WorldWideScience

Sample records for high carrier injection

  1. A high carrier injection terahertz quantum cascade laser based on indirectly pumped scheme

    Energy Technology Data Exchange (ETDEWEB)

    Razavipour, S. G., E-mail: sgrazavi@uwaterloo.ca; Xu, C.; Wasilewski, Z. R.; Ban, D. [Department of Electrical and Computer Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Ave. W., Waterloo, Ontario N2L3G1 (Canada); Dupont, E.; Laframboise, S. R. [National Research Council, Blg. M-50, 1200 Montreal Rd., Ottawa, Ontario K1A0R6 (Canada); Chan, C. W. I.; Hu, Q. [Department of Electrical Engineering and Computer Science, Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

    2014-01-27

    A Terahertz quantum cascade laser with a rather high injection coupling strength based on an indirectly pumped scheme is designed and experimentally implemented. To effectively suppress leakage current, the chosen quantum cascade module of the device is based on a five-well GaAs/Al{sub 0.25}Ga{sub 0.75}As structure. The device lases up to 151 K with a lasing frequency of 2.67 THz. This study shows that the effect of higher energy states in carrier transport and the long-range tunnel coupling between states that belong to non-neighbouring modules have to be considered in quantum design of structures with a narrow injector barrier. Moreover, the effect of interface roughness scattering between the lasing states on threshold current is crucial.

  2. Generation of tunable, high repetition rate frequency combs with equalized spectra using carrier injection based silicon modulators

    Science.gov (United States)

    Nagarjun, K. P.; Selvaraja, Shankar Kumar; Supradeepa, V. R.

    2016-03-01

    High repetition-rate frequency combs with tunable repetition rate and carrier frequency are extensively used in areas like Optical communications, Microwave Photonics and Metrology. A common technique for their generation is strong phase modulation of a CW-laser. This is commonly implemented using Lithium-Niobate based modulators. With phase modulation alone, the combs have poor spectral flatness and significant number of missing lines. To overcome this, a complex cascade of multiple intensity and phase modulators are used. A comb generator on Silicon based on these principles is desirable to enable on-chip integration with other functionalities while reducing power consumption and footprint. In this work, we analyse frequency comb generation in carrier injection based Silicon modulators. We observe an interesting effect in these comb generators. Enhanced absorption accompanying carrier injection, an undesirable effect in data modulators, shapes the amplitude here to enable high quality combs from a single modulator. Thus, along with reduced power consumption to generate a specific number of lines, the complexity has also been significantly reduced. We use a drift-diffusion solver and mode solver (Silvaco TCAD) along with Soref-Bennett relations to calculate the variations in refractive indices and absorption of an optimized Silicon PIN - waveguide modulator driven by an unbiased high frequency (10 Ghz) voltage signal. Our simulations demonstrate that with a device length of 1 cm, a driving voltage of 2V and minor shaping with a passive ring-resonator filter, we obtain 37 lines with a flatness better than 5-dB across the band and power consumption an order of magnitude smaller than Lithium-Niobate modulators.

  3. Hot carrier injection degradation under dynamic stress

    Institute of Scientific and Technical Information of China (English)

    Ma Xiao-Hua; Cao Yan-Rong; Hao Yue; Zhang Yue

    2011-01-01

    In this paper, we have studied hot carrier injection (HCI) under alternant stress. Under different stress modes, different degradations are obtained from the experiment results. The different alternate stresses can reduce or enhance the HC effect, which mainly depends on the latter condition of the stress cycle. In the stress mode A (DC stress with electron injection), the degradation keeps increasing. In the stress modes B (DC stress and then stress with the smallest gate injection) and C (DC stress and then stress with hole injection under Vg=0V and Vd = 1.8 V), recovery appears in the second stress period. And in the stress mode D (DC stress and then stress with hole injection under Vg = -1.8 V and Vd = 1.8 V), as the traps filled in by holes can be smaller or greater than the generated interface states, the continued degradation or recovery in different stress periods can be obtained.

  4. Hardware Trojan by Hot Carrier Injection

    CERN Document Server

    Shiyanovskii, Y; Papachristou, C; Weyer, D; Clay, W

    2009-01-01

    This paper discusses how hot carrier injection (HCI) can be exploited to create a trojan that will cause hardware failures. The trojan is produced not via additional logic circuitry but by controlled scenarios that maximize and accelerate the HCI effect in transistors. These scenarios range from manipulating the manufacturing process to varying the internal voltage distribution. This new type of trojan is difficult to test due to its gradual hardware degradation mechanism. This paper describes the HCI effect, detection techniques and discusses the possibility for maliciously induced HCI trojans.

  5. Carrier doping by current injection into LaOFFeAs

    Energy Technology Data Exchange (ETDEWEB)

    Lazareva, Irina; Koval, Yury; Steiner, Christian; Mueller, Paul [Department of Physics, Universitaet Erlangen (Germany); Wurmehl, Sabine; Buechner, Bernd [IFW Dresden (Germany); Stuerzer, Tobias; Johrendt, Dirk [Department Chemie, LMU Muenchen (Germany)

    2013-07-01

    Recently, we were able to change the carrier concentration of hole-doped high-T{sub c} superconductors by injection of large currents along the c-axis. We extend this type of experiments to electron-doped pnictides. From our earlier interpretation we should expect that trapping of electrons caused by current injection would decrease the available carrier concentration. Indeed, by various experiments with superconductors from the LaO{sub 1-x}F{sub x}FeAs family we are able to show that trapped electrons caused by current injection perpendicular to the FeAs planes decrease the carrier concentration. We present a spectacular confirmation of this interpretation by the T{sub c} increase by more than 15 K in heavily overdoped La{sub 0.74}F{sub 0.26}FeAs. We performed similar experiments with the recently discovered 1048 layered pnictides of the composition Ca{sub 10}(FeAs){sub 10}(Pt{sub 4}As{sub 8}). The general tendency of carrier doping by trapped electrons was confirmed. A rather interesting discovery was the evolution of hysteretic c-axis IV-characteristics. This is a strong indication of intrinsic Josephson effects. We discuss these results in terms of a change of anisotropy by carrier doping.

  6. Injectable nanomaterials for drug delivery: carriers, targeting moieties, and therapeutics.

    Science.gov (United States)

    Webster, David M; Sundaram, Padma; Byrne, Mark E

    2013-05-01

    Therapeutics such as nucleic acids, proteins/peptides, vaccines, anti-cancer, and other drugs have disadvantages of low bio-availability, rapid clearance, and high toxicity. Thus, there is a significant need for the development of efficient delivery methods and carriers. Injectable nanocarriers have received much attention due to their vast range of structures and ability to contain multiple functional groups, both within the bulk material and on the surface of the particles. Nanocarriers may be tailored to control drug release and/or increase selective cell targeting, cellular uptake, drug solubility, and circulation time, all of which lead to a more efficacious delivery and action of therapeutics. The focus of this review is injectable, targeted nanoparticle drug delivery carriers highlighting the diversity of nanoparticle materials and structures as well as highlighting current therapeutics and targeting moieties. Structures and materials discussed include liposomes, polymersomes, dendrimers, cyclodextrin-containing polymers (CDPs), carbon nanotubes (CNTs), and gold nanoparticles. Additionally, current clinical trial information and details such as trial phase, treatment, active drug, carrier sponsor, and clinical trial identifier for different materials and structures are presented and discussed.

  7. Injection of majority carriers through InSe-GaSe heterojunctions

    Energy Technology Data Exchange (ETDEWEB)

    Bakumenko, V.L.; Tagaev, V.G.

    1982-10-01

    Injection of majority carriers through heterojunction under intensive illumination conditions is discussed. Experimental results of injection of majority carriers through InSe-GaSe heterojunctions have been presented.

  8. Differential carrier lifetime and transport effects in electrically injected III-nitride light-emitting diodes

    Science.gov (United States)

    Rashidi, A.; Nami, M.; Monavarian, M.; Aragon, A.; DaVico, K.; Ayoub, F.; Mishkat-Ul-Masabih, S.; Rishinaramangalam, A.; Feezell, D.

    2017-07-01

    This work describes a small-signal microwave method for determining the differential carrier lifetime and transport effects in electrically injected InGaN/GaN light-emitting diodes (LEDs). By considering the carrier diffusion, capture, thermionic escape, and recombination, the rate equations are used to derive an equivalent small-signal electrical circuit for the LEDs, from which expressions for the input impedance and modulation response are obtained. The expressions are simultaneously fit to the experimental data for the input impedance and modulation response for nonpolar InGaN/GaN micro-LEDs on free-standing GaN substrates. The fittings are used to extract the transport related circuit parameters and differential carrier lifetimes. The dependence of the parameters on the device diameter and current density is reported. We also derive approximations for the modulation response under low and high injection levels and show that the transport of carriers affects the modulation response of the device, especially at low injection levels. The methods presented are relevant to the design of high-speed LEDs for visible-light communication.

  9. Structural and electronic implications for carrier injection into organic semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Castellani, Mauro [Universitaet Potsdam, Institut fuer Physik und Astronomie, Potsdam-Golm (Germany); Salzmann, Ingo; Yu, Shuwen; Koch, Norbert [Humboldt-Universitaet zu Berlin, Institut fuer Physik, Berlin (Germany); Bugnon, Philippe [Ecole Polytechnique Federale de Lausanne (Switzerland). Institut des Materiaux; Oehzelt, Martin [Johannes Kepler Universitaet Linz (Austria). Institut fuer Experimentalphysik

    2009-10-15

    We report on the structural and electronic interface formation between ITO (indium-tin-oxide) and prototypical organic small molecular semiconductors, i.e., CuPc (copper phthalocyanine) and {alpha}-NPD (N,N'-di(naphtalen-1-yl)-N,N'-diphenyl-benzidine). In particular, the effects of in situ oxygen plasma pretreatment of the ITO surface on interface properties are examined in detail: Organic layer-thickness dependent Kelvin probe measurements revealed a good alignment of the ITO work function and the highest occupied electronic level of the organic material in all samples. In contrast, the electrical properties of hole-only and bipolar organic diodes depend strongly on the treatment of ITO prior to organic deposition. This dependence is more pronounced for diodes made of polycrystalline CuPc than for those of amorphous {alpha}-NPD layers. X-ray diffraction and atomic force microscopic (AFM) investigations of CuPc nucleation and growth evidenced a more pronounced texture of the polycrystalline film structure on the ITO substrate that was oxygen plasma treated prior to organic layer deposition. These findings suggest that the anisotropic electrical properties of CuPc crystallites, and their orientation with respect to the substrate, strongly affect the charge carrier injection and transport properties at the anode interface. (orig.)

  10. Breaking the carrier injection bottleneck of phosphor-free nanowire white light-emitting diodes.

    Science.gov (United States)

    Nguyen, Hieu Pham Trung; Zhang, Shaofei; Connie, Ashfiqua T; Kibria, Md Golam; Wang, Qi; Shih, Ishiang; Mi, Zetian

    2013-01-01

    We have examined the carrier injection process of axial nanowire light-emitting diode (LED) structures and identified that poor carrier injection efficiency, due to the large surface recombination, is the primary cause for the extremely low output power of phosphor-free nanowire white LEDs. We have further developed InGaN/GaN/AlGaN dot-in-a-wire core-shell white LEDs on Si substrate, which can break the carrier injection efficiency bottleneck, leading to a massive enhancement in the output power. At room temperature, the devices can exhibit an output power of ~1.5 mW, which is more than 2 orders of magnitude stronger than nanowire LEDs without shell coverage. Additionally, such phosphor-free nanowire white LEDs can deliver an unprecedentedly high color rendering index of ~92-98 in both the warm and cool white regions, with the color rendering capability approaching that of an ideal light source, i.e. a blackbody.

  11. Digital wavelength switching by thermal and carrier injection effects in V-coupled cavity semiconductor laser

    Institute of Scientific and Technical Information of China (English)

    Jialiang Jin; Lei Wang; Jianjun He

    2012-01-01

    Consecutive wavelength switching characteristics of a simple,compact,and digitally wavelength-switchable laser based on V-coupled cavities are reported.Wavelength switching through thermal and carrier injection effects is examined.Without using band gap engineering for the tuning section,26- and 9-channel wavelength switching schemes are achieved via thermal and carrier injection effects,respectively.The performances of these two tuning schemes are then compared.

  12. Effect of Carrier Differences on Spin Polarized Injection into Organic and Inorganic Semiconductors

    Institute of Scientific and Technical Information of China (English)

    REN Jun-Feng; XIU Ming-Xia

    2008-01-01

    Spin polarized injection into organic and inorganic semiconductors are studied theoretically from the spin diffusion theory and Ohm's law, and the emphases are placed on the effect of the carrier differences on the current spin polarization. The mobility and the spin-Rip time of carriers in organic and inorganic semiconductors are different. From the calculation, it is found that current spin polarization at a ferromagnetic/organic interface is higher than that at a ferromagnetic/inorganic interface because of different carriers in them. Effects of the conductivity matching, the spin dependent interfacial resistances, and the balk spin polarization of the ferromagnetic layer on the spin polarized injection are also discussed.

  13. Carrier injection engineering in nanowire transistors via dopant and shape monitoring of the access regions

    Energy Technology Data Exchange (ETDEWEB)

    Berrada, Salim, E-mail: s.berrada@insa.ueuromed.org; Bescond, Marc, E-mail: marc.bescond@im2np.fr; Cavassilas, Nicolas; Raymond, Laurent; Lannoo, Michel [IM2NP UMR CNRS 7334, Aix-Marseille Université, Technopôle de Château Gombert, 60 Rue Frédéric Joliot Curie, Bâtiment Néel,13453 Marseille (France)

    2015-10-12

    This work theoretically studies the influence of both the geometry and the discrete nature of dopants of the access regions in ultra-scaled nanowire transistors. By means of self-consistent quantum transport simulations, we show that discrete dopants induce quasi-localized states which govern carrier injection into the channel. Carrier injection can be enhanced by taking advantage of the dielectric confinement occurring in these access regions. We demonstrate that the optimization of access resistance can be obtained by a careful control of shape and dopant position. These results pave the way for contact resistance engineering in forthcoming device generations.

  14. Self-healing polysaccharide-based hydrogels as injectable carriers for neural stem cells

    Science.gov (United States)

    Wei, Zhao; Zhao, Jingyi; Chen, Yong Mei; Zhang, Pengbo; Zhang, Qiqing

    2016-11-01

    Self-healing injectable hydrogels can be formulated as three-dimensional carriers for the treatment of neurological diseases with desirable advantages, such as avoiding the potential risks of cell loss during injection, protecting cells from the shearing force of injection. However, the demands for biocompatible self-healing injectable hydrogels to meet above requirements and to promote the differentiation of neural stem cells (NSCs) into neurons remain a challenge. Herein, we developed a biocompatible self-healing polysaccharide-based hydrogel system as a novel injectable carrier for the delivery of NSCs. N-carboxyethyl chitosan (CEC) and oxidized sodium alginate (OSA) are the main backbones of the hydrogel networks, denoted as CEC-l-OSA hydrogel (“l” means “linked-by”). Owing to the dynamic imine cross-links formed by a Schiff reaction between amino groups on CEC and aldehyde groups on OSA, the hydrogel possesses the ability to self-heal into a integrity after being injected from needles under physiological conditions. The CEC-l-OSA hydrogel in which the stiffness mimicking nature brain tissues (100~1000 Pa) can be finely tuned to support the proliferation and neuronal differentiation of NSCs. The multi-functional, injectable, and self-healing CEC-l-OSA hydrogels hold great promises for NSC transplantation and further treatment of neurological diseases.

