the dependence of the hard-axis coercivity on the NFR, suggesting that extrinsic material properties, such as impurities and defect structures, could be important in deciding the low-field damping behavior.

  19. [Cardiovascular reactivity to emotional texts in subjects with low and high level of psychoticism].

    Science.gov (United States)

    Lysenko, N E; Davydov, D M

    2011-01-01

    The article presents the results of comparative study of groups of subjects with low and high level of psychoticism. Heart rate, heart rate responses to inspiratory and expiratory Valsalva maneuvers, and blood pressure were measured before and after presentation of the texts with validated negative content in groups of subjects with low and high psychoticism scores. It was hypothesized that subjects with high level of psychoticism would be less engaged in the processing of negative contents of the texts and their physiological reactivity (physiological resources submitted for support of cognitive processing) would be less pronounced compared to subjects with low level of psychoticism. Significant main effect of psychoticism was obtained for changes in heart rate to expiratory Valsalva maneuver after presentations of the texts. Significant interaction effects of gender and psychoticism were obtained for systolic blood pressure. Other cardiovascular variables were not sensitive to the level of psychoticism. These effects of psychoticism were independent of other individual traits, such as neuroticism, extraversion, lie (social desirability), anger, trait anxiety and depression.

  20. High-Temperature and High-Pressure Pyrolysis of Hexadecane: Molecular Dynamic Simulation Based on Reactive Force Field (ReaxFF).

    Science.gov (United States)

    Chen, Zhuojun; Sun, Weizhen; Zhao, Ling

    2017-03-07

    As important products of heavy oil pyrolysis, heavier components such as gasoline and diesel supply the vast majority of energy demand through combustion, and lighter components such as ethylene and propylene are the main sources of industrial chemicals and plastic products. In this work, pyrolysis of hexadecane, as the model compound, was studied by reactive force field (ReaxFF) molecular simulation at high temperatures and high pressures. It was confirmed by unimolecular simulations that there exist eight different initial mechanisms all starting with C-C bond dissociation. The biradical mechanism was verified, through which the pyrolysis process can be accomplished within a shorter time. The enthalpy of reaction was calculated by the QM method, which was well consistent with ReaxFF calculation results. Multimolecular simulations showed that there is a strong dependency relationship between products distribution and temperature, as well as that between reaction rates and temperature. The optimal condition for ethylene formation in our work is 11.6 MPa and 2000 K, whereas it is best for hydrogen formation at conditions of 11.6 MPa and 3500 K. Kinetic analysis was performed with the activation energy of 113.03 kJ/mol and pre-exponential factor of 4.55 × 10(12), and it is in good agreement with previous work.

  1. Mining Chemical Activity Status from High-Throughput Screening Assays

    KAUST Repository

    Soufan, Othman

    2015-12-14

    High-throughput screening (HTS) experiments provide a valuable resource that reports biological activity of numerous chemical compounds relative to their molecular targets. Building computational models that accurately predict such activity status (active vs. inactive) in specific assays is a challenging task given the large volume of data and frequently small proportion of active compounds relative to the inactive ones. We developed a method, DRAMOTE, to predict activity status of chemical compounds in HTP activity assays. For a class of HTP assays, our method achieves considerably better results than the current state-of-the-art-solutions. We achieved this by modification of a minority oversampling technique. To demonstrate that DRAMOTE is performing better than the other methods, we performed a comprehensive comparison analysis with several other methods and evaluated them on data from 11 PubChem assays through 1,350 experiments that involved approximately 500,000 interactions between chemicals and their target proteins. As an example of potential use, we applied DRAMOTE to develop robust models for predicting FDA approved drugs that have high probability to interact with the thyroid stimulating hormone receptor (TSHR) in humans. Our findings are further partially and indirectly supported by 3D docking results and literature information. The results based on approximately 500,000 interactions suggest that DRAMOTE has performed the best and that it can be used for developing robust virtual screening models. The datasets and implementation of all solutions are available as a MATLAB toolbox online at www.cbrc.kaust.edu.sa/dramote and can be found on Figshare.

  2. Mining Chemical Activity Status from High-Throughput Screening Assays.

    Directory of Open Access Journals (Sweden)

    Othman Soufan

    Full Text Available High-throughput screening (HTS experiments provide a valuable resource that reports biological activity of numerous chemical compounds relative to their molecular targets. Building computational models that accurately predict such activity status (active vs. inactive in specific assays is a challenging task given the large volume of data and frequently small proportion of active compounds relative to the inactive ones. We developed a method, DRAMOTE, to predict activity status of chemical compounds in HTP activity assays. For a class of HTP assays, our method achieves considerably better results than the current state-of-the-art-solutions. We achieved this by modification of a minority oversampling technique. To demonstrate that DRAMOTE is performing better than the other methods, we performed a comprehensive comparison analysis with several other methods and evaluated them on data from 11 PubChem assays through 1,350 experiments that involved approximately 500,000 interactions between chemicals and their target proteins. As an example of potential use, we applied DRAMOTE to develop robust models for predicting FDA approved drugs that have high probability to interact with the thyroid stimulating hormone receptor (TSHR in humans. Our findings are further partially and indirectly supported by 3D docking results and literature information. The results based on approximately 500,000 interactions suggest that DRAMOTE has performed the best and that it can be used for developing robust virtual screening models. The datasets and implementation of all solutions are available as a MATLAB toolbox online at www.cbrc.kaust.edu.sa/dramote and can be found on Figshare.

  3. Mining Chemical Activity Status from High-Throughput Screening Assays.

    Science.gov (United States)

    Soufan, Othman; Ba-alawi, Wail; Afeef, Moataz; Essack, Magbubah; Rodionov, Valentin; Kalnis, Panos; Bajic, Vladimir B

    2015-01-01

    High-throughput screening (HTS) experiments provide a valuable resource that reports biological activity of numerous chemical compounds relative to their molecular targets. Building computational models that accurately predict such activity status (active vs. inactive) in specific assays is a challenging task given the large volume of data and frequently small proportion of active compounds relative to the inactive ones. We developed a method, DRAMOTE, to predict activity status of chemical compounds in HTP activity assays. For a class of HTP assays, our method achieves considerably better results than the current state-of-the-art-solutions. We achieved this by modification of a minority oversampling technique. To demonstrate that DRAMOTE is performing better than the other methods, we performed a comprehensive comparison analysis with several other methods and evaluated them on data from 11 PubChem assays through 1,350 experiments that involved approximately 500,000 interactions between chemicals and their target proteins. As an example of potential use, we applied DRAMOTE to develop robust models for predicting FDA approved drugs that have high probability to interact with the thyroid stimulating hormone receptor (TSHR) in humans. Our findings are further partially and indirectly supported by 3D docking results and literature information. The results based on approximately 500,000 interactions suggest that DRAMOTE has performed the best and that it can be used for developing robust virtual screening models. The datasets and implementation of all solutions are available as a MATLAB toolbox online at www.cbrc.kaust.edu.sa/dramote and can be found on Figshare.

  4. High-Sensitivity C-Reactive Protein as a Predictor of Cardiovascular Events after ST-Elevation Myocardial Infarction

    Science.gov (United States)

    Ribeiro, Daniel Rios Pinto; Ramos, Adriane Monserrat; Vieira, Pedro Lima; Menti, Eduardo; Bordin, Odemir Luiz; de Souza, Priscilla Azambuja Lopes; de Quadros, Alexandre Schaan; Portal, Vera Lúcia

    2014-01-01

    Background The association between high-sensitivity C-reactive protein and recurrent major adverse cardiovascular events (MACE) in patients with ST-elevation myocardial infarction who undergo primary percutaneous coronary intervention remains controversial. Objective To investigate the potential association between high-sensitivity C-reactive protein and an increased risk of MACE such as death, heart failure, reinfarction, and new revascularization in patients with ST-elevation myocardial infarction treated with primary percutaneous coronary intervention. Methods This prospective cohort study included 300 individuals aged >18 years who were diagnosed with ST-elevation myocardial infarction and underwent primary percutaneous coronary intervention at a tertiary health center. An instrument evaluating clinical variables and the Thrombolysis in Myocardial Infarction (TIMI) and Global Registry of Acute Coronary Events (GRACE) risk scores was used. High-sensitivity C-reactive protein was determined by nephelometry. The patients were followed-up during hospitalization and up to 30 days after infarction for the occurrence of MACE. Student's t, Mann-Whitney, chi-square, and logistic regression tests were used for statistical analyses. P values of ≤0.05 were considered statistically significant. Results The mean age was 59.76 years, and 69.3% of patients were male. No statistically significant association was observed between high-sensitivity C-reactive protein and recurrent MACE (p = 0.11). However, high-sensitivity C-reactive protein was independently associated with 30-day mortality when adjusted for TIMI [odds ratio (OR), 1.27; 95% confidence interval (CI), 1.07-1.51; p = 0.005] and GRACE (OR, 1.26; 95% CI, 1.06-1.49; p = 0.007) risk scores. Conclusion Although high-sensitivity C-reactive protein was not predictive of combined major cardiovascular events within 30 days after ST-elevation myocardial infarction in patients who underwent primary angioplasty and stent

  5. High-Sensitivity C-Reactive Protein as a Predictor of Cardiovascular Events after ST-Elevation Myocardial Infarction

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, Daniel Rios Pinto; Ramos, Adriane Monserrat; Vieira, Pedro Lima; Menti, Eduardo; Bordin, Odemir Luiz Jr.; Souza, Priscilla Azambuja Lopes de; Quadros, Alexandre Schaan de; Portal, Vera Lúcia, E-mail: veraportal.pesquisa@gmail.com [Programa de Pós-Graduação em Ciências da Saúde: Cardiologia - Instituto de Cardiologia/Fundação Universitária de Cardiologia, Porto Alegre, RS (Brazil)

