WorldWideScience

Sample records for high chemical activity

  1. Mining Chemical Activity Status from High-Throughput Screening Assays

    KAUST Repository

    Soufan, Othman

    2015-12-14

    High-throughput screening (HTS) experiments provide a valuable resource that reports biological activity of numerous chemical compounds relative to their molecular targets. Building computational models that accurately predict such activity status (active vs. inactive) in specific assays is a challenging task given the large volume of data and frequently small proportion of active compounds relative to the inactive ones. We developed a method, DRAMOTE, to predict activity status of chemical compounds in HTP activity assays. For a class of HTP assays, our method achieves considerably better results than the current state-of-the-art-solutions. We achieved this by modification of a minority oversampling technique. To demonstrate that DRAMOTE is performing better than the other methods, we performed a comprehensive comparison analysis with several other methods and evaluated them on data from 11 PubChem assays through 1,350 experiments that involved approximately 500,000 interactions between chemicals and their target proteins. As an example of potential use, we applied DRAMOTE to develop robust models for predicting FDA approved drugs that have high probability to interact with the thyroid stimulating hormone receptor (TSHR) in humans. Our findings are further partially and indirectly supported by 3D docking results and literature information. The results based on approximately 500,000 interactions suggest that DRAMOTE has performed the best and that it can be used for developing robust virtual screening models. The datasets and implementation of all solutions are available as a MATLAB toolbox online at www.cbrc.kaust.edu.sa/dramote and can be found on Figshare.

  2. Mining Chemical Activity Status from High-Throughput Screening Assays.

    Directory of Open Access Journals (Sweden)

    Othman Soufan

    Full Text Available High-throughput screening (HTS experiments provide a valuable resource that reports biological activity of numerous chemical compounds relative to their molecular targets. Building computational models that accurately predict such activity status (active vs. inactive in specific assays is a challenging task given the large volume of data and frequently small proportion of active compounds relative to the inactive ones. We developed a method, DRAMOTE, to predict activity status of chemical compounds in HTP activity assays. For a class of HTP assays, our method achieves considerably better results than the current state-of-the-art-solutions. We achieved this by modification of a minority oversampling technique. To demonstrate that DRAMOTE is performing better than the other methods, we performed a comprehensive comparison analysis with several other methods and evaluated them on data from 11 PubChem assays through 1,350 experiments that involved approximately 500,000 interactions between chemicals and their target proteins. As an example of potential use, we applied DRAMOTE to develop robust models for predicting FDA approved drugs that have high probability to interact with the thyroid stimulating hormone receptor (TSHR in humans. Our findings are further partially and indirectly supported by 3D docking results and literature information. The results based on approximately 500,000 interactions suggest that DRAMOTE has performed the best and that it can be used for developing robust virtual screening models. The datasets and implementation of all solutions are available as a MATLAB toolbox online at www.cbrc.kaust.edu.sa/dramote and can be found on Figshare.

  3. Mining Chemical Activity Status from High-Throughput Screening Assays.

    Science.gov (United States)

    Soufan, Othman; Ba-alawi, Wail; Afeef, Moataz; Essack, Magbubah; Rodionov, Valentin; Kalnis, Panos; Bajic, Vladimir B

    2015-01-01

    High-throughput screening (HTS) experiments provide a valuable resource that reports biological activity of numerous chemical compounds relative to their molecular targets. Building computational models that accurately predict such activity status (active vs. inactive) in specific assays is a challenging task given the large volume of data and frequently small proportion of active compounds relative to the inactive ones. We developed a method, DRAMOTE, to predict activity status of chemical compounds in HTP activity assays. For a class of HTP assays, our method achieves considerably better results than the current state-of-the-art-solutions. We achieved this by modification of a minority oversampling technique. To demonstrate that DRAMOTE is performing better than the other methods, we performed a comprehensive comparison analysis with several other methods and evaluated them on data from 11 PubChem assays through 1,350 experiments that involved approximately 500,000 interactions between chemicals and their target proteins. As an example of potential use, we applied DRAMOTE to develop robust models for predicting FDA approved drugs that have high probability to interact with the thyroid stimulating hormone receptor (TSHR) in humans. Our findings are further partially and indirectly supported by 3D docking results and literature information. The results based on approximately 500,000 interactions suggest that DRAMOTE has performed the best and that it can be used for developing robust virtual screening models. The datasets and implementation of all solutions are available as a MATLAB toolbox online at www.cbrc.kaust.edu.sa/dramote and can be found on Figshare.

  4. Combined Chemical Activation and Fenton Degradation to Convert Waste Polyethylene into High-Value Fine Chemicals.

    Science.gov (United States)

    Chow, Cheuk-Fai; Wong, Wing-Leung; Ho, Keith Yat-Fung; Chan, Chung-Sum; Gong, Cheng-Bin

    2016-07-04

    Plastic waste is a valuable organic resource. However, proper technologies to recover usable materials from plastic are still very rare. Although the conversion/cracking/degradation of certain plastics into chemicals has drawn much attention, effective and selective cracking of the major waste plastic polyethylene is extremely difficult, with degradation of C-C/C-H bonds identified as the bottleneck. Pyrolysis, for example, is a nonselective degradation method used to crack plastics, but it requires a very high energy input. To solve the current plastic pollution crisis, more effective technologies are needed for converting plastic waste into useful substances that can be fed into the energy cycle or used to produce fine chemicals for industry. In this study, we demonstrate a new and effective chemical approach by using the Fenton reaction to convert polyethylene plastic waste into carboxylic acids under ambient conditions. Understanding the fundamentals of this new chemical process provides a possible protocol to solve global plastic-waste problems.

  5. Activated carbon fibers with a high heteroatom content by chemical activation of PBO with phosphoric acid.

    Science.gov (United States)

    Vázquez-Santos, M B; Suárez-García, F; Martínez-Alonso, A; Tascón, J M D

    2012-04-03

    The preparation of activated carbon fibers (ACFs) by phosphoric acid activation of poly(p-phenylene benzobisoxazole) (PBO) fibers was studied, with particular attention to the effects of impregnation ratio and carbonization temperature on porous texture. Phosphoric acid has a strong effect on PBO degradation, lowering the temperature range at which the decomposition takes place and changing the number of mass loss steps. Chemical analysis results indicated that activation with phosphoric acid increases the concentration of oxygenated surface groups; the resulting materials also exhibiting high nitrogen content. ACFs are obtained with extremely high yields; they have well-developed porosity restricted to the micropore and narrow mesopore range and with a significant concentration of phosphorus incorporated homogeneously in the form of functional groups. An increase in the impregnation ratio leads to increases in both pore volume and pore size, maximum values of surface area (1250 m(2)/g) and total pore volume (0.67 cm(3)/g) being attained at the highest impregnation ratio (210 wt % H(3)PO(4)) and lowest activation temperature (650 °C) used; the corresponding yield was as large as 83 wt %. The obtained surface areas and pore volumes were higher than those achieved in previous works by physical activation with CO(2) of PBO chars.

  6. Ascaroside activity in Caenorhabditis elegans is highly dependent on chemical structure

    OpenAIRE

    Hollister, Kyle A.; Conner, Elizabeth S.; Zhang, Xinxing; Spell, Mark; Bernard, Gary M.; Patel, Pratik; de Carvalho, Ana Carolina G.V.; Butcher, Rebecca A.; Ragains, Justin R.

    2013-01-01

    The nematode Caenorhabditis elegans secretes ascarosides, structurally diverse derivatives of the 3,6-dideoxysugar ascarylose, and uses them in chemical communication. At high population densities, specific ascarosides, which are together known as the dauer pheromone, trigger entry into the stress-resistant dauer larval stage. In order to study the structure-activity relationships for the ascarosides, we synthesized a panel of ascarosides and tested them for dauer-inducing activity. This pane...

  7. Chemical stability of a cold-active cellulase with high tolerance toward surfactants and chaotropic agent

    Directory of Open Access Journals (Sweden)

    Thaís V. Souza

    2016-03-01

    Full Text Available CelE1 is a cold-active endo-acting glucanase with high activity at a broad temperature range and under alkaline conditions. Here, we examined the effects of pH on the secondary and tertiary structures, net charge, and activity of CelE1. Although variation in pH showed a small effect in the enzyme structure, the activity was highly influenced at acidic conditions, while reached the optimum activity at pH 8. Furthermore, to estimate whether CelE1 could be used as detergent additives, CelE1 activity was evaluated in the presence of surfactants. Ionic and nonionic surfactants were not able to reduce CelE1 activity significantly. Therefore, CelE1 was found to be promising candidate for use as detergent additives. Finally, we reported a thermodynamic analysis based on the structural stability and the chemical unfolding/refolding process of CelE1. The results indicated that the chemical unfolding proceeds as a reversible two-state process. These data can be useful for biotechnological applications.

  8. Ascaroside activity in Caenorhabditis elegans is highly dependent on chemical structure.

    Science.gov (United States)

    Hollister, Kyle A; Conner, Elizabeth S; Zhang, Xinxing; Spell, Mark; Bernard, Gary M; Patel, Pratik; de Carvalho, Ana Carolina G V; Butcher, Rebecca A; Ragains, Justin R

    2013-09-15

    The nematode Caenorhabditis elegans secretes ascarosides, structurally diverse derivatives of the 3,6-dideoxysugar ascarylose, and uses them in chemical communication. At high population densities, specific ascarosides, which are together known as the dauer pheromone, trigger entry into the stress-resistant dauer larval stage. In order to study the structure-activity relationships for the ascarosides, we synthesized a panel of ascarosides and tested them for dauer-inducing activity. This panel includes a number of natural ascarosides that were detected in crude pheromone extract, but as yet have no assigned function, as well as many unnatural ascaroside derivatives. Most of these ascarosides, some of which have significant structural similarity to the natural dauer pheromone components, have very little dauer-inducing activity. Our results provide a primer to ascaroside structure-activity relationships and suggest that slight modifications to ascaroside structure dramatically influence binding to the relevant G protein-coupled receptors that control dauer formation.

  9. Production of bioelectricity, bio-hydrogen, high value chemicals and bioinspired nanomaterials by electrochemically active biofilms.

    Science.gov (United States)

    Kalathil, Shafeer; Khan, Mohammad Mansoob; Lee, Jintae; Cho, Moo Hwan

    2013-11-01

    Microorganisms naturally form biofilms on solid surfaces for their mutual benefits including protection from environmental stresses caused by contaminants, nutritional depletion or imbalances. The biofilms are normally dangerous to human health due to their inherited robustness. On the other hand, a recent study suggested that electrochemically active biofilms (EABs) generated by electrically active microorganisms have properties that can be used to catalyze or control the electrochemical reactions in a range of fields, such as bioenergy production, bioremediation, chemical/biological synthesis, bio-corrosion mitigation and biosensor development. EABs have attracted considerable attraction in bioelectrochemical systems (BESs), such as microbial fuel cells and microbial electrolysis cells, where they act as living bioanode or biocathode catalysts. Recently, it was reported that EABs can be used to synthesize metal nanoparticles and metal nanocomposites. The EAB-mediated synthesis of metal and metal-semiconductor nanocomposites is expected to provide a new avenue for the greener synthesis of nanomaterials with high efficiency and speed than other synthetic methods. This review covers the general introduction of EABs, as well as the applications of EABs in BESs, and the production of bio-hydrogen, high value chemicals and bio-inspired nanomaterials.

  10. Existing chemicals: international activities.

    Science.gov (United States)

    Purchase, J F

    1989-01-01

    The standards of care used in the protection of the health and safety of people exposed to chemicals has increased dramatically in the last decade. Standards imposed by regulation and those adopted by industry have required a greater level of knowledge about the hazards of chemicals. In the E.E.C., the 6th amendment of the dangerous substances directive imposed the requirement that al new chemicals should be tested according to prescribed programme before introduction on to the market. The development of a European inventory of existing chemicals was an integral part of the 6th amendment. It has now become clear that increased standards of care referred to above must be applied to the chemicals on the inventory list. There is, however, a considerable amount of activity already under way in various international agencies. The OECD Chemicals Programme has been involved in considering the problem of existing chemicals for some time, and is producing a priority list and action programme. The International Programme on Chemical Safety produces international chemical safety cards, health and safety guides and environmental health criteria documents. The international register of potentially toxic compounds (part of UNEP) has prepared chemical data profiles on 990 compounds. The International Agency for Research on Cancer prepared monographs on the carcinogenic risk of chemicals to man. So far 42 volumes have been prepared covering about 900 substances. IARC and IPCS also prepare periodic reports on ongoing research on carcinogenicity or toxicity (respectively) of chemicals. The chemical industry through ECETOC (the European Chemical Industry Ecology and Toxicology Centre) has mounted a major initiative on existing chemicals. Comprehensive reviews of the toxicity of selected chemicals are published (Joint Assessment of Commodity Chemicals). In its technical report no. 30 ECETOC lists reviews and evaluations by major national and international organisations, which provides

  11. High surface area activated carbon prepared from cassava peel by chemical activation.

    Science.gov (United States)

    Sudaryanto, Y; Hartono, S B; Irawaty, W; Hindarso, H; Ismadji, S

    2006-03-01

    Cassava is one of the most important commodities in Indonesia, an agricultural country. Cassava is one of the primary foods in our country and usually used for traditional food, cake, etc. Cassava peel is an agricultural waste from the food and starch processing industries. In this study, this solid waste was used as the precursor for activated carbon preparation. The preparation process consisted of potassium hydroxide impregnation at different impregnation ratio followed by carbonization at 450-750 degrees C for 1-3 h. The results revealed that activation time gives no significant effect on the pore structure of activated carbon produced, however, the pore characteristic of carbon changes significantly with impregnation ratio and carbonization temperature. The maximum surface area and pore volume were obtained at impregnation ratio 5:2 and carbonization temperature 750 degrees C.

  12. Analyzing the Function of Cartilage Replacements: A Laboratory Activity to Teach High School Students Chemical and Tissue Engineering Concepts

    Science.gov (United States)

    Renner, Julie N.; Emady, Heather N.; Galas, Richards J., Jr.; Zhange, Rong; Baertsch, Chelsey D.; Liu, Julie C.

    2013-01-01

    A cartilage tissue engineering laboratory activity was developed as part of the Exciting Discoveries for Girls in Engineering (EDGE) Summer Camp sponsored by the Women In Engineering Program (WIEP) at Purdue University. Our goal was to increase awareness of chemical engineering and tissue engineering in female high school students through a…

  13. Analyzing the Function of Cartilage Replacements: A Laboratory Activity to Teach High School Students Chemical and Tissue Engineering Concepts

    Science.gov (United States)

    Renner, Julie N.; Emady, Heather N.; Galas, Richards J., Jr.; Zhange, Rong; Baertsch, Chelsey D.; Liu, Julie C.

    2013-01-01

    A cartilage tissue engineering laboratory activity was developed as part of the Exciting Discoveries for Girls in Engineering (EDGE) Summer Camp sponsored by the Women In Engineering Program (WIEP) at Purdue University. Our goal was to increase awareness of chemical engineering and tissue engineering in female high school students through a…

  14. Measurement of natural radioactivity in chemical fertilizer and agricultural soil: evidence of high alpha activity.

    Science.gov (United States)

    Ghosh, Dipak; Deb, Argha; Bera, Sukumar; Sengupta, Rosalima; Patra, Kanchan Kumar

    2008-02-01

    People are exposed to ionizing radiation from the radionuclides that are present in different types of natural sources, of which phosphate fertilizer is one of the most important sources. Radionuclides in phosphate fertilizer belonging to 232Th and 238U series as well as radioisotope of potassium (40K) are the major contributors of outdoor terrestrial natural radiation. The study of alpha activity in fertilizers, which is the first ever in West Bengal, has been performed in order to determine the effect of the use of phosphate fertilizers on human health. The data have been compared with the alpha activity of different types of chemical fertilizers. The measurement of alpha activity in surface soil samples collected from the cultivated land was also performed. The sampling sites were randomly selected in the cultivated land in the Midnapore district, which is the largest district in West Bengal. The phosphate fertilizer is widely used for large agricultural production, mainly potatoes. The alpha activities have been measured using solid-state nuclear track detectors (SSNTD), a very sensitive detector for alpha particles. The results show that alpha activity of those fertilizer and soil samples varies from 141 Bq/kg to 2,589 Bq/kg and from 109 Bq/kg to 660 Bq/kg, respectively. These results were used to estimate environmental radiation exposure on human health contributed by the direct application of fertilizers.

  15. High sensitivity stand-off detection and quantification of chemical mixtures using an active coherent laser spectrometer (ACLaS)

    Science.gov (United States)

    MacLeod, Neil A.; Weidmann, Damien

    2016-05-01

    High sensitivity detection, identification and quantification of chemicals in a stand-off configuration is a highly sought after capability across the security and defense sector. Specific applications include assessing the presence of explosive related materials, poisonous or toxic chemical agents, and narcotics. Real world field deployment of an operational stand-off system is challenging due to stringent requirements: high detection sensitivity, stand-off ranges from centimeters to hundreds of meters, eye-safe invisible light, near real-time response and a wide chemical versatility encompassing both vapor and condensed phase chemicals. Additionally, field deployment requires a compact, rugged, power efficient, and cost-effective design. To address these demanding requirements, we have developed the concept of Active Coherent Laser Spectrometer (ACLaS), which can be also described as a middle infrared hyperspectral coherent lidar. Combined with robust spectral unmixing algorithms, inherited from retrievals of information from high-resolution spectral data generated by satellitebased spectrometers, ACLaS has been demonstrated to fulfil the above-mentioned needs. ACLaS prototypes have been so far developed using quantum cascade lasers (QCL) and interband cascade lasers (ICL) to exploit the fast frequency tuning capability of these solid state sources. Using distributed feedback (DFB) QCL, demonstration and performance analysis were carried out on narrow-band absorbing chemicals (N2O, H2O, H2O2, CH4, C2H2 and C2H6) at stand-off distances up to 50 m using realistic non cooperative targets such as wood, painted metal, and bricks. Using more widely tunable external cavity QCL, ACLaS has also been demonstrated on broadband absorbing chemicals (dichloroethane, HFC134a, ethylene glycol dinitrate and 4-nitroacetanilide solid) and on complex samples mixing narrow-band and broadband absorbers together in a realistic atmospheric background.

  16. XPS study and physico-chemical properties of nitrogen-enriched microporous activated carbon from high volatile bituminous coal

    Energy Technology Data Exchange (ETDEWEB)

    Robert Pietrzak [Adam Mickiewicz University, Poznan (Poland). Laboratory of Coal Chemistry and Technology

    2009-10-15

    N-enriched microporous active carbons of different physico-chemical parameters have been obtained from high volatile bituminous coal subjected to the processes of ammoxidation, carbonisation and activation in different sequences. Ammoxidation was performed by a mixture of ammonia and air at the ratio 1:3 (flow ratio 250 ml/min:750 ml/min) at 350{sup o}C, at each stage of production i.e. that of precursor, carbonisate and active carbon. Ammoxidation performed at the stage of demineralised coal or carbonisate has been shown to lead to a significant nitrogen enrichment and to have beneficial effect on the porous structure of the carbon during activation, allowing obtaining samples of the surface area of 2600-2800 m{sup 2}/g and pore volume 1.29-1.60 cm{sup 3}/g to be obtained with the yield of about 50%. The amount of nitrogen introduced into the carbon structure was found to depend on the sequence of the processes applied. The greatest amount of nitrogen was introduced for the processes in the sequence carbonisation {yields} activation {yields} ammoxidation. The introduction of nitrogen at the stage of active carbon leads to a reduction in the surface area and lowering of its sorption capacity. From the XPS study, ammoxidation introduces nitrogen mainly in the form of imines, amines, amides, N-5 and N-6, irrespective of the processing stage at which it is applied. 40 refs., 2 figs., 5 tabs.

  17. Combined Rational Design and a High Throughput Screening Platform for Identifying Chemical Inhibitors of a Ras-activating Enzyme*

    Science.gov (United States)

    Evelyn, Chris R.; Biesiada, Jacek; Duan, Xin; Tang, Hong; Shang, Xun; Papoian, Ruben; Seibel, William L.; Nelson, Sandra; Meller, Jaroslaw; Zheng, Yi

    2015-01-01

    The Ras family small GTPases regulate multiple cellular processes, including cell growth, survival, movement, and gene expression, and are intimately involved in cancer pathogenesis. Activation of these small GTPases is catalyzed by a special class of enzymes, termed guanine nucleotide exchange factors (GEFs). Herein, we developed a small molecule screening platform for identifying lead hits targeting a Ras GEF enzyme, SOS1. We employed an ensemble structure-based virtual screening approach in combination with a multiple tier high throughput experimental screen utilizing two complementary fluorescent guanine nucleotide exchange assays to identify small molecule inhibitors of GEF catalytic activity toward Ras. From a library of 350,000 compounds, we selected a set of 418 candidate compounds predicted to disrupt the GEF-Ras interaction, of which dual wavelength GDP dissociation and GTP-loading experimental screening identified two chemically distinct small molecule inhibitors. Subsequent biochemical validations indicate that they are capable of dose-dependently inhibiting GEF catalytic activity, binding to SOS1 with micromolar affinity, and disrupting GEF-Ras interaction. Mutagenesis studies in conjunction with structure-activity relationship studies mapped both compounds to different sites in the catalytic pocket, and both inhibited Ras signaling in cells. The unique screening platform established here for targeting Ras GEF enzymes could be broadly useful for identifying lead inhibitors for a variety of small GTPase-activating GEF reactions. PMID:25825487

  18. Linking algal growth inhibition to chemical activity

    DEFF Research Database (Denmark)

    Schmidt, Stine N.; Mayer, Philipp

    to chemical activity, as opposed to e.g. the total concentration. Baseline toxicity (narcosis) for neutral hydrophobic organic compounds has been shown to initiate in the narrow chemical activity range of 0.01 to 0.1. This presentation focuses on linking algal growth inhibition to chemical activity....... High-quality toxicity data are carefully selected from peer-reviewed scientific literature and QSAR databases. This presentation shows how the chemical activity concept can be used to compare and combine toxicity data across compounds and species in order to characterize toxicity – and further how...

  19. rhoCentralRfFoam: An OpenFOAM solver for high speed chemically active flows - Simulation of planar detonations -

    Science.gov (United States)

    Gutiérrez Marcantoni, L. F.; Tamagno, J.; Elaskar, S.

    2017-10-01

    A new solver developed within the framework of OpenFOAM 2.3.0, called rhoCentralRfFoam which can be interpreted like an evolution of rhoCentralFoam, is presented. Its use, performing numerical simulations on initiation and propagation of planar detonation waves in combustible mixtures H2-Air and H2-O2-Ar, is described. Unsteady one dimensional (1D) Euler equations coupled with sources to take into account chemical activity, are numerically solved using the Kurganov, Noelle and Petrova second order scheme in a domain discretized with finite volumes. The computational code can work with any number of species and its corresponding reactions, but here it was tested with 13 chemically active species (one species inert), and 33 elementary reactions. A gaseous igniter which acts like a shock-tube driver, and powerful enough to generate a strong shock capable of triggering exothermic chemical reactions in fuel mixtures, is used to start planar detonations. The following main aspects of planar detonations are here, treated: induction time of combustible mixtures cited above and required mesh resolutions; convergence of overdriven detonations to Chapman-Jouguet states; detonation structure (ZND model); and the use of reflected shocks to determine induction times experimentally. The rhoCentralRfFoam code was verified comparing numerical results and it was validated, through analytical results and experimental data.

  20. A microporous Cu-MOF with optimized open metal sites and pore spaces for high gas storage and active chemical fixation of CO2.

    Science.gov (United States)

    Gao, Chao-Ying; Tian, Hong-Rui; Ai, Jing; Li, Lei-Jiao; Dang, Song; Lan, Ya-Qian; Sun, Zhong-Ming

    2016-09-25

    A microporous Cu-MOF with optimized open metal sites and pore space was constructed based on a designed bent ligand; it exhibits high-capacity multiple gas storage under atmospheric pressure and efficient catalytic activity for chemical fixation of CO2 under mild conditions.

  1. Inorganic chemically active adsorbents (ICAAs)

    Energy Technology Data Exchange (ETDEWEB)

    Ally, M.R. [Oak Ridge National Lab., TN (United States); Tavlarides, L.

    1997-10-01

    Oak Ridge National Laboratory (ORNL) researchers are developing a technology that combines metal chelation extraction technology and synthesis chemistry. They begin with a ceramic substrate such as alumina, titanium oxide or silica gel because they provide high surface area, high mechanical strength, and radiolytic stability. One preparation method involves silylation to hydrophobize the surface, followed by chemisorption of a suitable chelation agent using vapor deposition. Another route attaches newly designed chelating agents through covalent bonding by the use of coupling agents. These approaches provide stable and selective, inorganic chemically active adsorbents (ICAAs) tailored for removal of metals. The technology has the following advantages over ion exchange: (1) higher mechanical strength, (2) higher resistance to radiation fields, (3) higher selectivity for the desired metal ion, (4) no cation exchange, (5) reduced or no interference from accompanying anions, (6) faster kinetics, and (7) easy and selective regeneration. Target waste streams include metal-containing groundwater/process wastewater at ORNL`s Y-12 Plant (multiple metals), Savannah River Site (SRS), Rocky Flats (multiple metals), and Hanford; aqueous mixed wastes at Idaho National Engineering Laboratory (INEL); and scrubber water generated at SRS and INEL. Focus Areas that will benefit from this research include Mixed Waste, and Subsurface Contaminants.

  2. A chemically activated graphene-encapsulated LiFePO4 composite for high-performance lithium ion batteries.

    Science.gov (United States)

    Ha, Jeonghyun; Park, Seung-Keun; Yu, Seung-Ho; Jin, Aihua; Jang, Byungchul; Bong, Sungyool; Kim, In; Sung, Yung-Eun; Piao, Yuanzhe

    2013-09-21

    A composite of modified graphene and LiFePO4 has been developed to improve the speed of charging-discharging and the cycling stability of lithium ion batteries using LiFePO4 as a cathode material. Chemically activated graphene (CA-graphene) has been successfully synthesized via activation by KOH. The as-prepared CA-graphene was mixed with LiFePO4 to prepare the composite. Microscopic observation and nitrogen sorption analysis have revealed the surface morphologies of CA-graphene and the CA-graphene/LiFePO4 composite. Electrochemical properties have also been investigated after assembling coin cells with the CA-graphene/LiFePO4 composite as a cathode active material. Interestingly, the CA-graphene/LiFePO4 composite has exhibited better electrochemical properties than the conventional graphene/LiFePO4 composite as well as bare LiFePO4, including exceptional speed of charging-discharging and excellent cycle stability. That is because the CA-graphene in the composite provides abundant porous channels for the diffusion of lithium ions. Moreover, it acts as a conducting network for easy charge transfer and as a divider, preventing the aggregation of LiFePO4 particles. Owing to these properties of CA-graphene, LiFePO4 could demonstrate enhanced and stably long-lasting electrochemical performance.

  3. Epigenetic siRNA and Chemical Screens Identify SETD8 Inhibition as a Therapeutic Strategy for p53 Activation in High-Risk Neuroblastoma.

    Science.gov (United States)

    Veschi, Veronica; Liu, Zhihui; Voss, Ty C; Ozbun, Laurent; Gryder, Berkley; Yan, Chunhua; Hu, Ying; Ma, Anqi; Jin, Jian; Mazur, Sharlyn J; Lam, Norris; Souza, Barbara K; Giannini, Giuseppe; Hager, Gordon L; Arrowsmith, Cheryl H; Khan, Javed; Appella, Ettore; Thiele, Carol J

    2017-01-09

    Given the paucity of druggable mutations in high-risk neuroblastoma (NB), we undertook chromatin-focused small interfering RNA and chemical screens to uncover epigenetic regulators critical for the differentiation block in high-risk NB. High-content Opera imaging identified 53 genes whose loss of expression led to a decrease in NB cell proliferation and 16 also induced differentiation. From these, the secondary chemical screen identified SETD8, the H4(K20me1) methyltransferase, as a druggable NB target. Functional studies revealed that SETD8 ablation rescued the pro-apoptotic and cell-cycle arrest functions of p53 by decreasing p53(K382me1), leading to activation of the p53 canonical pathway. In pre-clinical xenograft NB models, genetic or pharmacological (UNC0379) SETD8 inhibition conferred a significant survival advantage, providing evidence for SETD8 as a therapeutic target in NB. Published by Elsevier Inc.

  4. Current Chemical Risk Reduction Activities

    Science.gov (United States)

    EPA's existing chemicals programs address pollution prevention, risk assessment, hazard and exposure assessment and/or characterization, and risk management for chemicals substances in commercial use.

  5. Chemical composition and biological activities of Tunisian Cuminum cyminum L. essential oil: a high effectiveness against Vibrio spp. strains.

    Science.gov (United States)

    Hajlaoui, Hafedh; Mighri, Hedi; Noumi, Emira; Snoussi, Mejdi; Trabelsi, Najla; Ksouri, Riadh; Bakhrouf, Amina

    2010-01-01

    Essential oil extracted by hydrodistillation from Tunisian variety of Cuminumcyminum was characterized by means of GC and GC-MS. Twenty-one components were identified and C. cyminum contained cuminlaldehyde (39.48%), gamma-terpinene (15.21%), O-cymene (11.82%), beta-pinene (11.13%), 2-caren-10-al (7.93%), trans-carveol (4.49%) and myrtenal (3.5%) as a major components. Moreover, C. cyminum oil exhibited higher antibacterial and antifungal activities with a high effectiveness against Vibrio spp. strains with a diameter of inhibition zones growth ranging from 11 to 23 mm and MIC and MBC values ranging from (0.078-0.31 mg/ml) to (0.31-1.25mg/ml), respectively. On the other hand, the cumin oil was investigated for its antioxidant activities using four different tests then compared with BHT. Results showed that cumin oil exhibit a higher activity in each antioxidant system with a special attention for beta-carotene bleaching test (IC(50): 20 microg/ml) and reducing power (EC(50): 11 microg/ml). In the light of these findings, we suggested that C. cyminum essential oil may be considered as an interesting source of antibacterial, antifungal and antioxidants components used as potent agents in food preservation and for therapeutic or nutraceutical industries.

  6. Profiling Environmental Chemicals for Activity in the Antioxidant Response Element Signaling Pathway Using a High-Throughput Screening Approach

    Science.gov (United States)

    1 ABSTRACT 2 3 BACKGROUND: Oxidative stress has been implicated in the pathogenesis of a variety 4 of diseases ranging from cancer to neurodegeneration, highlighti.ng the need to identify 5 chemicals that can induce this effect. The antioxidant response element (ARE)...

  7. Mesoporous layer-by-layer ordered nanohybrids of layered double hydroxide and layered metal oxide: highly active visible light photocatalysts with improved chemical stability.

    Science.gov (United States)

    Gunjakar, Jayavant L; Kim, Tae Woo; Kim, Hyo Na; Kim, In Young; Hwang, Seong-Ju

    2011-09-28

    Mesoporous layer-by-layer ordered nanohybrids highly active for visible light-induced O(2) generation are synthesized by self-assembly between oppositely charged 2D nanosheets of Zn-Cr-layered double hydroxide (Zn-Cr-LDH) and layered titanium oxide. The layer-by-layer ordering of two kinds of 2D nanosheets is evidenced by powder X-ray diffraction and cross-sectional high resolution-transmission electron microscopy. Upon the interstratification process, the original in-plane atomic arrangements and electronic structures of the component nanosheets remain intact. The obtained heterolayered nanohybrids show a strong absorption of visible light and a remarkably depressed photoluminescence signal, indicating an effective electronic coupling between the two component nanosheets. The self-assembly between 2D inorganic nanosheets leads to the formation of highly porous stacking structure, whose porosity is controllable by changing the ratio of layered titanate/Zn-Cr-LDH. The resultant heterolayered nanohybrids are fairly active for visible light-induced O(2) generation with a rate of ∼1.18 mmol h(-1) g(-1), which is higher than the O(2) production rate (∼0.67 mmol h(-1) g(-1)) by the pristine Zn-Cr-LDH material, that is, one of the most effective visible light photocatalysts for O(2) production, under the same experimental condition. This result highlights an excellent functionality of the Zn-Cr-LDH-layered titanate nanohybrids as efficient visible light active photocatalysts. Of prime interest is that the chemical stability of the Zn-Cr-LDH is significantly improved upon the hybridization, a result of the protection of the LDH lattice by highly stable titanate layer. The present findings clearly demonstrate that the layer-by-layer-ordered assembly between inorganic 2D nanosheets is quite effective not only in improving the photocatalytic activity of the component semiconductors but also in synthesizing novel porous LDH-based hybrid materials with improved chemical

  8. An orally active Cannabis extract with high content in cannabidiol attenuates chemical induced intestinal inflammation and hypermotility in the mouse

    Directory of Open Access Journals (Sweden)

    Ester Pagano

    2016-10-01

    Full Text Available Anecdotal and scientific evidence suggests that Cannabis use may be beneficial in inflammatory bowel disease (IBD patients. Here, we have investigated the effect of a standardized Cannabis sativa extract with high content of cannabidiol (CBD, here named CBD BDS for CBD botanical drug substance, on mucosal inflammation and hypermotility in mouse models of intestinal inflammation. Colitis was induced in mice by intracolonic administration of dinitrobenzenesulfonic acid (DNBS. Motility was evaluated in the experimental model of intestinal hypermotility induced by irritant croton oil. CBD BDS or pure CBD were given - either intraperitoneally or by oral gavage - after the inflammatory insult (curative protocol. The amounts of CBD in the colon, brain and liver after the oral treatments were measured by HPLC coupled to ion trap-time of flight mass spectrometry. CBD BDS, both when given intraperitoneally and by oral gavage, decreased the extent of the damage (as revealed by the decrease in the colon weight/length ratio and myeloperoxidase activity in the DNBS model of colitis. It also reduced intestinal hypermotility (at doses lower than those required to affect transit in healthy mice in the croton oil model of intestinal hypermotility. Under the same experimental conditions, pure CBD did not ameliorate colitis while it normalized croton oil-induced hypermotility when given intraperitoneally (in a dose-related fashion or orally (only at one dose. In conclusion, CBD BDS, given after the inflammatory insult, attenuates injury and motility in intestinal models of inflammation. These findings sustain the rationale of combining CBD with other minor Cannabis constituents and support the clinical development of CBD BDS for IBD treatment.

  9. High resolution NMR theory and chemical applications

    CERN Document Server

    Becker, Edwin D

    1969-01-01

    High Resolution NMR: Theory and Chemical Applications focuses on the applications of nuclear magnetic resonance (NMR), as well as chemical shifts, lattices, and couplings. The book first offers information on the theory of NMR, including nuclear spin and magnetic moment, spin lattice relaxation, line widths, saturation, quantum mechanical description of NMR, and ringing. The text then ponders on instrumentation and techniques and chemical shifts. Discussions focus on the origin of chemical shifts, reference compounds, empirical correlations of chemical shifts, modulation and phase detection,

  10. Production of activated carbon with high specific surface area from bean-curd refuse by chemical activation; Okara wo genryo toshita yakuhin fukatsuho ni yoru kohihyomenseki kasseitan no seizo

    Energy Technology Data Exchange (ETDEWEB)

    Muroyama, K.; Hayashi, J.; Sato, A.; Takemoto, S. [Kansai Univ., Osaka (Japan). Faculty of Engineering

    1996-05-15

    A large amount of bean-curd refuse is exhausted as-product of tofu in Japan. On the other hand, activated carbon is used widely from old times in chemicals, medicines and food industry. Recently, since environmental contamination has come to head, the demand of activated carbon is more increased. The authors tried to produce activated carbons with high specific surface area from bean-curd refuse by chemical activation using several alkali metal compounds. The effects of carbonization temperature, holding time and impregnation ratio of reagent to dried bean-curd refuse on pore structure of activated carbons produced were investigated. Among the chemicals tested K2CO3 is found to be the most effective as the impregnation reagent. In a range of carbonization temperature above 700{degree}C, the specific surface area of the activated carbon produced increases rapidly, takes a maximum at a carbonization temperature of about 800{degree}C and decreases with further increase in temperature above 800{degree}C. The specific surface area attains a maximum at a holding time of about 60 min. The specific surface area increases with increasing impregnation ratio up to an impregnation ratio of 1.00. 7 refs., 7 figs., 1 tab.

  11. Direct chemical synthesis of 1 alpha,25-dihydroxy(26,27-3H) vitamin D3 with high specific activity: its use in receptor studies

    Energy Technology Data Exchange (ETDEWEB)

    Napoli, J.L.; Mellon, W.S.; Fivizzani, M.A.; Schnoes, H.K.; DeLuca, H.F.

    1980-05-01

    The first direct chemical synthesis of radiolabeled 1 alpha, 25-dihydroxyvitamin D3 is reported. Unlike all previous syntheses, the new approach does not rely on enzymatic 1 alpha-hydroxylation of radiolabeled precursors. Rather, isotope is introduced in the last synthetic step by reaction of (3H) -methylmagnesium bromide with methyl 1 alpha-hydroxy-26,27-dinorvitamin D3-25-carboxylate to give 1 alpha,25-dihydroxy-(26,27-3H) vitamin D3 with a specific activity of 160 Ci/mmol. Mass spectroscopy confirmed that the radiohormone consists of a single isomer with six tritium atoms bound to carbons 26 and 27. Synthetically produced 1 alpha,25-dihydroxy (26,27-3H) vitamin D3 is indistinguishable from 1 alpha,25-dihydroxy-(26,27-3H) vitamin D3 obtained from the enzymatic 1 alpha-hydroxylation of 25-hydroxy(26,27-3H) vitamin D3 (160 Ci/mmol) by high-pressure liquid chromatography analysis and in the competitive binding assay using chick intestinal cytosol as the receptor source. Equilibrium dissociation constant measurements with the high specific activity radiohormone indicate a Kd of 8.2 x 10(-11) M for the chick intestinal cytosol 1 alpha,25-dihydroxyvitamin D3 receptor--a value considerably lower than the constants in the range of (1-5) x 10(-9) M previously reported.

  12. Preparation of activate carbon with high specific surface area from beer lees by chemical activation with KOH; Suisankakariumu wo mochiita yakuhin fukatsuho ni yoru birukasu karano kohihyoumenseki kasseitan no seizo

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, J.; Kubo, A.; Furukawa, A.; Muroyama, K. [Kansai University, Osaka (Japan). Dept. of Chemical Engineering

    2000-03-10

    Activated carbons with high specific surface area were prepared from beer lees by chemical activation with KOH. We examined the influence of the preparation conditions, such as temperature and impregnation ratio, on the pore structure of the prepared activated carbon. The specific surface area increased with an increase in carbonization temperature up to 800 degree C and decreased at 900 degree C because of excess activation. It reached a maximum value at the impregnation ratio of 2.0. The activated carbon, which was prepared at the carbonization temperature of 800 degree C and at the impregnation ratio of 2.0, had very high specific surface area of 2,440 m{sup 2}/g. It was found that KOH worked effectively as the activating reagent in two temperature ranges, below 500 degree C and above 600 degree C. The amount of benzene and acetone adsorbed on the prepared activated carbon were much larger than that on the commercial activated carbons. (author)

  13. Fast, Continuous, and High-Throughput (Bio)Chemical Activity Assay for N-Acyl-l-Homoserine Lactone Quorum-Quenching Enzymes

    Science.gov (United States)

    Last, Daniel; Krüger, Georg H. E.; Dörr, Mark

    2016-01-01

    ABSTRACT Quorum sensing, the bacterial cell-cell communication by small molecules, controls important processes such as infection and biofilm formation. Therefore, it is a promising target with several therapeutic and technical applications besides its significant ecological relevance. Enzymes inactivating N-acyl-l-homoserine lactones, the most common class of communication molecules among Gram-negative proteobacteria, mainly belong to the groups of quorum-quenching lactonases or quorum-quenching acylases. However, identification, characterization, and optimization of these valuable biocatalysts are based on a very limited number of fundamentally different methods with their respective strengths and weaknesses. Here, a (bio)chemical activity assay is described, which perfectly complements the other methods in this field. It enables continuous and high-throughput activity measurements of purified and unpurified quorum-quenching enzymes within several minutes. For this, the reaction products released by quorum-quenching lactonases and quorum-quenching acylases are converted either by a secondary enzyme or by autohydrolysis to l-homoserine. In turn, l-homoserine is detected by the previously described calcein assay, which is sensitive to α-amino acids with free N and C termini. Besides its establishment, the method was applied to the characterization of three previously undescribed quorum-quenching lactonases and variants thereof and to the identification of quorum-quenching acylase-expressing Escherichia coli clones in an artificial library. Furthermore, this study indicates that porcine aminoacylase 1 is not active toward N-acyl-l-homoserine lactones as published previously but instead converts the autohydrolysis product N-acyl-l-homoserine. IMPORTANCE In this study, a novel method is presented for the identification, characterization, and optimization of quorum-quenching enzymes that are active toward N-acyl-l-homoserine lactones. These are the most common

  14. Process safety management for highly hazardous chemicals

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-02-01

    Purpose of this document is to assist US DOE contractors who work with threshold quantities of highly hazardous chemicals (HHCs), flammable liquids or gases, or explosives in successfully implementing the requirements of OSHA Rule for Process Safety Management of Highly Hazardous Chemicals (29 CFR 1910.119). Purpose of this rule is to prevent releases of HHCs that have the potential to cause catastrophic fires, explosions, or toxic exposures.

  15. Activated coconut shell charcoal carbon using chemical-physical activation

    Science.gov (United States)

    Budi, Esmar; Umiatin, Nasbey, Hadi; Bintoro, Ridho Akbar; Wulandari, Futri; Erlina

    2016-02-01

    The use of activated carbon from natural material such as coconut shell charcoal as metal absorbance of the wastewater is a new trend. The activation of coconut shell charcoal carbon by using chemical-physical activation has been investigated. Coconut shell was pyrolized in kiln at temperature about 75 - 150 °C for about 6 hours in producing charcoal. The charcoal as the sample was shieved into milimeter sized granule particle and chemically activated by immersing in various concentration of HCl, H3PO4, KOH and NaOH solutions. The samples then was physically activated using horizontal furnace at 400°C for 1 hours in argon gas environment with flow rate of 200 kg/m3. The surface morphology and carbon content of activated carbon were characterized by using SEM/EDS. The result shows that the pores of activated carbon are openned wider as the chemical activator concentration is increased due to an excessive chemical attack. However, the pores tend to be closed as further increasing in chemical activator concentration due to carbon collapsing.

  16. Chemical analyses, antibacterial activity and genetic diversity ...

    African Journals Online (AJOL)

    SAM

    2014-06-25

    Jun 25, 2014 ... Key words: Citrus, genetic diversity, ISSR markers, chemical analyses, antibacterial. ... ment of DNA based marker systems has advanced our ... Total acidity of the juices was determined by titration method as ... Greek compressed C. sinensis. 37 163 ..... flavonoids have a large spectrum of biological activity.

  17. Activity Therapy Services and Chemical Dependency Rehabilitation.

    Science.gov (United States)

    James, Mark R.; Townsley, Robin K.

    1989-01-01

    Discusses how music, occupational, and recreation therapies can contribute to comprehensive treatment programs for chemical dependency. Sees prime contribution of activity therapy as lying in nature of experiential education, applying insight gained in counseling sessions and discussion groups to practical real-life situations. (Author/NB)

  18. Mechanism of chemical activation of Nrf2.

    Directory of Open Access Journals (Sweden)

    Yun Li

    Full Text Available NF-E2 related factor-2 (Nrf2 promotes the transcription of many cytoprotective genes and is a major drug target for prevention of cancer and other diseases. Indeed, the cancer-preventive activities of several well-known chemical agents were shown to depend on Nrf2 activation. It is well known that chemopreventive Nrf2 activators stabilize Nrf2 by blocking its ubiquitination, but previous studies have indicated that this process occurs exclusively in the cytoplasm. Kelch-like ECH-associated protein 1 (Keap1 binds to Nrf2 and orchestrates Nrf2 ubiquitination, and it has been a widely-held view that inhibition of Nrf2 ubiquitination by chemopreventive agents results from the dissociation of Nrf2 from its repressor Keap1. Here, we show that while the activation of Nrf2 by prototypical chemical activators, including 5,6-dihydrocyclopenta-1,2-dithiole-3-thione (CPDT and sulforaphane (SF, results solely from inhibition of its ubiquitination, such inhibition occurs predominantly in the nucleus. Moreover, the Nrf2 activators promote Nrf2 association with Keap1, rather than disassociation, which appears to result from inhibition of Nrf2 phosphorylation at Ser40. Available evidence suggests the Nrf2 activators may block Nrf2 ubiquitination by altering Keap1 conformation via reaction with the thiols of specific Keap1 cysteines. We further show that while the inhibitory effects of CPDT and SF on Nrf2 ubiquitination depend entirely on Keap1, Nrf2 is also degraded by a Keap1-independent mechanism. These findings provide significant new insight about Nrf2 activation and suggest that exogenous chemical activators of Nrf2 enter the nucleus to exert most of their inhibitory impact on Nrf2 ubiquitination and degradation.

  19. Chemical profiling and antioxidant activity of Bolivian propolis.

    Science.gov (United States)

    Nina, Nélida; Quispe, Cristina; Jiménez-Aspee, Felipe; Theoduloz, Cristina; Giménez, Alberto; Schmeda-Hirschmann, Guillermo

    2016-04-01

    Propolis is a relevant research subject worldwide. However, there is no information so far on Bolivian propolis. Ten propolis samples were collected from regions with high biodiversity in the main honey production places in Bolivia and were analyzed for their total phenolics (TP), flavonoids (TF) and antioxidant activity. The chemical profiles of the samples were assessed by TLC, HPLC-DAD, HPLC-DAD-MS/MS(n) and NMR analysis. TP, TF, TLC and NMR analysis showed significant chemical differences between the samples. Isolation of the main constituents by chromatography and identification by HPLC-DAD-MS/MS(n) achieved more than 35 constituents. According to their profiles, the Bolivian propolis can be classified into phenolic-rich and triterpene-rich samples. Propolis from the valleys (Cochabamba, Chuquisaca and Tarija) contained mainly prenylated phenylpropanoids, while samples from La Paz and Santa Cruz contained cycloartane and pentacyclic triterpenes. Phenolic-rich samples presented moderate to strong antioxidant activity while the triterpene-rich propolis were weakly active. High chemical diversity and differential antioxidant effects were found in Bolivian propolis. Our results provide additional evidence on the chemical composition and bioactivity of South American propolis. © 2015 Society of Chemical Industry.

  20. Antitumor activity of chemical modified natural compounds

    Directory of Open Access Journals (Sweden)

    Marilda Meirelles de Oliveira

    1991-01-01

    Full Text Available Search of new activity substances starting from chemotherapeutic agents, continously appears in international literature. Perhaps this search has been done more frequently in the field of anti-tumor chemotherapy on account of the unsuccess in saving advanced stage patients. The new point in this matter during the last decade was computer aid in planning more rational drugs. In near future "the accessibility of supercomputers and emergence of computer net systems, willopen new avenues to rational drug design" (Portoghese, P. S. J. Med. Chem. 1989, 32, 1. Unknown pharmacological active compounds synthetized by plants can be found even without this eletronic devices, as tradicional medicine has pointed out in many contries, and give rise to a new drug. These compounds used as found in nature or after chemical modifications have produced successful experimental medicaments as FAA, "flavone acetic acid" with good results as inibitors of slow growing animal tumors currently in preclinical evaluation for human treatment. In this lecture some international contributions in the field of chemical modified compounds as antineoplasic drugs will be examined, particularly those done by Brazilian researches.

  1. Active Chemical Thermodynamics promoted by activity of cortical actin

    Science.gov (United States)

    Bhattacharya, Bhaswati; Chaudhuri, Abhishek; Gowrishankar, Kripa; Rao, Madan

    2011-03-01

    The spatial distribution and dynamics of formation and breakup of the nanoclusters of cell surface proteins is controlled by the active remodeling dynamics of the underlying cortical actin. To explain these observations, we have proposed a novel mechanism of nanoclustering, involving the transient binding to and advection along constitutively occuring ``asters'' of cortical actin. We study the consequences of such active actin-based clustering, in the context of chemical reactions involving conformational changes of cell surface proteins. We find that the active remodeling of cortical actin, can give rise to a dramatic increase in efficiency and extent of conformational spread, even at low levels of expression at the cell surface. We define a activity temperature (τa) arising due to actin activities which can be used to describe chemical thermodynamics of the system. We plot TTT (time-temparature-transformation) curves and compute the Arrhenius factors which depend on τa . With this, the active asters can be treated as enzymes whose enzymatic reaction rate can be related to the activity.

  2. Chemical structure and biological activity of a highly branched (1 → 3,1 → 6)-β-D-glucan from Isochrysis galbana.

    Science.gov (United States)

    Sadovskaya, Irina; Souissi, Anissa; Souissi, Sami; Grard, Thierry; Lencel, Philippe; Greene, Catherine M; Duin, Sarah; Dmitrenok, Pavel S; Chizhov, Alexander O; Shashkov, Alexander S; Usov, Anatolii I

    2014-10-13

    A highly branched (1 → 3,1 → 6)-β-D-glucan was isolated from the microalga Isochrysis galbana Parke (Isochrysidales, Haptophyta). The polysaccharide structure was analyzed by methylation and Smith degradation, as well as by ESI and MALDI TOF mass spectrometry and NMR spectroscopy. The glucan was shown to contain a (1 → 6)-linked backbone, where every residue is substituted at position 3 by Glc, which in turn may be substituted at C-6 by a single Glc or by rather short (up to tetrasaccharide) oligosaccharide chains. All the 3-linked Glc residues are present in these side chains. In the biological activity experiments it was demonstrated that the polysaccharide directly inhibits the proliferation of U937 human leukemic monocyte lymphoma cells and therefore has potential anti-tumor activity.

  3. Phthalocyanine as a chemically inert, redox-active ligand: structural and electronic properties of a Nb(IV)-oxo complex incorporating a highly reduced phthalocyanine(4-) anion.

    Science.gov (United States)

    Wong, Edwin W Y; Walsby, Charles J; Storr, Tim; Leznoff, Daniel B

    2010-04-05

    the spin density in 1a is centered almost completely on the niobium, in agreement with the DFT calculations. These results illustrate the value of Pc as a chemically inert, redox-active ligand for stabilizing reactive metal centers.

  4. Preparation of highly photocatalytic active CdS/TiO{sub 2} nanocomposites by combining chemical bath deposition and microwave-assisted hydrothermal synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Li, Li, E-mail: qqhrll@163.com [College of Materials Science and Engineering, Qiqihar University, Qiqihar 161006 (China); Key Laboratory of Composite Modified Material of Colleges in Heilongjiang Province, Qiqihar 161006 (China); Wang, Lili [College of Materials Science and Engineering, Qiqihar University, Qiqihar 161006 (China); Hu, Tianyu [College of Environment and Resources, Jilin University, Changchun 130024 (China); Zhang, Wenzhi; Zhang, Xiuli; Chen, Xi [College of Materials Science and Engineering, Qiqihar University, Qiqihar 161006 (China)

    2014-10-15

    CdS/TiO{sub 2} nanocomposites were prepared from Cd and Ti (1:1 M ratio) using cetyltrimethylammonium bromide by a two-step chemical bath deposition (CBD) and microwave-assisted hydrothermal synthesis (MAHS) method. A series of nanocomposites with different morphologies and activities were prepared by varying the reaction time in the MAHS (2, 4, and 6 h). The crystal structure, morphology, and surface physicochemical properties of the nanocomposites were characterized by X-ray diffraction, UV–visible diffuse reflectance spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy, and N{sub 2} adsorption–desorption measurements. The results show that the CdS/TiO{sub 2} nanocomposites were composed of anatase TiO{sub 2} and hexagonal CdS phases with strong absorption in the visible region. The surface morphologies changed slightly with increasing microwave irradiation time, while the Brunauer–Emmett–Teller surface area increased remarkably. The photocatalytic degradation of methyl orange (MO) was investigated under UV light and simulated sunlight irradiation. The photocatalytic activity of the CdS/TiO{sub 2} (6 h) composites prepared by the MAHS method was higher than those of CdS, P25, and other CdS/TiO{sub 2} nanocomposites. The CdS/TiO{sub 2} (6 h) nanocomposites significantly affected the UV and microwave-assisted photocatalytic degradation of different dyes. To elucidate the photocatalytic reaction mechanism for the CdS/TiO{sub 2} nanocomposites, controlled experiments were performed by adding different radical scavengers. - Graphical abstract: CdS/TiO{sub 2} nanocomposites were prepared using CTAB by CBD combined with MAHS method. In addition, with increasing microwave irradiation time, the morphology of CdS/TiO{sub 2} changed from popcorn-like to wedge-like structure. - Highlights: • The CdS/TiO{sub 2} was prepared by CBD combined with MAHS two-step method under CTAB. • The morphologies of as-samples were different with the time of

  5. Toddlers at High Risk of Chemical Eye Burns

    Science.gov (United States)

    ... fullstory_160258.html Toddlers at High Risk of Chemical Eye Burns: Study Access to household cleaning products to blame, ... and 2 years have relatively high rates of chemical eye burns, with everyday cleaners a common cause, researchers say. ...

  6. High temperature chemically resistant polymer concrete

    Science.gov (United States)

    Sugama, T.; Kukacka, L.E.

    High temperature chemically resistant, non-aqueous polymer concrete composites consist of about 12 to 20% by weight of a water-insoluble polymer binder. The binder is polymerized in situ from a liquid vinyl-type monomer or mixture of vinyl containing monomers such as triallylcyanurate, styrene, acrylonitrile, acrylamide, methacrylamide, methyl-methacrylate, trimethylolpropane trimethacrylate and divinyl benzene. About 5 to 40% by weight of a reactive inorganic filler selected from the group consisting of tricalcium silicate and dicalcium silicate and mixtures containing less than 2% free lime, and about 48 to 83% by weight of silica sand/ and a free radical initiator such as di-tert-butyl peroxide, azobisisobutyronitrile, benzoyl peroxide, lauryl peroxide, other orgaic peroxides and combinations to initiate polymerization of the monomer in the presence of the inorganic filers are used.

  7. Chemical stability of high-temperature superconductors

    Science.gov (United States)

    Bansal, Narottam P.

    1992-01-01

    A review of the available studies on the chemical stability of the high temperature superconductors (HTS) in various environments was made. The La(1.8)Ba(0.2)CuO4 HTS is unstable in the presence of H2O, CO2, and CO. The YBa2Cu3O(7-x) superconductor is highly susceptible to degradation in different environments, especially water. The La(2-x)Ba(x)CuO4 and Bi-Sr-Ca-Cu-O HTS are relatively less reactive than the YBa2Cu3O(7-x). Processing of YBa2Cu3O(7-x) HTS in purified oxygen, rather than in air, using high purity noncarbon containing starting materials is recommended. Exposure of this HTS to the ambient atmosphere should also be avoided at all stages during processing and storage. Devices and components made out of these oxide superconductors would have to be protected with an impermeable coating of a polymer, glass, or metal to avoid deterioration during use.

  8. Effect of Partial Replacement of Wheat Flour with High Quality Cassava Flour on the Chemical Composition, Antioxidant Activity, Sensory Quality, and Microbial Quality of Bread

    Science.gov (United States)

    Eleazu, Chinedum; Eleazu, Kate; Aniedu, Chinyere; Amajor, John; Ikpeama, Ahamefula; Ebenzer, Ike

    2014-01-01

    In the current study, wheat flour was mixed with high quality cassava flour (HQCF) in several ratios: 90:10, 80:20, 70:30, and 60:40, and used to prepare 10%, 20%, 30%, and 40% National Root Crops Research Institute (NRCRI) cassava bread, respectively. 100% wheat bread was prepared as a control (100% wheat bread). Five bread samples were prepared per group. Antioxidant assays [i.e., 2,2-diphenyl- 1-picrylhydrazyl radical (DPPH) scavenging assay, reducing power assay] revealed that the bread samples had considerable antioxidant capacities. Substitution of wheat flour with HQCF at various concentrations resulted in dose dependent decreases in the mineral and protein contents of the resulting bread samples. The crude fiber content of the bread samples was minimal, while the carbohydrate content of the bread samples ranged from 43.86% to 48.64%. A 20% substitution of wheat flour with HQCF yielded bread samples with a general acceptability that was comparable to that of 100% wheat bread. The mean bacteria counts of the bread samples ranged from 2.0×103 CFU/mL to 1.4×104 CFU/mL, while the fungal counts ranged from 0 CFU/mL to 3×103 CFU/mL. There was a positive correlation between the DPPH antioxidant activities and the reducing powers of the bread samples (R2=0.871) and a positive correlation between the DPPH antioxidant activities and the flavonoid contents of the bread samples (R2=0.487). The higher microbial load of the NRCRI cassava bread samples indicates that these bread samples may have a shorter shelf life than the 100% wheat bread. The significant positive correlation between total flavonoid content and reducing power (R2=0.750) suggests that the flavonoids present in the lipophilic fractions of the bread samples could be responsible for the reductive capacities of the bread samples. PMID:25054110

  9. An Orally Active Cannabis Extract with High Content in Cannabidiol attenuates Chemically-induced Intestinal Inflammation and Hypermotility in the Mouse.

    Science.gov (United States)

    Pagano, Ester; Capasso, Raffaele; Piscitelli, Fabiana; Romano, Barbara; Parisi, Olga A; Finizio, Stefania; Lauritano, Anna; Marzo, Vincenzo Di; Izzo, Angelo A; Borrelli, Francesca

    2016-01-01

    Anecdotal and scientific evidence suggests that Cannabis use may be beneficial in inflammatory bowel disease (IBD) patients. Here, we have investigated the effect of a standardized Cannabis sativa extract with high content of cannabidiol (CBD), here named CBD BDS for "CBD botanical drug substance," on mucosal inflammation and hypermotility in mouse models of intestinal inflammation. Colitis was induced in mice by intracolonic administration of dinitrobenzenesulfonic acid (DNBS). Motility was evaluated in the experimental model of intestinal hypermotility induced by irritant croton oil. CBD BDS or pure CBD were given - either intraperitoneally or by oral gavage - after the inflammatory insult (curative protocol). The amounts of CBD in the colon, brain, and liver after the oral treatments were measured by high-performance liquid chromatography coupled to ion trap-time of flight mass spectrometry. CBD BDS, both when given intraperitoneally and by oral gavage, decreased the extent of the damage (as revealed by the decrease in the colon weight/length ratio and myeloperoxidase activity) in the DNBS model of colitis. It also reduced intestinal hypermotility (at doses lower than those required to affect transit in healthy mice) in the croton oil model of intestinal hypermotility. Under the same experimental conditions, pure CBD did not ameliorate colitis while it normalized croton oil-induced hypermotility when given intraperitoneally (in a dose-related fashion) or orally (only at one dose). In conclusion, CBD BDS, given after the inflammatory insult, attenuates injury and motility in intestinal models of inflammation. These findings sustain the rationale of combining CBD with other minor Cannabis constituents and support the clinical development of CBD BDS for IBD treatment.

  10. An Orally Active Cannabis Extract with High Content in Cannabidiol attenuates Chemically-induced Intestinal Inflammation and Hypermotility in the Mouse

    Science.gov (United States)

    Pagano, Ester; Capasso, Raffaele; Piscitelli, Fabiana; Romano, Barbara; Parisi, Olga A.; Finizio, Stefania; Lauritano, Anna; Marzo, Vincenzo Di; Izzo, Angelo A.; Borrelli, Francesca

    2016-01-01

    Anecdotal and scientific evidence suggests that Cannabis use may be beneficial in inflammatory bowel disease (IBD) patients. Here, we have investigated the effect of a standardized Cannabis sativa extract with high content of cannabidiol (CBD), here named CBD BDS for “CBD botanical drug substance,” on mucosal inflammation and hypermotility in mouse models of intestinal inflammation. Colitis was induced in mice by intracolonic administration of dinitrobenzenesulfonic acid (DNBS). Motility was evaluated in the experimental model of intestinal hypermotility induced by irritant croton oil. CBD BDS or pure CBD were given - either intraperitoneally or by oral gavage – after the inflammatory insult (curative protocol). The amounts of CBD in the colon, brain, and liver after the oral treatments were measured by high-performance liquid chromatography coupled to ion trap-time of flight mass spectrometry. CBD BDS, both when given intraperitoneally and by oral gavage, decreased the extent of the damage (as revealed by the decrease in the colon weight/length ratio and myeloperoxidase activity) in the DNBS model of colitis. It also reduced intestinal hypermotility (at doses lower than those required to affect transit in healthy mice) in the croton oil model of intestinal hypermotility. Under the same experimental conditions, pure CBD did not ameliorate colitis while it normalized croton oil-induced hypermotility when given intraperitoneally (in a dose-related fashion) or orally (only at one dose). In conclusion, CBD BDS, given after the inflammatory insult, attenuates injury and motility in intestinal models of inflammation. These findings sustain the rationale of combining CBD with other minor Cannabis constituents and support the clinical development of CBD BDS for IBD treatment. PMID:27757083

  11. High-quality elliptical iron glycolate nanosheets: selective synthesis and chemical conversion into FexOy nanorings, porous nanosheets, and nanochains with enhanced visible-light photocatalytic activity

    Science.gov (United States)

    Tong, Guoxiu; Liu, Yun; Wu, Tong; Ye, Yucheng; Tong, Chaoli

    2015-10-01

    This paper describes an original and facile polyol-mediated solvothermal synthesis of elliptical iron glycolate nanosheets (IGNSs) combined with precursor thermal conversion into γ-Fe2O3 and α-Fe2O3/γ-Fe2O3 porous nanosheets (PNSs), α-Fe2O3 nanochains (NCs), and elliptical Fe3O4 nanorings (NRs). The IGNSs were produced via the oxidation-reduction and co-precipitation reactions in the presence of iron(iii) salts, ethylene glycol, polyethylene glycol, and ethylenediamine. Control over Fe3+ concentration, temperature, and time can considerably modulate the size and phase of the products. The IGNSs can be transformed to γ-Fe2O3 and α-Fe2O3/γ-Fe2O3 PNSs, α-Fe2O3 NCs, and elliptical Fe3O4 NRs by heat treatment under various annealing temperatures and ambiences. The PNSs and NCs exhibited high soft magnetic properties and coercivity, respectively. Visible-light photocatalytic activity toward RhB in the presence of H2O2 by PNSs and NCs was phase-, SBET, size-, porosity-, and local structure-dependent, following the order: α-Fe2O3 NCs > α-Fe2O3/γ-Fe2O3 PNSs > γ-Fe2O3 PNSs > IGNSs. In particular, α-Fe2O3/γ-Fe2O3 PNSs possessed significantly enhanced photocatalytic activity with good recyclability and could be conveniently separated by an applied magnetic field because of high magnetization. We believe that the as-prepared α-Fe2O3/γ-Fe2O3 PNSs have potential practical use in waste water treatment and microwave absorption.This paper describes an original and facile polyol-mediated solvothermal synthesis of elliptical iron glycolate nanosheets (IGNSs) combined with precursor thermal conversion into γ-Fe2O3 and α-Fe2O3/γ-Fe2O3 porous nanosheets (PNSs), α-Fe2O3 nanochains (NCs), and elliptical Fe3O4 nanorings (NRs). The IGNSs were produced via the oxidation-reduction and co-precipitation reactions in the presence of iron(iii) salts, ethylene glycol, polyethylene glycol, and ethylenediamine. Control over Fe3+ concentration, temperature, and time can

  12. High Temperature Materials for Chemical Propulsion Applications

    Science.gov (United States)

    Elam, Sandra; Hickman, Robert; O'Dell, Scott

    2007-01-01

    Radiation or passively cooled thrust chambers are used for a variety of chemical propulsion functions including apogee insertion, reaction control for launch vehicles, and primary propulsion for planetary spacecraft. The performance of these thrust chambers is limited by the operating temperature of available materials. Improved oxidation resistance and increased operating temperatures can be achieved with the use of thermal barrier coatings such as zirconium oxide (ZrO2) and hafnium oxide (HfO2). However, previous attempts to include these materials showed cracking and spalling of the oxide layer due to poor bonding. Current research at NASA's Marshall Space Flight Center (MSFC) has generated unique, high temperature material options for in-space thruster designs that are capable of up to 2500 C operating temperatures. The research is focused on fabrication technologies to form low cost Iridium,qF_.henium (Ir/Re) components with a ceramic hot wall created as an integral, functionally graded material (FGM). The goal of this effort is to further de?celop proven technologies for embedding a protective ceramic coating within the Ir/Re liner to form a robust functional gradient material. Current work includes the fabrication and testing of subscale samples to evaluate tensile, creep, thermal cyclic/oxidation, and thermophysical material properties. Larger test articles have also being fabricated and hot-fire tested to demonstrate the materials in prototype thrusters at 1O0 lbf thrust levels.

  13. Antimicrobial activity of Iranian propolis and its chemical composition

    Directory of Open Access Journals (Sweden)

    Yaghoubi M.J.

    2007-04-01

    Full Text Available The objective of this study was to investigate the antimicrobial activity of ethanol extract of Iranian propolis on some microorganisms using disc diffusion method. The chemical composition of the propolis was also investigated using thin layer chromatography and spectrophotometric methods. Ethanol extract of propolis showed activity only against Gram-positives and fungi, whereas no activity was observed against Gram-negatives. Thin layer chromatography screening revealed the presence of pinocembrine, caffeic acid, kaempferol, phenethyl caffeate, chrysin, and galangin in Iranian propolis. The total flavonoid and phenolic contents were 7.3% and 36%, respectively, which suggests that the strong antimicrobial activity of Iranian propolis may be due to high levels of phenolic and flavonoid compounds.

  14. Studies on high chemical reactivity of nano-NaH

    Institute of Scientific and Technical Information of China (English)

    FAN Yinheng; ZOU Yunling; JIN Dan; WU Qiang; LIU Tong; XU Jie

    2007-01-01

    A comparison between the initial reaction rates of nanometric and commercial Nail has been studied in four test reactions: 1) hydrogenolysis of chlorobenzene; 2) selec-tive reduction of cinnamaldehyde to cinnamyl alcohol; 3)metallation of dimethyl sulfoxide; and 4) catalytic hydroge-nation ofolefins. The experimental results indicate that when Nail is used as a chemical reagent in the first three reactions,the initial reaction rates of nano-NaH is 230, 120 and 110 times higher than those of the commercial ones respectively,and it is in agreement with the difference in specific surface areas between these two forms of Nail. When Nail is used as a catalyst component together with Cp2TiCl2 in the fourth reaction, catalyst with nano-NaH gives extremely high activity in the hydrogenation of olefins, while the one with commercial Nail gives no activity at all even ifa large amount of the commercial Nail is used to make the total surface area equivalent to that of nano-NaH. Thus, it is evident that although large specific surface area is important for nano-Nail to be used as a catalyst component, high surface energy with surface defects seems to be more important. The largespecific surface and the activated surface of nano-NaH withhigh surface energy should be the main factors for thei rextremely high chemical reactivity, while whether the former or the latter one plays a leading role depends on the type of reactions involved.

  15. Active disturbance rejection controller for chemical reactor

    Energy Technology Data Exchange (ETDEWEB)

    Both, Roxana; Dulf, Eva H.; Muresan, Cristina I., E-mail: roxana.both@aut.utcluj.ro [Technical University of Cluj-Napoca, 400114 Cluj-Napoca (Romania)

    2015-03-10

    In the petrochemical industry, the synthesis of 2 ethyl-hexanol-oxo-alcohols (plasticizers alcohol) is of high importance, being achieved through hydrogenation of 2 ethyl-hexenal inside catalytic trickle bed three-phase reactors. For this type of processes the use of advanced control strategies is suitable due to their nonlinear behavior and extreme sensitivity to load changes and other disturbances. Due to the complexity of the mathematical model an approach was to use a simple linear model of the process in combination with an advanced control algorithm which takes into account the model uncertainties, the disturbances and command signal limitations like robust control. However the resulting controller is complex, involving cost effective hardware. This paper proposes a simple integer-order control scheme using a linear model of the process, based on active disturbance rejection method. By treating the model dynamics as a common disturbance and actively rejecting it, active disturbance rejection control (ADRC) can achieve the desired response. Simulation results are provided to demonstrate the effectiveness of the proposed method.

  16. Synthesis, antimicrobial evaluation and theoretical prediction of NMR chemical shifts of thiazole and selenazole derivatives with high antifungal activity against Candida spp.

    Science.gov (United States)

    Łączkowski, Krzysztof Z.; Motylewska, Katarzyna; Baranowska-Łączkowska, Angelika; Biernasiuk, Anna; Misiura, Konrad; Malm, Anna; Fernández, Berta

    2016-03-01

    Synthesis and investigation of antimicrobial activities of novel thiazoles and selenazoles is presented. Their structures were determined using NMR, FAB(+)-MS, HRMS and elemental analyses. To support the experiment, theoretical calculations of the 1H NMR shifts were carried out for representative systems within the DFT B3LYP/6-311++G** approximation which additionally confirmed the structure of investigated compounds. Among the derivatives, compounds 4b, 4h, 4j and 4l had very strong activity against reference strains of Candida albicans ATCC and Candida parapsilosis ATCC 22019 with MIC = 0.49-7.81 μg/ml. In the case of compounds 4b, 4c, 4h - 4j and 4l, the activity was very strong against of Candida spp. isolated from clinical materials, i.e. C. albicans, Candida krusei, Candida inconspicua, Candida famata, Candida lusitaniae, Candida sake, C. parapsilosis and Candida dubliniensis with MIC = 0.24-15.62 μg/ml. The activity of several of these was similar to the activity of commonly used antifungal agent fluconazole. Additionally, compounds 4m - 4s were found to be active against Gram-positive bacteria, both pathogenic staphylococci Staphylococcus aureus ATCC with MIC = 31.25-125 μg/ml and opportunistic bacteria, such as Staphylococcus epidermidis ATCC 12228 and Micrococcus luteus ATCC 10240 with MIC = 7.81-31.25 μg/ml.

  17. Foundational aspects of the concept of chemical activity

    DEFF Research Database (Denmark)

    Mayer, Philipp

    2015-01-01

    -dwelling organisms and differences in chemical activity determine the direction and extent of diffusion between environmental compartments [1,2]. This makes chemical activity a meaningfull and well-defined exposure parameter that is closely linked to fugacity and freely dissolved concentration [2]. Classical...... toxicological studies have provided the first indication that narcosis occurs within a relatively narrow band of chemical activity [3-5], and during the last 10 years several studies have confirmed this for the „baseline toxicity“ of non-polar organic chemicals and their mixtures [6-8]. The first aim...

  18. The Hazards of Reactive Chemicals in High School Laboratories.

    Science.gov (United States)

    Forlin, Peter

    Chemical reactivity is a major area of risk in high school laboratories. This paper reports on a study that has provided a research-based framework for risk management in Australian chemical education. The chemical practice model of risk management is considered with respect to kinetic factors; catalysts; concentrations and proportions;…

  19. Pereskia aculeata Muller (Cactaceae Leaves: Chemical Composition and Biological Activities

    Directory of Open Access Journals (Sweden)

    Lucèia Fàtima Souza

    2016-09-01

    Full Text Available The aims of this work were to study the chemical composition of the essential oil from the leaves of Pereskia aculeata and to evaluate some biological activities of three leaf extracts. The phenolic content, antioxidant activity, and in vitro antimicrobial and antifungal activities were determined. The methanol extract showed antioxidant activity (EC50 7.09 mg/mL and high polyphenols content (15.04 ± 0.31 mg gallic acid equivalents (GAE/g. The petroleum ether extract exhibited potent antibacterial activity against Escherichia coli, whereas the chloroform extract showed inhibitory activity against Bacillus cereus and Staphylococcus aureus. The petroleum ether and methanol extracts were more effective in inhibiting the growth of Aspergillus versicolor. The possible cytotoxicity of extracts on neuroblastoma SH-SY5Y cancer cell line and the influence on adenylate cyclase (ADCY expression was also studied. P. aculeata chloroform extract showed antiproliferative activity with an IC50 value of 262.83 µg/mL. Treatments of SH-SY5Y neuroblastoma cells with 100 µg/mL of methanol extract significantly reduced ADCY1 expression.

  20. Pereskia aculeata Muller (Cactaceae) Leaves: Chemical Composition and Biological Activities.

    Science.gov (United States)

    Souza, Lucèia Fàtima; Caputo, Lucia; Inchausti De Barros, Ingrid Bergman; Fratianni, Florinda; Nazzaro, Filomena; De Feo, Vincenzo

    2016-09-03

    The aims of this work were to study the chemical composition of the essential oil from the leaves of Pereskia aculeata and to evaluate some biological activities of three leaf extracts. The phenolic content, antioxidant activity, and in vitro antimicrobial and antifungal activities were determined. The methanol extract showed antioxidant activity (EC50 7.09 mg/mL) and high polyphenols content (15.04 ± 0.31 mg gallic acid equivalents (GAE)/g). The petroleum ether extract exhibited potent antibacterial activity against Escherichia coli, whereas the chloroform extract showed inhibitory activity against Bacillus cereus and Staphylococcus aureus. The petroleum ether and methanol extracts were more effective in inhibiting the growth of Aspergillus versicolor. The possible cytotoxicity of extracts on neuroblastoma SH-SY5Y cancer cell line and the influence on adenylate cyclase (ADCY) expression was also studied. P. aculeata chloroform extract showed antiproliferative activity with an IC50 value of 262.83 µg/mL. Treatments of SH-SY5Y neuroblastoma cells with 100 µg/mL of methanol extract significantly reduced ADCY1 expression.

