WorldWideScience

Sample records for high cellular uptake

  1. Cellular uptake of metallated cobalamins

    DEFF Research Database (Denmark)

    Tran, Mai Thanh Quynh; Stürup, Stefan; Lambert, Ian Henry

    2016-01-01

    Cellular uptake of vitamin B12-cisplatin conjugates was estimated via detection of their metal constituents (Co, Pt, and Re) by inductively coupled plasma mass spectrometry (ICP-MS). Vitamin B12 (cyano-cob(iii)alamin) and aquo-cob(iii)alamin [Cbl-OH2](+), which differ in the β-axial ligands (CN......(-) and H2O, respectively), were included as control samples. The results indicated that B12 derivatives delivered cisplatin to both cellular cytosol and nuclei with an efficiency of one third compared to the uptake of free cisplatin cis-[Pt(II)Cl2(NH3)2]. In addition, uptake of charged B12 derivatives...

  2. Cellular uptake of metallated cobalamins

    DEFF Research Database (Denmark)

    Tran, MQT; Stürup, Stefan; Lambert, Ian H.;

    2016-01-01

    Cellular uptake of vitamin B12-cisplatin conjugates was estimated via detection of their metal constituents (Co, Pt, and Re) by inductively coupled plasma mass spectrometry (ICP-MS). Vitamin B12 (cyano-cob(iii)alamin) and aquo-cob(iii)alamin [Cbl-OH2](+), which differ in the β-axial ligands (CN(-...

  3. Enantioselective cellular uptake of chiral semiconductor nanocrystals

    Science.gov (United States)

    Martynenko, I. V.; Kuznetsova, V. A.; Litvinov, I. K.; Orlova, A. O.; Maslov, V. G.; Fedorov, A. V.; Dubavik, A.; Purcell-Milton, F.; Gun'ko, Yu K.; Baranov, A. V.

    2016-02-01

    The influence of the chirality of semiconductor nanocrystals, CdSe/ZnS quantum dots (QDs) capped with L- and D-cysteine, on the efficiency of their uptake by living Ehrlich Ascite carcinoma cells is studied by spectral- and time-resolved fluorescence microspectroscopy. We report an evident enantioselective process where cellular uptake of the L-Cys QDs is almost twice as effective as that of the D-Cys QDs. This finding paves the way for the creation of novel approaches to control the biological properties and behavior of nanomaterials in living cells.

  4. Combinatorial approaches to evaluate nanodiamond uptake and induced cellular fate.

    Science.gov (United States)

    Eldawud, Reem; Reitzig, Manuela; Opitz, Jörg; Rojansakul, Yon; Jiang, Wenjuan; Nangia, Shikha; Dinu, Cerasela Zoica

    2016-02-26

    Nanodiamonds (NDs) are an emerging class of engineered nanomaterials that hold great promise for the next generation of bionanotechnological products to be used for drug and gene delivery, or for bio-imaging and biosensing. Previous studies have shown that upon their cellular uptake, NDs exhibit high biocompatibility in various in vitro and in vivo set-ups. Herein we hypothesized that the increased NDs biocompatibility is a result of minimum membrane perturbations and their reduced ability to induce disruption or damage during cellular translocation. Using multi-scale combinatorial approaches that simulate ND-membrane interactions, we correlated NDs real-time cellular uptake and kinetics with the ND-induced membrane fluctuations to derive energy requirements for the uptake to occur. Our discrete and real-time analyses showed that the majority of NDs internalization occurs within 2 h of cellular exposure, however, with no effects on cellular viability, proliferation or cellular behavior. Furthermore, our simulation analyses using coarse-grained models identified key changes in the energy profile, membrane deformation and recovery time, all functions of the average ND or ND-based agglomerate size. Understanding the mechanisms responsible for ND-cell membrane interactions could possibly advance their implementation in various biomedical applications.

  5. Combinatorial approaches to evaluate nanodiamond uptake and induced cellular fate

    Science.gov (United States)

    Eldawud, Reem; Reitzig, Manuela; Opitz, Jörg; Rojansakul, Yon; Jiang, Wenjuan; Nangia, Shikha; Zoica Dinu, Cerasela

    2016-02-01

    Nanodiamonds (NDs) are an emerging class of engineered nanomaterials that hold great promise for the next generation of bionanotechnological products to be used for drug and gene delivery, or for bio-imaging and biosensing. Previous studies have shown that upon their cellular uptake, NDs exhibit high biocompatibility in various in vitro and in vivo set-ups. Herein we hypothesized that the increased NDs biocompatibility is a result of minimum membrane perturbations and their reduced ability to induce disruption or damage during cellular translocation. Using multi-scale combinatorial approaches that simulate ND-membrane interactions, we correlated NDs real-time cellular uptake and kinetics with the ND-induced membrane fluctuations to derive energy requirements for the uptake to occur. Our discrete and real-time analyses showed that the majority of NDs internalization occurs within 2 h of cellular exposure, however, with no effects on cellular viability, proliferation or cellular behavior. Furthermore, our simulation analyses using coarse-grained models identified key changes in the energy profile, membrane deformation and recovery time, all functions of the average ND or ND-based agglomerate size. Understanding the mechanisms responsible for ND-cell membrane interactions could possibly advance their implementation in various biomedical applications.

  6. Cellular Uptake Behavior of Fluorescein: Intercalated Layered Double Hydroxide

    Science.gov (United States)

    Tanaka, Miyuki; Aisawa, Sumio; Hirahara, Hidetoshi; Narita, Eiichi; Yin, Shu; Sato, Tsugio

    2012-06-01

    In order to define the ability of layered double hydroxide (LDH) as materials for drug delivery, fluorescein (Fluo) anion intercalated LDH (Fluo/LDH) was synthesized by hydrothermal treatment and observed the cellular uptake of the Fluo/LDH for mammalian cell (L929). The synthesized Fluo/LDH showed a LDH structure, high fluorescence and low cytotoxicity. According to the fluorescence, confocal and TEM images of cells, the Fluo/LDH seemed to be internalized into the L929 cell by cellular endocytosis and dissolved inside the cell to exhibit the fluorescence of cellular cytoplasm.

  7. Portal vein glucose entry triggers a coordinated cellular response that potentiates hepatic glucose uptake and storage in normal but not high-fat/high-fructose-fed dogs.

    Science.gov (United States)

    Coate, Katie C; Kraft, Guillaume; Irimia, Jose M; Smith, Marta S; Farmer, Ben; Neal, Doss W; Roach, Peter J; Shiota, Masakazu; Cherrington, Alan D

    2013-02-01

    The cellular events mediating the pleiotropic actions of portal vein glucose (PoG) delivery on hepatic glucose disposition have not been clearly defined. Likewise, the molecular defects associated with postprandial hyperglycemia and impaired hepatic glucose uptake (HGU) following consumption of a high-fat, high-fructose diet (HFFD) are unknown. Our goal was to identify hepatocellular changes elicited by hyperinsulinemia, hyperglycemia, and PoG signaling in normal chow-fed (CTR) and HFFD-fed dogs. In CTR dogs, we demonstrated that PoG infusion in the presence of hyperinsulinemia and hyperglycemia triggered an increase in the activity of hepatic glucokinase (GK) and glycogen synthase (GS), which occurred in association with further augmentation in HGU and glycogen synthesis (GSYN) in vivo. In contrast, 4 weeks of HFFD feeding markedly reduced GK protein content and impaired the activation of GS in association with diminished HGU and GSYN in vivo. Furthermore, the enzymatic changes associated with PoG sensing in chow-fed animals were abolished in HFFD-fed animals, consistent with loss of the stimulatory effects of PoG delivery. These data reveal new insight into the molecular physiology of the portal glucose signaling mechanism under normal conditions and to the pathophysiology of aberrant postprandial hepatic glucose disposition evident under a diet-induced glucose-intolerant condition.

  8. Cellular uptake and trafficking of antisense oligonucleotides.

    Science.gov (United States)

    Crooke, Stanley T; Wang, Shiyu; Vickers, Timothy A; Shen, Wen; Liang, Xue-Hai

    2017-03-01

    Antisense oligonucleotides (ASOs) modified with phosphorothioate (PS) linkages and different 2' modifications can be used either as drugs (e.g., to treat homozygous familial hypercholesterolemia and spinal muscular atrophy) or as research tools to alter gene expression. PS-ASOs can enter cells without additional modification or formulation and can be designed to mediate sequence-specific cleavage of different types of RNA (including mRNA and non-coding RNA) targeted by endogenous RNase H1. Although PS-ASOs function in both the cytoplasm and nucleus, localization to different subcellular regions can affect their therapeutic potency. Cellular uptake and intracellular distribution of PS ASOs are mediated by protein interactions. The main proteins involved in these processes have been identified, and intracellular sites in which PS ASOs are active, or inactive, cataloged.

  9. Identification of a Pro-Angiogenic Potential and Cellular Uptake Mechanism of a LMW Highly Sulfated Fraction of Fucoidan from Ascophyllum nodosum

    Science.gov (United States)

    Marinval, Nicolas; Saboural, Pierre; Haddad, Oualid; Maire, Murielle; Bassand, Kevin; Geinguenaud, Frederic; Djaker, Nadia; Ben Akrout, Khadija; Lamy de la Chapelle, Marc; Robert, Romain; Oudar, Olivier; Guyot, Erwan; Laguillier-Morizot, Christelle; Sutton, Angela; Chauvierre, Cedric; Chaubet, Frederic; Charnaux, Nathalie; Hlawaty, Hanna

    2016-01-01

    Herein we investigate the structure/function relationships of fucoidans from Ascophyllum nodosum to analyze their pro-angiogenic effect and cellular uptake in native and glycosaminoglycan-free (GAG-free) human endothelial cells (HUVECs). Fucoidans are marine sulfated polysaccharides, which act as glycosaminoglycans mimetics. We hypothesized that the size and sulfation rate of fucoidans influence their ability to induce pro-angiogenic processes independently of GAGs. We collected two fractions of fucoidans, Low and Medium Molecular Weight Fucoidan (LMWF and MMWF, respectively) by size exclusion chromatography and characterized their composition (sulfate, fucose and uronic acid) by colorimetric measurement and Raman and FT-IR spectroscopy. The high affinities of fractionated fucoidans to heparin binding proteins were confirmed by Surface Plasmon Resonance. We evidenced that LMWF has a higher pro-angiogenic (2D-angiogenesis on Matrigel) and pro-migratory (Boyden chamber) potential on HUVECs, compared to MMWF. Interestingly, in a GAG-free HUVECs model, LMWF kept a pro-angiogenic potential. Finally, to evaluate the association of LMWF-induced biological effects and its cellular uptake, we analyzed by confocal microscopy the GAGs involvement in the internalization of a fluorescent LMWF. The fluorescent LMWF was mainly internalized through HUVEC clathrin-dependent endocytosis in which GAGs were partially involved. In conclusion, a better characterization of the relationships between the fucoidan structure and its pro-angiogenic potential in GAG-free endothelial cells was required to identify an adapted fucoidan to enhance vascular repair in ischemia. PMID:27763505

  10. Identification of a Pro-Angiogenic Potential and Cellular Uptake Mechanism of a LMW Highly Sulfated Fraction of Fucoidan from Ascophyllum nodosum

    Directory of Open Access Journals (Sweden)

    Nicolas Marinval

    2016-10-01

    Full Text Available Herein we investigate the structure/function relationships of fucoidans from Ascophyllum nodosum to analyze their pro-angiogenic effect and cellular uptake in native and glycosaminoglycan-free (GAG-free human endothelial cells (HUVECs. Fucoidans are marine sulfated polysaccharides, which act as glycosaminoglycans mimetics. We hypothesized that the size and sulfation rate of fucoidans influence their ability to induce pro-angiogenic processes independently of GAGs. We collected two fractions of fucoidans, Low and Medium Molecular Weight Fucoidan (LMWF and MMWF, respectively by size exclusion chromatography and characterized their composition (sulfate, fucose and uronic acid by colorimetric measurement and Raman and FT-IR spectroscopy. The high affinities of fractionated fucoidans to heparin binding proteins were confirmed by Surface Plasmon Resonance. We evidenced that LMWF has a higher pro-angiogenic (2D-angiogenesis on Matrigel and pro-migratory (Boyden chamber potential on HUVECs, compared to MMWF. Interestingly, in a GAG-free HUVECs model, LMWF kept a pro-angiogenic potential. Finally, to evaluate the association of LMWF-induced biological effects and its cellular uptake, we analyzed by confocal microscopy the GAGs involvement in the internalization of a fluorescent LMWF. The fluorescent LMWF was mainly internalized through HUVEC clathrin-dependent endocytosis in which GAGs were partially involved. In conclusion, a better characterization of the relationships between the fucoidan structure and its pro-angiogenic potential in GAG-free endothelial cells was required to identify an adapted fucoidan to enhance vascular repair in ischemia.

  11. Cyclophilin A enhances macrophage differentiation and lipid uptake in high glucose conditions: a cellular mechanism for accelerated macro vascular disease in diabetes mellitus.

    Science.gov (United States)

    Ramachandran, Surya; Vinitha, Anandan; Kartha, Cheranellore Chandrasekharan

    2016-11-03

    Vascular disease in diabetes is initiated by monocyte adhesion to vascular endothelium, transmigration and formation of foam cells. Increasing clinical evidence supports a role for the secretory protein, cyclophilin A in diabetic vascular disease. The means by which cyclophilin A contributes to vascular lesion development in diabetes is however largely unknown. In this study we investigated using THP1 cells and human monocytes whether cyclophilin A under hyperglycemic conditions, functions in the inflammatory cascade as a chemoattractant and increases lipid uptake by formation of foam cells invitro. We developed an invitro model of monocytes cultured in 20 mm glucose (high glucose) equivalent to 360 mg/dL of plasma glucose levels. These monocytes were then differentiated into macrophages using PMA and subsequently transformed to lipid laden foam cells using oxidized low density lipoproteins in the presence and absence of cyclophilin A. This cellular model was used to study monocyte to macrophage differentiation, transmigration and foam cell formation. A similar cellular model using siRNA mediated transient elimination of the cyclophilin A gene as well as chemical inhibitors were used to further confirm the role of cyclophilin A in the differentiation and foam cell formation process. Cyclophilin A effectively increased migration of high glucose treated monocytes to the endothelial cell monolayer (p diabetes mellitus.

  12. Cyclic Strain Enhances Cellular Uptake of Nanoparticles

    Directory of Open Access Journals (Sweden)

    Jia Hu

    2015-01-01

    Full Text Available Nanoparticles (NPs have gained increasing interest in recent years due to their potential use as drug carrier, imaging, and diagnostic agents in pharmaceutical and biomedical applications. While many cells in vivo experience mechanical forces, little is known about the correlation of the mechanical stimulation and the internalization of NPs into cells. This paper investigates the effects of applied cyclic strain on NP uptake by cells. Bovine aortic endothelial cells (BAECs were cultured on collagen-coated culture plates and placed under cyclic equal-axial strains. NPs of sizes ranging from 50 to 200 nm were loaded at a concentration of 0.02 mg/mL and cyclic strains from 5 to 15% were applied to the cells for one hour. The cyclic strain results in a significant enhancement in NP uptake, which increases almost linearly with strain level. The enhanced uptake also depends on size of the NPs with the highest uptake observed on 100 nm NP. The effect of enhanced NP uptake lasts around 13 hours after cyclic stretch. Such in vitro cell stretch systems mimic physiological conditions of the endothelial cells in vivo and could potentially serve as a biomimetic platform for drug therapeutic evaluation.

  13. Cyclic Strain Enhances Cellular Uptake of Nanoparticles

    OpenAIRE

    Jia Hu; Yaling Liu

    2015-01-01

    Nanoparticles (NPs) have gained increasing interest in recent years due to their potential use as drug carrier, imaging, and diagnostic agents in pharmaceutical and biomedical applications. While many cells in vivo experience mechanical forces, little is known about the correlation of the mechanical stimulation and the internalization of NPs into cells. This paper investigates the effects of applied cyclic strain on NP uptake by cells. Bovine aortic endothelial cells (BAECs) were cultured on ...

  14. Cellular uptake and dynamics of unlabeled freestanding silicon nanowires.

    Science.gov (United States)

    Zimmerman, John F; Parameswaran, Ramya; Murray, Graeme; Wang, Yucai; Burke, Michael; Tian, Bozhi

    2016-12-01

    The ability to seamlessly merge electronic devices with biological systems at the cellular length scale is an exciting prospect for exploring new fundamental cell biology and in designing next-generation therapeutic devices. Semiconductor nanowires are well suited for achieving this goal because of their intrinsic size and wide range of possible configurations. However, current studies have focused primarily on delivering substrate-bound nanowire devices through mechanical abrasion or electroporation, with these bulkier substrates negating many of the inherent benefits of using nanoscale materials. To improve on this, an important next step is learning how to distribute these devices in a drug-like fashion, where cells can naturally uptake and incorporate these electronic components, allowing for truly noninvasive device integration. We show that silicon nanowires (SiNWs) can potentially be used as such a system, demonstrating that label-free SiNWs can be internalized in multiple cell lines (96% uptake rate), undergoing an active "burst-like" transport process. Our results show that, rather than through exogenous manipulation, SiNWs are internalized primarily through an endogenous phagocytosis pathway, allowing cellular integration of these materials. To study this behavior, we have developed a robust set of methodologies for quantitatively examining high-aspect ratio nanowire-cell interactions in a time-dependent manner on both single-cell and ensemble levels. This approach represents one of the first dynamic studies of semiconductor nanowire internalization and offers valuable insight into designing devices for biomolecule delivery, intracellular sensing, and photoresponsive therapies.

  15. Surface-modified gold nanoshells for enhanced cellular uptake.

    Science.gov (United States)

    Liang, Zhongshi; Liu, Yun; Li, Xiangyang; Wu, Qinge; Yu, Jiahui; Luo, Shufang; Lai, Lihui; Liu, Shunying

    2011-09-15

    Gold nanoshells have shown a great potential for use as agents in a wide variety of biomedical applications, and some of which require the delivery of large numbers of gold nanoshells onto or into the cells. Here, we develop a ready method to enhance the cellular uptake of gold nanoshells by modifying with meso-2,3-dimercaptosuccinic acid (DMSA). The quantifiable technique of inductively coupled plasma atomic emissions spectroscopy (ICP-AES) and transmission electron microscopy (TEM) were used to investigate the cellular uptake of unmodified and DMSA-modified gold nanoshells. Three cell lines (RAW 264.7, A549, and BEL-7402) were involved and the results indicated that the cellular uptake of the DMSA-modified gold nanoshells was obviously enhanced versus the unmodified gold nanoshells. The reason possibly lies in the nonspecific adsorption of serum protein on the DMSA-modified gold nanoshells (DMSA-GNs), which consequently enhanced the cellular uptake. As a continued effort, in vitro experiments with endocytic inhibitors suggested the DMSA-GNs internalized into cells via receptor-mediated endocytosis (RME) pathway. This study has provided a valuable insight into the effects of surface modification on cellular uptake of nanoparticles.

  16. New views on cellular uptake and trafficking of manufactured nanoparticles

    Science.gov (United States)

    Treuel, Lennart; Jiang, Xiue; Nienhaus, Gerd Ulrich

    2013-01-01

    Nanoparticles (NPs) are of similar size to typical cellular components and proteins, and can efficiently intrude living cells. A detailed understanding of the involved processes at the molecular level is important for developing NPs designed for selective uptake by specific cells, for example, for targeted drug delivery. In addition, this knowledge can greatly assist in the engineering of NPs that should not penetrate cells so as to avoid adverse health effects. In recent years, a wide variety of experiments have been performed to elucidate the mechanisms underlying cellular NP uptake. Here, we review some select recent studies, which are often based on fluorescence microscopy and sophisticated strategies for specific labelling of key cellular components. We address the role of the protein corona forming around NPs in biological environments, and describe recent work revealing active endocytosis mechanisms and pathways involved in their cellular uptake. Passive uptake is also discussed. The current state of knowledge is summarized, and we point to issues that still need to be addressed to further advance our understanding of cellular NP uptake. PMID:23427093

  17. Cellular uptake: lessons from supramolecular organic chemistry.

    Science.gov (United States)

    Gasparini, Giulio; Bang, Eun-Kyoung; Montenegro, Javier; Matile, Stefan

    2015-07-04

    The objective of this Feature Article is to reflect on the importance of established and emerging principles of supramolecular organic chemistry to address one of the most persistent problems in life sciences. The main topic is dynamic covalent chemistry on cell surfaces, particularly disulfide exchange for thiol-mediated uptake. Examples of boronate and hydrazone exchange are added for contrast, comparison and completion. Of equal importance are the discussions of proximity effects in polyions and counterion hopping, and more recent highlights on ring tension and ion pair-π interactions. These lessons from supramolecular organic chemistry apply to cell-penetrating peptides, particularly the origin of "arginine magic" and the "pyrenebutyrate trick," and the currently emerging complementary "disulfide magic" with cell-penetrating poly(disulfide)s. They further extend to the voltage gating of neuronal potassium channels, gene transfection, and the delivery of siRNA. The collected examples illustrate that the input from conceptually innovative chemistry is essential to address the true challenges in biology beyond incremental progress and random screening.

  18. Effects of physicochemical properties of zinc oxide nanoparticles on cellular uptake

    Science.gov (United States)

    Yu, J.; Baek, M.; Chung, H. E.; Choi, S. J.

    2011-07-01

    Zinc oxide (ZnO) nanoparticles have been used as a source of zinc, an essential trace element in food industry and also widely applied to various cosmetic products. However, there are few researches demonstrating that the cellular uptake behaviours of ZnO with respect to the physicochemical characteristics such as particle size and surface charge in human cells. In this study, we evaluated the cellular uptake of ZnO with two different sizes (20 and 70 nm) and different charges (positive and negative). Human lung epithelial cells were exposed to ZnO for a given time, and then the uptake amount of ZnO was measured with inductively coupled plasma-atomic emission spectroscopy (ICP-AES). The results showed that the smaller sized ZnO could more easily enter the cells than the larger sized ZnO. In terms of surface charge, positively charged ZnO showed high cellular uptake compared to ZnO with negative charge. The internalization pathway of positively charged ZnO nanoparticles was determined to be primarily related to the energy-dependent endocytosis. It is, therefore, concluded that the particle size and surface charge of ZnO nanoparticles are critical factors influencing on their cellular uptake. Understanding the cellular uptake behaviours of nanoparticles with respect to physicochemical properties may be important to predict their toxicity potential on human.

  19. The endocytic receptor megalin binds the iron transporting neutrophil-gelatinase-associated lipocalin with high affinity and mediates its cellular uptake

    DEFF Research Database (Denmark)

    Hvidberg, Vibeke; Jacobsen, Christian; Strong, Roland K

    2005-01-01

    in delivering iron to cells during formation of the tubular epithelial cells of the primordial kidney. No cellular receptor for NGAL has been described. We show here that megalin, a member of the low-density lipoprotein receptor family expressed in polarized epithelia, binds NGAL with high affinity, as shown...

  20. Dynamics and mechanisms of quantum dot nanoparticle cellular uptake

    Directory of Open Access Journals (Sweden)

    Telford William G

    2010-06-01

    Full Text Available Abstract Background The rapid growth of the nanotechnology industry and the wide application of various nanomaterials have raised concerns over their impact on the environment and human health. Yet little is known about the mechanism of cellular uptake and cytotoxicity of nanoparticles. An array of nanomaterials has recently been introduced into cancer research promising for remarkable improvements in diagnosis and treatment of the disease. Among them, quantum dots (QDs distinguish themselves in offering many intrinsic photophysical properties that are desirable for targeted imaging and drug delivery. Results We explored the kinetics and mechanism of cellular uptake of QDs with different surface coatings in two human mammary cells. Using fluorescence microscopy and laser scanning cytometry (LSC, we found that both MCF-7 and MCF-10A cells internalized large amount of QD655-COOH, but the percentage of endocytosing cells is slightly higher in MCF-7 cell line than in MCF-10A cell line. Live cell fluorescent imaging showed that QD cellular uptake increases with time over 40 h of incubation. Staining cells with dyes specific to various intracellular organelles indicated that QDs were localized in lysosomes. Transmission electron microscopy (TEM images suggested a potential pathway for QD cellular uptake mechanism involving three major stages: endocytosis, sequestration in early endosomes, and translocation to later endosomes or lysosomes. No cytotoxicity was observed in cells incubated with 0.8 nM of QDs for a period of 72 h. Conclusions The findings presented here provide information on the mechanism of QD endocytosis that could be exploited to reduce non-specific targeting, thereby improving specific targeting of QDs in cancer diagnosis and treatment applications. These findings are also important in understanding the cytotoxicity of nanomaterials and in emphasizing the importance of strict environmental control of nanoparticles.

  1. Cellular uptake of drug loaded spider silk particles.

    Science.gov (United States)

    Schierling, Martina B; Doblhofer, Elena; Scheibel, Thomas

    2016-09-20

    Medical therapies are often accompanied by un-wanted side-effects or, even worse, targeted cells can develop drug resistance leading to an ineffective treatment. Therefore, drug delivery systems are under investigation to lower the risk thereof. Drug carriers should be biocompatible, biodegradable, nontoxic, non-immunogenic, and should show controllable drug loading and release properties. Previous studies qualified spider silk particles as drug delivery carriers, however, cellular uptake was only tested with unloaded spider silk particles. Here, the effect of drug loading on cellular uptake of previously established spider silk-based particles made of eADF4(C16), eADF4(C16)RGD, eADF4(C16)R8G and eADF4(κ16) was investigated. Fluorescently labelled polyethylenimine was used as a model substance for loading eADF4(C16), eADF4(C16)RGD or eADF4(C16)R8G particles, and fluorescently labelled ssDNA was used for loading eADF4(κ16) particles. Upon loading polyanionic eADF4(C16) and eADF4(C16)RGD particles with polycationic polyethylenimine the cellular uptake efficiency was increased, while the uptake of eADF4(C16)R8G and polycationic eADF4(κ16) particles was decreased upon substance loading. The latter could be circumvented by coating substance-loaded eADF4(κ16) particles with an additional layer of eADF4(κ16) (layer-by-layer coating). Further, it could be shown that eADF4(C16)RGD and eADF4(κ16) uptake was based on clathrin-mediated endocytosis, whereas macropinocytosis was more important in case of eADF4(C16) and eADF4(C16)R8G particle uptake. Finally, it was confirmed that drugs, such as doxorubicin, can be efficiently delivered into and released within cells when spider silk particles were used as a carrier.

  2. Enhanced cellular uptake of size-separated lipophilic silicon nanoparticles

    Science.gov (United States)

    Kusi-Appiah, Aubrey E.; Mastronardi, Melanie L.; Qian, Chenxi; Chen, Kenneth K.; Ghazanfari, Lida; Prommapan, Plengchart; Kübel, Christian; Ozin, Geoffrey A.; Lenhert, Steven

    2017-03-01

    Specific size, shape and surface chemistry influence the biological activity of nanoparticles. In the case of lipophilic nanoparticles, which are widely used in consumer products, there is evidence that particle size and formulation influences skin permeability and that lipophilic particles smaller than 6 nm can embed in lipid bilayers. Since most nanoparticle synthetic procedures result in mixtures of different particles, post-synthetic purification promises to provide insights into nanostructure-function relationships. Here we used size-selective precipitation to separate lipophilic allyl-benzyl-capped silicon nanoparticles into monodisperse fractions within the range of 1 nm to 5 nm. We measured liposomal encapsulation and cellular uptake of the monodisperse particles and found them to have generally low cytotoxicities in Hela cells. However, specific fractions showed reproducibly higher cytotoxicity than other fractions as well as the unseparated ensemble. Measurements indicate that the cytotoxicity mechanism involves oxidative stress and the differential cytotoxicity is due to enhanced cellular uptake by specific fractions. The results indicate that specific particles, with enhanced suitability for incorporation into lipophilic regions of liposomes and subsequent in vitro delivery to cells, are enriched in certain fractions.

  3. Ceruloplasmin ferroxidase activity stimulates cellular iron uptake by a trivalent cation-specific transport mechanism

    Science.gov (United States)

    Attieh, Z. K.; Mukhopadhyay, C. K.; Seshadri, V.; Tripoulas, N. A.; Fox, P. L.

    1999-01-01

    The balance required to maintain appropriate cellular and tissue iron levels has led to the evolution of multiple mechanisms to precisely regulate iron uptake from transferrin and low molecular weight iron chelates. A role for ceruloplasmin (Cp) in vertebrate iron metabolism is suggested by its potent ferroxidase activity catalyzing conversion of Fe2+ to Fe3+, by identification of yeast copper oxidases homologous to Cp that facilitate high affinity iron uptake, and by studies of "aceruloplasminemic" patients who have extensive iron deposits in multiple tissues. We have recently shown that Cp increases iron uptake by cultured HepG2 cells. In this report, we investigated the mechanism by which Cp stimulates cellular iron uptake. Cp stimulated the rate of non-transferrin 55Fe uptake by iron-deficient K562 cells by 2-3-fold, using a transferrin receptor-independent pathway. Induction of Cp-stimulated iron uptake by iron deficiency was blocked by actinomycin D and cycloheximide, consistent with a transcriptionally induced or regulated transporter. Cp-stimulated iron uptake was completely blocked by unlabeled Fe3+ and by other trivalent cations including Al3+, Ga3+, and Cr3+, but not by divalent cations. These results indicate that Cp utilizes a trivalent cation-specific transporter. Cp ferroxidase activity was required for iron uptake as shown by the ineffectiveness of two ferroxidase-deficient Cp preparations, copper-deficient Cp and thiomolybdate-treated Cp. We propose a model in which iron reduction and subsequent re-oxidation by Cp are essential for an iron uptake pathway with high ion specificity.

  4. The role of surface charge in cellular uptake and cytotoxicity of medical nanoparticles

    Directory of Open Access Journals (Sweden)

    Fröhlich E

    2012-11-01

    Full Text Available Eleonore FröhlichCenter for Medical Research, Medical University of Graz, Graz, AustriaAbstract: Many types of nanoparticles (NPs are tested for use in medical products, particularly in imaging and gene and drug delivery. For these applications, cellular uptake is usually a prerequisite and is governed in addition to size by surface characteristics such as hydrophobicity and charge. Although positive charge appears to improve the efficacy of imaging, gene transfer, and drug delivery, a higher cytotoxicity of such constructs has been reported. This review summarizes findings on the role of surface charge on cytotoxicity in general, action on specific cellular targets, modes of toxic action, cellular uptake, and intracellular localization of NPs. Effects of serum and intercell type differences are addressed. Cationic NPs cause more pronounced disruption of plasma-membrane integrity, stronger mitochondrial and lysosomal damage, and a higher number of autophagosomes than anionic NPs. In general, nonphagocytic cells ingest cationic NPs to a higher extent, but charge density and hydrophobicity are equally important; phagocytic cells preferentially take up anionic NPs. Cells do not use different uptake routes for cationic and anionic NPs, but high uptake rates are usually linked to greater biological effects. The different uptake preferences of phagocytic and nonphagocytic cells for cationic and anionic NPs may influence the efficacy and selectivity of NPs for drug delivery and imaging.Keywords: endocytosis, plasma membrane, lysosomes, polystyrene particles, quantum dots, dendrimers

  5. Cellular Uptake of Tile-Assembled DNA Nanotubes

    Directory of Open Access Journals (Sweden)

    Samet Kocabey

    2014-12-01

    Full Text Available DNA-based nanostructures have received great attention as molecular vehicles for cellular delivery of biomolecules and cancer drugs. Here, we report on the cellular uptake of tubule-like DNA tile-assembled nanostructures 27 nm in length and 8 nm in diameter that carry siRNA molecules, folic acid and fluorescent dyes. In our observations, the DNA structures are delivered to the endosome and do not reach the cytosol of the GFP-expressing HeLa cells that were used in the experiments. Consistent with this observation, no elevated silencing of the GFP gene could be detected. Furthermore, the presence of up to six molecules of folic acid on the carrier surface did not alter the uptake behavior and gene silencing. We further observed several challenges that have to be considered when performing in vitro and in vivo experiments with DNA structures: (i DNA tile tubes consisting of 42 nt-long oligonucleotides and carrying single- or double-stranded extensions degrade within one hour in cell medium at 37 °C, while the same tubes without extensions are stable for up to eight hours. The degradation is caused mainly by the low concentration of divalent ions in the media. The lifetime in cell medium can be increased drastically by employing DNA tiles that are 84 nt long. (ii Dyes may get cleaved from the oligonucleotides and then accumulate inside the cell close to the mitochondria, which can lead to misinterpretation of data generated by flow cytometry and fluorescence microscopy. (iii Single-stranded DNA carrying fluorescent dyes are internalized at similar levels as the DNA tile-assembled tubes used here.

  6. Design of a bistable switch to control cellular uptake.

    Science.gov (United States)

    Oyarzún, Diego A; Chaves, Madalena

    2015-12-06

    Bistable switches are widely used in synthetic biology to trigger cellular functions in response to environmental signals. All bistable switches developed so far, however, control the expression of target genes without access to other layers of the cellular machinery. Here, we propose a bistable switch to control the rate at which cells take up a metabolite from the environment. An uptake switch provides a new interface to command metabolic activity from the extracellular space and has great potential as a building block in more complex circuits that coordinate pathway activity across cell cultures, allocate metabolic tasks among different strains or require cell-to-cell communication with metabolic signals. Inspired by uptake systems found in nature, we propose to couple metabolite import and utilization with a genetic circuit under feedback regulation. Using mathematical models and analysis, we determined the circuit architectures that produce bistability and obtained their design space for bistability in terms of experimentally tuneable parameters. We found an activation-repression architecture to be the most robust switch because it displays bistability for the largest range of design parameters and requires little fine-tuning of the promoters' response curves. Our analytic results are based on on-off approximations of promoter activity and are in excellent qualitative agreement with simulations of more realistic models. With further analysis and simulation, we established conditions to maximize the parameter design space and to produce bimodal phenotypes via hysteresis and cell-to-cell variability. Our results highlight how mathematical analysis can drive the discovery of new circuits for synthetic biology, as the proposed circuit has all the hallmarks of a toggle switch and stands as a promising design to control metabolic phenotypes across cell cultures. © 2015 The Author(s).

  7. Cellular uptake, subcellular distribution and toxicity of arsenic compounds in methylating and non-methylating cells.

    Science.gov (United States)

    Dopp, E; von Recklinghausen, U; Diaz-Bone, R; Hirner, A V; Rettenmeier, A W

    2010-07-01

    Arsenic is a known human carcinogen, inducing tumors of the skin, urinary bladder, liver and lung. Inorganic arsenic, existing in highly toxic trivalent and significantly less toxic pentavalent forms, is methylated to mono- and di-methylated species mainly in the liver. Due to the low toxicity of pentavalent methylated species, methylation has been regarded as a detoxification process for many years; however, recent findings of a high toxicity of trivalent methylated species have indicated the contrary. In order to elucidate the role of speciation and methylation for the toxicity and carcinogenicity of arsenic, systematic studies were conducted comparing cellular uptake, subcellular distribution as well as toxic and genotoxic effects of organic and inorganic pentavalent and trivalent arsenic species in both non-methylating (urothelial cells and fibroblasts) and methylating cells (hepatocytes). The membrane permeability was found to be dependent upon both the arsenic species and the cell type. Uptake rates of trivalent methylated species were highest and exceeded those of their pentavalent counterparts by several orders of magnitude. Non-methylating cells (urothelial cells and fibroblasts) seem to accumulate higher amounts of arsenic within the cell than the methylating hepatocytes. Cellular uptake and extrusion seem to be faster in hepatocytes than in urothelial cells. The correlation of uptake with toxicity indicates a significant role of membrane permeability towards toxicity. Furthermore, cytotoxic effects are more distinct in hepatocytes. Differential centrifugation studies revealed that elevated concentrations of arsenic are present in the ribosomal fraction of urothelial cells and in nucleic and mitochondrial fractions of hepatic cells. Further studies are needed to define the implications of the observed enrichment of arsenic in specific cellular organelles for its carcinogenic activity. This review summarizes our recent research on cellular uptake

  8. Non-specific cellular uptake of surface-functionalized quantum dots

    CERN Document Server

    Kelf, T A; Sun, J; Kim, E J; Goldys, E M; Zvyagin, A V; 10.1088/0957-4484/21/28/285105

    2010-01-01

    We report a systematic empirical study of nanoparticle internalization into cells via non-specific pathways. The nanoparticles were comprised of commercial quantum dots (QDs) that were highly visible under a fluorescence confocal microscope. Surface-modified QDs with basic biologically-significant moieties, e.g. carboxyl, amino, streptavidin were used, in combination with the surface derivatization with polyethylene glycol (PEG) in a range of immortalized cell lines. Internalization rates were derived from image analysis and a detailed discussion about the effect of nanoparticle size, charge and surface groups is presented. We find that PEG-derivatization dramatically suppresses the non-specific uptake while PEG-free carboxyl and amine functional groups promote QD internalization. These uptake variations displayed a remarkable consistency across different cell types. The reported results are important for experiments concerned with cellular uptake of surface-functionalized nanomaterials, both when non-specifi...

  9. Improved cellular uptake of functionalized single-walled carbon nanotubes

    Science.gov (United States)

    Antonelli, A.; Serafini, S.; Menotta, M.; Sfara, C.; Pierigé, F.; Giorgi, L.; Ambrosi, G.; Rossi, L.; Magnani, M.

    2010-10-01

    Single-walled carbon nanotubes (SWNTs) due to their unique structural and physicochemical properties, have been proposed as delivery systems for a variety of diagnostic and therapeutic agents. However, SWNTs have proven difficult to solubilize in aqueous solution, limiting their use in biological applications. In an attempt to improve SWNTs' solubility, biocompatibility, and to increase cell penetration we have thoroughly investigated the construction of carbon scaffolds coated with aliphatic carbon chains and phospholipids to obtain micelle-like structures. At first, oxidized SWNTs (2370 ± 30 nmol mg - 1 of SWNTs) were covalently coupled with an alcoholic chain (stearyl alcohol, C18H37OH; 816 nmol mg - 1 of SWNTs). Subsequently, SWNTs-COOC18H37 derivatives were coated with phosphatidylethanolamine (PE) or -serine (PS) phospholipids obtaining micelle-like structures. We found that cellular uptake of these constructs by phagocytic cells occurs via an endocytotic mechanism for constructs larger than 400 nm while occurs via diffusion through the cell membrane for constructs up to 400 nm. The material that enters the cell by phagocytosis is actively internalized by macrophages and localizes inside endocytotic vesicles. In contrast the material that enters the cells by diffusion is found in the cell cytosol. In conclusion, we have realized new biomimetic constructs based on alkylated SWNTs coated with phospholipids that are efficiently internalized by different cell types only if their size is lower than 400 nm. These constructs are not toxic to the cells and could now be explored as delivery systems for non-permeant cargoes.

  10. Temporal and mechanistic tracking of cellular uptake dynamics with novel surface fluorophore-bound nanodiamonds.

    Science.gov (United States)

    Schrand, Amanda M; Lin, Jonathan B; Hens, Suzanne Ciftan; Hussain, Saber M

    2011-02-01

    Nanoparticles (NPs) offer promise for a multitude of biological applications including cellular probes at the bio-interface for targeted delivery of anticancer substances, Raman and fluorescent-based imaging and directed cell growth. Nanodiamonds (NDs), in particular, have several advantages compared to other carbon-based nanomaterials - including a rich surface chemistry useful for chemical conjugation, high biocompatibility with little reactive oxygen species (ROS) generation, physical and chemical stability that affords sterilization, high surface area to volume ratio, transparency and a high index of refraction. The visualization of ND internalization into cells is possible via photoluminescence, which is produced by direct dye conjugation or high energy irradiation that creates nitrogen vacancy centers. Here, we explore the kinetics and mechanisms involved in the intracellular uptake and localization of novel, highly-stable, fluorophore-conjugated NDs. Examination in a neuronal cell line (N2A) shows ND localization to early endosomes and lysosomes with eventual release into the cytoplasm. The addition of endocytosis and exocytosis inhibitors allows for diminished uptake and increased accumulation, respectively, which further corroborates cellular behavior in response to NDs. Ultimately, the ability of the NDs to travel throughout cellular compartments of varying pH without degradation of the surface-conjugated fluorophore or alteration of cell viability over extended periods of time is promising for their use in biomedical applications as stable, biocompatible, fluorescent probes.

  11. Improved cellular uptake of functionalized single-walled carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Antonelli, A; Serafini, S; Menotta, M; Sfara, C; Pierige, F; Rossi, L; Magnani, M [Department of Biomolecular Sciences, University of Urbino ' Carlo Bo' , Via Saffi 2, 61029 Urbino (Italy); Giorgi, L; Ambrosi, G, E-mail: antonella.antonelli@uniurb.it, E-mail: sonja.serafini@erydel.com, E-mail: michele.menotta@uniurb.it, E-mail: carla.sfara@uniurb.it, E-mail: francesca.pierige@uniurb.it, E-mail: luca.giorgi@uniurb.it, E-mail: gianluca.ambrosi@uniurb.it, E-mail: luigia.rossi@uniurb.it, E-mail: mauro.magnani@uniurb.it [Department of Mathematics, Physics and Informatics, University of Urbino ' Carlo Bo' , Via S Chiara 27, 61029 Urbino (Italy)

    2010-10-22

    Single-walled carbon nanotubes (SWNTs) due to their unique structural and physicochemical properties, have been proposed as delivery systems for a variety of diagnostic and therapeutic agents. However, SWNTs have proven difficult to solubilize in aqueous solution, limiting their use in biological applications. In an attempt to improve SWNTs' solubility, biocompatibility, and to increase cell penetration we have thoroughly investigated the construction of carbon scaffolds coated with aliphatic carbon chains and phospholipids to obtain micelle-like structures. At first, oxidized SWNTs (2370 {+-} 30 nmol mg{sup -1} of SWNTs) were covalently coupled with an alcoholic chain (stearyl alcohol, C{sub 18}H{sub 37}OH; 816 nmol mg{sup -1} of SWNTs). Subsequently, SWNTs-COOC{sub 18}H{sub 37} derivatives were coated with phosphatidylethanolamine (PE) or -serine (PS) phospholipids obtaining micelle-like structures. We found that cellular uptake of these constructs by phagocytic cells occurs via an endocytotic mechanism for constructs larger than 400 nm while occurs via diffusion through the cell membrane for constructs up to 400 nm. The material that enters the cell by phagocytosis is actively internalized by macrophages and localizes inside endocytotic vesicles. In contrast the material that enters the cells by diffusion is found in the cell cytosol. In conclusion, we have realized new biomimetic constructs based on alkylated SWNTs coated with phospholipids that are efficiently internalized by different cell types only if their size is lower than 400 nm. These constructs are not toxic to the cells and could now be explored as delivery systems for non-permeant cargoes.

  12. The effect of blood protein adsorption on cellular uptake of anatase TiO2 nanoparticles.

    Science.gov (United States)

    Allouni, Zouhir E; Gjerdet, Nils R; Cimpan, Mihaela R; Høl, Paul J

    2015-01-01

    Protein adsorption onto nanoparticles (NPs) in biological fluids has emerged as an important factor when testing biological responses to NPs, as this may influence both uptake and subsequent toxicity. The aim of the present study was to quantify the adsorption of proteins onto TiO2 NPs and to test the influence on cellular uptake. The surface composition of the particles was characterized by thermal analysis and by X-ray photoelectron spectroscopy. The adsorption of three blood proteins, ie, human serum albumin (HSA), γ-globulins (Glbs), and fibrinogen (Fib), onto three types of anatase NPs of different sizes was quantified for each protein. The concentration of the adsorbed protein was measured by ultraviolet-visible spectrophotometry using the Bradford method. The degree of cellular uptake was quantified by inductivity coupled plasma mass spectroscopy, and visualized by an ultra-high resolution imaging system. The proteins were adsorbed onto all of the anatase NPs. The quantity adsorbed increased with time and was higher for the smaller particles. Fib and Glbs showed the highest affinity to TiO2 NPs, while the lowest was seen for HSA. The adsorption of proteins affected the surface charge and the hydrodynamic diameter of the NPs in cell culture medium. The degree of particle uptake was highest in protein-free medium and in the presence HSA, followed by culture medium supplemented with Glbs, and lowest in the presence of Fib. The results indicate that the uptake of anatase NPs by fibroblasts is influenced by the identity of the adsorbed protein.

  13. Cellular uptake of single-walled carbon nanotubes in 3D extracellular matrix-mimetic composite collagen hydrogels.

    Science.gov (United States)

    Mao, Hongli; Kawazoe, Naoki; Chen, Guoping

    2014-03-01

    Carbon nanotubes (CNTs) exhibit intrinsic unique physical and chemical properties that make them attractive candidates for biological and biomedicine applications. An efficient cellular uptake of CNTs is vital for many of these applications. However, most of the cellular uptake studies have been performed with a two-dimensional cell culture system. In this study, cellular uptake of single-walled carbon nanotubes (SWCNTs) was investigated by using a three-dimensional cell culture system. Bovine articular chondrocytes cultured in SWCNTs/collagen composite hydrogels maintained their proliferation capacity when compared to the culture in collagen hydrogels. Ultraviolet-visible-near-infrared spectroscopy analysis revealed a high amount of SWCNTs were internalized by cells. Confocal Raman imaging showed that most of the internalized SWCNTs were distributed in the perinuclear region. The results indicated that SWCNTs could be internalized by chondrocytes when SWCNTs were incorporated in the three-dimensional biomimetic collagen hydrogels.

  14. Radiation increases the cellular uptake of exosomes through CD29/CD81 complex formation

    Energy Technology Data Exchange (ETDEWEB)

    Hazawa, Masaharu; Tomiyama, Kenichi; Saotome-Nakamura, Ai; Obara, Chizuka; Yasuda, Takeshi; Gotoh, Takaya; Tanaka, Izumi; Yakumaru, Haruko; Ishihara, Hiroshi; Tajima, Katsushi, E-mail: tajima@nirs.go.jp

    2014-04-18

    Highlights: • Radiation increases cellular uptake of exosomes. • Radiation induces colocalization of CD29 and CD81. • Exosomes selectively bind the CD29/CD81 complex. • Radiation increases the cellular uptake of exosomes through CD29/CD81 complex formation. - Abstract: Exosomes mediate intercellular communication, and mesenchymal stem cells (MSC) or their secreted exosomes affect a number of pathophysiologic states. Clinical applications of MSC and exosomes are increasingly anticipated. Radiation therapy is the main therapeutic tool for a number of various conditions. The cellular uptake mechanisms of exosomes and the effects of radiation on exosome–cell interactions are crucial, but they are not well understood. Here we examined the basic mechanisms and effects of radiation on exosome uptake processes in MSC. Radiation increased the cellular uptake of exosomes. Radiation markedly enhanced the initial cellular attachment to exosomes and induced the colocalization of integrin CD29 and tetraspanin CD81 on the cell surface without affecting their expression levels. Exosomes dominantly bound to the CD29/CD81 complex. Knockdown of CD29 completely inhibited the radiation-induced uptake, and additional or single knockdown of CD81 inhibited basal uptake as well as the increase in radiation-induced uptake. We also examined possible exosome uptake processes affected by radiation. Radiation-induced changes did not involve dynamin2, reactive oxygen species, or their evoked p38 mitogen-activated protein kinase-dependent endocytic or pinocytic pathways. Radiation increased the cellular uptake of exosomes through CD29/CD81 complex formation. These findings provide essential basic insights for potential therapeutic applications of exosomes or MSC in combination with radiation.

  15. Improved cellular uptake of antisense Peptide nucleic acids by conjugation to a cell-penetrating Peptide and a lipid domain

    DEFF Research Database (Denmark)

    Shiraishi, Takehiko; Nielsen, Peter E

    2011-01-01

    Unaided cellular uptake of RNA interference agents such as antisense oligonucleotides and siRNA is extremely poor, and in vivo bioavailability is also limited. Thus, effective delivery strategies for such potential drugs are in high demand. Recently, a novel approach using a class of short cationic...

  16. Purification, immunotoxic effects, and cellular uptake of trichothecene mycotoxins

    Energy Technology Data Exchange (ETDEWEB)

    Witt, M.F.

    1989-01-01

    Studies were carried out to better understand how the trichothecenes alter immune function in animals and humans. Deoxynivalenol (DON) was purified for use in animal feeding studies. Dietary exposure to DON for 8 weeks altered the serum immunoglobulin profile in mice and decreased the splenic plaque-forming cell response to the antigen sheep red blood cells. The uptake of ({sup 3}H)T-2 toxin by a murine B-cell hybridoma was studied in order to learn more about the way in which trichothecenes interact with immune cells. A simple procedure was developed for the laboratory production and purification of gram quantities of crystalline DON. When Fusarium graminearum R6576 was grown on rice, concentrations of 600 to 700 ppm DON accumulated after 13 to 18 days of incubation. A DON derivative, 15-acetylDON, was also found at concentrations of 100 to 300 ppm after 7 to 10 days. DON was purified from crude culture extracts by water-saturated silica gel chromatography. Alpha-({sup 3}H)T-2 toxin of 99% chemical and radiochemical purity was prepared for use in uptake studies. Both the rate of uptake of ({sup 3}H)T-2 toxin by hybridomas and the time required for accumulation of ({sup 3}H)T-2 to reach equilibrium were proportional to the concentration of ({sup 3}H)T-2. ({sup 3}H)T-2 toxin accumulated by hybridomas was proportional to the concentration of ({sup 3}H)T-2 between 10{sup {minus}8} and 10{sup {minus}3} M. The rate of uptake of ({sup 3}H)jT-2 toxin by hybridomas was inhibited by the trichothecenes T-2 toxin, DON, verrucarin A, and roridin A, as well as the antibiotic anisomycin. The kinetics and concentration dependence of accumulation, along with the inhibition patterns, suggest that uptake of ({sup 3}H)T-2 toxin by hybridomas is mediated by binding of toxin to ribosomes.

  17. Stable fluorescence conjugation of ZnO nanoparticles and their size dependent cellular uptake.

    Science.gov (United States)

    Kim, Kyoung-Min; Kim, Min-Kyu; Paek, Hee-Jeong; Choi, Soo-Jin; Oh, Jae-Min

    2016-09-01

    We evaluated size dependent cellular uptake of ZnO nanoparticles utilizing stably introduced Cy5.5, which emits long-wavelength fluorescence. Through (3-aminopropyl)triethoxysilane modification, ZnO nanoparticles of different sizes (20 and 70nm) were functionalized with amine moiety, which was further reacted with Cy5.5-N-hydroxylsuccinimide ester to make covalently conjugated Cy5.5 dye on ZnO nanoparticles. Field emission-scanning electron microscopic images revealed that average particle size as well as particle morphology of ZnO nanoparticles were not altered by Cy5.5 conjugation. Zeta potential measurement confirmed that the positive surface charge of ZnO nanoparticles was well preserved after successive conjugation reactions. Based on infrared, ultraviolet-visible light and photoluminescence spectroscopies, we verify that the Cy5.5 was stably introduced to ZnO nanoparticles without serious aggregation. Surface conjugated Cy5.5 showed high stability in deionized water, phosphate buffered saline and cell culture medium, showing less than 2% of release during 85h. Confocal microscopy and fluorescence-activated cell sorting analysis demonstrated that smaller ZnO nanoparticles were more taken up in greater quantities by HaCaT cells. Moreover, systematic study on cellular uptake pathway showed that smaller ZnO nanoparticles were internalized into cells mainly by clathrin-mediated endocytosis, while larger ZnO nanoparticles entered cells via several pathways.

  18. Non-specific cellular uptake of surface-functionalized quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Kelf, T A; Sreenivasan, V K A; Sun, J; Goldys, E M; Zvyagin, A V [MQ Photonics Centre, Faculty of Science, Macquarie University, Sydney (Australia); Kim, E J, E-mail: azvyagin@science.mq.edu.au [Department of Science Education-Chemical Education Major, Daegu University, Gyeonbuk (Korea, Republic of)

    2010-07-16

    We report a systematic empirical study of nanoparticle internalization into cells via non-specific pathways. The nanoparticles were comprised of commercial quantum dots (QDs) that were highly visible under a fluorescence confocal microscope. Surface-modified QDs with basic biologically significant moieties, e.g. carboxyl, amino, and streptavidin, were used, in combination with surface derivatization with polyethylene glycol (PEG) for a range of immortalized cell lines. Internalization rates were derived from image analysis and a detailed discussion about the effect of nanoparticle size, charge and surface groups is presented. We find that PEG derivatization dramatically suppresses the non-specific uptake while PEG-free carboxyl and amine functional groups promote QD internalization. These uptake variations displayed a remarkable consistency across different cell types. The reported results are important for experiments concerned with cellular uptake of surface-functionalized nanomaterials, both when non-specific internalization is undesirable and when it is intended for material to be internalized as efficiently as possible.

  19. Nonendosomal cellular uptake of ligand-free, positively charged gold nanoparticles.

    Science.gov (United States)

    Taylor, Ulrike; Klein, Sabine; Petersen, Svea; Kues, Wilfried; Barcikowski, Stephan; Rath, Detlef

    2010-05-01

    Gold nanoparticles (GNPs) have interesting optical properties, such as exceptionally high quantum yields and virtually limitless photostability. Therefore, they show the potential for applications as biomarkers especially suitable for in vivo and long-term studies. The generation of GNPs using pulsed laser light rather than chemical means provides nanoparticles, which are remarkably stable in a variety of media without the need of stabilizing agents or ligands. This stabilization is achieved by partial oxidation of the gold surface resulting in positively charged GNPs. However, little is known about cellular uptake of such ligand-free nanoparticles, their intracellular fate, or cell viability after nanoparticle contact. The current work is aimed to explore the response of a bovine cell line to GNP exposure mainly using laser scanning confocal microscopy (LSCM) supported by other techniques. Cultured bovine immortalized cells (GM7373) were coincubated with GNP (average diameter 15 nm, 50 microM Au) for 2, 24, and 48 h. The detection of GNP-associated light scattering by the LSCM facilitated a clear distinction between GNP-containing cells and the negative controls. After 48 h, 75% of cells had visibly incorporated nanoparticles. No colocalization was detected with either Rab5a or Lamp1-positive structures, i.e., endosomes or lysosomes, respectivley. However, transmission electron microscope analysis of GNP-coincubated cells indicated the nanoparticles to be positioned within electron-dense structures. Coincubation at 4 degrees C did not inhibit nanoparticle uptake, suggesting diffusion as possible entrance mechanism. Although the assessment of cell morphology, membrane integrity, and apoptosis revealed no GNP-related loss of cell viability at a gold concentration of 25 microM or below, a cytotoxic effect was observed in a proliferation assay after exposing low cell numbers to 50 microM Au and above. In conclusion, this study confirmed the cellular uptake of ligand

  20. Uptake rate of cationic mitochondrial inhibitor MKT-077 determines cellular oxygen consumption change in carcinoma cells.

    Directory of Open Access Journals (Sweden)

    John L Chunta

    Full Text Available OBJECTIVE: Since tumor radiation response is oxygen-dependent, radiosensitivity can be enhanced by increasing tumor oxygenation. Theoretically, inhibiting cellular oxygen consumption is the most efficient way to increase oxygen levels. The cationic, rhodacyanine dye-analog MKT-077 inhibits mitochondrial respiration and could be an effective metabolic inhibitor. However, the relationship between cellular MKT-077 uptake and metabolic inhibition is unknown. We hypothesized that rat and human mammary carcinoma cells would take up MKT-077, causing a decrease in oxygen metabolism related to drug uptake. METHODS: R3230Ac rat breast adenocarcinoma cells were exposed to MKT-077. Cellular MKT-077 concentration was quantified using spectroscopy, and oxygen consumption was measured using polarographic electrodes. MKT-077 uptake kinetics were modeled by accounting for uptake due to both the concentration and potential gradients across the plasma and mitochondrial membranes. These kinetic parameters were used to model the relationship between MKT-077 uptake and metabolic inhibition. MKT-077-induced changes in oxygen consumption were also characterized in MDA-MB231 human breast carcinoma cells. RESULTS: Cells took up MKT-077 with a time constant of ∼1 hr, and modeling showed that over 90% of intracellular MKT-077 was bound or sequestered, likely by the mitochondria. The uptake resulted in a rapid decrease in oxygen consumption, with a time constant of ∼30 minutes. Surprisingly the change in oxygen consumption was proportional to uptake rate, not cellular concentration. MKT-077 proved a potent metabolic inhibitor, with dose-dependent decreases of 45-73% (p = 0.003. CONCLUSIONS: MKT-077 caused an uptake rate-dependent decrease in cellular metabolism, suggesting potential efficacy for increasing tumor oxygen levels and radiosensitivity in vivo.

  1. Cellular uptake of a dexamethasone palmitate-low density lipoprotein complex by macrophages and foam cells.

    Science.gov (United States)

    Tauchi, Yoshihiko; Chono, Sumio; Morimoto, Kazuhiro

    2003-04-01

    To evaluate the utility of a dexamethasone palmitate (DP)-low density lipoprotein (LDL) complex to transport drug into foam cells, the cellular uptake of DP-LDL complex by macrophages and foam cells was examined. The DP-LDL complex was prepared by incubation with DP and LDL, and the DP-LDL complex and murine macrophages were incubated. No cellular uptake of the DP-LDL complex by macrophages was found until 6 h after the start of incubation, but this gradually increased from 12 to 48 h. On the other hand, the cellular uptake of the oxidized DP-LDL complex was already apparent at 3 h after the start incubation, and then markedly increased until 48 h incubation along with that of the lipid emulsion (LE) containing DP (DP-LE). The cellular uptake of DP-LE by foam cells was significantly lower than that by macrophages. However, the cellular uptake of DP-LDL complex by foam cells was similar to that by macrophages. These findings suggest that the DP-LDL complex is oxidatively modified, and then incorporated into macrophages and foam cells through the scavenger receptor pathway. Since selective delivery of drugs into foam cells in the early stage of atherosclerosis is a useful protocol for antiatherosclerosis treatment, the DP-LDL complex appears to be a potentially useful drug-carrier complex for future antiatherosclerotic therapy.

  2. Tuning Cellular Uptake of Molecular Probes by Rational Design of Their Assembly into Supramolecular Nanoprobes.

    Science.gov (United States)

    Lock, Lye Lin; Reyes, Claudia D; Zhang, Pengcheng; Cui, Honggang

    2016-03-16

    Intracellular sensing of pathologically relevant biomolecules could provide essential information for accurate evaluation of disease staging and progression, yet the poor cellular uptake of water-soluble molecular probes limits their use as protease sensors. In other cases such as extracellular sensing, cellular uptake should be effectively inhibited. Self-assembly of molecular probes into supramolecular nanoprobes presents a potential strategy to alter their interaction mechanisms with cells to promote or reduce their cellular uptake. Here, we report on the design, synthesis, and assembly of peptide-based molecular beacons into supramolecular protease sensors of either spherical or filamentous shapes. We found that positively charged spherical nanobeacons demonstrate much higher cellular uptake efficiency than its monomeric form, thus making them most suitable for intracellular sensing of the lysosomal protease cathepsin B. Our results also suggest that assembly into filamentous nanobeacons significantly reduces their internalization by cancer cells, an important property that can be utilized for probing extracellular protease activities. These studies provide important guiding principles for rational design of supramolecular nanoprobes with tunable cellular uptake characteristics.

  3. The role of substrate topography on the cellular uptake of nanoparticles.

    Science.gov (United States)

    Huang, Changjin; Ozdemir, Tugba; Xu, Li-Chong; Butler, Peter J; Siedlecki, Christopher A; Brown, Justin L; Zhang, Sulin

    2016-04-01

    Improving targeting efficacy has been a central focus of the studies on nanoparticle (NP)-based drug delivery nanocarriers over the past decades. As cells actively sense and respond to the local physical environments, not only the NP design (e.g., size, shape, ligand density, etc.) but also the cell mechanics (e.g., stiffness, spreading, expressed receptors, etc.) affect the cellular uptake efficiency. While much work has been done to elucidate the roles of NP design for cells seeded on a flat tissue culture surface, how the local physical environments of cells mediate uptake of NPs remains unexplored, despite the widely known effect of local physical environments on cellular responses in vitro and disease states in vivo. Here, we report the active responses of human osteosarcoma cells to fibrous substrate topographies and the subsequent changes in the cellular uptake of NPs. Our experiments demonstrate that surface topography modulates cellular uptake efficacy by mediating cell spreading and membrane mechanics. The findings provide a concrete example of the regulative role of the physical environments of cells on cellular uptake of NPs, therefore advancing the rational design of NPs for enhanced drug delivery in targeted cancer therapy.

  4. Towards magnetic-enhanced cellular uptake, MRI and chemotherapeutics delivery by magnetic mesoporous silica nanoparticles.

    Science.gov (United States)

    Liu, Qian; Zhang, Jixi; Xia, Weiliang; Gu, Hongchen

    2012-10-01

    A type of nanoparticle with three functional modalities was prepared with the aim of providing a multifunctional drug delivery system. The nanoparticle was 50 nm in size, with 2.7 nm mesopores and a magnetic nanocrystal core, which was further doped with FITC to enable the tracking of cellular uptake. We demonstrated that the internalization of the nanoparticles in tumor cells could be enhanced by applying an external magnetic field and furthermore, this kind of nanoparticle could be used in magnetic targeted drug delivery. With high transverse relaxivity, the magnetic nanoparticles shortened proton relaxation time and induced high magnetic resonance imaging contrast in tumor cells. Studies on anticancer drug loading and delivery capacity of anticancer drugs also showed that this type of nanoparticles could load water-soluble doxorubicin, and produce a prominent inhibitive effect against tumor cells. Taken together, the presented nanoparticles could become a promising agent in cancer theranostics.

  5. Dimerization of a cell-penetrating peptide leads to enhanced cellular uptake and drug delivery

    Directory of Open Access Journals (Sweden)

    Jan Hoyer

    2012-10-01

    Full Text Available Over the past 20 years, cell-penetrating peptides (CPPs have gained tremendous interest due to their ability to deliver a variety of therapeutically active molecules that would otherwise be unable to cross the cellular membrane due to their size or hydrophilicity. Recently, we reported on the identification of a novel CPP, sC18, which is derived from the C-terminus of the 18 kDa cationic antimicrobial protein. Furthermore, we demonstrated successful application of sC18 for the delivery of functionalized cyclopentadienyl manganese tricarbonyl (cymantrene complexes to tumor cell lines, inducing high cellular toxicity. In order to increase the potential of the organometallic complexes to kill tumor cells, we were looking for a way to enhance cellular uptake. Therefore, we designed a branched dimeric variant of sC18, (sC182, which was shown to have a dramatically improved capacity to internalize into various cell lines, even primary cells, using flow cytometry and fluorescence microscopy. Cell viability assays indicated increased cytotoxicity of the dimer presumably caused by membrane leakage; however, this effect turned out to be dependent on the specific cell type. Finally, we could show that conjugation of a functionalized cymantrene with (sC182 leads to significant reduction of its IC50 value in tumor cells compared to the respective sC18 conjugate, proving that dimerization is a useful method to increase the drug-delivery potential of a cell-penetrating peptide.

  6. Physical characterization and cellular uptake of propylene glycol liposomes in vitro.

    Science.gov (United States)

    Zhang, Lu; Lu, Cui-Tao; Li, Wen-Feng; Cheng, Jin-Guo; Tian, Xin-Qiao; Zhao, Ying-Zheng; Li, Xing; Lv, Hai-Feng; Li, Xiao-Kun

    2012-03-01

    In order to facilitate the intracellular delivery of therapeutic agents, a new type of liposomes-propylene glycol liposomes (PGL) were prepared, and their cell translocation capability in vitro was examined. PGL was composed of hydrogenated egg yolk lecithin, cholesterol, Tween 80 and propylene glycol. With curcumin as a model drug, characterization of loaded PGL were measured including surface morphology, particle size, elasticity, encapsulation efficiency of curcumin and physical stability. Using curcumin-loaded conventional liposomes as the control, the cell uptake capacity of loaded PGL was evaluated by detection the concentration of curcumin in cytoplasm. Compared with conventional liposomes, PGL exhibited such advantages as high encapsulation efficiency (92.74% ± 3.44%), small particle size (182.4 ± 89.2 nm), high deformability (Elasticity index = 48.6) and high stability both at normal temperature (about 25°C) and low temperature at 4°C. From cell experiment in vitro, PGL exhibited the highest uptake of curcumin compared with that of conventional liposomes and free curcumin solution. Little toxic effect on cellular viability was observed by methyl tetrazolium assay. In conclusion, PGL might be developed as a promising intracellular delivery carrier for therapeutic agents.

  7. Cytotoxicity and cellular uptake of ZnS:Mn nanocrystals biofunctionalized with chitosan and aminoacids

    Digital Repository Service at National Institute of Oceanography (India)

    Augustine, M.S.; Anas, A.; Das, A.V.; Sreekanth, S.; Jayalekshmi, S.

    S:Mn nanoparticles. Synthesis of aminoacid capped ZnS:Mn nanoparticles The aminoacid capped manganese doped zinc sulphide nano-particles were sythesized by the same method described as above. The chemicals used were, Zn (CH3COO)2_2H2O (Merck Specialities Private...-compatible at this concentration. L-arginine is also found to be an efficient capping agent to make ZnS:Mn nano-crystals bio-compatible for 1nM concentration. In vitro cellular uptake study in HEK293T cells In vitro cellular uptake study in HEK293T cells was carried out using...

  8. Preparation and Characterization of Mucoadhesive Nanoparticles for Enhancing Cellular Uptake of Coenzyme Q10.

    Science.gov (United States)

    Lee, Ji-Soo; Suh, Ji Woon; Kim, Eun Suh; Lee, Hyeon Gyu

    2017-10-02

    The mucoadhesive nanoparticles (NPs) for oral delivery of coenzyme Q10 (CoQ10) were prepared using natural mucoadhesive polysaccharides, chitosan (CS), and dextran sulfate sodium salt (DS) in order to improve the solubility, cellular uptake, and thermo- and photostability of CoQ10. CoQ10-loaded NPs were prepared in the range of 340-450 nm with an entrapment efficiency of 60-98%. The mucoadhesiveness and cellular uptake of NPs were evaluated by measuring the amount of mucin adsorbed on NPs and CoQ10 absorbed in Caco-2 cells, respectively. CS/DS NPs had higher mucoadhesive strength than CS/sodium triphosphate pentabasic NPs (control group). Moreover, the solubility, cellular uptake, thermo- and photostability of CS/DS NPs were significantly improved compared with non-nanoencapsulated free CoQ10. Particularly, CS/DS NPs prepared with 0.5 mg/mL of CS and DS produced the highest mucoadhesiveness, solubility, cellular uptake, and cellular antioxidant activity. Thus, mucoadhesive CS/DS NPs may be an effective oral delivery platform for improving bioavailability of CoQ10.

  9. Photoluminescent Gold Nanoclusters in Cancer Cells: Cellular Uptake, Toxicity, and Generation of Reactive Oxygen Species.

    Science.gov (United States)

    Matulionyte, Marija; Dapkute, Dominyka; Budenaite, Laima; Jarockyte, Greta; Rotomskis, Ricardas

    2017-02-10

    In recent years, photoluminescent gold nanoclusters have attracted considerable interest in both fundamental biomedical research and practical applications. Due to their ultrasmall size, unique molecule-like optical properties, and facile synthesis gold nanoclusters have been considered very promising photoluminescent agents for biosensing, bioimaging, and targeted therapy. Yet, interaction of such ultra-small nanoclusters with cells and other biological objects remains poorly understood. Therefore, the assessment of the biocompatibility and potential toxicity of gold nanoclusters is of major importance before their clinical application. In this study, the cellular uptake, cytotoxicity, and intracellular generation of reactive oxygen species (ROS) of bovine serum albumin-encapsulated (BSA-Au NCs) and 2-(N-morpholino) ethanesulfonic acid (MES)capped photoluminescent gold nanoclusters (Au-MES NCs) were investigated. The results showed that BSA-Au NCs accumulate in cells in a similar manner as BSA alone, indicating an endocytotic uptake mechanism while ultrasmall Au-MES NCs were distributed homogeneously throughout the whole cell volume including cell nucleus. The cytotoxicity of BSA-Au NCs was negligible, demonstrating good biocompatibility of such BSA-protected Au NCs. In contrast, possibly due to ultrasmall size and thin coating layer, Au-MES NCs exhibited exposure time-dependent high cytotoxicity and higher reactivity which led to highly increased generation of reactive oxygen species. The results demonstrate the importance of the coating layer to biocompatibility and toxicity of ultrasmall photoluminescent gold nanoclusters.

  10. Photoluminescent Gold Nanoclusters in Cancer Cells: Cellular Uptake, Toxicity, and Generation of Reactive Oxygen Species

    Science.gov (United States)

    Matulionyte, Marija; Dapkute, Dominyka; Budenaite, Laima; Jarockyte, Greta; Rotomskis, Ricardas

    2017-01-01

    In recent years, photoluminescent gold nanoclusters have attracted considerable interest in both fundamental biomedical research and practical applications. Due to their ultrasmall size, unique molecule-like optical properties, and facile synthesis gold nanoclusters have been considered very promising photoluminescent agents for biosensing, bioimaging, and targeted therapy. Yet, interaction of such ultra-small nanoclusters with cells and other biological objects remains poorly understood. Therefore, the assessment of the biocompatibility and potential toxicity of gold nanoclusters is of major importance before their clinical application. In this study, the cellular uptake, cytotoxicity, and intracellular generation of reactive oxygen species (ROS) of bovine serum albumin-encapsulated (BSA-Au NCs) and 2-(N-morpholino) ethanesulfonic acid (MES)-capped photoluminescent gold nanoclusters (Au-MES NCs) were investigated. The results showed that BSA-Au NCs accumulate in cells in a similar manner as BSA alone, indicating an endocytotic uptake mechanism while ultrasmall Au-MES NCs were distributed homogeneously throughout the whole cell volume including cell nucleus. The cytotoxicity of BSA-Au NCs was negligible, demonstrating good biocompatibility of such BSA-protected Au NCs. In contrast, possibly due to ultrasmall size and thin coating layer, Au-MES NCs exhibited exposure time-dependent high cytotoxicity and higher reactivity which led to highly increased generation of reactive oxygen species. The results demonstrate the importance of the coating layer to biocompatibility and toxicity of ultrasmall photoluminescent gold nanoclusters. PMID:28208642

  11. Uptake Rate of Cationic Mitochondrial Inhibitor MKT-077 Determines Cellular Oxygen Consumption Change in Carcinoma Cells

    OpenAIRE

    John L Chunta; Vistisen, Kerry S.; Zeinab Yazdi; Braun, Rod D.

    2012-01-01

    OBJECTIVE: Since tumor radiation response is oxygen-dependent, radiosensitivity can be enhanced by increasing tumor oxygenation. Theoretically, inhibiting cellular oxygen consumption is the most efficient way to increase oxygen levels. The cationic, rhodacyanine dye-analog MKT-077 inhibits mitochondrial respiration and could be an effective metabolic inhibitor. However, the relationship between cellular MKT-077 uptake and metabolic inhibition is unknown. We hypothesized that rat and human mam...

  12. Cellular uptake of magnetite nanoparticles enhanced by NdFeB magnets in staggered arrangement

    Science.gov (United States)

    Lu, Yi-Ching; Chang, Fan-Yu; Tu, Shu-Ju; Chen, Jyh-Ping; Ma, Yunn-Hwa

    2017-04-01

    Magnetic force may greatly enhance uptake of magnetic nanoparticles (MNPs) by cultured cells; however, the effects of non-uniformity of magnetic field/ magnetic gradient on MNP internalization in culture has not been elucidated. Cellular uptake of polyacrylic acid coated-MNP by LN229 cells was measured with cylindrical NdFeB magnets arranged in a staggered pattern. The magnetic field generated by placing a magnet underneath (H-field) elicited a homogenous distribution of MNPs on the cells in culture; whereas the field without magnet underneath (L-field) resulted in MNP distribution along the edge of the wells. Cell-associated MNP (MNPcell) appeared to be magnetic field- and concentration-dependent. In H-field, MNPcell reached plateau within one hour of exposure to MNP with only one-min application of the magnetic force in the beginning of incubation; continuous presence of the magnet for 2 h did not further increase MNPcell, suggesting that magnetic force-induced uptake may be primarily contributed to enhanced MNP sedimentation. Although MNP distribution was much inhomogeneous in L-field, averaged MNPcell in the L-field may reach as high as 80% of that in H-field during 1-6 h incubation, suggesting high capacity of MNP internalization. In addition, no significant difference was observed in MNPcell analyzed by flow cytometry with the application of H-field of staggered plate vs. filled magnet plate. Therefore, biological variation may dominate MNP internalization even under relatively uniformed magnetic field; whereas non-uniformed magnetic field may serve as a model for tumor targeting with MNPs in vivo.

  13. A surface-adaptive nanocarrier to prolong circulation time and enhance cellular uptake.

    Science.gov (United States)

    Cheng, Tangjian; Ma, Rujiang; Zhang, Yumin; Ding, Yuxun; Liu, Jinjian; Ou, Hanlin; An, Yingli; Liu, Jianfeng; Shi, Linqi

    2015-10-18

    Based on the protonation/deprotonation of poly(β-amino ester) (PAE), mixed-shell micelles (MSMs) with adaptive surfaces could rapidly and reversibly change surface properties to prolong circulation time in blood (pH 7.4) and enhance cellular uptake at tumor sites (pH 6.5).

  14. Stapling monomeric GCN4 peptides allows for DNA binding and enhanced cellular uptake.

    Science.gov (United States)

    Iyer, Abhishek; Van Lysebetten, Dorien; Ruiz García, Yara; Louage, Benoit; De Geest, Bruno G; Madder, Annemieke

    2015-04-01

    The basic DNA recognition region of the GCN4 protein comprising 23 amino acids has been modified to contain two optimally positioned cysteines which have been linked and stapled using cross-linkers of suitable lengths. This results in stapled peptides with a stabilized α-helical conformation which allows for DNA binding and concurrent enhancement of cellular uptake.

  15. Cellular uptake of folate-conjugated lipophilic superparamagnetic iron oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Woo, Kyoungja [Nano-Materials Research Center, Korea Institute of Science and Technology, P. O. Box 131, Cheongryang, Seoul 130-650 (Korea, Republic of)], E-mail: kjwoo@kist.re.kr; Moon, Jihyung [Nano-Materials Research Center, Korea Institute of Science and Technology, P. O. Box 131, Cheongryang, Seoul 130-650 (Korea, Republic of); Department of Materials Science and Engineering, Korea University, 5-1, Anam-Dong, Sungbook-Ku, Seoul, 136-713 (Korea, Republic of); Choi, Kyu-Sil [Division of Molecular Imaging, Samsung Biomedical Research Institute, Samsung Medical Center, 50 Ilwon-Dong, Kangnam-Ku, Seoul 135-710 (Korea, Republic of); Seong, Tae-Yeon [Department of Materials Science and Engineering, Korea University, 5-1, Anam-Dong, Sungbook-Ku, Seoul, 136-713 (Korea, Republic of); Yoon, Kwon-Ha [Institute for Radiological Imaging Science, Wonkwang University School of Medicine, 344-2, Shinyong, Iksan, Jeonbuk 570-749 (Korea, Republic of)

    2009-05-15

    We prepared five folate-conjugated lipophilic superparamagnetic iron oxide nanoparticles (F{sub 5}-Liposuperparamagnetic iron oxide nanoparticles(SPIONs), 5.5 and 11 nm) and investigated their cellular uptake with KB cells, which is one of the representative folate-receptor over-expressing human epidermoid carcinoma cells, using MRI. The cellular uptake tests with the respective 5.5 and 11 nm F{sub 5}-LipoSPIONs at a fixed particle concentration showed appreciable amount of receptor-mediated uptakes and the specificity was higher in 5.5 nm SPIONs, due to its higher folic acid (FA) density, without inhibition. However, the numbers of the particles taken up under FA inhibition were similar, irrespective of their sizes.

  16. Surface Charge Convertible and Biodegradable Synthetic Zwitterionic Nanoparticles for Enhancing Cellular Drug Uptake.

    Science.gov (United States)

    Wu, Luyan; Ni, Caihua; Zhang, Liping; Shi, Gang; Bai, Xue; Zhou, Yamin; He, Fei

    2016-03-01

    To enhance drug cellular uptake, a biodegradable terpolymer is synthesized using taurine, N,N-Bis (acryloyl) cystamine, and dodecylamine as raw materials by Michael addition terpolymerization. The terpolymer is transformed to zwitterionic nanoparticles (NPs) through self-assembly. The surface charge of the NPs is convertible from negative at pH 7.4 to positive at pH 6.5, which endows the NPs' excellent nonfouling feature in bloodstream and effective uptake in tumor cells. The NPs display varied morphologies from solid micelles to polymersomes and nanorods depending on molar ratios of the structural units involved. The NPs can be biodegraded in l-glutathione (GSH) solution due to the split of disulfide bonds in main chains of the terpolymers. The NPs demonstrate good pH/reducing responsiveness in drug delivery and can be potentially used as anticancer drug vehicles for enhancement of cellular uptake of anticancer drug.

  17. Antiproliferative Activity and Cellular Uptake of Evodiamine and Rutaecarpine Based on 3D Tumor Models

    Directory of Open Access Journals (Sweden)

    Hui Guo

    2016-07-01

    Full Text Available Evodiamine (EVO and rutaecarpine (RUT are promising anti-tumor drug candidates. The evaluation of the anti-proliferative activity and cellular uptake of EVO and RUT in 3D multicellular spheroids of cancer cells would better recapitulate the native situation and thus better reflect an in vivo response to the treatment. Herein, we employed the 3D culture of MCF-7 and SMMC-7721 cells based on hanging drop method and evaluated the anti-proliferative activity and cellular uptake of EVO and RUT in 3D multicellular spheroids, and compared the results with those obtained from 2D monolayers. The drugs’ IC50 values were significantly increased from the range of 6.4–44.1 μM in 2D monolayers to 21.8–138.0 μM in 3D multicellular spheroids, which may be due to enhanced mass barrier and reduced drug penetration in 3D models. The fluorescence of EVO and RUT was measured via fluorescence spectroscopy and the cellular uptake of both drugs was characterized in 2D tumor models. The results showed that the cellular uptake concentrations of RUT increased with increasing drug concentrations. However, the EVO concentrations uptaken by the cells showed only a small change with increasing drug concentrations, which may be due to the different solubility of EVO and Rut in solvents. Overall, this study provided a new vision of the anti-tumor activity of EVO and RUT via 3D multicellular spheroids and cellular uptake through the fluorescence of compounds.

  18. Functionalization and cellular uptake of boron carbide nanoparticles

    DEFF Research Database (Denmark)

    Mortensen, M. W.; Björkdahl, O.; Sørensen, P. G.;

    2006-01-01

    In this paper we present surface modification strategies of boron carbide nanoparticles, which allow for bioconjugation of the transacting transcriptional activator (TAT) peptide and fluorescent dyes. Coated nanoparticles can be translocated into murine EL4 thymoma cells and B16 F10 malignant...... melanoma cells in amounts as high as 0.3 wt. % and 1 wt. %, respectively. Neutron irradiation of a test system consisting of untreated B16 cells mixed with B16 cells loaded with boron carbide nanoparticles were found to inhibit the proliferative capacity of untreated cells, showing that cells loaded...... with boron-containing nanoparticles can hinder the growth of neighboring cells upon neutron irradiation. This could provide the first step toward a T cell-guided boron neutron capture therapy....

  19. Functionalization and cellular uptake of boron carbide nanoparticles

    DEFF Research Database (Denmark)

    Mortensen, M. W.; Björkdahl, O.; Sørensen, P. G.

    2006-01-01

    In this paper we present surface modification strategies of boron carbide nanoparticles, which allow for bioconjugation of the transacting transcriptional activator (TAT) peptide and fluorescent dyes. Coated nanoparticles can be translocated into murine EL4 thymoma cells and B16 F10 malignant...... melanoma cells in amounts as high as 0.3 wt. % and 1 wt. %, respectively. Neutron irradiation of a test system consisting of untreated B16 cells mixed with B16 cells loaded with boron carbide nanoparticles were found to inhibit the proliferative capacity of untreated cells, showing that cells loaded...... with boron-containing nanoparticles can hinder the growth of neighboring cells upon neutron irradiation. This could provide the first step toward a T cell-guided boron neutron capture therapy....

  20. Elucidating the Function of Penetratin and a Static Magnetic Field in Cellular Uptake of Magnetic Nanoparticles

    Directory of Open Access Journals (Sweden)

    David Stirling

    2013-02-01

    Full Text Available Nanotechnology plays an increasingly important role in the biomedical arena. In particular, magnetic nanoparticles (mNPs have become important tools in molecular diagnostics, in vivo imaging and improved treatment of disease, with the ultimate aim of producing a more theranostic approach. Due to their small sizes, the nanoparticles can cross most of the biological barriers such as the blood vessels and the blood brain barrier, thus providing ubiquitous access to most tissues. In all biomedical applications maximum nanoparticle uptake into cells is required. Two promising methods employed to this end include functionalization of mNPs with cell-penetrating peptides to promote efficient translocation of cargo into the cell and the use of external magnetic fields for enhanced delivery. This study aimed to compare the effect of both penetratin and a static magnetic field with regards to the cellular uptake of 200 nm magnetic NPs and determine the route of uptake by both methods. Results demonstrated that both techniques increased particle uptake, with penetratin proving more cell specific. Clathrin- medicated endocytosis appeared to be responsible for uptake as shown via PCR and western blot, with Pitstop 2 (known to selectively block clathrin formation blocking particle uptake. Interestingly, it was further shown that a magnetic field was able to reverse or overcome the blocking, suggesting an alternative route of uptake.

  1. Isotopic discrimination of zinc during root-uptake and cellular incorporation in higher plants

    Science.gov (United States)

    Mason, T. F.; Weiss, D. J.; Coles, B. J.; Horstwood, M.; Parrish, R. R.; Zhao, F. J.; Kirk, G. J.

    2003-04-01

    shoot were found. From these results it is apparent that two or more processes are controlling the zinc isotopic composition of the plant materials: one that favours isotopically heavy zinc (which we tentatively link to isotopic partitioning between species within the nutrient/soil-solutions), and one that favours isotopically light zinc (which is consistent with biologically-mediated uptake and cellular incorporation by plants). The lack of isotopic variability in the zinc-deficient soil system may indicate the predominance of a high-affinity zinc uptake pathway that is not isotopically selective.