    2014-07-15

    The association between high-sensitivity C-reactive protein and recurrent major adverse cardiovascular events (MACE) in patients with ST-elevation myocardial infarction who undergo primary percutaneous coronary intervention remains controversial. To investigate the potential association between high-sensitivity C-reactive protein and an increased risk of MACE such as death, heart failure, reinfarction, and new revascularization in patients with ST-elevation myocardial infarction treated with primary percutaneous coronary intervention. This prospective cohort study included 300 individuals aged >18 years who were diagnosed with ST-elevation myocardial infarction and underwent primary percutaneous coronary intervention at a tertiary health center. An instrument evaluating clinical variables and the Thrombolysis in Myocardial Infarction (TIMI) and Global Registry of Acute Coronary Events (GRACE) risk scores was used. High-sensitivity C-reactive protein was determined by nephelometry. The patients were followed-up during hospitalization and up to 30 days after infarction for the occurrence of MACE. Student's t, Mann-Whitney, chi-square, and logistic regression tests were used for statistical analyses. P values of ≤0.05 were considered statistically significant. The mean age was 59.76 years, and 69.3% of patients were male. No statistically significant association was observed between high-sensitivity C-reactive protein and recurrent MACE (p = 0.11). However, high-sensitivity C-reactive protein was independently associated with 30-day mortality when adjusted for TIMI [odds ratio (OR), 1.27; 95% confidence interval (CI), 1.07-1.51; p = 0.005] and GRACE (OR, 1.26; 95% CI, 1.06-1.49; p = 0.007) risk scores. Although high-sensitivity C-reactive protein was not predictive of combined major cardiovascular events within 30 days after ST-elevation myocardial infarction in patients who underwent primary angioplasty and stent implantation, it was an independent predictor

  6. Chemical and Thermodynamic Properties at High Temperatures: A Symposium

    Science.gov (United States)

    Walker, Raymond F.

    1961-01-01

    This book contains the program and all available abstracts of the 90' invited and contributed papers to be presented at the TUPAC Symposium on Chemical and Thermodynamic Properties at High Temperatures. The Symposium will be held in conjunction with the XVIIIth IUPAC Congress, Montreal, August 6 - 12, 1961. It has been organized, by the Subcommissions on Condensed States and on Gaseous States of the Commission on High Temperatures and Refractories and by the Subcommission on Experimental Thermodynamics of the Commission on Chemical Thermodynamics, acting in conjunction with the Organizing Committee of the IUPAC Congress. All inquiries concerning participation In the Symposium should be directed to: Secretary, XVIIIth International Congress of Pure and Applied Chemistry, National Research Council, Ottawa, 'Canada. Owing to the limited time and facilities available for the preparation and printing of the book, it has not been possible to refer the proofs of the abstracts to the authors for checking. Furthermore, it has not been possible to subject the manuscripts to a very thorough editorial examination. Some obvious errors in the manuscripts have been corrected; other errors undoubtedly have been introduced. Figures have been redrawn only when such a step was essential for reproduction purposes. Sincere apologies are offered to authors and readers for any errors which remain; however, in the circumstances neither the IUPAC Commissions who organized the Symposium, nor the U. S. Government Agencies who assisted in the preparation of this book can accept responsibility for the errors.

  7. Simulating reactive nitrogen, carbon monoxide, and ozone in California during ARCTAS-CARB 2008 with high wildfire activity

    Science.gov (United States)

    Cai, Chenxia; Kulkarni, Sarika; Zhao, Zhan; Kaduwela, Ajith P.; Avise, Jeremy C.; DaMassa, John A.; Singh, Hanwant B.; Weinheimer, Andrew J.; Cohen, Ronald C.; Diskin, Glenn S.; Wennberg, Paul; Dibb, Jack E.; Huey, Greg; Wisthaler, Armin; Jimenez, Jose L.; Cubison, Michael J.

    2016-03-01

    Predictions of O3, CO, total NOy and individual NOy species (NO, NO2, HNO3, PAN, alkyl nitrates and aerosol nitrate) from a fine resolution regional air quality modeling system for the South Coast Air Basin (SoCAB) and San Joaquin Valley Air Basin (SJVAB) of California are presented and evaluated for the 2008 ARCTAS-CARB campaign. The measurements of the chemical compounds from the fire plumes during the field campaign allow for the evaluation of the model's ability to simulate fire-influenced air masses as well. In general, the model successfully simulated the broad spatial distribution of chemical compounds in both air basins as well as the variation within the basins. Using inventories that reflect 2008 emissions levels, the model performed well in simulating NOx (NO + NO2) in SoCAB. Therefore, the under prediction of O3 over these areas is more likely caused by uncertainties with the VOC emissions, chemistry, or discrepancies in the meteorology. The model did not capture the relatively high levels of O3, and some reactive nitrogen species that were measured off shore of the SoCAB, indicating potential missing sources or the transport from on shore to off shore was not successfully captured. In SJVAB, the model had good performance in simulating different chemical compounds in the Fresno and Arvin areas. However, enhanced concentrations of O3, NOx, HNO3 and PAN near dairy farms were significantly underestimated in the model. Negative biases also exist for O3 and HNO3 near oil fields, suggesting larger uncertainties associated with these emission sources. While the model simulated the total NOy mixing ratios reasonably well, the prediction for partitioning between individual compounds showed larger uncertainties in the model simulation. Although the fire emissions inventory was updated to include the latest emissions estimates and speciation profiles, our model shows limited improvement in simulating the enhancement of O3, CO, and PAN under fire impact as

  8. High precision during food recruitment of experienced (reactivated) foragers in the stingless bee Scaptotrigona mexicana (Apidae, Meliponini)

    Science.gov (United States)

    Sánchez, Daniel; Nieh, James C.; Hénaut, Yann; Cruz, Leopoldo; Vandame, Rémy

    Several studies have examined the existence of recruitment communication mechanisms in stingless bees. However, the spatial accuracy of location-specific recruitment has not been examined. Moreover, the location-specific recruitment of reactivated foragers, i.e., foragers that have previously experienced the same food source at a different location and time, has not been explicitly examined. However, such foragers may also play a significant role in colony foraging, particularly in small colonies. Here we report that reactivated Scaptotrigona mexicana foragers can recruit with high precision to a specific food location. The recruitment precision of reactivated foragers was evaluated by placing control feeders to the left and the right of the training feeder (direction-precision tests) and between the nest and the training feeder and beyond it (distance-precision tests). Reactivated foragers arrived at the correct location with high precision: 98.44% arrived at the training feeder in the direction trials (five-feeder fan-shaped array, accuracy of at least +/-6° of azimuth at 50 m from the nest), and 88.62% arrived at the training feeder in the distance trials (five-feeder linear array, accuracy of at least +/-5 m or +/-10% at 50 m from the nest). Thus, S. mexicana reactivated foragers can find the indicated food source at a specific distance and direction with high precision, higher than that shown by honeybees, Apis mellifera, which do not communicate food location at such close distances to the nest.

  9. Chemical characterization of selected high copper dental amalgams using XPS and XRD techniques

    Energy Technology Data Exchange (ETDEWEB)

    Talik, E. [A. Chelkowski Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice (Poland)]. E-mail: talik@us.edu.pl; Babiarz-Zdyb, R. [A. Chelkowski Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice (Poland); Dziedzic, A. [Medical University of Silesia, Department of Conservative Dentistry and Periodontology, Akademicki 17 Sqr., 41-209 Bytom (Poland)

    2005-08-02

    The study was carried out to analyze some dependencies between the composition of seven high copper dental amalgams and mercury release behavior, as well as oxygen reactivity of metallic elements. Chemical comparative analysis of selected dental amalgams was carried out using X-ray photoelectron spectroscopy (XPS) technique and X-ray diffraction (XRD) method. The X-ray powder diffraction measurements revealed two main phases for measured amalgams: {gamma}{sub 1}-(Ag{sub 2}Hg{sub 3}) and {eta}'-(Cu{sub 6}Sn{sub 5}). The amount of mercury obtained by the XPS method was lower than the value quoted in the manufacturer's literature, which suggested evaporation of mercury under the UHV conditions. A linear decrease of oxygen and carbon contamination with the growing amount of Cu and Ag was observed. The XPS analysis showed that a high Sn concentration caused less resistance to oxidation. Some of the amalgams contained some extra elements, such as Bi, In, and Zn. All samples contained lead in metallic state and oxides. The amount of Ag, Cu, Sn ingredients determines the main properties of high copper amalgams and plays an important role in mercury evaporation. High tin concentration combined with the presence of smaller amounts of silver and copper (high Sn/Ag ratio) may influence the increase of mercury vaporization.

  10. Formation of distinctive structures of GaN by inductively-coupled-plasma and reactive ion etching under optimized chemical etching conditions

    Directory of Open Access Journals (Sweden)

    N. Okada

    2017-06-01

    Full Text Available We focused on inductively coupled plasma and reactive ion etching (ICP–RIE for etching GaN and tried to fabricate distinctive GaN structures under optimized chemical etching conditions. To determine the optimum chemical etching conditions, the flow rates of Ar and Cl2, ICP power, and chamber pressure were varied in the etching of c-plane GaN layers with stripe patterns. It was determined that the combination of Ar and Cl2 flow rates of 100 sccm, chamber pressure of 7 Pa, and ICP power of 800 W resulted in the most enhanced reaction, yielding distinctive GaN structures such as pillars with inverted mesa structures for c-plane GaN and a semipolar GaN layer with asymmetric inclined sidewalls. The selectivity and etching rate were also investigated.