  1. ILO activities in the area of chemical safety.

    Science.gov (United States)

    Obadia, Isaac

    2003-08-21

    The ILO has been active in the area of safety in the use of chemicals at work since the year of its creation in 1919, including the development of international treaties and other technical instruments, the provision of technical assistance to its member States, and the development of chemical safety information systems. The two key ILO standards in this area are the Conventions on safety in the use of chemicals at work (No. 170, 1990), and the Prevention of Major Industrial Accidents (No. 174, 1993). The ILO Programme on occupational safety, health and environment (Safe Work) is currently responsible for ILO chemical safety activities. In the past two decades, most of ILO work in this area has been carried out within the context of inter-agency collaboration frameworks linking the ILO, WHO, UNEP, FAO, UNIDO, UNITAR, and the OECD, including the International Programme on Chemical Safety (IPCS), the Inter-Organisation Programme for the Sound Management of Chemicals (IOMC), and the Intergovernmental Forum on Chemical Safety (IFCS). Apart from the regular development, updating and dissemination of chemical safety information data bases such as the IPCS International Chemical Cards, the elaboration of a Globally harmonized system for the classification and labelling of Chemicals (GHS) has been the most outstanding achievement of this international collaboration on chemical safety.

  2. High Quality Bergamot Oil from Greece: Chemical Analysis Using Chiral Gas Chromatography and Larvicidal Activity against the West Nile Virus Vector

    Directory of Open Access Journals (Sweden)

    Magiatis Prokopios

    2009-02-01

    Full Text Available Τhe essential oils contained in the rind of the fruit and the leaves of bergamot from Greece (Citrus aurantium subsp. bergamia were studied. The bergamot trees in question were cultivated on Kefalonia Island. The plant material (leaves and fruits in different stages of maturity was collected between December and March for a two year period. The rind of the fruit was separated manually and the essential oil was obtained either by cold pressing or by hydrodistillation. The maximum yield calculated on a wet weight of fresh rinds basis was 1.8%. The essential oils were first analyzed by GC-MS with a DB-5 column and then with a β-Dex™ enantiomeric column. The main constituent of the cold pressed essential oil of the rind was (–-linalyl acetate with optical purity >99.9%. Other important constituents were (–-linalool, (+-limonene and γ-terpinene. The best value of linalool/linalyl acetate ratio was 0.38 and the maximum sum of linalool+linalyl acetate was found to be 55.8%. The larvacidal activities of the obtained essential oils and the compounds (±-linalyl acetate, (±-linalool and (–-linalool were evaluated against larvae of the mosquito species Culex pipiens (Diptera: Culicidae, the West Nile virus vector, under laboratory conditions. The cold pressed essential oil showed an LC50 value of 58 mg/L, while the LC50 value of the corresponding essential oil obtained by hydrostillation was 106 mg/L. The essential oil of the leaves presented similar larvicidal toxicity with the cold pressed oil of the rind (LC50=68 mg/L.

  3. High quality bergamot oil from Greece: Chemical analysis using chiral gas chromatography and larvicidal activity against the West Nile virus vector.

    Science.gov (United States)

    Melliou, Eleni; Eleni, Melliou; Michaelakis, Antonios; Antonios, Michaelakis; Koliopoulos, George; George, Koliopoulos; Skaltsounis, Alexios-Leandros; Alexios-Leandros, Skaltsounis; Magiatis, Prokopios; Prokopios, Magiatis

    2009-02-18

    Tauhe essential oils contained in the rind of the fruit and the leaves of bergamot from Greece (Citrus aurantium subsp. bergamia) were studied. The bergamot trees in question were cultivated on Kefalonia Island. The plant material (leaves and fruits in different stages of maturity) was collected between December and March for a two year period. The rind of the fruit was separated manually and the essential oil was obtained either by cold pressing or by hydrodistillation. The maximum yield calculated on a wet weight of fresh rinds basis was 1.8%. The essential oils were first analyzed by GC-MS with a DB-5 column and then with a beta-Dex enantiomeric column. The main constituent of the cold pressed essential oil of the rind was (-)-linalyl acetate with optical purity >99.9%. Other important constituents were (-)-linalool, (+)-limonene and gamma-terpinene. The best value of linalool/linalyl acetate ratio was 0.38 and the maximum sum of linalool+linalyl acetate was found to be 55.8%. The larvacidal activities of the obtained essential oils and the compounds (+/-)-linalyl acetate, (+/-)-linalool and (-)-linalool were evaluated against larvae of the mosquito species Culex pipiens (Diptera: Culicidae), the West Nile virus vector, under laboratory conditions. The cold pressed essential oil showed an LC(50) value of 58 mg/L, while the LC(50) value of the corresponding essential oil obtained by hydrostillation was 106 mg/L. The essential oil of the leaves presented similar larvicidal toxicity with the cold pressed oil of the rind (LC(50)=68 mg/L).

  4. Hierarchical dose-response modeling for high-throughput toxicity screening of environmental chemicals.

    Science.gov (United States)

    Wilson, Ander; Reif, David M; Reich, Brian J

    2014-03-01

    High-throughput screening (HTS) of environmental chemicals is used to identify chemicals with high potential for adverse human health and environmental effects from among the thousands of untested chemicals. Predicting physiologically relevant activity with HTS data requires estimating the response of a large number of chemicals across a battery of screening assays based on sparse dose-response data for each chemical-assay combination. Many standard dose-response methods are inadequate because they treat each curve separately and under-perform when there are as few as 6-10 observations per curve. We propose a semiparametric Bayesian model that borrows strength across chemicals and assays. Our method directly parametrizes the efficacy and potency of the chemicals as well as the probability of response. We use the ToxCast data from the U.S. Environmental Protection Agency (EPA) as motivation. We demonstrate that our hierarchical method provides more accurate estimates of the probability of response, efficacy, and potency than separate curve estimation in a simulation study. We use our semiparametric method to compare the efficacy of chemicals in the ToxCast data to well-characterized reference chemicals on estrogen receptor α (ERα) and peroxisome proliferator-activated receptor γ (PPARγ) assays, then estimate the probability that other chemicals are active at lower concentrations than the reference chemicals.

  5. Activating secondary metabolism with stress and chemicals.

    Science.gov (United States)

    Yoon, Vanessa; Nodwell, Justin R

    2014-02-01

    The available literature on the secondary or nonessential metabolites of the streptomycetes bacteria suggests that there may be poorly expressed or "cryptic" compounds that have yet to be identified and that may have significant medical utility. In addition, it is clear that there is a large and complex regulatory network that controls the production of these molecules in the laboratory and in nature. Two approaches that have been taken to manipulating the yields of secondary metabolites are the use of various stress responses and, more recently, the use of precision chemical probes. Here, we review the status of this work and outline the challenges and opportunities afforded by each of them.

  6. Chemical activation of MgH2; a new route to superior hydrogen storage materials.

    Science.gov (United States)

    Johnson, Simon R; Anderson, Paul A; Edwards, Peter P; Gameson, Ian; Prendergast, James W; Al-Mamouri, Malek; Book, David; Harris, I Rex; Speight, John D; Walton, Allan

    2005-06-14

    We report the discovery of a new, chemical route for 'activating' the hydrogen store MgH2, that results in highly effective hydrogen uptake/release characteristics, comparable to those obtained from mechanically-milled material.

  7. TSCA Chemical Data Reporting Fact Sheet: Reporting Manufactured Chemical Substances from Metal Mining and Related Activities

    Science.gov (United States)

    This fact sheet provides guidance on the Chemical Data Reporting (CDR) rule requirements related to the reporting of mined metals, intermediates, and byproducts manufactured during metal mining and related activities.

  8. Chemical tracers of high-metallicity environments

    CERN Document Server

    Bayet, E; Bell, T A; Viti, S

    2012-01-01

    We present for the first time a detailed study of the properties of molecular gas in metal-rich environments such as early-type galaxies (ETGs). We have explored Photon-Dominated Region (PDR) chemistry for a wide range of physical conditions likely to be appropriate for these sources. We derive fractional abundances of the 20 most chemically reactive species as a function of the metallicity, as a function of the optical depth and for various volume number gas densities, Far-Ultra Violet (FUV) radiation fields and cosmic ray ionisation rates. We also investigate the response of the chemistry to the changes in $\\alpha-$element enhancement as seen in ETGs. We find that the fractional abundances of CS, H$_{2}$S, H$_{2}$CS, H$_{2}$O, H$_{3}$O$^{+}$, HCO$^{+}$ and H$_{2}$CN seem invariant to an increase of metallicity whereas C$^{+}$, CO, C$_{2}$H, CN, HCN, HNC and OCS appear to be the species most sensitive to this change. The most sensitive species to the change in the fractional abundance of $\\alpha-$elements ar...

  9. Red propolis: Chemical composition and pharmacological activity

    Directory of Open Access Journals (Sweden)

    Luciane Corbellini Rufatto

    2017-07-01

    Full Text Available Propolis has been used worldwide for years in folk medicine and currently marketed by the pharmaceutical industry. In Brazil, propolis was classified into 13 groups based on their organoleptics and physicochemical characteristics. The 13th type named red propolis has been an important source of investigation since late 90s. Their property comes from the countless compounds, including terpenes, pterocarpans, prenylated benzophenones and especially the flavonoids. This last compound class has been indicated as the responsible for its potent pharmacological actions, highlighting the antimicrobial, anti-inflammatory, antioxidant, healing and antiproliferative activities. The red propolis can also be found in other countries, especially Cuba, which has similar features as the Brazilian. Therefore, with the compilation of 80 papers, this review aims to provide a key reference for researchers interested in natural products and discovery of new active compounds, such as from propolis.

  10. Generator of chemically active low-temperature plasma

    Science.gov (United States)

    Tyuftyaev, A. S.; Gadzhiev, M. Kh; Sargsyan, M. A.; Demirov, N. A.; Spector, N. O.

    2016-11-01

    A new generator of high enthalpy (H 0 > 40 kJ/g), chemically active nitrogen and air plasmas was designed and constructed. Main feature of the generator is an expanding channel of an output electrode; the generator belongs to the class of DC plasma torches with thermionic cathode with an efficiency of 80%. The generator ensures the formation of a slightly divergent plasma jet (2α = 12°) with a diameter of D = 10-12 mm, an electric arc maximum power of 20-50 kW, plasma forming gas flow rate 1.0-2.0 g/s, and the average plasma temperature at an outlet of 8000-11000 K.

  11. Chemical weapons detection by fast neutron activation analysis techniques

    Science.gov (United States)

    Bach, P.; Ma, J. L.; Froment, D.; Jaureguy, J. C.

    1993-06-01

    A neutron diagnostic experimental apparatus has been tested for nondestructive verification of sealed munitions. Designed to potentially satisfy a significant number of van-mobile requirements, this equipment is based on an easy to use industrial sealed tube neutron generator that interrogates the munitions of interest with 14 MeV neutrons. Gamma ray spectra are detected with a high purity germanium detector, especially shielded from neutrons and gamma ray background. A mobile shell holder has been used. Possible configurations allow the detection, in continuous or in pulsed modes, of gamma rays from neutron inelastic scattering, from thermal neutron capture, and from fast or thermal neutron activation. Tests on full scale sealed munitions with chemical simulants show that those with chlorine (old generation materials) are detectable in a few minutes, and those including phosphorus (new generation materials) in nearly the same time.

  12. Chemical composition and antioxidant activity of essential oil ...

    African Journals Online (AJOL)

    LACPREENE

    2012-08-12

    Aug 12, 2012 ... The chemical composition of C. ladanifer essential oil was characterized by high ... Analysis of essential oils was carried out by GC–MS using a .... with literature shows important qualitative and quantita- tive differences in ...

  13. Tetrapleura tetraptera: molluscicidal activity and chemical constituents.

    Science.gov (United States)

    Aladesanmi, Adetunji J

    2006-08-28

    Tetrapleura tetraptera (Schumach. And Thonn) Taub, Mimosaceae, commonly known as Aridan (fruit), A single stemmed, robust, perennial tree of about 30 m. It has a grey/brown, smooth/rough bark with glabrous yound branchlets. The flower is yellow/pink and racemes white the fruit has dark brown, four winged pods 12-25 x 3.5-6.5 cm. It is generally found in the lowland forest of tropical Africa. The fruit consists of a fleshy pulp with small, brownish-black seeds. The fruit possesses a fragrant, characteristically pungent aromatic odour, which is attributed to its insect repellent property. It is used as spices and aroma (exotic tropical scents) and fish poisoning. It is one of the molluscicidal medicinal plants of Nigeria, also useful in the management of convulsions, leprosy, inflammation and/or rheumatoid pains. The documented biological and-or pharmacological activities are found to be molluscicidal, cardio-vascular, neuromuscular, hypotensive, anti-convulsant, trypanocidal, hirudinicidal, schistosomiasis control, anti-ulcerative, ectoxicity, anti-inflammatory, hypoglycaemic, anti-microbial, emulsifying property, birth control, food value and the control of intestinal parasites. Activity-guided fractionation of the methanol extract of the fruits of T. tetraptera led to the isolation of a saponin glycoside with an oleanolic acid aglycone, a monodesmosidic diglycoside of the rare sapogenin 27-hydroxyolean-12 (13)-en-28-oic acid; echinocystic acid-3-0-sodium sulfate from the stembark, umbelliferone and ferulic acid from the leaves and branches respectively. Also isolated from the fruits were aridanin and three of its olean-12-en-28-oic acid derivatives. All the compounds isolated either from the fruits or other parts were found to exhibit strong molluscicidal properties against the schistosomiasis-transmitting snails Biomphalaria glabrata.

  14. Wound Healing Activity and Chemical Standardization of Eugenia pruniformis Cambess

    Science.gov (United States)

    de Albuquerque, Ricardo Diego Duarte Galhardo; Perini, Jamila Alessandra; Machado, Daniel Escorsim; Angeli-Gamba, Thaís; Esteves, Ricardo dos Santos; Santos, Marcelo Guerra; Oliveira, Adriana Passos; Rocha, Leandro

    2016-01-01

    . Chemical standardization of the active wound healing extract was done. The total flavonoid content was 43% (w/w) and quercetin, kaempferol and hyperoside were identified as main compounds. SUMMARY Wound excision model in rats showed the potential wound healing activity of E. pruniformis by collagen deposition increase, higher levels of hidroxyproline, better tissue reorganization and complete remodeling of epidermis.Flavonoids are the main compounds of the endemic E. pruniformis and quercetin, kaempferol and hyperoside were identified in ethyl acetate extract by TLC, HPLC-PDA and HRESI-MS analysis.The ethyl acetate extract of E. pruniformis showed a potent antioxidant activity by ORAC and DPPH assays Abbreviation used: NC: Negative control, PC: Positive control, CH: Crude hydroethanolic extract, EA: Ethyl acetate extract, TE: Trolox equivalent, mg: Milligram, mM: Millimolar, mL: Milliliter, HPLC-PDA: High performance liquid chromatography with a photodiode array detector, HRESI-MS: High-resolution electrospray ionization mass spectrometry analysis, TLC: Thin layer chromatography, ORAC: Oxygen radical absorbance capacity, w/v: Weight per volume PMID:27867271

  15. Chemical Characterization and Antioxidant, Antimicrobial, and Anti-Inflammatory Activities of South Brazilian Organic Propolis

    OpenAIRE

    Tiveron, Ana Paula; Rosalen, Pedro Luiz; Franchin, Marcelo; Lacerda, Risia Cristina Coelho; Bueno-Silva, Bruno; Benso, Bruna; Denny, Carina; Ikegaki, Masaharu; de Alencar, Severino Matias

    2016-01-01

    South Brazilian organic propolis (OP), which has never been studied before, was assessed and its chemical composition, scavenging potential of reactive oxygen species, antimicrobial and anti-inflammatory activities are herein presented. Based on the chemical profile obtained using HPLC, OP was grouped into seven variants (OP1–OP7) and all of them exhibited high scavenging activity, mainly against superoxide and hypochlorous acid species. OP1, OP2, and OP3 had the smallest minimal inhibitory c...

  16. Guiding catalytically active particles with chemically patterned surfaces

    CERN Document Server

    Uspal, W E; Dietrich, S; Tasinkevych, M

    2016-01-01

    Catalytically active Janus particles suspended in solution create gradients in the chemical composition of the solution along their surfaces, as well as along any nearby container walls. The former leads to self-phoresis, while the latter gives rise to chemi-osmosis, providing an additional contribution to self-motility. Chemi-osmosis strongly depends on the molecular interactions between the diffusing chemical species and the wall. We show analytically, using an approximate "point-particle" approach, that by chemically patterning a planar substrate one can direct the motion of Janus particles: the induced chemi-osmotic flows can cause particles to either "dock" at the chemical step between the two materials, or to follow a chemical stripe. These theoretical predictions are confirmed by full numerical calculations. Generically, docking occurs for particles which tend to move away from their catalytic caps, while stripe-following occurs in the opposite case. Our analysis reveals the physical mechanisms governi...

  17. Quantitative genetic activity graphical profiles for use in chemical evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Waters, M.D. [Environmental Protection Agency, Washington, DC (United States); Stack, H.F.; Garrett, N.E.; Jackson, M.A. [Environmental Health Research and Testing, Inc., Research Triangle Park, NC (United States)

    1990-12-31

    A graphic approach, terms a Genetic Activity Profile (GAP), was developed to display a matrix of data on the genetic and related effects of selected chemical agents. The profiles provide a visual overview of the quantitative (doses) and qualitative (test results) data for each chemical. Either the lowest effective dose or highest ineffective dose is recorded for each agent and bioassay. Up to 200 different test systems are represented across the GAP. Bioassay systems are organized according to the phylogeny of the test organisms and the end points of genetic activity. The methodology for producing and evaluating genetic activity profile was developed in collaboration with the International Agency for Research on Cancer (IARC). Data on individual chemicals were compiles by IARC and by the US Environmental Protection Agency (EPA). Data are available on 343 compounds selected from volumes 1-53 of the IARC Monographs and on 115 compounds identified as Superfund Priority Substances. Software to display the GAPs on an IBM-compatible personal computer is available from the authors. Structurally similar compounds frequently display qualitatively and quantitatively similar profiles of genetic activity. Through examination of the patterns of GAPs of pairs and groups of chemicals, it is possible to make more informed decisions regarding the selection of test batteries to be used in evaluation of chemical analogs. GAPs provided useful data for development of weight-of-evidence hazard ranking schemes. Also, some knowledge of the potential genetic activity of complex environmental mixtures may be gained from an assessment of the genetic activity profiles of component chemicals. The fundamental techniques and computer programs devised for the GAP database may be used to develop similar databases in other disciplines. 36 refs., 2 figs.

  18. Increasing the reliability and quality of important cast products made of chemically active metals and alloys

    Science.gov (United States)

    Varfolomeev, M. S.; Moiseev, V. S.; Shcherbakova, G. I.

    2017-01-01

    A technology is developed to produce highly thermoresistant ceramic monoxide corundum molds using investment casting and an aluminum-organic binder. This technology is a promising trend in creating ceramic molds for precision complex-shape casting of important ingots made of high-alloy steels, high-temperature and titanium alloys, and refractory metals. The use of the casting molds that have a high thermal and chemical resistance to chemically active metals and alloys under high-temperature casting minimizes the physicochemical interaction and substantially decreases the depth of the hard-to-remove metal oxide layer on important products, which increases their service properties.

  19. Active colloids in the context of chemical kinetics

    Science.gov (United States)

    Oshanin, G.; Popescu, M. N.; Dietrich, S.

    2017-03-01

    We study a mesoscopic model of a chemically active colloidal particle which on certain parts of its surface promotes chemical reactions in the surrounding solution. For reasons of simplicity and conceptual clarity, we focus on the case in which only electrically neutral species are present in the solution and on chemical reactions which are described by first order kinetics. Within a self-consistent approach we explicitly determine the steady state product and reactant number density fields around the colloid as functionals of the interaction potentials of the various molecular species in solution with the colloid. By using a reciprocal theorem, this allows us to compute and to interpret—in a transparent way in terms of the classical Smoluchowski theory of chemical kinetics—the external force needed to keep such a catalytically active colloid at rest (stall force) or, equivalently, the corresponding velocity of the colloid if it is free to move. We use the particular case of triangular-well interaction potentials as a benchmark example for applying the general theoretical framework developed here. For this latter case, we derive explicit expressions for the dependences of the quantities of interest on the diffusion coefficients of the chemical species, the reaction rate constant, the coverage by catalyst, the size of the colloid, as well as on the parameters of the interaction potentials. These expressions provide a detailed picture of the phenomenology associated with catalytically-active colloids and self-diffusiophoresis.

  20. Predicting of bactericidal activity of chemical disinfectants using disinfection activity coefficient of solution

    OpenAIRE

    Gjorgjeska, Biljana

    2011-01-01

    There is the need for defining standard technique for quantitative determination of bactericidal activity of chemical disinfectant substances, as well as the need for defining parameter for comparing various chemical disinfectants. The methods which are usually used for evaluation of antiseptic activity of disinfectant aqueous solutions are microbiological.

  1. Chemical Diversity in High-Mass Star Formation

    CERN Document Server

    Beuther, H; Bergin, E A; Sridharan, T K

    2008-01-01

    Massive star formation exhibits an extremely rich chemistry. However, not much evolutionary details are known yet, especially at high spatial resolution. Therefore, we synthesize previously published Submillimeter Array high-spatial-resolution spectral line observations toward four regions of high-mass star formation that are in various evolutionary stages with a range of luminosities. Estimating column densities and comparing the spatially resolved molecular emission allows us to characterize the chemical evolution in more detail. Furthermore, we model the chemical evolution of massive warm molecular cores to be directly compared with the data. The four regions reveal many different characteristics. While some of them, e.g., the detection rate of CH3OH, can be explained by variations of the average gas temperatures, other features are attributed to chemical effects. For example, C34S is observed mainly at the core-edges and not toward their centers because of temperature-selective desorption and successive g...

  2. Chemical constituents, antimicrobial and antimalarial activities of Zanthoxylum monophyllum.

    Science.gov (United States)

    Rodríguez-Guzmán, Raquel; Fulks, Laura C Johansmann; Radwan, Mohamed M; Burandt, Charles L; Ross, Samir A

    2011-09-01

    From the leaves and bark of Zanthoxylum monophyllum, a new lignan, 3-methoxy-3',4'-methylenedioxylignan-4,8,9,9'-tetraol (1), has been isolated along with 22 known compounds (2- 23), fifteen of them reported for the first time from Z. monophyllum. Their chemical structures were elucidated using detailed spectroscopic studies and chemical analysis. All compounds were evaluated for antimicrobial and antiprotozoal activities. Alkaloids BIS-[6-(5,6-dihydro-chelerythrinyl)] ether (2) and 6-ethoxy-chelerythrine (4) exhibited strong activity against Aspergillus fumigatus and methicillin-resistant Staphylococcus aureus (MRSA). Compound 4-methoxy-N-methyl-2-quinolone (9) exhibited significant activity against MRSA (IC50 value of 8.0 µM) while compound 5,8,4'-trihydroxy-3,7,3'-trimethoxyflavone (10) showed weak activity against Plasmodium falciparum. © Georg Thieme Verlag KG Stuttgart · New York.

  3. Chemical surface tuning electrocatalysis of redox-active nanoparticles

    DEFF Research Database (Denmark)

    Zhu, Nan; Ulstrup, Jens; Chi, Qijin

    This work focuses on electron transfer (ET) and electrocatalysis of inorganic hybrid Prussian blue nanoparticles (PBNPs, 6 nm) immobilized on different chemical surfaces. Through surface self-assembly chemistry, we have enabled to tune chemical properties of the electrode surface. Stable immobili......This work focuses on electron transfer (ET) and electrocatalysis of inorganic hybrid Prussian blue nanoparticles (PBNPs, 6 nm) immobilized on different chemical surfaces. Through surface self-assembly chemistry, we have enabled to tune chemical properties of the electrode surface. Stable...... distance, with a decay factor (β) of ca. 0.9, 1.1, 1.3 per CH2, respectively. This feature suggests a tunneling mechanism adopted by the nanoparticles, resembling that for metalloproteins in a similar assembly. High-efficient electrocatalysis towards the reduction of H2O2 is observed, and possible...

  4. Chemical composition and biological activity of the plum seed extract

    OpenAIRE

    Savić, Ivan M.; Nikolić, Vesna D.; Savić-Gajić, Ivana M.; Kundaković, Tatjana D.; Stanojković, Tatjana P.; Najman, Stevo J.; id_orcid 0000-0002-2411-9802

    2016-01-01

    The aim of this paper was to estimate the biological activity of the plum seed extract and to define the chemical composition by using the ESI-MS method. During the investigation of the antioxidant activity, the extract showed a better ability to inhibit DPPH radicals compared with amygdalin standard. The results of the antimicrobial study indicate that the extract has a greater effect on Gram-negative bacteria compared with amygdalin. Gram-positive bacteria and fungi remained resistant in bo...

  5. Non-equilibrium effects in high temperature chemical reactions

    Science.gov (United States)

    Johnson, Richard E.

    1987-01-01

    Reaction rate data were collected for chemical reactions occurring at high temperatures during reentry of space vehicles. The principle of detailed balancing is used in modeling kinetics of chemical reactions at high temperatures. Although this principle does not hold for certain transient or incubation times in the initial phase of the reaction, it does seem to be valid for the rates of internal energy transitions that occur within molecules and atoms. That is, for every rate of transition within the internal energy states of atoms or molecules, there is an inverse rate that is related through an equilibrium expression involving the energy difference of the transition.

  6. Structure activity relationships to assess new chemicals under TSCA

    Energy Technology Data Exchange (ETDEWEB)

    Auletta, A.E. [Environmental Protection Agency, Washington, DC (United States)

    1990-12-31

    Under Section 5 of the Toxic Substances Control Act (TSCA), manufacturers must notify the US Environmental Protection Agency (EPA) 90 days before manufacturing, processing, or importing a new chemical substance. This is referred to as a premanufacture notice (PMN). The PMN must contain certain information including chemical identity, production volume, proposed uses, estimates of exposure and release, and any health or environmental test data that are available to the submitter. Because there is no explicit statutory authority that requires testing of new chemicals prior to their entry into the market, most PMNs are submitted with little or no data. As a result, EPA has developed special techniques for hazard assessment of PMN chemicals. These include (1) evaluation of available data on the chemical itself, (2) evaluation of data on analogues of the PMN, or evaluation of data on metabolites or analogues of metabolites of the PMN, (3) use of quantitative structure activity relationships (QSARs), and (4) knowledge and judgement of scientific assessors in the interpretation and integration of the information developed in the course of the assessment. This approach to evaluating potential hazards of new chemicals is used to identify those that are most in need of addition review of further testing. It should not be viewed as a replacement for testing. 4 tabs.

  7. High activity carbon sorbents for mercury capture

    Energy Technology Data Exchange (ETDEWEB)

    George G. Stavropoulos; Irene S. Diamantopoulou; George E. Skodras; George P. Sakellaropoulos [Aristotle University of Thessaloniki, Thessaloniki (Greece). Chemical Process Engineering Laboratory

    2006-07-01

    High efficiency activated carbons have been prepared for removing mercury from gas streams. Starting materials used were petroleum coke, lignite, charcoal and olive seed waste, and were chemically activated with KOH. Produced adsorbents were primarily characterized for their porosity by N{sub 2} adsorption at 77K. Their mercury retention capacity was characterized based on the breakthrough curves. Compared with typical commercial carbons, they have exhibited considerably enhanced mercury adsorption capacity. An attempt has been made to correlate mercury entrapment and pore structure. It has been shown that physical surface area is increased during activation in contrast to the mercury adsorption capacity that initially increases and tends to decrease at latter stages. Desorption of active sites may be responsible for this behavior. 10 refs., 3 figs., 1 tab.

  8. Plant polyphenols: chemical properties, biological activities, and synthesis.

    Science.gov (United States)

    Quideau, Stéphane; Deffieux, Denis; Douat-Casassus, Céline; Pouységu, Laurent

    2011-01-17

    Eating five servings of fruits and vegetables per day! This is what is highly recommended and heavily advertised nowadays to the general public to stay fit and healthy! Drinking green tea on a regular basis, eating chocolate from time to time, as well as savoring a couple of glasses of red wine per day have been claimed to increase life expectancy even further! Why? The answer is in fact still under scientific scrutiny, but a particular class of compounds naturally occurring in fruits and vegetables is considered to be crucial for the expression of such human health benefits: the polyphenols! What are these plant products really? What are their physicochemical properties? How do they express their biological activity? Are they really valuable for disease prevention? Can they be used to develop new pharmaceutical drugs? What recent progress has been made toward their preparation by organic synthesis? This Review gives answers from a chemical perspective, summarizes the state of the art, and highlights the most significant advances in the field of polyphenol research. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. New propolis type from north-east Brazil: chemical composition, antioxidant activity and botanical origin.

    Science.gov (United States)

    Ferreira, Joselena M; Fernandes-Silva, Caroline C; Salatino, Antonio; Negri, Giuseppina; Message, Dejair

    2017-08-01

    Propolis is a bee product with wide diversity of biological activity. It has a complex composition, which is dependent on its botanical source. The present study aimed to determine the chemical profile, antioxidant activity and botanical origin of two samples of a propolis type from two locations of the state of Rio Grande do Norte (RN, north-east Brazil). The standard chemical characteristics of the RN propolis are similar or superior to the internationally marketed Brazilian green propolis. RN propolis from two locations have high antioxidant activity, corresponding to 10% (municipality of Afonso Bezerra) and 13% (municipality of Alto do Rodrigues) of quercetin activity by the 2,2-diphenyl-1-picrylhydrazyl method and to 15% (both locations) by the β-carotene discoloration method. High-performance liquid chromatography with diode array detection (HPLC-DAD)-electrospray ionization-tandem mass spectrometry analyses revealed that most constituents of the RN propolis are flavonoids, mainly flavonols and chalcones. HPLC-DAD analysis of ethanol extracts revealed a great similarity between the chemical profile of RN propolis and shoot apices of 'jurema-preta' (Mimosa tenuiflora, Leguminosae, Mimosoideae). 'Jurema-preta' shoot apices are likely resin sources of RN propolis. The chemical characteristics and antioxidant property of RN propolis provide promising prospects for the introduction of this type of propolis into the apicultural market. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  10. Chemical Composition and Antioxidant Activity of Euterpe oleracea Roots and Leaflets

    OpenAIRE

    2016-01-01

    Euterpe oleracea (açaí) is a palm tree well known for the high antioxidant activity of its berries used as dietary supplements. Little is known about the biological activity and the composition of its vegetative organs. The objective of this study was to investigate the antioxidant activity of root and leaflet extracts of Euterpe oleracea (E. oleracea) and characterize their phytochemicals. E. oleracea roots and leaflets extracts were screened in different chemical antioxidant assays (DPPH—2,...

  11. Guiding catalytically active particles with chemically patterned surfaces

    Science.gov (United States)

    Uspal, William; Popescu, Mihail; Dietrich, Siegfried; Tasinkevych, Mykola

    Catalytically active Janus particles in solution create gradients in the chemical composition of the solution along their surfaces, as well as along any nearby container walls. The former leads to self-phoresis, while the latter gives rise to chemi-osmosis, providing an additional contribution to self-motility. Chemi-osmosis strongly depends on the molecular interactions between the diffusing chemical species and the wall. We show analytically, using an approximate ``point-particle'' approach, that by chemically patterning a planar substrate (e.g., by adsorbing two different materials) one can direct the motion of Janus particles: the induced chemi-osmotic flows can cause particles to either ``dock'' at a chemical step between the two materials, or to follow a chemical stripe. These theoretical predictions are confirmed by full numerical calculations. Generically, docking occurs for particles which tend to move away from their catalytic caps, while stripe-following occurs in the opposite case. Our analysis reveals the physical mechanisms governing this behavior.

  12. Chemical composition and biological activities of the Agaricus mushrooms

    Directory of Open Access Journals (Sweden)

    L Munkhgerel

    2014-10-01

    Full Text Available Two species of Agaricus mushroom grown in Mongolia were analyzed for their element content. Biological activity and chemical components study of Agaricus, grown in the Mongolian flora has been investigated for the first time. The ethanol extracts of dried Agaricus sp. mushrooms were analyzed for antioxidant activity on 1,1-diphenyl-2- picrylhydrazyl (DPPH radicals and interferon-like activity. The ethanol extracts from Agaricus arvensis showed the most potent radical scavenging activity. The IC50 of A. silvaticus and A. arvensis were 216 and 17.75 g/ml respectively. Among the twenty three mushroom extracts, the extracts from A. silvatisus and A. arvensis have shown the interferon-like activity. DOI: http://dx.doi.org/10.5564/mjc.v14i0.197Mongolian Journal of Chemistry 14 (40, 2013, p41-45

  13. Adsorption studies of methylene blue and phenol onto vetiver roots activated carbon prepared by chemical activation

    Energy Technology Data Exchange (ETDEWEB)

    Altenor, Sandro [COVACHIMM, EA 3592 Universite des Antilles et de la Guyane, BP 250, 97157 Pointe a Pitre Cedex, Guadeloupe (France); LAQUE, Universite Quisqueya d' Haiti, Port-au-Prince (Haiti); Carene, Betty [COVACHIMM, EA 3592 Universite des Antilles et de la Guyane, BP 250, 97157 Pointe a Pitre Cedex, Guadeloupe (France); Emmanuel, Evens [LAQUE, Universite Quisqueya d' Haiti, Port-au-Prince (Haiti); Lambert, Jacques; Ehrhardt, Jean-Jacques [Laboratoire de Chimie Physique et Microbiologie pour l' Environnement, UMR 7564 CNRS-Nancy Universities, 405 rue de Vandoeuvre, F 54600 Villers-les-Nancy Cedex (France); Gaspard, Sarra, E-mail: sgaspard@univ-ag.fr [COVACHIMM, EA 3592 Universite des Antilles et de la Guyane, BP 250, 97157 Pointe a Pitre Cedex, Guadeloupe (France)

    2009-06-15

    Vetiver roots have been utilized for the preparation of activated carbon (AC) by chemical activation with different impregnation ratios of phosphoric acid, X{sub P} (g H{sub 3}PO{sub 4}/g precursor): 0.5:1; 1:1 and 1.5:1. Textural characterization, determined by nitrogen adsorption at 77 K shows that mixed microporous and mesoporous structures activated carbons (ACs) with high surface area (>1000 m{sup 2}/g) and high pore volume (up to 1.19 cm{sup 3}/g) can be obtained. The surface chemical properties of these ACs were investigated by X-ray photoelectron spectroscopy (XPS) and Boehm titration. Their textural and chemical characteristics were compared to those of an AC sample obtained by steam activation of vetiver roots. Classical molecules used for characterizing liquid phase adsorption, phenol and methylene blue (MB), were used. Adsorption kinetics of MB and phenol have been studied using commonly used kinetic models, i.e., the pseudo-first-order model, the pseudo-second-order model, the intraparticle diffusion model and as well the fractal, BWS (Brouers, Weron and Sotolongo) kinetic equation. The correlation coefficients (R{sup 2}) and the normalized standard deviation {Delta}q (%) were determined showing globally, that the recently derived fractal kinetic equation could best describe the adsorption kinetics for the adsorbates tested here, indicating a complex adsorption mechanism. The experimental adsorption isotherms of these molecules on the activated carbon were as well analysed using four isotherms: the classical Freundlich, Langmuir, Redlich-Peterson equations, but as well the newly published deformed Weibull Brouers-Sotolongo isotherm. The results obtained from the application of the equations show that the best fits were achieved with the Brouers-Sotolongo equation and with the Redlich-Peterson equation. Influence of surface functional groups towards MB adsorption is as well studied using various ACs prepared from vetiver roots and sugar cane bagasse

  14. Adsorption studies of methylene blue and phenol onto vetiver roots activated carbon prepared by chemical activation.

    Science.gov (United States)

    Altenor, Sandro; Carene, Betty; Emmanuel, Evens; Lambert, Jacques; Ehrhardt, Jean-Jacques; Gaspard, Sarra

    2009-06-15

    Vetiver roots have been utilized for the preparation of activated carbon (AC) by chemical activation with different impregnation ratios of phosphoric acid, X(P) (gH(3)PO(4)/g precursor): 0.5:1; 1:1 and 1.5:1. Textural characterization, determined by nitrogen adsorption at 77K shows that mixed microporous and mesoporous structures activated carbons (ACs) with high surface area (>1000 m(2)/g) and high pore volume (up to 1.19 cm(3)/g) can be obtained. The surface chemical properties of these ACs were investigated by X-ray photoelectron spectroscopy (XPS) and Boehm titration. Their textural and chemical characteristics were compared to those of an AC sample obtained by steam activation of vetiver roots. Classical molecules used for characterizing liquid phase adsorption, phenol and methylene blue (MB), were used. Adsorption kinetics of MB and phenol have been studied using commonly used kinetic models, i.e., the pseudo-first-order model, the pseudo-second-order model, the intraparticle diffusion model and as well the fractal, BWS (Brouers, Weron and Sotolongo) kinetic equation. The correlation coefficients (R(2)) and the normalized standard deviation Deltaq (%) were determined showing globally, that the recently derived fractal kinetic equation could best describe the adsorption kinetics for the adsorbates tested here, indicating a complex adsorption mechanism. The experimental adsorption isotherms of these molecules on the activated carbon were as well analysed using four isotherms: the classical Freundlich, Langmuir, Redlich-Peterson equations, but as well the newly published deformed Weibull Brouers-Sotolongo isotherm. The results obtained from the application of the equations show that the best fits were achieved with the Brouers-Sotolongo equation and with the Redlich-Peterson equation. Influence of surface functional groups towards MB adsorption is as well studied using various ACs prepared from vetiver roots and sugar cane bagasse. Opposite effects governing MB

  15. Secondary organic aerosols. Chemical aging, hygroscopicity, and cloud droplet activation

    Energy Technology Data Exchange (ETDEWEB)

    Buchholz, Angela

    2011-07-06

    Atmospheric aerosols have an important impact on the radiation balance, and thus, on the climate of the Earth. Aerosol particles scatter and absorb incoming solar and terrestrial radiation. Apart from this direct effect, aerosol particles act as cloud condensation nuclei (CCN), thereby greatly influencing the microphysics of clouds. Secondary organic aerosols (SOA) are an important fraction of the total aerosol mass. In many environments these organic compounds are mainly products of the oxidation of biogenic volatile organic compounds (VOC). In this study the hygroscopic growth and CCN activation of biogenic SOA were investigated which was formed by the oxidation of VOC with O{sub 3} and photochemically formed OH radicals under low NO{sub x} conditions. For this purpose, a complex mixture of VOC emitted by boreal tree species as gas-phase precursors was used in the Juelich Plant Atmosphere Chamber (JPAC). In long-term studies in the atmosphere simulation chamber SAPHIR {alpha}-pinene or a defined mixture of {alpha}-pinene, {beta}-pinene, limonene, ocimene, {delta}-3-carene served as precursors. Initial precursor concentrations between 40 and 1000 ppbC were investigated. The observed SOA particles were slightly hygroscopic with an average hygroscopicity parameter {kappa}(CCN) = 0.10 {+-} 0.02 and {kappa}(90%RH) = 0.05 {+-} 0.01. Closure between hygroscopic growth and CCN activation data could be achieved allowing either surface tension reduction, limited solubility, or non-ideality of the solution in the droplet. The SOA solutions in equilibrium with RH <95% are possible highly non-ideal. Therefore the organic-water interaction were investigated by applying the UNIFAC model. Calculations for surrogate compounds exhibited the same strong concentration (i.e. RH) dependence of {kappa} at sub-saturation. The growth curves could be fitted and CCN activation predicted by assuming a binary mixture of water and one hypothetical organic compound. The occurrence of

  16. Risk assessment of endocrine active chemicals: identifying chemicals of regulatory concern.

    Science.gov (United States)

    Bars, Remi; Fegert, Ivana; Gross, Melanie; Lewis, Dick; Weltje, Lennart; Weyers, Arnd; Wheeler, James R; Galay-Burgos, Malyka

    2012-10-01

    The European regulation on plant protection products (1107/2009) (EC, 2009a), the revisions to the biocides Directive (COM[2009]267) (EC, 2009b), and the regulation concerning chemicals (Regulation (EC) No. 1907/2006 'REACH') (EC.2006) only support the marketing and use of chemical products on the basis that they do not induce endocrine disruption in humans or wildlife species. In the absence of agreed guidance on how to identify and evaluate endocrine activity and disruption within these pieces of legislation a European Centre for Ecotoxicology and Toxicology of Chemicals (ECETOC) task force was formed to provide scientific criteria that may be used within the context of these three legislative documents. The resulting ECETOC technical report (ECETOC, 2009a) and the associated workshop (ECETOC, 2009b) presented a science-based concept on how to identify endocrine activity and disrupting properties of chemicals for both human health and the environment. The synthesis of the technical report and the workshop report was published by the ECETOC task force (Bars et al., 2011a,b). Specific scientific criteria for the determination of endocrine activity and disrupting properties that integrate information from both regulatory (eco)toxicity studies and mechanistic/screening studies were proposed. These criteria combined the nature of the adverse effects detected in studies which give concern for endocrine toxicity with an understanding of the mode of action of toxicity so that adverse effects can be explained scientifically. A key element in the data evaluation is the consideration of all available information in a weight-of-evidence approach. However, to be able to discriminate chemicals with endocrine properties of low concern from those of higher concern (for regulatory purposes), the task force recognised that the concept needed further refinement. Following a discussion of the key factors at a second workshop of invited regulatory, academic and industry scientists

  17. [Advances of chemical constituents and pharmacological activities of Myristica genus].

    Science.gov (United States)

    Zhang, Yong; Zhang, Juan-Juan; Kang, Wen-Yi; Yan, Wen-Yi

    2014-07-01

    The genus Myristica (Myristicaceae) consists of 120 species, which were distributed in South Asia, from west Polynesia, Oceania, eastern India to the Philippines. Phytochemical studies showed that 164 compounds including a majority of lignans, along with phenglpropanoids, flavonoids and phenolics, have been isolated from this genus, which exhibited anti-microbial, anti-inflammatory, anticancer, hyperglycemic and hepatic protective activities. This article summarizes research progress of the chemical compositions and their pharmacological activities from this genus, which could provide reference for the in-depth development and utilization of the Myristica plants.

  18. Anti-inflammatory activity and chemical profile of Galphimia glauca.

    Science.gov (United States)

    González-Cortazar, Manasés; Herrera-Ruiz, Maribel; Zamilpa, Alejandro; Jiménez-Ferrer, Enrique; Marquina, Silvia; Alvarez, Laura; Tortoriello, Jaime

    2014-01-01

    Galphimia glauca, commonly known as "flor de estrella", is a plant species used in Mexican traditional medicine for the treatment of different diseases that have an acute or chronic inflammatory process in common. Aerial parts of this plant contain nor-seco-triterpenoids with anxiolytic properties, which have been denominated galphimines. Other compounds identified in the plant are tetragalloyl-quinic acid, gallic acid, and quercetin, which are able to inhibit the bronchial obstruction induced by platelet-activating factor. The objective of this work was to evaluate the anti-inflammatory effect of crude extracts from G. glauca and, by means of bioguided chemical separation, to identify the compounds responsible for this pharmacological activity. n-Hexane, ethyl acetate, dichloromethane, and methanol extracts showed an important anti-inflammatory effect. Chemical separation of the active methanol extract allowed us to identify the nor-seco-triterpenes galphimine-A (1) and galphimine-E (3) as the anti-inflammatory principles. Analysis of structure-activity relationships evidenced that the presence of an oxygenated function in C6 is absolutely necessary to show activity. In this work, the isolation and structural elucidation of two new nor-seco-triterpenes denominated as galphimine-K (4) and galphimine-L (5), together with different alkanes, fatty acids, as well as three flavonoids (17-19), are described, to our knowledge for the first time, from Galphimia glauca.

  19. Chemical composition and larvicidal activity of Rollinia leptopetala (Annonaceae)

    Energy Technology Data Exchange (ETDEWEB)

    Feitosa, Edinilza M.A.; Arriaga, Angela M.C.; Lemos, Telma L.G.; Oliveira, M. Conceicao F. de; Vasnconcelos, Jackson Nunes e; Lima, Jefferson Q.; Malcher, Grazielle T. [Universidade Federal do Ceara (UFC), Fortaleza, CE (Brazil). Dept. de Quimica Organica e Inorganica]. E-mail: angelamcarriaga@yahoo.com.br; Santiago, Gilvandete M.P. [Universidade Federal do Ceara (UFC), Fortaleza, CE (Brazil). Dept. de Farmacia; Nascimento, Ronaldo F. do [Universidade Federal do Ceara (UFC), Fortaleza, CE (Brazil). Dept. de Quimica Analitica e Fisico-Quimica; Braz-Filho, Raimundo [Universidade Estadual do Norte Fluminense (UENF), Campos dos Goytacases, RJ (Brazil). Setor de Quimica de Produtos Naturais. Lab. de Ciencias Quimicas

    2009-07-01

    The aim of present study was to describe the chemical composition of the essential oils from the leaf and stem of Rollinia leptopetala R. E. Fries (Annonaceae) and to evaluate the larvicidal activities of these essential oils, of the methanol extract from roots of this plant and of the oxoaporphine alkaloid, liriodenine (1) against the third-instar of Aedes aegypti larvae. The methanol extract from the roots showed larvicidal activity with LC{sub 50} 64.6 {+-} 1.5 ppm. Higher activity was observed for the isolated alkaloid liriodenine (1), LC{sub 50} 3.6 {+-} 0.4 ppm. The essential oils from the leaves and stems, also exhibited larvicidal activity with LC{sub 50} 104.7 {+-} 0.2 and 34.7 {+-} 0.3 ppm, respectively. These results suggest R. leptopetala as a source of natural larvicidal compounds. This is the first report about the chemical composition and larvicidal activity of the leaf and stem essential oils of R. leptopetala. (author)

  20. Improvement of Chemically-activated Luciferase Gene Expression Bioassay for Detection of Dioxin-like Chemicals

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    To improve the chemically-activated luciferase expression (CALUX)bioassay for detection of dioxin-like chemicals (DLCs) based on the toxicity mechanisms of DLCs. Method A recombinant vector was constructed and used to transfect human hepatoma (HepG2). The expression of this vector was 10-100 folds higher than that of pGL2used in previous experiments. The transfected cells showed aromatic hydrocarbon receptor (AhR)-meditated luciferase gene expression. The reliability of luciferase induction in this cell line as a reporter of AhR-mediated toxicity was evaluated, the optimal detection time was examined and a comparison was made by using the commonly used ethoxyresoufin-Odeethylase (EROD) activity induction assay. Result The results suggested that the luciferase activity in recombinant cells was peaked at about 4 h and then decreased to a stable activity by 14 h after TCDD treatment. The detection limit of this cell line was 0.1 lpmol/L, or 10-fold lower than in previous studies, with a linear range from 1 to 100pmol/L, related coefficient of 0.997, and the coefficient of variability (CV) of 15-30%,Conclusion The luciferase induction is 30-fold more sensitive than EROD induction, the detection time is 68 h shorter and the detection procedure is also simpler.

  1. Fluorinated Alcohols as Activators for the Solvent-Free Chemical Fixation of Carbon Dioxide into Epoxides.

    Science.gov (United States)

    Gennen, Sandro; Alves, Margot; Méreau, Raphaël; Tassaing, Thierry; Gilbert, Bernard; Detrembleur, Christophe; Jerome, Christine; Grignard, Bruno

    2015-06-01

    The addition of fluorinated alcohols to onium salts provides highly efficient organocatalysts for the chemical fixation of CO2 into epoxides under mild experimental conditions. The combination of online kinetic studies, NMR titrations and DFT calculations allows understanding this synergistic effect that provides an active organocatalyst for CO2 /epoxides coupling.

  2. CHEMICAL COMPOSITION AND ANTI-INFLAMMATORY ACTIVITY OF Roldana platanifolia

    Directory of Open Access Journals (Sweden)

    Amira Arciniegas

    2015-11-01

    Full Text Available The chemical study of Roldana platanifolia led to the isolation of β-caryophyllene, five eremophilanolides, chlorogenic acid, and a mixture of β-sitosterol-stigmasterol, β-sitosteryl glucopyranoside, and sucrose. The anti-inflammatory activities of the extracts and isolated products were tested using the 12-O-tetradecanoylphorbol-13-acetate (TPA model of induced acute inflammation. The acetone and methanol extracts showed dose dependent activities (ID50 0.21 and 0.32 mg/ear, respectively, while none of the isolated compounds exhibited relevant edema inhibition. The active extracts were also evaluated with the myeloperoxidase assay technique (MPO to determine their ability to prevent neutrophil infiltration. Results showed that the anti-inflammatory activity was related to the compound’s ability to inhibit pro-inflammatory mediators such as neutrophils.

  3. Chemical constituents from Cornus officinalis and their biological activity 1

    Directory of Open Access Journals (Sweden)

    Zhan-Ying Ma

    2012-01-01

    Full Text Available Objective: To study the chemical constituents from Cornus officinalis Sieb., Et Zucc, and their peroxisome proliferator-activated receptors (PPARs agonist activity. Materials and Methods: The leaves of C. officinalis were extracted three times with 90% EtOH at room temperature. The ethanol extracts were combined and concentrated under reduced pressure to yield residue, which was isolated and purified by silica gel and reverse-phase C 18 column chromatography. The structures were elucidated on the basis of spectroscopic evidence and their physiochemical characteristics. Cell-based luciferase reporter gene assays were used to evaluate PPARα/γ agonistic activities. Results: Five compounds were isolated and elucidated as 10-hydroxyhastatoside (1, β-dihydrocornin (2, isoquercitrin (3, loganin (4 and oleanolic acid (5. Conclusion: Compounds 1 and 2 were obtained from C. officinalis for the first time. Compound 3 exhibited moderate agonistic activities for PPARα, with EC 50 values of 29.5 μM.

  4. Chemical characterization, antioxidant and cytotoxic activities of Brazilian red propolis.

    Science.gov (United States)

    Frozza, Caroline Olivieri da Silva; Garcia, Charlene Silvestrin Celi; Gambato, Gabriela; de Souza, Marcia Denize Oliveira; Salvador, Mirian; Moura, Sidnei; Padilha, Francine Ferreira; Seixas, Fabiana Kömmling; Collares, Tiago; Borsuk, Sibele; Dellagostin, Odir Antonio; Henriques, João Antonio Pêgas; Roesch-Ely, Mariana

    2013-02-01

    Propolis is known for a long time for its health benefits and biological activities. Here, the red variety from the northeast of Brazil was chemically analyzed and extracts were investigated regarding their antioxidant and antitumor activity. Hydroalcoholic extracts, obtained from the red propolis, revealed polyphenol content, 2,2-diphenyl-1-picrylhydrazyl scavenging potential and enzymatic activities for catalase-like and superoxide dismutase-like. Cytotoxic activity was evaluated for human laryngeal epidermoid carcinoma cell (Hep-2), human cervical adenocarcinoma (HeLa) and human normal epithelial embryonic kidney (Hek-293). Survival analysis for non-tumor cell line showed greater IC50 compared to tumor cell lines, suggesting an increased sensitivity that may correlate with the higher proliferative index of the tumor vs. normal cells. Our results indicate that the Brazilian red propolis is capable of inhibiting cancer cell growth and constitutes an excellent source of antioxidant and antitumor natural agent. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Investigation of the chemical composition-antibacterial activity relationship of essential oils by chemometric methods.

    Science.gov (United States)

    Miladinović, Dragoljub L; Ilić, Budimir S; Mihajilov-Krstev, Tatjana M; Nikolić, Nikola D; Miladinović, Ljiljana C; Cvetković, Olga G

    2012-05-01

    The antibacterial effects of Thymus vulgaris (Lamiaceae), Lavandula angustifolia (Lamiaceae), and Calamintha nepeta (Lamiaceae) Savi subsp. nepeta var. subisodonda (Borb.) Hayek essential oils on five different bacteria were estimated. Laboratory control strain and clinical isolates from different pathogenic media were researched by broth microdilution method, with an emphasis on a chemical composition-antibacterial activity relationship. The main constituents of thyme oil were thymol (59.95%) and p-cymene (18.34%). Linalool acetate (38.23%) and β-linalool (35.01%) were main compounds in lavender oil. C. nepeta essential oil was characterized by a high percentage of piperitone oxide (59.07%) and limonene (9.05%). Essential oils have been found to have antimicrobial activity against all tested microorganisms. Classification and comparison of essential oils on the basis of their chemical composition and antibacterial activity were made by utilization of appropriate chemometric methods. The chemical principal component analysis (PCA) and hierachical cluster analysis (HCA) separated essential oils into two groups and two sub-groups. Thyme essential oil forms separate chemical HCA group and exhibits highest antibacterial activity, similar to tetracycline. Essential oils of lavender and C. nepeta in the same chemical HCA group were classified in different groups, within antibacterial PCA and HCA analyses. Lavender oil exhibits higher antibacterial ability in comparison with C. nepeta essential oil, probably based on the concept of synergistic activity of essential oil components.

  6. QCD Effective action at high temperature and small chemical potential

    CERN Document Server

    Villavicencio, C

    2007-01-01

    We present a construction of an effective Yang-Mills action for QCD, from the expansion of the fermionic determinant in terms of powers of the chemical potential at high temperature, for the case of massless quarks. We analyze this expansion in the perturbative region and find that it gives extra spurious information. We propose for the non-perturbative sector a simplified effective action which, in principle, contains only the relevant information.

  7. ANTICANCER ACTIVITY OF ISOLATED CHEMICAL CONSTITUENTS FROM MILIUSA SMITHIAE

    Directory of Open Access Journals (Sweden)

    Chonthicha Naphong

    2013-01-01

    Full Text Available Miliusa plants belonging to the family Annonaceae are found in Thailand and have been used as Thai traditional medicines. There have been a few previously reports on the chemical constituents of plants in this genus, describing the presence of aporphine alkaloids, terpenoids, flavonoids, phenylpropanoids, styrylpyrones, bis-styryls and homogentisic acid derivatives. Miliusa smithiae, a new species for Thailand and world, has not been studied chemical composition. The present study described phytochemical study of the leaves and twigs of M. smithiae together with their cytotoxicity. The M. smithiae was selected and percolated with hexane, ethyl acetate, acetone and methanol. The extracts were purified and elucidated chemical structures. The constituent of ethyl acetate extract of M. smithiae has been investigated. We isolated and identified two flavonoid derivatives, 5-hydroxy-3,7,4′-trimetoxyflavone (1 and 5,3′-dihydroxy-3,7,4′-trimetoxyflavone (2. The structures of these compounds were elucidated on the basis of spectroscopic evidence. Studies on ethyl acetate extract of M. smithiae has now resulted the isolation and structural characterization of two flavonoids. Their anticancer activities were evaluated using SRB assays. In this method, compound 2 showed potential activity in cell lines.

  8. Active hydrothermal and non-active massive sulfide mound investigation using a new multiparameter chemical sensor

    Science.gov (United States)

    Han, C.; Wu, G.; Qin, H.; Wang, Z.

    2012-12-01

    Investigation of active hydrothermal mound as well as non-active massive sulfide mound are studied recently. However, there is still lack of in-situ detection method for the non-active massive sulfide mound. Even though Transient ElectroMagnetic (TEM) and Electric Self-potential (SP) methods are good, they both are labour, time and money cost work. We proposed a new multiparameter chemical sensor method to study the seafloor active hydrothermal mound as well as non-active massive sulfide mound. This sensor integrates Eh, S2- ions concentration and pH electrochemical electrodes together, and could found chemical change caused by the active hydrothermal vent, even weak chemical abnormalities by non-active massive sulfide hydrothermal mound which MARP and CTD sometimes cannot detect. In 2012, the 1st Leg of the Chinese 26th cruise, the multiparameter chemical sensor was carried out with the deepsea camera system over the Carlsberg Ridge in Indian Ocean by R/V DAYANGYIHAO. It was shown small Eh and S2- ions concentration abnormal around a site at Northwest Indian ridge. This site was also evidenced by the TV grab. In the 2nd Leg of the same cruise in June, this chemical sensor was carried out with TEM and SP survey system. The chemical abnormalities are matched very well with both TEM and SP survey results. The results show that the multiparameter chemical sensor method not only can detect active hydrothermal mound, but also can find the non-active massive sulfide hydrothermal mound.

  9. Carbon dioxide adsorption in chemically activated carbon from sewage sludge.

    Science.gov (United States)

    de Andrés, Juan Manuel; Orjales, Luis; Narros, Adolfo; de la Fuente, María del Mar; Encarnación Rodríguez, María

    2013-05-01

    In this work, sewage sludge was used as precursor in the production of activated carbon by means of chemical activation with KOH and NaOH. The sludge-based activated carbons were investigated for their gaseous adsorption characteristics using CO2 as adsorbate. Although both chemicals were effective in the development of the adsorption capacity, the best results were obtained with solid NaOH (SBA(T16)). Adsorption results were modeled according to the Langmuir and Freundlich models, with resulting CO2 adsorption capacities about 56 mg/g. The SBA(T16) was characterized for its surface and pore characteristics using continuous volumetric nitrogen gas adsorption and mercury porosimetry. The results informed about the mesoporous character of the SBA(T16) (average pore diameter of 56.5 angstroms). The Brunauer-Emmett-Teller (BET) surface area of the SBA(T16) was low (179 m2/g) in comparison with a commercial activated carbon (Airpel 10; 1020 m2/g) and was mainly composed of mesopores and macropores. On the other hand, the SBA(T16) adsorption capacity was higher than that of Airpel 10, which can be explained by the formation of basic surface sites in the SBA(T16) where CO2 experienced chemisorption. According to these results, it can be concluded that the use of sewage-sludge-based activated carbons is a promising option for the capture of CO2. Adsorption methods are one of the current ways to reduce CO2 emissions. Taking this into account, sewage-sludge-based activated carbons were produced to study their CO2 adsorption capacity. Specifically, chemical activation with KOH and NaOH of previously pyrolyzed sewage sludge was carried out. The results obtained show that even with a low BET surface area, the adsorption capacity of these materials was comparable to that of a commercial activated carbon. As a consequence, the use of sewage-sludge-based activated carbons is a promising option for the capture of CO2 and an interesting application for this waste.

  10. The performance of supercapacitor electrodes developed from chemically activated carbon produced from waste tea

    Science.gov (United States)

    Inal, I. Isil Gurten; Holmes, Stuart M.; Banford, Anthony; Aktas, Zeki

    2015-12-01

    Highly microporous and mesoporous activated carbons were produced from waste tea for application as supercapacitor electrodes, utilising a chemical activation method involving treatment with either K2CO3 or H3PO4. The area, pore structure characteristics and surface functionality of the activated carbons were evaluated to investigate the influence on electrochemical performance. The performance of the activated carbons as supercapacitor electrodes was tested by cyclic voltammetry (CV), impedance spectroscopy (EIS) and galvanostatic charge-discharge (GCD) measurements, in an aqueous electrolyte. The results showed that the pore structure and type of the activated carbon have significant impact on the supercapacitor performance. Both waste tea-based activated carbon electrodes showed good cyclic stability. However, despite its lower specific surface area the highly microporous activated carbon produced with K2CO3, exhibited much better capacitive performance than that of the mesoporous activated carbon produced with H3PO4.

  11. Advanced deposition model for thermal activated chemical vapor deposition

    Science.gov (United States)

    Cai, Dang

    Thermal Activated Chemical Vapor Deposition (TACVD) is defined as the formation of a stable solid product on a heated substrate surface from chemical reactions and/or dissociation of gaseous reactants in an activated environment. It has become an essential process for producing solid film, bulk material, coating, fibers, powders and monolithic components. Global market of CVD products has reached multi billions dollars for each year. In the recent years CVD process has been extensively used to manufacture semiconductors and other electronic components such as polysilicon, AlN and GaN. Extensive research effort has been directed to improve deposition quality and throughput. To obtain fast and high quality deposition, operational conditions such as temperature, pressure, fluid velocity and species concentration and geometry conditions such as source-substrate distance need to be well controlled in a CVD system. This thesis will focus on design of CVD processes through understanding the transport and reaction phenomena in the growth reactor. Since the in situ monitor is almost impossible for CVD reactor, many industrial resources have been expended to determine the optimum design by semi-empirical methods and trial-and-error procedures. This approach has allowed the achievement of improvements in the deposition sequence, but begins to show its limitations, as this method cannot always fulfill the more and more stringent specifications of the industry. To resolve this problem, numerical simulation is widely used in studying the growth techniques. The difficulty of numerical simulation of TACVD crystal growth process lies in the simulation of gas phase and surface reactions, especially the latter one, due to the fact that very limited kinetic information is available in the open literature. In this thesis, an advanced deposition model was developed to study the multi-component fluid flow, homogeneous gas phase reactions inside the reactor chamber, heterogeneous surface

  12. Antibacterial activity of chemical constituents isolated from Asparagus racemosus

    Directory of Open Access Journals (Sweden)

    Muhammad Abdullah Shah

    2014-03-01

    Full Text Available Asparagus racemosus is a medical extensively used in traditional medicine for various disorders including its use in infectious. So far work has been done to identify its active constituents responsible for antiseptic folk use of this plant. In the current investigation, we have made an effort to identify its chemical constituents that might be partly responsible for antimicrobial properties. Extraction and isolation of plant extract lead to isolation of two nor-lignans and two steroidal triterpenes (compound 1 to 4. All compound showed considerable antibacterial activities against E. coli and S. aureus while no significant activity was observed against S. typhi. This study highlighted the potential of A. racemosus to be further explored as a source of bioactive natural products.

  13. Catchment Very-High Frequency Hydrochemistry: the Critex Chemical House

    Science.gov (United States)

    Floury, P.; Gaillardet, J.; Tallec, G.; Blanchouin, A.; Ansart, P.

    2015-12-01

    Exploring the variations of river quality at very high frequency is still a big challenge that has fundamental implications both for understanding catchment ecosystems and for water quality monitoring. Within the French Critical Zone program CRITEX, we have proposed to develop a prototype called "Chemical House", applying the "lab on field" concept to one of the stream of the Orgeval Critical Zone Observatory. The Orgeval catchment (45 km2) is part of the Critical Zone RBV ("Réseau des bassins versants") network. It is a typical temperate agricultural catchment that has been intensively monitored for the last 50 years for hydrology and nutrient chemistry. Agricultural inputs and land use are also finely monitored making Orgeval an ideal basin to test the response of the Critical Zone to agricultural forcing. Geology consists of a typical sedimentary basin of Cenozoic age with horizontal layers of limestones, silcrete and marls, covered by a thin loamy layer. Two main aquifers are present within the catchment: the Brie and the Champigny aquifers. Mean runoff is 780 mm/yr. The Chemical House is a fully automated lab and installed directly along the river, which performs measurement of all major dissolved elements such as Na, Cl, Mg, Ca, NO3, SO4 and K every half hour. It also records all physical parameters (Temperature, pH, conductivity, O2 dissolved, Turbidity) of the water every minute. Orgeval Chemical House started to measure river chemistry on June 12, 2015 and has successfully now recorded several months of data. We will present the architecture of the Chemical House and the first reproducibility and accuracy tests made during the summer drought 2015 period. Preliminary results show that the chemical house is recoding significant nychtemeral (day/night) cycles for each element. We also observe that each element has its own behaviour along a day. First results open great prospects.

  14. Analysis of chemical composition of high viscous oils

    Directory of Open Access Journals (Sweden)

    Irina Germanovna Yashchenko

    2014-07-01

    Full Text Available The spatial distribution of viscous oils which are considered as an important reserve for oil-production in future were studied on base of information from global database on oil physical and chemical properties. Changes in chemical composition of viscous oils in different basins and continents were analyzed as well. It is shown, on average, viscous oils are sulfur-bearing, low paraffin, highly resinous oils with an average content of asphaltenes and low content of the fraction boiling at 200 C. Study results of viscous oils peculiarities of Canada, Russia and Venezuela are given. The analysis results can be used to determine the optimal layouts and conditions of oil transportation, to improve the search methods of geochemical exploration, and to solve other problems in the oil chemistry.

  15. Chemical Constituents and Biological Activities of Artemisia herba-alba

    Directory of Open Access Journals (Sweden)

    Abou El-Hamd H. Mohamed

    2010-01-01

    Full Text Available Artemisia, one of the larger genera in the family Asteraceae and the largest genus in the tribe Anthemideae, comprises from 200 to more than 500 taxa at the specific or subspecific level. Many Artemisia species have a high economic value in several fields, as food plants and as antihelminthic and antimalaria in medicine. Artemisia herba-alba was known for its therapeutic and medicinal properties, it was used in both traditional and modern medicine. Several papers have been published on the chemical composition of specimens of A. herba-alba. The aim of this work is to review all available scientific literature published on A. herba-alba. The focus will be on the chemical constitutions which have been identified from this species, in addition to all of the reported biological activites of this species have been included as well as the pharmacology and toxicology

  16. High-Activity Dealloyed Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Kongkanand, Anusorn [General Motors LLC, Pontiac, MI (United States)

    2014-09-30

    Reduction of costly Pt usage in proton exchange membrane fuel cell electrodes is one of the major challenges towards development and commercialization of fuel cell vehicles. Although few have met the initial-kinetic activity requirements in a realistic fuel cell device, no catalyst material has ever met the demanding fuel cell durability targets set by DOE. In this project, a team of 4 universities and 2 companies came together to investigate a concept that appeared promising in preliminary non-fuel cell tests then to further develop the catalyst to a mature level ready for vehicle implementation. The team consists of academia with technical leadership in their respective areas, a catalyst supplier, and a fuel cell system integrator.The tightly collaborative project enabled development of a highly active and durable catalyst with performance that significantly exceeds that of previous catalysts and meets the DOE targets for the first time (Figure 1A). The catalyst was then further evaluated in full-active-area stack in a realistic vehicle operating condition (Figure 1B). This is the first public demonstration that one can realize the performance benefit and Pt cost reduction over a conventional pure Pt catalyst in a long-term realistic PEMFC system. Furthermore, systematic analyses of a range of catalysts with different performance after fuel cell testing allowed for correlation between catalyst microstructure and its electrocatalytic activity and durability. This will in turn aid future catalyst development.

  17. Synthesis of sulfonated porous carbon nanospheres solid acid by a facile chemical activation route

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Binbin, E-mail: changbinbin806@163.com; Guo, Yanzhen; Yin, Hang; Zhang, Shouren; Yang, Baocheng, E-mail: baochengyang@yahoo.com

    2015-01-15

    Generally, porous carbon nanospheres materials are usually prepared via a template method, which is a multi-steps and high-cost strategy. Here, we reported a porous carbon nanosphere solid acid with high surface area and superior porosity, as well as uniform nanospheical morphology, which prepared by a facile chemical activation with ZnCl{sub 2} using resorcinol-formaldehyde (RF) resins spheres as precursor. The activation of RF resins spheres by ZnCl{sub 2} at 400 °C brought high surface area and large volume, and simultaneously retained numerous oxygen-containing and hydrogen-containing groups due to the relatively low processing temperature. The presence of these functional groups is favorable for the modification of –SO{sub 3}H groups by a followed sulfonation treating with sulphuric acid and organic sulfonic acid. The results of N{sub 2} adsorption–desorption and electron microscopy clearly showed the preservation of porous structure and nanospherical morphology. Infrared spectra certified the variation of surface functional groups after activation and the successful modification of –SO{sub 3}H groups after sulfonation. The acidities of catalysts were estimated by an indirect titration method and the modified amount of –SO{sub 3}H groups were examined by energy dispersive spectra. The results suggested sulfonated porous carbon nanospheres catalysts possessed high acidities and –SO{sub 3}H densities, which endowed their significantly catalytic activities for biodiesel production. Furthermore, their excellent stability and recycling property were also demonstrated by five consecutive cycles. - Graphical abstract: Sulfonated porous carbon nanospheres with high surface area and superior catalytic performance were prepared by a facile chemical activation route. - Highlights: • Porous carbon spheres solid acid prepared by a facile chemical activation. • It owns high surface area, superior porosity and uniform spherical morphology. • It possesses

  18. Active membrane having uniform physico-chemically functionalized ion channels

    Science.gov (United States)

    Gerald, II, Rex E; Ruscic, Katarina J; Sears, Devin N; Smith, Luis J; Klingler, Robert J; Rathke, Jerome W

    2012-09-24

    The present invention relates to a physicochemically-active porous membrane for electrochemical cells that purports dual functions: an electronic insulator (separator) and a unidirectional ion-transporter (electrolyte). The electrochemical cell membrane is activated for the transport of ions by contiguous ion coordination sites on the interior two-dimensional surfaces of the trans-membrane unidirectional pores. One dimension of the pore surface has a macroscopic length (1 nm-1000 .mu.m) and is directed parallel to the direction of an electric field, which is produced between the cathode and the anode electrodes of an electrochemical cell. The membrane material is designed to have physicochemical interaction with ions. Control of the extent of the interactions between the ions and the interior pore walls of the membrane and other materials, chemicals, or structures contained within the pores provides adjustability of the ionic conductivity of the membrane.

  19. High surface area graphene foams by chemical vapor deposition

    Science.gov (United States)

    Drieschner, Simon; Weber, Michael; Wohlketzetter, Jörg; Vieten, Josua; Makrygiannis, Evangelos; Blaschke, Benno M.; Morandi, Vittorio; Colombo, Luigi; Bonaccorso, Francesco; Garrido, Jose A.

    2016-12-01

    Three-dimensional (3D) graphene-based structures combine the unique physical properties of graphene with the opportunity to get high electrochemically available surface area per unit of geometric surface area. Several preparation techniques have been reported to fabricate 3D graphene-based macroscopic structures for energy storage applications such as supercapacitors. Although reaserch has been focused so far on achieving either high specific capacitance or high volumetric capacitance, much less attention has been dedicated to obtain high specific and high volumetric capacitance simultaneously. Here, we present a facile technique to fabricate graphene foams (GF) of high crystal quality with tunable pore size grown by chemical vapor deposition. We exploited porous sacrificial templates prepared by sintering nickel and copper metal powders. Tuning the particle size of the metal powders and the growth temperature allow fine control of the resulting pore size of the 3D graphene-based structures smaller than 1 μm. The as-produced 3D graphene structures provide a high volumetric electric double layer capacitance (165 mF cm-3). High specific capacitance (100 Fg-1) is obtained by lowering the number of layers down to single layer graphene. Furthermore, the small pore size increases the stability of these GFs in contrast to the ones that have been grown so far on commercial metal foams. Electrodes based on the as-prepared GFs can be a boost for the development of supercapacitors, where both low volume and mass are required.

  20. Chemical Vapor Deposition at High Pressure in a Microgravity Environment

    Science.gov (United States)

    McCall, Sonya; Bachmann, Klaus; LeSure, Stacie; Sukidi, Nkadi; Wang, Fuchao

    1999-01-01

    In this paper we present an evaluation of critical requirements of organometallic chemical vapor deposition (OMCVD) at elevated pressure for a channel flow reactor in a microgravity environment. The objective of using high pressure is to maintain single-phase surface composition for materials that have high thermal decomposition pressure at their optimum growth temperature. Access to microgravity is needed to maintain conditions of laminar flow, which is essential for process analysis. Based on ground based observations we present an optimized reactor design for OMCVD at high pressure and reduced gravity. Also, we discuss non-intrusive real-time optical monitoring of flow dynamics coupled to homogeneous gas phase reactions, transport and surface processes. While suborbital flights may suffice for studies of initial stages of heteroepitaxy experiments in space are essential for a complete evaluation of steady-state growth.

  1. Pasteurization of food by hydrostatic high pressure: chemical aspects.

    Science.gov (United States)

    Tauscher, B

    1995-01-01

    Food pasteurized by hydrostatic high pressure have already been marketed in Japan. There is great interest in this method also in Europe and USA. Temperature and pressure are the essential parameters influencing the state of substances including foods. While the influence of temperature on food has been extensively investigated, effects of pressure, also in combination with temperature, are attracting increasing scientific attention now. Processes and reactions in food governed by Le Chatelier's principle are of special interest; they include chemical reactions of both low- and macromolecular compounds. Theoretical fundamentals and examples of pressure affected reactions are presented.

  2. The Electrochemical Characteristics of Hybrid Capacitor Prepared by Chemical Activation of NaOH

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jeong Eun; Bae, Ga Yeong; Yang, Jeong Min; Lee, Jong Dae [Chungbuk National Univ., Chungju (Korea, Republic of)

    2013-06-15

    Active carbons with high specific surface area and micro pore structure were prepared from the coconut shell char using the chemical activation method of NaOH. The preparation process has been optimized through the analysis of experimental variables such as activating chemical agents to char ratio and the flow rate of gas during carbonization. The active carbons with the surface area (2,481m{sup 2}/g) and mean pore size (2.32 nm) were obtained by chemical activation with NaOH. The electrochemical performances of hybrid capacitor were investigated using LiMn{sub 2}O{sub 4}, LiCoO{sub 2} as the positive electrode and prepared active carbon as the negative electrode. The electrochemical behaviors of hybrid capacitor using organic electrolytes (LiPF{sub 6}, TEABF{sub 4}) were characterized by constant current charge/discharge, cyclic voltammetry, cycle and leakage tests. The hybrid capacitor using LiMn{sub 2}O{sub 4}/AC electrodes had better capacitance than other hybrid systems and was able to deliver a specific energy as high as 131 Wh/kg at a specific power of 1,448 W/kg.