  15. Gigascale Silicon Photonic Transmitters Integrating HBT-based Carrier-injection Electroabsorption Modulator Structures

    Science.gov (United States)

    Fu, Enjin

    Demand for more bandwidth is rapidly increasing, which is driven by data intensive applications such as high-definition (HD) video streaming, cloud storage, and terascale computing applications. Next-generation high-performance computing systems require power efficient chip-to-chip and intra-chip interconnect yielding densities on the order of 1Tbps/cm2. The performance requirements of such system are the driving force behind the development of silicon integrated optical interconnect, providing a cost-effective solution for fully integrated optical interconnect systems on a single substrate. Compared to conventional electrical interconnect, optical interconnects have several advantages, including frequency independent insertion loss resulting in ultra wide bandwidth and link latency reduction. For high-speed optical transmitter modules, the optical modulator is a key component of the optical I/O channel. This thesis presents a silicon integrated optical transmitter module design based on a novel silicon HBT-based carrier injection electroabsorption modulator (EAM), which has the merits of wide optical bandwidth, high speed, low power, low drive voltage, small footprint, and high modulation efficiency. The structure, mechanism, and fabrication of the modulator structure will be discussed which is followed by the electrical modeling of the post-processed modulator device. The design and realization of a 10Gbps monolithic optical transmitter module integrating the driver circuit architecture and the HBT-based EAM device in a 130nm BiCMOS process is discussed. For high power efficiency, a 6Gbps ultra-low power driver IC implemented in a 130nm BiCMOS process is presented. The driver IC incorporates an integrated 27-1 pseudo-random bit sequence (PRBS) generator for reliable high-speed testing, and a driver circuit featuring digitally-tuned pre-emphasis signal strength. With outstanding drive capability, the driver module can be applied to a wide range of carrier

  16. Charge-carrier relaxation in disordered organic semiconductors studied by dark injection: Experiment and modeling

    Science.gov (United States)

    Mesta, M.; Schaefer, C.; de Groot, J.; Cottaar, J.; Coehoorn, R.; Bobbert, P. A.

    2013-11-01

    Understanding of stationary charge transport in disordered organic semiconductors has matured during recent years. However, charge-carrier relaxation in nonstationary situations is still poorly understood. Such relaxation can be studied in dark injection experiments, in which the bias applied over an unilluminated organic semiconductor device is abruptly increased. The resulting transient current reveals both charge-carrier transport and relaxation characteristics. We performed such experiments on hole-only devices of a polyfluorene-based organic semiconductor. Modeling the dark injection by solving a one-dimensional master equation using the equilibrium carrier mobility leads to a too-slow current transient, since this approach does not account for carrier relaxation. Modeling by solving a three-dimensional time-dependent master equation does take into account all carrier transport and relaxation effects. With this modeling, the time scale of the current transient is found to be in agreement with experiment. With a disorder strength somewhat smaller than extracted from the temperature-dependent stationary current-voltage characteristics, also the shape of the experimental transients is well described.

  17. Spin injection into high temperature superconductor

    CERN Document Server

    Severac, C H L

    2000-01-01

    DELTA M versus pulse length was measured. It showed two regions: above 100 mu s DELTA M is the same for both magnetic and non-magnetic material and can be attributed to heating. Below 100 mu s, DELTA M is only significant for the CMR samples. This is attributed to the injection of highly spin polarised carriers that are believed to reduce the order parameter over the whole sample, and hence l sub C and the magnetic moment of the sample. As part of a search for colossal magneto-resistance (CMR) materials with Curie temperature below the superconducting transition of YBCO, we made an investigation of the magnetic and electrical characteristics of Chromium doped LCMO. We found that the conduction mechanism which depends on the orbital order via the double-exchange mechanism, is decoupled from the ferromagnetic behaviour, which is related to spin order. Work on the injection of dc-current from half metallic CMR material into YBa sub 2 Cu sub 3 O sub 7 sub - subdelta (YBCO) showed a shift and a compression in the ...

  18. Efficient Carrier Injection, Transport, Relaxation, and Recombination Associated with a Stronger Carrier Localization and a Low Polarization Effect of Nonpolar m-plane InGaN/GaN Light-Emitting Diodes

    Science.gov (United States)

    Yang, Fann-Wei; You, Yu-Siang; Feng, Shih-Wei

    2017-04-01

    Based on time-resolved electroluminescence (TREL) measurement, more efficient carrier injection, transport, relaxation, and recombination associated with a stronger carrier localization and a low polarization effect in a nonpolar m-plane InGaN/GaN light emitting diode ( m-LED), compared with those in a polar c-LED, are reported. With a higher applied voltage in the c-LED, decreasing response time and rising time improve device performance, but a longer recombination time degrades luminescence efficiency. By using an m-LED with a stronger carrier localization and a low polarization effect, shorter response, rising, and recombination times provide more efficient carrier injection, transport, relaxation, and recombination. These advantages can be realized for high-power and high-speed flash LEDs. In addition, with a weaker carrier localization and a polarization effect in the c-LED, the slower radiative and faster nonradiative decay rates at a larger applied voltage result in the slower total decay rate and the lower luminescence efficiency. For the m-LED at a higher applied voltage, a slow decreasing nonradiative decay rate is beneficial to device performance, while the more slowly decreasing and overall faster radiative decay rate of the m-LED than that of the c-LED demonstrates that a stronger carrier localization and a reduced polarization effect are efficient for carrier recombination. The resulting recombination dynamics are correlated with the device characteristics and performance of the c- and m-LEDs.

  19. Fibrin Gel as an Injectable Biodegradable Scaffold and Cell Carrier for Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Yuting Li

    2015-01-01

    Full Text Available Due to the increasing needs for organ transplantation and a universal shortage of donated tissues, tissue engineering emerges as a useful approach to engineer functional tissues. Although different synthetic materials have been used to fabricate tissue engineering scaffolds, they have many limitations such as the biocompatibility concerns, the inability to support cell attachment, and undesirable degradation rate. Fibrin gel, a biopolymeric material, provides numerous advantages over synthetic materials in functioning as a tissue engineering scaffold and a cell carrier. Fibrin gel exhibits excellent biocompatibility, promotes cell attachment, and can degrade in a controllable manner. Additionally, fibrin gel mimics the natural blood-clotting process and self-assembles into a polymer network. The ability for fibrin to cure in situ has been exploited to develop injectable scaffolds for the repair of damaged cardiac and cartilage tissues. Additionally, fibrin gel has been utilized as a cell carrier to protect cells from the forces during the application and cell delivery processes while enhancing the cell viability and tissue regeneration. Here, we review the recent advancement in developing fibrin-based biomaterials for the development of injectable tissue engineering scaffold and cell carriers.

  20. Enhancing Carrier Injection Using Graded Superlattice Electron Blocking Layer for UVB Light-Emitting Diodes

    KAUST Repository

    Janjua, Bilal

    2014-12-01

    We have studied enhanced carrier injection by having an electron blocking layer (EBL) based on a graded superlattice (SL) design. Here, we examine, using a selfconsistent 6 × 6 k.p method, the energy band alignment diagrams under equilibrium and forward bias conditions while also considering carrier distribution and recombination rates (Shockley-Read-Hall, Auger, and radiative recombination rates). The graded SL is based on AlxGa1-xN (larger bandgap) Al0:5Ga0:5N (smaller bandgap) SL, where x is changed from 0.8 to 0.56 in steps of 0.06. Graded SL was found to be effective in reducing electron leakage and enhancing hole injection into the active region. Due to our band engineering scheme for EBL, four orders-of-magnitude enhancement were observed in the direct recombination rate, as compared with the conventional bulk EBL consisting of Al0:8Ga0:2N. An increase in the spatial overlap of carrier wavefunction was obtained due to polarization-induced band bending in the active region. An efficient single quantum-well ultraviolet-B light-emitting diode was designed, which emits at 280 nm. This is the effective wavelength for water disinfection application, among others.

  1. An atomic switch of electron propagation on Ge (001) by tunneling carrier injection

    Science.gov (United States)

    Komori, Fumio

    2008-03-01

    Reversible switching of electronic conduction through atom manipulation is one of the important subjects of nanoscience. However, different conducting pathways were not clearly observed with atomic resolution. We have demonstrated the correlation between the change of surface atomic position by tunneling carrier injection and that of the reflection of one-dimensional (1D) surface-state electrons on the Ge (001) surface with a low density of heterogeneous Sn-Ge dimers. [1] On the clean Ge(001) surface, two adjacent atoms form a buckled dimer, and the buckling orientation of the Ge dimer can be locally and reversibly controlled by carrier injection to the surface from the STM tip. [2] The unoccupied surface &*circ;-electron behaves like a 1D free electron along the Ge dimer row. When Sn atoms are deposited on the clean Ge(001) surface at room temperature, buckled dimers originating from the Sn atoms are formed at the Ge dimer position in the surface. [3] An atomic switch is realized for the &*circ; electrons in the Ge dimer- row direction by injection carriers to reversibly flip the buckling orientation of a single Sn-Ge dimer in the dimer row. When the Sn atom of the heterogeneous dimer is at the lower position, the 1D electrons are reflected and a standing wave of this state is observed. Whereas, when it is at the upper position, the 1D electrons pass through the heterogeneous dimer, and no standing wave is observed. In this state, the lower atom of the dimer is Ge, and the &*circ; state at the dimer is little different from that of the Ge-Ge dimers. [1] K. Tomatsu, K. Nakatsuji, T. Iimori, Y. Takagi, H. Kusuhara, A. Ishii, F. Komori; Science 315, 1696, 2007. [2] Y. Takagi, Y. Yoshimoto, K. Nakatsuji, F. Komori; Surf. Sci. 559, 1, 2004. [3] K. Tomatsu, K. Nakatsuji, T. Iimori, F. Komori; Surf. Sci. 601, 1736, 2007.

  2. High capacity carrier ethernet transport networks

    DEFF Research Database (Denmark)

    Rasmussen, Anders; Zhang, Jiang; Yu, Hao

    2009-01-01

    Ethernet as a transport technology has, up to now, lacked the features such as network layer architecture, customer separation and manageability that carriers require for wide-scale deployment. However, with the advent of PBB-TE and T-MPLS, it is now possible to use Ethernet as a transport...... technology, making the use of Ethernet as a convergence layer for Next Generation Networks a distinct possibility. Triple Play services, in particular IPTV, are expected to be a main drivers for carrier Ethernet, however, a number of challenges must be addressed including QoS enabled control plane, enhanced...... OAM functions, survivability and the increased bandwidth requirements of carrier class systems. This article provides an overview of PBB-TE and T-MPLS and demonstrates how IPTV services can be realized in the framework of Carrier Ethernet. In addition we provide a case study on performing bit error...

  3. High capacity carrier ethernet transport networks

    DEFF Research Database (Denmark)

    Rasmussen, Anders; Zhang, Jiang; Yu, Hao;

    2009-01-01

    Ethernet as a transport technology has, up to now, lacked the features such as network layer architecture, customer separation and manageability that carriers require for wide-scale deployment. However, with the advent of PBB-TE and T-MPLS, it is now possible to use Ethernet as a transport...... technology, making the use of Ethernet as a convergence layer for Next Generation Networks a distinct possibility. Triple Play services, in particular IPTV, are expected to be a main drivers for carrier Ethernet, however, a number of challenges must be addressed including QoS enabled control plane, enhanced...... OAM functions, survivability and the increased bandwidth requirements of carrier class systems. This article provides an overview of PBB-TE and T-MPLS and demonstrates how IPTV services can be realized in the framework of Carrier Ethernet. In addition we provide a case study on performing bit error...

  4. Resin injection in clays with high plasticity

    Science.gov (United States)

    Nowamooz, Hossein

    2016-11-01

    Regarding the injection process of polyurethane resins in clays with high plasticity, this paper presents the experimental results of the pressuremeter and cone penetration tests before and after injection. A very important increase in pressure limit or in soil resistance can be observed for all the studied depths close to the injection points. An analytical analysis for cylindrical pore cavity expansion in cohesive frictional soils obeying the Mohr-Coulomb criterion was then used to reproduce the pressuremeter tests before and after injection. The model parameters were calibrated by maintaining constant the elasticity parameters as well as the friction angel before and after injection. A significant increase in cohesion was observed because of soil densification after resin expansion. The estimated undrained cohesions, derived from the parameters of the Mohr-Coulomb criterion, were also compared with the cone penetration tests. Globally, the model predictions show the efficiency of resin injection in clay soils with high plasticity.

  5. Injection Molding of High Aspect Ratio Nanostructures

    DEFF Research Database (Denmark)

    Matschuk, Maria; Larsen, Niels Bent

    We present a process for injection molding of 40 nm wide and >100 nm high pillars (pitch: 200 nm). We explored the effects of mold coatings and injection molding conditions on the replication quality of nanostructures in cyclic olefin copolymer. We found that optimization of molding parameters...

  6. Bisphosphonate-adsorbed ceramic nanoparticles increase bone formation in an injectable carrier for bone tissue engineering

    Directory of Open Access Journals (Sweden)

    Tegan L Cheng

    2015-10-01

    Full Text Available Sucrose acetate isobutyrate (SAIB is a sugar-based carrier. We have previously applied SAIB as a minimally invasive system for the co-delivery of recombinant human bone morphogenetic protein-2 (rhBMP-2 and found synergy when co-delivering zoledronic acid (ZA and hydroxyapatite (HA nanoparticles. Alternative bioceramics were investigated in a murine SAIB/rhBMP-2 injection model. Neither beta-tricalcium phosphate (TCP nor Bioglass (BG 45S5 had a significant effect on bone volume (BV alone or in combination with the ZA. 14C-labelled ZA binding assays showed particle size and ceramic composition affected binding with nano-HA > micro-HA > TCP > BG. Micro-HA and nano-HA increased BV in a rat model of rhBMP-2/SAIB injection (+278% and +337%, and BV was further increased with ZA–adsorbed micro-HA and nano-HA (+530% and +889%. These data support the use of ZA–adsorbed nanoparticle-sized HA as an optimal additive for the SAIB/rhBMP-2 injectable system for bone tissue engineering.

  7. Acoustically regulated carrier injection into a single optically active quantum dot

    Science.gov (United States)

    Schülein, Florian J. R.; Müller, Kai; Bichler, Max; Koblmüller, Gregor; Finley, Jonathan J.; Wixforth, Achim; Krenner, Hubert J.

    2013-08-01

    We study the carrier injection into a single InGaAs/GaAs quantum dot regulated by a radio frequency surface acoustic wave. We find that the time of laser excitation during the acoustic cycle programs both the emission intensities and time of formation of neutral (X0) and negatively charged (X-) excitons. We identify underlying, characteristic formation pathways of both few-particle states in the time-domain experiments and show that both exciton species can be formed either with the optical pump or at later times by injection of single electrons and holes “surfing” the acoustic wave. All experimental observations are in excellent agreement with calculated electron and hole trajectories in the plane of the two-dimensional wetting layer which is dynamically modulated by the acoustically induced piezoelectric potentials. Taken together, our findings provide insight on both the onset of acoustoelectric transport of electrons and holes and their conversion into the optical domain after regulated injection into a single quantum dot emitter.