  11. Formation of distinctive structures of GaN by inductively-coupled-plasma and reactive ion etching under optimized chemical etching conditions

    Science.gov (United States)

    Okada, N.; Nojima, K.; Ishibashi, N.; Nagatoshi, K.; Itagaki, N.; Inomoto, R.; Motoyama, S.; Kobayashi, T.; Tadatomo, K.

    2017-06-01

    We focused on inductively coupled plasma and reactive ion etching (ICP-RIE) for etching GaN and tried to fabricate distinctive GaN structures under optimized chemical etching conditions. To determine the optimum chemical etching conditions, the flow rates of Ar and Cl2, ICP power, and chamber pressure were varied in the etching of c-plane GaN layers with stripe patterns. It was determined that the combination of Ar and Cl2 flow rates of 100 sccm, chamber pressure of 7 Pa, and ICP power of 800 W resulted in the most enhanced reaction, yielding distinctive GaN structures such as pillars with inverted mesa structures for c-plane GaN and a semipolar GaN layer with asymmetric inclined sidewalls. The selectivity and etching rate were also investigated.

  12. Reactive transport modeling of chemical and isotope data to identify degradation processes of chlorinated ethenes in a diffusion-dominated media

    DEFF Research Database (Denmark)

    Chambon, Julie Claire Claudia; Damgaard, Ida; Jeannottat, Simon

    . Degradation and transport processes of chlorinated ethenes are not well understood in such geological settings, therefore risk assessment and remediation at these sites are particularly challenging. In this work, a combined approach of chemical and isotope analysis on core samples, and reactive transport...... modeling has been used to identify the degradation processes occurring at the core scale. The field data was from a site located at Vadsby, Denmark, where chlorinated solvents were spilled during the 1960-70’s, resulting in contamination of the clay till and the underlying sandy layer (15 meters below...... is an important finding, that is further supported by microbial and chemical data. Improved understanding of degradation processes in clay tills is useful for improving the reliability of risk assessment and the design of remediation schemes for chlorinated solvents....

  13. Chemical Reactivity and Respiratory Toxicity of the α-Diketone Flavoring Agents: 2,3-Butanedione, 2,3-Pentanedione, and 2,3-Hexanedione.

    Science.gov (United States)

    Morgan, Daniel L; Jokinen, Micheal P; Johnson, Crystal L; Price, Herman C; Gwinn, William M; Bousquet, Ronald W; Flake, Gordon P

    2016-07-01

    Occupational exposure to 2,3-butanedione (BD) vapors has been associated with severe respiratory disease leading to the use of potentially toxic substitutes. We compared the reactivity and respiratory toxicity of BD with that of two structurally related substitutes, 2,3-pentanedione (PD) and 2,3-hexanedione (HD). Chemical reactivity of the diketones with an arginine substrate decreased with increasing chain length (BD > PD > HD). Animals were evaluated the morning after a 2-week exposure to 0, 100, 150, or 200 ppm BD, PD, or HD (postexposure) or 2 weeks later (recovery). Bronchial fibrosis was observed in 5/5 BD and 5/5 PD rats at 200 ppm and in 4/6 BD and 6/6 PD rats at 150 ppm in the postexposure groups. Following recovery, bronchial fibrosis was observed in all surviving rats exposed to 200 ppm BD (5/5) or PD (3/3) and in 2/10 BD and 7/9 PD rats exposed to 150 ppm. Bronchial fibrosis was observed only in 2/12 HD-exposed rats in the 200 ppm postexposure group. Patchy interstitial fibrosis affected lungs of recovery groups exposed to 200 ppm PD (3/3) or BD (1/5) and to 150 ppm PD (4/9) or BD (7/10) and correlated with pulmonary function deficits. BD and PD were more reactive and produced more bronchial fibrosis than HD. © The Author(s) 2016.

  14. Oral Administration of the Japanese Traditional Medicine Keishibukuryogan-ka-yokuinin Decreases Reactive Oxygen Metabolites in Rat Plasma: Identification of Chemical Constituents Contributing to Antioxidant Activity

    Directory of Open Access Journals (Sweden)

    Yosuke Matsubara

    2017-02-01

    Full Text Available Insufficient detoxification and/or overproduction of reactive oxygen species (ROS induce cellular and tissue damage, and generated reactive oxygen metabolites become exacerbating factors of dermatitis. Keishibukuryogan-ka-yokuinin (KBGY is a traditional Japanese medicine prescribed to treat dermatitis such as acne vulgaris. Our aim was to verify the antioxidant properties of KBGY, and identify its active constituents by blood pharmacokinetic techniques. Chemical constituents were quantified in extracts of KBGY, crude components, and the plasma of rats treated with a single oral administration of KBGY. Twenty-three KBGY compounds were detected in plasma, including gallic acid, prunasin, paeoniflorin, and azelaic acid, which have been reported to be effective for inflammation. KBGY decreased level of the diacron-reactive oxygen metabolites (d-ROMs in plasma. ROS-scavenging and lipid hydroperoxide (LPO generation assays revealed that gallic acid, 3-O-methylgallic acid, (+-catechin, and lariciresinol possess strong antioxidant activities. Gallic acid was active at a similar concentration to the maximum plasma concentration, therefore, our findings indicate that gallic acid is an important active constituent contributing to the antioxidant effects of KBGY. KBGY and its active constituents may improve redox imbalances induced by oxidative stress as an optional treatment for skin diseases.

  15. Synthesis of highly reactive polyisobutylene catalyzed by EtAlCl 2/Bis(2-chloroethyl) ether soluble complex in hexanes

    KAUST Repository

    Kumar, Rajeev Ananda

    2014-03-25

    The polymerization of isobutylene (IB) to yield highly reactive polyisobutylene (HR PIB) with high exo-olefin content using GaCl3 or FeCl3·diisopropyl ether complexes has been previously reported.1 In an effort to further improve polymerization rates and exo-olefin content, we have studied ethylaluminum dichloride (EADC) complexes with diisopropyl ether, 2-chloroethyl ethyl ether (CEEE), and bis(2-chloroethyl) ether (CEE) as catalysts in conjunction with tert-butyl chloride as initiator in hexanes at different temperatures. All three complexes were readily soluble in hexanes. Polymerization, however, was only observed with CEE. At 0 °C polymerization was complete in 5 min at [t-BuCl] = [EADC·CEE] = 10 mM and resulted in PIB with ∼70% exo-olefin content. Studies on complexation using ATR FTIR and 1H NMR spectroscopy revealed that at 1:1 stoichiometry a small amount of EADC remains uncomplexed. By employing an excess of CEE, exo-olefin contents increased up to 90%, while polymerization rates decreased only slightly. With decreasing temperature, polymerization rates decreased while molecular weights as well as exo-olefin contents increased, suggesting that isomerization has a higher activation energy than β-proton abstraction. Density functional theory (DFT) studies on the Lewis acid·ether binding energies indicated a trend consistent with the polymerization results. The polymerization mechanism proposed previously for Lewis acid·ether complexes1 adequately explains all the findings. © 2014 American Chemical Society.

  16. Combined AFM nano-machining and reactive ion etching to fabricate high aspect ratio structures.

    Science.gov (United States)

    Peng, Ping; Shi, Tielin; Liao, Guanglan; Tang, Zirong

    2010-11-01

    In this paper, a new combined method of sub-micron high aspect ratio structure fabrication is developed which can be used for production of nano imprint template. The process includes atomic force microscope (AFM) scratch nano-machining and reactive ion etching (RIE) fabrication. First, 40 nm aluminum film was deposited on the silicon substrate by magnetron sputtering, and then sub-micron grooves were fabricated on the aluminum film by nano scratch using AFM diamond tip. As aluminum film is a good mask for etching silicon, high aspect ratio structures were finally fabricated by RIE process. The fabricated structures were studied by SEM, which shows that the grooves are about 400 nm in width and 5 microm in depth. To obtain sub-micron scale groove structures on the aluminum film, experiments of nanomachining on aluminum films under various machining conditions were conducted. The depths of the grooves fabricated using different scratch loads were also studied by the AFM. The result shows that the material properties of the film/substrate are elastic-plastic following nearly a bilinear law with isotropic strain hardening. Combined AFM nanomachining and RIE process provides a relative lower cost nano fabrication technique than traditional e-beam lithography, and it has a good prospect in nano imprint template fabrication.

  17. Effect of Fast Pyrolysis Conditions on Structural Transformation and Reactivity of Herbaceous Biomasses at High Temperatures

    DEFF Research Database (Denmark)

    Trubetskaya, Anna; Jensen, Anker D.; Jensen, Peter Arendt

    Fast pyrolysis of wheat straw and rice husks was carried out in an entrained-flow reactor (EFR) and compared with the results from the wire-mesh reactor (WMR) in terms of the char yield at high-temperatures (1000-1500°C) to study the effect of heating rate, final temperature, ash content and part......Fast pyrolysis of wheat straw and rice husks was carried out in an entrained-flow reactor (EFR) and compared with the results from the wire-mesh reactor (WMR) in terms of the char yield at high-temperatures (1000-1500°C) to study the effect of heating rate, final temperature, ash content...... and particle size on the char yield. X-ray diffractometry (XRD), N-adsorption (BET), scanning electron microscopy (SEM), particle size analysis (CAMSIZER XT), nuclear magnetic resonance spectroscopy (29Si NMR; 13C NMR) and electron spinning resonance spectroscopy (ESR) were conducted to investigate the effect...... of organic and inorganic matter on the char structural transformations. The results indicate no influence of the free radicals on char reactivity and burnout. The formation of free radicals in fast pyrolysis is related to the differences in the ash composition, namely presence of K+ ions in the wheat straw...