  3. Development of High Temperature/High Sensitivity Novel Chemical Resistive Sensor

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chonglin; Nash, Patrick; Ma, Chunrui; Enriquez, Erik; Wang, Haibing; Xu, Xing; Bao, Shangyong; Collins, Gregory

    2013-08-13

    The research has been focused to design, fabricate, and develop high temperature/high sensitivity novel multifunctional chemical sensors for the selective detection of fossil energy gases used in power and fuel systems. By systematically studying the physical properties of the LnBaCo{sub 2}O{sub 5+d} (LBCO) [Ln=Pr or La] thin-films, a new concept chemical sensor based high temperature chemical resistant change has been developed for the application for the next generation highly efficient and near zero emission power generation technologies. We also discovered that the superfast chemical dynamic behavior and an ultrafast surface exchange kinetics in the highly epitaxial LBCO thin films. Furthermore, our research indicates that hydrogen can superfast diffuse in the ordered oxygen vacancy structures in the highly epitaxial LBCO thin films, which suggest that the LBCO thin film not only can be an excellent candidate for the fabrication of high temperature ultra sensitive chemical sensors and control systems for power and fuel monitoring systems, but also can be an excellent candidate for the low temperature solid oxide fuel cell anode and cathode materials.

  4. High-temperature conductivity in chemical bath deposited copper selenide thin films

    Science.gov (United States)

    Dhanam, M.; Manoj, P. K.; Prabhu, Rajeev. R.

    2005-07-01

    This paper reports high-temperature (305-523 K) electrical studies of chemical bath deposited copper (I) selenide (Cu 2-xSe) and copper (II) selenide (Cu 3Se 2) thin films. Cu 2-xSe and Cu 3Se 2 have been prepared on glass substrates from the same chemical bath at room temperature by controlling the pH. From X-ray diffraction (XRD) profiles, it has been found that Cu 2-xSe and Cu 3Se 2 have cubic and tetragonal structures, respectively. The composition of the chemical constituent in the films has been confirmed from XRD data and energy-dispersive X-ray analysis (EDAX). It has been found that both phases of copper selenide thin films have thermally activated conduction in the high-temperature range. In this paper we also report the variation of electrical parameters with film thickness and the applied voltage.

  5. Evaluation of antiseptic antiviral activity of chemical agents.

    Science.gov (United States)

    Geller, Chloé; Finance, Chantal; Duval, Raphaël Emmanuel

    2011-06-01

    Antiviral antisepsis and disinfection are crucial for preventing the environmental spread of viral infections. Emerging viruses and associated diseases, as well as nosocomial viral infections, have become a real issue in medical fields, and there are very few efficient and specific treatments available to fight most of these infections. Another issue is the potential environmental resistance and spread of viral particles. Therefore, it is essential to properly evaluate the efficacy of antiseptics-disinfectants (ATS-D) on viruses. ATS-D antiviral activity is evaluated by (1) combining viruses and test product for an appropriately defined and precise contact time, (2) neutralizing product activity, and (3) estimating the loss of viral infectivity. A germicide can be considered to have an efficient ATS-D antiviral activity if it induces a >3 or >4 log(10) reduction (American and European regulatory agency requirements, respectively) in viral titers in a defined contact time. This unit describes a global methodology for evaluating chemical ATS-D antiviral activity.

  6. Chemical composition and antibacterial activity of Gongronema latifolium

    Institute of Scientific and Technical Information of China (English)

    ELEYINMI Afolabi F.

    2007-01-01

    Chemical composition of Gongronema latifolium leaves was determined using standard methods. Aqueous and methanol G. latifolium extracts were tested against thirteen pathogenic bacterial isolates. Crude protein, lipid extract, ash, crude fibre and nitrogen free extractives obtained are: 27.2%, 6.07%, 11.6%, 10.8% and 44.3% dry matter respectively. Potassium,sodium, calcium, phosphorus and cobalt contents are 332, 110, 115, 125 and 116 mg/kg respectively. Dominant essential amino acids are leucine, valine and phenylalanine. Aspartic acid, glutamic acid and glycine are 13.8%, 11.9% and 10.3% respectively of total amino acid. Saturated and unsaturated fatty acids are 50.2% and 39.4% of the oil respectively. Palmitic acid makes up 36% of the total fatty acid. Extracts show no activity against E. faecalis, Y. enterolytica, E. aerogenes, B. cereus and E. agglomerans.Methanol extracts were active against S. enteritidis, S. cholerasius ser typhimurium and P. aeruginosa (minimum inhibitory concentration (MIC) 1 mg; zone of growth inhibition 7, 6.5 and 7 mm respectively). Aqueous extracts show activity against E. coli (MIC 5 mg) and P. aeruginosa (MIC 1 mg) while methanol extracts are active against P. aeruginosa and L. monocytogenes. G.latifolium has potential food and antibacterial uses.

  7. Antimicrobial, antioxidant activities and chemical composition of selected Thai spices

    Directory of Open Access Journals (Sweden)

    Juraithip Wungsintaweekul

    2010-12-01

    Full Text Available Nine volatile oils and six methanol extracts from Ocimum americanum, O. basilicum, O. sanctum, Citrus hystrix,Alpinia galanga, Curcuma zedoaria, Kaempferia parviflora and Zingiber cassumunar were assessed for antimicrobial andantioxidant activities. The volatile oils and extracts were investigated against eight bacteria and three fungi. The resultsillustrated that O. americanum volatile oil exhibited broad spectrum activity against tested bacteria with the MICs ranging1.4-3.6 mg/ml and Candida spp. with the MICs ranging from 0.5-0.6 mg/ml. The O. sanctum volatile oil showed a considerableactivity against only Candida spp. with the MICs ranging from 0.8-1.4 mg/ml. Interestingly, growth of Mycobacteriumphlei was inhibited by the volatiles of O. americanum, C. hystrix peel, and C. zedoaria with MIC of 1.7, 3.5 and 1.2 mg/ml,respectively. For antioxidant activity evaluation, the methanol extracts of C. hystrix (leaf and peel and K. parviflora hadpotent antioxidant activity by the radical-scavenging DPPH method with IC50 of 24.6, 66.3 and 61.5 mg/ml, respectively.GC-MS analysis revealed the typical chemical profiles of the volatile oils. The major component showed the characteristicsof the volatile oils and was probably responsible for the antimicrobial effect.

  8. Chemical and Thermodynamic Properties at High Temperatures: A Symposium

    Science.gov (United States)

    Walker, Raymond F.

    1961-01-01

    This book contains the program and all available abstracts of the 90' invited and contributed papers to be presented at the TUPAC Symposium on Chemical and Thermodynamic Properties at High Temperatures. The Symposium will be held in conjunction with the XVIIIth IUPAC Congress, Montreal, August 6 - 12, 1961. It has been organized, by the Subcommissions on Condensed States and on Gaseous States of the Commission on High Temperatures and Refractories and by the Subcommission on Experimental Thermodynamics of the Commission on Chemical Thermodynamics, acting in conjunction with the Organizing Committee of the IUPAC Congress. All inquiries concerning participation In the Symposium should be directed to: Secretary, XVIIIth International Congress of Pure and Applied Chemistry, National Research Council, Ottawa, 'Canada. Owing to the limited time and facilities available for the preparation and printing of the book, it has not been possible to refer the proofs of the abstracts to the authors for checking. Furthermore, it has not been possible to subject the manuscripts to a very thorough editorial examination. Some obvious errors in the manuscripts have been corrected; other errors undoubtedly have been introduced. Figures have been redrawn only when such a step was essential for reproduction purposes. Sincere apologies are offered to authors and readers for any errors which remain; however, in the circumstances neither the IUPAC Commissions who organized the Symposium, nor the U. S. Government Agencies who assisted in the preparation of this book can accept responsibility for the errors.

  9. High Temperature Chemical Kinetic Combustion Modeling of Lightly Methylated Alkanes

    Energy Technology Data Exchange (ETDEWEB)

    Sarathy, S M; Westbrook, C K; Pitz, W J; Mehl, M

    2011-03-01

    Conventional petroleum jet and diesel fuels, as well as alternative Fischer-Tropsch (FT) fuels and hydrotreated renewable jet (HRJ) fuels, contain high molecular weight lightly branched alkanes (i.e., methylalkanes) and straight chain alkanes (n-alkanes). Improving the combustion of these fuels in practical applications requires a fundamental understanding of large hydrocarbon combustion chemistry. This research project presents a detailed high temperature chemical kinetic mechanism for n-octane and three lightly branched isomers octane (i.e., 2-methylheptane, 3-methylheptane, and 2,5-dimethylhexane). The model is validated against experimental data from a variety of fundamental combustion devices. This new model is used to show how the location and number of methyl branches affects fuel reactivity including laminar flame speed and species formation.

  10. Antibacterial activity and biodegradability assessment of chemically grafted nanofibrillated cellulose.

    Science.gov (United States)

    Missoum, Karim; Sadocco, Patrizia; Causio, Jessica; Belgacem, Mohamed Naceur; Bras, Julien

    2014-12-01

    Nanofibrillated cellulose (NFC) and their derivatives were prepared using three chemical surface modification strategies. All grafting was characterized by FTIR and contact angle measurements in order to evaluate the efficiency of grafting. Antibacterial activities of neat and grafted samples were investigated against two kinds of bacteria (i.e. Gram+ (Staphylococcus aureus) and Gram- (Klebsiella pneumoniae)). All the grafted samples displayed promising results with at least bacteriostatic effect or bactericidal properties. They also strongly enhanced the photo-catalytic antimicrobial effect of TiO2. This study proves that it is better to use grafted NFC either alone or for functionalization with TiO2 if anti-bacterial properties are desired. The cellulose backbone is known to be easily biodegradable in different biodegradation conditions and environments. The chemical surface modifications applied on NFC in the present work did not negatively influence this valuable property of cellulose but help for monitoring this property, which could be very useful for paper, packaging and composites. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Chemical Constituents and Antimicrobial Activity of Salix subserrata

    Directory of Open Access Journals (Sweden)

    Hidayat Hussain

    2011-01-01

    Full Text Available The leaf and bark extracts of Salix subserrata showed promising antibacterial, antifungal, and antialgal activities. The bio-guided study of the chemical constituents of the bark and leaves of Salixsubserrata (Salicaceae has resulted in the isolation and characterization of eight compounds. These six compounds were identified as (+ catechin ( 1, 1,2-benzenedicarboxylic acid, bis (2-ethylhexyl ester ( 2, saligenin (3, methyl 1-hydroxy-6-oxocyclohex-2-enecarboxylate (4, catechol (5, propyl acetate ( 6, β-sitosterol (7, and β-sitosterol glucopyranoside ( 8, were isolated for the first time from Salixsubserrata. The above compounds were individually identified by spectroscopic analyses and comparisons with reported data . Preliminary studies indicated that compound 1, mixture of compounds 3/4, and 7 showed good antibacterial, fungicidal, and algicidal properties.

  12. Advances in the Chemical Analysis and Biological Activities of Chuanxiong

    Directory of Open Access Journals (Sweden)

    Jin-Ao Duan

    2012-09-01

    Full Text Available Chuanxiong Rhizoma (Chuan-Xiong, CX, the dried rhizome of Ligusticum chuanxiong Hort. (Umbelliferae, is one of the most popular plant medicines in the World. Modern research indicates that organic acids, phthalides, alkaloids, polysaccharides, ceramides and cerebrosides are main components responsible for the bioactivities and properties of CX. Because of its complex constituents, multidisciplinary techniques are needed to validate the analytical methods that support CX’s use worldwide. In the past two decades, rapid development of technology has advanced many aspects of CX research. The aim of this review is to illustrate the recent advances in the chemical analysis and biological activities of CX, and to highlight new applications and challenges. Emphasis is placed on recent trends and emerging techniques.

  13. Biphasic flow in a chemically active porous medium

    CERN Document Server

    Darmon, Alexandre; Salez, Thomas; Dauchot, Olivier

    2014-01-01

    We study the problem of the transformation of a given reactant species into an immiscible product species, as they flow through a chemically active porous medium. We derive the equation governing the evolution of the volume fraction of the species -- in a one-dimensional macroscopic description --, identify the relevant dimensionless numbers, and provide simple models for capillary pressure and relative permeabilities, which are quantities of crucial importance when tackling multiphase flows in porous media. We set the domain of validity of our models and discuss the importance of viscous coupling terms in the extended Darcy's law. We investigate numerically the steady regime and demonstrate that the spatial transformation rate of the species along the reactor is non-monotonous, as testified by the existence of an inflection point in the volume fraction profiles. We obtain the scaling of the location of this inflection point with the dimensionless lengths of the problem. Eventually, we provide key elements fo...

  14. Organizational and activational effects of estrogenic endocrine disrupting chemicals

    Directory of Open Access Journals (Sweden)

    Silbergeld Ellen K.

    2002-01-01

    Full Text Available Endocrine disruption is a hypothesis of common mode of action that may define a set of structurally varied chemicals, both natural and synthetic. Their common mode of action may suggest that they produce or contribute to similar toxic effects, although this has been difficult to demonstrate. Insights from developmental biology suggest that development of hormone sensitive systems, such as the brain and the genitourinary tract, may be particularly sensitive to EDCs. Because these systems are both organized and later activated by hormones, the brain and vagina may be valuable model systems to study the toxicity of EDCs in females and to elucidate mechanisms whereby early exposures appear to affect long term function.

  15. Thymus vulgaris essential oil: chemical composition and antimicrobial activity.

    Science.gov (United States)

    Borugă, O; Jianu, C; Mişcă, C; Goleţ, I; Gruia, A T; Horhat, F G

    2014-01-01

    The study was designed to determine the chemical composition and antimicrobial properties of the essential oil of Thymus vulgaris cultivated in Romania. The essential oil was isolated in a yield of 1.25% by steam distillation from the aerial part of the plant and subsequently analyzed by GC-MS. The major components were p-cymene (8.41%), γ-terpinene (30.90%) and thymol (47.59%). Its antimicrobial activity was evaluated on 7 common food-related bacteria and fungus by using the disk diffusion method. The results demonstrate that the Thymus vulgaris essential oil tested possesses strong antimicrobial properties, and may in the future represent a new source of natural antiseptics with applications in the pharmaceutical and food industry.

  16. Antibacterial activity of silver bionanocomposites synthesized by chemical reduction route

    Directory of Open Access Journals (Sweden)

    Bin Ahmad Mansor

    2012-09-01

    Full Text Available Abstract Background The aim of this study is to investigate the functions of polymers and size of nanoparticles on the antibacterial activity of silver bionanocomposites (Ag BNCs. In this research, silver nanoparticles (Ag NPs were incorporated into biodegradable polymers that are chitosan, gelatin and both polymers via chemical reduction method in solvent in order to produce Ag BNCs. Silver nitrate and sodium borohydride were employed as a metal precursor and reducing agent respectively. On the other hand, chitosan and gelatin were added as a polymeric matrix and stabilizer. The antibacterial activity of different sizes of silver nanoparticles was investigated against Gram-positive and Gram-negative bacteria by the disk diffusion method using Mueller-Hinton Agar. Results The properties of Ag BNCs were studied as a function of the polymer weight ratio in relation to the use of chitosan and gelatin. The morphology of the Ag BNCs films and the distribution of the Ag NPs were also characterized. The diameters of the Ag NPs were measured and their size is less than 20 nm. The antibacterial trait of silver/chitosan/gelatin bionanocomposites was investigated. The silver ions released from the Ag BNCs and their antibacterial activities were scrutinized. The antibacterial activities of the Ag BNC films were examined against Gram-negative bacteria (E. coli and P. aeruginosa and Gram-positive (S. aureus and M. luteus by diffusion method using Muller-Hinton agar. Conclusions The antibacterial activity of Ag NPs with size less than 20 nm was demonstrated and showed positive results against Gram-negative and Gram-positive bacteria. The Ag NPs stabilized well in the polymers matrix.

  17. Chemical composition and leishmanicidal activity of Pulicaria gnaphalodes essential oil

    Directory of Open Access Journals (Sweden)

    G. Asghari

    2014-10-01

    Full Text Available Background and objectives: Several natural compounds have been identified for the treatment ofleishmaniasis. Due to a few safe drugs and the side effects caused by available chemotherapy, some new drugs for treatment of leishmaniasis are requested.  The genus Pulicaria (Asteraceae is represented in the flora of Iran by five species. Phytochemical studies on Pulicaria species have revealed some flavonoids and terpenoids with leishmanicidal activity. In the present investigation chemical composition and leishmanicidal activity of Pulicaria gnaphalodes essential oil have been studied. Methods: The essential oil of the aerial parts of the plant was obtained by Clevenger apparatus and was analyzed by GC/MS. Antileishmanil activity was assessed against promastigoes of Leishmania major. Results:The major components from P. gnaphalodes essential oil have been reported to be geraniol, 1,8-cineole, chrysanthenone, α-pinene, chrystanthenone, α-terpineol and filifolone. The alcohol monoterpenes with contribution of 25.04% constituted the major portion of the essential oil, while hydrocarbon monoterpenes and hydrocarbon sesquiterpenes with contribution of 7.08% and 2.38%, respectively occupied the next rates.In the present experiment the essential oil of P. gnaphalodes progressively inhibited Leishmania major growth in concentrations ranging from 0.125 to 50 µL/mL (parasite culture in 24 h. The essential oil at 50 µL/mL eliminated the promastigotes at the beginning of treatment. It showed antileishmanial activity in concentration of 1.06 µL/mL and destroyed all parasits in 24 h.  Conclusion: Pulicaria gnaphalodes antileishmanial activity, could suggest the species and constituents as possible lead structures for antileishmanial drug discovery.

  18. Chemical composition and antioxidant activity of berry fruits

    Directory of Open Access Journals (Sweden)

    Stajčić Slađana M.

    2012-01-01

    Full Text Available The main chemical composition, contents of total phenolic (TPh, total flavonoid (TF, and total monomeric anthocyianin (TMA, as well as the antioxidant activity of two raspberry cultivars (Meeker and Willamette, two blackberry cultivars (Čačanska bestrna and Thornfree and wild bilberry were studied. The raspberry cultivars had the highest total solids among fruits investigated. Bilberry fruits had the highest sugar-to-acid ratio. Blackberry fruits were richer in crude fibers (cellulose in comparison to raspberry and bilberry fruits. The content of pectic substances was highest in the bilberry. Also, bilberry had a highest content of TPh (808.12 mg GAE/100 g FW, TF (716.31 mg RE/100 g FW and TMA (447.83 mg CGE/100 g FW. The antioxidant activity was evaluated spectrophotometrically, using 2,2-diphenyl-1-picrylhydrazyl (DPPH radical scavenging activity assay. The DPPH free radical scavenging activity, expressed as the EC50 value (in mg of fresh weight of berry fruit per ml of the reaction mixture, of bilberry (0.3157 ± 0.0145 mg/ml was the highest. These results also showed that the antioxidant value of 100 g FW bilberry, raspberry - Willamette, raspberry - Meeker, blackberry - Čačanska bestrna and blackberry - Thornfree is equivalent to 576.50 mg, 282.74 mg, 191.58 mg, 222.28 mg and 272.01 mg of vitamin C, respectively. There was a significant positive correlation between the antioxidant activities and content of total phenolics (RTPh 2=0.9627, flavonoids (RTF 2=0.9598 and anthocyanins (RTMA 2=0.9496 in berry fruits. [Projekat Ministarstva nauke Republike Srbije, br. TR 31044

  19. A high-throughput chemically induced inflammation assay in zebrafish

    Directory of Open Access Journals (Sweden)

    Liebel Urban

    2010-12-01

    Full Text Available Abstract Background Studies on innate immunity have benefited from the introduction of zebrafish as a model system. Transgenic fish expressing fluorescent proteins in leukocyte populations allow direct, quantitative visualization of an inflammatory response in vivo. It has been proposed that this animal model can be used for high-throughput screens aimed at the identification of novel immunomodulatory lead compounds. However, current assays require invasive manipulation of fish individually, thus preventing high-content screening. Results Here we show that specific, noninvasive damage to lateral line neuromast cells can induce a robust acute inflammatory response. Exposure of fish larvae to sublethal concentrations of copper sulfate selectively damages the sensory hair cell population inducing infiltration of leukocytes to neuromasts within 20 minutes. Inflammation can be assayed in real time using transgenic fish expressing fluorescent proteins in leukocytes or by histochemical assays in fixed larvae. We demonstrate the usefulness of this method for chemical and genetic screens to detect the effect of immunomodulatory compounds and mutations affecting the leukocyte response. Moreover, we transformed the assay into a high-throughput screening method by using a customized automated imaging and processing system that quantifies the magnitude of the inflammatory reaction. Conclusions This approach allows rapid screening of thousands of compounds or mutagenized zebrafish for effects on inflammation and enables the identification of novel players in the regulation of innate immunity and potential lead compounds toward new immunomodulatory therapies. We have called this method the chemically induced inflammation assay, or ChIn assay. See Commentary article: http://www.biomedcentral.com/1741-7007/8/148.

  20. A new extension of the polarizable continuum model: Toward a quantum chemical description of chemical reactions at extreme high pressure.

    Science.gov (United States)

    Cammi, Roberto

    2015-11-15

    A quantum chemical method for studying potential energy surfaces of reactive molecular systems at extreme high pressures is presented. The method is an extension of the standard Polarizable Continuum Model that is usually used for Quantum Chemical study of chemical reactions at a standard condition of pressure. The physical basis of the method and the corresponding computational protocol are described in necessary detail, and an application of the method to the dimerization of cyclopentadiene (up to 20 GPa) is reported.

  1. Chemical composition and antibacterial activity of Opuntia ficus-indica f. inermis (cactus pear) flowers.

    Science.gov (United States)

    Ennouri, Monia; Ammar, Imene; Khemakhem, Bassem; Attia, Hamadi

    2014-08-01

    Opuntia ficus-indica f. inermis (cactus pear) flowers have wide application in folk medicine. However, there are few reports focusing on their biological activity and were no reports on their chemical composition. The nutrient composition and hexane extracts of Opuntia flowers at 4 flowering stages and their antibacterial and antifungal activities were investigated. The chemical composition showed considerable amounts of fiber, protein, and minerals. Potassium (K) was the predominant mineral followed by calcium (Ca), magnesium (Mg), sodium (Na), iron (Fe), and zinc (Zn). The main compounds in the various hexane extracts were 9.12-octadecadienoic acid (29-44%) and hexadecanoic acid (8.6-32%). The antibacterial activity tests showed that O. inermis hexane extracts have high effectiveness against Escherichia coli and Staphylococcus aureus, making this botanical source a potential contender as a food preservative or food control additive.

  2. Antioxidant Activities of Chemical Constituents Isolated from Echinops orientalis Trauv.

    Directory of Open Access Journals (Sweden)

    Ramazan Erenler

    2014-01-01

    Full Text Available The genus Echinops belonging to the Asteraceae family comprises 130 species. The dried leaves and seeds of Echinops orientalis Trauv. were extracted separately with methanol. Apigenin-7-O-(6"-trans-p-coumaroyl- b -D-glucopyranoside 1, and Apigenin-7-O- b -D glucoside 2 were isolated from leaves and 1-methoxycarbonylindole 3 and beta-sitositerol 4 were isolated from seeds. The compounds were isolated by chromatographic techniques, based on column chromatography, preparative TLC and identified by spectroscopic methods including 1D-, 2D-NMR, UV, IR, HPLC-QTOF/MS. Isolated compounds and extracts were applied to antioxidant activity tests. While s eeds and leaves extracts have high DPPH and moderate ABTS radical scavenging activities, the isolated flavones exhibited high cation radical scavenging activities.

  3. On the role of high performance computing for simulating subsurface flow and chemical migration

    Energy Technology Data Exchange (ETDEWEB)

    Tompson, A.; Ashby, S.; Falgout, R.; Smith, S.

    1993-06-01

    The use of large-scale computing for simulating fluid flow and chemical migration in subsurface formations is reviewed. Increasingly, intensive, highly-resolved model calculations are being used experimentally to study the impacts of small-scale material heterogeneities on coupled flow and transport phenomena, and are becoming easier to carry out with advanced computing hardware. These issues are illustrated through an example problem focused on the calculation of steady fluid flow and chemical migration in a detailed, three-dimensional formation with synthetically-derived nonuniformities in material properties. Here the interest is in examining the coupled impacts on chemical mobility induced by nonuniform sorption reactions and heterogeneous flow fields. Ongoing activities are now emphasizing parallel computations for larger, dynamic, and nonlinear (two-phase) flow problems, improved interpretive methods for defining detailed material property distributions, as well as specific applications at real field sites.

  4. Observations of atmospheric chemical deposition to high Arctic snow

    Science.gov (United States)

    Macdonald, Katrina M.; Sharma, Sangeeta; Toom, Desiree; Chivulescu, Alina; Hanna, Sarah; Bertram, Allan K.; Platt, Andrew; Elsasser, Mike; Huang, Lin; Tarasick, David; Chellman, Nathan; McConnell, Joseph R.; Bozem, Heiko; Kunkel, Daniel; Duan Lei, Ying; Evans, Greg J.; Abbatt, Jonathan P. D.

    2017-05-01

    Rapidly rising temperatures and loss of snow and ice cover have demonstrated the unique vulnerability of the high Arctic to climate change. There are major uncertainties in modelling the chemical depositional and scavenging processes of Arctic snow. To that end, fresh snow samples collected on average every 4 days at Alert, Nunavut, from September 2014 to June 2015 were analyzed for black carbon, major ions, and metals, and their concentrations and fluxes were reported. Comparison with simultaneous measurements of atmospheric aerosol mass loadings yields effective deposition velocities that encompass all processes by which the atmospheric species are transferred to the snow. It is inferred from these values that dry deposition is the dominant removal mechanism for several compounds over the winter while wet deposition increased in importance in the fall and spring, possibly due to enhanced scavenging by mixed-phase clouds. Black carbon aerosol was the least efficiently deposited species to the snow.

  5. Chemical Constituents of Descurainia sophia L. and its Biological Activity

    Directory of Open Access Journals (Sweden)

    Nawal H. Mohamed

    2009-01-01

    Full Text Available Seven coumarin compounds were isolated for the first time from the aerial parts of DescurainiaSophia L. identified as scopoletine, scopoline, isoscopoline, xanthtoxol, xanthtoxin, psoralene and bergaptane.Three flavonoids namely kaempferol, quercetine and isorhamnetine and three terpenoid compounds -sitosterol-amyrine and cholesterol were also isolated and identified by physical and chemical methods; melting point, Rfvalues, UV and 1H NMR spectroscopy. Qualitative and quantitative analyses of free and protein amino acidsusing amino acid analyzer were performed. The plant contains 15 amino acids as free and protein amino acidswith different range of concentrations. Fatty acid analysis using GLC, revealed the presence of 10 fatty acids,the highest percentage was palmitic acid (27.45 % and the lowest was lauric acid (0.13%. Biological screeningof alcoholic extract showed that the plant is highly safe and has analgesic, antipyretic and anti-inflammatoryeffects.

  6. Hydrogeology, chemical and microbial activity measurement through deep permafrost

    Energy Technology Data Exchange (ETDEWEB)

    Stotler, R.L.; Frape, S.K.; Freifeld, B.M.; Holden, B.; Onstott, T.C.; Ruskeeniemi, T.; Chan, E.

    2010-04-01

    Little is known about hydrogeochemical conditions beneath thick permafrost, particularly in fractured crystalline rock, due to difficulty in accessing this environment. The purpose of this investigation was to develop methods to obtain physical, chemical, and microbial information about the subpermafrost environment from a surface-drilled borehole. Using a U-tube, gas and water samples were collected, along with temperature, pressure, and hydraulic conductivity measurements, 420 m below ground surface, within a 535 m long, angled borehole at High Lake, Nunavut, Canada, in an area with 460-m-thick permafrost. Piezometric head was well above the base of the permafrost, near land surface. Initial water samples were contaminated with drill fluid, with later samples <40% drill fluid. The salinity of the non-drill fluid component was <20,000 mg/L, had a Ca/Na ratio above 1, with {delta}{sup 18}O values {approx}5{per_thousand} lower than the local surface water. The fluid isotopic composition was affected by the permafrost-formation process. Nonbacteriogenic CH{sub 4} was present and the sample location was within methane hydrate stability field. Sampling lines froze before uncontaminated samples from the subpermafrost environment could be obtained, yet the available time to obtain water samples was extended compared to previous studies. Temperature measurements collected from a distributed temperature sensor indicated that this issue can be overcome easily in the future. The lack of methanogenic CH{sub 4} is consistent with the high sulfate concentrations observed in cores. The combined surface-drilled borehole/U-tube approach can provide a large amount of physical, chemical, and microbial data from the subpermafrost environment with few, controllable, sources of contamination.

  7. A coupled theory for chemically active and deformable solids with mass diffusion and heat conduction

    Science.gov (United States)

    Zhang, Xiaolong; Zhong, Zheng

    2017-10-01

    To analyse the frequently encountered thermo-chemo-mechanical problems in chemically active material applications, we develop a thermodynamically-consistent continuum theory of coupled deformation, mass diffusion, heat conduction and chemical reaction. Basic balance equations of force, mass and energy are presented at first, and then fully coupled constitutive laws interpreting multi-field interactions and evolving equations governing irreversible fluxes are constructed according to the energy dissipation inequality and the chemical kinetics. To consider the essential distinction between mass diffusion and chemical reactions in affecting free energy and dissipations of a highly coupled system, we regard both the concentrations of diffusive species and the extent of reaction as independent state variables. This new formulation then distinguishes between the energy contribution from the diffusive species entering the solid and that from the subsequent chemical reactions occurring among these species and the host solid, which not only interact with stresses or strains in different manners and on different time scales, but also induce different variations of solid microstructures and material properties. Taking advantage of this new description, we further establish a specialized isothermal model to predict precisely the transient chemo-mechanical response of a swelling solid with a proposed volumetric constraint that accounts for material incompressibility. Coupled kinetics is incorporated to capture the volumetric swelling of the solid caused by imbibition of external species and the simultaneous dilation arised from chemical reactions between the diffusing species and the solid. The model is then exemplified with two numerical examples of transient swelling accompanied by chemical reaction. Various ratios of characteristic times of diffusion and chemical reaction are taken into account to shed light on the dependency on kinetic time scales of evolution patterns for

  8. Application of the Activity Framework for Assessing Aquatic Ecotoxicology Data for Organic Chemicals

    DEFF Research Database (Denmark)

    Thomas, Paul; Dawick, James; Lampi, Mark;

    2015-01-01

    Toxicological research in the 1930s gave the first indications of the link between narcotic toxicity and the chemical activity of organic chemicals. More recently, chemical activity has been proposed as a novel exposure parameter that describes the fraction of saturation and that quantifies the p...

  9. Chemical properties and antioxidant and antimicrobial activities of Slovenian propolis.

    Science.gov (United States)

    Mavri, Ana; Abramovič, Helena; Polak, Tomaž; Bertoncelj, Jasna; Jamnik, Polona; Smole Možina, Sonja; Jeršek, Barbara

    2012-08-01

    The chemical composition as well as the antioxidant and antimicrobial activities of two EtOH extracts of propolis (PEEs) from Slovenia were determined. EtOH was used as extracting solvent at 70 and 96%, providing the extracts PEE70 and PEE96, respectively. The extraction with 70% EtOH was more efficient than that with 96% EtOH, as the PEE70 was richer in total phenolic compounds than the PEE96. The Slovenian propolis was characterized by different phenolic acids and flavonoids. The PEE96 was slightly richer in three specific compounds, i.e., caffeic acid, ferulic acid, and luteolin, while all other substances detected showed higher contents in the PEE70. The PEE70 showed a stronger reducing power and ability to scavenge free radicals and metal ions than the PEE96. Both PEEs were in the main more effective against Gram-positive bacteria than against fungi and Gram-negative bacteria like Salmonella and Escherichia coli, with the exception of Campylobacter. The PEE96 decreased the intracellular oxidation in Saccharomyces cerevisiae in a dose-dependent manner. The antimicrobial activities and antioxidant properties were related to the total phenolic contents. The two PEEs have the potential for use as natural antimicrobial and antioxidant additives in foods.

  10. Salacia crassifolia (Celastraceae: CHEMICAL CONSTITUENTS AND ANTIMICROBIAL ACTIVITY

    Directory of Open Access Journals (Sweden)

    Vanessa G. Rodrigues

    2015-02-01

    Full Text Available The phytochemical study of hexane extract from leaves of Salacia crassifolia resulted in the isolation of 3β-palmitoxy-urs-12-ene, 3-oxofriedelane, 3β-hydroxyfriedelane, 3-oxo-28-hydroxyfriedelane, 3-oxo-29-hydroxyfriedelane, 28,29-dihydroxyfriedelan-3-one, 3,4-seco-friedelan-3-oic acid, 3β-hydroxy-olean-9(11:12-diene and the mixture of α-amirin and β-amirin. β-sitosterol, the polymer gutta-percha, squalene and eicosanoic acid were also isolated. The chemical structures of these constituents were established by IR, 1H and 13C NMR spectral data. Crude extracts and the triterpenes were tested against Entamoeba histolytica, Giardia lamblia and Trichomonas vaginalis and no activity was observed under the in vitro assay conditions. The hexane, chloroform, ethyl acetate and ethanol crude extracts, and the constituent 3,4-seco-friedelan-3-oic acid and 28,29-dihydroxyfriedelan-3-one showed in vitro antimicrobial activity against Salmonella typhimurium, Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Bacillus cereus, Listeria monocytogenes, Streptococcus sanguinis and Candida albicans.

  11. Chemical Composition, Antifungal and Insecticidal Activities of Hedychium Essential Oils

    Directory of Open Access Journals (Sweden)

    Kanniah Rajasekaran

    2013-04-01

    Full Text Available The antimicrobial properties of essential oils have been documented, and their use as “biocides” is gaining popularity. The aims of this study were to analyze the chemical composition and assess the biological activities of Hedychium essential oils. Oils from 19 Hedychium species and cultivars were analyzed by gas chromatography (GC and gas chromatography-mass spectrometry (GC-MS techniques. The antifungal and insecticidal activities of these oils were tested against Colletotrichum acutatum, C. fragariae, and C. gloeosporioides, and three insects, the azalea lace bug (Stephanitis pyrioides, the yellow fever mosquito (Aedes aegypti, and the red imported fire ant (Solenopsis invicta. Hedychium oils were rich in monoterpenes and sesquiterpenes, especially 1,8-cineole (0.1%–42%, linalool (<0.1%–56%, a-pinene (3%–17%, b-pinene (4%–31%, and (E-nerolidol (0.1%–20%. Hedychium oils had no antifungal effect on C. gloeosporioides, C. fragariae, and C. acutatum, but most Hedychium oils effectively killed azalea lace bugs. The oils also show promise as an adult mosquito repellent, but they would make rather poor larvicides or adulticides for mosquito control. Hedychium oils acted either as a fire ant repellent or attractant, depending on plant genotype and oil concentration.

  12. Physical and chemical performances of high Al steels

    Institute of Scientific and Technical Information of China (English)

    WANG Hai-chuan; DONG Yuan-chi; ZHANG Wen-ming; WANG Shi-jun; ZHOU Yun

    2005-01-01

    The effects of acid-soluble Al content on the physical and chemical performances of high Al steels were investigated. The results show that the distribution of acid-soluble Al in steel substrate is uniform. With increasing Al content, the strength and toughness of steels decrease a little but the hardness increases. The average yield strength and tensile strength are 425 MPa and 570 MPa, respectively, and the Rockwell hardness is 89.7. For non-Al steels the average oxidation rate is up to 0.421 mg/(cm2·h) at 1 373 K. For high Al steels, when the mass fraction of Al is less than 5%, there is a thinner gray oxidized layer on surface and the oxidation rate is high; when the mass fraction of Al is more than 8.0%, the thin, close and yellow glossing film still exists, and the average oxidation rate is only 0.016 mg/(cm2·h).

  13. Seasonal Variation, Chemical Composition and Antioxidant Activity of Brazilian Propolis Samples

    Directory of Open Access Journals (Sweden)

    Érica Weinstein Teixeira

    2010-01-01

    Full Text Available Total phenolic contents, antioxidant activity and chemical composition of propolis samples from three localities of Minas Gerais state (southeast Brazil were determined. Total phenolic contents were determined by the Folin–Ciocalteau method, antioxidant activity was evaluated by DPPH, using BHT as reference, and chemical composition was analyzed by GC/MS. Propolis from Itapecerica and Paula Cândido municipalities were found to have high phenolic contents and pronounced antioxidant activity. From these extracts, 40 substances were identified, among them were simple phenylpropanoids, prenylated phenylpropanoids, sesqui- and diterpenoids. Quantitatively, the main constituent of both samples was allyl-3-prenylcinnamic acid. A sample from Virginópolis municipality had no detectable phenolic substances and contained mainly triterpenoids, the main constituents being α- and β-amyrins. Methanolic extracts from Itapecerica and Paula Cândido exhibited pronounced scavenging activity towards DPPH, indistinguishable from BHT activity. However, extracts from Virginópolis sample exhibited no antioxidant activity. Total phenolic substances, GC/MS analyses and antioxidant activity of samples from Itapecerica collected monthly over a period of 1 year revealed considerable variation. No correlation was observed between antioxidant activity and either total phenolic contents or contents of artepillin C and other phenolic substances, as assayed by CG/MS analysis.

  14. Brazilian Propolis: Correlation between Chemical Composition and Antimicrobial Activity

    Directory of Open Access Journals (Sweden)

    Kelly Salomão

    2008-01-01

    Full Text Available The chemical composition of ethanol extracts from samples of Brazilian propolis (EEPs determined by HPLC and their activity against Trypanosoma cruzi, Staphylococcus aureus, Streptococcus pneumoniae, Klebisiella pneumoniae, Candida albicans, Sporothrix schenckii and Paracoccidioides brasiliensis were determined. Based on the predominant botanical origin in the region of samples' collection, the 10 extracts were separated into three groups: A (B. dracunculifolia + Auraucaria spp, B (B. dracunculifolia and C (Araucaria spp. Analysis by the multiple regression of all the extracts together showed a positive correlation, higher concentrations leading to higher biological effect, of S. aureus with p-coumaric acid (PCUM and 3-(4-hydroxy-3-(oxo-butenyl-phenylacrylic acid (DHCA1 and of trypomastigotes of T. cruzi with 3,5-diprenyl-4-hydroxycinnamic acid derivative 4 (DHCA4 and 2,2-dimethyl-6-carboxyethenyl-2H-1-benzopyran (DCBEN. When the same approach was employed for each group, due to the small number of observations, the statistical test gave unreliable results. However, an overall analysis revealed for group A an association of S. aureus with caffeic acid (CAF and dicaffeoylquinic acid 3 (CAFQ3, of S. pneumoniae with CAFQ3 and monocaffeoylquinic acid 2 (CAFQ2 and of T. cruzi also with CAFQ3. For group B, a higher activity against S. pneumoniae was associated DCBEN and for T. cruzi with CAF. For group C no association was observed between the anitmicrobial effect and any component of the extracts. The present study reinforces the relevance of PCUM and derivatives, especially prenylated ones and also of caffeolyquinic acids, on the biological activity of Brazilian propolis.

  15. Chemical composition and antioxidant activities of Broussonetia papyrifera fruits.

    Directory of Open Access Journals (Sweden)

    Jie Sun

    Full Text Available Fruits of Broussonetia papyrifera from South China were analyzed for their total chemical composition, and antioxidant activities in ethanol and aqueous extracts. In the fruit of this plant, the crude protein, crude fat and carbohydrates was 7.08%, 3.72% and 64.73% of dry weight, respectively. The crude protein, crude fat and carbohydrates were 15.71%, 20.51% and 36.09% of dry weight, respectively. Fatty acid and amino acid composition of the fruit were analyzed. Unsaturated fatty acid concentration was 70.6% of the total fatty acids. The percentage of the essential amino acids (EAAs was 40.60% of the total amino acids. Furthermore, B. papyrifera fruit are rich in many mineral elements and vitamins. Total phenolic content was assessed using the Folin-Ciocalteau assay, whereas antioxidant activities were assessed by measuring the ability of the two extracts to scavenge DPPH radicals, inhibit peroxidation, and chelate ferric ions. Their reducing power was also assessed. Results indicated that the aqueous extract of B. papyrifera was a more potent reducing agent and radical-scavenger than the ethanol extract. GC-MS analysis of the ethanol extract showed the presence of some acid-containing compounds. The changes in total phenolic content and antioxidant capacity in B. papyrifera from four different regions grown under normal conditions were assessed. The antioxidant activity of different extracts was positively associated with their total phenolic content. These results suggest that the fruit of B. papyrifera could be used in dietary supplement preparations, or as a food additive, for nutritional gain, or to prevent oxidation in food products.

  16. Preparation of porous bio-char and activated carbon from rice husk by leaching ash and chemical activation.

    Science.gov (United States)

    Ahiduzzaman, Md; Sadrul Islam, A K M

    2016-01-01

    Preparation porous bio-char and activated carbon from rice husk char study has been conducted in this study. Rice husk char contains high amount silica that retards the porousness of bio-char. Porousness of rice husk char could be enhanced by removing the silica from char and applying heat at high temperature. Furthermore, the char is activated by using chemical activation under high temperature. In this study no inert media is used. The study is conducted at low oxygen environment by applying biomass for consuming oxygen inside reactor and double crucible method (one crucible inside another) is applied to prevent intrusion of oxygen into the char. The study results shows that porous carbon is prepared successfully without using any inert media. The adsorption capacity of material increased due to removal of silica and due to the activation with zinc chloride compared to using raw rice husk char. The surface area of porous carbon and activated carbon are found to be 28, 331 and 645 m(2) g(-1) for raw rice husk char, silica removed rice husk char and zinc chloride activated rice husk char, respectively. It is concluded from this study that porous bio-char and activated carbon could be prepared in normal environmental conditions instead of inert media. This study shows a method and possibility of activated carbon from agro-waste, and it could be scaled up for commercial production.

  17. Comparison on pore development of activated carbon produced by chemical and physical activation from palm empty fruit bunch

    Science.gov (United States)

    Hidayat, A.; Sutrisno, B.

    2016-11-01

    It is well-known that activated carbon is considered to be the general adsorbent due to the large range of applications. Numerous works are being continuously published concerning its use as adsorbent for: treatment of potable water; purification of air; retention of toxins by respirators; removal of organic and inorganic pollutants from flue gases and industrial waste gases and water; recuperation of solvents and hydrocarbons volatilized from petroleum derivatives; catalysis; separation of gas mixtures (molecularsieve activated carbons); storage of natural gas and hydrogen; energy storage in supercapacitors; recovery of gold, silver and othernoble metals; etc. This work presents producing activated carbons from palm empty fruit bunch using both physical activation with CO2 and chemical activation with KOH. The resultant activated carbons were characterized by measuring their porosities and pore size distributions. A comparison of the textural characteristics and surface chemistry of the activated carbon from palm empty fruit bunch by the CO2 and the KOH activation leads to the following findings: An activated carbon by the CO2 activation under the optimum conditions has a BET surface area of 717 m2/g, while that by the KOH activation has a BET surface area of 613 m2/g. The CO2 activation generated a highly microporous carbon (92%) with a Type-I isotherm, while the KOH activation generated a mesoporous one (70%) with a type-IV isotherm, the pore volumes are 0.2135 and 0.7426 cm3.g-1 respectively. The average pore size of the activated carbons is 2.72 and 2.56 nm for KOH activation and CO2 activation, respectively. The FT-IR spectra indicated significant variation in the surface functional groups are quite different for the KOH activated and CO2 activated carbons.

  18. Concentration of specific amino acids at the catalytic/active centers of highly-conserved "housekeeping" enzymes of central metabolism in archaea, bacteria and Eukaryota: is there a widely conserved chemical signal of prebiotic assembly?

    Science.gov (United States)

    Pollack, J Dennis; Pan, Xueliang; Pearl, Dennis K

    2010-06-01

    In alignments of 1969 protein sequences the amino acid glycine and others were found concentrated at most-conserved sites within approximately 15 A of catalytic/active centers (C/AC) of highly conserved kinases, dehydrogenases or lyases of Archaea, Bacteria and Eukaryota. Lysine and glutamic acid were concentrated at least-conserved sites furthest from their C/ACs. Logistic-regression analyses corroborated the "movement" of glycine towards and lysine away from their C/ACs: the odds of a glycine occupying a site were decreased by 19%, while the odds for a lysine were increased by 53%, for every 10 A moving away from the C/AC. Average conservation of MSA consensus sites was highest surrounding the C/AC and directly decreased in transition toward model's peripheries. Findings held with statistical confidence using sequences restricted to individual Domains or enzyme classes or to both. Our data describe variability in the rate of mutation and likelihoods for phylogenetic trees based on protein sequence data and endorse the extension of substitution models by incorporating data on conservation and distance to C/ACs rather than only using cumulative levels. The data support the view that in the most-conserved environment immediately surrounding the C/AC of taxonomically distant and highly conserved essential enzymes of central metabolism there are amino acids whose identity and degree of occupancy is similar to a proposed amino acid set and frequency associated with prebiotic evolution.

  19. 40 CFR 799.5085 - Chemical testing requirements for certain high production volume chemicals.

    Science.gov (United States)

    2010-07-01

    ... (preferred species), rat, or Chinese hamster): 40 CFR 799.9538 OR Mammalian Erythrocyte Micronucleus Test (in... CHEMICAL SUBSTANCE AND MIXTURE TESTING REQUIREMENTS Multichemical Test Rules § 799.5085 Chemical testing... paragraph (j) of this section at any time from April 17, 2006 to the end of the test data...

  20. Clusia criuva Cambess. (Clusiaceae): anatomical characterization, chemical prospecting and antioxidant activity.

    Science.gov (United States)

    Silva, Karla M M DA; Nóbrega, Andrea B DA; Lessa, Bruno; Anholeti, Maria Carolina; Lobão, Adriana Q; Valverde, Alessandra L; Paiva, Selma R DE; Joffily, Ana

    2017-07-31

    This study aims the anatomical description and chemical characterization of aerial parts of Clusia criuva Cambess., Clusiaceae in addition to the evaluation of the antioxidant activity of crude extracts, correlated to the flavonoid content. The morphological characterization was performed using traditional techniques of plant anatomy. For phytochemical studies, crude extracts were obtained by static maceration and analyzed by thin layer chromatography. The antioxidant activity and the flavonoids content were determined by colorimetric methods involving, respectively, 2,2-diphenyl-1-picrylhydrazyl free radical and aluminum chloride. C. criuva has uniseriate epidermis, paracytic stomata, hypostomatic leaves, cuticular flanges and cordiform vascular cylinder with accessory bundles. Chemical prospecting confirmed the abundant presence of terpenes and phenols in the extracts of leaves and of fruits. The methanolic extract of seeds showed the lowest EC50 value, but the methanolic extract of pericarps exhibited the highest maximum antioxidant activity. The results suggested a high percentage of flavonoids in the hexanic extract of pericarps, however, this could represent, in fact, the presence of benzophenones. Secretory ducts and the shape of the midrib are diagnostic for C. criuva. The antioxidant activity is not directly related to the flavonoids. The results indicate the importance of future studies with C. criuva chemical constituents.

  1. Clusia criuva Cambess. (Clusiaceae: anatomical characterization, chemical prospecting and antioxidant activity

    Directory of Open Access Journals (Sweden)

    KARLA M.M. DA SILVA

    Full Text Available ABSTRACT This study aims the anatomical description and chemical characterization of aerial parts of Clusia criuva Cambess., Clusiaceae in addition to the evaluation of the antioxidant activity of crude extracts, correlated to the flavonoid content. The morphological characterization was performed using traditional techniques of plant anatomy. For phytochemical studies, crude extracts were obtained by static maceration and analyzed by thin layer chromatography. The antioxidant activity and the flavonoids content were determined by colorimetric methods involving, respectively, 2,2-diphenyl-1-picrylhydrazyl free radical and aluminum chloride. C. criuva has uniseriate epidermis, paracytic stomata, hypostomatic leaves, cuticular flanges and cordiform vascular cylinder with accessory bundles. Chemical prospecting confirmed the abundant presence of terpenes and phenols in the extracts of leaves and of fruits. The methanolic extract of seeds showed the lowest EC50 value, but the methanolic extract of pericarps exhibited the highest maximum antioxidant activity. The results suggested a high percentage of flavonoids in the hexanic extract of pericarps, however, this could represent, in fact, the presence of benzophenones. Secretory ducts and the shape of the midrib are diagnostic for C. criuva. The antioxidant activity is not directly related to the flavonoids. The results indicate the importance of future studies with C. criuva chemical constituents.

  2. Determining the chemical activity of hydrophobic organic compounds in soil using polymer coated vials

    Directory of Open Access Journals (Sweden)

    Jönsson Jan-Åke

    2008-05-01

    Full Text Available Abstract Background In soils contaminated by hydrophobic organic compounds, the concentrations are less indicative of potential exposure and distribution than are the associated chemical activities, fugacities and freely dissolved concentrations. The latter can be measured by diffusive sampling into thin layers of polymer, as in, for example, solid phase micro-extraction. Such measurements require equilibrium partitioning of analytes into the polymer while ensuring that the sample is not depleted. We introduce the validation of these requirements based on parallel sampling into polymer layers of different thicknesses. Results Equilibrium sampling devices were made by coating glass vials internally with 3–12 μm thick layers of polydimethylsiloxane (PDMS. These were filled with slurries of a polluted soil and gently agitated for 5 days. The concentrations of 7 polycyclic aromatic hydrocarbons (PAHs in the PDMS were measured. Validation confirmed fulfilment of the equilibrium sampling requirements and high measurement precision. Finally, chemical activities of the PAHs in the soil were determined from their concentrations and activity coefficients in the PDMS. Conclusion PAHs' thermodynamic activities in a soil test material were determined via a method of uptake into PDMS. This can be used to assess chemical exposure and predict diffusion and partitioning processes.

  3. Thymus mastichina: chemical constituents and their anti-cancer activity.

    Science.gov (United States)

    Gordo, Joana; Máximo, Patrícia; Cabrita, Eurico; Lourenço, Ana; Oliva, Abel; Almeida, Joana; Filipe, Mariana; Cruz, Pedro; Barcia, Rita; Santos, Miguel; Cruz, Helder

    2012-11-01

    The cytotoxicity-guided study of the dichloromethane and ethanol extracts of Thymus mastichina L. using the HCT colon cancer cell line allowed the identification of nine compounds, sakuranetin (1), sterubin (2), oleanolic acid (3), ursolic acid (4), lutein (5), beta-sitosterol (6), rosmarinic acid (7), 6-hydroxyluteolin-7-O-beta-glucopyranoside (8), and 6-hydroxyapigenin-7-O-beta-glucopyranoside (9). All compounds were tested for their cytotoxicity against the HCT colon cancer cell line. Compound 4 showed cytotoxicity with GI50 value of 6.8 microg/mL. A fraction composed of a mixture (1:1) of triterpenoid acids 3 and 4 displayed improved cytotoxicity with a GI50 of 2.8 microg/mL suggesting a synergistic behavior. This is the first report on the chemical constituents of Thymus mastichina L. based on structural assignments by spectroscopic analysis. The presence of these constituents identified by colon cancer cytotoxicity-guided activity indicates that extracts of T. mastichina L. may have a protective effect against colon cancers.

  4. Automated Structure-Activity Relationship Mining: Connecting Chemical Structure to Biological Profiles.

    Science.gov (United States)

    Wawer, Mathias J; Jaramillo, David E; Dančík, Vlado; Fass, Daniel M; Haggarty, Stephen J; Shamji, Alykhan F; Wagner, Bridget K; Schreiber, Stuart L; Clemons, Paul A

    2014-06-01

    Understanding the structure-activity relationships (SARs) of small molecules is important for developing probes and novel therapeutic agents in chemical biology and drug discovery. Increasingly, multiplexed small-molecule profiling assays allow simultaneous measurement of many biological response parameters for the same compound (e.g., expression levels for many genes or binding constants against many proteins). Although such methods promise to capture SARs with high granularity, few computational methods are available to support SAR analyses of high-dimensional compound activity profiles. Many of these methods are not generally applicable or reduce the activity space to scalar summary statistics before establishing SARs. In this article, we present a versatile computational method that automatically extracts interpretable SAR rules from high-dimensional profiling data. The rules connect chemical structural features of compounds to patterns in their biological activity profiles. We applied our method to data from novel cell-based gene-expression and imaging assays collected on more than 30,000 small molecules. Based on the rules identified for this data set, we prioritized groups of compounds for further study, including a novel set of putative histone deacetylase inhibitors.

  5. Heat-activated Plasmonic Chemical Sensors for Harsh Environments

    Energy Technology Data Exchange (ETDEWEB)

    Carpenter, Michael [SUNY Polytechnic Inst., Albany, NY (United States); Oh, Sang-Hyun [Univ. of Minnesota, Minneapolis, MN (United States)

    2015-12-01

    A passive plasmonics based chemical sensing system to be used in harsh operating environments was investigated and developed within this program. The initial proposed technology was based on combining technologies developed at the SUNY Polytechnic Institute Colleges of Nanoscale Science and Engineering (CNSE) and at the University of Minnesota (UM). Specifically, a passive wireless technique developed at UM was to utilize a heat-activated plasmonic design to passively harvest the thermal energy from within a combustion emission stream and convert this into a narrowly focused light source. This plasmonic device was based on a bullseye design patterned into a gold film using focused ion beam methods (FIB). Critical to the design was the use of thermal stabilizing under and overlayers surrounding the gold film. These stabilizing layers were based on both atomic layer deposited films as well as metal laminate layers developed by United Technologies Aerospace Systems (UTAS). While the bullseye design was never able to be thermally stabilized for operating temperatures of 500oC or higher, an alternative energy harvesting design was developed by CNSE within this program. With this new development, plasmonic sensing results are presented where thermal energy is harvested using lithographically patterned Au nanorods, replacing the need for an external incident light source. Gas sensing results using the harvested thermal energy are in good agreement with sensing experiments, which used an external incident light source. Principal Component Analysis (PCA) was used to reduce the wavelength parameter space from 665 variables down to 4 variables with similar levels of demonstrated selectivity. The method was further improved by patterning rods which harvested energy in the near infrared, which led to a factor of 10 decrease in data acquisition times as well as demonstrated selectivity with a reduced wavelength data set. The combination of a plasmonic-based energy harvesting

  6. Anisotropy vs chemical composition at ultra-high energies

    CERN Document Server

    Lemoine, Martin

    2009-01-01

    This paper proposes and discusses a test of the chemical composition of ultra-high energy cosmic rays that relies on the anisotropy patterns measured as a function of energy. In particular, we show that if one records an anisotropy signal produced by heavy nuclei of charge Z above an energy E_{thr}, one should record an even stronger (possibly much stronger) anisotropy at energies >E_{thr}/Z due to the proton component that is expected to be associated with the sources of the heavy nuclei. This conclusion remains robust with respect to the parameters characterizing the sources and it does not depend at all on the modelling of astrophysical magnetic fields. As a concrete example, we apply this test to the most recent data of the Pierre Auger Observatory. Assuming that the anisotropy reported above 55EeV is not a statistical accident, and that no significant anisotropy has been observed at energies 10^{45}Z^{-2}erg/s. Using this bound in conjunction with the above conclusions, we argue that the current PAO data...

  7. Microbial dechlorination activity during and after chemical oxidant treatment

    Energy Technology Data Exchange (ETDEWEB)

    Doğan-Subaşı, Eylem [Flemish Institute for Technological Research (VITO), Separation and Conversion Technology, Boeretang 200, 2400 Mol (Belgium); Laboratory of Microbial Ecology and Technology (LabMET), Ghent University, Coupure Links 653, 9000 Gent (Belgium); Bastiaens, Leen, E-mail: leen.bastiaens@vito.be [Flemish Institute for Technological Research (VITO), Separation and Conversion Technology, Boeretang 200, 2400 Mol (Belgium); Boon, Nico [Laboratory of Microbial Ecology and Technology (LabMET), Ghent University, Coupure Links 653, 9000 Gent (Belgium); Dejonghe, Winnie [Flemish Institute for Technological Research (VITO), Separation and Conversion Technology, Boeretang 200, 2400 Mol (Belgium)

    2013-11-15

    Highlights: • Combined treatment was possible below 0.5 g/L of KMnO{sub 4} and 1 g/L of Na{sub 2}S{sub 2}O{sub 8}. • By-products SO{sub 4}{sup 2−} and MnO{sub 2(s)} had inhibitory effects on dehalogenating bacteria. • Oxidation reduction potential (ORP) was identified as a crucial parameter for recovery of oxidant exposed cells. • Bioaugmentation is a necessity at 0.5 g/L of KMnO{sub 4} and 1 g/L of Na{sub 2}S{sub 2}O{sub 8} and above. -- Abstract: Potassium permanganate (PM) and sodium persulfate (PS) are used in soil remediation, however, their compatibility with a coinciding or subsequent biotreatment is poorly understood. In this study, different concentrations of PM (0.005–2 g/L) and PS (0.01–4.52 g/L) were applied and their effects on the abundance, activity, and reactivation potential of a dechlorinating enrichment culture were investigated. Expression of the tceA, vcrA and 16S rRNA genes of Dehalococcoides spp. were detected at 0.005–0.01 g/L PM and 0.01–0.02 g/L PS. However, with 0.5–2 g/L PM and 1.13–4.52 g/L PS no gene expression was recorded, neither were indicator molecules for total cell activity (Adenosine triphosphate, ATP) detected. Dilution did not promote the reactivation of the microbial cells when the redox potential was above −100 mV. Similarly, inoculated cells did not dechlorinate trichloroethene (TCE) above −100 mV. When the redox potential was decreased to −300 mV and the reactors were bioaugmented for a second time, dechlorination activity recovered, but only in the reactors with 1.13 and 2.26 g/L PS. In conclusion, our results show that chemical oxidants can be combined with a biotreatment at concentrations below 0.5 g/L PM and 1 g/L PS.

  8. Phthalides: Distribution in Nature, Chemical Reactivity, Synthesis, and Biological Activity.

    Science.gov (United States)

    León, Alejandra; Del-Ángel, Mayela; Ávila, José Luis; Delgado, Guillermo

    oxidation, reduction, addition, elimination, and cycloaddition reactions, and treatments with Lewis acids of (Z)-ligustilide have afforded linear dimers. Some intramolecular condensations and differentiated cyclizations of the dimeric phthalides have been carried out, providing evidences for the particular chemical reactivity of these compounds.Several structural modifications of phthalides have been carried out subjecting them to microbial transformations by different species of bacteria, fungi and algae, and these included resolutions of racemic mixtures and oxidations, among others.The [π4s + π2s] and [π2s + π2s] cycloadditions of (Z)-ligustilide for the synthesis of dimeric phthalides have been reported, and different approaches involving cyclizations, Alder-Rickert reactions, Sharpless asymmetric hydroxylations, or Grignard additions have been used for the synthesis of monomeric phthalides. The use of phthalides as building blocks for divergent oriented synthesis has been proven.Many of the naturally occurring phthalides display different biological activities including antibacterial, antifungal, insecticidal, cytotoxic, and anti-inflammatory effects, among many others, with a considerable recent research on the topic. In the case of compounds isolated from the Apiaceae, the bioactivities correlate with the traditional medicinal uses of the natural sources. Some monomeric phthalides have shown their ability to attenuate certain neurological diseases, including stroke, Alzheimer's and Parkinson's diseases.The present contribution covers the distribution of phthalides in nature and the findings in the structural diversity, chemical reactivity, biotransformations, syntheses, and bioactivity of natural and semisynthetic phthalides.

  9. Wellbore stability analysis in chemically active shale formations

    Directory of Open Access Journals (Sweden)

    Shi Xiang-Chao

    2016-01-01

    Full Text Available Maintaining wellbore stability involves significant challenges when drilling in low-permeability reactive shale formations. In the present study, a non-linear thermo-chemo-poroelastic model is provided to investigate the effect of chemical, thermal, and hydraulic gradients on pore pressure and stress distributions near the wellbores. The analysis indicates that when the solute concentration of the drilling mud is higher than that of the formation fluid, the pore pressure and the effective radial and tangential stresses decrease, and v. v. Cooling of the lower salinity formation decreases the pore pressure, radial and tangential stresses. Hole enlargement is the combined effect of shear and tensile failure when drilling in high-temperature shale formations. The shear and tensile damage indexes reveal that hole enlargement occurs in the vicinity of the wellbore at an early stage of drilling. This study also demonstrates that shale wellbore stability exhibits a time-delay effect due to changes in the pore pressure and stress. The delay time computed with consideration of the strength degradation is far less than that without strength degradation.

  10. Antimicrobial activity of Algerian propolis in foodborne pathogens and its quantitative chemical composition

    Directory of Open Access Journals (Sweden)

    Neila Nedji

    2014-12-01

    Full Text Available Objective: To evaluate the antimicrobial activity of propolis samples collected from different regions of Algeria and their chemical composition. Methods: The antibacterial activity of ethanolic extract of Algerian propolis against Bacillus cereus (IPA, Staphylococcus aureus (ATCC25923R, Escherichia coli (ATCC25922 and Pseudomonas aeruginosa (ATCC27893R was evaluated by the disc diffusion method and determined as an equivalent of the inhibition zones diameters after incubation of the cultures at 37 °C for 24 h. The investigation of the polyphenol and flavonoid contents was done spectrophotometrically. Results: The ethanolic extract of Algerian propolis samples inhibited the growth of all examined microorganisms with the highest antimicrobial activity against the Gram-positive bacteria. Polyphenol and flavonoids contents were variable, depending on the propolis samples and a positive correlation between antimicrobial activity and chemical composition was observed. Conclusions: Antimicrobial activity, polyphenol and flavonoid contents were variable, depending on the propolis sample. The strong antimicrobial activity of Algerian propolis may be due to high total phenolic and flavonoid contents and this study suggests potential use of propolis in foods.

  11. 76 FR 1067 - Testing of Certain High Production Volume Chemicals; Second Group of Chemicals

    Science.gov (United States)

    2011-01-07

    ...; Albemarle Corporation (Albemarle); American Chemistry Council (ACC); Chlorinated Paraffins Industry... Responsible Medicine (PCRM), the Alternatives Research Development Foundation (ARDF), and the American Anti... Medicine. B. Are these chemical substances produced and/or imported in substantial quantities? EPA...

  12. Chemical profiling of Centella asiatica under different extraction solvents and its antibacterial activity, antioxidant activity

    Directory of Open Access Journals (Sweden)

    Supawan Rattanakom

    2015-12-01

    Full Text Available Centella asiatica (L urban, synonym Hydrocotyle asiatica, is found almost all over the world. This plant is famous in Ayurvedic medicine and used in the management of central nervous system, skin and gastrointestinal disorder. Thus this research had been done to evaluate the effect of solvent extraction (Ethanol, Chloroform and Hexane of C. asiatica on chemical profile, antioxidant activity and antibacterial activity against some foodborne pathogens. The result showed that all solvents (ethanol, chloroform and hexane used in extraction showed antibacterial activity against Salmonella enterica Typhimurium U302, S. enterica Enteritidis, S. enterica 4,5,12:I human (US clone, Bacillus cereus and B. subtilis at 50mg/ml concentration. In antioxidant part, ethanolic extract gave highest phenolic content and FRAP value. The results also showed that different extraction solvent gave different chemical profile. Hexane extract C. asiatica showed lowest in both antibacterial and antioxidant activity. Ethanolic and chloroform extract of C. asiatica showed promising potential in both antibacterial and antioxidant activity.

  13. RESEARCH ON CHEMICAL COMPOSITION AND MICROSTRUCTURE OF NEWLY-DEVELOPED HIGH STRENGTH AND HIGH ELONGATION STEELS

    Institute of Scientific and Technical Information of China (English)

    Y. Chen; X. Chen; A.M. Guo; D.X. Luo; B.F. Xu; Z.X. Yuan; P.H. Li; S.K. Pu; S.B. Zhou

    2003-01-01

    The different chemical composition of silicon and manganese as well as different re-tained austenite fraction ranged from 4% to 10% of the high strength and high elon-gation steels were studied in the paper. The dislocations and carbon concentrationin retained austenite were observed by a transmission electron microscope and anelectric probe analyzer, respectively. The experimental results showed that silicon andmanganese are two fundamental alloying elements to stabilize austenite effectively butretaining austenite in different mechanisms. Meanwhile, the cooling processing playedan important role in controlling the fraction of retained austenite of the hot-rolledhigh strength and high plasticity steels.

  14. Activities of the Institute of Chemical Processing of Coal at Zabrze

    Energy Technology Data Exchange (ETDEWEB)

    Dreszer, K.

    1995-12-31

    The Institute of Chemical Processing of Coal at Zabrze was established in 1955. The works on carbochemical technologies have been, therefore, carried out at the Institute for 40 years. The targets of the Institute`s activities are research, scientific and developing works regarding a sensible utilization of fuels via their processing into more refined forms, safe environment, highly efficient use of energy carriers and technological products of special quality. The Institute of Chemical Processing of Coal has been dealing with the following: optimized use of home hard coals; improvement of classic coal coking technologies, processing and utilization of volatile coking products; production technologies of low emission rate fuels for communal management; analyses of coal processing technologies; new technologies aimed at increasing the efficiency of coal utilization for energy-generating purposes, especially in industry and studies on the ecological aspects of these processes; production technologies of sorbents and carbon activating agents and technologies of the utilization; rationalization of water and wastes management in the metallurgical and chemical industries in connection with removal of pollution especially dangerous to the environment from wastes; utilization technologies of refined materials (electrode cokes, binders, impregnating agents) for making electrodes, refractories and new generation construction carbon materials; production technologies of high quality bituminous and bituminous and resin coating, anti-corrosive and insulation materials; environmentally friendly utilization technologies for power station, mine and other wastes, and dedusting processes in industrial gas streams.

  15. Chemical Composition, Antimicrobial and Antioxidant Activities of Essential Oils from Organically Cultivated Fennel Cultivars

    Directory of Open Access Journals (Sweden)

    Mahmoud A. Saleh

    2011-02-01

    Full Text Available Essential oils of the fruits of three organically grown cultivars of Egyptian fennel (Foeniculum vulgare var. azoricum, Foeniculum vulgare var. dulce and Foeniculum vulgare var. vulgare were examined for their chemical constituents, antimicrobial and antioxidant activities. Gas chromatography/mass spectrometry analysis of the essential oils revealed the presence of 18 major monoterpenoids in all three cultivars but their percentage in each oil were greatly different. trans-Anethole, estragole, fenchone and limonene were highly abundant in all of the examined oils. Antioxidant activities of the essential oils were evaluated using the DPPH radical scavenging, lipid peroxidation and metal chelating assays. Essential oils from the azoricum and dulce cultivars were more effective antioxidants than that from the vulgare cultivar. Antimicrobial activities of each oil were measured against two species of fungi, two species of Gram negative and two species of Gram positive bacteria. All three cultivars showed similar antimicrobial activity.

  16. Chemical composition and genotoxic activity of petroleum derivatives collected in two working environments

    Energy Technology Data Exchange (ETDEWEB)

    Pasquini, R.; Taningher, M.; Monarca, S.; Pala, M.; Angeli, G.

    1989-01-01

    Pitch and bitumen, two complex petroleum derivative mixtures, were studied for both their chemical composition and their mutagenic/DNA damaging activity. While bitumen revealed no genotoxic effect and low polycyclic aromatic hydrocarbons (PAHs) concentration, petroleum pitch showed a high concentration of mutagenic/carcinogenic PAHs, and also an elevated mutagenic activity when assayed by the Ames test, in the presence of postmitochondrial rat liver fractions. The in vitro mutagenic activity was detectable as frameshift mutation by assaying the pitch both as an in toto mixture and after HPLC fractionation, the most polar fractions being the most active. In contrast, both derivatives showed no in vivo DNA damage in rat liver, using the DNA alkaline elution technique and the fluorometric assay of DNA unwinding.

  17. Chemical constituents and antihistamine activity of Bixa orellana leaf extract

    Directory of Open Access Journals (Sweden)

    Yong Yoke Keong

    2013-02-01

    Full Text Available Abstract Background Bixa orellana L. has been traditionally used in Central and South America to treat a number of ailments, including internal inflammation, and in other tropical countries like Malaysia as treatment for gastric ulcers and stomach discomfort. The current study aimed to determine the major chemical constituents of the aqueous extract of B. orellana (AEBO and to evaluate the antihistamine activity of AEBO during acute inflammation induced in rats. Methods Acute inflammation was produced by subplantar injection of 0.1 mL of 0.1% histamine into the right hind paw of each rat in the control and treatment groups. The degree of edema was measured before injection and at the time points of 30, 60, 120, 180, 240 and 300 min after injection. Changes of peritoneal vascular permeability were studied using Evans blue dye as a detector. Vascular permeability was evaluated by the amount of dye leakage into the peritoneal cavity in rats. To evaluate the inhibitory effect of AEBO on biochemical mediators of vascular permeability, the levels of nitric oxide (NO and vascular endothelial growth factor (VEGF were determined in histamine-treated paw tissues. The major constituents of AEBO were determined by gas chromatography–mass spectrometry (GC-MS analysis. Results AEBO produced a significant inhibition of histamine-induced paw edema starting at 60 min time point, with maximal percentage of inhibition (60.25% achieved with a dose of 150 mg/kg of AEBO at 60 min time point. Up to 99% of increased peritoneal vascular permeability produced by histamine was successfully suppressed by AEBO. The expression of biochemical mediators of vascular permeability, NO and VEGF, was also found to be downregulated in the AEBO treated group. Gas chromatography–mass spectrometry (GC-MS analysis revealed that the major constituent in AEBO was acetic acid. Conclusions The experimental findings demonstrated that the anti-inflammatory activity of AEBO was

  18. Chemical compositions and antimicrobial activities of four different Anatolian propolis samples.

    Science.gov (United States)

    Uzel, Ataç; Sorkun, Kadriye; Onçağ, Ozant; Cogŭlu, Dilşah; Gençay, Omür; Salih, Bekir

    2005-01-01

    Propolis means a gum that is gathered by bees from various plants. It is known for its biological properties, having antibacterial, antifungal and healing properties. The aims of this study were to evaluate the antimicrobial activity of four different Anatolian propolis samples on different groups of microorganisms including some oral pathogens and comparison between their chemical compositions. Ethanol extracts of propolis (EEP) were prepared from four different Anatolian propolis samples and examined whether EEP inhibit the growth of the test microorganisms or not. For the antimicrobial activity assays, minimum inhibitory concentrations (MIC) were determined by using macrodilution method. The MIC values of the most effective propolis (TB) were 2 microg/ml for Streptococcus sobrinus and Enterococcus faecalis, 4 microg/ml for Micrococcus luteus, Candida albicans and C. krusei, 8 microg/ml for Streptococcus mutans, Staphylococcus aureus, Staphylococcus epidermidis and Enterobacter aerogenes, 16 microg/ml for Escherichia coli and C. tropicalis and 32 microg/ml for Salmonella typhimurium and Pseudomonas aeruginosa. The chemical compositions of EEP's were determined by high-temperature high-resolution gas chromatography coupled to mass spectrometry. The main compounds of four Anatolian propolis samples were flavonoids such as pinocembrin, pinostropin, isalpinin, pinobanksin, quercetin, naringenin, galangine and chrysin. Although propolis samples were collected from different regions of Anatolia all showed significant antimicrobial activity against the Gram positive bacteria and yeasts. Propolis can prevent dental caries since it demonstrated significant antimicrobial activity against the microorganisms such as Streptococcus mutans, Streptococcus sobrinus and C. albicans, which involves in oral diseases.

  19. MORPHO-CHEMICAL DESCRIPTION AND ANTIMICROBIAL ACTIVITY OF DIFFERENT OCIMUM SPECIES

    Directory of Open Access Journals (Sweden)

    KAKARAPARTHI PANDU SASTRY

    2012-12-01

    Full Text Available Basil is a popular medicinal and culinary herb, and its essential oils have been used extensively for many years in food products, perfumery, dental and oral products. Basil essential oils and their principal constituents were found to exhibit antimicrobial activity against a wide range of Gram-negative and Gram-positive bacteria, yeast, and mould. The essential oils obtained from aerial parts of three different species of Ocimum comprising twenty one germplasm lines were investigated for their essential oil composition and antimicrobial activity during 2010. Essential oils from seventeen germplasm lines in Ocimum basilicum and two each in Ocimum tenuiflorum and Ocimum gratissimum were investigated for anti-microbial activity against four bacterial strains (Staphylococcus aureus, Bacillus sps., Escherichia coli and Pseudomonas aeruginosa. The morpho-chemotypes exhibited wide variability for morphological and chemical traits. Anti-bacterial activity was found to be high for Staphylococcus aureus, moderate for Escherichia coli, low for Bacillus and Pseudomonas aeruginosa was highly resistant. The essential oils of Pale Green-Broad Leaves (O. basilicum and CIM Ayu (O. gratissimum exhibited significant antibacterial activity against both S. aureus and E. coli signifying them promising for anti-bacterial activity. No relationship was observed between chemotype specificity and anti-bacterial activity, indicating that apart from major components of essential oil, minor components and other factors may be responsible for anti-microbial activities.