  8. Injectable biodegradable carriers for the delivery of therapeutic agents and tissue engineering

    OpenAIRE

    Levato, Riccardo

    2015-01-01

    The design of smart biomaterial devices plays a key role to improve the way conventional therapies are being delivered, and to promote the development of new approaches for advanced therapies, such as regenerative medicine and targeted drug release. Injectable biodegradable materials, such as those consisting of suspensions of polymeric particles, are highly versatile devices that can be delivered through minimally-invasive injections. The physic-chemical properties of the particles can be en...

  9. Phonon-assisted coherent control of injected carriers in indirect bandgap semiconductors

    Science.gov (United States)

    Rioux, Julien; Nastos, Fred; Sipe, John E.

    2007-03-01

    Charge and spin currents can be generated in direct semiconductors by quantum interference between one- and two-photon absorption. For semiconductors such as Si and Ge, optical injection of carriers over the indirect bandgap must be assisted by momentum transfer from phonon scattering. We consider the optical properties for such 1+2 photon processes in the presence of the electron-phonon interaction. The latter is modelled by acoustic deformation potential. Indirect transitions involve double Brillouin zone integrations, which are computed by a linearized tetrahedron method. We compare our results to those for bulk GaAs. M.J. Stevens, R.D.R. Bhat, A. Najmaie, H.M. van Driel, J.E. Sipe and A.L. Smirl, in Optics of Semiconductors and Their Nanostructures, edited by H. Kalt and M. Hetterich (Springer, Berlin, 2004), vol. 146 of Springer Series in Solid-State Sciences, p. 209.

  10. SEMICONDUCTOR DEVICES: Analysis of the thermo-optic effect in lateral-carrier-injection SOI ridge waveguide devices

    Science.gov (United States)

    Jiate, Zhao; Yong, Zhao; Wanjun, Wang; Yinlei, Hao; Qiang, Zhou; Jianyi, Yang; Minghua, Wang; Xiaoqing, Jiang

    2010-06-01

    The thermo-optic effect in the lateral-carrier-injection pin junction SOI ridge waveguide is analyzed according to the thermal field equation. Numerical analysis and experimental results show that the thermo-optic effect caused by carrier injection is significant in such devices, especially for small structure ones. For a device with a 1000 μm modulation length, the refractive index rise introduced by heat accounts for 1/8 of the total effect under normal working conditions. A proposal of adjusting the electrode position to cool the devices to diminish the thermal-optic effect is put forward.

  11. Injection deep level transient spectroscopy: An improved method for measuring capture rates of hot carriers in semiconductors

    Science.gov (United States)

    Fleming, R. M.; Seager, C. H.; Lang, D. V.; Campbell, J. M.

    2015-07-01

    An improved method for measuring the cross sections for carrier trapping at defects in semiconductors is described. This method, a variation of deep level transient spectroscopy (DLTS) used with bipolar transistors, is applied to hot carrier trapping at vacancy-oxygen, carbon-oxygen, and three charge states of divacancy centers (V2) in n- and p-type silicon. Unlike standard DLTS, we fill traps by injecting carriers into the depletion region of a bipolar transistor diode using a pulse of forward bias current applied to the adjacent diode. We show that this technique is capable of accurately measuring a wide range of capture cross sections at varying electric fields due to the control of the carrier density it provides. Because this technique can be applied to a variety of carrier energy distributions, it should be valuable in modeling the effect of radiation-induced generation-recombination currents in bipolar devices.

  12. Organic/Organic Heterointerface Engineering to Boost Carrier Injection in OLEDs

    Science.gov (United States)

    Fathollahi, Mohammadreza; Ameri, Mohsen; Mohajerani, Ezeddin; Mehrparvar, Ebrahim; Babaei, Mohammadrasoul

    2017-01-01

    We investigate dynamic formation of nanosheet charge accumulations by heterointerface engineering in double injection layer (DIL) based organic light emitting diodes (OLEDs). Our experimental results show that the device performance is considerably improved for the DIL device as the result of heterointerface injection layer (HIIL) formation, in comparison to reference devices, namely, the current density is doubled and even quadrupled and the turn-on voltage is favorably halved, to 3.7 V, which is promising for simple small-molecule OLEDs. The simulation reveals the (i) formation of dynamic p-type doping (DPD) region which treats the quasi Fermi level at the organic/electrode interface, and (ii) formation of dynamic dipole layer (DDL) and the associated electric field at the organic/organic interface which accelerates the ejection of the carriers and their transference to the successive layer. HIIL formation proposes alternate scenarios for device design. For instance, no prerequisite for plasma treatment of transparent anode electrode, our freedom in varying the thicknesses of the organic layers between 10 nm and 60 nm for the first layer and between 6 nm and 24 nm for the second layer. The implications of the present work give insight into the dynamic phenomena in OLEDs and facilitates the development of their inexpensive fabrication for lighting applications. PMID:28218246

  13. Organic/Organic Heterointerface Engineering to Boost Carrier Injection in OLEDs

    Science.gov (United States)

    Fathollahi, Mohammadreza; Ameri, Mohsen; Mohajerani, Ezeddin; Mehrparvar, Ebrahim; Babaei, Mohammadrasoul

    2017-02-01

    We investigate dynamic formation of nanosheet charge accumulations by heterointerface engineering in double injection layer (DIL) based organic light emitting diodes (OLEDs). Our experimental results show that the device performance is considerably improved for the DIL device as the result of heterointerface injection layer (HIIL) formation, in comparison to reference devices, namely, the current density is doubled and even quadrupled and the turn-on voltage is favorably halved, to 3.7 V, which is promising for simple small-molecule OLEDs. The simulation reveals the (i) formation of dynamic p-type doping (DPD) region which treats the quasi Fermi level at the organic/electrode interface, and (ii) formation of dynamic dipole layer (DDL) and the associated electric field at the organic/organic interface which accelerates the ejection of the carriers and their transference to the successive layer. HIIL formation proposes alternate scenarios for device design. For instance, no prerequisite for plasma treatment of transparent anode electrode, our freedom in varying the thicknesses of the organic layers between 10 nm and 60 nm for the first layer and between 6 nm and 24 nm for the second layer. The implications of the present work give insight into the dynamic phenomena in OLEDs and facilitates the development of their inexpensive fabrication for lighting applications.

  14. Computational fluid dynamics analysis of cold plasma carrier gas injected into a fluid using level set method.

    Science.gov (United States)

    Shahmohammadi Beni, Mehrdad; Yu, K N

    2015-12-14

    A promising application of plasma medicine is to treat living cells and tissues with cold plasma. In cold plasmas, the fraction of neutrals dominates, so the carrier gas could be considered the main component. In many realistic situations, the treated cells are covered by a fluid. The present paper developed models to determine the temperature of the fluid at the positions of the treated cells. Specifically, the authors developed a three-phase-interaction model which was coupled with heat transfer to examine the injection of the helium carrier gas into water and to investigate both the fluid dynamics and heat transfer output variables, such as temperature, in three phases, i.e., air, helium gas, and water. Our objective was to develop a model to perform complete fluid dynamics and heat transfer computations to determine the temperature at the surface of living cells. Different velocities and plasma temperatures were also investigated using finite element method, and the model was built using the comsol multiphysics software. Using the current model to simulate plasma injection into such systems, the authors were able to investigate the temperature distributions in the domain, as well as the surface and bottom boundary of the medium in which cells were cultured. The temperature variations were computed at small time intervals to analyze the temperature increase in cell targets that could be highly temperature sensisitve. Furthermore, the authors were able to investigate the volume of the plasma plume and its effects on the average temperature of the medium layer/domain. Variables such as temperature and velocity at the cell layer could be computed, and the variations due to different plume sizes could be determined. The current models would be very useful for future design of plasma medicine devices and procedures involving cold plasmas.

  15. Manipulation of charge carrier injection into organic field-effect transistors by self-assembled monolayers of alkanethiols

    NARCIS (Netherlands)

    Asadi, K.; Gholamrezaie, F.; Smits, E.C.P.; Blom, W.M.; Boer, B. de

    2007-01-01

    Charge carrier injection into two semiconducting polymers is investigated in field-effect transistors using gold source and drain electrodes that are modified by self-assembled monolayers of alkanethiols and perfluorinated alkanethiols. The presence of an interfacial dipole associated with the molec

  16. Elemental isomerization processes for a photochromic diarylethene film based on carrier injection toward all-electrically operable organic memory

    Science.gov (United States)

    Tsujioka, Tsuyoshi; Yamamoto, Kazuki

    2016-06-01

    We propose a basic concept of all-electrically operable organic memory with a photochromic diarylethene (DAE) film based on a transistor structure, in which the DAE memory layer is recordable, erasable, and nondestructively readable by an electrical method. To realize such memory, we investigated each elementary process for recording, erasing, or nondestructive reading by current injection and electrostatic methods for the DAE layer. Both ring-opening and ring-closure isomerization reactions were confirmed for the injection of both carriers (electrons and holes). Hole injection induced ring-opening reaction only. These reaction modes can be utilized in the recording and erasing modes. Since no reactions for electron injection and current modulation based on photoisomerization were observed, electron current injection can be applied to nondestructive readout.

  17. Effect of free-carrier concentration and optical injection on carrier lifetimes in undoped and iodine doped CdMgTe/CdSeTe double heterostructures grown by molecular beam epitaxy

    Science.gov (United States)

    Sohal, S.; Edirisooriya, M.; Ogedengbe, O. S.; Petersen, J. E.; Swartz, C. H.; LeBlanc, E. G.; Myers, T. H.; Li, J. V.; Holtz, M.

    2016-12-01

    Time-resolved and time integrated photoluminescence (PL) studies are reported for undoped and doped CdMgTe/CdSeTe double heterostructures (DHs) grown by molecular beam epitaxy. Undoped DHs are studied with absorber layer thickness varying from 0.5 to 2.5 µm. The n-type free-carrier concentration is varied ~7  ×  1015, 8.4  ×  1016, and 8.4  ×  1017 cm-3 using iodine as a dopant in different absorber layer thicknesses (0.25-2.0 µm). Optical injection is varied from 1  ×  1010 to 3  ×  1011 photons/pulse/cm2, corresponding to the initial injection of photo-carriers up to ~8  ×  1015 cm-3, to examine the effects of excess carrier concentration on the PL lifetimes. Undoped DHs exhibit an initial rapid decay followed by a slower dependence with carrier lifetimes up to ~485 ns. The dependence of carrier lifetimes on the thickness of the absorber layers (0.5-2.5 µm) suggests interface recombination velocities ({{v}\\operatorname{int}}~ ) ~ 1288 and 238 cm s-1 in the initial and later decay times, respectively, corresponding to high and low photo-carrier concentrations. The Shockley-Read-Hall model is used to describe the results in which variations are observed in {{v}\\operatorname{int}}~ for undoped DHs. The lifetimes of doped DHs show a consistent trend with thickness. The {{v}\\operatorname{int}}~ ~ 80-200 cm s-1 is estimated for doping n ~ 7  ×  1015 cm-3 and 240-410 cm s-1 for n ~ 8.4  ×  1016 cm-3. The observed decrease in carrier lifetimes with increasing n is consistent with growing importance of the radiative recombination rate due to the excess carrier concentration. The effect of carrier concentration on the PL spectrum is also discussed.

  18. Graphene, a material for high temperature devices; intrinsic carrier density, carrier drift velocity, and lattice energy

    CERN Document Server

    Yin, Yan; Wang, Li; Jin, Kuijuan; Wang, Wenzhong

    2016-01-01

    Heat has always been a killing matter for traditional semiconductor machines. The underlining physical reason is that the intrinsic carrier density of a device made from a traditional semiconductor material increases very fast with a rising temperature. Once reaching a temperature, the density surpasses the chemical doping or gating effect, any p-n junction or transistor made from the semiconductor will fail to function. Here, we measure the intrinsic Fermi level (|E_F|=2.93k_B*T) or intrinsic carrier density (n_in=3.87*10^6 cm^-2 K^-2*T^2), carrier drift velocity, and G mode phonon energy of graphene devices and their temperature dependencies up to 2400 K. Our results show intrinsic carrier density of graphene is an order of magnitude less sensitive to temperature than those of Si or Ge, and reveal the great potentials of graphene as a material for high temperature devices. We also observe a linear decline of saturation drift velocity with increasing temperature, and identify the temperature coefficients of ...

  19. Traveling wave electrode design for ultra compact carrier-injection HBT-based electroabsorption modulator in a 130nm BiCMOS process

    Science.gov (United States)

    Fu, Enjin; Joyner Koomson, Valencia; Wu, Pengfei; Huang, Z. Rena

    2014-03-01

    Silicon photonic system, integrating photonic and electronic signal processing circuits in low-cost silicon CMOS processes, is a rapidly evolving area of research. The silicon electroabsorption modulator (EAM) is a key photonic device for emerging high capacity telecommunication networks to meet ever growing computing demands. To replace traditional large footprint Mach-Zehnder Interferometer (MZI) type modulators several small footprint modulators are being researched. Carrier-injection modulators can provide large free carrier density change, high modulation efficiency, and compact footprint. The large optical bandwidth and ultra-fast transit times of 130nm HBT devices make the carrierinjection HBT-based EAM (HBT-EAM) a good candidate for ultra-high-speed optical networks. This paper presents the design and 3D full-wave simulation results of a traveling wave electrode (TWE) structure to increase the modulation speed of a carrier-injection HBT-EAM device. A monolithic TWE design for an 180um ultra compact carrier-injection-based HBT-EAM implemented in a commercial 130nm SiGe BiCMOS process is discussed. The modulator is electrically modeled at the desired bias voltage and included in a 3D full-wave simulation using CST software. The simulation shows the TWE has a S11 lower than -15.31dB and a S21 better than -0.96dB covering a bandwidth from DC-60GHz. The electrical wave phase velocity is designed close to the optical wave phase velocity for optimal modulation speed. The 3D TWE design conforms to the design rules of the BiCMOS process. Simulation results show an overall increase in modulator data rate from 10Gbps to 60Gbps using the TWE structure.

  20. Highly efficient carrier multiplication in PbS nanosheets

    NARCIS (Netherlands)

    Aerts, M.; Bielewicz, T.; Klinke, C.; Grozema, F.C.; Houtepen, A.J.; Schins, J.M.; Siebbeles, L.D.A.

    2014-01-01

    Semiconductor nanocrystals are promising for use in cheap and highly efficient solar cells. A high efficiency can be achieved by carrier multiplication (CM), which yields multiple electron-hole pairs for a single absorbed photon. Lead chalcogenide nanocrystals are of specific interest, since their b

  1. Evidence of minority carrier injection efficiency >90% in an epitaxial graphene/SiC Schottky emitter bipolar junction phototransistor for ultraviolet detection

    Energy Technology Data Exchange (ETDEWEB)

    Chava, Venkata S. N., E-mail: vchava@email.sc.edu; Omar, Sabih U.; Brown, Gabriel; Shetu, Shamaita S.; Andrews, J.; Sudarshan, T. S.; Chandrashekhar, M. V. S. [Department of Electrical Engineering, University of South Carolina, Columbia, South Carolina 29208 (United States)

    2016-01-25

    In this letter, we report the UV detection characteristics of an epitaxial graphene (EG)/SiC based Schottky emitter bipolar phototransistor (SEPT) with EG on top as the transparent Schottky emitter layer. Under 0.43 μW UV illumination, the device showed a maximum common emitter current gain of 113, when operated in the Schottky emitter mode. We argue that avalanche gain and photoconductive gain can be excluded, indicating minority carrier injection efficiency, γ, as high as 99% at the EG/p-SiC Schottky junction. This high γ is attributed to the large, highly asymmetric barrier, which EG forms with the p-SiC. The maximum responsivity of the UV phototransistor is estimated to be 7.1 A/W. The observed decrease in gain with increase in UV power is attributed to recombination in the base region, which reduces the minority carrier lifetime.