  18. Association of serum uric acid with high-sensitivity C-reactive protein in postmenopausal women.

    Science.gov (United States)

    Raeisi, A; Ostovar, A; Vahdat, K; Rezaei, P; Darabi, H; Moshtaghi, D; Nabipour, I

    2017-02-01

    To explore the independent correlation between serum uric acid and low-grade inflammation (measured by high-sensitivity C-reactive protein, hs-CRP) in postmenopausal women. A total of 378 healthy Iranian postmenopausal women were randomly selected in a population-based study. Circulating hs-CRP levels were measured by highly specific enzyme-linked immunosorbent assay method and an enzymatic calorimetric method was used to measure serum levels of uric acid. Pearson correlation coefficient, multiple linear regression and logistic regression models were used to analyze the association between uric acid and hs-CRP levels. A statistically significant correlation was seen between serum levels of uric acid and log-transformed circulating hs-CRP (r = 0.25, p uric acid levels (β = 0.20, p uric acid levels (odds ratio =1.52, 95% confidence interval 1.18-1.96). Higher serum uric acid levels were positively and independently associated with circulating hs-CRP in healthy postmenopausal women.

  19. Reactive transport modelling of a high-pH infiltration test in concrete

    Science.gov (United States)

    Chaparro, M. Carme; Soler, Josep M.; Saaltink, Maarten W.; Mäder, Urs K.

    2017-06-01

    A laboratory-scale tracer test was carried out to characterize the transport properties of concrete from the Radioactive Waste Disposal Facility at El Cabril (Spain). A hyperalkaline solution (K-Ca-OH, pH = 13.2) was injected into a concrete sample under a high entry pressure in order to perform the experiment within a reasonable time span, obtaining a decrease of permeability by a factor of 1000. The concentrations of the tracers, major elements (Ca2+, SO4 2 - , K+ and Na+) and pH were measured at the outlet of the concrete sample. A reactive transport model was built based on a double porosity conceptual model, which considers diffusion between a mobile zone, where water can flow, and an immobile zone without any advective transport. The numerical model assumed that all reactions took place in the immobile zone. The cement paste consists of C-S-H gel, portlandite, ettringite, calcite and gypsum, together with residual alite and belite. Two different models were compared, one with portlandite in equilibrium (high initial surface area) and another one with portlandite reaction controlled by kinetics (low initial surface area). Overall the results show dissolution of alite, belite, gypsum, quartz, C-S-H gel and ettringite and precipitation of portlandite and calcite. Permeability could have decreased due to mineral precipitation.

  20. Cerebral vasomotor reactivity and apnea test in symptomatic and asymptomatic high-grade carotid stenosis

    Directory of Open Access Journals (Sweden)

    Lučić-Prokin Aleksandra

    2015-01-01

    Full Text Available Introduction. Cerebral vasomotor reactivity (VMR represents an autoregulatory response of the arterial trunks on the specific vasoactive stimuli, most commonly CO2. Objective. The aim of this retrospective study was to compare VMR in high-grade symptomatic (SCAS and asymptomatic carotid stenosis (ACAS, using the apnea test to evaluate the hemodynamic status. Methods. The study included 50 patients who were hospitalized at the neurology and vascular surgery departments as part of preparation for carotid endarterectomy. We evaluated VMR by calculating the breath holding index (BHI in 34 patients with SCAS and 16 patients with ACAS, with isolated high-grade carotid stenosis. We evaluated the impact of risk factors and collateral circulation on BHI, as well as the correlation between the degree of carotid stenosis and BHI. Results. A pathological BHI was more frequent in the SCAS group (p<0.01. There was no difference in the range of BHI values between the groups, both ipsilaterally and contralaterally. Only male gender was associated with pathological BHI in both groups (p<0.05. Collateral circulation did not exist in over 60% of all subjects. We confirmed a negative correlation between the degree of carotid stenosis and BHI. Conclusion. SCAS and ACAS patients present with different hemodynamics. While ACAS patients have stable hemodynamics, combination of hemodynamic and thromboembolic effects is characteristic of SCAS patients.

  1. Dynamic behavior of chemical reactivity indices in density functional theory: A Bohn-Oppenheimer quantum molecular dynamics study

    Indian Academy of Sciences (India)

    Shubin Liu

    2005-09-01

    Dynamic behaviors of chemical concepts in density functional theory such as frontier orbitals (HOMO/LUMO), chemical potential, hardness, and electrophilicity index have been investigated in this work in the context of Bohn-Oppenheimer quantum molecular dynamics in association with molecular conformation changes. Exemplary molecular systems like CH$^{+}_{5}$ , Cl- (H2O)30 and Ca2+ (H2O)15 are studied at 300 K in the gas phase, demonstrating that HOMO is more dynamic than LUMO, chemical potential and hardness often fluctuate concurrently. It is argued that DFT concepts and indices may serve as a good framework to understand molecular conformation changes as well as other dynamic phenomena.

  2. Pebble Fuel Handling and Reactivity Control for Salt-Cooled High Temperature Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, Per [Univ. of California, Berkeley, CA (United States). Dept. of Nuclear Engineering; Greenspan, Ehud [Univ. of California, Berkeley, CA (United States). Dept. of Nuclear Engineering

    2015-02-09

    This report documents the work completed on the X-PREX facility under NEUP Project 11- 3172. This project seeks to demonstrate the viability of pebble fuel handling and reactivity control for fluoride salt-cooled high-temperature reactors (FHRs). The research results also improve the understanding of pebble motion in helium-cooled reactors, as well as the general, fundamental understanding of low-velocity granular flows. Successful use of pebble fuels in with salt coolants would bring major benefits for high-temperature reactor technology. Pebble fuels enable on-line refueling and operation with low excess reactivity, and thus simpler reactivity control and improved fuel utilization. If fixed fuel designs are used, the power density of salt- cooled reactors is limited to 10 MW/m3 to obtain adequate duration between refueling, but pebble fuels allow power densities in the range of 20 to 30 MW/m3. This can be compared to the typical modular helium reactor power density of 5 MW/m3. Pebble fuels also permit radial zoning in annular cores and use of thorium or graphite pebble blankets to reduce neutron fluences to outer radial reflectors and increase total power production. Combined with high power conversion efficiency, compact low-pressure primary and containment systems, and unique safety characteristics including very large thermal margins (>500°C) to fuel damage during transients and accidents, salt-cooled pebble fuel cores offer the potential to meet the major goals of the Advanced Reactor Concepts Development program to provide electricity at lower cost than light water reactors with improved safety and system performance.This report presents the facility description, experimental results, and supporting simulation methods of the new X-Ray Pebble Recirculation Experiment (X-PREX), which is now operational and being used to collect data on the behavior of slow dense granular flows relevant to pebble bed reactor core designs. The X

  3. Effects of attachment-based interventions on maternal sensitivity and infant attachment: differential susceptibility of highly reactive infants.

    Science.gov (United States)

    Velderman, Mariska Klein; Bakermans-Kranenburg, Marian J; Juffer, Femmie; van IJzendoorn, Marinus H

    2006-06-01

    The current intervention study aimed at breaking the potential intergenerational cycle of insecure attachment. The authors randomly assigned 81 first-time mothers to one of two intervention groups or a control group. The interventions involved four home visits when the infants were between 7 and 10 months old. The first intervention, VIPP, consisted of video-feedback and brochures to enhance sensitive parenting. The second intervention, VIPP-R, involved additional discussions of mothers' childhood attachment experiences in relation to their current caregiving. After the intervention, intervention mothers were more sensitive than control mothers. The interventions were most effective for highly reactive children and their mothers, providing experimental support for Belsky's (1997) hypothesis of highly reactive versus less reactive children's evolutionary based differential susceptibility to rearing influences.