  20. Zambian pre-service junior high school science teachers' chemical reasoning and ability

    Science.gov (United States)

    Banda, Asiana

    The purpose of this study was two-fold: examine junior high school pre-service science teachers' chemical reasoning; and establish the extent to which the pre-service science teachers' chemical abilities explain their chemical reasoning. A sample comprised 165 junior high school pre-service science teachers at Mufulira College of Education in Zambia. There were 82 males and 83 females. Data were collected using a Chemical Concept Reasoning Test (CCRT). Pre-service science teachers' chemical reasoning was established through qualitative analysis of their responses to test items. The Rasch Model was used to determine the pre-service teachers' chemical abilities and item difficulty. Results show that most pre-service science teachers had incorrect chemical reasoning on chemical concepts assessed in this study. There was no significant difference in chemical understanding between the Full-Time and Distance Education pre-service science teachers, and between second and third year pre-service science teachers. However, there was a significant difference in chemical understanding between male and female pre-service science teachers. Male pre-service science teachers showed better chemical understanding than female pre-service science teachers. The Rasch model revealed that the pre-service science teachers had low chemical abilities, and the CCRT was very difficult for this group of pre-service science teachers. As such, their incorrect chemical reasoning was attributed to their low chemical abilities. These results have implications on science teacher education, chemistry teaching and learning, and chemical education research.

  1. A modified parallel artificial membrane permeability assay for evaluating the bioconcentration of highly hydrophobic chemicals in fish.

    Science.gov (United States)

    Kwon, Jung-Hwan; Escher, Beate I

    2008-03-01

    Low cost in vitro tools are needed at the screening stage of assessment of bioaccumulation potential of new and existing chemicals because the number of chemical substances that needs to be tested highly exceeds the capacity of in vivo bioconcentration tests. Thus, the parallel artificial membrane permeability assay (PAMPA) system was modified to predict passive uptake/ elimination rate in fish. To overcome the difficulties associated with low aqueous solubility and high membrane affinity of highly hydrophobic chemicals, we measured the rate of permeation from the donor poly(dimethylsiloxane)(PDMS) disk to the acceptor PDMS disk through aqueous and PDMS membrane boundary layers and term the modified PAMPA system "PDMS-PAMPA". Twenty chemicals were selected for validation of PDMS-PAMPA. The measured permeability is proportional to the passive elimination rate constant in fish and was used to predict the "minimum" in vivo elimination rate constant. The in vivo data were very close to predicted values except for a few polar chemicals and metabolically active chemicals, such as pyrene and benzo[a]pyrene. Thus, PDMS-PAMPA can be an appropriate in vitro system for nonmetabolizable chemicals. Combination with metabolic clearance rates using a battery of metabolic degradation assays would enhance the applicability for metabolizable chemicals.

  2. Chemically and Thermally Stable High Energy Density Silicone Composites Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Thermal energy storage systems with 300 ? 1000 kJ/kg energy density through either phase changes or chemical heat absorption are sought by NASA. This proposed effort...

  3. Evaluation of Biological Activities of Extracts and Chemical ...

    African Journals Online (AJOL)

    1School of Chemical Sciences, 2School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia,. 3Faculty of Forestry, University of Khartoum, ..... Taraporevala Sons & Co. Private Ltd,Bombay,. 1962; pp 158-159. 4.

  4. Chemical composition and antifungal activity of essential oils of ...

    African Journals Online (AJOL)

    patrick

    2015-03-25

    Mar 25, 2015 ... chemical composition of the species of Algerian citrus. (Baaliouamer, 1987). ... Osbeck), Bigaradier (Citrus aurantium), lemon (Citrus limonum) and ..... The fungi anti capacities of essential oils of the Algerian citrus proved to ...

  5. CHEMICALS

    CERN Document Server

    Medical Service

    2002-01-01

    It is reminded that all persons who use chemicals must inform CERN's Chemistry Service (TIS-GS-GC) and the CERN Medical Service (TIS-ME). Information concerning their toxicity or other hazards as well as the necessary individual and collective protection measures will be provided by these two services. Users must be in possession of a material safety data sheet (MSDS) for each chemical used. These can be obtained by one of several means : the manufacturer of the chemical (legally obliged to supply an MSDS for each chemical delivered) ; CERN's Chemistry Service of the General Safety Group of TIS ; for chemicals and gases available in the CERN Stores the MSDS has been made available via EDH either in pdf format or else via a link to the supplier's web site. Training courses in chemical safety are available for registration via HR-TD. CERN Medical Service : TIS-ME :73186 or service.medical@cern.ch Chemistry Service : TIS-GS-GC : 78546

  6. Effect of activation agents on the surface chemical properties and desulphurization performance of activated carbon

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Flue gas pollution is a serious environmental problem that needs to be solved for the sustainable development of China.The surface chemical properties of carbon have great influence on its desulphurization performance.A series of activated carbons (ACs) were prepared using HNO3,H2O2,NH3·H2O and steam as activation agents with the aim to introduce functional groups to carbon surface in the ACs preparation process.The ACs were physically and chemically characterized by iodine and SO2 adsorption,ultimate analysis,Boehm titration,and temperature-programmed reduction (TPR).Results showed that the iodine number and desulphurization capacity of NH3·H2O activated carbon (AC-NH3) increase with both activation time,and its desulphurization capacity also increases with the concentration of activation agent.However,HNO3 activated carbon (AC-HNO3) and H2O2 activated carbon (AC-H2O2) exhibit more complex behavior.Only their iodine numbers increase monotonously with activation time.Compared with steam activated AC (AC-H2O),the nitrogen content increases 0.232% in AC-NH3 and 0.077% in AC-HNO3.The amount of total basic site on AC-HNO3 is 0.19 mmol·g-1 higher than that on AC-H2O.H2O2 activation introduces an additional 0.08 mmol·g-1 carboxyl groups to AC surface than that introduced by steam activation.The desulphurization capacity of ACs in simulate flue gas desulphurization decreases as follows: AC-NH3 > AC-HNO3 > AC-H2O2 > AC-H2O.This sequence is in accord with the SO2 catalytic oxidation/oxidation ratio in the absence of oxygen and the oxidation property reflected by TPR.In the presence of oxygen,all adsorbed SO2 on ACs can be oxidized into SO3.The desulphurization capacity increases differently according to the activation agents;the desulphurization capacity of AC-NH3 and AC-HNO3 improves by 4.8 times,yet AC-H2O increases only by 2.62 as compared with the desulphurization of corresponding ACs in absence of oxygen.

  7. Effects of coal rank on the chemical composition and toxicological activity of coal liquefaction materials

    Energy Technology Data Exchange (ETDEWEB)

    Wright, C.W.; Dauble, D.D.

    1986-05-01

    This report presents data from the chemical analysis and toxicological testing of coal liquefaction materials from the EDS and H-Coal processes operated using different ranks of coal. Samples of recycle solvent from the bottoms recycle mode of the EDS direct coal liquefaction process derived from bituminous, sub-bituminous, and lignite coals were analyzed. In addition, the H-Coal heavy fuel oils derived from bituminous and sub-bituminous coals were analyzed. Chemical methods of analysis included adsoprtion column chromatography, high-resolution gas chromatography, gas chromatography/mass spectrometry, and low-voltage probe-inlet mass spectrometry. The toxicological activity of selected samples was evaluated using the standard microbial mutagenicity assay, an initiation/promotion assay for mouse-skin tumorigenicity, and a static bioassy with Daphnia magna for aquatic toxicity of the water-soluble fractions. 22 refs., 16 figs., 14 tabs.

  8. Activity-Independent Discovery of Secondary Metabolites Using Chemical Elicitation and Cheminformatic Inference.

    Science.gov (United States)

    Pimentel-Elardo, Sheila M; Sørensen, Dan; Ho, Louis; Ziko, Mikaela; Bueler, Stephanie A; Lu, Stella; Tao, Joe; Moser, Arvin; Lee, Richard; Agard, David; Fairn, Greg; Rubinstein, John L; Shoichet, Brian K; Nodwell, Justin R

    2015-11-20

    Most existing antibiotics were discovered through screens of environmental microbes, particularly the streptomycetes, for the capacity to prevent the growth of pathogenic bacteria. This "activity-guided screening" method has been largely abandoned because it repeatedly rediscovers those compounds that are highly expressed during laboratory culture. Most of these metabolites have already been biochemically characterized. However, the sequencing of streptomycete genomes has revealed a large number of "cryptic" secondary metabolic genes that are either poorly expressed in the laboratory or that have biological activities that cannot be discovered through standard activity-guided screens. Methods that reveal these uncharacterized compounds, particularly methods that are not biased in favor of the highly expressed metabolites, would provide direct access to a large number of potentially useful biologically active small molecules. To address this need, we have devised a discovery method in which a chemical elicitor called Cl-ARC is used to elevate the expression of cryptic biosynthetic genes. We show that the resulting change in product yield permits the direct discovery of secondary metabolites without requiring knowledge of their biological activity. We used this approach to identify three rare secondary metabolites and find that two of them target eukaryotic cells and not bacterial cells. In parallel, we report the first paired use of cheminformatic inference and chemical genetic epistasis in yeast to identify the target. In this way, we demonstrate that oxohygrolidin, one of the eukaryote-active compounds we identified through activity-independent screening, targets the V1 ATPase in yeast and human cells and secondarily HSP90.

  9. Complementing high-throughput X-ray powder diffraction data with quantum-chemical calculations

    DEFF Research Database (Denmark)

    Naelapaa, Kaisa; van de Streek, Jacco; Rantanen, Jukka

    2012-01-01

    High-throughput crystallisation and characterisation platforms provide an efficient means to carry out solid-form screening during the pre-formulation phase. To determine the crystal structures of identified new solid phases, however, usually requires independent crystallisation trials to produce...... single crystals or bulk samples of sufficient quantity to carry out high-quality X-ray diffraction measurements. This process could be made more efficient by a robust procedure for crystal structure determination directly from high-throughput X-ray powder diffraction (XRPD) data. Quantum......-chemical calculations based on dispersion-corrected density functional theory (DFT-D) have now become feasible for typical small organic molecules used as active pharmaceutical ingredients. We demonstrate how these calculations can be applied to complement high-throughput XRPD data by determining the crystal structure...

  10. High-Throughput Industrial Coatings Research at The Dow Chemical Company.

    Science.gov (United States)

    Kuo, Tzu-Chi; Malvadkar, Niranjan A; Drumright, Ray; Cesaretti, Richard; Bishop, Matthew T

    2016-09-12

    At The Dow Chemical Company, high-throughput research is an active area for developing new industrial coatings products. Using the principles of automation (i.e., using robotic instruments), parallel processing (i.e., prepare, process, and evaluate samples in parallel), and miniaturization (i.e., reduce sample size), high-throughput tools for synthesizing, formulating, and applying coating compositions have been developed at Dow. In addition, high-throughput workflows for measuring various coating properties, such as cure speed, hardness development, scratch resistance, impact toughness, resin compatibility, pot-life, surface defects, among others have also been developed in-house. These workflows correlate well with the traditional coatings tests, but they do not necessarily mimic those tests. The use of such high-throughput workflows in combination with smart experimental designs allows accelerated discovery and commercialization.

  11. Can vaccinia virus be replaced by MVA virus for testing virucidal activity of chemical disinfectants?

    Directory of Open Access Journals (Sweden)

    Rapp Ingrid

    2010-06-01

    Full Text Available Abstract Background Vaccinia virus strain Lister Elstree (VACV is a test virus in the DVV/RKI guidelines as representative of the stable enveloped viruses. Since the potential risk of laboratory-acquired infections with VACV persists and since the adverse effects of vaccination with VACV are described, the replacement of VACV by the modified vaccinia Ankara strain (MVA was studied by testing the activity of different chemical biocides in three German laboratories. Methods The inactivating properties of different chemical biocides (peracetic acid, aldehydes and alcohols were tested in a quantitative suspension test according to the DVV/RKI guideline. All tests were performed with a protein load of 10% fetal calf serum with both viruses in parallel using different concentrations and contact times. Residual virus was determined by endpoint dilution method. Results The chemical biocides exhibited similar virucidal activity against VACV and MVA. In three cases intra-laboratory differences were determined between VACV and MVA - 40% (v/v ethanol and 30% (v/v isopropanol are more active against MVA, whereas MVA seems more stable than VACV when testing with 0.05% glutardialdehyde. Test accuracy across the three participating laboratories was high. Remarkably inter-laboratory differences in the reduction factor were only observed in two cases. Conclusions Our data provide valuable information for the replacement of VACV by MVA for testing chemical biocides and disinfectants. Because MVA does not replicate in humans this would eliminate the potential risk of inadvertent inoculation with vaccinia virus and disease in non-vaccinated laboratory workers.

  12. 75 FR 6386 - Pesticide Products; Registration Applications for a New Active Ingredient Chemical; Demiditraz

    Science.gov (United States)

    2010-02-09

    ... register pesticide products containing active ingredients not included in any previously registered pesticide products. Pursuant to the provisions of section 3(c)(4) of the Federal Insecticide, Fungicide, and... AGENCY Pesticide Products; Registration Applications for a New Active Ingredient Chemical;...

  13. Chemical equilibrium in high pressure molecular fluid mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, M.S.

    1993-09-01

    The N{sub atoms}PT Monte Carlo simulation method has been reformulated to incorporate multiple species and chemical reactions with changes in total number of molecules. While maintaining a constant number of each type of atom, the number of molecules is changed by turning on and off the interactions of any particular position with other molecules. Chemical reactions are allowed as a correlated move of atoms to differnt molecular locations. Equilibrium chemical composition is determined as an average over the simulation along with equation of state quantities. A large set of simulations has been made with the system N{sub 2} + O{sub 2} {rightleftharpoons} NO covering a wide range in P and T. Both Hugoniot states and the CJ point have been determined and are shown to be sensitive to the potentials between unlike species.

  14. Device and method for enhanced collection and assay of chemicals with high surface area ceramic

    Energy Technology Data Exchange (ETDEWEB)

    Addleman, Raymond S.; Li, Xiaohong Shari; Chouyyok, Wilaiwan; Cinson, Anthony D.; Bays, John T.; Wallace, Krys

    2016-02-16

    A method and device for enhanced capture of target analytes is disclosed. This invention relates to collection of chemicals for separations and analysis. More specifically, this invention relates to a solid phase microextraction (SPME) device having better capability for chemical collection and analysis. This includes better physical stability, capacity for chemical collection, flexible surface chemistry and high affinity for target analyte.

  15. Heat and mass transfer in unsteady rotating fluid flow with binary chemical reaction and activation energy.

    Directory of Open Access Journals (Sweden)

    Faiz G Awad

    Full Text Available In this study, the Spectral Relaxation Method (SRM is used to solve the coupled highly nonlinear system of partial differential equations due to an unsteady flow over a stretching surface in an incompressible rotating viscous fluid in presence of binary chemical reaction and Arrhenius activation energy. The velocity, temperature and concentration distributions as well as the skin-friction, heat and mass transfer coefficients have been obtained and discussed for various physical parametric values. The numerical results obtained by (SRM are then presented graphically and discussed to highlight the physical implications of the simulations.

  16. Chemical Constituents from Sonneratia ovata Backer and their in vitro Cytotoxicity and Acetylcholinesterase Inhibitory Activities

    DEFF Research Database (Denmark)

    Nguyen, Thi Hoai Thu; Huu Viet Thong, Phamb; Nguyen, KimTuyen Phamc

    2015-01-01

    -benzyl-β-d-glucopyranose (21) isolated from the leaves of Sonneratia ovata. Their chemical structures were established by spectroscopic data, as well as high resolution mass spectra and comparison with literature data. The in vitro acetylcholinesterase (AChE) inhibition and cytotoxic activities against HeLa (human epithelial...... carcinoma), NCI-H460 (human lung cancer), MCF-7 (human breast cancer) cancer cell lines and PHF (primary human fibroblast) cell were evaluated on some extracts and purified compounds at a concentration of 100 μg/mL. Compounds (5, 6, 23) exhibited cytotoxicity against the MCF-7 cell line with the IC50 values...

  17. Chemical Diversity, Biological Activity, and Genetic Aspects of Three Ocotea Species from the Amazon.

    Science.gov (United States)

    da Silva, Joyce Kelly; da Trindade, Rafaela; Moreira, Edith Cibelle; Maia, José Guilherme S; Dosoky, Noura S; Miller, Rebecca S; Cseke, Leland J; Setzer, William N

    2017-05-18

    Ocotea species present economic importance and biological activities attributed to their essential oils (EOs) and extracts. For this reason, various strategies have been developed for their conservation. The chemical compositions of the essential oils and matK DNA sequences of O. caudata, O. cujumary, and O. caniculata were subjected to comparison with data from O. floribunda, O. veraguensis, and O. whitei, previously reported. The multivariate analysis of chemical composition classified the EOs into two main clusters. Group I was characterized by the presence of α-pinene (9.8-22.5%) and β-pinene (9.7-21.3%) and it includes O. caudata, O. whitei, and O. floribunda. In group II, the oils of O. cujumary and O. caniculata showed high similarity due amounts of β-caryophyllene (22.2% and 18.9%, respectively). The EO of O. veraguensis, rich in p-cymene (19.8%), showed minor similarity among all samples. The oils displayed promising antimicrobial and cytotoxic activities against Escherichia coli (minimum inhibitory concentration (MIC) < 19.5 µg·mL(-1)) and MCF-7 cells (median inhibitory concentration (IC50) ≅ 65.0 µg·mL(-1)), respectively. The analysis of matK gene displayed a good correlation with the main class of chemical compounds present in the EOs. However, the matK gene data did not show correlation with specific compounds.

  18. A Rat α-Fetoprotein Binding Activity Prediction Model to Facilitate Assessment of the Endocrine Disruption Potential of Environmental Chemicals.

    Science.gov (United States)

    Hong, Huixiao; Shen, Jie; Ng, Hui Wen; Sakkiah, Sugunadevi; Ye, Hao; Ge, Weigong; Gong, Ping; Xiao, Wenming; Tong, Weida

    2016-03-25

    Endocrine disruptors such as polychlorinated biphenyls (PCBs), diethylstilbestrol (DES) and dichlorodiphenyltrichloroethane (DDT) are agents that interfere with the endocrine system and cause adverse health effects. Huge public health concern about endocrine disruptors has arisen. One of the mechanisms of endocrine disruption is through binding of endocrine disruptors with the hormone receptors in the target cells. Entrance of endocrine disruptors into target cells is the precondition of endocrine disruption. The binding capability of a chemical with proteins in the blood affects its entrance into the target cells and, thus, is very informative for the assessment of potential endocrine disruption of chemicals. α-fetoprotein is one of the major serum proteins that binds to a variety of chemicals such as estrogens. To better facilitate assessment of endocrine disruption of environmental chemicals, we developed a model for α-fetoprotein binding activity prediction using the novel pattern recognition method (Decision Forest) and the molecular descriptors calculated from two-dimensional structures by Mold² software. The predictive capability of the model has been evaluated through internal validation using 125 training chemicals (average balanced accuracy of 69%) and external validations using 22 chemicals (balanced accuracy of 71%). Prediction confidence analysis revealed the model performed much better at high prediction confidence. Our results indicate that the model is useful (when predictions are in high confidence) in endocrine disruption risk assessment of environmental chemicals though improvement by increasing number of training chemicals is needed.

  19. A Rat α-Fetoprotein Binding Activity Prediction Model to Facilitate Assessment of the Endocrine Disruption Potential of Environmental Chemicals

    Directory of Open Access Journals (Sweden)

    Huixiao Hong

    2016-03-01

    Full Text Available Endocrine disruptors such as polychlorinated biphenyls (PCBs, diethylstilbestrol (DES and dichlorodiphenyltrichloroethane (DDT are agents that interfere with the endocrine system and cause adverse health effects. Huge public health concern about endocrine disruptors has arisen. One of the mechanisms of endocrine disruption is through binding of endocrine disruptors with the hormone receptors in the target cells. Entrance of endocrine disruptors into target cells is the precondition of endocrine disruption. The binding capability of a chemical with proteins in the blood affects its entrance into the target cells and, thus, is very informative for the assessment of potential endocrine disruption of chemicals. α-fetoprotein is one of the major serum proteins that binds to a variety of chemicals such as estrogens. To better facilitate assessment of endocrine disruption of environmental chemicals, we developed a model for α-fetoprotein binding activity prediction using the novel pattern recognition method (Decision Forest and the molecular descriptors calculated from two-dimensional structures by Mold2 software. The predictive capability of the model has been evaluated through internal validation using 125 training chemicals (average balanced accuracy of 69% and external validations using 22 chemicals (balanced accuracy of 71%. Prediction confidence analysis revealed the model performed much better at high prediction confidence. Our results indicate that the model is useful (when predictions are in high confidence in endocrine disruption risk assessment of environmental chemicals though improvement by increasing number of training chemicals is needed.

  20. [Advances in studies on chemical constituents and biological activities of Desmodium species].

    Science.gov (United States)

    Liu, Chao; Wu, Ying; Zhang, Qian-Jun; Kang, Wen-Yi; Zhang, Long; Zhou, Qing-Di

    2013-12-01

    The chemical constituents isolated from Desmodium species (Leguminosae) included terpenoids, flavonoids, steroids, alkaloids compounds. Modem pharmacological studies have showed that the Desmodium species have antioxidant, antibacterial, anti-inflammatory, hepatoprotective, diuretic, antipyretic, analgesic and choleretic activity. This article mainly has reviewed the research advances of chemical constituents and biological activities of Desmodium species since 2003.

  1. Chemical composition, antioxidant and antimicrobial activities of the edible medicinal Ononis natrix growing wild in Tunisia.

    Science.gov (United States)

    Mhamdi, Baya; Abbassi, Feten; Abdelly, Chedly

    2015-01-01

    Results showed that leaf methanolic extract of Ononis natrix has important total phenol (51 mg GAE/g DW) and flavonoid (14.76 CE/g DW) contents. The chemical composition of O. natrix leaf revealed the presence of quercitine (24.5%), amentoflavone (14.1%), flavones (11.3%) and kaempferol (10.5%). The leaf extract showed a high total antioxidant activity with 60.94 mg of GAE/g DW, displayed a high 2,2-diphenyl-1-picrylhydrazyl scavenging ability with low IC50 value (29 μg/mL) and a great reducing power (EC50 = 100 μg/mL). O. natrix leaf extract exhibited a significant broad spectrum activity against all tested microorganisms with bacterial inhibition zone sizes ranging from 8.5 to 17 mm in diameter.

  2. Chemical Composition and Antimicrobial Activity of Thymus praecox Opiz ssp. polytrichus Essential Oil from Serbia

    Directory of Open Access Journals (Sweden)

    Nada V. Petrović

    2016-03-01

    Full Text Available Chemical composition and antimicrobial activity of the essential oil of wild growing Thymus praecox Opiz ssp. polytrichus were studied. trans-Nerolidol (19.79%, germacrene D (18.48% and thymol (9.62% were the main components in essential oil. This study is the first report of the antimicrobial activity of essential oil obtained from the T. praecox Opiz ssp. polytrichus. Antimicrobial activity of essential oil was investigated on Bacillus cereus, Micrococcus flavus, Staphylococcus aureus, Listeria monocytogenes, Escherichia coli, Pseudomonas aeruginosa, Enterobacter cloacae, Salmonella typhimurium, Aspergillus fumigatus, A. versicolor, A. ochraceus, A. niger, Trichoderma viride, Penicillium funiculosum, P. ochrochloron, and P. verrucosum var. cyclopium strains. In the antimicrobial assays, essential oil showed high antimicrobial potential (MIC 19–150 m g/mL, MBC 39–300 m g/mL for bacteria; and MIC 19.5–39 m g/mL, MFC 39–78 m g/mL for fungi.

  3. Chemical composition and antimicrobial activity of essential oil of Cupressus atlantica.

    Science.gov (United States)

    Arjouni, My Youssef; Bahri, Fouad; Romane, Abderrahmane; El Fels, M Ahmed El Alaoui

    2011-10-01

    Cupressus atlantica Gaussen, an endemic species from Morocco, is used in traditional medicine. The chemical composition of the essential oil isolated by hydrodistillation from the leaves was investigated by capillary gas chromatography and gas chromatography/mass spectrometry, and also evaluated for in vitro antimicrobial activity. Sixty-one components, representing 98.1% of the total, were detected of which fifty-seven were identified. Germacrene D (34.8%), alpha-pinene (13.6%), delta-cadinene (6.1%), alpha-phellandrene (5.5%), gamma-cadinene (5.0%), beta-caryophyllene (4.8%) and alpha-humulene (4.4%) were the predominant compounds. The oil was characterized by a relatively high amount of oxygenated monoterpenes (66.5%). The oil, screened for antimicrobial activity against both Gram-positive and Gram-negative, showed pronounced activity against all the microbes tested, except Pseudomonas, which showed resistance.

  4. The screening of chemicals for juvenoid-related endocrine activity using the water flea Daphnia magna.

    Science.gov (United States)

    Wang, Helen Ying; Olmstead, Allen W; Li, Hong; Leblanc, Gerald A

    2005-09-10

    U.S. Environmental Protection Agency is charged with developing a screening and testing paradigm for detecting endocrine toxicity of chemicals that are subject to regulation under the Food Quality Protection and the Safe Drinking Water Acts. In this study, we developed and evaluated a screening assay that could be employed to detect juvenoid-related endocrine-modulating activity in an invertebrate species. Juvenoid activity, anti-juvenoid activity, and juvenoid potentiator activity of chemicals was assessed using the water flea Daphnia magna. Male sex determination is under the regulatory control of juvenoid hormone, presumably methyl farnesoate, and this endpoint was used to detect juvenoid modulating activity of chemicals. Eighteen chemicals were evaluated for juvenoid agonist activity. Positive responses were detected with the juvenoid hormones methyl farnesoate and juvenile hormone III along with the insect growth regulating insecticides pyriproxyfen, fenoxycarb, and methoprene. Weak juvenoid activity also was detected with the cyclodiene insecticide dieldrin. Assays performed repetitively with compounds that gave either strong positive, weak positive, or negative response were 100% consistent indicating that the assay is not prone to false positive or negative responses. Five candidate chemicals were evaluated for anti-juvenoid activity and none registered positive. Four chemicals (all trans-retinoic acid, methoprene, kinoprene, bisphenol A) also were evaluated for their ability to potentiate the activity of methyl farnesoate. All registered positive. Results demonstrate that an in vivo assay with a crustacean species customarily employed in toxicity testing can be used to effectively screen chemicals for juvenoid-modulating activity.

  5. CO2 adsorption on chemically modified activated carbon.

    Science.gov (United States)

    Caglayan, Burcu Selen; Aksoylu, A Erhan

    2013-05-15

    CO2 adsorption capacity of a commercial activated carbon was improved by using HNO3 oxidation, air oxidation, alkali impregnation and heat treatment under helium gas atmosphere. The surface functional groups produced were investigated by diffuse reflectance infrared Fourier transform spectrometer (DRIFTS). CO2 adsorption capacities of the samples were determined by gravimetric analyses for 25-200°C temperature range. DRIFTS studies revealed the formation of carboxylic acid groups on the HNO3 oxidized adsorbents. Increased aromatization and uniform distribution of the Na particles were observed on the samples prepared by Na2CO3 impregnation onto HNO3 oxidized AC support. The adsorption capacities of the nonimpregnated samples were increased by high temperature helium treatments or by increasing the adsorption temperature; both leading to decomposition of surface oxygen groups, forming sites that can easily adsorb CO2. The adsorption capacity loss due to cyclic adsorption/desorption procedures was overcome with further surface stabilization of Na2CO3 modified samples with high temperature He treatments. With Na2CO3 impregnation the mass uptakes of the adsorbents at 20 bars and 25 °C were improved by 8 and 7 folds and at 1 bar were increased 15 and 16 folds, on the average, compared to their air oxidized and nitric acid oxidized supports, respectively.

  6. Chemical composition and in vitro antimicrobial activity of essential oil of Melissa officinalis L. from Romania.

    Science.gov (United States)

    Hăncianu, Monica; Aprotosoaie, Ana Clara; Gille, Elvira; Poiată, Antonia; Tuchiluş, Cristina; Spac, A; Stănescu, Ursula

    2008-01-01

    Melissa officinalis L. (lemon balm) is used in traditional medicine to treat insomnia, anxiety, gastric conditions, psychiatric conditions, migraines, hypertension and bronchial conditions. Natural essential oils (mixtures of fragrant chemical) obtained from various parts of plants are efficient active antimicrobial agents. The widespread use of antimicrobial agents selects resistant bacterial strains, which seriously compromise the effectiveness of antibiotic treatment. The use of herbal medicines might be a precautionary measure to prevent the development of lack of susceptibility to synthetic antibiotics that is associated with therapeutic failures. In this work, the chemical composition and the antimicrobial properties of essential oil from romanian Melissa officinalis were determined. Therefore, the purpose of this study was to evaluate in vitro antimicrobial activity of lemon balm oil by comparison with lavender essential oil, which is also utilised for its antimicrobial properties in folk medicine. The most important identified compounds, well known for their antimicrobial effects were citral (neral and geranial) (16.10%), citronellal (3.76%) and trans-caryophyllene (3.57%).The lemon balm oil sample exhibited a higher degree antibacterial activity than did Lavandula oil against Gram-positive strains. The both oil samples tested has shown a high activity against Candida albicans. The gram-negative bacteria were not affected by the lemon balm oil.

  7. Chemical Characterization and Antioxidant, Antimicrobial, and Anti-Inflammatory Activities of South Brazilian Organic Propolis.

    Science.gov (United States)

    Tiveron, Ana Paula; Rosalen, Pedro Luiz; Franchin, Marcelo; Lacerda, Risia Cristina Coelho; Bueno-Silva, Bruno; Benso, Bruna; Denny, Carina; Ikegaki, Masaharu; Alencar, Severino Matias de

    2016-01-01

    South Brazilian organic propolis (OP), which has never been studied before, was assessed and its chemical composition, scavenging potential of reactive oxygen species, antimicrobial and anti-inflammatory activities are herein presented. Based on the chemical profile obtained using HPLC, OP was grouped into seven variants (OP1-OP7) and all of them exhibited high scavenging activity, mainly against superoxide and hypochlorous acid species. OP1, OP2, and OP3 had the smallest minimal inhibitory concentration (MIC) against Gram-positive bacteria Streptococcus mutans, Streptococcus oralis, and Streptococcus aureus (12.5-100 μg/mL). OP1, OP2, OP3, and OP4 were more effective against Pseudomonas aeruginosa (Gram-negative), with MIC values ranging from 100 to 200 μg/mL. OP6 showed anti-inflammatory activity by decreasing NF-kB activation and TNF-α release in RAW 264.7 macrophages, and expressing the NF-κB-luciferase reporter stable gene. Therefore, south Brazilian OP can be considered an excellent source of bioactive compounds with great potential of application in the pharmaceutical and food industry.

  8. Chemical Characterization and Antioxidant, Antimicrobial, and Anti-Inflammatory Activities of South Brazilian Organic Propolis

    Science.gov (United States)

    Tiveron, Ana Paula; Rosalen, Pedro Luiz; Franchin, Marcelo; Lacerda, Risia Cristina Coelho; Bueno-Silva, Bruno; Benso, Bruna; Denny, Carina; Ikegaki, Masaharu; de Alencar, Severino Matias

    2016-01-01

    South Brazilian organic propolis (OP), which has never been studied before, was assessed and its chemical composition, scavenging potential of reactive oxygen species, antimicrobial and anti-inflammatory activities are herein presented. Based on the chemical profile obtained using HPLC, OP was grouped into seven variants (OP1–OP7) and all of them exhibited high scavenging activity, mainly against superoxide and hypochlorous acid species. OP1, OP2, and OP3 had the smallest minimal inhibitory concentration (MIC) against Gram-positive bacteria Streptococcus mutans, Streptococcus oralis, and Streptococcus aureus (12.5–100 μg/mL). OP1, OP2, OP3, and OP4 were more effective against Pseudomonas aeruginosa (Gram-negative), with MIC values ranging from 100 to 200 μg/mL. OP6 showed anti-inflammatory activity by decreasing NF-kB activation and TNF-α release in RAW 264.7 macrophages, and expressing the NF-κB-luciferase reporter stable gene. Therefore, south Brazilian OP can be considered an excellent source of bioactive compounds with great potential of application in the pharmaceutical and food industry. PMID:27802316

  9. Chemical Composition and Biological Activities of Allium roseum L. var. grandiflorum Briq. Essential Oil.

    Science.gov (United States)

    Touihri, Imen; Boukhris, Maher; Marrakchi, Naziha; Luis, José; Hanchi, Belgacem; Kallech-Ziri, Olfa

    2015-01-01

    Allium roseum L. (Alliaceae) endemic mediterranean specie was represented in the North Africa by 12 different taxa. In the present study, chemical composition, antiproliferative, antioxidant and antimicrobial activities of the essential oil extracted from A. roseum var. grandiflorum Briq. bulbs collected in the North of Tunisia were investigated. Chemical characterization has shown methyl methanethiosulfinate as major sulphurous compounds. A. roseum bulbs essential oil provides interesting antiproliferative activity against two human colonic adenocarcinoma HT29 and CACO2 cell lines in dose-dependent manner with a half-maximal inhibition (IC50) of 4.64 µg/mL and 8.22 µg/mL respectively. The antioxidant activity, as determined by FRAP assay, was 285 µmol equivalent Trolox/g of essential oil. The scavenging effect on DPPH radicals of essential oil was estimated as IC50 values at 156 µg/mL. The inhibition of superoxide anion production in a model of cancer cell lines was significant for both lines HT29 and CACO2 with IC50 of 20.25 µg/mL and 29.12 µg/mL respectively. Allium roseum essential oil exhibited antibacterial and antifungal activities with a high effectiveness against Candida albicans given by an MIC value of 0.019 mg/mL. This biological effect appears to be related mainly to the presence of organosulfur compounds.

  10. Resistance to chemical attack of bittern-resisting cement in high-bittern environment

    Institute of Scientific and Technical Information of China (English)

    Yunbing Hou; Bingwen Wang; Yu Chen; Botao Zhang; Lin Yu

    2005-01-01

    A new kind of bittern-resisting cement (BRC) was introduced. This material is based on the ternary cementitious system of clinker containing C4A3 -S phase, high-activity ground granulated blast-furnace slag (GGBFS) and fly ash (FA). The hydration process and the hydrated products of BRC were studied by means of XRD, TG-DTA and SEM, and the resistance to chemical attack of BRC in high-bittern environment was also examined. The corrosion experiment in seven kinds of brines proved that BRC exhibits an excellent resistance to chemical attack of bittern. The corrosion resistance factors were calculated and all of them were greater than 0.96. It showed that BRC totally controls the cement-based material corrosion in brines from four aspects: (1) making full use of the dominant complementation effect of mineral materials; (2) diminishing the hydrated products easy to be attacked; (3) improving the microstructure of hardened cement mortar; (4) degrading the chemical attack of bittern.

  11. Synthesis of sulfonated porous carbon nanospheres solid acid by a facile chemical activation route

    Science.gov (United States)

    Chang, Binbin; Guo, Yanzhen; Yin, Hang; Zhang, Shouren; Yang, Baocheng

    2015-01-01

    Generally, porous carbon nanospheres materials are usually prepared via a template method, which is a multi-steps and high-cost strategy. Here, we reported a porous carbon nanosphere solid acid with high surface area and superior porosity, as well as uniform nanospheical morphology, which prepared by a facile chemical activation with ZnCl2 using resorcinol-formaldehyde (RF) resins spheres as precursor. The activation of RF resins spheres by ZnCl2 at 400 °C brought high surface area and large volume, and simultaneously retained numerous oxygen-containing and hydrogen-containing groups due to the relatively low processing temperature. The presence of these functional groups is favorable for the modification of -SO3H groups by a followed sulfonation treating with sulphuric acid and organic sulfonic acid. The results of N2 adsorption-desorption and electron microscopy clearly showed the preservation of porous structure and nanospherical morphology. Infrared spectra certified the variation of surface functional groups after activation and the successful modification of -SO3H groups after sulfonation. The acidities of catalysts were estimated by an indirect titration method and the modified amount of -SO3H groups were examined by energy dispersive spectra. The results suggested sulfonated porous carbon nanospheres catalysts possessed high acidities and -SO3H densities, which endowed their significantly catalytic activities for biodiesel production. Furthermore, their excellent stability and recycling property were also demonstrated by five consecutive cycles.

  12. Structure and biological activity of chemically modified nisin A species

    NARCIS (Netherlands)

    Rollema, Harry S.; Metzger, Jörg W.; Both, Paula; Kuipers, Oscar P.; Siezen, Roland J.

    1996-01-01

    Nisin, a 34-residue peptide bacteriocin, contains the less common amino acids lanthionine, β-methyllanthionine, dehydroalanine (Dha), and dehydrobutyrine (Dhb). Several chemically modified nisin A species were purified by reverse-phase HPLC and characterized by two-dimensional NMR and electrospray m

  13. The chemical composition and biological activities of essential oil ...

    African Journals Online (AJOL)

    PRECIOUS

    2009-12-15

    Dec 15, 2009 ... INTRODUCTION. Schinus terebinthifolius ... belongs to the Anacardiaceae family of plants (Manrique et al., 2008). ... among some of the ancient Chilean Amerindians. In ..... tation to a specific habitat, many plants produce chemical compounds ... London, U.K.: Crown Agents for Overseas Governments and.

  14. Structure and biological activity of chemically modified nisin A species

    NARCIS (Netherlands)

    Rollema, Harry S.; Metzger, Jörg W.; Both, Paula; Kuipers, Oscar P.; Siezen, Roland J.

    1996-01-01

    Nisin, a 34-residue peptide bacteriocin, contains the less common amino acids lanthionine, β-methyllanthionine, dehydroalanine (Dha), and dehydrobutyrine (Dhb). Several chemically modified nisin A species were purified by reverse-phase HPLC and characterized by two-dimensional NMR and electrospray m

  15. Thermal analysis of physical and chemical changes occuring during regeneration of activated carbon

    Directory of Open Access Journals (Sweden)

    Radić Dejan B.

    2017-01-01

    Full Text Available High-temperature thermal process is a commercial way of regeneration of spent granular activated carbon. The paper presents results of thermal analysis conducted in order to examine high-temperature regeneration of spent activated carbon, produced from coconut shells, previously used in drinking water treatment. Results of performed thermogravimetric analysis, derivative thermogravimetric analysis, and differential thermal analysis, enabled a number of hypotheses to be made about different phases of activated carbon regeneration, values of characteristic parameters during particular process phases, as well as catalytic impact of inorganic materials on development of regeneration process. Samples of activated carbon were heated up to 1000°C in thermogravimetric analyser while maintaining adequate oxidizing or reducing conditions. Based on diagrams of thermal analysis for samples of spent activated carbon, temperature intervals of the first intense mass change phase (180-215°C, maximum of exothermic processes (400-450°C, beginning of the second intense mass change phase (635-700°C, and maximum endothermic processes (800-815°C were deter-mined. Analysing and comparing the diagrams of thermal analysis for new, previously regenerated and spent activated carbon, hypothesis about physical and chemical transformations of organic and inorganic adsorbate in spent activated carbon are given. Transformation of an organic adsorbate in the pores of activated carbon, results in loss of mass and an exothermic reaction with oxygen in the vapour phase. The reactions of inorganic adsorbate also result the loss of mass of activated carbon during its heating and endothermic reactions of their degradation at high temperatures.

  16. Importance of surface chemical properties in catalytic ozonation of benzothiazole promoted by activated carbon

    Energy Technology Data Exchange (ETDEWEB)

    Valdes, H.; Zaror, C.A. [Chemical Eng. Dept., Univ. of Concepcion, Concepcion (Chile)

    2003-07-01

    The combined use of ozone and activated carbon to treat toxic effluents has increased in recent years. Activated carbon has been shown to enhance ozone oxidation of organic compounds. However, little is known about the influence of carbon surface active sites on ozonation of organic pollutants. This paper presents experimental results on the effect of metal oxides and oxygenated surface groups on such reaction. Benzothiazole (BT) was selected as a target organic compound in this study due its environmental concern. Activated carbons with different surface chemical composition were prepared from a filtrasorb-400 activated carbon. Pre-treatment included ozonation, demineralisation and deoxygenation of activated carbon. BT degradation experiments were conducted in a fixed bed reactor loaded with 2 g of carbon samples. The reactor was fed with an O{sub 2}/O{sub 3} mixture (2 dm{sup 3}/min, 5 g O{sub 3}/h), for a given exposure time, in the range 10-120 min, at 298 K and 1 atm. The results suggest that high electron density from the carbon basal planes and surface metal oxides are primarily responsible for increase in the overall BT oxidation rate; whereas high surface concentration of electron withdrawing groups such as carboxylic acids, and carboxylic anhydrides retarded the overall BT oxidation rate. (orig.)

  17. Chemical compositions, free amino acid contents and antioxidant activities of Hanwoo (Bos taurus coreanae) beef by cut

    Science.gov (United States)

    The objective of this study was to evaluate chemical compositions, free amino acid contents, and antioxidant activities of different cuts of Hanwoo (Bos taurus coreanae) beef. Beef preferences and prices in the Korean market depend on cut. Therefore, comparisons were made between high-preference (gr...

  18. Synthesis of high magnetization Fe and FeCo nanoparticles by high temperature chemical reduction

    Energy Technology Data Exchange (ETDEWEB)

    Kandapallil, B; Colborn, RE; Bonitatibus, PJ; Johnson, F

    2015-03-15

    Fe and FeCo ferromagnetic nanoparticles in the 5-10 nm size regimes featuring high magnetization were synthesized using a modified chemical reduction method. The structure and morphology of these nanoparticles were confirmed by XRD and TOM analysis. These small, monodisperse and phase pure nanoparticles exhibited magnetic saturation of 210 emu/g (Fe) and 220 emu/g (Fe+Co) for Fe and FeCo nanoparticles respectively. The magnetization was found to be dependent on the temperature at which the reducing agent was introduced. (C) 2014 Elsevier B.V. All rights reserved,

  19. Planning High-Risk High-Reward Activities.

    NARCIS (Netherlands)

    Casault, Sébastien

    2014-01-01

    This body of work addresses a gap in financial and economic theories related to assets that are typically associated with high uncertainty. Specifically, this thesis provides some foundational work towards a new way to quantify and explain how high-risk high-reward activities, such as exploration,

  20. Chemical Compositions, Antioxidant and Antimicrobial Activities of Essential Oils of Piper caninum Blume

    Directory of Open Access Journals (Sweden)

    Hasnah Mohd Sirat

    2011-11-01

    Full Text Available Chemical composition, antioxidant and antimicrobial activities of the fresh leaves and stems oils of Piper caninum were investigated. A total of forty eight constituents were identified in the leaves (77.9% and stems (87.0% oil which were characterized by high proportions of phenylpropanoid, safrole with 17.1% for leaves and 25.5% for stems oil. Antioxidant activities were evaluated by using β-carotene/linoleic acid bleaching, DPPH radical scavenging and total phenolic content. Stems oil showed the highest inhibitory activity towards lipid peroxidation (114.9 ± 0.9%, compared to BHT (95.5 ± 0.5%, while leaves oil showed significant total phenolic content (27.4 ± 0.5 mg GA/g equivalent to gallic acid. However, the essential oils showed weak activity towards DPPH free-radical scavenging. Evaluation of antimicrobial activity revealed that both oils exhibited strong activity against all bacteria strains with MIC values in the range 62.5 to 250 µg/mL, but weak activity against fungal strains. These findings suggest that the essential oils can be used as antioxidant and antimicrobial agents for therapeutic, nutraceutical industries and food manufactures.

  1. Management and High-rank Utilization of Chemical Information

    Science.gov (United States)

    Sasaki, Shinichi

    This is the record of Special Lecture at the 24th Annual Meeting on Information Science and Technology. Firstly, lecturer outlined the production way and a general utilization of database on 13C and H magnetic resonance spectrum, which is produced by his group. In order to make higher the rank of utilization for this kind of factual database, he described three new systems such as CHEMICS, TUTORS and AIPHOS.

  2. Improving chemical education from high school to college using a more hands-on approach

    Science.gov (United States)

    Ruddick, Kristie Winfield

    In this work, various alternative teaching methods and activities for chemical education are developed, presented, and evaluated. In the first study, an original hands-on activity using LEGO® blocks to model ionic chemical formulas is presented together with quantitative and qualitative data regarding its educational effectiveness. Students explore cation to anion ratios using LEGO® blocks to represent trivalent, divalent and monovalent cations and anions. High school chemistry students who participated in the LEGO® lab showed significantly higher post-test scores than other students. The second study grows out of the creation of a computational lab module that is shown to significantly increase student learning in the subject of molecular orbital theory in first semester college General Chemistry. The third and final study presented is a course redesign project for college CHEM 1100, Preparation for General Chemistry. In this project the classroom is “flipped”. Students watch video lectures at home, and spend class time working with peers and the instructor on problem solving activities. The results presented here are one of the first quantitative studies showing the effectiveness of “flipping the classroom”. Students who were taught using the Reverse-Instruction (RI) method had significantly higher success in both the Preparation for General Chemistry course and traditionally taught General Chemistry I the following semester.

  3. Chemical composition and antimicrobial activity of the essential oil from leaves of Algerian Melissa officinalis L.

    Science.gov (United States)

    Abdellatif, Fahima; Boudjella, Hadjira; Zitouni, Abdelghani; Hassani, Aicha

    2014-01-01

    The essential oil obtained from leaves of Melissa officinalis L. (Family of Lamiaceae) growing in Algeria, was investigated for its chemical composition and in vitro antimicrobial activity. The chemical composition was determined by hydrodistillation and analyzed by GC/MS and GC-FID. Sixty-three compounds were identified in the essential oil, representing 94.10 % of the total oil and the yields were 0.34 %. The major component was geranial (44.20 %). Other predominant components were neral (30.20 %) and citronellal (6.30 %). The in vitro antimicrobial activity was determined by paper disk agar diffusion testing and minimum inhibitory concentration (MIC) using 7 bacteria (3 Gram-positive and 4 Gram-negative), 2 yeasts and 3 fungi. The results showed that the essential oil presented high antimicrobial activity against all microorganisms targeted mainly against five human pathogenic bacteria, one yeast Candida albicans and two phytopathogenic fungi tested. The minimum inhibitory concentrations (MIC) ranged from 1.00 to 5.00 µL/mL. PMID:26417300

  4. Chemical composition and antimicrobial activity of the essential oil from leaves of Algerian Melissa officinalis L.

    Science.gov (United States)

    Abdellatif, Fahima; Boudjella, Hadjira; Zitouni, Abdelghani; Hassani, Aicha

    2014-01-01

    The essential oil obtained from leaves of Melissa officinalis L. (Family of Lamiaceae) growing in Algeria, was investigated for its chemical composition and in vitro antimicrobial activity. The chemical composition was determined by hydrodistillation and analyzed by GC/MS and GC-FID. Sixty-three compounds were identified in the essential oil, representing 94.10 % of the total oil and the yields were 0.34 %. The major component was geranial (44.20 %). Other predominant components were neral (30.20 %) and citronellal (6.30 %). The in vitro antimicrobial activity was determined by paper disk agar diffusion testing and minimum inhibitory concentration (MIC) using 7 bacteria (3 Gram-positive and 4 Gram-negative), 2 yeasts and 3 fungi. The results showed that the essential oil presented high antimicrobial activity against all microorganisms targeted mainly against five human pathogenic bacteria, one yeast Candida albicans and two phytopathogenic fungi tested. The minimum inhibitory concentrations (MIC) ranged from 1.00 to 5.00 µL/mL.

  5. Larvicidal activities and chemical composition of essential oils from Piper klotzschianum (Kunth) C. DC. (Piperaceae).

    Science.gov (United States)

    do Nascimento, Jeferson C; David, Jorge M; Barbosa, Luiz C A; de Paula, Vanderlucia F; Demuner, Antonio J; David, Juceni P; Conserva, Lucia M; Ferreira, Jésu C; Guimarães, Elsie F

    2013-11-01

    Volatile oils from fresh roots, stems, leaves and seeds of Piper klotzschianum (Piperaceae) were obtained by hydrodistillation and analysed by GC-FID and GC-MS. In total, 25 components, representing more than 95% of the examined oils, were identified. The essential oils were evaluated against Artemia salina Leach nauplii and fourth-instar Aedes aegypti larvae. The major chemical constituents that were identified from various parts of this plant were 1-butyl-3,4-methylenedioxybenzene and 2,4,5-trimethoxy-1-propenylbenzene in the root, 1-butyl-3,4-methylenedioxybenzene in the stems and leaves and 1-butyl-3,4-methylenedioxybenzene, limonene and α-phellandrene in the seeds. The biological activities of these essential oils generally exhibited high toxicity against A. salina, with LC50 values that ranged from 7.06 to 15.43 µg mL(-1), and significant larvicidal activity against fourth-instar A. aegypti larvae was observed in the essential oils from the seeds (LC50 of 13.27 µg mL(-1)) and roots (LC50 of 10.0 µg mL(-1)) of the plant. The present study indicates that both essential oil of P. klotzsdhianum and the isolate 1-butyl-3,4-methylenedioxybenzene are potential resources for A. aegypti larva control. This is the first report of the biological activities of the oil and isolated compound. © 2013 Society of Chemical Industry.

  6. The chemical shock tube as a tool for studying high-temperature chemical kinetics

    Science.gov (United States)

    Brabbs, Theodore A.

    1986-01-01

    Although the combustion of hydrocarbons is our primary source of energy today, the chemical reactions, or pathway, by which even the simplest hydro-carbon reacts with atmospheric oxygen to form CO2 and water may not always be known. Furthermore, even when the reaction pathway is known, the reaction rates are always under discussion. The shock tube has been an important and unique tool for building a data base of reaction rates important in the combustion of hydrocarbon fuels. The ability of a shock wave to bring the gas sample to reaction conditions rapidly and homogeneously makes shock-tube studies of reaction kinetics extremely attractive. In addition to the control and uniformity of reaction conditions achieved with shock-wave methods, shock compression can produce gas temperatures far in excess of those in conventional reactors. Argon can be heated to well over 10 000 K, and temperatures around 5000 K are easily obtained with conventional shock-tube techniques. Experiments have proven the validity of shock-wave theory; thus, reaction temperatures and pressures can be calculated from a measurement of the incident shock velocity. A description is given of the chemical shock tube and auxiliary equipment and of two examples of kinetic experiments conducted in a shock tube.

  7. Identification of chemical modulators of the constitutive activated receptor (CAR) in a gene expression compendium

    OpenAIRE

    Oshida, Keiyu; Vasani, Naresh; Jones, Carlton; Moore, Tanya; Hester, Susan; Nesnow, Stephen; Auerbach, Scott; Geter, David R.; Aleksunes, Lauren M; Thomas, Russell S.; Applegate, Dawn; Klaassen, Curtis D.; Corton, J. Christopher

    2015-01-01

    The nuclear receptor family member constitutive activated receptor (CAR) is activated by structurally diverse drugs and environmentally-relevant chemicals leading to transcriptional regulation of genes involved in xenobiotic metabolism and transport. Chronic activation of CAR increases liver cancer incidence in rodents, whereas suppression of CAR can lead to steatosis and insulin insensitivity. Here, analytical methods were developed to screen for chemical treatments in a gene expression comp...

  8. Chemical and structural evaluation of activated carbon prepared from jute sticks for Brilliant Green dye removal from aqueous solution.

    Science.gov (United States)

    Asadullah, Mohammad; Asaduzzaman, Mohammad; Kabir, Mohammad Shajahan; Mostofa, Mohammad Golam; Miyazawa, Tomohisa

    2010-02-15

    Activated carbons have been prepared from jute sticks by chemical activation using ZnCl(2) and physical activation using steam for the removal of Brilliant Green dye from aqueous solution. The activated carbons and charcoal prepared from jute sticks were characterized by evaluating the surface chemistry, structural features and surface morphology. The maximum BET surface area was obtained to be 2304 m(2)/g for chemical activated carbon (ACC) while it is 730 and 80 m(2)/g for steam activated carbon (ACS) and charcoal, respectively. The FT-IR spectra exhibited that the pyrolysis and steam activation of jute sticks resulted in the release of aliphatic and O-containing functional groups by thermal effect. However, the release of functional groups is the effect of chemical reaction in the ZnCl(2) activation process. A honeycomb-type carbon structure in ACC was formed as observed on SEM images. Although charcoal and ACC were prepared at 500 degrees C the ACC exhibited much lower Raman sensitivity due to the formation of condensed aromatic ring systems. Due to high surface area and high porous structure with abundance of functional groups, the ACC adsorbed dye molecules with much higher efficiency than those of ACS and charcoal.

  9. Chemical Analysis and Biological Activity of the Essential Oils of Two Endemic Soqotri Commiphora Species

    Directory of Open Access Journals (Sweden)

    Wulf Schultze

    2010-02-01

    Full Text Available The barks of two endemic Commiphora species namely, Commiphora ornifolia (Balf.f. Gillett and Commiphora parvifolia Engl., were collected from Soqotra Island in Yemen and their essential oils were obtained by hydrodistillation. The chemical composition of both oils was investigated by GC and GC-MS. Moreover, the essential oils were evaluated for their antimicrobial activity against two Gram-positive bacteria, two Gram-negative bacteria and one yeast species by using a broth micro-dilution assay for minimum inhibitory concentrations (MIC and for their antioxidant activity by measuring the DPPH radical scavenging activity. A total of 45 constituents of C. ornifolia (85.6% and 44 constituents of C. parvifolia (87.1% were identified. The oil of C. ornifolia was characterized by a high content of oxygenated monoterpenes (56.3%, of which camphor (27.3%, α-fenchol (15.5%, fenchone (4.4% and borneol (2.9% were identified as the main components. High contents of oxygenated sesquiterpenes (36.1% and aliphatic acids (22.8% were found in C. parvifolia oil, in which caryophyllene oxide (14.2%, β-eudesmol (7.7%, bulnesol (5.7%, T-cadinol (3.7% and hexadecanoic acid (18.4% predominated. The results of the antimicrobial assay showed that both oils exhibited moderate to high antibacterial activity especially against Gram-positive bacteria. C. ornifolia oil was the most active. In addition, the DPPH-radical scavenging assay exhibited only weak antioxidant activities for both oils at the high concentration tested.

  10. High Yield Chemical Vapor Deposition Growth of High Quality Large-Area AB Stacked Bilayer Graphene

    Science.gov (United States)

    Liu, Lixin; Zhou, Hailong; Cheng, Rui; Yu, Woo Jong; Liu, Yuan; Chen, Yu; Shaw, Jonathan; Zhong, Xing; Huang, Yu; Duan, Xiangfeng

    2012-01-01

    Bernal stacked (AB stacked) bilayer graphene is of significant interest for functional electronic and photonic devices due to the feasibility to continuously tune its band gap with a vertical electrical field. Mechanical exfoliation can be used to produce AB stacked bilayer graphene flakes but typically with the sizes limited to a few micrometers. Chemical vapor deposition (CVD) has been recently explored for the synthesis of bilayer graphene but usually with limited coverage and a mixture of AB and randomly stacked structures. Herein we report a rational approach to produce large-area high quality AB stacked bilayer graphene. We show that the self-limiting effect of graphene growth on Cu foil can be broken by using a high H2/CH4 ratio in a low pressure CVD process to enable the continued growth of bilayer graphene. A high temperature and low pressure nucleation step is found to be critical for the formation of bilayer graphene nuclei with high AB stacking ratio. A rational design of a two-step CVD process is developed for the growth of bilayer graphene with high AB stacking ratio (up to 90 %) and high coverage (up to 99 %). The electrical transport studies demonstrated that devices made of the as-grown bilayer graphene exhibit typical characteristics of AB stacked bilayer graphene with the highest carrier mobility exceeding 4,000 cm2/V·s at room temperature, comparable to that of the exfoliated bilayer graphene. PMID:22906199

  11. Chemical Records in Snowpits from High Altitude Glaciers in the Tibetan Plateau and Its Surroundings

    Science.gov (United States)

    Zhang, Yulan; Kang, Shichang; Zhang, Qianggong; Gao, Tanguang; Guo, Junming; Grigholm, Bjorn; Huang, Jie; Sillanpää, Mika; Li, Xiaofei; Du, Wentao; Li, Yang; Ge, Xinlei

    2016-01-01

    Glaciochemistry can provide important information about climatic change and environmental conditions, as well as for testing regional and global atmospheric trace transport models. In this study, δ18O and selected chemical constituents records in snowpits collected from eight glaciers in the Tibetan Plateau and adjacent areas have been investigated. Drawing on the integrated data, our study summarized the seasonal and spatial characteristics of snow chemistry, and their potential sources. Distinct seasonal patterns of δ18O values in snowpits indicated more negative in the south TP controlled by Indian monsoon, and less negative in the north TP and Tien Shan. Overall increasing concentrations of microparticles and crustal ions from south to north indicated a strength of dust deposition on glaciers from semi-arid and arid regions. Principal component analysis and air mass trajectories suggested that chemical constituents were mainly attributable to crustal sources as demonstrated by the high concentrations of ions occurring during the non-monsoon seasons. Nevertheless, other sources, such as anthropogenic pollution, played an important role on chemical variations of glaciers near the human activity centers. This study concluded that air mass transport from different sources played important roles on the spatial distributions and seasonality of glaciochemistry. PMID:27186638

  12. Chemical Records in Snowpits from High Altitude Glaciers in the Tibetan Plateau and Its Surroundings.

    Directory of Open Access Journals (Sweden)

    Yulan Zhang

    Full Text Available Glaciochemistry can provide important information about climatic change and environmental conditions, as well as for testing regional and global atmospheric trace transport models. In this study, δ18O and selected chemical constituents records in snowpits collected from eight glaciers in the Tibetan Plateau and adjacent areas have been investigated. Drawing on the integrated data, our study summarized the seasonal and spatial characteristics of snow chemistry, and their potential sources. Distinct seasonal patterns of δ18O values in snowpits indicated more negative in the south TP controlled by Indian monsoon, and less negative in the north TP and Tien Shan. Overall increasing concentrations of microparticles and crustal ions from south to north indicated a strength of dust deposition on glaciers from semi-arid and arid regions. Principal component analysis and air mass trajectories suggested that chemical constituents were mainly attributable to crustal sources as demonstrated by the high concentrations of ions occurring during the non-monsoon seasons. Nevertheless, other sources, such as anthropogenic pollution, played an important role on chemical variations of glaciers near the human activity centers. This study concluded that air mass transport from different sources played important roles on the spatial distributions and seasonality of glaciochemistry.

  13. Antioxidant activity and chemical composition of three Tunisian Cistus: Cistus monspeliensis, Cistus villosus and Cistus libanotis.

    Science.gov (United States)

    Nicoletti, Marcello; Toniolo, Chiara; Venditti, Alessandro; Bruno, Maurizio; Ben Jemia, Mariem

    2015-02-01

    The chemical composition of three rockrose Cistus species, Cistus monspeliensis, Cistus libanotis and Cistus villosus, collected in Tunisia, was studied by HPTLC, focusing on the terpenes and phenols constituents. Diterpenes of Cistus are important as the main constituents of the leaf sticky aromatic resin, known as labdanum, which are highly appreciated in perfumery. Polyphenols in the methanolic extracts of each species were identified, quantified as total and as flavonoids and tannins, and tested for antioxidant activity. Diterpenes were evident in C. libanotis and C. monspeliensis, whereas they were practically absent in C. villosus; C. libanotis had higher phenolic amount, whereas antioxidant activities were important, but different according to the following tests: DPPH radical scavenging, conversion of the Fe(3+/)ferricyanide complex and inhibition of β-carotene bleaching. The reported data confirm the validity of utilisation of Cistus sp. in marketed herbal products, as well as the relevant presence of diterpenes in species actually not used for labdanum production.

  14. Chemical Constituents of Jacaranda oxyphylla and their Acetylcholinesterase Inhibitory and Antimicrobial Activities

    Directory of Open Access Journals (Sweden)

    Vinicius Viana Pereira

    2016-05-01

    Full Text Available This study evaluated chemical composition of Jacaranda oxyphylla, acetylcholinesterase inhibitory and antimicrobial activities of the isolated compounds. Phytochemical investigation of leaves extract yielded three classes of substances: fatty compounds, sterols and triterpenes. Butyl hexadecanoate (1, fatty alcohol (2, 2-(4-hydroxyphenylethyl triacontanoate (3, β -sitosterol (4, sitosterol-3-O- β- D -glucoside (5, 6'-palmitoyl-sitosterol-3-O- β- D -glucoside (6, oleanolic acid (7, ursolic acid (8 and corosolic acid (9 were obtained from n-hexane, CHCl 3 and EtOH extracts of J. oxyphylla. It was found a pronounced acetylcholinesterase inhibitory activity for the fatty compounds 1-3 and sterols 5 and 6, with values between 60 to 77%. Substances 7-9 presented a high antibacterial action against Bacillus cereus and Salmonella typhimurium, with values of growth inhibition in the range of 84 to 90%.

  15. Antimicrobial Activity and Chemical Constituents of the Extract from Jatropha curcas Fruit

    Directory of Open Access Journals (Sweden)

    Kanda Saosoong

    2016-05-01

    Full Text Available The antimicrobial activity and chemical constituents of the methanolic extract from J. curcas fruit were evaluated in this study. The crude extract was achieved by extraction with 60 % (v/v methanol. It showed the potencies of antimicrobial activity against P. putida, P. syringae pv. sesami, X. campestris, X. campestris pv. glycines, X. campestris pv. vesicatoria and R. solanacearum with the presence of inhibition zone in the range of 8.0 ± 0.0 to 13.7 ± 0.6 mm and MIC value at 214.29 ± 0.00 mg/mL. Furthermore, flavone compound can be proposed by the analysis of gas chromatography-mass spectrometry (GC-MS. According to the group of flavonoid compounds have strong bioactive properties; the results suggested that J. curcas fruit has highly potential as effective natural bioactive sources.

  16. Performance of evaporators in high level radioactive chemical waste service

    Energy Technology Data Exchange (ETDEWEB)

    Jenkins, C.F.

    1997-12-01

    Chemical processing of nuclear fuels and targets at Savannah River Site resulted in generation of millions of gallons of liquid wastes. The wastes were further processed to reduce volume and allow for extended temporary storage of a more concentrated material. Waste evaporators have been a central point for waste reduction for many years. Currently, the transfer and processing of the concentrated wastes for permanent storage requires dilution and results in generation of significant quantities of additional liquid wastes. A new round of volume reduction is required to fit existing storage capacity and to allow for removal of older vessels from service. Evaporator design, performance and repairs are discussed in this report.

  17. High-temperature high-pressure calorimeter for studying gram-scale heterogeneous chemical reactions

    Science.gov (United States)

    MacLeod, B. P.; Schauer, P. A.; Hu, K.; Lam, B.; Fork, D. K.; Berlinguette, C. P.

    2017-08-01

    We present an instrument for measuring pressure changes and heat flows of physical and chemical processes occurring in gram-scale solid samples under high pressures of reactive gases. Operation is demonstrated at 1232 °C under 33 bars of pure hydrogen. Calorimetric heat flow is inferred using a grey-box non-linear lumped-element heat transfer model of the instrument. Using an electrical calibration heater to deliver 900 J/1 W pulses at the sample position, we demonstrate a dynamic calorimetric power resolution of 50 mW when an 80-s moving average is applied to the signal. Integration of the power signal showed that the 900 J pulse energy could be measured with an average accuracy of 6.35% or better over the temperature range 150-1100 °C. This instrument is appropriate for the study of high-temperature metal hydride materials for thermochemical energy storage.

  18. Immunologically driven chemical engineering of antibodies for catalytic activity.

    Science.gov (United States)

    Dias, Sonia; Jovic, Florence; Renard, Pierre-Yves; Taran, Fréderic; Créminon, Christophe; Mioskowski, Charles; Grassi, Jacques

    2002-11-01

    We describe a new strategy for the preparation of catalytic antibodies based on a two-step procedure. Firstly, monoclonal antibodies are selected only if displaying the following binding features: binding both the substrate and a reactive group in such a way that the two groups are in a reactive position towards each other. Secondly, the selected monoclonal antibodies (mAbs) are chemically engineered by covalently binding the reactive group into the binding pocket of the antibody. Using previously isolated monoclonal antibodies, we have focused our studies on the control of this second step.

  19. Chemical Composition and Antioxidant Activity of Euterpe oleracea Roots and Leaflets

    Directory of Open Access Journals (Sweden)

    Christel Brunschwig

    2016-12-01

    Full Text Available Euterpe oleracea (açaí is a palm tree well known for the high antioxidant activity of its berries used as dietary supplements. Little is known about the biological activity and the composition of its vegetative organs. The objective of this study was to investigate the antioxidant activity of root and leaflet extracts of Euterpe oleracea (E. oleracea and characterize their phytochemicals. E. oleracea roots and leaflets extracts were screened in different chemical antioxidant assays (DPPH—2,2-diphenyl-1-picrylhydrazyl, FRAP—ferric feducing antioxidant power, and ORAC—oxygen radical absorbance capacity, in a DNA nicking assay and in a cellular antioxidant activity assay. Their polyphenolic profiles were determined by UV and LC-MS/MS. E. oleracea leaflets had higher antioxidant activity than E. oleracea berries, and leaflets of Oenocarpus bacaba and Oenocarpus bataua, as well as similar antioxidant activity to green tea. E. oleracea leaflet extracts were more complex than root extracts, with fourteen compounds, including caffeoylquinic acids and C-glycosyl derivatives of apigenin and luteolin. In the roots, six caffeoylquinic and caffeoylshikimic acids were identified. Qualitative compositions of E. oleracea, Oenocarpus bacaba and Oenocarpus bataua leaflets were quite similar, whereas the quantitative compositions were quite different. These results provide new prospects for the valorization of roots and leaflets of E. oleracea in the pharmaceutical, food or cosmetic industry, as they are currently by-products of the açaí industry.

  20. Chemical Composition and Antioxidant Activity of Euterpe oleracea Roots and Leaflets

    Science.gov (United States)

    Brunschwig, Christel; Leba, Louis-Jérôme; Saout, Mona; Martial, Karine; Bereau, Didier; Robinson, Jean-Charles

    2016-01-01

    Euterpe oleracea (açaí) is a palm tree well known for the high antioxidant activity of its berries used as dietary supplements. Little is known about the biological activity and the composition of its vegetative organs. The objective of this study was to investigate the antioxidant activity of root and leaflet extracts of Euterpe oleracea (E. oleracea) and characterize their phytochemicals. E. oleracea roots and leaflets extracts were screened in different chemical antioxidant assays (DPPH—2,2-diphenyl-1-picrylhydrazyl, FRAP—ferric feducing antioxidant power, and ORAC—oxygen radical absorbance capacity), in a DNA nicking assay and in a cellular antioxidant activity assay. Their polyphenolic profiles were determined by UV and LC-MS/MS. E. oleracea leaflets had higher antioxidant activity than E. oleracea berries, and leaflets of Oenocarpus bacaba and Oenocarpus bataua, as well as similar antioxidant activity to green tea. E. oleracea leaflet extracts were more complex than root extracts, with fourteen compounds, including caffeoylquinic acids and C-glycosyl derivatives of apigenin and luteolin. In the roots, six caffeoylquinic and caffeoylshikimic acids were identified. Qualitative compositions of E. oleracea, Oenocarpus bacaba and Oenocarpus bataua leaflets were quite similar, whereas the quantitative compositions were quite different. These results provide new prospects for the valorization of roots and leaflets of E. oleracea in the pharmaceutical, food or cosmetic industry, as they are currently by-products of the açaí industry. PMID:28036089

  1. Anti-angiogenic activity of Morinda citrifolia extracts and its chemical constituents.

    Science.gov (United States)

    Beh, Hooi-Kheng; Seow, Lay-Jing; Asmawi, Mohd Zaini; Abdul Majid, Amin Malik Shah; Murugaiyah, Vikneswaran; Ismail, Norhayati; Ismail, Zhari

    2012-01-01

    Morinda citrifolia L. has been used for the treatment of a wide variety of diseases, including cancer. This study was undertaken to evaluate the anti-angiogenic effect of M. citrifolia fruits and leaves. Anti-angiogenic activity was evaluated in vivo using the chick chorioallantoic membrane assay. Bioactivity-guided fractionation and isolation were performed to identify the active constituent, and high-performance liquid chromatography analysis was then used to quantify the amount of this active constituent in the active extracts and fraction. The methanol extracts of fruits and leaves of M. citrifolia and the subsequent chloroform fraction of the fruit methanolic extract were found to have potential anti-angiogenic activity and were more potent compared to suramin. Scopoletin was identified as one of the chemical constituents that may be partly responsible for the anti-angiogenic activity of M. citrifolia fruits. The present findings further support the use of M. citrifolia in cancer or other pathological conditions related to angiogenesis.

  2. High resolution Physio-chemical Tissue Analysis: Towards Non-invasive In Vivo Biopsy

    Science.gov (United States)

    Xu, Guan; Meng, Zhuo-Xian; Lin, Jian-Die; Deng, Cheri X.; Carson, Paul L.; Fowlkes, J. Brian; Tao, Chao; Liu, Xiaojun; Wang, Xueding

    2016-02-01

    Conventional gold standard histopathologic diagnosis requires information of both high resolution structural and chemical changes in tissue. Providing optical information at ultrasonic resolution, photoacoustic (PA) technique could provide highly sensitive and highly accurate tissue characterization noninvasively in the authentic in vivo environment, offering a replacement for histopathology. A two-dimensional (2D) physio-chemical spectrogram (PCS) combining micrometer to centimeter morphology and chemical composition simultaneously can be generated for each biological sample with PA measurements at multiple optical wavelengths. This spectrogram presents a unique 2D “physio-chemical signature” for any specific type of tissue. Comprehensive analysis of PCS, termed PA physio-chemical analysis (PAPCA), can lead to very rich diagnostic information, including the contents of all relevant molecular and chemical components along with their corresponding histological microfeatures, comparable to those accessible by conventional histology. PAPCA could contribute to the diagnosis of many diseases involving diffusive patterns such as fatty liver.

  3. Data on chemical activation of Wnt/β-catenin during axolotl limb regeneration

    Directory of Open Access Journals (Sweden)

    Sabina Wischin

    2017-04-01

    Full Text Available Limb amputation in axolotls was performed to obtain data demonstrating that a chemical agonist of Wnt (int-related protein/β-catenin signalling can have a role in axolotl limb regeneration (Wischin et al., 2017 [1]. The data revealed that active β-catenin protein was present during limb regeneration in some Leydig cells in the epithelium; after the chemical treatment, it was observed in more Leydig cells. In addition, the chemical agonist of Wnt generated distinct limb malformation.

  4. CHEMICAL ACTIVATION OF MOLECULES BY METALS: EXPERIMENTAL STUDIES OF ELECTRON DISTRIBUTIONS AND BONDING

    Energy Technology Data Exchange (ETDEWEB)

    LICHTENBERGER, DENNIS L.

    2002-03-26

    This research program is directed at obtaining detailed experimental information on the electronic interactions between metals and organic molecules. These interactions provide low energy pathways for many important chemical and catalytic processes. A major feature of the program is the continued development and application of our special high-resolution valence photoelectron spectroscopy (UPS), and high-precision X-ray core photoelectron spectroscopy (XPS) instrumentation for study of organometallic molecules in the gas phase. The study involves a systematic approach towards understanding the interactions and activation of bound carbonyls, C-H bonds, methylenes, vinylidenes, acetylides, alkenes, alkynes, carbenes, carbynes, alkylidenes, alkylidynes, and others with various monometal, dimetal, and cluster metal species. Supporting ligands include -aryls, alkoxides, oxides, and phosphines. We are expanding our studies of both early and late transition metal species and electron-rich and electron-poor environments in order to more completely understand the electronic factors that serve to stabilize particular organic fragments and intermediates on metals. Additional new directions for this program are being taken in ultra-high vacuum surface UPS, XPS, scanning tunneling microscopy (STM) and atomic force microscopy (AFM) experiments on both physisorbed and chemisorbed organometallic thin films. The combination of these methods provides additional electronic structure information on surface-molecule and molecule-molecule interactions. A very important general result emerging from this program is the identification of a close relationship between the ionization energies of the species and the thermodynamics of the chemical and catalytic reactions of these systems.

  5. High effective silica fume alkali activator

    Indian Academy of Sciences (India)

    Vladimír Živica

    2004-04-01

    Growing demands on the engineering properties of cement based materials and the urgency to decrease unsuitable ecologic impact of Portland cement manufacturing represent significant motivation for the development of new cement corresponding to these aspects. One category represents prospective alkali activated cements. A significant factor influencing their properties is alkali activator used. In this paper we present a new high effective alkali activator prepared from silica fume and its effectiveness. According to the results obtained this activator seems to be more effective than currently used activators like natrium hydroxide, natrium carbonate, and water glass.