  2. Evidence of minority carrier injection efficiency >90% in an epitaxial graphene/SiC Schottky emitter bipolar junction phototransistor for ultraviolet detection

    Science.gov (United States)

    Chava, Venkata S. N.; Omar, Sabih U.; Brown, Gabriel; Shetu, Shamaita S.; Andrews, J.; Sudarshan, T. S.; Chandrashekhar, M. V. S.

    2016-01-01

    In this letter, we report the UV detection characteristics of an epitaxial graphene (EG)/SiC based Schottky emitter bipolar phototransistor (SEPT) with EG on top as the transparent Schottky emitter layer. Under 0.43 μW UV illumination, the device showed a maximum common emitter current gain of 113, when operated in the Schottky emitter mode. We argue that avalanche gain and photoconductive gain can be excluded, indicating minority carrier injection efficiency, γ, as high as 99% at the EG/p-SiC Schottky junction. This high γ is attributed to the large, highly asymmetric barrier, which EG forms with the p-SiC. The maximum responsivity of the UV phototransistor is estimated to be 7.1 A/W. The observed decrease in gain with increase in UV power is attributed to recombination in the base region, which reduces the minority carrier lifetime.

  3. High power terahertz induced carrier multiplication in Silicon

    DEFF Research Database (Denmark)

    Tarekegne, Abebe Tilahun; Pedersen, Pernille Klarskov; Iwaszczuk, Krzysztof;

    2015-01-01

    The application of an intense THz field results a nonlinear transmission in high resistivity silicon. Upon increasing field strength, the transmission falls from 70% to 62% due to carrier generation through THz-induced impact ionization and subsequent absorption of the THz field by free electrons....

  4. Charge-carrier relaxation dynamics in highly ordered poly( p -phenylene vinylene): Effects of carrier bimolecular recombination and trapping

    Science.gov (United States)

    Soci, Cesare; Moses, Daniel; Xu, Qing-Hua; Heeger, Alan J.

    2005-12-01

    We have studied the charge-carrier relaxation dynamics in highly ordered poly( p -phenylene vinylene) over a broad time range using fast (t>100ps) transient photoconductivity measurements. The carrier density was also monitored (t>100fs) by means of photoinduced absorption probed at the infrared active vibrational modes. We find that promptly upon charge-carrier photogeneration, the initial polaron dynamics is governed by bimolecular recombination, while later in the subnanosecond time regime carrier trapping gives rise to an exponential decay of the photocurrent. The more sensitive transient photocurrent measurements indicate that in the low excitation regime, when the density of photocarriers is comparable to that of the trapping states (˜1016cm-3) , carrier hopping between traps along with transport via extended states determines the carrier relaxation, a mechanism that is manifested by a long-lived photocurrent “tail.” This photocurrent tail is reduced by lowering the temperature and/or by increasing the excitation density. Based on these data, we develop a comprehensive kinetic model that takes into account the bipolar charge transport, the free-carrier bimolecular recombination, the carrier trapping, and the carrier recombination involving free and trapped carriers.

  5. High carrier frequency of 21-hydroxylase deficiency in Cyprus.

    Science.gov (United States)

    Phedonos, A A P; Shammas, C; Skordis, N; Kyriakides, T C; Neocleous, V; Phylactou, L A

    2013-12-01

    Congenital adrenal hyperplasia (CAH) due to 21-hydroxylase deficiency (21-OHD) is a common autosomal recessive disorder caused by mutations in the CYP21A2 gene. The carrier frequency of CYP21A2 mutations has been estimated to be 1:25 to 1:10 on the basis of newborn screening. The main objective of this study was to determine the carrier frequency in the Cypriot population of mutations in the CYP21A2 gene. Three hundred unrelated subjects (150 males and 150 females) from the general population of Cyprus were screened for mutations in the CYP21A2 gene and its promoter. The CYP21A2 genotype analysis identified six different mutants and revealed a carrier frequency of 9.83% with the mild p.Val281Leu being the most frequent (4.3%), followed by p.Qln318stop (2.5%), p.Pro453Ser (1.33%), p.Val304Met (0.83%), p.Pro482Ser (0.67%) and p.Met283Val (0.17%). The notable high CYP21A2 carrier frequency of the Cypriot population is one of the highest reported so far by genotype analysis. Knowledge of the mutational spectrum of CYP21A2 will enable to optimize mutation detection strategy for genetic diagnosis of 21-OHD not only in Cyprus, but also the greater Mediterranean region.

  6. HIGH SPEED INJECTION MOLDING OF HIGH DENSITY POLYETHYLENE - EFFECTS OF INJECTION SPEED ON STRUCTURE AND PROPERTIES

    Institute of Scientific and Technical Information of China (English)

    Kun Jiang; Feng Chen; Qiang Fu; Fei-long Yu; Run Su; Jing-hui Yang; Tian-nan Zhou; Jian Gao; Hua Deng; Ke Wang; Qin Zhang

    2011-01-01

    Thin wall samples of high density polyethylene (HDPE) were prepared via injection molding with differentinjection speeds ranging from 100 mm/s to 1200 mm/s. A significant decrease in the tensile strength and Young's moduluswas observed with increasing injection speed. In order to investigate the mechanism behind this decrease, the orientation,molecular weight, molecular weight distribution, melt flow rate, crystallinity and crystal morphology of HDPE werecharacterized using two-dimensional wide-angle X-ray diffraction (2D-WAXD), gel permeation chromatography (GPC),capillary rheometry and differential scanning calorimetry (DSC), respectively. It is demonstrated that the orientation,molecular weight, molecular weight distribution, melt flow rate and crystallinity have no obvious change with increasinginjection speed. Nevertheless, the content of extended chain crystals or large folded chain crystals was found to decreasewith increasing injection speed. Therefore, it is concluded that the decrease in tensile properties is mainly contributed by the reduced content of extended chain crystals or large folded chain crystals. This study provides industry with valuableinformation for the application of high speed injection molding.

  7. Impact of charge carrier injection on single-chain photophysics of conjugated polymers

    CERN Document Server

    Hofmann, Felix J; Lupton, John M

    2016-01-01

    Charges in conjugated polymer materials have a strong impact on the photophysics and their interaction with the primary excited state species has to be taken into account in understanding device properties. Here, we employ single-molecule spectroscopy to unravel the influence of charges on several photoluminescence (PL) observables. The charges are injected either stochastically by a photochemical process, or deterministically in a hole-injection sandwich device configuration. We find that upon charge injection, besides a blue-shift of the PL emission and a shortening of the PL lifetime due to quenching and blocking of the lowest-energy chromophores, the non-classical photon arrival time distribution of the multichromophoric chain is modified towards a more classical distribution. Surprisingly, the fidelity of photon antibunching deteriorates upon charging, whereas one would actually expect the number of chromophores to be reduced. A qualitative model is presented to explain the observed PL changes. The resul...

  8. Controlling the efficiency of spin injection into graphene by carrier drift

    NARCIS (Netherlands)

    Jozsa, C.; Popinciuc, M.; Tombros, N.; Jonkman, H. T.; van Wees, B. J.

    2009-01-01

    Electrical spin injection from ferromagnetic metals into graphene is hindered by the impedance mismatch between the two materials. This problem can be reduced by the introduction of a thin tunnel barrier at the interface. We present room-temperature nonlocal spin valve measurements in cobalt/aluminu

  9. Optimum strain configurations for carrier injection in near infrared Ge lasers

    Science.gov (United States)

    Aldaghri, O.; Ikonić, Z.; Kelsall, R. W.

    2012-03-01

    The behavior of direct and indirect valleys in Ge, and the bandgap shrinking, under different tensile-strain conditions in bulk Ge and Ge quantum well structures are explored using the deformation potential and k .p methods. The doping density required for filling the indirect valleys up to the Γ-valley is calculated for various strain and growth conditions, as well as the efficiency of electron injection into the Γ-valley, and the optimum cases for Ge laser operation are identified.

  10. Synthesis, characterization of novel injectable drug carriers and the antitumor efficacy in mice bearing Sarcoma-180 tumor.

    Science.gov (United States)

    Guo, Wen-xun; Huang, Kai-xun; Tang, Rong; Xu, Hui-bi

    2005-10-20

    New unsaturated polyesters of poly(fumaric acid-glycol-dodecanedioic acid) P(FA-GLY-DDDA) copolymers, poly(fumaric acid-glycol-brassylic acid) P(FA-GLY-BA) copolymers, poly(fumaric acid-glycol-tetradecanedioic acid) P(FA-GLY-TA) copolymers and poly(fumaric acid-glycol-pentadecanedioic acid) P(FA-GLY-PA) copolymers were prepared by melt polycondensation of the corresponding mixed monomers: fumaric acid, glycol and one of C(12-15) dibasic acids. The copolymers were characterized by FT-IR, gel permeation chromatography (GPC), and the surface structure of unsaturated polyesters after solidify were studied by atomic force microscopy (AFM). The molecular structure and composition of the unsaturated polyesters were determined by 1H NMR spectroscopy. In vitro studies showed that some of the copolymers are degradable in phosphate buffer at 37 degrees C and have properly drug release rate as drug carriers. The biocompatibility of P(FA-GLY-DDDA) and P(FA-GLY-BA) copolymers under mice skin was also evaluated, macroscopic observation and microscopic analysis demonstrated that the copolymer is biocompatible and well tolerated in vivo. Antitumor efficacy of P(FA-GLY-DDDA) copolymers and P(FA-GLY-BA) copolymers containing 5% adriamycin hydrochloride (ADM) in mice bearing Sarcoma-180 tumor exhibited increased volume doubling time (VDT) (22+/-1.5 days and 24+/-2.5 days) compared to plain subcutaneous injection of ADM (7+/-0.9 days). The antitumor efficacy of injecting P(FA-GLY-DDDA)-ADM inside tumor twice intervened in 22 days exhibited an especially increased cytotoxic effect as revealed by increased VDT (33+/-2.5 days), and the antitumor efficacy of injecting P(FA-GLY-BA)-ADM inside tumor twice intervened in 24 days exhibited an especially increased cytotoxic effect as revealed by increased VDT (35+/-1.5 days). The studies suggested that P(FA-GLY-DDDA) copolymers and P(FA-GLY-BA) copolymers as effective and injectable carriers for antineoplastic drug like adriamycin hydrochloride

  11. Equivalent ambipolar carrier injection of electrons and holes with Au electrodes in air-stable field effect transistors

    Energy Technology Data Exchange (ETDEWEB)

    Kanagasekaran, Thangavel, E-mail: kanagasekaran@gmail.com, E-mail: Shimotani@m.tohoku.ac.jp, E-mail: tanigaki@m.tohoku.ac.jp; Ikeda, Susumu; Kumashiro, Ryotaro [WPI-Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, 2-1-1 Katahira, Aoba, Sendai 980-8577 (Japan); Shimotani, Hidekazu, E-mail: kanagasekaran@gmail.com, E-mail: Shimotani@m.tohoku.ac.jp, E-mail: tanigaki@m.tohoku.ac.jp; Shang, Hui [Department of Physics, Graduate School of Science, Tohoku University, 6-3 Aoba, Aramaki, Aoba, Sendai 980-8578 (Japan); Tanigaki, Katsumi, E-mail: kanagasekaran@gmail.com, E-mail: Shimotani@m.tohoku.ac.jp, E-mail: tanigaki@m.tohoku.ac.jp [WPI-Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, 2-1-1 Katahira, Aoba, Sendai 980-8577 (Japan); Department of Physics, Graduate School of Science, Tohoku University, 6-3 Aoba, Aramaki, Aoba, Sendai 980-8578 (Japan)

    2015-07-27

    Carrier injection from Au electrodes to organic thin-film active layers can be greatly improved for both electrons and holes by nano-structural surface control of organic semiconducting thin films using long-chain aliphatic molecules on a SiO{sub 2} gate insulator. In this paper, we demonstrate a stark contrast for a 2,5-bis(4-biphenylyl)bithiophene (BP2T) active semiconducting layer grown on a modified SiO{sub 2} dielectric gate insulator between two different modifications of tetratetracontane and poly(methyl methacrylate) thin films. Important evidence that the field effect transistor (FET) characteristics are independent of electrode metals with different work functions is given by the observation of a conversion of the metal-semiconductor contact from the Schottky limit to the Bardeen limit. An air-stable light emitting FET with an Au electrode is demonstrated.

  12. Effect of Doping Position on the Active Silicon-on-Insulator Micro-Ring Resonator Based on Free Carrier Injection

    Directory of Open Access Journals (Sweden)

    B. Mardiana

    2012-01-01

    Full Text Available Problem statement: Metal interconnects have become significant limitation on the scaling of CMOS technologies in electronics integrated circuit. Silicon photonics has offers great potential to overcome this critical bottleneck due to the advantages of optical interconnects. Silicon-based optical micro-ring resonator is promising basic element of future electronic-photonic integrated circuits because of its wide applications on photonic devices such as modulator, switch and sensor. Approach: This study highlights the study of the free carrier injection effect on the active SOI micro-ring resonator. The effect of the free carrier injection on micro-ring resonator is evaluated by varying the p+ and n+ doping position. Device performances are predicted using numerical modeling software 2D SILVACO as well as Finite Difference Time Domain (FDTD simulation software, RSOFT. Results: The results show that the refractive index change increases as the p+ and n+ doping position become closer to the rib waveguide. A shift in resonant wavelength of around 2 and 3 nm was is predicted at 0.9V drive forward voltage for 0.5 and 1.0 μm gap distance between p+ and n+ doping regions and the sidewall of the rib waveguide. It is also shown that 10 and 9.2 dB maximum change of the output response obtained through the output of the transmission spectrum of the device with gap 0.5 and 1.0 μm. Conclusion: The closer distance between p+ and n+ doping regions and the rib waveguide has optimal shift of resonance wavelength and better extinction ratio of transmission spectrum.

  13. High charge-carrier mobility enables exploitation of carrier multiplication in quantum-dot films

    NARCIS (Netherlands)

    Suchand Sandeep, C.S.; Ten Cate, S.; Schins, J.M.; Savenije, T.J.; Liu, Y.; Law, M.; Kinge, S.; Houtepen, A.J.; Siebbeles, L.D.A.

    2013-01-01

    Carrier multiplication, the generation of multiple electron–hole pairs by a single photon, is of great interest for solar cells as it may enhance their photocurrent. This process has been shown to occur efficiently in colloidal quantum dots, however, harvesting of the generated multiple charges has

  14. Apparatus for measuring the flow rate of a heat carrier and injection wells

    Energy Technology Data Exchange (ETDEWEB)

    Putilov, M.F.; Bar-Sliva, V.I.; Dichenko, M.A.; Nikiforov, Yu.V.; Petrov, A.I.; Turchaninov, Yu.N.