  2. Glycosaminoglycan-functionalized poly-lactide-co-glycolide nanoparticles: synthesis, characterization, cytocompatibility, and cellular uptake

    Directory of Open Access Journals (Sweden)

    Lamichhane SP

    2015-01-01

    Full Text Available Surya P Lamichhane,1 Neha Arya,1,2 Nirdesh Ojha,3 Esther Kohler,1 V Prasad Shastri1,2,41Institute for Macromolecular Chemistry, University of Freiburg, Freiburg, 2Helmholtz Virtual Institute on “Multifunctional Biomaterials for Medicine”, 3Laboratory for Process Technology, Department of Microsystems Engineering, University of Freiburg, Freiburg, 4Centre for Biological Signaling Studies (BIOSS, University of Freiburg, Freiburg, GermanyAbstract: The efficient delivery of chemotherapeutics to the tumor via nanoparticle (NP-based delivery systems remains a significant challenge. This is compounded by the fact that the tumor is highly dynamic and complex environment composed of a plurality of cell types and extracellular matrix. Since glycosaminoglycan (GAG production is altered in many diseases (or pathologies, NPs bearing GAG moieties on the surface may confer some unique advantages in interrogating the tumor microenvironment. In order to explore this premise, in the study reported here poly-lactide-co-glycolide (PLGA NPs in the range of 100–150 nm bearing various proteoglycans were synthesized by a single-step nanoprecipitation and characterized. The surface functionalization of the NPs with GAG moieties was verified using zeta potential measurements and X-ray photoelectron spectroscopy. To establish these GAG-bearing NPs as carriers of therapeutics, cellular toxicity assays were undertaken in lung epithelial adenocarcinoma (A549 cells, human pulmonary microvascular endothelial cells (HPMEC, and renal proximal tubular epithelial cells. In general NPs were well tolerated over a wide concentration range (100–600 µg/mL by all cell types and were taken up to appreciable extents without any adverse cell response in A549 cells and HPMEC. Further, GAG-functionalized PLGA NPs were taken up to different extents in A459 cells and HPMEC. In both cell systems, the uptake of heparin-modified NPs was diminished by 50%–65% in comparison to that of

  3. Direct translocation as major cellular uptake for CADY self-assembling peptide-based nanoparticles.

    Directory of Open Access Journals (Sweden)

    Anna Rydström

    Full Text Available Cell penetrating peptides constitute a potent approach to overcome the limitations of in vivo siRNA delivery. We recently proposed a peptide-based nanoparticle system, CADY, for efficient delivery of siRNA into numerous cell lines. CADY is a secondary amphipathic peptide that forms stable complexes with siRNA thereby improving both their cellular uptake and biological response. With the aim of understanding the cellular uptake mechanism of CADY:siRNA complexes, we have combined biochemical, confocal and electron microscopy approaches. In the present work, we provide evidence that the major route for CADY:siRNA cellular uptake involves direct translocation through the membrane but not the endosomal pathway. We have demonstrated that CADY:siRNA complexes do not colocalize with most endosomal markers and remain fully active in the presence of inhibitors of the endosomal pathway. Moreover, neither electrostatic interactions with cell surface heparan sulphates nor membrane potential are essential for CADY:siRNA cell entry. In contrast, we have shown that CADY:siRNA complexes clearly induce a transient cell membrane permeabilization, which is rapidly restored by cell membrane fluidity. Therefore, we propose that direct translocation is the major gate for cell entry of CADY:siRNA complexes. Membrane perturbation and uptake are driven mainly by the ability of CADY to interact with phospholipids within the cell membrane, followed by rapid localization of the complex in the cytoplasm, without affecting cell integrity or viability.

  4. Ketoconazole inhibits the cellular uptake of anandamide via inhibition of FAAH at pharmacologically relevant concentrations.

    Directory of Open Access Journals (Sweden)

    Emmelie Björklund

    Full Text Available BACKGROUND: The antifungal compound ketoconazole has, in addition to its ability to interfere with fungal ergosterol synthesis, effects upon other enzymes including human CYP3A4, CYP17, lipoxygenase and thromboxane synthetase. In the present study, we have investigated whether ketoconazole affects the cellular uptake and hydrolysis of the endogenous cannabinoid receptor ligand anandamide (AEA. METHODOLOGY/PRINCIPAL FINDINGS: The effects of ketoconazole upon endocannabinoid uptake were investigated using HepG2, CaCo2, PC-3 and C6 cell lines. Fatty acid amide hydrolase (FAAH activity was measured in HepG2 cell lysates and in intact C6 cells. Ketoconazole inhibited the uptake of AEA by HepG2 cells and CaCo2 cells with IC50 values of 17 and 18 µM, respectively. In contrast, it had modest effects upon AEA uptake in PC-3 cells, which have a low expression of FAAH. In cell-free HepG2 lysates, ketoconazole inhibited FAAH activity with an IC50 value (for the inhibitable component of 34 µM. CONCLUSIONS/SIGNIFICANCE: The present study indicates that ketoconazole can inhibit the cellular uptake of AEA at pharmacologically relevant concentrations, primarily due to its effects upon FAAH. Ketoconazole may be useful as a template for the design of dual-action FAAH/CYP17 inhibitors as a novel strategy for the treatment of prostate cancer.

  5. Quantifying the cellular uptake of semiconductor quantum dot nanoparticles by analytical electron microscopy.

    Science.gov (United States)

    Hondow, Nicole; Brown, M Rowan; Starborg, Tobias; Monteith, Alexander G; Brydson, Rik; Summers, Huw D; Rees, Paul; Brown, Andy

    2016-02-01

    Semiconductor quantum dot nanoparticles are in demand as optical biomarkers yet the cellular uptake process is not fully understood; quantification of numbers and the fate of internalized particles are still to be achieved. We have focussed on the characterization of cellular uptake of quantum dots using a combination of analytical electron microscopies because of the spatial resolution available to examine uptake at the nanoparticle level, using both imaging to locate particles and spectroscopy to confirm identity. In this study, commercially available quantum dots, CdSe/ZnS core/shell particles coated in peptides to target cellular uptake by endocytosis, have been investigated in terms of the agglomeration state in typical cell culture media, the traverse of particle agglomerates across U-2 OS cell membranes during endocytosis, the merging of endosomal vesicles during incubation of cells and in the correlation of imaging flow cytometry and transmission electron microscopy to measure the final nanoparticle dose internalized by the U-2 OS cells. We show that a combination of analytical transmission electron microscopy and serial block face scanning electron microscopy can provide a comprehensive description of the internalization of an initial exposure dose of nanoparticles by an endocytically active cell population and how the internalized, membrane bound nanoparticle load is processed by the cells. We present a stochastic model of an endosome merging process and show that this provides a data-driven modelling framework for the prediction of cellular uptake of engineered nanoparticles in general. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.

  6. Plin2 inhibits cellular glucose uptake through interactions with SNAP23, a SNARE complex protein.

    Directory of Open Access Journals (Sweden)

    Subramanian Senthivinayagam

    Full Text Available Although a link between excess lipid storage and aberrant glucose metabolism has been recognized for many years, little is known what role lipid storage droplets and associated proteins such as Plin2 play in managing cellular glucose levels. To address this issue, the influence of Plin2 on glucose uptake was examined using 2-NBD-Glucose and [(3H]-2-deoxyglucose to show that insulin-mediated glucose uptake was decreased 1.7- and 1.8-fold, respectively in L cell fibroblasts overexpressing Plin2. Conversely, suppression of Plin2 levels by RNAi-mediated knockdown increased 2-NBD-Glucose uptake several fold in transfected L cells and differentiated 3T3-L1 cells. The effect of Plin2 expression on proteins involved in glucose uptake and transport was also examined. Expression of the SNARE protein SNAP23 was increased 1.6-fold while levels of syntaxin-5 were decreased 1.7-fold in Plin2 overexpression cells with no significant changes observed in lipid droplet associated proteins Plin1 or FSP27 or with the insulin receptor, GLUT1, or VAMP4. FRET experiments revealed a close proximity of Plin2 to SNAP23 on lipid droplets to within an intramolecular distance of 51 Å. The extent of targeting of SNAP23 to lipid droplets was determined by co-localization and co-immunoprecipitation experiments to show increased partitioning of SNAP23 to lipid droplets when Plin2 was overexpressed. Taken together, these results suggest that Plin2 inhibits glucose uptake by interacting with, and regulating cellular targeting of SNAP23 to lipid droplets. In summary, the current study for the first time provides direct evidence for the role of Plin2 in mediating cellular glucose uptake.

  7. Carotenoid and polyphenol bioaccessibility and cellular uptake from plum and cabbage varieties.

    Science.gov (United States)

    Kaulmann, Anouk; André, Christelle M; Schneider, Yves-Jacques; Hoffmann, Lucien; Bohn, Torsten

    2016-04-15

    Plum and cabbage are rich in carotenoids and polyphenols. However, their bioactivity depends on their release and intestinal uptake. Four varieties of Brassicaceae (Duchy, Scots Kale, Kale, Kalorama) and Prunus (Cherry Plum, Plum 620, Ersinger, Italian Plum) were studied; bioaccessibility following in vitro digestion, cellular uptake (Caco-2 vs. co-culture cell model: Caco-2:HT-29-MTX (90:10%) and colonic fermentation were determined for carotenoids/polyphenols; the influence of certain kitchen preparations was likewise studied. Carotenoids were non-significantly influenced by the latter, while for polyphenols, boiling and steaming significantly reduced total phenolics (pfuture.

  8. Naringenin-loaded solid lipid nanoparticles: preparation, controlled delivery, cellular uptake, and pulmonary pharmacokinetics

    Directory of Open Access Journals (Sweden)

    Ji P

    2016-03-01

    Full Text Available Peng Ji, Tong Yu, Ying Liu, Jie Jiang, Jie Xu, Ying Zhao, Yanna Hao, Yang Qiu, Wenming Zhao, Chao WuCollege of Pharmacy, Liaoning Medical University, Jinzhou, Liaoning Province, People’s Republic of ChinaAbstract: Naringenin (NRG, a flavonoid compound, had been reported to exhibit extensive pharmacological effects, but its water solubility and oral bioavailability are only ~46±6 µg/mL and 5.8%, respectively. The purpose of this study is to design and develop NRG-loaded solid lipid nanoparticles (NRG-SLNs to provide prolonged and sustained drug release, with improved stability, involving nontoxic nanocarriers, and increase the bioavailability by means of pulmonary administration. Initially, a group contribution method was used to screen the best solid lipid matrix for the preparation of SLNs. NRG-SLNs were prepared by an emulsification and low-temperature solidification method and optimized using an orthogonal experiment approach. The morphology was examined by transmission electron microscopy, and the particle size and zeta potential were determined by photon correlation spectroscopy. The total drug content of NRG-SLNs was measured by high-performance liquid chromatography, and the encapsulation efficiency (EE was determined by Sephadex gel-50 chromatography and high-performance liquid chromatography. The in vitro NRG release studies were carried out using a dialysis bag. The best cryoprotectant to prepare NRG-SLN lyophilized powder for future structural characterization was selected using differential scanning calorimetry, powder X-ray diffraction, and Fourier transform infrared spectroscopy. The short-term stability, 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyl-tetrazolium bromide (MTT assay, cellular uptake, and pharmacokinetics in rats were studied after pulmonary administration of NRG-SLN lyophilized powder. Glycerol monostearate was selected to prepare SLNs, and the optimal formulation of NRG-SLNs was spherical in shape, with a particle

  9. Scavenger receptor B1 facilitates macrophage uptake of silver nanoparticles and cellular activation

    Energy Technology Data Exchange (ETDEWEB)

    Aldossari, Abdullah A.; Shannahan, Jonathan H. [The University of Colorado Anschutz Medical Campus, Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences (United States); Podila, Ramakrishna [Clemson University, Department of Physics and Astronomy (United States); Brown, Jared M., E-mail: jared.brown@ucdenver.edu [The University of Colorado Anschutz Medical Campus, Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences (United States)

    2015-07-15

    Due to increased use of silver nanoparticles (AgNPs) for their antimicrobial activity, concerns have risen regarding potential adverse human health effects. Scavenger receptor B1 (SR-B1), a major receptor for high-density lipoprotein (HDL), is expressed by macrophages and has also been reported to play a role in recognition of negatively charged particles. We, therefore, hypothesized that SR-B1 mediates macrophage uptake of AgNPs and inflammatory activation. To test this hypothesis, we exposed a mouse macrophage cell line RAW264.7 (RAW) and bone marrow-derived macrophages (BMDM) to 20 nm citrate-suspended AgNPs. To verify the role of the SR-B1 receptor, we utilized a SR-B1 inhibitor (Blt2). In vitro studies demonstrated uptake of AgNPs and HDL-coated AgNPs by macrophages which were significantly reduced following pretreatment with Blt2. Inflammatory cytokine arrays revealed that macrophages exposed to AgNPs up-regulated expression of Tnf-α, Oncostatin m (OSM), Ccl4, Il17f, Ccl7, and Ccl2, whereas Il16 was found to be down-regulated. Macrophage activation was observed following AgNP and HDL-coated AgNP exposure as measured by OSM protein production and increased surface expression of CD86. These markers of activation were reduced with Blt2 pretreatment. The in vitro findings were confirmed in vivo through pulmonary instillation of AgNPs in mice. Pulmonary instillation of AgNPs resulted in a recruitment of inflammatory cells that were reduced in SR-B1-deficient mice or following Blt2 pretreatment. This study suggests that SR-B1 plays a major role in cellular recognition of AgNPs and the induction of cell responses that could contribute to inflammation caused by AgNP exposure.

  10. Biophysical determinants for cellular uptake of hydrocarbon-stapled peptide helices.

    Science.gov (United States)

    Bird, Gregory H; Mazzola, Emanuele; Opoku-Nsiah, Kwadwo; Lammert, Margaret A; Godes, Marina; Neuberg, Donna S; Walensky, Loren D

    2016-10-01

    Hydrocarbon-stapled peptides are a class of bioactive alpha-helical ligands developed to dissect and target protein interactions. While there is consensus that stapled peptides can be effective chemical tools for investigating protein regulation, their broader utility for therapeutic modulation of intracellular interactions remains an active area of study. In particular, the design principles for generating cell-permeable stapled peptides are empiric, yet consistent intracellular access is essential to in vivo application. Here, we used an unbiased statistical approach to determine which biophysical parameters dictate the uptake of stapled-peptide libraries. We found that staple placement at the amphipathic boundary combined with optimal hydrophobic and helical content are the key drivers of cellular uptake, whereas excess hydrophobicity and positive charge at isolated amino acid positions can trigger membrane lysis at elevated peptide dosing. Our results provide a design roadmap for maximizing the potential to generate cell-permeable stapled peptides with on-mechanism cellular activity.

  11. Cellular uptake and cytotoxicity of positively charged chitosan gold nanoparticles in human lung adenocarcinoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Seon Young; Jang, Soo Hwa [Seoul National University, Laboratory of Veterinary Pharmacology, College of Veterinary Medicine and Institute for Veterinary Science (Korea, Republic of); Park, Jin; Jeong, Saeromi; Park, Jin Ho; Ock, Kwang Su [Soongsil University, Department of Chemistry (Korea, Republic of); Lee, Kangtaek [Yonsei University, Department of Chemical and Biomolecular Engineering (Korea, Republic of); Yang, Sung Ik [Kyung Hee University, College of Environment and Applied Chemistry (Korea, Republic of); Joo, Sang-Woo, E-mail: sjoo@ssu.ac.kr [Soongsil University, Department of Chemistry (Korea, Republic of); Ryu, Pan Dong; Lee, So Yeong, E-mail: leeso@snu.ac.kr [Seoul National University, Laboratory of Veterinary Pharmacology, College of Veterinary Medicine and Institute for Veterinary Science (Korea, Republic of)

    2012-12-15

    Cellular uptake, cytotoxicity, and mechanisms of cytotoxicity of the positively charged Au nanoparticles (NPs) were examined in A549 cells, which are one of the most characterized pulmonary cellular systems. Positively charged Au NPs were prepared by chemical reduction using chitosan. The dimension and surface charge of Au NPs were examined by transmission electron microscopy (TEM), dynamic light scattering, and zeta potential measurements. The uptake of Au NPs into A549 cells was also monitored using TEM and dark-field microscopy (DFM) and z-stack confocal microRaman spectroscopy. DFM live cell imaging was also performed to monitor the entry of chitosan Au NPs in real time. The cytotoxic assay, using both methylthiazol tetrazolium and lactate dehydrogenase assays revealed that positively charged Au NPs decreased cell viability. Flow cytometry, DNA fragmentation, real-time PCR, and western blot analysis suggest that positively charged chitosan Au NPs provoke cell damage through both apoptotic and necrotic pathways.

  12. Cellular uptake of antisense oligonucleotides after complexing or conjugation with cell-penetrating model peptides.

    Science.gov (United States)

    Oehlke, J; Birth, P; Klauschenz, E; Wiesner, B; Beyermann, M; Oksche, A; Bienert, M

    2002-08-01

    The uptake by mammalian cells of phosphorothioate oligonucleotides was compared with that of their respective complexes or conjugates with cationic, cell-penetrating model peptides of varying helix-forming propensity and amphipathicity. An HPLC-based protocol for the synthesis and purification of disulfide bridged conjugates in the 10-100 nmol range was developed. Confocal laser scanning microscopy (CLSM) in combination with gel-capillary electrophoresis and laser induced fluorescence detection (GCE-LIF) revealed cytoplasmic and nuclear accumulationin all cases. The uptake differences between naked oligonucleotides and their respective peptide complexes or conjugates were generally confined to one order of magnitude. No significant influence of the structural properties of the peptide components upon cellular uptake was found. Our results question the common belief that the increased biological activity of oligonucleotides after derivatization with membrane permeable peptides may be primarily due to improved membrane translocation.

  13. Surface decoration by Spirulina polysaccharide enhances the cellular uptake and anticancer efficacy of selenium nanoparticles

    Directory of Open Access Journals (Sweden)

    Li Y

    2012-02-01

    Full Text Available Fang Yang1*, Quanming Tang1,2*, Xueyun Zhong3, Yan Bai1, Tianfeng Chen1, Yibo Zhang1, Yinghua Li1, Wenjie Zheng11Department of Chemistry, Jinan University, Guangzhou, China; 2South China Seas Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; 3Department of Pathology, Jinan University, Guangzhou, China*These authors contributed equally to this workAbstract: A simple and solution-phase method for functionalization of selenium nanoparticles (SeNPs with Spirulina polysaccharides (SPS has been developed in the present study. The cellular uptake and anticancer activity of SPS-SeNPs were also evaluated. Monodisperse and homogeneous spherical SPS-SeNPs with diameters ranging from 20 nm to 50 nm were achieved under optimized conditions, which were stable in the solution phase for at least 3 months. SPS surface decoration significantly enhanced the cellular uptake and cytotoxicity of SeNPs toward several human cancer cell lines. A375 human melanoma cells were found extremely susceptible to SPS-SeNPs with half maximal (50% inhibitory concentration value of 7.94 µM. Investigation of the underlying mechanisms revealed that SPS-SeNPs inhibited cancer cell growth through induction of apoptosis, as evidenced by an increase in sub-G1 cell population, deoxyribonucleic acid fragmentation, chromatin condensation, and phosphatidylserine translocation. Results suggest that the strategy to use SPS as a surface decorator could be an effective way to enhance the cellular uptake and anticancer efficacy of nanomaterials. SPS-SeNPs may be a potential candidate for further evaluation as a chemopreventive and chemotherapeutic agent against human cancers.Keywords: selenium nanoparticles, Spirulina polysaccharide, cellular uptake, anticancer, apoptosis

  14. The biocompatibility of fluorescent nanodiamonds and their mechanism of cellular uptake

    Energy Technology Data Exchange (ETDEWEB)

    Vaijayanthimala, Vairakkannu; Tzeng, Yan-Kai; Chang, Huan-Cheng [Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106, Taiwan (China); Li, Chung-Leung, E-mail: hcchang@po.sinica.edu.t, E-mail: chungL@gate.sinica.edu.t [Genomics Research Center, Academia Sinica, Taipei 115, Taiwan (China)

    2009-10-21

    The labeling of cells with fluorescent nanoparticles is promising for various biomedical applications. The objective of this study is to evaluate the biocompatibility and the mechanism of the cellular uptake of fluorescent nanodiamonds (FNDs) in cancer cells (HeLa) and pre-adipocytes (3T3-L1). With flow cytometry and the use of a battery of metabolic and cytoskeletal inhibitors, we found that the mechanism of the FND uptake in both cells is by energy-dependent clathrin-mediated endocytosis. In addition, the surface charge of FND influences its cellular uptake, as the uptake of poly-L-lysine-coated FNDs is better than that of oxidative-acid-purified FNDs at the same concentration in regular medium with or without serum. We also confirm that the proliferative potential of FND-treated and untreated cells does not exhibit any significant differences when measured at bulk cultures, and more stringently at clonal cell density. Further biocompatibility studies indicate that the in vitro differentiation of 3T3-L1 pre-adipocytes and 489-2 osteoprogenitors is not affected by the FND treatment. Our results show that FNDs are biocompatible and ideal candidates for potential applications in human stem cell research.

  15. Effect of serum on PEGylated quantum dots:Cellular uptake and intracellular distribution

    Institute of Scientific and Technical Information of China (English)

    Yeting Jian; Xianghui Xu; Yunkun Li; Zhongwei Gun

    2013-01-01

    Protein adsorption is closely related with the interactions between nanoparticles and physiological systems, and further influences the cellular uptake and distribution of nanoparticles in cells. Although polyethylene glycol (PEG)ylation can largely reduce specific protein adsorption, some protein components in whole serum still interact with nanoparticles. In this work, PEGylated quantum dots (QDs) were used for investigating the quantitative and qualitative relationships of fetal bovine serum (FBS) and the cellular uptake/intracellular distribution in human hepatoma (HepG2) cell line. Nondenaturing polyacrylamide gel electrophoresis and two dimensional electrophoresis were used to analyze the adsorption of protein by PEGylated QDs. Quantitative cellular uptake of PEGylated QDs was determined by fluorescence activated cell sorting (FACS) with different FBS concentrations and incubating durations. The intracellular location of PEGylated QDs in HepG2 cells was observed using a confocal laser scanning microscope (CLSM) and a transmission electron microscope (TEM). This work will be helpful to understand the interaction between nanoparticles and cells with serum.

  16. Surface decoration by Spirulina polysaccharide enhances the cellular uptake and anticancer efficacy of selenium nanoparticles

    Science.gov (United States)

    Yang, Fang; Tang, Quanming; Zhong, Xueyun; Bai, Yan; Chen, Tianfeng; Zhang, Yibo; Li, Yinghua; Zheng, Wenjie

    2012-01-01

    A simple and solution-phase method for functionalization of selenium nanoparticles (SeNPs) with Spirulina polysaccharides (SPS) has been developed in the present study. The cellular uptake and anticancer activity of SPS-SeNPs were also evaluated. Monodisperse and homogeneous spherical SPS-SeNPs with diameters ranging from 20 nm to 50 nm were achieved under optimized conditions, which were stable in the solution phase for at least 3 months. SPS surface decoration significantly enhanced the cellular uptake and cytotoxicity of SeNPs toward several human cancer cell lines. A375 human melanoma cells were found extremely susceptible to SPS-SeNPs with half maximal (50%) inhibitory concentration value of 7.94 μM. Investigation of the underlying mechanisms revealed that SPS-SeNPs inhibited cancer cell growth through induction of apoptosis, as evidenced by an increase in sub-G1 cell population, deoxyribonucleic acid fragmentation, chromatin condensation, and phosphatidylserine translocation. Results suggest that the strategy to use SPS as a surface decorator could be an effective way to enhance the cellular uptake and anticancer efficacy of nanomaterials. SPS-SeNPs may be a potential candidate for further evaluation as a chemopreventive and chemotherapeutic agent against human cancers. PMID:22359460

  17. Cellular uptake of fluorophore-labeled glyco-DNA-gold nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Witten, Katrin G.; Ruff, Julie [RWTH Aachen University, Institute of Inorganic Chemistry and JARA - Fundamentals of Future Information Technology (Germany); Mohr, Anne; Goertz, Dieter; Recker, Tobias; Rinis, Natalie [RWTH Aachen University, Institute of Biochemistry and Molecular Biology, University Hospital Aachen (Germany); Rech, Claudia; Elling, Lothar [RWTH Aachen University, Laboratory for Biomaterials, Institute of Biotechnology and Helmholtz-Institute for Biomedical Engineering (Germany); Mueller-Newen, Gerhard [RWTH Aachen University, Institute of Biochemistry and Molecular Biology, University Hospital Aachen (Germany); Simon, Ulrich, E-mail: ulrich.simon@ac.rwth-aachen.de [RWTH Aachen University, Institute of Inorganic Chemistry and JARA - Fundamentals of Future Information Technology (Germany)

    2013-10-15

    DNA-functionalized gold nanoparticles (AuNP-DNA) were hybridized with complementary di-N-acetyllactosamine-(di-LacNAc, [3Gal({beta}1-4)GlcNAc({beta}1-]2)-modified oligonucleotides to form glycol-functionalized particles, AuNP-DNA-di-LacNAc. While AuNP-DNA are known to be taken up by cells via scavenger receptors, glycol-functionalized particles have shown to be taken up via asialoglycoprotein receptors (ASGP-R). In this work, the interaction of these new particles with HepG2 cells was analyzed, which express scavenger receptors class B type I (SR-BI) and ASGP-R. To study the contribution of these receptors as potential mediators for cellular uptake, receptor-blocking experiments were performed with d-lactose, a ligand for ASGP-R, Fucoidan, a putative ligand for SR-BI, and a SR-BI blocking antibody. Labeling with Cy5-modified DNA ligands enabled us to monitor the particle uptake by confocal fluorescence microscopy and flow cytometry, in order to discriminate the two putative pathways by competitive binding studies. While SR-BI-antibody and d-lactose had no inhibiting effects on particle uptake Fucoidan led to a complete inhibition. Thus, a receptor-mediated uptake by the two receptors studied could not be proven and therefore other uptake mechanisms have to be considered.

  18. Cellular uptake of fluorophore-labeled glyco-DNA-gold nanoparticles

    Science.gov (United States)

    Witten, Katrin G.; Ruff, Julie; Mohr, Anne; Görtz, Dieter; Recker, Tobias; Rinis, Natalie; Rech, Claudia; Elling, Lothar; Müller-Newen, Gerhard; Simon, Ulrich

    2013-10-01

    DNA-functionalized gold nanoparticles (AuNP-DNA) were hybridized with complementary di- N-acetyllactosamine-( di-LacNAc, [3Gal(β1-4)GlcNAc(β1-]2)-modified oligonucleotides to form glycol-functionalized particles, AuNP-DNA- di-LacNAc. While AuNP-DNA are known to be taken up by cells via scavenger receptors, glycol-functionalized particles have shown to be taken up via asialoglycoprotein receptors (ASGP-R). In this work, the interaction of these new particles with HepG2 cells was analyzed, which express scavenger receptors class B type I (SR-BI) and ASGP-R. To study the contribution of these receptors as potential mediators for cellular uptake, receptor-blocking experiments were performed with d-lactose, a ligand for ASGP-R, Fucoidan, a putative ligand for SR-BI, and a SR-BI blocking antibody. Labeling with Cy5-modified DNA ligands enabled us to monitor the particle uptake by confocal fluorescence microscopy and flow cytometry, in order to discriminate the two putative pathways by competitive binding studies. While SR-BI-antibody and d-lactose had no inhibiting effects on particle uptake Fucoidan led to a complete inhibition. Thus, a receptor-mediated uptake by the two receptors studied could not be proven and therefore other uptake mechanisms have to be considered.

  19. Quantification of cellular uptake of DNA nanostructures by qPCR.

    Science.gov (United States)

    Okholm, Anders Hauge; Nielsen, Jesper Sejrup; Vinther, Mathias; Sørensen, Rasmus Schøler; Schaffert, David; Kjems, Jørgen

    2014-05-15

    DNA nanostructures facilitating drug delivery are likely soon to be realized. In the past few decades programmed self-assembly of DNA building blocks have successfully been employed to construct sophisticated nanoscale objects. By conjugating functionalities to DNA, other molecules such as peptides, proteins and polymers can be precisely positioned on DNA nanostructures. This exceptional ability to produce modular nanoscale devices with tunable and controlled behavior has initiated an interest in employing DNA nanostructures for drug delivery. However, to obtain this the relationship between cellular interactions and structural and functional features of the DNA delivery device must be thoroughly investigated. Here, we present a rapid and robust method for the precise quantification of the component materials of DNA origami structures capable of entering cells in vitro. The quantification is performed by quantitative polymerase chain reaction, allowing a linear dynamic range of detection of five orders of magnitude. We demonstrate the use of this method for high-throughput screening, which could prove efficient to identify key features of DNA nanostructures enabling cell penetration. The method described here is suitable for quantification of in vitro uptake studies but should easily be extended to quantify DNA nanostructures in blood or tissue samples.

  20. Cellular senescence induced by prolonged subculture adversely affects glutamate uptake in C6 lineage.

    Science.gov (United States)

    Pereira, Mery Stéfani Leivas; Zenki, Kamila; Cavalheiro, Marcela Mendonça; Thomé, Chairini Cássia; Filippi-Chiela, Eduardo Cremonese; Lenz, Guido; de Souza, Diogo Onofre Gomes; de Oliveira, Diogo Losch

    2014-05-01

    Several researchers have recently used C6 cells to evaluate functional properties of high-affinity glutamate transporters. However, it has been demonstrated that this lineage suffers several morphological and biochemical alterations according to the number of passages in culture. Currently, there are no reports showing whether functional properties of high-affinity glutamate transporters comply with these sub culturing-dependent modifications. The present study aimed to compare the functional properties of high-affinity glutamate transporters expressed in early (EPC6) and late (LPC6) passage C6 cells through a detailed pharmacological and biochemical characterization. Between 60-180 min of L-[(3)H]glu incubation, LPC6 presented an intracellular [(3)H] 55% lower than EPC6. Both cultures showed a time-dependent increase of intracellular [(3)H] reaching maximal levels at 120 min. Cultures incubated with D-[(3)H]asp showed a time-dependent increase of [(3)H] until 180 min. Moreover, LPC6 have a D-[(3)H]asp-derived intracellular [(3)H] 30-45% lower than EPC6 until 120 min. Only EAAT3 was immunodetected in cultures and its total content was equal between them. PMA-stimulated EAAT3 trafficking to membrane increased 50% of L-[(3)H]glu-derived intracellular [(3)H] in EPC6 and had no effect in LPC6. LPC6 displayed characteristics that resemble senescence, such as high β-Gal staining, cell enlargement and increase of large and regular nuclei. Our results demonstrated that LPC6 exhibited glutamate uptake impairment, which may have occurred due to its inability to mobilize EAAT3 to cell membrane. This profile might be related to senescent process observed in this culture. Our results suggest that LPC6 cells are an inappropriate glial cellular model to investigate the functional properties of high-affinity glutamate transporters.

  1. Prion protein modulates cellular iron uptake: a novel function with implications for prion disease pathogenesis.

    Directory of Open Access Journals (Sweden)

    Ajay Singh

    Full Text Available Converging evidence leaves little doubt that a change in the conformation of prion protein (PrP(C from a mainly alpha-helical to a beta-sheet rich PrP-scrapie (PrP(Sc form is the main event responsible for prion disease associated neurotoxicity. However, neither the mechanism of toxicity by PrP(Sc, nor the normal function of PrP(C is entirely clear. Recent reports suggest that imbalance of iron homeostasis is a common feature of prion infected cells and mouse models, implicating redox-iron in prion disease pathogenesis. In this report, we provide evidence that PrP(C mediates cellular iron uptake and transport, and mutant PrP forms alter cellular iron levels differentially. Using human neuroblastoma cells as models, we demonstrate that over-expression of PrP(C increases intra-cellular iron relative to non-transfected controls as indicated by an increase in total cellular iron, the cellular labile iron pool (LIP, and iron content of ferritin. As a result, the levels of iron uptake proteins transferrin (Tf and transferrin receptor (TfR are decreased, and expression of iron storage protein ferritin is increased. The positive effect of PrP(C on ferritin iron content is enhanced by stimulating PrP(C endocytosis, and reversed by cross-linking PrP(C on the plasma membrane. Expression of mutant PrP forms lacking the octapeptide-repeats, the membrane anchor, or carrying the pathogenic mutation PrP(102L decreases ferritin iron content significantly relative to PrP(C expressing cells, but the effect on cellular LIP and levels of Tf, TfR, and ferritin is complex, varying with the mutation. Neither PrP(C nor the mutant PrP forms influence the rate or amount of iron released into the medium, suggesting a functional role for PrP(C in cellular iron uptake and transport to ferritin, and dysfunction of PrP(C as a significant contributing factor of brain iron imbalance in prion disorders.

  2. The minute virus of mice exploits different endocytic pathways for cellular uptake

    Energy Technology Data Exchange (ETDEWEB)

    Garcin, Pierre O.; Panté, Nelly, E-mail: pante@zoology.ubc.ca

    2015-08-15

    The minute virus of mice, prototype strain (MVMp), is a non-enveloped, single-stranded DNA virus of the family Parvoviridae. Unlike other parvoviruses, the mechanism of cellular uptake of MVMp has not been studied in detail. We analyzed MVMp endocytosis in mouse LA9 fibroblasts and a tumor cell line derived from epithelial–mesenchymal transition through polyomavirus middle T antigen transformation in transgenic mice. By a combination of immunofluorescence and electron microscopy, we found that MVMp endocytosis occurs at the leading edge of migrating cells in proximity to focal adhesion sites. By using drug inhibitors of various endocytic pathways together with immunofluorescence microscopy and flow cytometry analysis, we discovered that MVMp can use a number of endocytic pathways, depending on the host cell type. At least three different mechanisms were identified: clathrin-, caveolin-, and clathrin-independent carrier-mediated endocytosis, with the latter occurring in transformed cells but not in LA9 fibroblasts. - Highlights: • MVMp uptake takes place at the leading edge of migrating cells. • MVMp exploits a variety of endocytic pathways. • MVMp could use clathrin- and caveolin-mediated endocytosis. • MVMp could also use clathrin-independent carriers for cellular uptake.

  3. Anchoring Dipalmitoyl Phosphoethanolamine to Nanoparticles Boosts Cellular Uptake and Fluorine-19 Magnetic Resonance Signal

    Science.gov (United States)

    Waiczies, Sonia; Lepore, Stefano; Sydow, Karl; Drechsler, Susanne; Ku, Min-Chi; Martin, Conrad; Lorenz, Dorothea; Schütz, Irene; Reimann, Henning M.; Purfürst, Bettina; Dieringer, Matthias A.; Waiczies, Helmar; Dathe, Margitta; Pohlmann, Andreas; Niendorf, Thoralf

    2015-02-01

    Magnetic resonance (MR) methods to detect and quantify fluorine (19F) nuclei provide the opportunity to study the fate of cellular transplants in vivo. Cells are typically labeled with 19F nanoparticles, introduced into living organisms and tracked by 19F MR methods. Background-free imaging and quantification of cell numbers are amongst the strengths of 19F MR-based cell tracking but challenges pertaining to signal sensitivity and cell detection exist. In this study we aimed to overcome these limitations by manipulating the aminophospholipid composition of 19F nanoparticles in order to promote their uptake by dendritic cells (DCs). As critical components of biological membranes, phosphatidylethanolamines (PE) were studied. Both microscopy and MR spectroscopy methods revealed a striking (at least one order of magnitude) increase in cytoplasmic uptake of 19F nanoparticles in DCs following enrichment with 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine (DPPE). The impact of enriching 19F nanoparticles with PE on DC migration was also investigated. By manipulating the nanoparticle composition and as a result the cellular uptake we provide here one way of boosting 19F signal per cell in order to overcome some of the limitations related to 19F MR signal sensitivity. The boost in signal is ultimately necessary to detect and track cells in vivo.

  4. Effects of transport inhibitors on the cellular uptake of carboxylated polystyrene nanoparticles in different cell lines.

    Directory of Open Access Journals (Sweden)

    Tiago dos Santos

    Full Text Available Nanotechnology is expected to play a vital role in the rapidly developing field of nanomedicine, creating innovative solutions and therapies for currently untreatable diseases, and providing new tools for various biomedical applications, such as drug delivery and gene therapy. In order to optimize the efficacy of nanoparticle (NP delivery to cells, it is necessary to understand the mechanisms by which NPs are internalized by cells, as this will likely determine their ultimate sub-cellular fate and localisation. Here we have used pharmacological inhibitors of some of the major endocytic pathways to investigate nanoparticle uptake mechanisms in a range of representative human cell lines, including HeLa (cervical cancer, A549 (lung carcinoma and 1321N1 (brain astrocytoma. Chlorpromazine and genistein were used to inhibit clathrin and caveolin mediated endocytosis, respectively. Cytochalasin A and nocodazole were used to inhibit, respectively, the polymerisation of actin and microtubule cytoskeleton. Uptake experiments were performed systematically across the different cell lines, using carboxylated polystyrene NPs of 40 nm and 200 nm diameters, as model NPs of sizes comparable to typical endocytic cargoes. The results clearly indicated that, in all cases and cell types, NPs entered cells via active energy dependent processes. NP uptake in HeLa and 1321N1 cells was strongly affected by actin depolymerisation, while A549 cells showed a stronger inhibition of NP uptake (in comparison to the other cell types after microtubule disruption and treatment with genistein. A strong reduction of NP uptake was observed after chlorpromazine treatment only in the case of 1321N1 cells. These outcomes suggested that the same NP might exploit different uptake mechanisms to enter different cell types.

  5. Cellular uptake and intracellular pathways of PLL-g-PEG-DNA nanoparticles.

    Science.gov (United States)

    Lühmann, Tessa; Rimann, Markus; Bittermann, Anne Greet; Hall, Heike

    2008-09-01

    Polycationic molecules form condensates with DNA and are used for gene therapy as an alternative to viral vectors. As clinical efficacy corresponds to cellular uptake, intracellular stability of the condensates, and bioavailability of the DNA, it is crucial to analyze uptake mechanisms and trafficking pathways. Here, a detailed study of uptake, stability, and localization of PLL-g-PEG-DNA nanoparticles within COS-7 cells is presented, using FACS analysis to assess the involvement of different uptake mechanisms, colocalization studies with markers indicative for different endocytotic pathways, and immunofluorescence staining to analyze colocalization with intracellular compartments. PLL-g-PEG-DNA nanoparticles were internalized in an energy-dependent manner after 2 h and accumulated in the perinuclear region after >6 h. The nanoparticles were found to be stable within the cytoplasm for at least 24 h and did not colocalize with the endosomal pathway. Nanoparticle uptake was approximately 50% inhibited by genistein, an inhibitor of the caveolae-mediated pathway. However, genistein did not inhibit gene expression, and PLL-g-PEG-DNA nanoparticles were not colocalized with caveolin-1 indicating that caveolae-mediated endocytosis is not decisive for DNA delivery. Clathrin-mediated endocytosis and macropinocytosis pathways were reduced by 17 and 24%, respectively, in the presence of the respective inhibitors. When cells were transfected in the presence of double and triple inhibitors, transfection efficiencies were increasingly reduced by 40 and 70%, respectively; however, no differences were found between the different uptake mechanisms. These findings suggest that PLL-g-PEG-DNA nanoparticles enter by several pathways and might therefore be an efficient and versatile tool to deliver therapeutic DNA.

  6. A systematic in vitro investigation on poly-arginine modified nanostructured lipid carrier: Pharmaceutical characteristics, cellular uptake, mechanisms and cytotoxicity

    Directory of Open Access Journals (Sweden)

    Mingshuang Sun

    2017-01-01

    Full Text Available The aim of the present study was to develop a poly-arginine modified nanostructured lipid carrier (R-NLC by fusion-emulsification method and to test its pharmaceutical characteristics. The influence of R-NLC on A549 cells like cellular uptake and cytotoxicity was also appraised using unmodified NLC as the controlled group. As the results revealed, R-NLC had an average diameter of about 40 nm and a positive zeta potential of about +17 mv, the entrapment efficiency decreased apparently, and no significant difference on the in vitro drug release was found after R8-modification. The cellular uptake and cytotoxicity increased obviously compared with unmodified NLC. The cellular uptake mechanisms of R-NLC involved energy, macropinocytosis, clathrin-mediated endocytosis, and caveolin-mediated endocytosis. The outcomes of the present study strongly support the theory that cell penetrating peptides have the ability of enhancing the cellular uptake of nanocarriers.

  7. Dispersion Behaviour of Silica Nanoparticles in Biological Media and Its Influence on Cellular Uptake.

    Science.gov (United States)

    Halamoda-Kenzaoui, Blanka; Ceridono, Mara; Colpo, Pascal; Valsesia, Andrea; Urbán, Patricia; Ojea-Jiménez, Isaac; Gioria, Sabrina; Gilliland, Douglas; Rossi, François; Kinsner-Ovaskainen, Agnieszka

    2015-01-01

    Given the increasing variety of manufactured nanomaterials, suitable, robust, standardized in vitro screening methods are needed to study the mechanisms by which they can interact with biological systems. The in vitro evaluation of interactions of nanoparticles (NPs) with living cells is challenging due to the complex behaviour of NPs, which may involve dissolution, aggregation, sedimentation and formation of a protein corona. These variable parameters have an influence on the surface properties and the stability of NPs in the biological environment and therefore also on the interaction of NPs with cells. We present here a study using 30 nm and 80 nm fluorescently-labelled silicon dioxide NPs (Rubipy-SiO2 NPs) to evaluate the NPs dispersion behaviour up to 48 hours in two different cellular media either supplemented with 10% of serum or in serum-free conditions. Size-dependent differences in dispersion behaviour were observed and the influence of the living cells on NPs stability and deposition was determined. Using flow cytometry and fluorescence microscopy techniques we studied the kinetics of the cellular uptake of Rubipy-SiO2 NPs by A549 and CaCo-2 cells and we found a correlation between the NPs characteristics in cell media and the amount of cellular uptake. Our results emphasize how relevant and important it is to evaluate and to monitor the size and agglomeration state of nanoparticles in the biological medium, in order to interpret correctly the results of the in vitro toxicological assays.

  8. Combinatorics of feedback in cellular uptake and metabolism of small molecules.

    Science.gov (United States)

    Krishna, Sandeep; Semsey, Szabolcs; Sneppen, Kim

    2007-12-26

    We analyze the connection between structure and function for regulatory motifs associated with cellular uptake and usage of small molecules. Based on the boolean logic of the feedback we suggest four classes: the socialist, consumer, fashion, and collector motifs. We find that the socialist motif is good for homeostasis of a useful but potentially poisonous molecule, whereas the consumer motif is optimal for nutrition molecules. Accordingly, examples of these motifs are found in, respectively, the iron homeostasis system in various organisms and in the uptake of sugar molecules in bacteria. The remaining two motifs have no obvious analogs in small molecule regulation, but we illustrate their behavior using analogies to fashion and obesity. These extreme motifs could inspire construction of synthetic systems that exhibit bistable, history-dependent states, and homeostasis of flux (rather than concentration).

  9. Investigation of biomimetic shear stress on cellular uptake and mechanism of polystyrene nanoparticles in various cancer cell lines.

    Science.gov (United States)

    Kang, Taehee; Park, Chulhun; Lee, Beom-Jin

    2016-12-01

    Cancer cells in the tumor microenvironment are affected by fluid shear stress generated by blood flow in the vascular microenvironment and interstitial flows in the tumor microenvironment. Thus, we investigated how fluidic shear stress affects cellular uptake as well as the endocytosis mechanism of nanoparticles using a biomimetic microfluidic system that mimics the human dynamic environment. Positively charged amino-modified polystyrene nanoparticles (PSNs) at 100 μg/mL were delivered to cancer cells under static and biomimetic dynamic conditions (0.5 dyne/cm(2)). Additionally, the experiment was done in the presence of endocytosis inhibitors specific for one of the endocytosis pathways. To evaluate cellular uptake of cationic PSNs, the fluorescence intensity of cationic PSNs in cancer cells was measured by flow cytometer and fluorescence images were taken using confocal laser scanning microscopy. Cancer cells in dynamic conditions exhibited higher cellular uptake of PSNs and showed different cellular uptake mechanisms compared with those in static conditions. From these results, it suggested that biomimetic dynamic conditions stimulated specific endocytosis and prompted cellular uptake. It was also important to consider fluidic shear stress as one of the critical factors because cellular uptake and drug delivery could play a key role in cancer cells and metastasis.

  10. Naringenin-loaded solid lipid nanoparticles: preparation, controlled delivery, cellular uptake, and pulmonary pharmacokinetics.

    Science.gov (United States)

    Ji, Peng; Yu, Tong; Liu, Ying; Jiang, Jie; Xu, Jie; Zhao, Ying; Hao, Yanna; Qiu, Yang; Zhao, Wenming; Wu, Chao

    2016-01-01

    Naringenin (NRG), a flavonoid compound, had been reported to exhibit extensive pharmacological effects, but its water solubility and oral bioavailability are only~46±6 µg/mL and 5.8%, respectively. The purpose of this study is to design and develop NRG-loaded solid lipid nanoparticles (NRG-SLNs) to provide prolonged and sustained drug release, with improved stability, involving nontoxic nanocarriers, and increase the bioavailability by means of pulmonary administration. Initially, a group contribution method was used to screen the best solid lipid matrix for the preparation of SLNs. NRG-SLNs were prepared by an emulsification and low-temperature solidification method and optimized using an orthogonal experiment approach. The morphology was examined by transmission electron microscopy, and the particle size and zeta potential were determined by photon correlation spectroscopy. The total drug content of NRG-SLNs was measured by high-performance liquid chromatography, and the encapsulation efficiency (EE) was determined by Sephadex gel-50 chromatography and high-performance liquid chromatography. The in vitro NRG release studies were carried out using a dialysis bag. The best cryoprotectant to prepare NRG-SLN lyophilized powder for future structural characterization was selected using differential scanning calorimetry, powder X-ray diffraction, and Fourier transform infrared spectroscopy. The short-term stability, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) assay, cellular uptake, and pharmacokinetics in rats were studied after pulmonary administration of NRG-SLN lyophilized powder. Glycerol monostearate was selected to prepare SLNs, and the optimal formulation of NRG-SLNs was spherical in shape, with a particle size of 98 nm, a polydispersity index of 0.258, a zeta potential of -31.4 mV, a total drug content of 9.76 mg, an EE of 79.11%, and a cumulative drug release of 80% in 48 hours with a sustained profile. In addition, 5% mannitol (w

  11. High tumor uptake of (64)Cu

    DEFF Research Database (Denmark)

    Jørgensen, Jesper Tranekjær; Persson, Morten; Madsen, Jacob

    2013-01-01

    The use of copper-based positron emission tomography (PET) tracers in cancer studies is increasing. However, as copper has previously been found in high concentrations in human tumor tissue in vivo, instability of PET tracers could result in tumor accumulation of non-tracer-bound radioactive copper...... that may influence PET measurements. Here we determine the degree of (64)Cu uptake in five commonly used human cancer xenograft models in mice. Additionally, we compare copper accumulation in tumor tissue to gene expression of human copper transporter 1 (CTR1)....

  12. Cellular uptake mechanism and intracellular fate of hydrophobically modified pullulan nanoparticles

    Directory of Open Access Journals (Sweden)

    Jiang L

    2013-05-01

    Full Text Available Liqin Jiang,1 Xuemin Li,1 Lingrong Liu,1 Qiqing Zhang1,21Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, People's Republic of China; 2Research Center of Biomedical Engineering, Xiamen University, Xiamen, People's Republic of ChinaAbstract: The cellular uptake mechanism and intracellular fate of self-assembled nanoparticles (NPs of cholesterol-modified pullulan (CHSP by human hepatocellular carcinoma (HepG2 cells were investigated. Covalent conjugation with fluorescein isothiocyanate (FITC yielded stably labeled CHSP (FITC-CHSP, which was successfully formulated into NPs (mean particle size 63.0 ± 1.9 nm by dialysis. A cytotoxicity assay clearly indicated that the CHSP NPs did not show significant toxicity in HepG2 cells. The effects of NP concentration, incubation time, and temperature on the cellular uptake of the NPs were systematically evaluated by fluorometry, and the results suggested that cellular uptake of the NPs was concentration-, time-, and temperature-dependent. In vitro experiments with endocytic inhibitors revealed that clathrin-mediated endocytosis and macropinocytosis were involved in the internalization of CHSP NPs. The intracellular trafficking study demonstrated that CHSP NPs were entrapped in the lysosomes at 1 hour after incubation; colocalization of NPs with either the Golgi apparatus or the endoplasmic reticula was not observed during the entire course of the study. These results suggested that the CHSP NPs may serve as a versatile carrier for intracellular delivery of therapeutic agents.Keywords: cholesterol-modified pullulan, self-assembled nanoparticles, FITC, endocytosis, intracellular trafficking

  13. Effective Cellular Uptake and Efflux of Thyroid Hormone by Human Monocarboxylate Transporter 10

    Science.gov (United States)

    Friesema, Edith C. H.; Jansen, Jurgen; Jachtenberg, Jan-willem; Visser, W. Edward; Kester, Monique H. A.; Visser, Theo J.

    2008-01-01

    Cellular entry of thyroid hormone is mediated by plasma membrane transporters, among others a T-type (aromatic) amino acid transporter. Monocarboxylate transporter 10 (MCT10) has been reported to transport aromatic amino acids but not iodothyronines. Within the MCT family, MCT10 is most homologous to MCT8, which is a very important iodothyronine transporter but does not transport amino acids. In view of this paradox, we decided to reinvestigate the possible transport of thyroid hormone by human (h) MCT10 in comparison with hMCT8. Transfection of COS1 cells with hMCT10 cDNA resulted in 1) the production of an approximately 55 kDa protein located to the plasma membrane as shown by immunoblotting and confocal microscopy, 2) a strong increase in the affinity labeling of intracellular type I deiodinase by N-bromoacetyl-[125I]T3, 3) a marked stimulation of cellular T4 and, particularly, T3 uptake, 4) a significant inhibition of T3 uptake by phenylalanine, tyrosine, and tryptophan of 12.5%, 22.2%, and 51.4%, respectively, and 5) a marked increase in the intracellular deiodination of T4 and T3 by different deiodinases. Cotransfection studies using the cytosolic thyroid hormone-binding protein μ-crystallin (CRYM) indicated that hMCT10 facilitates both cellular uptake and efflux of T4 and T3. In the absence of CRYM, hMCT10 and hMCT8 increased T3 uptake after 5 min incubation up to 4.0- and 1.9-fold, and in the presence of CRYM up to 6.9- and 5.8-fold, respectively. hMCT10 was less active toward T4 than hMCT8. These findings establish that hMCT10 is at least as active a thyroid hormone transporter as hMCT8, and that both transporters facilitate iodothyronine uptake as well as efflux. PMID:18337592

  14. Protein source and choice of anticoagulant decisively affect nanoparticle protein corona and cellular uptake

    Science.gov (United States)

    Schöttler, S.; Klein, Katja; Landfester, K.; Mailänder, V.

    2016-03-01

    Protein adsorption on nanoparticles has been a focus of the field of nanocarrier research in the past few years and more and more papers are dealing with increasingly detailed lists of proteins adsorbed to a plethora of nanocarriers. While there is an urgent need to understand the influence of this protein corona on nanocarriers' interactions with cells the strong impact of the protein source on corona formation and the consequence for interaction with different cell types are factors that are regularly neglected, but should be taken into account for a meaningful analysis. In this study, the importance of the choice of protein source used for in vitro protein corona analysis is concisely investigated. Major and decisive differences in cellular uptake of a polystyrene nanoparticle incubated in fetal bovine serum, human serum, human citrate and heparin plasma are reported. Furthermore, the protein compositions are determined for coronas formed in the respective incubation media. A strong influence of heparin, which is used as an anticoagulant for plasma generation, on cell interaction is demonstrated. While heparin enhances the uptake into macrophages, it prevents internalization into HeLa cells. Taken together we can give the recommendation that human plasma anticoagulated with citrate seems to give the most relevant results for in vitro studies of nanoparticle uptake.Protein adsorption on nanoparticles has been a focus of the field of nanocarrier research in the past few years and more and more papers are dealing with increasingly detailed lists of proteins adsorbed to a plethora of nanocarriers. While there is an urgent need to understand the influence of this protein corona on nanocarriers' interactions with cells the strong impact of the protein source on corona formation and the consequence for interaction with different cell types are factors that are regularly neglected, but should be taken into account for a meaningful analysis. In this study, the importance

  15. Effects of nanoparticle size on cellular uptake and liver MRI with polyvinylpyrrolidone-coated iron oxide nanoparticles.

    Science.gov (United States)

    Huang, Jing; Bu, Lihong; Xie, Jin; Chen, Kai; Cheng, Zhen; Li, Xingguo; Chen, Xiaoyuan

    2010-12-28

    The effect of nanoparticle size (30-120 nm) on magnetic resonance imaging (MRI) of hepatic lesions in vivo has been systematically examined using polyvinylpyrrolidone (PVP)-coated iron oxide nanoparticles (PVP-IOs). Such biocompatible PVP-IOs with different sizes were synthesized by a simple one-pot pyrolysis method. These PVP-IOs exhibited good crystallinity and high T(2) relaxivities, and the relaxivity increased with the size of the magnetic nanoparticles. It was found that cellular uptake changed with both size and surface physiochemical properties, and that PVP-IO-37 with a core size of 37 nm and hydrodynamic particle size of 100 nm exhibited higher cellular uptake rate and greater distribution than other PVP-IOs and Feridex. We systematically investigated the effect of nanoparticle size on MRI of normal liver and hepatic lesions in vivo. The physical and chemical properties of the nanoparticles influenced their pharmacokinetic behavior, which ultimately determined their ability to accumulate in the liver. The contrast enhancement of PVP-IOs within the liver was highly dependent on the overall size of the nanoparticles, and the 100 nm PVP-IO-37 nanoparticles exhibited the greatest enhancement. These results will have implications in designing engineered nanoparticles that are optimized as MR contrast agents or for use in therapeutics.

  16. Cellular uptake and cytotoxic potential of respirable bentonite particles with different quartz contents and chemical modifications in human lung fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Geh, Stefan; Rettenmeier, Albert W.; Dopp, Elke [University Hospital, Institute of Hygiene and Occupational Medicine, Essen (Germany); Yuecel, Raif [University Hospital, Institute of Cell Biology (Cancer Research), Essen (Germany); Duffin, Rodger [Institute of Environmental Health Research (IUF), Duesseldorf (Germany); University of Edinburgh, ELEGI COLT Lab, Scotland (United Kingdom); Albrecht, Catrin; Borm, Paul J.A. [Institute of Environmental Health Research (IUF), Duesseldorf (Germany); Armbruster, Lorenz [Verein fuer Technische Sicherheit und Umweltschutz e.V., Gotha (Germany); Raulf-Heimsoth, Monika; Bruening, Thomas [Research Institute for Occupational Medicine of the Institutions for Statutory Accident Insurance and Prevention (BGFA), Bochum (Germany); Hoffmann, Eik [University of Rostock, Institute of Biology, Department of Cell Biology and Biosystems Technology, Rostock (Germany)

    2006-02-01

    Considering the biological reactivity of pure quartz in lung cells, there is a strong interest to clarify the cellular effects of respirable siliceous dusts, like bentonites. In the present study, we investigated the cellular uptake and the cytotoxic potential of bentonite particles (Oe< 10 {mu}m) with an {alpha}-quartz content of up to 6% and different chemical modifications (activation: alkaline, acidic, organic) in human lung fibroblasts (IMR90). Additionally, the ability of the particles to induce apoptosis in IMR90-cells and the hemolytic activity was tested. All bentonite samples were tested for endotoxins with the in vitro-Pyrogen test and were found to be negative. Cellular uptake of particles by IMR90-cells was studied by transmission electron microscopy (TEM). Cytotoxicity was analyzed in IMR90-cells by determination of viable cells using flow cytometry and by measuring of the cell respiratory activity. Induced apoptotic cells were detected by AnnexinV/Propidiumiodide-staining and gel electrophoresis. Our results demonstrate that activated bentonite particles are better taken up by IMR90-cells than untreated (native) bentonite particles. Also, activated bentonite particles with a quartz content of 5-6% were more cytotoxic than untreated bentonites or bentonites with a quartz content lower than 4%. The bentonite samples induced necrotic as well as apoptotic cell death. In general, bentonites showed a high membrane-damaging potential shown as hemolytic activity in human erythrocytes. We conclude that cellular effects of bentonite particles in human lung cells are enhanced after chemical treatment of the particles. The cytotoxic potential of the different bentonites is primarily characterized by a strong lysis of the cell membrane. (orig.)

  17. Novel mucus-penetrating liposomes as a potential oral drug delivery system: preparation, in vitro characterization, and enhanced cellular uptake

    Science.gov (United States)

    Li, Xiuying; Chen, Dan; Le, Chaoyi; Zhu, Chunliu; Gan, Yong; Hovgaard, Lars; Yang, Mingshi

    2011-01-01

    Background The aim of this study was to investigate the intestinal mucus-penetrating properties and intestinal cellular uptake of two types of liposomes modified by Pluronic F127 (PF127). Methods The two types of liposomes, ie, PF127-inlaid liposomes and PF127-adsorbed liposomes, were prepared by a thin-film hydration method followed by extrusion, in which coumarin 6 was loaded as a fluorescence marker. A modified Franz diffusion cell mounted with the intestinal mucus of rats was used to study the diffusion characteristics of the two types of PF127 liposomes. Cell uptake studies were conducted in Caco-2 cells and analyzed using confocal laser scanning microcopy as well as flow cytometry. Results The diffusion efficiency of the two types of PF127-modified liposomes through intestinal rat mucus was 5–7-fold higher than that of unmodified liposomes. Compared with unmodified liposomes, PF127-inlaid liposomes showed significantly higher cellular uptake of courmarin 6. PF127-adsorbed liposomes showed a lower cellular uptake. Moreover, and interestingly, the two types of PF127-modified liposomes showed different cellular uptake mechanisms in Caco-2 cells. Conclusion PF127-inlaid liposomes with improved intestinal mucus-penetrating ability and enhanced cellular uptake might be a potential carrier candidate for oral drug delivery. PMID:22163166

  18. Mechanism of cellular uptake and impact of ferucarbotran on macrophage physiology.

    Directory of Open Access Journals (Sweden)

    Chung-Yi Yang

    Full Text Available Superparamagnetic iron oxide (SPIO nanoparticles are contrast agents used for magnetic resonance imaging. Ferucarbotran is a clinically approved SPIO-coated carboxydextran with a diameter of about 45-60 nm. We investigated the mechanism of cellular uptake of Ferucarbotran with a cell model using the murine macrophage cell line Raw 264.7. We observed a dose-dependent uptake of these SPIO particles by spectrophotometer analysis and also a dose-dependent increase in the granularity of the macrophages as determined by flow cytometry. There was a linear correlation between the side scattering mean value and iron content (P<0.001, R(2 = 0. 8048. For evaluation of the endocytotic pathway of these ingested SPIO particles, different inhibitors of the endocytotic pathways were employed. There was a significant decrease of side scattering counts in the cells and a less significant change in signal intensity based on magnetic resonance in the phenylarsine oxide-treated macrophages. After labeling with SPIO particles, the macrophages showed an increase in the production of reactive oxygen species at 2, 24, and 48 h; a decrease in mitochondrial membrane potential at 24 h; and an increase in cell proliferation at 24 h. We concluded that Ferucarbotran was internalized into macrophages via the clathrin-mediated pathway and can change the cellular behavior of these cells after labeling.

  19. Selective cellular uptake and induction of apoptosis of cancer-targeted selenium nanoparticles.

    Science.gov (United States)

    Huang, Yanyu; He, Lizhen; Liu, Wen; Fan, Cundong; Zheng, Wenjie; Wong, Yum-Shing; Chen, Tianfeng

    2013-09-01

    Selenium nanoparticles (SeNPs) have garnered a great deal of attention as potential cancer therapeutic payloads. However, the in vivo targeting drug delivery has been challenging. Herein, we describe the synthesis of tansferrin (Tf)-conjugated SeNPs and its use as a cancer-targeted drug delivery system to achieve enhanced cellular uptake and anticancer efficacy. Tf as targeting ligand significantly enhances the cellular uptake of doxorubicin (DOX)-loaded SeNPs through clathrin-mediated and caveolae/lipid raft-mediated endocytosis in cancer cells overexpressing transferrin receptor, and increases their selectivity between cancer and normal cells. DOX-loaded and Tf-conjugated SeNPs (Tf-SeNPs) exhibits unprecedented enhanced cytotoxicity toward cancer cells through induction of apoptosis with the involvement of intrinsic and extrinsic pathways. Internalized Tf-SeNPs triggers intracellular ROS overproduction, thus activates p53 and MAPKs pathways to promote cell apoptosis. In the nude mice xenograft experiment, Tf-SeNPs significantly inhibits the tumor growth via induction of p53-mediated apoptosis. This cancer-targeted design of SeNPs opens a new path for synergistic treating of cancer with higher efficacy and decreased side effects.

  20. Active macropinocytosis induction by stimulation of epidermal growth factor receptor and oncogenic Ras expression potentiates cellular uptake efficacy of exosomes.

    Science.gov (United States)

    Nakase, Ikuhiko; Kobayashi, Nahoko Bailey; Takatani-Nakase, Tomoka; Yoshida, Tetsuhiko

    2015-06-03

    Exosomes are approximately 100-nm vesicles that consist of a lipid bilayer of cellular membranes secreted in large quantities from various types of normal and disease-related cells. Endocytosis has been reported as a major pathway for the cellular uptake of exosomes; however, the detailed mechanisms of their cellular uptake are still unknown. Here, we demonstrate the active induction of macropinocytosis (accompanied by actin reorganisation, ruffling of plasma membrane, and engulfment of large volumes of extracellular fluid) by stimulation of cancer-related receptors and show that the epidermal growth factor (EGF) receptor significantly enhances the cellular uptake of exosomes. We also demonstrate that oncogenic K-Ras-expressing MIA PaCa-2 cells exhibit intensive macropinocytosis that actively transports extracellular exosomes into the cells compared with wild-type K-Ras-expressing BxPC-3 cells. Furthermore, encapsulation of the ribosome-inactivating protein saporin with EGF in exosomes using our simple electroporation method produces superior cytotoxicity via the enhanced cellular uptake of exosomes. Our findings contribute to the biological, pharmaceutical, and medical research fields in terms of understanding the macropinocytosis-mediated cellular uptake of exosomes with applications for exosomal delivery systems.

  1. Cell-Penetrating Peptides—Mechanisms of Cellular Uptake and Generation of Delivery Systems

    Directory of Open Access Journals (Sweden)

    Sara Trabulo

    2010-03-01

    Full Text Available The successful clinical application of nucleic acid-based therapeutic strategies has been limited by the poor delivery efficiency achieved by existing vectors. The development of alternative delivery systems for improved biological activity is, therefore, mandatory. Since the seminal observations two decades ago that the Tat protein, and derived peptides, can translocate across biological membranes, cell-penetrating peptides (CPPs have been considered one of the most promising tools to improve non-invasive cellular delivery of therapeutic molecules. Despite extensive research on the use of CPPs for this purpose, the exact mechanisms underlying their cellular uptake and that of peptide conjugates remain controversial. Over the last years, our research group has been focused on the S413-PV cell-penetrating peptide, a prototype of this class of peptides that results from the combination of 13-amino-acid cell penetrating sequence derived from the Dermaseptin S4 peptide with the SV40 large T antigen nuclear localization signal. By performing an extensive biophysical and biochemical characterization of this peptide and its analogs, we have gained important insights into the mechanisms governing the interaction of CPPs with cells and their translocation across biological membranes. More recently, we have started to explore this peptide for the intracellular delivery of nucleic acids (plasmid DNA, siRNA and oligonucleotides. In this review we discuss the current knowledge of the mechanisms responsible for the cellular uptake of cell-penetrating peptides, including the S413-PV peptide, and the potential of peptide-based formulations to mediate nucleic acid delivery.

  2. [Preparation, characterization and Calu-3 cellular uptake of three kinds of poly(b-benzyl-L-amino)block-poly(ethylene glycol) nanoparticles].

    Science.gov (United States)

    Zhou, Yin; Lu, Li-Na; Xin, Xue; Huo, Dong-Feng; Wu, Hong-Bing; Qiu, Ming-Feng

    2013-04-01

    The aim of this paper is to compare the cytotoxicity and cellular uptake efficiency of three kinds of poly(b-benzyl-L-amino) block-poly(ethylene glycol) nanoparticles (PXA-PEG-NPs) using Calu-3 cells, and select one as a nasal drug delivery vector for curcumin (Cur). Poly(gamma-benzyl-L-glutamate) block-poly(ethylene glycol) nanoparticles (PBLG-PEG-NPs), poly(gamma-benzyl-L-lysine) block-poly(ethyleneglycol) nanoparticles (PZLL-PEG-NPs) and poly(gamma-benzyl-L-aspartate) block-poly(ethylene glycol) nanoparticles (PBLA-PEG-NPs) were prepared by emulsion-solvent evaporation method. MTT assays were used to evaluate the cytotoxicity of PXA-PEG-NPs against Calu-3 cells. The cellular uptake of nanoparticles was visualized by an inverted fluorescence microscope and quantified by a flow cytometer. The results indicated that even at high concentration of 2 mg x mL(-1) the three nanoparticles had no cytotoxicity on Calu-3 cells. Compared to the curcumin solution, the three curcumin-loaded PXA-PEG-NPs showed significantly higher cellular uptake efficiency on Calu-3 cells (at equal concentration of curcumin with 5 microg x mL(-1) Cur solution), PBLG-PEG-NPs group was the highest. The cellular uptake increased with incubation time, and has positive correlation with nanoparticle concentration. In brief, PXA-PEG-NPs are conducive to delivery Cur into cells, and PBLG-PEG-NPs might be provided as a good nasal drug delivery carrier.

  3. The comparison of protein-entrapped liposomes and lipoparticles: preparation, characterization, and efficacy of cellular uptake

    Directory of Open Access Journals (Sweden)

    Chang WK

    2011-10-01

    the liposomes at 3.3 hours. A Caco-2 cell model was used for evaluating the cytotoxicity and cell uptake efficiency of the PEG-modified lipoparticles. At a lipid content below 0.25 mM, neither the liposomes nor the lipoparticles caused significant cellular cytotoxicity (P < 0.01 and FITC-BSA was significantly taken up into cells within 60 minutes (P < 0.01. Keywords: liposomes, lipoparticles, formulation, protein, stability

  4. Cellular Uptake and Intracellular Trafficking of Antisense and siRNA Oligonucleotides

    Science.gov (United States)

    Juliano, RL; Ming, Xin; Nakagawa, Osamu

    2012-01-01

    Significant progress is being made concerning the development of oligonucleotides as therapeutic agents. Studies with antisense, siRNA, and other forms of oligonucleotides have shown promise in cellular and animal models and in some clinical studies. Nonetheless our understanding of how oligonucleotides function in cells and tissues is really quite limited. One major issue concerns the modes of uptake and intracellular trafficking of oligonucleotides, whether as ‘free’ molecules, or linked to various delivery moieties such as nanoparticles or targeting ligands. In this review we examine the recent literature on oligonucleotide internalization and subcellular trafficking in the context of current insights into the basic machinery for endocytosis and intracellular vesicular traffic. PMID:21992697

  5. Hierarchical Cellular Structures in High-Capacity Cellular Communication Systems

    CERN Document Server

    Jain, R K; Agrawal, N K

    2011-01-01

    In the prevailing cellular environment, it is important to provide the resources for the fluctuating traffic demand exactly in the place and at the time where and when they are needed. In this paper, we explored the ability of hierarchical cellular structures with inter layer reuse to increase the capacity of mobile communication network by applying total frequency hopping (T-FH) and adaptive frequency allocation (AFA) as a strategy to reuse the macro and micro cell resources without frequency planning in indoor pico cells [11]. The practical aspects for designing macro- micro cellular overlays in the existing big urban areas are also explained [4]. Femto cells are inducted in macro / micro / pico cells hierarchical structure to achieve the required QoS cost effectively.

  6. Magnetic field-enhanced cellular uptake of doxorubicin loaded magnetic nanoparticles for tumor treatment

    Science.gov (United States)

    Venugopal, Indu; Pernal, Sebastian; Duproz, Alexandra; Bentley, Jeromy; Engelhard, Herbert; Linninger, Andreas

    2016-09-01

    Cancer remains the second most common cause of death in the US, accounting for nearly 1 out of every 4 deaths. In recent years, several varieties of nanoparticles (NPs) have been synthesized with the intent of being utilized as tumor drug delivery vehicles. We have produced superparamagnetic, gold-coated magnetite (Fe3O4@Au) NPs and loaded them with the chemotherapeutic drug doxorubicin (DOX) for magnetic drug targeting (MDT) of tumors. The synthetic strategy uses the food thickening agent gellan gum (Phytagel) as a negatively charged shell around the Fe3O4@Au NP onto which the positively charged DOX molecules are loaded via electrostatic attraction. The resulting DOX-loaded magnetic nanoparticles (DOX-MNPs) were characterized using transmission electron microscopy, energy dispersive x-ray spectroscopy, superconducting quantum interference device magnetometry, surface area electron diffraction, zeta potential measurements, fourier transform infrared spectroscopy as well as UV/Vis and fluorescence spectroscopy. Cytotoxicity of the DOX-MNPs was demonstrated using the MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay on C6 glioma cells. Cellular uptake of DOX-MNPs was enhanced with magnetic fields, which was quantitatively determined using flow cytometry. This improved uptake also led to greater tumor cell death, which was measured using MTT assay. These MDT results are promising for a new therapy for cancer.

  7. Influence of multidrug resistance on {sup 18}F-FCH cellular uptake in a glioblastoma model

    Energy Technology Data Exchange (ETDEWEB)

    Vanpouille, Claire; Jeune, Nathalie le; Clotagatide, Anthony; Dubois, Francis [Universite de Lyon, Universite Jean Monnet-Cancer Research Group IFRESIS 143, Saint-Etienne (France); Kryza, David; Janier, Marc [Hospice Civils de Lyon, Quai Des Celestins, CREATIS, UMR CNRS, Lyon (France); Perek, Nathalie [Universite de Lyon, Universite Jean Monnet-Cancer Research Group IFRESIS 143, Saint-Etienne (France); Laboratoire de Biophysique, Faculte de Medecine, Saint-Etienne (France)

    2009-08-15

    Multidrug resistance, aggressiveness and accelerated choline metabolism are hallmarks of malignancy and have motivated the development of new PET tracers like {sup 18}F-FCH, an analogue of choline. Our aim was to study the relationship of multidrug resistance of cultured glioma cell lines and {sup 18}F-FCH tracer uptake. We used an in vitro multidrug-resistant (MDR) glioma model composed of sensitive parental U87MG and derived resistant cells U87MG-CIS and U87MG-DOX. Aggressiveness, choline metabolism and transport were studied, particularly the expression of choline kinase (CK) and high-affinity choline transporter (CHT1). FCH transport studies were assessed in our glioblastoma model. As expected, the resistant cell lines express P-glycoprotein (Pgp), multidrug resistance-associated protein isoform 1 (MRP1) and elevated glutathione (GSH) content and are also more mobile and more invasive than the sensitive U87MG cells. Our results show an overexpression of CK and CHT1 in the resistant cell lines compared to the sensitive cell lines. We found an increased uptake of FCH (in % of uptake per 200,000 cells) in the resistant cells compared to the sensitive ones (U87MG: 0.89{+-}0.14; U87MG-CIS: 1.27{+-}0.18; U87MG-DOX: 1.33{+-}0.13) in line with accelerated choline metabolism and aggressive phenotype. FCH uptake is not influenced by the two ATP-dependant efflux pumps: Pgp and MRP1. FCH would be an interesting probe for glioma imaging which would not be effluxed from the resistant cells by the classic MDR ABC transporters. Our results clearly show that FCH uptake reflects accelerated choline metabolism and is related to tumour aggressiveness and drug resistance. (orig.)

  8. Enhanced Cellular Uptake and Pharmacokinetic Characteristics of Doxorubicin-Valine Amide Prodrug

    Directory of Open Access Journals (Sweden)

    Yohan Park

    2016-09-01

    Full Text Available In this study, we synthesized the valine (Val-conjugated amide prodrug of doxorubicin (DOX by the formation of amide bonds between DOX and Val. The synthesis of the DOX-Val prodrug was identified by a proton nuclear magnetic resonance (1H-NMR assay. In the MCF-7 cells (human breast adenocarcinoma cell; amino acid transporter–positive cell, the cellular accumulation efficiency of DOX-Val was higher than that of DOX according to the flow cytometry analysis data. Using confocal laser scanning microscopy (CLSM imaging, it was confirmed that DOX-Val as well as DOX was mainly distributed in the nucleus of cancer cells. DOX-Val was intravenously administered to rats at a dose of 4 mg/kg, and the plasma concentrations of DOX-Val (prodrug and DOX (formed metabolite were quantitatively determined. Based on the systemic exposure (represented as area under the curve (AUC values of DOX-Val (prodrug and DOX (formed metabolite, approximately half of DOX-Val seemed to be metabolized into DOX. However, it is expected that the remaining DOX-Val may exert improved cellular uptake efficiency in cancer cells after its delivery to the cancer region.

  9. Enhanced Cellular Uptake and Pharmacokinetic Characteristics of Doxorubicin-Valine Amide Prodrug.

    Science.gov (United States)

    Park, Yohan; Park, Ju-Hwan; Park, Suryeon; Lee, Song Yi; Cho, Kwan Hyung; Kim, Dae-Duk; Shim, Won-Sik; Yoon, In-Soo; Cho, Hyun-Jong; Maeng, Han-Joo

    2016-09-22

    In this study, we synthesized the valine (Val)-conjugated amide prodrug of doxorubicin (DOX) by the formation of amide bonds between DOX and Val. The synthesis of the DOX-Val prodrug was identified by a proton nuclear magnetic resonance (¹H-NMR) assay. In the MCF-7 cells (human breast adenocarcinoma cell; amino acid transporter-positive cell), the cellular accumulation efficiency of DOX-Val was higher than that of DOX according to the flow cytometry analysis data. Using confocal laser scanning microscopy (CLSM) imaging, it was confirmed that DOX-Val as well as DOX was mainly distributed in the nucleus of cancer cells. DOX-Val was intravenously administered to rats at a dose of 4 mg/kg, and the plasma concentrations of DOX-Val (prodrug) and DOX (formed metabolite) were quantitatively determined. Based on the systemic exposure (represented as area under the curve (AUC) values) of DOX-Val (prodrug) and DOX (formed metabolite), approximately half of DOX-Val seemed to be metabolized into DOX. However, it is expected that the remaining DOX-Val may exert improved cellular uptake efficiency in cancer cells after its delivery to the cancer region.

  10. Novel mucus-penetrating liposomes as a potential oral drug delivery system: preparation, in vitro characterization, and enhanced cellular uptake

    Directory of Open Access Journals (Sweden)

    Li X

    2011-12-01

    Full Text Available Xiuying Li1, Dan Chen1, Chaoyi Le2, Chunliu Zhu1, Yong Gan1, Lars Hovgaard3, Mingshi Yang41Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; 2University of Toronto Mississauga Campus, Ontario, Canada; 3Oral Formulation Development, Novo Nordisk A/S, Maalov; 4Department of Pharmaceutics and Analytical Chemistry, University of Copenhagen, Copenhagen, DenmarkBackground: The aim of this study was to investigate the intestinal mucus-penetrating properties and intestinal cellular uptake of two types of liposomes modified by Pluronic F127 (PF127.Methods: The two types of liposomes, ie, PF127-inlaid liposomes and PF127-adsorbed liposomes, were prepared by a thin-film hydration method followed by extrusion, in which coumarin 6 was loaded as a fluorescence marker. A modified Franz diffusion cell mounted with the intestinal mucus of rats was used to study the diffusion characteristics of the two types of PF127 liposomes. Cell uptake studies were conducted in Caco-2 cells and analyzed using confocal laser scanning microcopy as well as flow cytometry.Results: The diffusion efficiency of the two types of PF127-modified liposomes through intestinal rat mucus was 5–7-fold higher than that of unmodified liposomes. Compared with unmodified liposomes, PF127-inlaid liposomes showed significantly higher cellular uptake of courmarin 6. PF127-adsorbed liposomes showed a lower cellular uptake. Moreover, and interestingly, the two types of PF127-modified liposomes showed different cellular uptake mechanisms in Caco-2 cells.Conclusion: PF127-inlaid liposomes with improved intestinal mucus-penetrating ability and enhanced cellular uptake might be a potential carrier candidate for oral drug delivery.Keywords: Pluronic F127, mucus-penetrating, particles, liposomes, oral drug delivery

  11. Stealth CD44-targeted hyaluronic acid supramolecular nanoassemblies for doxorubicin delivery: probing the effect of uncovalent pegylation degree on cellular uptake and blood long circulation.

    Science.gov (United States)

    Han, Xiaopeng; Li, Zhenbao; Sun, Jin; Luo, Cong; Li, Lin; Liu, Yuhai; Du, Yuqian; Qiu, Shuhong; Ai, Xiaoyu; Wu, Chunnuan; Lian, He; He, Zhonggui

    2015-01-10

    Stealth active targeting nanoparticles (NPs) usually include two types of ligand sites: ligand anchored on distal ends of the polyethylene glycol (PEG) and ligand buried under pegylated layer. The latter typical case is hyaluronic acid (HA)-based NPs; however, there is little information available for the latter NPs about effect of the optimal density of surface PEG coating on the blood circulation time, cellular uptake and in vivo anticancer activity. Thus, in this study, in order to optimize the anticancer effects of HA-based NPs, we focus on how uncovalent pegylation degree modulates blood circulation time and cellular uptake of HA-based NPs. We firstly designed a new double-hydrophilic copolymer by conjugating HP-β-cyclodextrin with HA, and this carrier was further pegylated with adamantyl-peg (ADA-PEG) to form inclusion complex HA-HPCD/ADA-PEG, termed as HCPs. The supramolecular nanoassemblies were fabricated by host-guest and polar interactions between HCPs and doxorubicin (Dox), with vitamin E succinate (VES) being a nanobridge. Despite the active recognition between HA and CD44 receptor, the cellular uptake and targeting efficiency of HA-NPs decreased with the increasing peg density, demonstrating HA was partly buried by high density peg coating. However, the high density of peg coating was beneficial to long circulation time, tumor biodistribution and anticancer activity in vivo. NPs with 5% peg coating had the optimal cellular targeting efficiency in vitro and anticancer effects in vivo. The findings suggest that balancing long circulation property and cellular uptake is important to achieve the optimal antitumor efficacy for pegylated HA-based NPs, and that PEG coating densities cannot be extended beyond a certain density for shielding effect without compromising the efficacy of hyaluronic acid targeted delivery.

  12. Cellular uptake and degradation behaviour of biodegradable poly(ethylene glycol-graft-methyl methacrylate) nanoparticles crosslinked with dimethacryloyl hydroxylamine.

    Science.gov (United States)

    Scheler, Stefan; Kitzan, Martina; Fahr, Alfred

    2011-01-17

    Crosslinked polymers with hydrolytically cleavable linkages are highly interesting materials for the design of biodegradable drug carriers. The aim of this study was to investigate if nanoparticles made of such polymers have the potential to be used also for intracellular drug delivery. PEGylated nanoparticles were prepared by copolymerization of methacrylic acid esters and N,O-dimethacryloylhydroxylamine (DMHA). The particles were stable at pH 5.0. At pH 7.4 and 9.0 the degradation covered a time span of about 14 days, following first-order kinetics with higher crosslinked particles degrading slower. Cellular particle uptake and cytotoxicity were tested with L929 mouse fibroblasts. The particle uptake rate was found to correlate linearly with the surface charge and to increase as the zeta potential becomes less negative. Coating of the particle surface with polysorbate 80 drops the internalization rate close to zero and the charge dependence disappears. This indicates the existence of a second effect apart from surface charge. A similar pattern of correlation with zeta potential and coating was also found for the degree of membrane damage while there was no effect of polysorbate on the cell metabolism which increased as the negative charge decreased. It is discussed whether exocytotic processes may explain this behaviour.

  13. Carboxymethyl Cellulose-Grafted Mesoporous Silica Hybrid Nanogels for Enhanced Cellular Uptake and Release of Curcumin

    Directory of Open Access Journals (Sweden)

    Neha Tiwari

    2017-02-01

    Full Text Available Mesoporous silica nanoparticles (MSNs with ordered pore structure have been synthesized and used as carriers for the anticancer drug curcumin. MSNs were functionalized with amine groups and further attached with carboxymethyl cellulose (CMC using 1-ethyl-3-(3-dimethylaminopropyl-carbodiimide (EDC coupling chemistry, which increased the hydrophilicity and biocompatibility of MSNs. The functionalized MSNs (MSN-NH2 and MSN-CMC were characterized using Scanning Electron Microscopy (SEM, Transmission Electron Microscopy (TEM, Dynamic Light Scattering (DLS, N2 adsorption, X-Ray Diffraction (XRD, Thermo Gravimetric Analysis (TGA and Fourier Transform Infrared Spectroscopy (FT-IR. The in vitro release of curcumin from the –NH2 and CMC functionalized MSNs (MSN-cur-NH2 and MSN-cur-CMC was performed in 0.5% aqueous solution of sodium lauryl sulphate (SLS. The effect of CMC functionalization of MSNs towards cellular uptake was studied in the human breast cancer cell line MDA-MB-231 and was compared with that of MSN-NH2 and free curcumin (cur. Both MSN-NH2 and MSN-CMC showed good biocompatibility with the breast cancer cell line. The MTT assay study revealed that curcumin-loaded MSN-cur-CMC showed better uptake as compared to curcumin-loaded MSN-cur-NH2. Free curcumin was used as a control and was shown to have much less internalization as compared to the curcumin-loaded functionalized MSNs due to poor bioavailability. Fluorescence microscopy was used to localize the fluorescent drug curcumin inside the cells. The work demonstrates that CMC-functionalized MSNs can be used as potential carriers for loading and release of hydrophobic drugs that otherwise cannot be used effectively in their free form for cancer therapy.

  14. Fast intracellular dissolution and persistent cellular uptake of silver nanoparticles in CHO-K1 cells: implication for cytotoxicity

    DEFF Research Database (Denmark)

    Jiang, Xiumei; Miclaus, Teodora; Wang, Liming

    2015-01-01

    Toxicity of silver nanoparticles (Ag NPs) has been reported both in vitro and in vivo. However, the intracellular stability and chemical state of Ag NPs are still not very well studied. In this work, we systematically investigated the cellular uptake pathways, intracellular dissolution and chemic...

  15. Tuning the Surface of Nanoparticles: Impact of Poly(2-ethyl-2-oxazoline) on Protein Adsorption in Serum and Cellular Uptake

    NARCIS (Netherlands)

    Koshkina, O.; Westmeier, D.; Lang, T.; Bantz, C.; Hahlbrock, A.; Wurth, C.; Resch-Genger, U.; Braun, U.; Thiermann, R.; Weise, C.; Eravci, M.; Mohr, B.; Schlaad, H.; Stauber, R.H.; Docter, D.; Bertin, A.; Maskos, M.

    2016-01-01

    Due to the adsorption of biomolecules, the control of the biodistribution of nanoparticles is still one of the major challenges of nanomedicine. Poly(2-ethyl-2-oxazoline) (PEtOx) for surface modification of nanoparticles is applied and both protein adsorption and cellular uptake of PEtOxylated

  16. Cellular uptake and transcytosis of lipid-based nanoparticles across the intestinal barrier: Relevance for oral drug delivery.