  6. Chemically modified solid state nanopores for high throughput nanoparticle separation

    Energy Technology Data Exchange (ETDEWEB)

    Prabhu, Anmiv S; Kim, Min Jun [School of Biomedical Engineering and Health Science, Drexel University, Philadelphia, PA 19104 (United States); Jubery, Talukder Zaki N; Dutta, Prashanta [School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164 (United States); Freedman, Kevin J; Mulero, Rafael, E-mail: mkim@coe.drexel.ed [Department of Mechanical Engineering and Mechanics, Drexel University, Philadelphia, PA 19104 (United States)

    2010-11-17

    The separation of biomolecules and other nanoparticles is a vital step in several analytical and diagnostic techniques. Towards this end we present a solid state nanopore-based set-up as an efficient separation platform. The translocation of charged particles through a nanopore was first modeled mathematically using the multi-ion model and the surface charge density of the nanopore membrane was identified as a critical parameter that determines the selectivity of the membrane and the throughput of the separation process. Drawing from these simulations a single 150 nm pore was fabricated in a 50 nm thick free-standing silicon nitride membrane by focused-ion-beam milling and was chemically modified with (3-aminopropyl)triethoxysilane to change its surface charge density. This chemically modified membrane was then used to separate 22 and 58 nm polystyrene nanoparticles in solution. Once optimized, this approach can readily be scaled up to nanopore arrays which would function as a key component of next-generation nanosieving systems.

  7. Offgas Analysis and Pyrolysis Mechanism of Activated Carbon from Bamboo Sawdust by Chemical Activation With KOH

    Institute of Scientific and Technical Information of China (English)

    TIAN Yong; LIU Ping; WANG Xiufang; ZHONG Guoying; CHEN Guanke

    2011-01-01

    Bamboo sawdust was used as the precursor for the multipurpose use of waste.Offgases released during the activation process of bamboo by KOH were investigated quantitatively and qualitatively by a gas analyzer. TG/DTG curves during the pyrolysis process with different impregnation weight ratios (KOH to bamboo) were obtained by a thermogravimetric analyzer. Pyrolysis mechanism of bamboo was proposed. The results showed that the offgases were composed of CO, NO,SO2 and hydrocarbon with the concentration of 1 372, 37, 86, 215 mg/L, respectively. Thermogravimetric analysis indicated that the pyrolytic process mainly experienced two steps. The first was the low temperature activation step (lower than 300 ℃), which was the pre-activation and induction period.The second was the high temperature activation step(higher than 550 ℃), which was a radial activation followed by pore production. The second process was the key to control the pore distribution of the final product.

  8. High-throughput exposure modeling to support prioritization of chemicals in personal care products

    DEFF Research Database (Denmark)

    Csiszar, Susan A.; Ernstoff, Alexi; Fantke, Peter;

    2016-01-01

    We demonstrate the application of a high-throughput modeling framework to estimate exposure to chemicals used in personal care products (PCPs). As a basis for estimating exposure, we use the product intake fraction (PiF), defined as the mass of chemical taken by an individual or population per mass...... intakes were associated with body lotion. Bioactive doses derived from high-throughput in vitro toxicity data were combined with the estimated PiFs to demonstrate an approach to estimate bioactive equivalent chemical content and to screen chemicals for risk....

  9. Recovery of microbial diversity and activity during bioremediation following chemical oxidation of diesel contaminated soils

    NARCIS (Netherlands)

    Sutton, N.B.; Langenhoff, A.A.M.; Hidalgo Lasso, D.; Zaan, van der B.M.; Gaans, van P.; Maphosa, F.; Smidt, H.; Grotenhuis, J.T.C.; Rijnaarts, H.H.M.

    2014-01-01

    To improve the coupling of in situ chemical oxidation and in situ bioremediation, a systematic analysis was performed of the effect of chemical oxidation with Fenton's reagent, modified Fenton's reagent, permanganate, or persulfate, on microbial diversity and activity during 8 weeks of incubation in

  10. Recovery of microbial diversity and activity during bioremediation following chemical oxidation of diesel contaminated soils

    NARCIS (Netherlands)

    Sutton, N.B.; Langenhoff, A.A.M.; Hidalgo Lasso, D.; Zaan, van der B.M.; Gaans, van P.; Maphosa, F.; Smidt, H.; Grotenhuis, J.T.C.; Rijnaarts, H.H.M.

    2014-01-01

    To improve the coupling of in situ chemical oxidation and in situ bioremediation, a systematic analysis was performed of the effect of chemical oxidation with Fenton's reagent, modified Fenton's reagent, permanganate, or persulfate, on microbial diversity and activity during 8 weeks of incubation in

  11. Chemical Composition, Antioxidant, and Antibacterial Activity of Wood Vinegar from Litchi chinensis

    Directory of Open Access Journals (Sweden)

    Jyh-Ferng Yang

    2016-08-01

    Full Text Available The antioxidant and antibacterial activities of wood vinegar from Litchi chinensis, and its components have been studied. The chemical compositions of wood vinegar were analyzed by gas chromatography-mass spectrometry (GC-MS. A total of 17 chemical compounds were identified, representing 83.96% of the compositions in the wood vinegar. Three major components, included 2,6-dimethoxyphenol (syringol, 29.54%, 2-methoxyphenol (guaiacol, 12.36%, and 3,5-dimethoxy-4-hydroxytoluene (11.07%, were found in the wood vinegar. Antioxidant activities of the acids were investigated from the aspects of 1,1-Diphyl-2-picrylhydrazyl (DPPH free radicals scavenging capacity, superoxide anion radical scavenging capacity, and reducing power. The pyroligneous acid exhibited high antioxidant activity which was comparable to the reference standards (vitamin C and butylated hydroxyl toluene at the same dose with IC50 values of 36.5 ppm calculated by the DPPH radical scavenging assay, 38.38 g Trolox equivalent/100 g DW by the trolox equivalent antioxidant capacity (TEAC assay, and 67.9 by the reducing power analysis. Antibacterial activity was evaluated using the disc diffusion and microdilution methods against a group of clinically antibiotic resistant isolates. The major components exhibited broad spectrum inhibition against all the bacterial strains with a range of disc inhibition zoon between 15–19 mm. The minimum inhibition concentration and minimum bactericide concentration against the test strains was ranging in 0.95–3.80 μL/100 μL and 1.90–3.80 μL/100 μL, respectively. Most of the antibiotic resistant strains were more susceptible to the wood vinegar than the non-antibiotic resistant strain except the strain of ornithine resistant Staphylococcus aureus. Based on the chemical profile, it was considered that the strongest antioxidant and antibacterial activity of Litchi chinensis wood vinegar was due to its highly phenolic compositions. This study revealed

  12. Numerical simulation of high speed chemically reacting flows

    Science.gov (United States)

    Schuricht, Scott Richard

    A single step second-order accurate flux-difference-splitting method has been developed for solving unsteady quasi-one-dimensional and two-dimensional flows of multispecies fluids with finite rate chemistry. A systematic method for incorporating the source term effects into the wave strength parameters of Roe's linearized approximate Riemann solver is presented that is consistent with characteristic theory. The point implicit technique is utilized to achieve second-order time accuracy of the local area source term The stiffness associated with the chemical reactions is removed by implicitly integrating the kinetics system using the LSODE package. From the implicit integration, values of the species production rates are developed and incorporated into the flux-difference-splitting framework using a source term projection and splitting technique that preserves the upwind nature of source terms. Numerous validation studies are presented to illustrate the capability of the numerical method. Shock tube and converging-diverging nozzle cases show the method is second order accurate in space and time for one-dimensional flows. A supersonic source flow case and a subsonic sink flow case show the method is second order spatially accurate for two-dimensional flows. Static combustion and steady supersonic combustion cases illustrate the ability of the method to accurately capture the ignition delay for hydrogen-air mixtures. Demonstration studies are presented to illustrate the capabilities of the method. One-dimensional flow in a shock tube predicts species dissociation behind the main shock wave. One-dimension flow in supersonic nozzles predicts the well-known chemical freezing effect in an expanding flow. Two-dimensional cases consisted of a model of a scramjet combustor and a rocket motor nozzle. A parametric study was performed on a model of a scramjet combustor. The parameters studied were; wall angle, inlet Mach number, inlet temperature, and inlet equivalence ratio

  13. Integration of chemical-specific exposure and pharmacokinetic information with the chemical-agnostic AOP framework to support high throughput risk assessment

    Science.gov (United States)

    Application of the Adverse Outcome Pathway (AOP) framework and high throughput toxicity testing in chemical-specific risk assessment requires reconciliation of chemical concentrations sufficient to trigger a molecular initiating event measured in vitro and at the relevant target ...

  14. Highly porous activated carbons prepared from carbon rich Mongolian anthracite by direct NaOH activation

    Energy Technology Data Exchange (ETDEWEB)

    Byamba-Ochir, Narandalai [School of Chemical Engineering, Chonnam National University, 77 Yongbong-Ro, Gwangju 61186 (Korea, Republic of); Shim, Wang Geun [Department of Polymer Science and Engineering, Sunchon National University, 255 Jungang-Ro, Suncheon, Jeollanam-Do 57922 (Korea, Republic of); Balathanigaimani, M.S., E-mail: msbala@rgipt.ac.in [Department of Chemical Engineering, Rajiv Gandhi Institute of Petroleum Technology, Ratapur Chowk, Rae Bareli, 229316 Uttar Pradesh (India); Moon, Hee, E-mail: hmoon@jnu.ac.kr [School of Chemical Engineering, Chonnam National University, 77 Yongbong-Ro, Gwangju 61186 (Korea, Republic of)

    2016-08-30

    Highlights: • Highly porous carbon materials from Mongolian anthracite by chemical activation. • Cheaper and eco-friendly activation process has been employed. • Activated carbons with graphitic structure and energetically heterogeneous surface. • Surface hydrophobicity and porosity of the activated carbons can be controlled. - Abstract: Highly porous activated carbons (ACs) were prepared from Mongolian raw anthracite (MRA) using sodium hydroxide as an activation agent by varying the mass ratio (powdered MRA/NaOH) as well as the mixing method of chemical agent and powdered MRA. The specific BET surface area and total pore volume of the prepared MRA-based activated carbons (MACs) are in the range of 816–2063 m{sup 2}/g and of 0.55–1.61 cm{sup 3}/g, respectively. The pore size distribution of MACs show that most of the pores are in the range from large micropores to small mesopores and their distribution can be controlled by the mass ratio and mixing method of the activating agent. As expected from the intrinsic property of the MRA, the highly graphitic surface morphology of prepared carbons was confirmed from Raman spectra and transmission electron microscopy (TEM) studies. Furthermore the FTIR and XPS results reveal that the preparation of MACs with hydrophobic in nature is highly possible by controlling the mixing conditions of activating agent and powdered MRA. Based on all the results, it is suggested that the prepared MACs could be used for many specific applications, requiring high surface area, optimal pore size distribution, proper surface hydrophobicity as well as strong physical strength.

  15. Chemical Constituents and Antioxidant Activity of Geranium wallichianum

    Directory of Open Access Journals (Sweden)

    Muhammad I. Choudhary

    2009-10-01

    Full Text Available The study of the chemical constituents of the whole plant of Geranium wallichianum (Geraniaceae has resulted in the isolation and characterization of six compounds. These six compounds were identified as ursolic acid (1, β-sitosterol (2, stigmasterol (3,b-sitosterol galactoside (4, herniarin (5, and 2,4,6-trihydroxyethylbenzoate (6 which were isolated for the first time from Geranium wallichianum. The above compounds were individually identified by spectroscopic analyses and comparisons with reported data. The antioxidant potential of Geranium wallichianum extracts has been investigated by DPPH radical scavenging assay and EtOAc extract was found to be most potent with IC50 19.05 ug/mL

  16. Chemical Characterization, Antioxidant and Enzymatic Activity of Brines from Scandinavian Marinated Herring Products

    DEFF Research Database (Denmark)

    Gringer, Nina; Osman, Ali; Nielsen, Henrik Hauch

    2014-01-01

    Brines generated during the last marination step in the production of marinated herring (Clupea harengus) were chemically characterized and analyzed for antioxidant and enzyme activities. The end-products were vinegar cured, spice cured and traditional barrel-salted herring with either salt...... or spices. The chemical characterization encompassed pH, dry matter, ash, salt, fatty acids, protein, polypeptide pattern, iron and nitrogen. The antioxidant activity was tested with three assays measuring: iron chelation, reducing power and radical scavenging activity. The enzymatic activity for peroxidase...... with biological activity from brines from the marinated herring production was demonstrated in this work....

  17. Fast and efficient adsorption of methylene green 5 on activated carbon prepared from new chemical activation method.

    Science.gov (United States)

    Tran, Hai Nguyen; You, Sheng-Jie; Chao, Huan-Ping

    2017-03-01

    Activated carbon (AC) was synthesized from golden shower (GS) through a new chemical activation process. The three-stage process comprised (1) hydrothermal carbonization of GS to produce hydrochar, (2) pyrolysis of hydrochar to produce biochar, and (3) subsequent chemical activation of biochar with K2CO3 to obtain GSHBAC. The traditional synthesis processes (i.e., one-stage and two-stage) were also examined for comparison. In the one-stage process, GS that was impregnated with K2CO3 was directly pyrolyzed (GSAC), and the two-stage process consisted of (1) pyrolytic or hydrothermal carbonization to produce biochar or hydrochar and (2) subsequent chemical activation was defined as GSBAC and GSHAC, respectively. The synthesized ACs were characterized by scanning electron microscope, Brunauer-Emmett-Teller (BET) surface area analysis, Fourier transform infrared spectrometry, point zero charge, and Boehm titration. The adsorption results demonstrated that the MG5 adsorption process was not remarkably affected by neither the solution pH (2.0-10) nor ionic strength (0-0.5 M NaCl). Kinetic studies showed that the adsorption equilibrium was quickly established, with a low activation energy required for adsorption (Ea; 3.30-27.8 kJ/mol), and the ACs removed 50-73% of the MG5 concentration from solution within 01 min. Desorption studies confirmed the adsorption was irreversible. Thermodynamic experiments suggested that the MG5 adsorption was spontaneous (-ΔG°) and endothermic (+ΔH°), and increased the randomness (+ΔS°) in the system. Although the specific surface areas of the ACs followed the order GSAC (1,413) > GSHAC (1,238) > GSHBAC (903) > GSBAC (812 m(2)/g), the maximum adsorption capacities determined from the Langmuir model (Q(o)max) at 30 °C exhibited the following order: GSHBAC (531) > GSAC (344) > GSHAC (332) > GSBAC (253 mg/g). Oxygenation of the ACs' surface through a hydrothermal process with acrylic acid resulted in a decrease in MG5

  18. Chemical Constituents and Biological Activities of Strobilanthes crispus L.

    Directory of Open Access Journals (Sweden)

    Yen Chin Koay

    2013-01-01

    Full Text Available Phytochemical investigation of Strobilanthes crispus has led to the isolation of 1-heptacosanol (1, tetracosanoic acid (2, stigmasterol (3 from the hexane extract, a mixture of four C 20-C 24 fatty acid esters of β-amyrin (4, taraxerol (5, taraxerone (6, a mixture of two C 22 and C 24 fatty acid esters of taraxerol (7 from the dichloromethane extract, 4-acetyl-2,7-dihydroxy-1,4,8-triphenyloctane-3,5-dione (8 and stigmasterol β- D -glucopyranoside (9 from the methanol extract. T he dichloromethane and methanol crude extracts together with the isolated compounds (4- 9 were tested for antibacterial activity using the determination of minimum inhibitory concentration assay and acetylcholinesterase inhibitory activity using the micro-plate assay . The majority of the samples tested indicated good activity against the Gram-positive bacteria (7.8─125.0 μg/mL, and moderate to weak activity against the Gram-negative bacteria (31.0─250.0 μg/mL employed. Moderate to weak activity was observed against acetylcholinesterase. Compound (8 showedexcellentantibacterialactivity against Bacillus subtilis and Staphylococcus aureus , with MIC values of 15.6 and 7.8 μg/mL, respectively, and significant activity against Escherichia coli and Salmonella typhimurium , with MIC values of 62.5 and 31.0 μg/mL, respectively. Compound (8 also showed the highest acetylcholinesterase inhibitory activity, with an IC 50 value of 31.0 μg/mL. This is the first report describing the antibacterial and acetylcholinesterase inhibitory activities of S. crispus on the basis of the isolated constituents. This research work has provided scientific proof of the traditional medicinal use of the leaves of S. crispus.

  19. Modular high voltage power supply for chemical analysis

    Science.gov (United States)

    Stamps, James F.; Yee, Daniel D.

    2008-07-15

    A high voltage power supply for use in a system such as a microfluidics system, uses a DC-DC converter in parallel with a voltage-controlled resistor. A feedback circuit provides a control signal for the DC-DC converter and voltage-controlled resistor so as to regulate the output voltage of the high voltage power supply, as well as, to sink or source current from the high voltage supply.

  20. Application of the Activity Framework for Assessing Aquatic Ecotoxicology Data for Organic Chemicals.

    Science.gov (United States)

    Thomas, Paul; Dawick, James; Lampi, Mark; Lemaire, Philippe; Presow, Shaun; van Egmond, Roger; Arnot, Jon A; Mackay, Donald; Mayer, Philipp; Galay Burgos, Malyka

    2015-10-20

    Toxicological research in the 1930s gave the first indications of the link between narcotic toxicity and the chemical activity of organic chemicals. More recently, chemical activity has been proposed as a novel exposure parameter that describes the fraction of saturation and that quantifies the potential for partitioning and diffusive uptake. In the present study, more than 2000 acute and chronic algal, aquatic invertebrates and fish toxicity data, as well as water solubility and melting point values, were collected from a series of sources. The data were critically reviewed and grouped by mode of action (MoA). We considered 660 toxicity data to be of acceptable quality. The 328 data which applied to the 72 substances identified as MoA 1 were then evaluated within the activity-toxicity framework: EC50 and LC50 values for all three taxa correlated generally well with (subcooled) liquid solubilities. Acute toxicity was typically exerted within the chemical activity range of 0.01-0.1, whereas chronic toxicity was exerted in the range of 0.001-0.01. These results confirm that chemical activity has the potential to contribute to the determination, interpretation and prediction of toxicity to aquatic organisms. It also has the potential to enhance regulation of organic chemicals by linking results from laboratory tests, monitoring and modeling programs. The framework can provide an additional line of evidence for assessing aquatic toxicity, for improving the design of toxicity tests, reducing animal usage and addressing chemical mixtures.

  1. What are the active carbon species during graphene chemical vapor deposition growth?

    Science.gov (United States)

    Shu, Haibo; Tao, Xiao-Ming; Ding, Feng

    2015-02-01

    The dissociation of carbon feedstock is a crucial step for understanding the mechanism of graphene chemical vapor deposition (CVD) growth. Using first-principles calculations, we performed a comprehensive theoretical study for the population of various active carbon species, including carbon monomers and various radicals, CHi (i = 1, 2, 3, 4), on four representative transition-metal surfaces, Cu(111), Ni(111), Ir(111) and Rh(111), under different experimental conditions. On the Cu surface, which is less active, the population of CH and C monomers at the subsurface is found to be very high and thus they are the most important precursors for graphene CVD growth. On the Ni surface, which is more active than Cu, C monomers at the subsurface dominate graphene CVD growth under most experimental conditions. In contrast, on the active Ir and Rh surfaces, C monomers on the surfaces are found to be very stable and thus are the main precursors for graphene growth. This study shows that the mechanism of graphene CVD growth depends on the activity of catalyst surfaces and the detailed graphene growth process at the atomic level can be controlled by varying the temperature or partial pressure of hydrogen.

  2. Characterization of mesoporous carbon prepared from date stems by H3PO4 chemical activation

    Science.gov (United States)

    Hadoun, H.; Sadaoui, Z.; Souami, N.; Sahel, D.; Toumert, I.

    2013-09-01

    The present work was focused on the determination of texture, morphology, crystanillity and oxygenated surface groups characteristics of an activated carbon prepared from date stems. Chemical activation of this precursor at different temperatures (450, 550 and 650 °C) was adopted using phosphoric acid as dehydrating agent at (2/1) impregnation ratio. Fourier transform infrared spectroscopy study was carried out to identify surface groups in date stems activated carbons. The microscopic structure was examined by nitrogen adsorption at 77 K. The interlayer spacing (d200 and d100), stack height (Lc), stack width (La) and effective dimension L of the turbostratic crystallites (microcrystallite) in the date stems activated carbons were estimated from X-ray diffraction data (XRD). Results yielded a surface area, SBET, and total pore volume of 682, 1455, 1319 m2/g and 0,343, 1,045 and 0.735 cm3/g, for the carbon prepared at 450, 550 and 650 °C, respectively. Scanning electron microscopy exhibits a highly developed porosity which is in good agreement with the porous texture derived from gas adsorption data and these results confirm that the activated carbon is dominated by network of slit-shaped mesopores morphology and in some cases by varied micropores morphologies.

  3. Super-SERS-active and highly effective antimicrobial Ag nanodendrites

    Science.gov (United States)

    Li, H. B.; Liu, P.; Liang, Y.; Xiao, J.; Yang, G. W.

    2012-07-01

    We have developed simple and green electrochemistry to synthesize Ag nanostructures with high purity, good crystallinity and smooth surface for applications as super-SERS (surface-enhanced Raman scattering), SERS-active substrates and with highly effective antimicrobial activities. This synthesis takes place in a clean and slow reaction environment without any chemical additives, which ensures an ultrahigh active surface of the as-synthesized Ag nanostructures owing to their purity, good crystallinity and smooth morphology. Using this method, we synthesized nearly perfect Ag nanodendrites (NDs), which exhibit super-SERS sensitivity when they are used to detect the SERS spectra of rhodamine 6G at concentrations as low as 5 × 10-16 M, and have an ultrahigh electromagnetic (EM) enhancement factor of the order of 1013, breaking through the theoretical limit of EM enhancement. Meanwhile, the as-synthesized Ag NDs possess highly effective antimicrobial activities for Escherichia coli, Candida albicans and Staphylococcus aureus, which are over 10 times that of silver nanoparticles. Additionally, the basic physics and chemistry involved in the fabrication of Ag nanostructures are pursued. These investigations show that silver nanostructures with highly active surfaces can make the most of Ag nanostructures functioning as super-SERS-active substrates and multiple antibiotics.

  4. Chemical composition and antibacterial activity of essential oils against human pathogenic bacteria

    NARCIS (Netherlands)

    Sokovic, M.; Marin, P.D.; Brkic, D.; Griensven, van L.J.L.D.

    2008-01-01

    The chemical composition and antibacterial activity of essential oils from 10 aromatic plants Matricaria chamommilla, Mentha piperita, M. spicata, Lavandula angustifolia, Ocimum basilicum, Thymus vulgaris, Origanum vulgare, Salvia officinalis, Citrus limon and C. aurantium have been determined. Anti

  5. Chemical composition and antibacterial activity of essential oils against human pathogenic bacteria

    NARCIS (Netherlands)

    Sokovic, M.; Marin, P.D.; Brkic, D.; Griensven, van L.J.L.D.

    2008-01-01

    The chemical composition and antibacterial activity of essential oils from 10 aromatic plants Matricaria chamommilla, Mentha piperita, M. spicata, Lavandula angustifolia, Ocimum basilicum, Thymus vulgaris, Origanum vulgare, Salvia officinalis, Citrus limon and C. aurantium have been determined.

  6. Foeniculum vulgare essential oils: chemical composition, antioxidant and antimicrobial activities.

    Science.gov (United States)

    Miguel, Maria Graça; Cruz, Cláudia; Faleiro, Leonor; Simões, Mariana T F; Figueiredo, Ana Cristina; Barroso, José G; Pedro, Luis G

    2010-02-01

    The essential oils from Foeniculum vulgare commercial aerial parts and fruits were isolated by hydrodistillation, with different distillation times (30 min, 1 h, 2 h and 3 h), and analyzed by GC and GC-MS. The antioxidant ability was estimated using four distinct methods. Antibacterial activity was determined by the agar diffusion method. Remarkable differences, and worrying from the quality and safety point of view, were detected in the essential oils. trans-Anethole (31-36%), alpha-pinene (14-20%) and limonene (11-13%) were the main components of the essentials oil isolated from F. vulgare dried aerial parts, whereas methyl chavicol (= estragole) (79-88%) was dominant in the fruit oils. With the DPPH method the plant oils showed better antioxidant activity than the fruits oils. With the TBARS method and at higher concentrations, fennel essential oils showed a pro-oxidant activity. None of the oils showed a hydroxyl radical scavenging capacity > 50%, but they showed an ability to inhibit 5-lipoxygenase. The essential oils showed a very low antimicrobial activity. In general, the essential oils isolated during 2 h were as effective, from the biological activity point of view, as those isolated during 3 h.

  7. Chemical profile and antimicrobial activity of Boldo (Peumus boldus Molina extracts obtained by compressed carbon dioxide extraction

    Directory of Open Access Journals (Sweden)

    M. Mazutti

    2008-06-01

    Full Text Available This work reports the effects of temperature (20 to 50ºC and pressure (100 to 250 bar on the extraction yield, chemical characteristics and antimicrobial activity of extracts of Peumus boldus Molina obtained by compressed carbon dioxide extraction. Results showed that the extraction variables affect the extraction yield and the chemical distribution of the major compounds present in the extracts. The extracts were chemically analyzed with regard to 1,8-cineole, trans-sabinene, pinocarveol, pinocarvone, 4-terpineol, ascaridole, piperitone oxide, limonene dioxide and n-eicosane in a GC/MSD. Antimicrobial tests demonstrated that the high-pressure CO2 extracts had activity against 13 bacteria and that better action was verified with extracts obtained at a lower CO2 extraction density and a higher temperature.

  8. Chemical Analysis and Biological Activity of Jordanian Chamomile Extracts

    Directory of Open Access Journals (Sweden)

    Nawal Hassan Al Bahtiti

    2012-02-01

    Full Text Available The Jordanian chamomile (Matricaria chamomilla has been researched more thoroughly to evaluate its useful properties. It is investigated and found that Jordanian chamomile is rich in phenolic compounds, with beneficial biological activities. By applying the most promising HPLC method, the content of total phenolics in methanolic extract was determined according to the Folin-Clocalteu procedure, and was found (GAE>20 mg/g. The flavonoid types were found as flavones and flavonolos.The minimum inhibitory concentration values for methanolic extracts of Jordanian chamomile were determined for different kinds of bacteria. The extracts have activity against Staphylococcus aurous, candida albicans, Esherichia Coli, Betula pubescens and Pinus sylvestris. The activity has been observed to be due to the tannins and a pigenin present in the extract. To utilize these significant sources of natural compounds, further characterization of phenolic composition is needed.

  9. High affinity binding site-mediated prevention of chemical absorption across the gastrointestinal tract.

    Science.gov (United States)

    Rasmussen, M V; Barker, T T; Silbart, L K

    2001-12-15

    Preventing mucosal absorption of low-molecular weight compounds such as carcinogens, toxins and drugs could help prevent many diseases. To characterize the effects of dose and timing on high-affinity binding site mediated sequestration of specific chemical ligands in the gastrointestinal tract, avidin was perorally-administered to mice either prior to or mixed with 3H-biotin. Avidin enhanced fecal 3H-biotin excretion in a dose-dependent manner, consistent with the accepted mechanism of egg white-induced biotin deficiency syndrome. Avidin administration up to 4 h before 3H-biotin administration also enhanced fecal 3H-biotin excretion. Activated charcoal (AC) reduced 3H-biotin absorption when mixed with 3H-biotin before ingestion, but was ineffective when ingested prior to 3H-biotin. These studies suggest that ingestion of high-affinity protein binding sites can establish an absorptive barrier at the gastrointestinal mucosa to prevent the uptake of unwanted low molecular-weight chemicals.

  10. Chemical Composition and Antimicrobial Activity of Artemisiatschernieviana Besser from Iran

    Directory of Open Access Journals (Sweden)

    Masoud Kazemi

    2009-01-01

    Full Text Available The oil obtained from hydrodistillation of the aerial parts of Artemisia tschernieviana was analyzed by GC and GC/MS. The main constituents of the 30 identified components were p-cymene (21.3%, β-pinene (17.8%, α-pinene (9.4%, γ-terpinene (9.1%, (Z-cis-ocimene (8.8%, and α-cadinol (8.1%. This species is rich in monoterpenes. Antimicrobial activity was determined against six bacterial strains and one fungal strain. The results show that this oil is active against all the tested strains.

  11. Chemical constituents of Lecythis pisonis and cytotoxic activity

    Directory of Open Access Journals (Sweden)

    Jocélia P. C. Oliveira

    2012-10-01

    Full Text Available The phytochemical investigation of the ethanol extract from leaves of Lecythis pisonis Cambess., Lecythidaceae, resulted in the isolation of seven triterpenes: α- and β-amyrin, uvaol and erythrodiol, ursolic and oleanolic acids and 3β-friedelinol, as well as a mixture of sitosterol and stigmasterol steroids and a diterpene (E-phytol. The structures of these compounds were identified by¹H and 13C NMR spectral analysis and compared with literature data. The mixture of triterpenes ursolic and oleanolic acids isolated from the active ethereal fraction showed moderate cytotoxic activity. This paper describes for the first time the phytochemical and cytotoxic study of Lecythis pisonis' leaves.

  12. Genetic and chemical diversity of high mucilaginous plants of Sida complex by ISSR markers and chemical fingerprinting.

    Science.gov (United States)

    Thul, Sanjog T; Srivastava, Ankit K; Singh, Subhash C; Shanker, Karuna

    2011-09-01

    A method was developed based on multiple approaches wherein DNA and chemical analysis was carried out toward differentiation of important species of Sida complex that is being used for commercial preparation. Isolated DNA samples were successfully performed through PCR amplification using ISSR markers and degree of genetic diversity among the different species of Sida is compared with that of chemical diversity. For genetic fingerprint investigation, selected 10 ISSR primers generating reproducible banding patterns were used. Among the total of 63 amplicons, 62 were recorded as polymorphic, genetic similarity index deduced from ISSR profiles ranged from 12 to 51%. Based on similarity index, S. acuta and S. rhombifolia found to be most similar (51%). High number of species-specific bands played pivotal role to delineate species at genetic level. Investigation based on HPTLC fingerprints analysis revealed 23 bands representing to characteristic chemicals and similarity index ranged from 73 to 91%. Prominent distinguishable bands were observed only in S. acuta, while S. cordifolia and S. rhombifolia shared most bands making them difficult to identify on chemical fingerprint basis. This report summarizes the genotypic and chemotypic diversity and the use of profiles for authentication of species of Sida complex.

  13. Determination of antibacterial, antifungal activity and chemical composition of essential oil portion of unani formulation kulzam

    Directory of Open Access Journals (Sweden)

    K Ashok Kumar

    2011-01-01

    Full Text Available Kulzam is a popular unani, liquid formulation; indicated for several minor ailments like cough, cold, running nose, sore throat, insect bites, earache, tooth ache, etc. by the manufacturer. However, this over the counter formulation has not been scientifically evaluated for its claimed uses. Hence in the present study an attempt has been to check the chemical composition, antibacterial and antifungal activity as most of the above-mentioned conditions are underpinned by microbial activity. The antibacterial and antifungal activity of the formulation was carried out on human pathogenic bacteria Pseudomonas aerogenousa, Escherichia coli, Staphylococcus aureus, Corynebacterium and fungi Candida albicans, Aspergillus fumigates and was compared with standards ciprofloxacin and clotrimazole. Kulzam exhibited strong in vitro inhibition of growth against all the test micro-organisms at both 100 and 150 μl levels of undiluted formulation (test sample and more than that of standard at 150 μl level. The chemical composition of essential oil of the formulation was determined by gas chromatography−mass spectroscopy (GC-MS analysis. Thirteen compounds constituting about 93.56% of the essential oil were identified. The main components were Camphor, menthol, thymol, 2-propenal 3-phenyl-, eugenol, trans-caryophyllene, p-allylanisole, linalool, eucalyptol, l-limonene, 1-methyl-2-isopropylbenzene, and 1S-alpha-pinene. The outcome of this study shows that kulzam contain terpenes and their oxygenated derivatives, which are believed to be highly effective antibacterial, antifungal, analgesic, anti-inflammatory, antioxidant, spasmolytic and immunomodulatory agents. The formulation has been found to possess strong antibacterial and antifungal properties, and it becomes very difficult to pin point the specific compound responsible for studied activities. However, the study positively motivates the use of kulzam for common ailments.

  14. Textural and chemical characterization of activated carbon prepared from shell of african palm (Elaeis guineensis by chemical activation with CaCl2 and MgCl2

    Directory of Open Access Journals (Sweden)

    Sergio Acevedo

    2015-09-01

    Full Text Available Activated carbons through chemical activation of African palm shells (Elaeis guineensis with magnesium chloride and calcium chloride solutions at different concentrations were obtained. The prepared materials were characterized textural and chemically. The results show that activated carbons with higher values of surface area and pore volume are obtained when solutions with lower concentrations of the activating agent are used. The obtained activated carbons have surface areas and pore volumes with values between 10 and 501 m2 /g and 0.01 and 0.29 cm3 /g respectively. Immersion enthalpies values of solids in water were between -14.3 and -32.8 J/g and benzene between -13.9 and -38.6 J/g. Total acidity and basicity of the activated carbons had values between 23 and 262 μmol/g 123 and 1724 μmol/g respectively. pH at the point of zero charge was also determined with values between 4.08 and 9.92 for set of activated carbons . The results show that activation with CaCl2 and MgCl2 salts produce activated carbons with pores in the range of mesopores for facilitate entry of the adsorbate into the materials.

  15. Highly efficient adsorption of chlorophenols onto chemically modified chitosan

    Science.gov (United States)

    Zhou, Liang-Chun; Meng, Xiang-Guang; Fu, Jing-Wei; Yang, Yu-Chong; Yang, Peng; Mi, Chun

    2014-02-01

    A novel chemically modified chitosan CS-SA-CD with phenol and β-cyclodextrin groups was prepared. The adsorptions of phenol, 2-chlorophenol (2-CP), 4-chlorophenol (4-CP), 2,4-dichlorophenol (DCP) and 2,4,6-trichlorophenol (TCP) on the functional chitosan from aqueous solution were investigated. CS-SA-CD exhibited excellent adsorption ability for chlorophenols especially for DCP and TCP. The maximum adsorption capacities of phenol, 2-CP, 4-CP, DCP and TCP on CS-SA-CD were 59.74, 70.52, 96.43, 315.46 and 375.94 mg/g, respectively. The scanning electron microscope and Brunauer-Emmett-Teller analyses revealed that the introduction of phenol group changed the surface morphology and surface properties of chitosan. The modified chitosan CS-SA-CD possesses larger surface areas (4.72 m2/g), pore volume (7.29 × 10-3 mL/g) and average pore diameter (59.99 Å) as compared to those of chitosan 3.27 m2/g, 2.00 × 10-3 mL/g and 15.95 Å, respectively. The enhanced adsorption of chlorophenols was also attributed to the interaction of hydrogen bond between Cl atom and sbnd OH group. The adsorption of chlorophenols on CS-SA-CD followed the pseudo-second-order kinetic model. Adsorbent could be regenerated easily and the regenerated CS-SA-CD remained 80-91% adsorption efficiency.

  16. STRUCTURE AND CHARACTERIZATION OF SOME HIGH CHEMICALLY RESISTANCE SILICATE GLASSES

    Directory of Open Access Journals (Sweden)

    H.A. Abo-Mosallam

    2016-10-01

    Full Text Available A multi component silicate glasses based on Li₂O-MgO-P₂O₅-SiO₂ system were synthesized and modified by Na₂O /Li₂O, SrO /MgO and CaO /SrO replacements. The prepared glasses have been characterized by X-ray Diffraction (XRD and Fourier Transform Infrared Spectroscopy (FTIR. Additionally, bulk density, microhardness, chemical durability and in vitro bioactivity were evaluated as a function of introducing different alkali and alkaline element substitutions. For comprehension the in vitro bioactivity, the glass samples were soaking in simulated body fluid (SBF solution at 37°C for 14 days. Scanning electron microscopy coupled with energy-dispersive X-ray (SEM-EDX and (FTIR were used to characterize forming hydroxyapatite layer produced on glass specimen surfaces. The results show that Na₂O/Li₂O and CaO/SrO replacements led to enhance the bioactivity behavior of the glasses. The results are harmonious with a weaker network glass structure consequence of Na₂O/Li₂O and SrO/MgO replacement in the glasses. However, the glass network connectivity increased with addition of the higher charge to size ratio of Ca2+ instead of Sr2+. The prepared glass samples had microhardness in the range, 4920-6017 MPa; density values in the range, 2.46-2.78 g/cm³ and the weight loss percent was ranged between 0.72 and 1.67 %.

  17. High-valent iron in chemical and biological oxidations.

    Science.gov (United States)

    Groves, John T

    2006-04-01

    Various aspects of the reactivity of iron(IV) in chemical and biological systems are reviewed. Accumulated evidence shows that the ferryl species [Fe(IV)O](2+) can be formed under a variety of conditions including those related to the ferrous ion-hydrogen peroxide system known as Fenton's reagent. Early evidence that such a species could hydroxylate typical aliphatic C-H bonds included regioselectivities and stereospecificities for cyclohexanol hydroxylation that could not be accounted for by a freely diffusing hydroxyl radical. Iron(IV) porphyrin complexes are also found in the catalytic cycles of cytochrome P450 and chloroperoxidase. Model oxo-iron(IV) porphyrin complexes have shown reactivity similar to the proposed enzymatic intermediates. Mechanistic studies using mechanistically diagnostic substrates have implicated a radical rebound scenario for aliphatic hydroxylation by cytochrome P450. Likewise, several non-heme diiron hydroxylases, AlkB (Omega-hydroxylase), sMMO (soluble methane monooxygenase), XylM (xylene monooxygenase) and T4moH (toluene monooxygenase) all show clear indications of radical rearranged products indicating that the oxygen rebound pathway is a ubiquitous mechanism for hydrocarbon oxygenation by both heme and non-heme iron enzymes.

  18. International activities in chemical thermodynamics of nuclear materials

    Energy Technology Data Exchange (ETDEWEB)

    Navratil, J.D.; Oetting, F.L.; O' Hare, P.A.G.

    1982-01-01

    For over twenty years, the International Atomic Energy Agency has played a major role in furthering the exchange of information on the thermodynamics of nuclear materials between scientists all over the world. The methodology used by the Agency to achieve this exchange has been to convene five international symposia on the thermodynamics of nuclear materials (1962, 1965, 1967, 1974 and 1979). These symposia not only served as a means for scientific exchange of experimental results, but also provided a mechanism whereby various scientists could collaborate on pertinent topics. Under the sponsorship of the Agency, several panels have been held resulting in the publication of several technical reports specifically related to thermochemical assessment, e.g. UC and PuC (1962), UO/sub 2/ (1964), and PuO/sub 2/ and UPuO/sub 2/ (1964). On a broader front, publication of two series of monographs on thermodynamic assessment has recently been undertaken; one consists of a special series of the Atomic Energy Review and the other is a series on The Chemical Thermodynamics of Actinide Elements and Compounds. During the past three years, the Agency has also sponsored a coordinated research programme between Member States. It deals with thermodynamic and transport properties of nuclear materials.

  19. Antifungal activities and chemical composition of some medicinal plants.

    Science.gov (United States)

    Mohammadi, A; Nazari, H; Imani, S; Amrollahi, H

    2014-06-01

    The use of and search for drugs and dietary supplements derived from plants have accelerated in recent years. Ethnopharmacologists, botanists, microbiologists and natural-products scientists are combing the earth for phytochemicals and leads, which could be developed for treatment of infectious diseases. The aim of this study was to investigate the antifungal activities of the essential oils of some medicinal plants such as Stachys pubescens, Thymus kotschyanus, Thymus daenensis and Bupleurum falcatum against Fusarium oxysporum, Aspergillus flavus and Alternaria alternata. The essential oils were used to evaluate their MICs and MFCs compared to the amphotricin B as a standard drug. The essential oils were also analyzed by GC/MS. Essential oils isolated from the S. pubescens, T. kotschyanus and B. falcatum showed strong antifungal activities. The essential oil of T. daenensis exhibited a moderate activity against the selected fungi in comparison with the other plants' essential oils. In addition, the results showed that 26, 23, 22 and 15 components were identified from the essential oils of T. kotschyanus, S. pubescens, T. daenensis and B. falcatum, respectively. These oils exhibited a noticeable antifungal activity against the selected fungi. Regarding obtained results and that natural antimicrobial substances are inexpensive and have fewer side effects, they convey potential for implementation in fungal pathogenic systems. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  20. Chemical Modification of Papain and Subtilisin: An Active Site Comparison

    Science.gov (United States)

    St-Vincent, Mireille; Dickman, Michael

    2004-01-01

    An experiment using methyle methanethiosulfonate (MMTS) and phenylmethylsulfonyl flouride (PMSF) to specifically modify the cysteine and serine residues in the active sites of papain and subtilism respectively is demonstrated. The covalent modification of these enzymes and subsequent rescue of papain shows the beginning biochemist that proteins…

  1. Incorporating Nondrug Social & Recreational Activities in Outpatient Chemical Dependency Treatment

    Science.gov (United States)

    Siporin, Sheldon; Baron, Lisa

    2012-01-01

    "Contingency Management programs (CMP) and non-drug social and recreational activities (NDSRA) are interventions premised on behavior theory that rely on external sources of reinforcement alternative to drug-based forms to decrease drug use. CMP usually employs vouchers as reinforcement for negative toxicologies. Despite research support, CMP…

  2. Chemical Oxidation of Complex PAH Mixtures by Base-activated Sodium Persulfate

    Science.gov (United States)

    Hauswirth, S.; Miller, C. T.

    2013-12-01

    In situ chemical oxidation (ISCO) is an attractive approach for the remediation of recalcitrant soil and groundwater contaminants. One oxidant that has received significant recent attention is sodium persulfate, which has several advantages, including a relatively long lifetime in porous media, the ability to destroy a wide-range of chemical contaminants, and a high oxidation potential. In this study, we investigated the chemical mechanisms associated with base-activated persulfate oxidation of polycyclic aromatic hydrocarbons (PAHs) and assessed the applicability of persulfate to the remediation of porous media contaminated with non-aqueous phase liquid (NAPL) PAH mixtures. Batch experiments were conducted to determine the oxidation kinetics for individual PAH compounds, synthetic PAH mixtures, and manufactured gas plant (MGP) tars. Additional experiments were conducted with added surfactants (Triton X-100, Triton X-45, and Tween 80) to increase PAH mass transfer from the NAPL to the aqueous phase, and with radical scavengers (ethanol and tert-butyl alcohol) to identify the reactive species responsible for degradation. Degradation of total PAHs in the NAPL experiments was as high as 70%. The addition of surfactant increased initial PAH degradation rates, but also greatly increased the rate of base consumption, thereby reducing the overall fraction degraded. The degradation of individual PAHs within the NAPLs varied significantly, with the masses of some compounds remaining largely unchanged. The results of the radical scavenger and single PAH experiments suggest that the observed pattern of degradation in PAH mixtures is the result of a combination of mass transfer considerations and competition for radical species.

  3. Precipitated and chemically-crosslinked laccase over polyaniline nanofiber for high performance phenol sensing.

    Science.gov (United States)

    Kim, Jae Hyun; Hong, Sung-Gil; Sun, Ho Jin; Ha, Su; Kim, Jungbae

    2016-01-01

    The present study aims at fabricating a laccase (LAC) based amperometric biosensor for detection of phenolic compounds. LAC was immobilized into the porous matrix of polyaniline nanofibers (PANFs) in a three-step process, consisting of enzyme adsorption, precipitation, and crosslinking (EAPC). Immobilized LAC on PANF in the form of EAPC was highly active and stable when compared to control samples of 'enzyme adsorption (EA)' and 'enzyme adsorption and crosslinking (EAC)' samples. For example, the activity of EAPC was 19.7 and 15.1 times higher than those of EA and EAC per unit weight of PANF, respectively. After 6days at room temperature, EAPC maintained 100% of its initial activity, while EA and EAC retained only 7.7% and 11% of their initial activities, respectively. When the samples were subjected to the heat treatment at 60°C over 3h, EAPC maintained 74% of its initial activity, while EA and EAC retained around 1% of their initial activities, respectively. To demonstrate the feasible application of EAPC in biosensors, the enzyme electrodes were prepared and used for detection of phenolic compounds, which are environmentally hazardous chemicals. The sensitivities of biosensors with EA, EAC, and EAPC were 20.3±5.9, 26.6±5.4 and 518±11μAmM(-1)cm(-2), respectively. At 50°C for 5h, EAPC electrode maintained 80% of its initial sensitivity, while EA and EAC electrode showed 0% and 19% of their initial sensitivities, respectively. Thus, LAC-based biosensor using EAPC protocol with PANFs showed a great promise for developing a highly sensitive and stable biosensor for detection of phenolic compounds.

  4. Chemical Constituents in Essential Oils from Elsholtzia ciliata and Their Antimicrobial Activities

    Institute of Scientific and Technical Information of China (English)

    TIAN Guang-hui

    2013-01-01

    Objective To compare the chemical constituents in the essential oils from the leaves,flowers,and seeds of Elsholtzia ciliata and their antimicrobial activities.Methods The chemical constituents in essential oils were extracted by the hydro-distillation method and analyzed by GC-MS.The chemical constituents in essential oils were identified on the basis of comparison on their retention indices and MS spectrum with published data.Moreover,the antimicrobial activities of the chemical constituents in the oils against the growth of six bacteria strains and one pathogenic yeast strain were evaluated by using minimum inhibitory concentration and minimum bactericidal concentration methods.Results A total of 58 compounds were identified,while compounds 31,35,and 36 were identified in the essential oils from the leaves,flowers,and seeds,respectively.Fifteen compounds were identified as shared constituents in the leaves,flowers,and seeds.The chemical constituents in the essential oils showed the inhibitory activities against the six bacteria strains and the yeast strain.Conclusion The major constituents are different in the essential oils of the leaves,flowers,and seeds.The major chemical constituents in the essential oils are monoterpenoids and sesquiterpenoids.And the chemical constituents in the essential oils obtained from the leaves show higher inhibitory activities especially against Bacillus subtillis CMCC63501 and Escherichia coli ATCC25922.

  5. A versatile chemical conversion synthesis of Cu2S nanotubes and the photovoltaic activities for dye-sensitized solar cell.

    Science.gov (United States)

    Shuai, Xuemin; Shen, Wenzhong; Hou, Zhaoyang; Ke, Sanmin; Xu, Chunlong; Jiang, Cheng

    2014-01-01

    A versatile, low-temperature, and low-cost chemical conversion synthesis has been developed to prepare copper sulfide (Cu2S) nanotubes. The successful chemical conversion from ZnS nanotubes to Cu2S ones profits by the large difference in solubility between ZnS and Cu2S. The morphology, structure, and composition of the yielded products have been examined by field-emission scanning electron microscopy, transmission electron microscopy, and X-ray diffraction measurements. We have further successfully employed the obtained Cu2S nanotubes as counter electrodes in dye-sensitized solar cells. The light-to-electricity conversion results show that the Cu2S nanostructures exhibit high photovoltaic conversion efficiency due to the increased surface area and the good electrocatalytical activity of Cu2S. The present chemical route provides a simple way to synthesize Cu2S nanotubes with a high surface area for nanodevice applications.

  6. CHEMICAL ANALYSIS AND ANTIOXIDANT ACTIVITY OF “NERIUM OLEANDER” LEAVES

    Directory of Open Access Journals (Sweden)

    Lakhmili Siham

    2014-01-01

    Full Text Available The phenolic products of medicinal plants have a great pharmacological interest. This product gives the powers of medicinal plants. They are the source of several active principles widely used in modern medicine. The use of Nerium oleander in Moroccan traditional medicine is very common. Few studies have focused on the chemical analysis and phenolic compounds of this plant. For this, we investigated the mineral composition and phenolic combination of the leaves oleander and the study of the antioxidant activity. The mineral analysis shows a very high level of potassium and protein. The biochemical studies revealed a very high quantity of polyphenols in the leaves. Thus, the HPLC analysis of the phenolic fraction shows great variability of substances. The cinnamic acid is the majors compounds identified in the phenolic fraction. The other compounds identified are catechin, epicatechine, chlorogenic acid. This present study which is made for the first time showed a very important antioxidant effect, the value of IC50 (The half maximal inhibitory concentration of DPPH is 0,43 mg mL-1 for the phenolic fraction. On the other hand, the antioxydant activity of the organic extract, the methanolique fraction, n-butanolique fraction and the decoction, has a percentage of inhibition of DPPH over than 90% at a concentration of µg/mL. IC50% values are respectively 0,005 mg mL-1; 0,018 mg mL-1 and 0,005 mg mL-1.

  7. High-throughput exposure modeling to support prioritization of chemicals in personal care products

    DEFF Research Database (Denmark)

    Csiszar, Susan A.; Ernstoff, Alexi; Fantke, Peter

    2016-01-01

    We demonstrate the application of a high-throughput modeling framework to estimate exposure to chemicals used in personal care products (PCPs). As a basis for estimating exposure, we use the product intake fraction (PiF), defined as the mass of chemical taken by an individual or population per mass...

  8. How much can we trust high-resolution spectroscopic stellar chemical abundances?

    Science.gov (United States)

    Blanco-Cuaresma, S.; Nordlander, T.; Heiter, U.; Jofré, P.; Masseron, T.; Casamiquela, L.; Tabernero, H. M.; Bhat, S. S.; Casey, A. R.; Meléndez, J.; Ramírez, I.

    2017-03-01

    To study stellar populations, it is common to combine chemical abundances from different spectroscopic surveys/studies where different setups were used. These inhomogeneities can lead us to inaccurate scientific conclusions. In this work, we studied one aspect of the problem: When deriving chemical abundances from high-resolution stellar spectra, what differences originate from the use of different radiative transfer codes?

  9. How much can we trust high-resolution spectroscopic stellar chemical abundances?

    CERN Document Server

    Blanco-Cuaresma, S; Heiter, U; Jofré, P; Masseron, T; Casamiquela, L; Tabernero, H M; Bhat, S S; Casey, A R; Meléndez, J; Ramírez, I

    2016-01-01

    To study stellar populations, it is common to combine chemical abundances from different spectroscopic surveys/studies where different setups were used. These inhomogeneities can lead us to inaccurate scientific conclusions. In this work, we studied one aspect of the problem: When deriving chemical abundances from high-resolution stellar spectra, what differences originate from the use of different radiative transfer codes?

  10. Highly efficient adsorption of chlorophenols onto chemically modified chitosan

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Liang-Chun [Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064 (China); National Center for Packaging Material Quality Supervision and Inspection, Chengdu Institute of Product Quality Supervision and Inspection, Chengdu 610064 (China); Meng, Xiang-Guang, E-mail: mengxgchem@163.com [Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064 (China); Fu, Jing-Wei [National Center for Packaging Material Quality Supervision and Inspection, Chengdu Institute of Product Quality Supervision and Inspection, Chengdu 610064 (China); Yang, Yu-Chong; Yang, Peng; Mi, Chun [Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064 (China)

    2014-02-15

    A novel chemically modified chitosan CS-SA-CD with phenol and β-cyclodextrin groups was prepared. The adsorptions of phenol, 2-chlorophenol (2-CP), 4-chlorophenol (4-CP), 2,4-dichlorophenol (DCP) and 2,4,6-trichlorophenol (TCP) on the functional chitosan from aqueous solution were investigated. CS-SA-CD exhibited excellent adsorption ability for chlorophenols especially for DCP and TCP. The maximum adsorption capacities of phenol, 2-CP, 4-CP, DCP and TCP on CS-SA-CD were 59.74, 70.52, 96.43, 315.46 and 375.94 mg/g, respectively. The scanning electron microscope and Brunauer–Emmett–Teller analyses revealed that the introduction of phenol group changed the surface morphology and surface properties of chitosan. The modified chitosan CS-SA-CD possesses larger surface areas (4.72 m{sup 2}/g), pore volume (7.29 × 10{sup −3} mL/g) and average pore diameter (59.99 Å) as compared to those of chitosan 3.27 m{sup 2}/g, 2.00 × 10{sup −3} mL/g and 15.95 Å, respectively. The enhanced adsorption of chlorophenols was also attributed to the interaction of hydrogen bond between Cl atom and -OH group. The adsorption of chlorophenols on CS-SA-CD followed the pseudo-second-order kinetic model. Adsorbent could be regenerated easily and the regenerated CS-SA-CD remained 80–91% adsorption efficiency.

  11. Antimicrobial Activity and Chemical Composition of Albanian Oregano

    Directory of Open Access Journals (Sweden)

    EDLIRA NEZA

    2015-12-01

    Full Text Available ATCC 25922, Staphylococcus aureus ATCC 6538, Pseudomonas spp, Candida albicans ATCC 10231, Listeria monocytogenes ATCC 19111 and Salmonella typhimurium ATCC 14028. Antimicrobial activity of oregano essential oil was also tested against: E. coli, P. aeruginosa, S. aureus and C. albicans. Only oregano essential oil was active against microorganisms selected. Essential oil of oregano was analysed by GC-MS. Eighteen components were identified representing 99.48 % of the oil. Monoterpenes phenols and derivatives (borneol, 4-terpineol, carvacrol methyl ether, thymoquinone, thymol, carvacrol represented 74.66 % of essential oil. Carvacrol, p-cymene, thymol and γ-terpinene were the main components. Sesquiterpenes such as trans-caryophyllene, α-humulene, β-bisabolene, δ- Cadinene, caryophyllene oxide were also found.

  12. Antimicrobial activity and chemical investigation of Brazilian Drosera

    Directory of Open Access Journals (Sweden)

    Dalva Trevisan Ferreira

    2004-11-01

    Full Text Available The antimicrobial activity of three different extracts (hexanic, ethyl acetate, methanol obtained from Brazilian Drosera species (D. communis, D. montana var. montana, D. brevifolia, D. villosa var. graomogolensis, D. villosa var. villosa, Drosera sp. 1, and Drosera sp. 2 were tested against Staphylococcus aureus (ATCC 25923, Enterococcus faecium (ATCC23212, Pseudomonas aeruginosa (ATCC27853, Escherichia coli (ATCC11229, Salmonella choleraesuis (ATCC10708, Klebsiella pneumoniae (ATCC13883, and Candida albicans (a human isolate. Better antimicrobial activity was observed with D. communis and D. montana var. montana ethyl acetate extracts. Phytochemical analyses from D. communis, D. montana var. montana and D. brevifolia yielded 5-hydroxy-2-methyl-1,4-naphthoquinone (plumbagin; long chain aliphatic hydrocarbons were isolated from D. communis and from D. villosa var. villosa, a mixture of long chain aliphatic alcohols and carboxylic acids, was isolated from D. communis and 3b-O-acetylaleuritolic acid from D. villosa var. villosa.

  13. Hangman Catalysis for Photo- and Photoelectro- Chemical Activation of Water

    Energy Technology Data Exchange (ETDEWEB)

    Nocera, Daniel

    2014-04-15

    The focus of this DOE program is solar fuels – specifically the chemistry for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) from water and the oxygen reduction reaction (ORR) to water These three reactions are at the heart of renewable energy conversion. The bond-making and bond-breaking chemistry that underpins these transformations is not well understood. We are developing insight into such chemistry by creating a series of ligand constructs that poise an acid-base functionality over a redox active metal platform. These “hangman” ligands utilize the acid-base functionality to form a secondary coordination sphere that can assist proton movement and facilitate substrate assembly and activation within the molecular cleft. The grant period funding cycle focused on synthesis and reactivity of hangman porphyrins and corroles for HER, OER and ORR.

  14. Hematite Surface Activation by Chemical Addition of Tin Oxide Layer.

    Science.gov (United States)

    Carvalho, Waldemir M; Souza, Flavio L

    2016-09-05

    In this study, the effect of tin (Sn(4+) ) modification on the surface of hematite electrodes synthesized by an aqueous solution route at different times (2, 5, 10, 18, and 24 h) is investigated. As confirmed from X-ray diffraction results, the as-synthesized electrode exhibits an oxyhydroxide phase, which is converted into a pure hematite phase after being subjected to additional thermal treatment at 750 °C for 30 min. The tin-modified hematite electrode is prepared by depositing a solution of Sn(4+) precursor on the as-synthesized electrode, followed by thermal treatment under the same abovementioned conditions. This modification results in an enhancement of the photocurrent response for all hematite electrodes investigated and attains the highest values of around 1.62 and 2.3 mA cm(-2) at 1.23 and 1.4 V versus RHE, respectively, for electrodes obtained in short synthesis times (2 h). Contact angle measurements suggest that the deposition of Sn(4+) on the hematite electrode provides a more hydrophilic surface, which favors a chemical reaction at the interface between the electrode and electrolyte. This result generates new perspectives for understanding the deposition of Sn(4+) on the hematite electrode surface, which is in contrast with several studies previously reported; these studies state that the enhancement in photocurrent density is related to either the induction of an increased donor charge density or shift in the flat-band potential, which favors charge separation.

  15. Chemical properties and toxicity of soils contaminated by mining activity.

    Science.gov (United States)

    Agnieszka, Baran; Tomasz, Czech; Jerzy, Wieczorek

    2014-09-01

    This research is aimed at assessing the total content and soluble forms of metals (zinc, lead and cadmium) and toxicity of soils subjected to strong human pressure associated with mining of zinc and lead ores. The research area lay in the neighbourhood of the Bolesław Mine and Metallurgical Plant in Bukowno (Poland). The study obtained total cadmium concentration between 0.29 and 51.91 mg, zinc between 7.90 and 3,614 mg, and that of lead between 28.4 and 6844 mg kg(-1) of soil d.m. The solubility of the heavy metals in 1 mol dm(-3) NH4NO3 was 1-49% for zinc, 5-45% for cadmium, and Toxicity assessment of the soil samples was performed using two tests, Phytotoxkit and Microtox(®). Germination index values were between 22 and 75% for Sinapis alba, between 28 and 100% for Lepidium sativum, and between 10 and 28% for Sorghum saccharatum. Depending on the studied soil sample, Vibrio fischeri luminescence inhibition was 20-96%. The sensitivity of the test organisms formed the following series: S. saccharatum > S. alba = V. fischeri > L. sativum. Significant positive correlations (p ≤ 0.05) of the total and soluble contents of the metals with luminescence inhibition in V. fischeri and root growth inhibition in S. saccharatum were found. The general trend observed was an increase in metal toxicity measured by the biotest with increasing available metal contents in soils. All the soil samples were classified into toxicity class III, which means that they are toxic and present severe danger. Biotest are a good complement to chemical analyses in the assessment of quality of soils as well as in properly managing them.

  16. Evaluation of Biological Activities of Chemically Synthesized Silver Nanoparticles

    Directory of Open Access Journals (Sweden)

    Ashraf A. Mostafa

    2015-01-01

    Full Text Available Silver nanoparticles were synthesized by the earlier reported methods. The synthesized nanoparticles were characterized using ultraviolet-visible spectrophotometry (UV/Vis, transmission electron microscopy (TEM, energy dispersive X-ray spectroscopy (EDX, and X-ray powder diffraction (XRD. The synthesized materials were also evaluated for their antibacterial activity against Gram positive and Gram negative bacterial strains. TEM micrograph showed the spherical morphology of AgNPs with size range of 40–60 nm. The synthesized nanoparticles showed a strong antimicrobial activity and their effect depends upon bacterial strain as AgNPs exhibited greater inhibition zone for Pseudomonas aeruginosa (19.1 mm followed by Staphylococcus aureus (14.8 mm and S. pyogenes (13.6 mm while the least activity was observed for Salmonella typhi (12.5 mm at concentration of 5 µg/disc. The minimum inhibitory concentration (MIC of AgNPs against S. aureus was 2.5 µg/disc and less than 2.5 µg/disc for P. aeruginosa. These results suggested that AgNPs can be used as an effective antiseptic agent for infectious control in medical field.

  17. Chemical or biological activity in open chaotic flows

    Energy Technology Data Exchange (ETDEWEB)

    Karolyi, G. [Department of Civil Engineering Mechanics, Technical University of Budapest, Muegyetem rkp. 3, H-1521 Budapest (Hungary); Pentek, A. [Marine Physical Laboratory, University of California at San Diego, La Jolla, California 92093-0238 (United States); Toroczkai, Z. [Center for Stochastic Processes in Science and Engineering and Department of Physics, Virginia Polytechnic Institute, Blacksburg, Virgina 24061-0435 (United States); Toroczkai, Z.; Tel, T. [Institute for Theoretical Physics, Eoetvoes University, P.O. Box 32, H-1518 Budapest (Hungary); Grebogi, C. [Institute for Plasma Research, University of Maryland, College Park, Maryland 20742 (United States)

    1999-05-01

    We investigate the evolution of particle ensembles in open chaotic hydrodynamical flows. Active processes of the type A+B{r_arrow}2B and A+B{r_arrow}2C are considered in the limit of weak diffusion. As an illustrative advection dynamics we consider a model of the von K{acute a}rm{acute a}n vortex street, a time-periodic two-dimensional flow of a viscous fluid around a cylinder. We show that a fractal unstable manifold acts as a catalyst for the process, and the products cover fattened-up copies of this manifold. This may account for the observed filamental intensification of activity in environmental flows. The reaction equations valid in the wake are derived either in the form of dissipative maps or differential equations depending on the regime under consideration. They contain terms that are not present in the traditional reaction equations of the same active process: the decay of the products is slower while the productivity is much faster than in homogeneous flows. Both effects appear as a consequence of underlying fractal structures. In the long time limit, the system locks itself in a dynamic equilibrium state synchronized to the flow for both types of reactions. For particles of finite size an emptying transition might also occur leading to no products left in the wake. {copyright} {ital 1999} {ital The American Physical Society}

  18. Chemical or Biological Activity in Open Chaotic Flows

    CERN Document Server

    Karolyi, G; Toroczkai, Z; Tél, T; Grebogi, C; Karolyi, Gy.

    1999-01-01

    We investigate the evolution of particle ensembles in open chaotic hydrodynamical flows. Active processes of the type A+B --> 2B and A+B --> 2C are considered in the limit of weak diffusion. As an illustrative advection dynamics we consider a model of the von Kármán vortex street, a time periodic two-dimensional flow of a viscous fluid around a cylinder. We show that a fractal unstable manifold acts as a catalyst for the process, and the products cover fattened-up copies of this manifold. This may account for the observed filamental intensification of activity in environmental flows. The reaction equations valid in the wake are derived either in the form of dissipative maps or differential equations depending on the regime under consideration. They contain terms that are not present in the traditional reaction equations of the same active process: the decay of the products is slower while the productivity is much faster than in homogeneous flows. Both effects appear as a consequence of underlying fractal st...

  19. Microbial fuel cells with highly active aerobic biocathodes

    Science.gov (United States)

    Milner, Edward M.; Popescu, Dorin; Curtis, Tom; Head, Ian M.; Scott, Keith; Yu, Eileen H.

    2016-08-01

    Microbial fuel cells (MFCs), which convert organic waste to electricity, could be used to make the wastewater infrastructure more energy efficient and sustainable. However, platinum and other non-platinum chemical catalysts used for the oxygen reduction reaction (ORR) at the cathode of MFCs are unsustainable due to their high cost and long-term degradation. Aerobic biocathodes, which use microorganisms as the biocatalysts for cathode ORR, are a good alternative to chemical catalysts. In the current work, high-performing aerobic biocathodes with an onset potential for the ORR of +0.4 V vs. Ag/AgCl were enriched from activated sludge in electrochemical half-cells poised at -0.1 and + 0.2 V vs. Ag/AgCl. Gammaproteobacteria, distantly related to any known cultivated gammaproteobacterial lineage, were identified as dominant in these working electrode biofilms (23.3-44.3% of reads in 16S rRNA gene Ion Torrent libraries), and were in very low abundance in non-polarised control working electrode biofilms (0.5-0.7%). These Gammaproteobacteria were therefore most likely responsible for the high activity of biologically catalysed ORR. In MFC tests, a high-performing aerobic biocathode increased peak power 9-fold from 7 to 62 μW cm-2 in comparison to an unmodified carbon cathode, which was similar to peak power with a platinum-doped cathode at 70 μW cm-2.

  20. Gymnema sylvestre R. Br., an Indian medicinal herb: traditional uses, chemical composition, and biological activity.

    Science.gov (United States)

    Di Fabio, Giovanni; Romanucci, Valeria; Di Marino, Cinzia; Pisanti, Antonio; Zarrelli, Armando

    2015-01-01

    Gymnema sylvestre R. Br. is one of the most important medicinal plants that grows in tropical forests in India and South East Asia. Its active ingredients and extracts of leaves and roots are used in traditional medicine to treat various ailments and they are present in the market for pharmaceutical and parapharmaceutical products. Commercial products based on substances of plant origin that are generally connoted as natural have to be subjected to monitoring and evaluation by health authorities for their potential impacts on public health. The monitoring and evaluation of these products are critical because the boundary between a therapeutic action and a functional or healthy activity has not yet been defined in a clear and unambiguous way. Therefore, these products are considered borderline products, and they require careful and rigorous studies, in order to use them as complement and/or even replacement of synthetic drugs that are characterized by side effects and high economic costs. This review explores the traditional uses, chemical composition and biological activity of G. sylvestre extracts, providing a general framework on the most interesting extracts and what are the necessary studies for a complete definition of the range of activities.

  1. Diarylheptanoids, new phytoestrogens from the rhizomes of Curcuma comosa: Isolation, chemical modification and estrogenic activity evaluation.

    Science.gov (United States)

    Suksamrarn, Apichart; Ponglikitmongkol, Mathurose; Wongkrajang, Kanjana; Chindaduang, Anon; Kittidanairak, Suthadta; Jankam, Aroon; Yingyongnarongkul, Boon-ek; Kittipanumat, Narin; Chokchaisiri, Ratchanaporn; Khetkam, Pichit; Piyachaturawat, Pawinee

    2008-07-15

    Three new diarylheptanoids, a 1:2 mixture of (3S)- and (3R)-1-(4-methoxyphenyl)-7-phenyl-(6E)-6-hepten-3-ol (13a and 13b) and 1-(4-hydroxyphenyl)-7-phenyl-(6E)-6-hepten-3-one (15), together with two synthetically known diarylheptanoids 1,7-diphenyl-(1E,3E,5E)-1,3,5-triene (9) and 1-(4-hydroxyphenyl)-7-phenyl-(4E,6E)-4,6-heptadien-3-one (16), and nine known diarylheptanoids, 2, 8, 10-12, 14, a 3:1 mixture of 17a and 17b, and 18, were isolated from the rhizomes of Curcuma comosa Roxb. The absolute stereochemistry of the isolated compounds has also been determined using the modified Mosher's method. The isolated compounds and the chemically modified analogues were evaluated for their estrogenic-like transcriptional activity using RT-PCR in HeLa cell line. Some of the isolated diarylheptanoids and their modified analogues exhibited estrogenic activity comparable to or higher than that of the phytoestrogen genistein. Based on the transcriptional activation of both estrogenic targets, Bcl-xL and ERbeta gene expression, the structural features for a diarylheptanoid to exhibit high estrogenic activity are the presence of an olefinic function conjugated with the aromatic ring at the 7-position, a keto group at the 3-position, and a phenolic hydroxyl group at the p-position of the aromatic ring attached to the 1-position of the heptyl chain.

  2. Antioxidant Activities and Chemical Constituents of Flavonoids from the Flower of Paeonia ostii

    Directory of Open Access Journals (Sweden)

    Huifang Zhang

    2016-12-01

    Full Text Available Paeonia ostii is a traditional medicinal plant popularly used in China. This study intended to evaluate the antioxidant properties and the chemical components of the flavonoid-rich extracts from the flowers of P. ostii. The results showed that the flavonoid-rich extracts from the flowers of P. ostii had strong scavenging capacities on 2,2′-Azinobis-(3-ethylbenzthiazoline-6-sulphonate (ABTS, hydroxyls, superoxide anions, and 1,1-diphenyl-2-picrylhydrazyl (DPPH radicals in a dose-dependent manner. Five flavonoids, dihydrokaempferol (1, apigenin-7-O-β-d-glucoside (2, apigenin-7-O-β-d-neohesperidoside (3, kaempferol-7-O-β-d-glucopyranoside (4, and kaempferol-3-O-β-d-glucopyranosyl-7-O-β-d-glucopyranoside (5, were isolated from the flavonoid-rich extracts of the flowers of P. ostii. High-performance liquid chromatography (HPLC analysis revealed that compounds 3 and 4 were abundant in the P. ostii flower and in flavonoid-rich extracts. The main components of the flower of P. ostii are flavonoids. The high antioxidant activity of the flavonoid-rich extracts may be attributed to the high content of flavonoids. The five isolated flavonoids were the primary antioxidant ingredients, and may play important roles in the strong antioxidant activities of this flower. Based on the obtained results, the flower of P. ostii could be a potential source of natural antioxidants in food and pharmaceutical applications.

  3. Microbial transformation of highly persistent chlorinated pesticides and industrial chemicals

    NARCIS (Netherlands)

    Middeldorp, P.J.M.

    1997-01-01

    Organic pollutants can be transformed, both in unsaturated and saturated areas of the soil, by means of biologically mediated reactions. The potential of soil microorganisms to clean up polluted soils is enormous. However, soil systems are highly heterogeneous with respect to the spatial di

  4. Transcriptional Engineering of Microalgae: Prospects for High-Value Chemicals.

    Science.gov (United States)

    Bajhaiya, Amit K; Ziehe Moreira, Javiera; Pittman, Jon K

    2017-02-01

    Microalgae are diverse microorganisms that are of interest as novel sources of metabolites for various industrial, nutritional, and pharmaceutical applications. Recent studies have demonstrated transcriptional engineering of some metabolic pathways. We propose here that transcriptional engineering could be a viable means to manipulate the biosynthesis of specific high-value metabolic products.

  5. The Surface Chemical Properties of Novel High Surface Area Solids ...

    African Journals Online (AJOL)

    and MFA3 are the result of the high chromium content in the original ash (UFA1). ... ties has a significant influence on the crystal form produced during zeolite ... that the surface is enriched in Si compared with the bulk compo- sition. This is ...

  6. Microbial transformation of highly persistent chlorinated pesticides and industrial chemicals

    NARCIS (Netherlands)

    Middeldorp, P.J.M.

    1997-01-01

    Organic pollutants can be transformed, both in unsaturated and saturated areas of the soil, by means of biologically mediated reactions. The potential of soil microorganisms to clean up polluted soils is enormous. However, soil systems are highly heterogeneous with respect to the spatial

  7. Microbial transformation of highly persistent chlorinated pesticides and industrial chemicals.

    NARCIS (Netherlands)

    Middeldorp, P.J.M.

    1997-01-01

    Organic pollutants can be transformed, both in unsaturated and saturated areas of the soil, by means of biologically mediated reactions. The potential of soil microorganisms to clean up polluted soils is enormous. However, soil systems are highly heterogeneous with respect to the spatial distributio

  8. Chemical design of a radiolabeled gelatinase inhibitor peptide for the imaging of gelatinase activity in tumors

    Energy Technology Data Exchange (ETDEWEB)

    Hanaoka, Hirofumi [Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida Shimoadachi-cho, Kyoto 606-8501 (Japan); Graduate School of Medicine, Gunma University, Maebashi 371-8511 (Japan); Mukai, Takahiro [Graduate School of Medicine, Kyoto University, Kyoto 606-8507 (Japan); Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582 (Japan); Habashita, Sayo [Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida Shimoadachi-cho, Kyoto 606-8501 (Japan); Asano, Daigo [Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida Shimoadachi-cho, Kyoto 606-8501 (Japan); Ogawa, Kazuma [Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida Shimoadachi-cho, Kyoto 606-8501 (Japan); Kuroda, Yoshihiro [Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida Shimoadachi-cho, Kyoto 606-8501 (Japan); Akizawa, Hiromichi [Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675 (Japan); Iida, Yasuhiko [Graduate School of Medicine, Gunma University, Maebashi 371-8511 (Japan); Endo, Keigo [Graduate School of Medicine, Gunma University, Maebashi 371-8511 (Japan); Saga, Tsuneo [Graduate School of Medicine, Kyoto University, Kyoto 606-8507 (Japan); Saji, Hideo [Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida Shimoadachi-cho, Kyoto 606-8501 (Japan)]. E-mail: hsaji@pharm.kyoto-u.ac.jp

    2007-07-15

    Since elevated levels of gelatinases [matrix metalloproteinase (MMP)-2 and MMP-9] are associated with a poor prognosis in cancer patients, these enzymes are potential targets for tumor imaging. In the present study, a cyclic decapeptide, cCTTHWGFTLC (CTT), was selected as a mother compound because of its selective inhibitory activity toward gelatinases. For imaging gelatinase activity in tumors, we designed a CTT-based radiopharmaceutical taking into consideration that (1) the HWGF motif of the peptide is important for the activity (2) hydrophilic radiolabeled peptides show low-level accumulation in the liver and (3) an increase in the negative charge of radiolabeled peptides is effective in reducing renal accumulation. Thus, a highly hydrophilic and negatively charged radiolabel, indiun-111-diethylenetriaminepentaacetic acid ({sup 111}In-DTPA), was attached to an N-terminal residue distant from the HWGF motif ({sup 111}In-DTPA-CTT). In MMP-2 inhibition assays, In-DTPA-CTT significantly inhibited the proteolytic activity in a concentration-dependent fashion. When injected into normal mice, {sup 111}In-DTPA-CTT showed low levels of radioactivity in the liver and kidney. A comparison of the pharmacokinetic characteristics of {sup 111}In-DTPA-CTT with those of other CTT derivatives having different physicochemical properties revealed that the increase in hydrophilicity and negative charge caused by the conjugation of {sup 111}In-DTPA reduced levels of radioactivity in the liver and kidney. In tumor-bearing mice, a significant correlation was observed between the accumulation in the tumor as well as tumor-to-blood ratio of {sup 111}In-DTPA-CTT and gelatinase activity. These findings support the validity of the chemical design of {sup 111}In-DTPA-CTT for reducing accumulation in nontarget tissues and maintaining the inhibitory activity of the mother compound. Furthermore, {sup 111}In-DTPA-CTT derivatives would be potential radiopharmaceuticals for the imaging of

  9. Enclosure for handling high activity materials

    Energy Technology Data Exchange (ETDEWEB)

    Jimeno de Osso, F.