    1981-01-01

    A device is proposed for measuring the flow rate of the heat carrier in N wells, which contains a housing, turbine ( a permanent magnet is attached to the shaft eccentrically), a reed relay, a secondary converter and a power supply. In order to expand the measurement range by developing torque in the turbine it is equipped with additional reed relay, which is installed diametrically opposite the primary reed relay, and it also has a breaking unit made in the form of an additional permanent magnet placed on the turbine shaft. There was also a torodial core with a two-section winding and a winding power supply polarity switch in the frame. The primary and secondary reed relays are connected to the winding power supply polarity switch circuit. It in turn is connected to the secondary converter. In order to assure the possibility of changing the slope of the flow rate converter into a number of turbine revolutions it is equipped with a frequency to voltage converter with a setting mechanism. The frequency to voltage converter input is connected to the secondary converter, and the output is connected to the power supply source.

  15. Suppressing the hot carrier injection degradation rate in total ionizing dose effect hardened nMOSFETs

    Institute of Scientific and Technical Information of China (English)

    Chen Jian-Jun; Chen Shu-Ming; Liang Bin; He Yi-Bai; Chi Ya-Qing; Deng Ke-Feng

    2011-01-01

    Annular gate nMOSFETs are frequently used in spaceborne integrated circuits due to their intrinsic good capability of resisting total ionizing dose (TID) effect.However,their capability of resisting the hot carrier effect (HCE) has also been proven to be very weak.In this paper,the reason why the annular gate nMOSFETs have good TID but bad HCE resistance is discussed in detail,and an improved design to locate the source contacts only along one side of the annular gate is used to weaken the HCE degradation.The good TID and HCE hardened capability of the design are verified by the experiments for I/O and core nMOSFETs in a 0.18 μm bulk CMOS technology.In addition,the shortcoming of this design is also discussed and the TID and the HCE characteristics of the replacers (the annular source nMOSFETs) are also studied to provide a possible alternative for the designers.

  16. Electric-field enhanced thermionic emission model for carrier injection mechanism of organic field-effect transistors: understanding of contact resistance

    Science.gov (United States)

    Li, Jun; Ou-Yang, Wei; Weis, Martin

    2017-01-01

    We developed an electric-field enhanced thermionic emission model combined with an equivalent circuit for a three-terminal organic transistor structure to interpret the gate-voltage dependent contact resistance. In the model the contact resistance is composed of two components: (i) the interfacial resistance not only influenced by interfacial energy barrier but also strongly dependent on active layer thickness, and (ii) the bulk resistance that is affected only by active layer itself. The model having physical meaning in the fitting parameters, different from the previous with simple power functions, can well fit the voltage dependence for a series of independent data. In addition, the bulk resistance component can be extracted and is estimated reasonable for the first time, which is demonstrated not to be neglected even for the devices with high effective mobility. The developed model will be helpful for understanding of contact resistance and charge carrier injection behavior in the organic thin film transistors.

  17. Controlling charge carrier injection in organic electroluminescent devices via ITO substrate modification

    CERN Document Server

    Day, S

    2001-01-01

    and the ITO substrate was found to shift the work function of the electrode, and so modify the barrier to hole injection. Scanning Kelvin probe measurements show that the ITO work function is increased by 0.25 eV with a film of TNAP, while a C sub 6 sub 0 film is found to reduce the work function by a comparable amount. The former has been attributed to a charge-transfer effect resulting in Fermi level alignment between the ITO and the TNAP layer, however the latter is believed to result from both charge transfer and a covalent interaction between C sub 6 sub 0 and ITO. The performance of devices incorporating these modified ITO electrode are rationalised in terms of the work function modification, film thicknesses and the hole transport properties of the two films. Competition between the induced work function change and the increasingly significant tunnelling barrier with thickness means that device performance is not as good as that provided by the SAMs. Direct processing of the ITO substrate has also been...

  18. Investigations on high speed directly modulated microdisk lasers accounting for radial carrier hole burning

    Science.gov (United States)

    Huang, Yong-Zhen; Lv, Xiao-Meng; Zou, Ling-Xiu; Long, Heng; Xiao, Jin-Long; Yang, Yue-De; Du, Yun

    2014-04-01

    High-speed modulation characteristics are investigated for microdisk lasers theoretically and experimentally. In rate equation analysis, the microdisk resonator is radially divided into two regions under uniform carrier density approximation in each region. The injection current profile, carrier spatial hole burning, and diffusion are accounted for in the evaluation of small-signal modulation curves and the simulation of large-signal responses. The numerical results indicate that a wide mode field pattern in radial direction has merit for high-speed modulation, which is expected for coupled modes in the microdisk lasers connected with an output waveguide. For a 15-μm-radius microdisk laser connected with a 2-μm-wide output waveguide, the measured small-signal response curves with a low-frequency roll-off are well in agreement with the simulated result at a 2-μm radial width for the mode intensity distribution. The resonant frequencies of 7.2, 5.9, and 3.9 GHz are obtained at the temperatures of 287, 298, and 312 K from the small-signal response curves, and clear eye diagrams at 12.5 Gb/s with an extinction ratio of 6.1 dB are observed for the microdisk laser at the biasing current of 38 mA and 287 K.

  19. Pneumomediastinum following high pressure air injection to the hand.

    LENUS (Irish Health Repository)

    Kennedy, J

    2012-02-01

    We present the case of a patient who developed pneumomediastinum after high pressure air injection to the hand. To our knowledge this is the first reported case of pneumomediastinum where the gas injection site was the thenar eminence. Fortunately the patient recovered with conservative management.

  20. Pneumomediastinum following high pressure air injection to the hand.

    LENUS (Irish Health Repository)

    Kennedy, J

    2010-04-01

    We present the case of a patient who developed pneumomediastinum after high pressure air injection to the hand. To our knowledge this is the first reported case of pneumomediastinum where the gas injection site was the thenar eminence. Fortunately the patient recovered with conservative management.

  1. Highly mobile carriers in iron-based superconductors

    Science.gov (United States)

    Ovchenkov, Y. A.; Chareev, D. A.; Kulbachinskii, V. A.; Kytin, V. G.; Presnov, D. E.; Volkova, O. S.; Vasiliev, A. N.

    2017-03-01

    The field and temperature dependencies of the resistivity and Hall effect are measured for FeSe{}1-xS{}x (x = 0.04, 0.09, and 0.19) single crystals. Sample FeSe{}0.81S{}0.19 does not show a transition to an orthorhombic phase and at low temperatures exhibits transport properties, which are very different from those of orthorhombic samples. The behavior of FeSe{}0.81S{}0.19 is well described by the simple two-band model with comparable values of the hole and electron mobilities. The characteristics of the low-temperature transport properties of the orthorhombic Fe(SeS) samples are largely determined by the presence of a small number of highly mobile carriers, which may originate from the local regions of the Fermi surface, presumably, nearby the Van Hove singularity points. Our results, for the first time, demonstrate a strong evolution of a tiny band of highly mobile electrons at a tetragonal to orthorhombic quantum phase transition. The behavior of this band can be the reason for the diverging nematic susceptibility, determined from elastoresistivity, which is considered one of the most intriguing phenomena in the physics of iron-based superconductors.

  2. Investigation of carriers of lustrous carbon at high temperatures

    Directory of Open Access Journals (Sweden)

    M. Holtzer

    2010-01-01

    Full Text Available Lustrous carbon is very important in processes of iron casting in green sand. Lustrous carbon (pirografit is a microcrystalline carbon form, which evolves from a gaseous phase. In the case of applying additions, generating lustrous carbon, for sands with bentonite, there is always a danger of emitting – due to a high temperature of liquid cast iron and a humidity -compounds hazardous for a human health. There can be: CO, SO2, benzene, toluene, ethylbenzene, xylene (the so-called: BTEX as well as polycyclic aromatic hydrocarbons (PAHs. In order to asses the selected mixtures: bentonite – carrier of lustrous carbon, in which a coal dust fraction was limited, the thermogravimetric analysis and the analysis of evolving gases were performed. Examinations were carried out in the Applications Laboratory NITZSCH-Gerätebau GmbH, Selb/Bavaria, Germany. The NETZSCH model STA 449 F3 Jupiter® simultaneous thermal analyzer was used to measure the mass change and transformation energetics of materials. The system employed for this work was equipped with an SiC furnace capable of operation from 25 to 1550°C. The mass spectrometer of the QMS 403 allows detection of mass numbers between 1 and 300 amu (atomic mass unit.

  3. High integrity carrier phase navigation using multiple civil GPS signals

    Science.gov (United States)

    Jung, Jaewoo

    2000-11-01

    A navigation system should guide users to their destinations accurately and reliably. Among the many available navigation aids, the Global Positioning System stands out due to its unique capabilities. It is a satellite-based navigation system which covers the entire Earth with horizontal accuracy of 20 meters for stand alone civil users. Today, the GPS provides only one civil signal, but two more signals will be available in the near future. GPS will provide a second signal at 1227.60 MHz (L2) and a third signal at 1176.45 MHz (Lc), in addition to the current signal at 1575.42 MHz (L1). The focus of this thesis is exploring the possibility of using beat frequencies of these signals to provide navigation aid to users with high accuracy and integrity. To achieve high accuracy, the carrier phase differential GPS is used. The integer ambiguity is resolved using the Cascade Integer Resolution (CIR), which is defined in this thesis. The CIR is an instantaneous, geometry-free integer resolution method utilizing beat frequencies of GPS signals. To insure high integrity, the probability of incorrect integer ambiguity resolution using the CIR is analyzed. The CIR can immediately resolve the Lc integer ambiguity up to 2.4 km from the reference receiver, the Widelane (L1-L2) integer ambiguity up to 22 km, and the Extra Widelane (L2-Lc) integer ambiguity from there on, with probability of incorrect integer resolution of 10-4 . The optimal use of algebraic combinations of multiple GPS signals are also investigated in this thesis. Finally, the gradient of residual differential ionospheric error is estimated to stimated to increase performance of the CIR.

  4. Enhancing carrier injection in the active region of a 280nm emission wavelength LED using graded hole and electron blocking layers

    KAUST Repository

    Janjua, Bilal

    2014-02-27

    A theoretical investigation of AlGaN UV-LED with band engineering of hole and electron blocking layers (HBL and EBL, respectively) was conducted with an aim to improve injection efficiency and reduce efficiency droop in the UV LEDs. The analysis is based on energy band diagrams, carrier distribution and recombination rates (Shockley-Reed-Hall, Auger, and radiative recombination rates) in the quantum well, under equilibrium and forward bias conditions. Electron blocking layer is based on AlaGa1-aN / Al b → cGa1-b → 1-cN / AldGa 1-dN, where a < d < b < c. A graded layer sandwiched between large bandgap AlGaN materials was found to be effective in simultaneously blocking electrons and providing polarization field enhanced carrier injection. The graded interlayer reduces polarization induced band bending and mitigates the related drawback of impediment of holes injection. Similarly on the n-side, the Alx → yGa1-x → 1-yN / AlzGa 1-zN (x < z < y) barrier acts as a hole blocking layer. The reduced carrier leakage and enhanced carrier density in the active region results in significant improvement in radiative recombination rate compared to a structure with the conventional rectangular EBL layers. The improvement in device performance comes from meticulously designing the hole and electron blocking layers to increase carrier injection efficiency. The quantum well based UV-LED was designed to emit at 280nm, which is an effective wavelength for water disinfection application.

  5. Nanoscale carrier injectors for high luminescence Si-based LEDs

    NARCIS (Netherlands)

    Piccolo, G.; Kovalgin, Alexeij Y.; Schmitz, Jurriaan

    2012-01-01

    In this paper we present the increased light emission for Sip–i–n light emitting diodes (LEDs) by geometrical scaling of the injector size for p- and n- type carriers. Simulations and electrical and optical characteristics of our realized devices support our findings. Reducing the injector size

  6. Nanoscale carrier injectors for high luminescence Si-based LEDs

    NARCIS (Netherlands)

    Piccolo, G.; Kovalgin, A.Y.; Schmitz, J.

    2012-01-01

    In this paper we present the increased light emission for Sip–i–n light emitting diodes (LEDs) by geometrical scaling of the injector size for p- and n- type carriers. Simulations and electrical and optical characteristics of our realized devices support our findings. Reducing the injector size decr

  7. Direct injection of spin-polarized carriers across YBa2Cu3O7-–La0.3Ca0.7MnO3 interface at 77 K

    Indian Academy of Sciences (India)

    K V Upadhye; K Ganesh Kumara; S C Purandare; S P Pai; R Pinto

    2002-05-01

    We report here injection of spin-polarized carriers from a half-metallic La0.3-Ca0.7MnO3 (LCMO) colossal magnetoresistive (CMR) thin film into a high-temperature superconducting YBa2Cu3O7- (YBCO) thin film studied using a micro-bridge. The LCMO and YBCO films were grown on $\\langle 100\\rangle$ LaAlO3 (LAO) substrate sequentially using pulsed laser deposition (PLD). - measurements carried out at 77 K show that while normal critical current, $I^{n}_{c}$, of the micro-bridge is 80 mA, the critical current, $I^{p}_{c}$, through the micro-bridge when injected from the CMR layer is 38 mA. This clearly shows that spin-polarized quasiparticles injected from the CMR layer into the YBCO layer suppress the critical current of the superconductor via the pair-breaking phenomena.

  8. Targeted carrier screening for four recessive disorders: high detection rate within a founder population.

    Science.gov (United States)

    Mathijssen, Inge B; Henneman, Lidewij; van Eeten-Nijman, Janneke M C; Lakeman, Phillis; Ottenheim, Cecile P E; Redeker, Egbert J W; Ottenhof, Winnie; Meijers-Heijboer, Hanne; van Maarle, Merel C

    2015-03-01

    In a genetically isolated community in the Netherlands four severe recessive genetic disorders occur at relatively high frequency (pontocerebellar hypoplasia type 2 (PCH2), fetal akinesia deformation sequence (FADS), rhizomelic chondrodysplasia punctata type 1 (RCDP1), and osteogenesis imperfecta (OI) type IIB/III. Over the past decades multiple patients with these disorders have been identified. This warranted the start of a preconception outpatient clinic, in 2012, aimed at couples planning a pregnancy. The aim of our study was to evaluate the offer of targeted genetic carrier screening as a method to identify high-risk couples for having affected offspring in this high-risk subpopulation. In one year, 203 individuals (92 couples and 19 individuals) were counseled. In total, 65 of 196 (33.2%) tested individuals were carriers of at least one disease, five (7.7%) of them being carriers of two diseases. Carrier frequencies of PCH2, FADS, RCDP1, and OI were 14.3%, 11.2%, 6.1%, and 4.1% respectively. In individuals with a positive family history for one of the diseases, the carrier frequency was 57.8%; for those with a negative family history this was 25.8%. Four PCH2 carrier-couples were identified. Thus, targeted (preconception) carrier screening in this genetically isolated population in which a high prevalence of specific disorders occurs detects a high number of carriers, and is likely to be more effective compared to cascade genetic testing. Our findings and set-up can be seen as a model for carrier screening in other high-risk subpopulations and contributes to the discussion about the way carrier screening can be offered and organized in the general population.