    Science.gov (United States)

    Neves, Ana Rute; Queiroz, Joana Fontes; Costa Lima, Sofia A; Figueiredo, Francisco; Fernandes, Rui; Reis, Salette

    2016-02-01

    Oral administration is the preferred route for drug delivery and nanosystems represent a promising tool for protection and transport of hardly soluble, chemically unstable and poorly permeable drugs through the intestinal barrier. In the present work, we have studied lipid nanoparticles cellular uptake, internalization pathways and transcytosis routes through Caco-2 cell monolayers. Both lipid nanosystems presented similar size (∼180nm) and surface charge (-30mV). Nanostructured lipid carriers showed a higher cellular uptake and permeability across the barrier, but solid lipid nanoparticles could enter cells faster than the former. The internalization of lipid nanoparticles occurs mainly through a clathrin-mediated endocytosis mechanism, although caveolae-mediated endocytosis is also involved in the uptake. Both lipid nanoparticles were able to cross the intestinal barrier by a preferential transcellular route. This work contributed to a better knowledge of the developed nanosystems for the oral delivery of a wide spectrum of drugs. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Multi-functionality Redefined with Colloidal Carotene Carbon Nanoparticles for Synchronized Chemical Imaging, Enriched Cellular Uptake and Therapy

    Science.gov (United States)

    Misra, Santosh K.; Mukherjee, Prabuddha; Chang, Huei-Huei; Tiwari, Saumya; Gryka, Mark; Bhargava, Rohit; Pan, Dipanjan

    2016-07-01

    Typically, multiplexing high nanoparticle uptake, imaging, and therapy requires careful integration of three different functions of a multiscale molecular-particle assembly. Here, we present a simpler approach to multiplexing by utilizing one component of the system for multiple functions. Specifically, we successfully synthesized and characterized colloidal carotene carbon nanoparticle (C3-NP), in which a single functional molecule served a threefold purpose. First, the presence of carotene moieties promoted the passage of the particle through the cell membrane and into the cells. Second, the ligand acted as a potent detrimental moiety for cancer cells and, finally, the ligands produced optical contrast for robust microscopic detection in complex cellular environments. In comparative tests, C3-NP were found to provide effective intracellular delivery that enables both robust detection at cellular and tissue level and presents significant therapeutic potential without altering the mechanism of intracellular action of β-carotene. Surface coating of C3 with phospholipid was used to generate C3-Lipocoat nanoparticles with further improved function and biocompatibility, paving the path to eventual in vivo studies.

  18. Biomechanics and thermodynamics of nanoparticle interactions with plasma and endosomal membrane lipids in cellular uptake and endosomal escape.

    Science.gov (United States)

    Peetla, Chiranjeevi; Jin, Shihua; Weimer, Jonathan; Elegbede, Adekunle; Labhasetwar, Vinod

    2014-07-01

    To be effective for cytoplasmic delivery of therapeutics, nanoparticles (NPs) taken up via endocytic pathways must efficiently transport across the cell membrane and subsequently escape from the secondary endosomes. We hypothesized that the biomechanical and thermodynamic interactions of NPs with plasma and endosomal membrane lipids are involved in these processes. Using model plasma and endosomal lipid membranes, we compared the interactions of cationic NPs composed of poly(D,L-lactide-co-glycolide) modified with the dichain surfactant didodecyldimethylammonium bromide (DMAB) or the single-chain surfactant cetyltrimethylammonium bromide (CTAB) vs anionic unmodified NPs of similar size. We validated our hypothesis in doxorubicin-sensitive (MCF-7, with relatively fluid membranes) and resistant breast cancer cells (MCF-7/ADR, with rigid membranes). Despite their cationic surface charges, DMAB- and CTAB-modified NPs showed different patterns of biophysical interaction: DMAB-modified NPs induced bending of the model plasma membrane, whereas CTAB-modified NPs condensed the membrane, thereby resisted bending. Unmodified NPs showed no effects on bending. DMAB-modified NPs also induced thermodynamic instability of the model endosomal membrane, whereas CTAB-modified and unmodified NPs had no effect. Since bending of the plasma membrane and destabilization of the endosomal membrane are critical biophysical processes in NP cellular uptake and endosomal escape, respectively, we tested these NPs for cellular uptake and drug efficacy. Confocal imaging showed that in both sensitive and resistant cells DMAB-modified NPs exhibited greater cellular uptake and escape from endosomes than CTAB-modified or unmodified NPs. Further, paclitaxel-loaded DMAB-modified NPs induced greater cytotoxicity even in resistant cells than CTAB-modified or unmodified NPs or drug in solution, demonstrating the potential of DMAB-modified NPs to overcome the transport barrier in resistant cells. In

  19. Cellular transport of l-arginine determines renal medullary blood flow in control rats, but not in diabetic rats despite enhanced cellular uptake capacity.

    Science.gov (United States)

    Persson, Patrik; Fasching, Angelica; Teerlink, Tom; Hansell, Peter; Palm, Fredrik

    2017-02-01

    Diabetes mellitus is associated with decreased nitric oxide bioavailability thereby affecting renal blood flow regulation. Previous reports have demonstrated that cellular uptake of l-arginine is rate limiting for nitric oxide production and that plasma l-arginine concentration is decreased in diabetes. We therefore investigated whether regional renal blood flow regulation is affected by cellular l-arginine uptake in streptozotocin-induced diabetic rats. Rats were anesthetized with thiobutabarbital, and the left kidney was exposed. Total, cortical, and medullary renal blood flow was investigated before and after renal artery infusion of increasing doses of either l-homoarginine to inhibit cellular uptake of l-arginine or N(ω)-nitro- l-arginine methyl ester (l-NAME) to inhibit nitric oxide synthase. l-Homoarginine infusion did not affect total or cortical blood flow in any of the groups, but caused a dose-dependent reduction in medullary blood flow. l-NAME decreased total, cortical and medullary blood flow in both groups. However, the reductions in medullary blood flow in response to both l-homoarginine and l-NAME were more pronounced in the control groups compared with the diabetic groups. Isolated cortical tubular cells displayed similar l-arginine uptake capacity whereas medullary tubular cells isolated from diabetic rats had increased l-arginine uptake capacity. Diabetics had reduced l-arginine concentrations in plasma and medullary tissue but increased l-arginine concentration in cortical tissue. In conclusion, the reduced l-arginine availability in plasma and medullary tissue in diabetes results in reduced nitric oxide-mediated regulation of renal medullary hemodynamics. Cortical blood flow regulation displays less dependency on extracellular l-arginine and the upregulated cortical tissue l-arginine may protect cortical hemodynamics in diabetes.

  20. Biocompatible transferrin-conjugated sodium hexametaphosphate-stabilized gold nanoparticles: synthesis, characterization, cytotoxicity and cellular uptake

    Energy Technology Data Exchange (ETDEWEB)

    Parab, Harshala J; Huang, Jing-Hong; Liu, Ru-Shi [Department of Chemistry, National Taiwan University, Taipei 106, Taiwan (China); Lai, Tsung-Ching; Jan, Yi-Hua; Wang, Jui-Ling; Hsiao, Michael; Chen, Chung-Hsuan [Genomics Research Center, Academia Sinica, Taipei 115, Taiwan (China); Hwu, Yeu-Kuang [Institute of Physics, Academia Sinica, Taipei 115, Taiwan (China); Tsai, Din Ping [Department of Physics, National Taiwan University, Taipei 106, Taiwan (China); Chuang, Shih-Yi; Pang, Jong-Hwei S, E-mail: rsliu@ntu.edu.tw, E-mail: mhsiao@gate.sinica.edu.tw [Graduate Institute of Clinical Medical Sciences, Chang Gung University, Tao-Yuan, Taiwan (China)

    2011-09-30

    The feasibility of using gold nanoparticles (AuNPs) for biomedical applications has led to considerable interest in the development of novel synthetic protocols and surface modification strategies for AuNPs to produce biocompatible molecular probes. This investigation is, to our knowledge, the first to elucidate the synthesis and characterization of sodium hexametaphosphate (HMP)-stabilized gold nanoparticles (Au-HMP) in an aqueous medium. The role of HMP, a food additive, as a polymeric stabilizing and protecting agent for AuNPs is elucidated. The surface modification of Au-HMP nanoparticles was carried out using polyethylene glycol and transferrin to produce molecular probes for possible clinical applications. In vitro cell viability studies performed using as-synthesized Au-HMP nanoparticles and their surface-modified counterparts reveal the biocompatibility of the nanoparticles. The transferrin-conjugated nanoparticles have significantly higher cellular uptake in J5 cells (liver cancer cells) than control cells (oral mucosa fibroblast cells), as determined by inductively coupled plasma mass spectrometry. This study demonstrates the possibility of using an inexpensive and non-toxic food additive, HMP, as a stabilizer in the large-scale generation of biocompatible and monodispersed AuNPs, which may have future diagnostic and therapeutic applications.

  1. Cellular uptake and activity of heparin functionalised cerium oxide nanoparticles in monocytes.

    Science.gov (United States)

    Ting, S R Simon; Whitelock, John M; Tomic, Romana; Gunawan, Cindy; Teoh, Wey Yang; Amal, Rose; Lord, Megan S

    2013-06-01

    Cerium oxide nanoparticles (nanoceria) are effective in scavenging intracellular reactive oxygen species (ROS). In this study nanoceria synthesized by flame spray pyrolysis (dXRD = 12 nm) were functionalised with heparin via an organosilane linker, 3-aminopropyltriethoxysilane. Nanoceria were functionalised with approximately 130 heparin molecules per nanoparticle as determined by thermo gravimetric analysis. Heparin functionalised nanoceria were more effectively internalised by the human monocyte cell line, U937, and U937 cells that had been activated with phorbol 12 myristate 13-acetate (PMA) than bare nanoceria. The heparin functionalised nanoceria were also more effective in scavenging ROS than nanoceria in both activated and unactivated U937 cells. Heparin coupled nanoceria were found to be biologically active due to their ability to bind fibroblast growth factor 2 and signal through FGF receptor 1. Additionally, the heparin-coupled nanoceria, once internalised by the cells, were found to be degraded by 48 h. Together these data demonstrated that heparin enhanced the biological properties of nanoceria in terms of cellular uptake and ROS scavenging, while the nanoceria themselves were more effective at delivering heparin intracellularly than exposing cells to heparin in solution.

  2. A structural basis for cellular uptake of GST-fold proteins.

    Directory of Open Access Journals (Sweden)

    Melanie J Morris

    Full Text Available It has recently emerged that glutathione transferase enzymes (GSTs and other structurally related molecules can be translocated from the external medium into many different cell types. In this study we aim to explore in detail, the structural features that govern cell translocation and by dissecting the human GST enzyme GSTM2-2 we quantatively demonstrate that the α-helical C-terminal domain (GST-C is responsible for this property. Attempts to further examine the constituent helices within GST-C resulted in a reduction in cell translocation efficiency, indicating that the intrinsic GST-C domain structure is necessary for maximal cell translocation capacity. In particular, it was noted that the α-6 helix of GST-C plays a stabilising role in the fold of this domain. By destabilising the conformation of GST-C, an increase in cell translocation efficiency of up to ∼2-fold was observed. The structural stability profiles of these protein constructs have been investigated by circular dichroism and differential scanning fluorimetry measurements and found to impact upon their cell translocation efficiency. These experiments suggest that the globular, helical domain in the 'GST-fold' structural motif plays a role in influencing cellular uptake, and that changes that affect the conformational stability of GST-C can significantly influence cell translocation efficiency.

  3. Synthesis of Carbohydrate Capped Silicon Nanoparticles and their Reduced Cytotoxicity, In Vivo Toxicity, and Cellular Uptake.

    Science.gov (United States)

    Ahire, Jayshree H; Behray, Mehrnaz; Webster, Carl A; Wang, Qi; Sherwood, Victoria; Saengkrit, Nattika; Ruktanonchai, Uracha; Woramongkolchai, Noppawan; Chao, Yimin

    2015-08-26

    The development of smart targeted nanoparticles (NPs) that can identify and deliver drugs at a sustained rate directly to cancer cells may provide better efficacy and lower toxicity for treating primary and advanced metastatic tumors. Obtaining knowledge of the diseases at the molecular level can facilitate the identification of biological targets. In particular, carbohydrate-mediated molecular recognitions using nano-vehicles are likely to increasingly affect cancer treatment methods, opening a new area in biomedical applications. Here, silicon NPs (SiNPs) capped with carbohydrates including galactose, glucose, mannose, and lactose are successfully synthesized from amine terminated SiNPs. The MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] analysis shows an extensive reduction in toxicity of SiNPs by functionalizing with carbohydrate moiety both in vitro and in vivo. Cellular uptake is investigated with flow cytometry and confocal fluorescence microscope. The results show the carbohydrate capped SiNPs can be internalized in the cells within 24 h of incubation, and can be taken up more readily by cancer cells than noncancerous cells. Moreover, these results reinforce the use of carbohydrates for the internalization of a variety of similar compounds into cancer cells.

  4. Biocompatible transferrin-conjugated sodium hexametaphosphate-stabilized gold nanoparticles: synthesis, characterization, cytotoxicity and cellular uptake.

    Science.gov (United States)

    Parab, Harshala J; Huang, Jing-Hong; Lai, Tsung-Ching; Jan, Yi-Hua; Liu, Ru-Shi; Wang, Jui-Ling; Hsiao, Michael; Chen, Chung-Hsuan; Hwu, Yeu-Kuang; Tsai, Din Ping; Chuang, Shih-Yi; Pang, Jong-Hwei S

    2011-09-30

    The feasibility of using gold nanoparticles (AuNPs) for biomedical applications has led to considerable interest in the development of novel synthetic protocols and surface modification strategies for AuNPs to produce biocompatible molecular probes. This investigation is, to our knowledge, the first to elucidate the synthesis and characterization of sodium hexametaphosphate (HMP)-stabilized gold nanoparticles (Au-HMP) in an aqueous medium. The role of HMP, a food additive, as a polymeric stabilizing and protecting agent for AuNPs is elucidated. The surface modification of Au-HMP nanoparticles was carried out using polyethylene glycol and transferrin to produce molecular probes for possible clinical applications. In vitro cell viability studies performed using as-synthesized Au-HMP nanoparticles and their surface-modified counterparts reveal the biocompatibility of the nanoparticles. The transferrin-conjugated nanoparticles have significantly higher cellular uptake in J5 cells (liver cancer cells) than control cells (oral mucosa fibroblast cells), as determined by inductively coupled plasma mass spectrometry. This study demonstrates the possibility of using an inexpensive and non-toxic food additive, HMP, as a stabilizer in the large-scale generation of biocompatible and monodispersed AuNPs, which may have future diagnostic and therapeutic applications.

  5. Toxicity of silver nanoparticles in human macrophages: uptake, intracellular distribution and cellular responses

    Energy Technology Data Exchange (ETDEWEB)

    Haase, A; Tentschert, J; Jungnickel, H; Goetz, M E; Luch, A [BfR - Federal Institute for Risk Assessment, Department of Product Safety, Thielallee 88-92, 14195 Berlin (Germany); Graf, P [University of Basel, Department of Chemistry, Klingelbergstrasse 80, 4056 Basel (Switzerland); Mantion, A; Thuenemann, A F [BAM - Federal Institute for Materials Research and Testing, Richard-Willstaetter-Strasse 11, 12489 Berlin (Germany); Draude, F; Galla, S; Arlinghaus, H F [University of Muenster, Institute of Physics, Wilhelm Klemm Strasse 10, 48149 Muenster (Germany); Plendl, J [Free University of Berlin, Department of Veterinary Medicine, Institute of Veterinary Anatomy, Koserstrasse 20, 14195 Berlin (Germany); Masic, A; Taubert, A, E-mail: andrea.haase@bfr.bund.de, E-mail: alexandre.mantion@bam.de [University of Potsdam, Institute of Chemistry, Karl- Liebknecht- Strasse 24-25, 14476 Potsdam-Golm (Germany)

    2011-07-06

    Silver nanoparticles (SNP) are among the most commercialized nanoparticles worldwide. They can be found in many diverse products, mostly because of their antibacterial properties. Despite its widespread use only little data on possible adverse health effects exist. It is difficult to compare biological data from different studies due to the great variety in sizes, coatings or shapes of the particles. Here, we applied a novel synthesis approach to obtain SNP, which are covalently stabilized by a small peptide. This enables a tight control of both size and shape. We applied these SNP in two different sizes of 20 or 40 nm (Ag20Pep and Ag40Pep) and analyzed responses of THP-1-derived human macrophages. Similar gold nanoparticles with the same coating (Au20Pep) were used for comparison and found to be non-toxic. We assessed the cytotoxicity of particles and confirmed their cellular uptake via transmission electron microscopy and confocal Raman microscopy. Importantly a majority of the SNP could be detected as individual particles spread throughout the cells. Furthermore we studied several types of oxidative stress related responses such as induction of heme oxygenase I or formation of protein carbonyls. In summary, our data demonstrate that even low doses of SNP exerted adverse effects in human macrophages.

  6. Cellular uptake and distribution of graphene oxide coated with layer-by-layer assembled polyelectrolytes

    Science.gov (United States)

    Li, Yiye; Lu, Zhenzhen; Li, Zhongjun; Nie, Guangjun; Fang, Ying

    2014-05-01

    We report a facile approach for the fabrication of a new class of graphene oxide (GO)-based nanoassemblies by layer-by-layer (LbL) technique. The single-layer thickness and intrinsic negatively charged carboxyl groups of GO nanosheets provide a natural platform for LbL assembly of polyelectrolyte nanofilms by electrostatic forces at mild and aqueous conditions. The general applicability of our approach is demonstrated by the preparation of GO nanoassemblies with sizes of 100-200 nm using various charged polyelectrolytes, including synthetic polymers, polypeptides, and DNA oligonucleotides. Systemic assessment of cytotoxicity and acute stress response show that no discernable signs of cytotoxicity are associated with exposure of GO and its nanoassemblies [GO/PLL (poly ( l-lysine)), GO/PLL/PSS (poly(sodium-4-styrenesulfonate)), GO/PLL-PEG (PEGlayted PLL), GO/PLL/PLGA-PEG (PEGlayted poly ( l-glutamic acid))] up to 1 μg/mL. Studies on cellular uptake and subcellular localization show that a representative nanoassembly, GO/PLL-PEG, can effectively cross cell membranes and localize mainly in lysosomal compartments, without induction of noticeable harmful effects as confirmed by detection of mitochondrial depolarization and lysosomal pH.

  7. Kinetics of cellular uptake of viruses and nanoparticles via clathrin-mediated endocytosis

    Science.gov (United States)

    Banerjee, Anand; Berezhkovskii, Alexander; Nossal, Ralph

    2016-02-01

    Several viruses exploit clathrin-mediated endocytosis to gain entry into host cells. This process is also used extensively in biomedical applications to deliver nanoparticles (NPs) to diseased cells. The internalization of these nano-objects is controlled by the assembly of a clathrin-containing protein coat on the cytoplasmic side of the plasma membrane, which drives the invagination of the membrane and the formation of a cargo-containing endocytic vesicle. Current theoretical models of receptor-mediated endocytosis of viruses and NPs do not explicitly take coat assembly into consideration. In this paper we study cellular uptake of viruses and NPs with a focus on coat assembly. We characterize the internalization process by the mean time between the binding of a particle to the membrane and its entry into the cell. Using a coarse-grained model which maps the stochastic dynamics of coat formation onto a one-dimensional random walk, we derive an analytical formula for this quantity. A study of the dependence of the mean internalization time on NP size shows that there is an upper bound above which this time becomes extremely large, and an optimal size at which it attains a minimum. Our estimates of these sizes compare well with experimental data. We also study the sensitivity of the obtained results on coat parameters to identify factors which significantly affect the internalization kinetics.

  8. An iron-dependent and transferrin-mediated cellular uptake pathway for plutonium.

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, M. P.; Gorman-Lewis, D.; Aryal, B. P.; Paunesku, T.; Vogt, S.; Rickert, P. G.; Seifert, S.; Lai, B.; Woloschak, G. E.; Soderholm, L. (Chemical Sciences and Engineering Division); ( XSD); (Univ. of Chicago); (Northwestern Univ.)

    2011-08-01

    Plutonium is a toxic synthetic element with no natural biological function, but it is strongly retained by humans when ingested. Using small-angle X-ray scattering, receptor binding assays and synchrotron X-ray fluorescence microscopy, we find that rat adrenal gland (PC12) cells can acquire plutonium in vitro through the major iron acquisition pathway -- receptor-mediated endocytosis of the iron transport protein serum transferrin; however, only one form of the plutonium-transferrin complex is active. Low-resolution solution models of plutonium-loaded transferrins derived from small-angle scattering show that only transferrin with plutonium bound in the protein's C-terminal lobe (C-lobe) and iron bound in the N-terminal lobe (N-lobe) (Pu{sub c}Fe{sub N}Tf) adopts the proper conformation for recognition by the transferrin receptor protein. Although the metal-binding site in each lobe contains the same donors in the same configuration and both lobes are similar, the differences between transferrin's two lobes act to restrict, but not eliminate, cellular Pu uptake.

  9. An iron-dependent and transferrin-mediated cellular uptake pathway for plutonium.

    Science.gov (United States)

    Jensen, Mark P; Gorman-Lewis, Drew; Aryal, Baikuntha; Paunesku, Tatjana; Vogt, Stefan; Rickert, Paul G; Seifert, Soenke; Lai, Barry; Woloschak, Gayle E; Soderholm, L

    2011-06-26

    Plutonium is a toxic synthetic element with no natural biological function, but it is strongly retained by humans when ingested. Using small-angle X-ray scattering, receptor binding assays and synchrotron X-ray fluorescence microscopy, we find that rat adrenal gland (PC12) cells can acquire plutonium in vitro through the major iron acquisition pathway--receptor-mediated endocytosis of the iron transport protein serum transferrin; however, only one form of the plutonium-transferrin complex is active. Low-resolution solution models of plutonium-loaded transferrins derived from small-angle scattering show that only transferrin with plutonium bound in the protein's C-terminal lobe (C-lobe) and iron bound in the N-terminal lobe (N-lobe) (Pu(C)Fe(N)Tf) adopts the proper conformation for recognition by the transferrin receptor protein. Although the metal-binding site in each lobe contains the same donors in the same configuration and both lobes are similar, the differences between transferrin's two lobes act to restrict, but not eliminate, cellular Pu uptake.

  10. Reactive oxygen species involved cancer cellular specific 5-aminolevulinic acid uptake in gastric epithelial cells.

    Science.gov (United States)

    Ito, Hiromu; Tamura, Masato; Matsui, Hirofumi; Majima, Hideyuki J; Indo, Hiroko P; Hyodo, Ichinosuke

    2014-03-01

    Photodynamic therapy and photodynamic diagnosis using 5-aminolevulinic acid (ALA) are clinically useful for cancer treatments. Cancer cells have been reported that 5-aminolevulinic acid is incorporated via peptide transporter 1, which is one of the membrane transport proteins, and has been reported to be significantly expressed in various gastrointestinal cancer cells such as Caco-2. However, the mechanism of this protein expression has not been elucidated. Concentration of reactive oxygen species (ROS) is higher in cancer cells in comparison with that of normal cells. We have previously reported that ROS derived from mitochondria is likely related to invasions and proliferations of cancer cells. Since 5-aminolevulinic acid is the most important precursor of heme which is necessary protein for cellular proliferations, mitochondrial ROS (mitROS) may be also related to peptide transporter 1 expressions. In this study, we used a rat gastric mucosal cell line RGM1 and its cancer-like mutated cell line RGK1, and we clarified the ALA uptake mechanism and its relations between mitROS and peptide transporter 1 expression in RGK1. We also used our self-established stable clone of cell which over-expresses manganese superoxide dismutase, a mitROS scavenger. We studied differences of the photodynamic therapy effects in these cells after ALA administrations to clear the influence of mitROS.

  11. High radio-isotope uptakes in patients with hypothyroidism

    Energy Technology Data Exchange (ETDEWEB)

    Wing, J.; Kalk, W.J.; Ganda, C. (University of the Witwatersrand, Johannesburg (South Africa). Dept. of Medicine)

    1982-12-04

    Hypothyroidism is usually associated with a low radio-isotope uptake by the thyriod gland. We report 8 cases of Hashimoto's thyroiditis with clinical and biochemical hypothyroidism and with borderline high or overtly increased technetium-99m pertechnetate and/or iodine-131 uptakes.

  12. Comparative studies on the uptake and effects of cadmium and zinc on the cellular energy allocation of two freshwater gastropods.

    Science.gov (United States)

    Moolman, L; Van Vuren, J H J; Wepener, V

    2007-11-01

    The uptake and effects of cadmium (Cd) and zinc (Zn) as free metal ions were compared in the freshwater gastropods Melanoides tuberculata and Helisoma duryi. The Langmuir isotherm model was applied to determine the uptake of Cd, Zn, and a mixture of the metals at five different concentrations (Cd: 0.25, 0.51, 0.77, 1.03, 1.29 microM; Zn: 0.17, 0.43, 0.86, 2.17, 4.34 microM). The model gave a good description of metal uptake over a short exposure period (6 h). The gastropods showed interspecies differences in the uptake of Zn. The linear uptake of Cd was similar in these species, although the data did not yield a good fit to the model. No clear Cd/Zn interaction was observed with the mixed metal exposures and both species showed a reduced net uptake for the metals. Cellular energy allocation as a biomarker of exposure provided a measure of the net energy budget (total available energy reserves and total energy consumption). The gastropods were exposed to 0.51 microM Cd, 0.43 microM Zn, and mixture of the metals for a 2-week period. Both species elicited similar decreased net energy budgets following the metal exposures. A combined study on metal uptake and biomarker responses in organisms allows the ability to make interspecies sensitivity comparisons in ecotoxicological studies.

  13. Cellular uptake but low permeation of human calcitonin-derived cell penetrating peptides and Tat(47-57) through well-differentiated epithelial models

    DEFF Research Database (Denmark)

    Tréhin, Rachel; Krauss, Ulrike; Beck-Sickinger, Annette G;

    2004-01-01

    To investigate whether cell penetrating peptides (CPP) derived from human calcitonin (hCT) possess, in addition to cellular uptake, the capacity to deliver their cargo through epithelial barriers.......To investigate whether cell penetrating peptides (CPP) derived from human calcitonin (hCT) possess, in addition to cellular uptake, the capacity to deliver their cargo through epithelial barriers....

  14. Comparison of Cellular Uptake and Inflammatory Response via Toll-Like Receptor 4 to Lipopolysaccharide and Titanium Dioxide Nanoparticles

    Directory of Open Access Journals (Sweden)

    Akiyoshi Taniguchi

    2013-06-01

    Full Text Available The innate immune response is the earliest cellular response to infectious agents and mediates the interactions between microbes and cells. Toll-like receptors (TLRs play an important role in these interactions. We have already shown that TLRs are involved with the uptake of titanium dioxide nanoparticles (TiO2 NPs and promote inflammatory responses. In this paper, we compared role of cellular uptake and inflammatory response via TLR 4 to lipopolysaccharide (LPS and TiO2 NPs. In the case of LPS, LPS binds to LPS binding protein (LBP and CD 14, and then this complex binds to TLR 4. In the case of TiO2 NPs, the necessity of LBP and CD 14 to induce the inflammatory response and for uptake by cells was investigated using over-expression, antibody blocking, and siRNA knockdown experiments. Our results suggested that for cellular uptake of TiO2 NPs, TLR 4 did not form a complex with LBP and CD 14. In the TiO2 NP-mediated inflammatory response, TLR 4 acted as the signaling receptor without protein complex of LPS, LBP and CD 14. The results suggested that character of TiO2 NPs might be similar to the complex of LPS, LBP and CD 14. These results are important for development of safer nanomaterials.

  15. The chemopreventive effect of the dietary compound kaempferol on the MCF-7 human breast cancer cell line is dependent on inhibition of glucose cellular uptake.

    Science.gov (United States)

    Azevedo, Cláudia; Correia-Branco, Ana; Araújo, João R; Guimarães, João T; Keating, Elisa; Martel, Fátima

    2015-01-01

    Our aim was to investigate the effect of several dietary polyphenols on glucose uptake by breast cancer cells. Uptake of (3)H-deoxy-D-glucose ((3)H-DG) by MCF-7 cells was time-dependent, saturable, and inhibited by cytochalasin B plus phloridzin. In the short-term (26 min), myricetin, chrysin, genistein, resveratrol, kaempferol, and xanthohumol (10-100 µM) inhibited (3)H-DG uptake. Kaempferol was found to be the most potent inhibitor of (3)H-DG uptake [IC50 of 4 µM (1.6-9.8)], behaving as a mixed-type inhibitor. In the long-term (24 h), kaempferol (30 µM) was also able to inhibit (3)H-DG uptake, associated with a 40% decrease in GLUT1 mRNA levels. Interestingly enough, kaempferol (100 µM) revealed antiproliferative (sulforhodamine B and (3)H-thymidine incorporation assays) and cytotoxic (extracellular lactate dehydrogenase activity determination) properties, which were mimicked by low extracellular (1 mM) glucose conditions and reversed by high extracellular (20 mM) glucose conditions. Finally, exposure of cells to kaempferol (30 µM) induced an increase in extracellular lactate levels over time (to 731 ± 32% of control after a 24 h exposure), due to inhibition of MCT1-mediated lactate cellular uptake. In conclusion, kaempferol potently inhibits glucose uptake by MCF-7 cells, apparently by decreasing GLUT1-mediated glucose uptake. The antiproliferative and cytotoxic effect of kaempferol in these cells appears to be dependent on this effect.

  16. Lecithin:retinol acyltransferase is critical for cellular uptake of vitamin A from serum retinol-binding protein.

    Science.gov (United States)

    Amengual, Jaume; Golczak, Marcin; Palczewski, Krzysztof; von Lintig, Johannes

    2012-07-13

    Vitamin A (all-trans-retinol) must be adequately distributed within the mammalian body to produce visual chromophore in the eyes and all-trans-retinoic acid in other tissues. Vitamin A is transported in the blood bound to retinol-binding protein (holo-RBP), and its target cells express an RBP receptor encoded by the Stra6 (stimulated by retinoic acid 6) gene. Here we show in mice that cellular uptake of vitamin A from holo-RBP depends on functional coupling of STRA6 with intracellular lecithin:retinol acyltransferase (LRAT). Thus, vitamin A uptake from recombinant holo-RBP exhibited by wild type mice was impaired in Lrat(-/-) mice. We further provide evidence that vitamin A uptake is regulated by all-trans-retinoic acid in non-ocular tissues of mice. When in excess, vitamin A was rapidly taken up and converted to its inert ester form in peripheral tissues, such as lung, whereas in vitamin A deficiency, ocular retinoid uptake was favored. Finally, we show that the drug fenretinide, used clinically to presumably lower blood RBP levels and thus decrease circulating retinol, targets the functional coupling of STRA6 and LRAT to increase cellular vitamin A uptake in peripheral tissues. These studies provide mechanistic insights into how vitamin A is distributed to peripheral tissues in a regulated manner and identify LRAT as a critical component of this process.

  17. Taurine Boosts Cellular Uptake of Small d-Peptides for Enzyme-Instructed Intracellular Molecular Self-Assembly

    OpenAIRE

    Zhou, Jie; Du, Xuewen; Li, Jie; Yamagata, Natsuko; Xu, Bing

    2015-01-01

    Due to their biostability, d-peptides are emerging as an important molecular platform for biomedical applications. Being proteolytically resistant, d-peptides lack interactions with endogenous transporters and hardly enter cells. Here we show that taurine, a natural amino acid, drastically boosts the cellular uptake of small d-peptides in mammalian cells by >10-fold, from 118 μM (without conjugating taurine) to >1.6 mM (after conjugating taurine). The uptake of a large amount of the ester con...

  18. Cellular Composition Changes and Nitrogen Uptake under Extra-Limited Nitrogen Conditions by Thermosynechococcus sp. CL-1 Carbon Biofixation

    Directory of Open Access Journals (Sweden)

    Tseng Chi-Ming

    2016-01-01

    Full Text Available Two types of culture systems were used (continuous and batch which were fed using a simulated absorbent from a scrubber with carbonate/bicarbonate as the carbon source and nitrate as the nitrogen source by a thermophile strain, Thermosynechococcus sp. CL-1 (TCL-1 at 50°C. The lipid, carbohydrate, and protein cellular components which can be used as bioenergy precursors along with their content as a function of various C/N ratios are quantified. Maximum lipid productivity of about 150 mg L−1 d−1 is obtained while the CO2 uptake rate is 917 mg L−1 d−1 at a dilution rate of 0.06 h−1 when both carbon and nitrogen sources are not limited. With high range of nitrogen concentrations batch culture test, TCL-1 reveals extra-high affinity on nitrogen source under limited carbon source conditions since the affinity constant is 0.12 mM. In addition, the flow of carbon fixed during photosynthesis seems to switch from the protein synthesis pathway to forming carbohydrate rather than lipid under N-limitation and a high C/N ratio for TCL-1, resulting in a maximal carbohydrate content of 61%. Consequently, TCL-1 is an appropriate candidate to treat the wastewater of environment and produce the bioenergy precursors under extreme limited nitrogen conditions.

  19. Role of toll-like receptors 3, 4 and 7 in cellular uptake and response to titanium dioxide nanoparticles

    Directory of Open Access Journals (Sweden)

    Peng Chen, Koki Kanehira and Akiyoshi Taniguchi

    2013-01-01

    Full Text Available Innate immune response is believed to be among the earliest provisional cellular responses, and mediates the interactions between microbes and cells. Toll-like receptors (TLRs are critical to these interactions. We hypothesize that TLRs also play an important role in interactions between nanoparticles (NPs and cells, although little information has been reported concerning such an interaction. In this study, we investigated the role of TLR3, TLR4 and TLR7 in cellular uptake of titanium dioxide NP (TiO2 NP agglomerates and the resulting inflammatory responses to these NPs. Our data indicate that TLR4 is involved in the uptake of TiO2 NPs and promotes the associated inflammatory responses. The data also suggest that TLR3, which has a subcellular location distinct from that of TLR4, inhibits the denaturation of cellular protein caused by TiO2 NPs. In contrast, the unique cellular localization of TLR7 has middle-ground functional roles in cellular response after TiO2 NP exposure. These findings are important for understanding the molecular interaction mechanisms between NPs and cells.

  20. Genome-wide assessment of the carriers involved in the cellular uptake of drugs: a model system in yeast

    Directory of Open Access Journals (Sweden)

    Lanthaler Karin

    2011-10-01

    Full Text Available Abstract Background The uptake of drugs into cells has traditionally been considered to be predominantly via passive diffusion through the bilayer portion of the cell membrane. The recent recognition that drug uptake is mostly carrier-mediated raises the question of which drugs use which carriers. Results To answer this, we have constructed a chemical genomics platform built upon the yeast gene deletion collection, using competition experiments in batch fermenters and robotic automation of cytotoxicity screens, including protection by 'natural' substrates. Using these, we tested 26 different drugs and identified the carriers required for 18 of the drugs to gain entry into yeast cells. Conclusions As well as providing a useful platform technology, these results further substantiate the notion that the cellular uptake of pharmaceutical drugs normally occurs via carrier-mediated transport and indicates that establishing the identity and tissue distribution of such carriers should be a major consideration in the design of safe and effective drugs.

  1. Diffusive boundary layers of the colony-forming plankton alga Phaeocystis sp - implications for nutrient uptake and cellular growth

    DEFF Research Database (Denmark)

    Ploug, H.; Stolte, W.; Jørgensen, BB

    1999-01-01

    . At diffusion limitation, this concentration gradient was reflected by an apparently higher half-saturation constants for nutrient uptake, K-M, for colonial cells compared with that for single cells. The diffusion limited supply of inorganic nitrogen and orthophosphate from the bulk water phase......The impact of colony formation on cellular nutrient supply was calculated for Phaeocystis in a turbulent environment using a diffusion-reaction model. The model included diffusive boundary layer as predicted by Sherwood numbers in mass transfer to a sphere. Literature values for nutrient uptake (V......-max, K-m) of single cells and colonies and the size dependence of cell numbers in colonies were used in the model. Colony formation was shown to decrease nutrient uptake by Phaeocystis cells because of the presence of diffusive boundary layers with concentration gradients surrounding the colonies...

  2. Real-time and label-free monitoring of nanoparticle cellular uptake using capacitance-based assays

    Science.gov (United States)

    Lee, Rimi; Jo, Dong hyun; Chung, Sang J.; Na, Hee-Kyung; Kim, Jeong Hun; Lee, Tae Geol

    2016-01-01

    Nanoparticles have shown great potential as vehicles for the delivery of drugs, nucleic acids, and therapeutic proteins; an efficient, high-throughput screening method to analyze nanoparticle interaction with the cytomembrane would substantially improve the efficiency and accuracy of the delivery. Here, we developed a capacitance sensor array that monitored the capacitance values of nanoparticle-treated cells in a real-time manner, without the need for labeling. Upon cellular uptake of the nanoparticles, a capacitance peak was observed at a low frequency (e.g., 100 Hz) as a function of time based on zeta potential changes. In the high frequency region (e.g., 15–20 kHz), the rate of decreasing capacitance slowed as a function of time compared to the cell growth control group, due to increased cytoplasm resistance and decreased membrane capacitance and resistance. The information provided by our capacitance sensor array will be a powerful tool for scientists designing nanoparticles for specific purposes. PMID:27641838

  3. Taurine Boosts Cellular Uptake of Small D-Peptides for Enzyme-Instructed Intracellular Molecular Self-Assembly.

    Science.gov (United States)

    Zhou, Jie; Du, Xuewen; Li, Jie; Yamagata, Natsuko; Xu, Bing

    2015-08-19

    Due to their biostability, D-peptides are emerging as an important molecular platform for biomedical applications. Being proteolytically resistant, D-peptides lack interactions with endogenous transporters and hardly enter cells. Here we show that taurine, a natural amino acid, drastically boosts the cellular uptake of small D-peptides in mammalian cells by >10-fold, from 118 μM (without conjugating taurine) to >1.6 mM (after conjugating taurine). The uptake of a large amount of the ester conjugate of taurine and D-peptide allows intracellular esterase to trigger intracellular self-assembly of the D-peptide derivative, further enhancing their cellular accumulation. The study on the mechanism of the uptake reveals that the conjugates enter cells via both dynamin-dependent endocytosis and macropinocytosis, but likely not relying on taurine transporters. Differing fundamentally from the positively charged cell-penetrating peptides, the biocompatibility, stability, and simplicity of the enzyme-cleavable taurine motif promise new ways to promote the uptake of bioactive molecules for countering the action of efflux pump and contributing to intracellular molecular self-assembly.

  4. Esterification of Ginsenoside Rh2 Enhanced Its Cellular Uptake and Antitumor Activity in Human HepG2 Cells.

    Science.gov (United States)

    Chen, Fang; Deng, Ze-Yuan; Zhang, Bing; Xiong, Zeng-Xing; Zheng, Shi-Lian; Tan, Chao-Li; Hu, Jiang-Ning

    2016-01-13

    Our previous research had indicated that the octyl ester derivative of ginsenoside Rh2 (Rh2-O) might have a higher bioavailability than Rh2 in the Caco-2 cell line. The aim of this study was to investigate the cellular uptake and antitumor effects of Rh2-O in human HepG2 cells as well as its underlying mechanism compared with Rh2. Results showed that Rh2-O exhibited a higher cellular uptake (63.24%) than Rh2 (36.76%) when incubated with HepG2 cells for 24 h. Rh2-O possessed a dose- and time-dependent inhibitory effect against the proliferation of HepG2 cells. The IC50 value of Rh2-O for inhibition of HepG2 cell proliferation was 20.15 μM, which was roughly half the value of Rh2. Rh2-O induced apoptosis of HepG2 cells through a mitochondrial-mediated intrinsic pathway. In addition, the accumulation of ROS was detected in Rh2-O-treated HepG2 cells, which participated in the apoptosis of HepG2 cells. Conclusively, the findings above all suggested that Rh2-O as well as Rh2 inducing HepG2 cells apoptosis might involve similar mechanisms; however, Rh2-O had better antitumor activities than Rh2, probably due to its higher cellular uptake.

  5. Cellular uptake and imaging studies of glycosylated silica nanoprobe (GSN in human colon adenocarcinoma (HT 29 cell line

    Directory of Open Access Journals (Sweden)

    Mehravi B

    2013-08-01

    Full Text Available Bita Mehravi,1 Mohsen Ahmadi,1 Massoud Amanlou,2 Ahmad Mostaar,1 Mehdi Shafiee Ardestani,3 Negar Ghalandarlaki41Biomedical Engineering and Medical Physics Department, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; 2Department of Medicinal Chemistry, Faculty of Pharmacy and Drug Design and Development Research Center, Tehran University of Medical Sciences, Tehran, Iran; 3Department of Radiopharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; 4Department of Biological Science, School of Science, Science and Research branch, Islamic Azad University, Tehran, IranPurpose: In recent years, molecular imaging by magnetic resonance imaging (MRI has gained prominence in the detection of tumor cells. The scope of this study is on molecular imaging and on the cellular uptake study of a glycosylated silica nanoprobe (GSN.Methods: In this study, intracellular uptake (HT 29 cell line of GSN was analyzed quantitatively and qualitatively with inductively coupled plasma atomic emission spectroscopy, flow cytometry, and fluorescent microscopy. In vitro and in vivo relaxometry of this nanoparticle was determined using a 3 Tesla MRI; biodistribution of GSN and Magnevist® were measured in different tissues.Results: Results suggest that the cellular uptake of GSN was about 70%. The r1 relaxivity of this nanoparticle in the cells was measured to be 12.9 ± 1.6 mM-1 s-1 and on a per lanthanide gadolinium (Gd3+ basis. Results also indicate an average cellular uptake of 0.7 ± 0.009 pg Gd3+ per cell. It should be noted that 3-(4,5-Dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assay demonstrated that the cells were effectively labeled without cytotoxicity, and that using MRI for quantitative estimation of delivery and uptake of targeted contrast agents and early detection of human colon cancer cells using targeted contrast agents, is feasible.Conclusion: These results showed that GSN provided a

  6. Augmented cellular uptake of nanoparticles using tea catechins: effect of surface modification on nanoparticle-cell interaction

    Science.gov (United States)

    Lu, Yi-Ching; Luo, Pei-Chun; Huang, Chun-Wan; Leu, Yann-Lii; Wang, Tzu-Hao; Wei, Kuo-Chen; Wang, Hsin-Ell; Ma, Yunn-Hwa

    2014-08-01

    Nanoparticles may serve as carriers in targeted therapeutics; interaction of the nanoparticles with a biological system may determine their targeting effects and therapeutic efficacy. Epigallocatechin-3-gallate (EGCG), a major component of tea catechins, has been conjugated with nanoparticles and tested as an anticancer agent. We investigated whether EGCG may enhance nanoparticle uptake by tumor cells. Cellular uptake of a dextran-coated magnetic nanoparticle (MNP) was determined by confocal microscopy, flow cytometry or a potassium thiocyanate colorimetric method. We demonstrated that EGCG greatly enhanced interaction and/or internalization of MNPs (with or without polyethylene glycol) by glioma cells, but not vascular endothelial cells. The enhancing effects are both time- and concentration-dependent. Such effects may be induced by a simple mix of MNPs with EGCG at a concentration as low as 1-3 μM, which increased MNP uptake 2- to 7-fold. In addition, application of magnetic force further potentiated MNP uptake, suggesting a synergetic effect of EGCG and magnetic force. Because the effects of EGCG were preserved at 4 °C, but not when EGCG was removed from the culture medium prior to addition of MNPs, a direct interaction of EGCG and MNPs was implicated. Use of an MNP-EGCG composite produced by adsorption of EGCG and magnetic separation also led to an enhanced uptake. The results reveal a novel interaction of a food component and nanocarrier system, which may be potentially amenable to magnetofection, cell labeling/tracing, and targeted therapeutics.

  7. Augmented cellular uptake of nanoparticles using tea catechins: effect of surface modification on nanoparticle-cell interaction.

    Science.gov (United States)

    Lu, Yi-Ching; Luo, Pei-Chun; Huang, Chun-Wan; Leu, Yann-Lii; Wang, Tzu-Hao; Wei, Kuo-Chen; Wang, Hsin-Ell; Ma, Yunn-Hwa

    2014-09-07

    Nanoparticles may serve as carriers in targeted therapeutics; interaction of the nanoparticles with a biological system may determine their targeting effects and therapeutic efficacy. Epigallocatechin-3-gallate (EGCG), a major component of tea catechins, has been conjugated with nanoparticles and tested as an anticancer agent. We investigated whether EGCG may enhance nanoparticle uptake by tumor cells. Cellular uptake of a dextran-coated magnetic nanoparticle (MNP) was determined by confocal microscopy, flow cytometry or a potassium thiocyanate colorimetric method. We demonstrated that EGCG greatly enhanced interaction and/or internalization of MNPs (with or without polyethylene glycol) by glioma cells, but not vascular endothelial cells. The enhancing effects are both time- and concentration-dependent. Such effects may be induced by a simple mix of MNPs with EGCG at a concentration as low as 1-3 μM, which increased MNP uptake 2- to 7-fold. In addition, application of magnetic force further potentiated MNP uptake, suggesting a synergetic effect of EGCG and magnetic force. Because the effects of EGCG were preserved at 4 °C, but not when EGCG was removed from the culture medium prior to addition of MNPs, a direct interaction of EGCG and MNPs was implicated. Use of an MNP-EGCG composite produced by adsorption of EGCG and magnetic separation also led to an enhanced uptake. The results reveal a novel interaction of a food component and nanocarrier system, which may be potentially amenable to magnetofection, cell labeling/tracing, and targeted therapeutics.

  8. Impact of food components during in vitro digestion of silver nanoparticles on cellular uptake and cytotoxicity in intestinal cells.

    Science.gov (United States)

    Lichtenstein, Dajana; Ebmeyer, Johanna; Knappe, Patrick; Juling, Sabine; Böhmert, Linda; Selve, Sören; Niemann, Birgit; Braeuning, Albert; Thünemann, Andreas F; Lampen, Alfonso

    2015-11-01

    Because of the rising application of nanoparticles in food and food-related products, we investigated the influence of the digestion process on the toxicity and cellular uptake of silver nanoparticles for intestinal cells. The main food components--carbohydrates, proteins and fatty acids--were implemented in an in vitro digestion process to simulate realistic conditions. Digested and undigested silver nanoparticle suspensions were used for uptake studies in the well-established Caco-2 model. Small-angle X-ray scattering was used to estimate particle core size, size distribution and stability in cell culture medium. Particles proved to be stable and showed radii from 3.6 to 16.0 nm. Undigested particles and particles digested in the presence of food components were comparably taken up by Caco-2 cells, whereas the uptake of particles digested without food components was decreased by 60%. Overall, these findings suggest that in vivo ingested poly (acrylic acid)-coated silver nanoparticles may reach the intestine in a nanoscaled form even if enclosed in a food matrix. While appropriate for studies on the uptake into intestinal cells, the Caco-2 model might be less suited for translocation studies. Moreover, we show that nanoparticle digestion protocols lacking food components may lead to misinterpretation of uptake studies and inconclusive results.

  9. Dual-drug delivery by porous silicon nanoparticles for improved cellular uptake, sustained release, and combination therapy.

    Science.gov (United States)

    Wang, Chang-Fang; Mäkilä, Ermei M; Kaasalainen, Martti H; Hagström, Marja V; Salonen, Jarno J; Hirvonen, Jouni T; Santos, Hélder A

    2015-04-01

    Dual-drug delivery of antiangiogenic and chemotherapeutic drugs can enhance the therapeutic effect for cancer therapy. Conjugation of methotrexate (MTX) to porous silicon (PSi) nanoparticles (MTX-PSi) with positively charged surface can improve the cellular uptake of MTX and inhibit the proliferation of cancer cells. Herein, MTX-PSi conjugates sustained the release of MTX up to 96 h, and the released fragments including MTX were confirmed by mass spectrometry. The intracellular distribution of the MTX-PSi nanoparticles was confirmed by transmission electron microscopy. Compared to pure MTX, the MTX-PSi achieved similar inhibition of cell proliferation in folate receptor (FR) over-expressing U87 MG cancer cells, and a higher effect in low FR-expressing EA.hy926 cells. Nuclear fragmentation analysis demonstrated programmed cell apoptosis of MTX-PSi in the high/low FR-expressing cancer cells, whereas PSi alone at the same dose had a minor effect on cell apoptosis. Finally, the porous structure of MTX-PSi enabled a successful concomitant loading of another anti-angiogenic hydrophobic drug, sorafenib, and considerably enhanced the dissolution rate of sorafenib. Overall, the MTX-PSi nanoparticles can be used as a platform for combination chemotherapy by simultaneously enhancing the dissolution rate of a hydrophobic drug and sustaining the release of a conjugated chemotherapeutic drug.

  10. Uptake of dexamethasone incorporated into liposomes by macrophages and foam cells and its inhibitory effect on cellular cholesterol ester accumulation.

    Science.gov (United States)

    Chono, Sumio; Morimoto, Kazuhiro

    2006-09-01

    To confirm the efficacy of dexamethasone incorporated into liposomes in the treatment of atherosclerosis, the uptake of dexamethasone-liposomes by macrophages and foam cells and its inhibitory effect on cellular cholesterol ester accumulation in these cells were investigated in-vitro. Dexamethasone-liposomes were prepared with egg yolk phosphatidylcholine, cholesterol and dicetylphosphate in a lipid molar ratio of 7/2/1 by the hydration method. This was adjusted to three different particle sizes to clarify the influence of particle size on the uptake by the macrophages and foam cells, and the inhibitory effect on cellular cholesterol ester accumulation. The distribution of particle sizes of dexamethasone-liposomes were 518.7+/-49.5 nm (L500), 202.2+/-23.1 nm (L200), and 68.6+/-6.5 nm (L70), respectively. For each size, dexamethasone concentration and dexamethasone/lipid molar ratio in dexamethasone-liposome suspension were 1 mg dexamethasone mL-1 and 0.134 mol dexamethasone mol-1 total lipids, respectively. The zeta potential was approximately -70 mV for all sizes. Dexamethasone-liposomes or free dexamethasone were added to the macrophages in the presence of oxidized low density lipoprotein (oxLDL) and foam cells, and then incubated at 37 degrees C. The uptake amount of dexamethasone by the macrophages and foam cells after a 24-h incubation was L500>L200>free dexamethasone>L70. The macrophages in the presence of oxLDL and foam cells were incubated with dexamethasone-liposomes or free dexamethasone for 24 h at 37 degrees C to evaluate the inhibitory effect on the cellular cholesterol ester accumulation. The cellular cholesterol ester level in the macrophages treated with oxLDL was significantly increased compared with that in macrophages without additives. L500, L200 and free dexamethasone significantly inhibited this cholesterol ester accumulation. L500, L200 and free dexamethasone also significantly reduced cellular cholesterol ester accumulation in foam cells. In

  11. Exploring the cellular and tissue uptake of nanomaterials in a range of biological samples using multimodal nonlinear optical microscopy

    Science.gov (United States)

    Johnston, Helinor J.; Mouras, Rabah; Brown, David M.; Elfick, Alistair; Stone, Vicki

    2015-12-01

    The uptake of nanomaterials (NMs) by cells is critical in determining their potential biological impact, whether beneficial or detrimental. Thus, investigation of NM internalization by cells is a common consideration in hazard and efficacy studies. There are currently a number of approaches that are routinely used to investigate NM-cell interactions, each of which have their own advantages and limitations. Ideally, imaging modalities used to investigate NM uptake by cells should not require the NM to be labelled (e.g. with fluorophores) to facilitate its detection. We present a multimodal imaging approach employing a combination of label-free microscopies that can be used to investigate NM-cell interactions. Coherent anti-Stokes Raman scattering microscopy was used in combination with either two-photon photoluminescence or four-wave mixing (FWM) to visualize the uptake of gold or titanium dioxide NMs respectively. Live and fixed cell imaging revealed that NMs were internalized by J774 macrophage and C3A hepatocyte cell lines (15-31 μg ml-1). Sprague Dawley rats were exposed to NMs (intratracheal instillation, 62 μg) and NMs were detected in blood and lung leucocytes, lung and liver tissue, demonstrating that NMs could translocate from the exposure site. Obtained data illustrate that multimodal nonlinear optical microscopy may help overcome current challenges in the assessment of NM cellular uptake and biodistribution. It is therefore a powerful tool that can be used to investigate unlabelled NM cellular and tissue uptake in three dimensions, requires minimal sample preparation, and is applicable to live and fixed cells.

  12. Design and synthesis of temperature-responsive polymer/silica hybrid nanoparticles and application to thermally controlled cellular uptake.

    Science.gov (United States)

    Hiruta, Yuki; Nemoto, Ryo; Kanazawa, Hideko

    2017-05-01

    This study reports the development of temperature-responsive polymer/silica hybrid nanoparticles and their application to temperature-dependent intracellular uptake of hydrophobic encapsulated fluorescence molecules. Amphiphilic diblock copolymer comprising a temperature-responsive segment, poly(N-isopropylacrylamide-co-N,N-dimethylacrylamide) [P(NIPAAm-co-DMAAm)] and a trimethyoxysilyl-containing hydrophobic segment was synthesized (PBM-b-ND); this amphiphilic diblock copolymer self-assembled in an aqueous solution, and temperature-responsive polymer/silica hybrid fluorescence nanoparticles were fabricated via a base-catalyzed sol-gel process. The fluorescence probe rhodamine DHPE or boron dipyrromethene derivative was encapsulated into the polymer core with a silica network in a stable manner. Other types of polymer/silica hybrid fluorescence nanoparticles were also developed using either homo-PNIPAAm (PBM-b-N) or homo-PDMAAm (PBM-b-D) segments, instead of P(NIPAAm-co-DMAAm). While PBM-b-D did not exhibit a temperature-dependent phase transition (hydrophilic characteristic), PBM-b-N and PBM-b-ND exhibited temperature-dependent phase transition (hydrophilic/hydrophobic) at 32°C and 38°C, respectively. The cellular uptake of PBM-b-N was clearly observed at both 37°C and 42°C, while the cellular uptake of PBM-b-D was minimal at these temperatures. On the other hand, significant enhancement in the intracellular uptake of PBM-b-ND was observed at 42°C, compared to its uptake at a lower temperature of 37°C. These results indicated that temperature-responsive polymer/silica hybrid nanoparticle, PBM-b-ND demonstrate potential for applications in theranostics with cancer therapy via the combination of local drug delivery and local hyperthermia, as well as for monitoring treatment effectiveness with fluorescence imaging. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Cytotoxicity and cellular uptake of ZnS:Mn nanocrystals biofunctionalized with chitosan and aminoacids

    Science.gov (United States)

    Sajimol Augustine, M.; Anas, Abdulaziz; Das, Ani V.; Sreekanth, S.; Jayalekshmi, S.

    2015-02-01

    Highly luminescent, manganese doped, zinc sulphide (ZnS:Mn) nanocrystals biofunctionalized with chitosan and various aminoacids such as L-citrulline, L-lysine, L-arginine, L-serine, L-histidine and glycine were synthesized by chemical capping co-precipitation method at room temperature, which is a simple and cost effective technique. The synthesized nanocrystals were structurally characterized by TEM, XRD, EDXS and FT-IR spectroscopy techniques. They possess high colloidal stability with strong orange red photoluminescence emission at 598 nm. The intensity of orange red emission has been observed to be maximum in L-citrulline capped ZnS:Mn nanocrystals in which the emission at 420 nm is effectively quenched by surface passivation due to capping. Taking into consideration the prospects of these highly luminescent, bio-compatible ZnS:Mn nanocrystals in bio-imaging applications, cytotoxicity studies were conducted to identify the capping combination which would accomplish minimum toxic effects. ZnS:Mn nanocrystals biofunctionalized with chitosan, L-citrulline, glycine, L-artginine, L-serine and L-histidine showed least toxicity up to 10 nM concentrations in mouse fibroblast L929 cells, which further confirms their cytocompatibility. Also the ZnS:Mn nanocrystals biofunctionalized with L-arginine showed maximum uptake in in vitro studies carried out in human embryonic kidney cells, HEK-293T, which shows the significant role of this particular amino acid in fetoplacental nutrition. The present study highlights the suitability of aminoacid conjugated ZnS:Mn nanocrystals, as promising candidates for biomedical applications.

  14. Molecular and cellular characterisation of the zinc uptake (Znu) system of Nostoc punctiforme.

    Science.gov (United States)

    Hudek, Lee; Pearson, Leanne A; Michalczyk, Agnes; Neilan, Brett A; Ackland, M Leigh

    2013-11-01

    Metal homoeostasis in cyanobacteria is based on uptake and export systems that are controlled by their own regulators. This study characterises the zinc uptake (Znu) system in Nostoc punctiforme. The system was found to comprise of three subunits in an ACB operon: a Zn(2+)-binding protein (ZnuA18), a transmembrane domain (ZnuB) and an ATPase (ZnuC). These proteins are encoded within the znu operon regulated by a zinc uptake transcription repressor (Zur). Interestingly, a second Zn(2+)-binding protein (ZnuA08) was also identified at a distal genomic location. Interactions between components of the ZnuACB system were investigated using knockouts of the individual genes. The znuA08(-), znuA18(-), znuB(-) and znuC(-) mutants displayed overall reduced znuACB transcript levels, suggesting that all system components are required for normal expression of znu genes. Zinc uptake assays in the Zn(2+)-binding protein mutant strains showed that the disruption of znuA18 had a greater negative effect on zinc uptake than disruption of znuA08. Complementation studies in Escherichia coli indicated that both znuA08 and znuA18 were able to restore zinc uptake in a znuA(-) mutant, with znuA18 permitting the highest zinc uptake rate. The N. punctiforme zur was also able to complement the E. coli zur(-) mutant. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  15. Lipid-modified oligonucleotide conjugates: Insights into gene silencing, interaction with model membranes and cellular uptake mechanisms.

    Science.gov (United States)

    Ugarte-Uribe, Begoña; Grijalvo, Santiago; Pertíñez, Samuel Núñez; Busto, Jon V; Martín, César; Alagia, Adele; Goñi, Félix M; Eritja, Ramón; Alkorta, Itziar

    2017-01-01

    The ability of oligonucleotides to silence specific genes or inhibit the biological activity of specific proteins has generated great interest in their use as research tools and therapeutic agents. Unfortunately, their biological applications meet the limitation of their poor cellular accessibility. Developing an appropriate delivery system for oligonucleotides is essential to achieve their efficient cellular uptake. In the present work a series of phosphorothioate lipid-oligonucleotide hybrids were synthesized introducing covalently single or double lipid tails at both 3'- and 5'-termini of an antisense oligonucleotide. Gene transfections in cultured cells showed antisense luciferase inhibition without the use of a transfecting agent for conjugates modified with the double-lipid tail at 5'-termini. The effect of the double lipid-tailed modification was further studied in detail in several model membrane systems as well as in cellular uptake experiments. During these studies the spontaneous formation of self-assembled microstructures is clearly observed. Lipidation allowed the efficient incorporation of the oligonucleotide in HeLa cells by a macropinocytosis mechanism without causing cytotoxicity in cells or altering the binding properties of the oligonucleotide conjugates. In addition, both single- and double-tailed compounds showed a similar behavior in lipid model membranes, making them useful in nucleotide-based technologies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Protein Corona Influences Cellular Uptake of Gold Nanoparticles by Phagocytic and Nonphagocytic Cells in a Size-Dependent Manner.

    Science.gov (United States)

    Cheng, Xiaju; Tian, Xin; Wu, Anqing; Li, Jianxiang; Tian, Jian; Chong, Yu; Chai, Zhifang; Zhao, Yuliang; Chen, Chunying; Ge, Cuicui

    2015-09-23

    The interaction at nanobio is a critical issue in designing safe nanomaterials for biomedical applications. Recent studies have reported that it is nanoparticle-protein corona rather than bare nanoparticle that determines the nanoparticle-cell interactions, including endocytic pathway and biological responses. Here, we demonstrate the effects of protein corona on cellular uptake of different sized gold nanoparticles in different cell lines. The experimental results show that protein corona significantly decreases the internalization of Au NPs in a particle size- and cell type-dependent manner. Protein corona exhibits much more significant inhibition on the uptake of large-sized Au NPs by phagocytic cell than that of small-sized Au NPs by nonphagocytic cell. The endocytosis experiment indicates that different endocytic pathways might be responsible for the differential roles of protein corona in the interaction of different sized Au NPs with different cell lines. Our findings can provide useful information for rational design of nanomaterials in biomedical application.

  17. Biocompatible multilayer capsules engineered with a graphene oxide derivative: synthesis, characterization and cellular uptake

    Science.gov (United States)

    Del Mercato, Loretta L.; Guerra, Flora; Lazzari, Gianpiero; Nobile, Concetta; Bucci, Cecilia; Rinaldi, Rosaria

    2016-03-01

    Graphene-based capsules have strong potential for a number of applications, including drug/gene delivery, tissue engineering, sensors, catalysis and reactors. The ability to integrate graphene into carrier systems with three-dimensional (3D) geometry may open new perspectives both for fundamental tests of graphene mechanics and for novel (bio)technological applications. However, the assembly of 3D complexes from graphene or its derivatives is challenging because of its poor stability under biological conditions. In this work, we attempted to integrate a layer of graphene oxide derivative into the shell of biodegradable capsules by exploiting a facile layer-by-layer (LbL) protocol. As a first step we optimized the LbL protocol to obtain colloidal suspensions of isolated capsules embedding the graphene oxide derivative. As a following step, we investigated in detail the morphological properties of the hybrid capsules, and how the graphene oxide derivative layer influences the porosity and the robustness of the multilayer composite shells. Finally, we verified the uptake of the capsules modified with the GO derivative by two cell lines and studied their intracellular localization and biocompatibility. As compared to pristine capsules, the graphene-modified capsules possess reduced porosity, reduced shell thickness and a higher stability against osmotic pressure. They show remarkable biocompatibility towards the tested cells and long-term colloidal stability and dispersion. By combining the excellent mechanical properties of a graphene oxide derivative with the high versatility of the LbL method, robust and flexible biocompatible polymeric capsules with novel characteristics have been fabricated.Graphene-based capsules have strong potential for a number of applications, including drug/gene delivery, tissue engineering, sensors, catalysis and reactors. The ability to integrate graphene into carrier systems with three-dimensional (3D) geometry may open new perspectives

  18. Biocompatible multilayer capsules engineered with a graphene oxide derivative: synthesis, characterization and cellular uptake.

    Science.gov (United States)

    del Mercato, Loretta L; Guerra, Flora; Lazzari, Gianpiero; Nobile, Concetta; Bucci, Cecilia; Rinaldi, Rosaria

    2016-04-14

    Graphene-based capsules have strong potential for a number of applications, including drug/gene delivery, tissue engineering, sensors, catalysis and reactors. The ability to integrate graphene into carrier systems with three-dimensional (3D) geometry may open new perspectives both for fundamental tests of graphene mechanics and for novel (bio)technological applications. However, the assembly of 3D complexes from graphene or its derivatives is challenging because of its poor stability under biological conditions. In this work, we attempted to integrate a layer of graphene oxide derivative into the shell of biodegradable capsules by exploiting a facile layer-by-layer (LbL) protocol. As a first step we optimized the LbL protocol to obtain colloidal suspensions of isolated capsules embedding the graphene oxide derivative. As a following step, we investigated in detail the morphological properties of the hybrid capsules, and how the graphene oxide derivative layer influences the porosity and the robustness of the multilayer composite shells. Finally, we verified the uptake of the capsules modified with the GO derivative by two cell lines and studied their intracellular localization and biocompatibility. As compared to pristine capsules, the graphene-modified capsules possess reduced porosity, reduced shell thickness and a higher stability against osmotic pressure. They show remarkable biocompatibility towards the tested cells and long-term colloidal stability and dispersion. By combining the excellent mechanical properties of a graphene oxide derivative with the high versatility of the LbL method, robust and flexible biocompatible polymeric capsules with novel characteristics have been fabricated.

  19. Molybdate uptake by Agrobacterium tumefaciens correlates with the cellular molybdenum cofactor status.

    Science.gov (United States)

    Hoffmann, Marie-Christine; Ali, Koral; Sonnenschein, Marleen; Robrahn, Laura; Strauss, Daria; Narberhaus, Franz; Masepohl, Bernd

    2016-09-01

    Many enzymes require the molybdenum cofactor, Moco. Under Mo-limiting conditions, the high-affinity ABC transporter ModABC permits molybdate uptake and Moco biosynthesis in bacteria. Under Mo-replete conditions, Escherichia coli represses modABC transcription by the one-component regulator, ModE, consisting of a DNA-binding and a molybdate-sensing domain. Instead of a full-length ModE protein, many bacteria have a shorter ModE protein, ModE(S) , consisting of a DNA-binding domain only. Here, we asked how such proteins sense the intracellular molybdenum status. We show that the Agrobacterium tumefaciens ModE(S) protein Atu2564 is essential for modABC repression. ModE(S) binds two Mo-boxes in the modA promoter as shown by electrophoretic mobility shift assays. Northern analysis revealed cotranscription of modE(S) with the upstream gene, atu2565, which was dispensable for ModE(S) activity. To identify genes controlling ModE(S) function, we performed transposon mutagenesis. Tn5 insertions resulting in derepressed modA transcription mapped to the atu2565-modE(S) operon and several Moco biosynthesis genes. We conclude that A. tumefaciens ModE(S) activity responds to Moco availability rather than to molybdate concentration directly, as is the case for E. coli ModE. Similar results in Sinorhizobium meliloti suggest that Moco dependence is a common feature of ModE(S) regulators.

  20. Prednisolone succinate-glucosamine conjugate: Synthesis, characterization and in vitro cellular uptake by kidney cell lines

    Institute of Scientific and Technical Information of China (English)

    Yan Lin; Xun Sun; Tao Gong; Zhi Rong Zhang

    2012-01-01

    Prednisolone succinate-glucosamine (PSG) conjugate,a prodrug for prednisolone,was synthesized and confirmed by NMR and MS spectrum.The stabilities of the prodrug in PBS (pH 2.50,5.00,7.20,and 7.89) were studied.Cytotoxicity and uptake assay of the prodrug were perfomed on HK-2 and MDCK cell lines.The results showed that compared with prednisolone,the PSG not only did not increase the cytotoxicity but also improved the uptake to 2.2 times of prednisolone by the cells.Thus,it indicated that glucosamine might be a potential carrier for kidney-targeting delivery of prednisolone.

  1. Quantification and visualization of cellular uptake of TiO2 and Ag nanoparticles: comparison of different ICP-MS techniques.

    Science.gov (United States)

    Hsiao, I-Lun; Bierkandt, Frank S; Reichardt, Philipp; Luch, Andreas; Huang, Yuh-Jeen; Jakubowski, Norbert; Tentschert, Jutta; Haase, Andrea

    2016-06-22

    Safety assessment of nanoparticles (NPs) requires techniques that are suitable to quantify tissue and cellular uptake of NPs. The most commonly applied techniques for this purpose are based on inductively coupled plasma mass spectrometry (ICP-MS). Here we apply and compare three different ICP-MS methods to investigate the cellular uptake of TiO2 (diameter 7 or 20 nm, respectively) and Ag (diameter 50 or 75 nm, respectively) NPs into differentiated mouse neuroblastoma cells (Neuro-2a cells). Cells were incubated with different amounts of the NPs. Thereafter they were either directly analyzed by laser ablation ICP-MS (LA-ICP-MS) or were lysed and lysates were analyzed by ICP-MS and by single particle ICP-MS (SP-ICP-MS). All techniques confirmed that smaller particles were taken up to a higher extent when values were converted in an NP number-based dose metric. In contrast to ICP-MS and LA-ICP-MS, this measure is already directly provided through SP-ICP-MS. Analysis of NP size distribution in cell lysates by SP-ICP-MS indicates the formation of NP agglomerates inside cells. LA-ICP-MS imaging shows that some of the 75 nm Ag NPs seemed to be adsorbed onto the cell membranes and were not penetrating into the cells, while most of the 50 nm Ag NPs were internalized. LA-ICP-MS confirms high cell-to-cell variability for NP uptake. Based on our data we propose to combine different ICP-MS techniques in order to reliably determine the average NP mass and number concentrations, NP sizes and size distribution patterns as well as cell-to-cell variations in NP uptake and intracellular localization.

  2. Clathrin-dependent endocytosis plays a predominant role in cellular uptake of double-stranded RNA in the red flour beetle.

    Science.gov (United States)

    Xiao, Da; Gao, Xiwu; Xu, Jiaping; Liang, Xiao; Li, Qingqing; Yao, Jianxiu; Zhu, Kun Yan

    2015-05-01

    RNA interference (RNAi) is a highly conserved gene regulatory mechanism in eukaryotic organisms; however, an understanding of mechanisms of cellular uptake of double-stranded RNA (dsRNA) in different organisms remains elusive. By using pharmacological inhibitors of different endocytic pathways in conjunction with RNAi of a marker gene (lethal giant larvae, TcLgl) in the red flour beetle (Tribolium castaneum), we demonstrated that two inhibitors (chlorpromazine and bafilomycin-A1) of clathrin-dependent endocytosis can nearly abolish or significantly diminish RNAi of TcLgl, whereas methyl-β-cyclodextrin and cytochalasin-D, known to inhibit other endocytic pathways, showed no effect on RNAi of TcLgl. By using Cy3-labeled TcLgl dsRNA, we observed significantly reduced cellular uptake of TcLgl dsRNA in midgut cells after larvae were injected with each of the two clathrin-dependent endocytosis inhibitors. By using an "RNAi of RNAi" strategy, we further demonstrated that suppression of each transcript of the four key genes encoding clathrin heavy chain (TcChc), clathrin coat assembly protein AP50 (TcAP50), vacuolar (H(+))-ATPase subunit H (TcVhaSFD) and a ras-related protein (TcRab7) in clathrin-dependent endocytosis by RNAi can significantly impair RNAi of TcLgl. These results support our conclusion that clathrin-dependent endocytosis is a major mechanism in cellular uptake of dsRNA in T. castaneum. Our study also provides new insights into improving RNAi efficiency by enhancing dsRNA endosomal release.

  3. Impact of protein pre-coating on the protein corona composition and nanoparticle cellular uptake.

    Science.gov (United States)

    Mirshafiee, Vahid; Kim, Raehyun; Park, Soyun; Mahmoudi, Morteza; Kraft, Mary L

    2016-01-01

    Nanoparticles (NPs) are functionalized with targeting ligands to enable selectively delivering drugs to desired locations in the body. When these functionalized NPs enter the blood stream, plasma proteins bind to their surfaces, forming a protein corona that affects NP uptake and targeting efficiency. To address this problem, new strategies for directing the formation of a protein corona that has targeting capabilities are emerging. Here, we have investigated the feasibility of directing corona composition to promote targeted NP uptake by specific types of cells. We used the well-characterized process of opsonin-induced phagocytosis by macrophages as a simplified model of corona-mediated NP uptake by a desired cell type. We demonstrate that pre-coating silica NPs with gamma-globulins (γ-globulins) produced a protein corona that was enriched with opsonins, such as immunoglobulins. Although immunoglobulins are ligands that bind to receptors on macrophages and elicit phagocytois, the opsonin-rich protein corona did not increase NP uptake by macrophage RAW 264.7 cells. Immunolabeling experiments indicated that the binding of opsonins to their target cell surface receptors was impeded by other proteins in the corona. Thus, corona-mediated NP targeting strategies must optimize both the recruitment of the desired plasma proteins as well as their accessibility and orientation in the corona layer.

  4. Bufalin-loaded mPEG-PLGA-PLL-cRGD nanoparticles: preparation, cellular uptake, tissue distribution, and anticancer activity.

    Science.gov (United States)

    Yin, Peihao; Wang, Yan; Qiu, YanYan; Hou, LiLi; Liu, Xuan; Qin, Jianmin; Duan, Yourong; Liu, Peifeng; Qiu, Ming; Li, Qi

    2012-01-01

    Recent studies have shown that bufalin has a good antitumor effect but has high toxicity, poor water solubility, a short half-life, a narrow therapeutic window, and a toxic dose that is close to the therapeutic dose, which all limit its clinical application. This study aimed to determine the targeting efficacy of nanoparticles (NPs) made of methoxy polyethylene glycol (mPEG), polylactic-co-glycolic acid (PLGA), poly-L-lysine (PLL), and cyclic arginine-glycine-aspartic acid (cRGD) loaded with bufalin, ie, bufalin-loaded mPEG-PLGA-PLL-cRGD nanoparticles (BNPs), in SW620 colon cancer-bearing mice. BNPs showed uniform size. The size, shape, zeta potential, drug loading, encapsulation efficiency, and release of these nanoparticles were studied in vitro. The tumor targeting, cellular uptake, and growth-inhibitory effect of BNPs in vivo were tested. BNPs were of uniform size with an average particle size of 164 ± 84 nm and zeta potential of 2.77 mV. The encapsulation efficiency was 81.7% ± 0.89%, and the drug load was 3.92% ± 0.16%. The results of in vitro cytotoxicity studies showed that although the blank NPs were nontoxic, they enhanced the cytotoxicity of bufalin in BNPs. Drug release experiments showed that the release of the drug was prolonged and sustained. The results of confocal laser scanning microscopy indicated that BNPs could effectively bind to human umbilical vein endothelial cells. In the SW620 xenograft mice model, the BNPs could effectively target the tumor in vivo. The BNPs were significantly more effective than other NPs in preventing tumor growth. BNPs had even size distribution, were stable, and had a slow-releasing and tumor-targeting effect. BNPs significantly inhibited colon cancer growth in vitro and in vivo. As a novel drug carrier system, BNPs are a potentially promising targeting treatment for colon cancer.

  5. The Effect of Β-casein Nanoparticles on Bioavailability and Cellular Uptake of Platinum Complex as a Cancer Drug

    Directory of Open Access Journals (Sweden)

    M Razmi

    2013-12-01

    Full Text Available Abstract Background & aim: Due to the low solubility and high toxicity of drugs, treatment of cancers is problematic therefore, the encapsulation and targeted delivery of therapeutic effect is required. The aim of this study was to investigate the effect of nanoparticles on cellular uptake and bioavailability of beta-casein on platinum complexes as cancer drugs. Methods: In the present experimental study, the physicochemical properties of nanoparticles as drug carriers of beta-casein devices using dynamic light scattering (DLS and scanning electron microscopy (SEM were investigated. In order to evaluate the toxicity effects of platinum complexes, the colon cancer cells in the absence or presence of free platinum complex concentration and nanoparticle loaded with platinum complexes were incubated for 24 and 48 hours. LD50 Values (concentration of compound causing 50% mortality in the cells was determined using the MTT assay. Data were analyzed by ANOVA and post-hoc test. Results: At a concentration of 1 mg ml, beta-casein nanoparticle drug carriers were synthesized in the range of 100 to 300 µM. In addition, the mortality rate in cancer cells by the release of platinum complexes (without and with the capsule, were 70 and 26 in 24 hours, and 60 µM and 21 µM in 48 hours respectively, Conclusion: The study showed that the bioavailability of the encapsulated platinum complexes increases and new drug delivery system may be a good candidate for the treatment of cancer. Key words: Beta-casein, Pt (II Complex, Bioavalibility, Nanocarrier, Micelle

  6. Unexpectedly high uptake of palladium by bituminous coals

    Energy Technology Data Exchange (ETDEWEB)

    Lakatos, J. [Research Lab. for Mining Chemistry, Hungarian Academy of Sciences, Miskolc-Egyetemvaros (Hungary); Brown, S.D.; Snape, C.E. [Univ. of Strathclyde, Dept. of Pure and Applied Chemistry, Glasgow (United Kingdom)

    1997-12-31

    The uptake of palladium as a conversion catalyst onto coals of different rank was investigated. Palladium fixation occurs by a different mode to that for alkaline earth and first row transition metals. Therefore, the dispersion of relatively high concentration of palladium by an ion sorption process is even possible for bituminous coals. (orig.)

  7. Effect of surface charge on the cellular uptake of fluorescent magnetic nanoparticles

    Science.gov (United States)

    Kralj, Slavko; Rojnik, Matija; Romih, Rok; Jagodič, Marko; Kos, Janko; Makovec, Darko

    2012-10-01

    We report on the nanoparticle uptake into MCF10A neoT and PC-3 cells using flow cytometry, confocal microscopy, SQUID magnetometry, and transmission electron microscopy. The aim was to evaluate the influence of the nanoparticles' surface charge on the uptake efficiency. The surface of the superparamagnetic, silica-coated, maghemite nanoparticles was modified using amino functionalization for the positive surface charge (CNPs), and carboxyl functionalization for the negative surface charge (ANPs). The CNPs and ANPs exhibited no significant cytotoxicity in concentrations up to 500 μg/cm3 in 24 h. The CNPs, bound to a plasma membrane, were intensely phagocytosed, while the ANPs entered cells through fluid-phase endocytosis in a lower internalization degree. The ANPs and CNPs were shown to be co-localized with a specific lysosomal marker, thus confirming their presence in lysosomes. We showed that tailoring the surface charge of the nanoparticles has a great impact on their internalization.

  8. Cellular uptake of lipoproteins and Persistent Organic Compounds - An update and new data

    DEFF Research Database (Denmark)

    Hjelmborg, Philip Sebastian; Andreassen, Thomas Kjærgaard; Bonefeld-Jørgensen, Eva Cecilie

    2008-01-01

    including the pesticide DDT (p,p'-dichlorodiphenyltrichloroethane), and especially its metabolite DDE (p,p'-dichlorodiphenyldichloroethene), interacts with nuclear hormone receptors causing these to malfunction, which in turn results in a range of deleterious health effects in humans. The aim of the present...... study was to determine the role of lipoprotein receptors in mouse embryonic fibroblast (MEF) cells in conjunction with uptake of DDT-lipoprotein complexes from supplemented media in vitro. Uptake of DDT by MEF cells was investigated using MEF1 cells carrying the receptors LRP (low-density lipoprotein...... receptor-related protein) and LDLR (low density lipoprotein receptor) present and MEF4 cells with no LRP and LDLR expression. Cells were incubated together with the complex of LDL and [14C]DDT. The receptor function was further evaluated by adding the 40 kDa receptor-associated protein (RAP) which blocks...

  9. Effect of surface charge on the cellular uptake of fluorescent magnetic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Kralj, Slavko, E-mail: slavko.kralj@ijs.si [Jozef Stefan Institute, Department for Materials Synthesis (Slovenia); Rojnik, Matija [University of Ljubljana, Faculty of Pharmacy (Slovenia); Romih, Rok [University of Ljubljana, Faculty of Medicine, Institute of Cell Biology (Slovenia); Jagodic, Marko [Institute of Mathematics, Physics and Mechanics (Slovenia); Kos, Janko [University of Ljubljana, Faculty of Pharmacy (Slovenia); Makovec, Darko [Jozef Stefan Institute, Department for Materials Synthesis (Slovenia)

    2012-10-15

    We report on the nanoparticle uptake into MCF10A neoT and PC-3 cells using flow cytometry, confocal microscopy, SQUID magnetometry, and transmission electron microscopy. The aim was to evaluate the influence of the nanoparticles' surface charge on the uptake efficiency. The surface of the superparamagnetic, silica-coated, maghemite nanoparticles was modified using amino functionalization for the positive surface charge (CNPs), and carboxyl functionalization for the negative surface charge (ANPs). The CNPs and ANPs exhibited no significant cytotoxicity in concentrations up to 500 {mu}g/cm{sup 3} in 24 h. The CNPs, bound to a plasma membrane, were intensely phagocytosed, while the ANPs entered cells through fluid-phase endocytosis in a lower internalization degree. The ANPs and CNPs were shown to be co-localized with a specific lysosomal marker, thus confirming their presence in lysosomes. We showed that tailoring the surface charge of the nanoparticles has a great impact on their internalization.

  10. Sequence-selective DNA recognition and enhanced cellular up-take by peptide-steroid conjugates.

    Science.gov (United States)

    Ruiz García, Yara; Iyer, Abhishek; Van Lysebetten, Dorien; Pabon, Y Vladimir; Louage, Benoit; Honcharenko, Malgorzata; De Geest, Bruno G; Smith, C I Edvard; Strömberg, Roger; Madder, Annemieke

    2015-12-25

    Several GCN4 bZIP TF models have previously been designed and synthesized. However, the synthetic routes towards these constructs are typically tedious and difficult. We here describe the substitution of the Leucine zipper domain of the protein by a deoxycholic acid derivative appending the two GCN4 binding region peptides through an optimized double azide-alkyne cycloaddition click reaction. In addition to achieving sequence specific dsDNA binding, we have investigated the potential of these compounds to enter cells. Confocal microscopy and flow cytometry show the beneficial influence of the steroid on cell uptake. This unique synthetic model of the bZIP TF thus combines sequence specific dsDNA binding properties with enhanced cell-uptake. Given the unique properties of deoxycholic acid and the convergent nature of the synthesis, we believe this work represents a key achievement in the field of TF mimicry.

  11. Stimulation of polyunsaturated fatty acid oxidation in myocytes by regulating its cellular uptake

    Energy Technology Data Exchange (ETDEWEB)

    Abdel-aleem, S.; Frangakis, C. (Glaxo Inc., Research Triangle Park, NC (USA)); Badr, M. (Univ. of Missouri-Kansas City, MO (USA))

    1991-01-01

    In order to investigate the regulation of polyunsaturated fatty acid oxidation in the heart, the effect of the phosphodiesterase inhibitor enoximone on the oxidation of (1-{sup 14}C) arachidonic acid, and (1-{sup 14}C) arachidonyl-CoA, were studied in adult rat myocytes, and isolated rat heart mitochondria. Enoximone stimulated arachidonate oxidation by 94%, at a concentration of 0.25 mM. The apparent Vmax value of archidonate oxidation in the presence of enoximone was approximately 75% higher than the value observed with the control in isolated myocytes. Also, enoximone stimulated arachidonate uptake by 27% at a concentration of 0.25 mM. On the other hand, enoximone had no effect on the oxidation of (1-{sup 14}C) arachidonyl-CoA in isolated rat heart mitochondria. These results suggest that the oxidation of polyunsaturated fatty acids in myocytes is regulated by the rate of uptake of these acids across sarcolemmal membranes.

  12. Size dependent cellular uptake, in vivo fate and light-heat conversion efficiency of gold nanoshells on silica nanorattles.

    Science.gov (United States)

    Liu, Huiyu; Liu, Tianlong; Li, Linlin; Hao, Nanjing; Tan, Longfei; Meng, Xianwei; Ren, Jun; Chen, Dong; Tang, Fangqiong

    2012-06-07

    Despite advances in photothermal therapy of gold nanoshells, reliable evaluations of their size dependence on the relative biological effects are needed. We report the size effects of PEGylated gold nanoshells on silica nanorattles (pGSNs) on their cellular uptake, in vivo fate and light-heat conversion efficiency in this study. The results indicate that smaller pGSNs have enhanced cellular uptake by the MCF-7 cells. For in vivo biodistribution study, pGSNs of different particle sizes (84-315 nm) distribute mainly in the liver and spleen in MCF-7 tumor-bearing BALB/c nude mice. Smaller pGSNs have a longer blood-circulation lifetime and higher light-heat conversion efficiency both in vitro and in vivo compared with larger ones. All three sizes of pGSNs can be excreted from the mice body at a slow rate and do not cause tissue toxicity after intravenous injection at a dosage of 20 mg kg(-1) for three times. The data support the feasibility of optimizing the therapeutic process for photothermal cell killing by plasmonic gold nanoshells.

  13. Solid lipid nanoparticles for oral drug delivery: chitosan coating improves stability, controlled delivery, mucoadhesion and cellular uptake.