    1977-07-01

    One of the most important problems that are met at the laboratories producing and handling radioisotopes is that of designing, building and operating enclosures suitable for the safe handling of active substances. With this purpose in mind, an enclosure has been designed and built for handling moderately high activities under a shielding made of 150 mm thick lead. In this report a description is given of those aspects that may be of interest to people working in this field. (Author)

  10. Chemical Constituents of the Culture Broth of Phellinus linteus and Their Antioxidant Activity.

    Science.gov (United States)

    Lee, Myeong-Seok; Hwang, Byung Soon; Lee, In-Kyoung; Seo, Geon-Sik; Yun, Bong-Sik

    2015-03-01

    The medicinal fungus Phellinus linteus, in the family Hymenochaetaceae, has been used as a traditional medicine for the treatment of various diseases. In this study, the chemical constituents of the culture broth of P. linteus were investigated. P. linteus was cultured in potato dextrose broth medium, and the culture broth was extracted with ethyl acetate. The ethyl acetate-soluble portion was concentrated and subjected to ODS column chromatography, followed by Sephadex LH-20 column chromatography. Six compounds (1~6) were purified by preparative reversed-phase high-performance liquid chromatography. Spectroscopic methods identified their structures as caffeic acid (1), inotilone (2), 4-(3,4-dihydroxyphenyl)-3-buten-2-one (3), phellilane H (4), (2E,4E)-(+)-4'-hydroxy-γ-ionylideneacetic acid (5), and (2E,4E)-γ-ionylideneacetic acid (6). Compounds 1, 2, and 3 exhibited potent dose-dependent antioxidant activity.

  11. Partial chemical composition and antimicrobial activity of Daucus crinitus Desf. extracts

    Energy Technology Data Exchange (ETDEWEB)

    Dib, M. A.; Bendahou, M.; Bendiabdellah, A.; Djabou, N.; Allali, H.; Tabti, B.; Paolini, J.; Costa, J.

    2010-07-01

    The chemical composition of fatty acids and the unsaponifiable fraction of the roots, leaves and stems from Daucus crinitus Desf. were, determined using gas chromatography (GC) and gas chromatography-Mass Spectrometry (GC-MS). The fatty acid fractions of different organs (leaves, stems and roots) were characterized by lauric acid (17.9, 17.5 and 18.1 % respectively) and other long chain fatty acids (until C22). Qualitative and quantitative differences were reported between the unsaponifiable fractions of different organs from D. crinitus. The unsaponifiable fractions of the leaves, roots and stem showed high amounts of aliphatic components (83.4%, 87.2% and 91.4%, respectively). The monoterpen, diterpen and sesquiterpen components were only present in small percentages. The antimicrobial properties of the D. critinus extracts were tested on four different microorganisms. These extracts were found to be active against Bacillus cereus, Staphylococcus aureus, Escherichia coli and Candida albicans. (Author) 35 refs.

  12. Extended Functional Groups (EFG: An Efficient Set for Chemical Characterization and Structure-Activity Relationship Studies of Chemical Compounds

    Directory of Open Access Journals (Sweden)

    Elena S. Salmina

    2015-12-01

    Full Text Available The article describes a classification system termed “extended functional groups” (EFG, which are an extension of a set previously used by the CheckMol software, that covers in addition heterocyclic compound classes and periodic table groups. The functional groups are defined as SMARTS patterns and are available as part of the ToxAlerts tool (http://ochem.eu/alerts of the On-line CHEmical database and Modeling (OCHEM environment platform. The article describes the motivation and the main ideas behind this extension and demonstrates that EFG can be efficiently used to develop and interpret structure-activity relationship models.

  13. Effects of predator chemical cues and behavioral biorhythms on foraging activity of terrestrial salamanders.

    Science.gov (United States)

    Maerz, J C; Panebianco, N L; Madison, D M

    2001-07-01

    Red-backed salamanders, Plethodon cinereus, show a variety of alarm responses to chemical cues from eastern garter snakes, Thamnophis sirtalis. We measured the foraging activity of red-backed salamanders exposed to water soiled by a garter snake (fed P. cinereus) or to unsoiled water. Salamanders exposed to snake-soiled water showed less foraging activity than salamanders exposed to unsoiled water; therefore, predators could have nonlethal effects on salamander populations. Our results also show additional factors influenced salamander foraging activity. Salamander foraging activity and responsiveness to chemical cues do not appear to have been affected by sex or food deprivation. Salamander foraging activity does appear to have been influenced by activity biorhythms. Foraging activity of animals in both treatments showed a bimodal periodicity that is consistent with natural activity patterns controlled by internal biorhythms. Exposure to snake-soiled water significantly reduced foraging activity during periods of peak foraging activity, but had a subtler effect on foraging activity during natural lulls in activity. We suggest that both activity biorhythms and exposure to chemical cues are important factors affecting salamander foraging behavior.

  14. Chemical enhanced oil recovery (EOR) activities in Indonesia: How it's future

    Science.gov (United States)

    Abdurrahman, Muslim

    2017-05-01

    Enhanced oil recovery (EOR) is a proven method for increasing oil production in many oil fields in the world. Huge oil remaining in the reservoir after primary and secondary recovery stage are the main reason for developing EOR methods. Approximately of 49.50 billion barrels oil as a candidate for EOR activities in Indonesia. This present study focuses on the chemical EOR activities involved surfactant and polymer. This research based on pertinent information from various resources such as journal papers, conference papers, and report from the government. Based on this information, this paper explain in detail the progress of each project and it shows the potential oil field employ chemical EOR in the near future. Generally, the EOR activities can be categorized into two phases such as preliminary study phase and field implementation phase. In the preliminary study, the activities simply involve experimental and/or simulation works. Following the preliminary is the field implementation phase which can be categorized into three phases such as field trial, pilot project, and full-scale. In fact, several activities have been conducted by Lemigas (government oil and gas research center), Institut Teknologi Bandung, Institut Pertanian Bogor. These activities focused on laboratory and simulation work. Those institutions have been developing the chemical formula collaborating with oil companies for applying the EOR method in their oil fields. Currently, status of chemical EOR activities include 5 oil fields under pilot project and 12 oil fields under field trial. There are 7 oil fields applying surfactant, 4 oil fields by alkaline-surfactant-polymer (ASP), 2 oil fields by polymer, 1 oil field by surfactant polymer (SP), and 1 oil field by caustic. According to this information, we will have insight knowledge about the EOR current activities, the main issues, future activities on chemical EOR in Indonesia. Moreover, this study can became the preliminary information for

  15. [Chemical constituents of Jasminum giraldii and their antioxidant activity].

    Science.gov (United States)

    Zhang, Xiu-Peng; Qin, Hui; Yang, Fang; Chai, Jiang; Wang, Xin; Song, Xiao-Mei; Mei, Qi-Bing; Feng, Feng; Yue, Zheng-Gang

    2014-06-01

    Ten compounds were isolated from the barks of Jasminum giraldii by means of various of chromatographic techniques such as silica gel, Sephadex LH-20 and Rp-HPLC. Their structures were identified by spectroscopic data analysis as (+)-medioresinol (1), (+) -syringaresinol (2), syringaresinol-4'-O-beta-D-glucopyranoside (3), oleanic acid (4), 3-methoxy-4-hydroxy-trans-cinnamaldehyde (5), trans-sinapaldehyde (6), syringaldehyde (7), 1-(4-methoxy -phenyl) -ethanol (8), trans-cinnamic acid (9), and 4-(1-methoxyethyl) -phenol (10). Among them, compounds 1-3, 5-8 and 10 were isolated from the J. genus for the first time and compounds 4 and 9 were obtained from J. giraldii for the first time. In the DPPH free radical scavenging assay, compound 1 exhibited significant activity (IC50 55.1 micromol x L(-1)), compared with vitamin C(IC50 59.9 micromol x L(-1)); and compound 2 showed moderate activity (IC50 79.0 micromol x L(-1)), compared with 2, 6-di-tert-butyl4-methylphenol (IC50 236 micromol x L(-1)).

  16. Microbial transformation of highly persistent chlorinated pesticides and industrial chemicals.

    OpenAIRE

    Middeldorp, P.J.M.

    1997-01-01

    Organic pollutants can be transformed, both in unsaturated and saturated areas of the soil, by means of biologically mediated reactions. The potential of soil microorganisms to clean up polluted soils is enormous. However, soil systems are highly heterogeneous with respect to the spatial distribution of substrates, nutrients and microorganisms, and also with respect to various phases and interfaces (e.g. water, air, minerals, organic matter). To come to the development of appropriate soil bio...

  17. High pressure electrides: a predictive chemical and physical theory.

    Science.gov (United States)

    Miao, Mao-Sheng; Hoffmann, Roald

    2014-04-15

    Electrides, in which electrons occupy interstitial regions in the crystal and behave as anions, appear as new phases for many elements (and compounds) under high pressure. We propose a unified theory of high pressure electrides (HPEs) by treating electrons in the interstitial sites as filling the quantized orbitals of the interstitial space enclosed by the surrounding atom cores, generating what we call an interstitial quasi-atom, ISQ. With increasing pressure, the energies of the valence orbitals of atoms increase more significantly than the ISQ levels, due to repulsion, exclusion by the atom cores, effectively giving the valence electrons less room in which to move. At a high enough pressure, which depends on the element and its orbitals, the frontier atomic electron may become higher in energy than the ISQ, resulting in electron transfer to the interstitial space and the formation of an HPE. By using a He lattice model to compress (with minimal orbital interaction at moderate pressures between the surrounding He and the contained atoms or molecules) atoms and an interstitial space, we are able to semiquantitatively explain and predict the propensity of various elements to form HPEs. The slopes in energy of various orbitals with pressure (s > p > d) are essential for identifying trends across the entire Periodic Table. We predict that the elements forming HPEs under 500 GPa will be Li, Na (both already known to do so), Al, and, near the high end of this pressure range, Mg, Si, Tl, In, and Pb. Ferromagnetic electrides for the heavier alkali metals, suggested by Pickard and Needs, potentially compete with transformation to d-group metals.

  18. Exotic high activity surface patterns in PtAu nanoclusters

    KAUST Repository

    Mokkath, Junais Habeeb

    2013-05-09

    The structure and chemical ordering of PtAu nanoclusters of 79, 135, and 201 atoms are studied via a combination of a basin hopping atom-exchange technique (to locate the lowest energy homotops at fixed composition), a symmetry orbit technique (to find the high symmetry isomers), and density functional theory local reoptimization (for determining the most stable homotop). The interatomic interactions between Pt and Au are derived from the empirical Gupta potential. The lowest energy structures show a marked tendency toward PtcoreAushell chemical ordering by enrichment of the more cohesive Pt in the core region and of Au in the shell region. We observe a preferential segregation of Pt atoms to (111) facets and Au atoms to (100) facets of the truncated octahedron cluster motif. Exotic surface patterns are obtained particularly for Pt-rich compositions, where Pt atoms are being surrounded by Au atoms. These surface arrangements boost the catalytic activity by creating a large number of active sites. © 2013 American Chemical Society.

  19. Chemical constituents and antioxidant activity of Mallotus roxburghianus leaves.

    Science.gov (United States)

    Rana, Virendra S; Rawat, Mohan S M; Pant, Geeta; Nagatsu, Akito

    2005-06-01

    Mallotus roxburghianus is used in the traditional medicine in North-Eastern India, but previously no work has been done on the identification of bioactive compounds. Two new compounds, 3-(1-C-beta-D-glucopyranosyl)-2,6-dihydroxy-5-methoxybenzoic acid (6) and 2,4,8,9,10-pentahydroxy-3,7-dimethoxyanthracene-6-O-beta-D-rhamnopyranoside (7) together with beta-sitosterol (1), stigmasterol (2), betulinic acid (3), 4-hydroxybenzoic acid (4), beta-sitosterol-beta-D-glucoside (5), and bergenin (8) were isolated and identified from the leaves of M. roxburghianus. The chloroform soluble portion of the alcoholic extract of leaf, and compounds 3, 6, 7, and 8 exhibited encouraging antioxidant activities.

  20. Comprehensive chemical characterization of industrial PM2.5 from steel industry activities

    Science.gov (United States)

    Sylvestre, Alexandre; Mizzi, Aurélie; Mathiot, Sébastien; Masson, Fanny; Jaffrezo, Jean L.; Dron, Julien; Mesbah, Boualem; Wortham, Henri; Marchand, Nicolas

    2017-03-01

    Industrial sources are among the least documented PM (Particulate Matter) source in terms of chemical composition, which limits our understanding of their effective impact on ambient PM concentrations. We report 4 chemical emission profiles of PM2.5 for multiple activities located in a vast metallurgical complex. Emissions profiles were calculated as the difference of species concentrations between an upwind and a downwind site normalized by the absolute PM2.5 enrichment between both sites. We characterized the PM2.5 emissions profiles of the industrial activities related to the cast iron (complex 1) and the iron ore conversion processes (complex 2), as well as 2 storage areas: a blast furnace slag area (complex 3) and an ore terminal (complex 4). PM2.5 major fractions (Organic Carbon (OC) and Elemental Carbon (EC), major ions), organic markers as well as metals/trace elements are reported for the 4 industrial complexes. Among the trace elements, iron is the most emitted for the complex 1 (146.0 mg g-1 of PM2.5), the complex 2 (70.07 mg g-1) and the complex 3 (124.4 mg g-1) followed by Al, Mn and Zn. A strong emission of Polycyclic Aromatic Hydrocarbons (PAH), representing 1.3% of the Organic Matter (OM), is observed for the iron ore transformation complex (complex 2) which merges the activities of coke and iron sinter production and the blast furnace processes. In addition to unsubstituted PAHs, sulfur containing PAHs (SPAHs) are also significantly emitted (between 0.011 and 0.068 mg g-1) by the complex 2 and could become very useful organic markers of steel industry activities. For the complexes 1 and 2 (cast iron and iron ore converters), a strong fraction of sulfate ranging from 0.284 to 0.336 g g-1) and only partially neutralized by ammonium, is observed indicating that sulfates, if not directly emitted by the industrial activity, are formed very quickly in the plume. Emission from complex 4 (Ore terminal) are characterized by high contribution of Al (125.7 mg

  1. Influence of chemical agents on the surface area and porosity of active carbon hollow fibers

    Directory of Open Access Journals (Sweden)

    LJILJANA M. KLJAJEVIĆ

    2011-09-01

    Full Text Available Active carbon hollow fibers were prepared from regenerated polysulfone hollow fibers by chemical activation using: disodium hydrogen phosphate 2-hydrate, disodium tetraborate 10-hydrate, hydrogen peroxide, and diammonium hydrogen phosphate. After chemical activation fibers were carbonized in an inert atmosphere. The specific surface area and porosity of obtained carbons were studied by nitrogen adsorption–desorption isotherms at 77 K, while the structures were examined with scanning electron microscopy and X-ray diffraction. The activation process increases these adsorption properties of fibers being more pronounced for active carbon fibers obtained with disodium tetraborate 10-hydrate and hydrogen peroxide as activator. The obtained active hollow carbons are microporous with different pore size distribution. Chemical activation with phosphates produces active carbon material with small surface area but with both mesopores and micropores. X-ray diffraction shows that besides turbostratic structure typical for carbon materials, there are some peaks which indicate some intermediate reaction products when sodium salts were used as activating agent. Based on data from the electrochemical measurements the activity and porosity of the active fibers depend strongly on the oxidizing agent applied.

  2. Chemical Composition, Antioxidant, Anti-Inflammatory, and Antiproliferative Activities of the Plant Lebanese Crataegus Azarolus L.

    Science.gov (United States)

    Kallassy, Hany; Fayyad-Kazan, Mohammad; Makki, Rawan; El-Makhour, Yolla; Hamade, Eva; Rammal, Hasan; Leger, David Y; Sol, Vincent; Fayyad-Kazan, Hussein; Liagre, Bertrand; Badran, Bassam

    2017-08-03

    BACKGROUND In the present study, phytochemical screening, antioxidant, anti-inflammatory, and antiproliferative capacities of 3 extracts from leaves of Lebanese Crataegus azarolus L. were evaluated. MATERIAL AND METHODS Fresh leaves were dissolved in 3 different solvents: distilled water, ethanol, and methanol. The chemical composition was determined using high-performance liquid chromatography (HPLC) and the content of essential oil of this plant was examined by gas chromatography (GC) coupled with mass spectrometry (MS). The antioxidant potential was evaluated using DPPH radical scavenging and Fe2+ chelating activity assays. Anti-inflammatory effect was investigated by measuring the secreted amounts of the proinflammatory mediator PGE2 using ELISA technique, as well as by assaying the mRNA levels of the proinflammatory cytokines (IL-α, IL-β, and Il-6), chemokines (CCL3 and CCL4) and inflammation-sensitive COX2 and iNOS enzymes using quantitative real-time PCR (qRT-PCR). The antiproliferative effect was evaluated using the XTT viability assay. RESULTS The obtained results show that alcohol (methanol and ethanol) extracts were rich in bioactive molecules with medical relevance and exerted substantial antioxidant, anti-inflammatory, and antiproliferative capacities. On the other hand, aqueous extract contained fewer chemical components and exhibited less therapeutic efficiency. CONCLUSIONS Our observations indicate that Crataegus azarolus L. could be used for treating diseases related to oxidative stress, inflammatory reactions, and uncontrolled cell growth.

  3. [Relation between oxygen uptake rate and biosorption of activated sludge against chemical substance].

    Science.gov (United States)

    Mihara, Yuichi; Inoue, Tatsuaki; Yokota, Katsushi

    2005-02-01

    In this study, the elucidation of the toxicity mechanism was undertaken regarding the IC(50) of the oxygen uptake rate (OUR) with relevance to the biosorption as a toxicity evaluation of chemical substances for activated sludge (AS). At the IC(50) oflinear alkyl benzene sulfonate (LAS), alkyl ethoxy sulfonate (AES), alpha-olefine sulfonate (AOS), sodium dodecyl sulfate (SDS), formaldehyde (FA), benzalkonium chloride (BZaC), benzethonium chloride (BZeC), rhodamine 6G (R-6G) and fuchsine (Fuc) in which the IC(50) belonged to the 100-1000 mg/l group, when it was compared with CV and MG. In ethanol (EtOH), isopropanol (PrOH), nile blue (NB), evans blue (EB), methylene blue (MB), methyl orange (MO), paraquat (PQ), chlorophyllin (Chl) and auramine (Aur), the IC(50) was large, and the biosorption of AS was weak at 0-15%. The biosorption of MG for AS followed the adsorption isotherm equation Y=0.002X(0.511) of Freundrich. The correlation coefficient was gamma=0.998 (n=8), and a very high correlation was obtained. In the qualitative OUR curve by AS pretreated with MG or CV which belonged to the IC(50) small group, the inhibition of remarkable OUR was observed. Therefore, the findings of the present investigation suggest that the inhibition of the OUR for AS by the tested chemical substances was markedly affected by the biosorption.

  4. Chemical characterization and antiherpes activity of sulfated polysaccharides from Lithothamnion muelleri.

    Science.gov (United States)

    Malagoli, Bruna G; Cardozo, Francielle T G S; Gomes, Jose Hugo S; Ferraz, Vany P; Simões, Cláudia M O; Braga, Fernão C

    2014-05-01

    We report herein the chemical characterization and antiherpes activity of polysaccharides from the red alga Lithothamnion muelleri (Hapalidiaceae). The polysaccharide-rich fractions B1 and B2 were obtained by extraction with Na2CO3 and were purified by size exclusion chromatography to afford Fra-B1 and Fra-B2. The polysaccharides were characterized by FT-IR and chemical analysis (total contents of carbohydrates, proteins, sulfate and uronic acid), whereas their average molecular weights were estimated by high performance gel permeation chromatography. The monosaccharide analysis detected galactose, glucose, xylose, mannose, rhamnose and arabinose in the four polysaccharide samples. Antiherpetic in vitro assays showed that B1 and B2 inhibited Herpes Simplex Virus types 1 and 2 (HSV-1 and HSV-2) when added simultaneously to viral infection affording selectivity indices (SI=CC50/EC50) higher than 20. Investigation of the mechanism of action indicated that B1 and B2 act on the initial steps of HSV replication, mainly inhibiting viral adsorption but also viral penetration into the cells.

  5. Conducting polymer nanofibers for high sensitivity detection of chemical analytes.

    Science.gov (United States)

    Kumar, Abhishek; Leshchiner, Ignaty; Nagarajan, Subhalakshmi; Nagarajan, Ramaswamy; Kumar, Jayant

    2008-03-01

    Possessing large surface area materials is vital for high sensitivity detection of analyte. We report a novel, inexpensive and simple technique to make high surface area sensing interfaces using electrospinning. Conducting polymers (CP) nanotubes were made by electrospinning a solution of a catalyst (ferric tosylate) along with poly (lactic acid), which is an environment friendly biodegradable polymer. Further vapor deposition polymerization of the monomer ethylenedioxy thiophene (EDOT) on the nanofiber surface yielded poly (EDOT) covered fibers. X-ray photo electron spectroscopy (XPS) study reveals the presence of PEDOT predominantly on the surface of nanofibers. Conducting nanotubes had been received by dissolving the polymer in the fiber core. By a similar technique we had covalently incorporated fluorescent dyes on the nanofiber surface. The materials obtained show promise as efficient sensing elements. UV-Vis characterization confirms the formation of PEDOT nanotubes and incorporation of chromophores on the fiber surface. The morphological characterization was carried out using scanning electron microscopy (SEM) and transmission electron microscopy (TEM).

  6. Chemical Fixation of CO2 with Highly Efficient ZnCl/[BMIm]Br Catalyst System

    Institute of Scientific and Technical Information of China (English)

    Li Fuwei; Xia Chungu

    2004-01-01

    The search for environmentally benign and economic process has been the impetus for much of the research involving epoxide and carbon dioxide coupling in view of the so called "green chemistry" and" atom economy ", since CO2 is a renewable resource and can be used as a safe and cheap C 1 building block to synthesize useful organic compounds without producing any coproducts.[1-2] One of the most attractive synthetic goals starting from carbon dioxide is the chemical fixation of CO2 onto epoxide to afford the five-membered cyclic carbonates (Scheme 1),which are excellent aprotic polar solvents and are used extensively as intermediates in the production of pharmaceuticals and fine chemicals.[3] In the last decades of the twentieth century numerous catalytic systems have been developed for this transformation. While some advances have been obtained, all suffer from either low catalyst stability/reactivity, the need for co-solvent, or the requirement for high pressure and/or catalyst costing expensive.[4] Therefore, to find an effective,not exrensive, environmentally benign and economic catalyst system is urgent.In this paper, chemical fixation of CO2 with mono-substituted terminal epoxides or cyclohexene oxide to form cyclic carbonates under the ZnCl2/[BMIm]Br Catalyst System without using additional organic solvents was achieved in excellent selectivity (>98%) and TOF(5410h-1) Besides,the pure cis-cyclic carbonate of cyclohexene oxide was obtained in this catalyst system.It was important to note that the catalyst could be recovered by simple vacuum distillation of the corresponding cyclic carbonates and could be used six times almost without losing its catalytic activity and selectivity. The catalyst system was found to be applicable to a variety of terminal epoxides and cyclohexene oxide, forming the corresponding cyclic carbonates in very high TOF and more than 98% selectivity. Based on the obtained results, we also propose the plausible mechanism for this

  7. Physico Chemical Properties and Antioxidant Activity of Roselle Seed Extracts

    Directory of Open Access Journals (Sweden)

    Abdoulaye Idrissa Cissouma

    2013-11-01

    Full Text Available The aim of this research was to extract phenolic compounds from defatted Roselle (Hibiscus sabdariffaL. seed and assess their antioxidant potential. Water, ethanol (30%, methanol (30% and acetone (30% were used as solvent for extraction. The proximate composition, total phenolic content and extraction yield were analyzed. Antioxidant efficacies of Roselle seed extract were tested by using 1, 1-Diphenyl-2-Picrylhydrazyl (DPPH, hydroxyl, 2, 2’-azinobis-3-ethylbenzothiaz oline-6-sulfonic acid (ABTS radicals scavenging capacities and reducing power analysis. Roselle seeds were found to be rich in protein (27.745%, carbohydrates (40.45% and oil (20.83%. The total phenolic content ranged from 1.66±0.03 to 1.99±0.01 (GAE mg/g using water and 30% acetone respectively. The highest inhibitory capacity on DPPH and ABTS radicals was observed in 30% acetone extract and was at 3 mg/mL for DPPH and 6 mg/mL for ABTS respectively. Ethanol extract showed the highest hydroxyl radical scavenging ability value of 66.36 at 20 mg/mL, followed by methanol (57.27, acetone (56.36 and water (30. The reducing potential of the different extracts was concentration dependent and increased with increase in concentration. These results indicate that substantial antioxidant activity can be obtained from Roselle seed phenolic compounds extract by using 30% acetone.

  8. Polysaccharides from Arctium lappa L.: Chemical structure and biological activity.

    Science.gov (United States)

    Carlotto, Juliane; de Souza, Lauro M; Baggio, Cristiane H; Werner, Maria Fernanda de P; Maria-Ferreira, Daniele; Sassaki, Guilherme L; Iacomini, Marcello; Cipriani, Thales R

    2016-10-01

    The plant Arctium lappa L. is popularly used to relieve symptoms of inflammatory disorders. A crude polysaccharide fraction (SAA) resulting of aqueous extraction of A. lappa leaves showed a dose dependent anti-edematogenic activity on carrageenan-induced paw edema, which persisted for up to 48h. Sequential fractionation by ultrafiltration at 50kDa and 30kDa cut-off membranes yielded three fractions, namely RF50, RF30, and EF30. All these maintained the anti-edematogenic effect, but RF30 showed a more potent action, inhibiting 57% of the paw edema at a dose of 4.9mg/kg. The polysaccharide RF30 contained galacturonic acid, galactose, arabinose, rhamnose, glucose, and mannose in a 7:4:2:1:2:1 ratio and had a Mw of 91,000g/mol. Methylation analysis and NMR spectroscopy indicated that RF30 is mainly constituted by a type I rhamnogalacturonan branched by side chains of types I and II arabinogalactans, and arabinan.

  9. Regeneration of bleaching clay waste by chemical activation with chloride salts.

    Science.gov (United States)

    Tsai, W T; Chen, H P; Hsieh, M F; Sun, H F; Lai, C W

    2003-04-01

    Spent bleaching earth (SBE) was regenerated by chemical activation with low cost and low pollution chlorides as activating agents. Under the conditions of activation temperature of 600d egrees C and holding time of 1 h investigated, results show that fresh bleaching earth and regenerated bleaching earth are type IV with hysteresis loops corresponding to type H3 from nitrogen adsorption-desorption isotherms, indicating slit-shaped mesoporous structure. It is also found that the effect of the regeneration treatment studied in the present work on the pore structures and chemical properties of the resulting solids is negligible compared to the fresh bleaching earth. On the other hand, the pore properties of these chemically activated solids are higher than those of the sample regenerated from heat regeneration, but only approximate 45% of surface area are reclaimed. It implies that the carbon residues could be retained within pores and/or clogs the entrance of pores, resulting in a decrease in pore properties.

  10. 75 FR 53691 - Pesticide Products; Registration Applications for a New Active Ingredient Chemical Sedaxane

    Science.gov (United States)

    2010-09-01

    ... AGENCY Pesticide Products; Registration Applications for a New Active Ingredient Chemical Sedaxane AGENCY... pesticide products containing an active ingredient not included in any previously registered pesticide products. Pursuant to the provisions of section 3(c)(4) of the Federal Insecticide, Fungicide,...

  11. CHARACTERIZATION OF ACTIVATED CARBONS' PHYSICAL AND CHEMICAL PROPERTIES IN RELATION TO THEIR MERCURY ADSORPTION

    Science.gov (United States)

    The paper gives results of a characterization of the physical and chemical properties of the activated carbons used for elemental mercury (Hgo) adsorption, in order to understand the role of oxygen surface functional groups on the mechanism of Hgo adsorption by activated carbons....

  12. Using Laboratory Chemicals to Imitate Illicit Drugs in a Forensic Chemistry Activity

    Science.gov (United States)

    Hasan, Shawn; Bromfield-Lee, Deborah; Oliver-Hoyo, Maria T.; Cintron-Maldonado, Jose A.

    2008-01-01

    This forensic chemistry activity utilizes presumptive forensic testing procedures and laboratory chemicals that produce screening results similar to controlled substances. For obvious reasons, obtaining heavily regulated controlled substances to create an undergraduate student activity is not practical for most educational institutions. We were…

  13. Differential effects of environmental chemicals and food contaminants on adipogenesis, biomarker release and PPARγ activation

    DEFF Research Database (Denmark)

    Taxvig, Camilla; Sørensen, Karin Dreisig; Boberg, Julie

    2012-01-01

    and resistin from the cells. Butylparaben activated PPARγ as well, which may be a mediator of the adipogenic effect. Polychlorinated biphenyl (PCB)153 also stimulate adipogenesis and biomarker release, but did not affect PPARs. The data indicates that PPARγ activating chemicals often stimulate adipocyte...

  14. Using Laboratory Chemicals to Imitate Illicit Drugs in a Forensic Chemistry Activity

    Science.gov (United States)

    Hasan, Shawn; Bromfield-Lee, Deborah; Oliver-Hoyo, Maria T.; Cintron-Maldonado, Jose A.

    2008-01-01

    This forensic chemistry activity utilizes presumptive forensic testing procedures and laboratory chemicals that produce screening results similar to controlled substances. For obvious reasons, obtaining heavily regulated controlled substances to create an undergraduate student activity is not practical for most educational institutions. We were…

  15. Chemical structures and biological activities of bis- and tetrakis-acridine derivatives: A review

    Science.gov (United States)

    Nowak, Katarzyna

    2017-10-01

    A review of the literature on the biological activity of bis-acridines (diacridines) and tetrakis-acridines (tetra-acridines) is presented. Chemical structures of the most active derivatives are provided. In particular, the last decade's literature on the subject is discussed.

  16. Stratified Bacterial Diversity along Physico-chemical Gradients in High-Altitude Modern Stromatolites

    Science.gov (United States)

    Toneatti, Diego M.; Albarracín, Virginia H.; Flores, Maria R.; Polerecky, Lubos; Farías, María E.

    2017-01-01

    At an altitude of 3,570 m, the volcanic lake Socompa in the Argentinean Andes is presently the highest site where actively forming stromatolite-like structures have been reported. Interestingly, pigment and microsensor analyses performed through the different layers of the stromatolites (50 mm-deep) showed steep vertical gradients of light and oxygen, hydrogen sulfide and pH in the porewater. Given the relatively good characterization of these physico-chemical gradients, the aim of this follow-up work was to specifically address how the bacterial diversity stratified along the top six layers of the stromatolites which seems the most metabolically important and diversified zone of the whole microbial community. We herein discussed how, in only 7 mm, a drastic succession of metabolic adaptations occurred: i.e., microbial communities shift from a UV-high/oxic world to an IR-low/anoxic/high H2S environment which force stratification and metabolic specialization of the bacterial community, thus, modulating the chemical faces of the Socompa stromatolites. The oxic zone was dominated by Deinococcus sp. at top surface (0.3 mm), followed by a second layer of Coleofasciculus sp. (0.3 to ∼2 mm). Sequences from anoxygenic phototrophic Alphaproteobacteria, along with an increasing diversity of phyla including Bacteroidetes, Spirochaetes were found at middle layers 3 and 4. Deeper layers (5–7 mm) were mostly occupied by sulfate reducers of Deltaproteobacteria, Bacteroidetes and Firmicutes, next to a high diversity and equitable community of rare, unclassified and candidate phyla. This analysis showed how microbial communities stratified in a physicochemical vertical profile and according to the light source. It also gives an insight of which bacterial metabolic capabilities might operate and produce a microbial cooperative strategy to thrive in one of the most extreme environments on Earth. PMID:28446906

  17. High-activity liquid packaging design criteria

    Energy Technology Data Exchange (ETDEWEB)

    1994-05-01

    In recent studies, it has been acknowledged that there is an emerging need for packaging to transport high-activity liquid off the Hanford Site to support characterization and process development activities of liquid waste stored in underground tanks. These studies have dealt with specimen testing needs primarily at the Hanford Site; however, similar needs appear to be developing at other US Department of Energy (DOE) sites. The need to ship single and multiple specimens to offsite laboratories is anticipated because it is predicted that onsite laboratories will be overwhelmed by an increasing number and size (volume) of samples. Potentially, the specimen size could range from 250 mL to greater than 50 L. Presently, no certified Type-B packagings are available for transport of high-activity liquid radioactive specimens in sizes to support Site missions.

  18. High-Throughput Chemical Screens Identify Disulfiram as an Inhibitor of Human Glioblastoma Stem Cells

    Science.gov (United States)

    Hothi, Parvinder; Martins, Timothy J.; Chen, LiPing; Deleyrolle, Loic; Yoon, Jae-Geun; Reynolds, Brent; Foltz, Greg

    2012-01-01

    Glioblastoma Multiforme (GBM) continues to have a poor patient prognosis despite optimal standard of care. Glioma stem cells (GSCs) have been implicated as the presumed cause of tumor recurrence and resistance to therapy. With this in mind, we screened a diverse chemical library of 2,000 compounds to identify therapeutic agents that inhibit GSC proliferation and therefore have the potential to extend patient survival. High-throughput screens (HTS) identified 78 compounds that repeatedly inhibited cellular proliferation, of which 47 are clinically approved for other indications and 31 are experimental drugs. Several compounds (such as digitoxin, deguelin, patulin and phenethyl caffeate) exhibited high cytotoxicity, with half maximal inhibitory concentrations (IC50) in the low nanomolar range. In particular, the FDA approved drug for the treatment of alcoholism, disulfiram (DSF), was significantly potent across multiple patient samples (IC50 of 31.1 nM). The activity of DSF was potentiated by copper (Cu), which markedly increased GSC death. DSF–Cu inhibited the chymotrypsin-like proteasomal activity in cultured GSCs, consistent with inactivation of the ubiquitin-proteasome pathway and the subsequent induction of tumor cell death. Given that DSF is a relatively non-toxic drug that can penetrate the blood-brain barrier, we suggest that DSF should be tested (as either a monotherapy or as an adjuvant) in pre-clinical models of human GBM. Data also support targeting of the ubiquitin-proteasome pathway as a therapeutic approach in the treatment of GBM. PMID:23165409

  19. Orientation of sustainable management of chemical company with international activity

    Directory of Open Access Journals (Sweden)

    Valéria da Veiga Dias

    2013-04-01

    Full Text Available The search for new business possibilities, either through international activities and capture niche markets appear as a distinct trend among organizations that target growth. For this growing number of organizations intent on investing in new issues related to values such as citizenship, ethics and environmental concerns. There is the adoption of a more responsive to the community or even the acceptance of responsibility for the impacts of their production processes, inserting themselves in what was initially called the Social Responsibility within the business context and developed the concept of Elkington (1998 generated a discussion about a new movement that was called a sustainable paradigm. It was observed generally that sustainable management is still very close to supporting tools and not as part of the construction of corporate strategy although it is possible to realize that they seek a greater involvement in this direction when they start to review their strategies. This question can be perceived at different levels between the companies, but which shows the issue is the lack of direct indicators for investment and sustainable return. Sustainable management proved to be a source of opportunity for overseas business for the companies studied, as preparation for work with environmental legislation, global requirements, raw materials and environmentally friendly processes organizations prepared to market in the global sphere, and Brazil note that the innovative products for their production process and / or alternative raw material still do not get the spotlight. Acting in a sustainable manner enables the development of strategies agreed with conscious posture and changes in cultural terms in general, which can create new opportunities for those who can keep up with the global business scenario.

  20. Chemical composition, and antioxidant and antimicrobial activities of three hazelnut (Corylus avellana L.) cultivars.

    Science.gov (United States)

    Oliveira, Ivo; Sousa, Anabela; Morais, Jorge Sá; Ferreira, Isabel C F R; Bento, Albino; Estevinho, Letícia; Pereira, José Alberto

    2008-05-01

    Hazelnut (Corylus avellana L.) is a very popular dry fruit in the world being consumed in different form and presentations. In the present work, three hazelnut cultivars (cv. Daviana, Fertille de Coutard and M. Bollwiller) produced in Portugal, were characterized in respect to their chemical composition, antioxidant potential and antimicrobial activity. The samples were analysed for proximate constituents (moisture, fat, crude protein, ash), nutritional value and fatty acids profile by GC/FID. Antioxidant potential was accessed by the reducing power assay, the scavenging effect on DPPH (2,2-diphenyl-1-picrylhydrazyl) radicals and beta-carotene linoleate model system. Their antimicrobial capacity was also checked against Gram positive (Bacillus cereus, B. subtilis, Staphylococcus aureus) and Gram negative bacteria (Pseudomonas aeruginosa, Escherichia coli, Klebsiella pneumoniae) and fungi (Candida albicans, Cryptococcus neoformans). Results showed that the main constituent of fruits was fat ranging from 56% to 61%, being the nutritional value around 650 kcal per 100 g of fruits. Oleic was the major fatty acid varying between 80.67% in cv. F. Coutard and 82.63% in cv. Daviana, followed by linoleic, palmitic, and stearic acids. Aqueous hazelnut extract presented antioxidant activity in a concentration-dependent way, in general with similar behaviour for all cultivars. Hazelnut extracts revealed a high antimicrobial activity against Gram positive bacteria (MIC 0.1 mg/mL) showing a good bioactivity of these fruits.

  1. Chemical composition and antioxidant activity of jatobá-do-cerrado (Hymenaea stigonocarpa Mart. flour

    Directory of Open Access Journals (Sweden)

    Cintia Pereira Da Silva

    2014-09-01

    Full Text Available The Brazilian Savannah, known as "Cerrado," has an extensive biodiversity, but it is under explored. Among the native vegetables is the jatobá-do-cerrado (Hymenaea stigonocarpa Mart., a legume with great potential for exploration for its content of dietary fiber. Legumes are an important source of nutrient compounds, such as phenolic compounds and vitamins that have antioxidant properties. This study aimed at determining the chemical composition and antioxidant activity of the jatobá flour. The jatobá flour showed high fiber content (insoluble and soluble fiber 47.8 and 12.8 g.100 g- 1, respectively, significant amounts of carotenoids such as beta-carotene and lutein, and some minerals such as calcium: 145 mg.100 g- 1, magnesium: 125 mg.100 g- 1, and potassium: 1352 mg.100 g- 1. The jatobá flour extracted with different solvents (water, methanol, and acetone exhibited antioxidant activity by the DPPH, FRAP, and ORAC methods. The solvent used in the extraction affected the total phenolic content and antioxidant activity. Acetone extraction produced the best results. Therefore, the jatobá flour is an ingredient that can be used to develop new products with properties that promote health.

  2. Effects of serpentinite fertilizer on the chemical properties and enzyme activity of young spruce soils

    Science.gov (United States)

    Błońska, Ewa; Januszek, Kazimierz; Małek, Stanisław; Wanic, Tomasz

    2016-10-01

    The experimental plots used in the study were located in the middle forest zone (elevation: 900-950 m a.s.l.) on two nappes of the flysch Carpathians in southern Poland. The aim of this study was to assess the effects of serpentinite in combination with nitrogen, phosphorus, and potassium fertilizers on selected chemical properties of the soil and activity of dehydrogenase and urease in the studied soils. All fertilizer treatments significantly enriched the tested soils in magnesium. The use of serpentinite as a fertilizer reduced the molar ratio of exchangeable calcium to magnesium, which facilitated the uptake of magnesium by tree roots due to competition between calcium and magnesium. After one year of fertilization on the Wisła experimental plot, the pH of the Ofh horizon increased, while the pH of the mineral horizons significantly decreased. Enrichment of serpentinite with nitrogen, phosphorus, and potassium fertilizers stimulated the dehydrogenase activity in the studied organic horizon. The lack of a negative effect of the serpentinite fertilizer on enzyme activity in the spruce stand soil showed that the concentrations of the heavy metals added to the soil were not high enough to be toxic and indicated the feasibility of using this fertilizer in forestry.

  3. Chemical composition and antimicrobial activity of essential oil of different parts of Seseli rigidum.

    Science.gov (United States)

    Marcetić, Mirjana; Bozić, Dragana; Milenković, Marina; Lakusić, Branislava; Kovacević, Nada

    2012-08-01

    The chemical composition and antimicrobial activity of the essential oil of the Balkan endemic species Seseli rigidum Waldst. & Kit. (Apiaceae) was investigated. The monoterpene alpha-pinene was predominant in the volatile oil from aerial parts (57.4%) and fruit (23.3%). In the essential oil of the aerial parts limonene (6.7%), camphene (5.8%) and sabinene (5.5%) were also present in high amounts, and in the fruit oil, beta-phellandrene (17.4%) and sabinene (12.9%). On the contrary, the root essential oil was composed almost entirely of the polyacetylene falcarinol (88.8%). The antimicrobial activity of the root essential oil was significant against Staphylococcus aureus, S. epidermidis, Micrococcus luteus and Enterococcus faecalis (MICs 6.25-25.00 microg/mL). Volatile constituents from the root strongly inhibited the growth of methicillin-resistant strains of S. aureus (MICs 6.25-50.00 microg/mL). Anti-staphylococcal activity can be attributed to the main volatile constituent ofS. rigidum root, falcarinol.

  4. Chemical Sensor Platform for Non-Invasive Monitoring of Activity and Dehydration

    Directory of Open Access Journals (Sweden)

    Dmitry Solovei

    2015-01-01

    Full Text Available A non-invasive solution for monitoring of the activity and dehydration of organisms is proposed in the work. For this purpose, a wireless standalone chemical sensor platform using two separate measurement techniques has been developed. The first approach for activity monitoring is based on humidity measurement. Our solution uses new humidity sensor based on a nanostructured TiO2 surface for sweat rate monitoring. The second technique is based on monitoring of potassium concentration in urine. High level of potassium concentration denotes clear occurrence of dehydration. Furthermore, a Wireless Body Area Network (WBAN was developed for this sensor platform to manage data transfer among devices and the internet. The WBAN coordinator controls the sensor devices and collects and stores the measured data. The collected data is particular to individuals and can be shared with physicians, emergency systems or athletes’ coaches. Long-time monitoring of activity and potassium concentration in urine can help maintain the appropriate water intake of elderly people or athletes and to send warning signals in the case of near dehydration. The created sensor system was calibrated and tested in laboratory and real conditions as well. The measurement results are discussed.

  5. High-level expression of a chemically synthesized gene for human interferon-gamma using a prokaryotic expression vector.

    OpenAIRE

    1984-01-01

    A chemically synthesized gene for human interferon-gamma has been cloned into a prokaryotic expression vector under the regulation of a synthetic constitutive transcriptional-translational control unit that contains a strong bacteriophage T5 early promoter and a strong ribosome-binding site. Cells harboring the recombinant plasmid express high levels (4 X 10(9) units per liter of culture) of antiviral activity specific for interferon-gamma. Analysis of total cell lysates on NaDodSO4/polyacryl...

  6. Chemical composition, antioxidative and antimicrobial activity of essential oil Ocimum sanctum L.

    Directory of Open Access Journals (Sweden)

    Beatović Damir V.

    2013-01-01

    Full Text Available Ocimum sanctum L. (Lamiaceae sin. Ocimum tenuiflorum L. or Tulsi basil is a plant originating from tropical and subtropical areas of India. It is used in both the traditional and official medicine in India. Tulsi is a type of basil that is insufficiently explored and studied in Europe. The goal of this paper is to determine the chemical composition, antioxidative, and antimicrobial activity of the essential oil Ocimum sanctum L. grown in Serbia. The quantity of essential oil in 100 g of herb (v/w is 0.68%, with 41 components identified in the tested essential oil. The most represented chemical group are sesquiturpene hydrocarbonates with 80.47%. Other groups were much less represented. Sesquiturpene hydrocarbonate β-cariophyllene is a predominant component in the essential oil with 63.80%. The quantity of tested essential oil needed to achieve 50% of inhibition of DPPH radicals is 0.35 μg/ml, and it has high potential to neutralize free radicals. The essential oil exhibited antibacterial activity to all tested strains of bacteria, both Gram-positive and Gram-negative. It affected all strains in an inhibitory way in the interval 0.34-41.50 μl/ml, and in a bactericide way within the range 22.50-124.5 μl/ml. The most sensitive strains of bacteria are Salmonella typhimurium and Escherichia coli, while Listeria monocytogenes and Enterococus faecalis showed greatest resistance. The essential oil exhibited antifugal activity on all tested fungi. It affected all tested fungi in an inhibitory way in the interval 4.42-8.83 μl/ml, and in a microbicide way within the range 10.00-50.00 μl/ml. The most sensitive fungi are: Aspergillus ochraceus, Penicillium ochrochloron and Penicilium funiculosum, while the most resistent one is Aspergillus niger. The tested basil essential oil Ocimum sanctum demonstrated significant antioxidative and antimicrobial effect and may be used as a raw material in food, pharmaceutical and chemical industries.

  7. Chemical composition and antioxidant activity of certain Morus species.

    Science.gov (United States)

    Imran, Mohammad; Khan, Hamayun; Shah, Mohibullah; Khan, Rasool; Khan, Faridullah

    2010-12-01

    In the present work, the fruits of four Morus species, namely Morus alba (white mulberry), Morus nigra (black mulberry), Morus laevigata (large white fruit), and Morus laevigata (large black fruit), were analyzed for proximate composition, essential minerals, and antioxidant potentials. For this purpose, the ripe fruits were collected from the northern regions of Pakistan. The major nutritional components (moisture, ash, lipids, proteins, fibres, carbohydrates, and total sugar) were found to be in the suitable range along with good computed energy. Total dry weight, pH, and titratable acidity (percent citric acid) were (17.60±1.94)-(21.97±2.34) mg/100 g, (3.20±0.07)-(4.78±0.15), and (0.84±0.40)%-(2.00±0.08)%, respectively. Low riboflavin (vitamin B(2)) and niacin (vitamin B(3)) contents were recorded in all the fruits, while ascorbic acid (vitamin C) was in the range from (15.20±1.25) to (17.03±1.71) mg/100 g fresh weight (FW). The mulberry fruits were rich with regard to the total phenol and alkaloid contents, having values of (880±7.20)-(1650±12.25) mg/100 g FW and (390±3.22)-(660±5.25) mg/100 g FW, respectively. Sufficient quantities of essential macro-(K, Ca, Mg, and Na) and micro-(Fe, Zn, and Ni) elements were found in all the fruits. K was the predominant element with concentration ranging from (1270±9.36) to (1731±11.50) mg/100 g, while Ca, Na, and Mg contents were (440±3.21)-(576±7.37), (260±3.86)-(280±3.50), and (240±3.51)-(360±4.20) mg/100 g, respectivly. The decreasing order of micro-minerals was Fe>Zn>Ni. The radical scavenging activity of methanolic extract of fruits was concentration-dependent and showed a correlation with total phenolic constituents of the respective fruits. Based on the results obtained, mulberry fruits were found to serve as a potential source of food diet and natural antioxidants.

  8. Improved Chemical Structure-Activity Modeling Through Data Augmentation.

    Science.gov (United States)

    Cortes-Ciriano, Isidro; Bender, Andreas

    2015-12-28

    Extending the original training data with simulated unobserved data points has proven powerful to increase both the generalization ability of predictive models and their robustness against changes in the structure of data (e.g., systematic drifts in the response variable) in diverse areas such as the analysis of spectroscopic data or the detection of conserved domains in protein sequences. In this contribution, we explore the effect of data augmentation in the predictive power of QSAR models, quantified by the RMSE values on the test set. We collected 8 diverse data sets from the literature and ChEMBL version 19 reporting compound activity as pIC50 values. The original training data were replicated (i.e., augmented) N times (N ∈ 0, 1, 2, 4, 6, 8, 10), and these replications were perturbed with Gaussian noise (μ = 0, σ = σnoise) on either (i) the pIC50 values, (ii) the compound descriptors, (iii) both the compound descriptors and the pIC50 values, or (iv) none of them. The effect of data augmentation was evaluated across three different algorithms (RF, GBM, and SVM radial) and two descriptor types (Morgan fingerprints and physicochemical-property-based descriptors). The influence of all factor levels was analyzed with a balanced fixed-effect full-factorial experiment. Overall, data augmentation constantly led to increased predictive power on the test set by 10-15%. Injecting noise on (i) compound descriptors or on (ii) both compound descriptors and pIC50 values led to the highest drop of RMSEtest values (from 0.67-0.72 to 0.60-0.63 pIC50 units). The maximum increase in predictive power provided by data augmentation is reached when the training data is replicated one time. Therefore, extending the original training data with one perturbed repetition thereof represents a reasonable trade-off between the increased performance of the models and the computational cost of data augmentation, namely increase of (i) model complexity due to the need for optimizing

  9. High-Temperature Compatible Nickel Silicide Thermometer And Heater For Catalytic Chemical Microreactors

    DEFF Research Database (Denmark)

    Jensen, Søren; Quaade, U.J.; Hansen, Ole

    2005-01-01

    Integration of heaters and thermometers is important for agile and accurate control and measurement of the thermal reaction conditions in microfabricated chemical reactors (microreactors). This paper describes development and operation of nickel silicide heaters and temperature sensors...... for temperatures exceeding 700 °C. The heaters and thermometers are integrated with chemical microreactors for heterogeneous catalytic conversion of gasses, and thermally activated catalytic conversion of CO to CO2 in the reactors is demonstrated. The heaters and thermometers are shown to be compatible...

  10. Chemically active colloids near osmotic-responsive walls with surface-chemistry gradients

    Science.gov (United States)

    Popescu, M. N.; Uspal, W. E.; Dietrich, S.

    2017-04-01

    Chemically active colloids move by creating gradients in the composition of the surrounding solution and by exploiting the differences in their interactions with the various molecular species in solution. If such particles move near boundaries, e.g. the walls of the container confining the suspension, gradients in the composition of the solution are also created along the wall. This give rise to chemi-osmosis (via the interactions of the wall with the molecular species forming the solution), which drives flows coupling back to the colloid and thus influences its motility. Employing an approximate ‘point-particle’ analysis, we show analytically that—owing to this kind of induced active response (chemi-osmosis) of the wall—such chemically active colloids can align with, and follow, gradients in the surface chemistry of the wall. In this sense, these artificial ‘swimmers’ exhibit a primitive form of thigmotaxis with the meaning of sensing the proximity of a (not necessarily discontinuous) physical change in the environment. We show that the alignment with the surface-chemistry gradient is generic for chemically active colloids as long as they exhibit motility in an unbounded fluid, i.e. this phenomenon does not depend on the exact details of the propulsion mechanism. The results are discussed in the context of simple models of chemical activity, corresponding to Janus particles with ‘source’ chemical reactions on one half of the surface and either ‘inert’ or ‘sink’ reactions over the other half.

  11. Chemically active colloids near osmotic-responsive walls with surface-chemistry gradients.

    Science.gov (United States)

    Popescu, M N; Uspal, W E; Dietrich, S

    2017-04-05

    Chemically active colloids move by creating gradients in the composition of the surrounding solution and by exploiting the differences in their interactions with the various molecular species in solution. If such particles move near boundaries, e.g. the walls of the container confining the suspension, gradients in the composition of the solution are also created along the wall. This give rise to chemi-osmosis (via the interactions of the wall with the molecular species forming the solution), which drives flows coupling back to the colloid and thus influences its motility. Employing an approximate 'point-particle' analysis, we show analytically that-owing to this kind of induced active response (chemi-osmosis) of the wall-such chemically active colloids can align with, and follow, gradients in the surface chemistry of the wall. In this sense, these artificial 'swimmers' exhibit a primitive form of thigmotaxis with the meaning of sensing the proximity of a (not necessarily discontinuous) physical change in the environment. We show that the alignment with the surface-chemistry gradient is generic for chemically active colloids as long as they exhibit motility in an unbounded fluid, i.e. this phenomenon does not depend on the exact details of the propulsion mechanism. The results are discussed in the context of simple models of chemical activity, corresponding to Janus particles with 'source' chemical reactions on one half of the surface and either 'inert' or 'sink' reactions over the other half.

  12. Chemical composition and antibacterial activity of essential oils from the Tunisian Allium nigrum L.

    OpenAIRE

    Rouis-Soussi, Lamia Sakka; Ayeb-Zakhama, El Asma; Mahjoub, Aouni; Flamini, Guido; Jannet, Hichem Ben; Harzallah-Skhiri, Fethia

    2014-01-01

    The chemical composition of the essential oils of different Allium nigrum L. organs and the antibacterial activity were evaluated. The study is particularly interesting because hitherto there are no reports on the antibacterial screening of this species with specific chemical composition. Therefore, essential oils from different organs (flowers, stems, leaves and bulbs) obtained separately by hydrodistillation were analyzed using gas chromatography–mass spectrometry (GC–MS). The antibacterial...

  13. A Comparison of Neutron-Based Non-Destructive Assessment Methods for Chemical Warfare Materiel and High Explosives

    Energy Technology Data Exchange (ETDEWEB)

    E.H. Seabury; D.L. Chichester; C.J. Wharton; A.J. Caffrey

    2008-08-01

    Prompt Gamma Neutron Activation Analysis (PGNAA) systems employ neutrons as a probe to interrogate items, e.g. chemical warfare materiel-filled munitions. The choice of a neutron source in field-portable systems is determined by its ability to excite nuclei of interest, operational concerns such as radiological safety and ease-of-use, and cost. Idaho National Laboratory’s PINS Chemical Assay System has traditionally used a Cf-252 isotopic neutron source, but recently a Deuterium-Tritium (DT) Electronic Neutron Generator (ENG) has been tested as an alternate neutron source. This paper presents the results of using both of these neutron sources to interrogate chemical warfare materiel (CWM) and high explosive (HE) filled munitions.

  14. Activation of chemical biological defense mechanisms and remission of vital oxidative injury by low dose radiation

    Energy Technology Data Exchange (ETDEWEB)

    Yamaoka, K. [Okayama University Medical School, Okayama (Japan); Nomura, T. [Central Research Institute of Electric Power Industry, Tokyo (Japan); Kojima, S. [Science University of Tokyo, Chiba (Japan)

    2000-05-01

    Excessive active oxygen produced in vivo by various causes is toxic. Accumulation of oxidation injuries due to excessive active causes cell and tissue injuries, inducing various pathologic conditions such as aging and carcinogenesis. On the other hand, there are chemical defense mechanisms in the body that eliminate active oxygen or repair damaged molecules, defending against resultant injury. It is interesting reports that appropriate oxidation stress activate the chemical biological defense mechanisms. In this study, to elucidate these phenomena and its mechanism by low dose radiation, we studied on the below subjects. Activation of chemical biological defense mechanisms by low dose radiation: (1) The effects radiation on lipid peroxide (LPO) levels in the organs, membrane fluidity and the superoxide dismutase (SOD) activity were examined in rats and rabbits. Rats were irradiated with low dose X-ray over their entire bodies, and rabbits inhaled vaporized radon spring water, which primarily emitted {alpha}-ray. The following results were obtained. Unlike high dose X-ray, low dose X-ray and radon inhalation both reduced LPO levels and made the state of the SH-group on membrane-bound proteins closer to that of juvenile animals, although the sensitivity to radioactivity varied depending on the age of the animals and among different organs and tissues. The SOD activity was elevated, suggesting that low dose X-ray and radon both activate the host defensive function. Those changes were particularly marked in the organs related to immune functions of the animals which received low dose X-ray, while they were particularly marked in the brain after radon inhalation. It was also found that those changes continued for longer periods after low dose X-irradiation. (2) Since SOD is an enzyme that mediates the dismutation of O{sub 2}- to H{sub 2}O{sub 2}, the question as to whether the resultant H{sub 2}O{sub 2} is further detoxicated into H{sub 2}O and O{sub 2} or not must

  15. High dielectric constant, low loss and high photocatalytic activity in Gd doped ZnO systems

    Science.gov (United States)

    Divya, N. K.; Pradyumnan, P. P.

    2017-01-01

    Enhanced photocatalytic activity and high dielectric constant values are achieved by gadolinium (Gd) doping in ZnO. The changes that happened to the wurtzite structure of ZnO on doping are depicted in detail by using x-ray diffraction spectroscopy. The chemical composition is confirmed using energy dispersive x-ray spectroscopy (EDAX). The influence of Gd incorporation in the emission spectra of ZnO is analysed from photoluminescence studies. The photocatalytic activity enhancement occurred in ZnO system on Gd doping was explored by kinetic rate analysis. The optimum incorporation of Gd has enhanced the dielectric constant value and decreased the loss of pristine. The high dielectric constant value and low loss make the system suitable for large scale of applications in microelectronics. The work also proposes large scale synthesis of highly efficient fluorescent Gd doped ZnO photocatalysts.

  16. THE HIGH TEMPERATURE CHEMICAL REACTIVITY OF LI2O

    Energy Technology Data Exchange (ETDEWEB)

    Kessinger, G.; Missimer, D.

    2009-11-13

    ) It is likely that some or all of the past high temperature phase behavior and vaporization experiments involving Li{sub 2}O(s) at temperatures above 1250 C have actually involved Li{sub 2}O(l). If these past measurements were actually measurements performed on Li{sub 2}O(l) instead of the solid, the thermochemical data for phases and species in the Li-O system will require reevaluation.

  17. Advanced Chemical Reduction of Reduced Graphene Oxide and Its Photocatalytic Activity in Degrading Reactive Black 5

    Directory of Open Access Journals (Sweden)

    Christelle Pau Ping Wong

    2015-10-01

    Full Text Available Textile industries consume large volumes of water for dye processing, leading to undesirable toxic dyes in water bodies. Dyestuffs are harmful to human health and aquatic life, and such illnesses as cholera, dysentery, hepatitis A, and hinder the photosynthetic activity of aquatic plants. To overcome this environmental problem, the advanced oxidation process is a promising technique to mineralize a wide range of dyes in water systems. In this work, reduced graphene oxide (rGO was prepared via an advanced chemical reduction route, and its photocatalytic activity was tested by photodegrading Reactive Black 5 (RB5 dye in aqueous solution. rGO was synthesized by dispersing the graphite oxide into the water to form a graphene oxide (GO solution followed by the addition of hydrazine. Graphite oxide was prepared using a modified Hummers’ method by using potassium permanganate and concentrated sulphuric acid. The resulted rGO nanoparticles were characterized using ultraviolet-visible spectrophotometry (UV-Vis, X-ray powder diffraction (XRD, Raman, and Scanning Electron Microscopy (SEM to further investigate their chemical properties. A characteristic peak of rGO-48 h (275 cm−1 was observed in the UV spectrum. Further, the appearance of a broad peak (002, centred at 2θ = 24.1°, in XRD showing that graphene oxide was reduced to rGO. Based on our results, it was found that the resulted rGO-48 h nanoparticles achieved 49% photodecolorization of RB5 under UV irradiation at pH 3 in 60 min. This was attributed to the high and efficient electron transport behaviors of rGO between aromatic regions of rGO and RB5 molecules.

  18. Fault Diagnosis Based on Chemical Sensor Data with an Active Deep Neural Network.

    Science.gov (United States)

    Jiang, Peng; Hu, Zhixin; Liu, Jun; Yu, Shanen; Wu, Feng

    2016-10-13

    Big sensor data provide significant potential for chemical fault diagnosis, which involves the baseline values of security, stability and reliability in chemical processes. A deep neural network (DNN) with novel active learning for inducing chemical fault diagnosis is presented in this study. It is a method using large amount of chemical sensor data, which is a combination of deep learning and active learning criterion to target the difficulty of consecutive fault diagnosis. DNN with deep architectures, instead of shallow ones, could be developed through deep learning to learn a suitable feature representation from raw sensor data in an unsupervised manner using stacked denoising auto-encoder (SDAE) and work through a layer-by-layer successive learning process. The features are added to the top Softmax regression layer to construct the discriminative fault characteristics for diagnosis in a supervised manner. Considering the expensive and time consuming labeling of sensor data in chemical applications, in contrast to the available methods, we employ a novel active learning criterion for the particularity of chemical processes, which is a combination of Best vs. Second Best criterion (BvSB) and a Lowest False Positive criterion (LFP), for further fine-tuning of diagnosis model in an active manner rather than passive manner. That is, we allow models to rank the most informative sensor data to be labeled for updating the DNN parameters during the interaction phase. The effectiveness of the proposed method is validated in two well-known industrial datasets. Results indicate that the proposed method can obtain superior diagnosis accuracy and provide significant performance improvement in accuracy and false positive rate with less labeled chemical sensor data by further active learning compared with existing methods.

  19. Fault Diagnosis Based on Chemical Sensor Data with an Active Deep Neural Network

    Directory of Open Access Journals (Sweden)

    Peng Jiang

    2016-10-01

    Full Text Available Big sensor data provide significant potential for chemical fault diagnosis, which involves the baseline values of security, stability and reliability in chemical processes. A deep neural network (DNN with novel active learning for inducing chemical fault diagnosis is presented in this study. It is a method using large amount of chemical sensor data, which is a combination of deep learning and active learning criterion to target the difficulty of consecutive fault diagnosis. DNN with deep architectures, instead of shallow ones, could be developed through deep learning to learn a suitable feature representation from raw sensor data in an unsupervised manner using stacked denoising auto-encoder (SDAE and work through a layer-by-layer successive learning process. The features are added to the top Softmax regression layer to construct the discriminative fault characteristics for diagnosis in a supervised manner. Considering the expensive and time consuming labeling of sensor data in chemical applications, in contrast to the available methods, we employ a novel active learning criterion for the particularity of chemical processes, which is a combination of Best vs. Second Best criterion (BvSB and a Lowest False Positive criterion (LFP, for further fine-tuning of diagnosis model in an active manner rather than passive manner. That is, we allow models to rank the most informative sensor data to be labeled for updating the DNN parameters during the interaction phase. The effectiveness of the proposed method is validated in two well-known industrial datasets. Results indicate that the proposed method can obtain superior diagnosis accuracy and provide significant performance improvement in accuracy and false positive rate with less labeled chemical sensor data by further active learning compared with existing methods.

  20. Chemical characterisation of Nigerian red propolis and its biological activity against Trypanosoma Brucei.

    Science.gov (United States)

    Omar, Ruwida M K; Igoli, John; Gray, Alexander I; Ebiloma, Godwin Unekwuojo; Clements, Carol; Fearnley, James; Ebel, Ru Angeli Edrada; Zhang, Tong; De Koning, Harry P; Watson, David G

    2016-01-01

    A previous study showed the unique character of Nigerian red propolis from Rivers State, Nigeria (RSN), with regards to chemical composition and activity against Trypanosoma brucei in comparison with other African propolis. To carry out fractionation and biological testing of Nigerian propolis in order to isolate compounds with anti-trypanosomal activity. To compare the composition of the RSN propolis with the composition of Brazilian red propolis. Profiling was carried out using HPLC-UV-ELSD and HPLC-Orbitrap-FTMS on extracts of two samples collected from RSN with data extraction using MZmine software. Isolation was carried out by normal phase and reversed phase MPLC. Elucidation of the compounds with a purity > 95% was performed by 1D/2D NMR HRMS and HRLC-MS(n) . Ten phenolic compounds were isolated or in the case of liquiritigenin partially purified. Data for nine of these correlated with literature reports of known compounds i.e. one isoflavanone, calycosin (1); two flavanones, liquiritigenin (2) and pinocembrin (5); an isoflavan, vestitol (3); a pterocarpan, medicarpin (4); two prenylflavanones, 8-prenylnaringenin (7) and 6-prenylnaringenin (8); and two geranyl flavonoids, propolin D (9) and macarangin (10). The tenth was elucidated as a previously undescribed dihydrobenzofuran (6). The isolated compounds were tested against Trypanosoma brucei and displayed moderate to high activity. Some of the compounds tested had similar activity against wild type T. brucei and two strains displaying pentamidine resistance. Nigerian propolis from RSN has some similarities with Brazilian red propolis. The propolis displayed anti-trypanosomal activity at a potentially useful level. Copyright © 2015 John Wiley & Sons, Ltd.

  1. Physical properties of highly active liquor containing molybdate solids

    Energy Technology Data Exchange (ETDEWEB)

    Dunnett, B.; Ward, T.; Roberts, R. [National Nuclear Laboratory, Sellafield, Seascale, Cumbria, CA20 1PG (United Kingdom); Cheeseright, J. [Sellafield Ltd, Sellafield, Seascale, Cumbria, CA20 1PG (United Kingdom)

    2016-07-01

    The reprocessing of irradiated nuclear fuel at Sellafield produces a nitric acid based Highly Active Liquor (HAL) waste. The liquor, containing fission products and process additives, is concentrated in an evaporator in order to reduce the volume and is then stored in Highly Active Storage Tanks (HASTs) prior to vitrification. Caesium phosphomolybdate (CPM) is precipitated during the evaporation process and can convert to zirconium molybdate (ZM) during storage. During Post Operational Clean Out (POCO) of the HASTs, it is expected that their highly active content will be reduced by repeated cycles of washing using nitric acid and other reagents. Initial washings are likely to have a chemical composition comparable to concentrated HAL, becoming more dilute during the wash-out process. It is expected that the wash-out process will also recover significant quantities of molybdate solids (ZM, CPM or a mixture) from the HASTs. In order to determine the processing challenges from such washings during POCO, the physical properties of varying concentrations of non-active HAL simulants containing molybdate solids have recently been measured by the UK's National Nuclear Laboratory. The following measurements are presented and discussed: Particle size distribution; Density; Settling behaviour of solids; Voidage of settled sediment beds; Viscosity; Yield stress; And influence of ZM morphology on physical properties. (authors)

  2. [Relationship among soil enzyme activities, vegetation state, and soil chemical properties of coal cinder yard].

    Science.gov (United States)

    Wang, Youbao; Zhang, Li; Liu, Dengyi

    2003-01-01

    From field investigation and laboratory analysis, the relationships among soil enzyme activities, vegetation state and soil chemical properties of coal cinder yard in thermal power station were studied. The results showed that vegetation on coal cinder yard was distributed in scattered patch mainly with single species of plant, and herbs were the dominant species. At the same time, the activity of three soil enzymes had a stronger relativity to environment conditions, such as vegetation state and soil chemical properties. The sensitivity of three soil enzymes to environmental stress was in order of urease > sucrase > catalase. The relativity of three soil enzymes to environmental factor was in order of sucrase > urease > catalase. Because of urease being the most susceptible enzyme to environmental conditions, and it was marked or utmost marked interrelated with vegetation state and soil chemical properties, urease activity could be used as an indicator for the reclamation of wasteland.

  3. Chemical analysis of simulated high level waste glasses to support stage III sulfate solubility modeling

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-03-17

    The U.S. Department of Energy (DOE), Office of Environmental Management (EM) is sponsoring an international, collaborative project to develop a fundamental model for sulfate solubility in nuclear waste glass. The solubility of sulfate has a significant impact on the achievable waste loading for nuclear waste forms within the DOE complex. These wastes can contain relatively high concentrations of sulfate, which has low solubility in borosilicate glass. This is a significant issue for low-activity waste (LAW) glass and is projected to have a major impact on the Hanford Tank Waste Treatment and Immobilization Plant (WTP). Sulfate solubility has also been a limiting factor for recent high level waste (HLW) sludge processed at the Savannah River Site (SRS) Defense Waste Processing Facility (DWPF). The low solubility of sulfate in glass, along with melter and off-gas corrosion constraints, dictate that the waste be blended with lower sulfate concentration waste sources or washed to remove sulfate prior to vitrification. The development of enhanced borosilicate glass compositions with improved sulfate solubility will allow for higher waste loadings and accelerate mission completion.The objective of the current scope being pursued by SHU is to mature the sulfate solubility model to the point where it can be used to guide glass composition development for DWPF and WTP, allowing for enhanced waste loadings and waste throughput at these facilities. A series of targeted glass compositions was selected to resolve data gaps in the model and is identified as Stage III. SHU fabricated these glasses and sent samples to SRNL for chemical composition analysis. SHU will use the resulting data to enhance the sulfate solubility model and resolve any deficiencies. In this report, SRNL provides chemical analyses for the Stage III, simulated HLW glasses fabricated by SHU in support of the sulfate solubility model development.

  4. Effect of a high strength chemical industry wastewater on microbial community dynamics and mesophilic methane generation.

    Science.gov (United States)

    Venkatakrishnan, Harish; Tan, Youming; Majid, Maszenan Bin Abdul; Pathak, Santosh; Sendjaja, Antonius Yudi; Li, Dongzhe; Liu, Jerry Jian Lin; Zhou, Yan; Ng, Wun Jern

    2014-04-01

    A high strength chemical industry wastewater was assessed for its impact on anaerobic microbial community dynamics and consequently mesophilic methane generation. Cumulative methane production was 251 mL/g total chemical oxygen demand removed at standard temperature and pressure at the end of 30 days experimental period with a highest recorded methane percentage of 80.6% of total biogas volume. Volatile fatty acids (VFAs) analysis revealed that acetic acid was the major intermediate VFAs produced with propionic acid accumulating over the experimental period. Quantitative analysis of microbial communities in the test and control groups with quantitative real time polymerase chain reaction highlighted that in the test group, Eubacteria (96.3%) was dominant in comparison with methanogens (3.7%). The latter were dominated by Methanomicrobiales and Methanobacteriales while Methanosarcinaceae in test groups increased over the experimental period, reaching a maximum on day 30. Denaturing gradient gel electrophoresis profile was performed, targeting the 16S rRNA gene of Eubacteria and Archaea, with the DNA samples extracted at 3 different time points from the test groups. A phylogenetic tree was constructed for the sequences using the neighborhood joining method. The analysis revealed that the presence of organisms resembling Syntrophomonadaceae could have contributed to increased production of acetic and propionic acid intermediates while decrease of organisms resembling Pelotomaculum sp. could have most likely contributed to accumulation of propionic acid. This study suggested that the degradation of organic components within the high strength industrial wastewater is closely linked with the activity of certain niche microbial communities within eubacteria and methanogens.

  5. Production of high specific activity silicon-32

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, D.R. [Los Alamos National Lab., NM (United States); Brzezinski, M.A. [Univ. of California, Santa Barbara, CA (United States). Marine Biotechnology Center

    1998-12-31

    This is the final report of a three-year, Laboratory Directed Research and Development Project (LDRD) at Los Alamos National Laboratory (LANL). There were two primary objectives for the work performed under this project. The first was to take advantage of capabilities and facilities at Los Alamos to produce the radionuclide {sup 32}Si in unusually high specific activity. The second was to combine the radioanalytical expertise at Los Alamos with the expertise at the University of California to develop methods for the application of {sup 32}Si in biological oceanographic research related to global climate modeling. The first objective was met by developing targetry for proton spallation production of {sup 32}Si in KCl targets and chemistry for its recovery in very high specific activity. The second objective was met by developing a validated field-useable, radioanalytical technique, based upon gas-flow proportional counting, to measure the dynamics of silicon uptake by naturally occurring diatoms.

  6. Enhanced photocatalytic activity of Co doped ZnO nanodisks and nanorods prepared by a facile wet chemical method.

    Science.gov (United States)

    Kuriakose, Sini; Satpati, Biswarup; Mohapatra, Satyabrata

    2014-07-07

    Cobalt doped ZnO nanodisks and nanorods were synthesized by a facile wet chemical method and well characterized by X-ray diffraction, field emission scanning electron microscopy (FESEM), high resolution transmission electron microscopy (HRTEM) with energy dispersive X-ray spectroscopy, photoluminescence spectroscopy, Raman spectroscopy and UV-visible absorption spectroscopy. The photocatalytic activities were evaluated for sunlight driven degradation of an aqueous methylene blue (MB) solution. The results showed that Co doped ZnO nanodisks and nanorods exhibit highly enhanced photocatalytic activity, as compared to pure ZnO nanodisks and nanorods. The enhanced photocatalytic activities of Co doped ZnO nanostructures were attributed to the combined effects of enhanced surface area of ZnO nanodisks and improved charge separation efficiency due to optimal Co doping which inhibit recombination of photogenerated charge carriers. The possible mechanism for the enhanced photocatalytic activity of Co doped ZnO nanostructures is tentatively proposed.

  7. High Temperature and Pressure Alkaline Electrochemical Reactor for Conversion of Power to Chemicals

    DEFF Research Database (Denmark)

    Chatzichristodoulou, Christodoulos

    2016-01-01

    Moving away from fossil fuels requires harvesting more and more intermittent renewable energy resources and establishing a sustainable system for the production of chemicals. This brings forward the need for efficient large scale energy storage technologies 1-3 and technologies for the conversion...... of renewable electricity to chemicals. Electrochemical reactors can play a crucial role in this endeavor, since they can efficiently and reversibly transform electricity to high-value chemicals, and thus serve as energy storage and recovery devices for balancing the grid, while offering a means...

  8. Active vibration isolation of high precision machines

    CERN Document Server

    Collette, C; Artoos, K; Hauviller, C

    2010-01-01

    This paper provides a review of active control strategies used to isolate high precisionmachines (e.g. telescopes, particle colliders, interferometers, lithography machines or atomic force microscopes) from external disturbances. The objective of this review is to provide tools to develop the best strategy for a given application. Firstly, the main strategies are presented and compared, using single degree of freedom models. Secondly, the case of huge structures constituted of a large number of elements, like particle colliders or segmented telescopes, is considered.