  9. Injection molding of high aspect ratio sub-100 nm nanostructures

    DEFF Research Database (Denmark)

    Matschuk, Maria; Larsen, Niels B

    2013-01-01

    with FDTS. Reduced adhesion forces are consistent with lowered friction that reduces the risk of fracturing the nanoscopic pillars during demolding. Optimized mold surface chemistry and associated injection molding conditions permitted the fabrication of square arrays of 40 nm wide and 107 nm high (aspect......We have explored the use of mold coatings and optimized processing conditions to injection mold high aspect ratio nanostructures (height-to-width >1) in cyclic olefin copolymer (COC). Optimizing the molding parameters on uncoated nickel molds resulted in slight improvements in replication quality...

  10. Improvement of die life in high speed injection die casting

    Institute of Scientific and Technical Information of China (English)

    Yasuhiro Arisuda; Akihito Hasuno; Junji Yoshida; Kazunari Tanii

    2008-01-01

    High-speed injection die casting is an efficient manufacturing technology for upgrading aluminum die-cast products. However, deficiencies (such as die damage in eady period) due to larger load on the molding die compared with conventional technology have brought new challenges. In this study, the cause of damage generated in super high-speed injection was investigated by the combination of experimental observation of the dies and CAE simulation (e.g. die temperature analysis, flow analysis and thermal stress analysis). The potential countermeasures to solve the above problems were also proposed.

  11. Improvement of die life in high speed injection die casting

    Directory of Open Access Journals (Sweden)

    Akihito Hasuno

    2008-11-01

    Full Text Available High-speed injection die casting is an effi cient manufacturing technology for upgrading aluminum die-cast products. However, defi ciencies (such as die damage in early period due to larger load on the molding die compared with conventional technology have brought new challenges. In this study, the cause of damage generated in super high-speed injection was investigated by the combination of experimental observation of the dies and CAE simulation (e.g. die emperature analysis, fl ow analysis and thermal stress analysis. The potential countermeasures to solve the above problems were also proposed.

  12. Direct charge carrier injection into Ga2O3 thin films using an In2O3 cathode buffer layer: their optical, electrical and surface state properties

    Science.gov (United States)

    Cui, W.; Zhao, X. L.; An, Y. H.; Guo, D. Y.; Qing, X. Y.; Wu, Z. P.; Li, P. G.; Li, L. H.; Cui, C.; Tang, W. H.

    2017-04-01

    Conductive Ga2O3 thin films with an In2O3 buffer layer have been prepared on c-plane sapphire substrates using a laser molecular beam epitaxy technique. The effects of the In2O3 buffer layer on the structure and optical, electrical and surface state properties of the Ga2O3 films have been studied. The change in conductivity of the thin films is attributed to different thicknesses of the In2O3 buffer layer, which determine the concentration of charge carriers injected into the upper Ga2O3 layer from the interface of the bilayer thin films. In addition, the increase in flat band voltage shift and capacitance values as the In2O3 buffer layer thickens are attributed to the increase in surface state density, which also contributes to the rapid shrinkage of the optical band gap of the Ga2O3. With transparency to visible light, high n-type conduction and the ability to tune the optical band gap and surface state density, we propose that Ga2O3/In2O3 bilayer thin film is an ideal n-type semiconductor for fabrication of transparent power devices, solar cell electrodes and gas sensors.

  13. Characteristics of pressure wave in common rail fuel injection system of high-speed direct injection diesel engines

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Herfatmanesh

    2016-05-01

    Full Text Available The latest generation of high-pressure common rail equipment now provides diesel engines possibility to apply as many as eight separate injection pulses within the engine cycle for reducing emissions and for smoothing combustion. With these complicated injection arrangements, optimizations of operating parameters for various driving conditions are considerably difficult, particularly when integrating fuel injection parameters with other operating parameters such as exhaust gas recirculation rate and boost pressure together for evaluating calibration results. Understanding the detailed effects of fuel injection parameters upon combustion characteristics and emission formation is therefore particularly critical. In this article, the results and discussion of experimental investigations on a high-speed direct injection light-duty diesel engine test bed are presented for evaluating and analyzing the effects of main adjustable parameters of the fuel injection system on all regulated emission gases and torque performance. Main injection timing, rail pressure, pilot amount, and particularly pilot timing have been examined. The results show that optimization of each of those adjustable parameters is beneficial for emission reduction and torque improvement under different operating conditions. By exploring the variation in the interval between the pilot injection and the main injection, it is found that the pressure wave in the common rail has a significant influence on the subsequent injection. This suggests that special attentions must be paid for adjusting pilot timing or any injection interval when multi-injection is used. With analyzing the fuel amount oscillation of the subsequent injections to pilot separation, it demonstrates that the frequency of regular oscillations of the actual fuel amount or the injection pulse width with the variation in pilot separation is always the same for a specified fuel injection system, regardless of engine speed

  14. Short minority carrier lifetimes in highly nitrogen-doped 4H-SiC epilayers for suppression of the stacking fault formation in PiN diodes

    Science.gov (United States)

    Tawara, T.; Miyazawa, T.; Ryo, M.; Miyazato, M.; Fujimoto, T.; Takenaka, K.; Matsunaga, S.; Miyajima, M.; Otsuki, A.; Yonezawa, Y.; Kato, T.; Okumura, H.; Kimoto, T.; Tsuchida, H.

    2016-09-01

    We investigated the dependency of minority carrier lifetimes on the nitrogen concentration, temperature, and the injected carrier concentration for highly nitrogen-doped 4H-SiC epilayers. The minority carrier lifetimes greatly shortened when the nitrogen concentration exceeded 1018 cm-3 through enhancing direct band-to-band and Auger recombination and showed a slight variation in the temperature range from room temperature (RT) to 250 °C. The epilayer with a nitrogen concentration of 9.3 × 1018 cm-3 exhibited a very short minority carrier lifetime of 38 ns at RT and 43 ns at 250 °C. The short minority carrier lifetimes of the highly nitrogen-doped epilayer were confirmed to maintain the values even after the subsequent annealing of 1700 °C. 4H-SiC PiN diodes were fabricated by depositing a highly nitrogen-doped epilayer as a "recombination enhancing layer" between an n- drift layer free from basal plane dislocations and the substrate. The PiN diodes showed no formation of stacking faults and no increase in forward voltage during current conduction of 600 A/cm2 (DC), demonstrating that a highly nitrogen-doped buffer layer with a short minority carrier lifetime successfully suppresses the "bipolar degradation" phenomenon.

  15. Horizontal high-pressure air injection well construction and operation

    Energy Technology Data Exchange (ETDEWEB)

    Hume, J. [Continental Resources Inc., ND (United States)

    2005-07-01

    This paper discussed the design and operational challenges of a horizontal high-pressure air injection well currently in use at the Cedar Hill Red River B field in North Dakota. The field was developed in 1994, using horizontal wells oriented from the northeast to the southwest corners of each section on 640 acre spacing. In March of 2001, the field was unitized resulting in a horizontal waterflood project and a 320 acre horizontal high pressure air injection project. Extreme temperatures and pressures occurring in the reservoir from the combustion processes associated with high pressure air injection have resulted in several challenges. Reservoir and fluid properties of the field were presented, as well as a type log. Details of the Buffalo and Cedar Hills field were also provided, with a comparison of horizontal and vertical patterns. A light oil displacement process was reviewed, with details of tubing leak corrosion, packer seal and detonation failures. Burn front exposure to casing was discussed, and a wellbore diagram was provided. Various horizontal conversions were discussed. A description of the Cedar Hills Compressor Station and compression trains was provided. It was concluded that knowledge gained from 25 years of vertical high pressure air injection experience has been successfully incorporated to create a safe and durable design. 1 tab., 16 figs.

  16. Computational Fluid Dynamics Analysis of High Injection Pressure Blended Biodiesel

    Science.gov (United States)

    Khalid, Amir; Jaat, Norrizam; Faisal Hushim, Mohd; Manshoor, Bukhari; Zaman, Izzuddin; Sapit, Azwan; Razali, Azahari

    2017-08-01

    Biodiesel have great potential for substitution with petrol fuel for the purpose of achieving clean energy production and emission reduction. Among the methods that can control the combustion properties, controlling of the fuel injection conditions is one of the successful methods. The purpose of this study is to investigate the effect of high injection pressure of biodiesel blends on spray characteristics using Computational Fluid Dynamics (CFD). Injection pressure was observed at 220 MPa, 250 MPa and 280 MPa. The ambient temperature was kept held at 1050 K and ambient pressure 8 MPa in order to simulate the effect of boost pressure or turbo charger during combustion process. Computational Fluid Dynamics were used to investigate the spray characteristics of biodiesel blends such as spray penetration length, spray angle and mixture formation of fuel-air mixing. The results shows that increases of injection pressure, wider spray angle is produced by biodiesel blends and diesel fuel. The injection pressure strongly affects the mixture formation, characteristics of fuel spray, longer spray penetration length thus promotes the fuel and air mixing.

  17. Determination of minority-carrier lifetime and surface recombination velocity with high spacial resolution

    Science.gov (United States)

    Watanabe, M.; Actor, G.; Gatos, H. C.

    1977-01-01

    Quantitative analysis of the electron beam induced current in conjunction with high-resolution scanning makes it possible to evaluate the minority-carrier lifetime three dimensionally in the bulk and the surface recombination velocity two dimensionally, with a high spacial resolution. The analysis is based on the concept of the effective excitation strength of the carriers which takes into consideration all possible recombination sources. Two-dimensional mapping of the surface recombination velocity of phosphorus-diffused silicon diodes is presented as well as a three-dimensional mapping of the changes in the minority-carrier lifetime in ion-implanted silicon.

  18. Slow cooling and highly efficient extraction of hot carriers in colloidal perovskite nanocrystals

    Science.gov (United States)

    Li, Mingjie; Bhaumik, Saikat; Goh, Teck Wee; Kumar, Muduli Subas; Yantara, Natalia; Grätzel, Michael; Mhaisalkar, Subodh; Mathews, Nripan; Sum, Tze Chien

    2017-02-01

    Hot-carrier solar cells can overcome the Schottky-Queisser limit by harvesting excess energy from hot carriers. Inorganic semiconductor nanocrystals are considered prime candidates. However, hot-carrier harvesting is compromised by competitive relaxation pathways (for example, intraband Auger process and defects) that overwhelm their phonon bottlenecks. Here we show colloidal halide perovskite nanocrystals transcend these limitations and exhibit around two orders slower hot-carrier cooling times and around four times larger hot-carrier temperatures than their bulk-film counterparts. Under low pump excitation, hot-carrier cooling mediated by a phonon bottleneck is surprisingly slower in smaller nanocrystals (contrasting with conventional nanocrystals). At high pump fluence, Auger heating dominates hot-carrier cooling, which is slower in larger nanocrystals (hitherto unobserved in conventional nanocrystals). Importantly, we demonstrate efficient room temperature hot-electrons extraction (up to ~83%) by an energy-selective electron acceptor layer within 1 ps from surface-treated perovskite NCs thin films. These insights enable fresh approaches for extremely thin absorber and concentrator-type hot-carrier solar cells.

  19. Utilization of a Buffered Dielectric to Achieve High Field-Effect Carrier Mobility in Graphene Transistors

    OpenAIRE

    Farmer, Damon B.; Chiu, Hsin-Ying; Lin, Yu-Ming; Jenkins, Keith A.; Xia, Fengnian; Avouris, Phaedon

    2009-01-01

    We utilize an organic polymer buffer layer between graphene and conventional gate dielectrics in top-gated graphene transistors. Unlike other insulators, this dielectric stack does not significantly degrade carrier mobility, allowing for high field-effect mobilities to be retained in top-gate operation. This is demonstrated in both two-point and four-point analysis, and in the high-frequency operation of a graphene transistor. Temperature dependence of the carrier mobility suggests that phono...

  20. Highly Efficient Domain Walls Injection in Perpendicular Magnetic Anisotropy Nanowire.

    Science.gov (United States)

    Zhang, S F; Gan, W L; Kwon, J; Luo, F L; Lim, G J; Wang, J B; Lew, W S

    2016-04-21

    Electrical injection of magnetic domain walls in perpendicular magnetic anisotropy nanowire is crucial for data bit writing in domain wall-based magnetic memory and logic devices. Conventionally, the current pulse required to nucleate a domain wall is approximately ~10(12) A/m(2). Here, we demonstrate an energy efficient structure to inject domain walls. Under an applied electric potential, our proposed Π-shaped stripline generates a highly concentrated current distribution. This creates a highly localized magnetic field that quickly initiates the nucleation of a magnetic domain. The formation and motion of the resulting domain walls can then be electrically detected by means of Ta Hall bars across the nanowire. Our measurements show that the Π-shaped stripline can deterministically write a magnetic data bit in 15 ns even with a relatively low current density of 5.34 × 10(11) A/m(2). Micromagnetic simulations reveal the evolution of the domain nucleation - first, by the formation of a pair of magnetic bubbles, then followed by their rapid expansion into a single domain. Finally, we also demonstrate experimentally that our injection geometry can perform bit writing using only about 30% of the electrical energy as compared to a conventional injection line.

  1. Highly Efficient Domain Walls Injection in Perpendicular Magnetic Anisotropy Nanowire

    Science.gov (United States)

    Zhang, S. F.; Gan, W. L.; Kwon, J.; Luo, F. L.; Lim, G. J.; Wang, J. B.; Lew, W. S.

    2016-04-01

    Electrical injection of magnetic domain walls in perpendicular magnetic anisotropy nanowire is crucial for data bit writing in domain wall-based magnetic memory and logic devices. Conventionally, the current pulse required to nucleate a domain wall is approximately ~1012 A/m2. Here, we demonstrate an energy efficient structure to inject domain walls. Under an applied electric potential, our proposed Π-shaped stripline generates a highly concentrated current distribution. This creates a highly localized magnetic field that quickly initiates the nucleation of a magnetic domain. The formation and motion of the resulting domain walls can then be electrically detected by means of Ta Hall bars across the nanowire. Our measurements show that the Π-shaped stripline can deterministically write a magnetic data bit in 15 ns even with a relatively low current density of 5.34 × 1011 A/m2. Micromagnetic simulations reveal the evolution of the domain nucleation – first, by the formation of a pair of magnetic bubbles, then followed by their rapid expansion into a single domain. Finally, we also demonstrate experimentally that our injection geometry can perform bit writing using only about 30% of the electrical energy as compared to a conventional injection line.

  2. Tuning THz emission properties of Bi2Sr2CaCu2O8+δ intrinsic Josephson junction stacks by charge carrier injection

    Science.gov (United States)

    Kizilaslan, O.; Rudau, F.; Wieland, R.; Hampp, J. S.; Zhou, X. J.; Ji, M.; Kiselev, O.; Kinev, N.; Huang, Y.; Hao, L. Y.; Ishii, A.; Aksan, M. A.; Hatano, T.; Koshelets, V. P.; Wu, P. H.; Wang, H. B.; Koelle, D.; Kleiner, R.

    2017-03-01

    We report on doping and undoping experiments of terahertz (THz) emitting intrinsic Josephson junction stacks, where the change in charge carrier concentration is achieved by heavy current injection. The experiments were performed on stand-alone structures fabricated from a Bi2Sr2CaCu2O{}8+δ single crystal near optimal doping. The stacks contained about 930 intrinsic Josephson junctions. On purpose, the doping and undoping experiments were performed over only a modest range of charge carrier concentrations, changing the critical temperature of the stack by less than 1 K. We show that both undoping and doping is feasible also for the large intrinsic Josephson junction stacks used for THz generation. Even moderate changes in doping introduce large changes in the THz emission properties of the stacks. The highest emission power was achieved after doping a pristine sample.