    Science.gov (United States)

    Luo, Yangchao; Teng, Zi; Li, Ying; Wang, Qin

    2015-05-20

    The poor stability of solid lipid nanoparticles (SLN) under acidic condition resulted in large aggregation in gastric environment, limiting their application as oral delivery systems. In this study, a series of SLN was prepared to investigate the effects of surfactant/cosurfactant and chitosan coating on their physicochemical properties as well as cellular uptake. SLN was prepared from Compritol 888 ATO using a low-energy method combining the solvent-diffusion and hot homogenization technique. Poloxamer 188 and polyethylene glycol (PEG) were effective emulsifiers to produce SLN with better physicochemical properties than SLN control. Chitosan-coated SLN exhibited the best stability under acidic condition by forming a thick layer around the lipid core, as clearly observed by transmission electron microscope. The intermolecular interactions in different formulations were monitored by Fourier transform infrared spectroscopy. Chitosan coating also significantly improved the mucoadhesive property of SLN as determined by Quartz Crystal Microbalance. In vitro drug delivery assays, cytotoxicity, and cellular uptake of SLN were studied by incorporating coumarin 6 as a fluorescence probe. Overall, chitosan-coated SLN was superior to other formulations and held promising features for its application as a potential oral drug delivery system for hydrophobic drugs.

  14. The effect of oil-water partition coefficient on the distribution and cellular uptake of liposome-encapsulated gold nanoparticles.

    Science.gov (United States)

    Bao, Quan-Ying; Liu, Ai-Yun; Ma, Yu; Chen, Huan; Hong, Jin; Shen, Wen-Bin; Zhang, Can; Ding, Ya

    2016-10-01

    The shape, size, and surface features of nanoparticles greatly influence the structure and properties of resulting hybrid nanosystems. In this work, gold nanoparticles (GNPs) were modified via S-Au covalent bonding by glycol monomethyl ether thioctate with poly(ethylene glycol) methyl ether of different molecular weights (i.e., 350, 550, and 750Da). These modified GNPs (i.e., GNP350, GNP550, and GNP750) showed different oil-water partition coefficients (Kp), as detected using inductively coupled plasma-atomic emission spectroscopy. The different Kp values of the gold conjugates (i.e., 13.98, 2.11, and 0.036 for GNP350, GNP550, and GNP750, respectively) resulted in different conjugate localization within liposomes, as observed by transmission electron microscopy. In addition, the cellular uptake of hybrid liposomes co-encapsulating gold conjugates and Nile red was evaluated using intracellular fluorescence intensity. The results indicated that precise GNP localization in the hydrophilic or hydrophobic liposome cavity could be achieved by regulating the GNP oil-water partition coefficient via surface modification; such localization could further affect the properties and functions of hybrid liposomes, including their cellular uptake profiles. This study furthers the understanding not only of the interaction between liposomes and inorganic nanoparticles but also of adjusting liposome-gold hybrid nanostructure properties via the surface chemistry of gold materials.

  15. External stimulation by nanosecond pulsed electric fields to enhance cellular uptake of nanoparticles

    Science.gov (United States)

    Franklin, Samantha; Beier, Hope T.; Ibey, Bennett L.; Nash, Kelly

    2015-03-01

    As an increasing number of studies use gold nanoparticles (AuNPs) for potential medicinal, biosensing and therapeutic applications, the synthesis and use of readily functional, bio-compatible nanoparticles is receiving much interest. For these efforts, the particles are often taken up by the cells to allow for optimum sensing or therapeutic measures. This process typically requires incubation of the particles with the cells for an extended period. In an attempt to shorten and control this incubation, we investigated whether nanosecond pulsed electric field (nsPEF) exposure of cells will cause a controlled uptake of the particles. NsPEF are known to induce the formation of nanopores in the plasma membrane, so we hypothesized that by controlling the number, amplitude or duration of the nsPEF exposure, we could control the size of the nanopores, and thus control the particle uptake. Chinese hamster ovary (CHO-K1) cells were incubated sub-10 nm AuNPs with and without exposure to 600-ns electrical pulses. Contrary to our hypothesis, the nsPEF exposure was found to actually decrease the particle uptake in the exposed cells. This result suggests that the nsPEF exposure may be affecting the endocytotic pathway and processes due to membrane disruption.

  16. Evaluation of transdermal salidroside delivery using niosomes via in vitro cellular uptake.

    Science.gov (United States)

    Zhang, Yongtai; Zhang, Kai; Wu, Zhonghua; Guo, Teng; Ye, Beini; Lu, Mingyun; Zhao, Jihui; Zhu, Chunyun; Feng, Nianping

    2015-01-15

    Span 40-based niosomes were employed as nanocarriers to improve cutaneous absorption of salidroside. The niosomal formulation with a molar proportion of Span 40 to cholesterol of 4:3 showed the highest transdermal flux and skin deposition of salidroside. The transdermal flux of the 4:3 niosomal formulation was significantly greater than that of the aqueous solution. Salidroside-loaded niosomes showed good biocompatibility with skin tissue, human epidermal immortal keratinocytes (HaCaT), and human embryonic skin fibroblasts (CCC-ESF). The fluorescence intensity of HaCaT cells after uptake of coumarin 6-labeled niosomes was similar to that observed after uptake of the aqueous suspension. The fluorescence intensity of CCC-ESF cells was greater than that of the aqueous suspension after incubation for 10 min, but was not significantly different after 60 min. Further investigation revealed that internalization of niosomes by HaCaT cells may be achieved through pinocytotic vesicles and macropinocytosis, which consumes energy, rather than via lysosomes. In CCC-ESF cells, pinocytotic vesicles and lysosomes were both important mediators of endocytosis. The niosome formulations reported here could improve the dermal and transdermal salidroside delivery, and the in vitro cell uptake evaluation results serve as a basis for further research into the mechanisms through which niosomes enhance drug permeability. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Coupled elasticity-diffusion model for the effects of cytoskeleton deformation on cellular uptake of cylindrical nanoparticles.

    Science.gov (United States)

    Wang, Jizeng; Li, Long

    2015-01-06

    Molecular dynamic simulations and experiments have recently demonstrated how cylindrical nanoparticles (CNPs) with large aspect ratios penetrate animal cells and inevitably deform cytoskeletons. Thus, a coupled elasticity-diffusion model was adopted to elucidate this interesting biological phenomenon by considering the effects of elastic deformations of cytoskeleton and membrane, ligand-receptor binding and receptor diffusion. The mechanism by which the binding energy drives the CNPs with different orientations to enter host cells was explored. This mechanism involved overcoming the resistance caused by cytoskeleton and membrane deformations and the change in configurational entropy of the ligand-receptor bonds and free receptors. Results showed that deformation of the cytoskeleton significantly influenced the engulfing process by effectively slowing down and even hindering the entry of the CNPs. Additionally, the engulfing depth was determined quantitatively. CNPs preferred or tended to vertically attack target cells until they were stuck in the cytoskeleton as implied by the speed of vertically oriented CNPs that showed much faster initial engulfing speeds than horizontally oriented CNPs. These results elucidated the most recent molecular dynamics simulations and experimental observations on the cellular uptake of carbon nanotubes and phagocytosis of filamentous Escherichia coli bacteria. The most efficient engulfment showed the stiffness-dependent optimal radius of the CNPs. Cytoskeleton stiffness exhibited more significant influence on the optimal sizes of the vertical uptake than the horizontal uptake. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  18. Fast intracellular dissolution and persistent cellular uptake of silver nanoparticles in CHO-K1 cells: implication for cytotoxicity.

    Science.gov (United States)

    Jiang, Xiumei; Miclăuş, Teodora; Wang, Liming; Foldbjerg, Rasmus; Sutherland, Duncan S; Autrup, Herman; Chen, Chunying; Beer, Christiane

    2015-03-01

    Toxicity of silver nanoparticles (Ag NPs) has been reported both in vitro and in vivo. However, the intracellular stability and chemical state of Ag NPs are still not very well studied. In this work, we systematically investigated the cellular uptake pathways, intracellular dissolution and chemical species, and cytotoxicity of Ag NPs (15.9 ± 7.6 nm) in Chinese hamster ovary cell subclone K1 cells, a cell line recommended by the OECD for genotoxicity studies. Quantification of intracellular nanoparticle uptake and ion release was performed through inductively coupled plasma mass spectrometry. X-ray absorption near-edge structure (XANES) was employed to assess the chemical state of intracellular silver. The toxic potential of Ag NPs and Ag(+) was evaluated by cell viability, reactive oxygen species (ROS) production and live-dead cell staining. The results suggest that cellular uptake of Ag NPs involves lipid-raft-mediated endocytosis and energy-independent diffusion. The degradation study shows that Ag NPs taken up into cells dissolved quickly and XANES results directly indicated that the internalized Ag was oxidized to Ag-O- species and then stabilized in silver-sulfur (Ag-S-) bonds within the cells. Subsequent cytotoxicity studies show that Ag NPs decrease cell viability and increase ROS production. Pre-incubation with N-acetyl-L-cysteine, an efficient antioxidant and Ag(+) chelator, diminished the cytotoxicity caused by Ag NPs or Ag(+) exposure. Our study suggests that the cytotoxicity mechanism of Ag NPs is related to the intracellular release of silver ions, followed by their binding to SH-groups, presumably coming from amino acids or proteins, and affecting protein functions and the antioxidant defense system of cells.

  19. The softer and more hydrophobic the better: influence of the side chain of polymethacrylate nanoparticles for cellular uptake.

    Science.gov (United States)

    Lorenz, Steffen; Hauser, Christoph P; Autenrieth, Benjamin; Weiss, Clemens K; Landfester, Katharina; Mailänder, Volker

    2010-09-09

    Intracellular uptake of nanoparticles is highly interesting for labeling of cells, drug delivery, or non-viral gene delivery. In this study we have synthesized a wide variety of poly(alkyl methacrylate) nanoparticles with the same size and investigated their uptake into cells. The nanoparticles were prepared from alkylmethacrylates with different linear and branched ester chains as well as from benzylmethacrylate using the miniemulsion polymerizaiton technique. By adding a fluorescent dye as a marker, the internalization of the nanoparticles could be investigated quantitatively with flow cytometry and qualitatively with confocal laser scanning microscopy. With increasing side chain of the ester and therefore increasing hydrophobicity and at glass transition temperature (T(g)), below the incubation temperature of 37 degrees C the uptake of the nanoparticles into cells is favored.

  20. Cellular uptake of PET tracers of glucose metabolism and hypoxia and their linkage

    Energy Technology Data Exchange (ETDEWEB)

    Busk, Morten; Horsman, Michael R.; Overgaard, Jens [Aarhus University Hospital, Department of Experimental Clinical Oncology, Aarhus C (Denmark); Jakobsen, Steen [Aarhus University Hospital, PET Centre, Aarhus (Denmark); Bussink, Johan; Kogel, Albert van der [Radboud University Nijmegen Medical Centre, Department of Radiation Oncology, Nijmegen (Netherlands)

    2008-12-15

    Tumour hypoxia and elevated glycolysis (Warburg effect) predict poor prognosis. Each parameter is assessable separately with positron emission tomography, but they are linked through anaerobic glycolysis (Pasteur effect). Here, we compare the oxygenation-dependent retention of fluoroazomycin arabinoside ([{sup 18}F]FAZA), a promising but not well-characterised hypoxia-specific tracer, and fluorodeoxyglucose ([{sup 18}F]FDG) in four carcinoma cell lines. Cells seeded on coverslips were positioned in modified Petri dishes that allow physically separated cells to share the same tracer-containing medium pool. Following oxic, hypoxic or anoxic tracer incubation, coverslips were analysed for radioactivity ([{sup 18}F]FDG+[{sup 18}F]FAZA) or re-incubated in tracer-free oxygenated medium and then measured ([{sup 18}F]FAZA). Next, we tested the reliability of [{sup 18}F]FDG as a relative measure of glucose metabolic rate. Finally, from two cell lines, xenografts were established in mice, and the tracer distribution between hypoxic and well-oxygenated areas were deduced from tissue sections. Three hours of anoxia strongly stimulated [{sup 18}F]FAZA retention with anoxic-to-oxic uptake ratios typically above 30. Three out of four cell lines displayed similar selectivity of [{sup 18}F]FDG versus glucose, but oxic uptake and anoxic-to-oxic uptake ratio of [{sup 18}F]FDG varied considerably. Although less pronounced, [{sup 18}F]FAZA also showed superior in vivo hypoxia specificity compared with [{sup 18}F]FDG. [{sup 18}F]FAZA displays excellent in vitro characteristics for hypoxia imaging including modest cell-to-cell line variability and no binding in oxic cells. In contrast, the usability of [{sup 18}F]FDG as a surrogate marker for hypoxia is questionable due to large variations in baseline (oxic) glucose metabolism and magnitudes of the Pasteur effects. (orig.)

  1. Notes on the history of cellular uptake and deiodination of thyroid hormone.

    Science.gov (United States)

    Hennemann, Georg

    2005-08-01

    In this mini review on the history of the research devoted to thyroid hormone metabolism two pathways are discussed, i.e. uptake and subsequent deiodination in cells and tissues. In the 1950's the investigations of these processes were greatly stimulated when 131I became available for research purposes. The true nature of both mechanisms surfaced in the 1970's when it became apparent that transport of thyroid hormones into cells was a regulated carrier mediated process, while deiodination appeared to be catalyzed by different types of enzymes. Kinetic data indicated that these processes were of great importance in the ultimate regulation of thyroid hormone bio-availability.

  2. Cellular uptake and retention measurements of alkylphosphocholines in the SK-BR-3 breast cancer and Molt-4 leukemia cell line using capillary gas chromatography.

    Science.gov (United States)

    Brochez, V; Van Heuverswyn, D; Diniz, J A; De Potter, C R; Van den Eeckhout, E G

    1999-05-01

    The determination of cellular content of octadecylphosphocholine (D-19391) and hexadecylphosphocholine (HePC, D-18506), two anticancer agents of the alkylphosphocholine group, using capillary gas chromatography is described. The compounds' cytotoxicity was first determined by the MTT [3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyltetrazolium] assay, being indicative for the concentration used in the uptake and retention measurements. D-19391 was added to the SK-BR-3 breast cancer cell line and HePC to the Molt-4 leukemia cell line in concentrations of, respectively, 18.6 and 15.0 microM, during a 36-h incubation period at 37 degrees C, 5% CO2. HePC uptake in the leukemia cells was followed by a 24-h reversibility test in drug-free medium. Subsequently, sample clean-up was performed on a weak cation-exchange column. For the quantitative analysis, HePC was used as internal standard for the D-19391 measurements and vice versa. Derivatization of the samples with trimethylsilylbromide was followed by capillary gas chromatographic analysis. From these data we conclude that our uptake results are quite similar with those of a previous study of HePC cellular uptake in the more resistant Caco-2T colon cancer cell line. Without having investigated the mechanism that underlies the cellular uptake results obtained, our study points to no direct correlation between the compounds' cellular uptake and their cytotoxic effects.

  3. Cellular entry of ebola virus involves uptake by a macropinocytosis-like mechanism and subsequent trafficking through early and late endosomes.

    Directory of Open Access Journals (Sweden)

    Mohammad F Saeed

    2010-09-01

    Full Text Available Zaire ebolavirus (ZEBOV, a highly pathogenic zoonotic virus, poses serious public health, ecological and potential bioterrorism threats. Currently no specific therapy or vaccine is available. Virus entry is an attractive target for therapeutic intervention. However, current knowledge of the ZEBOV entry mechanism is limited. While it is known that ZEBOV enters cells through endocytosis, which of the cellular endocytic mechanisms used remains unclear. Previous studies have produced differing outcomes, indicating potential involvement of multiple routes but many of these studies were performed using noninfectious surrogate systems such as pseudotyped retroviral particles, which may not accurately recapitulate the entry characteristics of the morphologically distinct wild type virus. Here we used replication-competent infectious ZEBOV as well as morphologically similar virus-like particles in specific infection and entry assays to demonstrate that in HEK293T and Vero cells internalization of ZEBOV is independent of clathrin, caveolae, and dynamin. Instead the uptake mechanism has features of macropinocytosis. The binding of virus to cells appears to directly stimulate fluid phase uptake as well as localized actin polymerization. Inhibition of key regulators of macropinocytosis including Pak1 and CtBP/BARS as well as treatment with the drug EIPA, which affects macropinosome formation, resulted in significant reduction in ZEBOV entry and infection. It is also shown that following internalization, the virus enters the endolysosomal pathway and is trafficked through early and late endosomes, but the exact site of membrane fusion and nucleocapsid penetration in the cytoplasm remains unclear. This study identifies the route for ZEBOV entry and identifies the key cellular factors required for the uptake of this filamentous virus. The findings greatly expand our understanding of the ZEBOV entry mechanism that can be applied to development of new

  4. Enhanced cellular uptake of protoporphyrine IX/linolenic acid-conjugated spherical nanohybrids for photodynamic therapy.

    Science.gov (United States)

    Lee, Hye-In; Kim, Young-Jin

    2016-06-01

    Protoporphyrin IX (PpIX) has wide applications in photodynamic diagnosis and photodynamic therapy (PDT) in many human diseases. However, poor water solubility and cancer cell localization limit its direct application for PDT. We improved the water-solubility and cellular internalization of PpIX to enhance PDT efficacy by developing biocompatible PpIX/linolenic acid-conjugated polyhedral oligomeric silsesquioxane (PPLA) nanohybrids. The resulting PPLA nanohybrids exhibited a quasi-spherical shape with a size of gastric cancer cells. These results imply that the PPLA nanohybrid system may be applicable in PDT.

  5. Bufalin-loaded mPEG-PLGA-PLL-cRGD nanoparticles: preparation, cellular uptake, tissue distribution, and anticancer activity

    Directory of Open Access Journals (Sweden)

    Duan YR

    2012-07-01

    Full Text Available Peihao Yin,1,* Yan Wang,1,* YanYan Qiu,1 LiLi Hou,1 Xuan Liu,1 Jianmin Qin,1 Yourong Duan,2 Peifeng Liu,2 Ming Qiu,3 Qi Li11Department of Clinical Oncology, Putuo Hospital and Interventional Cancer Institute of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China; 2Shanghai Cancer Institute, Jiaotong University, Shanghai, China; 3Department of General Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China *These authors contributed equally to this workBackground: Recent studies have shown that bufalin has a good antitumor effect but has high toxicity, poor water solubility, a short half-life, a narrow therapeutic window, and a toxic dose that is close to the therapeutic dose, which all limit its clinical application. This study aimed to determine the targeting efficacy of nanoparticles (NPs made of methoxy polyethylene glycol (mPEG, polylactic-co-glycolic acid (PLGA, poly-L-lysine (PLL, and cyclic arginine-glycine-aspartic acid (cRGD loaded with bufalin, ie, bufalin-loaded mPEG-PLGA-PLL-cRGD nanoparticles (BNPs, in SW620 colon cancer-bearing mice.Methods: BNPs showed uniform size. The size, shape, zeta potential, drug loading, encapsulation efficiency, and release of these nanoparticles were studied in vitro. The tumor targeting, cellular uptake, and growth-inhibitory effect of BNPs in vivo were tested.Results: BNPs were of uniform size with an average particle size of 164 ± 84 nm and zeta potential of 2.77 mV. The encapsulation efficiency was 81.7% ± 0.89%, and the drug load was 3.92% ± 0.16%. The results of in vitro cytotoxicity studies showed that although the blank NPs were nontoxic, they enhanced the cytotoxicity of bufalin in BNPs. Drug release experiments showed that the release of the drug was prolonged and sustained. The results of confocal laser scanning microscopy indicated that BNPs could effectively bind to human umbilical vein endothelial cells. In the SW620

  6. Recent advances in interactions of designed nanoparticles and cells with respect to cellular uptake, intracellular fate, degradation and cytotoxicity

    Science.gov (United States)

    Deng, Jun; Gao, Changyou

    2016-10-01

    The unique features of nanomaterials have led to their rapid development in the biomedical field. In particular, functionalized nanoparticles (NPs) are extensively used in the delivery of drugs and genes, bio-imaging and diagnosis. Hence, the interaction between NPs and cells is one of the most important issues towards understanding the true nature of the NP-mediated biological effects. Moreover, the intracellular safety concern of the NPs as a result of intracellular NP degradation remains to be clarified in detail. This review presents recent advances in the interactions of designed NPs and cells. The focus includes the governing factors on cellular uptake and the intracellular fate of NPs, and the degradation of NPs and its influence on nanotoxicity. Some basic consideration is proposed for optimizing the NP-cell interaction and designing NPs of better biocompatiblity for biomedical application.

  7. uPARAP/Endo180 is essential for cellular uptake of collagen and promotes fibroblast collagen adhesion

    DEFF Research Database (Denmark)

    Engelholm, Lars H; List, Karin; Netzel-Arnett, Sarah

    2003-01-01

    The uptake and lysosomal degradation of collagen by fibroblasts constitute a major pathway in the turnover of connective tissue. However, the molecular mechanisms governing this pathway are poorly understood. Here, we show that the urokinase plasminogen activator receptor-associated protein (u......PARAP)/Endo180, a novel mesenchymally expressed member of the macrophage mannose receptor family of endocytic receptors, is a key player in this process. Fibroblasts from mice with a targeted deletion in the uPARAP/Endo180 gene displayed a near to complete abrogation of collagen endocytosis. Furthermore......, these cells had diminished initial adhesion to a range of different collagens, as well as impaired migration on fibrillar collagen. These studies identify a central function of uPARAP/Endo180 in cellular collagen interactions....

  8. On the pathway of cellular uptake: new insight into the interaction between the cell membrane and very small nanoparticles

    Directory of Open Access Journals (Sweden)

    Claudia Messerschmidt

    2016-09-01

    Full Text Available For any living cell the exchange with its environment is vital. Therefore, many different kinds of cargo are able to enter cells via energy-dependent or -independent routes. Nanoparticles are no exemption. It is known that small silica nanoparticles with a diameter below 50 nm are taken up by cells and that their uptake exerts pronounced toxic effects beyond a certain concentration threshold. However, neither the exact uptake mechanism of these particles nor the actual reason for their toxicity has yet been elucidated. In this study we examined the uptake of silica nanoparticles with a diameter of 7, 12 and 22 nm by means of transmission electron microscopy, accompanied by toxicological assays. We show that for every particle diameter tested a different membrane morphology during uptake can be observed and that the amount of particles entering in one event is different for the three sizes. Silica particles with a diameter of 22 nm show single-particle internalization with a membrane wrapped around the particles in the cytosol, whereas 12 nm particles display row-like multi-particle uptake into elongated membrane structures and those with a diameter of 7 nm or less end up in tubular endocytic structures containing many particles. These membrane morphologies proved to be highly reproducible as we found them in five different cell lines. Additionally, we performed ATP and LDH assays to determine particle toxicity. Exceeding a certain concentration threshold the nanoparticles showed a high toxic potential both in the biochemical assay measurements and from morphological findings. We could not find any hint at the induction of apoptosis, neither morphologically nor biochemically. In this regard we discuss membrane damage and consumption as one possible mechanism of toxicity, linking morphological observations to toxicological findings to bridge the gap in understanding the mechanism of toxicity of small nanoparticles.

  9. Cellular uptake mechanism and comparative evaluation of antineoplastic effects of paclitaxel–cholesterol lipid emulsion on triple-negative and non-triple-negative breast cancer cell lines

    Directory of Open Access Journals (Sweden)

    Ye J

    2016-08-01

    Full Text Available Jun Ye,1,2 Xuejun Xia,1,2 Wujun Dong,1,2 Huazhen Hao,1,2 Luhua Meng,1,2 Yanfang Yang,1,2 Renyun Wang,1,2 Yuanfeng Lyu,3 Yuling Liu1,2 1State Key Laboratory of Bioactive Substance and Function of Natural Medicines, 2Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 3School of Pharmacy, China Pharmaceutical University, Nanjing, People’s Republic of China Abstract: There is no effective clinical therapy for triple-negative breast cancers (TNBCs, which have high low-density lipoprotein (LDL requirements and express relatively high levels of LDL receptors (LDLRs on their membranes. In our previous study, a novel lipid emulsion based on a paclitaxel–cholesterol complex (PTX-CH Emul was developed, which exhibited improved safety and efficacy for the treatment of TNBC. To date, however, the cellular uptake mechanism and intracellular trafficking of PTX-CH Emul have not been investigated. In order to offer powerful proof for the therapeutic effects of PTX-CH Emul, we systematically studied the cellular uptake mechanism and intracellular trafficking of PTX-CH Emul and made a comparative evaluation of antineoplastic effects on TNBC (MDA-MB-231 and non-TNBC (MCF7 cell lines through in vitro and in vivo experiments. The in vitro antineoplastic effects and in vivo tumor-targeting efficiency of PTX-CH Emul were significantly more enhanced in MDA-MB-231-based models than those in MCF7-based models, which was associated with the more abundant expression profile of LDLR in MDA-MB-231 cells. The results of the cellular uptake mechanism indicated that PTX-CH Emul was internalized into breast cancer cells through the LDLR-mediated internalization pathway via clathrin-coated pits, localized in lysosomes, and then released into the cytoplasm, which was consistent with the internalization pathway and intracellular trafficking of native

  10. Quantitative cellular uptake of double fluorescent core-shelled model submicronic particles

    Energy Technology Data Exchange (ETDEWEB)

    Leclerc, Lara, E-mail: leclerc@emse.fr [Ecole Nationale Superieure des Mines, CIS-EMSE, LINA (France); Boudard, Delphine [LINA (France); Pourchez, Jeremie; Forest, Valerie [Ecole Nationale Superieure des Mines, CIS-EMSE, LINA (France); Marmuse, Laurence; Louis, Cedric [NANO-H S.A.S (France); Bin, Valerie [LINA (France); Palle, Sabine [Universite Jean Monnet, Centre de Microscopie Confocale Multiphotonique (France); Grosseau, Philippe; Bernache-Assollant, Didier [Ecole Nationale Superieure des Mines, CIS-EMSE, LINA (France); Cottier, Michele [LINA (France)

    2012-11-15

    The relationship between particles' physicochemical parameters, their uptake by cells and their degree of biological toxicity represent a crucial issue, especially for the development of new technologies such as fabrication of micro- and nanoparticles in the promising field of drug delivery systems. This work was aimed at developing a proof-of-concept for a novel model of double fluorescence submicronic particles that could be spotted inside phagolysosomes. Fluorescein isothiocyanate (FITC) particles were synthesized and then conjugated with a fluorescent pHrodo Trade-Mark-Sign probe, red fluorescence of which increases in acidic conditions such as within lysosomes. After validation in acellular conditions by spectral analysis with confocal microscopy and dynamic light scattering, quantification of phagocytosis was conducted on a macrophage cell line in vitro. The biological impact of pHrodo functionalization (cytotoxicity, inflammatory response, and oxidative stress) was also investigated. Results validate the proof-of-concept of double fluorescent particles (FITC + pHrodo), allowing detection of entirely engulfed pHrodo particles (green and red labeling). Moreover incorporation of pHrodo had no major effects on cytotoxicity compared to particles without pHrodo, making them a powerful tool for micro- and nanotechnologies.

  11. In-vitro cytotoxicity and cellular uptake studies of luminescent functionalized core-shell nanospheres.

    Science.gov (United States)

    Ansari, Anees A; Hasan, T N; Syed, N A; Labis, J P; Alshatwi, Ali A

    2017-09-01

    Monodispersed luminescent functionalized core-shell nanospheres (LFCSNs) were successfully synthesized and investigated for their cyto-toxic effect on human liver hepatocellular carcinoma cell line (HepG2 cells) by adopting MTT, DNA Ladder, TUNEL assay and qPCR based gene expressions through mRNA quantifications. The TUNEL and DNA ladder assays suggested an insignificant apoptosis in HepG2 cells due to the LFCSNs treatment. Further, the qPCR results also show that the mRNA expressions of cell cycle checkpoint gene p53 and apoptosis related gene (caspase-9) was up-regulated, while the antiapoptotic gene BCl-2 and apoptosis related genes FADD and CAS-3 (apoptosis effecter gene) were down-regulated in the LFCSNs treated cells. The nanospheres that were loaded into the cells confirm their intracellular uptake by light and fluorescent spectro-photometry and microscopy imaging analysis. The loaded nanospheres demonstrate an absolute resistance to photo-bleaching, which were applied for dynamic imaging to real-time tracking in-vitro cell migratory activity for continuous 24 and 48 h durations using a time-lapsed fluorescent microscope. These properties of LFCSNs could therefore promote applications in the area of fluorescent protein biolabeling and drug-delivery.

  12. Quantification and visualization of cellular uptake of TiO2 and Ag nanoparticles: comparison of different ICP-MS techniques

    OpenAIRE

    Hsiao, I-Lun; Bierkandt, Frank S.; Reichardt, Philipp; Luch, Andreas; Huang, Yuh-Jeen; JAKUBOWSKI, Norbert; Tentschert, Jutta; Haase, Andrea

    2016-01-01

    Background Safety assessment of nanoparticles (NPs) requires techniques that are suitable to quantify tissue and cellular uptake of NPs. The most commonly applied techniques for this purpose are based on inductively coupled plasma mass spectrometry (ICP-MS). Here we apply and compare three different ICP-MS methods to investigate the cellular uptake of TiO2 (diameter 7 or 20 nm, respectively) and Ag (diameter 50 or 75 nm, respectively) NPs into differentiated mouse neuroblastoma cells (Neuro-2...

  13. Cyclic RGD peptide-modified liposomal drug delivery system: enhanced cellular uptake in vitro and improved pharmacokinetics in rats

    Directory of Open Access Journals (Sweden)

    Chen Z

    2012-07-01

    Full Text Available Zhongya Chen,1,2 Jiaxin Deng,1,2 Yan Zhao,1,2 Tao Tao1,21National Pharmaceutical Engineering Research Center, 2Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, People's Republic of ChinaBackground: Integrins αvβ3 and αvβ5, both of which specifically recognize the Arg-Gly-Asp (RGD motif, are overexpressed on many solid tumors and in tumor neovasculature. Thus, coupling the RGD motif to the liposomal surface for achieving active targeting can be a promising strategy for the treatment of tumors.Methods: Cyclo(Arg-Gly-Asp-D-Phe-Cys (cRGD was covalently coupled with the liposomal membrane surface, followed by coating with poly(ethylene glycol (PEG using the post-insertion technique. The coupling efficiency of cRGD was determined. Doxorubicin as a model anticancer drug was loaded into liposomes using an ammonium sulfate gradient method to investigate the encapsulation efficiency, cellular uptake by the integrin-overexpressing human glioma cell line U87MG in vitro, and pharmacokinetic properties in Sprague-Dawley rats.Results: cRGD was conjugated to the liposomal surface by a thiol-maleimide coupling reaction. The coupling efficiency reached 98%. The encapsulation efficiency of doxorubicin in liposomes was more than 98%. The flow cytometry test result showed that cRGD-modified liposomes (RGD-DXRL-PEG had higher cell uptake by U87MG cells, compared with nontargeted liposomes (DXRL-PEG. The cellular uptake was significantly inhibited in the presence of excess free cRGD. Both the targeted (t1/2 = 24.10 hours and non-targeted (t1/2 = 25.32 hours liposomes showed long circulating properties in rat plasma. The area under the curve of the targeted and nontargeted liposomes was 6.4-fold and 8.3-fold higher than that of doxorubicin solution, respectively.Conclusion: This study indicates preferential targeting and long circulating properties for cRGD-modified liposomes in vivo, which could be used as

  14. A high-efficiency cellular extraction system for biological proteomics

    OpenAIRE

    2015-01-01

    Recent developments in quantitative high-resolution mass spectrometry have led to significant improvements in the sensitivity and specificity of biochemical analyses of cellular reactions, protein-protein interactions, and small molecule drug discovery. These approaches depend on cellular proteome extraction that preserves native protein activities. Here, we systematically analyzed mechanical methods of cell lysis and physical protein extraction to identify those that maximize the extraction ...

  15. Comparative evaluation of nano-CuO crossing Caco-2 cell monolayers and cellular uptake

    Science.gov (United States)

    Chen, Gao; Lianqin, Zhu; Fenghua, Zhu; Fang, Zheng; Mingming, Song; Kai, Huang

    2015-04-01

    Different concentrations of CuSO4, micro-CuO, and nano-CuO were added to Caco-2 cell monolayers to study the absorption and transport characteristics in this epithelial cell model. Nano-CuO nanoparticles had a diameter of 10-20 nm. Inhibitors of endocytosis were used to explore whether nano-CuO could enter the Caco-2 cell in the form of nanoparticles, and to ascertain the endocytotic pathway that is involved in the transport process. The apparent permeability coefficient ( P app) of CuSO4 and nano-CuO increased with the Cu concentration in the culture medium ( p impact on the P app value of Caco-2 cells ( p > 0.05). When the Cu concentration in the culture medium was in the range 31.25-500 μM, the P app value of Caco-2 cells incubated with nano-CuO was significantly higher than that obtained with CuSO4. The latter was also significantly higher than that when cells were incubated with micro-CuO ( p culture medium. After 90 min, the amount of transport began to saturate, and the transport rate of Cu declined with the increase of CuSO4 concentration. For the cells incubated with nano-CuO, the amount of Cu transport increased with the increase of nano-CuO concentration, but did not show an obvious saturation with the extension of transport time. Nano-CuO could enter the Caco-2 cell in the form of nanoparticles, and were found in the cytoplasm, vesicles, lysosomes, and cell nuclei. Several inhibitors of endocytosis effectively prevented the entry of nano-CuO into the Caco-2 cells. It was concluded that nano-CuO particles can enter the Caco-2 cells through several cellular endocytotic pathways.

  16. Comparative evaluation of nano-CuO crossing Caco-2 cell monolayers and cellular uptake

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Gao; Lianqin, Zhu, E-mail: lianqinz1963@163.com; Fenghua, Zhu [Qingdao Agricultural University, College of Animal Science and Veterinary Medicine (China); Fang, Zheng [Dezhou University, College of Agriculture (China); Mingming, Song; Kai, Huang [Qingdao Agricultural University, College of Animal Science and Veterinary Medicine (China)

    2015-04-15

    Different concentrations of CuSO{sub 4}, micro-CuO, and nano-CuO were added to Caco-2 cell monolayers to study the absorption and transport characteristics in this epithelial cell model. Nano-CuO nanoparticles had a diameter of 10–20 nm. Inhibitors of endocytosis were used to explore whether nano-CuO could enter the Caco-2 cell in the form of nanoparticles, and to ascertain the endocytotic pathway that is involved in the transport process. The apparent permeability coefficient (P{sub app}) of CuSO{sub 4} and nano-CuO increased with the Cu concentration in the culture medium (p < 0.05). The micro-CuO of different concentrations had no significant impact on the P{sub app} value of Caco-2 cells (p > 0.05). When the Cu concentration in the culture medium was in the range 31.25–500 μM, the P{sub app} value of Caco-2 cells incubated with nano-CuO was significantly higher than that obtained with CuSO{sub 4}. The latter was also significantly higher than that when cells were incubated with micro-CuO (p < 0.05). The amount of Cu transport increased with the increase of CuSO{sub 4} concentration in the culture medium. After 90 min, the amount of transport began to saturate, and the transport rate of Cu declined with the increase of CuSO{sub 4} concentration. For the cells incubated with nano-CuO, the amount of Cu transport increased with the increase of nano-CuO concentration, but did not show an obvious saturation with the extension of transport time. Nano-CuO could enter the Caco-2 cell in the form of nanoparticles, and were found in the cytoplasm, vesicles, lysosomes, and cell nuclei. Several inhibitors of endocytosis effectively prevented the entry of nano-CuO into the Caco-2 cells. It was concluded that nano-CuO particles can enter the Caco-2 cells through several cellular endocytotic pathways.

  17. Industrial grade 2D molybdenum disulphide (MoS2): an in vitro exploration of the impact on cellular uptake, cytotoxicity, and inflammation

    Science.gov (United States)

    Moore, Caroline; Movia, Dania; Smith, Ronan J.; Hanlon, Damien; Lebre, Filipa; Lavelle, Ed C.; Byrne, Hugh J.; Coleman, Jonathan N.; Volkov, Yuri; McIntyre, Jennifer

    2017-06-01

    The recent surge in graphene research, since its liquid phase monolayer isolation and characterization in 2004, has led to advancements which are accelerating the exploration of alternative 2D materials such as molybdenum disulphide (MoS2), whose unique physico-chemical properties can be exploited in applications ranging from cutting edge electronic devices to nanomedicine. However, to assess any potential impact on human health and the environment, the need to understand the bio-interaction of MoS2 at a cellular and sub-cellular level is critical. Notably, it is important to assess such potential impacts of materials which are produced by large scale production techniques, rather than research grade materials. The aim of this study was to explore cytotoxicity, cellular uptake and inflammatory responses in established cell-lines that mimic different potential exposure routes (inhalation, A549; ingestion, AGS; monocyte, THP-1) following incubation with MoS2 flakes of varying sizes (50 nm, 117 nm and 177 nm), produced by liquid phase exfoliation. Using high content screening (HCS) and Live/Dead assays, it was established that 1 µg ml-1 (for the three different MoS2 sizes) did not induce toxic effects on any of the cell-lines. Confocal microscopy images revealed a normal cellular morphology in all cases. Transmission electron microscopy (TEM) confirmed the uptake of all MoS2 nanomaterials in all the cell-lines, the MoS2 ultimately locating in single membrane vesicles. At such sub-lethal doses, inflammatory responses are observed, however, associated, at least partially, with the presence of lipopolysaccharide endotoxin in nanomaterial suspensions and surfactant samples. Therefore, the inflammatory response of the cells to the MoS2 or endotoxin contamination was interrogated using a 10-plex ELISA which illustrates cytokine production. The experiments carried out using wild-type and endotoxin hyporesponsive bone marrow derived dendritic cells confirmed that the

  18. Docetaxel-Loaded Self-Assembly Stearic Acid-Modified Bletilla striata Polysaccharide Micelles and Their Anticancer Effect: Preparation, Characterization, Cellular Uptake and In Vitro Evaluation

    Directory of Open Access Journals (Sweden)

    Qingxiang Guan

    2016-12-01

    Full Text Available Poorly soluble drugs have low bioavailability after oral administration, thereby hindering effective drug delivery. A novel drug-delivery system of docetaxel (DTX-based stearic acid (SA-modified Bletilla striata polysaccharides (BSPs copolymers was successfully developed. Particle size, zeta potential, encapsulation efficiency (EE, and loading capacity (LC were determined. The DTX release percentage in vitro was determined using high performance liquid chromatography (HPLC. The hemolysis and in vitro anticancer activity were studied. Cellular uptake and apoptotic rate were measured using flow cytometry assay. Particle size, zeta potential, EE and LC were 125.30 ± 1.89 nm, −26.92 ± 0.18 mV, 86.6% ± 0.17%, and 14.8% ± 0.13%, respectively. The anticancer activities of DTX-SA-BSPs copolymer micelles against HepG2, HeLa, SW480, and MCF-7 (83.7% ± 1.0%, 54.5% ± 4.2%, 48.5% ± 4.2%, and 59.8% ± 1.4%, respectively were superior to that of docetaxel injection (39.2% ± 1.1%, 44.5% ± 5.3%, 38.5% ± 5.4%, and 49.8% ± 2.9%, respectively at 0.5 μg/mL drug concentration. The DTX release percentage of DTX-SA-BSPs copolymer micelles and docetaxel injection were 66.93% ± 1.79% and 97.06% ± 1.56% in two days, respectively. Cellular uptake of DTX-FITC-SA-BSPs copolymer micelles in cells had a time-dependent relation. Apoptotic rate of DTX-SA-BSPs copolymer micelles and docetaxel injection were 73.48% and 69.64%, respectively. The SA-BSPs copolymer showed good hemocompatibility. Therefore, SA-BSPs copolymer can be used as a carrier for delivering hydrophobic drugs.

  19. Docetaxel-Loaded Self-Assembly Stearic Acid-Modified Bletilla striata Polysaccharide Micelles and Their Anticancer Effect: Preparation, Characterization, Cellular Uptake and In Vitro Evaluation.

    Science.gov (United States)

    Guan, Qingxiang; Sun, Dandan; Zhang, Guangyuan; Sun, Cheng; Wang, Miao; Ji, Danyang; Yang, Wei

    2016-12-02

    Poorly soluble drugs have low bioavailability after oral administration, thereby hindering effective drug delivery. A novel drug-delivery system of docetaxel (DTX)-based stearic acid (SA)-modified Bletilla striata polysaccharides (BSPs) copolymers was successfully developed. Particle size, zeta potential, encapsulation efficiency (EE), and loading capacity (LC) were determined. The DTX release percentage in vitro was determined using high performance liquid chromatography (HPLC). The hemolysis and in vitro anticancer activity were studied. Cellular uptake and apoptotic rate were measured using flow cytometry assay. Particle size, zeta potential, EE and LC were 125.30 ± 1.89 nm, -26.92 ± 0.18 mV, 86.6% ± 0.17%, and 14.8% ± 0.13%, respectively. The anticancer activities of DTX-SA-BSPs copolymer micelles against HepG2, HeLa, SW480, and MCF-7 (83.7% ± 1.0%, 54.5% ± 4.2%, 48.5% ± 4.2%, and 59.8% ± 1.4%, respectively) were superior to that of docetaxel injection (39.2% ± 1.1%, 44.5% ± 5.3%, 38.5% ± 5.4%, and 49.8% ± 2.9%, respectively) at 0.5 μg/mL drug concentration. The DTX release percentage of DTX-SA-BSPs copolymer micelles and docetaxel injection were 66.93% ± 1.79% and 97.06% ± 1.56% in two days, respectively. Cellular uptake of DTX-FITC-SA-BSPs copolymer micelles in cells had a time-dependent relation. Apoptotic rate of DTX-SA-BSPs copolymer micelles and docetaxel injection were 73.48% and 69.64%, respectively. The SA-BSPs copolymer showed good hemocompatibility. Therefore, SA-BSPs copolymer can be used as a carrier for delivering hydrophobic drugs.

  20. Curcumin Encapsulated into Methoxy Poly(Ethylene Glycol) Poly(ε-Caprolactone) Nanoparticles Increases Cellular Uptake and Neuroprotective Effect in Glioma Cells.

    Science.gov (United States)

    Marslin, Gregory; Sarmento, Bruno Filipe Carmelino Cardoso; Franklin, Gregory; Martins, José Alberto Ribeiro; Silva, Carlos Jorge Ribeiro; Gomes, Andreia Ferreira Castro; Sárria, Marisa Passos; Coutinho, Olga Maria Fernandes Pereira; Dias, Alberto Carlos Pires

    2017-03-01

    Curcumin is a natural polyphenolic compound isolated from turmeric (Curcuma longa) with well-demonstrated neuroprotective and anticancer activities. Although curcumin is safe even at high doses in humans, it exhibits poor bioavailability, mainly due to poor absorption, fast metabolism, and rapid systemic elimination. To overcome these issues, several approaches, such as nanoparticle-mediated targeted delivery, have been undertaken with different degrees of success. The present study was conducted to compare the neuroprotective effect of curcumin encapsulated in poly(ε-caprolactone) and methoxy poly(ethylene glycol) poly(ε-caprolactone) nanoparticles in U251 glioblastoma cells. Prepared nanoparticles were physically characterized by laser doppler anemometry, transmission electron microscopy, and X-ray diffraction. The results from laser doppler anemometry confirmed that the size of poly(ε-caprolactone) and poly(ethylene glycol) poly(ε-caprolactone) nanoparticles ranged between 200-240 nm for poly(ε-caprolactone) nanoparticles and 30-70 nm for poly(ethylene glycol) poly(ε-caprolactone) nanoparticles, and transmission electron microscopy images revealed their spherical shape. Treatment of U251 glioma cells and zebrafish embryos with poly(ε-caprolactone) and poly(ethylene glycol) poly(ε-caprolactone) nanoparticles loaded with curcumin revealed efficient cellular uptake. The cellular uptake of poly(ethylene glycol) poly(ε-caprolactone) nanoparticles was higher in comparison to poly(ε-caprolactone) nanoparticles. Moreover, poly(ethylene glycol) poly(ε-caprolactone) di-block copolymer-loaded curcumin nanoparticles were able to protect the glioma cells against tBHP induced-oxidative damage better than free curcumin. Together, our results show that curcumin-loaded poly(ethylene glycol) poly(ε-caprolactone) di-block copolymer nanoparticles possess significantly stronger neuroprotective effect in U251 human glioma cells compared to free curcumin and curcumin

  1. Evidence for increased cellular uptake of glutamate and aspartate in the rat hippocampus during kainic acid seizures. A microdialysis study using the "indicator diffusion' method

    DEFF Research Database (Denmark)

    Bruhn, T; Christensen, Thomas; Diemer, Nils Henrik

    1997-01-01

    Using a newly developed technique, based on microdialysis, which allows cellular uptake of glutamate and aspartate to be studied in awake animals, we investigated uptake of glutamate and aspartate in the hippocampal formation of rats during limbic seizures induced by systemical administration of ....... The results indicate that during KA-induced seizures, uptake of glutamate and aspartate is increased, possibly aimed at maintaining the extracellular homeostasis of these two excitatory amino acids.......Using a newly developed technique, based on microdialysis, which allows cellular uptake of glutamate and aspartate to be studied in awake animals, we investigated uptake of glutamate and aspartate in the hippocampal formation of rats during limbic seizures induced by systemical administration...... of kainic acid (KA). With [14C]mannitol as an extracellular reference substance, the cellular extraction of the test substance [3H]D-aspartate was measured at different stages of seizure-activity. The results were compared to those obtained in a sham operated control group. During severe generalized clonic...

  2. Detecting carbon uptake and cellular allocation by individual algae in multispecies assemblages: Tracking carbon into single algal cells

    Energy Technology Data Exchange (ETDEWEB)

    Murdock, Justin N. [USDA Agricultural Research Service, National Sedimentation Laboratory, Oxford Mississippi; Department of Biology, Tennessee Technological University, Cookeville Tennessee

    2015-11-03

    Algal species vary in carbon (C) need and uptake rates. Understanding differences in C uptake and cellular allocation among species from natural communities will bring new insight into many ecosystem process questions including how species changes will alter energy availability and C sequestration in aquatic ecosystems. A major limitation of current methods that measure algal C incorporation is the inability to separate the response of individual species from mixed-species assemblages. I used Fourier-transform infrared microspectroscopy to qualitatively measure inorganic 13C isotope incorporation into individual algal cells in single species, two species, and natural phytoplankton assemblages. Lateral shifts in spectral peaks from 13C treatments were observed in all species. Comparison of peaks associated with carbohydrates, proteins, and lipids allowed for the detection of which individuals took in C, and which macromolecules the C was used to make. For example, shifts in Spirogyra spectral peaks showed substantial C incorporation in carbohydrates. Further, shifts in peaks at 1160 cm-1, 1108 cm-1, 1080 cm-1, 1048 cm-1, and 1030 cm-1 suggested C was being allocated into cellulose. The natural phytoplankton assemblage demonstrated how C could be tracked into co-occurring species. A diatom had large shifts in protein and carbohydrate peaks, while a green alga and euglenoid had only a few shifts in protein related peaks. Fourier-transform infrared microspectroscopy is an established, label free method for measuring the chemical composition of algal cells. However, adding a label such as 13C isotope can greatly expand the technique's capabilities by qualitatively tracking C movement between inorganic and organic states within single cells.

  3. Intracellular trafficking and cellular uptake mechanism of mPEG-PLGA-PLL and mPEG-PLGA-PLL-Gal nanoparticles for targeted delivery to hepatomas.

    Science.gov (United States)

    Liu, Peifeng; Sun, Yanming; Wang, Qi; Sun, Ying; Li, He; Duan, Yourong

    2014-01-01

    The lysosomal escape of nanoparticles is crucial to enhancing their delivery and therapeutic efficiency. Here, we report the cellular uptake mechanism, lysosomal escape, and organelle morphology effect of monomethoxy (polyethylene glycol)-poly (D,L-lactide-co-glycolide)-poly (L-lysine) (mPEG-PLGA-PLL, PEAL) and 4-O-beta-D-Galactopyranosyl-D-gluconic acid (Gal)-modified PEAL (PEAL-Gal) for intracellular delivery to HepG2, Huh7, and PLC hepatoma cells. These results indicate that PEAL is taken up by clathrin-mediated endocytosis of HepG2, Huh7 and PLC cells. For PEAL-Gal, sialic acid receptor-mediated endocytosis and clathrin-mediated endocytosis are the primary uptake pathways in HepG2 cells, respectively, whereas PEAL-Gal is internalized by sag vesicle- and clathrin-mediated endocytosis in Huh7 cells. In the case of PLC cells, clathrin-mediated endocytosis and sialic acid receptor play a primary role in the uptake of PEAL-Gal. TEM results verify that PEAL and PEAL-Gal lead to a different influence on organelle morphology of HepG2, Huh7 and PLC cells. In addition, the results of intracellular distribution reveal that PEAL and PEAL-Gal are less entrapped in the lysosomes of HepG2 and Huh7 cells, demonstrating that they effectively escape from lysosomes and contribute to enhance the efficiency of intracellular delivery and tumor therapy. In vivo tumor targeting image results demonstrate that PEAL-Gal specifically delivers Rhodamine B (Rb) to the tumor tissue of mice with HepG2, Huh7, and PLC hepatomas and remains at a high concentration in tumor tissue until 48 h, properties that will greatly contribute to enhanced antitumor efficiency. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  4. Enhanced cellular uptake of albumin-based lyophilisomes when functionalized with cell-penetrating peptide TAT in HeLa cells.

    Directory of Open Access Journals (Sweden)

    Etienne van Bracht

    Full Text Available Lyophilisomes are a novel class of biodegradable proteinaceous nano/micrometer capsules with potential use as drug delivery carrier. Cell-penetrating peptides (CPPs including the TAT peptide have been successfully implemented for intracellular delivery of a broad variety of cargos including various nanoparticulate pharmaceutical carriers. In the present study, lyophilisomes were modified using CPPs in order to achieve enhanced cellular uptake. Lyophilisomes were prepared by a freezing, annealing, and lyophilization method and a cystein-elongated TAT peptide was conjugated to the lyophilisomes using a heterobifunctional linker. Fluorescent-activated cell sorting (FACS was utilized to acquire a lyophilisome population with a particle diameter smaller than 1000 nm. Cultured HeLa, OVCAR-3, Caco-2 and SKOV-3 cells were exposed to unmodified lyophilisomes and TAT-conjugated lyophilisomes and examined with FACS. HeLa cells were investigated in more detail using a trypan blue quenching assay, confocal microscopy, and transmission electron microscopy. TAT-conjugation strongly increased binding and cellular uptake of lyophilisomes in a time-dependent manner in vitro, as assessed by FACS. These results were confirmed by confocal microscopy. Transmission electron microscopy indicated rapid cellular uptake of TAT-conjugated lyophilisomes via phagocytosis and/or macropinocytosis. In conclusion, TAT-peptides conjugated to albumin-based lyophilisomes are able to enhance cellular uptake of lyophilisomes in HeLa cells.

  5. Bioaccessibility and Cellular Uptake of β-Carotene Encapsulated in Model O/W Emulsions: Influence of Initial Droplet Size and Emulsifiers

    Directory of Open Access Journals (Sweden)

    Wei Lu

    2017-09-01

    Full Text Available The effects of the initial emulsion structure (droplet size and emulsifier on the properties of β-carotene-loaded emulsions and the bioavailability of β-carotene after passing through simulated gastrointestinal tract (GIT digestion were investigated. Exposure to GIT significantly changed the droplet size, surface charge and composition of all emulsions, and these changes were dependent on their initial droplet size and the emulsifiers used. Whey protein isolate (WPI-stabilized emulsion showed the highest β-carotene bioaccessibility, while sodium caseinate (SCN-stabilized emulsion showed the highest cellular uptake of β-carotene. The bioavailability of emulsion-encapsulated β-carotene based on the results of bioaccessibility and cellular uptake showed the same order with the results of cellular uptake being SCN > TW80 > WPI. An inconsistency between the results of bioaccessibility and bioavailability was observed, indicating that the cellular uptake assay is necessary for a reliable evaluation of the bioavailability of emulsion-encapsulated compounds. The findings in this study contribute to a better understanding of the correlation between emulsion structure and the digestive fate of emulsion-encapsulated nutrients, which make it possible to achieve controlled or potential targeted delivery of nutrients by designing the structure of emulsion-based carriers.

  6. The influence of surface charge on serum protein interaction and cellular uptake: studies with dendritic polyglycerols and dendritic polyglycerol-coated gold nanoparticles

    Science.gov (United States)

    Bewersdorff, Tony; Vonnemann, Jonathan; Kanik, Asiye; Haag, Rainer; Haase, Andrea

    2017-01-01

    Nanoparticles (NPs) have gained huge interest in the medical field, in particular for drug delivery purposes. However, binding of proteins often leads to fast NP uptake and rapid clearance, thereby hampering medical applications. Thus, it is essential to determine and control the bio–nano interface. This study investigated the serum protein interactions of dendritic polyglycerols (dPGs), which are promising drug delivery candidates by means of two dimensional gel electrophoresis (2DE) in combination with mass spectrometry. In order to investigate the influence of surface charge, sulfated (sulfated dendritic polyglycerol [dPGS]) and non-sulfated (dPGOH) surfaces were applied, which were synthesized on a gold core allowing for easier separation from unbound biomolecules through centrifugation. Furthermore, two different sizes for dPGS were included. Although size had only a minor influence, considerable differences were detected in protein affinity for dPGS versus dPGOH surfaces, with dPGOH binding much less proteins. Cellular uptake into human CD14+ monocytes was analyzed by flow cytometry, and dPGOH was taken up to a much lower extent compared to dPGS. By using a pull-down approach, possible cellular interaction partners of serum pre-incubated dPGS-Au20 NPs from the membrane fraction of THP-1 cells could be identified such as for instance the transferrin receptor or an integrin. Clathrin-mediated endocytosis was further investigated using chlorpromazine as an inhibitor, which resulted in a 50% decrease of the cellular uptake of dPGS. This study could confirm the influence of surface charge on protein interactions and cellular uptake of dPGS. Furthermore, the approach allowed for the identification of possible uptake receptors and insights into the uptake mechanism. PMID:28352171

  7. Highly infectious symbiont dominates initial uptake in coral juveniles.

    Science.gov (United States)

    Abrego, David; VAN Oppen, Madeleine J H; Willis, Bette L

    2009-08-01

    The majority of reef-building corals acquire their obligate algal symbionts (Symbiodinium) from the environment. However, factors shaping the initial establishment of coral-algal symbioses, including parental effects, local environmental conditions and local availability of symbionts, are not well understood. This study monitored the uptake and maintenance of Symbiodinium in juveniles of two common corals, Acropora tenuis and Acropora millepora, that were reciprocally explanted between sites where adult colonies host different types of Symbiodinium. We found that coral juveniles were rapidly dominated by type D Symbiodinium, even though this type is not found in adult colonies (including the parental colonies) in four out of the five study populations. Furthermore, type D Symbiodinium was found in less than one-third of a wide range of coral species (n > 50) sampled at the two main study sites, suggesting that its dominance in the acroporid juveniles is not because it is the most abundant local endosymbiotic type. Moreover, dominance by type D was observed irrespective of the light intensity to which juveniles were exposed in a field study. In summary, despite its relatively low abundance in coral assemblages at the study sites and irrespective of the surrounding light environment, type D Symbiodinium is the main symbiont type initially acquired by juveniles of A. millepora and A. tenuis. We conclude that during early ontogeny in these corals, there are few barriers to the uptake of Symbiodinium types which differ from those found in parental colonies, resulting in dominance by a highly infectious and potentially opportunistic symbiont.

  8. Fluorescent chitosan functionalized magnetic polymeric nanoparticles: Cytotoxicity and in vitro evaluation of cellular uptake.

    Science.gov (United States)

    Kaewsaneha, Chariya; Jangpatarapongsa, Kulachart; Tangchaikeeree, Tienrat; Polpanich, Duangporn; Tangboriboonrat, Pramuan

    2014-11-01

    Nanoparticles possessing magnetic and fluorescent properties were fabricated by the covalent attachment of fluorescein isothiocyanate onto magnetic polymeric nanoparticles functionalized by chitosan. The synthesized magnetic polymeric nanoparticles-chitosan/fluorescein isothiocyanate were successfully used for labeling the living organ and blood-related cancer cells, i.e., HeLa, Hep G2, and K562 cells. The cytotoxicity test of nanoparticles at various incubation times indicated the high cell viability (>90%) without morphological change. The confocal microscopy revealed that they could pass through cell membrane within 2 h for K562 cells and 3 h for HeLa and Hep G2 cells and then confine inside cytoplasm of all types of tested cells for at least 24 h. Therefore, the synthesized magnetic polymeric nanoparticles-chitosan/fluorescein isothiocyanate would potentially be used as cell tracking in theranostic applications.

  9. Magnetic nanoparticles to recover cellular organelles and study the time resolved nanoparticle-cell interactome throughout uptake.

    Science.gov (United States)

    Bertoli, Filippo; Davies, Gemma-Louise; Monopoli, Marco P; Moloney, Micheal; Gun'ko, Yurii K; Salvati, Anna; Dawson, Kenneth A

    2014-08-27

    Nanoparticles in contact with cells and living organisms generate quite novel interactions at the interface between the nanoparticle surface and the surrounding biological environment. However, a detailed time resolved molecular level description of the evolving interactions as nanoparticles are internalized and trafficked within the cellular environment is still missing and will certainly be required for the emerging arena of nanoparticle-cell interactions to mature. In this paper promising methodologies to map out the time resolved nanoparticle-cell interactome for nanoparticle uptake are discussed. Thus silica coated magnetite nanoparticles are presented to cells and their magnetic properties used to isolate, in a time resolved manner, the organelles containing the nanoparticles. Characterization of the recovered fractions shows that different cell compartments are isolated at different times, in agreement with imaging results on nanoparticle intracellular location. Subsequently the internalized nanoparticles can be further isolated from the recovered organelles, allowing the study of the most tightly nanoparticle-bound biomolecules, analogous to the 'hard corona' that so far has mostly been characterized in extracellular environments. Preliminary data on the recovered nanoparticles suggest that significant portion of the original corona (derived from the serum in which particles are presented to the cells) is preserved as nanoparticles are trafficked through the cells.

  10. Calculation of lipophilicity of a large, diverse dataset of anticancer platinum complexes and the relation to cellular uptake.

    Science.gov (United States)

    Oldfield, Steven P; Hall, Matthew D; Platts, James A

    2007-10-18

    A quantitative structure--property relationship (QPSR) for the octanol--water partition of platinum complexes was constructed using molecular descriptors derived from density functional (DFT) calculations. A dataset of partition data for 64 complexes, consisting of 43 square-planar platinum(II) and 21 octahedral platinum(IV) complexes, was drawn from literature sources. Not only does this dataset include considerable structural diversity of complexes considered but also a variety of techniques for the measurement of partition coefficients. These data were modeled using descriptors drawn from electrostatic potentials and hardness/softness indices projected onto molecular surfaces. This required initial descriptor selection using a genetic algorithm approach, followed by partial least-squares regression against log Po/w data. In this way, a statistically robust model was constructed, with errors of similar size to the variation in log Po/w from multiple experimental measurements. Implications of lipophilicity for cellular accumulation of Pt-based drugs, and hence for design of new drugs, are discussed, as is the uptake of metabolites of cisplatin.

  11. High-throughput screening for modulators of cellular contractile force

    CERN Document Server

    Park, Chan Young; Tambe, Dhananjay; Chen, Bohao; Lavoie, Tera; Dowell, Maria; Simeonov, Anton; Maloney, David J; Marinkovic, Aleksandar; Tschumperlin, Daniel J; Burger, Stephanie; Frykenberg, Matthew; Butler, James P; Stamer, W Daniel; Johnson, Mark; Solway, Julian; Fredberg, Jeffrey J; Krishnan, Ramaswamy

    2014-01-01

    When cellular contractile forces are central to pathophysiology, these forces comprise a logical target of therapy. Nevertheless, existing high-throughput screens are limited to upstream signaling intermediates with poorly defined relationship to such a physiological endpoint. Using cellular force as the target, here we screened libraries to identify novel drug candidates in the case of human airway smooth muscle cells in the context of asthma, and also in the case of Schlemm's canal endothelial cells in the context of glaucoma. This approach identified several drug candidates for both asthma and glaucoma. We attained rates of 1000 compounds per screening day, thus establishing a force-based cellular platform for high-throughput drug discovery.

  12. A High-Efficiency Cellular Extraction System for Biological Proteomics.

    Science.gov (United States)

    Dhabaria, Avantika; Cifani, Paolo; Reed, Casie; Steen, Hanno; Kentsis, Alex

    2015-08-07

    Recent developments in quantitative high-resolution mass spectrometry have led to significant improvements in the sensitivity and specificity of the biochemical analyses of cellular reactions, protein-protein interactions, and small-molecule-drug discovery. These approaches depend on cellular proteome extraction that preserves native protein activities. Here, we systematically analyzed mechanical methods of cell lysis and physical protein extraction to identify those that maximize the extraction of cellular proteins while minimizing their denaturation. Cells were mechanically disrupted using Potter-Elvehjem homogenization, probe- or adaptive-focused acoustic sonication, and were in the presence of various detergents, including polyoxyethylene ethers and esters, glycosides, and zwitterions. Using fluorescence spectroscopy, biochemical assays, and mass spectrometry proteomics, we identified the combination of adaptive focused acoustic (AFA) sonication in the presence of a binary poloxamer-based mixture of octyl-β-glucoside and Pluronic F-127 to maximize the depth and yield of the proteome extraction while maintaining native protein activity. This binary poloxamer extraction system allowed for native proteome extraction comparable in coverage to the proteomes extracted using denaturing SDS or guanidine-containing buffers, including the efficient extraction of all major cellular organelles. This high-efficiency cellular extraction system should prove useful for a variety of cell biochemical studies, including structural and functional proteomics.

  13. Reduction-sensitive liposomes from a multifunctional lipid conjugate and natural phospholipids: reduction and release kinetics and cellular uptake.

    Science.gov (United States)

    Goldenbogen, Björn; Brodersen, Nicolai; Gramatica, Andrea; Loew, Martin; Liebscher, Jürgen; Herrmann, Andreas; Egger, Holger; Budde, Bastian; Arbuzova, Anna

    2011-09-06

    The development of targeted and triggerable delivery systems is of high relevance for anticancer therapies. We report here on reduction-sensitive liposomes composed of a novel multifunctional lipidlike conjugate, containing a disulfide bond and a biotin moiety, and natural phospholipids. The incorporation of the disulfide conjugate into vesicles and the kinetics of their reduction were studied using dansyl-labeled conjugate 1 in using the dansyl fluorescence environmental sensitivity and the Förster resonance energy transfer from dansyl to rhodamine-labeled phospholipids. Cleavage of the disulfide bridge (e.g., by tris(2-carboxyethyl)phosphine (TCEP), dithiothreitol (DTT), l-cysteine, or glutathione (GSH)) removed the hydrophilic headgroup of the conjugate and thus changed the membrane organization leading to the release of entrapped molecules. Upon nonspecific uptake of vesicles by macrophages, calcein release from reduction-sensitive liposomes consisting of the disulfide conjugate and phospholipids was more efficient than from reduction-insensitive liposomes composed only of phospholipids. The binding of streptavidin to the conjugates did not interfere with either the subsequent reduction of the disulfide bond of the conjugate or the release of entrapped molecules. Breast cancer cell line BT-474, overexpressing the HER2 receptor, showed a high uptake of the reduction-sensitive doxorubicin-loaded liposomes functionalized with the biotin-tagged anti-HER2 antibody. The release of the entrapped cargo inside the cells was observed, implying the potential of using our system for active targeting and delivery. © 2011 American Chemical Society

  14. Cellular uptake of {sup 99m}TcN-NOET in human leukaemic HL-60 cells is related to calcium channel activation and cell proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Guillermet, Stephanie; Vuillez, Jean-Philippe; Caravel, Jean-Pierre; Marti-Batlle, Daniele; Fagret, Daniel [Universite de Grenoble, Radiopharmaceutiques Biocliniques, La Tronche (France); Fontaine, Eric [Universite de Grenoble, Laboratoire de Bioenergetique Fondamentale et Appliquee, Grenoble (France); Pasqualini, Roberto [Cis Bio International Schering SA, Gif-sur-Yvette (France)

    2006-01-01

    A major goal of nuclear oncology is the development of new radiolabelled tracers as proliferation markers. Intracellular calcium waves play a fundamental role in the course of the cell cycle. These waves occur in non-excitable tumour cells via store-operated calcium channels (SOCCs). Bis(N-ethoxy, N-ethyldithiocarbamato) nitrido technetium (V)-99m ({sup 99m}TcN-NOET) has been shown to interact with L-type voltage-operated calcium channels (VOCCs) in cultured cardiomyocytes. Considering the analogy between VOCCs and SOCCs, we sought to determine whether {sup 99m}TcN-NOET also binds to activated SOCCs in tumour cells in order to clarify the potential value of this tracer as a proliferation marker. Uptake kinetics of {sup 99m}TcN-NOET were measured in human leukaemic HL-60 cells over 60 min and the effect of several calcium channel modulators on 1-min tracer uptake was studied. The uptake kinetics of {sup 99m}TcN-NOET were compared both with the variations of cytosolic free calcium concentration measured by indo-1/AM and with the variations in the SG{sub 2}M cellular proliferation index. All calcium channel inhibitors significantly decreased the cellular uptake of {sup 99m}TcN-NOET whereas the activator thapsigargin induced a significant 10% increase. In parallel, SOCC activation by thapsigargin, as measured using the indo-1/AM probe, was inhibited by nicardipine. These results indicate that the uptake of {sup 99m}TcN-NOET is related to the activation of SOCCs. Finally, a correlation was observed between the tracer uptake and variations in the proliferation index SG{sub 2}M. The uptake of {sup 99m}TcN-NOET seems to be related to SOCC activation and to cell proliferation in HL-60 cells. These results indicate that {sup 99m}TcN-NOET might be a marker of cell proliferation. (orig.)

  15. High-throughput microcavitation bubble induced cellular mechanotransduction

    Science.gov (United States)

    Compton, Jonathan Lee

    Focused pulsed laser irradiation allows for the deposition of energy with high spatial and temporal resolution. These attributes provide an optimal tool for non-contact manipulation in cellular biology such as laser microsurgery, cell membrane permeabilization, as well as targeted cell death. In this thesis we investigate the direct physical effects produced by laser- generated microcavitation bubbles in adherent cell cultures. We examine how variation in pulse durations (180 ps - 6ns) and pulse energy (0.5 - 40 mu;J) affect microcavitation bubble (mu;CB) generated cell lysis, necrosis, and molecular delivery. To compare the effects of pulse duration we employ classical fluid dynamics modeling to quantify the perturbation caused on cell populations from mu;CB generated microTsunamis (a transient microscale burst of hydrodynamic shear stress). Through time-resolved imaging we capture the mu;CB dynamics at various energies and pulse durations. Moreover, the mathematical modeling provides information regarding the cellular exposure to time varying shear stress and impulse as a function of radial location from the mu;CB center. We demonstrate that the resultant cellular effect can be predicted based on the total impulse across a two order of magnitude span of pulse duration and pulse energy. We also examine the region of cells beyond the zone of molecular delivery to investigate possible cellular reactions to mu;Tsunami exposure. Our studies have shown that cellular mechanotransduction occurs within cell populations spanning an area of up to 1 mm2 surrounding the mu;CB. Visualization of mechanotransduction is achieved through the visualization of intracellular calcium signaling via fluorescence microscopy that occurs due to the ability of the muTsunami generated shear stresses to stimulate G-protein coupled receptors at the apical cell surface. Moreover, we have shown that the observed signaling can be attenuated in a dose-dependent manner using 2-APB which is a known

  16. Correlation of particle properties with cytotoxicity and cellular uptake of hydroxyapatite nanoparticles in human gastric cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Xinhui [State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237 (China); Liang, Tong [Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237 (China); Liu, Changsheng [State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237 (China); Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237 (China); Yuan, Yuan, E-mail: yyuan@ecust.edu.cn [Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237 (China); Qian, Jiangchao, E-mail: jiangchaoqian@ecust.edu.cn [State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237 (China)

    2016-10-01

    Three types of hydroxyapatite nanoparticles (HAPNs) were synthesized employing a sonochemistry-assisted microwave method by changing microwave power (from 200 to 300 W) or using calcination treatment: L200 (200 W, lyophilization), L300 (300 W, lyophilization) and C200 (200 W, lyophilization & calcination). Their physiochemical properties were characterized and correlated with cytotoxicity to human gastric cancer cells (MGC80-3). The major differences among these HAPN preparations were their size and specific surface area, with the L200 showing a smaller size and higher specific surface area. Although all HAPNs inhibited cell proliferation and induced apoptosis of cancer cells, L200 exhibited the greatest toxicity. All types of HAPNs were internalized through energy-dependent pathways, but the L200 nanoparticles were more efficiently uptaken by MGC80-3 cells. Inhibitor studies with dynasore and methyl-β-cyclodextrin suggested that caveolae-mediated endocytosis and, to a much lesser extent, clathrin-mediated endocytosis, were involved in cellular uptake of the various preparations, whereas the inhibition of endocytosis was more obvious for L200. Using fluorescein isothiocyanate-labeled HAPNs and laser-scanning confocal microscopy, we found that all forms of nanoparticles were present in the cytoplasm, and some L200 HAPNs were even found within nuclei. Treatment with all HAPN preparations led to the increase in the intracellular calcium level with the highest level detected for L200. - Highlights: • Three types of HAPNs (L200, L300 and C200) were synthesized employing a sonochemistry-assisted microwave method. • L200 exhibited the greatest cytotoxicity to human gastric cancer (MGC80-3) cells. • L200 showed a smaller size and higher specific surface area. • The L200 nanoparticles were more efficiently uptaken by MGC80-3 cells through energy-dependent pathways. • L200 caused the most significant increase in the intracellular calcium level.

  17. [Nicotinic acid increases cellular transport of high density lipoprotein cholesterol in patients with hypoalphalipoproteinemia].

    Science.gov (United States)

    Figueroa, Catalina; Droppelmann, Katherine; Quiñones, Verónica; Amigo, Ludwig; Mendoza, Camila; Serrano, Valentina; Véjar, Margarita; Maiz, Alberto; Rigotti, Attilio

    2015-09-01

    Plasma high density lipoproteins (HDL) are involved in reverse cholesterol transport mediated by the scavenger receptor class B type I (SR-BI). Nicotinic acid increases HDL cholesterol levels, even though its specific impact on SR-BI dependent-cellular cholesterol transport remains unknown. To determine the effect of nicotinic acid on HDL particle functionality in cholesterol efflux and uptake mediated by SR-BI in cultured cells in hypoalphalipoproteinemic patients. In a pilot study, eight patients with low HDL (≤ 40 mg/dL) were treated with extended release nicotinic acid. HDL cholesterol and phospholipid levels, HDL2 and HDL3 fractions and HDL particle sizes were measured at baseline and post-therapy. Before and after nicotinic acid treatment, HDL particles were used for cholesterol transport studies in cells transfected with SR-BI. Nicotinic acid treatment raised total HDL cholesterol and phospholipids, HDL2 levels as well as HDL particle size. Nicotinic acid significantly increased HDL cholesterol efflux and uptake capacity mediated by SR-BI in cultured cells. Nicotinic acid therapy increases SR-BI-dependent HDL cholesterol transport in cultured cells, establishing a new cellular mechanism by which this lipid-lowering drug appears to modulate HDL metabolism in patients with hypoalphalipoproteinemia.

  18. The basis for colorless hemolymph and cocoons in the Y-gene recessive Bombyx mori mutants: a defect in the cellular uptake of carotenoids.

    Science.gov (United States)

    Tsuchida, Kozo; Katagiri, Chihiro; Tanaka, Yoshiro; Tabunoki, Hiroko; Sato, Ryoichi; Maekawa, Hideaki; Takada, Naoko; Banno, Yutaka; Fujii, Hiroshi; Wells, Michael A; Jouni, Zeina E

    2004-10-01

    Bombyx mori is an excellent model for the study of carotenoid-binding proteins (CBP). In previous papers, we identified and molecularly characterized a CBP from the Y-gene dominant mutants. In the present study, we attempted to correlate and establish lipid metabolism and distribution in these mutants. When [3H]-triolein was fed to the mutants, typical patterns of uptake of labeled fatty acids from midgut to hemolymph and subsequent delivery to fat body and silk glands were obtained in all mutants. Further analysis of lipid and carotenoid profiles revealed that the yellow coloration in the hemolymph associated with lipophorin is not attributed to a difference in lipophorin concentrations among the mutants, nor to its lipid composition, but rather to its carotenoid content. Lipophorin of the Y+I mutant exhibited the highest concentration of total carotenoids of 55.8 microg/mg lipophorin compared to 3.1 microg/mg in the +Y+I mutant, 1.2 microg/mg in the YI mutant and 0.5 microg/mg in the +YI mutant. Characteristic retention time in HPLC of the different classes of carotenoids of lipophorin identified the presence of lutein as the major chromophore (62-77%), followed by beta-carotenes (22-38%). Although lutein and beta-carotene content of mutants' lipophorin differed significantly, the ratio of lutein to beta-carotene of 3:1 was not different among mutants. Similarly, lipid compositions of mutant silk glands were not significantly different, but carotenoid contents were. The significantly high concentration of lutein in the Y+I mutant silk gland represented more than 160-fold increase compared to +Y+I mutant (plipid metabolism in the mutants is not defected and that the molecular basis for colorless hemolymph and cocoons is a defect in the cellular uptake of lutein associated with the Y-gene recessive mutants.

  19. Cellular uptake of modified oligonucleotides enhanced by porphyrins studied by time-resolved microspectrofluorimetry and fluorescence imaging techniques

    Science.gov (United States)

    Praus, P.; Kočišová, E.; Mojzeš, P.; Štěpánek, J.; Turpin, P.-Y.; Sureau, F.

    2011-05-01

    Fluorescence microimaging and homodyne phase-resolved confocal microspectrofluorimetry were used to monitor the transport of antisense oligonucleotide into 3T3 living cells and its subsequent intracellular distribution. Phosphorothioate analog of 15-mer oligothymidylate labeled by ATTO 425 was complexed with 5,10,15,20-tetrakis (1-methyl-4-pyridyl) porphyrin (H 2TMPyP4) as an uptake-mediating agent. High frequency (up to 180 MHz) analog modulation of both exciting diode laser and the detector image intensifier gain was used to record time-resolved fluorescence spectra. Fluorescence lifetime data within a broad spectral range have revealed preservation of oligonucleotide/porphyrin complex integrity and binding properties of both components inside the cell.

  20. Cationic lipid-nanoceria hybrids, a novel nonviral vector-mediated gene delivery into mammalian cells: investigation of the cellular uptake mechanism.

    Science.gov (United States)

    Das, Joydeep; Han, Jae Woong; Choi, Yun-Jung; Song, Hyuk; Cho, Ssang-Goo; Park, Chankyu; Seo, Han Geuk; Kim, Jin-Hoi

    2016-07-06

    Gene therapy is a promising technique for the treatment of various diseases. The development of minimally toxic and highly efficient non-viral gene delivery vectors is the most challenging undertaking in the field of gene therapy. Here, we developed dimethyldioctadecylammonium bromide (DODAB)-nanoceria (CeO2) hybrids as a new class of non-viral gene delivery vectors. These DODAB-modified CeO2 nanoparticles (CeO2/DODAB) could effectively compact the pDNA, allowing for highly efficient gene transfection into the selected cell lines. The CeO2/DODAB nanovectors were also found to be non-toxic and did not induce ROS formation as well as any stress responsive and pro-survival signaling pathways. The overall vector performance of CeO2/DODAB nanohybrids was comparable with lipofectamine and DOTAP, and higher than calcium phosphate and DEAE-dextran for transfecting small plasmids. The increased cellular uptake of the nanovector/DNA complexes through clathrin- and caveolae-mediated endocytosis and subsequent release from the endosomes further support the increased gene transfection efficiency of the CeO2/DODAB vectors. Besides, CeO2/DODAB nanovectors could transfect genes in vivo without any sign of toxicity. Taken together, this new nano-vector has the potential to be used for gene delivery in biomedical applications.

  1. Magnetic Particle Spectroscopy Reveals Dynamic Changes in the Magnetic Behavior of Very Small Superparamagnetic Iron Oxide Nanoparticles During Cellular Uptake and Enables Determination of Cell-Labeling Efficacy.

    Science.gov (United States)

    Poller, Wolfram C; Löwa, Norbert; Wiekhorst, Frank; Taupitz, Matthias; Wagner, Susanne; Möller, Konstantin; Baumann, Gert; Stangl, Verena; Trahms, Lutz; Ludwig, Antje

    2016-02-01

    In vivo tracking of nanoparticle-labeled cells by magnetic resonance imaging (MRI) crucially depends on accurate determination of cell-labeling efficacy prior to transplantation. Here, we analyzed the feasibility and accuracy of magnetic particle spectroscopy (MPS) for estimation of cell-labeling efficacy in living THP-1 cells incubated with very small superparamagnetic iron oxide nanoparticles (VSOP). Cell viability and proliferation capacity were not affected by the MPS measurement procedure. In VSOP samples without cell contact, MPS enabled highly accurate quantification. In contrast, MPS constantly overestimated the amount of cell associated and internalized VSOP. Analyses of the MPS spectrum shape expressed as harmonic ratio A₅/A₃ revealed distinct changes in the magnetic behavior of VSOP in response to cellular uptake. These changes were proportional to the deviation between MPS and actual iron amount, therefore allowing for adjusted iron quantification. Transmission electron microscopy provided visual evidence that changes in the magnetic properties correlated with cell surface interaction of VSOP as well as with alterations of particle structure and arrangement during the phagocytic process. Altogether, A₅/A₃-adjusted MPS enables highly accurate, cell-preserving VSOP quantification and furthermore provides information on the magnetic characteristics of internalized VSOP.

  2. Potentiating the cellular targeting and anti-tumor activity of Dp44mT via binding to human serum albumin: two saturable mechanisms of Dp44mT uptake by cells.

    Science.gov (United States)

    Merlot, Angelica M; Sahni, Sumit; Lane, Darius J R; Fordham, Ashleigh M; Pantarat, Namfon; Hibbs, David E; Richardson, Vera; Doddareddy, Munikumar R; Ong, Jennifer A; Huang, Michael L H; Richardson, Des R; Kalinowski, Danuta S

    2015-04-30

    Di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT) demonstrates potent anti-cancer activity. We previously demonstrated that 14C-Dp44mT enters and targets cells through a carrier/receptor-mediated uptake process. Despite structural similarity, 2-benzoylpyridine 4-ethyl-3-thiosemicarbazone (Bp4eT) and pyridoxal isonicotinoyl hydrazone (PIH) enter cells via passive diffusion. Considering albumin alters the uptake of many drugs, we examined the effect of human serum albumin (HSA) on the cellular uptake of Dp44mT, Bp4eT and PIH. Chelator-HSA binding studies demonstrated the following order of relative affinity: Bp4eT≈PIH>Dp44mT. Interestingly, HSA decreased Bp4eT and PIH uptake, potentially due to its high affinity for the ligands. In contrast, HSA markedly stimulated Dp44mT uptake by cells, with two saturable uptake mechanisms identified. The first mechanism saturated at 5-10 µM (B(max):1.20±0.04 × 10⁷ molecules/cell; K(d):33±3 µM) and was consistent with a previously identified Dp44mT receptor/carrier. The second mechanism was of lower affinity, but higher capacity (B(max):2.90±0.12 × 10⁷ molecules/cell; K(d):65±6 µM), becoming saturated at 100 µM and was only evident in the presence of HSA. This second saturable Dp44mT uptake process was inhibited by excess HSA and had characteristics suggesting it was mediated by a specific binding site. Significantly, the HSA-mediated increase in the targeting of Dp44mT to cancer cells potentiated apoptosis and could be important for enhancing efficacy.

  3. Cytotoxicity and cellular uptake of pyrimidine nucleosides for imaging herpes simplex type-1 thymidine kinase (HSV-1 TK) expression in mammalian cells

    Energy Technology Data Exchange (ETDEWEB)

    Morin, Kevin W.; Duan Weili; Xu Lihua; Zhou Aihua; Moharram, Sameh; Knaus, Edward E.; McEwan, Alexander J.B.; Wiebe, Leonard I. E-mail: leonard.wiebe@ualberta.ca

    2004-07-01

    In vivo transfer of the herpes simplex virus type-1 thymidine kinase (HSV-1 TK) gene, with subsequent administration of antiviral drugs such as ganciclovir, has emerged as a promising gene therapy protocol for treating proliferative disorders. The in vitro cytotoxicities (IC{sub 50}) for two series of 5-iodo- and (E)-5-(2-iodovinyl)-substituted 2'-deoxy- and 2'-deoxy-2'-fluoro-pyrimidine nucleosides ranged from millimolar to low nanomolar concentrations in mammalian tumor cell lines (KBALB; R-970-5; 143B; EMT-6) and their counterparts engineered to express HSV-1 TK (KBALB-STK; 143B-LTK). Their HSV-1 TK selectivity indices ranged from one (nonselective) to one million (highly selective) based on cytotoxicity, with FIRU being the least toxic to all cell lines, and FIAU being most toxic. HSV-1 TK selectivity, based on uptake, ranged from 10 to 140, with IVDU being most selective for HSV-1 TK expressing cells, followed by IVFRU, FIRU, FIAU, IVFAU and finally IUDR. Phosphorylation of [{sup 125}I]FIAU led to incorporation of the radiolabel into nucleic acids, whereas IVFRU and FIRU radioactivity was trapped primarily in the nucleotide pool. These data indicate that cytotoxicity does not depend on initial metabolic trapping (e.g., phosphorylation), but on elaboration of the mononucleotides to more cytotoxic anabolites. Lipophilicities and nucleoside transport rates of the six nucleosides tested were within narrow ranges. This supports the premise that cellular biochemistry, and not cellular bioavailability, is responsible for the observed broad range of cytotoxicity and trapping. In vivo biodistribution studies with 5-[{sup 125}I]iodo-2'-fluoro-2'-deoxyribouridine (FIRU), 5-[{sup 125}I]iodo-2'-fluoro-2'-deoxyarabinouridine (FIAU) and (E)-5-(2-[{sup 125}I]iodovinyl)-2'-fluoro-2'-deoxyuridine (IVFRU) demonstrate selective accumulation of all three radiotracers in HSV-1 TK-expressing KBABK-STK tumors, compared to their very low

  4. Cytotoxic activity, DNA damage, cellular uptake, apoptosis and western blot analysis of ruthenium(II) polypyridyl complex against human lung decarcinoma A549 cell.

    Science.gov (United States)

    Lai, Shang-Hai; Jiang, Guang-Bin; Yao, Jun-Hua; Li, Wei; Han, Bing-Jie; Zhang, Cheng; Zeng, Chuan-Chuan; Liu, Yun-Jun

    2015-11-01

    A new ruthenium(II) polypyridyl complex [Ru(dmp)2(pddppn)](ClO4)2Ru1 was synthesized and characterized. The cytotoxic activity in vitro of the complex was evaluated by MTT method. Ru1 shows high effect on the inhibition of the cell growth against BEL-7402, HeLa, MG-63 and A549 cells with low IC50 values of 1.6±0.4, 9.0±0.8, 1.5±0.2 and 1.5±0.3 μM, respectively. The cellular uptake indicates that Ru1 can enter into the cytoplasm and accumulate in the cell nuclei. Ru1 can induce apoptosis in A549 cells and enhance the levels of reactive oxygen species (ROS) and induce the decrease of mitochondrial membrane potential. In addition, Ru1 can down-regulate the levels of Bcl-2, Bcl-x, Bak, and Bim expression and up-regulate the expression of Bag-1 and Bad. The complex induces apoptosis of A549 cells through an intrinsic ROS-mediated mitochondrial dysfunction pathway, which was accompanied by regulating the expression of caspases and Bcl-2 family proteins. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. DNA Binding and Photocleavage Properties, Cellular Uptake and Localization, and in-Vitro Cytotoxicity of Dinuclear Ruthenium(II) Complexes with Varying Lengths in Bridging Alkyl Linkers.