  9. High Sulfation and a High Molecular Weight Are Important for Anti-hepcidin Activity of Heparin

    Science.gov (United States)

    Asperti, Michela; Naggi, Annamaria; Esposito, Emiliano; Ruzzenenti, Paola; Di Somma, Margherita; Gryzik, Magdalena; Arosio, Paolo; Poli, Maura

    2016-01-01

    Heparins are efficient inhibitors of hepcidin expression even in vivo, where they induce an increase of systemic iron availability. Heparins seem to act by interfering with BMP6 signaling pathways that control the expression of liver hepcidin, causing the suppression of SMAD1/5/8 phosphorylation. The anti-hepcidin activity persists also when the heparin anticoagulant property is abolished or reduced by chemical reactions of oxidation/reduction (glycol-split, Gs-Heparins) or by high sulfation (SS-Heparins), but the structural characteristics needed to optimize this inhibitory activity have not been studied in detail. To this aim we analyzed three different heparins (Mucosal Heparin, the Glycol split RO-82, the partially desulfated glycol-split RO-68 and the oversulfated SSLMWH) and separated them in fractions of molecular weight in the range 4–16 kD. Since the distribution of the negative charges in heparins contributes to the activity, we produced 2-O- and 6-O-desulfated heparins. These derivatives were analyzed for the capacity to inhibit hepcidin expression in hepatic HepG2 cells and in mice. The two approaches produced consistent results and showed that the anti-hepcidin activity strongly decreases with molecular weight below 7 kD, with high N-acetylation and after 2-O and 6-O desulfation. The high sulfation and high molecular weight properties for efficient anti-hepcidin activity suggest that heparin is involved in multiple binding sites. PMID:26955355

  10. Highly porous activated carbons prepared from carbon rich Mongolian anthracite by direct NaOH activation

    Science.gov (United States)

    Byamba-Ochir, Narandalai; Shim, Wang Geun; Balathanigaimani, M. S.; Moon, Hee

    2016-08-01

    Highly porous activated carbons (ACs) were prepared from Mongolian raw anthracite (MRA) using sodium hydroxide as an activation agent by varying the mass ratio (powdered MRA/NaOH) as well as the mixing method of chemical agent and powdered MRA. The specific BET surface area and total pore volume of the prepared MRA-based activated carbons (MACs) are in the range of 816-2063 m2/g and of 0.55-1.61 cm3/g, respectively. The pore size distribution of MACs show that most of the pores are in the range from large micropores to small mesopores and their distribution can be controlled by the mass ratio and mixing method of the activating agent. As expected from the intrinsic property of the MRA, the highly graphitic surface morphology of prepared carbons was confirmed from Raman spectra and transmission electron microscopy (TEM) studies. Furthermore the FTIR and XPS results reveal that the preparation of MACs with hydrophobic in nature is highly possible by controlling the mixing conditions of activating agent and powdered MRA. Based on all the results, it is suggested that the prepared MACs could be used for many specific applications, requiring high surface area, optimal pore size distribution, proper surface hydrophobicity as well as strong physical strength.

  11. Analysis and classification of physical and chemical methods of fuel activation

    Directory of Open Access Journals (Sweden)

    Fedorchak Viktoriya

    2015-12-01

    Full Text Available The offered article explores various research studies, developed patents in terms of physical and chemical approaches to the activation of fuel. In this regard, national and foreign researches in the field of fuels activators with different principles of action were analysed, evaluating their pros and cons. The article also intends to classify these methods and compare them regarding diverse desired results and types of fuels used. In terms of physical and chemical influences on fuels and the necessity of making constructive changes in the fuel system of internal combustion engines, an optimal approach was outlined.

  12. Advances in Methane Activation Studies at Dalian Institute of Chemical Physics

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    @@ Following successful implementation of selective oxida-tion of methane into methanol at low temperature (80℃) through setting up a circulating system of multiple electron pairs the Dalian Institute of Chemical Physics (DICP) has made new stride in the fundamental research on direct acti-vation of methane. This institute by means of collaboration with the US West Pacific National Laboratory has acquired the complete information on the structure of active centers of solid catalysts with the relevant results published in the latest issue of Journal of American Chemical Society.

  13. Mathematical Modeling of Tin-Free Chemically-Active Antifouling Paint Behavior

    DEFF Research Database (Denmark)

    Yebra, Diego Meseguer; Kiil, Søren; Dam-Johansen, Kim

    2006-01-01

    Mathematical modeling has been used to characterize and validate the working mechanisms of tin-free, chemically-active antifouling (AF) paints. The model-based analysis of performance data from lab-scale rotary experiments has shown significant differences between antifouling technologies...... as regards the biocide leaching and the surface polishing processes. Hence, the modeling framework developed in this work is built so as to describe any generic, chemically-active AF paint through model parameters, the values of which can be obtained or adjusted from relatively fast measurements...

  14. Analysis of essential oils from Voacanga africana seeds at different hydrodistillation extraction stages: chemical composition, antioxidant activity and antimicrobial activity.

    Science.gov (United States)

    Liu, Xiong; Yang, Dongliang; Liu, Jiajia; Ren, Na

    2015-01-01

    In this study, essential oils from Voacanga africana seeds at different extraction stages were investigated. In the chemical composition analysis, 27 compounds representing 86.69-95.03% of the total essential oils were identified and quantified. The main constituents in essential oils were terpenoids, alcohols and fatty acids accounting for 15.03-24.36%, 21.57-34.43% and 33.06-57.37%, respectively. Moreover, the analysis also revealed that essential oils from different extraction stages possessed different chemical compositions. In the antioxidant evaluation, all analysed oils showed similar antioxidant behaviours, and the concentrations of essential oils providing 50% inhibition of DPPH-scavenging activity (IC50) were about 25 mg/mL. In the antimicrobial experiments, essential oils from different extraction stages exhibited different antimicrobial activities. The antimicrobial activity of oils was affected by extraction stages. By controlling extraction stages, it is promising to obtain essential oils with desired antimicrobial activities.

  15. Antimicrobial Activity and Chemical Analysis of the Essential Oil of Algerian Juniperus phoenicea.

    Science.gov (United States)

    Bouyahyaoui, Ahmed; Bahri, Fouad; Romane, Abderrahmane; Höferl, Martina; Wanner, Juergen; Schmidt, Erich; Jirovetz, Leopold

    2016-04-01

    The essential oils of Juniperus phoenicea L. from Algeria were obtained by hydrodistillation and analyzed by GC-FID and GC-MS. Concerning their chemical composition, 74, 61 and 72 volatile compounds were identified from fresh leaves, dried leaves and berries, representing 88.8%, 91.3% and 94.7% of the total composition, respectively. The main monoterpene in the oils of fresh leaves, dried leaves and berries was a-pinene (29.6% / 55.9% / 56.6%), accompanied by lesser amounts of the sesquiterpenes β-caryophyllene (2.6% / 1.6% /1.2%) and germacrene D (2.01% / 1.7% / 1.5%), respectively. Antibacterial activity of J. phoenicea essential oils was tested against one Gram-negative and four Gram-positive bacterial strains and the yeast Candida albicans, responsible for nosocomial infections. As references, 14 antibiotics and 5 antifungal agents were evaluated. The berry essential oil was ineffective against all but two of the strains tested, whereas the essential oil of dried leaves significantly inhibited all strains but Pseudomonas aeruginosa, which turned out to be the most resistant strain overall. However, Escherichia coli was the most susceptible to the essential oils tested. The essential oil of dry leaves was highly active against Candida albicans, outclassing even the standard antifungal substances. These promising results could substantiate the use of essential oils in the treatment of hospital-acquired infections.

  16. A Global Genomic Screening Strategy Reveals Genetic and Chemical Activators ofPeroxisome Proliferator-Activated Receptor alpha (PPARalpha)

    Science.gov (United States)

    A comprehensive survey of chemical, diet and genetic perturbations that activate PPARalpha in the mouse liver has not been carried out but would be useful to identify the factors that may contribute to PPARalpha-dependent liver tumors. A gene signature dependent on PPARalpha ac...

  17. CO2 laser scribe of chemically strengthened glass with high surface compressive stress

    Science.gov (United States)

    Li, Xinghua; Vaddi, Butchi R.

    2011-03-01

    Chemically strengthened glass is finding increasing use in handheld, IT and TV cover glass applications. Chemically strengthened glass, particularly with high (>600MPa) compressive stress (CS) and deeper depth of layer (DOL), enable to retain higher strength after damage than non-strengthened glass when its surface is abraded. Corning Gorilla® Glass has particularly proven to be advantageous over competition in this attribute. However, due to high compressive stress (CS) and Central Tension (CT) cutting ion-exchanged glass is extremely difficult and often unmanageable where ever the applications require dicing the chemically strengthened mother glass into smaller parts. We at Corning have developed a CO2 laser scribe and break method (LSB) to separate a single chemically strengthened glass sheet into plurality of devices. Furthermore, CO2 laser scribe and break method enables debris-free separation of glass with high edge strength due to its mirror-like edge finish. We have investigated laser scribe and break of chemically strengthened glass with surface compressive stress greater than 600 MPa. In this paper we present the results of CO2 scribe and break method and underlying laser scribing mechanisms. We demonstrated cross-scribe repetitively on GEN 2 size chemically strengthened glass substrates. Specimens for edge strength measurements of different thickness and CS/DOL glass were prepared using the laser scribe and break technique. The specimens were tested using the standard 4-point bend method and the results are presented.

  18. Fluid flow along North American Cordillera detachments determined from stable isotope and high resolution chemical analyses

    Science.gov (United States)

    Quilichini, A.; Teyssier, C.; Mulch, A.; Nachlas, W.

    2009-12-01

    Fluid flow is likely a major parameter controlling the dynamics of extensional detachment zones. Buoyancy-driven fluid flow is generated by high heat flow beneath the detachment zone, where heat is advected by crustal thinning and magma intrusions. This hydrothermal convective flow is focused in the detachment zone for the duration of activity of the detachment at relatively high temperature (300-500°C), resulting in very significant fluid-rock interaction and isotopic exchange. Quantifying sources and fluid flux in detachments is a challenge because permeability of ductilely deforming rocks is poorly understood. In order to solve these problems, we studied two different Eocene extensional systems in the North American Cordillera: the quartzitic detachment which borders the Kettle dome metamorphic core complex (WA), and the quartzo-feldspathic Bitterroot shear zone along the Idaho batholith (MT). The Kettle Dome detachment provides a continuous section of ~200 m thick quartzite mylonite where high-resolution sampling (~5 m) indicates that Deuterium isotopic ratios that are obtained from synkinematic muscovite grains are consistent with a meteoric fluid source (-130 per mil). In the Bitterroot shear zone, Coyner (2003) reported similar Deuterium isotopic ratios (down to -140 per mil) in muscovite from mylonites and ultramylonites. Microprobe analyses were obtained for white mica porphyroclasts by performing transects perpendicular to the basal (001) cleavage in order to determine intragrain chemical zoning. Preliminary results for the Kettle dome indicate increasing phengite composition with depth, suggesting enhanced activity of the Tschermak exchange. The variations of the phengitic signature in muscovite indicates that temperature diminuish downsection, which is contradictory with the results obtained by the Qz-Ms oxygen isotope thermometer along the Kettle section. Our recent work provides geologic data for numerical models that address the permeability of

  19. Accelerated Stability Studies on Dried Extracts of Centella asiatica Through Chemical, HPLC, HPTLC, and Biological Activity Analyses.

    Science.gov (United States)

    Kaur, Ishtdeep; Suthar, Nancy; Kaur, Jasmeen; Bansal, Yogita; Bansal, Gulshan

    2016-10-01

    Regulatory guidelines recommend systematic stability studies on a herbal product to establish its shelf life. In the present study, commercial extracts (Types I and II) and freshly prepared extract (Type III) of Centella asiatica were subjected to accelerated stability testing for 6 months. Control and stability samples were evaluated for organoleptics, pH, moisture, total phenolic content (TPC), asiatic acid, kaempherol, and high-performance thin layer chromatography fingerprints, and for antioxidant and acetylcholinesterase inhibitory activities. Markers and TPC and both the activities of each extract decreased in stability samples with respect to control. These losses were maximum in Type I extract and minimum in Type III extract. Higher stability of Type III extract than others might be attributed to the additional phytoconstituents and/or preservatives in it. Pearson correlation analysis of the results suggested that TPC, asiatic acid, and kaempferol can be taken as chemical markers to assess chemical and therapeutic shelf lives of herbal products containing Centella asiatica.

  20. Computational medicinal chemistry for rational drug design: Identification of novel chemical structures with potential anti-tuberculosis activity.

    Science.gov (United States)

    Koseki, Yuji; Aoki, Shunsuke

    2014-01-01

    Tuberculosis (TB) is caused by the bacterium Mycobacterium tuberculosis and is a common infectious disease with high mortality and morbidity. The increasing prevalence of drug-resistant strains of TB presents a major public health problem. Due to the lack of effective drugs to treat these drug-resistant strains, the discovery or development of novel anti-TB drugs is important. Computer-aided drug design has become an established strategy for the identification of novel active chemicals through a combination of several drug design tools. In this review, we summarise the current chemotherapy for TB, describe attractive target proteins for the development of antibiotics against TB, and detail several computational drug design strategies that may contribute to the further identification of active chemicals for the treatment of not only TB but also other diseases.

  1. Gamma irradiation effect on the chemical composition and the antioxidant activity of Ipomoea batatas L

    Energy Technology Data Exchange (ETDEWEB)

    Tahir, D., E-mail: dtahir@fmipa.unhas.ac.id; Halide, H., E-mail: dtahir@fmipa.unhas.ac.id; Kurniawan, D. [Department of Physics, Hasanuddin University, Makassar 90245 (Indonesia); Wahab, A. W. [Department of Chemistry, Hasanuddin University, Makassar 90245 (Indonesia)

    2014-09-25

    The chemical composition and antioxidant activity of Ipomoea batatas L. (sweet potato) were studied by x-ray fluorescence (XRF) spectroscopy, Fourier transform infrared spectroscopy, and by the 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging capacity. The irradiation treatment was performed by using Cs-137 as a gamma sources in experimental equipment. Treatment by irradiation emerges as a possible conservation technique that has been tested successfully in several food products. The amount of chemical composition was changed and resulting new chemical for absorbed dose 40 mSv. Interestingly, it was found that gamma irradiation significantly increased the antioxidant activity, as measured by DPPH radical scavenging capacity. The antioxidant activity of Ipomoea batatas L. extract was dramatically increased in the non-irradiated sample to the sample irradiated at 40 mSv. These results indicate that gamma irradiation of Ipomoea batatas L. extract can enhance its antioxidant activity through the formation of a new chemical compound. Based on these results, increased antioxidant activity of Ipomoea batatas L. extracts by gamma rays can be applied to various industries, especially cosmetics, foodstuffs, and pharmaceuticals.

  2. Gamma irradiation effect on the chemical composition and the antioxidant activity of Ipomoea batatas L.

    Science.gov (United States)

    Tahir, D.; Halide, H.; Wahab, A. W.; Kurniawan, D.

    2014-09-01

    The chemical composition and antioxidant activity of Ipomoea batatas L. (sweet potato) were studied by x-ray fluorescence (XRF) spectroscopy, Fourier transform infrared spectroscopy, and by the 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging capacity. The irradiation treatment was performed by using Cs-137 as a gamma sources in experimental equipment. Treatment by irradiation emerges as a possible conservation technique that has been tested successfully in several food products. The amount of chemical composition was changed and resulting new chemical for absorbed dose 40 mSv. Interestingly, it was found that gamma irradiation significantly increased the antioxidant activity, as measured by DPPH radical scavenging capacity. The antioxidant activity of Ipomoea batatas L. extract was dramatically increased in the non-irradiated sample to the sample irradiated at 40 mSv. These results indicate that gamma irradiation of Ipomoea batatas L. extract can enhance its antioxidant activity through the formation of a new chemical compound. Based on these results, increased antioxidant activity of Ipomoea batatas L. extracts by gamma rays can be applied to various industries, especially cosmetics, foodstuffs, and pharmaceuticals.

  3. Physical chemical and citotoxic evaluation of highly diluted solutions of Euphorbia tirucalli L. prepared through the fifty milesimal homeopathic method

    Directory of Open Access Journals (Sweden)

    Carlos Renato Zacharias

    2010-07-01

    Full Text Available Background: although Hahnemann described the fifty-milesimal (LM method in the 6th edition of the Organon of the Medical Art, very little research has been carried out on the physical chemical properties of these homeopathic preparations. Furthermore, there is still no evidence allowing for the correlation between the alleged physical chemical properties and the biological effects of high dilutions. Aims: to evaluate physical chemical characteristics of LM preparations including electrical conductivity, pH and refraction index, and their effect on biological experimental models. Materials and methods: preparations tested for physical chemical analysis were dilutions 1 lm to 10 lm of Euphorbia tirucalli L. prepared from the latex and the juice of the plant. To rule the seasonal characteristics of this plant, 2 different populations were used, one collected in June 2007 and the other in May 2008. Furthermore, the cytotoxic effect of Euphorbia tirucalli 5 lm was tested on human breast cancer cells (MCF7 through MTT assay. Some differences among the two collections were observed. However, any clear correlation could be observed between physical chemical properties and biological activity.

  4. Economic Evaluations for the Carbon Dioxide-involved Production of High-value Chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ji Hyun; Lee, Dong Woog; Jang, Se Gyu; Kwak, No-Sang; Lee, In Young; Jang, Kyung Ryoung; Shim, Jae-Goo [KEPCO Research Institute, Daejon (Korea, Republic of); Choi, Jong Shin [Korea East-West Power Co. LTD, Seoul (Korea, Republic of)

    2014-06-15

    Economic evaluation of the manufacturing technology of high-value chemicals through the carbonation reaction of carbon dioxide contained in the flue gas was performed, and analysis of the IRR (Internal Rate of Return) and whole profit along the production plan of the final product was conducted. Through a carbonation reaction with sodium hydroxide that is generated from electrolysis and by using carbon dioxide in the combustion gas that is generated in the power plant, it is possible to get a high value products such as sodium bicarbonate compound and also to reduce the carbon dioxide emission simultaneously. The IRR (Internal Rate of Return) and NPV (Net Present Value) methods were used for the economic evaluation of the process which could handle carbon dioxide of 100 tons per day in the period of the 20 years of plant operation. The results of economic evaluation showed that the IRR of baseline case of technology was 67.2% and the profit that obtained during the whole operation period (20 years) was 346,922 million won based on NPV value. When considering ETS due to the emissions trading enforcement that will be activated in 2015, the NPV was improved to a 6,000 million won. Based on this results, it could be concluded that this CO2 carbonation technology is an cost-effective technology option for the reduction of greenhouse gas.

  5. In vivo antileishmanial activity and chemical profile of polar extract from Selaginella sellowii

    Directory of Open Access Journals (Sweden)

    Dayane Priscilla de Souza Queiroz

    2016-01-01

    Full Text Available The polar hydroethanolic extract from Selaginella sellowii(SSPHE has been previously proven active on intracellular amastigotes (in vitro test and now was tested on hamsters infected with Leishmania (Leishmania amazonensis (in vivo test. SSPHE suppressed a 100% of the parasite load in the infection site and draining lymph nodes at an intralesional dose of 50 mg/kg/day × 5, which was similar to the results observed in hamsters treated with N-methylglucamine antimonate (Sb (28 mg/Kg/day × 5. When orally administered, SSPHE (50 mg/kg/day × 20 suppressed 99.2% of the parasite load in infected footpads, while Sb suppressed 98.5%. SSPHE also enhanced the release of nitric oxide through the intralesional route in comparison to Sb. The chemical fingerprint of SSPHE by high-performance liquid chromatography with diode-array detection and tandem mass spectrometry showed the presence of biflavonoids and high molecular weight phenylpropanoid glycosides. These compounds may have a synergistic action in vivo. Histopathological study revealed that the intralesional treatment with SSPHE induced an intense inflammatory infiltrate, composed mainly of mononuclear cells. The present findings reinforce the potential of this natural product as a source of future drug candidates for American cutaneous leishmaniasis.

  6. Chemical features of Ganoderma polysaccharides with antioxidant, antitumor and antimicrobial activities.

    Science.gov (United States)

    Ferreira, Isabel C F R; Heleno, Sandrina A; Reis, Filipa S; Stojkovic, Dejan; Queiroz, Maria João R P; Vasconcelos, M Helena; Sokovic, Marina

    2015-06-01

    Ganoderma genus comprises one of the most commonly studied species worldwide, Ganoderma lucidum. However, other Ganoderma species have been also reported as important sources of bioactive compounds. Polysaccharides are important contributors to the medicinal properties reported for Ganoderma species, as demonstrated by the numerous publications, including reviews, on this matter. Yet, what are the chemical features of Ganoderma polysaccharides that have bioactivity? In the present manuscript, the chemical features of Ganoderma polysaccharides with reported antioxidant, antitumor and antimicrobial activities (the most studied worldwide) are analyzed in detail. The composition of sugars (homo- versus hetero-glucans and other polysaccharides), type of glycosidic linkages, branching patterns, and linkage to proteins are discussed. Methods for extraction, isolation and identification are evaluated and, finally, the bioactivity of polysaccharidic extracts and purified compounds are discussed. The integration of data allows deduction of structure-activity relationships and gives clues to the chemical aspects involved in Ganoderma bioactivity.

  7. Clustering and rule-based classifications of chemical structures evaluated in the biological activity space.

    Science.gov (United States)

    Schuffenhauer, Ansgar; Brown, Nathan; Ertl, Peter; Jenkins, Jeremy L; Selzer, Paul; Hamon, Jacques

    2007-01-01

    Classification methods for data sets of molecules according to their chemical structure were evaluated for their biological relevance, including rule-based, scaffold-oriented classification methods and clustering based on molecular descriptors. Three data sets resulting from uniformly determined in vitro biological profiling experiments were classified according to their chemical structures, and the results were compared in a Pareto analysis with the number of classes and their average spread in the profile space as two concurrent objectives which were to be minimized. It has been found that no classification method is overall superior to all other studied methods, but there is a general trend that rule-based, scaffold-oriented methods are the better choice if classes with homogeneous biological activity are required, but a large number of clusters can be tolerated. On the other hand, clustering based on chemical fingerprints is superior if fewer and larger classes are required, and some loss of homogeneity in biological activity can be accepted.

  8. A thermodynamical formulation for chemically active multi-phase turbulent flows

    Energy Technology Data Exchange (ETDEWEB)

    Ahmadi, G.; Cao, J.

    1995-03-01

    A generalized thermodynamics for chemically active multiphase solid-fluid mixtures in turbulent state of motion is formulated. The global equations of balance for each phase are ensemble averaged and the local conservation laws for the mean motions are derived. The averaged and the local conservation laws for the mean motions are derived. The averaged form of the Clausius-Duhem inequality is used and the thermodynamics of the chemically active mixtures in turbulent motion is studied. Particular attention is given to the species concentration and chemical reaction effects, in addition to transport and interaction of the phasic fluctuation energies. Based on the averaged entropy inequality, constitutive equations for the stresses, energy, heat and mass fluxes of various species are developed. The explicit governing equations of motion are derived and discussed.

  9. Chemicals to enhance microalgal growth and accumulation of high-value bioproducts

    Directory of Open Access Journals (Sweden)

    Xinheng eYu

    2015-02-01

    Full Text Available Photosynthetic microalgae have attracted significant attention as they can serve as important sources for cosmetic, food and pharmaceutical products, industrial materials and even biofuel biodiesels. However, current productivity of microalga-based processes is still very low, which has restricted their scale-up application. In addition to various efforts in strain improvement and cultivation optimization, it was proposed that the productivity of microalga-based processes can also be increased using various chemicals to trigger or enhance cell growth and accumulation of bioproducts. Herein, we summarized recent progresses in applying chemical triggers or enhancers to improve cell growth and accumulation of bioproducts in algal cultures. Based on their enhancing mechanisms, these chemicals can be classified into four categories:chemicals regulating biosynthetic pathways, chemicals inducing oxidative stress responses, phytohormones and analogues regulating multiple aspects of microalgal metabolism, and chemicals directly as metabolic precursors. Taken together, the early researches demonstrated that the use of chemical stimulants could be a very effective and economical way to improve cell growth and accumulation of high-value bioproducts in large-scale cultivation of microalgae.

  10. Chemicals to enhance microalgal growth and accumulation of high-value bioproducts.

    Science.gov (United States)

    Yu, Xinheng; Chen, Lei; Zhang, Weiwen

    2015-01-01

    Photosynthetic microalgae have attracted significant attention as they can serve as important sources for cosmetic, food and pharmaceutical products, industrial materials and even biofuel biodiesels. However, current productivity of microalga-based processes is still very low, which has restricted their scale-up application. In addition to various efforts in strain improvement and cultivation optimization, it was proposed that the productivity of microalga-based processes can also be increased using various chemicals to trigger or enhance cell growth and accumulation of bioproducts. Herein, we summarized recent progresses in applying chemical triggers or enhancers to improve cell growth and accumulation of bioproducts in algal cultures. Based on their enhancing mechanisms, these chemicals can be classified into four categories:chemicals regulating biosynthetic pathways, chemicals inducing oxidative stress responses, phytohormones and analogs regulating multiple aspects of microalgal metabolism, and chemicals directly as metabolic precursors. Taken together, the early researches demonstrated that the use of chemical stimulants could be a very effective and economical way to improve cell growth and accumulation of high-value bioproducts in large-scale cultivation of microalgae.

  11. Identification of chemical modulators of the constitutive activated receptor (CAR) in a gene expression compendium.

    Science.gov (United States)

    Oshida, Keiyu; Vasani, Naresh; Jones, Carlton; Moore, Tanya; Hester, Susan; Nesnow, Stephen; Auerbach, Scott; Geter, David R; Aleksunes, Lauren M; Thomas, Russell S; Applegate, Dawn; Klaassen, Curtis D; Corton, J Christopher

    2015-01-01

    The nuclear receptor family member constitutive activated receptor (CAR) is activated by structurally diverse drugs and environmentally-relevant chemicals leading to transcriptional regulation of genes involved in xenobiotic metabolism and transport. Chronic activation of CAR increases liver cancer incidence in rodents, whereas suppression of CAR can lead to steatosis and insulin insensitivity. Here, analytical methods were developed to screen for chemical treatments in a gene expression compendium that lead to alteration of CAR activity. A gene expression biomarker signature of 83 CAR-dependent genes was identified using microarray profiles from the livers of wild-type and CAR-null mice after exposure to three structurally-diverse CAR activators (CITCO, phenobarbital, TCPOBOP). A rank-based algorithm (Running Fisher's algorithm (p-value ≤ 10(-4))) was used to evaluate the similarity between the CAR biomarker signature and a test set of 28 and 32 comparisons positive or negative, respectively, for CAR activation; the test resulted in a balanced accuracy of 97%. The biomarker signature was used to identify chemicals that activate or suppress CAR in an annotated mouse liver/primary hepatocyte gene expression database of ~1850 comparisons. CAR was activated by 1) activators of the aryl hydrocarbon receptor (AhR) in wild-type but not AhR-null mice, 2) pregnane X receptor (PXR) activators in wild-type and to lesser extents in PXR-null mice, and 3) activators of PPARα in wild-type and PPARα-null mice. CAR was consistently activated by five conazole fungicides and four perfluorinated compounds. Comparison of effects in wild-type and CAR-null mice showed that the fungicide propiconazole increased liver weight and hepatocyte proliferation in a CAR-dependent manner, whereas the perfluorinated compound perfluorooctanoic acid (PFOA) increased these endpoints in a CAR-independent manner. A number of compounds suppressed CAR coincident with increases in markers of

  12. Field induced gradient simulations: a high throughput method for computing chemical potentials in multicomponent systems.

    Science.gov (United States)

    Mehrotra, Anuja Seth; Puri, Sanjay; Khakhar, D V

    2012-04-07

    We present a simulation method for direct computation of chemical potentials in multicomponent systems. The method involves application of a field to generate spatial gradients in the species number densities at equilibrium, from which the chemical potential of each species is theoretically estimated. A single simulation yields results over a range of thermodynamic states, as in high throughput experiments, and the method remains computationally efficient even at high number densities since it does not involve particle insertion at high densities. We illustrate the method by Monte Carlo simulations of binary hard sphere mixtures of particles with different sizes in a gravitational field. The results of the gradient Monte Carlo method are found to be in good agreement with chemical potentials computed using the classical Widom particle insertion method for spatially uniform systems.

  13. High Energy Activation Data Library (HEAD-2009)

    CERN Document Server

    Korovin, Yury A; Konobeyev, Alexander Yu; Stankovskiy, Alexey Yu; Mashnik, Stepan G

    2010-01-01

    A proton activation data library for 682 nuclides from 1-H to 210-Po in the energy range from 150 MeV up to 1 GeV was developed. To calculate proton activation data, the MCNPX 2.6.0 and CASCADE/INPE codes were chosen. Different intranuclear cascade, preequilibrium, and equilibrium nuclear reaction models and their combinations were used. The optimum calculation models have been chosen on the basis of statistical correlations for calculated and experimental proton data taken from the EXFOR library of experimental nuclear data. All the data are written in ENDF-6 format. The library is called HEPAD-2008 (High-Energy Proton Activation Data). A revision of IEAF-2005 neutron activation data library has been performed: A set of nuclides for which the cross-section data can be (and were) updated using more modern and improved models is specified, and the corresponding calculations have been made in the present work. The new version of the library is called IEAF-2009. The HEPAD-2008 and IEAF-2009 are merged to the fin...

  14. Editor's Highlight: Analysis of the Effects of Cell Stress and Cytotoxicity on In Vitro Assay Activity Across a Diverse Chemical and Assay Space.

    Science.gov (United States)

    Judson, Richard; Houck, Keith; Martin, Matt; Richard, Ann M; Knudsen, Thomas B; Shah, Imran; Little, Stephen; Wambaugh, John; Woodrow Setzer, R; Kothya, Parth; Phuong, Jimmy; Filer, Dayne; Smith, Doris; Reif, David; Rotroff, Daniel; Kleinstreuer, Nicole; Sipes, Nisha; Xia, Menghang; Huang, Ruili; Crofton, Kevin; Thomas, Russell S

    2016-08-01

    Chemical toxicity can arise from disruption of specific biomolecular functions or through more generalized cell stress and cytotoxicity-mediated processes. Here, responses of 1060 chemicals including pharmaceuticals, natural products, pesticidals, consumer, and industrial chemicals across a battery of 815 in vitro assay endpoints from 7 high-throughput assay technology platforms were analyzed in order to distinguish between these types of activities. Both cell-based and cell-free assays showed a rapid increase in the frequency of responses at concentrations where cell stress/cytotoxicity responses were observed in cell-based assays. Chemicals that were positive on at least 2 viability/cytotoxicity assays within the concentration range tested (typically up to 100 μM) activated a median of 12% of assay endpoints whereas those that were not cytotoxic in this concentration range activated 1.3% of the assays endpoints. The results suggest that activity can be broadly divided into: (1) specific biomolecular interactions against one or more targets (eg, receptors or enzymes) at concentrations below which overt cytotoxicity-associated activity is observed; and (2) activity associated with cell stress or cytotoxicity, which may result from triggering specific cell stress pathways, chemical reactivity, physico-chemical disruption of proteins or membranes, or broad low-affinity non-covalent interactions. Chemicals showing a greater number of specific biomolecular interactions are generally designed to be bioactive (pharmaceuticals or pesticidal active ingredients), whereas intentional food-use chemicals tended to show the fewest specific interactions. The analyses presented here provide context for use of these data in ongoing studies to predict in vivo toxicity from chemicals lacking extensive hazard assessment.

  15. Modeling Chemical Detection Sensitivities of Active and Passive Remote Sensing Systems

    Energy Technology Data Exchange (ETDEWEB)

    Scharlemann, E T

    2003-07-28

    During nearly a decade of remote sensing programs under the auspices of the U. S. Department of Energy (DOE), LLNL has developed a set of performance modeling codes--called APRS--for both Active and Passive Remote Sensing systems. These codes emphasize chemical detection sensitivity in the form of minimum detectable quantities with and without background spectral clutter and in the possible presence of other interfering chemicals. The codes have been benchmarked against data acquired in both active and passive remote sensing programs at LLNL and Los Alamos National Laboratory (LANL). The codes include, as an integral part of the performance modeling, many of the data analysis techniques developed in the DOE's active and passive remote sensing programs (e.g., ''band normalization'' for an active system, principal component analysis for a passive system).

  16. High-throughput fluorescence polarization assay for chemical library screening against anti-apoptotic Bcl-2 family member Bfl-1.

    Science.gov (United States)

    Zhai, Dayong; Godoi, Paulo; Sergienko, Eduard; Dahl, Russell; Chan, Xochella; Brown, Brock; Rascon, Justin; Hurder, Andrew; Su, Ying; Chung, Thomas D Y; Jin, Chaofang; Diaz, Paul; Reed, John C

    2012-03-01

    Overexpression of the anti-apoptotic Bcl-2 family proteins occurs commonly in human cancers. Bfl-1 is highly expressed in some types of malignant cells, contributing significantly to tumor cell survival and chemoresistance. Therefore, it would be desirable to have chemical antagonists of Bfl-1. To this end, we devised a fluorescence polarization assay (FPA) using Bfl-1 protein and fluorescein-conjugated Bid BH3 peptide, which was employed for high-throughput screening of chemical libraries. Approximately 66 000 compounds were screened for the ability to inhibit BH3 peptide binding to Bfl-1, yielding 14 reproducible hits with ≥50% displacement. After dose-response analysis and confirmation using a secondary assay based on time-resolved fluorescence resonance energy transfer (TR-FRET), two groups of Bfl-1-specific inhibitors were identified, including chloromaleimide and sulfonylpyrimidine series compounds. FPAs generated for each of the six anti-apoptotic Bcl-2 proteins demonstrated selective binding of both classes of compounds to Bfl-1. Analogs of the sulfonylpyrimidine series were synthesized and compared with the original hit for Bfl-1 binding by both FPAs and TR-FRET assays. The resulting structure-activity relation analysis led to the chemical probe compound CID-2980973 (ML042). Collectively, these findings demonstrate the feasibility of using the HTS assay for discovery of selective chemical inhibitors of Bfl-1.

  17. Functional, photochemically active, and chemically asymmetric membranes by interfacial polymerization of derivatized multifunctional prepolymers

    Energy Technology Data Exchange (ETDEWEB)

    Lonsdale, H.K.; Wamser, C.C.

    1990-04-17

    The preparation of a novel class of thin film membranes by interfacial polymerization is disclosed, said membranes incorporating as part of their polymeric structure the functionality of monomeric or oligomeric precursors. Specific embodiments include porphyrin and phthalocyanine derivatives that are photochemically or electrochemically active, as well as chemically asymmetric membranes.

  18. Functional, photochemically active, and chemically asymmetric membranes by interfacial polymerization of derivatized multifunctional prepolymers

    Science.gov (United States)

    Lonsdale, Harold K.; Wamser, Carl C.

    1988-01-01

    The preparation of a novel class of thin film membranes by interfacial polymerization is disclosed, said membanes incorporating as part of their polymeric structure the functionality of monomeric or oligomeric precursors. Specific embodiments include porphyrin and phthalocyanime derivatives that are photochemically or electrochemically active, as well as chemically asymmetric membranes.

  19. Fenton-Driven Chemical Regeneration of MTBE-Spent Granular Activated Carbon -- A Pilot Study

    Science.gov (United States)

    MTBE-spent granular activated carbon (GAC) underwent 3 adsorption/oxidation cycles. Pilot-scale columns were intermittently placed on-line at a ground water pump and treat facility, saturated with MTBE, and regenerated with H2O2 under different chemical, physical, and operational...

  20. Active-site residues of procarboxypeptidase Y are accessible to chemical modification

    DEFF Research Database (Denmark)

    Sørensen, S O; Winther, Jakob R.

    1994-01-01

    The accessibility of the active-site cleft of procarboxypeptidase Y from Saccharomyces cerevisiae has been studied by chemical modifications of two specific amino-acid residues. Previous studies have shown that these residues, Cys-341 and Met-398 in the mature enzyme, are located in the S1 and S'1...

  1. Lantana montevidensis Essential Oil: Chemical Composition and Mosquito Repellent Activity against Aedes aegypti

    Science.gov (United States)

    The essential oil (EO) of Lantana montevidensis (Spreng.) Briq. (L. sellowiana Link & Otto) was investigated for its chemical composition and mosquito repellent activity. The essential oil obtained by hydrodistillation of aerial plant parts was analyzed by GC-FID and GC-MS. The major constituents we...

  2. Phoenix dactylifera L. spathe essential oil: Chemical composition and repellent activity against the yellow fever mosquito

    Science.gov (United States)

    Date palm, Phoenix dactylifera L. (Arecaceae), grows commonly in the Arabian Peninsula and is traditionally used to treat various diseases. The aim of the present study was to identify chemical composition of the essential oil and to investigate the repellent activity. The essential oil of P. dacty...

  3. 76 FR 7841 - Agency Information Collection Activities; Proposed Collections; Toxic Chemical Release Reporting...

    Science.gov (United States)

    2011-02-11

    ... AGENCY Agency Information Collection Activities; Proposed Collections; Toxic Chemical Release Reporting... codes other than SIC codes 20 through 39): 212111, 212112, 212113 (correspond to SIC 12, Coal Mining (except 1241)); or 212221, 212222, 212231, 212234, 212299 (correspond to SIC 10, Metal Mining (except...

  4. Annual Report, Fall 2016: Alternative Chemical Cleaning of Radioactive High Level Waste Tanks - Corrosion Test Results

    Energy Technology Data Exchange (ETDEWEB)

    Wyrwas, R. B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-09-01

    The testing presented in this report is in support of the investigation of the Alternative Chemical Cleaning program to aid in developing strategies and technologies to chemically clean radioactive High Level Waste tanks prior to tank closure. The data and conclusions presented here were the examination of the corrosion rates of A285 carbon steel and 304L stainless steel exposed to two proposed chemical cleaning solutions: acidic permanganate (0.18 M nitric acid and 0.05M sodium permanganate) and caustic permanganate. (10 M sodium hydroxide and 0.05M sodium permanganate). These solutions have been proposed as a chemical cleaning solution for the retrieval of actinides in the sludge in the waste tanks and were tested with both HM and PUREX sludge simulants at a 20:1 ratio.

  5. Annual Report, Fall 2016: Alternative Chemical Cleaning of Radioactive High Level Waste Tanks - Corrosion Test Results

    Energy Technology Data Exchange (ETDEWEB)

    Wyrwas, R. B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-09-01

    The testing presented in this report is in support of the investigation of the Alternative Chemical Cleaning program to aid in developing strategies and technologies to chemically clean radioactive High Level Waste tanks prior to tank closure. The data and conclusions presented here were the examination of the corrosion rates of A285 carbon steel and 304L stainless steel exposed to two proposed chemical cleaning solutions: acidic permanganate (0.18 M nitric acid and 0.05M sodium permanganate) and caustic permanganate. (10 M sodium hydroxide and 0.05M sodium permanganate). These solutions have been proposed as a chemical cleaning solution for the retrieval of actinides in the sludge in the waste tanks, and were tested with both HM and PUREX sludge simulants at a 20:1 ratio.

  6. Chemical Composition and Antifungal Activity of Ocimum basilicum L. Essential Oil

    Directory of Open Access Journals (Sweden)

    Neveen Helmy Abou El-Soud

    2015-07-01

    Full Text Available BACKGROUND: The leaves of Ocimum basilicum L. (basil are used in traditional cuisine as spices; its essential oil has found a wide application in perfumery, dental products as well as antifungal agents. AIM: To assess the chemical composition as well as the in vitro antifungal activity of O. basilicum L. essential oil against Aspergillus flavus fungal growth and aflatoxin B1 production. MATERIAL AND METHODS: The essential oil of O. basilicum was obtained by hydrodistillation and analysed using gas chromatography (GC and GC coupled with mass spectrometry (GC/MS. The essential oil was tested for its effects on Aspergillus flavus (A. flavus mycelial growth and aflatoxin B1 production in Yeast Extract Sucrose (YES growth media. Aflatoxin B1 production was determined by high performance liquid chromatography (HPLC. RESULTS: Nineteen compounds, representing 96.7% of the total oil were identified. The main components were as follows: linalool (48.4%, 1,8-cineol (12.2%, eugenol (6.6%, methyl cinnamate (6.2%, α-cubebene (5.7%, caryophyllene (2.5%, β-ocimene (2.1% and α-farnesene (2.0%.The tested oil showed significant antifungal activity that was dependent on the used oil concentration. The complete inhibition of A. flavus growth was observed at 1000 ppm oil concentration, while marked inhibition of aflatoxin B1 production was observed at all oil concentrations tested (500, 750 and 1000 ppm. CONCLUSION: These results confirm the antifungal activities of O. basilicum L. oil and its potential use to cure mycotic infections and act as pharmaceutical preservative against A. flavus growth and aflatoxin B1 production.

  7. Insecticidal activity and chemical composition of the Morinda lucida essential oil against pulse beetle Callosobruchus maculatus.

    Science.gov (United States)

    Owolabi, Moses S; Padilla-Camberos, Eduardo; Ogundajo, Akintayo L; Ogunwande, Isiaka A; Flamini, Guido; Yusuff, Olaniyi K; Allen, Kirk; Flores-Fernandez, Karen Isabel; Flores-Fernandez, Jose Miguel

    2014-01-01

    Insecticidal activity of essential oil extracted from Morinda lucida was tested on pulse beetle Callosobruchus maculatus, which is a pest that causes serious damage to several pulses. The insecticidal activity was compared with two pesticides, Phostoxin and Primo-ban-20. 120 mixed sex adult C. maculatus were introduced, along with 30 g of cowpeas. Four concentrations (0.40, 0.20, 0.10, and 0.05 μg/mL) of the M. lucida essential oil, Phostoxin, and Primo-ban-20 were tested. Essential oil chemical composition was analyzed by GC-MS. M. lucida essential oil showed a high toxicological effect, producing 100% mortality after 72 hours at a dose of 0.20 μg/mL. M. lucida essential oil had a potent insecticidal activity (LC90 = 0.629 μg/mL) compared to both pesticides, Phostoxin (LC90 = 0.652 μg/mL) and Primo-ban-20 (LC90 = 0.726 μg/mL), at 24 h. The main compounds of the essential oil were the oxygenated monoterpenoids, 1,8-cineole (43.4%), and α-terpinyl acetate (14.5%), and the monoterpene hydrocarbons, mostly sabinene (8.2%) and β-pinene (4.0%). Results clearly indicate that M. lucida essential oil can be used as an effective alternative for pulse beetle C. maculatus control, and it could be tested against other pulse beetles affecting Asia and Africa and throughout the world, thereby reducing use of synthetic pesticides.

  8. Insecticidal Activity and Chemical Composition of the Morinda lucida Essential Oil against Pulse Beetle Callosobruchus maculatus

    Directory of Open Access Journals (Sweden)

    Moses S. Owolabi

    2014-01-01

    Full Text Available Insecticidal activity of essential oil extracted from Morinda lucida was tested on pulse beetle Callosobruchus maculatus, which is a pest that causes serious damage to several pulses. The insecticidal activity was compared with two pesticides, Phostoxin and Primo-ban-20. 120 mixed sex adult C. maculatus were introduced, along with 30 g of cowpeas. Four concentrations (0.40, 0.20, 0.10, and 0.05 μg/mL of the M. lucida essential oil, Phostoxin, and Primo-ban-20 were tested. Essential oil chemical composition was analyzed by GC-MS. M. lucida essential oil showed a high toxicological effect, producing 100% mortality after 72 hours at a dose of 0.20 μg/mL. M. lucida essential oil had a potent insecticidal activity (LC90 = 0.629 μg/mL compared to both pesticides, Phostoxin (LC90 = 0.652 μg/mL and Primo-ban-20 (LC90 = 0.726 μg/mL, at 24 h. The main compounds of the essential oil were the oxygenated monoterpenoids, 1,8-cineole (43.4%, and α-terpinyl acetate (14.5%, and the monoterpene hydrocarbons, mostly sabinene (8.2% and β-pinene (4.0%. Results clearly indicate that M. lucida essential oil can be used as an effective alternative for pulse beetle C. maculatus control, and it could be tested against other pulse beetles affecting Asia and Africa and throughout the world, thereby reducing use of synthetic pesticides.

  9. High-Density Chemical Intercalation of Zero-Valent Copper into Bi 2 Se 3 Nanoribbons

    KAUST Repository

    Koski, Kristie J.

    2012-05-09

    A major goal of intercalation chemistry is to intercalate high densities of guest species without disrupting the host lattice. Many intercalant concentrations, however, are limited by the charge of the guest species. Here we have developed a general solution-based chemical method for intercalating extraordinarily high densities of zero-valent copper metal into layered Bi 2Se 3 nanoribbons. Up to 60 atom % copper (Cu 7.5Bi 2Se 3) can be intercalated with no disruption to the host lattice using a solution disproportionation redox reaction. © 2012 American Chemical Society.

  10. Study of novel mechano-chemical activation process of red mud to optimize nitrate removal from water.

    Science.gov (United States)

    Alighardashi, A; Gharibi, H R; Raygan, Sh; Akbarzadeh, A

    2016-01-01

    Red mud (RM) is the industrial waste of alumina production and causes serious environmental risks. In this paper, a novel activation procedure for RM (mechano-chemical processing) is proposed in order to improve the nitrate adsorption from water. High-energy milling and acidification were selected as mechanical and chemical activation methods, respectively. Synthesized samples of adsorbent were produced considering two parameters of activation: acid concentrations and acidification time in two selected milling times. Optimization of the activation process was based on nitrate removal from a stock solution. Experimental data were analyzed with two-way analysis of variance and Kruskal-Wallis methods to verify and discover the accuracy and probable errors. Best conditions (acceptable removal percentage > 75) were 17.6% w/w for acid concentrate and 19.9 minutes for acidification time in 8 hours for milling time. A direct relationship between increase in nitrate removal and increasing the acid concentration and acidification time was observed. The adsorption isotherms were studied and compared with other nitrate adsorbents. Characterization tests (X-ray fluorescence, X-ray diffraction, Fourier transform infrared spectrophotometry, dynamic light scattering, surface area analysis and scanning electron microscopy) were conducted for both raw and activated adsorbents. Results showed noticeable superiority in characteristics after activation: higher specific area and porosity, lower particle size and lower agglomeration in structure.

  11. Chemical composition and insecticidal activity of plant essential oils from Benin against Anopheles gambiae (Giles).

    Science.gov (United States)

    Bossou, Annick D; Mangelinckx, Sven; Yedomonhan, Hounnankpon; Boko, Pelagie M; Akogbeto, Martin C; De Kimpe, Norbert; Avlessi, Félicien; Sohounhloue, Dominique C K

    2013-12-03

    Insecticide resistance in sub-Saharan Africa and especially in Benin is a major public health issue hindering the control of the malaria vectors. Each Anopheles species has developed a resistance to one or several classes of the insecticides currently in use in the field. Therefore, it is urgent to find alternative compounds to conquer the vector. In this study, the efficacies of essential oils of nine plant species, which are traditionally used to avoid mosquito bites in Benin, were investigated. Essential oils of nine plant species were extracted by hydrodistillation, and their chemical compositions were identified by GC-MS. These oils were tested on susceptible "kisumu" and resistant "ladji-Cotonou" strains of Anopheles gambiae, following WHO test procedures for insecticide resistance monitoring in malaria vector mosquitoes. Different chemical compositions were obtained from the essential oils of the plant species. The major constituents identified were as follows: neral and geranial for Cymbopogon citratus, Z-carveol, E-p-mentha-1(7),8-dien-2-ol and E-p-mentha-2,8-dienol for Cymbopogon giganteus, piperitone for Cymbopogon schoenanthus, citronellal and citronellol for Eucalyptus citriodora, p-cymene, caryophyllene oxide and spathulenol for Eucalyptus tereticornis, 3-tetradecanone for Cochlospermum tinctorium and Cochlospermum planchonii, methyl salicylate for Securidaca longepedunculata and ascaridole for Chenopodium ambrosioides. The diagnostic dose was 0.77% for C. citratus, 2.80% for E. tereticornis, 3.37% for E. citriodora, 4.26% for C. ambrosioides, 5.48% for C. schoenanthus and 7.36% for C. giganteus. The highest diagnostic doses were obtained with S. longepedunculata (9.84%), C. tinctorium (11.56%) and C. planchonii (15.22%), compared to permethrin 0.75%. A. gambiae cotonou, which is resistant to pyrethroids, showed significant tolerance to essential oils from C. tinctorium and S. longepedunculata as expected but was highly susceptible to all the other

  12. Chemical composition and insecticidal activity of plant essential oils from Benin against Anopheles gambiae (Giles)

    Science.gov (United States)

    2013-01-01

    highly susceptible to all the other essential oils at the diagnostic dose. Conclusions C. citratus, E. tereticornis, E. citriodora, C. ambrosioides and C. schoenanthus are potential promising plant sources for alternative compounds to pyrethroids, for the control of the Anopheles malaria vector in Benin. The efficacy of their essential oils is possibly based on their chemical compositions in which major and/or minor compounds have reported insecticidal activities on various pests and disease vectors such as Anopheles. PMID:24298981

  13. Properties and Performances of High Purity Corundum Bricks for Chemical and Petrochemical Industries in China

    Institute of Scientific and Technical Information of China (English)

    CHENRen-pin; LINYu-lian; 等

    1995-01-01

    The properties and performances of high purity corundum bricks for the refractory linings of the gasifiers in the ammonia and ethene synthesis and carbon black reaction furnaces in China are described.The high purity corundum bricks are characterized by high refractoriness,hot strength,dimensional stability and chemical inertness at elevated temperature,Their performances in the gasifiers and carbon black furnaces are very satisfied ,The failure mechansims of the refractory lining are discussed on the basis of the petrographic analysis.

  14. Recovery of microbial diversity and activity during bioremediation following chemical oxidation of diesel contaminated soils.

    Science.gov (United States)

    Sutton, Nora B; Langenhoff, Alette A M; Lasso, Daniel Hidalgo; van der Zaan, Bas; van Gaans, Pauline; Maphosa, Farai; Smidt, Hauke; Grotenhuis, Tim; Rijnaarts, Huub H M

    2014-03-01

    To improve the coupling of in situ chemical oxidation and in situ bioremediation, a systematic analysis was performed of the effect of chemical oxidation with Fenton's reagent, modified Fenton's reagent, permanganate, or persulfate, on microbial diversity and activity during 8 weeks of incubation in two diesel-contaminated soils (peat and fill). Chemical oxidant and soil type affected the microbial community diversity and biodegradation activity; however, this was only observed following treatment with Fenton's reagent and modified Fenton's reagent, and in the biotic control without oxidation. Differences in the highest overall removal efficiencies of 69 % for peat (biotic control) and 59 % for fill (Fenton's reagent) were partially explained by changes in contaminant soil properties upon oxidation. Molecular analysis of 16S rRNA and alkane monooxygenase (alkB) gene abundances indicated that oxidation with Fenton's reagent and modified Fenton's reagent negatively affected microbial abundance. However, regeneration occurred, and final relative alkB abundances were 1-2 orders of magnitude higher in chemically treated microcosms than in the biotic control. 16S rRNA gene fragment fingerprinting with DGGE and prominent band sequencing illuminated microbial community composition and diversity differences between treatments and identified a variety of phylotypes within Alpha-, Beta-, and Gammaproteobacteria. Understanding microbial community dynamics during coupled chemical oxidation and bioremediation is integral to improved biphasic field application.

  15. GABA-A receptor antagonists increase firing, bursting and synchrony of spontaneous activity in neuronal networks grown on microelectrode arrays: a step towards chemical "fingerprinting"

    Science.gov (United States)

    Assessment of effects on spontaneous network activity in neurons grown on MEAs is a proposed method to screen chemicals for potential neurotoxicity. In addition, differential effects on network activity (chemical "fingerprints") could be used to classify chemical modes of action....

  16. "Miswak" Based Green Synthesis of Silver Nanoparticles: Evaluation and Comparison of Their Microbicidal Activities with the Chemical Synthesis.

    Science.gov (United States)

    Shaik, Mohammed Rafi; Albalawi, Ghadeer H; Khan, Shams Tabrez; Khan, Merajuddin; Adil, Syed Farooq; Kuniyil, Mufsir; Al-Warthan, Abdulrahman; Siddiqui, Mohammed Rafiq H; Alkhathlan, Hamad Z; Khan, Mujeeb

    2016-11-06

    Microbicidal potential of silver nanoparticles (Ag-NPs) can be drastically improved by improving their solubility or wettability in the aqueous medium. In the present study, we report the synthesis of both green and chemical synthesis of Ag-NPs, and evaluate the effect of the dispersion qualities of as-prepared Ag-NPs from both methods on their antimicrobial activities. The green synthesis of Ag-NPs is carried out by using an aqueous solution of readily available Salvadora persica L. root extract (RE) as a bioreductant. The formation of highly crystalline Ag-NPs was established by various analytical and microscopic techniques. The rich phenolic contents of S. persica L. RE (Miswak) not only promoted the reduction and formation of NPs but they also facilitated the stabilization of the Ag-NPs, which was established by Fourier transform infrared spectroscopy (FT-IR) analysis. Furthermore, the influence of the volume of the RE on the size and the dispersion qualities of the NPs was also evaluated. It was revealed that with increasing the volume of RE the size of the NPs was deteriorated, whereas at lower concentrations of RE smaller size and less aggregated NPs were obtained. During this study, the antimicrobial activities of both chemically and green synthesized Ag-NPs, along with the aqueous RE of S. persica L., were evaluated against various microorganisms. It was observed that the green synthesized Ag-NPs exhibit comparable or slightly higher antibacterial activities than the chemically obtained Ag-NPs.

  17. “Miswak” Based Green Synthesis of Silver Nanoparticles: Evaluation and Comparison of Their Microbicidal Activities with the Chemical Synthesis

    Directory of Open Access Journals (Sweden)

    Mohammed Rafi Shaik

    2016-11-01

    Full Text Available Microbicidal potential of silver nanoparticles (Ag-NPs can be drastically improved by improving their solubility or wettability in the aqueous medium. In the present study, we report the synthesis of both green and chemical synthesis of Ag-NPs, and evaluate the effect of the dispersion qualities of as-prepared Ag-NPs from both methods on their antimicrobial activities. The green synthesis of Ag-NPs is carried out by using an aqueous solution of readily available Salvadora persica L. root extract (RE as a bioreductant. The formation of highly crystalline Ag-NPs was established by various analytical and microscopic techniques. The rich phenolic contents of S. persica L. RE (Miswak not only promoted the reduction and formation of NPs but they also facilitated the stabilization of the Ag-NPs, which was established by Fourier transform infrared spectroscopy (FT-IR analysis. Furthermore, the influence of the volume of the RE on the size and the dispersion qualities of the NPs was also evaluated. It was revealed that with increasing the volume of RE the size of the NPs was deteriorated, whereas at lower concentrations of RE smaller size and less aggregated NPs were obtained. During this study, the antimicrobial activities of both chemically and green synthesized Ag-NPs, along with the aqueous RE of S. persica L., were evaluated against various microorganisms. It was observed that the green synthesized Ag-NPs exhibit comparable or slightly higher antibacterial activities than the chemically obtained Ag-NPs.

  18. Chemical composition and biological activity of essential oils of Dracocephalum heterophyllum and Hyssopus officinalis from Western Himalaya.

    Science.gov (United States)

    Stappen, Iris; Wanner, Jürgen; Tabanca, Nurhayat; Wedge, David E; Ali, Abbas; Kaul, Vijay K; Lal, Brij; Jaitak, Vikas; Gochev, Velizar K; Schmidt, Erich; Jirovetz, Leopold

    2015-01-01

    The essential oils of two representatives of the Lamiaceae, Dracocephalum heterophyllum Benth. and Hyssopus officinalis L., are described for their antifungal, antibacterial, larvicidal and inect biting deterrent activities. Additionally, the chemical compositions of the essential oils, analyzed by simultaneous GC-MS and GC-FID, and odor descriptions are given. The main components of H. officinalis oil were pinocarvone, cis-pinocamphone, and β-pinene. Citronellol was found as the main compound of D. heterophyllum essential oil. Antibacterial testing by agar dilution assay revealed greater activity of D. heterophyllum against Staphylococcus aureus compared with H. officinalis. D. heterophyllum essential oil also showed promising antifungal activity against Colletotrichum species and was more toxic to Aedes aegypti larvae in a larvicial bioassay. Both essential oils showed high activity in the biting deterrent bioassay.

  19. Physical and chemical properties and adsorption type of activated carbon prepared from plum kernels by NaOH activation.

    Science.gov (United States)

    Tseng, Ru-Ling

    2007-08-25

    Activated carbon was prepared from plum kernels by NaOH activation at six different NaOH/char ratios. The physical properties including the BET surface area, the total pore volume, the micropore ratio, the pore diameter, the burn-off, and the scanning electron microscope (SEM) observation as well as the chemical properties, namely elemental analysis and temperature programmed desorption (TPD), were measured. The results revealed a two-stage activation process: stage 1 activated carbons were obtained at NaOH/char ratios of 0-1, surface pyrolysis being the main reaction; stage 2 activated carbons were obtained at NaOH/char ratios of 2-4, etching and swelling being the main reactions. The physical properties of stage 2 activated carbons were similar, and specific area was from 1478 to 1887m(2)g(-1). The results of reaction mechanism of NaOH activation revealed that it was apparently because of the loss ratio of elements C, H, and O in the activated carbon, and the variations in the surface functional groups and the physical properties. The adsorption of the above activated carbons on phenol and three kinds of dyes (MB, BB1, and AB74) were used for an isotherm equilibrium adsorption study. The data fitted the Langmuir isotherm equation. Various kinds of adsorbents showed different adsorption types; separation factor (R(L)) was used to determine the level of favorability of the adsorption type. In this work, activated carbons prepared by NaOH activation were evaluated in terms of their physical properties, chemical properties, and adsorption type; and activated carbon PKN2 was found to have most application potential.

  20. Physical and chemical properties and adsorption type of activated carbon prepared from plum kernels by NaOH activation

    Energy Technology Data Exchange (ETDEWEB)

    Tseng, R.-L. [Department of Safety, Health and Environmental Engineering, National United University, Miao-Li 360, Taiwan (China)]. E-mail: trl@nuu.edu.tw

    2007-08-25

    Activated carbon was prepared from plum kernels by NaOH activation at six different NaOH/char ratios. The physical properties including the BET surface area, the total pore volume, the micropore ratio, the pore diameter, the burn-off, and the scanning electron microscope (SEM) observation as well as the chemical properties, namely elemental analysis and temperature programmed desorption (TPD), were measured. The results revealed a two-stage activation process: stage 1 activated carbons were obtained at NaOH/char ratios of 0-1, surface pyrolysis being the main reaction; stage 2 activated carbons were obtained at NaOH/char ratios of 2-4, etching and swelling being the main reactions. The physical properties of stage 2 activated carbons were similar, and specific area was from 1478 to 1887 m{sup 2} g{sup -1}. The results of reaction mechanism of NaOH activation revealed that it was apparently because of the loss ratio of elements C, H, and O in the activated carbon, and the variations in the surface functional groups and the physical properties. The adsorption of the above activated carbons on phenol and three kinds of dyes (MB, BB1, and AB74) were used for an isotherm equilibrium adsorption study. The data fitted the Langmuir isotherm equation. Various kinds of adsorbents showed different adsorption types; separation factor (R {sub L}) was used to determine the level of favorability of the adsorption type. In this work, activated carbons prepared by NaOH activation were evaluated in terms of their physical properties, chemical properties, and adsorption type; and activated carbon PKN2 was found to have most application potential.

  1. Chemical activation of C(1)-C(2) spinal neurons modulates activity of thoracic respiratory interneurons in rats.

    Science.gov (United States)

    Qin, C; Farber, J P; Chandler, M J; Foreman, R D

    2002-10-01

    Discharge patterns of thoracic dorsal horn neurons are influenced by chemical activation of cell bodies in cervical spinal segments C(1)-C(2). The present aim was to examine whether such activation would specifically affect thoracic respiratory interneurons (TRINs) of the deep dorsal horn and intermediate zone in pentobarbital sodium-anesthetized, paralyzed, artificially ventilated rats. We also characterized discharge patterns and pathways of TRIN activation in rats. A total of 77 cells were classified as TRINs by location, continued burst activity related to phrenic discharge when the respirator was stopped, and lack of antidromic response from selected pathways. A variety of respiration-phased discharge patterns was documented whose pathways were interrupted by ipsilateral C(1) transection. Glutamate pledgets (1 M, 1 min) on the dorsal surface of the spinal cord inhibited 22/49, excited 15/49, or excited/inhibited 3/49 tested cells. Incidence of responses did not depend on whether the phase of TRIN discharge was inspiratory, expiratory, or biphasic. Phrenic nerve activity was unaffected by chemical activation of C(1)-C(2) in this preparation. Besides supraspinal input, TRIN activity may be influenced by upper cervical modulatory pathways.

  2. Chemical Composition and Antimicrobial Activity of Echinophora spinosa L. (Apiaceae Essential Oil

    Directory of Open Access Journals (Sweden)

    Jasmina M. Glamočlija

    2011-01-01

    Full Text Available The present study was undertaken to investigate the chemical composition and effectiveness of the essential oil isolated from Echinophora spinosa on different bacterial and fungal species. Chemical analysis (GC/MS showed that δ³-carene (60,86 %, α-phellandrene (7,12%, p-cymene (6,22 %, myrcene (4,82 % and β-phellandrene (2,73 % were dominant components in this oil. Essential oil tested showed good antimicrobial activity. Antimicrobial potential of this oil was higher than potential of commercial antimicrobial drugs tested, streptomycin, bifonozole and ketoconazole.

  3. From simple to complex and backwards. Chemical reactions under very high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Bini, Roberto [Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino (Italy); LENS - European Laboratory of Non linear Spectroscopy, University of Florence, Via Nello Carrara 1, 50019 Sesto Fiorentino (Italy); Ceppatelli, Matteo; Citroni, Margherita [LENS - European Laboratory of Non linear Spectroscopy, University of Florence, Via Nello Carrara 1, 50019 Sesto Fiorentino (Italy); Schettino, Vincenzo, E-mail: vincenzo.schettino@unifi.it [LENS - European Laboratory of Non linear Spectroscopy, University of Florence, Via Nello Carrara 1, 50019 Sesto Fiorentino (Italy)

    2012-04-04

    Highlights: Black-Right-Pointing-Pointer High pressure reactivity of several molecular systems. Black-Right-Pointing-Pointer Reaction kinetics and dynamics in high density conditions. Black-Right-Pointing-Pointer Key role of optical pumping and electronic excitation. Black-Right-Pointing-Pointer Perspectives for the synthesis of hydrogen. - Abstract: High pressure chemical reactions of molecular systems are discussed considering the various factors that can affect the reactivity. These include steric hindrance and geometrical constraints in the confined environment of crystals at high pressure, changes of the free energy landscape with pressure, photoactivation by two-photon absorption, local and collective effects. A classification of the chemical reactions at high pressure is attempted on the basis of the prevailing factors.

  4. High Temperature and Pressure Alkaline Electrochemical Reactor for Conversion of Power to Chemicals

    DEFF Research Database (Denmark)

    Chatzichristodoulou, Christodoulos

    2016-01-01

    Moving away from fossil fuels requires harvesting more and more intermittent renewable energy resources and establishing a sustainable system for the production of chemicals. This brings forward the need for efficient large scale energy storage technologies 1-3 and technologies for the conversion...... densities. This work will provide an overview of our efforts to develop components of such high temperature alkaline electrochemical reactors for different applications. Low-cost large-scale production methods have been successfully employed for the production of ceramic diaphragms and full cells...... of renewable electricity to chemicals. Electrochemical reactors can play a crucial role in this endeavor, since they can efficiently and reversibly transform electricity to high-value chemicals, and thus serve as energy storage and recovery devices for balancing the grid, while offering a means...

  5. On Extraction of Chemical Potentials of Quarks from Particle Transverse Momentum Spectra in High Energy Collisions

    Directory of Open Access Journals (Sweden)

    Hong Zhao

    2015-01-01

    Full Text Available We present two methods to extract the chemical potentials of quarks in high energy collisions. The first method is based on the ratios of negatively/positively charged particles, and the temperatures extracted from the transverse momentum spectra of related hadrons are needed. The second method is based on the chemical potentials of some particles, and we also need the transverse momentum spectra of related hadrons. To extract the quark chemical potentials, we would like to propose experimental collaborations to measure simultaneously not only the transverse momentum spectra of p-, p, K-, K+, π-, and π+, but also those of D-, D+, B-, and B+ (even those of Δ++, Δ-, and Ω- in high energy nuclear collisions.

  6. Characteristics, chemical compositions and biological activities of propolis from Al-Bahah, Saudi Arabia

    Science.gov (United States)

    Elnakady, Yasser A.; Rushdi, Ahmed I.; Franke, Raimo; Abutaha, Nael; Ebaid, Hossam; Baabbad, Mohannad; Omar, Mohamed O. M.; Al Ghamdi, Ahmad A.

    2017-02-01

    Propolis has been used to treat several diseases since ancient times, and is an important source of bioactive natural compounds and drug derivatives. These properties have kept the interest of investigators around the world, leading to the investigation of the chemical and biological properties and application of propolis. In this report, the chemical constituents that are responsible for the anticancer activities of propolis were analyzed. The propolis was sourced from Al-Baha in the southern part of the Kingdom of Saudi Arabia. Standard protocols for chemical fractionation and bioactivity-guided chemical analysis were used to identify the bio-active ethyl acetate fraction. The extraction was performed in methanol and then analyzed by gas chromatography-mass spectrometry (GC-MS). The major compounds are triterpenoids, with a relative concentration of 74.0%; steroids, with a relative concentration of 9.8%; and diterpenoids, with a relative concentration of 7.9%. The biological activity was characterized using different approaches and cell-based assays. Propolis was found to inhibit the proliferation of cancer cells in a concentration-dependent manner through apoptosis. Immunofluorescence staining with anti-α-tubulin antibodies and cell cycle analysis indicated that tubulin and/or microtubules are the cellular targets of the L-acetate fraction. This study demonstrates the importance of Saudi propolis as anti-cancer drug candidates.

  7. Using ToxCast to Explore Chemical Activities and Hazard Traits: A Case Study With Ortho-Phthalates.

    Science.gov (United States)

    Pham, Nathalie; Iyer, Shoba; Hackett, Edward; Lock, Bennett H; Sandy, Martha; Zeise, Lauren; Solomon, Gina; Marty, Melanie

    2016-06-01

    US EPA's Toxicity Forecaster (ToxCastTM) is a tool with potential use in evaluating safer consumer products, conducting chemical alternatives analyses, prioritizing chemicals for exposure monitoring, and ultimately performing screening-level risk assessments. As a case study exploring a potential use of ToxCast, we evaluated ToxCast results for ortho-phthalates focused on the well-established toxicological endpoints of some members of this class. We compared molecular perturbations measured in ToxCast assays with the known apical toxicity endpoints of o-phthalates reported in the open literature to broadly reflect on the predictive capability of the high-throughput screening (HTS) assays. We grouped the ToxCast assays into defined sets to examine o-phthalate activity and potency. This study revealed several links between key molecular events assayed in vitro and chemical-specific hazard traits. In general, parent o-phthalates are more active than their monoester metabolites. The medium-chain length o-phthalate group is also more active than other o-phthalate groups, as supported by Toxicological Priority Index ranking and statistical methods. Some HTS assay results correlated with in vivo findings, but others did not. For example, there was a notable lack of assay activity to explain the known male reproductive toxicity of these compounds. Ultimately, HTS data resources such as ToxCast may inform us of sensitive upstream toxicity endpoints and may assist in the rapid identification of environmental chemical hazards for screening and prioritization. However, this case study shows that the absence of positive results in ToxCast in vitro assays cannot be interpreted as absence of related in vivo toxicity, and limited biological coverage by the assays remains a concern.

  8. Chemically active colloids near osmotic-responsive walls with surface-chemistry gradients

    CERN Document Server

    Popescu, M N; Dietrich, S

    2016-01-01

    Chemically active colloids move by creating gradients in the composition of the surrounding solution and by exploiting the differences in their interactions with the various molecular species in solution. If such particles move near boundaries, e.g., the walls of the container confining the suspension, gradients in the composition of the solution are also created along the wall. This give rise to chemi-osmosis (via the interactions of the wall with the molecular species forming the solution), which drives flows coupling back to the colloid and thus influences its motility. Employing an approximate "point-particle" analysis, we show analytically that -- owing to this kind of induced active response (chemi-osmosis) of the wall -- such chemically active colloids can align with, and follow, gradients in the surface chemistry of the wall. In this sense, these artificial "swimmers" exhibit a primitive form of thigmotaxis with the meaning of sensing the proximity of a (not necessarily discontinuous) physical change ...

  9. Chemical composition and antibacterial activity of the essential oil from Pyrrosia tonkinensis (Giesenhagen) Ching.

    Science.gov (United States)

    Xin, Xiaowei; Liu, Qingshen; Zhang, Yingying; Gao, Demin

    2016-01-01

    The present study aimed to analyse the chemical components of the essential oil from Pyrrosia tonkinensis by GC-MS and evaluate the in vitro antibacterial activity. Twenty-eight compounds, representing 88.1% of the total essential oil, were identified and the major volatile components were trans-2-hexenal (22.1%), followed by nonanal (12.8%), limonene (9.6%), phytol (8.4%), 1-hexanol (3.8%), 2-furancarboxaldehyde (3.5%) and heptanal (3.1%). The antibacterial assays showed that the essential oil of P. tonkinensis had good antibacterial activities against all the tested microorganisms. This paper first reported the chemical composition and antimicrobial activity of the essential oil from P. tonkinensis.

  10. Antibacterial activity of coffee extracts and selected coffee chemical compounds against enterobacteria.

    Science.gov (United States)

    Almeida, Ana Amélia P; Farah, Adriana; Silva, Daniela A M; Nunan, Elzíria A; Glória, M Beatriz A

    2006-11-15

    The in vitro antimicrobial activity of commercial coffee extracts and chemical compounds was investigated on nine strains of enterobacteria. The antimicrobial activity investigated by the disc diffusion method was observed in both the extracts and tested chemical compounds. Even though pH, color, and the contents of trigonelline, caffeine, and chlorogenic acids differed significantly among the coffee extracts, no significant differences were observed in their antimicrobial activity. Caffeic acid and trigonelline showed similar inhibitory effect against the growth of the microorganisms. Caffeine, chlorogenic acid, and protocatechuic acid showed particularly strong effect against Serratia marcescens and Enterobacter cloacae. The IC(50) and IC(90) for the compounds determined by the microtiter plate method indicated that trigonelline, caffeine, and protocatechuic acids are potential natural antimicrobial agents against Salmonella enterica. The concentrations of caffeine found in coffee extracts are enough to warrant 50% of the antimicrobial effect against S. enterica, which is relevant to human safety.

  11. Iodinated derivatives of vasoactive intestinal peptide (VIP), PHI and PHM: purification, chemical characterization and biological activity

    Energy Technology Data Exchange (ETDEWEB)

    McMaster, D.; Suzuki, Y.; Rorstad, O.; Lederis, K.

    1987-07-01

    The iodination of vasoactive intestinal peptide (VIP) was studied, using a variety of enzymatic and chemical iodination methods. Reversed phase high performance liquid chromatography (HPLC) was used to purify the reaction products. The lactoperoxidase-glucose oxidase method gave excellent results in terms of reproducibility, iodine incorporation, and yield of the non-oxidized products (Tyr(I)10)VIP and (Tyr(I)22)VIP, and was used to prepare both /sup 125/I and /sup 127/I labelled derivatives. In both cases, direct application to HPLC and a single column system were used. Although the oxidized peptides (Tyr(I)10,Met(O)17)VIP and (Tyr(I)22,Met(O)17)VIP could be generated to varying degrees directly by iodination of VIP, these were most conveniently prepared by iodination of (Met(O)17)VIP. Iodinated derivatives of the homologous peptides PHI and PHM were likewise prepared by rapid, one-step HPLC procedures. The site and degree of iodination were determined by HPLC peptide mapping of tryptic digests and amino acid analyses, and in the case of (Tyr(I)10)VIP also by sequencing. The vasorelaxant activities of the iodinated peptides in bovine cerebral artery preparations did not differ significantly from those of the corresponding noniodinated peptides, with the exception of (Tyr(I)10,Met(O)17)VIP and (Tyr(I)22,Met(O)17)VIP which, unlike (Met(O)17)VIP itself, had slightly lower potency than VIP.

  12. Effect of the plasma-chemical treatment of ZnO and NiO on their activity in the dehydrogenation of isopropanol

    Science.gov (United States)

    Danilova, M. N.; Pylinina, A. I.; Platonov, E. A.; Yagodovskii, V. D.

    2015-08-01

    Treating ZnO and NiO oxides with glow discharge oxygen plasma and high-frequency argon plasma is found to affect the catalytic activity of these oxides in the dehydrogenation reaction of isopropanol, leading to an increase in the conversion of alcohol and the yield of acetone. The increased activity of ZnO is due to the high number of acid sites induced by plasma-chemical treatment. With NiO, the increased activity results from the formation of new, more active sites with low experimental activation energy, rather than a change in the surface acidity.