  4. Bronchial reactivity in hyperresponsive patients and healthy individuals: demonstration with high resolution computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Schueller, G. E-mail: gerd.schueller@univie.ac.at; Neumann, K.; Helbich, T.; Riemer, H.; Backfrieder, W.; Sertl, K.; Herold, C.J

    2004-11-01

    Objective: High resolution computed tomography (HRCT) was used to assess the extent of bronchial reactivity after inhalative bronchoprovocation and dilation in hyperresponsive patients and healthy subjects. Patients and methods: Patients with mild intermittent asthma, 15 with a >20% decrease in FEV{sub 1} and a >10 mmHg (PC{sub 20}+) in PaO{sub 2}, 12 with a <20% decrease in FEV{sub 1} and a >10 mmHg (PC{sub 20}-) in PaO{sub 2} after provocation, and eight healthy humans were included in the study. Changes in cross-sectional area in a total of 1256 bronchi and in bronchial wall area (792 bronchi) were evaluated after histamine-triggered bronchoprovocation and salbutamol-induced bronchodilation at high lung volumes (FVC 80%). Data were compared with the results of pulmonary function tests (FEV{sub 1}, PaO{sub 2}, PaCO{sub 2}). Results: In all groups, a significant decrease in bronchial cross-sectional area (P<0.001) and a significant increase in bronchial wall area (P<0.001) were observed subsequent to bronchoprovocation. After bronchodilation, the increase in cross-sectional area (P<0.001) and the further increase in airway wall area (P<0.01) were significant in all groups. In PC{sub 20}+ and PC{sub 20}- asthmatics, significant differences (P<0.05) in PaO{sub 2}, >10 mmHg between baseline and provocation were observed. In healthy persons, the PaO{sub 2} decrease was <10 mmHg (P>0.05). After histamine provocation, the decrease in FEV{sub 1} was measured in the PC{sub 20}+ group, whereas a <20% FEV{sub 1} decrease was found in the PC{sub 20}- and the control groups, respectively. No significant correlations were observed between radiological data and the results of pulmonary function tests. Conclusions: HRCT demonstrated bronchial reactivity in hyperresponsive patients and, unexpectedly, in healthy subjects. The applied pulmonary function tests failed to characterize bronchial reactions in the healthy subjects. Based on these results, HRCT is a useful tool by which

  5. Highly reactive {001} facets of TiO2-based composites: synthesis, formation mechanism and characterization.

    Science.gov (United States)

    Ong, Wee-Jun; Tan, Lling-Lling; Chai, Siang-Piao; Yong, Siek-Ting; Mohamed, Abdul Rahman

    2014-02-21

    Titanium dioxide (TiO2) is one of the most widely investigated metal oxides due to its extraordinary surface, electronic and catalytic properties. However, the large band gap of TiO2 and massive recombination of photogenerated electron-hole pairs limit its photocatalytic and photovoltaic efficiency. Therefore, increasing research attention is now being directed towards engineering the surface structure of TiO2 at the most fundamental and atomic level namely morphological control of {001} facets in the range of microscale and nanoscale to fine-tune its physicochemical properties, which could ultimately lead to the optimization of its selectivity and reactivity. The synthesis of {001}-faceted TiO2 is currently one of the most active interdisciplinary research areas and demonstrations of catalytic enhancement are abundant. Modifications such as metal and non-metal doping have also been extensively studied to extend its band gap to the visible light region. This steady progress has demonstrated that TiO2-based composites with {001} facets are playing and will continue to play an indispensable role in the environmental remediation and in the search for clean and renewable energy technologies. This review encompasses the state-of-the-art research activities and latest advancements in the design of highly reactive {001} facet-dominated TiO2via various strategies, including hydrothermal/solvothermal, high temperature gas phase reactions and non-hydrolytic alcoholysis methods. The stabilization of {001} facets using fluorine-containing species and fluorine-free capping agents is also critically discussed in this review. To overcome the large band gap of TiO2 and rapid recombination of photogenerated charge carriers, modifications are carried out to manipulate its electronic band structure, including transition metal doping, noble metal doping, non-metal doping and incorporating graphene as a two-dimensional (2D) catalyst support. The advancements made in these aspects are

  6. Introduction to Reactive Gas Dynamics

    CERN Document Server

    Brun, Raymond

    2009-01-01

    In high energy gas flows, at high velocities and high temperatures, physical and chemical processes such as molecular vibrational excitation, dissociation, ionisation or various reactions take place and deeply influence the structure of the flows. The characteristic times of these processes have the same order of magnitude as aerodynamic characteristic times, so that these reactive media are generally in thermodynamic and chemical non-equilibrium. This book presents a generalintroductory study of these media. In the first part their fundamental statistical aspects are described, starting from

  7. A high-throughput chemically induced inflammation assay in zebrafish

    Directory of Open Access Journals (Sweden)

    Liebel Urban

    2010-12-01

    Full Text Available Abstract Background Studies on innate immunity have benefited from the introduction of zebrafish as a model system. Transgenic fish expressing fluorescent proteins in leukocyte populations allow direct, quantitative visualization of an inflammatory response in vivo. It has been proposed that this animal model can be used for high-throughput screens aimed at the identification of novel immunomodulatory lead compounds. However, current assays require invasive manipulation of fish individually, thus preventing high-content screening. Results Here we show that specific, noninvasive damage to lateral line neuromast cells can induce a robust acute inflammatory response. Exposure of fish larvae to sublethal concentrations of copper sulfate selectively damages the sensory hair cell population inducing infiltration of leukocytes to neuromasts within 20 minutes. Inflammation can be assayed in real time using transgenic fish expressing fluorescent proteins in leukocytes or by histochemical assays in fixed larvae. We demonstrate the usefulness of this method for chemical and genetic screens to detect the effect of immunomodulatory compounds and mutations affecting the leukocyte response. Moreover, we transformed the assay into a high-throughput screening method by using a customized automated imaging and processing system that quantifies the magnitude of the inflammatory reaction. Conclusions This approach allows rapid screening of thousands of compounds or mutagenized zebrafish for effects on inflammation and enables the identification of novel players in the regulation of innate immunity and potential lead compounds toward new immunomodulatory therapies. We have called this method the chemically induced inflammation assay, or ChIn assay. See Commentary article: http://www.biomedcentral.com/1741-7007/8/148.

  8. Alpha reactivity to first names differs in subjects with high and low dream recall frequency

    Directory of Open Access Journals (Sweden)

    Perrine Marie RUBY

    2013-08-01

    Full Text Available Studies in cognitive psychology showed that personality (openness to experience, thin boundaries, absorption, creativity, nocturnal awakenings, and attitude toward dreams are significantly related to dream recall frequency (DRF. These results suggest the possibility of neurophysiological trait differences between subjects with high and low DRF. To test this hypothesis we compared sleep characteristics and alpha reactivity to sounds in subjects with high and low DRF using polysomnographic recordings and electroencephalography (EEG. We acquired EEG from 21 channels in 36 healthy subjects while they were presented with a passive auditory oddball paradigm (frequent standard tones, rare deviant tones and very rare first names during wakefulness and sleep (intensity, 50 dB above the subject’s hearing level. Subjects were selected as High-recallers (HR, DRF = 4.4 ± 1.1 dream recalls per week and Low-recallers (LR, DRF = 0.25 ± 0.1 using a questionnaire and an interview on sleep and dream habits. Despite the disturbing setup, the subjects’ quality of sleep was generally preserved. First names induced a more sustained decrease in alpha activity in HR than in LR at Pz (1000-1200ms during wakefulness, but no group difference was found in REM sleep. The current dominant hypothesis proposes that alpha rhythms would be involved in the active inhibition of the brain regions not involved in the ongoing brain operation. According to this hypothesis, a more sustained alpha decrease in HR would reflect a longer release of inhibition, suggesting a deeper processing of complex sounds than in LR during wakefulness. A possibility to explain the absence of group difference during sleep is that increase in alpha power in HR may have resulted in awakenings. Our results support this hypothesis since HR experienced more intra sleep wakefulness than LR (30 ± 4 vs 14 ± 4 min. As a whole our results support the hypothesis of neurophysiological trait differences in

  9. Alpha reactivity to first names differs in subjects with high and low dream recall frequency.

    Science.gov (United States)

    Ruby, Perrine; Blochet, Camille; Eichenlaub, Jean-Baptiste; Bertrand, Olivier; Morlet, Dominique; Bidet-Caulet, Aurélie

    2013-01-01

    Studies in cognitive psychology showed that personality (openness to experience, thin boundaries, absorption), creativity, nocturnal awakenings, and attitude toward dreams are significantly related to dream recall frequency (DRF). These results suggest the possibility of neurophysiological trait differences between subjects with high and low DRF. To test this hypothesis we compared sleep characteristics and alpha reactivity to sounds in subjects with high and low DRF using polysomnographic recordings and electroencephalography (EEG). We acquired EEG from 21 channels in 36 healthy subjects while they were presented with a passive auditory oddball paradigm (frequent standard tones, rare deviant tones and very rare first names) during wakefulness and sleep (intensity, 50 dB above the subject's hearing level). Subjects were selected as High-recallers (HR, DRF = 4.42 ± 0.25 SEM, dream recalls per week) and Low-recallers (LR, DRF = 0.25 ± 0.02) using a questionnaire and an interview on sleep and dream habits. Despite the disturbing setup, the subjects' quality of sleep was generally preserved. First names induced a more sustained decrease in alpha activity in HR than in LR at Pz (1000-1200 ms) during wakefulness, but no group difference was found in REM sleep. The current dominant hypothesis proposes that alpha rhythms would be involved in the active inhibition of the brain regions not involved in the ongoing brain operation. According to this hypothesis, a more sustained alpha decrease in HR would reflect a longer release of inhibition, suggesting a deeper processing of complex sounds than in LR during wakefulness. A possibility to explain the absence of group difference during sleep is that increase in alpha power in HR may have resulted in awakenings. Our results support this hypothesis since HR experienced more intra sleep wakefulness than LR (30 ± 4 vs. 14 ± 4 min). As a whole our results support the hypothesis of neurophysiological trait differences in high and

  10. Alpha reactivity to first names differs in subjects with high and low dream recall frequency

    Science.gov (United States)

    Ruby, Perrine; Blochet, Camille; Eichenlaub, Jean-Baptiste; Bertrand, Olivier; Morlet, Dominique; Bidet-Caulet, Aurélie

    2013-01-01

    Studies in cognitive psychology showed that personality (openness to experience, thin boundaries, absorption), creativity, nocturnal awakenings, and attitude toward dreams are significantly related to dream recall frequency (DRF). These results suggest the possibility of neurophysiological trait differences between subjects with high and low DRF. To test this hypothesis we compared sleep characteristics and alpha reactivity to sounds in subjects with high and low DRF using polysomnographic recordings and electroencephalography (EEG). We acquired EEG from 21 channels in 36 healthy subjects while they were presented with a passive auditory oddball paradigm (frequent standard tones, rare deviant tones and very rare first names) during wakefulness and sleep (intensity, 50 dB above the subject's hearing level). Subjects were selected as High-recallers (HR, DRF = 4.42 ± 0.25 SEM, dream recalls per week) and Low-recallers (LR, DRF = 0.25 ± 0.02) using a questionnaire and an interview on sleep and dream habits. Despite the disturbing setup, the subjects' quality of sleep was generally preserved. First names induced a more sustained decrease in alpha activity in HR than in LR at Pz (1000–1200 ms) during wakefulness, but no group difference was found in REM sleep. The current dominant hypothesis proposes that alpha rhythms would be involved in the active inhibition of the brain regions not involved in the ongoing brain operation. According to this hypothesis, a more sustained alpha decrease in HR would reflect a longer release of inhibition, suggesting a deeper processing of complex sounds than in LR during wakefulness. A possibility to explain the absence of group difference during sleep is that increase in alpha power in HR may have resulted in awakenings. Our results support this hypothesis since HR experienced more intra sleep wakefulness than LR (30 ± 4 vs. 14 ± 4 min). As a whole our results support the hypothesis of neurophysiological trait differences in high

  11. Reactivity of chemical sensitizers toward amino acids in cellulo plays a role in the activation of the Nrf2-ARE pathway in human monocyte dendritic cells and the THP-1 cell line.