    Science.gov (United States)

    Liu, Ping; Wu, Bao-Yan; Liu, Jin; Dai, Yong-Cheng; Wang, You-Jun; Wang, Ke-Zhi

    2016-02-15

    Two new dinuclear Ru(II) polypyridyl complexes containing three and ten methylene chains in their bridging linkers are synthesized and characterized. Their calf thymus DNA-binding and plasmid DNA photocleavage behaviors are comparatively studied with a previously reported, six-methylene-containing analog by absorption and luminescence spectroscopy, steady-state emission quenching by [Fe(CN)6](4-), DNA competitive binding with ethidium bromide, DNA viscosity measurements, DNA thermal denaturation, and agarose gel electrophoresis analyses. Theoretical calculations applying the density functional theory (DFT) method for the three complexes are also performed to understand experimentally observed DNA binding properties. The results show that the two complexes partially intercalate between the base pairs of DNA. Cellular uptake and colocalization studies have demonstrated that the complexes could enter HeLa cells efficiently and localize within lysosomes. The in-vitro antitumor activity against HeLa and MCF-7 tumor cells of the complexes are studied by MTT cytotoxic analysis. A new method, high-content analysis (HCA), is also used to assess cytotoxicity, apoptosis and cell cycle arrest of the three complexes. The results show that the lengths of the alkyl linkers could effectively tune their biological properties and that HCA is suitable for rapidly identifying cytotoxicity and can be substituted for MTT assays to evaluate the cell cytotoxicity of chemotherapeutic agents.

  6. Enhancement of cellular uptake and cytotoxicity of curcumin-loaded PLGA nanoparticles by conjugation with anti-P-glycoprotein in drug resistance cancer cells

    Institute of Scientific and Technical Information of China (English)

    Wanisa PUNFA; Supachai YODKEEREE; Pornsiri PITCHAKARN; Chadarat AMPASAVATE; Pornngarm LIMTRAKUL

    2012-01-01

    Aim:To compare the anti-cancer activity and cellular uptake of curcumin (Cur) delivered by targeted and non-targeted drug delivery systems in multidrug-resistant cervical cancer cells.Methods:Cur was entrapped into poly (DL-lactide-co-glycolide) (PLGA) nanoparticles (Cur-NPs) in the presence of modified-pluronic F127 stabilizer using nano-precipitation technique.On the surface of Cur-NPs,the carboxy-terminal of modified pluronic F127 was conjugated to the amino-terminal of anti-P-glycoprotein (P-gp) (Cur-NPs-APgp).The physical properties of the Cur-NPs,including particle size,zeta potential,particle morphology and Cur release kinetics,were investigated.Cellular uptake and specificity of the Cur-NPs and Cur-NPs-APgp were detected in cervical cancer cell lines KB-V1 (higher expression of P-gp) and KB-3-1 (lower expression of P-gp) using fluorescence microscope and flow cytometry,respectively.Cytotoxicity of the Cur-NPs and Cur-NPs-APgp was determined using MTT assay.Results:The particle size of Cur-NPs and Cur-NPs-APgp was 127 and 132 nm,respectively.The entrapment efficiency and actual loading of Cur-NPs-APgp (60% and 5μg Cur/mg NP) were lower than those of Cur-NPs (99% and 7 μg Cur/mg NP).The specific binding of Cur-NPs-APgp to KB-V1 cells was significantly higher than that to KB-3-1 cells.Cellular uptake of Cur-NPs-APgp into KB-V1 cells was higher,as compared to KB-3-1 cells.However,the cellular uptake of Cur-NPs and Cur-NPs-lgG did not differ between the two types of cells.Besides,the cytotoxicity of Cur-NPs-APgp in KB-V1 cells was higher than those of Cur and Cur-NPs.Conclusion:The results demonstrate that Cur-NPs-APgp targeted to P-gp on the cell surface membrane of KB-V1 cells,thus enhancing the cellular uptake and cytotoxicity of Cur.

  7. In vivo cellular uptake of glutamate is impaired in the rat hippocampus during and after transient cerebral ischemia

    DEFF Research Database (Denmark)

    Bruhn, T; Christensen, Thomas; Diemer, Nils Henrik

    2001-01-01

    added to the dialysis perfusate, and the cellular extraction of (3)H-D-aspartate was calculated from scintillation analysis of fractionated dialysate samples. The extraction of (3)H-D-aspartate was studied both in a tracer like condition with a perfusate concentration of 0.2 microM, and in a condition...... of high saturation level, with 1.0 mM D-aspartate added to the perfusate. In between radioisotope perfusions, dialysate was sampled for analysis of amino acid content by HPLC. During ischemia, extraction of (3)H-D-aspartate (0.2 microM) declined to a maximum reduction of 68%. In the hours after ischemia...

  8. The Role of Extracellular Binding Proteins in the Cellular Uptake of Drugs: Impact on Quantitative In Vitro-to-In Vivo Extrapolations of Toxicity and Efficacy in Physiologically Based Pharmacokinetic-Pharmacodynamic Research.

    Science.gov (United States)

    Poulin, Patrick; Burczynski, Frank J; Haddad, Sami

    2016-02-01

    A critical component in the development of physiologically based pharmacokinetic-pharmacodynamic (PBPK/PD) models for estimating target organ dosimetry in pharmacology and toxicology studies is the understanding of the uptake kinetics and accumulation of drugs and chemicals at the cellular level. Therefore, predicting free drug concentrations in intracellular fluid will contribute to our understanding of concentrations at the site of action in cells in PBPK/PD research. Some investigators believe that uptake of drugs in cells is solely driven by the unbound fraction; conversely, others argue that the protein-bound fraction contributes a significant portion of the total amount delivered to cells. Accordingly, the current literature suggests the existence of a so-called albumin-mediated uptake mechanism(s) for the protein-bound fraction (i.e., extracellular protein-facilitated uptake mechanisms) at least in hepatocytes and cardiac myocytes; however, such mechanism(s) and cells from other organs deserve further exploration. Therefore, the main objective of this present study was to discuss further the implication of potential protein-facilitated uptake mechanism(s) on drug distribution in cells under in vivo conditions. The interplay between the protein-facilitated uptake mechanism(s) and the effects of a pH gradient, metabolism, transport, and permeation limitation potentially occurring in cells was also discussed, as this should violate the basic assumption on similar free drug concentration in cells and plasma. This was made because the published equations used to calculate drug concentrations in cells in a PBPK/PD model did not consider potential protein-facilitated uptake mechanism(s). Consequently, we corrected some published equations for calculating the free drug concentrations in cells compared with plasma in PBPK/PD modeling studies, and we proposed a refined strategy for potentially performing more accurate quantitative in vitro-to-in vivo extrapolations

  9. Correlation between tissue metabolism and cellularity assessed by standardized uptake value and apparent diffusion coefficient in peritoneal metastasis.

    Science.gov (United States)

    Yu, Xue; Lee, Elaine Yuen Phin; Lai, Vincent; Chan, Queenie

    2014-07-01

    To evaluate the correlation between standardized uptake value (SUV) (tissue metabolism) and apparent diffusion coefficient (ADC) (water diffusivity) in peritoneal metastases. Patients with peritoneal dissemination detected on (18)F-fluorodeoxyglucose positron emission tomography combined with computed tomography (FDG-PET/CT) were prospectively recruited for MRI examinations with informed consent and the study was approved by the local Institutional Review Board. FDG-PET/CT, diffusion-weighted imaging (DWI), MRI, and DWI/MRI images were independently reviewed by two radiologists based on visual analysis. SUVmax/SUVmean and ADCmin/ADCmean were obtained manually by drawing ROIs over the peritoneal metastases on FDG-PET/CT and DWI, respectively. Diagnostic characteristics of each technique were evaluated. Pearson's coefficient and McNemar and Kappa tests were used for statistical analysis. Eight patients were recruited for this prospective study and 34 peritoneal metastases were evaluated. ADCmean was significantly and negatively correlated with SUVmax (r = -0.528, P = 0.001) and SUVmean (r = -0.548, P = 0.001). ADCmin had similar correlation with SUVmax (r = -0.508, P = 0.002) and SUVmean (r = -0.513, P = 0.002). DWI/MRI had high diagnostic performance (accuracy = 98%) comparable to FDG-PET/CT, in peritoneal metastasis detection. Kappa values were excellent for all techniques. There was a significant inverse correlation between SUV and ADC. © 2013 Wiley Periodicals, Inc.

  10. Surface-anchored poly(acryloyl-L(D)-valine) with enhanced chirality-selective effect on cellular uptake of gold nanoparticles.

    Science.gov (United States)

    Deng, Jun; Wu, Sai; Yao, Mengyun; Gao, Changyou

    2016-08-17

    Chirality is one of the ubiquitous phenomena in biological systems. The left handed (L-) amino acids and right handed (D-) sugars are normally found in proteins, and in RNAs and DNAs, respectively. The effect of chiral surfaces at the nanoscale on cellular uptake has, however, not been explored. This study reveals for the first time the molecular chirality on gold nanoparticles (AuNPs) functions as a direct regulator for cellular uptake. Monolayers of 2-mercaptoacetyl-L(D)-valine (L(D)-MAV) and poly(acryloyl-L(D)-valine (L(D)-PAV) chiral molecules were formed on AuNPs surface, respectively. The internalized amount of PAV-AuNPs was several times larger than that of MAV-AuNPs by A549 and HepG2 cells, regardless of the chirality difference. However, the D-PAV-AuNPs were internalized with significantly larger amount than the L-PAV-AuNPs. This chirality-dependent uptake effect is likely attributed to the preferable interaction between the L-phospholipid-based cell membrane and the D-enantiomers.

  11. Surface-anchored poly(acryloyl-L(D)-valine) with enhanced chirality-selective effect on cellular uptake of gold nanoparticles

    Science.gov (United States)

    Deng, Jun; Wu, Sai; Yao, Mengyun; Gao, Changyou

    2016-08-01

    Chirality is one of the ubiquitous phenomena in biological systems. The left handed (L-) amino acids and right handed (D-) sugars are normally found in proteins, and in RNAs and DNAs, respectively. The effect of chiral surfaces at the nanoscale on cellular uptake has, however, not been explored. This study reveals for the first time the molecular chirality on gold nanoparticles (AuNPs) functions as a direct regulator for cellular uptake. Monolayers of 2-mercaptoacetyl-L(D)-valine (L(D)-MAV) and poly(acryloyl-L(D)-valine (L(D)-PAV) chiral molecules were formed on AuNPs surface, respectively. The internalized amount of PAV-AuNPs was several times larger than that of MAV-AuNPs by A549 and HepG2 cells, regardless of the chirality difference. However, the D-PAV-AuNPs were internalized with significantly larger amount than the L-PAV-AuNPs. This chirality-dependent uptake effect is likely attributed to the preferable interaction between the L-phospholipid-based cell membrane and the D-enantiomers.

  12. Enhanced cellular uptake and phototoxicity of Verteporfin-conjugated gold nanoparticles as theranostic nanocarriers for targeted photodynamic therapy and imaging of cancers

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Linlin [Tianjin Key Laboratory for Photoelectric Materials and Devices, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384 (China); Graduate School of Energy Science and Technology, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Kim, Tae-Hyun; Kim, Hae-Won [Department of Nanobiomedical Science, Dankook University Graduate School, Cheonan 330-714 (Korea, Republic of); Institute of Tissue Regeneration Engineering (ITREN) & College of Dentistry, Dankook University, Cheonan 330-714 (Korea, Republic of); Ahn, Jin-Chul [Department of Biomedical Science, College of Medicine, Dankook University, Cheonan, 330-714 (Korea, Republic of); Kim, So Yeon, E-mail: kimsy@cnu.ac.kr [Graduate School of Energy Science and Technology, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Department of Chemical Engineering Education, College of Education, Chungnam National University, Daejeon 305-764 (Korea, Republic of)

    2016-10-01

    Activatable theranostics with the capacity to respond to a given stimulus have recently been intensively explored to develop more specific, individualized therapies for various diseases, and to combine diagnostic and therapeutic capabilities into a single agent. In this work, we designed tumor-targeting ligand-conjugated block copolymer-gold nanoparticle (AuNP) conjugates as multifunctional nanocarriers of the hydrophobic photosensitizer (PS), verteporfin (Verte), for simultaneous photodynamic therapy and imaging of cancers. Folic acid (FA)-conjugated block copolymers composed of polyethylene glycol (PEG) and poly-β-benzyl-L-aspartate (PBLA) were attached to citrate-stabilized AuNPs through a bidentate dihydrolipoic acid (DHLA) linker. The resulting AuNP conjugates (FA-PEG-P(Asp-Hyd)-DHLA-AuNPs) were significantly more stable than unmodified AuNPs, and their optical properties were not affected by pH. The hydrophobic PS, Verte, was covalently incorporated onto the surfaces of the AuNP conjugates through a pH-sensitive linkage, which increased the water solubility of Verte from < 1 μg/ml to > 2000 μg/ml. The size of FA-PEG-P(Asp-Hyd)-DHLA-AuNPs-Verte as determined by light-scattering measurements was about 110.3 nm, and FE-SEM and FE-TEM images showed that these nanoparticles were spherical and showed adequate dispersivity after modification. In particular, an in vitro cell study revealed high intracellular uptake of FA-PEG-P(Asp-Hyd)-DHLA-AuNPs-Verte (about 98.62%) and marked phototoxicity after laser irradiation compared with free Verte. These results suggest that FA-PEG-P(Asp-Hyd)-DHLA-AuNPs-Verte has great potential as an effective nanocarrier for dual imaging and photodynamic therapy. - Highlights: • We designed theranostic nanocarriers for photodynamic therapy and imaging of cancers. • AuNP conjugates had a spherical shape and a narrow size distribution with a mean diameter of 110.3 nm. • Cellular uptake of free Verte was 18.86%, whereas that of Au

  13. Cellular Uptake, DNA Binding and Apoptosis Induction of Cytotoxic Trans-[PtCl2(N,N-dimethylamine)(Isopropylamine)] in A2780cisR Ovarian Tumor Cells

    OpenAIRE

    Pérez, José M.; Montero, Eva I.; Quiroga, Adoración G.; Fuertes, Miguel A; Alonso, Carlos; Navarro-Ranninger, Carmen

    2001-01-01

    Trans-[PtCl2(N,N-dimethylamine)(isopropylamine)] is a novel trans-platinum compound that shows cytotoxic activity in several cisplatin resistant cell lines. The aim of this paper was to analyse, by means of molecular cell biology techniques and total reflection X-ray fluorescence (TXRF), the cytotoxic activity, the induction of apoptosis, the cellular uptake and the DNA binding of trans-[PtCl2(N,N-dimethylamine)(isopropylamine)] in the cisplatin resistant cell line A2780cisR. The results show...

  14. Ca2+ uptake and cellular integrity in rat EDL muscle exposed to electrostimulation, electroporation, or A23187

    DEFF Research Database (Denmark)

    Gissel, Hanne; Clausen, Torben

    2003-01-01

    We tested the hypothesis that increased Ca2+ uptake in rat extensor digitorum longus (EDL) muscle elicits cell membrane damage as assessed from release of the intracellular enzyme lactate dehydrogenase (LDH). This was done by using 1) electrostimulation, 2) electroporation, and 3) the Ca2...

  15. Self-assembled PEG-b-PDPA-b-PGEM copolymer nanoparticles as protein antigen delivery vehicles to dendritic cells: preparation, characterization and cellular uptake

    Science.gov (United States)

    Li, Pan; Zhou, Junhui; Huang, Pingsheng; Zhang, Chuangnian; Wang, Weiwei; Li, Chen; Kong, Deling

    2017-01-01

    Antigen uptake by dendritic cells (DCs) is a key step for initiating antigen-specific T cell immunity. In the present study, novel synthetic polymeric nanoparticles were prepared as antigen delivery vehicles to improve the antigen uptake by DCs. Well-defined cationic and acid-responsive copolymers, monomethoxy poly(ethylene glycol)-block-poly(2-(diisopropyl amino) ethyl methacrylate)-block-poly(2-(guanidyl) ethyl methacrylate) (mPEG-b-PDPA-b-PGEM, PEDG) were synthesized by reversible addition-fragmentation chain transfer polymerization of 2-(diisopropylamino)ethyl methacrylate) and N-(tert-butoxycarbonyl) amino ethyl methacrylate monomers, followed by deprotection of tert-butyl protective groups and guanidinylation of obtained primary amines. 1H NMR, 13C NMR and GPC results indicated the successful synthesis of well-defined PEDG copolymers. PEDG copolymers could self-assemble into nanoparticles in aqueous solution, which were of cationic surface charges and showed acid-triggered disassembly contributed by PGEM and PDPA moieties, respectively. Significantly, PEDG nanoparticles could effectively condense with negatively charged model antigen ovalbumin (OVA) to form OVA/PEDG nanoparticle formulations with no influence on its secondary and tertiary structures demonstrating by far-UV circular dichroism and UV–vis spectra. In vitro antigen cellular uptake by bone marrow DCs (BMDCs) indicated using PEDG nanoparticles as antigen delivery vehicles could significantly improve the antigen uptake efficiency of OVA compared with free OVA or the commercialized Alum adjuvant. Moreover, as the surface cationic charges of OVA/PEDG nanoparticle formulations reduced, the uptake efficiency decreased correspondingly. Collectively, our work suggests that guanidinylated, cationic and acid-responsive PEDG nanoparticles represent a new kind of promising antigen delivery vehicle to DCs and hold great potential to serve as immunoadjuvants in the development of vaccines. PMID:28149525

  16. Divalent folate modification on PEG: an effective strategy for improving the cellular uptake and targetability of PEGylated polyamidoamine-polyethylenimine copolymer.

    Science.gov (United States)

    Cao, Duanwen; Tian, Shouqin; Huang, Huan; Chen, Jianhai; Pan, Shirong

    2015-01-05

    The stability and targeting ability of nanocarrier gene delivery systems are necessary conditions to ensure the good therapeutic effect and low nonspecific toxicity of cancer treatment. Poly(ethylene glycol) (PEG) has been widely applied for improving stability and as a spacer for linking ligands and nanocarriers to improve targetability. However, the cellular uptake and endosomal escape capacity of nanocarriers has been seriously harmed due to the introduction of PEG. In the present study, we synthesized a new gene delivery vector by coupling divalent folate-PEG (PEG3.4k-FA2) onto polyamidoamine-polyethylenimine (PME) copolymer (PME-(PEG3.4k-FA2)1.72). Both PEG and monovalent folate-PEG (PEG3.4k-FA1) modified PME were prepared as control polymers, which were named as PME-(PEG3.5k)1.69 and PME-(PEG3.4k-FA1)1.66, respectively. PME-(PEG3.4k-FA2)1.72 exhibited strong DNA condensation capacity like parent polymer PME which was not significantly influenced by PEG. PME-(PEG3.4k-FA2)1.72/DNA complexes at N/P = 10 had a diameter ∼143 nm and zeta potential ∼13 mV and showed the lowest cytotoxicity and hemolysis and the highest transfection efficiency among all tested polymers. In folate receptor positive (FR-positive) cells, the cellular uptake and transfection efficiency were increased with the increase in the number of folates coupled on PEG; the order was PME-(PEG3.4k-FA2)1.72 > PME-(PEG3.4k-FA1)1.66 > PME-(PEG3.5k)1.69. Folate competition assays showed that PME-(PEG3.4k-FA2)1.72 complexes had stronger targeting ability than PME-(PEG3.5k)1.69 and PME-(PEG3.4k-FA1)1.66 complexes due to their higher folate density per PEG molecule. Cellular uptake mechanism study showed that the folate density on PEG could change the endocytosis pathway of PME-(PEG3.5k)1.69 from clathrin-mediated endocytosis to caveolae-mediated endocytosis, leading to less lysosomal degradation. Distribution and uptake in 3D multicellular spheroid assays showed that divalent folate could offer PME

  17. Grape seed and red wine polyphenol extracts inhibit cellular cholesterol uptake, cell proliferation, and 5-lipoxygenase activity.

    Science.gov (United States)

    Leifert, Wayne R; Abeywardena, Mahinda Y

    2008-12-01

    Accumulating evidence suggests that grape seed and wine polyphenol extracts possess a diverse array of actions and may be beneficial in the prevention of inflammatory-mediated disease such as cardiovascular disease and cancer. This study aimed to determine whether the reported pleiotropic effects of several polyphenolic extracts from grape seed products or red wine would also include inhibition of cholesterol uptake and cell proliferation, and inhibit a known specific target of the inflammatory process, that is, 5-lipoxygenase (5-LOX). Incubation of HT29, Caco2, HepG2, or HuTu80 cells in a medium containing [(3)H]cholesterol in the presence of a grape seed extract (GSE) or red wine polyphenolic compounds (RWPCs) inhibited [(3)H]cholesterol uptake by up to 66% (which appeared maximal). The estimated IC(50) values were 60 and 83 microg/mL for RWPC and GSE, respectively. Similar cholesterol uptake inhibitory effects were observed using the fluorescent cholesterol analogue NBD cholesterol. The inhibition of cholesterol uptake was independent of the sample's (GSE and RWPC) potent antioxidative capacity. Red wine polyphenolic compound and GSE dose dependently inhibited HT29 colon adenocarcinoma cell proliferation, which was accompanied by an increase in apoptosis. In addition, RWPC and GSE inhibited 5-LOX activity with the IC(50) values being 35 and 13 microg/mL, respectively. Two of 3 other GSEs tested also significantly inhibited 5-LOX activity. Inhibition of cholesterol uptake and proinflammatory 5-LOX activity may be beneficial in preventing the development of chronic degenerative diseases such as cardiovascular disease and cancer.

  18. Molecular identification and cellular localization of a potential transport system involved in cystine/cysteine uptake in human lenses.

    Science.gov (United States)

    Lim, Julie C; Lam, Leo; Li, Bo; Donaldson, Paul J

    2013-11-01

    In this study we have sought to identify whether cystine uptake mechanisms previously identified in the rat lens are also found in the human lens. Using a combination of reverse transcriptase PCR, Western blotting and immunohistochemistry, we show that the light chain subunit of the cystine/glutamate exchanger (XC-), xCT, and members of the glutamate transporter family (XAG) which include the Excitatory Amino Acid Transporter 4 (EAAT4) and the Alanine Serine Cysteine Transporter 2 (ASCT2) are all present at the transcript and protein level in human lenses. We demonstrate that in young lenses xCT, EAAT4 and ASCT2 are expressed in all regions indicating that a potential cystine uptake pathway similar to that found in the rat might also exist in human lenses. However, with increasing age, the immunolabeling for all transporters decreases, with no xCT labelling detected in the centre of old donor lenses. Our results show that XC- and EAAT4/ASCT2 may work together to mediate cystine uptake in the lens core of young human lenses. This suggests that the lens contains uptake mechanisms that are capable of accumulating cystine/cysteine in the lens centre where cysteine can be used as an antioxidant or cystine utilised as a source for protein-S-S-cysteine (PSSC) formation to buffer against oxidative stress. With increasing age, transporters in the lens core undergo age dependent post translational modifications. However, despite processing of these transporters with age, our results indicate that this cystine uptake pathway could account for the increased PSSC levels previously observed in the nucleus of older human lenses.

  19. Sequence-selective recognition of double-stranded RNA and enhanced cellular uptake of cationic nucleobase and backbone-modified peptide nucleic acids.

    Science.gov (United States)

    Hnedzko, Dziyana; McGee, Dennis W; Karamitas, Yannis A; Rozners, Eriks

    2017-01-01

    Sequence-selective recognition of complex RNAs in live cells could find broad applications in biology, biomedical research, and biotechnology. However, specific recognition of structured RNA is challenging, and generally applicable and effective methods are lacking. Recently, we found that peptide nucleic acids (PNAs) were unusually well-suited ligands for recognition of double-stranded RNAs. Herein, we report that 2-aminopyridine (M) modified PNAs and their conjugates with lysine and arginine tripeptides form strong (Ka = 9.4 to 17 × 10(7) M(-1)) and sequence-selective triple helices with RNA hairpins at physiological pH and salt concentration. The affinity of PNA-peptide conjugates for the matched RNA hairpins was unusually high compared to the much lower affinity for DNA hairpins of the same sequence (Ka = 0.05 to 1.1 × 10(7) M(-1)). The binding of double-stranded RNA by M-modified PNA-peptide conjugates was a relatively fast process (kon = 2.9 × 10(4) M(-1) sec(-1)) compared to the notoriously slow triple helix formation by oligodeoxynucleotides (kon ∼ 10(3) M(-1) sec(-1)). M-modified PNA-peptide conjugates were not cytotoxic and were efficiently delivered in the cytosol of HEK293 cells at 10 µM. Surprisingly, M-modified PNAs without peptide conjugation were also taken up by HEK293 cells, which, to the best of our knowledge, is the first example of heterocyclic base modification that enhances the cellular uptake of PNA. Our results suggest that M-modified PNA-peptide conjugates are promising probes for sequence-selective recognition of double-stranded RNA in live cells and other biological systems.

  20. Continuous In-Stream Assimilatory Nitrate Uptake from High Frequency Sensor Measurements

    Science.gov (United States)

    Rode, Michael; Rehan Anis, Muhammad; Weitere, Markus

    2016-04-01

    Recently developed in situ sensors provide new opportunities to measure changes in stream concentration at high temporal frequencies that historical have not been feasible. In this study we used multi-parameter sensor measurements to relate assimilatory uptake to metabolic rates and calculate continually uptake rates for two stream reaches and a whole stream network. Two years of continues 15 min data from a forest and agricultural stream reach of the Selke river (463km2) revealed strong correlation between assimilatory uptake and GPP for the forest (r2=0.72) and agricultural (r2=0.56) stream reach. The slopes of these regressions were in good agreement with predicted assimilatory N-uptake based on additional metabolism data. Mean yearly assimilatory uptake rates were 6.4 times higher in the agricultural stream (mean 68.5 mgNm-2d-1, max 270 mgNm-2d-1) than in the forest stream (mean 10.7 mgNm-2d-1, max 97.5 mgNm-2d-1). Percentage daily assimilatory uptake amounted up to 47.4 % in the whole mainly agricultural watershed, whereas the total yearly assimilatory in-stream uptake was 9.0% of total nitrogen load of the watershed. This value was lower in the forest dominated upstream watershed (4.8%) and higher in the lower agriculture dominated watershed (13.4%). High frequency measurements offer exploring continues nutrient uptake metrics for streams with strongly deviating site characteristics.

  1. Flow cytometric assessment of reactive oxygen species generations that are directly related to cellular ZnO nanoparticle uptake.

    Science.gov (United States)

    Yoo, Hyun Ju; Yoon, Tae Hyun

    2014-07-01

    In this study, a simple flow cytometry protocol to evaluate nanoparticle associated biological response was proposed. Particularly, we have evaluated the effect of surface charge on the cellular nanoparticle associations and nanoparticle-induced apoptosis. Significant enhancement in side scattering intensity was observed for the HeLa cells treated with positively charged (PLL)ZnO nanoparticles, suggesting that the (PLL)ZnO nanoparticles may induce cell death via adsorption and endocytosis of the nanoparticles. On the other hand, the negatively charged (PAA)ZnO nanoparticle seems to cause cell death process indirectly via the released Zn ions, with less contribution from cellular association of nanoparticles. Time- and dose-dependent studies on cellular association of ZnO nanoparticles, and ZnO associated reactive oxygen species generation were also performed for the HeLa cells exposed to the (PLL)ZnO nanoparticle. For those cells associated with (PLL)ZnO nanoparticle, a significant enhancement in reactive oxygen species generation was observed even at a lower concentration (10 ppm), which was not observable for the results with the whole cell population. By using this approach, we are able to distinguish biological responses (e.g., reactive oxygen species (ROS) generation) directly related to the cellular associations of NPs from those indirectly related to the cellular associations of NPs, such as the cytotoxicity caused by the NP released metal ions.

  2. Multifunctional organic–inorganic hybrid nanoparticles and nanosheets based on chitosan derivative and layered double hydroxide: cellular uptake mechanism and application for topical ocular drug delivery

    Science.gov (United States)

    Chi, Huibo; Gu, Yan; Xu, Tingting; Cao, Feng

    2017-01-01

    To study the cellular uptake mechanism of multifunctional organic–inorganic hybrid nanoparticles and nanosheets, new chitosan–glutathione–valine–valine-layered double hydroxide (CG-VV-LDH) nanosheets with active targeting to peptide transporter-1 (PepT-1) were prepared, characterized and further compared with CG-VV-LDH nanoparticles. Both organic–inorganic hybrid nanoparticles and nanosheets showed a sustained release in vitro and prolonged precorneal retention time in vivo, but CG-VV-LDH nanoparticles showed superior permeability in the isolated cornea of rabbits than CG-VV-LDH nanosheets. Furthermore, results of cellular uptake on human corneal epithelial primary cells (HCEpiC) and retinal pigment epithelial (ARPE-19) cells indicated that both clathrin-mediated endocytosis and active transport of PepT-1 are involved in the internalization of CG-VV-LDH nanoparticles and CG-VV-LDH nanosheets. In summary, the CG-VV-LDH nanoparticle may be a promising carrier as a topical ocular drug delivery system for the treatment of ocular diseases of mid-posterior segments, while the CG-VV-LDH nanosheet may be suitable for the treatment of ocular surface diseases. PMID:28280329

  3. Bone marrow involvement in diffuse large B-cell lymphoma: correlation between FDG-PET uptake and type of cellular infiltrate

    Energy Technology Data Exchange (ETDEWEB)

    Paone, Gaetano; Itti, Emmanuel; Lin, Chieh; Meignan, Michel [Universite Paris 12, Department of Nuclear Medicine, Hopital Henri Mondor, Assistance Publique-Hopitaux de Paris (AP-HP), Creteil (France); Haioun, Corinne; Dupuis, Jehan [Universite Paris 12, Department of Clinical Haematology, Hopital Henri Mondor, Assistance Publique-Hopitaux de Paris (AP-HP), Creteil (France); Gaulard, Philippe [Universite Paris 12, Department of Pathology, Hopital Henri Mondor, Assistance Publique-Hopitaux de Paris (AP-HP), Creteil (France); Universite Paris 12, INSERM U841, Hopital Henri Mondor, Assistance Publique-Hopitaux de Paris (AP-HP), Creteil (France)

    2009-05-15

    To assess, in patients with diffuse large B-cell lymphoma (DLBCL), whether the low sensitivity of {sup 18}F-fluorodeoxyglucose positron emission tomography (FDG-PET) for bone marrow assessment may be explained by histological characteristics of the cellular infiltrate. From a prospective cohort of 110 patients with newly diagnosed aggressive lymphoma, 21 patients with DLBCL had bone marrow involvement. Pretherapeutic FDG-PET images were interpreted visually and semiquantitatively, then correlated with the type of cellular infiltrate and known prognostic factors. Of these 21 patients, 7 (33%) had lymphoid infiltrates with a prominent component of large transformed lymphoid cells (concordant bone marrow involvement, CBMI) and 14 (67%) had lymphoid infiltrates composed of small cells (discordant bone marrow involvement, DBMI). Only 10 patients (48%) had abnormal bone marrow FDG uptake, 6 of the 7 with CBMI and 4 of the 14 with DBMI. Therefore, FDG-PET positivity in the bone marrow was significantly associated with CBMI, while FDG-PET negativity was associated with DBMI (Fisher's exact test, p=0.024). There were no significant differences in gender, age and overall survival between patients with CBMI and DBMI, while the international prognostic index was significantly higher in patients with CBMI. Our study suggests that in patients with DLBCL with bone marrow involvement bone marrow FDG uptake depends on two types of infiltrate, comprising small (DBMI) or large (CBMI) cells. This may explain the apparent low sensitivity of FDG-PET previously reported for detecting bone marrow involvement. (orig.)

  4. Cadmium uptake in Elodea canadensis leaves and its interference with extra- and intra-cellular pH.

    Science.gov (United States)

    Javed, M T; Lindberg, S; Greger, M

    2014-05-01

    This study investigated cadmium (Cd) uptake in Elodea canadensis shoots under different photosynthetic conditions, and its effects on internal (cytosolic) and external pH. The plants were grown under photosynthetic (light) or non-photosynthetic (dark or in the presence of a photosynthetic inhibitor) conditions in the presence or absence of CdCl2 (0.5 μm) in a medium with a starting pH of 5.0. The pH-sensitive dye BCECF-AM was used to monitor cytosolic pH changes in the leaves. Cadmium uptake in protoplasts and leaves was detected with a Cd-specific fluorescent dye, Leadmium Green AM, and with atomic absorption spectrophotometry. During cultivation for 3 days without Cd, shoots of E. canadensis increased the pH of the surrounding water, irrespective of the photosynthetic conditions. This medium alkalisation was higher in the presence of CdCl2 . Moreover, the presence of Cd also increased the cation exchange capacity of the shoots. The total Cd uptake by E. canadensis shoots was independent of photosynthetic conditions. Protoplasts from plants exposed to 0.5 μm CdCl2 for 3 days did not exhibit significant change in cytosolic [Cd(2+)] or pH. However, exposure to CdCl2 for 7 days resulted in increased cytosolic [Cd(2+) ] as well as pH. The results suggest that E. canadensis subjected to a low CdCl2 concentration initially sequesters Cd into the apoplasm, but under prolonged exposure, Cd is transported into the cytosol and subsequently alters cytosolic pH. In contrast, addition of 10-50 μm CdCl2 directly to protoplasts resulted in immediate uptake of Cd into the cytosol.

  5. Effect of hydrophobic scaffold on the cellular uptake and gene transfection activities of DNA-encapsulating liposomal nanoparticles via intracerebroventricular administration.

    Science.gov (United States)

    Akita, Hidetaka; Nakatani, Taichi; Kuroki, Kimiko; Maenaka, Katsumi; Tange, Kota; Nakai, Yuta; Harashima, Hideyoshi

    2015-07-25

    Efficient DNA carriers are needed as a gene medication for curing brain disorders. In the present study, the function of a neutral lipid envelope-type nanoparticle (LNP) encapsulating pDNA was evaluated after intracerebroventricular administration. The lipid envelope was composed of a series of SS-cleavable and pH-activated lipid like materials (ssPalm) including myristic acid, vitamin A and vitamin E in the hydrophobic scaffold (LNPssPalmM, LNPssPalmA, LNPssPalmE, respectively). The LNPssPalmA and LNPssPalmE were extensively distributed in the corpus callosum, and then gene expression occurred mainly astrocytes in this region, while not in LNPssPalmM. The recombinant human ApoE3-dependent enhancement of the uptake into an astrocyte-derived cell line (KT-5) was observed in LNPssPalmA and LNPssPalmE. Thus, ApoE in the brain plays a key role in the cellular uptake of these particles by astrocytes, and this uptake is dependent on the structure of the hydrophobic scaffold.

  6. Evaluation of in-vitro cytotoxicity and cellular uptake efficiency of zidovudine-loaded solid lipid nanoparticles modified with Aloe Vera in glioma cells.

    Science.gov (United States)

    K S, Joshy; Sharma, Chandra P; Kalarikkal, Nandakumar; Sandeep, K; Thomas, Sabu; Pothen, Laly A

    2016-09-01

    Zidovudine loaded solid lipid nanoparticles of stearic acid modified with Aloe Vera (AV) have been prepared via simple emulsion solvent evaporation method which showed excellent stability at room temperature and refrigerated condition. The nanoparticles were examined by Fourier transform infrared spectroscopy (FT-IR), which revealed the overlap of the AV absorption peak with the absorption peak of modified stearic acid nanoparticles. The inclusion of AV to stearic acid decreased the crystallinity and improved the hydrophilicity of lipid nanoparticles and thereby improved the drug loading efficacy of lipid nanoparticles. Dynamic light scattering (DLS) and transmission electron microscopy (TEM) imaging revealed that, the average particle size of unmodified (bare) nanoparticles was 45.66±12.22nm and modified solid lipid nanoparticles showed an average size of 265.61±80.44nm. Solid lipid nanoparticles with well-defined morphology were tested in vitro for their possible application in drug delivery. Cell culture studies using C6 glioma cells on the nanoparticles showed enhanced growth and proliferation of cells without exhibiting any toxicity. In addition, normal cell morphology and improved uptake were observed by fluorescence microscopy images of rhodamine labeled modified solid lipid nanoparticles compared with unmodified nanoparticles. The cellular uptake study suggested that these nanoparticles could be a promising drug delivery system to enhance the uptake of antiviral drug by brain cells and it could be a suitable drug carrier system for the treatment of HIV. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Boron dipyrromethene (BODIPY) functionalized carbon nano-onions for high resolution cellular imaging

    Science.gov (United States)

    Bartelmess, Juergen; de Luca, Elisa; Signorelli, Angelo; Baldrighi, Michele; Becce, Michele; Brescia, Rosaria; Nardone, Valentina; Parisini, Emilio; Echegoyen, Luis; Pompa, Pier Paolo; Giordani, Silvia

    2014-10-01

    Carbon nano-onions (CNOs) are an exciting class of carbon nanomaterials, which have recently demonstrated a facile cell-penetration capability. In the present work, highly fluorescent boron dipyrromethene (BODIPY) dyes were covalently attached to the surface of CNOs. The introduction of this new carbon nanomaterial-based imaging platform, made of CNOs and BODIPY fluorophores, allows for the exploration of synergetic effects between the two building blocks and for the elucidation of its performance in biological applications. The high fluorescence intensity exhibited by the functionalized CNOs translates into an excellent in vitro probe for the high resolution imaging of MCF-7 human breast cancer cells. It was also found that the CNOs, internalized by the cells by endocytosis, localized in the lysosomes and did not show any cytotoxic effects. The presented results highlight CNOs as excellent platforms for biological and biomedical studies due to their low toxicity, efficient cellular uptake and low fluorescence quenching of attached probes.Carbon nano-onions (CNOs) are an exciting class of carbon nanomaterials, which have recently demonstrated a facile cell-penetration capability. In the present work, highly fluorescent boron dipyrromethene (BODIPY) dyes were covalently attached to the surface of CNOs. The introduction of this new carbon nanomaterial-based imaging platform, made of CNOs and BODIPY fluorophores, allows for the exploration of synergetic effects between the two building blocks and for the elucidation of its performance in biological applications. The high fluorescence intensity exhibited by the functionalized CNOs translates into an excellent in vitro probe for the high resolution imaging of MCF-7 human breast cancer cells. It was also found that the CNOs, internalized by the cells by endocytosis, localized in the lysosomes and did not show any cytotoxic effects. The presented results highlight CNOs as excellent platforms for biological and biomedical

  8. Interactions Between Structure and Processing that Control Moisture Uptake in High-Performance Polycyanurates (Briefing Charts)

    Science.gov (United States)

    2015-03-24

    resins = about 50 lbs of extra weight on an large SRM) • Items with high water content can fail catastrophically when suddenly heated • Long-term...near the cyanurate oxygen causes a significant reduction in the tendency of moisture uptake to increase at high conversions • Addition of a methyl...group far from the cyanurate oxygen has no effect on water uptake as a function of conversion • Methyl groups near the cyanurate oxygen block the

  9. Highly porous organic polymers bearing tertiary amine group and their exceptionally high CO2 uptake capacities

    Science.gov (United States)

    Gomes, Ruth; Bhaumik, Asim

    2015-02-01

    We report a very simple and unique strategy for synthesis of a tertiary amine functionalized high surface area porous organic polymer (POP) PDVTA-1 through the co-polymerization of monomers divinylbenzene (DVB) and triallylamine (TAA) under solvothermal reaction conditions. Two different PDVTA-1 samples have been synthesized by varying the molar ratio of the monomers. The porous polymeric materials have been thoroughly characterized by solid state 13C CP MAS-NMR, FT-IR and UV-vis spectroscopy, N2 sorption, HR TEM and FE SEM to understand its chemical environment, nanostructure, bonding, morphology and related surface properties. PDVTA-1 with higher amine content (DVB/TAA=4.0) showed exceptionally high CO2 uptake capacity of 85.8 wt% (19.5 mmol g-1) at 273 K and 43.69 wt% (9.93 mmol g-1) at 298 K under 3 bar pressure, whereas relatively low amine loaded material (DVB/TAA=7.0) shows uptake capacity of 59.2 wt% (13.45 mmol g-1) at 273 K and 34.36 wt% (7.81 mmol g-1) at 298 K. Highly porous nanostructure together with very high surface area and basicity at the surface due to the presence of abundant basic tertiary amine N-sites in the framework of PDVTA-1 could be responsible for very high CO2 adsorption.

  10. 纳米粒摄取机制的研究进展%Research progress on the cellular uptake mechanism of nanoparticles

    Institute of Scientific and Technical Information of China (English)

    张超; 马桂蕾

    2015-01-01

    With the development of nanotechnology,nanomaterials have great application potential in drug delivery system.Understanding the cellular uptake mechanism of nanoparticles has important scientific significance and application value in understanding life processes in cellular level,mechanisms of drug action and gene therapy,which provides the basis for developing safer and more effective nanosized drug carrier.This review summarizes the latest advancement about cellular uptake mechanisms of nanopatricles.Based on a brief introduction of the endocytic pathway of nanoparticles,influencing factors of endocytosis pathway are discussed,and the common methods used to study nanoparticle endocytosis pathways are also introduced in detail.%随着纳米技术的发展,纳米材料在药物传输领域有着潜在的应用空间.研究细胞对纳米粒的细胞摄取机制,有助于从细胞层次上理解生命体的生理过程和药物的作用机制,掌握细胞治疗的机理;同时也可为构建更加安全有效的纳米药物载体提供依据.综述了纳米粒摄取机制的最新研究进展,在简要介绍纳米粒内吞途径的基础上着重讨论了影响内吞的因素,同时详细介绍了纳米粒内吞途径的常用研究方法.

  11. Evaluation of in-vitro cytotoxicity and cellular uptake efficiency of zidovudine-loaded solid lipid nanoparticles modified with Aloe Vera in glioma cells

    Energy Technology Data Exchange (ETDEWEB)

    Joshy, K.S. [Department of Chemistry, CMS College Kottayam, Kerala (India); International and Inter University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam 686 560, Kerala (India); Sharma, Chandra P. [Division of Biosurface Technology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Science and Technology, Poojappura, Thiruvananthapuram, Kerala (India); Kalarikkal, Nandakumar [International and Inter University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam 686 560, Kerala (India); School of Pure and Applied Physics, Mahatma Gandhi University, Kottayam 686 560, Kerala (India); Sandeep, K. [International and Inter University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam 686 560, Kerala (India); Thomas, Sabu, E-mail: sabuchathukulam@yahoo.co.uk [International and Inter University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam 686 560, Kerala (India); School of Chemical Sciences, Mahatma Gandhi University, Kottayam 686 560, Kerala (India); Pothen, Laly A. [Department of Chemistry, Bishop Moore College, Mavelikkara, Kerala (India)

    2016-09-01

    Zidovudine loaded solid lipid nanoparticles of stearic acid modified with Aloe Vera (AV) have been prepared via simple emulsion solvent evaporation method which showed excellent stability at room temperature and refrigerated condition. The nanoparticles were examined by Fourier transform infrared spectroscopy (FT-IR), which revealed the overlap of the AV absorption peak with the absorption peak of modified stearic acid nanoparticles. The inclusion of AV to stearic acid decreased the crystallinity and improved the hydrophilicity of lipid nanoparticles and thereby improved the drug loading efficacy of lipid nanoparticles. Dynamic light scattering (DLS) and transmission electron microscopy (TEM) imaging revealed that, the average particle size of unmodified (bare) nanoparticles was 45.66 ± 12.22 nm and modified solid lipid nanoparticles showed an average size of 265.61 ± 80.44 nm. Solid lipid nanoparticles with well-defined morphology were tested in vitro for their possible application in drug delivery. Cell culture studies using C6 glioma cells on the nanoparticles showed enhanced growth and proliferation of cells without exhibiting any toxicity. In addition, normal cell morphology and improved uptake were observed by fluorescence microscopy images of rhodamine labeled modified solid lipid nanoparticles compared with unmodified nanoparticles. The cellular uptake study suggested that these nanoparticles could be a promising drug delivery system to enhance the uptake of antiviral drug by brain cells and it could be a suitable drug carrier system for the treatment of HIV. - Highlights: • SLN of AZT-SA, AZT-SA-AV was developed • Better drug loading efficacy • Good uptake.

  12. Surface chemistry of gold nanoparticles determines the biocorona composition impacting cellular uptake, toxicity and gene expression profiles in human endothelial cells.

    Science.gov (United States)

    Chandran, Parwathy; Riviere, Jim E; Monteiro-Riviere, Nancy A

    2017-05-01

    This study investigated the role of nanoparticle size and surface chemistry on biocorona composition and its effect on uptake, toxicity and cellular responses in human umbilical vein endothelial cells (HUVEC), employing 40 and 80 nm gold nanoparticles (AuNP) with branched polyethyleneimine (BPEI), lipoic acid (LA) and polyethylene glycol (PEG) coatings. Proteomic analysis identified 59 hard corona proteins among the various AuNP, revealing largely surface chemistry-dependent signature adsorbomes exhibiting human serum albumin (HSA) abundance. Size distribution analysis revealed the relative instability and aggregation inducing potential of bare and corona-bound BPEI-AuNP, over LA- and PEG-AuNP. Circular dichroism analysis showed surface chemistry-dependent conformational changes of proteins binding to AuNP. Time-dependent uptake of bare, plasma corona (PC) and HSA corona-bound AuNP (HSA-AuNP) showed significant reduction in uptake with PC formation. Cell viability studies demonstrated dose-dependent toxicity of BPEI-AuNP. Transcriptional profiling studies revealed 126 genes, from 13 biological pathways, to be differentially regulated by 40 nm bare and PC-bound BPEI-AuNP (PC-BPEI-AuNP). Furthermore, PC formation relieved the toxicity of cationic BPEI-AuNP by modulating expression of genes involved in DNA damage and repair, heat shock response, mitochondrial energy metabolism, oxidative stress and antioxidant response, and ER stress and unfolded protein response cascades, which were aberrantly expressed in bare BPEI-AuNP-treated cells. NP surface chemistry is shown to play the dominant role over size in determining the biocorona composition, which in turn modulates cell uptake, and biological responses, consequently defining the potential safety and efficacy of nanoformulations.

  13. When is high-Ca+ microdomain required for mitochondrial Ca+ uptake?

    Science.gov (United States)

    Spät, A; Fülöp, L; Koncz, P; Szanda, G

    2009-01-01

    Ca(2+) release from IP(3)-sensitive stores in the endoplasmic reticulum (ER) induced by Ca(2+)-mobilizing agonists generates high-Ca(2+) microdomains between ER vesicles and neighbouring mitochondria. Here we present a model that describes when such microdomains are required and when submicromolar [Ca(2+)] is sufficient for mitochondrial Ca(2+) uptake. Mitochondrial Ca(2+) uptake rate in angiotensin II-stimulated H295R adrenocortical cells correlates with the proximity between ER vesicles and the mitochondrion, reflecting the uptake promoting effect of high-Ca(2+) peri-mitochondrial microdomains. Silencing or inhibition of p38 mitogen-activated protein kinase (MAPK) or inhibition of the novel isoforms of protein kinase C enhances mitochondrial Ca(2+) uptake and abolishes the positive correlation between Ca(2+) uptake and ER-mitochondrion proximity. Inhibition of protein phosphatases attenuates mitochondrial Ca(2+) uptake and also abolishes its positive correlation with ER-mitochondrion proximity. We postulate that during IP(3)-induced Ca(2+) release, Ca(2+) uptake is confined to ER-close mitochondria, because of the simultaneous activation of the protein kinases. Attenuation of Ca(2+) uptake prevents Ca(2+) overload of mitochondria and thus protects the cell against apoptosis. On the other hand, all the mitochondria accumulate Ca(2+) at a non-inhibited rate during physiological Ca(2+) influx through the plasma membrane. Membrane potential is higher in ER-distant mitochondria, providing a bigger driving force for Ca(2+) uptake. Our model explains why comparable mitochondrial Ca(2+) signals are formed in response to K(+) and angiotensin II (equipotent in respect to global cytosolic Ca(2+) signals), although only the latter generates high-Ca(2+) microdomains.

  14. Fast intracellular dissolution and persistent cellular uptake of silver nanoparticles in CHO-K1 cells: implication for cytotoxicity

    DEFF Research Database (Denmark)

    Jiang, Xiumei; Miclaus, Teodora; Wang, Liming

    2015-01-01

    species, and cytotoxicity of Ag NPs (15.9 ± 7.6 nm) in Chinese hamster ovary cell subclone K1 cells, a cell line recommended by the OECD for genotoxicity studies. Quantification of intracellular nanoparticle uptake and ion release was performed through inductively coupled plasma mass spectrometry. X....... Subsequent cytotoxicity studies show that Ag NPs decrease cell viability and increase ROS production. Pre-incubation with N-acetyl-l-cysteine, an efficient antioxidant and Ag+ chelator, diminished the cytotoxicity caused by Ag NPs or Ag+ exposure. Our study suggests that the cytotoxicity mechanism of Ag NPs...

  15. Membrane adsorption and binding, cellular uptake and cytotoxicity of cell-penetrating peptidomimetics with α-peptide/β-peptoid backbone

    DEFF Research Database (Denmark)

    Jing, Xiaona; Yang, Mingjun; Kasimova, Marina Robertovna

    2012-01-01

    . The presence of guanidinium groups and α-chiral β-peptoid residues was also found to have a significant positive effect on uptake in living cells. Together, the findings provide an improved understanding on the behavior of cell-penetrating peptidomimetics in the presence of lipid bilayers and live cells....... to evaluate the effect of α-chirality in the β-peptoid residues and the presence of guanidinium groups in the α-amino acid residues on membrane interaction. The molecular properties of the peptidomimetics in solution (surface and intramolecular hydrogen bonding, aqueous diffusion rate and molecular size) were...

  16. Targeting Cells With MR Imaging Probes: Cellular Interaction And Intracellular Magnetic Iron Oxide Nanoparticles Uptake In Brain Capillary Endothelial and Choroidal Plexus Epithelial Cells

    Science.gov (United States)

    Cambianica, I.; Bossi, M.; Gasco, P.; Gonzalez, W.; Idee, J. M.; Miserocchi, G.; Rigolio, R.; Chanana, M.; Morjan, I.; Wang, D.; Sancini, G.

    2010-10-01

    Magnetic iron oxide nanoparticles (NPs) are considered for various diagnostic and therapeutic applications in brain including their use as contrast agent for magnetic resonance imaging. In delivery application, the critical step is the transport across cell layers and the internalization of NPs into specific cells, a process often limited by poor targeting specificity and low internalization efficiency. The development of the models of brain endothelial cells and choroidal plexus epithelial cells in culture has allowed us to investigate into these mechanisms. Our strategy is aimed at exploring different routes to the entrapment of iron oxide NPs in these brain related cells. Here we demonstrated that not only cells endowed with a good phagocytic activity like activated macrophages but also endothelial brain capillary and choroidal plexus epithelial cells do internalize iron oxide NPs. Our study of the intracellular trafficking of NPs by TEM, and confocal microscopy revealed that NPs are mainly internalized by the endocytic pathway. Iron oxide NPs were dispersed in water and coated with 3,4-dihydroxyl-L-phenylalanine (L-DOPA) using standard procedures. Magnetic lipid NPs were prepared by NANOVECTOR: water in oil in water (W/O/W) microemulsion process has been applied to directly coat different iron based NPs by lipid layer or to encapsulate them into Solid Lipid Nanoparticles (SLNs). By these coating/loading the colloidal stability was improved without strong alteration of the particle size distribution. Magnetic lipid NPs could be reconstituted after freeze drying without appreciable changes in stability. L-DOPA coated NPs are stable in PBS and in MEM (Modified Eagle Medium) medium. The magnetic properties of these NPs were not altered by the coating processes. We investigated the cellular uptake, cytotoxicity, and interaction of these NPs with rat brain capillary endothelial (REB4) and choroidal plexus epithelial (Z310) cells. By means of widefield, confocal

  17. Hybrid nanoparticle architecture for cellular uptake and bioimaging: direct crystallization of a polymer immobilized with magnetic nanoparticles on carbon nanotubes.

    Science.gov (United States)

    Depan, D; Misra, R D K

    2012-10-21

    We describe here the success of an innovative approach of direct immobilization of magnetic nanoparticles (MNPs) onto carbon nanotubes (CNTs). The approach involved functionalization of magnetic nanoparticles and consequent covalent linkage to a copolymer (PE-b-PEG). Next, the immobilized magnetic nanoparticles on the copolymer were directly crystallized on the long axis of CNTs, where the interfacial adhesion comes from electrostatic and van der Waals interaction. The intracellular trafficking of a hybrid nanoparticle system [(PE-b-PEG)-MNP-CNT-FITC] in HeLa cells was monitored using a fluorescent marker, FITC, conjugated to the nanoparticle system. The distribution of the nanoparticle system inside cells was studied by fluorescence microscopy in a time and dose dependent manner, and it was observed that the nanoparticles are located in the cytoplasm and no apparent cell death was observed at the concentration studied. Also, the effect of an externally applied magnetic field on actin cytoskeleton, cell morphology and intracellular uptake of iron was studied. The approach described here is promising for simultaneous imaging and monitoring intracellular uptake.

  18. Modest dietary K+ restriction provokes insulin resistance of cellular K+ uptake and phosphorylation of renal outer medulla K+ channel without fall in plasma K+ concentration.

    Science.gov (United States)

    Chen, Pei; Guzman, John P; Leong, Patrick K K; Yang, Li E; Perianayagam, Anjana; Babilonia, Elisa; Ho, Jennifer S; Youn, Jang H; Wang, Wen Hui; McDonough, Alicia A

    2006-05-01

    Extracellular K(+) concentration ([K(+)]) is closely regulated by the concerted regulatory responses of kidney and muscle. In this study, we aimed to define the responses activated when dietary K(+) was moderately reduced from a control diet (1.0% K(+)) to a 0.33% K(+) diet for 15 days. Although body weight and baseline plasma [K(+)] (4.0 mM) were not reduced in the 0.33% K(+) group, regulatory responses to conserve plasma [K(+)] were evident in both muscle and kidney. Insulin-stimulated clearance of K(+) from the plasma was estimated in vivo in conscious rats with the use of tail venous and arterial cannulas. During infusion of insulin.(50 mU.kg(-1).min(-1)), plasma [K(+)] level fell to 3.2 +/- 0.1 mM in the 1.0% K(+) diet group and to only 3.47 +/- 0.07 mM in the 0.33% K(+) diet group (P < 0.01) with no reduction in urinary K(+) excretion, which is evidence of insulin resistance to cellular K(+) uptake. Insulin-stimulated cellular K(+) uptake was quantitated by measuring the K(+) infusion rate necessary to clamp plasma K(+) at baseline (in micromol.kg(-1).min(-1)) during 5 mU of insulin.kg(-1).min(-1) infusion: 9.7 +/- 1.5 in 1% K(+) diet was blunted to 5.2 +/- 1.7 in the 0.33% K(+) diet group (P < 0.001). Muscle [K(+)] and Na(+)-K(+)-ATPase activity and abundance were unchanged during the 0.33% K(+) diet. Renal excretion, which was measured overnight in metabolic cages, was reduced by 80%, from 117.6 +/- 10.5 micromol/h/animal (1% K(+) diet) to 24.2 +/- 1.7 micromol/h/animal (0.33% K(+) diet) (P < 0.001). There was no significant change in total abundance of key renal K(+) transporters, but 50% increases in both renal PTK cSrc abundance and ROMK phosphorylation in the 0.33% K(+) vs. 1% K(+) diet group, previously established to be associated with internalization of ROMK. These results indicate that plasma [K(+)] can be maintained during modest K(+) restriction due to a decrease in insulin-stimulated cellular K(+) uptake as well as renal K(+) conservation

  19. Simultaneously high gravimetric and volumetric methane uptake characteristics of the metal-organic framework NU-111.

    Science.gov (United States)

    Peng, Yang; Srinivas, Gadipelli; Wilmer, Christopher E; Eryazici, Ibrahim; Snurr, Randall Q; Hupp, Joseph T; Yildirim, Taner; Farha, Omar K

    2013-04-14

    We show that the MOF NU-111 exhibits equally high volumetric and gravimetric methane uptake values, both within ≈75% of the DOE targets at 300 K. Upon reducing the temperature to 270 K, the uptake increases to 0.5 g g(-1) and 284 cc(STP) per cc at 65 bar. Adsorption of CO2 and H2 is also reported. Simulated isotherms are in excellent agreement with those obtained from experiments.

  20. Concurrent Low Brain and High Liver Uptake on FDG PET Are Associated with Cardiovascular Risk Factors

    Science.gov (United States)

    Nam, Hyun-Yeol; Jun, Sungmin; Pak, Kyoungjune

    2017-01-01

    Objective Concurrent low brain and high liver uptake are sometimes observed on fluorine-18-labeled fluoro-2-deoxy-D-glucose (FDG) positron emission tomography (PET). We investigated the potential clinical significance of this uptake pattern related to metabolic syndrome (MS). Materials and Methods We retrospectively reviewed data from 264 consecutive males who had undergone general health check-ups, including FDG PET/CT scans. After an overnight fast, the men had their peripheral blood drawn and the levels of various laboratory parameters measured; an FDG PET/CT scan was performed on the same day. We measured the maximum standardized uptake values of the brain and liver from regions of interest manually placed over the frontal cortex at the level of the centrum semiovale and the right lobe of the liver parenchyma, respectively. Results Fasting blood glucose (FBG; odds ratio [OR] = 1.063, p < 0.001) and glycated hemoglobin (HbA1c; OR = 3.634, p = 0.010) were the strongest predictive factors for low brain FDG uptake, whereas waist circumference (OR = 1.200, p < 0.001) and γ-glutamyl transpeptidase (OR = 1.012, p = 0.001) were the strongest predictive factors for high liver uptake. Eleven subjects (4.2%) showed concurrent low brain and high liver FDG uptake, and all but one of these subjects (90.9%) had MS. Systolic blood pressure, waist circumference, FBG, triglyceride, alanine aminotransferase, insulin resistance (measured by homeostasis model assessment), insulin, HbA1c, and body mass index were higher in subjects with this FDG uptake pattern than in those without (all, p < 0.001). Conclusion Concurrent low brain and high liver FDG uptake were closely associated with MS. Moreover, subjects with this pattern had higher values for various cardiovascular risk factors than did those without. PMID:28246520

  1. Concurrent low brain and high liver uptake on FDG PET are associated with cardiovascular risk factors

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Hyun Yeol [Dept. of Nuclear Medicine, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon (Korea, Republic of); Jun, Sung Min [Dept. of Nuclear Medicine, Kosin University Gospel Hospital, Kosin University College of Medicine, Busan (Korea, Republic of); Pak, Kyoung June; Kim, In Joo [Dept. of Nuclear Medicine and Biomedical Research Institute, Pusan National University Hospital, Busan (Korea, Republic of)

    2017-04-15

    Concurrent low brain and high liver uptake are sometimes observed on fluorine-18-labeled fluoro-2-deoxy-D-glucose (FDG) positron emission tomography (PET). We investigated the potential clinical significance of this uptake pattern related to metabolic syndrome (MS). We retrospectively reviewed data from 264 consecutive males who had undergone general health check-ups, including FDG PET/CT scans. After an overnight fast, the men had their peripheral blood drawn and the levels of various laboratory parameters measured; an FDG PET/CT scan was performed on the same day. We measured the maximum standardized uptake values of the brain and liver from regions of interest manually placed over the frontal cortex at the level of the centrum semiovale and the right lobe of the liver parenchyma, respectively. Fasting blood glucose (FBG; odds ratio [OR] = 1.063, p < 0.001) and glycated hemoglobin (HbA1c; OR = 3.634, p = 0.010) were the strongest predictive factors for low brain FDG uptake, whereas waist circumference (OR = 1.200, p < 0.001) and γ-glutamyl transpeptidase (OR = 1.012, p = 0.001) were the strongest predictive factors for high liver uptake. Eleven subjects (4.2%) showed concurrent low brain and high liver FDG uptake, and all but one of these subjects (90.9%) had MS. Systolic blood pressure, waist circumference, FBG, triglyceride, alanine aminotransferase, insulin resistance (measured by homeostasis model assessment), insulin, HbA1c, and body mass index were higher in subjects with this FDG uptake pattern than in those without (all, p < 0.001). Concurrent low brain and high liver FDG uptake were closely associated with MS. Moreover, subjects with this pattern had higher values for various cardiovascular risk factors than did those without.

  2. Foliar Water Uptake of Tamarix ramosissima from an Atmosphere of High Humidity

    Directory of Open Access Journals (Sweden)

    Shuang Li

    2014-01-01

    Full Text Available Many species have been found to be capable of foliar water uptake, but little research has focused on this in desert plants. Tamarix ramosissima was investigated to determine whether its leaves can directly absorb water from high humidity atmosphere and, if they can, to understand the magnitude and importance of foliar water uptake. Various techniques were adopted to demonstrate foliar water uptake under submergence or high atmospheric humidity. The mean increase in leaf water content after submergence was 29.38% and 20.93% for mature and tender leaves, respectively. In the chamber experiment, obvious reverse sap flow occurred when relative humidity (RH was persistently above 90%. Reverse flow was recorded first in twigs, then in branches and stems. For the stem, the percentage of negative sap flow rate accounting for the maximum value of sap flow reached 10.71%, and its amount accounted for 7.54% of diurnal sap flow. Small rainfall can not only compensate water loss of plant by foliar uptake, but also suppress transpiration. Foliar uptake can appear in the daytime under certain rainfall events. High atmospheric humidity is beneficial for enhancing the water status of plants. Foliar uptake should be an important strategy of water acquisition for desert plants.

  3. Effect of free fatty acids and lysolipids on cellular uptake of doxorubicin in human breast cancer cell lines

    DEFF Research Database (Denmark)

    Rasmussen, Nicolaj; Andersen, Jonas; Jespersen, Henrik

    2010-01-01

    Several fatty acids and lysolipids have been shown earlier to increase the permeability of membranes of artificial liposomes, thereby increasing the release of drugs such as doxorubicin (Dox) contained within them. Free fatty acids can also inhibit cancer cell growth in vitro, and it has been...... suggested that this inhibition results from increased membrane permeability. Clearly, therefore, increased membrane permeability could be used in the design of liposomes for targeted drug delivery. For example, as free fatty acids and lysolipids are released upon phospholipase degradation of the liposome......, the liposome could deliver membrane permeability enhancers in addition to the drug to increase the targeted anticancer effect. In this study, we examined the effect on Dox uptake in the breast cancer cell lines MDA-MB-231, MCF7, and MCF7-MDR when incubated with a large panel of different free fatty acids...

  4. Interaction of Actinide Species with Microorganisms & Microbial Chelators: Cellular Uptake, Toxicity, & Implications for Bioremediation of Soil & Ground Water.

    Energy Technology Data Exchange (ETDEWEB)

    Hakim Boukhalfa

    2006-03-28

    Microorganisms influence the natural cycle of major elements, including C, N, P, S, and transition metals such as Mn and Fe. Bacterial processes can also influence the behavior of actinides in soil and ground water. While radionuclides have no known biological utility, they have the potential to interact with microorganisms and to interfere with processes involving other elements such as Fe and Mn. These interactions can transform radionuclides and affect their fate and transport. Organic acids, extruded by-products of cell metabolism, can solubilize radionuclides and facilitate their transport. The soluble complexes formed can be taken up by the cells and incorporated into biofilm structures. We have examined the interactions of Pu species with bacterial metabolites, studied Pu uptake by microorganisms and examined the toxicity of Pu and other toxic metals to environmentally relevant bacteria. We have also studied the speciation of Pu(IV) in the presence of natural and synthetic chelators.

  5. Quantification of new antiepileptic drugs by liquid chromatography/electrospray ionization tandem mass spectrometry and its application to cellular uptake experiment using human placental choriocarcinoma BeWo cells.

    Science.gov (United States)

    Furugen, Ayako; Kobayashi, Masaki; Nishimura, Ayako; Takamura, Shigeo; Narumi, Katsuya; Yamada, Takehiro; Iseki, Ken

    2015-10-01

    A method for quantification of new antiepileptic drugs, including lamotrigine (LTG), levetiracetam (LEV), gabapentin (GBP), and topiramate (TPM), in cellular samples, using liquid chromatography/electrospray ionization tandem mass spectrometry was developed to better understand the membrane transport mechanisms of these drugs. Cell lysate was deproteinized by methanol containing LEV-d3 as an internal standard (IS). Chromatographic separation was performed on a C18 column using gradient elution with methanol-water-formic acid (10:90:0.1, v/v/v) and methanol-formic acid (100:0.1, v/v). Analytes were detected in positive ion electrospray mode with selected reaction monitoring (SRM). This method was applicable for a linear range of 5 to 500pmol for LTG; 5 to 1000pmol for LEV; 10 to 10,000pmol for GBP; and 5 to 5000pmol for TPM. The intra-day precision, inter-day precision, and accuracy data were assessed and found to be acceptable. This developed and validated method was then successfully applied to the investigation of uptake of the new antiepileptic drugs in placental choriocarcinoma BeWo cells. The intracellular concentration of these drugs in BeWo cells, accumulating over 30min at 37°C was in the order of GBP>LTG>LEV≈TPM. Furthermore, the uptake of GBP at 4°C was much lower than that at 37°C. The uptake of GBP was saturated at high concentrations. The kinetic parameters calculated for GBP uptake in BeWo cells were determined as Km of 105.4±6.4μM and Vmax at 8153±348pmol/mg protein/min. The novel method described here should enable investigators to elucidate the transport mechanisms of these antiepileptic drugs in BeWo cells.

  6. Positively charged and pH self-buffering quantum dots for efficient cellular uptake by charge mediation and monitoring cell membrane permeability

    Energy Technology Data Exchange (ETDEWEB)

    Wang Suhua; Song Haipeng; Huang Dejian [Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543 (Singapore); Ong Weiyi [Department of Anatomy, National University of Singapore, 119260 (Singapore); Han Mingyong, E-mail: chmhdj@nus.edu.s [Institute of Materials Research and Engineering, 3 Research Link, 117602 (Singapore)

    2009-10-21

    Positively charged and pH self-buffering quantum dots (Tren-QDs) were achieved by surface functionalization with tris(2-aminoethyl)amine (Tren) derivatives, which are attached to the inorganic cores of QDs through bidentate chelating of dithiocarbamates. The Tren-QDs exhibit pH buffering capability by absorbing or releasing protons due to the surface polyamine groups as the surrounding pH fluctuates. Such self-buffering capability stabilizes the photoluminescence of the Tren-QDs against acid. The Tren-QDs bear positive charges through protonation of the surface polyamine groups under physiological conditions and the surface positive charges improve their cellular uptake efficiency by charge mediation, which has been demonstrated by BV-2 microglia cells. The photoluminescence of Tren-QDs shows a selective Stern-Volmer response to copper ions and this property has been preliminarily evaluated for investigating the BV-2 cell membrane structure by monitoring the photoluminescence of intracellular Tren-QDs.

  7. Positively charged and pH self-buffering quantum dots for efficient cellular uptake by charge mediation and monitoring cell membrane permeability

    Science.gov (United States)

    Wang, Suhua; Song, Haipeng; Ong, Wei Yi; Han, Ming Yong; Huang, Dejian

    2009-10-01

    Positively charged and pH self-buffering quantum dots (Tren-QDs) were achieved by surface functionalization with tris(2-aminoethyl)amine (Tren) derivatives, which are attached to the inorganic cores of QDs through bidentate chelating of dithiocarbamates. The Tren-QDs exhibit pH buffering capability by absorbing or releasing protons due to the surface polyamine groups as the surrounding pH fluctuates. Such self-buffering capability stabilizes the photoluminescence of the Tren-QDs against acid. The Tren-QDs bear positive charges through protonation of the surface polyamine groups under physiological conditions and the surface positive charges improve their cellular uptake efficiency by charge mediation, which has been demonstrated by BV-2 microglia cells. The photoluminescence of Tren-QDs shows a selective Stern-Volmer response to copper ions and this property has been preliminarily evaluated for investigating the BV-2 cell membrane structure by monitoring the photoluminescence of intracellular Tren-QDs.

  8. Characterization of cellular uptake and toxicity of aminosilane-coated iron oxide nanoparticles with different charges in central nervous system-relevant cell culture models

    Directory of Open Access Journals (Sweden)

    Sun Z

    2013-03-01

    Full Text Available Zhizhi Sun,1 Vinith Yathindranath,2 Matthew Worden,3 James A Thliveris,4 Stephanie Chu,1 Fiona E Parkinson,1 Torsten Hegmann,1–3 Donald W Miller1 1Department of Pharmacology and Therapeutics, 2Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada; 3Chemical Physics Interdisciplinary Program, Liquid Crystal Institute, Kent State University, Kent, OH, USA; 4Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, Manitoba, Canada  Background: Aminosilane-coated iron oxide nanoparticles (AmS-IONPs have been widely used in constructing complex and multifunctional drug delivery systems. However, the biocompatibility and uptake characteristics of AmS-IONPs in central nervous system (CNS-relevant cells are unknown. The purpose of this study was to determine the effect of surface charge and magnetic field on toxicity and uptake of AmS-IONPs in CNS-relevant cell types. Methods: The toxicity and uptake profile of positively charged AmS-IONPs and negatively charged COOH-AmS-IONPs of similar size were examined using a mouse brain microvessel endothelial cell line (bEnd.3 and primary cultured mouse astrocytes and neurons. Cell accumulation of IONPs was examined using the ferrozine assay, and cytotoxicity was assessed by the 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assay. Results: No toxicity was observed in bEnd.3 cells at concentrations up to 200 µg/mL for either AmS-IONPs or COOH-AmS-IONPs. AmS-IONPs at concentrations above 200 µg/mL reduced neuron viability by 50% in the presence or absence of a magnetic field, while only 20% reductions in viability were observed with COOH-AmS-IONPs. Similar concentrations of AmS-IONPs in astrocyte cultures reduced viability to 75% but only in the presence of a magnetic field, while exposure to COOH-AmS-IONPs reduced viability to 65% and 35% in the absence and presence of a magnetic field, respectively. Cellular accumulation of AmS-IONPs was greater

  9. Hemocompatible pullulan-polyethyleneimine conjugates for liver cell gene delivery: In vitro evaluation of cellular uptake, intracellular trafficking and transfection efficiency.

    Science.gov (United States)

    Rekha, M R; Sharma, Chandra P

    2011-01-01

    Polyethyleneimine (PEI; 25 kDa)-conjugated pullulans (PPE1, PPE2 and PPE3) were developed and investigated for possible use in gene delivery applications. The cytotoxicity, blood component interactions such as red blood cell/white blood cell aggregation, platelet and complement activation, and protein interaction of the pullulan-conjugated PEI was drastically reduced in comparison to PEI-based nanocomplexes. Based on the blood compatibility studies, PPE1 was selected for further study. The buffering capacity of this derivative was similar to that of PEI, which plays an important role in efficient gene transfection. The particle size, zeta potential, stability in the presence of plasma and resistance to nuclease degradation were evaluated. In addition, cellular uptake and localization of plasmid, as well as transgene expression, were evaluated following in vitro transfection of HepG2 cells. Endocytosis inhibitors, confocal laser scanning microscopy and fluorescent labeling techniques were used to visualize the nanoplex uptake mechanism, cellular distribution and nuclear localization. The results from inhibitor experiments in the presence of asialofetuin indicated that the asialoglycoprotein receptor is involved in transfection of hepatocytes with pullulan-PEI complexes. The conjugation of pullulan with PEI did not hinder the plasmid nuclear localization ability of PEI. The transfection efficiency of pullulan conjugate was similar to PEI, with the added advantage of hemocompatibility and non-cytotoxicity. The transfection efficiency of PEI and PPE1 was 1.6- and 2-fold more, respectively, in the presence of serum than in the absence of serum. Therefore, the pullulan-PEI conjugate seems to be a promising gene delivery vector with good hemocompatibility and low toxicity but without compromising the transfection efficacy of PEI.

  10. Multifunctional organic–inorganic hybrid nanoparticles and nanosheets based on chitosan derivative and layered double hydroxide: cellular uptake mechanism and application for topical ocular drug delivery

    Directory of Open Access Journals (Sweden)

    Chi H

    2017-02-01

    Full Text Available Huibo Chi,1,2,* Yan Gu,1,* Tingting Xu,1 Feng Cao1 1Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, 2State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research Co., Ltd., Tianjin, People’s Republic of China *These authors contributed equally to this work Abstract: To study the cellular uptake mechanism of multifunctional organic–inorganic hybrid nanoparticles and nanosheets, new chitosan–glutathione–valine–valine-layered double hydroxide (CG-VV-LDH nanosheets with active targeting to peptide transporter-1 (PepT-1 were prepared, characterized and further compared with CG-VV-LDH nanoparticles. Both organic–inorganic hybrid nanoparticles and nanosheets showed a sustained release in vitro and prolonged precorneal retention time in vivo, but CG-VV-LDH nanoparticles showed superior permeability in the isolated cornea of rabbits than CG-VV-LDH nanosheets. Furthermore, results of cellular uptake on human corneal epithelial primary cells (HCEpiC and retinal pigment epithelial (ARPE-19 cells indicated that both clathrin-mediated endocytosis and active transport of PepT-1 are involved in the internalization of CG-VV-LDH nanoparticles and CG-VV-LDH nanosheets. In summary, the CG-VV-LDH nanoparticle may be a promising carrier as a topical ocular drug delivery system for the treatment of ocular diseases of mid-posterior segments, while the CG-VV-LDH nanosheet may be suitable for the treatment of ocular surface diseases. Keywords: LDH nanoparticles, LDH nanosheets, ocular drug delivery, human corneal epithelial primary cell, retinal pigment cell, ARPE-19, active targeting

  11. A smart tumor targeting peptide-drug conjugate, pHLIP-SS-DOX: synthesis and cellular uptake on MCF-7 and MCF-7/Adr cells.

    Science.gov (United States)

    Song, Qin; Chuan, Xingxing; Chen, Binlong; He, Bing; Zhang, Hua; Dai, Wenbing; Wang, Xueqing; Zhang, Qiang

    2016-06-01

    Doxorubicin (DOX) is a potent anticancer drug for the treatment of tumors, but the poor specificity and multi-drug resistance (MDR) on tumor cells have restricted its application. Here, a pH and reduction-responsive peptide-drug conjugate (PDC), pHLIP-SS-DOX, was synthesized to overcome these drawbacks. pH low insertion peptide (pHLIP) is a cell penetrating peptide (CPP) with pH-dependent transmembrane ability. And because of the unique cell membrane insertion pattern, it might reverse the MDR. The cellular uptake study showed that on both drug-sensitive MCF-7 and drug-resistant MCF-7/Adr cells, pHLIP-SS-DOX obviously facilitated the uptake of DOX at pH 6.0 and the uptake level on MCF-7/Adr cells was similar with that on MCF-7 cells, indicating that pHLIP-SS-DOX had the ability to target acidic tumor cells and reverse MDR. In vitro cytotoxicity study mediated by GSH-OEt demonstrated that the cytotoxic effect of pHLIP-SS-DOX was reduction responsive, with obvious cytotoxicity at pH 6.0; while it had poor cytotoxicity at pH 7.4, no matter with or without GSH-OEt pretreatment. This illustrated that pHLIP could deliver DOX into tumor cells with acidic microenvironment specifically and could not deliver drugs into normal cells with neutral microenvironment. In summary, pHLIP-SS-DOX is a promising strategy to target drugs to tumors and provides a possibility to overcome MDR.

  12. Dietary uptake of Cu sorbed to hydrous iron oxide is linked to cellular toxicity and feeding inhibition in a benthic grazer

    Science.gov (United States)

    Cain, Daniel J.; Croteau, Marie-Noele; Fuller, Christopher C.; Ringwood, Amy H.

    2016-01-01

    Whereas feeding inhibition caused by exposure to contaminants has been extensively documented, the underlying mechanism(s) are less well understood. For this study, the behavior of several key feeding processes, including ingestion rate and assimilation efficiency, that affect the dietary uptake of Cu were evaluated in the benthic grazer Lymnaea stagnalis following 4–5 h exposures to Cu adsorbed to synthetic hydrous ferric oxide (Cu–HFO). The particles were mixed with a cultured alga to create algal mats with Cu exposures spanning nearly 3 orders of magnitude at variable or constant Fe concentrations, thereby allowing first order and interactive effects of Cu and Fe to be evaluated. Results showed that Cu influx rates and ingestion rates decreased as Cu exposures of the algal mat mixture exceeded 104 nmol/g. Ingestion rate appeared to exert primary control on the Cu influx rate. Lysosomal destabilization rates increased directly with Cu influx rates. At the highest Cu exposure where the incidence of lysosomal membrane damage was greatest (51%), the ingestion rate was suppressed 80%. The findings suggested that feeding inhibition was a stress response emanating from excessive uptake of dietary Cu and cellular toxicity.

  13. TAT and HA2 facilitate cellular uptake of gold nanoparticles but do not lead to cytosolic localisation.

    Science.gov (United States)

    Cesbron, Yann; Shaheen, Umbreen; Free, Paul; Lévy, Raphaël

    2015-01-01

    The methods currently available to deliver functional labels and drugs to the cell cytosol are inefficient and this constitutes a major obstacle to cell biology (delivery of sensors and imaging probes) and therapy (drug access to the cell internal machinery). As cell membranes are impermeable to most molecular cargos, viral peptides have been used to bolster their internalisation through endocytosis and help their release to the cytosol by bursting the endosomal vesicles. However, conflicting results have been reported on the extent of the cytosolic delivery achieved. To evaluate their potential, we used gold nanoparticles as model cargos and systematically assessed how the functionalisation of their surface by either or both of the viral peptides TAT and HA2 influenced their intracellular delivery. We evaluated the number of gold nanoparticles present in cells after internalisation using photothermal microscopy and their subcellular localisation by electron microscopy. While their uptake increased when the TAT and/or HA2 viral peptides were present on their surface, we did not observe a significant cytosolic delivery of the gold nanoparticles.

  14. Differential roles of the protein corona in the cellular uptake of nanoporous polymer particles by monocyte and macrophage cell lines.

    Science.gov (United States)

    Yan, Yan; Gause, Katelyn T; Kamphuis, Marloes M J; Ang, Ching-Seng; O'Brien-Simpson, Neil M; Lenzo, Jason C; Reynolds, Eric C; Nice, Edouard C; Caruso, Frank

    2013-12-23

    Many biomolecules, mainly proteins, adsorb onto polymer particles to form a dynamic protein corona in biological environments. The protein corona can significantly influence particle-cell interactions, including internalization and pathway activation. In this work, we demonstrate the differential roles of a given protein corona formed in cell culture media in particle uptake by monocytes and macrophages. By exposing disulfide-stabilized poly(methacrylic acid) nanoporous polymer particles (PMASH NPPs) to complete cell growth media containing 10% fetal bovine serum, a protein corona, with the most abundant component being bovine serum albumin, was characterized. Upon adsorption onto the PMASH NPPs, native bovine serum albumin (BSA) was found to undergo conformational changes. The denatured BSA led to a significant decrease in internalization efficiency in human monocytic cells, THP-1, compared with the bare particles, due to reduced cell membrane adhesion. In contrast, the unfolded BSA on the NPPs triggered class A scavenger receptor-mediated phagocytosis in differentiated macrophage-like cells (dTHP-1) without a significant impact on the overall internalization efficiency. Taken together, this work demonstrates the disparate effects of a given protein corona on particle-cell interactions, highlighting the correlation between protein corona conformation in situ and relevant biological characteristics for biological functionalities.

  15. Uptake of (/sup 3/H)vitamin D/sub 3/ from low and high density lipoproteins by cultured human fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Shireman, R.B.; Williams, D.; Remsen, J.F.

    1986-03-01

    The plasma distribution and cellular uptake of (/sup 3/H)vitamin D/sub 3/ was studied in vitro using cultured human fibroblasts. Incubation of (/sup 3/H)vitamin D/sub 3/ (cholecalciferol) with plasma followed by sequential ultracentrifugal fractionation of the lipoproteins indicated that 2-4% of the radioactivity associated with the very low density lipoprotein (VLDL), 12% with low density lipoprotein (LDL), and approximately 60% with the high density lipoprotein (HDL). The remaining radioactivity, 25%, was associated with the sedimented plasma fractions. By comparison, an average of 86% of the radioactivity from (/sup 3/H) 1,25-dihydroxycholecalciferol associated with the sedimented plasma fractions. The uptake of (/sup 3/H)vitamin D/sub 3/ from plasma, LDL, or HDL was studied in cultured human cells; uptake by normal fibroblasts was greatest from LDL and least from plasma. The cellular association of vitamin D/sub 3/ was time, concentration, and temperature dependent. At a concentration of 50 ..mu..g LDL/ml of medium, the uptake of (/sup 3/H)vitamin D/sub 3/ from LDL at 37/sup 0/C was rapid and reached a maximum at approximately 4 hr; it was slower from HDL but continued to increase slowly up to 24 hr. The significance of these in vitro findings is uncertain since much of the vitamin D/sub 3/ absorbed from the intestine reportedly associates with chylomicrons and is rapidly taken up by the liver.

  16. Mathematical model of uptake and metabolism of arsenic(III in human hepatocytes - Incorporation of cellular antioxidant response and threshold-dependent behavior

    Directory of Open Access Journals (Sweden)

    Isukapalli Sastry S

    2011-01-01

    Full Text Available Abstract Background Arsenic is an environmental pollutant, potent human toxicant, and oxidative stress agent with a multiplicity of health effects associated with both acute and chronic exposures. A semi-mechanistic cellular-level toxicokinetic (TK model was developed in order to describe the uptake, biotransformation and clearance of arsenical species in human hepatocytes. Notable features of this model are the incorporation of arsenic-glutathione complex formation and a "switch-like" formulation to describe the antioxidant response of hepatocytes to arsenic exposure. Results The cellular-level TK model applies mass action kinetics in order to predict the concentrations of trivalent and pentavalent arsenicals in hepatocytes. The model simulates uptake of arsenite (iAsIII via aquaporin isozymes 9 (AQP9s, glutathione (GSH conjugation, methylation by arsenic methyltransferase (AS3MT, efflux through multidrug resistant proteins (MRPs and the induced antioxidant response via thioredoxin reductase (TR activity. The model was parameterized by optimization of model estimates for arsenite (iAsIII, monomethylated (MMA and dimethylated (DMA arsenicals concentrations with time-course experimental data in human hepatocytes for a time span of 48 hours, and dose-response data at 24 hours for a range of arsenite concentrations from 0.1 to 10 μM. Global sensitivity analysis of the model showed that at low doses the transport parameters had a dominant role, whereas at higher doses the biotransformation parameters were the most significant. A parametric comparison of the TK model with an analogous model developed for rat hepatocytes from the literature demonstrated that the biotransformation of arsenite (e.g. GSH conjugation has a large role in explaining the variation in methylation between rats and humans. Conclusions The cellular-level TK model captures the temporal modes of arsenical accumulation in human hepatocytes. It highlighted the key biological

  17. Kinetics and autoradiography of high affinity uptake of serotonin by primary astrocyte cultures

    Energy Technology Data Exchange (ETDEWEB)

    Katz, D.M.; Kimelberg, H.K.