  13. Chemical composition of the volatile oil from Zanthoxylum avicennae and antimicrobial activities and cytotoxicity

    Directory of Open Access Journals (Sweden)

    Yin Lin

    2014-01-01

    Full Text Available Background: Through literature retrieval, there has been no report on the research of the chemical components in Zanthoxylum avicennae (Lam. DC. This paper extracted and determined the chemical components of the volatile oil in Z. avicennae, and at the same time, measured and evaluated the bioactivity of the volatile oil in Z. avicennae. Materials and Methods: We extract the volatile oil in Z. avicennae by steam distillation method, determined the chemical composition of the volatile oil by GC-MS coupling technique, and adopt the peak area normalization method to measured the relative percentage of each chemical composition in the volatile oil. Meanwhile, we use the Lethal-to-prawn larva bioactivity experiment to screen the cytotoxicity activities of the volatile oil in Z. avicennae, and using the slanting test-tube experiment to determine and evaluate its antibacterial activities in vitro for the eight kinds of plant pathogenic fungi in the volatile oil of the Z. avicennae. Results: The results show that 68 kinds of compounds are determined from the volatile oil of Z. avicennae. The determined part takes up 97.89% of the total peak area. The main ingredients in the volatile oil of Z. avicennae are sesquiterpenoids and monoterpene. The test results show that the volatile oil in Z. avicennae has strong antibacterial activities and cytotoxicity, with the strongest antibacterial activity against the Rhizoctonia solani AG1-1A. Conclusion: This research results will provide reference data for understanding the chemical composition of the volatile oil in the aromatic plant of Z. avicennae and its bioactivity, and for its further development and application.

  14. Energy Efficient Catalytic Activation of Hydrogen peroxide for Green Chemical Processes: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Collins, Terrence J.; Horwitz, Colin

    2004-11-12

    A new, highly energy efficient approach for using catalytic oxidation chemistry in multiple fields of technology has been pursued. The new catalysts, called TAML® activators, catalyze the reactions of hydrogen peroxide and other oxidants for the exceptionally rapid decontamination of noninfectious simulants (B. atrophaeus) of anthrax spores, for the energy efficient decontamination of thiophosphate pesticides, for the facile, low temperature removal of color and organochlorines from pulp and paper mill effluent, for the bleaching of dyes from textile mill effluents, and for the removal of recalcitrant dibenzothiophene compounds from diesel and gasoline fuels. Highlights include the following: 1) A 7-log kill of Bacillus atrophaeus spores has been achieved unambiguously in water under ambient conditions within 15 minutes. 2) The rapid total degradation under ambient conditions of four thiophosphate pesticides and phosphonate degradation intermediates has been achieved on treatment with TAML/peroxide, opening up potential applications of the decontamination system for phosphonate structured chemical warfare agents, for inexpensive, easy to perform degradation of stored and aged pesticide stocks (especially in Africa and Asia), for remediation of polluted sites and water bodies, and for the destruction of chemical warfare agent stockpiles. 3) A mill trial conducted in a Pennsylvanian bleached kraft pulp mill has established that TAML catalyst injected into an alkaline peroxide bleach tower can significantly lower color from the effluent stream promising a new, more cost effective, energy-saving approach for color remediation adding further evidence of the value and diverse engineering capacity of the approach to other field trials conducted on effluent streams as they exit the bleach plant. 4) Dibenzothiophenes (DBTs), including 4,6-dimethyldibenzothiophene, the most recalcitrant sulfur compounds in diesel and gasoline, can be completely removed from model gasoline

  15. Influence of copper nanoparticles on the physical-chemical properties of activated sludge.

    Science.gov (United States)

    Chen, Hong; Zheng, Xiong; Chen, Yinguang; Li, Mu; Liu, Kun; Li, Xiang

    2014-01-01

    The physical-chemical properties of activated sludge, such as flocculating ability, hydrophobicity, surface charge, settleability, dewaterability and bacteria extracellular polymer substances (EPS), play vital roles in the normal operation of wastewater treatment plants (WWTPs). The nanoparticles released from commercial products will enter WWTPs and can induce potential adverse effects on activated sludge. This paper focused on the effects of copper nanoparticles (CuNPs) on these specific physical-chemical properties of activated sludge. It was found that most of these properties were unaffected by the exposure to lower CuNPs concentration (5 ppm), but different observation were made at higher CuNPs concentrations (30 and 50 ppm). At the higher CuNPs concentrations, the sludge surface charge increased and the hydrophobicity decreased, which were attributed to more Cu2+ ions released from the CuNPs. The carbohydrate content of EPS was enhanced to defense the toxicity of CuNPs. The flocculating ability was found to be deteriorated due to the increased cell surface charge, the decreased hydrophobicity, and the damaged cell membrane. The worsened flocculating ability made the sludge flocs more dispersed, which further increased the toxicity of the CuNPs by increasing the availability of the CuNPs to the bacteria present in the sludge. Further investigation indicated that the phosphorus removal efficiency decreased at higher CuNPs concentrations, which was consistent with the deteriorated physical-chemical properties of activated sludge. It seems that the physical-chemical properties can be used as an indicator for determining CuNPs toxicity to the bacteria in activated sludge. This work is important because bacteria toxicity effects to the activated sludge caused by nanoparticles may lead to the deteriorated treatment efficiency of wastewater treatment, and it is therefore necessary to find an easy way to indicate this toxicity.

  16. A High Power Solar Electric Propulsion - Chemical Mission for Human Exploration of Mars

    Science.gov (United States)

    Burke, Laura M.; Martini, Michael C.; Oleson, Steven R.

    2014-01-01

    Recently Solar Electric Propulsion (SEP) as a main propulsion system has been investigated as an option to support manned space missions to near-Earth destinations for the NASA Gateway spacecraft. High efficiency SEP systems are able to reduce the amount of propellant long duration chemical missions require, ultimately reducing the required mass delivered to Low Earth Orbit (LEO) by a launch vehicle. However, for long duration interplanetary Mars missions, using SEP as the sole propulsion source alone may not be feasible due to the long trip times to reach and insert into the destination orbit. By combining an SEP propulsion system with a chemical propulsion system the mission is able to utilize the high-efficiency SEP for sustained vehicle acceleration and deceleration in heliocentric space and the chemical system for orbit insertion maneuvers and trans-earth injection, eliminating the need for long duration spirals. By capturing chemically instead of with low-thrust SEP, Mars stay time increases by nearly 200 days. Additionally, the size the of chemical propulsion system can be significantly reduced from that of a standard Mars mission because the SEP system greatly decreases the Mars arrival and departure hyperbolic excess velocities (V(sub infinity)).

  17. Can nanofluidic chemical release enable fast, high resolution neurotransmitter-based neurostimulation?

    Directory of Open Access Journals (Sweden)

    Peter D Jones

    2016-03-01

    Full Text Available Artificial chemical stimulation could provide improvements over electrical neurostimulation. Physiological neurotransmission between neurons relies on the nanoscale release and propagation of specific chemical signals to spatially-localized receptors. Current knowledge of nanoscale fluid dynamics and nanofluidic technology allows us to envision artificial mechanisms to achieve fast, high resolution neurotransmitter release. Substantial technological development is required to reach this goal. Nanofluidic technology — rather than microfluidic — will be necessary; this should come as no surprise given the nanofluidic nature of neurotransmission.This perspective reviews the state of the art of high resolution electrical neuroprostheses and their anticipated limitations. Chemical release rates from nanopores are compared to rates achieved at synapses and with iontophoresis. A review of microfluidic technology justifies the analysis that microfluidic control of chemical release would be insufficient. Novel nanofluidic mechanisms are discussed, and we propose that hydrophobic gating may allow control of chemical release suitable for mimicking neurotransmission. The limited understanding of hydrophobic gating in artificial nanopores and the challenges of fabrication and large-scale integration of nanofluidic components are emphasized. Development of suitable nanofluidic technology will require dedicated, long-term efforts over many years.

  18. A ternary classification using machine learning methods of distinct estrogen receptor activities within a large collection of environmental chemicals.

    Science.gov (United States)

    Zhang, Quan; Yan, Lu; Wu, Yan; Ji, Li; Chen, Yuanchen; Zhao, Meirong; Dong, Xiaowu

    2017-02-15

    Endocrine-disrupting chemicals (EDCs), which can threaten ecological safety and be harmful to human beings, have been cause for wide concern. There is a high demand for efficient methodologies for evaluating potential EDCs in the environment. Herein an evaluation platform was developed using novel and statistically robust ternary models via different machine learning models (i.e., linear discriminant analysis, classification and regression tree, and support vector machines). The platform is aimed at effectively classifying chemicals with agonistic, antagonistic, or no estrogen receptor (ER) activities. A total of 440 chemicals from the literature were selected to derive and optimize the three-class model. One hundred and nine new chemicals appeared on the 2014 EPA list for EDC screening, which were used to assess the predictive performances by comparing the E-screen results with the predicted results of the classification models. The best model was obtained using support vector machines (SVM) which recognized agonists and antagonists with accuracies of 76.6% and 75.0%, respectively, on the test set (with an overall predictive accuracy of 75.2%), and achieved a 10-fold cross-validation (CV) of 73.4%. The external predicted accuracy validated by the E-screen assay was 87.5%, which demonstrated the application value for a virtual alert for EDCs with ER agonistic or antagonistic activities. It was demonstrated that the ternary computational model could be used as a faster and less expensive method to identify EDCs that act through nuclear receptors, and to classify these chemicals into different mechanism groups.

  19. High-Performance Liquid Chromatography in the Undergraduate Chemical Engineering Laboratory

    Science.gov (United States)

    Frey, Douglas D.; Guo, Hui; Karnik, Nikhila

    2013-01-01

    This article describes the assembly of a simple, low-cost, high-performance liquid chromatography (HPLC) system and its use in the undergraduate chemical engineering laboratory course to perform simple experiments. By interpreting the results from these experiments students are able to gain significant experience in the general method of…

  20. Silicon nitride at high growth rate using hot wire chemical vapor deposition

    NARCIS (Netherlands)

    Verlaan, V.

    2008-01-01

    Amorphous silicon nitride (SiNx) is a widely studied alloy with many commercial applications. This thesis describes the application of SiNx deposited at high deposition rate using hot wire chemical vapor deposition (HWCVD) for solar cells and thin film transistors (TFTs). The deposition process of H

  1. Highly sensitive surface plasmon resonance chemical sensor based on Goos-Hanchen effects

    Science.gov (United States)

    Yin, Xiaobo; Hesselink, Lambertus

    2006-08-01

    The resonance enhanced Goos-Hanchen shifts at attenuated total internal reflection enables the possibility for highly sensitive surface plasmon resonance sensor. The observed giant displacements result from the singular phase retardation at the resonance where the phase is continuous but changes dramatically. The phenomenon is proposed for chemical sensing and the superior sensitivity is demonstrated.

  2. High-Throughput Dietary Exposure Predictions for Chemical Migrants from Food Packaging Materials

    Science.gov (United States)

    United States Environmental Protection Agency researchers have developed a Stochastic Human Exposure and Dose Simulation High -Throughput (SHEDS-HT) model for use in prioritization of chemicals under the ExpoCast program. In this research, new methods were implemented in SHEDS-HT...

  3. Modeling and Experimental Studies on Phase and Chemical Equilibria in High-Pressure Methanol Synthesis

    NARCIS (Netherlands)

    van Bennekom, Joost G.; Winkelman, Jozef G. M.; Venderbosch, Robertus H.; Nieland, Sebastiaan D. G. B.; Heeres, Hero J.

    2012-01-01

    A solution method was developed to calculate the simultaneous phase and chemical equilibria in high-pressure methanol synthesis (P = 20 MPa, 463

  4. Do High School Chemistry Examinations Inhibit Deeper Level Understanding of Dynamic Reversible Chemical Reactions?

    Science.gov (United States)

    Wheeldon, R.; Atkinson, R.; Dawes, A.; Levinson, R.

    2012-01-01

    Background and purpose: Chemistry examinations can favour the deployment of algorithmic procedures like Le Chatelier's Principle (LCP) rather than reasoning using chemical principles. This study investigated the explanatory resources which high school students use to answer equilibrium problems and whether the marks given for examination answers…

  5. Silicon nitride at high growth rate using hot wire chemical vapor deposition

    NARCIS (Netherlands)

    Verlaan, V.

    2008-01-01

    Amorphous silicon nitride (SiNx) is a widely studied alloy with many commercial applications. This thesis describes the application of SiNx deposited at high deposition rate using hot wire chemical vapor deposition (HWCVD) for solar cells and thin film transistors (TFTs). The deposition process of H

  6. High-Performance Liquid Chromatography in the Undergraduate Chemical Engineering Laboratory

    Science.gov (United States)

    Frey, Douglas D.; Guo, Hui; Karnik, Nikhila

    2013-01-01

    This article describes the assembly of a simple, low-cost, high-performance liquid chromatography (HPLC) system and its use in the undergraduate chemical engineering laboratory course to perform simple experiments. By interpreting the results from these experiments students are able to gain significant experience in the general method of…

  7. PLASMA PROTEIN PROFILING AS A HIGH THROUGHPUT TOOL FOR CHEMICAL SCREENING USING A SMALL FISH MODEL

    Science.gov (United States)

    Hudson, R. Tod, Michael J. Hemmer, Kimberly A. Salinas, Sherry S. Wilkinson, James Watts, James T. Winstead, Peggy S. Harris, Amy Kirkpatrick and Calvin C. Walker. In press. Plasma Protein Profiling as a High Throughput Tool for Chemical Screening Using a Small Fish Model (Abstra...

  8. Thermally activated reaction–diffusion-controlled chemical bulk reactions of gases and solids

    Directory of Open Access Journals (Sweden)

    S. Möller

    2015-01-01

    Full Text Available The chemical kinetics of the reaction of thin films with reactive gases is investigated. The removal of thin films using thermally activated solid–gas to gas reactions is a method to in-situ control deposition inventory in vacuum and plasma vessels. Significant scatter of experimental deposit removal rates at apparently similar conditions was observed in the past, highlighting the need for understanding the underlying processes. A model based on the presence of reactive gas in the films bulk and chemical kinetics is presented. The model describes the diffusion of reactive gas into the film and its chemical interaction with film constituents in the bulk using a stationary reaction–diffusion equation. This yields the reactive gas concentration and reaction rates. Diffusion and reaction rate limitations are depicted in parameter studies. Comparison with literature data on tokamak co-deposit removal results in good agreement of removal rates as a function of pressure, film thickness and temperature.

  9. Chemical composition measurements of the low activity waste (LAW) EPA-Series glasses

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Edwards, T. B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-03-01

    In this report, the Savannah River National Laboratory provides chemical analysis results for a series of simulated low activity waste glasses provided by Pacific Northwest National Laboratory as part of an ongoing development task. The measured chemical composition data are reported and compared with the targeted values for each component for each glass. A detailed review showed no indications of errors in the preparation or measurement of the study glasses. All of the measured sums of oxides for the study glasses fell within the interval of 100.2 to 100.8 wt %, indicating recovery of all components. Comparisons of the targeted and measured chemical compositions showed that the measured values for the glasses met the targeted concentrations within 10% for those components present at more than 5 wt %.

  10. Effect of mechanical activation on structure changes and reactivity in further chemical modification of lignin.

    Science.gov (United States)

    Zhao, Xiaohong; Zhang, Yanjuan; Hu, Huayu; Huang, Zuqiang; Yang, Mei; Chen, Dong; Huang, Kai; Huang, Aimin; Qin, Xingzhen; Feng, Zhenfei

    2016-10-01

    Lignin was treated by mechanical activation (MA) in a customized stirring ball mill, and the structure and reactivity in further esterification were studied. The chemical structure and morphology of MA-treated lignin and the esterified products were analyzed by chemical analysis combined with UV/vis spectrometer, FTIR,NMR, SEM and particle size analyzer. The results showed that MA contributed to the increase of aliphatic hydroxyl, phenolic hydroxyl, carbonyl and carboxyl groups but the decrease of methoxyl groups. Moreover, MA led to the decrease of particle size and the increase of specific surface area and roughness of surface in lignin. The reactivity of lignin was enhanced significantly for the increase of hydroxyl content and the improvement of mass transfer in chemical reaction caused by the changes of molecular structure and morphological structure. The process of MA is green and simple, and is an effective method for enhancing the reactivity of lignin. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. TEXTURAL AND CHEMICAL CHARACTERISATION OF ACTIVATED CARBONS PREPARED FROM RICE HUSK (ORYZA SATIVA USING A TWO- STAGE ACTIVATION PROCESS

    Directory of Open Access Journals (Sweden)

    JOSEPH G. COLLIN

    2008-12-01

    Full Text Available Activated carbons from agro-industrial wastes; rice husk; were prepared by physical and chemical activation using phosphoric acid as the dehydrating agent. A two-stage activation process method was used; with semi-carbonisation stage at 200oC for 15 minutes as the first stage followed by an activation stage at 500oC for 45 minutes as the second stage. The precursor material with the impregnation agent was exposed straightaway to semi-carbonization and activation temperature unlike the specific temperature progression as reported in the literature. All experiments were conducted in a laboratory scale muffle furnace under static conditions in a self generated atmosphere covering process parameters such as impregnation ratios. We found that by using this method, the AC5 had the highest iodine number and methylene blue adsorption capacity which was 506.6 mg/g and 319.0 mg/g respectively.

  12. Annual report, spring 2015. Alternative chemical cleaning methods for high level waste tanks-corrosion test results

    Energy Technology Data Exchange (ETDEWEB)

    Wyrwas, R. B. [Savannah River Site (SRS), Aiken, SC (United States)

    2015-07-06

    The testing presented in this report is in support of the investigation of the Alternative Chemical Cleaning program to aid in developing strategies and technologies to chemically clean radioactive High Level Waste tanks prior to tank closure. The data and conclusions presented here were the examination of the corrosion rates of A285 carbon steel and 304L stainless steel when interacted with the chemical cleaning solution composed of 0.18 M nitric acid and 0.5 wt. % oxalic acid. This solution has been proposed as a dissolution solution that would be used to remove the remaining hard heel portion of the sludge in the waste tanks. This solution was combined with the HM and PUREX simulated sludge with dilution ratios that represent the bulk oxalic cleaning process (20:1 ratio, acid solution to simulant) and the cumulative volume associated with multiple acid strikes (50:1 ratio). The testing was conducted over 28 days at 50°C and deployed two methods to invest the corrosion conditions; passive weight loss coupon and an active electrochemical probe were used to collect data on the corrosion rate and material performance. In addition to investigating the chemical cleaning solutions, electrochemical corrosion testing was performed on acidic and basic solutions containing sodium permanganate at room temperature to explore the corrosion impacts if these solutions were to be implemented to retrieve remaining actinides that are currently in the sludge of the tank.

  13. Electric Current Activated Combustion Synthesis and Chemical Ovens Under Terrestrial and Reduced Gravity Conditions

    Science.gov (United States)

    Unuvar, C.; Fredrick, D.; Anselmi-Tamburini, U.; Manerbino, A.; Guigne, J. Y.; Munir, Z. A.; Shaw, B. D.

    2004-01-01

    Combustion synthesis (CS) generally involves mixing reactants together (e.g., metal powders) and igniting the mixture. Typically, a reaction wave will pass through the sample. In field activated combustion synthesis (FACS), the addition of an electric field has a marked effect on the dynamics of wave propagation and on the nature, composition, and homogeneity of the product as well as capillary flow, mass-transport in porous media, and Marangoni flows, which are influenced by gravity. The objective is to understand the role of an electric field in CS reactions under conditions where gravity-related effects are suppressed or altered. The systems being studied are Ti+Al and Ti+3Al. Two different ignition orientations have been used to observe effects of gravity when one of the reactants becomes molten. This consequentially influences the position and concentration of the electric current, which in turn influences the entire process. Experiments have also been performed in microgravity conditions. This process has been named Microgravity Field Activated Combustion Synthesis (MFACS). Effects of gravity have been demonstrated, where the reaction wave temperature and velocity demonstrate considerable differences besides the changes of combustion mechanisms with the different high currents applied. Also the threshold for the formation of a stable reaction wave is increased under zero gravity conditions. Electric current was also utilized with a chemical oven technique, where inserts of aluminum with minute amounts of tungsten and tantalum were used to allow observation of effects of settling of the higher density solid particles in liquid aluminum at the present temperature profile and wave velocity of the reaction.

  14. Tailoring activated carbon by surface chemical modification with O, S, and N containing molecules

    Directory of Open Access Journals (Sweden)

    Rachel RibeiroVieira Azzi Rios

    2003-06-01

    Full Text Available In this work the surface of activated carbon was chemically modified in order to introduce O, S and N containing groups. The activated carbon surface was selectively oxidized with concentrated HNO3 under controlled conditions. Characterization by thermogravimetric analyses, infrared spectroscopy and NaOH titration suggested the formation of mainly -COOH and small amounts of -OH groups, with concentration of approximately 4.10(21 groups/g of carbon. These -COOH functionalized carbons showed high adsorption capacity for metal cations in aqueous solution in the following order: Pb+2>Cu+2>Ni+2 >Cd+2~Co+2>Ca+2 , suggesting a cation exchange mechanism via a surface complex [COO-M+2]. These -COOHsurf groups can be reacted with SOCl2 to produce a surface acylchloride group, -COCl. This surface -COCl group proved to be a very reactive and versatile intermediate for the grafting of different S and N containing molecules onto the carbon surface, such as 1,2-ethaneditiol (EDT-, HSCH2CH2SH 1,7-dimercapto-4-thioheptane (DMTH-HSCH2CH2CH2SCH2CH 2CH2SH or 1,2-ethylenediamine (EDA- NH2CH2CH2NH2 and triethyltetraamine, TEA (H2NCH2CH2NHCH2CH 2NHCH2CH2 NH2. The characterization of these materials was carried out by TG, IR and TPDMS (Temperature Programmed Decomposition Mass Spectrometry experiments suggesting the formation of thioesther and amide surface groups, i.e. -COSR and -CONHR, with yields of approximately 50 and 75% for the reaction with DME and EDA, respectively. Preliminary adsorption experiments showed that these materials can efficiently remove metals such as Pb+2, Cu+2 and Ni+2 from aqueous medium.

  15. Concrete with Highly Active Rice Husk Ash

    Institute of Scientific and Technical Information of China (English)

    FENG Qing-ge; LIN Qing-yu; YU Qi-jun; ZHAO San-ying; YANG Lu-feng; Shuichi Sugita

    2004-01-01

    The overall aim was to investigate the effect of highly active rice husk ash (RHA) produced by an industrial furnace on some properties of concrete. The strength, pore volume and pore distribution of concrete and the Ca(OH)2 content in concrete were investigated by JIS A 1108 (Method of test for compressive strength of concrete), a mercury instrument porosimeter, and the thermogravimetric analysis, respectively. The results show that,with RHA replacement of cement,the compressive strength of concrete is increased evidently;the average pore radius of concrete is greatly decreased, especially the portion of the pores greater than 20nm in radius is decreased while the amount of smaller pores is increased, and the more the RHA replacement, the less the amount of Ca(OH)2 in concrete. The latter two results are the main reasons for the strength enhancement of concrete.

  16. A thermodynamic framework for thermo-chemo-elastic interactions in chemically active materials

    Science.gov (United States)

    Zhang, XiaoLong; Zhong, Zheng

    2017-08-01

    In this paper, a general thermodynamic framework is developed to describe the thermo-chemo-mechanical interactions in elastic solids undergoing mechanical deformation, imbibition of diffusive chemical species, chemical reactions and heat exchanges. Fully coupled constitutive relations and evolving laws for irreversible fluxes are provided based on entropy imbalance and stoichiometry that governs reactions. The framework manifests itself with a special feature that the change of Helmholtz free energy is attributed to separate contributions of the diffusion-swelling process and chemical reaction-dilation process. Both the extent of reaction and the concentrations of diffusive species are taken as independent state variables, which describe the reaction-activated responses with underlying variation of microstructures and properties of a material in an explicit way. A specialized isothermal formulation for isotropic materials is proposed that can properly account for volumetric constraints from material incompressibility under chemo-mechanical loadings, in which inhomogeneous deformation is associated with reaction and diffusion under various kinetic time scales. This framework can be easily applied to model the transient volumetric swelling of a solid caused by imbibition of external chemical species and simultaneous chemical dilation arising from reactions between the diffusing species and the solid.

  17. Chemical constituents and anti-tuberculosis activity of ink extracts of cuttlefish, Sepiella inermis

    Institute of Scientific and Technical Information of China (English)

    Muthusamy Ravichandiran; Selvam Thiripurasalini; Vaithilingam Ravitchandirane; Srinivasa Gopalane; Chelladurai Stella

    2013-01-01

    Objective: To study the chemical constituents and the anti-tuberculosis activity of methanol and chloroform ink extracts of Sepiella inermis.Methods:Chemical analysis was carried out by UV-VIS spectrophotometer, FT-IR and GC-MS. Crude extracts Pulverized ink powder was extracted separately with chloroform and methanol. were tested in vitro for their activity against Mycobacterium tuberculosis using Lowenstein Jensen (L-J) medium. Activity in L-J medium was assessed by mean reduction in number of colonies on extract containing bottles as compared to extract free controls.Results:octadecadienoic acid, 9-octadecenoic acid and octadecanoic acid. The chloroform extract GC-MS of methanol extract revealed four compounds viz. hexadecanoic acid, 9, 12-containing fourteen compounds. The methanol extract exhibited anti-tuberculosis activity in L-J medium at 64 µg/mL with the observed inhibition of 14 CFU. Chloroform extract displayed a weak activity against Mycobacterium tuberculosis.Conclusions:Mycobacterium tuberculosis than chloroform extract. Since ink of sepia is available abundantly as This investigation showed the methanol extract exhibited significant activity against a waste material, further studies aimed at isolation and efficacy of active substances pave the way for new anti-tuberculosis drugs.

  18. Chemical constituents and anti-tuberculosis activity of ink extracts of cuttlefish, Sepiella inermis

    Directory of Open Access Journals (Sweden)

    Muthusamy Ravichandiran

    2013-11-01

    Full Text Available Objective: To study the chemical constituents and the anti-tuberculosis activity of methanol and chloroform ink extracts of Sepiella inermis. Methods: Pulverized ink powder was extracted separately with chloroform and methanol. Chemical analysis was carried out by UV-VIS spectrophotometer, FT-IR and GC-MS. Crude extracts were tested in vitro for their activity against Mycobacterium tuberculosis using Lowenstein Jensen (L-J medium. Activity in L-J medium was assessed by mean reduction in number of colonies on extract containing bottles as compared to extract free controls. Results: GC-MS of methanol extract revealed four compounds viz. hexadecanoic acid, 9, 12- octadecadienoic acid, 9-octadecenoic acid and octadecanoic acid. The chloroform extract containing fourteen compounds. The methanol extract exhibited anti-tuberculosis activity in L-J medium at 64 µg/mL with the observed inhibition of 14 CFU. Chloroform extract displayed a weak activity against Mycobacterium tuberculosis. Conclusions: This investigation showed the methanol extract exhibited significant activity against Mycobacterium tuberculosis than chloroform extract. Since ink of sepia is available abundantly as a waste material, further studies aimed at isolation and efficacy of active substances pave the way for new anti-tuberculosis drugs.

  19. Chemical stability and electrical performance of dual-active-layered zinc-tin-oxide/indium-gallium-zinc-oxide thin-film transistors using a solution process.

    Science.gov (United States)

    Kim, Chul Ho; Rim, You Seung; Kim, Hyun Jae

    2013-07-10

    We investigated the chemical stability and electrical properties of dual-active-layered zinc-tin-oxide (ZTO)/indium-gallium-zinc-oxide (IGZO) structures (DALZI) with the durability of the chemical damage. The IGZO film was easily corroded or removed by an etchant, but the DALZI film was effectively protected by the high chemical stability of ZTO. Furthermore, the electrical performance of the DALZI thin-film transistor (TFT) was improved by densification compared to the IGZO TFT owing to the passivation of the pin holes or pore sites and the increase in the carrier concentration due to the effect of Sn(4+) doping.

  20. Chemical composition and lipoxygenase activity in soybeans (Glycine max L. Merr.) submitted to gamma irradiation

    Science.gov (United States)

    Barros, Érica Amanda de; Broetto, Fernando; Bressan, Dayanne F.; Sartori, Maria M. P.; Costa, Vladimir E.

    2014-05-01

    Soybeans are an important food due to their functional and nutritional characteristics. However, consumption by western populations is limited by the astringent taste of soybeans and their derivatives which results from the action of lipoxygenase, an enzyme activated during product processing. The aim of this study was to evaluate the effect of gamma irradiation on the chemical composition and specific activity of lipoxygenase in different soybean cultivars. Soybeans were stored in plastic bags and irradiated with doses of 2.5, 5 and 10 kGy. The chemical composition (moisture, protein, lipids, ashes, crude fiber, and carbohydrates) and lipoxygenase specific activity were determined for each sample. Gamma irradiation induced a small increase of protein and lipid content in some soybean cultivars, which did not exceed the highest content of 5% and 26%, respectively, when compared to control. Lipoxygenase specific activity decreased in the three cultivars with increasing gamma irradiation dose. In conclusion, the gamma irradiation doses used are suitable to inactivate part of lipoxygenase while not causing expressive changes in the chemical composition of the cultivars studied.

  1. Chemical constituents, physicochemical properties and antibacterial activity of leaves essential oil of Ocimum urticifolium

    Directory of Open Access Journals (Sweden)

    Ketema Alemayehu

    2016-11-01

    Full Text Available Objective: To determine chemical compositions, physicochemical properties and evaluating antibacterial activities of essential oils extracted from leaves of Ocimum urticifolium (O. urticifolium. Methods: Essential oil of O. urticifolium was extracted by hydrodistillation technique. A number of phytochemical screening tests were applied to identify the classes of compounds in the leaves extract of O. urticifolium. Gas chromatography and gas chromatography/mass spectrometry were used to characterize the chemical components in the essential oil. The agar diffusion method was used to evaluate the antibacterial activity as per of standard procedure. Results: Phytochemical screening of crude extract revealed that the presence of tannins, glycosides, saponins, flavonoids, steroids, terpenoids and phenols. The obtained oil yield is (0.33 ± 0.11 % (v/w. Analysis of oil using gas chromatography and gas chromatography/ mass spectrometry showed a total of 22 components, the abundance of monoterpene and sesquiterpenes (98.99%. The percentage composition of monoterpene in the oil was α-pinene (22.105%, eugenol (21.099%, while sesquiterpenes α-cubebene (11.341%, α-bisabolene (9.945%, α-caryophyllene (7.709%, α-caryophyllene oxide (5.754%, and copaene (3.594%. The oil inhibited the growth of Staphylococcus aureus and Escherichia coli, while no activity was shown to Salmonella typhi. Conclusions: The O. urticifolium is a rich source of various classes of chemical constituents and the antibacterial activity of the oil could be attributed mainly to these compounds.

  2. Chemical Structure-Biological Activity Models for Pharmacophores’ 3D-Interactions

    Directory of Open Access Journals (Sweden)

    Mihai V. Putz

    2016-07-01

    Full Text Available Within medicinal chemistry nowadays, the so-called pharmaco-dynamics seeks for qualitative (for understanding and quantitative (for predicting mechanisms/models by which given chemical structure or series of congeners actively act on biological sites either by focused interaction/therapy or by diffuse/hazardous influence. To this aim, the present review exposes three of the fertile directions in approaching the biological activity by chemical structural causes: the special computing trace of the algebraic structure-activity relationship (SPECTRAL-SAR offering the full analytical counterpart for multi-variate computational regression, the minimal topological difference (MTD as the revived precursor for comparative molecular field analyses (CoMFA and comparative molecular similarity indices analysis (CoMSIA; all of these methods and algorithms were presented, discussed and exemplified on relevant chemical medicinal systems as proton pump inhibitors belonging to the 4-indolyl,2-guanidinothiazole class of derivatives blocking the acid secretion from parietal cells in the stomach, the 1-[(2-hydroxyethoxy-methyl]-6-(phenylthiothymine congeners’ (HEPT ligands antiviral activity against Human Immunodeficiency Virus of first type (HIV-1 and new pharmacophores in treating severe genetic disorders (like depression and psychosis, respectively, all involving 3D pharmacophore interactions.

  3. Chemical Structure-Biological Activity Models for Pharmacophores’ 3D-Interactions

    Science.gov (United States)

    Putz, Mihai V.; Duda-Seiman, Corina; Duda-Seiman, Daniel; Putz, Ana-Maria; Alexandrescu, Iulia; Mernea, Maria; Avram, Speranta

    2016-01-01

    Within medicinal chemistry nowadays, the so-called pharmaco-dynamics seeks for qualitative (for understanding) and quantitative (for predicting) mechanisms/models by which given chemical structure or series of congeners actively act on biological sites either by focused interaction/therapy or by diffuse/hazardous influence. To this aim, the present review exposes three of the fertile directions in approaching the biological activity by chemical structural causes: the special computing trace of the algebraic structure-activity relationship (SPECTRAL-SAR) offering the full analytical counterpart for multi-variate computational regression, the minimal topological difference (MTD) as the revived precursor for comparative molecular field analyses (CoMFA) and comparative molecular similarity indices analysis (CoMSIA); all of these methods and algorithms were presented, discussed and exemplified on relevant chemical medicinal systems as proton pump inhibitors belonging to the 4-indolyl,2-guanidinothiazole class of derivatives blocking the acid secretion from parietal cells in the stomach, the 1-[(2-hydroxyethoxy)-methyl]-6-(phenylthio)thymine congeners’ (HEPT ligands) antiviral activity against Human Immunodeficiency Virus of first type (HIV-1) and new pharmacophores in treating severe genetic disorders (like depression and psychosis), respectively, all involving 3D pharmacophore interactions. PMID:27399692

  4. High index of refraction films for dielectric mirrors prepared by metal-organic chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Brusasco, R.M.

    1989-01-01

    A wide variety of metal oxides with high index of refraction can be prepared by Metal-Organic Chemical Vapor Deposition. We present some recent optical and laser damage results on oxide films prepared by MOCVD which could be used in a multilayer structure for highly reflecting (HR) dielectric mirror applications. The method of preparation affects both optical properties and laser damage threshold. 10 refs., 8 figs., 4 tabs.

  5. Differential effects of defined chemical modifications on antigenic and pharmacological activities of scorpion alpha and beta toxins.

    Science.gov (United States)

    el Ayeb, M; Darbon, H; Bahraoui, E M; Vargas, O; Rochat, H

    1986-03-03

    Specific chemical modifications of scorpion alpha and beta toxins have been used to study the involvement of particular residues in both the pharmacological and the antigenic sites of these toxins. Modification by 1,2-cyclohexanedione of arginine-27 of a beta toxin, Centruroides suffusus suffusus toxin II, drastically decrease the antigenic activity without any influence on the pharmacological activity. Conversely, modification by the same reagent of arginine-2 of an alpha toxin, Androctonus australis Hector toxin III, led to a 100-times less pharmacologically potent derivative and did not induce a significant loss of antigenic activity. Excision of the N-terminal pentapeptide of another alpha toxin, Buthus occitanus mardochei toxin III, by pepsin digestion led to a non-toxic derivative retaining full antigenic activity. Thus, the N-terminal part of the conserved hydrophobic surface of the toxin is highly implicated in the pharmacological activity, whereas the region of arginine-27, located in the alpha helix situated on the back surface, opposite the conserved hydrophobic region, is fully implicated in the antigenic activity and is far from the pharmacological site. These results are good arguments in favor of the idea that in scorpion toxins the surfaces implicated in the pharmacological and the antigenic activities do not overlap. Since the antigenic sites are present in highly variable sequence the development of an efficient polyvalent serotherapy is questionable.

  6. High-resolution chemical imaging of gold nanoparticles using hard x-ray ptychography

    DEFF Research Database (Denmark)

    Hoppe, R.; Reinhardt, J.; Hofmann, G.

    2013-01-01

    We combine resonant scattering with (ptychographic) scanning coherent diffraction microscopy to determine the chemical state of gold nanoparticles with high spatial resolution. Ptychographic images of the sample are recorded for a series of energies around the gold L3 absorption edge. From...... these data, chemical information in the form of absorption and resonant scattering spectra is reconstructed at each location in the sample. For gold nanoparticles of about 100 nm diameter, a spatial resolution of about 20-30 nm is obtained. In the future, this microscopy approach will open the way...

  7. Development and Testing of a High Capacity Plasma Chemical Reactor in the Ukraine

    Energy Technology Data Exchange (ETDEWEB)

    Reilly, Raymond W.

    2012-07-30

    This project, Development and Testing of a High Capacity Plasma Chemical Reactor in the Ukraine was established at the Kharkiv Institute of Physics and Technology (KIPT). The associated CRADA was established with Campbell Applied Physics (CAP) located in El Dorado Hills, California. This project extends an earlier project involving both CAP and KIPT conducted under a separate CRADA. The initial project developed the basic Plasma Chemical Reactor (PCR) for generation of ozone gas. This project built upon the technology developed in the first project, greatly enhancing the output of the PCR while also improving reliability and system control.

  8. Rate constants for chemical reactions in high-temperature nonequilibrium air

    Science.gov (United States)

    Jaffe, R. L.

    1986-01-01

    In the nonequilibrium atmospheric chemistry regime that will be encountered by the proposed Aeroassisted Orbital Transfer Vehicle in the upper atmosphere, where air density is too low for thermal and chemical equilibrium to be maintained, the detailed high temperature air chemistry plays a critical role in defining radiative and convective heating loads. Although vibrational and electronic temperatures remain low (less than 15,000 K), rotational and translational temperatures may reach 50,000 K. Attention is presently given to the effects of multiple temperatures on the magnitudes of various chemical reaction rate constants, for the cases of both bimolecular exchange reactions and collisional excitation and dissociation reactions.

  9. Metabolomic Assessment of Induced and Activated Chemical Defence in the Invasive Red Alga Gracilaria vermiculophylla

    Science.gov (United States)

    Nylund, Göran M.; Weinberger, Florian; Rempt, Martin; Pohnert, Georg

    2011-01-01

    In comparison with terrestrial plants the mechanistic knowledge of chemical defences is poor for marine macroalgae. This restricts our understanding in the chemically mediated interactions that take place between algae and other organisms. Technical advances such as metabolomics, however, enable new approaches towards the characterisation of the chemically mediated interactions of organisms with their environment. We address defence responses in the red alga Gracilaria vermiculophylla using mass spectrometry based metabolomics in combination with bioassays. Being invasive in the north Atlantic this alga is likely to possess chemical defences according to the prediction that well-defended exotics are most likely to become successful invaders in systems dominated by generalist grazers, such as marine macroalgal communities. We investigated the effect of intense herbivore feeding and simulated herbivory by mechanical wounding of the algae. Both processes led to similar changes in the metabolic profile. Feeding experiments with the generalist isopod grazer Idotea baltica showed that mechanical wounding caused a significant increase in grazer resistance. Structure elucidation of the metabolites of which some were up-regulated more than 100 times in the wounded tissue, revealed known and novel eicosanoids as major components. Among these were prostaglandins, hydroxylated fatty acids and arachidonic acid derived conjugated lactones. Bioassays with pure metabolites showed that these eicosanoids are part of the innate defence system of macroalgae, similarly to animal systems. In accordance with an induced defence mechanism application of extracts from wounded tissue caused a significant increase in grazer resistance and the up-regulation of other pathways than in the activated defence. Thus, this study suggests that G. vermiculophylla chemically deters herbivory by two lines of defence, a rapid wound-activated process followed by a slower inducible defence. By unravelling

  10. Metabolomic assessment of induced and activated chemical defence in the invasive red alga Gracilaria vermiculophylla.

    Directory of Open Access Journals (Sweden)

    Göran M Nylund

    Full Text Available In comparison with terrestrial plants the mechanistic knowledge of chemical defences is poor for marine macroalgae. This restricts our understanding in the chemically mediated interactions that take place between algae and other organisms. Technical advances such as metabolomics, however, enable new approaches towards the characterisation of the chemically mediated interactions of organisms with their environment. We address defence responses in the red alga Gracilaria vermiculophylla using mass spectrometry based metabolomics in combination with bioassays. Being invasive in the north Atlantic this alga is likely to possess chemical defences according to the prediction that well-defended exotics are most likely to become successful invaders in systems dominated by generalist grazers, such as marine macroalgal communities. We investigated the effect of intense herbivore feeding and simulated herbivory by mechanical wounding of the algae. Both processes led to similar changes in the metabolic profile. Feeding experiments with the generalist isopod grazer Idotea baltica showed that mechanical wounding caused a significant increase in grazer resistance. Structure elucidation of the metabolites of which some were up-regulated more than 100 times in the wounded tissue, revealed known and novel eicosanoids as major components. Among these were prostaglandins, hydroxylated fatty acids and arachidonic acid derived conjugated lactones. Bioassays with pure metabolites showed that these eicosanoids are part of the innate defence system of macroalgae, similarly to animal systems. In accordance with an induced defence mechanism application of extracts from wounded tissue caused a significant increase in grazer resistance and the up-regulation of other pathways than in the activated defence. Thus, this study suggests that G. vermiculophylla chemically deters herbivory by two lines of defence, a rapid wound-activated process followed by a slower inducible

  11. Methodologies for chemical utilization of C02 to valuable compounds through molecular activation by efficient catalysts

    Institute of Scientific and Technical Information of China (English)

    Liangnian HE; Ya DU; Chengxia MIAO; Jinquan WANG; Xiaoyong DOU; Ying WU

    2009-01-01

    The reactions of CO2 with oxirane to produce cyclic carbonate, and with aziridine to afford oxazolidine have been of interest as a useful method for its fixation by a chemical process. Highly efficient processes employing recyclable CO2-phlilic homogeneous catalyst were devised for environmentally benign synthesis of cyclic carbonates and oxazolidinones under supercritical CO2 without any organic solvent. These processes represent pathways for greener chemical fixations of CO2 to afford industrial useful materials such as organic carbonates and oxazolidinones with great potential applications.

  12. Modeling the effect of water activity and storage temperature on chemical stability of coffee brews.

    Science.gov (United States)

    Manzocco, Lara; Nicoli, Maria Cristina

    2007-08-08

    This work was addressed to study the chemical stability of coffee brew derivatives as a function of water activity (aw) and storage temperature. To this purpose, coffee brew was freeze-dried, equilibrated at increasing aw values, and stored for up to 10 months at different temperatures from -30 to 60 degrees C. The chemical stability of the samples was assessed by measuring H3O+ formation during storage. Independently of storage temperature, the rate of H3O+ formation was considerably low only when aw was reduced below 0.5 (94% w/w). Beyond this critical boundary, the rate increased, reaching a maximum value at ca. 0.8 aw (78% w/w). Further hydration up to the aw of the freshly prepared beverage significantly increased chemical stability. It was suggested that mechanisms other than lactones' hydrolysis, probably related to nonenzymatic browning pathways, could contribute to the observed increase in acidity during coffee staling. The temperature dependence of H3O+ formation was well-described by the Arrhenius equation in the entire aw range considered. However, aw affected the apparent activation energy and frequency factor. These effects were described by simple equations that were used to set up a modified Arrhenius equation. This model was validated by comparing experimental values, not used to generate the model, with those estimated by the model itself. The model allowed efficient prediction of the chemical stability of coffee derivatives on the basis of only the aw value and storage temperature.

  13. [Advances in research of chemical constituents and pharmacological activities of common used spices].

    Science.gov (United States)

    Sun, Chao-nan; Zhu, Yuan; Xu, Xi-ming; Yu, Jiang-nan

    2014-11-01

    Spices have enjoyed a long history and a worldwide application. Of particular interest is the pharmaceutical value of spices in addition to its basic seasoning function in cooking. Concretely, equipped with complex chemical compositions, spices are of significant importance in pharmacologic actions, like antioxidant, antibacterial, antitumor, as well as therapeutical effects in gastrointestinal disorders and cardiovascular disease. Although increasing evidences in support of its distinct role in the medical field has recently reported, little information is available for substantive, thorough and sophisticated researches on its chemical constituents and pharmacological activities, especially mechanism of these actions. Therefore, in popular wave of studies directed at a single spice, this review presents systematic studies on the chemical constituents and pharmacological activities associated with common used spices, together with current typical individual studies on functional mechanism, in order to pave the way for the exploitation and development of new medicines derived from the chemical compounds of spice (such as, piperine, curcumin, geniposide, cinnamaldehyde, cinnamic acid, linalool, estragole, perillaldehyde, syringic acid, crocin).

  14. The Polyphenols Stability, Enzyme Activity and Physico-Chemical Parameters During Producing Wild Elderberry Concentrated Juice

    Directory of Open Access Journals (Sweden)

    Ante Galić

    2009-12-01

    Full Text Available The influence of processing wild elderberry into concentrated juice on polyphenols (total phenols, flavonoids, non-flavonoids, anthocyanins, flavan-3-ols, hydrolysed tannins stability, activity of polyphenol oxidase (PPO and peroxidase (POD, and changes of physico-chemical parameters (total and soluble dry matter, total acidity, pH, sugars were investigated. The amounts of total phenols, flavonoids, non-flavonoids, falvan-3-ols and hydrolysed tannins were analyzed using Folin-Ciocalteu colorimetric method, while the total anthocyanins were determined by bisulphite bleaching method. Total phenols ranged from 25.87 mg/g DM to 38.87 mg/g DM. Total anthocyanins were the most abundant polyphenols in all investigated samples (raw elderberries, elderberries after blanching, elderberry juice after disintegration and pressing, concentrated elderberry juice and their concentration ranged from 13.12 mg/g DM to 25.67 mg/g DM. Other polyphenols determined in high concentration were hydrolysed tannins, followed by fl avan-3-ols, flavonoids and nonfavonoids. After blanching, the concentration of all polyphenols did not decrease significantly. After disintegration of elderberries the concentration of all polyphenols increased, probably due to inactivation of PPO and POD and better isolation of polyphenols from homogenized puree. During processing of elderberry juice into concentrated juice most polyphenols were stable. Total acidity and pH value were not changed during processing, whereas the amounts of total and reducing sugar increased after pressing and additionally after concentration. The obtained results suggest that raw elderberries as well as elderberry concentrated juice are high potential source of polyphenols especially anthocyanins.

  15. Stepwise chemical reaction strategy for highly sensitive electrochemiluminescent detection of dopamine.

    Science.gov (United States)

    Zhang, Lei; Cheng, Yan; Lei, Jianping; Liu, Yueting; Hao, Qing; Ju, Huangxian

    2013-08-20

    A stepwise chemical reaction strategy based on the specific recognition of boronic acid to diol, and N-hydroxysuccinimide (NHS) ester to amine group, was designed to construct a "signal on" electrochemiluminescence (ECL) platform for highly sensitive detection of dopamine. A boronic acid-functionalized pyrene probe was synthesized and was self-assembled on the sidewalls of carbon nanotubes via π-π stacking interactions as capture probes on a glassy carbon electrode. Meanwhile, 3,3'-dithiodipropionic acid di(N-hydroxysuccinimide ester) (DSP)-functionalized CdTe quantum dots (QDs) were designed as signal probes and characterized with transmission electron microscopy and spectroscopic techniques. Upon stepwise chemical reaction of dopamine with boronic acid and then DSP-QDs, the QDs were captured on the electrode as ECL emitters for signal readout, leading to an ultralow background signal. By using O2 as an endogenous coreactant, the "signal on" ECL method was employed to quantify the concentration of dopamine from 50 pM to 10 nM with a detection limit of 26 pM. Moreover, the stepwise chemical reaction-based biosensor showed high specificity against cerebral interference and was successfully applied in the detection of dopamine in cerebrospinal fluid samples. The stepwise chemical reaction strategy should be a new concept for the design of highly selective analytical methods for the detection of small biomolecules.

  16. Heat Recovery from High Temperature Slags: A Review of Chemical Methods

    Directory of Open Access Journals (Sweden)

    Yongqi Sun

    2015-03-01

    Full Text Available Waste heat recovery from high temperature slags represents the latest potential way to remarkably reduce the energy consumption and CO2 emissions of the steel industry. The molten slags, in the temperature range of 1723–1923 K, carry large amounts of high quality energy. However, the heat recovery from slags faces several fundamental challenges, including their low thermal conductivity, inside crystallization, and discontinuous availability. During past decades, various chemical methods have been exploited and performed including methane reforming, coal and biomass gasification, and direct compositional modification and utilization of slags. These methods effectively meet the challenges mentioned before and help integrate the steel industry with other industrial sectors. During the heat recovery using chemical methods, slags can act as not only heat carriers but also as catalysts and reactants, which expands the field of utilization of slags. Fuel gas production using the waste heat accounts for the main R&D trend, through which the thermal heat in the slag could be transformed into high quality chemical energy in the fuel gas. Moreover, these chemical methods should be extended to an industrial scale to realize their commercial application, which is the only way by which the substantial energy in the slags could be extracted, i.e., amounting to 16 million tons of standard coal in China.

  17. High production volume chemical Amine Oxide [C8-C20] category environmental risk assessment

    DEFF Research Database (Denmark)

    Sanderson, Hans; Tibazarwa, Caritas; Greggs, William

    2009-01-01

    An environmental assessment of amine oxides has been conducted under the OECD SIDS High Production Volume (HPV) Program via the Global International Council of Chemical Associations (ICCA) Amine Oxides Consortium. Amine oxides are primarily used in conjunction with surfactants in cleaning...... and personal care products. Given the lack of persistence or bioaccumulation, and the low likelihood of these chemicals partitioning to soil, the focus of the environmental assessment is on the aquatic environment. In the United States, the E-FAST model is used to estimate effluent concentrations in the United...... States from manufacturing facilities and from municipal facilities resulting from consumer product uses. Reasonable worst-case ratios of predicted environmental concentration (PEC) to predicted no effect concentration (PNEC) range from 0.04 to 0.003, demonstrating that these chemicals are a low risk...

  18. Chemical stability and antimicrobial activity of plasma sprayed bioactive Ca2ZnSi2O7 coating.

    Science.gov (United States)

    Li, Kai; Yu, Jiangming; Xie, Youtao; Huang, Liping; Ye, Xiaojian; Zheng, Xuebin

    2011-12-01

    Calcium silicate ceramic coatings have received considerable attention in recent years due to their excellent bioactivity and bonding strength. However, their high dissolution rates limit their practical applications. In this study, zinc incorporated calcium silicate based ceramic Ca(2)ZnSi(2)O(7) coating was prepared on Ti-6Al-4V substrate via plasma spraying technology aiming to achieve higher chemical stability and additional antibacterial activity. Chemical stability of the coating was assessed by monitoring mass loss and ion release of the coating after immersion in the Tris-HCl buffer solution and examining pH value variation of the solution. Results showed that the chemical stability of zinc incorporated coating was improved significantly. Antimicrobial activity of the Ca(2)ZnSi(2)O(7) coating was evaluated, and it was found that the coating exhibited 93% antibacterial ratio against Staphylococcus aureus. In addition, in vitro bioactivity and cytocompatibility were confirmed for the Ca(2)ZnSi(2)O(7) coating by simulated body fluid test, MC3T3-E1 cells adhesion investigation and cytotoxicity assay.

  19. Chemical composition and antimicrobial activity of the essential oils of Pinus pinaster

    Institute of Scientific and Technical Information of China (English)

    Nouara Ait Mimoune; Djouher Ait Mimoune; Aziza Yataghene

    2013-01-01

    Objective: To investigate the antimicrobial activity and chemical composition of essential oils ofPinus pinaster. Methods: Essential oils were extracted from the needles by hydrodistillation. The chemical composition of the obtained essential oils was analyzed using GC-MS technique. The antimicrobial potential has been tested against six microorganisms performing the disc diffusion assay.Results:Twenty-three components have been identified. β-caryophyllene (30.9%) and β-selinene (13.45%) were predominant compounds. The essential oil exhibited a moderate activity againstStaphylococcus aureus, Bacillus subtilis and Escherichia coli, but did not affect the growth of Erwinia amylovora. Aspergillus flavus and Aspergillus niger were not inhibited by maritime pine essential oils.Conclusions:The essential oils from Pinus pinaster can be used as an antibacterial agent.

  20. QSAR classification of metabolic activation of chemicals into covalently reactive species.

    Science.gov (United States)

    Liew, Chin Yee; Pan, Chuen; Tan, Andre; Ang, Ke Xin Magneline; Yap, Chun Wei

    2012-05-01

    Metabolic activation of chemicals into covalently reactive species might lead to toxicological consequences such as tissue necrosis, carcinogenicity, teratogenicity, or immune-mediated toxicities. Early prediction of this undesirable outcome can help in selecting candidates with increased chance of success, thus, reducing attrition at all stages of drug development. The ensemble modelling of mixed features was used for the development of a model to classify the metabolic activation of chemicals into covalently reactive species. The effects of the quality of base classifiers and performance measure for sorting were examined. An ensemble model of 13 naive Bayes classifiers was built from a diverse set of 1,479 compounds. The ensemble model was validated internally with five-fold cross validation and it has achieved sensitivity of 67.4% and specificity of 93.4% when tested on the training set. The final ensemble model was made available for public use.

  1. Chemical Composition and Antibacterial Activity of Essential Oils of Two Species of Lamiaceae against Phytopathogenic Bacteria.

    Science.gov (United States)

    Gormez, Arzu; Bozari, Sedat; Yanmis, Derya; Gulluce, Medine; Sahin, Fikrettin; Agar, Guleray

    2015-01-01

    In this study, we aimed to determine chemical composition and antibacterial activities of Satureja hortensis and Calamintha nepeta against to 20 phytopathogenic bacteria causing serious crop loss. The essential oils of S. hortensis and C. nepeta were isolated by the hydrodistillation method and the chemical composition of the essential oils were analyzed by GC-MS. The antibacterial properties of the essential oils were evaluated against 20 phytopathogenic bacteria through Disc diffusion assay and micro dilution assay. The results revealed that the essential oils of S. hortensis and C. nepeta have significant antibacterial activity. Furthermore, the findings of the study are valuable for future investigations focusing on the alternative natural compounds to control plant diseases.

  2. Chemical composition and antimicrobial activity of the essential oils of Pinus pinaster

    Directory of Open Access Journals (Sweden)

    Nouara Ait Mimoune

    2013-08-01

    Full Text Available Objective: To investigate the antimicrobial activity and chemical composition of essential oils of Pinus pinaster. Methods: Essential oils were extracted from the needles by hydrodistillation. The chemical composition of the obtained essential oils was analyzed using GC-MS technique. The antimicrobial potential has been tested against six microorganisms performing the disc diffusion assay. Results: Twenty-three components have been identified. β-caryophyllene (30.9% and β-selinene (13.45% were predominant compounds. The essential oil exhibited a moderate activity against Staphylococcus aureus, Bacillus subtilis and Escherichia coli, but did not affect the growth of Erwinia amylovora. Aspergillus flavus and Aspergillus niger were not inhibited by maritime pine essential oils. Conclusions: The essential oils from Pinus pinaster can be used as an antibacterial agent.

  3. Chemical composition and antibacterial activity of essential oils from Myrcia alagoensis (Myrtaceae).

    Science.gov (United States)

    Silva, Aline do N; Uetanabaro, Ana Paula T; Lucchese, Angélica M

    2013-02-01

    The chemical composition and antibacterial activity of essential oils obtained from fresh and dried leaves of Myrcia alagoensis O. Berg, collected in a secondary forest remnant in north-eastern Brazil, was compared. The essential oils were obtained by hydrodistillation from fresh and dried leaves, and analysed by GC/FID and GC/MS. The antimicrobial properties of the oils were investigated against five bacteria by determination of the Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC). The essential oils were rich in cyclic sesquiterpenes, such as germacrene B, with antibiotic action against Gram-positive and Gram-negative bacteria. The drying process after collection interfered with the chemical composition and antibacterial activity of the assessed samples.

  4. Antimalarial, Anticancer, Antimicrobial Activities and Chemical Constituents of Essential Oil from the Aerial Parts of Cyperus kyllingia Endl.

    Directory of Open Access Journals (Sweden)

    Sorachai Khamsan

    2011-01-01

    Full Text Available The chemical constituents of the essential oil from Cyperus kyllingia Endl. were analyzed by a GC, GC-MS. Twenty-three compounds were identified, accounting for 93.75% of the total oil that consisted mainly of oxygenated sesquiterpenes (53.52%, particularly sesquiterpene hydrocarbons (38.97%, and carboxylic acid (1.26%. The most representative compounds were a -cadinol (19.32 %, caryophyllene oxide (12.17%, a -muurolol (11.58 %, a -humulene (9.85%, and a -atlantone (6.07%. The oil showed significant activities against Plasmodium falcipalum (K1, multi drug resistant strain and NCI-H187 (Small Cell Lung Cancer with the IC 50 values of 7.52 and 7.72 µg/mL, respectively. The oilexhibited highly active against Staphylococcus aureus ATCC25923 and moderately active against Escherichia coli ATCC25922, Pseudomonas aeruginosa ATCC27553, Aspergillus flavus and Candida albicans.

  5. Chemical Constituents and Antioxidant Activity from the Stems of Alyxia reinwardtii

    Directory of Open Access Journals (Sweden)

    Jurairat Rattanapan

    2012-03-01

    Full Text Available Eight compounds were isolated from the stems of Alyxia reinwardtii, namely coumarin (1, 3-hydroxycoumarin (2, 6-hydroxycoumarin (3, 8-hydroxycoumarin (4, scopoletin (5, (+-pinoresinol (6, zhebeiresinol (7 and p-hydroxybenzoic acid (8. The structures of all compounds were characterized by means of NMR, MS, chemical analysis and comparison with the literature data. The structure of compound 7 was also confirmed by X-ray crystallography. To the best of our knowledge, compounds 2-3, 5 and 7-8 have been isolated for the first time from this species. In terms of antioxidant activity, the isolated compounds were evaluated by various in vitro model assays, which include the DPPH radical scavenging activity, xanthine oxidase-related activity (superoxide scavenging activity and inhibitory effect on xanthine oxidase and lipid peroxidation inhibitory activity.

  6. Immobilization of chemically modified horse radish peroxidase within activated alginate beads

    Directory of Open Access Journals (Sweden)

    Spasojević Dragica

    2014-01-01

    Full Text Available Immobilization of horse radish peroxidase (HRP within alginate beads was improved by chemical modification of the enzyme and polysaccharide chains. HRP and alginate were oxidized by periodate and subsequently modified with ethylenediamine. Highest specific activity of 0.43 U/ml of gel and 81 % of bound enzyme activity was obtained using aminated HRP and alginate oxidized by periodate. Immobilized enzyme retained 75 % of original activity after 2 days of incubation in 80 % (v/v dioxane and had increased activity at basic pH values compared to native enzyme. During repeated use in batch reactor for pyrogallol oxidation immobilized peroxidase retained 75 % of original activity. [Projekat Ministarstva nauke Republike Srbije, br. ON173017 i br. ON172049

  7. Chemical Composition, Antioxidant and Anticholinesterase Activities of the Essential oil of Origanum rotundifolium Boiss. from Turkey

    Directory of Open Access Journals (Sweden)

    Hilal Özbek

    2017-09-01

    Full Text Available The essential oil was obtained by hydrodistillation from the aerial parts of Origanum rotundifolium Boiss. Its chemical content and composition were analyzed by using a gas chromatography (GC-FID and gas chromatography-mass spectrometry (GC-MS. Total phenolic content of the essential oil was determined as 132.39 µg gallic acid equivalent by Folin–Ciocalteu’s method and the major component was identified as carvacrol (56.8 % along with p-cymene (13.1 %, (Z- b -ocimene (5.4 %, b -caryophyllene (3.9 %, borneol (3.4 % and thymol (3.2 %. After chemical characterization, the essential oil was evaluated for its antioxidant activity by DPPH free radical, superoxide anion radical and hydrogen peroxide scavenging activities as well as ferrous ion-chelating power test, ABTS radical cation decolorization assay and ferric thiocyanate methods. Besides antioxidant activity, acetylcholinesterase and butyrylcholinesterase inhibitory activities of the essential oil were also evaluated by Ellman’s method. It demonstrated inhibitory activities on AChE and BuChE, key enzymes in the pathogenesis of Alzheimer’s disease (AD, in addition to significant antioxidant activity.

  8. Requirement of a soluble intracellular factor for activation of transient receptor potential A1 by pungent chemicals: role of inorganic polyphosphates.

    Science.gov (United States)

    Kim, Donghee; Cavanaugh, Eric J

    2007-06-13

    Pungent chemicals such as allyl isothiocyanate (AITC), cinnamaldehyde, and allicin, produce nociceptive sensation by directly activating transient receptor potential A1 (TRPA1) expressed in sensory afferent neurons. In this study, we found that pungent chemicals added to the pipette or bath solution easily activated TRPA1 in cell-attached patches but failed to do so in inside-out or outside-out patches. Thus, a soluble cytosolic factor was required to activate TRPA1. N-Ethylmaleimide, (2-aminoethyl)-methane thiosulfonate, 2-aminoethoxydiphneyl borate, and trinitrophenol, compounds that are known to activate TRPA1, also failed to activate it in inside-out patches. To identify a factor that supports activation of TRPA1 by pungent chemicals, we screened approximately 30 intracellular molecules known to modulate ion channels. Among them, pyrophosphate (PPi) and polytriphosphate (PPPi) were found to support activation of TRPA1 by pungent chemicals. Structure-function studies showed that inorganic polyphosphates (polyP(n), where n = number of phosphates) with at least four phosphate groups were highly effective (polyP4 approximately = polyP65 approximately = polyP45 approximately = polyP25 > PPPi > PPi), with K(1/2) values ranging from 0.2 to 2.8 mM. Inositol-trisphosphate and inositol-hexaphosphate also partially supported activation of TRPA1 by AITC. ATP, GTP, and phosphatidylinositol-4,5-bisphosphate that have three phosphate groups did not support TRPA1 activation. TRPA1 recorded from cell bodies of trigeminal ganglion neurons showed similar behavior with respect to sensitivity to pungent chemicals; no activation was observed in inside-out patches unless a polyphosphate was present. These results show that TRPA1 requires an intracellular factor to adopt a functional conformation that is sensitive to pungent chemicals and suggest that polyphosphates may partly act as such a factor.

  9. Integrating high-content imaging and chemical genetics to probe host cellular pathways critical for Yersinia pestis infection.

    Directory of Open Access Journals (Sweden)

    Krishna P Kota

    Full Text Available The molecular machinery that regulates the entry and survival of Yersinia pestis in host macrophages is poorly understood. Here, we report the development of automated high-content imaging assays to quantitate the internalization of virulent Y. pestis CO92 by macrophages and the subsequent activation of host NF-κB. Implementation of these assays in a focused chemical screen identified kinase inhibitors that inhibited both of these processes. Rac-2-ethoxy-3 octadecanamido-1-propylphosphocholine (a protein Kinase C inhibitor, wortmannin (a PI3K inhibitor, and parthenolide (an IκB kinase inhibitor, inhibited pathogen-induced NF-κB activation and reduced bacterial entry and survival within macrophages. Parthenolide inhibited NF-κB activation in response to stimulation with Pam3CSK4 (a TLR2 agonist, E. coli LPS (a TLR4 agonist or Y. pestis infection, while the PI3K and PKC inhibitors were selective only for Y. pestis infection. Together, our results suggest that phagocytosis is the major stimulus for NF-κB activation in response to Y. pestis infection, and that Y. pestis entry into macrophages may involve the participation of protein kinases such as PI3K and PKC. More importantly, the automated image-based screening platform described here can be applied to the study of other bacteria in general and, in combination with chemical genetic screening, can be used to identify host cell functions facilitating the identification of novel antibacterial therapeutics.

  10. Chemical composition and antibacterial activity of essential oil of Pulicaria odora L.

    Science.gov (United States)

    Hanbali, Fadwa E L; Akssira, Mohamed; Ezoubeiri, Aicha; Gadhi, Chems Eddoha A; Mellouki, Fouad; Benherraf, Ahmed; Blazquez, Amparo M; Boira, Herminio

    2005-07-14

    The chemical composition of the volatile oil constituent from Pulicaria odora L. roots has been analyzed by GC/MS. Twenty-seven components were identified, being thymol (47.83%) and its derivative isobutyrate (30.05%) the main constituents in the oil. Furthermore, the oil was tested against seven bacteria at different concentrations. Results showed that the oil exhibited a significant antibacterial activity.

  11. Physico-Chemical Properties, Antioxidant Activity and Mineral Contents of Pineapple Genotypes Grown in China

    OpenAIRE

    Xin-Hua Lu; De-Quan Sun; Qing-Song Wu; Sheng-Hui Liu; Guang-Ming Sun

    2014-01-01

    The fruit physico-chemical properties, antioxidant activity and mineral contents of 26 pineapple [Ananas comosus (L.) Merr.] genotypes grown in China were measured. The results showed great quantitative differences in the composition of these pineapple genotypes. Sucrose was the dominant sugar in all 26 genotypes, while citric acid was the principal organic acid. Potassium, calcium and magnesium were the major mineral constituents. The ascorbic acid (AsA) content ranged from 5.08 to 33.57 mg/...

  12. Chemical composition, antimicrobial, antioxidant and cytotoxic activity of Rosa centifolia L. essential oil

    OpenAIRE

    Nikolić, Miloš; Isabel C. F. R. Ferreira; Calhelha, Ricardo C.; Ângela FERNANDES; Marković, Dejan; Marković, Tatjana; Ćirić, Ana; Glamočlija, Jasmina; Soković, Marina

    2013-01-01

    The genus Rosa comprises more than 200 species appreciated for their use in perfume and cosmetic industry. The aim of this study was to investigate chemical composition, antimicrobial, antioxidant and cytotoxic activities of Rosa centifolia L. essential oil, in an attempt to contribute to the use of this plant as alternative product for microbial control and cancer therapy. The results of GC/MS analysis showed the presence of 12 components. The major constituents were: phenyl ethyl alcohol (5...

  13. Chemical Composition and Biological Activities of Fragrant Mexican Copal (Bursera spp.).

    Science.gov (United States)

    Gigliarelli, Giulia; Becerra, Judith X; Curini, Massimo; Marcotullio, Maria Carla

    2015-12-12

    Copal is the Spanish word used to describe aromatic resins from several genera of plants. Mexican copal derives from several Bursera spp., Protium copal, some Pinus spp. (e.g., P. pseudostrobus) and a few Fabaceae spp. It has been used for centuries as incense for religious ceremonies, as a food preservative, and as a treatment for several illnesses. The aim of this review is to analyze the chemical composition and biological activity of commercial Mexican Bursera copal.

  14. Chemical Composition and Biological Activities of Fragrant Mexican Copal (Bursera spp.

    Directory of Open Access Journals (Sweden)

    Giulia Gigliarelli

    2015-12-01

    Full Text Available Copal is the Spanish word used to describe aromatic resins from several genera of plants. Mexican copal derives from several Bursera spp., Protium copal, some Pinus spp. (e.g., P. pseudostrobus and a few Fabaceae spp. It has been used for centuries as incense for religious ceremonies, as a food preservative, and as a treatment for several illnesses. The aim of this review is to analyze the chemical composition and biological activity of commercial Mexican Bursera copal.

  15. Chemical Composition and Antifungal Activity of Ocimum basilicum L. Essential Oil

    OpenAIRE

    Neveen Helmy Abou El-Soud; Mohamed Deabes; Lamia Abou El-Kassem; Mona Khalil

    2015-01-01

    BACKGROUND: The leaves of Ocimum basilicum L. (basil) are used in traditional cuisine as spices; its essential oil has found a wide application in perfumery, dental products as well as antifungal agents. AIM: To assess the chemical composition as well as the in vitro antifungal activity of O. basilicum L. essential oil against Aspergillus flavus fungal growth and aflatoxin B1 production. MATERIAL AND METHODS: The essential oil of O. basilicum was obtained by hydrodistillation and anal...

  16. Chemical composition and antimicrobial activity of the essential oils of Pistacia lentiscus var. chia.

    Science.gov (United States)

    Magiatis, P; Melliou, E; Skaltsounis, A L; Chinou, I B; Mitaku, S

    1999-12-01

    The chemical composition of the three essential oils obtained by steam distillation of the mastic gum, leaves and twigs of Pistacia lentiscus var. chia, was studied by GC/MS. Sixty nine constituents were identified from the oils. alpha-Pinene, myrcene, trans-caryophyllene and germacrene D were found to be the major components. The in vitro antimicrobial activity of the three essential oils and of the resin (total, acid and neutral fraction) against six bacteria and three fungi is reported.

  17. Atmospheric pressure chemical vapor deposition (APCVD) grown bi-layer graphene transistor characteristics at high temperature

    KAUST Repository

    Qaisi, Ramy M.

    2014-05-15

    We report the characteristics of atmospheric chemical vapor deposition grown bilayer graphene transistors fabricated on ultra-scaled (10 nm) high-κ dielectric aluminum oxide (Al2O3) at elevated temperatures. We observed that the drive current increased by >400% as temperature increased from room temperature to 250 °C. Low gate leakage was maintained for prolonged exposure at 100 °C but increased significantly at temperatures >200 °C. These results provide important insights for considering chemical vapor deposition graphene on aluminum oxide for high temperature applications where low power and high frequency operation are required. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. High quality thin films of thermoelectric misfit cobalt oxides prepared by a chemical solution method

    Science.gov (United States)

    Rivas-Murias, Beatriz; Manuel Vila-Fungueiriño, José; Rivadulla, Francisco

    2015-01-01

    Misfit cobaltates ([Bi/Ba/Sr/Ca/CoO]nRS[CoO2]q) constitute the most promising family of thermoelectric oxides for high temperature energy harvesting. However, their complex structure and chemical composition makes extremely challenging their deposition by high-vacuum physical techniques. Therefore, many of them have not been prepared as thin films until now. Here we report the synthesis of high-quality epitaxial thin films of the most representative members of this family of compounds by a water-based chemical solution deposition method. The films show an exceptional crystalline quality, with an electrical conductivity and thermopower comparable to single crystals. These properties are linked to the epitaxial matching of the rock-salt layers of the structure to the substrate, producing clean interfaces free of amorphous phases. This is an important step forward for the integration of these materials with complementary n-type thermoelectric oxides in multilayer nanostructures. PMID:26153533

  19. High quality thin films of thermoelectric misfit cobalt oxides prepared by a chemical solution method.

    Science.gov (United States)

    Rivas-Murias, Beatriz; Manuel Vila-Fungueiriño, José; Rivadulla, Francisco

    2015-07-08

    Misfit cobaltates ([Bi/Ba/Sr/Ca/CoO]n(RS)[CoO2]q) constitute the most promising family of thermoelectric oxides for high temperature energy harvesting. However, their complex structure and chemical composition makes extremely challenging their deposition by high-vacuum physical techniques. Therefore, many of them have not been prepared as thin films until now. Here we report the synthesis of high-quality epitaxial thin films of the most representative members of this family of compounds by a water-based chemical solution deposition method. The films show an exceptional crystalline quality, with an electrical conductivity and thermopower comparable to single crystals. These properties are linked to the epitaxial matching of the rock-salt layers of the structure to the substrate, producing clean interfaces free of amorphous phases. This is an important step forward for the integration of these materials with complementary n-type thermoelectric oxides in multilayer nanostructures.

  20. Chemical study of extracted rockrose and of chars and activated carbons prepared at different temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Pastor-Villegas, J.; Gomez-Serrano, V.; Duran-Valle, C.J.; Higes-Rolando, F.J. [Departamento de Quimica Inorganica, Universidad de Extremadura, Badajoz (Spain)

    1999-04-01

    This paper discusses the chemical composition and chemical structure of rockrose (Cistus ladaniferus L.) extracted into petroleum ether and resulting chars as well as activated carbons. The isothermal temperature of carbonization of extracted rockrose (Jex) in N{sub 2} ranged between 600 and 1000C. The char (C{sub Jex}-600) employed in the preparation of activated carbons was prepared by treatment of Jex at 30-600C. This char was heated in N{sub 2} before activation, which was carried out in CO{sub 2} or steam at 700-950C to 40% burn-off. Chemical analyses, Fourier transform infrared spectroscopy, thermogravimetry and X-ray diffraction techniques have been applied. The extraction does not exert a significant influence on the organic chemical structure of raw material. In ash prepared at 600C from Jex (ash content 1.29%), the major elements are Ca, K, Mg and P; calcite is the main component. When this ash is heated at 950C, lime is the main component. The chars and activated carbons contain carbon-carbon double bonds and ether structures; C{sub Jex}-600 also contains carbonyl groups. The ether groups decrease with the temperature increase. The analyses of chars and activated carbons show an ash content close to 6-8%, and calcite as the main component. The presence of whewellite, CaC{sub 2}O{sub 4}{center_dot}H{sub 2}O, indicates that the pyrolysis is delayed in the preparation of C{sub Jex}-600, that a partial calcium-carboxylate association occurs, and that hydration takes place during storage period. The mineral matter of the activated carbons prepared at 700C depends on the activating agent: calcite is the only component identified using CO{sub 2}, whereas lime, portlandite and vaterite are also identified using steam. At higher temperatures, the mineral matter is practically independent of the activating agent. Probably, CaO transforms into Ca(OH){sub 2} and CaCO{sub 3} during the char and activated carbon storage periods