    Science.gov (United States)

    Migdal, Camille; Botton, Jérémie; El Ali, Zeina; Azoury, Marie-Eliane; Guldemann, Joan; Giménez-Arnau, Elena; Lepoittevin, Jean-Pierre; Kerdine-Römer, Saadia; Pallardy, Marc

    2013-06-01

    Allergic contact dermatitis resulting from skin sensitization is an inflammatory skin disease linked to the use of chemicals termed haptens. Chemical reactivity is necessary for a chemical to be a sensitizer, allowing both covalent binding to proteins and maturation of dendritic cells (DCs) by mimicking "danger signals." The aim of this study was to evaluate how the reactivity of chemical sensitizers toward amino acids translates into a biological response using the activation of the nuclear factor-erythroid 2-related factor 2 (Nrf2) pathway, which was assessed by the induction of three Nrf2 target genes (ho-1, nqo1, and il-8) and Nrf2 protein accumulation. Nrf2 activation is known to play a role in numerous detoxification mechanisms that could regulate danger signal outcomes in myeloid cells. Monocyte-derived DCs and THP-1 cells were exposed to (a) haptens with cysteine, lysine, or cysteine/lysine reactivity, (b) pro-/prehaptens, and (c) nonsensitizing molecules with reducing or oxidative properties (17 molecules in total). Chemicals were classified as "Nrf2 pathway activators" when at least two Nrf2 target genes associated with Nrf2 protein expression were induced. Results showed that most chemical sensitizers having cysteine and cysteine/lysine affinities were inducers of the Nrf2 pathway in both cell models, whereas lysine-reactive chemicals were less efficient. In THP-1 cells, the Nrf2 pathway was also activated by pro-/prehaptens. Regression analysis revealed that ho-1 and nqo1 expressions were found to be associated with chemical sensitizer reactivity to cysteine, providing evidence of the importance of chemical reactivity, as a part of danger signals, in DC biology.

  12. Uric acid and high-residual platelet reactivity in patients treated with clopidogrel or ticagrelor.

    Science.gov (United States)

    Barbieri, L; Verdoia, M; Pergolini, P; Nardin, M; Rolla, R; Marino, P; Bellomo, G; Suryapranata, H; De Luca, G

    2016-04-01

    High residual platelet reactivity (HRPR) is still an important challenge, despite the advent of new potent ADP-antagonists. Therefore it is of extreme importance to identify factors that can influence platelet activation. Serum uric acid (SUA) has been largely addressed in the past as a possible risk factor for coronary artery disease, with a possible association with platelets hyperreactivity. So far no studies have assessed the role of serum uric acid on the response to dual antiplatelet therapy. Therefore, the aim of our study was to evaluate the impact of uric acid levels on platelet function in patients treated with dual antiplatelet therapy (DAPT) with clopidogrel or ticagrelor. We scheduled for platelet function assessment at 30-90 days post-discharge patients treated with DAPT (ASA + clopidogrel or ticagrelor) for an ACS or elective percutaneous coronary intervention (PCI). Platelet function was assessed by whole blood impedance aggregometry (Multiplate(®)-Roche Diagnostics AG), HRPR was considered for ASPI test >862 AU(∗)min (for ASA) and ADP test values ≥417 AU* min (for ADP-antagonists). We included a total of 493 patients (262 were on ASA and clopidogrel and 231 on ASA and ticagrelor). Patients were divided according to quartiles of serum uric acid levels measured at the time of platelet aggregation assessment (Group 1 6.9, n = 122). Patients with higher uric acid levels were older, more often smokers, with history of hypertension and previous coronary artery bypass surgery and renal failure and were more often on therapy with diuretics at admission. Patients with higher SUA had higher triglycerides and fibrinogen. Uric acid levels did not influence ASPI, COL, TRAP and ADP tests. High residual platelet reactivity (HRPR) was observed in 1.5% of patients treated with ASA, with no difference according to SUA quartiles (p = 0.60), confirmed at multivariate analysis after correction for baseline confounders (adjusted OR[95%CI] = 1.05 [0.44-2.52], p = 0

  13. Chemical reactive features of novel amino acids intercalated layered double hydroxides in As(III) and As(V) adsorption.

    Science.gov (United States)

    Shen, Liang; Jiang, Xiuli; Chen, Zheng; Fu, Dun; Li, Qingbiao; Ouyang, Tong; Wang, Yuanpeng

    2017-06-01

    Layered double hydroxides (LDHs) intercalated with amino acids such as methionine (Met) were synthesized as new adsorbents to remediate arsenic-polluted water. This Zn2Al-Met-LDHs, identified with the formula of Zn0.7Al0.3(OH)2(Met)0.3·0.32H2O, has good thermal stability. Adsorption experiments with Zn2Al-Met-LDHs showed that the residual arsenic in solution could be reduced below the regulation limit, and this adsorption process fitted Langmuir isotherm and the pseudo-second-order kinetics well. A remarkably high removal efficiency and the maximum adsorption capacity for As(III) were achieved, 96.7% and 94.1 mg/g, respectively, at 298 K. The desorption efficiency of As(III) from the arsenic-saturated Zn2Al-Met-LDHs (<8.7%), far less than that of As(V), promises a specific and reliable uptake of As(III) in sorts of solutions. More importantly, a complete and in-depth spectra analysis through FTIR, XPS and NMR was conducted to explain the excellent performance of Zn2Al-Met-LDHs in arsenic removal. Herein, two special chemical reactions were proposed as the dominant mechanisms, i.e., hydrogen bonding between the carboxyl group of the host Met and the hydroxyl group of As(III) or As(V), and the formation of a chelate ring between the guest As(III) and the S, N bidentate ligands of the intercalated Met in the LDHs.

  14. Observations of atmospheric chemical deposition to high Arctic snow

    Science.gov (United States)

    Macdonald, Katrina M.; Sharma, Sangeeta; Toom, Desiree; Chivulescu, Alina; Hanna, Sarah; Bertram, Allan K.; Platt, Andrew; Elsasser, Mike; Huang, Lin; Tarasick, David; Chellman, Nathan; McConnell, Joseph R.; Bozem, Heiko; Kunkel, Daniel; Duan Lei, Ying; Evans, Greg J.; Abbatt, Jonathan P. D.

    2017-05-01

    Rapidly rising temperatures and loss of snow and ice cover have demonstrated the unique vulnerability of the high Arctic to climate change. There are major uncertainties in modelling the chemical depositional and scavenging processes of Arctic snow. To that end, fresh snow samples collected on average every 4 days at Alert, Nunavut, from September 2014 to June 2015 were analyzed for black carbon, major ions, and metals, and their concentrations and fluxes were reported. Comparison with simultaneous measurements of atmospheric aerosol mass loadings yields effective deposition velocities that encompass all processes by which the atmospheric species are transferred to the snow. It is inferred from these values that dry deposition is the dominant removal mechanism for several compounds over the winter while wet deposition increased in importance in the fall and spring, possibly due to enhanced scavenging by mixed-phase clouds. Black carbon aerosol was the least efficiently deposited species to the snow.

  15. High sensitivity C-reactive protein in airline pilots with metabolic syndrome.

    Science.gov (United States)

    Alonso-Rodríguez, César; Medina-Font, Juan

    2012-05-01

    Airline pilots belong to a relatively high-income, healthy population, with sedentary behavior during their flight activity, who often eat unsuitable meals. We assessed the prevalence of metabolic syndrome (MS) and the levels of high sensitivity C-reactive protein (hs-CRP) in a population of airline pilot in order to study a possible relationship between the hs-CRP and MS. MS was established according to the National Cholesterol Education Program, Adult Treatment Panel III. hs-CRP was classified into three categories: Low 3 mg x L(-1). The prevalence of MS was 14.8%. The hs-CRP level in the population studied was 1.68 +/- 1.79 mg x L(-1). hs-CRP significantly increased with age. The pilots with MS presented significantly higher hs-CRP levels (median = 1.9 with an interquartile range (IQR) = 2.5 mg x L(-1)) than the pilots without MS (median = 0.9 and IQR = 1.275 mg x L(-1)). MS significantly increased in the groups with high hs-CRP in comparison with pilots with intermediate hs-CRP levels and with those with low hs-CRP levels. A similar association was found between the levels of hs-CRP and the prevalence of MS in the three age groups. The levels of hs-CRP increased in pilots as they presented greater numbers of MS diagnostic criteria. hs-CRP rises significantly in pilots of increasing age, in pilots with MS as compared to those without the syndrome, and in pilots as they present greater numbers of MS diagnostic criteria. The prevalence of MS increased among the groups with higher levels of hs-CRP.