    1985-07-01

    Primary astrocyte cultures prepared from the cerebral cortices of neonatal rats showed significant accumulation of serotonin (5-hydroxytryptamine; (/sup 3/H)-5-HT). At concentrations in the range of 0.01 to 0.7 microM (/sup 3/H)-5-HT, this uptake was 50 to 85% Na+ dependent and gave a Km of 0.40 +/- 0.11 microM (/sup 3/H)-5-HT and a Vmax of 6.42 +/- 0.85 (+/- SEM) pmol of (/sup 3/H)-5-HT/mg of protein/4 min for the Na+-dependent component. In the absence of Na+ the uptake was nonsaturable. Omission of the monoamine oxidase inhibitor pargyline markedly reduced the Na+-dependent component of (/sup 3/H)-5-HT uptake but had a negligible effect on the Na+-independent component. This suggest significant oxidative deamination of serotonin after it has been taken up by the high affinity system, followed by release of its metabolite. The authors estimated that this system enabled the cells to concentrate (/sup 3/H)-5-HT up to 44-fold at an external (/sup 3/H)-5-HT concentration of 10(-7) M. Inhibition of (/sup 3/H)-5-HT uptake by a number of clinically effective antidepressants was also consistent with a specific high affinity uptake mechanism for 5-HT, the order of effectiveness of inhibition being chlorimipramine greater than fluoxetine greater than imipramine = amitriptyline greater than desmethylimipramine greater than iprindole greater than mianserin. Uptake of (/sup 3/H)-5-HT was dependent on the presence of Cl- as well as Na+ in the medium, and the effect of omission of both ions was nonadditive. Varying the concentration of K+ in the media from 1 to 50 mM had a limited effect on (/sup 3/H)-5-HT uptake.

  18. pH luminescence switching, dihydrogen phosphate sensing, and cellular uptake of a heterobimetallic ruthenium(II)-rhenium(I) complex.

    Science.gov (United States)

    Zheng, Ze-Bao; Wu, Yong-Quan; Wang, Ke-Zhi; Li, Fuyou

    2014-02-28

    A new heterobimetallic ruthenium(II)-rhenium(I) complex of [Ru(bpy)2(HL)Re(CO)3Cl](ClO4)2·6H2O (RuHLRe) {bpy = 2,2'-bipyridine and HL = 2-(4-(2,6-di(pyridin-2-yl)pyridin-4-yl)phenyl)-1H-imidazo[4,5-f][1,10]phenanthroline} was synthesised and characterised by elemental analysis, proton nuclear magnetic resonance spectroscopy, and mass spectrometry. The ground- and excited-state acid-base properties of RuHLRe were studied using UV-Vis absorption spectrophotometric and spectrofluorimetric titrations in a 100 : 1 (v/v) Britton-Robinson buffer-CH3CN solution combined with luminescence lifetime measurements. The complex exhibited two-step separate protonation-deprotonation processes in both the ground and excited states. The complex acted as pH-induced "off-on-off" luminescence switches (I(on)/I(off) = 31.0 and 14.6), with one of the switching actions being driven by pH variations over the physiological pH range (5.3-8.0). Importantly, cellular imaging and cytotoxicity experiments demonstrated that RuHLRe rapidly and selectively illuminated the membrane of HeLa cells over fixed cells and exhibited reduced cytotoxicity at the imaging concentration compared to the Re(I)-free parent Ru(II) complex. In addition, RuHLRe acted as an efficient "turn on" emission sensor for H2PO4(-) and "turn off" emission sensor for F(-) and OAc(-).

  19. Direct measurements of in-stream nitrate uptake with automated high frequency sensors

    Science.gov (United States)

    Kunz, Julia Vanessa; Hensley, Robert; Brase, Lisa; Borchardt, Dietrich; Rode, Michael

    2016-04-01

    Decades of nutrient studies have unveiled the importance of river networks in nutrient cycling. Still, direct methods to quantify instream removal in defined reaches have so far been limited to small streams. In rivers, where isotope tracer additions have been impracticable, uptake rates could only very rarely be measured and therefore have been mostly modelled by upscaling. Recently, the expanding availability of high resolution stream solute signals from automated sensors offers new possibilities for uptake kinetic studies. Cohen et al (2012) assessed assimilation and denitrification rates based on daily nitrate amplitudes and longitudinal concentration gradients in spring- fed chemostatic rivers. In higher order streams, overlapping of network, onsite and upstream signals require additional conceptual and methodological adaptation. Here we present a new combined longitudinal lagrangian and mass balance approach with continuous measurements of nitrate uptake rates in the German lowland river Weiße Elster, to our knowledge the first direct measurement of nitrate kinetics with continues high frequency sensors. We used 10 minutes time step NO3-N, pH, specific conductivity, dissolved oxygen, temperature and chlorophyl-a measurements and supplementing low frequency 15N isotope manual sampling. Longitudinal lagrangian measurements were conducted during day and night. Our data from two morphologically highly contrasting reaches indicate that local, seasonal or even day to day changes in uptake kinetics can be of several orders of magnitude and that the disregard of intermediate storage and dispersion can lead to high errors. The natural river reach revealed considerably higher N uptake than the channelized river reach. Furthermore, river bottom related N-uptake rates were in the same order than those found in agricultural head water streams. Besides depicting prospects and limits, we also provide important considerations for the set-up of measurement stations and for

  20. Streptococcal Serum Opacity Factor Increases Hepatocyte Uptake of Human Plasma High Density Lipoprotein-Cholesterol1

    Science.gov (United States)

    Gillard, Baiba K.; Rosales, Corina; Pillai, Biju K.; Lin, Hu Yu; Courtney, Harry S.; Pownall, Henry J.

    2010-01-01

    Serum opacity factor (SOF), a virulence determinant of Streptococcus pyogenes, converts plasma high density lipoproteins (HDL) to three distinct species: lipid-free apolipoprotein (apo) A-I, neo HDL, a small discoidal HDL-like particle, and a large cholesteryl ester-rich microemulsion (CERM), that contains the cholesterol esters (CE) of up to ~400,000 HDL particles and apo E as its major protein. Similar SOF reaction products are obtained with HDL, total plasma lipoproteins and whole plasma. We hypothesized that hepatic uptake of CERM-CE via multiple apo E dependent receptors would be faster than that of HDL-CE. We tested our hypothesis using human hepatoma cells and lipoprotein receptor-specific Chinese hamster ovary (CHO) cells. [3H]CE uptake by HepG2 and Huh7 cells from HDL after SOF treatment, which transfers >90% of HDL-CE to CERM, was respectively 2.4 and 4.5 times faster than from control HDL. CERM-[3H]CE uptake was inhibited by LDL and HDL, suggestive of uptake by both the LDL receptor (LDL-R) and scavenger receptor class B type I (SR-BI). Studies in CHO cells specifically expressing LDL-R and SR-BI confirmed CERM-[3H]CE uptake by both receptors. RAP and heparin inhibit CERM-[3H]CE but not HDL-[3H]CE uptake thereby implicating LRP-1 and cell surface proteoglycans in this process. These data demonstrate that SOF treatment of HDL increases CE uptake via multiple hepatic apo E receptors. In so doing, SOF might increase hepatic disposal of plasma cholesterol in a way that is therapeutically useful. PMID:20879789

  1. Cadmium inhibits the induction of high-affinity nitrate uptake in maize (Zea mays L.) roots.

    Science.gov (United States)

    Rizzardo, Cecilia; Tomasi, Nicola; Monte, Rossella; Varanini, Zeno; Nocito, Fabio F; Cesco, Stefano; Pinton, Roberto

    2012-12-01

    Cadmium (Cd) detoxification involves glutathione and phytochelatins biosynthesis: the higher need of nitrogen should require increased nitrate (NO(3)(-)) uptake and metabolism. We investigated inducible high-affinity NO(3)(-) uptake across the plasma membrane (PM) in maize seedlings roots upon short exposure (10 min to 24 h) to low Cd concentrations (0, 1 or 10 μM): the activity and gene transcript abundance of high-affinity NO(3)(-) transporters, NO(3)(-) reductases and PM H(+)-ATPases were analyzed. Exposure to 1 mM NO(3)(-) led to a peak in high-affinity (0.2 mM) NO(3)(-) uptake rate (induction), which was markedly lowered in Cd-treated roots. Plasma membrane H(+)-ATPase activity was also strongly limited, while internal NO(3)(-) accumulation and NO(3)(-) reductase activity in extracts of Cd treated roots were only slightly lowered. Kinetics of high- and low-affinity NO(3)(-) uptake showed that Cd rapidly (10 min) blocked the inducible high-affinity transport system; the constitutive high-affinity transport system appeared not vulnerable to Cd and the low-affinity transport system appeared to be less affected and only after a prolonged exposure (12 h). Cd-treatment also modified transcript levels of genes encoding high-affinity NO(3)(-) transporters (ZmNTR2.1, ZmNRT2.2), PM H(+)-ATPases (ZmMHA3, ZmMHA4) and NO(3)(-) reductases (ZmNR1, ZmNADH:NR). Despite an expectable increase in NO(3)(-) demand, a negative effect of Cd on NO(3)(-) nutrition is reported. Cd effect results in alterations at the physiological and transcriptional levels of NO(3)(-) uptake from the external solution and it is particularly severe on the inducible high-affinity anion transport system. Furthermore, Cd would limit the capacity of the plant to respond to changes in NO(3) (-) availability.

  2. High {sup 18}F-fluorodeoxyglocose uptake in adrenal histoplasmosis; a case report

    Energy Technology Data Exchange (ETDEWEB)

    Umeoka, Shigeaki; Saga, Tsuneo; Togashi, Kaori [Kyoto University (Japan). Department of Nuclear Medicine and Diagnostic Imaging; Koyama, Takashi; Higashi, Tatsuya [Kyoto University Hospital (Japan). Department of Radiology; Ito, Noriyuki; Kamoto, Toshiyuki; Ogawa, Osamu [Kyoto University (Japan). Department of Urology; Kotani, Hirokazu [Kyoto University (Japan). Department of Pathology

    2005-12-01

    Adrenal histoplasmosis is one of the most common adrenal granulomatous infections in endemic areas. Although CT or MRI findings of adrenal histoplasmosis have been documented, there are no reports regarding {sup 18}F-fluorodeoxyglocose (FDG) positron emission tomography (PET) findings. We report a case of bilateral adrenal histoplasmosis showing a significantly high uptake of {sup 18}F-fluorodeoxyglocose on PET study. Adrenal histoplasmosis should be considered as one of the differential diagnoses in cases of adrenal tumors with intense FDG uptake, even in non-endemic areas. (orig.)

  3. Environmental influences on CO sub 2 uptake by agaves, CAM plants with high productivities

    Energy Technology Data Exchange (ETDEWEB)

    Nobel, P.S. (Univ. of California, Los Angeles (USA))

    Agaves have long been utilized for their leaf fiber and for beverage production. As first reported in 1968 for Agave americana, they are Crassulacean Acid Metabolism (CAM) plants, for which stomatal opening and CO{sub 2} uptake occur primarily at night when the lower temperatures greatly reduce water loss. More recently, the influences of rainfall, temperature, and photosynthetically active radiation on CO{sub 2} uptake by agaves have been determined and incorporated into an Environmental Productivity Index (EPI). Nutrient effects on CO{sub 2} uptake and growth can be quantified by a Nutrient Index, which multiples EPI to account for soil element effects. Because of CAM, agaves can have high productivities in regions of moderate annual rainfall, and because of EPI, such productivity can be predicted, which augurs well for the increased future cultivation of agaves.

  4. Synthesis and characterization of Her2-NLP peptide conjugates targeting circulating breast cancer cells: cellular uptake and localization by fluorescent microscopic imaging.

    Science.gov (United States)

    Cai, Huawei; Singh, Ajay N; Sun, Xiankai; Peng, Fangyu

    2015-01-01

    To synthesize a fluorescent Her2-NLP peptide conjugate consisting of Her2/neu targeting peptide and nuclear localization sequence peptide (NLP) and assess its cellular uptake and intracellular localization for radionuclide cancer therapy targeting Her2/neu-positive circulating breast cancer cells (CBCC). Fluorescent Cy5.5 Her2-NLP peptide conjugate was synthesized by coupling a bivalent peptide sequence, which consisted of a Her2-binding peptide (NH2-GSGKCCYSL) and an NLP peptide (CGYGPKKKRKVGG) linked by a polyethylene glycol (PEG) chain with 6 repeating units, with an activated Cy5.5 ester. The conjugate was separated and purified by HPLC and then characterized by Maldi-MS. The intracellular localization of fluorescent Cy5.5 Her2-NLP peptide conjugate was assessed by fluorescent microscopic imaging using a confocal microscope after incubation of Cy5.5-Her2-NLP with Her2/neu positive breast cancer cells and Her2/neu negative control breast cancer cells, respectively. Fluorescent signals were detected in cytoplasm of Her2/neu positive breast cancer cells (SKBR-3 and BT474 cell lines), but not or little in cytoplasm of Her2/neu negative breast cancer cells (MDA-MB-231), after incubation of the breast cancer cells with Cy5.5-Her2-NLP conjugates in vitro. No fluorescent signals were detected within the nuclei of Her2/neu positive SKBR-3 and BT474 breast cancer cells, neither Her2/neu negative MDA-MB-231 cells, incubated with the Cy5.5-Her2-NLP peptide conjugates, suggesting poor nuclear localization of the Cy5.5-Her2-NLP conjugates localized within the cytoplasm after their cellular uptake and internalization by the Her2/neu positive breast cancer cells. Her2-binding peptide (KCCYSL) is a promising agent for radionuclide therapy of Her2/neu positive breast cancer using a β(-) or α emitting radionuclide, but poor nuclear localization of the Her2-NLP peptide conjugates may limit its use for eradication of Her2/neu-positive CBCC using I-125 or other Auger electron

  5. Blood flow regulation and oxygen uptake during high intensity forearm exercise.

    Science.gov (United States)

    Nyberg, Stian Kwak; Berg, Ole Kristian; Helgerud, Jan; Wang, Eivind

    2017-01-05

    The vascular strain is very high during heavy handgrip exercise, but the intensity and kinetics to reach peak blood flow, and peak oxygen uptake, are uncertain. We included 9 young (25±2yr) healthy males to evaluate blood flow and oxygen uptake responses during continuous dynamic handgrip exercise with increasing intensity. Blood flow was measured using Doppler-ultrasound and venous blood was drawn from a deep forearm vein to determine arteriovenous oxygen difference (a-vO2diff) during 6-minutes bouts of 60, 80 and 100% of maximal work rate (WRmax), respectively. Blood flow and oxygen uptake increased (pBlood velocity (49.5±11.5 cm∙sec(-1) to 58.1±11.6 cm∙sec(-1)) and brachial diameter (0.49±0.05cm to 0.50±0.06 cm) showed concomitant increases (pblood flow from 60% to 80%WRmax, while no differences were observed in a-vO2diff Shear rate also increased (pblood flow (60%WRmax:50±22s; 80%WRmax:51±20s; 100%WRmax:51±23s) than a-vO2diff (60%WRmax:29±9s; 80%WRmax:29±5s; 100%WRmax:20±5s), but not different from oxygen uptake (60%WRmax:44±25s; 80%WRmax:43±14s; 100%WRmax:41±32s). No differences were observed in MRT for blood flow or oxygen uptake with increased exercise intensity. In conclusion, when approaching maximal intensity, oxygen uptake appeared to reach a critical level at ~80% of WRmax and be regulated by blood flow. This implies that high, but not maximal, exercise intensity may be an optimal stimulus for shear stress-induced small muscle mass training adaptations.

  6. CD36 and SR-BI are involved in cellular uptake of provitamin A carotenoids by Caco-2 and HEK cells, and some of their genetic variants are associated with plasma concentrations of these micronutrients in humans.

    Science.gov (United States)

    Borel, Patrick; Lietz, Georg; Goncalves, Aurélie; Szabo de Edelenyi, Fabien; Lecompte, Sophie; Curtis, Peter; Goumidi, Louisa; Caslake, Muriel J; Miles, Elizabeth A; Packard, Christopher; Calder, Philip C; Mathers, John C; Minihane, Anne M; Tourniaire, Franck; Kesse-Guyot, Emmanuelle; Galan, Pilar; Hercberg, Serge; Breidenassel, Christina; González Gross, Marcela; Moussa, Myriam; Meirhaeghe, Aline; Reboul, Emmanuelle

    2013-04-01

    Scavenger receptor class B type I (SR-BI) and cluster determinant 36 (CD36) have been involved in cellular uptake of some provitamin A carotenoids. However, data are incomplete (e.g., there are no data on α-carotene), and it is not known whether genetic variants in their encoding genes can affect provitamin A carotenoid status. The objectives were 1) to assess the involvement of these scavenger receptors in cellular uptake of the main provitamin A carotenoids (i.e., β-carotene, α-carotene, and β-cryptoxanthin) as well as that of preformed vitamin A (i.e., retinol) and 2) to investigate the contribution of genetic variations in genes encoding these proteins to interindividual variations in plasma concentrations of provitamin A carotenoids. The involvement of SR-BI and CD36 in carotenoids and retinol cellular uptake was investigated in Caco-2 and human embryonic kidney (HEK) cell lines. The involvement of scavenger receptor class B type I (SCARB1) and CD36 genetic variants on plasma concentrations of provitamin A carotenoids was assessed by association studies in 3 independent populations. Cell experiments suggested the involvement of both proteins in cellular uptake of provitamin A carotenoids but not in that of retinol. Association studies showed that several plasma provitamin A carotenoid concentrations were significantly different (P < 0.0083) between participants who bore different genotypes at single nucleotide polymorphisms and haplotypes in CD36 and SCARB1. In conclusion, SR-BI and CD36 are involved in cellular uptake of provitamin A carotenoids, and genetic variations in their encoding genes may modulate plasma concentrations of provitamin A carotenoids at a population level.

  7. Modeling Foliar Uptake in Colocasia Esculenta Using High Resolution Maps of Leaf Water Isotopes

    Science.gov (United States)

    Sinkler, C. J.; Gerlein-Safdi, C.; Caylor, K. K.

    2014-12-01

    The uptake of carbon dioxide by vegetation is a major sink of CO2 and a factor that will determine future climate. Some studies predict a decrease in CO2 uptake from vegetation because of a general drying of the Amazon Basin. Because of the tight linkage between water availability and plant carbon uptake, a comprehensive model of plant water use at the individual scale is necessary to build a complete carbon budget at the global scale. Foliar uptake of non-meteoric water is a common process used by plants to alleviate water stress. However the occurrence of this process in tropical ecosystems, as well as its interaction with other physiological parameters, is not well understood. We present a model of leaf water balance that includes foliar uptake. The isotopic composition of the different sources as well as the leaf water are also included. The model is tested against a series of experiments on Colocasia esculenta, under two different water availability conditions: drought and artificial dew. The artificial dew is spiked with stable isotopes of water (δ18O = 8.56 permil, δ2H = 709.7 permil) that allow us to trace the partition of dew uptake within a leaf. We create high-resolution maps of the distribution of isotopes in one half of each leaf using a Picarro IM-CRDS. The maps show a clear enrichment due to foliar uptake for the artificial dew treatment. The water in the second half of the leaf is extracted by cryogenic extraction and analyzed using both IRIS and IRMS for quality control of the IM-CRDS data. Soil water is collected for isotope analysis and water content measurement. Finally, stomatal conductance data collected every two days shows no significant decrease due to either treatment over the course of the experiment. We conclude that foliar uptake of dew water is an important water acquisition mechanism for C. esculenta, even under high soil water content conditions, and we propose guidelines for further improvement of models of leaf-scale water

  8. High density lipoprotein (HDL promotes glucose uptake in adipocytes and glycogen synthesis in muscle cells.

    Directory of Open Access Journals (Sweden)

    Qichun Zhang

    Full Text Available BACKGROUND: High density lipoprotein (HDL was reported to decrease plasma glucose and promote insulin secretion in type 2 diabetes patients. This investigation was designed to determine the effects and mechanisms of HDL on glucose uptake in adipocytes and glycogen synthesis in muscle cells. METHODS AND RESULTS: Actions of HDL on glucose uptake and GLUT4 translocation were assessed with 1-[(3H]-2-deoxyglucose and plasma membrane lawn, respectively, in 3T3-L1 adipocytes. Glycogen analysis was performed with amyloglucosidase and glucose oxidase-peroxidase methods in normal and palmitate-treated L6 cells. Small interfering RNA was used to observe role of scavenger receptor type I (SR-BI in glucose uptake of HDL. Corresponding signaling molecules were detected by immunoblotting. HDL stimulated glucose uptake in a time- and concentration-dependent manner in 3T3-L1 adipocytes. GLUT4 translocation was significantly increased by HDL. Glycogen deposition got enhanced in L6 muscle cells paralleling with elevated glycogen synthase kinase3 (GSK3 phosphorylation. Meanwhile, increased phosphorylations of Akt-Ser473 and AMP activated protein kinase (AMPK α were detected in 3T3-L1 adipocytes. Glucose uptake and Akt-Ser473 activation but not AMPK-α were diminished in SR-BI knock-down 3T3-L1 cells. CONCLUSIONS: HDL stimulates glucose uptake in 3T3-L1 adipocytes through enhancing GLUT4 translocation by mechanisms involving PI3K/Akt via SR-BI and AMPK signaling pathways, and increases glycogen deposition in L6 muscle cells through promoting GSK3 phosphorylation.

  9. Functionalization and cellular uptake of boron carbide nanoparticles. The first step toward T cell-guided boron neutron capture therapy.

    Science.gov (United States)

    Mortensen, M W; Björkdahl, O; Sørensen, P G; Hansen, T; Jensen, M R; Gundersen, H J G; Bjørnholm, T

    2006-01-01

    In this paper we present surface modification strategies of boron carbide nanoparticles, which allow for bioconjugation of the transacting transcriptional activator (TAT) peptide and fluorescent dyes. Coated nanoparticles can be translocated into murine EL4 thymoma cells and B16 F10 malignant melanoma cells in amounts as high as 0.3 wt. % and 1 wt. %, respectively. Neutron irradiation of a test system consisting of untreated B16 cells mixed with B16 cells loaded with boron carbide nanoparticles were found to inhibit the proliferative capacity of untreated cells, showing that cells loaded with boron-containing nanoparticles can hinder the growth of neighboring cells upon neutron irradiation. This could provide the first step toward a T cell-guided boron neutron capture therapy.

  10. PLGA-soya lecithin based micelles for enhanced delivery of methotrexate: Cellular uptake, cytotoxic and pharmacokinetic evidences.

    Science.gov (United States)

    Singh, Anupama; Thotakura, Nagarani; Kumar, Rajendra; Singh, Bhupinder; Sharma, Gajanand; Katare, Om Prakash; Raza, Kaisar

    2017-02-01

    Biocompatible and biodegradable polymers like PLGA have revolutionized the drug delivery approaches. However, poor drug loading and substantially high lipophilicity, pave a path for further tailing of this promising agent. In this regard, PLGA was feathered with biocompatible phospholipid and polymeric micelles were developed for delivery of Methotrexate (MTX) to cancer cells. The nanocarriers (114.6nm±5.5nm) enhanced the cytotoxicity of MTX by 2.13 folds on MDA-MB-231 cells. Confocal laser scanning microscopy confirmed the increased intracellular delivery. The carrier decreased the protein binding potential and enhanced the bioavailable fraction of MTX. Pharmacokinetic studies vouched substantial enhancement in AUC and bioresidence time, promising an ideal carrier to effectively deliver the drug to the site of action. The developed nanocarriers offer potential to deliver the drug in the interiors of cancer cells in an effective manner for improved therapeutic action. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. In vitro evaluation of the cytotoxicity and cellular uptake of CMCht/PAMAM dendrimer nanoparticles by glioblastoma cell models

    Energy Technology Data Exchange (ETDEWEB)

    Pojo, M., E-mail: martapojo@ecsaude.uminho.pt; Cerqueira, S. R.; Mota, T.; Xavier-Magalhaes, A.; Ribeiro-Samy, S. [University of Minho, Life and Health Sciences Research Institute (ICVS), School of Health Sciences (Portugal); Mano, J. F.; Oliveira, J. M., E-mail: miguel.oliveira@dep.uminho.pt; Reis, R. L. [ICVS/3Bs, PT Government Associated Laboratory (Portugal); Sousa, N.; Costa, B. M.; Salgado, A. J. [University of Minho, Life and Health Sciences Research Institute (ICVS), School of Health Sciences (Portugal)

    2013-05-15

    Glioblastoma (GBM) is simultaneously the most common and most malignant subtype tumor of the central nervous system. These are particularly dramatic diseases ranking first among all human tumor types for tumor-related average years of life lost and for which curative therapies are not available. Recently, the use of nanoparticles as drug delivery systems (DDS) for tumor treatment has gained particular interest. In an attempt to evaluate the potential of carboxymethylchitosan/poly(amidoamine) (CMCht/PAMAM) dendrimer nanoparticles as a DDS, we aimed to evaluate its cytotoxicity and internalization efficiency in GBM cell models. CMCht/PAMAM-mediated cytotoxicity was evaluated in a GBM cell line (U87MG) and in human immortalized astrocytes (hTERT/E6/E7) by MTS and double-stranded DNA quantification. CMCht/PAMAM internalization was assessed by double fluorescence staining. Both cells lines present similar internalization kinetics when exposed to a high dose (400 {mu}g/mL) of these nanoparticles. However, the internalization rate was higher in tumor GBM cells as compared to immortalized astrocytes when cells were exposed to lower doses (200 {mu}g/mL) of CMCht/PAMAM for short periods (<24 h). After 48 h of exposure, both cell lines present {approx}100% of internalization efficiency for the tested concentrations. Importantly, short-term exposures (1, 6, 12, 24, and 48 h) did not show cytotoxicity, and long-term exposures (7 days) to CMCht/PAMAM induced only low levels of cytotoxicity in both cell lines ({approx}20% of decrease in metabolic activity). The high efficiency and rate of internalization of CMCht/PAMAM we show here suggest that these nanoparticles may be an attractive DDS for brain tumor treatment in the future.

  12. Curcumin-loaded apotransferrin nanoparticles provide efficient cellular uptake and effectively inhibit HIV-1 replication in vitro.

    Directory of Open Access Journals (Sweden)

    Upendhar Gandapu

    Full Text Available BACKGROUND: Curcumin (diferuloylmethane shows significant activity across a wide spectrum of conditions, but its usefulness is rather limited because of its low bioavailability. Use of nanoparticle formulations to enhance curcumin bioavailability is an emerging area of research. METHODOLOGY/PRINCIPAL FINDINGS: In the present study, curcumin-loaded apotransferrin nanoparticles (nano-curcumin prepared by sol-oil chemistry and were characterized by electron and atomic force microscopy. Confocal studies and fluorimetric analysis revealed that these particles enter T cells through transferrin-mediated endocytosis. Nano-curcumin releases significant quantities of drug gradually over a fairly long period, ∼50% of curcumin still remaining at 6 h of time. In contrast, intracellular soluble curcumin (sol-curcumin reaches a maximum at 2 h followed by its complete elimination by 4 h. While sol-curcumin (GI(50 = 15.6 µM is twice more toxic than nano-curcumin (GI(50 = 32.5 µM, nano-curcumin (IC(50<1.75 µM shows a higher anti-HIV activity compared to sol-curcumin (IC(50 = 5.1 µM. Studies in vitro showed that nano-curcumin prominently inhibited the HIV-1 induced expression of Topo II α, IL-1β and COX-2, an effect not seen with sol-curcumin. Nano-curcumin did not affect the expression of Topoisomerase II β and TNF α. This point out that nano-curcumin affects the HIV-1 induced inflammatory responses through pathways downstream or independent of TNF α. Furthermore, nano-curcumin completely blocks the synthesis of viral cDNA in the gag region suggesting that the nano-curcumin mediated inhibition of HIV-1 replication is targeted to viral cDNA synthesis. CONCLUSION: Curcumin-loaded apotransferrin nanoparticles are highly efficacious inhibitors of HIV-1 replication in vitro and promise a high potential for clinical usefulness.

  13. DNA binding, antioxidant, cytotoxicity (MTT, lactate dehydrogenase, NO), and cellular uptake studies of structurally different nickel(II) thiosemicarbazone complexes: synthesis, spectroscopy, electrochemistry, and X-ray crystallography.

    Science.gov (United States)

    Prabhakaran, R; Kalaivani, P; Huang, R; Poornima, P; Vijaya Padma, V; Dallemer, F; Natarajan, K

    2013-02-01

    Three new nickel(II) thiosemicarbazone complexes have been synthesized and characterized by analytical, spectral, and single-crystal X-ray diffraction studies. In complex 1, the ligand 2-hydroxy-1-naphthaldehydethiosemicarbazone coordinated as a monobasic tridentate donor, whereas in complexes 2 and 3, the ligands salicylaldehyde-4(N)-ethylthiosemicarbazone and 2-hydroxy-1-naphthaldehyde-4(N)-ethylthiosemicarbazone coordinated as a dibasic tridentate donor. The DNA binding ability of the complexes in calf thymus DNA was explored by absorption and emission titration experiments. The antioxidant property of the new complexes was evaluated to test their free-radical scavenging ability. In vitro cytotoxicity assays were performed for the new complexes in A549 and HepG2 cell lines. The new compounds overcome cisplatin resistance in the A549 cell line and they were also active in the HepG2 cell line. The cellular uptake study showed the accumulation of the complexes in tumor cells depended on the nature of the ligand attached to the nickel ion.

  14. Methyl 6-Amino-6-deoxy-d-pyranoside-Conjugated Platinum(II) Complexes for Glucose Transporter (GLUT)-Mediated Tumor Targeting: Synthesis, Cytotoxicity, and Cellular Uptake Mechanism.

    Science.gov (United States)

    Li, Taoli; Gao, Xiangqian; Yang, Liu; Shi, Yunli; Gao, Qingzhi

    2016-05-19

    Methyl 6-aminodeoxy-d-pyranoside-derived platinum(II) glycoconjugates were designed and synthesized based on the clinical drug oxaliplatin for glucose transporter (GLUT)-mediated tumor targeting. In addition to a substantial improvement in water solubility, the conjugates exhibited cytotoxicity similar to or higher than that of oxaliplatin in six different human cancer cell lines. GLUT-mediated transport of the complexes was investigated with a cell-based fluorescence competition assay and GLUT-inhibitor-mediated cytotoxicity analysis in a GLUT-overexpressing human colorectal adenocarcinoma (HT29) cell line. The antitumor effect of the aminodeoxypyranoside-conjugated platinum(II) complexes was found to depend significantly on the GLUT inhibitor, and the cellular uptake of the molecules was regulated by GLUT-mediated transport. The results from this study demonstrate the potential advantages of aminodeoxypyranosides as sugar motifs for glycoconjugation for Warburg-effect-targeted drug design. These fundamental results also support the potential of aminodeoxypyranoside-conjugated platinum(II) complexes as lead compounds for further preclinical evaluation.

  15. Facilitated cellular uptake and suppression of inducible nitric oxide synthase by a metabolite of maritime pine bark extract (Pycnogenol).

    Science.gov (United States)

    Uhlenhut, Klaus; Högger, Petra

    2012-07-15

    Many natural products exhibit anti-inflammatory activity by suppressing excessive nitric oxide (NO) production by inducible NO synthase (iNOS). The maritime pine bark extract Pycnogenol has been formerly shown to decrease nitrite generation, taken as an index for NO, but so far it was not clear which constituent of the complex flavonoid mixture mediated this effect. The purpose of this study was to elucidate whether the in vivo generated Pycnogenol metabolite M1 (δ-(3,4-dihydroxyphenyl)-γ-valerolactone) displayed any activity in the context of induction of iNOS expression and excessive NO production. For the first time we show that M1 inhibited nitrite production (IC(50) 1.3 μg/ml, 95% CI 0.96-1.70) and iNOS expression (IC(50) 3.8 μg/ml, 95% CI 0.99-14.35) in a concentration-dependent fashion. This exemplifies bioactivation by metabolism because the M1 precursor molecule catechin is only weakly active. However, these effects required application of M1 in the low-micromolar range, which was not consistent with concentrations previously detected in human plasma samples after ingestion of maritime pine bark extract. Thus, we investigated a possible accumulation of M1 in cells and indeed observed high-capacity binding of this flavonoid metabolite to macrophages, monocytes, and endothelial cells. This binding was distinctly decreased in the presence of the influx inhibitor phloretin, suggesting the contribution of a facilitated M1 transport into cells. In fact, intracellular accumulation of M1 could explain why in vivo bioactivity can be observed with nanomolar plasma concentrations that typically fail to exhibit measurable activity in vitro.

  16. Synthesis and Cellular Uptake of Radioiodine labeled 2{sup '}-deoxyuridine derivatives with HSV1-TK

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eun Ah; Lee, Kyo Chul; Hong, Su Hee; Kim, Eun Jung; Lee, Jong Chan; An, Gwang Il; Choi, Tae Hyun; Cheon, Gi Jeong; Chun, Kwon Soo [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)

    2006-07-01

    Several different radiolabeled probes have been developed to image Herpes Simplex Virus Type-1 thyrimidine kinase gene (HSV1-TK) expression. The nucleoside prodrugs under investigation for HSV1-TK imaging generally fall into two main chemical and radioisotope categories: the pyrimidine nucleosides, primarily radioiodinated, and the purin nucleosides, primarily radiofluorinated, and their respective analogues. In non-invasive imaging of the HSV1-TK system, many nucleoside derivatives have been recommended as HSV1-TK substrates. Most of these nucleoside derivatives have been developed as prodrugs for tumor proliferation imaging or as anti-viral drugs. For example, 5-fluorouracil (5-FU) and IUdR have been used as tumor agents and acyclovir (ACV), ganciclovir (GCV) and (E)-5-(2-bromovinyl)-2{sup '}- deoxyuridine (BVDU) as an anti-viral agents for virus infection several 5-substituted uracil nucleoside derivatives have been identified to have high sensitivity and selective accumulation in HSV1-TK expressing cells. Of those, IVDU was shown to be rapidly accumulated in HSV1- TK expressing cells in vitro. Imaging of the HSV1-TK reporter gene along with various reporter probes is of current interest. In contrast to the mammalian kinase, which phosphorylates thymidine preferentially, HSV1-TK is less discriminative and phosphorylates a wide range of nucleoside analogues such as acycloguanosines and 2{sup '}-fluoro-2{sup '}-deoxyuridine derivatives that are not phosphorylated efficiently by the native enzyme. More specifically, 5-substituted 2{sup '}-fluoro-2{sup '}-deoxyarabinofuranosyluracil nucleosides are efficiently phosphorylated by HSV- TK. This property, together with the presence of fluorine in the 2{sup '}-arabino-position, endows the 2{sup '}-fluoro-2{sup '}-deoxyuridines with antiviral activity against HSV.

  17. Reconciling the Krogh and Ussing interpretations of epithelial chloride transport - presenting a novel hypothesis for the physiological significance of the passive cellular chloride uptake

    DEFF Research Database (Denmark)

    Larsen, Erik Hviid

    2011-01-01

    - to an external binding site and by membrane depolarization. This results in a tight coupling of the uptake of Na+ by principal cells and Cl- by MR cells. Another type of Cl- channels (probably CFTR) is involved in isotonic fluid uptake. It is suggested that the Cl- channels serve passive uptake of Cl- from...

  18. Highly selective uptake and release of charged molecules by pH-responsive polydopamine microcapsules.

    Science.gov (United States)

    Liu, Qinze; Yu, Bo; Ye, Weichun; Zhou, Feng

    2011-09-09

    A systematic study of the permeation of small molecules through Pdop microcapsules is reported. The zwitterionic Pdop microcapsules are prepared by oxidative polymerization of dopamine on polystyrene microspheres followed by core removal with THF. Rhodamine 6G, methyl orange and alizarin red are chosen as differently charged probing dyes. The loading amount is affected by pH and dye concentration. Highly selective and unidirectional uptake and release of charged molecules through Pdop microcapsules can be achieved by controlling pH value: at low pH, the Pdop particles incorporate cationic dye (rhodamine 6G); at high pH, they incorporate anionic dyes (methyl orange and alizarin red). In each case, the uptake is highly selective. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. High and Low Affinity Urea Root Uptake: Involvement of NIP5;1.

    Science.gov (United States)

    Yang, Huayiu; Menz, Jochen; Häussermann, Iris; Benz, Martin; Fujiwara, Toru; Ludewig, Uwe

    2015-08-01

    Urea is the most widespread nitrogen (N) fertilizer worldwide and is rapidly degraded in soil to ammonium by urease. Ammonium is either taken up by plant roots or is further processed to nitrate by soil microorganisms. However, urea can be taken up by roots and is further degraded to ammonium by plant urease for assimilation. When urea is supplied under sterile conditions, it acts as a poor N source for seedlings or adult Arabidopsis thaliana plants. Here, the gene expression of young seedlings exposed to urea and ammonium nitrate nutrition was compared. Several primary metabolism and transport genes, including those for nitrate and urea, were differentially expressed in seedlings. However, urease and most major intrinsic proteins were not differentially expressed, with the exception of NIP6;1, a urea-permeable channel, which was repressed. Furthermore, little overlap with the gene expression with ammonium as the sole N source was observed, confirming that pure urea nutrition is not associated with the ammonium toxicity syndrome in seedlings. The direct root uptake of urea was increased under boron deficiency, in both the high and low affinity range. This activity was entirely mediated by the NIP5;1 channel, which was confirmed to transport urea when expressed in oocytes. The uptake of urea in the high and low affinity range was also determined for maize and wheat roots. The urea uptake by maize roots was only about half that of wheat, but was not stimulated by boron deficiency or N deficiency in either species. This analysis identifies novel components of the urea uptake systems in plants, which may become agronomically relevant to urea uptake and utilization, as stabilized urea fertilizers become increasingly popular. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  20. Cell uptake survey of pegylated nanographene oxide

    Science.gov (United States)

    Vila, M.; Portolés, M. T.; Marques, P. A. A. P.; Feito, M. J.; Matesanz, M. C.; Ramírez-Santillán, C.; Gonçalves, G.; Cruz, S. M. A.; Nieto, A.; Vallet-Regi, M.

    2012-11-01

    Graphene and more specifically, nanographene oxide (GO) has been proposed as a highly efficient antitumoral therapy agent. Nevertheless, its cell uptake kinetics, its influence in different types of cells and the possibility of controlling cellular internalization timing, is still a field that remains unexplored. Herein, different cell types have been cultured in vitro for several incubation periods in the presence of 0.075 mg ml-1 pegylated GO solutions. GO uptake kinetics revealed differences in the agent’s uptake amount and speed as a function of the type of cell involved. Osteoblast-like cells GO uptake is higher and faster without resulting in greater cell membrane damage. Moreover, the dependence on the commonly used PEG nature (number of branches) also influences the viability and cell uptake speed. These facts play an important role in the future definition of timing parameters and selective cell uptake control in order to achieve an effective therapy.

  1. A Study of cellular phone possessors' sex consciousness and sex action in high school

    OpenAIRE

    池田, かよ子; 久保田, 美雪; 渡邊, 典子; Ikeda, Kayoko; Kubota, Miyuki; Watanabe, Noriko

    2004-01-01

    The purpose of this survey for 304 high school students (116 boys and 188 girls) is to make sure how high school students who possess cellular phones use their phones, what they use their phones for, to what extent they get information about sex, how far they feel conscious of sex and their sex action. (1) About 60% of the girls have cellular phones, which is larger than the rate of the boys who have cellularphones. (2) As for the frequency of using cellular phones, about 80% of the girls use...

  2. Cellular uptake and anticancer activity of salvianolic acid B phospholipid complex loaded nanoparticles in head and neck cancer and precancer cells.

    Science.gov (United States)

    Li, Hongquan; Shi, Linjun; Wei, Jie; Zhang, Chenping; Zhou, Zengtong; Wu, Lan; Liu, Wei

    2016-11-01

    Salvianolic acid B (SalB) was demonstrated to be a promising chemopreventive agent for head and neck squamous cell carcinoma (HNSCC) in the previous studies by our and other research institution, but the properties like low efficacy, poor systemic delivery, and low bioavailability has hampered its clinical applications. To continue our research program focused on the use of natural compounds on cancer chemoprevention, we propose a first example of phospholipid complex loaded nanoparticles (PLC-NPs) encapsulating SalB as a potential carrier for intervention of HNSCC (HN13, HN30) cells and precancer Leuk1 cells in this study. Qualitative and quantitive studies of cellular uptake showed that intracellular accumulation of SalB was significantly higher when HN13, HN30 and Leuk1 cells were incubated with SalB-PLC-NPs complex (nano-SalB) as against free-SalB. Cell viability assay revealed that the cell growth of HN13 and HN30 cells was significantly inhibited of 56.1% and 29.3%, respectively, for nano-SalB compared to an equivalent amount of free-SalB (P<0.001). Moreover, cell cycle and apoptosis assay showed that a clear trend of cell cycle arrest and induction of apoptosis was also observed within the HNSCC cells treated with nano-SalB. Collectively, this study demonstrated that nano-SalB was significantly more potent had an anticancer effect against HNSCC cells, which serves as the first step toward establishing SalB nano-formulations as promising cancer chemopreventive agents. The current study could pave a new way for the development of drugs that target HNSCC in the future.

  3. An Arabidopsis thaliana high-affinity molybdate transporter required for efficient uptake of molybdate from soil.

    Science.gov (United States)

    Tomatsu, Hajime; Takano, Junpei; Takahashi, Hideki; Watanabe-Takahashi, Akiko; Shibagaki, Nakako; Fujiwara, Toru

    2007-11-20

    Molybdenum (Mo) is a trace element essential for living organisms, however no molybdate transporter has been identified in eukaryotes. Here, we report the identification of a molybdate transporter, MOT1, from Arabidopsis thaliana. MOT1 is expressed in both roots and shoots, and the MOT1 protein is localized, in part, to plasma membranes and to vesicles. MOT1 is required for efficient uptake and translocation of molybdate and for normal growth under conditions of limited molybdate supply. Kinetics studies in yeast revealed that the K(m) value of MOT1 for molybdate is approximately 20 nM. Furthermore, Mo uptake by MOT1 in yeast was not affected by coexistent sulfate, and MOT1 did not complement a sulfate transporter-deficient yeast mutant strain. These data confirmed that MOT1 is specific for molybdate and that the high affinity of MOT1 allows plants to obtain scarce Mo from soil.

  4. Enhanced toxicity and cellular uptake of methotrexate-conjugated nanoparticles in folate receptor-positive cancer cells by decorating with folic acid-conjugated d-α-tocopheryl polyethylene glycol 1000 succinate.

    Science.gov (United States)

    Junyaprasert, Varaporn Buraphacheep; Dhanahiranpruk, Sirithip; Suksiriworapong, Jiraphong; Sripha, Kittisak; Moongkarndi, Primchanien

    2015-12-01

    Folic acid-conjugated d-α-tocopheryl polyethylene glycol 1000 succinate (TPGS-FOL) decorated methotrexate (MTX)-conjugated nanoparticles were developed for targeted delivery of MTX to folate receptor-expressed tumor cells. The synthesis of TPGS-FOL followed 3-step process. Firstly, the terminal hydroxyl group of TPGS was converted to sulfonyl chloride using mesyl chloride in comparison with nosyl and tosyl chlorides. The highest conversion efficiency and yield were obtained by mesyl chloride due to the formation of higher reactive intermediate in a presence of triethylamine. Secondly, the substitution of sulfonyl group by sodium azide produced considerably high yield with conversion efficiency of over 90%. Lastly, the coupling reaction of azido-substituted TPGS and propargyl folamide by click reaction resulted in 96% conjugation efficiency without polymer degradation. To fabricate the folate receptor-targeted nanoparticles, 10 and 20%mol MTX-conjugated PEGylated poly(ϵ-caprolactone) nanoparticles were decorated with TPGS-FOL. The size and size distribution of MTX-conjugated nanoparticles relatively increased with %MTX. The MTX release from the nanoparticles was accelerated in acidic medium with an increase of %MTX but retarded in physiological pH medium. The decoration of TPGS-FOL onto the nanoparticles slightly enlarged the size and size distribution of the nanoparticles; however, it did not affect the surface charge. The cytotoxicity and cellular uptake of MCF-7 cells demonstrated that 10% MTX-conjugated nanoparticles and FOL-decorated nanoparticles possessed higher toxicity and uptake efficiency than 20% MTX-conjugated nanoparticles and undecorated nanoparticles, respectively. The results indicated that FOL-10% MTX-conjugated nanoparticles exhibited potential targeted delivery of MTX to folate receptor-expressed cancer cells.

  5. High-Throughput Assay Development for Cystine-Glutamate Antiporter (xc-) Highlights Faster Cystine Uptake than Glutamate Release in Glioma Cells.

    Science.gov (United States)

    Thomas, Ajit G; Sattler, Rita; Tendyke, Karen; Loiacono, Kara A; Hansen, Hans; Sahni, Vishal; Hashizume, Yutaka; Rojas, Camilo; Slusher, Barbara S

    2015-01-01

    The cystine-glutamate antiporter (system xc-) is a Na+-independent amino acid transporter that exchanges extracellular cystine for intracellular glutamate. It is thought to play a critical role in cellular redox processes through regulation of intracellular glutathione synthesis via cystine uptake. In gliomas, system xc- expression is universally up-regulated while that of glutamate transporters down-regulated, leading to a progressive accumulation of extracellular glutamate and excitotoxic cell death of the surrounding non-tumorous tissue. Additionally, up-regulation of system xc- in activated microglia has been implicated in the pathogenesis of several neurodegenerative disorders mediated by excess glutamate. Consequently, system xc- is a new drug target for brain cancer and neuroinflammatory diseases associated with excess extracellular glutamate. Unfortunately no potent and selective small molecule system xc- inhibitors exist and to our knowledge, no high throughput screening (HTS) assay has been developed to identify new scaffolds for inhibitor design. To develop such an assay, various neuronal and non-neuronal human cells were evaluated as sources of system xc-. Human glioma cells were chosen based on their high system xc- activity. Using these cells, [14C]-cystine uptake and cystine-induced glutamate release assays were characterized and optimized with respect to cystine and protein concentrations and time of incubation. A pilot screen of the LOPAC/NINDS libraries using glutamate release demonstrated that the logistics of the assay were in place but unfortunately, did not yield meaningful pharmacophores. A larger, HTS campaign using the 384-well cystine-induced glutamate release as primary assay and the 96-well 14C-cystine uptake as confirmatory assay is currently underway. Unexpectedly, we observed that the rate of cystine uptake was significantly faster than the rate of glutamate release in human glioma cells. This was in contrast to the same rates of

  6. Phagocytic uptake of oxidized heme polymer is highly cytotoxic to macrophages.

    Directory of Open Access Journals (Sweden)

    Rohitas Deshmukh

    Full Text Available Apoptosis in macrophages is responsible for immune-depression and pathological effects during malaria. Phagocytosis of PRBC causes induction of apoptosis in macrophages through release of cytosolic factors from infected cells. Heme polymer or β-hematin causes dose-dependent death of macrophages with LC50 of 132 µg/ml and 182 µg/ml respectively. The toxicity of hemin or heme polymer was amplified several folds in the presence of non-toxic concentration of methemoglobin. β-hematin uptake in macrophage through phagocytosis is crucial for enhanced toxicological effects in the presence of methemoglobin. Higher accumulation of β-hematin is observed in macrophages treated with β-hematin along with methemoglobin. Light and scanning electron microscopic observations further confirm accumulation of β-hematin with cellular toxicity. Toxicological potentiation of pro-oxidant molecules toward macrophages depends on generation of H2O2 and independent to release of free iron from pro-oxidant molecules. Methemoglobin oxidizes β-hematin to form oxidized β-hematin (βH* through single electron transfer mechanism. Pre-treatment of reaction mixture with spin-trap Phenyl-N-t-butyl-nitrone dose-dependently reverses the β-hematin toxicity, indicates crucial role of βH* generation with the toxicological potentiation. Acridine orange/ethidium bromide staining and DNA fragmentation analysis indicate that macrophage follows an oxidative stress dependent apoptotic pathway to cause death. In summary, current work highlights mutual co-operation between methemoglobin and different pro-oxidant molecules to enhance toxicity towards macrophages. Hence, methemoglobin peroxidase activity can be probed for subduing cellular toxicity of pro-oxidant molecules and it may in-turn make up for host immune response against the malaria parasite.

  7. Determination of cellular uptake and intracellular levels of Cenersen (Aezea(®), EL625), a p53 antisense oligonucleotide in acute myeloid leukemia cells.

    Science.gov (United States)

    Alachkar, Houda; Xie, Zhiliang; Marcucci, Guido; Chan, Kenneth K

    2012-12-01

    TP53 encodes for tumor protein p53. The suppression of p53 protein results in interruption of DNA repair mechanisms in dividing malignant cells thereby increasing the DNA damage and activating p53-independent mechanisms of apoptosis. This ultimately may translate into enhanced cytotoxic effects of standard chemotherapy. Based on this rationale, Cenersen, a phosphorothioate oligonucleotide antisense to p53-mRNA was synthesized and tested in clinical trials for patients with acute myeloid leukemia (AML). An important component of Cenersen clinical development is to develop a sensitive and specific method to quantify plasma and intracellular levels of Cenersen in different biologic matrices in order to determine tissue and intracellular distribution of the parent compound and its metabolites. Ultimately, this will allow us to determine pharmacokinetic and pharmacodynamic relationship for dose-effect correlation and design effective regimen to be rapidly translate into the clinic. An ELISA-based assay was adapted for assay development and validation of Cenersen in mouse plasma and cell lysate. Cellular uptake of Cenersen was studied in MV4-11 and KASUMI-1 AML cell lines. Real-time RT-PCR was used to measure P53-mRNA expression changes in treated cells. The assay had a limit of quantification of 35pmol/L in mouse plasma. Within-day and between-day precision of oligonucleotides was 0.06% and 0.4%, respectively. Cenersen was stable in mouse plasma up to 8h at 37°C. When exposed to 0.1-1μmol/L Cenersen, MV4-11 and KASUMI-1 cells showed intracellular concentration in the range of 9.97-45.34nmol/mg protein and 0.1-2.1nmol/mg protein, respectively. Successful downregulation of p53-mRNA expression was observed in Cenersen treated cells. This ELISA-based assay was applicable to plasma and intracellular concentration measurement of Cenersen. Assessment of achievable concentration of Cenersen in different biologic matrices will be useful to elucidate the biological and clinical

  8. Differential uptake and oxidative stress response in zebrafish fed a single dose of the principal copper and zinc enriched sub-cellular fractions of Gammarus pulex

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Farhan R., E-mail: f.khan@nhm.ac.uk [Nutritional Sciences Division, King' s College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH (United Kingdom); Bury, Nicolas R.; Hogstrand, Christer [Nutritional Sciences Division, King' s College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH (United Kingdom)

    2010-09-15

    The sub-cellular compartmentalisation of trace metals and its effect on trophic transfer and toxicity in the aquatic food chain has been a subject of growing interest. In the present study, the crustacean Gammarus pulex was exposed to either 11 {mu}g Cu l{sup -1}, added solely as the enriched stable isotope {sup 65}Cu, or 660 {mu}g Zn l{sup -1}, radiolabeled with 2MBq {sup 65}Zn, for 16 days. Post-exposure the heat stable cytosol containing metallothionein-like proteins (MTLP) and a combined granular and exoskeletal (MRG + exo) fractions were isolated by differential centrifugation, incorporated into gelatin and fed to zebrafish as a single meal. Assimilation efficiency (AE) and intestinal lipid peroxidation, as malondialdehyde (MDA) were measured. There was a significant difference (p < 0.05) between the retention of the MTLP-Zn (39.0 {+-} 6.4%) and MRG + exo-Zn (17.2 {+-} 3.7%) and of this zinc retained by the zebrafish a significantly greater proportion of the MTLP-Zn feed had been transported away from the site of uptake. For {sup 65}Cu, although the results pointed towards greater bioavailability of the MTLP fraction compared to MRG + exo during the slow elimination phase (24-72 h) these results were not significant (p = 0.155). Neither zinc feed provoked a lipid peroxidation response in the intestinal tissue of zebrafish compared to control fish (gelatin fed), but both {sup 65}Cu labeled feeds did. The greater effect was exerted by the MRG + exo (2.96 {+-} 0.29 nmol MDA mg protein{sup -1}) feed which three-fold greater than control (p < 0.01) and almost twice the MDA concentration of the MTLP feed (1.76 {+-} 0.21 nmol MDA mg protein{sup -1}, p < 0.05). The oxidative stress response produced by Zn and Cu is in keeping with their respective redox potentials; Zn being oxidatively inert and Cu being redox active. These results are similar, in terms of bioavailability and stress response of each feed, to those in our previous study in which {sup 109}Cd labeled G

  9. Polyamines regulate cell growth and cellular methylglyoxal in high-glucose medium independently of intracellular glutathione.

    Science.gov (United States)

    Kwak, Min-Kyu; Lee, Mun-Hyoung; Park, Seong-Jun; Shin, Sang-Min; Liu, Rui; Kang, Sa-Ouk

    2016-03-01

    Polyamines can presumably inhibit protein glycation, when associated with the methylglyoxal inevitably produced during glycolysis. Herein, we hypothesized a nonenzymatic interaction between putrescine and methylglyoxal in putrescine-deficient or -overexpressing Dictyostelium cells in high-glucose medium, which can control methylglyoxal production. Putrescine was essentially required for growth rescue accompanying methylglyoxal detoxification when cells underwent growth defect and cell cycle G1-arrest when supplemented with high glucose. Furthermore, methylglyoxal regulation by putrescine seemed to be a parallel pathway independent of the changes in cellular glutathione content in high-glucose medium. Consequently, we suggest that Dictyostelium cells need polyamines for normal growth and cellular methylglyoxal regulation.

  10. Phase-field simulation of formation of cellular dendrites and fine cellular structures at high growth velocities during directional solidification of Ti56Al44 alloy

    Institute of Scientific and Technical Information of China (English)

    LI Xin-zhong; GUO Jing-jie; SU Yan-qing; WU Shi-ping; FU Heng-zhi

    2005-01-01

    A phase-field model whose free energy of the solidification system derived from the Calphad thermodynamic modeling of phase diagram was used to simulate formation of cellular dendrites and fine cellular structures of Ti56Al44 alloy during directional solidification at high growth velocities. The liquid-solid phase transition of L→β was chosen. The dynamics of breakdown of initially planar interfaces into cellular dendrites and fine cellular structures were shown firstly at two growth velocities. Then the unidirectional free growths of two initial nucleations evolving to fine cellular dendrites were investigated. The tip splitting phenomenon is observed and the negative temperature gradient in the liquid represents its supercooling directional solidification. The simulation results show the realistic evolution of interfaces and microstructures and they agree with experimental one.

  11. Cystatins--Extra- and intracellular cysteine protease inhibitors: High-level secretion and uptake of cystatin C in human neuroblastoma cells.

    Science.gov (United States)

    Wallin, Hanna; Bjarnadottir, Maria; Vogel, Lotte K; Wassélius, Johan; Ekström, Ulf; Abrahamson, Magnus

    2010-11-01

    Cystatins are present in mammals, birds, fish, insects, plants, fungi and protozoa and constitute a large protein family, with most members sharing a cysteine protease inhibitory function. In humans 12 functional cystatins exist, forming three groups based on molecular organisation and distribution in the organism. The type 1 cystatins (A and B) are known as intracellular, type 2 cystatins (C, D, E/M, F, G, S, SN and SA) extracellular and type 3 cystatins (L- and H-kininogen) intravascular proteins. The present paper is focused on the human cystatins and especially those of type 2, which are directed (with signal peptides) for cellular export following translation. Results indicating existence of systems for significant internalisation of type 2 cystatins from the extracellular to intracellular compartments are reviewed. Data showing that human neuroblastoma cell lines generally secrete high levels, but also contain high amounts of cystatin C are presented. Culturing of these cells in medium containing cystatin C at concentrations found in body fluids resulted in increased intracellular cystatin C, as a result of an uptake process. At immunofluorescence cytochemistry a pronounced vesicular cystatin C staining was observed. The simplistic denotation of the type 2 cystatins as extracellular inhibitors is thus challenged, and possible biological functions of the internalised cystatins are discussed. To illustrate the special case of high cellular cystatin content seen in cells of patients with hereditary cystatin C amyloid angiopathy, expression vectors for wild-type and L68Q mutated cystatin C were used to transfect SK-N-BE(2) cells. Clones overexpressing the two variants showed increased secreted levels of cystatin C. Within the cells the L68Q variant appeared to mainly localise to the endoplasmic reticulum rather than to acidic vesicular organelles, indicating limitations in the transport out from the cell rather than increased uptake as explanation for the

  12. Highly porous organic polymers bearing tertiary amine group and their exceptionally high CO{sub 2} uptake capacities

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Ruth; Bhaumik, Asim, E-mail: msab@iacs.res.in

    2015-02-15

    We report a very simple and unique strategy for synthesis of a tertiary amine functionalized high surface area porous organic polymer (POP) PDVTA-1 through the co-polymerization of monomers divinylbenzene (DVB) and triallylamine (TAA) under solvothermal reaction conditions. Two different PDVTA-1 samples have been synthesized by varying the molar ratio of the monomers. The porous polymeric materials have been thoroughly characterized by solid state {sup 13}C CP MAS-NMR, FT-IR and UV–vis spectroscopy, N{sub 2} sorption, HR TEM and FE SEM to understand its chemical environment, nanostructure, bonding, morphology and related surface properties. PDVTA-1 with higher amine content (DVB/TAA=4.0) showed exceptionally high CO{sub 2} uptake capacity of 85.8 wt% (19.5 mmol g{sup −1}) at 273 K and 43.69 wt% (9.93 mmol g{sup −1}) at 298 K under 3 bar pressure, whereas relatively low amine loaded material (DVB/TAA=7.0) shows uptake capacity of 59.2 wt% (13.45 mmol g{sup −1}) at 273 K and 34.36 wt% (7.81 mmol g{sup −1}) at 298 K. Highly porous nanostructure together with very high surface area and basicity at the surface due to the presence of abundant basic tertiary amine N-sites in the framework of PDVTA-1 could be responsible for very high CO{sub 2} adsorption. - Graphical abstract: Exceptionally high CO2 uptake (85.8 wt % at 273 K) has been observed over a high surface area porous organic polymer PDVTA-1 synthesized through copolymerization of divinylbenzene and triallyl amine. - Highlights: • Designing the synthesis of a new N-rich cross-linked porous organic polymer PDVTA-1. • PDVTA-1 showed mesoporosity with very high surface area of 903 m{sup 2} g{sup −1}. • High surface area and presence of basic sites facilitates the CO{sub 2} uptake. • PDVTA-1 showed exceptionally high CO{sub 2} adsorption capacity of 85.8 wt% at 273 K, 3 bar pressure.

  13. Synthesis, characterisation, and in vitro cellular uptake kinetics of nanoprecipitated poly(2-methacryloyloxyethyl phosphorylcholine)- b-poly(2-(diisopropylamino)ethyl methacrylate) (MPC-DPA) polymeric nanoparticle micelles for nanomedicine applications

    Science.gov (United States)

    Salvage, Jonathan P.; Smith, Tia; Lu, Tao; Sanghera, Amendeep; Standen, Guy; Tang, Yiqing; Lewis, Andrew L.

    2016-10-01

    Nanoscience offers the potential for great advances in medical technology and therapies in the form of nanomedicine. As such, developing controllable, predictable, and effective, nanoparticle-based therapeutic systems remains a significant challenge. Many polymer-based nanoparticle systems have been reported to date, but few harness materials with accepted biocompatibility. Phosphorylcholine (PC) based biomimetic materials have a long history of successful translation into effective commercial medical technologies. This study investigated the synthesis, characterisation, nanoprecipitation, and in vitro cellular uptake kinetics of PC-based polymeric nanoparticle micelles (PNM) formed by the biocompatible and pH responsive block copolymer poly(2-methacryloyloxyethyl phosphorylcholine)- b-poly(2-(diisopropylamino)ethyl methacrylate) (MPC-DPA). Atom transfer radical polymerisation (ATRP), and gel permeation chromatography (GPC) were used to synthesise and characterise the well-defined MPC100-DPA100 polymer, revealing organic GPC, using evaporative light scatter detection, to be more accurate than aqueous GPC for this application. Subsequent nanoprecipitation investigations utilising photon correlation spectroscopy (PCS) revealed PNM size increased with polymer concentration, and conferred Cryo-stability. PNM diameters ranged from circa 64-69 nm, and increased upon hydrophobic compound loading, circa 65-71 nm, with loading efficiencies of circa 60 % achieved, whilst remaining monodisperse. In vitro studies demonstrated that the PNM were of low cellular toxicity, with colony formation and MTT assays, utilising V79 and 3T3 cells, yielding comparable results. Investigation of the in vitro cellular uptake kinetics revealed rapid, 1 h, cellular uptake of MPC100-DPA100 PNM delivered fluorescent probes, with fluorescence persistence for 48 h. This paper presents the first report of these novel findings, which highlight the potential of the system for nanomedicine application

  14. Synthesis, characterisation, and in vitro cellular uptake kinetics of nanoprecipitated poly(2-methacryloyloxyethyl phosphorylcholine-b-poly(2-(diisopropylaminoethyl methacrylate (MPC-DPA polymeric nanoparticle micelles for nanomedicine applications

    Directory of Open Access Journals (Sweden)

    Jonathan P. Salvage

    2016-01-01

    Full Text Available Abstract Nanoscience offers the potential for great advances in medical technology and therapies in the form of nanomedicine. As such, developing controllable, predictable, and effective, nanoparticle-based therapeutic systems remains a significant challenge. Many polymer-based nanoparticle systems have been reported to date, but few harness materials with accepted biocompatibility. Phosphorylcholine (PC based biomimetic materials have a long history of successful translation into effective commercial medical technologies. This study investigated the synthesis, characterisation, nanoprecipitation, and in vitro cellular uptake kinetics of PC-based polymeric nanoparticle micelles (PNM formed by the biocompatible and pH responsive block copolymer poly(2-methacryloyloxyethyl phosphorylcholine-b-poly(2-(diisopropylaminoethyl methacrylate (MPC-DPA. Atom transfer radical polymerisation (ATRP, and gel permeation chromatography (GPC were used to synthesise and characterise the well-defined MPC100-DPA100 polymer, revealing organic GPC, using evaporative light scatter detection, to be more accurate than aqueous GPC for this application. Subsequent nanoprecipitation investigations utilising photon correlation spectroscopy (PCS revealed PNM size increased with polymer concentration, and conferred Cryo-stability. PNM diameters ranged from circa 64–69 nm, and increased upon hydrophobic compound loading, circa 65–71 nm, with loading efficiencies of circa 60 % achieved, whilst remaining monodisperse. In vitro studies demonstrated that the PNM were of low cellular toxicity, with colony formation and MTT assays, utilising V79 and 3T3 cells, yielding comparable results. Investigation of the in vitro cellular uptake kinetics revealed rapid, 1 h, cellular uptake of MPC100-DPA100 PNM delivered fluorescent probes, with fluorescence persistence for 48 h. This paper presents the first report of these novel findings, which highlight the potential of the system

  15. Radioiodine therapy in hyperthyroid disease: poorer outcome in patients with high 24 hours radioiodine uptake

    DEFF Research Database (Denmark)

    Kristoffersen, Ulrik Sloth; Hesse, Birger; Rasmussen, Ase Krogh

    2006-01-01

    PURPOSE: To evaluate the importance of 24 h radioiodine uptake (24 h RIU) for the outcome of radioiodine treatment of hyperthyroidism. METHODS: Retrospective analysis of 72 patients who underwent radioiodine treatment for toxic goiter at our outpatient clinic [29 diffuse goiters (DG), 30 toxic...... multinodular goiters (TMG) and 13 toxic adenomas (TA)]. Thyroid status was determined by TSH, fT3 and fT4 levels, and outcome was rendered successful when hyperthyroidism was absent. Relation between low 24 h RIU (below median) or high 24 h RIU (above or equal to median) and outcome was evaluated. RESULTS......: Of patients with DG and low 24 h RIU, 15% remained hyperthyroid, as opposed to 56% of patients with DG and high 24 h RIU (Phyperthyroid, as opposed to 44% of patients with TMG and high 24 h RIU (P

  16. In-vitro Studies on Anticancer Activity and Cellular Uptake of Curcumin Nanosuspensions%姜黄素纳米混悬液的抗癌活性及细胞摄取研究

    Institute of Scientific and Technical Information of China (English)

    毕超; 王言才; 陈修平; 郑颖

    2013-01-01

    Objective To develop curcumin nanosuspensions(CUR-NS),and to study the anticancer activity and cellular uptake in vitro.Methods CUR-NS was prepared by anti-solvent precipitation method.Characterisation of the CUR-NS was investigated by dynamic laser light scattering and atomic force microscope.Cytotoxicity was evaluated by MTT assay in MCF-7 cells.High performance liquid chromatography(HPLC)was used for quantitative cellular uptake of curcumin solution and CUR-NS.Results CUR-NS with PVP as the stabiliser were successfully prepared.The mean particle size,polydispersion index and zeta potential values of CUR-NS were(69.65 ± 0.50)nm,0.34 ±0.03,and (-8.67 ± 0.26)mV,respectively.CUR-NS particles looked like sphere under atomic force microscope,and the particle diameter was in accordance with the results showed by grainsize analyzer,with good dispersibility while without polymerization or adhesion.A short-term stability study showed that CUR-NS were physically stable after storage at 4℃for over one month.The half maximal inhibitory concentration(IC50)values of curcumin solution and CUR-NS were (44.09 ± 0.93)and(36.23 ± 0.58)μmol· L-1,respectively,indicating that CUR-NS were superior to curcumin solution in terms of in-vitro anticancer activity.Compared with curcumin solution,CUR-NS showed significantly higher cellular uptake.Conclusion CUR-NS can be used as a potential delivery formulation for curcumin with enhanced anticancer activity and cellular uptake.%目的 制备姜黄素纳米混悬液(CUR-NS)并进行体外抗癌活性及细胞摄取研究.方法 采用反溶剂沉淀法制备CUR-NS.用粒度分析仪测定其粒径大小,同时用原子力显微镜进行形态学考察.采用MTT法检测姜黄素原药和CUR-NS对肿瘤细胞MCF-7的增殖抑制作用.同时,运用高效液相色谱法对药物细胞摄取进行定量研究.结果 CUR-NS的平均粒径为(69.65±0.50)nm,多分散系数为0.34±0.03,zeta电位为(-8.67±0.26)mV.原子力显微镜下观

  17. Effects of high NH4+ on K+ uptake, culm mechanical strength and grain filling in wheat

    Directory of Open Access Journals (Sweden)

    Lingan eKong

    2014-12-01

    Full Text Available It is well established that a high external NH4+ concentration depresses many processes in plant development, but the underlying mechanisms are still not well understood. To determine whether the negative effects of high levels of NH4+ are related to competitive cation uptake, wheat was grown in a field with moderate (18 g N m-2 and high (30 g N m-2 supplies of NH4+ in the presence or absence of additional K+ (6 g K2O m-2 to examine culm mechanical strength, the main components of the vascular bundle, nitrogen (N remobilization and the grain-filling rate. The results indicated that an excessive supply of NH4+ significantly decreased culm mechanical strength, the cellulose and lignin contents of vascular bundles, the N remobilization efficiency (NRE and the grain-filling rate compared with a moderate level of NH4+. The additional provision of K+ considerably alleviated these negative effects of high NH4+, resulting in a 19.41%-26.95% increase in culm mechanical strength during grain filling and a 34.59% increase in the NRE. An assay using the scanning ion-selective electrode technique (SIET showed that the net rate of transmembrane K+ influx decreased by 84.62%, and measurements using flame photometry demonstrated that the K+ content decreased by 36.13% in wheat plants subjected to high NH4+. This study indicates that the effects of high NH4+ on culm mechanical strength, cellulose and lignin contents, the NRE and the grain-filling rate are probably associated with inhibition of K+ uptake in wheat.

  18. Mapping cellular Fe-S cluster uptake and exchange reactions - divergent pathways for iron-sulfur cluster delivery to human ferredoxins.

    Science.gov (United States)

    Fidai, Insiya; Wachnowsky, Christine; Cowan, J A

    2016-12-07

    Ferredoxins are protein mediators of biological electron-transfer reactions and typically contain either [2Fe-2S] or [4Fe-4S] clusters. Two ferredoxin homologues have been identified in the human genome, Fdx1 and Fdx2, that share 43% identity and 69% similarity in protein sequence and both bind [2Fe-2S] clusters. Despite the high similarity, the two ferredoxins play very specific roles in distinct physiological pathways and cannot replace each other in function. Both eukaryotic and prokaryotic ferredoxins and homologues have been reported to receive their Fe-S cluster from scaffold/delivery proteins such as IscU, Isa, glutaredoxins, and Nfu. However, the preferred and physiologically relevant pathway for receiving the [2Fe-2S] cluster by ferredoxins is subject to speculation and is not clearly identified. In this work, we report on in vitro UV-visible (UV-vis) circular dichroism studies of [2Fe-2S] cluster transfer to the ferredoxins from a variety of partners. The results reveal rapid and quantitative transfer to both ferredoxins from several donor proteins (IscU, Isa1, Grx2, and Grx3). Transfer from Isa1 to Fdx2 was also observed to be faster than that of IscU to Fdx2, suggesting that Fdx2 could receive its cluster from Isa1 instead of IscU. Several other transfer combinations were also investigated and the results suggest a complex, but kinetically detailed map for cellular cluster trafficking. This is the first step toward building a network map for all of the possible iron-sulfur cluster transfer pathways in the mitochondria and cytosol, providing insights on the most likely cellular pathways and possible redundancies in these pathways.

  19. Relationship between cellular uptake rate and chemical behavior of diammine/diaminocyclohexane platinum (II) complexes with oxygen-ligating anionic groups.

    Science.gov (United States)

    Zou, J; Yang, X D; An, F; Wang, K

    1998-07-01

    The uptake kinetics of the platinum (II) complexes of the formula Pt(NH3)2X, Pt(dach)X by human erythrocyte in the plasma isotonic buffer was studied. The results showed that across-membrane transport of all the platinum complexes studied follows a first-order kinetic process. The uptake rate constants decrease with the change of oxygen-ligating anionic group in the sequence: sulfato > selenato > anion of squaric acid > oxalato > anion of demethylcantharic acid > malonato and increase with increasing lipophilicity of carrier group. The relationship between uptake rate and reactivity of these complexes was established. The stereochemistry of dach isomers was shown without effect on the reactivity and the sequence.

  20. Cellular transformation by human papillomaviruses: Lessons learned by comparing high- and low-risk viruses

    Science.gov (United States)

    Klingelhutz, Aloysius J.; Roman, Ann

    2013-01-01

    The oncogenic potential of papillomaviruses (PVs) has been appreciated since the 1930s yet the mechanisms of virally-mediated cellular transformation are still being revealed. Reasons for this include: a) the oncoproteins are multifunctional, b) there is an ever-growing list of cellular interacting proteins, c) more than one cellular protein may bind to a given region of the oncoprotein, and d) there is only limited information on the proteins encoded by the corresponding non-oncogenic PVs. The perspective of this review will be to contrast the activities of the viral E6 and E7 proteins encoded by the oncogenic human PVs (termed high-risk HPVs) to those encoded by their non-oncogenic counterparts (termed low-risk HPVs) in an attempt to sort out viral life cycle-related functions from oncogenic functions. The review will emphasize lessons learned from the cell culture studies of the HPVs causing mucosal/genital tract cancers. PMID:22284986

  1. Using Shared Memory As A Cache In High Performance Cellular Automata Water Flow Simulations

    Directory of Open Access Journals (Sweden)

    Paweł Topa

    2013-01-01

    Full Text Available Graphics processors (GPU -- Graphic Processor Units recently have gained a lot of interest as an efficient platform for general-purpose computation. Cellular Automata approach which is inherently parallel gives the opportunity to implement high performance simulations. This paper presents how shared memory in GPU can be used to improve performance for Cellular Automata models. In our previous works, we proposed algorithms for Cellular Automata model that use only a GPU global memory. Using a profiling tool, we found bottlenecks in our approach. We introduce modifications that takes an advantage of fast shared memory. The modified algorithm is presented in details, and the results of profiling and performance test are demonstrated. Our unique achievement is comparing the efficiency of the same algorithm working with a global and shared memory.

  2. Application of High-Resolution Magic-Angle Spinning NMR Spectroscopy to Define the Cell Uptake of MRI Contrast Agents

    Science.gov (United States)

    Calabi, Luisella; Alfieri, Goffredo; Biondi, Luca; De Miranda, Mario; Paleari, Lino; Ghelli, Stefano

    2002-06-01

    A new method, based on proton high-resolution magic-angle spinning ( 1H HR-MAS) NMR spectroscopy, has been employed to study the cell uptake of magnetic resonance imaging contrast agents (MRI-CAs). The method was tested on human red blood cells (HRBC) and white blood cells (HWBC) by using three gadolinium complexes, widely used in diagnostics, Gd-BOPTA, Gd-DTPA, and Gd-DOTA, and the analogous complexes obtained by replacing Gd(III) with Dy(III), Nd(III), and Tb(III) (i.e., complexes isostructural to the ones of gadolinium but acting as shift agents). The method is based on the evaluation of the magnetic effects, line broadening, or induced lanthanide shift (LIS) caused by these complexes on NMR signals of intra- and extracellular water. Since magnetic effects are directly linked to permeability, this method is direct. In all the tests, these magnetic effects were detected for the extracellular water signal only, providing a direct proof that these complexes are not able to cross the cell membrane. Line broadening effects (i.e., the use of gadolinium complexes) only allow qualitative evaluations. On the contrary, LIS effects can be measured with high precision and they can be related to the concentration of the paramagnetic species in the cellular compartments. This is possible because the HR-MAS technique provides the complete elimination of bulk magnetic susceptibility (BMS) shift and the differentiation of extra- and intracellular water signals. Thus with this method, the rapid quantification of the MRI-CA amount inside and outside the cells is actually feasible.

  3. Effects of anticonvulsants in vivo on high affinity choline uptake in vitro in mouse hippocampal synaptosomes.

    Science.gov (United States)

    Miller, J. A.; Richter, J. A.

    1985-01-01

    The effects of several anticonvulsant drugs on sodium-dependent high affinity choline uptake (HACU) in mouse hippocampal synaptosomes was investigated. HACU was measured in vitro after in vivo administration of the drug to mice. HACU was inhibited by drugs which have in common the ability to facilitate gamma-aminobutyric acid (GABA) transmission, pentobarbitone, phenobarbitone, barbitone, diazepam, chloridiazepoxide, and valproic acid. Dose-response relationships were determined for these drugs and the drugs' potencies at inhibiting HACU correlated well with their anticonvulsant potencies. Clonazepam, ethosuximide, carbamazepine, and barbituric acid had no effect on HACU in the doses used while phenytoin and trimethadione stimulated HACU. These results suggest that certain anticonvulsants may elicit a part of their anticonvulsant activity by modulating cholinergic neurones. This effect may be mediated through a GABA mechanism. PMID:3978310

  4. Synthesis and preliminary evaluation of n.c.a. iodoquine: a novel radiotracer with high uptake in cells with high ALDH1 expression.

    Science.gov (United States)

    Chin, Bennett B; Hjelemand, Anita; Rich, Jeremy; Song, Haijing; Lascola, Christopher; Storms, Robert; McLendon, Roger; Reiman, Robert; Greer, Kim L; Metzler, Scott D; McDougald, Darryl; Dai, Diana; Vaidyanathan, Ganesan

    2012-01-01

    Chloroquine has demonstrated high affinity for aldehyde dehydrogenase 1A1 (ALDH1), an enzyme expressed in the highly tumorigenic CD133+ brain tumor initiating subpopulation. The purpose of this study is to report the novel synthesis of a chloroquine analogue, n.c.a. iodoquine, and the in vitro and in vivo uptake in cells with high ALDH1 content. Iodoquine was synthesized in novel no-carrier-added forms (n.c.a.) for both 125I and 123I. I25I IQ and 18F FDG cell uptake assays were performed in the L1210 and L1210cpa (cyclophosphamide resistant), A549, and MG456 glioblastoma cell lines. Uptake was expressed as a percent of the administered activity. 125I IQ biodistribution studies assessed organ uptake at 1, 4, and 24 hours after IV administration (n= 15 total; 5 mice/timepoint). Radiation dosimetry estimates were calculated using standard OLINDA/EXM software. In vivo imaging of 123I IQ uptake in MG456 glioblastoma mouse model (n=10) was performed with small animal high resolution micro-SPECT. Autoradiography and histology co-localized radiotracer and tumor biodistribution. Uptake in MG456 glioblastoma tumors was quantified with gamma counting. L1210 cpa (high ALDH1) showed significantly higher 125I IQ uptake compared to the parental L1210 (low ALDH1) for all time points through 4 hours (20.7% ± 1.4% versus 11.0% ± 0.5%; 21.3% ± 0.9% versus 11.0% ± 0.4%; 20.6% ± 0.7% versus 9.4% ± 0.3%; and 15.7% ± 0.7% versus 7.5% + 0.4% at 30 minutes, and 1, 2 and 4 hours, respectively; p 0.001 for all time points). The A549 lung cancer cell line also showed high IQ uptake through 4 hours. IQ normal biodistribution studies showed rapid renal excretion and very low normal background brain activity after IV administration. In vivo micro-SPECT images showed mild uptake in larger MG456 glioblastomas (n=6) as verified with autoradiography and histology. Gamma well counter uptake in large tumors was 2.3% ± 0.48% ID/g (n=5). Iodoquine localizes to cells with high ALDH1 content. Cell

  5. Effect of thyroxine on cellular oxygen-consumption and glucose uptake: evidence of an effect of total T4 and not "free T4"

    DEFF Research Database (Denmark)

    Kvetny, J; Matzen, L E

    1990-01-01

    in human mononuclear blood cells. Cells were incubated in protein free medium and in human serum totally depleted of thyroid hormones by resin treatment and fixed amounts of T4 (total T4 = 0-50-100-5000 nmol/l; free T4 = 0-5-11-5600 pmol/l) were added. Thyroxine stimulated glucose uptake and oxygen...

  6. The AFT1 transcriptional factor is differentially required for expression of high-affinity iron uptake genes in Saccharomyces cerevisiae.

    Science.gov (United States)

    Casas, C; Aldea, M; Espinet, C; Gallego, C; Gil, R; Herrero, E

    1997-06-15

    High-affinity iron uptake in Saccharomyces cerevisiae involves the extracytoplasmic reduction of ferric ions by FRE1 and FRE2 reductases. Ferrous ions are then transported across the plasma membrane through the FET3 oxidase-FTR1 permease complex. Expression of the high-affinity iron uptake genes is induced upon iron deprivation. We demonstrate that AFT1 is differentially involved in such regulation. Aft1 protein is required for maintaining detectable non-induced level of FET3 expression and for induction of FRE2 in iron starvation conditions. On the contrary, FRE1 mRNA induction is normal in the absence of Aft1, although the existence of AFT1 point mutations causing constitutive expression of FRE1 (Yamaguchi-Iwai et al., EMBO J. 14: 1231-1239, 1995) indicates that Aft1 may also participate in FRE1 expression in a dispensable way. The alterations in the basal levels of expression of the high-affinity iron uptake genes may explain why the AFT1 mutant is unable to grow on respirable carbon sources. Overexpression of AFT1 leads to growth arrest of the G1 stage of the cell cycle. Aft1 is a transcriptional activator that would be part of the different transcriptional complexes interacting with the promoter of the high-affinity iron uptake genes. Aft1 displays phosphorylation modifications depending on the growth stage of the cells, and it might link induction of genes for iron uptake to other metabolically dominant requirement for cell growth.

  7. Hexa-arginine enhanced uptake and residualization of selective high affinity ligands by Raji lymphoma cells

    Directory of Open Access Journals (Sweden)

    Mirick Gary

    2009-04-01

    Full Text Available Abstract Background A variety of arginine-rich peptide sequences similar to those found in viral proteins have been conjugated to other molecules to facilitate their transport into the cytoplasm and nucleus of targeted cells. The selective high affinity ligand (SHAL (DvLPBaPPP2LLDo, which was developed to bind only to cells expressing HLA-DR10, has been conjugated to one of these peptide transduction domains, hexa-arginine, to assess the impact of the peptide on SHAL uptake and internalization by Raji cells, a B-cell lymphoma. Results An analog of the SHAL (DvLPBaPPP2LLDo containing a hexa-arginine peptide was created by adding six D-arginine residues sequentially to a lysine inserted in the SHAL's linker. SHAL binding, internalization and residualization by Raji cells expressing HLA-DR10 were examined using whole cell binding assays and confocal microscopy. Raji cells were observed to bind two fold more 111In-labeled hexa-arginine SHAL analog than Raji cells treated with the parent SHAL. Three fold more hexa-arginine SHAL remained associated with the Raji cells after washing, suggesting that the peptide also enhanced residualization of the 111In transported into cells. Confocal microscopy showed both SHALs localized in the cytoplasm of Raji cells, whereas a fraction of the hexa-arginine SHAL localized in the nucleus. Conclusion The incorporation of a hexa-D-arginine peptide into the linker of the SHAL (DvLPBaPPP2LLDo enhanced both the uptake and residualization of the SHAL analog by Raji cells. In contrast to the abundant cell surface binding observed with Lym-1 antibody, the majority of (DvLPBaPPP2LArg6AcLLDo and the parent SHAL were internalized. Some of the internalized hexa-arginine SHAL analog was also associated with the nucleus. These results demonstrate that several important SHAL properties, including uptake, internalization, retention and possibly intracellular distribution, can be enhanced or modified by conjugating the SHALs to a

  8. A Microfabricated 96-Well 3D Assay Enabling High-Throughput Quantification of Cellular Invasion Capabilities

    Science.gov (United States)

    Hao, Rui; Wei, Yuanchen; Li, Chaobo; Chen, Feng; Chen, Deyong; Zhao, Xiaoting; Luan, Shaoliang; Fan, Beiyuan; Guo, Wei; Wang, Junbo; Chen, Jian

    2017-01-01

    This paper presents a 96-well microfabricated assay to study three-dimensional (3D) invasion of tumor cells. A 3D cluster of tumor cells was first generated within each well by seeding cells onto a micro-patterned surface consisting of a central fibronectin-coated area that promotes cellular attachment, surrounded by a poly ethylene glycol (PEG) coated area that is resistant to cellular attachment. Following the formation of the 3D cell clusters, a 3D collagen extracellular matrix was formed in each well by thermal-triggered gelation. Invasion of the tumor cells into the extracellular matrix was subsequently initiated and monitored. Two modes of cellular infiltration were observed: A549 cells invaded into the extracellular matrix following the surfaces previously coated with PEG molecules in a pseudo-2D manner, while H1299 cells invaded into the extracellular matrix in a truly 3D manner including multiple directions. Based on the processing of 2D microscopic images, a key parameter, namely, equivalent invasion distance (the area of invaded cells divided by the circumference of the initial cell cluster) was obtained to quantify migration capabilities of these two cell types. These results validate the feasibility of the proposed platform, which may function as a high-throughput 3D cellular invasion assay. PMID:28240272

  9. New approach to modulate retinal cellular toxic effects of high glucose using marine epa and dha

    Directory of Open Access Journals (Sweden)

    Fagon Roxane

    2011-06-01

    Full Text Available Abstract Background Protective effects of omega-3 fatty acids against cellular damages of high glucose were studied on retinal pigmented epithelial (RPE cells. Methods Retinal epithelial cells were incubated with omega-3 marine oils rich in EPA and DHA and then with high glucose (25 mM for 48 hours. Cellular responses were compared to normal glucose (5 mM: intracellular redox status, reactive oxygen species (ROS, mitochondrial succinate deshydrogenase activity, inflammatory cytokines release and caveolin-1 expression were evaluated using microplate cytometry, ELISA and flow cytometry techniques. Fatty acids incorporation in retinal cell membranes was analysed using chromatography. Results Preincubation of the cells with fish oil decreased ROS overproduction, mitochondrial alterations and TNFα release. These protective effects could be attributed to an increase in caveolin-1 expression induced by marine oil. Conclusion Marine formulations rich in omega-3 fatty acids represent a promising therapeutic approach for diabetic retinopathy.