  3. Rapid evaluation of doping-spike carrier concentration levels in millimetre-wave GaAs Gunn diodes with hot-electron injection

    Science.gov (United States)

    Farrington, N. E. S.; Carr, M. W.; Missous, M.

    2010-12-01

    This paper describes a novel method for fast, accurate evaluation of doping-spike carrier concentrations in hot-electron injected GaAs Gunn diodes. The technique relies on current asymmetry measurements obtained using pulsed-dc testing of on-wafer quasi-planar Gunn diode test structures, which removes the need for full device fabrication. Small changes in carrier concentration can easily be detected (at a nominal value of 1 × 1018 cm-3) and a greater sensitivity than conventional techniques is demonstrated at the doping levels used. In addition, test structure fabrication can be integrated into the initial Gunn diode front side production process allowing a rapid in-process test to be carried out thus leading to a significant reduction in material characterization cycle time.

  4. Selective carrier injection into patterned arrays of pyramidal quantum dots for entangled photon light-emitting diodes

    Science.gov (United States)

    Chung, T. H.; Juska, G.; Moroni, S. T.; Pescaglini, A.; Gocalinska, A.; Pelucchi, E.

    2016-12-01

    Scalability and foundry compatibility (as apply to conventional silicon-based integrated computer processors, for example) in developing quantum technologies are major challenges facing current research. Here we introduce a quantum photonic technology that has the potential to enable the large-scale fabrication of semiconductor-based, site-controlled, scalable arrays of electrically driven sources of polarization-entangled photons that may be able to encode quantum information. The design of the sources is based on quantum dots grown in micrometre-sized pyramidal recesses along the crystallographic direction (111)B, which theoretically ensures high symmetry of the quantum dots—a requirement for bright entangled-photon emission. A selective electric injection scheme in these non-planar structures allows a high density of light-emitting diodes to be obtained, with some producing entangled photon pairs that also violate Bell's inequality. Compatibility with semiconductor fabrication technology, good reproducibility and lithographic position control make these devices attractive candidates for integrated photonic circuits for quantum information processing.

  5. Electron injection dynamics in high-potential porphyrin photoanodes.

    Science.gov (United States)

    Milot, Rebecca L; Schmuttenmaer, Charles A

    2015-05-19

    promising sensitizers because their high reduction potentials are compatible with the energy requirements of water oxidation. TRTS of free-base and metalated pentafluorophenyl porphyrins reveal inefficient electron injection into TiO2 nanoparticles but more efficient electron injection into SnO2 nanoparticles. With SnO2, injection time scales depend strongly on the identity of the central substituent and are affected by competition with excited-state deactivation processes. Heavy or paramagnetic metal ions increase the electron injection time scale by roughly one order of magnitude relative to free-base or Zn(2+) porphyrins due to the possibility of electron injection from longer-lived, lower-lying triplet states. Furthermore, electron injection efficiency loosely correlates with DSSC performance. The carboxylate anchoring group is commonly used to bind DSSC sensitizers to metal oxide surfaces but typically is not stable under the aqueous and oxidative conditions required for water oxidation. Electron injection efficiency of several water-stable alternatives, including phosphonic acid, hydroxamic acid, acetylacetone, and boronic acid, were evaluated using TRTS, and hydroxamate was found to perform as well as the carboxylate. The next challenge is incorporating a water oxidation catalyst into the design. An early example, in which an Ir-based precatalyst is cosensitized with a fluorinated porphyrin, reveals decreased electron injection efficiency despite an increase in photocurrent. Future research will seek to better understand and address these difficulties.

  6. Aging study of boiling water reactor high pressure injection systems

    Energy Technology Data Exchange (ETDEWEB)

    Conley, D.A.; Edson, J.L.; Fineman, C.F. [Lockheed Idaho Technologies Co., Idaho Falls, ID (United States)

    1995-03-01

    The purpose of high pressure injection systems is to maintain an adequate coolant level in reactor pressure vessels, so that the fuel cladding temperature does not exceed 1,200{degrees}C (2,200{degrees}F), and to permit plant shutdown during a variety of design basis loss-of-coolant accidents. This report presents the results of a study on aging performed for high pressure injection systems of boiling water reactor plants in the United States. The purpose of the study was to identify and evaluate the effects of aging and the effectiveness of testing and maintenance in detecting and mitigating aging degradation. Guidelines from the United States Nuclear Regulatory Commission`s Nuclear Plant Aging Research Program were used in performing the aging study. Review and analysis of the failures reported in databases such as Nuclear Power Experience, Licensee Event Reports, and the Nuclear Plant Reliability Data System, along with plant-specific maintenance records databases, are included in this report to provide the information required to identify aging stressors, failure modes, and failure causes. Several probabilistic risk assessments were reviewed to identify risk-significant components in high pressure injection systems. Testing, maintenance, specific safety issues, and codes and standards are also discussed.

  7. The highly accurate anteriolateral portal for injecting the knee

    Directory of Open Access Journals (Sweden)

    Chavez-Chiang Colbert E

    2011-03-01

    Full Text Available Abstract Background The extended knee lateral midpatellar portal for intraarticular injection of the knee is accurate but is not practical for all patients. We hypothesized that a modified anteriolateral portal where the synovial membrane of the medial femoral condyle is the target would be highly accurate and effective for intraarticular injection of the knee. Methods 83 subjects with non-effusive osteoarthritis of the knee were randomized to intraarticular injection using the modified anteriolateral bent knee versus the standard lateral midpatellar portal. After hydrodissection of the synovial membrane with lidocaine using a mechanical syringe (reciprocating procedure device, 80 mg of triamcinolone acetonide were injected into the knee with a 2.0-in (5.1-cm 21-gauge needle. Baseline pain, procedural pain, and pain at outcome (2 weeks and 6 months were determined with the 10 cm Visual Analogue Pain Score (VAS. The accuracy of needle placement was determined by sonographic imaging. Results The lateral midpatellar and anteriolateral portals resulted in equivalent clinical outcomes including procedural pain (VAS midpatellar: 4.6 ± 3.1 cm; anteriolateral: 4.8 ± 3.2 cm; p = 0.77, pain at outcome (VAS midpatellar: 2.6 ± 2.8 cm; anteriolateral: 1.7 ± 2.3 cm; p = 0.11, responders (midpatellar: 45%; anteriolateral: 56%; p = 0.33, duration of therapeutic effect (midpatellar: 3.9 ± 2.4 months; anteriolateral: 4.1 ± 2.2 months; p = 0.69, and time to next procedure (midpatellar: 7.3 ± 3.3 months; anteriolateral: 7.7 ± 3.7 months; p = 0.71. The anteriolateral portal was 97% accurate by real-time ultrasound imaging. Conclusion The modified anteriolateral bent knee portal is an effective, accurate, and equivalent alternative to the standard lateral midpatellar portal for intraarticular injection of the knee. Trial Registration ClinicalTrials.gov: NCT00651625

  8. Effect of High Coal Injection on Low Silicon Ironmaking Process

    Institute of Scientific and Technical Information of China (English)

    JIN Yong-long; XU Nan-ping; WU Shi-ying

    2003-01-01

    The effects of different coal ratios and reaction temperatures on silicon content in hot metal were studied under the condition of high powder coal injection (PCI) ratio in laboratory. The samples of coke taken from tuyere were analyzed by chemical methods. According to the remnant silicon dioxide in different samples, the effect of PCI ratio on silicon content in hot metal was studied in tuyere area. The results can not only certify the traditional theory, but also explain the relation between high PCI ratio and low silicon.

  9. Universal approach for selective trace metal determinations via sequential injection-bead injection-lab-on-valve using renewable hydrophobic bead surfaces as reagent carriers

    DEFF Research Database (Denmark)

    Long, Xiangbao; Miró, Manuel; Hansen, Elo Harald

    2005-01-01

    A new concept is presented for selective and sensitive determination of trace metals via electrothermal atomic absorption spectrometry (ETAAS) based on the principle of bead injection (BI) with renewable reversed-phase surfaces in a sequential injection-lab-on-valve (SI-LOV) mode. The methodology...... involves the use of poly(styrene-divinylbenzene) beads containing pendant octadecyl moieties (C18-PS/DVB), which are preimpregnated with a selective organic metal chelating agent prior to the automatic manipulation of the beads in the microbore conduits of the LOV unit. By adapting this approach......, the immobilization of the most suitable chelating agent can be effected irrespective of the kinetics involved, optimal reaction conditions can be used for implementing the chelating reaction of the target metal analyte with the immobilized reagent, and an added degree of freedom is offered in selecting the most...

  10. Study on the saturation characteristics of high-speed uni-traveling-carrier photodiodes based on field screening analysis

    Institute of Scientific and Technical Information of China (English)

    Tuo Shi; Bing Xiong; Changzheng Sun; Yi Luo

    2011-01-01

    A back-illuminated mesa-Structure InGaAs/InP charge-compensated uni-traveling-carrier (UTC) photodi-ode (PD) is fabricated, and its saturation characteristics are investigated. The responsivity of the 40-μm-diameter PD is as high as 0.83 A/W, and the direct current (DC) saturation current is up to 275 mA. The 1-dB compression point at the 3-dB cutoff frequency of 9 GHz is measured to be 100 mA, corresponding to an output radio frequency (RP) power of up to 20.1 dBm. According to the calculated electric field distributions in the depleted region under both DC and alternating current (AC) conditions, the saturation of the UTC-PD is caused by complete field screening at high optical injection levels.%@@ A back-illuminated mesa-structure InGaAs/InP charge-compensated uni-traveling-carrier(UTC) photodiode(PD) is fabricated,and its saturation characteristics are investigated.The responsivity of the 40-μmdiameter PD is as high as 0.83 A/W,and the direct current(DC) saturation current is up to 275 Ma.

  11. Study on the drift mobility of carriers in vitreous Se thin film by the voltage-pulse injection

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J.J.; Kim, I.H.; Choi, K.W.; Choi, C.K. (Gyeonsang National Univ., Jinju (Republic of Korea))

    1982-05-01

    The drift mobility of carriers in the vitreous Se thin films were measured by the Haynes-Schokley method. It had been shown that the hole mobility was about 0.83 cm/sup 3//V-sec and the drift velocity showed no time dependence. It had also been shown that the value of Pool-Frenkel parameter was approximately 2 from the I-V curve.

  12. System Study: High-Pressure Coolant Injection 1998-2014

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, John Alton [Idaho National Lab. (INL), Idaho Falls, ID (United States). Risk Assessment and Management Services Dept.

    2015-12-01

    This report presents an unreliability evaluation of the high-pressure coolant injection system (HPCI) at 25 U.S. commercial boiling water reactors. Demand, run hours, and failure data from fiscal year 1998 through 2014 for selected components were obtained from the Institute of Nuclear Power Operations (INPO) Consolidated Events Database (ICES). The unreliability results are trended for the most recent 10 year period, while yearly estimates for system unreliability are provided for the entire active period. No statistically significant increasing or decreasing trends were identified in the HPCI results.

  13. System Study: High-Pressure Safety Injection 1998–2012

    Energy Technology Data Exchange (ETDEWEB)

    T. E. Wierman

    2013-10-01

    This report presents an unreliability evaluation of the high-pressure safety injection system (HPSI) at 69 U.S. commercial nuclear power plants. Demand, run hours, and failure data from fiscal year 1998 through 2012 for selected components were obtained from the Equipment Performance and Information Exchange (EPIX). The unreliability results are trended for the most recent 10 year period while yearly estimates for system unreliability are provided for the entire active period. No statistically significant increasing or decreasing trends were identified in the HPSI results.

  14. System Study: High-Pressure Safety Injection 1998–2013

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, John Alton [Idaho National Lab. (INL), Idaho Falls, ID (United States). Risk Assessment and Management Services Dept.

    2015-02-01

    This report presents an unreliability evaluation of the high-pressure safety injection system (HPSI) at 69 U.S. commercial nuclear power plants. Demand, run hours, and failure data from fiscal year 1998 through 2013 for selected components were obtained from the Institute of Nuclear Power Operations (INPO) Consolidated Events Database (ICES). The unreliability results are trended for the most recent 10-year period while yearly estimates for system unreliability are provided for the entire active period. No statistically significant increasing or decreasing trends were identified in the HPSI results.

  15. High-Pressure Injection Injuries to the Hand

    Directory of Open Access Journals (Sweden)

    Davod Jafari

    2016-07-01

    Full Text Available Background High-pressure injections into the hand, burden devastating and permanent functional impairments. Many materials including paint, paint thinner, gasoline, oil and grease are reported as the causative agents. These injuries need multiple procedures and reconstructions most of the time and 40% of the injuries may end with amputation of the injured part. Objectives The aim of this study was to report the treatment outcomes and methods of treatments of patients with high-pressure injection injuries of the hand. Methods We retrospectively reviewed the medical records, imaging files and demographic data of patients, who were treated at our center due to the high-pressure injuries to their hands. We recorded the kind of the injected materials, time to the first treatment procedure, times of operation, and methods of their treatments. The outcomes of the injuries as well as the deficiency of the digital joints motion were also reported. Results Nine cases with high-pressure injury of the hand were enrolled in this study. All patients were male with mean age of 26.88 ± 7.52. Mean follow-up time was 28.55 ± 12.49 months. The dominant hand was the right side in seven patients and left in two patients. Injury was in the left hand of seven patients and right hand of two patients. Index finger was the most common involved part (five cases followed by the thumb (two cases. Injected material was grease in seven cases, water-base paint and water, each in one case.Mean time delay to the first treatment procedure was 29.16 ± 25.66 hours for seven patients. This was exceptionally long for two patients (seven days and 24 months. Type of treatment was debridement and skin graft for three cases, debridement and cross finger flap for two cases, debridement for two cases and nerve graft for one case. Amputation of the necrotic digit was performed for one case. Mean hospitalization time was 8.33 ± 3.64 days for all patients.Mean total active range of motion

  16. System Study: High-Pressure Coolant Injection 1998–2013

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, John Alton [Idaho National Lab. (INL), Idaho Falls, ID (United States). Risk Assessment and Management Services Dept.

    2015-01-31

    This report presents an unreliability evaluation of the high-pressure coolant injection system (HPCI) at 25 U.S. commercial boiling water reactors. Demand, run hours, and failure data from fiscal year 1998 through 2013 for selected components were obtained from the Institute of Nuclear Power Operations (INPO) Consolidated Events Database (ICES). The unreliability results are trended for the most recent 10-year period, while yearly estimates for system unreliability are provided for the entire active period. No statistically significant increasing or decreasing trends were identified in the HPCI results.

  17. System Study: High-Pressure Safety Injection 1998-2014

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, John Alton [Idaho National Lab. (INL), Idaho Falls, ID (United States). Risk Assessment and Management Services Dept.

    2015-12-01

    This report presents an unreliability evaluation of the high-pressure safety injection system (HPSI) at 69 U.S. commercial nuclear power plants. Demand, run hours, and failure data from fiscal year 1998 through 2014 for selected components were obtained from the Institute of Nuclear Power Operations (INPO) Consolidated Events Database (ICES). The unreliability results are trended for the most recent 10 year period, while yearly estimates for system unreliability are provided for the entire active period. No statistically significant increasing or decreasing trends were identified in the HPSI results.