  16. Summertime distribution of PAN and other reactive nitrogen species in the northern high-latitude atmosphere of eastern Canada

    Science.gov (United States)

    Singh, H. B.; Herlth, D.; O'Hara, D.; Zahnle, K.; Bradshaw, J. D.; Sandholm, S. T.; Talbot, R.; Gregory, G. L.; Sachse, G. W.; Blake, D. R.

    1994-01-01

    Aircraft measurements of key reactive nitrogen species (NO, NO2, HNO3, PAN, PPN, NO3(-), NO(y)), C1 to C6 hydrocarbons, acetone, O3, chemical tracers (C2Cl4, CO), and important meteorological parameters were performed over eastern Canada during July to August 1990 at altitudes between 0 and 6 km as part of an Arctic Boundary Layer Expedition (ABLE3B). In the free troposphere, PAN was found to be the single most abundant reactive nitrogen species constituting a major fraction of NO(y) and was significantly more abundant than NO(x) and HNO3. PAN and O3 were well correlated both in their fine and gross structures. Compared to data previously collected in the Arctic/subarctic atmosphere over Alaska (ABLE3A), the lower troposphere (0-4 km) over eastern Canada was found to contain larger reactive nitrogen and anthropogenic tracer concentrations. At higher altitudes (4-6 km) the atmospheric composition was in many ways similar to what was seen over Alaska and supports the view that a large-scale reservoir of PAN (and NO(y)) is present in the upper troposphere over the entire Arctic/subarctic region. The reactive nitrogen budget based on missions conducted from the North Bay site (missions 2-10) showed a small shortfall, whereas the budget for data collected from the Goose Bay operation (missions 11-19) showed essential balance. It is calculated that 15-20 ppt of the observed NO(x) may find its source from the available PAN reservoir. Meteorological considerations as well as relationships between reactive nitrogen and tracer species suggest that the atmosphere over eastern Canada during summer is greatly influenced by forest fires and transported industrial pollution.

  17. Reactive electrophilic OI--species evidenced in high-performance Ir-oxohydroxide water oxidation electrocatalysts.

    Science.gov (United States)

    Massué, Cyriac; Pfeifer, Verena; Van Gastel, Maurice; Noack, Johannes; Algara-Siller, Gerardo; Cap, Sebastien; Schlögl, Robert

    2017-09-21

    Although quasi-amorphous Ir-oxohydroxides have repeatedly been identified as superior oxygen evolution reaction (OER) electrocatalysts, an exact description of the performance relevant species has so far remained a challenge. In this context, we report on the characterization of hydrothermally prepared IrIII/IV oxohydroxides exhibiting exceptional OER-performance. It was found that holes in the O2p states of IrIII/IV-oxohydroxides result in reactive OI--species identified by characteristic NEXAFS-features. A prototypical titration reaction based on CO as a probe molecule shows that these OI--species are highly susceptible to nucleophilic attack at room temperature. Similarly to pre-activated oxygen involved in the biological OER in Photosystem II, the electrophilic OI--species evidenced in IrIII/IV-oxohydroxides are suggested to be precursors to species involved in the O-O bond formation during electrocatalytic OER. CO-titration also highlights a link between OER-performance and the surface/sub-surface mobility of OI--species. The superior electrocatalytic properties of IrIII/IV-oxohydroxides are thus explained by their ability to accommodate pre-activated electrophilic OI--species able to migrate within the lattice. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Mechanochemical treatment of Serbian kaolin clay to obtain high reactive pozzolana

    Directory of Open Access Journals (Sweden)

    Mitrović Aleksandra

    2013-01-01

    Full Text Available Mechanochemical treatment of Serbian kaolin clay was carried out in a planetary ball mill using two different milling media, hardened steel or zirconia vials and balls. The samples obtained with various milling times were characterized by the particle size laser diffraction (PSLD, X-ray diffraction (XRD, differential scanning calorimetry/thermogravimetry (DTA/TGA and Fourier-transform infrared (FTIR analyses. Mechanochemical treatment induced amorphization of the kaolinite phase accompanied by dehydroxylation. It was found that for the given milling parameters, amorphization mainly took place in the milling period up to 15 min, and was completed after about 30 min of milling for both milling media used. The pozzolanic activities were determined by the Chapelle method. Milling in the hardened steel milling medium had no significant influence on pozzolanic activity, even though there was accumulated iron contamination. For both milling media, pozzolanic activity of 0.79 was obtained for the samples milled for 15 min and it remained almost unchanged with prolonged milling. The determined pozzolanic activity values are close to these of commercial metakaolinite or metakaolinite obtained by the calcination of the same clay, therefore, indicating possibility for obtaining high reactive pozzolana by mechanochemical treatment of Serbian kaoline clay. [Projekat Ministarstva nauke Republike Srbije, br. TR 36017 and 45001

  19. Formation of High Temperature Compounds in W-C-B System by Reactive Spark Plasma Sintering

    Directory of Open Access Journals (Sweden)

    Janis Grabis

    2015-09-01

    Full Text Available The formation of high temperature composites in W-C-Bsystem from fine-grained powders in dependence on the ratio of components byusing reactive spark plasma sintering was studied. The mixture of W2Cand C nanoparticles was used as tungsten and carbon precursors. The W2Cand carbon mixture with different ratio of components was prepared by reductionof WO3 in presence of CH4 in nitrogen inductively coupledplasma. The specific surface area of the mixture was in the range of 36–42 m2/gin dependence on the content of carbon. The W2C and carbon particleswere mixed mechanically with amorphous boron and densified using the sparkplasma sintering technique at 1500–1700 oC and pressure of 30 MPafor 4 minutes. The sintered bodies contained WB2 and B4Cphases. The ratio of phase depends on the content of the components in the rawmixture.DOI: http://dx.doi.org/10.5755/j01.ms.21.3.7352

  20. Perspective: Is there a hysteresis during reactive High Power Impulse Magnetron Sputtering (R-HiPIMS)?

    Science.gov (United States)

    Strijckmans, K.; Moens, F.; Depla, D.

    2017-02-01

    This paper discusses a few mechanisms that can assist to answer the title question. The initial approach is to use an established model for DC magnetron sputter deposition, i.e., RSD2013. Based on this model, the impact on the hysteresis behaviour of some typical HiPIMS conditions is investigated. From this first study, it becomes clear that the probability to observe hysteresis is much lower as compared to DC magnetron sputtering. The high current pulses cannot explain the hysteresis reduction. Total pressure and material choice make the abrupt changes less pronounced, but the implantation of ionized metal atoms that return to the target seems to be the major cause. To further substantiate these results, the analytical reactive sputtering model is coupled with a published global plasma model. The effect of metal ion implantation is confirmed. Another suggested mechanism, i.e., gas rarefaction, can be ruled out to explain the hysteresis reduction. But perhaps the major conclusion is that at present, there are too little experimental data available to make fully sound conclusions.

  1. Molecular dynamics calculation of thermophysical properties for a highly reactive liquid.

    Science.gov (United States)

    Wang, H P; Luo, B C; Wei, B

    2008-10-01

    In order to further understand the physical characteristics of liquid silicon, the thermophysical properties are required over a broad temperature range. However, its high reactivity brings about great difficulties in the experimental measurement. Here we report the thermophysical properties by molecular dynamics calculation, including density, specific heat, diffusion coefficient, and surface tension. The calculation is performed with a system consisting of 64,000 atoms, and employing the Stillinger-Weber (SW) potential model and the modified embedded atom method (MEAM) potential model. The results show that the density increases as a quadratic function of undercooling, and the value calculated by SW potential model is only 2-4 % smaller than the reported experimental data. The specific heat is obtained to be 30.95 J mol;{-1}K;{-1} by SW potential model and 32.50 J mol;{-1}K;{-1} by MEAM potential model, both of which are constants in the corresponding ranges of temperature. The self-diffusion coefficient is exponentially dependent on the temperature and consistent with the Arrhenius equation. The surface tension increases linearly with the rise of undercooling and agrees well with the reported experimental results. This work provides reasonable data in much wider temperature range, especially for the undercooled metastable state.

  2. Interleukin-6 and highly sensitive C-reactive protein in obese adolescents

    Directory of Open Access Journals (Sweden)

    Michael Kasenda

    2012-07-01

    Full Text Available Background Childhood obesity is a major health concern. Oobesity is due to an expansion of adipose tissue mass. This tissue produces pro-inflammatory cytokines, such as interleukin-6 (IL-6. IL-6 is considered to be the chief stimulator of the production of highly sensitive C-reactive protein (hsCRP in the liver. Both molecules are responsible for the chronic low-grade inflammatory state in obese individuals. Objective To assess a correlation between IL-6 and hsCRP in obese adolescents. Methods This cross-sectional study was conducted from March to June 2011 in Manado. Subjects were obese and normal body mass index (BMI teens aged 13-18 years. Serum glutamic oxaloacetic transaminase (SGOT and serum glutamic pyruvic transaminase (SGPT levels were measured to rule out liver impairment. IL-6 and hsCRP levels were also measured. Data was analyzed by Pearson’s correlation and linear regression to test for correlation between IL-6 and hsCRP levels. Results There was a strongly positive correlation between IL-6 and hsCRP levels in obese adolescents (r=0.79 with P<0.001. IL-6 and hsCRP levels were not significantly associated in subjects with normal BMI. Conclusions There was a strongly positive correlation between IL-6 and hsCRP levels in obese adolescents, suggestive of an ongoing, chronic, low-grade inflammatory state.