  10. High and typical {sup 18}F-FDG bowel uptake in patients treated with metformin

    Energy Technology Data Exchange (ETDEWEB)

    Gontier, Eric; Bonardel, Gerald; Mantzarides, Marina; Foehrenbach, Herve [Military Hospital Val-de-Grace, Department of Nuclear Medicine, Paris, cedex 05 (France); Fourme, Emmanuelle [Cancer Research Center Rene Huguenin, Department of Medical Statistics, Saint-Cloud (France); Wartski, Myriam; Pecking, Alain-Paul; Alberini, Jean-Louis [Cancer Research Center Rene Huguenin, Department of Nuclear Medicine, Saint-Cloud (France); Blondet, Cyrille [University Hospital of Strasbourg, Department of Nuclear Medicine, Strasbourg (France); Le Stanc, Elise [Foch Hospital, Department of Nuclear Medicine, Suresnes (France)

    2008-01-15

    This prospective and bi-centric study was conducted in order to determine the impact of antidiabetic treatments (AD) on {sup 18}F-FDG bowel uptake in type 2 diabetic patients. Fifty-five patients with previously diagnosed and treated type 2 diabetes mellitus (group 1) were divided in two subgroups: AD treatment including metformin (n=32; group 1a) and AD treatment excluding metformin (n=23; group 1b). The 95 patients without diabetes mellitus made up controls (group 2). {sup 18}F-FDG uptake in small intestine and colon was visually graded and semi-quantitatively measured using the maximum standardized uptake value. {sup 18}F-FDG bowel uptake was significantly increased in AD patients (group 1) as compared to controls (group 2) (p<0.001). Bowel uptake was significantly higher in AD patients including metformin (group 1a) as compared to AD patients excluding metformin (group 1b) (p<0.01), whose bowel uptake was not significantly different from controls (group 2). A metformin treatment was predictive of an increased bowel uptake in the small intestine (odds ratio OR=16.9, p<0.0001) and in the colon (OR=95.3, p<0.0001), independently of the other factors considered in the multivariate analysis. Bowel uptake pattern in the patients treated with metformin was typically intense, diffuse and continuous along the bowel, strongly predominant in the colon, in both the digestive wall and lumen. This study emphasizes that metformin significantly increases {sup 18}F-FDG uptake in colon and, to a lesser extent, in small intestine. It raises the question of stopping metformin treatment before an {sup 18}F-FDG PET/CT scan is performed for intra-abdominal neoplasic lesion assessment. (orig.)

  11. Two weeks of moderate intensity continuous training, but not high intensity interval training increases insulin-stimulated intestinal glucose uptake.

    Science.gov (United States)

    Motiani, Kumail Kumar; Savolainen, Anna M; Eskelinen, Jari-Joonas; Toivanen, Jussi; Ishizu, Tamiko; Yli-Karjanmaa, Minna; Virtanen, Kirsi A; Parkkola, Riitta; Kapanen, Jukka; Gronroos, Tove J; Haaparanta-Solin, Merja; Solin, Olof; Savisto, Nina; Ahotupa, Markku; Löyttyniemi, Eliisa; Knuuti, Juhani; Nuutila, Pirjo; Kalliokoski, Kari K; Hannukainen, Jarna C

    2017-02-09

    Similar to muscles, the intestine is also insulin resistant in obese subjects and subjects with impaired glucose tolerance. Exercise training improves muscle insulin sensitivity, but its effects on intestinal metabolism are not known. We studied the effects of high intensity interval training (HIIT) and moderate intensity continuous training (MICT) on intestinal glucose and free fatty acid uptake from circulation in humans. Twenty-eight healthy middle-aged sedentary men were randomized for two weeks of HIIT or MICT. Intestinal insulin-stimulated glucose uptake and fasting free fatty acid uptake from circulation were measured using positron emission tomography and [(18)F]FDG and [(18)F]FTHA. In addition, effects of HIIT and MICT on intestinal Glut2 and CD36 protein expression were studied in rats. Training improved aerobic capacity (p=0.001) and whole-body insulin sensitivity (p=0.04), but not differently between HIIT and MICT. Insulin-stimulated glucose uptake increased only after the MICT in the colon [HIIT=0%; MICT=37%] (p=0.02 for time*training) and tended to increase in the jejunum [HIIT=-4%; MICT=13%] (p=0.08 for time*training). Fasting free fatty acid uptake decreased in the duodenum in both groups [HIIT=-6%; MICT=-48%] (p=0.001 time) and tended to decrease in the colon in the MICT group [HIIT=0%; MICT=-38%] (p=0.08 for time*training). In rats, both training groups had higher Glut2 and CD36 expression compared to control animals. This study shows that already two weeks of MICT enhances insulin-stimulated glucose uptake while both training modes reduce fasting free fatty acid uptake in the intestine in healthy middle-aged men, providing an additional mechanism by which exercise training can improve whole body metabolism.

  12. Streptococcal serum opacity factor increases the rate of hepatocyte uptake of human plasma high-density lipoprotein cholesterol.

    Science.gov (United States)

    Gillard, Baiba K; Rosales, Corina; Pillai, Biju K; Lin, Hu Yu; Courtney, Harry S; Pownall, Henry J

    2010-11-16

    Serum opacity factor (SOF), a virulence determinant of Streptococcus pyogenes, converts plasma high-density lipoproteins (HDL) to three distinct species: lipid-free apolipoprotein (apo) A-I, neo HDL, a small discoidal HDL-like particle, and a large cholesteryl ester-rich microemulsion (CERM) that contains the cholesterol esters (CE) of up to ∼400000 HDL particles and apo E as its major protein. Similar SOF reaction products are obtained with HDL, total plasma lipoproteins, and whole plasma. We hypothesized that hepatic uptake of CERM-CE via multiple apo E-dependent receptors would be faster than that of HDL-CE. We tested our hypothesis using human hepatoma cells and lipoprotein receptor-specific Chinese hamster ovary (CHO) cells. The uptake of [(3)H]CE by HepG2 and Huh7 cells from HDL after SOF treatment, which transfers >90% of HDL-CE to CERM, was 2.4 and 4.5 times faster, respectively, than from control HDL. CERM-[(3)H]CE uptake was inhibited by LDL and HDL, suggestive of uptake by both the LDL receptor (LDL-R) and scavenger receptor class B type I (SR-BI). Studies in CHO cells specifically expressing LDL-R and SR-BI confirmed CERM-[(3)H]CE uptake by both receptors. RAP and heparin inhibit CERM-[(3)H]CE but not HDL-[(3)H]CE uptake, thereby implicating LRP-1 and cell surface proteoglycans in this process. These data demonstrate that SOF treatment of HDL increases the rate of CE uptake via multiple hepatic apo E receptors. In so doing, SOF might increase the level of hepatic disposal of plasma cholesterol in a way that is therapeutically useful.

  13. High-affinity uptake of kynurenine and nitric oxide-mediated inhibition of indoleamine 2,3-dioxygenase in bone marrow-derived myeloid dendritic cells.

    Science.gov (United States)

    Hara, Toshiaki; Ogasawara, Nanako; Akimoto, Hidetoshi; Takikawa, Osamu; Hiramatsu, Rie; Kawabe, Tsutomu; Isobe, Ken-Ichi; Nagase, Fumihiko

    2008-02-15

    Indoleamine 2,3-dioxygenase (IDO)-initiated tryptophan metabolism along the kynurenine (Kyn) pathway in some dendritic cells (DC) such as plasmacytoid DC (pDC) regulates T-cell responses. It is unclear whether bone marrow-derived myeloid DC (BMDC) express functional IDO. The IDO expression was examined in CD11c(+)CD11b(+) BMDC differentiated from mouse bone marrow cells using GM-CSF. CpG oligodeoxynucleotides (CpG) induced the expression of IDO protein with the production of nitric oxide (NO) in BMDC in cultures for 24h. In the enzyme assay using cellular extracts of BMDC, the IDO activity of BMDC stimulated with CpG was enhanced by the addition of a NO synthase (NOS) inhibitor, suggesting that IDO activity was suppressed by NO production. On the other hand, the concentration of Kyn in the culture supernatant of BMDC was not increased by stimulation with CpG. Exogenously added Kyn was taken up by BMDC independently of CpG stimulation and NO production, and the uptake of Kyn was inhibited by a transport system L-specific inhibitor or high concentrations of tryptophan. The uptake of tryptophan by BMDC was markedly lower than that of Kyn. In conclusion, IDO activity in BMDC is down-regulated by NO production, whereas BMDC strongly take up exogenous Kyn.

  14. Cytomegalovirus Destruction of Focal Adhesions Revealed in a High-Throughput Western Blot Analysis of Cellular Protein Expression† ▿

    OpenAIRE

    Stanton, Richard James; McSharry, Brian Patrick; Rickards, Carole Ruth; Wang, Edward Chung Yern; Tomasec, Peter; Wilkinson, Gavin William Grahame

    2007-01-01

    Human cytomegalovirus (HCMV) systematically manages the expression of cellular functions, rather than exerting the global shutoff of host cell protein synthesis commonly observed with other herpesviruses during the lytic cycle. While microarray technology has provided remarkable insights into viral control of the cellular transcriptome, HCMV is known to encode multiple mechanisms for posttranscriptional and posttranslation regulation of cellular gene expression. High-throughput Western blotti...

  15. High uptake of HIV testing in pregnant women in Ontario, Canada.

    Directory of Open Access Journals (Sweden)

    Robert S Remis

    Full Text Available In 1999, Ontario implemented a policy to offer HIV counseling and testing to all pregnant women and undertook measures to increase HIV testing. We evaluated the effectiveness of the new policy by examining HIV test uptake, the number of HIV-infected women identified and, in 2002, the HIV rate in women not tested during prenatal care. We analyzed test uptake among women receiving prenatal care from 1999 to 2010. We examined HIV test uptake and HIV rate by year, age and health region. In an anonymous, unlinked study, we determined the HIV rate in pregnant women not tested. Prenatal HIV test uptake in Ontario increased dramatically, from 33% in the first quarter of 1999 to 96% in 2010. Test uptake was highest in younger women but increased in all age groups. All health regions improved and experienced similar test uptake in recent years. The HIV rate among pregnant women tested in 2010 was 0.13/1,000; in Toronto, the rate was 0.28 per 1,000. In the 2002 unlinked study, the HIV rate was 0.62/1,000 among women not tested in pregnancy compared to 0.31/1,000 among tested women. HIV incidence among women who tested more than once was 0.05/1,000 person-years. In response to the new policy in Ontario, prenatal HIV testing uptake improved dramatically among women in all age groups and health regions. A reminder to physicians who had not ordered a prenatal HIV test appeared to be very effective. In 2002, the HIV rate in women who were not tested was twice that of tested women: though 77% of pregnant women had been tested, only 63% of HIV-infected women were tested. HIV testing uptake was estimated at 98% in 2010.

  16. A Highly Conserved Bacterial D-Serine Uptake System Links Host Metabolism and Virulence.

    Science.gov (United States)

    Connolly, James P R; Gabrielsen, Mads; Goldstone, Robert J; Grinter, Rhys; Wang, Dai; Cogdell, Richard J; Walker, Daniel; Smith, David G E; Roe, Andrew J

    2016-01-01

    The ability of any organism to sense and respond to challenges presented in the environment is critically important for promoting or restricting colonization of specific sites. Recent work has demonstrated that the host metabolite D-serine has the ability to markedly influence the outcome of infection by repressing the type III secretion system of enterohaemorrhagic Escherichia coli (EHEC) in a concentration-dependent manner. However, exactly how EHEC monitors environmental D-serine is not understood. In this work, we have identified two highly conserved members of the E. coli core genome, encoding an inner membrane transporter and a transcriptional regulator, which collectively help to "sense" levels of D-serine by regulating its uptake from the environment and in turn influencing global gene expression. Both proteins are required for full expression of the type III secretion system and diversely regulated prophage-encoded effector proteins demonstrating an important infection-relevant adaptation of the core genome. We propose that this system acts as a key safety net, sampling the environment for this metabolite, thereby promoting colonization of EHEC to favorable sites within the host.

  17. A Highly Conserved Bacterial D-Serine Uptake System Links Host Metabolism and Virulence.

    Directory of Open Access Journals (Sweden)

    James P R Connolly

    2016-01-01

    Full Text Available The ability of any organism to sense and respond to challenges presented in the environment is critically important for promoting or restricting colonization of specific sites. Recent work has demonstrated that the host metabolite D-serine has the ability to markedly influence the outcome of infection by repressing the type III secretion system of enterohaemorrhagic Escherichia coli (EHEC in a concentration-dependent manner. However, exactly how EHEC monitors environmental D-serine is not understood. In this work, we have identified two highly conserved members of the E. coli core genome, encoding an inner membrane transporter and a transcriptional regulator, which collectively help to "sense" levels of D-serine by regulating its uptake from the environment and in turn influencing global gene expression. Both proteins are required for full expression of the type III secretion system and diversely regulated prophage-encoded effector proteins demonstrating an important infection-relevant adaptation of the core genome. We propose that this system acts as a key safety net, sampling the environment for this metabolite, thereby promoting colonization of EHEC to favorable sites within the host.

  18. The role of the cell cycle in the cellular uptake of folate-modified poly(l-amino acid) micelles in a cell population

    Science.gov (United States)

    Tang, Jihui; Liu, Ziwei; Ji, Fenqi; Li, Yao; Liu, Junjie; Song, Jian; Li, Jun; Zhou, Jianping

    2015-12-01

    Nanoparticles are widely recognized as a vehicle for tumor-targeted therapies. There are many factors that can influence the uptake of nanoparticles, such as the size of the nanoparticles, and/or their shape, elasticity, surface charge and even the cell cycle phase. However, the influence of the cell cycle on the active targeting of a drug delivery system has been unknown until now. In this study, we initially investigated the folate receptor α (FR-α) expression in different phases of HeLa cells by flow cytometric and immunocytochemical methods. The results obtained showed that FR-α expression was cell cycle-dependent, i.e. the S cells' folate receptor expression was the highest as the cell progressed through its cycle. Then, we used folate modified poly(l-amino acid) micelles (FA-PM) as an example to investigate the influence of the cell cycle on the active targeting drug delivery system. The results obtained indicated that the uptake of FA-PM by cells was influenced by the cell cycle phase, and the S cells took up the greatest number of folate conjugated nanoparticles. Our findings suggest that future studies on ligand-mediated active targeting preparations should consider the cell cycle, especially when this system is used for a cell cycle-specific drug.

  19. HIV-1 Rev–binding protein accelerates cellular uptake of iron to drive Notch-induced T cell leukemogenesis in mice

    Science.gov (United States)

    Khwaja, Shariq S.; Liu, Hudan; Tong, Caili; Jin, Fang; Pear, Warren S.; van Deursen, Jan; Bram, Richard J.

    2010-01-01

    Somatic activating mutations in Notch1 contribute to the pathogenesis of T cell acute lymphoblastic lymphoma (T-ALL), but how activated Notch1 signaling exerts this oncogenic effect is not completely understood. Here we identify HIV-1 Rev–binding protein (Hrb), a component of the clathrin-mediated endocytosis machinery, as a critical mediator of Notch-induced T-ALL development in mice. Hrb was found to be a direct transcriptional target of Notch1, and Hrb loss reduced the incidence or delayed the onset of T-ALL in mouse models in which activated Notch1 signaling either contributes to or drives leukemogenesis. Consistent with this observation, Hrb supported survival and proliferation of hematopoietic and T cell precursor cells in vitro. We demonstrated that Hrb accelerated the uptake of transferrin, which was required for upregulation of the T cell protooncogene p21. Indeed, iron-deficient mice developed Notch1-induced T-ALL substantially more slowly than control mice, further supporting a critical role for iron uptake during leukemogenesis. Taken together, these results reveal that Hrb is a critical Notch target gene that mediates lymphoblast transformation and disease progression via its ability to satisfy the enhanced demands of transformed lymphoblasts for iron. Further, our data suggest that Hrb may be targeted to improve current treatment or design novel therapies for human T-ALL patients. PMID:20516639

  20. Dense and Cellular Zirconia Produced by Gel Casting with Agar: Preparation and High Temperature Characterization

    Directory of Open Access Journals (Sweden)

    Jean-Marc Tulliani

    2013-01-01

    Full Text Available A modified gel-casting process was developed to produce both dense and highly porous (40% volume yttria tetragonal zirconia polycrystal (Y-TZP using agar, a natural polysaccharide, as gelling agent. A fugitive phase, made of commercial polyethylene spheres, was added to the ceramic suspension before gelling to produce cellular ceramic structures. The characterization of the microstructural features of both dense and cellular ceramics was carried out by FEG SEM analysis of cross-sections produced by focused ion beam. The mechanical properties of the components were characterized at room temperature by nanoindentation tests in continuous stiffness measurement mode, by investigating the direct effect of the presence of residual microporosity. The presence of a diffuse residual microporosity from incomplete gel deaeration resulted in a decay of the bending strength and of the elastic modulus. The mechanical behavior of both dense and cellular zirconia (in terms of elastic modulus, flexural strength, and deformation at rupture was investigated by performing four-point bending tests at the temperature of 1500°C.

  1. Correlation of high {sup 18}F-FDG uptake to clinical, pathological and biological prognostic factors in breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Groheux, David; Moretti, Jean-Luc; Hindie, Elif [Department of Nuclear Medicine, Saint-Louis Hospital,Assistance publique Hopitaux de Paris, Paris Cedex 10 (France); IUH, Doctoral School, University of Paris VII, Paris (France); Giacchetti, Sylvie; Espie, Marc; Hamy, Anne-Sophie; Cuvier, Caroline [Breast Diseases Unit, Saint-Louis Hospital, Department of Medical Oncology, Paris (France); Porcher, Raphael [Saint-Louis Hospital, Department of Biostatistics and Medical Information, Paris (France); Lehmann-Che, Jacqueline [Saint-Louis Hospital, Department of Biochemistry, Paris (France); Roquancourt, Anne de [Saint-Louis Hospital, Department of Pathology, Paris (France); Vercellino, Laetitia [Department of Nuclear Medicine, Saint-Louis Hospital, Assistance publique Hopitaux de Paris, Paris Cedex 10 (France)

    2011-03-15

    The aim of this study was to determine the impact of the main clinicopathological and biological prognostic factors of breast cancer on {sup 18}F-fluorodeoxyglucose (FDG) uptake. Only women with tumours larger than 20 mm (T2-T4) were included in order to minimize bias of partial volume effect. In this prospective study, 132 consecutive women received FDG PET/CT imaging before starting neoadjuvant chemotherapy. Maximum standardized uptake values (SUV{sub max}) were compared to tumour characteristics as assessed on core biopsy. There was no influence of T and N stage on SUV. Invasive ductal carcinoma showed higher SUV than lobular carcinoma. However, the highest uptake was found for metaplastic tumours, representing 5% of patients in this series. Several biological features usually considered as bad prognostic factors were associated with an increase in FDG uptake: the median of SUV{sub max} was 9.7 for grade 3 tumours vs 4.8 for the lower grades (p < 0.0001); negativity for oestrogen receptors (ER) was associated with higher SUV (ER+ SUV = 5.5; ER- SUV = 7.6; p = 0.003); triple-negative tumours (oestrogen and progesterone receptor negative, no overexpression of c-erbB-2) had an SUV of 9.2 vs 5.8 for all others (p = 0005); p53 mutated tumours also had significantly higher SUV (7.8 vs 5.0; p < 0.0001). Overexpression of c-erbB-2 had no effect on the SUV value. Knowledge of the factors influencing uptake is important when interpreting FDG PET/CT scans. Also, findings that FDG uptake is highest in those patients with poor prognostic features (high grade, hormone receptor negativity, triple negativity, metaplastic tumours) is helpful to determine who are the best candidates for baseline staging. (orig.)

  2. Cellular uptake and cell-to-cell transfer of polyelectrolyte microcapsules within a triple co-culture system representing parts of the respiratory tract

    Science.gov (United States)

    Kuhn, Dagmar A.; Hartmann, Raimo; Fytianos, Kleanthis; Petri-Fink, Alke; Rothen-Rutishauser, Barbara; Parak, Wolfgang J.

    2015-06-01

    Polyelectrolyte multilayer microcapsules around 3.4 micrometers in diameter were added to epithelial cells, monocyte-derived macrophages, and dendritic cells in vitro and their uptake kinetics were quantified. All three cell types were combined in a triple co-culture model, mimicking the human epithelial alveolar barrier. Hereby, macrophages were separated in a three-dimensional model from dendritic cells by a monolayer of epithelial cells. While passing of small nanoparticles has been demonstrated from macrophages to dendritic cells across the epithelial barrier in previous studies, for the micrometer-sized capsules, this process could not be observed in a significant amount. Thus, this barrier is a limiting factor for cell-to-cell transfer of micrometer-sized particles.

  3. Punicalagin exerts protective effect against high glucose-induced cellular stress and neural tube defects.

    Science.gov (United States)

    Zhong, Jianxiang; Reece, E Albert; Yang, Peixin

    2015-11-13

    Maternal diabetes-induced birth defects remain a significant health problem. Studying the effect of natural compounds with antioxidant properties and minimal toxicities on diabetic embryopathy may lead to the development of new and safe dietary supplements. Punicalagin is a primary polyphenol found in pomegranate juice, which possesses antioxidant, anti-inflammatory and anti-tumorigenic properties, suggesting a protective effect of punicalagin on diabetic embryopathy. Here, we examined whether punicalagin could reduce high glucose-induced neural tube defects (NTDs), and if this rescue occurs through blockage of cellular stress and caspase activation. Embryonic day 8.5 (E8.5) mouse embryos were cultured for 24 or 36 h with normal (5 mM) glucose or high glucose (16.7 mM), in presence or absence of 10 or 20 μM punicalagin. 10 μM punicalagin slightly reduced NTD formation under high glucose conditions; however, 20 μM punicalagin significantly inhibited high glucose-induced NTD formation. Punicalagin suppressed high glucose-induced lipid peroxidation marker 4-hydroxynonenal, nitrotyrosine-modified proteins, and lipid peroxides. Moreover, punicalagin abrogated endoplasmic reticulum stress by inhibiting phosphorylated protein kinase ribonucleic acid (RNA)-like ER kinase (p-PERK), phosphorylated inositol-requiring protein-1α (p-IRE1α), phosphorylated eukaryotic initiation factor 2α (p-eIF2α), C/EBP-homologous protein (CHOP), binding immunoglobulin protein (BiP) and x-box binding protein 1 (XBP1) mRNA splicing. Additionally, punicalagin suppressed high glucose-induced caspase 3 and caspase 8 cleavage. Punicalagin reduces high glucose-induced NTD formation by blocking cellular stress and caspase activation. These observations suggest punicalagin supplements could mitigate the teratogenic effects of hyperglycemia in the developing embryo, and possibly prevent diabetes-induced NTDs.

  4. Ultrasmall Glutathione-Protected Gold Nanoclusters as Next Generation Radiotherapy Sensitizers with High Tumor Uptake and High Renal Clearance

    CERN Document Server

    Zhang, Xiao-Dong; Chen, Jie; Song, Shasha; Yuan, Xun; Shen, Xiu; Wang, Hao; Sun, Yuanming; Gao, Kai; Zhang, Lianfeng; Fan, Saijun; Leong, David Tai; Guo, Meili; Xie, Jianping

    2015-01-01

    Radiotherapy is often the most straightforward first line cancer treatment for solid tumors. While it is highly effective against tumors, there is also collateral damage to healthy proximal tissues especially with high doses. The use of radiosensitizers is an effective way to boost the killing efficacy of radiotherapy against the tumor while drastically limiting the received dose and reducing the possible damage to normal tissues. Here, we report the design and application of a good radiosensitizer by using ultrasmall gold nanoclusters with a naturally occurring peptide (e.g., glutathione or GSH) as the protecting shell. The GSH coated gold nanoclusters can escape the RES absorption, leading to a good tumor uptake (8.1% ID/g at 24 h post injection). As a result, the as-designed Au nanoclusters led to a strong enhancement for radiotherapy, as well as a negligible damage to normal tissues. After the treatment, the ultrasmall gold nanoclusters can be efficiently cleared by the kidney, thereby avoiding potential ...

  5. Nanomolar Caffeic Acid Decreases Glucose Uptake and the Effects of High Glucose in Endothelial Cells.

    Directory of Open Access Journals (Sweden)

    Lucia Natarelli

    Full Text Available Epidemiological studies suggest that moderate and prolonged consumption of coffee is associated with a reduced risk of developing type 2 diabetes but the molecular mechanisms underlying this effect are not known. In this study, we report the effects of physiological concentrations of caffeic acid, easily achievable by normal dietary habits, in endothelial cells cultured in 25 mM of glucose (high glucose, HG. In HG, the presence of 10 nM caffeic acid was associated with a decrease of glucose uptake but not to changes of GLUT-1 membrane localization or mRNA levels. Moreover, caffeic acid countered HG-induced loss of barrier integrity, reducing actin rearrangement and FITC-dextran passage. The decreased flux of glucose associated to caffeic acid affected HG induced apoptosis by down-regulating the expression of initiator (caspase 8 and 9 and effector caspases (caspase 7 and 3 and by increasing the levels of phosphorylated Bcl-2. We also observed that caffeic acid in HG condition was associated to a reduction of p65 subunit nuclear levels with respect to HG alone. NF-κB activation has been shown to lead to apoptosis in HG treated cells and the analysis of the expression of a panel of about 90 genes related to NF-κB signaling pathway revealed that caffeic acid significantly influenced gene expression changes induced by HG. In conclusion, our results suggest that caffeic acid, decreasing the metabolic stress induced by HG, allows the activation of survival mechanisms mediated by a different modulation of NF-κB-related signaling pathways and to the activation of anti-apoptotic proteins.

  6. Cytotoxicity of CdTe quantum dots in human umbilical vein endothelial cells: the involvement of cellular uptake and induction of pro-apoptotic endoplasmic reticulum stress.

    Science.gov (United States)

    Yan, Ming; Zhang, Yun; Qin, Haiyan; Liu, Kezhou; Guo, Miao; Ge, Yakun; Xu, Mingen; Sun, Yonghong; Zheng, Xiaoxiang

    2016-01-01

    Cadmium telluride quantum dots (CdTe QDs) have been proposed to induce oxidative stress, which plays a crucial role in CdTe QDs-mediated mitochondrial-dependent apoptosis in human umbilical vein endothelial cells (HUVECs). However, the direct interactions of CdTe QDs with HUVECs and their potential impairment of other organelles like endoplasmic reticulum (ER) in HUVECs are poorly understood. In this study, we reported that the negatively charged CdTe QDs (-21.63±0.91 mV), with good dispersity and fluorescence stability, were rapidly internalized via endocytosis by HUVECs, as the notable internalization could be inhibited up to 95.52% by energy depletion (NaN3/deoxyglucose or low temperature). The endocytosis inhibitors (methyl-β-cyclodextrin, genistein, sucrose, chlorpromazine, and colchicine) dramatically decreased the uptake of CdTe QDs by HUVECs, suggesting that both caveolae/raft- and clathrin-mediated endocytosis were involved in the endothelial uptake of CdTe QDs. Using immunocytochemistry, a striking overlap of the internalized CdTe QDs and ER marker was observed, which indicates that QDs may be transported to ER. The CdTe QDs also caused remarkable ER stress responses in HUVECs, confirmed by significant dilatation of ER cisternae, upregulation of ER stress markers GRP78/GRP94, and activation of protein kinase RNA-like ER kinase-eIF2α-activating transcription factor 4 pathway (including phosphorylation of both protein kinase RNA-like ER kinase and eIF2α and elevated level of activating transcription factor 4). CdTe QDs further promoted an increased C/EBP homologous protein expression, phosphorylation of c-JUN NH2-terminal kinase, and cleavage of ER-resident caspase-4, while the specific inhibitor (SP600125, Z-LEVD-fmk, or salubrinal) significantly attenuated QDs-triggered apoptosis, indicating that all three ER stress-mediated apoptosis pathways were activated and the direct participation of ER in the CdTe QDs-caused apoptotic cell death in HUVECs. Our

  7. Aldolase B knockdown prevents high glucose-induced methylglyoxal overproduction and cellular dysfunction in endothelial cells.

    Directory of Open Access Journals (Sweden)

    Jianghai Liu

    Full Text Available We used cultured endothelial cells as a model to examine whether up-regulation of aldolase B and enhanced methylglyoxal (MG formation play an important role in high glucose-induced overproduction of advanced glycosylation endproducts (AGEs, oxidative stress and cellular dysfunction. High glucose (25 mM incubation up-regulated mRNA levels of aldose reductase (an enzyme converting glucose to fructose and aldolase B (a key enzyme that catalyzes MG formation from fructose and enhanced MG formation in human umbilical vein endothelial cells (HUVECs and HUVEC-derived EA. hy926 cells. High glucose-increased MG production in EA. hy926 cells was completely prevented by siRNA knockdown of aldolase B, but unaffected by siRNA knockdown of aldolase A, an enzyme responsible for MG formation during glycolysis. In addition, inhibition of cytochrome P450 2E1 or semicarbazide-sensitive amine oxidase which produces MG during the metabolism of lipid and proteins, respectively, did not alter MG production. Both high glucose (25 mM and MG (30, 100 µM increased the formation of N(ε-carboxyethyl-lysine (CEL, a MG-induced AGE, oxidative stress (determined by the generation of oxidized DCF, H(2O(2, protein carbonyls and 8-oxo-dG, O-GlcNAc modification (product of the hexosamine pathway, membrane protein kinase C activity and nuclear translocation of NF-κB in EA. hy926 cells. However, the above metabolic and signaling alterations induced by high glucose were completely prevented by knockdown of aldolase B and partially by application of aminoguanidine (a MG scavenger or alagebrium (an AGEs breaker. In conclusion, efficient inhibition of aldolase B can prevent high glucose-induced overproduction of MG and related cellular dysfunction in endothelial cells.

  8. Quantitative high content imaging of cellular adaptive stress response pathways in toxicity for chemical safety assessment.

    Science.gov (United States)

    Wink, Steven; Hiemstra, Steven; Huppelschoten, Suzanna; Danen, Erik; Niemeijer, Marije; Hendriks, Giel; Vrieling, Harry; Herpers, Bram; van de Water, Bob

    2014-03-17

    Over the past decade, major leaps forward have been made on the mechanistic understanding and identification of adaptive stress response landscapes underlying toxic insult using transcriptomics approaches. However, for predictive purposes of adverse outcome several major limitations in these approaches exist. First, the limited number of samples that can be analyzed reduces the in depth analysis of concentration-time course relationships for toxic stress responses. Second these transcriptomics analysis have been based on the whole cell population, thereby inevitably preventing single cell analysis. Third, transcriptomics is based on the transcript level, totally ignoring (post)translational regulation. We believe these limitations are circumvented with the application of high content analysis of relevant toxicant-induced adaptive stress signaling pathways using bacterial artificial chromosome (BAC) green fluorescent protein (GFP) reporter cell-based assays. The goal is to establish a platform that incorporates all adaptive stress pathways that are relevant for toxicity, with a focus on drug-induced liver injury. In addition, cellular stress responses typically follow cell perturbations at the subcellular organelle level. Therefore, we complement our reporter line panel with reporters for specific organelle morphometry and function. Here, we review the approaches of high content imaging of cellular adaptive stress responses to chemicals and the application in the mechanistic understanding and prediction of chemical toxicity at a systems toxicology level.

  9. Highly efficient enzyme encapsulation in a protein nanocage: towards enzyme catalysis in a cellular nanocompartment mimic

    Science.gov (United States)

    Schoonen, Lise; Nolte, Roeland J. M.; van Hest, Jan C. M.

    2016-07-01

    The study of enzyme behavior in small nanocompartments is crucial for the understanding of biocatalytic processes in the cellular environment. We have developed an enzymatic conjugation strategy to attach a model enzyme to the interior of a cowpea chlorotic mottle virus capsid. It is shown that with this methodology high encapsulation efficiencies can be achieved. Additionally, we demonstrate that the encapsulation does not affect the enzyme performance in terms of a decreased activity or a hampered substrate diffusion. Finally, it is shown that the encapsulated enzymes are protected against proteases. We believe that our strategy can be used to study enzyme kinetics in an environment that approaches physiological conditions.The study of enzyme behavior in small nanocompartments is crucial for the understanding of biocatalytic processes in the cellular environment. We have developed an enzymatic conjugation strategy to attach a model enzyme to the interior of a cowpea chlorotic mottle virus capsid. It is shown that with this methodology high encapsulation efficiencies can be achieved. Additionally, we demonstrate that the encapsulation does not affect the enzyme performance in terms of a decreased activity or a hampered substrate diffusion. Finally, it is shown that the encapsulated enzymes are protected against proteases. We believe that our strategy can be used to study enzyme kinetics in an environment that approaches physiological conditions. Electronic supplementary information (ESI) available: Experimental procedures for the cloning, expression, and purification of all proteins, as well as supplementary figures and calculations. See DOI: 10.1039/c6nr04181g

  10. Antibodies that neutralize cellular uptake of elosulfase alfa are not associated with reduced efficacy or pharmacodynamic effect in individuals with Morquio A syndrome.

    Science.gov (United States)

    Melton, Andrew C; Soon, Russell K; Tompkins, Troy; Long, Brian; Schweighardt, Becky; Qi, Yulan; Vitelli, Catherine; Bagri, Anil; Decker, Celeste; O'Neill, Charles A; Zoog, Stephen J; Jesaitis, Lynne

    2017-01-01

    Many enzyme replacement therapies (ERTs) for lysosomal storage disorders use the cell-surface cation-independent mannose-6 phosphate receptor (CI-M6PR) to deliver ERTs to the lysosome. However, neutralizing antibodies (NAb) may interfere with this process. We previously reported that most individuals with Morquio A who received elosulfase alfa in the phase 3 MOR-004 trial tested positive for NAbs capable of interfering with binding to CI-M6PR ectodomain in an ELISA-based assay. However, no correlation was detected between NAb occurrence and clinical efficacy or pharmacodynamics. To quantify and better characterize the impact of NAbs, we developed a functional cell-based flow cytometry assay with a titer step that detects antibodies capable of interfering with elosulfase alfa uptake. Serum samples collected during the MOR-004 trial were tested and titers were determined. Consistent with earlier findings on NAb positivity, no correlations were observed between NAb titers and the clinical outcomes of elosulfase alfa-treated individuals with Morquio A.

  11. Synthetic High-Density Lipoprotein-Like Nanocarrier Improved Cellular Transport of Lysosomal Cholesterol in Human Sterol Carrier Protein-Deficient Fibroblasts.

    Science.gov (United States)

    Nam, Da-Eun; Kim, Ok-Kyung; Park, Yoo Kyoung; Lee, Jeongmin

    2016-01-01

    Sterol carrier protein-2 (SCP-2), which is not found in tissues of people with Zellweger syndrome, facilitates the movement of cholesterol within cells, resulting in abnormal accumulation of cholesterol in SCP-2-deficient cells. This study investigated whether synthetic high-density lipoprotein-like nanocarrier (sHDL-NC) improves the cellular transport of lysosomal cholesterol to plasma membrane in SCP-2-deficient fibroblasts. Human SCP-2-deficient fibroblasts were incubated with [(3)H-cholesterol]LDL as a source of cholesterol and sHDL-NC. The cells were fractionated by centrifugation permit tracking of [(3)H]-cholesterol from lysosome into plasma membrane. Furthermore, cellular content of cholesteryl ester as a storage form and mRNA expression of low-density lipoprotein (LDL) receptor were measured to support the cholesterol transport to plasma membrane. Incubation with sHDL-NC for 8 h significantly increased uptake of [(3)H]-cholesterol to lysosome by 53% and further enhanced the transport of [(3)H]-cholesterol to plasma membrane by 32%. Treatment with sHDL-NC significantly reduced cellular content of cholesteryl ester and increased mRNA expression of LDL receptor (LDL-R). In conclusion, sHDL-NC enables increased transport of lysosomal cholesterol to plasma membrane. In addition, these data were indirectly supported by decreased cellular content of cholesteryl ester and increased gene expression of LDL-R. Therefore, sHDL-NC may be a useful vehicle for transporting cholesterol, which may help to prevent accumulation of cholesterol in SCP-2-deficient fibroblasts.

  12. Hepatic glucose uptake and disposition during short-term high-fat vs. high-fructose feeding.

    Science.gov (United States)

    Coate, Katie C; Kraft, Guillaume; Moore, Mary Courtney; Smith, Marta S; Ramnanan, Christopher; Irimia, Jose M; Roach, Peter J; Farmer, Ben; Neal, Doss W; Williams, Phil; Cherrington, Alan D

    2014-07-15

    In dogs consuming a high-fat and -fructose diet (52 and 17% of total energy, respectively) for 4 wk, hepatic glucose uptake (HGU) in response to hyperinsulinemia, hyperglycemia, and portal glucose delivery is markedly blunted with reduction in glucokinase (GK) protein and glycogen synthase (GS) activity. The present study compared the impact of selective increases in dietary fat and fructose on liver glucose metabolism. Dogs consumed weight-maintaining chow (CTR) or hypercaloric high-fat (HFA) or high-fructose (HFR) diets diet for 4 wk before undergoing clamp studies with infusion of somatostatin and intraportal insulin (3-4 times basal) and glucagon (basal). The hepatic glucose load (HGL) was doubled during the clamp using peripheral vein (Pe) glucose infusion in the first 90 min (P1) and portal vein (4 mg·kg(-1)·min(-1)) plus Pe glucose infusion during the final 90 min (P2). During P2, HGU was 2.8 ± 0.2, 1.0 ± 0.2, and 0.8 ± 0.2 mg·kg(-1)·min(-1) in CTR, HFA, and HFR, respectively (P vs. CTR). Compared with CTR, hepatic GK protein and catalytic activity were reduced (P < 0.05) 35 and 56%, respectively, in HFA, and 53 and 74%, respectively, in HFR. Liver glycogen concentrations were 20 and 38% lower in HFA and HFR than CTR (P < 0.05). Hepatic Akt phosphorylation was decreased (P < 0.05) in HFA (21%) but not HFR. Thus, HFR impaired hepatic GK and glycogen more than HFA, whereas HFA reduced insulin signaling more than HFR. HFA and HFR effects were not additive, suggesting that they act via the same mechanism or their effects converge at a saturable step. Copyright © 2014 the American Physiological Society.

  13. Fluorescence Modified Chitosan-Coated Magnetic Nanoparticles for High-Efficient Cellular Imaging

    Directory of Open Access Journals (Sweden)

    Nie Fang

    2009-01-01

    Full Text Available Abstract Labeling of cells with nanoparticles for living detection is of interest to various biomedical applications. In this study, novel fluorescent/magnetic nanoparticles were prepared and used in high-efficient cellular imaging. The nanoparticles coated with the modified chitosan possessed a magnetic oxide core and a covalently attached fluorescent dye. We evaluated the feasibility and efficiency in labeling cancer cells (SMMC-7721 with the nanoparticles. The nanoparticles exhibited a high affinity to cells, which was demonstrated by flow cytometry and magnetic resonance imaging. The results showed that cell-labeling efficiency of the nanoparticles was dependent on the incubation time and nanoparticles’ concentration. The minimum detected number of labeled cells was around 104by using a clinical 1.5-T MRI imager. Fluorescence and transmission electron microscopy instruments were used to monitor the localization patterns of the magnetic nanoparticles in cells. These new magneto-fluorescent nanoagents have demonstrated the potential for future medical use.

  14. Label-free imaging of cellular malformation using high resolution photoacoustic microscopy

    Science.gov (United States)

    Chen, Zhongjiang; Li, Bingbing; Yang, Sihua

    2014-09-01

    A label-free high resolution photoacoustic microscopy (PAM) system for imaging cellular malformation is presented. The carbon fibers were used to testify the lateral resolution of the PAM. Currently, the lateral resolution is better than 2.7 μm. The human normal red blood cells (RBCs) were used to prove the imaging capability of the system, and a single red blood cell was mapped with high contrast. Moreover, the iron deficiency anemia RBCs were clearly distinguished from the cell morphology by using the PAM. The experimental results demonstrate that the photoacoustic microscopy system can accomplish label-free photoacoustic imaging and that it has clinical potential for use in the detection of erythrocytes and blood vessels malformation.

  15. Cytotoxicity of CdTe quantum dots in human umbilical vein endothelial cells: the involvement of cellular uptake and induction of pro-apoptotic endoplasmic reticulum stress

    Directory of Open Access Journals (Sweden)

    Yan M

    2016-02-01

    Full Text Available Ming Yan,1,* Yun Zhang,2,* Haiyan Qin,3 Kezhou Liu,1 Miao Guo,1 Yakun Ge,1 Mingen Xu,1 Yonghong Sun,4 Xiaoxiang Zheng4 1Department of Biomedical Engineering, College of Life Information Science and Instrument Engineering, Hangzhou Dianzi University, Hangzhou, 2Basic Medical Sciences, College of Medicine, Shaoxing University, Shaoxing, 3Department of Chemistry, Zhejiang University, 4Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Department of Biomedical Engineering, Zhejiang University, Hangzhou, People’s Republic of China *These authors contributed equally to this work Abstract: Cadmium telluride quantum dots (CdTe QDs have been proposed to induce oxidative stress, which plays a crucial role in CdTe QDs-mediated mitochondrial-dependent apoptosis in human umbilical vein endothelial cells (HUVECs. However, the direct interactions of CdTe QDs with HUVECs and their potential impairment of other organelles like endoplasmic reticulum (ER in HUVECs are poorly understood. In this study, we reported that the negatively charged CdTe QDs (–21.63±0.91 mV, with good dispersity and fluorescence stability, were rapidly internalized via endocytosis by HUVECs, as the notable internalization could be inhibited up to 95.52% by energy depletion (NaN3/deoxyglucose or low temperature. The endocytosis inhibitors (methyl-β-cyclodextrin, genistein, sucrose, chlorpromazine, and colchicine dramatically decreased the uptake of CdTe QDs by HUVECs, suggesting that both caveolae/raft- and clathrin-mediated endocytosis were involved in the endothelial uptake of CdTe QDs. Using immunocytochemistry, a striking overlap of the internalized CdTe QDs and ER marker was observed, which indicates that QDs may be transported to ER. The CdTe QDs also caused remarkable ER stress responses in HUVECs, confirmed by significant dilatation of ER cisternae, upregulation of ER stress markers GRP78/GRP94, and

  16. Downregulation of cellular protective factors of rumen epithelium in goats fed high energy diet.

    Directory of Open Access Journals (Sweden)

    Manfred Hollmann

    Full Text Available Energy-rich diets can challenge metabolic and protective functions of the rumen epithelial cells, but the underlying factors are unclear. This study sought to evaluate proteomic changes of the rumen epithelium in goats fed a low, medium, or high energy diet. Expression of protein changes were compared by two-dimensional differential gel electrophoresis followed by protein identification with matrix assisted laser desorption ionisation tandem time-of-flight mass spectrometry. Of about 2,000 spots commonly detected in all gels, 64 spots were significantly regulated, which were traced back to 24 unique proteins. Interestingly, the expression profiles of several chaperone proteins with important cellular protective functions such as heat shock cognate 71 kDa protein, peroxiredoxin-6, serpin H1, protein disulfide-isomerase, and selenium-binding protein were collectively downregulated in response to high dietary energy supply. Similar regulation patterns were obtained for some other proteins involved in transport or metabolic functions. In contrast, metabolic enzymes like retinal dehydrogenase 1 and ATP synthase subunit beta, mitochondrial precursor were upregulated in response to high energy diet. Lower expressions of chaperone proteins in the rumen epithelial cells in response to high energy supply may suggest that these cells were less protected against the potentially harmful rumen toxic compounds, which might have consequences for rumen and systemic health. Our findings also suggest that energy-rich diets and the resulting acidotic insult may render rumen epithelial cells more vulnerable to cellular damage by attenuating their cell defense system, hence facilitating the impairment of rumen barrier function, typically observed in energy-rich fed ruminants.

  17. Downregulation of Cellular Protective Factors of Rumen Epithelium in Goats Fed High Energy Diet

    Science.gov (United States)

    Hollmann, Manfred; Miller, Ingrid; Hummel, Karin; Sabitzer, Sonja; Metzler-Zebeli, Barbara U.; Razzazi-Fazeli, Ebrahim; Zebeli, Qendrim

    2013-01-01

    Energy-rich diets can challenge metabolic and protective functions of the rumen epithelial cells, but the underlying factors are unclear. This study sought to evaluate proteomic changes of the rumen epithelium in goats fed a low, medium, or high energy diet. Expression of protein changes were compared by two-dimensional differential gel electrophoresis followed by protein identification with matrix assisted laser desorption ionisation tandem time-of-flight mass spectrometry. Of about 2,000 spots commonly detected in all gels, 64 spots were significantly regulated, which were traced back to 24 unique proteins. Interestingly, the expression profiles of several chaperone proteins with important cellular protective functions such as heat shock cognate 71 kDa protein, peroxiredoxin-6, serpin H1, protein disulfide-isomerase, and selenium-binding protein were collectively downregulated in response to high dietary energy supply. Similar regulation patterns were obtained for some other proteins involved in transport or metabolic functions. In contrast, metabolic enzymes like retinal dehydrogenase 1 and ATP synthase subunit beta, mitochondrial precursor were upregulated in response to high energy diet. Lower expressions of chaperone proteins in the rumen epithelial cells in response to high energy supply may suggest that these cells were less protected against the potentially harmful rumen toxic compounds, which might have consequences for rumen and systemic health. Our findings also suggest that energy-rich diets and the resulting acidotic insult may render rumen epithelial cells more vulnerable to cellular damage by attenuating their cell defense system, hence facilitating the impairment of rumen barrier function, typically observed in energy-rich fed ruminants. PMID:24349094

  18. High content analysis at single cell level identifies different cellular responses dependent on nanomaterial concentrations.

    Science.gov (United States)

    Manshian, Bella B; Munck, Sebastian; Agostinis, Patrizia; Himmelreich, Uwe; Soenen, Stefaan J

    2015-09-08

    A mechanistic understanding of nanomaterial (NM) interaction with biological environments is pivotal for the safe transition from basic science to applied nanomedicine. NM exposure results in varying levels of internalized NM in different neighboring cells, due to variances in cell size, cell cycle phase and NM agglomeration. Using high-content analysis, we investigated the cytotoxic effects of fluorescent quantum dots on cultured cells, where all effects were correlated with the concentration of NMs at the single cell level. Upon binning the single cell data into different categories related to NM concentration, this study demonstrates, for the first time, that quantum dots activate both cytoprotective and cytotoxic mechanisms, resulting in a zero net result on the overall cell population, yet with significant effects in cells with higher cellular NM levels. Our results suggest that future NM cytotoxicity studies should correlate NM toxicity with cellular NM numbers on the single cell level, as conflicting mechanisms in particular cell subpopulations are commonly overlooked using classical toxicological methods.

  19. High content analysis at single cell level identifies different cellular responses dependent on nanomaterial concentrations

    Science.gov (United States)

    Manshian, Bella B.; Munck, Sebastian; Agostinis, Patrizia; Himmelreich, Uwe; Soenen, Stefaan J.

    2015-09-01

    A mechanistic understanding of nanomaterial (NM) interaction with biological environments is pivotal for the safe transition from basic science to applied nanomedicine. NM exposure results in varying levels of internalized NM in different neighboring cells, due to variances in cell size, cell cycle phase and NM agglomeration. Using high-content analysis, we investigated the cytotoxic effects of fluorescent quantum dots on cultured cells, where all effects were correlated with the concentration of NMs at the single cell level. Upon binning the single cell data into different categories related to NM concentration, this study demonstrates, for the first time, that quantum dots activate both cytoprotective and cytotoxic mechanisms, resulting in a zero net result on the overall cell population, yet with significant effects in cells with higher cellular NM levels. Our results suggest that future NM cytotoxicity studies should correlate NM toxicity with cellular NM numbers on the single cell level, as conflicting mechanisms in particular cell subpopulations are commonly overlooked using classical toxicological methods.

  20. Reduction of Cadmium Uptake of Rice Plants Using Soil Amendments in High Cadmium Contaminated Soil: A Pot Experiment

    Directory of Open Access Journals (Sweden)

    Dian Siswanto

    2013-05-01

    Full Text Available The aims of this study were to investigate the effect of agricultural residues on reducing cadmium uptake in rice plants. The rice plants growing on no cadmium/free cadmium soils (N, Cd soils (Cds, and Cd soils each amended with 1% w/w of coir pith (CP, coir pith modified with sodium hydroxide (CPm and corncob (CC under high cadmium contaminated soil with an average 145 mg Cd kg-1 soil were investigated. The results showed that the cumulative transpiration of rice grown in various treatments under high cadmium contaminated soil followed the order: Cds > CPm ≥ CP ≥ CC. These transpirations directly influenced cadmium accumulation in shoots and husks of rice plants. The CC and CP seemed to work to reduce the cadmium uptake by rice plants indicated by accumulated cadmium in the husk that were 2.47 and 7.38 mg Cd kg-1 dry weight, respectively. Overall, transpiration tended to drive cadmium accumulation in plants for rice grown in high cadmium contaminated soil. The more that plants uptake cadmium, the lower cadmium that remains in the soil.

  1. High uptake of exclusive breastfeeding and reduced early post-natal HIV transmission.

    Directory of Open Access Journals (Sweden)

    Louise Kuhn

    Full Text Available BACKGROUND: Empirical data showing the clear benefits of exclusive breastfeeding (EBF for HIV prevention are needed to encourage implementation of lactation support programs for HIV-infected women in low resource settings among whom replacement feeding is unsafe. We conducted a prospective, observational study in Lusaka, Zambia, to test the hypothesis that EBF is associated with a lower risk of postnatal HIV transmission than non-EBF. METHODS AND RESULTS: As part of a randomized trial of early weaning, 958 HIV-infected women and their infants were recruited and all were encouraged to breastfeed exclusively to 4 months. Single-dose nevirapine was provided to prevent transmission. Regular samples were collected from infants to 24 months of age and tested by PCR. Detailed measurements of actual feeding behaviors were collected to examine, in an observational analysis, associations between feeding practices and postnatal HIV transmission. Uptake of EBF was high with 84% of women reporting only EBF cumulatively to 4 months. Post-natal HIV transmission before 4 months was significantly lower (p = 0.004 among EBF (0.040 95% CI: 0.024-0.055 than non-EBF infants (0.102 95% CI: 0.047-0.157; time-dependent Relative Hazard (RH of transmission due to non-EBF = 3.48 (95% CI: 1.71-7.08. There were no significant differences in the severity of disease between EBF and non-EBF mothers and the association remained significant (RH = 2.68 95% CI: 1.28-5.62 after adjusting for maternal CD4 count, plasma viral load, syphilis screening results and low birth weight. CONCLUSIONS: Non-EBF more than doubles the risk of early postnatal HIV transmission. Programs to support EBF should be expanded universally in low resource settings. EBF is an affordable, feasible, acceptable, safe and sustainable practice that also reduces HIV transmission providing HIV-infected women with a means to protect their children's lives. TRIAL REGISTRATION: ClinicalTrials.gov NCT00310726.

  2. An Arabidopsis thaliana high-affinity molybdate transporter required for efficient uptake of molybdate from soil

    OpenAIRE

    Tomatsu, Hajime; Takano, Junpei; Takahashi, Hideki; Watanabe-Takahashi, Akiko; Shibagaki, Nakako; Fujiwara, Toru

    2007-01-01

    Molybdenum (Mo) is a trace element essential for living organisms, however no molybdate transporter has been identified in eukaryotes. Here, we report the identification of a molybdate transporter, MOT1, from Arabidopsis thaliana. MOT1 is expressed in both roots and shoots, and the MOT1 protein is localized, in part, to plasma membranes and to vesicles. MOT1 is required for efficient uptake and translocation of molybdate and for normal growth under conditions of limited molybdate supply. Kine...

  3. Mitochondria-acting hexokinase II peptides carried by short-length carbon nanotubes with increased cellular uptake, endosomal evasion, and enhanced bioactivity against cancer cells

    Science.gov (United States)

    Yoong, Sia Lee; Lau, Wei Liang; Liu, Ang Yu; Prendergast, D'arcy; Ho, Han Kiat; Yu, Victor Chun Kong; Lee, Chengkuo; Ang, Wee Han; Pastorin, Giorgia

    2015-08-01

    Type II hexokinase (HKII) has emerged as a viable therapeutic target due to its involvement in metabolic reprogramming and also apoptosis prevention. The peptide derived from the fifteen amino acid sequence in the HKII N-terminal region [HKII(pep)] can compete with endogenous proteins for binding on mitochondria and trigger apoptosis. However, this peptide is not cell-permeable. In this study, multi-walled carbon nanotubes (MWCNTs) were used to effectively deliver HKII(pep) across cellular barriers without compromising their bioactivity. The peptide was conjugated on either oxidized MWCNTs or 2,2'-(ethylenedioxy)bis(ethylamine)-functionalized MWCNTs, yielding MWCNT-HKII(pep) and MWCNT-TEG-HKII(pep), respectively. Both conjugates were shown to be internalized by breast cancer MCF-7 cells using confocal microscopy. Moreover, these nanoconjugates seemed to have escaped from endosomes and be in the vicinity of mitochondria. The WST-1 cytotoxicity assay conducted on MCF-7 and colon carcinoma HCT116 cells revealed that MWCNT-peptide conjugates were significantly more effective in curbing cancer cell growth compared to a commercially available cell permeable HKII fusion peptide. In addition, both nanoconjugates displayed an enhanced ability in eliciting apoptosis and depleting the ATP level in HCT116 cells compared to the mere HKII peptide. Importantly, hexokinase II release from mitochondria was demonstrated in MWCNT-HKII(pep) and MWCNT-TEG-HKII(pep) treated cells, highlighting that the structure and bioactivity of HKII(pep) were not compromised after covalent conjugation to MWCNTs.Type II hexokinase (HKII) has emerged as a viable therapeutic target due to its involvement in metabolic reprogramming and also apoptosis prevention. The peptide derived from the fifteen amino acid sequence in the HKII N-terminal region [HKII(pep)] can compete with endogenous proteins for binding on mitochondria and trigger apoptosis. However, this peptide is not cell-permeable. In this study

  4. High concentrations of H2O2 make aerobic glycolysis energetically more favourable than cellular respiration.

    Directory of Open Access Journals (Sweden)

    Hamid R Molavian

    2016-08-01

    Full Text Available Since the original observation of the Warburg Effect in cancer cells, over eight decades ago, the major question of why aerobic glycolysis is favored over oxidative phosphorylation has remained unresolved. An understanding of this phenomenon may well be the key to the development of more effective cancer therapies. In this paper, we use a semi-empirical method to throw light on this puzzle. We show that aerobic glycolysis is in fact energetically more favorable than oxidative phosphorylation for concentrations of peroxide (H2O2 above some critical threshold value. The fundamental reason for this is the activation and high engagement of the pentose phosphate pathway (PPP in response to the production of reactive oxygen species H2O2 by mitochondria and the high concentration of H2O2 (produced by mitochondria and other sources. This makes oxidative phosphorylation an inefficient source of energy since it leads (despite high levels of ATP production to a concomitant high energy consumption in order to respond to the hazardous waste products resulting from cellular processes associated with this metabolic pathway. We also demonstrate that the high concentration of H2O2 results in an increased glucose consumption, and also increases the lactate production in the case of glycolysis.

  5. Effects of hypophysectomy and administration of pituitary hormones on luteal function and uptake of high density lipoproteins by luteinized ovaries and adrenals of the rat

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, B.D.; Rajkumar, K.; McKibbin, P.E.; Macdonald, G.J.; Buhr, M.M.; Grinwich, D.L.

    1985-04-01

    The role of plasma lipoproteins and hypophyseal hormones in the maintenance of progesterone secretion by the rat corpus luteum was investigated. In the first experiment, rats were treated daily from days 1-6 of pregnancy with 5 mg/kg 4-aminopyrozolopyramidine (4APP), a blocker of hepatic lipoprotein secretion, or with 5 mg/kg 4APP and 1 or 2 mg ovine PRL or 0.1 ml 0.5% phosphoric acid (4APP vehicle). The administration of 4APP reduced serum cholesterol and progesterone levels on days 2-6 of pregnancy and ovarian progesterone on day 6. The reduced progesterone secretion had no effect on embryo implantation. PRL, in the doses used, was incapable of abrogating the effects of 4APP on circulating or ovarian progesterone levels. Ovaries and adrenals, but not kidneys, of pseudopregnant rats exhibited specific and saturable uptake of porcine high density lipoprotein (HDL). Time-course studies indicated that the uptake of HDL was rapid in ovaries compared to that in adrenals. Ovaries from rats not only exhibited uptake of porcine HDL, but also were capable of using it for progesterone synthesis. Treatment with 4APP increased the adrenal uptake of HDL, but ovarian uptake was not different from that in the control group. Hypophysectomy reduced both adrenal and ovarian uptake of HDL. In adrenals only ACTH at the dose employed ameliorated reduction of HDL uptake induced by hypophysectomy, while in the ovaries, both PRL and LH reversed the effect of hypophysectomy. The effect of PRL on uptake was specific to (/sup 125/I)HDL and did not alter (/sup 125/I)albumin uptake. It is concluded that: 1) hypophysectomy reduces HDL uptake in the luteinized rat ovary; and 2) PRL and LH replacement therapy maintain ovarian uptake of HDL, suggesting a direct effect of these luteotropins on lipoprotein uptake.

  6. Freeze-thaw and high-voltage discharge allow macromolecule uptake into ileal brush-border vesicles.

    Science.gov (United States)

    Donowitz, M; Emmer, E; McCullen, J; Reinlib, L; Cohen, M E; Rood, R P; Madara, J; Sharp, G W; Murer, H; Malmstrom, K

    1987-06-01

    High-voltage discharge or one cycle of freeze-thawing are shown to transiently permeabilize rabbit ileal brush-border membrane vesicles to macromolecules. Uptake of the radiolabeled macromolecule dextran, mol wt 70,000, used as a marker for vesicle permeability, was determined by a rapid filtration technique, with uptake defined as substrate associated with the vesicle and releasable after incubation of vesicles with 0.1% saponin. Dextran added immediately after electric shock (2,000 V) or at the beginning of one cycle of freeze-thawing was taken up approximately eightfold compared with control; with both techniques, the concentration of dextran after being taken up into the vesicles was similar to that in the incubation medium, suggesting attainment of equilibrium. ATP also was taken up into freeze-thawed vesicles, whereas there was no significant uptake into control vesicles. The increase in vesicle permeability was reversible, based on Na-dependent D-glucose uptake being decreased when studied 5 but not 15 min after electric shock, and was not significantly decreased after completion of one cycle of freeze-thawing. In addition, adenosine 3',5'-cyclic monophosphate and Ca2+-calmodulin-dependent protein kinase activity were similar in control vesicles and vesicles exposed to high-voltage discharge or freeze-thawing. Also, vesicles freeze-thawed with [32P]ATP demonstrated increased phosphorylation compared with nonfrozen vesicles, while freeze-thawing did not alter vesicle protein as judged by Coomassie blue staining. These techniques should allow intestinal membrane vesicles to be used for studies of intracellular control of transport processes, for instance, studies of protein kinase regulation of transport.

  7. High-content analysis of factors affecting gold nanoparticle uptake by neuronal and microglial cells in culture.

    Science.gov (United States)

    Stojiljković, A; Kuehni-Boghenbor, K; Gaschen, V; Schüpbach, G; Mevissen, M; Kinnear, C; Möller, A-M; Stoffel, M H

    2016-09-22

    Owing to their ubiquitous distribution, expected beneficial effects and suspected adverse effects, nanoparticles are viewed as a double-edged sword, necessitating a better understanding of their interactions with tissues and organisms. Thus, the goals of the present study were to develop and present a method to generate quantitative data on nanoparticle entry into cells in culture and to exemplarily demonstrate the usefulness of this approach by analyzing the impact of size, charge and various proteinaceous coatings on particle internalization. N9 microglial cells and both undifferentiated and differentiated SH-SY5Y neuroblastoma cells were exposed to customized gold nanoparticles. After silver enhancement, the particles were visualized by epipolarization microscopy and analysed by high-content analysis. The value of this approach was substantiated by assessing the impact of various parameters on nanoparticle uptake. Uptake was higher in microglial cells than in neuronal cells. Only microglial cells showed a distinct size preference, preferring particles with a diameter of 80 nm. Positive surface charge had the greatest impact on particle uptake. Coating with bovine serum albumin, fetuin or protein G significantly increased particle internalization in microglial cells but not in neuronal cells. Coating with wheat germ agglutinin increased particle uptake in both N9 and differentiated SH-SY5Y cells but not in undifferentiated SH-SY5Y cells. Furthermore, internalization was shown to be an active process and indicators of caspase-dependent apoptosis revealed that gold nanoparticles did not have any cytotoxic effects. The present study thus demonstrates the suitability of gold nanoparticles and high-content analysis for assessing numerous variables in a stringently quantitative and statistically significant manner. Furthermore, the results presented herein showcase the feasibility of specifically targeting nanoparticles to distinct cell types.

  8. In Vitro and in Silico Tools To Assess Extent of Cellular Uptake and Lysosomal Sequestration of Respiratory Drugs in Human Alveolar Macrophages.

    Science.gov (United States)

    Ufuk, Ayşe; Assmus, Frauke; Francis, Laura; Plumb, Jonathan; Damian, Valeriu; Gertz, Michael; Houston, J Brian; Galetin, Aleksandra

    2017-04-03

    accumulation between individual human AM donors due to possible differences in lysosomal abundance, volume, and phospholipid content, which may have important clinical implications. Consideration of drug-acidic phospholipid interactions significantly improved the performance of the in silico models; use of in vitro Kp,cell obtained in the presence of NH4Cl as a surrogate for membrane partitioning (model (2)) captured the variability in clarithromycin and imipramine Kp,cell observed in vitro and showed the best ability to predict correctly positive and negative lysosomotropic properties. The developed mechanistic AM model represents a useful in silico tool to predict lysosomal and cellular drug concentrations based on drug physicochemical data and system specific properties, with potential application to other cell types.

  9. Changes and significance of SIRT3 expression in cellular senescence induced by high glucose

    Directory of Open Access Journals (Sweden)

    Bin ZHANG

    2011-09-01

    Full Text Available Objective To investigate the role of the silent information regulator 3(SIRT3 in the decrepitude process of human diploid fibroblasts(WI-38 induced by high glucose.Methods The WI-38 cells [population doublings(PDs,20-32] were cultured in media containing different concentrations of glucose as follows: low glucose(3.34mmol/L,LG,normal glucose(5.56mmol/L,NG,and high glucose(25mmol/L,HG.The protein expression levels of p21,p27,catalase,MnSOD,and SIRT3 were evaluated through Western blot.The double-label immunofluorescence assay was used to detect the location and expression of SIRT3,MnSOD,and senescence-associated heterochromatin foci(SAHF in the WI-38 cells.The ROS level was determined with fluorescent probe.Results The results from the Western blot showed that the protein expression of SIRT3,catalase,and MnSOD decreased significantly in the HG group compared with the LG and NG groups(P 0.05.SIRT3 and MnSOD were highly expressed in the cytoplasm.The ROS levels in the HG group were elevated compared with those in the LG and NG groups.Conclusion SIRT3 may play an important role in cellular senescence induced by high glucose in human diploid fibroblasts.

  10. Cellular graphene aerogel combines ultralow weight and high mechanical strength: A highly efficient reactor for catalytic hydrogenation.

    Science.gov (United States)

    Zhang, Bingxing; Zhang, Jianling; Sang, Xinxin; Liu, Chengcheng; Luo, Tian; Peng, Li; Han, Buxing; Tan, Xiuniang; Ma, Xue; Wang, Dong; Zhao, Ning

    2016-05-12

    The construction of three-dimensional graphene aerogels (GAs) is of great importance owing to their outstanding properties for various applications. Up to now, the combination of ultralow weight and super mechanical strength for GA remains a great challenge. Here we demonstrate the fabrication of cellular GAs by a facile, easily controlled and versatile route, i.e. the chemical reduction of graphene oxide assemblies at oil-water interface under a mild condition (70 °C). The GA is ultralight (with density <3 mg cm(-3)) yet mechanically resilient because the walls of the cell closely pack in a highly ordered manner to maximize mechanical strength. The GA has been utilized as an appealing reactor for catalytic hydrogenation, which exhibited great advantages such as large oil absorption capability, exceptional catalytic activity, ease of product separation and high stability.

  11. Pancreatic Ductal Adenocarcinoma With High Radiotracer Uptake in 68Ga-Prostate-Specific Membrane Antigen PET/CT.

    Science.gov (United States)

    Sahbai, Samine; Rieping, Petra; Pfannenberg, Christina; la Fougére, Christian; Reimold, Matthias

    2017-09-01

    Prostate-specific membrane antigen imaging with PET/CT is increasingly used in prostate cancer and was shown to have a high diagnostic performance. We report a clinical case of a 67-year-old man with previous history of operated prostate cancer and increasing prostate-specific antigen blood level. Ga-HBED-CC prostate-specific membrane antigen PET/CT imaging was indicated for the assessment of local recurrence and lymph node metastases of prostate cancer. In addition, a soft tissue mass in the body of the pancreas with high radiotracer uptake was detected. Histopathology confirmed a pancreatic ductal adenocarcinoma.

  12. Highly improved chromium (III uptake capacity in modified sugarcane bagasse using different chemical treatments

    Directory of Open Access Journals (Sweden)

    Vanessa Cristina Gonçalves Dos Santos

    2012-01-01

    Full Text Available The present paper focuses on improving chromium (III uptake capacity of sugarcane bagasse through its chemical modification with citric acid and/or sodium hydroxide. The chemical modifications were confirmed by infrared spectroscopy, with an evident peak observed at 1730 cm-1, attributed to carbonyl groups. Equilibrium was reached after 24 h, and the kinetics followed the pseudo-second-order model. The highest chromium (III maximum adsorption capacity (MAC value was found when using sugarcane bagasse modified with sodium hydroxide and citric acid (58.00 mg g-1 giving a MAC value about three times greater (20.34 mg g-1 than for raw sugarcane bagasse.

  13. Theoretical analyses of cellular transmembrane voltage in suspensions induced by high-frequency fields.

    Science.gov (United States)

    Zou, Yong; Wang, Changzhen; Peng, Ruiyun; Wang, Lifeng; Hu, Xiangjun

    2015-04-01

    A change of the transmembrane voltage is considered to cause biophysical and biochemical responses in cells. The present study focuses on the cellular transmembrane voltage (Δφ) induced by external fields. We detail analytical equations for the transmembrane voltage induced by external high-frequency (above the relaxation frequency of the cell membrane) fields on cells of a spherical shape in suspensions and layers. At direct current (DC) and low frequencies, the cell membrane was assumed to be non-conductive under physiologic conditions. However, with increasing frequency, the permittivity of the cytoplasm/extracellular medium and conductivity of the membrane must be accounted for. Our main work is to extend application of the analytical solution of Δφ to the high-frequency range. We first introduce the transmembrane voltage generated by DC and low-frequency exposures on a single cell. Then, we focus on cell suspensions exposed to high-frequency fields. Using the effective medium theory and the reasonable assumption, the approximate analytical solution of Δφ on cells in suspensions and layers can be derived. Phenomenological effective medium theory equations cannot be used to calculate the local electric field of cell suspensions, so we raised a possible solution based on the Bergman theory. Copyright © 2014. Published by Elsevier B.V.

  14. Zeolite Y adsorbents with high vapor uptake capacity and robust cycling stability for potential applications in advanced adsorption heat pumps

    Energy Technology Data Exchange (ETDEWEB)

    Li, XS; Narayanan, S; Michaelis, VK; Ong, TC; Keeler, EG; Kim, H; Mckay, IS; Griffin, RG; Wang, EN

    2015-01-01

    Modular and compact adsorption heat pumps (AHPs) promise an energy-efficient alternative to conventional vapor compression based heating, ventilation and air conditioning systems. A key element in the advancement of AHPs is the development of adsorbents with high uptake capacity, fast intracrystalline diffusivity and durable hydrothermal stability. Herein, the ion exchange of NaY zeolites with ingoing Mg2+ ions is systematically studied to maximize the ion exchange degree (IED) for improved sorption performance. It is found that beyond an ion exchange threshold of 64.1%, deeper ion exchange does not benefit water uptake capacity or characteristic adsorption energy, but does enhance the vapor diffusivity. In addition to using water as an adsorbate, the uptake properties of Mg, Na-Y zeolites were investigated using 20 wt.% MeOH aqueous solution as a novel anti-freeze adsorbate, revealing that the MeOH additive has an insignificant influence on the overall sorption performance. We also demonstrated that the lab-scale synthetic scalability is robust, and that the tailored zeolites scarcely suffer from hydrothermal stability even after successive 108-fold adsorption/desorption cycles. The samples were analyzed using N-2 sorption, Al-27/Si-29 MAS NMR spectroscopy, ICP-AES, dynamic vapor sorption, SEM, Fick's 2nd law and D-R equation regressions. Among these, close examination of sorption isotherms for H2O and N-2 adsorbates allows us to decouple and extract some insightful information underlying the complex water uptake phenomena. This work shows the promising performance of our modified zeolites that can be integrated into various AHP designs for buildings, electronics, and transportation applications. (C) 2014 Elsevier Inc. All rights reserved.

  15. Zeolite Y Adsorbents with High Vapor Uptake Capacity and Robust Cycling Stability for Potential Applications in Advanced Adsorption Heat Pumps.

    Science.gov (United States)

    Li, Xiansen; Narayanan, Shankar; Michaelis, Vladimir K; Ong, Ta-Chung; Keeler, Eric G; Kim, Hyunho; McKay, Ian S; Griffin, Robert G; Wang, Evelyn N

    2015-01-01

    Modular and compact adsorption heat pumps (AHPs) promise an energy-efficient alternative to conventional vapor compression based heating, ventilation and air conditioning systems. A key element in the advancement of AHPs is the development of adsorbents with high uptake capacity, fast intracrystalline diffusivity and durable hydrothermal stability. Herein, the ion exchange of NaY zeolites with ingoing Mg(2+) ions is systematically studied to maximize the ion exchange degree (IED) for improved sorption performance. It is found that beyond an ion exchange threshold of 64.1%, deeper ion exchange does not benefit water uptake capacity or characteristic adsorption energy, but does enhance the vapor diffusivity. In addition to using water as an adsorbate, the uptake properties of Mg,Na-Y zeolites were investigated using 20 wt.% MeOH aqueous solution as a novel anti-freeze adsorbate, revealing that the MeOH additive has an insignificant influence on the overall sorption performance. We also demonstrated that the labscale synthetic scalability is robust, and that the tailored zeolites scarcely suffer from hydrothermal stability even after successive 108-fold adsorption/desorption cycles. The samples were analyzed using N2 sorption, (27)Al/(29)Si MAS NMR spectroscopy, ICP-AES, dynamic vapor sorption, SEM, Fick's 2(nd) law and D-R equation regressions. Among these, close examination of sorption isotherms for H2O and N2 adsorbates allows us to decouple and extract some insightful information underlying the complex water uptake phenomena. This work shows the promising performance of our modified zeolites that can be integrated into various AHP designs for buildings, electronics, and transportation applications.

  16. Disulfide-Based Poly(amido amine)s for siRNA Delivery: Effects of Structure on siRNA Complexation, Cellular Uptake, Gene Silencing and Toxicity

    NARCIS (Netherlands)

    Vader, Pieter; Aa, van der Leonardus J.; Engbersen, Johan F.J.; Storm, Gert; Schiffelers, Raymond M.

    2011-01-01

    Purpose RNA interference (RNAi) is a process by which small interfering RNAs (siRNA) induce sequence-specific gene silencing. Therefore, siRNA is an emerging promise as a novel therapeutic. In order to realize the high expectations for therapeutic applications, efficient delivery systems for siRNA

  17. Polymersomes containing quantum dots for cellular imaging

    Directory of Open Access Journals (Sweden)

    Camblin M

    2014-05-01

    Full Text Available Marine Camblin,1 Pascal Detampel,1 Helene Kettiger,1 Dalin Wu,2 Vimalkumar Balasubramanian,1,* Jörg Huwyler1,*1Division of Pharmaceutical Technology, 2Department of Chemistry, University of Basel, Basel, Switzerland*These authors contributed equally to this workAbstract: Quantum dots (QDs are highly fluorescent and stable probes for cellular and molecular imaging. However, poor intracellular delivery, stability, and toxicity of QDs in biological compartments hamper their use in cellular imaging. To overcome these limitations, we developed a simple and effective method to load QDs into polymersomes (Ps made of poly(dimethylsiloxane-poly(2-methyloxazoline (PDMS-PMOXA diblock copolymers without compromising the characteristics of the QDs. These Ps showed no cellular toxicity and QDs were successfully incorporated into the aqueous compartment of the Ps as confirmed by transmission electron microscopy, fluorescence spectroscopy, and fluorescence correlation spectroscopy. Ps containing QDs showed colloidal stability over a period of 6 weeks if stored in phosphate-buffered saline (PBS at physiological pH (7.4. Efficient intracellular delivery of Ps containing QDs was achieved in human liver carcinoma cells (HepG2 and was visualized by confocal laser scanning microscopy (CLSM. Ps containing QDs showed a time- and concentration-dependent uptake in HepG2 cells and exhibited better intracellular stability than liposomes. Our results suggest that Ps containing QDs can be used as nanoprobes for cellular imaging.Keywords: quantum dots, polymersomes, cellular imaging, cellular uptake

  18. Evaluation of biological activities of highly diluted nucleotide sequences by using cellular models

    Directory of Open Access Journals (Sweden)

    Pierre Dorfman

    2012-09-01

    Full Text Available Background: highly diluted specific nucleic acids (SNA®, designed to modulate viral and cytokine genes expression, are currently used in Micro-Immunotherapy to treat viral infections and immune disorders. Although some preliminary studies have showed clinical benefit of these homeopathic preparations [1], no experimental data are available to explain their mechanism of action. Aims: to investigate the in vitro effect of two sets of highly diluted (HD SNA targeting i latent/lytic Epstein-Barr virus (SNA EBV and ii TNF-α and its receptor p55 involved in rheumatoid arthritis (SNA RA on cellular models. Methodology: serial homeopathic dilutions of SNA EBV and SNA RA (15cH-18cH were tested on a EBV-positive B-lymphoblastoid (B95-8 and on a LPS-stimulated macrophage (THP1 cell lines respectively, in comparison with agitated/diluted water and scramble DNA sequences prepared in the same conditions (negative controls. For B95-8 proliferative model, high mobility group box 1 protein (HMGB1 was used as reference. Analyzed biological parameters on B95-8 were i cell proliferation measured after 24 and 48h of incubation with HD SNA and ii expression of the EBV ZEBRA protein in response to TGF-β by Western-blotting (T+24h. For THP1 model, TNF-α synthesis and release were determined by RT-qPCR and ELISA (protein, after stimulation by LPS (1µg/ml and HD SNA co-administration. Results: we demonstrated that HD SNA RA significantly down-regulated TNF-α synthesis and release. This biological activity was showed to be specific (no effect of HD scramble SNA and related to the level of dilution (maximal effect with higher dilutions. Unexpectedly, a biological effect of agitated/diluted water was also detected in both cellular models. For B95-8 model, this effect resulted in a significant decrease of B95-8 proliferation (comparable to the HMGB1 reference and an inhibition of ZEBRA expression. Similarly, a reproducible

  19. Imaging of radiocesium uptake dynamics in a plant body using a newly developed high-resolution gamma camera for radiocesium

    Energy Technology Data Exchange (ETDEWEB)

    Kawachi, Naoki; Yin, Yong-Gen; Suzui, Nobuo; Ishii, Satomi; Fujimaki, Shu [Radiotracer Imaging Gr., Quantum Beam Science Directorate, Japan Atomic Energy Agency (JAEA), 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan); Yoshihara, Toshihiro [Plant Molecular Biology, Laboratory of Environmental Science, Central Research Institute of Electric Power Industry (CRIEPI), 1646 Abiko, Chiba 270-1194 (Japan); Watabe, Hiroshi [Cyclotron and Radioisotope Center (CYRIC), Tohoku University, 6-3Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8578 (Japan); Yamamoto, Seiichi [Department of Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine, 1-1-20 Daiko-Minami, Higashi-ku, Nagoya 461-8673 (Japan)

    2014-07-01

    Vast agricultural and forest areas around the Tokyo Electric Power Company Fukushima Daiichi Nuclear Power Station in Japan were contaminated with radiocesium (Cs-134 and Cs-137) after the accident following the earthquake and tsunami in March 2011. A variety of agricultural studies, such as fertilizer management and plant breeding, have been undertaken intensively for reduction of radiocesium uptake in crops, or, enhancement of uptake in phyto-remediation. In this study, we newly developed a gamma camera specific for plant nutritional research, and performed quantitative analyses on uptake and partitioning of radiocesium in intact plant bodies. In general, gamma camera is a common technology in medical imaging, but it is not applicable to high-energy gamma rays such as emissions from Cs-137 (662 keV). Therefore, we designed our new gamma camera to prevent the penetration and scattering of the high-energy gamma rays. A single-crystal scintillator, Ce-doped Gd{sub 3}Al{sub 2}Ga{sub 3}O{sub 12} (Ce:GAGG), was employed, which has a relatively high density, a large light output, no natural radioactivity and no hygroscopicity. A 44 x 44 matrix of the Ce:GAGG pixels, with dimensions of 0.85 mm x 0.85 mm x 10 mm for each pixel, was coupled to a high-quantum efficiency position sensitive photomultiplier tube. This gamma detector unit was encased in a 20-mm-thick tungsten container with a tungsten pinhole collimator on the front. By using this gamma camera, soybean plants (Glycine max), grown in hydroponic solutions and fed with 1-2 MBq of Cs-137, were imaged for 6.5 days in maximum to investigate and visualize the uptake dynamics into/within the areal part. As a result, radiocesium gradually appeared in the shoot several hours after feeding of Cs-137, and then accumulated intensively in the maturing pods and seeds in a characteristic pattern. Our results also demonstrated that this gamma-camera method enables quantitative evaluation of plant ability to absorb, transport

  20. Defining high-detail hazard maps by a cellular automata approach: application to Mount Etna (Italy

    Directory of Open Access Journals (Sweden)

    William Spataro

    2011-12-01

    Full Text Available The individuation of areas that are more likely to be affected by new events in volcanic regions is of fundamental relevance for the mitigation of the possible consequences, both in terms of loss of human life and material properties. Here, we describe a methodology for defining flexible high-detail lava-hazard maps and a technique for the validation of the results obtained. The methodology relies on: (i an accurate analysis of the past behavior of the volcano; (ii a new version of the SCIARA model for lava-flow simulation (based on the macroscopic cellular automata paradigm; and (iii high-performance parallel computing for increasing computational efficiency. The new release of the SCIARA model introduces a Bingham-like rheology as part of the minimization algorithm of the differences for the determination of outflows from a generic cell, and an improved approach to lava cooling. The method is here applied to Mount Etna, the most active volcano in Europe, and applications to land-use planning and hazard mitigation are presented.

  1. Chronic consumption of a high-fat/high-fructose diet renders the liver incapable of net hepatic glucose uptake.

    Science.gov (United States)

    Coate, Katie Colbert; Scott, Melanie; Farmer, Ben; Moore, Mary Courtney; Smith, Marta; Roop, Joshua; Neal, Doss W; Williams, Phil; Cherrington, Alan D

    2010-12-01

    The objective of this study was to assess the response of a large animal model to high dietary fat and fructose (HFFD). Three different metabolic assessments were performed during 13 wk of feeding an HFFD (n = 10) or chow control (CTR, n = 4) diet: oral glucose tolerance tests (OGTTs; baseline, 4 and 8 wk), hyperinsulinemic-euglycemic clamps (HIEGs; baseline and 10 wk) and hyperinsulinemic-hyperglycemic clamps (HIHGs, 13 wk). The ΔAUC for glucose during the OGTTs more than doubled after 4 and 8 wk of HFFD feeding, and the average glucose infusion rate required to maintain euglycemia during the HIEG clamps decreased by ≈30% after 10 wk of HFFD feeding. These changes did not occur in the CTR group. The HIHG clamps included experimental periods 1 (P1, 0-90 min) and 2 (P2, 90-180 min). During P1, somatostatin, basal intraportal glucagon, 4 × basal intraportal insulin, and peripheral glucose (to double the hepatic glucose load) were infused; during P2, glucose was also infused intraportally (4.0 mg·kg(-1)·min(-1)). Net hepatic glucose uptake during P1 and P2 was -0.4 ± 0.1 [output] and 0.2 ± 0.8 mg·kg(-1)·min(-1) in the HFFD group, respectively, and 1.8 ± 0.8 and 3.5 ± 1.0 mg·kg(-1)·min(-1) in the CTR group, respectively (P vs. HFFD during P1 and P2). Glycogen synthesis through the direct pathway was 0.5 ± 0.2 and 1.5 ± 0.4 mg·kg(-1)·min(-1) in the HFFD and CTR groups, respectively (P vs. HFFD). In conclusion, chronic consumption of an HFFD diminished the sensitivity of the liver to hormonal and glycemic cues and resulted in a marked impairment in NHGU and glycogen synthesis.

  2. High resolution light-sheet based high-throughput imaging cytometry system enables visualization of intra-cellular organelles

    Directory of Open Access Journals (Sweden)

    Raju Regmi

    2014-09-01

    Full Text Available Visualization of intracellular organelles is achieved using a newly developed high throughput imaging cytometry system. This system interrogates the microfluidic channel using a sheet of light rather than the existing point-based scanning techniques. The advantages of the developed system are many, including, single-shot scanning of specimens flowing through the microfluidic channel at flow rate ranging from micro- to nano- lit./min. Moreover, this opens-up in-vivo imaging of sub-cellular structures and simultaneous cell counting in an imaging cytometry system. We recorded a maximum count of 2400 cells/min at a flow-rate of 700 nl/min, and simultaneous visualization of fluorescently-labeled mitochondrial network in HeLa cells during flow. The developed imaging cytometry system may find immediate application in biotechnology, fluorescence microscopy and nano-medicine.