  3. MASS PRODUCTION OF NANOPARTICLES BY HIGH GRAVITY REACTIVE PRECIPITATION TECHNOLOGY WITH LOW COST

    Institute of Scientific and Technical Information of China (English)

    Jianfeng Chen; Lei Shao

    2003-01-01

    Mass production of nanoparticles at low cost has attracted much attention from industrial and academic circles. In this paper, a novel method, the high gravity reactive precipitation (HGRP) technology, of manufacturing CaCO3 nanoparticles, presently scaled-up to an annual capacity of 10,000 tons, is presented. This paper describes the process principle, the process design and experiments on the syntheses of 15-30 nm CaCO3, 30-50 nm SiO2,20-30 nm TiO2, 20-60 nm ZnO, 20-30 nm ZnS, 30 nm SrCO3, 40-70 nm BaTiO3, stick-like nano BaCO3 as well as nano-fibrillar aluminum hydroxide measuring 1-10 nm in diameter and 50-300 nm in length, using liquid-liquid,gas-liquid and gas-liquid-solid reactant systems. The advantage of using the HGRP technology is illustrated by comparison to conventional methods.

  4. Sleep disturbances in highly stress reactive mice: Modeling endophenotypes of major depression

    Directory of Open Access Journals (Sweden)

    Landgraf Rainer

    2011-03-01

    Full Text Available Abstract Background Neuronal mechanisms underlying affective disorders such as major depression (MD are still poorly understood. By selectively breeding mice for high (HR, intermediate (IR, or low (LR reactivity of the hypothalamic-pituitary-adrenocortical (HPA axis, we recently established a new genetic animal model of extremes in stress reactivity (SR. Studies characterizing this SR mouse model on the behavioral, endocrine, and neurobiological levels revealed several similarities with key endophenotypes observed in MD patients. HR mice were shown to have changes in rhythmicity and sleep measures such as rapid eye movement sleep (REMS and non-REM sleep (NREMS as well as in slow wave activity, indicative of reduced sleep efficacy and increased REMS. In the present study we were interested in how far a detailed spectral analysis of several electroencephalogram (EEG parameters, including relevant frequency bands, could reveal further alterations of sleep architecture in this animal model. Eight adult males of each of the three breeding lines were equipped with epidural EEG and intramuscular electromyogram (EMG electrodes. After recovery, EEG and EMG recordings were performed for two days. Results Differences in the amount of REMS and wakefulness and in the number of transitions between vigilance states were found in HR mice, when compared with IR and LR animals. Increased frequencies of transitions from NREMS to REMS and from REMS to wakefulness in HR animals were robust across the light-dark cycle. Detailed statistical analyses of spectral EEG parameters showed that especially during NREMS the power of the theta (6-9 Hz, alpha (10-15 Hz and eta (16-22.75 Hz bands was significantly different between the three breeding lines. Well defined distributions of significant power differences could be assigned to different times during the light and the dark phase. Especially during NREMS, group differences were robust and could be continuously monitored

  5. Regulatory Behaviors and Stress Reactivity among Infants at High Risk for Fetal Alcohol Spectrum Disorders: An Exploratory Study

    Science.gov (United States)

    Jirikowic, Tracy; Chen, Maida; Nash, Jennifer; Gendler, Beth; Olson, Heather Carmichael

    2016-01-01

    Introduction: This article examines regulatory behaviors and physiological stress reactivity among 6-15 month-old infants with moderate to heavy prenatal alcohol exposure (PAE), a group at very high risk for fetal alcohol spectrum disorders and self-regulation impairments, compared to low risk infants with no/low exposure. Participants: Eighteen…

  6. The Complementary Role of High Sensitivity C-Reactive Protein in the Diagnosis and Severity Assessment of Autism

    Science.gov (United States)

    Khakzad, Mohammad Reza; Javanbakht, Maryam; Shayegan, Mohammad Reza; Kianoush, Sina; Omid, Fatemeh; Hojati, Maryam; Meshkat, Mojtaba

    2012-01-01

    C-reactive protein (CRP) is a beneficial diagnostic test for the evaluation of inflammatory response. Extremely low levels of CRP can be detected using high-sensitivity CRP (hs-CRP) test. A considerable body of evidence has demonstrated that inflammatory response has an important role in the pathophysiology of autism. In this study, we evaluated…

  7. High-sensitivity C-reactive protein predicts target organ damage in Chinese patients with metabolic syndrome

    DEFF Research Database (Denmark)

    Zhao, Zhigang; Nie, Hai; He, Hongbo

    2007-01-01

    with metabolic syndrome. A total of 1082 consecutive patients of Chinese origin were screened for the presence of metabolic syndrome according to the National Cholesterol Education Program's Adult Treatment Panel III. High-sensitivity C-reactive protein and target organ damage, including cardiac hypertrophy......Observational studies established high-sensitivity C-reactive protein as a risk factor for cardiovascular events in the general population. The goal of this study was to determine the relationship between target organ damage and high-sensitivity C-reactive protein in a cohort of Chinese patients......, carotid intima-media thickness, and renal impairment, were investigated. The median (25th and 75th percentiles) of high-sensitivity C-reactive protein in 619 patients with metabolic syndrome was 2.42 mg/L (0.75 and 3.66 mg/L) compared with 1.13 mg/L (0.51 and 2.46 mg/L) among 463 control subjects (P

  8. Evidence for greater cue reactivity among low-dependent vs. high-dependent smokers.

    Science.gov (United States)

    Watson, Noreen L; Carpenter, Matthew J; Saladin, Michael E; Gray, Kevin M; Upadhyaya, Himanshu P

    2010-07-01

    Cue reactivity paradigms are well-established laboratory procedures used to examine subjective craving in response to substance-related cues. For smokers, the relationship between nicotine dependence and cue reactivity has not been clearly established. The main aim of the present study was to further examine this relationship. Participants (N=90) were between the ages 18-40 and smoked > or =10 cigarettes per day. Average nicotine dependence (Fagerström Test for Nicotine Dependence; FTND) at baseline was 4.9 (SD=2.1). Participants completed four cue reactivity sessions consisting of two in vivo cues (smoking and neutral) and two affective imagery cues (stressful and relaxed), all counterbalanced. Craving in response to cues was assessed following each cue exposure using the Questionnaire of Smoking Urges-Brief (QSU-B). Differential cue reactivity was operationally defined as the difference in QSU scores between the smoking and neutral cues, and between the stressful and relaxed cues. Nicotine dependence was significantly and negatively associated with differential cue reactivity scores in regard to hedonic craving (QSU factor 1) for both in vivo and imagery cues, such that those who had low FTND scores demonstrated greater differential cue reactivity than those with higher FTND scores (beta=-.082; p=.037; beta=-.101; p=.023, respectively). Similar trends were found for the Total QSU and for negative reinforcement craving (QSU factor 2), but did not reach statistical significance. Under partially sated conditions, less dependent smokers may be more differentially cue reactive to smoking cues as compared to heavily dependent smokers. These findings offer methodological and interpretative implications for cue reactivity studies. 2010 Elsevier Ltd. All rights reserved.

  9. Evidence for greater cue reactivity among low dependent vs. high dependent smokers

    Science.gov (United States)

    Watson, Noreen L.; Carpenter, Matthew J.; Saladin, Michael E.; Gray, Kevin M.; Upadhyaya, Himanshu P.

    2010-01-01

    Introduction Cue reactivity paradigms are well-established laboratory procedures used to examine subjective craving in response to substance-related cues. For smokers, the relationship between nicotine dependence and cue reactivity has not been clearly established. The main aim of the present study was to further examine this relationship. Methods Participants (N=90) were between the ages 18–40 and smoked ≥10 cigarettes per day. Average nicotine dependence (Fagerström Test for Nicotine Dependence; FTND) at baseline was 4.9 (SD=2.1). Participants completed four cue reactivity sessions consisting of two in vivo cues (smoking, neutral) and two affective imagery cues (stressful, relaxed), all counterbalanced. Craving in response to cues was assessed following each cue exposure using the Questionnaire of Smoking Urges—Brief (QSU-B). Differential cue reactivity was operationally defined as the difference in QSU scores between the smoking and neutral cues, and between the stressful and relaxed cues. Results Nicotine dependence was significantly and negatively associated with differential cue reactivity scores in regards to hedonic craving (QSU factor 1) for both in vivo and imagery cues, such that those who had low FTND scores demonstrated greater differential cue reactivity than those with higher FTND scores (β = −.082; p = .037; β = −.101; p = .023, respectively). Similar trends were found for the total QSU and for negative reinforcement craving (QSU factor 2), but did not reach statistical significance. Discussion Under partially sated conditions, less dependent smokers may be more differentially cue reactive to smoking cues as compared to heavily dependent smokers. These findings offer methodological and interpretative implications for cue reactivity studies. PMID:20206451

  10. Physical and chemical performances of high Al steels

    Institute of Scientific and Technical Information of China (English)

    WANG Hai-chuan; DONG Yuan-chi; ZHANG Wen-ming; WANG Shi-jun; ZHOU Yun

    2005-01-01

    The effects of acid-soluble Al content on the phys