  3. The putative P-gp inhibitor telmisartan does not affect the transcellular permeability and cellular uptake of the calcium channel antagonist verapamil in the P-glycoprotein expressing cell line MDCK II MDR1

    DEFF Research Database (Denmark)

    Saaby, Lasse; Tfelt-Hansen, Peer; Brodin, Birger

    2015-01-01

    Verapamil is used in high doses for the treatment of cluster headache. Verapamil has been described as a P-glycoprotein (P-gp, ABCB1) substrate. We wished to evaluate in vitro whether co administration of a P-gp inhibitor with verapamil could be a feasible strategy for increasing CNS uptake...... of verapamil. Fluxes of radiolabelled verapamil across MDCK II MDR1 monolayers were measured in the absence and presence of the putative P-gp inhibitor telmisartan (a clinically approved drug compound). Verapamil displayed a vectorial basolateral-to-apical transepithelial efflux across the MDCK II MDR1...

  4. High resolution simulations of energy absorption in dynamically loaded cellular structures

    Science.gov (United States)

    Winter, R. E.; Cotton, M.; Harris, E. J.; Eakins, D. E.; McShane, G.

    2017-03-01

    Cellular materials have potential application as absorbers of energy generated by high velocity impact. CTH, a Sandia National Laboratories Code which allows very severe strains to be simulated, has been used to perform very high resolution simulations showing the dynamic crushing of a series of two-dimensional, stainless steel metal structures with varying architectures. The structures are positioned to provide a cushion between a solid stainless steel flyer plate with velocities ranging from 300 to 900 m/s, and an initially stationary stainless steel target. Each of the alternative architectures under consideration was formed by an array of identical cells each of which had a constant volume and a constant density. The resolution of the simulations was maximised by choosing a configuration in which one-dimensional conditions persisted for the full period over which the specimen densified, a condition which is most readily met by impacting high density specimens at high velocity. It was found that the total plastic flow and, therefore, the irreversible energy dissipated in the fully densified energy absorbing cell, increase (a) as the structure becomes more rodlike and less platelike and (b) as the impact velocity increases. Sequential CTH images of the deformation processes show that the flow of the cell material may be broadly divided into macroscopic flow perpendicular to the compression direction and jetting-type processes (microkinetic flow) which tend to predominate in rod and rodlike configurations and also tend to play an increasing role at increased strain rates. A very simple analysis of a configuration in which a solid flyer impacts a solid target provides a baseline against which to compare and explain features seen in the simulations. The work provides a basis for the development of energy absorbing structures for application in the 200-1000 m/s impact regime.

  5. High-resolution fiber-optic microendoscopy for in situ cellular imaging.

    Science.gov (United States)

    Pierce, Mark; Yu, Dihua; Richards-Kortum, Rebecca

    2011-01-11

    Many biological and clinical studies require the longitudinal study and analysis of morphology and function with cellular level resolution. Traditionally, multiple experiments are run in parallel, with individual samples removed from the study at sequential time points for evaluation by light microscopy. Several intravital techniques have been developed, with confocal, multiphoton, and second harmonic microscopy all demonstrating their ability to be used for imaging in situ. With these systems, however, the required infrastructure is complex and expensive, involving scanning laser systems and complex light sources. Here we present a protocol for the design and assembly of a high-resolution microendoscope which can be built in a day using off-the-shelf components for under US$5,000. The platform offers flexibility in terms of image resolution, field-of-view, and operating wavelength, and we describe how these parameters can be easily modified to meet the specific needs of the end user. We and others have explored the use of the high-resolution microendoscope (HRME) in in vitro cell culture, in excised and living animal tissues, and in human tissues in vivo. Users have reported the use of several different fluorescent contrast agents, including proflavine, benzoporphyrin-derivative monoacid ring A (BPD-MA), and fluoroscein, all of which have received full, or investigational approval from the FDA for use in human subjects. High-resolution microendoscopy, in the form described here, may appeal to a wide range of researchers working in the basic and clinical sciences. The technique offers an effective and economical approach which complements traditional benchtop microscopy, by enabling the user to perform high-resolution, longitudinal imaging in situ.

  6. Synthesis, characterization, and DNA binding, photocleavage, cytotoxicity, cellular uptake, apoptosis, and on-off light switching studies of Ru(II) mixed-ligand complexes containing 7-fluorodipyrido[3,2-a:2',3'-c]phenazine.

    Science.gov (United States)

    Deepika, Nancherla; Kumar, Yata Praveen; Shobha Devi, Chittimalli; Reddy, Putta Venkat; Srishailam, Avudoddi; Satyanarayana, Sirasani

    2013-10-01

    Four new ruthenium(II) polypyridyl complexes-[Ru(phen)2(7-F-dppz)](2+) (7-F-dppz is 7-fluorodipyrido[3,2-a:2',3'-c]phenazine, phen is 1,10-phenanthroline), [Ru(bpy)2(7-F-dppz)](2+)(2) (bpy is 2,2'-bipyridine), [Ru(dmb)2(7-F-dppz)](2+) (dmb is 4,4'-dimethyl-2,2'-bipyridine), and [Ru(hdpa)2(7-F-dppz)](2+) (hdpa is 2,2'-dipyridylamine)-have been synthesized and characterized. Their DNA binding behavior has been explored by various spectroscopic titrations and viscosity measurements, which indicated that all the complexes bind to calf thymus DNA by means of intercalation with different binding strengths. The light switching properties of these complexes have been evaluated, and their antimicrobial activities have been investigated. Photoinduced DNA cleavage studies have been performed. All the complexes exhibited efficient photocleavage of pBR322 DNA on irradiation. The cytotoxicity of these complexes has been evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay with various tumor cell lines. Cellular uptake was studied by flow cytometry and confocal microscopy. Flow cytometry experiments showed that these complexes induced apoptosis of HeLa cell lines.

  7. New palladium(II) and platinum(II) 5,5-diethylbarbiturate complexes with 2-phenylpyridine, 2,2'-bipyridine and 2,2'-dipyridylamine: synthesis, structures, DNA binding, molecular docking, cellular uptake, antioxidant activity and cytotoxicity.

    Science.gov (United States)

    Icsel, Ceyda; Yilmaz, Veysel T; Kaya, Yunus; Samli, Hale; Harrison, William T A; Buyukgungor, Orhan

    2015-04-21

    Novel palladium(ii) and platinum(ii) complexes of 5,5-diethylbarbiturate (barb) with 2-phenylpyridine (Hppy), 2,2'-bipyridine (bpy) and 2,2'-dipyridylamine (dpya) have been prepared and characterized by elemental analysis, IR, UV-Vis, NMR and ESI-MS. Single-crystal diffraction measurements show that complex consists of binuclear [Pd2(μ-barb-κN,O)2(ppy-κN,C)2] moieties, while complexes are mononuclear, [M(barb-κN)2(L-κN,N')] (L = bpy or dpya). has a composition of [Pt(dpya-κN,N')2][Ag(barb-κN)2]2·4H2O and was assumed to have a structure of [Pt(barb-κN)(Hppy-κN)(ppy-κN,C)]·3H2O. The complexes were found to exhibit significant DNA binding affinity by a non-covalent binding mode, in accordance with molecular docking studies. In addition, complexes and displayed strong binding with supercoiled pUC19 plasmid DNA. Cellular uptake studies were performed to assess the subcellular localization of the selected complexes. A moderate radical scavenging activity of and was confirmed by DPPH and ABTS tests. Complexes , , and showed selectivity against HT-29 (colon) cell line.

  8. High volumetric uptake of ammonia using Cu-MOF-74/Cu-CPO-27.

    Science.gov (United States)

    Katz, Michael J; Howarth, Ashlee J; Moghadam, Peyman Z; DeCoste, Jared B; Snurr, Randall Q; Hupp, Joseph T; Farha, Omar K

    2016-03-14

    Cu-MOF-74 (also known as Cu-CPO-27) was identified as a sorbent having one of the highest densities of Cu(ii) sites per unit volume. Given that Cu(ii) in the framework can be thermally activated to yield a five-coordinate Cu(ii) species, we identified this MOF as a potential candidate for maximal volumetric uptake of ammonia. To that end, the kinetic breakthrough of ammonia in Cu-MOF-74/Cu-CPO-27 was examined under both dry and humid conditions. Under dry conditions the MOF exhibited a respectable performance (2.6 vs. 2.9 NH3 per nm(3) for the current record holder HKUST-1), and under 80% relative humidity, the MOF outperformed HKUST-1 (5.9 vs. 3.9 NH3 per nm(3), respectively).

  9. Titanate nanotubes as a promising absorbent for high effective radioactive uranium ions uptake.

    Science.gov (United States)

    Xu, Mingze; Weil, Guodong; Li, Shuang; Niu, Xiaowei; Chen, Haifeng; Zhang, He; Chubik, M; Gromov, A; Han, Wei

    2012-08-01

    In this study, titanate nanotubes with a layered structure were investigated for the uptake of radioactive uranium ions for the first time. The nanotubes have been successfully prepared with a reaction of Ti metal nanopowders and NaOH mixed solution by a novel and effective ultrasonic-assisted hydrothermal method. As the absorbent of radioactive ions, they have the ability to selectively adsorb radioactive U ions from water via ion exchange process and subsequently immobilize these ions in the nanotube sorbents without the need of further treatment after absorption. Sorption induces considerable deformation of the layer structures, resulting in the structures changing from the nanotubes to sheets and having the ability of permanent entrapment of the radioactive cations in these as-grown sheets. Our results have proved that titanate nanotubes can be used as a promising absorbent for the removal of nuclear leaking water at the first time.

  10. Rapid Method To Determine Intracellular Drug Concentrations in Cellular Uptake Assays: Application to Metformin in Organic Cation Transporter 1-Transfected Human Embryonic Kidney 293 Cells.

    Science.gov (United States)

    Chien, Huan-Chieh; Zur, Arik A; Maurer, Tristan S; Yee, Sook Wah; Tolsma, John; Jasper, Paul; Scott, Dennis O; Giacomini, Kathleen M

    2016-03-01

    Because of the importance of intracellular unbound drug concentrations in the prediction of in vivo concentrations that are determinants of drug efficacy and toxicity, a number of assays have been developed to assess in vitro unbound concentrations of drugs. Here we present a rapid method to determine the intracellular unbound drug concentrations in cultured cells, and we apply the method along with a mechanistic model to predict concentrations of metformin in subcellular compartments of stably transfected human embryonic kidney 293 (HEK293) cells. Intracellular space (ICS) was calculated by subtracting the [(3)H]-inulin distribution volume (extracellular space, ECS) from the [(14)C]-urea distribution volume (total water space, TWS). Values obtained for intracellular space (mean ± S.E.M.; μl/10(6) cells) of monolayers of HEK cells (HEK-empty vector [EV]) and cells overexpressing human organic cation transporter 1 (HEK-OCT1), 1.21± 0.07 and 1.25±0.06, respectively, were used to determine the intracellular metformin concentrations. After incubation of the cells with 5 µM metformin, the intracellular concentrations were 26.4 ± 7.8 μM and 268 ± 11.0 μM, respectively, in HEK-EV and HEK-OCT1. In addition, intracellular metformin concentrations were lower in high K(+) buffer (140 mM KCl) compared with normal K(+) buffer (5.4 mM KCl) in HEK-OCT1 cells (54.8 ± 3.8 μM and 198.1 ± 11.2 μM, respectively; P < 0.05). Our mechanistic model suggests that, depending on the credible range of assumed physiologic values, the positively charged metformin accumulates to particularly high levels in endoplasmic reticulum and/or mitochondria. This method together with the computational model can be used to determine intracellular unbound concentrations and to predict subcellular accumulation of drugs in other complex systems such as primary cells.

  11. Influence of captopril on the cellular uptake and toxic potential of microcystin-LR in non-hepatic adhesive cell lines.

    Science.gov (United States)

    Teneva, Ivanka; Klaczkowska, Dorota; Batsalova, Tsvetelina; Kostova, Zhivka; Dzhambazov, Balik

    2016-03-01

    Microcystin-LR (MC-LR) is a toxin produced by various cyanobacterial strains. Its cytotoxicity is due to inhibition of the protein phosphatases PP1 and PP2A, resulting in hyperphosphorylation of a number of functional and cytoskeletal proteins. To penetrate through the plasma membrane, MC-LR needs specific transporters such the organic anion-transporting polypeptides (OATP) that are highly expressed on the hepatocytes. Hence, our goal was to investigate the role of the membrane transport proteins for the cytotoxic effect of MC-LR on adhesive cell lines different from hepatocytes. We have used three cell lines--A549 (human lung carcinoma), SK-Hep-1 (human liver adenocarcinoma), FL (human amniotic normal cells), and two inhibitors of the OATP (cyclosporine A and captopril). To examine the cytotoxic effect of MC-LR we applied MTT and Neutral Red assays. In addition, a fluorescent staining of the mitochondria by JC-1 was performed. A dose-dependent cytotoxic effect was observed for the three cell lines, as this effect was most pronounced in A549. No cytotoxicity was detected when the captopril was added 2 h before treatment of the cells with MC-LR. Addition of captopril to the cells 2 h after treatment with MC-LR leads to enhancement of the cytotoxic effect. Reduced mitochondrial membrane potential after treatment with MC-LR was detected in the three cell lines, compared to untreated control cells. Results from the NR-cytotoxicity assay indicated that MC-LR does not affect the lysosomes. Captopril is an effective inhibitor of both OATP influx membrane transport proteins and the P-gp efflux pumps involved in the transport of MC-LR. It protects the cells from toxic effects of the cyanotoxin MC-LR. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. An enhanced high-speed multi-digit BCD adder using quantum-dot cellular automata

    Science.gov (United States)

    Ajitha, D.; Ramanaiah, K. V.; Sumalatha, V.

    2017-02-01

    The advent of development of high-performance, low-power digital circuits is achieved by a suitable emerging nanodevice called quantum-dot cellular automata (QCA). Even though many efficient arithmetic circuits were designed using QCA, there is still a challenge to implement high-speed circuits in an optimized manner. Among these circuits, one of the essential structures is a parallel multi-digit decimal adder unit with significant speed which is very attractive for future environments. To achieve high speed, a new correction logic formulation method is proposed for single and multi-digit BCD adder. The proposed enhanced single-digit BCD adder (ESDBA) is 26% faster than the carry flow adder (CFA)-based BCD adder. The multi-digit operations are also performed using the proposed ESDBA, which is cascaded innovatively. The enhanced multi-digit BCD adder (EMDBA) performs two 4-digit and two 8-digit BCD addition 50% faster than the CFA-based BCD adder with the nominal overhead of the area. The EMDBA performs two 4-digit BCD addition 24% faster with 23% decrease in the area, similarly for 8-digit operation the EMDBA achieves 36% increase in speed with 21% less area compared to the existing carry look ahead (CLA)-based BCD adder design. The proposed multi-digit adder produces significantly less delay of (N –1) + 3.5 clock cycles compared to the N* One digit BCD adder delay required by the conventional BCD adder method. It is observed that as per our knowledge this is the first innovative proposal for multi-digit BCD addition using QCA.

  13. Impedance matching network for high frequency ultrasonic transducer for cellular applications.

    Science.gov (United States)

    Kim, Min Gon; Yoon, Sangpil; Kim, Hyung Ham; Shung, K Kirk

    2016-02-01

    An approach for the design of an impedance matching network (IMN) for high frequency ultrasonic transducers with large apertures based on impedance analysis for cellular applications is presented in this paper. The main objectives were to maximize energy transmission from the excitation source to the ultrasonic transducers for cell manipulation and to achieve low input parameters for the safe operation of an ultrasonic transducer because the piezoelectric material in high frequency ultrasonic transducers is prone to breakage due to its being extremely thin. Two ultrasonic transducers, which were made of lithium niobate single crystal with the thickness of 15 μm, having apertures of 4.3 mm (fnumber=1.23) and 2.6mm (fnumber=0.75) were tested. L-type IMN was selected for high sensitivity and compact design of the ultrasonic transducers. The target center frequency was chosen as the frequency where the electrical admittance (|Y|) and phase angle (θz) from impedance analysis was maximal and zero, respectively. The reference center frequency and reference echo magnitude were selected as the center frequency and echo magnitude, measured by pulse-echo testing, of the ultrasonic transducer without IMN. Initial component values and topology of IMN were determined using the Smith chart, and pulse-echo testing was analyzed to verify the performance of the ultrasonic transducers with and without IMN. After several iterations between changing component values and topology of IMN, and pulse-echo measurement of the ultrasonic transducer with IMN, optimized component values and topology of IMN were chosen when the measured center frequency from pulse-echo testing was comparable to the target frequency, and the measured echo magnitude was at least 30% larger than the reference echo magnitude. Performance of an ultrasonic transducer with and without IMN was tested by observing a tangible dent on the surface of a plastic petridish and single cell response after an acoustic pulse was

  14. Effect of fertilizers on Cd uptake of Amaranthus hypochondriacus, a high biomass, fast growing and easily cultivated potential Cd hyperaccumulator.

    Science.gov (United States)

    Li, Ning Yu; Fu, Qing Lin; Zhuang, Ping; Guo, Bing; Zou, Bi; Li, Zhi An

    2012-02-01

    In a greenhouse pot experiment, we assessed the phytoextraction potential for Cd of three amaranth cultivars (Amaranthus hypochondriacus L. Cvs. K112, R104, and K472) and the effect of application of N, NP, and NPK fertilizer on Cd uptake of the three cultivars from soil contaminated with 5 mg kg(-1) Cd. All three amaranth cultivars had high levels of Cd concentration in their tissues, which ranged from 95.1 to 179.1 mg kg(-1) in leaves, 58.9 to 95.4 mg kg(-1) in stems, and 62.4 to 107.2 mg kg(-1) in roots, resulting in average bioaccumulation factors ranging from 17.7 to 29.7. Application of N, NP, or NPK fertilizers usually increased Cd content in leaves but decreased Cd content in stem and root. Fertilizers of N or NP combined did not substantially increase dry biomass of the 3 cultivars, leading to a limited increment of Cd accumulation. NPK fertilizer greatly increased dry biomass, by a factor of 2.7-3.8, resulting in a large increment of Cd accumulation. Amaranth cultivars (K112, R104, and K472) have great potential in phytoextraction of Cd contaminated soil. They have the merits of high Cd content in tissues, high biomass, easy cultivation and little effect on Cd uptake by fertilization.

  15. Growth, morphology, ammonium uptake and nutrient allocation of Myriophyllum brasiliense Cambess. under high NH₄⁺ concentrations.

    Science.gov (United States)

    Saunkaew, Piyanart; Wangpakapattanawong, Prasit; Jampeetong, Arunothai

    2011-11-01

    The effects of high NH(4)(+) concentration on growth, morphology, NH(4) (+) uptake and nutrient allocation of Myriophyllum brasiliense were investigated in hydroponic culture. The plants were grown under greenhouse conditions for 4 weeks using four levels of NH(4)(+) concentration: 1, 5, 10 and 15 mM. M. brasiliense grew well with a relative growth rate of c.0.03 day(-1) at NH(4)(+) concentration up to 5 mM. At the higher NH(4)(+) concentrations the growth of the plants was stunted and the plants had short roots and few new buds, especially when grown in 15 mM NH(4)(+) where the submerged leaves were lost and there were rotten roots and submerged stems. To avoid NH(4)(+) toxicity, the plants may have a mechanism to prevent cytoplasmic NH(4)(+) accumulation in plant cells. The net uptake of NH(4)(+) significantly decreased and the total N significantly increased in the plants treated with 10 and 15 mM NH(4)(+), respectively. The plant may employ NH(4)(+) assimilation and extrusion as a mechanism to compensate for the high NH(4)(+) concentrations. However, the plants may show nutrient deficiency symptoms, especially K deficiency symptoms, after they were exposed to NH(4)(+) concentration higher than 10 mM. The present study provides a basic ecophysiology of M. brasiliense that it can grow in NH(4)(+) enriched water up to concentrations as high as 5 mM.

  16. Cellular Stress Response Gene Expression During Upper and Lower Body High Intensity Exercises

    Science.gov (United States)

    Kochanowicz, Andrzej; Sawczyn, Stanisław; Niespodziński, Bartłomiej; Mieszkowski, Jan; Kochanowicz, Kazimierz

    2017-01-01

    Objectives The aim was to compare the effect of upper and lower body high-intensity exercise on chosen genes expression in athletes and non-athletes. Method Fourteen elite male artistic gymnasts (EAG) aged 20.6 ± 3.3 years and 14 physically active men (PAM) aged 19.9 ± 1.0 years performed lower and upper body 30 s Wingate Tests. Blood samples were collected before, 5 and 30 minutes after each effort to assess gene expression via PCR. Results Significantly higher mechanical parameters after lower body exercise was observed in both groups, for relative power (8.7 ± 1.2 W/kg in gymnasts, 7.2 ± 1.2 W/kg in controls, p = 0.01) and mean power (6.7 ± 0.7 W/kg in gymnasts, 5.4 ± 0.8 W/kg in controls, p = 0.01). No differences in lower versus upper body gene expression were detected for all tested genes as well as between gymnasts and physical active man. For IL-6 m-RNA time-dependent effect was observed. Conclusions Because of no significant differences in expression of genes associated with cellular stress response the similar adaptive effect to exercise may be obtained so by lower and upper body exercise. PMID:28141870

  17. Cellular lightweight concrete containing high-calcium fly ash and natural zeolite

    Science.gov (United States)

    Jitchaiyaphum, Khamphee; Sinsiri, Theerawat; Jaturapitakkul, Chai; Chindaprasirt, Prinya

    2013-05-01

    Cellular lightweight concrete (CLC) with the controlled density of approximately 800 kg/m3 was made from a preformed foam, Type-I Portland cement (OPC), fly ash (FA), or natural zeolite (NZ), and its compressive strength, setting time, water absorption, and microstructure of were tested. High-calcium FA and NZ with the median particle sizes of 14.52 and 7.72 μm, respectively, were used to partially replace OPC at 0, 10wt%, 20wt%, and 30wt% of the binder (OPC and pozzolan admixture). A water-to-binder mass ratio (W/B) of 0.5 was used for all mixes. The testing results indicated that CLC containing 10wt% NZ had the highest compressive strength. The replacement of OPC with NZ decreased the total porosity and air void size but increased the capillary porosity of the CLC. The incorporation of a suitable amount of NZ decreased the setting time, total porosity, and pore size of the paste compared with the findings with the same amount of FA. The total porosity and cumulative pore volume decreased, whereas the gel and capillary pores increased as a result of adding both pozzolans at all replacement levels. The water absorption increased as the capillary porosity increased; this effect depended on the volume of air entrained and the type or amount of pozzolan.

  18. Cellular and molecular alterations in human epithelial cells transformed by high let radiation

    Science.gov (United States)

    Hei, T. K.; Piao, C. Q.; Sutter, T.; Willey, J. C.; Suzuki, K.

    An understanding of the radiobiological effects of high LET radiation is essential for human risk estimation and radiation protection. In the present study, we show that a single, 30 cGy dose of 150 keV/mum ^4He ions can malignantly transform human papillomavirus immortalized human bronchial epithelial [BEP2D] cells. Transformed cells produce progressively growing tumors in nude mice. The transformation frequency by the single dose of alpha particles is estimated to be approximately 4 x 10^-7. Based on the average cross-sectional area of BEP2D cells, it can be calculated that a mean traversal of 1.4 particles per cell is sufficient to induce tumorigenic conversion of these cells 3 to 4 months post-irradiation. Tumorigenic BEP2D cells overexpress mutated p53 tumor suppressor oncoproteins in addition to the cell cycle control gene cyclin D1 and D2. This model provides an opportunity to study the cellular and molecular changes at the various stages in radiation carcinogenesis involving human cells.

  19. Exosomes: Mechanisms of Uptake

    Directory of Open Access Journals (Sweden)

    Kelly J. McKelvey

    2015-07-01

    Full Text Available Exosomes are 30–100 nm microvesicles which contain complex cellular signals of RNA, protein and lipids. Because of this, exosomes are implicated as having limitless therapeutic potential for the treatment of cancer, pregnancy complications, infections, and autoimmune diseases. To date we know a considerable amount about exosome biogenesis and secretion, but there is a paucity of data regarding the uptake of exosomes by immune and non- immune cell types (e.g., cancer cells and the internal signalling pathways by which these exosomes elicit a cellular response. Answering these questions is of para‐ mount importance.

  20. Exosomes: Mechanisms of Uptake

    Directory of Open Access Journals (Sweden)

    Kelly J. McKelvey

    2015-07-01

    Full Text Available Exosomes are 30–100 nm microvesicles which contain complex cellular signals of RNA, protein and lipids. Because of this, exosomes are implicated as having limitless therapeutic potential for the treatment of cancer, pregnancy complications, infections, and autoimmune diseases. To date we know a considerable amount about exosome biogenesis and secretion, but there is a paucity of data regarding the uptake of exosomes by immune and non-immune cell types (e.g., cancer cells and the internal signalling pathways by which these exosomes elicit a cellular response. Answering these questions is of paramount importance.

  1. Normalizing for individual cell population context in the analysis of high-content cellular screens

    Directory of Open Access Journals (Sweden)

    Knapp Bettina

    2011-12-01

    Full Text Available Abstract Background High-content, high-throughput RNA interference (RNAi offers unprecedented possibilities to elucidate gene function and involvement in biological processes. Microscopy based screening allows phenotypic observations at the level of individual cells. It was recently shown that a cell's population context significantly influences results. However, standard analysis methods for cellular screens do not currently take individual cell data into account unless this is important for the phenotype of interest, i.e. when studying cell morphology. Results We present a method that normalizes and statistically scores microscopy based RNAi screens, exploiting individual cell information of hundreds of cells per knockdown. Each cell's individual population context is employed in normalization. We present results on two infection screens for hepatitis C and dengue virus, both showing considerable effects on observed phenotypes due to population context. In addition, we show on a non-virus screen that these effects can be found also in RNAi data in the absence of any virus. Using our approach to normalize against these effects we achieve improved performance in comparison to an analysis without this normalization and hit scoring strategy. Furthermore, our approach results in the identification of considerably more significantly enriched pathways in hepatitis C virus replication than using a standard analysis approach. Conclusions Using a cell-based analysis and normalization for population context, we achieve improved sensitivity and specificity not only on a individual protein level, but especially also on a pathway level. This leads to the identification of new host dependency factors of the hepatitis C and dengue viruses and higher reproducibility of results.

  2. Histopathological Analysis of High {sup 18}F-FDG Uptake in Meniscoid Ulcer of Colon Carcinoma: Report of A Case

    Energy Technology Data Exchange (ETDEWEB)

    Bahk, Yong Whee [Sung Ae Hospital, Seoul (Korea, Republic of); Jang, Ja June [Seoul National University School of Medicine, Seoul (Korea, Republic of)

    2008-04-15

    Prominent 18F-fluorodeoxyglucose (18F-FDG) accumulation has been reported to occur in meniscoid ulcer of gastric carcinoma. A mouse-model study carried out by Kubota et al. revealed that inflammatory cells, particularly macrophages, in necrotic tumor accumulates 18F-FDG more avidly than viable tumor cells. A search of literature failed to disclose earlier publication reporting histological study on such high 18F-FDG metabolism in patient with ulcerating colon cancer. This communication presents prominent 18FDG uptake observed in relation with chronic inflammation in meniscoid ulcer of sigmoid colon carcinoma. Cross correlation of PET findings with those of CT scan and colonoscopy showed that the high 18F-FDG uptake was localized to ulcerated part of tumor and not in heaved-up border that was not ulcerated. Histopathology of removed tumor revealed that the denuded bottom of ulcer consisted of a thick layer of submucosal tissue diffusely infiltrated with inflammatory cells. The meniscoid malignant ulcer, originally described in 1921 by Carman and re-studied in detail by Kirklin, is created by barium filling of crescent defect of ulcerating gastric carcinoma. Since then the sign has long been appreciated as a clue of ulcerating gastric carcinoma. In the meantime, the sign has also been reported to occur in the carcinomas of the esophagus by Gloyna et al. and the colon by Siskind and Burrell.

  3. Cellular immune profiling after sequential clofarabine and lenalidomide for high risk myelodysplastic syndromes and acute myeloid leukemia.

    Science.gov (United States)

    Jain, Prachi; Klotz, Jeffrey; Dunavin, Neil; Lu, Kit; Koklanaris, Eleftheria; Draper, Debbie; Superata, Jeanine; Chinian, Fariba; Yu, Quan; Keyvanfar, Keyvan; Wong, Susan; Muranski, Pawel; Barrett, A John; Ito, Sawa; Battiwalla, Minoo

    2017-01-01

    Patients with high risk myelodysplastic syndromes (MDS) and acute myelogenous leukemia (AML) are commonly older with multiple co-morbidities, rendering them unsuitable for intensive induction chemotherapy or transplantation. We report preliminary cellular immune profiling of four cases receiving sequential clofarabine and lenalidomide for high risk MDS and AML in a phase I study. Our results highlight the potential of immune profiling for monitoring immune-modifying agents in high risk MDS and AML.

  4. Cellular immune profiling after sequential clofarabine and lenalidomide for high risk myelodysplastic syndromes and acute myeloid leukemia

    Directory of Open Access Journals (Sweden)

    Prachi Jain

    2017-01-01

    Full Text Available Patients with high risk myelodysplastic syndromes (MDS and acute myelogenous leukemia (AML are commonly older with multiple co-morbidities, rendering them unsuitable for intensive induction chemotherapy or transplantation. We report preliminary cellular immune profiling of four cases receiving sequential clofarabine and lenalidomide for high risk MDS and AML in a phase I study. Our results highlight the potential of immune profiling for monitoring immune-modifying agents in high risk MDS and AML.

  5. High-order sliding mode control of a DC motor drive via a switched controlled multi-cellular converter

    Science.gov (United States)

    Djemaï, M.; Busawon, K.; Benmansour, K.; Marouf, A.

    2011-11-01

    In this article, we present a high-order sliding mode controller of a DC motor drive connected to a multi-cellular converter. More specifically, we design a second-order (super-twisting) control algorithm for the speed regulation of a DC motor. For this, a switching control for the multi-cellular converter is derived in order to supply the correct reference value for the speed regulation. A practical implementation of the controller is realised using a laboratory set-up. The performance and the validity of the controller are shown experimentally.

  6. The putative P-gp inhibitor telmisartan does not affect the transcellular permeability and cellular uptake of the calcium channel antagonist verapamil in the P-glycoprotein expressing cell line MDCK II MDR1.

    Science.gov (United States)

    Saaby, Lasse; Tfelt-Hansen, Peer; Brodin, Birger

    2015-08-01

    Verapamil is used in high doses for the treatment of cluster headache. Verapamil has been described as a P-glycoprotein (P-gp, ABCB1) substrate. We wished to evaluate in vitro whether co administration of a P-gp inhibitor with verapamil could be a feasible strategy for increasing CNS uptake of verapamil. Fluxes of radiolabelled verapamil across MDCK II MDR1 monolayers were measured in the absence and presence of the putative P-gp inhibitor telmisartan (a clinically approved drug compound). Verapamil displayed a vectorial basolateral-to-apical transepithelial efflux across the MDCK II MDR1 monolayers with a permeability of 5.7 × 10(-5) cm sec(-1) compared to an apical to basolateral permeability of 1.3 × 10(-5) cm sec(-1). The efflux could be inhibited with the P-gp inhibitor zosuquidar. Zosuquidar (0.4 μmol/L) reduced the efflux ratio (PB-A/PA-B) for verapamil 4.6-1.6. The presence of telmisartan, however, only caused a slight reduction in P-gp-mediated verapamil transport to an efflux ratio of 3.4. Overall, the results of the present in vitro approach indicate, that clinical use of telmisartan as a P-gp inhibitor may not be an effective strategy for increasing brain uptake of verapamil by co-administration with telmisartan.

  7. Inactivation of uptake hydrogenase leads to enhanced and sustained hydrogen production with high nitrogenase activity under high light exposure in the cyanobacterium Anabaena siamensis TISTR 8012

    Directory of Open Access Journals (Sweden)

    Khetkorn Wanthanee

    2012-10-01

    Full Text Available Abstract Background Biohydrogen from cyanobacteria has attracted public interest due to its potential as a renewable energy carrier produced from solar energy and water. Anabaena siamensis TISTR 8012, a novel strain isolated from rice paddy field in Thailand, has been identified as a promising cyanobacterial strain for use as a high-yield hydrogen producer attributed to the activities of two enzymes, nitrogenase and bidirectional hydrogenase. One main obstacle for high hydrogen production by A. siamensis is a light-driven hydrogen consumption catalyzed by the uptake hydrogenase. To overcome this and in order to enhance the potential for nitrogenase based hydrogen production, we engineered a hydrogen uptake deficient strain by interrupting hupS encoding the small subunit of the uptake hydrogenase. Results An engineered strain lacking a functional uptake hydrogenase (∆hupS produced about 4-folds more hydrogen than the wild type strain. Moreover, the ∆hupS strain showed long term, sustained hydrogen production under light exposure with 2–3 folds higher nitrogenase activity compared to the wild type. In addition, HupS inactivation had no major effects on cell growth and heterocyst differentiation. Gene expression analysis using RT-PCR indicates that electrons and ATP molecules required for hydrogen production in the ∆hupS strain may be obtained from the electron transport chain associated with the photosynthetic oxidation of water in the vegetative cells. The ∆hupS strain was found to compete well with the wild type up to 50 h in a mixed culture, thereafter the wild type started to grow on the relative expense of the ∆hupS strain. Conclusions Inactivation of hupS is an effective strategy for improving biohydrogen production, in rates and specifically in total yield, in nitrogen-fixing cultures of the cyanobacterium Anabaena siamensis TISTR 8012.

  8. Investigating uptake of N2O in agricultural soils using a high-precision dynamic chamber method

    Directory of Open Access Journals (Sweden)

    N. J. Cowan

    2014-08-01

    Full Text Available Uptake (or negative flux of nitrous oxide (N2O in agricultural soils is a controversial issue which has proven difficult to investigate in the past due to constraints such as instrumental precision and unknown methodological uncertainties. Using a recently developed high-precision quantum cascade laser (QCL gas analyser combined with a closed dynamic chamber, a well defined detection limit of 4 μg N2O-N m−2 h−1 could be achieved for individual soil flux measurements. 1220 measurements of N2O flux were made from a variety of UK soils using this method, of which 115 indicated uptake by the soil (i.e. a negative flux in the micrometeorological sign convention. Only 4 of these apparently negative fluxes were greater than the detection limit of the method, which suggests that the vast majority of reported negative fluxes from such measurements are actually due to instrument noise. As such, we suggest that the bulk of negative N2O fluxes reported for agricultural fields are most likely due to limits in detection of a particular flux measurement methodology and not as a result of microbiological activity consuming atmospheric N2O.

  9. Investigating uptake of N2O in agricultural soils using a high-precision dynamic chamber method

    Science.gov (United States)

    Cowan, N. J.; Famulari, D.; Levy, P. E.; Anderson, M.; Reay, D. S.; Skiba, U. M.

    2014-12-01

    Uptake (or negative flux) of nitrous oxide (N2O) in agricultural soils is a controversial issue which has proved difficult to investigate in the past due to constraints such as instrumental precision and methodological uncertainties. Using a recently developed high-precision quantum cascade laser gas analyser combined with a closed dynamic chamber, a well-defined detection limit of 4 μg N2O-N m-2 h-1 could be achieved for individual soil flux measurements. 1220 measurements of N2O flux were made from a variety of UK soils using this method, of which 115 indicated uptake by the soil (i.e. a negative flux in the micrometeorological sign convention). Only four of these apparently negative fluxes were greater than the detection limit of the method, which suggests that the vast majority of reported negative fluxes from such measurements are actually due to instrument noise. As such, we suggest that the bulk of negative N2O fluxes reported for agricultural fields are most likely due to limits in detection of a particular flux measurement methodology and not a result of microbiological activity consuming atmospheric N2O.

  10. Steroid hormone 20-hydroxyecdysone regulation of the very-high-density lipoprotein (VHDL) receptor phosphorylation for VHDL uptake.

    Science.gov (United States)

    Dong, Du-Juan; Liu, Wen; Cai, Mei-Juan; Wang, Jin-Xing; Zhao, Xiao-Fan

    2013-04-01

    During the metamorphic stage of holometabolous insects, the biosynthetic precursors needed for the synthesis of a large number of adult proteins are acquired from the selective absorption of storage proteins. The very-high-density lipoprotein (VHDL), a non-hexameric storage protein, is consumed by the fat body from the hemolymph through VHDL receptor (VHDL-R)-mediated endocytosis. However, the mechanism of the uptake of VHDL by a VHDL-R remains unclear. In this study, a VHDL-R from Helicoverpa armigera was found to be involved in 20E-regulated VHDL uptake through the regulation of steroid hormone 20-hydroxyecdysone (20E). The transcripts of VHDL-R were detected mainly in the fat body and integument during the wandering stage. The transcription of VHDL-R was upregulated by 20E through the ecdysteroid receptor (EcRB1) and Ultraspiracle (USP1). In addition, 20E stimulates the phosphorylation of VHDL-R through protein kinase C for ligand binding. VHDL-R knockdown in larvae results the inhibition of development to adulthood. These data imply that 20E regulates VHDL-R on both transcriptional and posttranslational levels for VHDL absorption.

  11. Social interactions of eating behaviour among high school students: a cellular automata approach.

    Science.gov (United States)

    Dabbaghian, Vahid; Mago, Vijay K; Wu, Tiankuang; Fritz, Charles; Alimadad, Azadeh

    2012-10-09

    Overweight and obesity in children and adolescents is a global epidemic posing problems for both developed and developing nations. The prevalence is particularly alarming in developed nations, such as the United States, where approximately one in three school-aged adolescents (ages 12-19) are overweight or obese. Evidence suggests that weight gain in school-aged adolescents is related to energy imbalance exacerbated by the negative aspects of the school food environment, such as presence of unhealthy food choices. While a well-established connection exists between the food environment, presently there is a lack of studies investigating the impact of the social environment and associated interactions of school-age adolescents. This paper uses a mathematical modelling approach to explore how social interactions among high school adolescents can affect their eating behaviour and food choice. In this paper we use a Cellular Automata (CA) modelling approach to explore how social interactions among school-age adolescents can affect eating behaviour, and food choice. Our CA model integrates social influences and transition rules to simulate the way individuals would interact in a social community (e.g., school cafeteria). To replicate these social interactions, we chose the Moore neighbourhood which allows all neighbours (eights cells in a two-dimensional square lattice) to influence the central cell. Our assumption is that individuals belong to any of four states; Bring Healthy, Bring Unhealthy, Purchase Healthy, and Purchase Unhealthy, and will influence each other according to parameter settings and transition rules. Simulations were run to explore how the different states interact under varying parameter settings. This study, through simulations, illustrates that students will change their eating behaviour from unhealthy to healthy as a result of positive social and environmental influences. In general, there is one common characteristic of changes across time

  12. Cellular Uptake of TPS-L-Carnitine Synthesised as Transporter-based Renal Targeting Prodrug%转运体介导的肾靶向雷公藤内酯醇前体药物TPS-L-Carnitine的合成及体外细胞摄取研究

    Institute of Scientific and Technical Information of China (English)

    李里; 朱迪; 孙逊

    2012-01-01

    Objective To synthesize transporter-based renal targeting prodrug TPS-L-Camitine and to determine its cellular uptake in vitro. Methods Triptolide (TP) was conjugated with L-carnitine using succinate as the linker to form TPS-L-Carnitine, which could be specifically recognized by OCTN2, a cationic transporter with high affinity to L-Carnitine and is highly expressed on the apical membrane of renal proximal tubule cells. Cellular uptake assays of the prodrug and its parent drug were performed on HK-2 cells, a human proximal tubule cell line, in different temperature, concentration and in the presence of competitive inhibitors. Results TPS-L-Carnitine was taken up into HK-2 cells in a saturable and temperature- and concentration-dependent manner. The uptake process could be inhibited by the competitive inhibitors. The uptake of TPS-L-Carnitine was significantly higher than that of TP at 37 °C in the same drug concentration. TPS-L-Carnitine was taken through endocytosis mediated by transporter. Conclusion TPS-L-Carnitine provides a good renal targeting property and lays the foundation for further studies in vivo.%目的 研究有机阳离子转运体( OCTN2)介导的肾靶向雷公藤内酯醇(TP)前体药物TP丁二酸酯(TPS)-L-肉毒碱(TPS-L-Carnitine)的合成方法和体外靶向细胞摄取.方法 将TP与丁二酸酐在碱性条件下生成TPS,再与L-肉毒碱成酯得前体药物TPS-L-Carnitine,利用OCTN2对L-肉毒碱的特异性识别和结合,使前药主动靶向到肾近端小管上皮细胞.初步研究不同温度、浓度以及竞争抑制剂存在时人近端小管上皮细胞株HK-2细胞对前药和母体药物的摄取.结果 HK-2细胞对前药的吸收可饱和,具有温度和浓度依赖性,可被竞争抑制剂抑制,37℃相同给药浓度时,细胞对TPS-L-Carnitine的摄取明显多于TP,证实细胞对TPS-L-Carnitine的摄取机制是通过转运体介导的内吞作用.结论 TPS-L-Carnitine具有良好的肾靶向性,为进一步体

  13. A Study of the Efficiency of High-strength, Steel, Cellular-core Sandwich Plates in Compression

    Science.gov (United States)

    Johnson, Aldie E , Jr; Semonian, Joseph W

    1956-01-01

    Structural efficiency curves are presented for high-strength, stainless-steel, cellular-core sandwich plates of various proportions subjected to compressive end loads for temperatures of 80 F and 600 F. Optimum proportions of sandwich plates for any value of the compressive loading intensity can be determined from the curves. The efficiency of steel sandwich plates of optimum proportions is compared with the efficiency of solid plates of high-strength steel and aluminum and titanium alloys at the two temperatures.

  14. Asymmetric-detection time-stretch optical microscopy (ATOM) for ultrafast high-contrast cellular imaging in flow

    CERN Document Server

    Wong, Terence T W; Ho, Kenneth K Y; Tang, Matthew Y H; Robles, Joseph D F; Wei, Xiaoming; Chan, Antony C S; Tang, Anson H L; Lam, Edmund Y; Wong, Kenneth K Y; Chan, Godfrey C F; Shum, Ho Cheung; Tsia, Kevin K

    2013-01-01

    Accelerating imaging speed in optical microscopy is often realized at the expense of image contrast, image resolution, and detection sensitivity- a common predicament for advancing high-speed and high-throughput cellular imaging. We here demonstrate a new imaging approach, called asymmetric-detection time-stretch optical microscopy (ATOM), which can deliver ultrafast label-free high-contrast flow imaging with well delineated cellular morphological resolution and in-line optical image amplification to overcome the compromised imaging sensitivity at high speed. We show that ATOM can separately reveal the enhanced phase-gradient and absorption contrast in microfluidic live-cell imaging at a flow speed as high as ~10 m/s, corresponding to an imaging throughput of ~100,000 cells/sec. ATOM could thus be the enabling platform to meet the pressing need for intercalating optical microscopy in cellular assay, e.g. imaging flow cytometry- permitting high-throughput access to the morphological information of the individu...

  15. Asymmetric-detection time-stretch optical microscopy (ATOM) for ultrafast high-contrast cellular imaging in flow

    Science.gov (United States)

    Wong, Terence T. W.; Lau, Andy K. S.; Ho, Kenneth K. Y.; Tang, Matthew Y. H.; Robles, Joseph D. F.; Wei, Xiaoming; Chan, Antony C. S.; Tang, Anson H. L.; Lam, Edmund Y.; Wong, Kenneth K. Y.; Chan, Godfrey C. F.; Shum, Ho Cheung; Tsia, Kevin K.

    2014-01-01

    Accelerating imaging speed in optical microscopy is often realized at the expense of image contrast, image resolution, and detection sensitivity – a common predicament for advancing high-speed and high-throughput cellular imaging. We here demonstrate a new imaging approach, called asymmetric-detection time-stretch optical microscopy (ATOM), which can deliver ultrafast label-free high-contrast flow imaging with well delineated cellular morphological resolution and in-line optical image amplification to overcome the compromised imaging sensitivity at high speed. We show that ATOM can separately reveal the enhanced phase-gradient and absorption contrast in microfluidic live-cell imaging at a flow speed as high as ~10 m/s, corresponding to an imaging throughput of ~100,000 cells/sec. ATOM could thus be the enabling platform to meet the pressing need for intercalating optical microscopy in cellular assay, e.g. imaging flow cytometry – permitting high-throughput access to the morphological information of the individual cells simultaneously with a multitude of parameters obtained in the standard assay. PMID:24413677

  16. Isoreticular Series of (3,24)-Connected Metal-Organic Frameworks: Facile Synthesis and High Methane Uptake Properties

    Energy Technology Data Exchange (ETDEWEB)

    Barin, G; Krungleviciute, V; Gomez-Gualdron, DA; Sarjeant, AA; Snurr, RQ; Hupp, JT; Yildirim, T; Farha, OK

    2014-03-11

    We have successfully used a highly efficient copper-catalyzed "click" reaction for the synthesis of a new series of hexacarboxylic acid linkers with varying sizes for the construction of isoreticular (3,24)-connected metal-organic frameworks (MOFs)-namely, NU-138, NU-139, and NU-140. One of these MOFs, NU-140, exhibits a gravimetric methane uptake of 0.34 g/g at 65 bar and 298 K, corresponding to almost 70% of the DOE target (0.5 g/g), and has a working capacity (deliverable amount between 65 and 5 bar) of 0.29 g/g, which translates into a volumetric working capacity of 170 cc(STP)/cc. These values demonstrate that NU-140 performs well for methane storage purposes, from both a gravimetric and a volumetric point of view. Adsorption of CO2 and H-2 along with simulated isotherms are also reported.

  17. Organizing the Cellular and Molecular Heterogeneity in High Grade Serous Ovarian Cancer by Mass Cytometry

    Science.gov (United States)

    2015-10-01

    the vast array of genetic events found in cancer all converge on three essential cellular processes, cell fate, cell survival and genome maintenance...developed: from the Nolan Lab: Citrus 12, X-shift (unpublished), Gatefinder (unpublished), Pe’er Lab: DREMI 13. A manuscript describing X-shift has been...checked with other clustering algorithms such as used by the Citrus algorithm 12 as well as manual gating of the CyTOF data. The latter is considered

  18. Caenorhabditis elegans maintains highly compartmentalized cellular distribution of metals and steep concentration gradients of manganese.

    Directory of Open Access Journals (Sweden)

    Gawain McColl

    Full Text Available Bioinorganic chemistry is critical to cellular function. Homeostasis of manganese (Mn, for example, is essential for life. A lack of methods for direct in situ visualization of Mn and other biological metals within intact multicellular eukaryotes limits our understanding of management of these metals. We provide the first quantitative subcellular visualization of endogenous Mn concentrations (spanning two orders of magnitude associated with individual cells of the nematode, Caenorhabditis elegans.

  19. Organizing the Cellular and Molecular Heterogeneity in High-Grade Serous Ovarian Cancer by Mass Cytometry

    Science.gov (United States)

    2014-10-01

    array of genetic events found in cancer all converge on three essential cellular processes, cell fate, cell survival and genome maintenance all...Columbia) (these efforts will be ongoing throughout most of the duration of this award) New tools developed: from the Nolan Lab: Citrus [12], X-shift...p53(total) Cell cycle/ Genome integrety Lu175 Protein Biology Isotope Protein Biology Isotope CD235 Erythroid cells In113 HLA-DR DCs/B cells/monocytes

  20. High-resolution Fiber-optic Microendoscopy for in situ Cellular Imaging

    OpenAIRE

    Pierce, Mark; Yu, Dihua; Richards-Kortum, Rebecca

    2011-01-01

    Many biological and clinical studies require the longitudinal study and analysis of morphology and function with cellular level resolution. Traditionally, multiple experiments are run in parallel, with individual samples removed from the study at sequential time points for evaluation by light microscopy. Several intravital techniques have been developed, with confocal, multiphoton, and second harmonic microscopy all demonstrating their ability to be used for imaging in situ 1. With these syst...

  1. Bioprinting-Based High-Throughput Fabrication of Three-Dimensional MCF-7 Human Breast Cancer Cellular Spheroids

    Directory of Open Access Journals (Sweden)

    Kai Ling

    2015-06-01

    Full Text Available Cellular spheroids serving as three-dimensional (3D in vitro tissue models have attracted increasing interest for pathological study and drug-screening applications. Various methods, including microwells in particular, have been developed for engineering cellular spheroids. However, these methods usually suffer from either destructive molding operations or cell loss and non-uniform cell distribution among the wells due to two-step molding and cell seeding. We have developed a facile method that utilizes cell-embedded hydrogel arrays as templates for concave well fabrication and in situ MCF-7 cellular spheroid formation on a chip. A custom-built bioprinting system was applied for the fabrication of sacrificial gelatin arrays and sequentially concave wells in a high-throughput, flexible, and controlled manner. The ability to achieve in situ cell seeding for cellular spheroid construction was demonstrated with the advantage of uniform cell seeding and the potential for programmed fabrication of tissue models on chips. The developed method holds great potential for applications in tissue engineering, regenerative medicine, and drug screening.

  2. Glucose uptake and growth of glucose-limited chemostat cultures of Aspergillus niger and a disruptant lacking MstA, a high-affinity glucose transporter

    DEFF Research Database (Denmark)

    Jørgensen, Thomas R; vanKuyk, Patricia A; Poulsen, Bjarne R

    2007-01-01

    This is a study of high-affinity glucose uptake in Aspergillus niger and the effect of disruption of a high-affinity monosaccharide-transporter gene, mstA. The substrate saturation constant (K(s)) of a reference strain was about 15 microM in glucose-limited chemostat culture. Disruption of mst......-affinity uptake system of A. niger. The mstA disruptant and a reference strain were cultivated in glucose-limited chemostat cultures at low, intermediate and high dilution rate (D=0.07 h(-1), 0.14 h(-1) and 0.20 h(-1)). Mycelium harvested from steady-state cultures was subjected to glucose uptake assays...

  3. Exploiting the multiplexing capabilities of tandem mass tags for high-throughput estimation of cellular protein abundances by mass spectrometry.

    Science.gov (United States)

    Ahrné, Erik; Martinez-Segura, Amalia; Syed, Afzal Pasha; Vina-Vilaseca, Arnau; Gruber, Andreas J; Marguerat, Samuel; Schmidt, Alexander

    2015-09-01

    The generation of dynamic models of biological processes critically depends on the determination of precise cellular concentrations of biomolecules. Measurements of system-wide absolute protein levels are particularly valuable information in systems biology. Recently, mass spectrometry based proteomics approaches have been developed to estimate protein concentrations on a proteome-wide scale. However, for very complex proteomes, fractionation steps are required, increasing samples number and instrument analysis time. As a result, the number of full proteomes that can be routinely analyzed is limited. Here we combined absolute quantification strategies with the multiplexing capabilities of isobaric tandem mass tags to determine cellular protein abundances in a high throughput and proteome-wide scale even for highly complex biological systems, such as a whole human cell line. We generated two independent data sets to demonstrate the power of the approach regarding sample throughput, dynamic range, quantitative precision and accuracy as well as proteome coverage in comparison to existing mass spectrometry based strategies.

  4. Min-By-Min Respiratory Exchange and Oxygen Uptake Kinetics During Steady-State Exercise in Subjects of High and Low Max VO2

    Science.gov (United States)

    Weltman, Arthur; Katch, Victor

    1976-01-01

    No statistically meaningful differences in steady-state vo2 uptake for high and low max vo2 groups was indicated in this study, but a clear tendency was observed for the high max vo2 group to reach the steady-state at a faster rate. (MB)

  5. Mitochondrial calcium uptake.

    Science.gov (United States)

    Williams, George S B; Boyman, Liron; Chikando, Aristide C; Khairallah, Ramzi J; Lederer, W J

    2013-06-25

    Calcium (Ca(2+)) uptake into the mitochondrial matrix is critically important to cellular function. As a regulator of matrix Ca(2+) levels, this flux influences energy production and can initiate cell death. If large, this flux could potentially alter intracellular Ca(2+) ([Ca(2+)]i) signals. Despite years of study, fundamental disagreements on the extent and speed of mitochondrial Ca(2+) uptake still exist. Here, we review and quantitatively analyze mitochondrial Ca(2+) uptake fluxes from different tissues and interpret the results with respect to the recently proposed mitochondrial Ca(2+) uniporter (MCU) candidate. This quantitative analysis yields four clear results: (i) under physiological conditions, Ca(2+) influx into the mitochondria via the MCU is small relative to other cytosolic Ca(2+) extrusion pathways; (ii) single MCU conductance is ∼6-7 pS (105 mM [Ca(2+)]), and MCU flux appears to be modulated by [Ca(2+)]i, suggesting Ca(2+) regulation of MCU open probability (P(O)); (iii) in the heart, two features are clear: the number of MCU channels per mitochondrion can be calculated, and MCU probability is low under normal conditions; and (iv) in skeletal muscle and liver cells, uptake per mitochondrion varies in magnitude but total uptake per cell still appears to be modest. Based on our analysis of available quantitative data, we conclude that although Ca(2+) critically regulates mitochondrial function, the mitochondria do not act as a significant dynamic buffer of cytosolic Ca(2+) under physiological conditions. Nevertheless, with prolonged (superphysiological) elevations of [Ca(2+)]i, mitochondrial Ca(2+) uptake can increase 10- to 1,000-fold and begin to shape [Ca(2+)]i dynamics.

  6. Effects of High Ammonium Concentration on Growth and Nutrient Uptake of Lettuce Plants with Solution Culture

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    A nutrition solution experiment was conducted over two months to investigate the response of vegetable crops to high concentrations of ammonium, using lettuce (Lactuca sativa L. cv. Angustana Irish) as a test crop. Ammonium concentrations were designed in 5 levels, ranging from 12 mmol N L-1 to 22 mmol N L-1 and local tap water was used as water source. At the first culture stage (0-9 days), lettuce plants maintained normal growth while the lettuce roots were increasingly impaired. During the subsequent three stages the root structure was greatly damaged, and roots became brown or black through continuous supply of high concentration of ammonium. However, there was no obvious reduction of the aboveground biomass of the plants in the high ammonium treatments compared to those supplied with nitrate alone. In contrast to results obtained in another experiment from us with distilled water, the detrimental effect of high ammonium concentration on lettuce growth was greatly alleviated. Based on the results, it was postulated that the small amount of nitrate and the higher amount of bicarbonate existed in the tap water might mitigate the adverse effects of high ammonium N. The higher bicarbonate content in water and soil has usually been regarded as a major constraint factor limiting plant growth in calcareous soil areas. However, the reaction of bicarbonate to ammonium might produce positively interactive effect on reduction of both damages. The lettuce plants grown in ammonium solutions took up less P, K, Fe, Mn and Cu and more Ca than those grown in the nitrate nutrient solution. In conclusion, the results indicated that the N form imposed an obvious influence on absorption of cations and anions. Supplying ammonium-N stimulated transport of Ca, Mg and Mn to shoots of lettuce.

  7. Locomotor muscle fatigue does not alter oxygen uptake kinetics during high-intensity exercise

    Directory of Open Access Journals (Sweden)

    James Hopker

    2016-10-01

    Full Text Available The slow component (VO2sc that develops during high-intensity aerobic exercise is thought to be strongly associated with locomotor muscle fatigue. We sought to experimentally test this hypothesis by pre-fatiguing the locomotor muscles used during subsequent high-intensity cycling exercise. Over two separate visits, eight healthy male participants were asked to either perform a non-metabolically stressful 100 intermittent drop-jumps protocol (pre fatigue condition or rest for 33 minutes (control condition according to a random and counterbalanced order. Locomotor muscle fatigue was quantified with 6-second maximal sprints at a fixed pedaling cadence of 90 rev·min-1. Oxygen kinetics and other responses (heart rate, capillary blood lactate concentration and rating of perceived exertion, RPE were measured during two subsequent bouts of 6 min cycling exercise at 50% of the delta between the lactate threshold and VO2max determined during a preliminary incremental exercise test. All tests were performed on the same cycle ergometer. Despite significant locomotor muscle fatigue (P = 0.03, the VO2sc was not significantly different between the pre fatigue (464 ± 301 mL·min-1 and the control (556 ± 223 mL·min-1 condition (P = 0.50. Blood lactate response was not significantly different between conditions (P = 0.48 but RPE was significantly higher following the pre-fatiguing exercise protocol compared with the control condition (P < 0.01 suggesting higher muscle recruitment. These results demonstrate experimentally that locomotor muscle fatigue does not significantly alter the VO2 kinetic response to high intensity aerobic exercise, and challenge the hypothesis that the VO2sc is strongly associated with locomotor muscle fatigue.

  8. High liver FDG uptake on PET/CT in patient with lymphoma diagnosed with hereditary hemochromatosis.

    Science.gov (United States)

    Infante, Jose R; Moreno, Manuel; Rayo, Juan I; Serrano, Justo; Dominguez, Maria L; Garcia, Lucia

    2015-06-01

    Hereditary hemochromatosis is an autosomal recessive disorder of iron metabolism resulting in toxic accumulation of iron in vital organs. We present a 64-year-old white man with non-Hodgkin lymphoma treated with high-dose chemotherapy and stem cell transplant that was subsequently diagnosed with hereditary hemochromatosis. F-FDG PET/CT was performed as routine follow-up and showed a pathological finding of homogeneous increased liver glucose metabolism. Increased FDG avidity in the liver suggested the presence of damage caused by hemochromatosis.

  9. High uptake of 2,4,6-trinitrotoluene by vetiver grass--potential for phytoremediation?

    Science.gov (United States)

    Makris, Konstantinos C; Shakya, Kabindra M; Datta, Rupali; Sarkar, Dibyendu; Pachanoor, Devanand

    2007-03-01

    2,4,6-Trinitrotoluene (TNT) is a potent mutagen, and a Group C human carcinogen that has been widely used to produce munitions and explosives. Vast areas that have been previously used as ranges, munition burning, and open detonation sites are heavily contaminated with TNT. Conventional remediation activities in such sites are expensive and damaging to the ecosystem. Phytoremediation offers a cost-effective, environment-friendly solution, utilizing plants to extract TNT from contaminated soil. We investigated the potential use of vetiver grass (Vetiveria zizanioides) to effectively remove TNT from contaminated solutions. Vetiver grass plants were grown in hydroponic systems containing 40 mg TNTL(-1) for 8d. Aqueous concentrations of TNT reached the method detection limit ( approximately 1 microg L(-1)) within the 8-d period, demonstrating high affinity of vetiver for TNT, without any visible toxic effects. Results from this preliminary hydroponic study are encouraging, but in need of verification using TNT-contaminated soils.

  10. Identification of a novel, alpha2-fucosylation-dependent uptake system in highly proliferative cells.

    Science.gov (United States)

    Aldi, Silvia; Capone, Antonietta; Giovampaola, Cinzia Della; Ermini, Leonardo; Pianigiani, Elisa; Mariotti, Giancarlo; Rosati, Floriana

    2015-02-01

    In this paper we describe a new structure present in highly proliferative cells and absent in cells with normal growth potential. We used cultured bovine venular endothelial cells (CVEC) as examples of high proliferation, and dermal fibroblasts of a primary culture as examples of normal proliferation. The structure, consisting of tubules radiating from the nuclear region to the tips of cell protrusions, was revealed by its strong positivity to the fucose-binding lectin from Lotus (LTL) that prefers glycans with alpha-1,2-linked fucose. Another fucose-binding lectin that prefers glycans with alpha-1,6-linked fucose was instead found to localize glycans exclusively in Golgi complexes. LTL binding sites were also found at the surface of CVEC in a restricted region close to the nucleus. The role of alpha-1,2-linked fucose in forming or maintaining the tubules was confirmed by the fact that down-regulation of the fucosyltransferases FUT1 and FUT2 resulted in disappearance of the tubular structure. LTL also proved able to penetrate the cells through the tubular structures up to the nuclear region and to inhibit proliferation. Endostatin was also found to massively penetrate the cells in the tubular structures in control cells but not in FUT1/2 depleted cells. In cells of a first passage primary culture of dermal fibroblasts the tubular LTL-positive structure was absent as well as the LTL-positive sites at the external surface, and both fucose-binding lectins were found to exclusively localize glycans in Golgi complexes. Tubules were again found progressively in fibroblasts derived from repeated passages, where faster growing cells predominate. Disappearance of LTL-positivity in Golgi complexes paralleled appearance of LTL-positive tubules. The role of Golgi complexes in forming the tubules is discussed.

  11. Rapid Directional Solidification with Ultra-High Temperature Gradient and Cellular Spacing Selection of Cu-Mn Alloy

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The detailed laser surface remelting experiments of Cu-31.4 wt pct Mn and Cu-26.6 wt pct Mn alloys on a 5 kW CO2laser were carried out to study the effects of processing parameters (scanning velocity, output power of laser) on the growthdirection of microstructure in the molten pool and cellular spacing selection under the condition of ultra-high temperaturegradient and rapid directional solidification. The experimental results show that the growth direction of microstructure isstrongly affected by laser processing parameters. The ultra-high temperature gradient directional solidification can be realizedon the surface of samples during laser surface remelting by controlling laser processing parameters, the temperature gradientand growth velocity can reach 106 K/m and 24.1 mm/s, respectively, and the solidification microstructure in the center ofthe molten pool grows along the laser beam scanning direction. There exists a distribution range of cellular spacings underthe laser rapid solidification conditions, and the average spacing decreases with increasing of growth rate. The maximum,λ minimum, λmin, and average primary spacing,λ, as functions of growth rate, Vb, can be given by, λ =12.54V b-0.61,λmin=4.47 Vb-0.52, λ=9.09Vb-0.62, respectively. The experimental results are compared with the current Hunt-Lu model forrapid cellular/dendritic growth, and a good agreement is found.

  12. Changes in the topography of cellular components in pea root statocytes exposed to high gradient magnetic fields

    Science.gov (United States)

    Belyavskaya, Ninel A.; Polishchuk, Olexandr V.; Kondrachuk, Alexander V.

    2005-08-01

    High-gradient magnetic field (HGMF) is one of methods, by which gravitropism in plants is studied. The aim of our study was elucidation of HGMF effects on topography of cellular components in root statocytes of 4- day Pisum sativum L. seedlings in comparison to gravistimulation. Under gravistimulation during 5, 30 and 60 min seedlings were rotated 45o; magnetostimulation was carried out along gap between two NdFeB magnets (0.7 T). Morphometric measurements were made from images of whole statocytes, for upper, middle and lower thirds of cells, and proximal and distal halves of cells. Morphometric analysis revealed that HGMF resulted in the redistribution of all cellular components in statocytes. The correlation in the amyloplast distribution between gravistimulation and magnetostimulation was established.

  13. Mitochondrial alternative oxidase acts to dampen the generation of active oxygen species during a period of rapid respiration induced to support a high rate of nutrient uptake.

    Science.gov (United States)

    Yip, Justine Y. H.; Vanlerberghe, Greg C.

    2001-07-01

    When wild type (wt) tobacco (Nicotiana tabacum L. cv. Petit Havana SR1) suspension cells were grown under phosphate (P) limitation, they contained large amounts of mitochondrial alternative oxidase (AOX). When these cells were resupplied with P, there was a large, immediate and sustained stimulation of respiration to support a period of rapid P uptake. Two lines of evidence suggest that the abundant level of AOX present in wt cells contributed to this stimulated rate of respiration. First, when P-limited transgenic antisense tobacco cells (AS8) lacking AOX were resupplied with P, the stimulation of respiration was much less dramatic even though these cells displayed similar rates of P uptake. Second, while the stimulated rate of respiration in AS8 cells was insensitive (as expected) to the AOX inhibitor n-propyl gallate (nPG), much of the stimulated rate of respiration in wt cells could be inhibited by nPG. Given the non-phosphorylating nature of AOX respiration, wt cells required higher rates of electron transport to O2 than AS8 cells to support similar rates of P uptake. The utilization of AOX by wt cells during P uptake was apparently not occurring because the cytochrome (Cyt) pathway alone could not fully support the rate of P uptake, as the respiration of cells lacking AOX (either untreated AS8 cells or wt cells treated with nPG) supported similar rates of P uptake as wt cells with abundant AOX. Rather, we provide in vivo evidence that the utilization of AOX during the period of high respiration supporting P uptake was to dampen the mitochondrial generation of active oxygen species (AOS).

  14. Tolerance to high-intensity intermittent running exercise: do oxygen uptake kinetics really matter?

    Directory of Open Access Journals (Sweden)

    Martin eBuchheit

    2012-10-01

    Full Text Available We examined the respective associations between aerobic fitness (VO2max, metabolic control (VO2 kinetics and locomotor function and various physiological responses to high-intensity intermittent running exercise (HIT in team sport players. Eleven players (30.5 ± 3.6 y performed a series of tests to determine their VO2max and the associated velocity (vVO2max, maximal sprinting speed (MSS and VO2 kinetics at exercise onset in the moderate and severe intensity domains, and during recovery (VO2τoff SEV. Cardiorespiratory variables, oxygenation and electromyography (EMG of lower limbs muscles and blood lactate concentration ([La] were collected during a standardized HIT protocol consisting in 8 sets of 10, 4-s runs. During HIT, four players could not complete more than 2 sets; the others finished at least 5 sets. Metabolic responses to the 2 first sets of HIT were negatively correlated with VO2max, vVO2max, and VO2τoff SEV (r=-0.6 to -0.8, while there was no clear relationship with the other variables. VO2, oxygenation and [La] responses to the first 2 sets of HIT were the only variables that differed between the players which could complete at least 5 sets or those who could not complete more than 2 sets. Players that managed to run at least 5 sets presented, in comparison with the others, greater v O2max (ES=+1.5(0.4;2.7, MSS(ES=+1.0(0.1;1.9 and training load (ES=+3.8 (2.8;4.9. There was no clear between-group difference in any of the VO2 kinetics measures (e.g., ES=-0.1(-1.4;1.2 for VO2τon SEV. While VO2max and vVO2max are likely determinant for HIT tolerance, the importance of VO2 kinetics as assessed in the present study appears limited in the present population. Knowing the main factors influencing tolerance to high-intensity intermittent running exercise may assist practitioners in personalizing training interventions.

  15. A short period of high-intensity interval training improves skeletal muscle mitochondrial function and pulmonary oxygen uptake kinetics.

    Science.gov (United States)

    Christensen, Peter M; Jacobs, Robert A; Bonne, Thomas; Flück, Daniela; Bangsbo, Jens; Lundby, Carsten

    2016-06-01

    The aim of the present study was to examine whether improvements in pulmonary oxygen uptake (V̇o2) kinetics following a short period of high-intensity training (HIT) would be associated with improved skeletal muscle mitochondrial function. Ten untrained male volunteers (age 26 ± 2 yr; mean ± SD) performed six HIT sessions (8-12 × 60 s at incremental test peak power; 271 ± 52 W) over a 2-wk period. Before and after the HIT period, V̇o2 kinetics was modeled during moderate-intensity cycling (110 ± 19 W). Mitochondrial function was assessed with high-resolution respirometry (HRR), and maximal activities of oxidative enzymes citrate synthase (CS) and cytochrome c oxidase (COX) were accordingly determined. In response to HIT, V̇o2 kinetics became faster (τ: 20.4 ± 4.4 vs. 28.9 ± 6.1 s; P CIIP) (P < 0.05). Collectively, these findings support that selected measures of mitochondrial function obtained with HRR are important for fast V̇o2 kinetics and better markers than maximal oxidative enzyme activity in describing the speed of the V̇o2 response during moderate-intensity exercise.

  16. A high surface area Zr(IV)-based metal-organic framework showing stepwise gas adsorption and selective dye uptake

    Science.gov (United States)

    Lv, Xiu-Liang; Tong, Minman; Huang, Hongliang; Wang, Bin; Gan, Lei; Yang, Qingyuan; Zhong, Chongli; Li, Jian-Rong

    2015-03-01

    Exploitation of new metal-organic framework (MOF) materials with high surface areas has been attracting great attention in related research communities due to their broad potential applications. In this work, a new Zr(IV)-based MOF, [Zr6O4(OH)4(eddb)6] (BUT-30, H2eddb=4,4‧-(ethyne-1,2-diyl)dibenzoic acid) has been solvothermally synthesized, characterized, and explored for gases and dyes adsorptions. Single-crystal X-ray diffraction analysis demonstrates a three-dimensional cubic framework structure of this MOF, in which each Zr6O4(OH)4 building unit is linked by 12 linear eddb ligands. BUT-30 has been found stable up to 400 °C and has a Brunauer-Emmett-Teller (BET) surface area as high as 3940.6 m2 g-1 (based on the N2 adsorption at 77 K) and total pore volume of 1.55 cm3 g-1. It is more interesting that this MOF exhibits stepwise adsorption behaviors for Ar, N2, and CO2 at low temperatures, and selective uptakes towards different ionic dyes.

  17. High uptake of 2,4,6-trinitrotoluene by vetiver grass - Potential for phytoremediation?

    Energy Technology Data Exchange (ETDEWEB)

    Makris, Konstantinos C. [Department of Earth and Environmental Science, College of Sciences, University of Texas at San Antonio, 6900 North Loop 1604 West, One UTSA Circle, San Antonio, TX 78249-0663 (United States); Shakya, Kabindra M. [Department of Earth and Environmental Science, College of Sciences, University of Texas at San Antonio, 6900 North Loop 1604 West, One UTSA Circle, San Antonio, TX 78249-0663 (United States); Datta, Rupali [Department of Earth and Environmental Science, College of Sciences, University of Texas at San Antonio, 6900 North Loop 1604 West, One UTSA Circle, San Antonio, TX 78249-0663 (United States); Sarkar, Dibyendu [Department of Earth and Environmental Science, College of Sciences, University of Texas at San Antonio, 6900 North Loop 1604 West, One UTSA Circle, San Antonio, TX 78249-0663 (United States)]. E-mail: dibyendu.sarkar@utsa.edu; Pachanoor, Devanand [Department of Earth and Environmental Science, College of Sciences, University of Texas at San Antonio, 6900 North Loop 1604 West, One UTSA Circle, San Antonio, TX 78249-0663 (United States)

    2007-03-15

    2,4,6-Trinitrotoluene (TNT) is a potent mutagen, and a Group C human carcinogen that has been widely used to produce munitions and explosives. Vast areas that have been previously used as ranges, munition burning, and open detonation sites are heavily contaminated with TNT. Conventional remediation activities in such sites are expensive and damaging to the ecosystem. Phytoremediation offers a cost-effective, environment-friendly solution, utilizing plants to extract TNT from contaminated soil. We investigated the potential use of vetiver grass (Vetiveria zizanioides) to effectively remove TNT from contaminated solutions. Vetiver grass plants were grown in hydroponic systems containing 40 mg TNT L{sup -1} for 8 d. Aqueous concentrations of TNT reached the method detection limit ({approx}1 {mu}g L{sup -1}) within the 8-d period, demonstrating high affinity of vetiver for TNT, without any visible toxic effects. Results from this preliminary hydroponic study are encouraging, but in need of verification using TNT-contaminated soils. - Vetiver grass demonstrates ability to absorb TNT in aqueous media.

  18. Rationally designed porous polystyrene encapsulated zirconium phosphate nanocomposite for highly efficient fluoride uptake in waters

    Science.gov (United States)

    Zhang, Qingrui; Du, Qing; Jiao, Tifeng; Zhang, Zhaoxiang; Wang, Sufeng; Sun, Qina; Gao, Faming

    2013-01-01

    Fluoride pollution in waters has engulfed worldwide regions and an excess of fluoride intake always causes skeletal fluorosis. Herein, a novel hybrid nanomaterial ZrP-MPN was fabricated for fluoride retention by encapsulating nano-ZrP onto macroporous polystyrene materials modified with quaternary ammonium groups. The as-obtained materials exhibited favorable removal of fluoride ions from aqueous solution in presence of common anions (SO42−/NO3−/Cl−) at high contents. Moreover outstanding sorption properties were also detected by involving series of commercial adsorbents (AA/magnetite/GFH/manganese sands) as references. Such satisfactory performances might be ascribed to the structural design of nanocomposite. (1) the CH2N+(CH3)3Cl groups enhances sorption diffusion and preconcentration in sorbent phase theoretically based on Donnan membrane principle; (2) the embedded ZrP nanoparticles also devotes to the efficient adsorption capacities due to its size-dependent specific properties. Additionally, the exhausted ZrP-MPN could be regenerated readily by alkaline solution. Thus, ZrP-MPN was a promising material for fluoride retention in waters. PMID:23989688

  19. Rationally designed porous polystyrene encapsulated zirconium phosphate nanocomposite for highly efficient fluoride uptake in waters

    Science.gov (United States)

    Zhang, Qingrui; Du, Qing; Jiao, Tifeng; Zhang, Zhaoxiang; Wang, Sufeng; Sun, Qina; Gao, Faming

    2013-08-01

    Fluoride pollution in waters has engulfed worldwide regions and an excess of fluoride intake always causes skeletal fluorosis. Herein, a novel hybrid nanomaterial ZrP-MPN was fabricated for fluoride retention by encapsulating nano-ZrP onto macroporous polystyrene materials modified with quaternary ammonium groups. The as-obtained materials exhibited favorable removal of fluoride ions from aqueous solution in presence of common anions (SO42-/NO3-/Cl-) at high contents. Moreover outstanding sorption properties were also detected by involving series of commercial adsorbents (AA/magnetite/GFH/manganese sands) as references. Such satisfactory performances might be ascribed to the structural design of nanocomposite. (1) the CH2N+(CH3)3Cl groups enhances sorption diffusion and preconcentration in sorbent phase theoretically based on Donnan membrane principle; (2) the embedded ZrP nanoparticles also devotes to the efficient adsorption capacities due to its size-dependent specific properties. Additionally, the exhausted ZrP-MPN could be regenerated readily by alkaline solution. Thus, ZrP-MPN was a promising material for fluoride retention in waters.

  20. Deep roots of Brassica oleracea have high uptake of 15N-nitrate to 2 meters soil depth

    OpenAIRE

    Kristensen, H.L.; Thorup-Kristensen, K

    2006-01-01

    • Deep roots may be important for uptake of NO3- by annual crops. A field experiment with the deep rooted crop curly kale (Brassica oleracea L. convar. acephala (DC.) Alef. var. sabellica L.) was performed to investigate root distribution and N uptake in deep soil layers. • Root distribution was investigated by use of minirhizotrons and root extractions to 2.4 m depth. The capacity for crop N uptake was studied by deep 15NO3- placement followed by analysis of plant 15N content after 3-30 d...

  1. Tolerance to high-intensity intermittent running exercise: do oxygen uptake kinetics really matter?

    Science.gov (United States)

    Buchheit, Martin; Hader, Karim; Mendez-Villanueva, Alberto

    2012-01-01

    We examined the respective associations between aerobic fitness ([Formula: see text]max), metabolic control ([Formula: see text] kinetics) and locomotor function, and various physiological responses to high-intensity intermittent (HIT) running exercise in team sport players. Eleven players (30.5 ± 3.6 year) performed a series of tests to determine their [Formula: see text]max and the associated velocity (v[Formula: see text]max), maximal sprinting speed (MSS) and [Formula: see text] kinetics at exercise onset in the moderate and severe intensity domains, and during recovery ([Formula: see text] SEV). Cardiorespiratory variables, oxygenation and electromyography of lower limbs muscles and blood lactate ([La]) concentration were collected during a standardized HIT protocol consisting in 8 sets of 10, 4-s runs. During HIT, four players could not complete more than two sets; the others finished at least five sets. Metabolic responses to the two first sets of HIT were negatively correlated with [Formula: see text]max, v[Formula: see text]max, and [Formula: see text] SEV (r = -0.6 to -0.8), while there was no clear relationship with the other variables. [Formula: see text], oxygenation and [La] responses to the first two sets of HIT were the only variables that differed between the players which could complete at least five sets or those who could not complete more than two sets. Players that managed to run at least five sets presented, in comparison with the others, greater v[Formula: see text]max [ES = +1.5(0.4; 2.7), MSS(ES = +1.0(0.1; 1.9)] and training load [ES = +3.8 (2.8; 4.9)]. There was no clear between-group difference in any of the [Formula: see text] kinetics measures [e.g., ES = -0.1(-1.4; 1.2) for [Formula: see text] SEV]. While [Formula: see text]max and v[Formula: see text]max are likely determinant for HIT tolerance, the importance of [Formula: see text] kinetics as assessed in this study appears limited in the present population. Knowing the main

  2. Tolerance to high-intensity intermittent running exercise: do oxygen uptake kinetics really matter?

    Science.gov (United States)

    Buchheit, Martin; Hader, Karim; Mendez-Villanueva, Alberto

    2012-01-01

    We examined the respective associations between aerobic fitness (V˙O2max), metabolic control (V˙O2 kinetics) and locomotor function, and various physiological responses to high-intensity intermittent (HIT) running exercise in team sport players. Eleven players (30.5 ± 3.6 year) performed a series of tests to determine their V˙O2max and the associated velocity (vV˙O2max), maximal sprinting speed (MSS) and V˙O2 kinetics at exercise onset in the moderate and severe intensity domains, and during recovery (V˙O2τoff SEV). Cardiorespiratory variables, oxygenation and electromyography of lower limbs muscles and blood lactate ([La]) concentration were collected during a standardized HIT protocol consisting in 8 sets of 10, 4-s runs. During HIT, four players could not complete more than two sets; the others finished at least five sets. Metabolic responses to the two first sets of HIT were negatively correlated with V˙O2max, vV˙O2max, and V˙O2τoff SEV (r = −0.6 to −0.8), while there was no clear relationship with the other variables. V˙O2, oxygenation and [La] responses to the first two sets of HIT were the only variables that differed between the players which could complete at least five sets or those who could not complete more than two sets. Players that managed to run at least five sets presented, in comparison with the others, greater vV˙O2max [ES = +1.5(0.4; 2.7), MSS(ES = +1.0(0.1; 1.9)] and training load [ES = +3.8 (2.8; 4.9)]. There was no clear between-group difference in any of the V˙O2 kinetics measures [e.g., ES = −0.1(−1.4; 1.2) for V˙O2τon SEV]. While V˙O2max and vV˙O2max are likely determinant for HIT tolerance, the importance of V˙O2 kinetics as assessed in this study appears limited in the present population. Knowing the main factors influencing tolerance to HIT running exercise may assist practitioners in personalizing training interventions. PMID:23097642

  3. High-performance full adder architecture in quantum-dot cellular automata

    Directory of Open Access Journals (Sweden)

    Hamid Rashidi

    2017-06-01

    Full Text Available Quantum-dot cellular automata (QCA is a new and promising computation paradigm, which can be a viable replacement for the complementary metal–oxide–semiconductor technology at nano-scale level. This technology provides a possible solution for improving the computation in various computational applications. Two QCA full adder architectures are presented and evaluated: a new and efficient 1-bit QCA full adder architecture and a 4-bit QCA ripple carry adder (RCA architecture. The proposed architectures are simulated using QCADesigner tool version 2.0.1. These architectures are implemented with the coplanar crossover approach. The simulation results show that the proposed 1-bit QCA full adder and 4-bit QCA RCA architectures utilise 33 and 175 QCA cells, respectively. Our simulation results show that the proposed architectures outperform most results so far in the literature.

  4. Cellular scaling rules for the brain of Artiodactyla include a highly folded cortex with few neurons

    Directory of Open Access Journals (Sweden)

    Rodrigo eSiqueira Kazu

    2014-11-01

    Full Text Available Quantitative analysis of the cellular composition of rodent, primate, insectivore and afrotherian brains has shown that nonneuronal scaling rules are similar across these mammalian orders that diverged about 95 million years ago, and therefore appear to be conserved in evolution, while neuronal scaling rules appear to be free to vary in a clade-specific manner. Here we analyze the cellular scaling rules that apply to the brain of artiodactyls, a group within the order Cetartiodactyla, believed to be a relatively recent radiation from the common Eutherian ancestor. We find that artiodactyls share nonneuronal scaling rules with all groups analyzed previously. Artiodactyls share with afrotherians and rodents, but not with primates, the neuronal scaling rules that apply to the cerebral cortex and cerebellum. The neuronal scaling rules that apply to the remaining brain areas are however distinct in artiodactyls. Importantly, we show that the folding index of the cerebral cortex scales with the number of neurons in the cerebral cortex in distinct fashions across artiodactyls, afrotherians, rodents, and primates, such that the artiodactyl cerebral cortex is more convoluted than primate cortices of similar numbers of neurons. Our findings suggest that the scaling rules found to be shared across modern afrotherians, glires and artiodactyls applied to the common Eutherian ancestor, such as the relationship between the mass of the cerebral cortex as a whole and its number of neurons. In turn, the distribution of neurons along the surface of the cerebral cortex, which is related to its degree of gyrification, appears to be a clade-specific characteristic. If the neuronal scaling rules for artiodactyls extend to all cetartiodactyls, we predict that the large cerebral cortex of cetaceans will still have fewer neurons than the human cerebral cortex.

  5. Cellular scaling rules for the brain of Artiodactyla include a highly folded cortex with few neurons.

    Science.gov (United States)

    Kazu, Rodrigo S; Maldonado, José; Mota, Bruno; Manger, Paul R; Herculano-Houzel, Suzana

    2014-01-01

    Quantitative analysis of the cellular composition of rodent, primate, insectivore, and afrotherian brains has shown that non-neuronal scaling rules are similar across these mammalian orders that diverged about 95 million years ago, and therefore appear to be conserved in evolution, while neuronal scaling rules appear to be free to vary in a clade-specific manner. Here we analyze the cellular scaling rules that apply to the brain of artiodactyls, a group within the order Cetartiodactyla, believed to be a relatively recent radiation from the common Eutherian ancestor. We find that artiodactyls share non-neuronal scaling rules with all groups analyzed previously. Artiodactyls share with afrotherians and rodents, but not with primates, the neuronal scaling rules that apply to the cerebral cortex and cerebellum. The neuronal scaling rules that apply to the remaining brain areas are, however, distinct in artiodactyls. Importantly, we show that the folding index of the cerebral cortex scales with the number of neurons in the cerebral cortex in distinct fashions across artiodactyls, afrotherians, rodents, and primates, such that the artiodactyl cerebral cortex is more convoluted than primate cortices of similar numbers of neurons. Our findings suggest that the scaling rules found to be shared across modern afrotherians, glires, and artiodactyls applied to the common Eutherian ancestor, such as the relationship between the mass of the cerebral cortex as a whole and its number of neurons. In turn, the distribution of neurons along the surface of the cerebral cortex, which is related to its degree of gyrification, appears to be a clade-specific characteristic. If the neuronal scaling rules for artiodactyls extend to all cetartiodactyls, we predict that the large cerebral cortex of cetaceans will still have fewer neurons than the human cerebral cortex.

  6. A Comparative Study of Cellular Uptake and Subcellular Localization of Doxorubicin Loaded in Self-Assemblies of Amphiphilic Copolymers with Pendant Dendron by MDA-MB-231 Human Breast Cancer Cells.

    Science.gov (United States)

    Viswanathan, Geetha; Hsu, Yu-Hsuan; Voon, Siew Hui; Imae, Toyoko; Siriviriyanun, Ampornphan; Lee, Hong Boon; Kiew, Lik Voon; Chung, Lip Yong; Yusa, Shin-Ichi

    2016-06-01

    Previously synthesized amphiphilic diblock copolymers with pendant dendron moieties have been investigated for their potential use as drug carriers to improve the delivery of an anticancer drug to human breast cancer cells. Diblock co