  18. A strategy to minimize the energy offset in carrier injection from excited dyes to inorganic semiconductors for efficient dye-sensitized solar energy conversion.

    Science.gov (United States)

    Fujisawa, Jun-Ichi; Osawa, Ayumi; Hanaya, Minoru

    2016-08-10

    Photoinduced carrier injection from dyes to inorganic semiconductors is a crucial process in various dye-sensitized solar energy conversions such as photovoltaics and photocatalysis. It has been reported that an energy offset larger than 0.2-0.3 eV (threshold value) is required for efficient electron injection from excited dyes to metal-oxide semiconductors such as titanium dioxide (TiO2). Because the energy offset directly causes loss in the potential of injected electrons, it is a crucial issue to minimize the energy offset for efficient solar energy conversions. However, a fundamental understanding of the energy offset, especially the threshold value, has not been obtained yet. In this paper, we report the origin of the threshold value of the energy offset, solving the long-standing questions of why such a large energy offset is necessary for the electron injection and which factors govern the threshold value, and suggest a strategy to minimize the threshold value. The threshold value is determined by the sum of two reorganization energies in one-electron reduction of semiconductors and typically-used donor-acceptor (D-A) dyes. In fact, the estimated values (0.21-0.31 eV) for several D-A dyes are in good agreement with the threshold value, supporting our conclusion. In addition, our results reveal that the threshold value is possible to be reduced by enlarging the π-conjugated system of the acceptor moiety in dyes and enhancing its structural rigidity. Furthermore, we extend the analysis to hole injection from excited dyes to semiconductors. In this case, the threshold value is given by the sum of two reorganization energies in one-electron oxidation of semiconductors and D-A dyes.

  19. Semi-Analytical Modeling and Analysis in Three Dimensions of the Optical Carrier Injection and Diffusion in a Semiconductor Substrate

    Science.gov (United States)

    Gary, René; Arnould, Jean-Daniel; Vilcot, Anne

    2006-05-01

    In order to be faster and more precise than any numerical technique for the computation of the photo-induced plasma in semiconductor, an analytical solution has to be developed. In this paper, the Hankel transform is used to simplify the solution of the differential equation of second order with nonconstant coefficient, known as the diffusion equation. The resulting expression of the three-dimensional (3-D) carrier density includes all the physical parameters of the substrate and the laser beam as well. A parametric study was also feasible using the developed expressions.

  20. Effect of heterostructure design on carrier injection and emission characteristics of 295 nm light emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Mehnke, Frank, E-mail: mehnke@physik.tu-berlin.de; Kuhn, Christian; Stellmach, Joachim; Rothe, Mark-Antonius; Reich, Christoph; Ledentsov, Nikolay; Pristovsek, Markus; Wernicke, Tim [Technische Universität Berlin, Institut für Festkörperphysik, Hardenbergstr. 36, EW 6-1, 10623 Berlin (Germany); Kolbe, Tim; Lobo-Ploch, Neysha; Rass, Jens [Ferdinand-Braun-Institut, Leibniz-Institut für Höchstfrequenztechnik, Gustav-Kirchhoff-Str. 4, 12489 Berlin (Germany); Kneissl, Michael [Technische Universität Berlin, Institut für Festkörperphysik, Hardenbergstr. 36, EW 6-1, 10623 Berlin (Germany); Ferdinand-Braun-Institut, Leibniz-Institut für Höchstfrequenztechnik, Gustav-Kirchhoff-Str. 4, 12489 Berlin (Germany)

    2015-05-21

    The effects of the heterostructure design on the injection efficiency and external quantum efficiency of ultraviolet (UV)-B light emitting diodes (LEDs) have been investigated. It was found that the functionality of the Al{sub x}Ga{sub 1−x}N:Mg electron blocking layer is strongly influenced by its aluminum mole fraction x and its magnesium doping profile. By comparing LED electroluminescence, quantum well photoluminescence, and simulations of LED heterostructure, we were able to differentiate the contributions of injection efficiency and internal quantum efficiency to the external quantum efficiency of UV LEDs. For the optimized heterostructure using an Al{sub 0.7}Ga{sub 0.3}N:Mg electron blocking layer with a Mg to group III ratio of 4% in the gas phase the electron leakage currents are suppressed without blocking the injection of holes into the multiple quantum well active region. Flip chip mounted LED chips have been processed achieving a maximum output power of 3.5 mW at 290 mA and a peak external quantum efficiency of 0.54% at 30 mA.

  1. Influence of high injection pressure on fuel injection perfomances and diesel engine worcking process

    Directory of Open Access Journals (Sweden)

    Shatrov Mikhail G.

    2015-01-01

    Full Text Available In MADI, investigations are carried out in the field of diesel engine working process perfection for complying with prospective ecological standards such as Euro-6 and Tier-4. The article describes the results of the first stage of experimental research of the influence of injection pressure up to 3000 bar on working processes of diesel engine and its fuel system. Justification of the design of a Common Rail injector for fuel injection under 3000 bar pressure is presented. The influence of raising injection pressure (up to 3000 bar on the fuel spray propagation dynamics is demonstrated. The combined influence of injection pressure (up to 3000 bar and air boost pressure on fuel spray propagation dynamics is shown, including on engine emission and noise.

  2. Enhancing carrier injection in the active region of a 280nm emission wavelength LED using graded hole and electron blocking layers

    Science.gov (United States)

    Janjua, Bilal; Ng, Tien K.; Alyamani, Ahmed Y.; El-Desouki, Munir M.; Ooi, Boon S.

    2014-02-01

    A theoretical investigation of AlGaN UV-LED with band engineering of hole and electron blocking layers (HBL and EBL, respectively) was conducted with an aim to improve injection efficiency and reduce efficiency droop in the UV LEDs. The analysis is based on energy band diagrams, carrier distribution and recombination rates (Shockley-Reed-Hall, Auger, and radiative recombination rates) in the quantum well, under equilibrium and forward bias conditions. Electron blocking layer is based on AlaGa1-aN / Alb → cGa1-b → 1-cN / AldGa1-dN, where a UV-LED was designed to emit at 280nm, which is an effective wavelength for water disinfection application.

  3. A semiconductor injection-switched high-pressure sub-10-picosecond carbon dioxide laser amplifier

    Science.gov (United States)

    Hughes, Michael Kon Yew

    A multiatmospheric-pressure-broadened CO2 laser amplifier was constructed to amplify sub-10-picosecond pulses generated with semiconductor switching. High-intensity, mid-infrared, amplified pulses have many applications: especially in fields such as non-linear optics, laser-plasma interaction, and laser particle acceleration. The injected pulses are produced by exciting GaAs (or an engineered, fast-recombination time semiconductor) with an ultrafast visible laser pulse to induce transient free carriers with sufficient density to reflect a co-incident hybrid-CO2 laser pulse. The short pulse is injected directly into the regenerative amplifier cavity from an intra-cavity semiconductor switch. The CO2-gas-mix amplifier is operated at 1.24 MPa which is sufficient to collisionally broaden the individual rotational spectral lines so that they merge to produce a gain spectrum wide enough to support pulses less than 10 ps long. After sufficient amplification, the pulse is switched out with another semiconductor switch pumped with a synchronized visible-laser pulse. This system is demonstrated and analysed spectrally and temporally. The pulse-train spectral analysis is done for a GaAs-GaAs double-switch arrangement using a standard spectrometer and two HgCdTe detectors; one of which is used for a reference signal. An infrared autocorrelator was designed and constructed to temporally analyse the pulse trains emerging from the amplifier. Interpretation of the results was aided by the development of a computer model for short-pulse amplification which incorporated saturation effects, rotational- and vibrational-mode energy redistribution between pulse round trips, and the gain enhancement due to one sequence band. The results show that a sub-10-picosecond pulse is injected into the cavity and that it is amplified with some trailing pulses at 18 ps intervals generated by coherent effects. The energy level reached, estimated through modelling, was >100 mJ/cm2.

  4. Improving hole injection and carrier distribution in InGaN light-emitting diodes by removing the electron blocking layer and including a unique last quantum barrier

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Liwen, E-mail: lwcheng@yzu.edu.cn; Chen, Haitao; Wu, Shudong [College of Physics Science and Technology & Institute of Optoelectronic Technology, Yangzhou University, Yangzhou 225002 (China)

    2015-08-28

    The effects of removing the AlGaN electron blocking layer (EBL), and using a last quantum barrier (LQB) with a unique design in conventional blue InGaN light-emitting diodes (LEDs), were investigated through simulations. Compared with the conventional LED design that contained a GaN LQB and an AlGaN EBL, the LED that contained an AlGaN LQB with a graded-composition and no EBL exhibited enhanced optical performance and less efficiency droop. This effect was caused by an enhanced electron confinement and hole injection efficiency. Furthermore, when the AlGaN LQB was replaced with a triangular graded-composition, the performance improved further and the efficiency droop was lowered. The simulation results indicated that the enhanced hole injection efficiency and uniform distribution of carriers observed in the quantum wells were caused by the smoothing and thinning of the potential barrier for the holes. This allowed a greater number of holes to tunnel into the quantum wells from the p-type regions in the proposed LED structure.

  5. Charge transfer polarisation wave and carrier pairing in the high T(sub c) copper oxides

    Science.gov (United States)

    Chakraverty, B. K.

    1990-01-01

    The High T(sub c) oxides are highly polarizable materials and are charge transfer insulators. The charge transfer polarization wave formalism is developed in these oxides. The dispersion relationships due to long range dipole-dipole interaction of a charge transfer dipole lattice are obtained in 3-D and 2-D. These are high frequency bosons and their coupling with carriers is weak and antiadiabatic in nature. As a result, the mass renormalization of the carriers is negligible in complete contrast to conventional electron-phonon interaction, that give polarons and bipolarons. Both bound and superconducting pairing is discussed for a model Hamiltonian valid in the antiadiabatic regime, both in 3-D and 2-D. The stability of the charge transfer dipole lattice has interesting consequences that are discussed.

  6. Carrier behavior of HgTe under high pressure revealed by Hall effect measurement

    Institute of Scientific and Technical Information of China (English)

    胡廷静; 崔晓岩; 李雪飞; 王婧姝; 吕秀梅; 王棱升; 杨景海; 高春晓

    2015-01-01

    We investigate the carrier behavior of HgTe under high pressures up to 23 GPa using in situ Hall effect measurements. As the phase transitions from zinc blende to cinnabar, then to rock salt, and finally to Cmcm occur, all the parameters change discontinuously. The conductivity variation under compression is described by the carrier parameters. For the zinc blende phase, both the decrease of carrier concentration and the increase of mobility indicate the overlapped valence band and conduction band separates with pressure. Pressure causes an increase in the hole concentration of HgTe in the cinnabar phase, which leads to the carrier-type inversion and the lowest mobility at 5.6 GPa. In the phase transition process from zinc blende to rock salt, Te atoms are the major ones in atomic movements in the pressure regions of 1.0–1.5 GPa and 1.8–3.1 GPa, whereas Hg atoms are the major ones in the pressure regions of 1.5–1.8 GPa and 3.1–7.7 GPa. The polar optical scattering of the rock salt phase decreases with pressure.

  7. Dynamics of Below-Band-Gap Carrier in Highly Excited GaN

    Institute of Scientific and Technical Information of China (English)

    郭冰; 黄锦圣; 叶志镇; 江红星; 林景瑜

    2003-01-01

    Femtosecond time-resolved reflectivity was used to investigate below-band-gap (3.1 eV) carrier dynamics in a nominally undoped GaN epilayer under high excitation. A 2.5-ps rising process can be observed in the transient trace. This shot rising time results from the hot phonon effects which can cause a delayed energy relaxation of the initial photocarriers toward the band edge. From the density dependence of the carrier dynamics, the Mott density was estimated to be 1.51-1.56 × 1019 cm-3. Below the Mott density, the initial probed carrier dynamics was explained to the effect of acoustic phonon-assisted tunnelling for localized states, where a significant excitation density dependence of the tunnelling probability was observed due to the optically induced bandtail extension to lower energies. Above the Mott density, the measured carrier dynamics reflected the relaxation of an electron-hole plasma, in which a distinct fast decay component of 2.3 ps was observed due to the onset of nonlinear relaxation processes such Auger recombination.

  8. Efficient charge carrier injection into sub-250 nm AlGaN multiple quantum well light emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Mehnke, Frank, E-mail: mehnke@physik.tu-berlin.de; Kuhn, Christian; Guttmann, Martin; Reich, Christoph; Kolbe, Tim; Rass, Jens; Wernicke, Tim [Technische Universität Berlin, Institut für Festkörperphysik, Hardenbergstr. 36, EW 6-1, 10623 Berlin (Germany); Kueller, Viola; Knauer, Arne; Lapeyrade, Mickael; Einfeldt, Sven; Weyers, Markus [Ferdinand-Braun-Institut, Leibniz-Institut für Höchstfrequenztechnik, Gustav-Kirchhoff-Str. 4, 12489 Berlin (Germany); Kneissl, Michael [Technische Universität Berlin, Institut für Festkörperphysik, Hardenbergstr. 36, EW 6-1, 10623 Berlin (Germany); Ferdinand-Braun-Institut, Leibniz-Institut für Höchstfrequenztechnik, Gustav-Kirchhoff-Str. 4, 12489 Berlin (Germany)

    2014-08-04

    The design and Mg-doping profile of AlN/Al{sub 0.7}Ga{sub 0.3}N electron blocking heterostructures (EBH) for AlGaN multiple quantum well (MQW) light emitting diodes (LEDs) emitting below 250 nm was investigated. By inserting an AlN electron blocking layer (EBL) into the EBH, we were able to increase the quantum well emission power and significantly reduce long wavelength parasitic luminescence. Furthermore, electron leakage was suppressed by optimizing the thickness of the AlN EBL while still maintaining sufficient hole injection. Ultraviolet (UV)-C LEDs with very low parasitic luminescence (7% of total emission power) and external quantum efficiencies of 0.19% at 246 nm have been realized. This concept was applied to AlGaN MQW LEDs emitting between 235 nm and 263 nm with external quantum efficiencies ranging from 0.002% to 0.93%. After processing, we were able to demonstrate an UV-C LED emitting at 234 nm with 14.5 μW integrated optical output power and an external quantum efficiency of 0.012% at 18.2 A/cm{sup 2}.

  9. High-frequency signal generation using 1550 nm VCSEL subject to two-frequency optical injection

    Science.gov (United States)

    Consoli, Antonio; Quirce, Ana; Valle, Angel; Esquivias, Ignacio; Pesquera, Luis; García Tijero, Jose Manuel

    2013-03-01

    We experimentally investigate high-frequency microwave signal generation using a 1550 nm single-mode VCSEL subject to two-frequency optical injection. We first consider a situation in which the injected signals come from two similar VCSELs. The polarization of the injected light is parallel to that of the injected VCSEL. We obtain that the VCSEL can be locked to one of the injected signals, but the observed microwave signal is originated by beating at the photodetector. In a second situation we consider injected signals that come from two external cavity tunable lasers with a significant increase of the injected power with respect to the VCSEL-by-VCSEL injection case. The polarization of the injected light is orthogonal to that of the free-running slave VCSEL. We show that in this case it is possible to generate a microwave signal inside the VCSEL cavity.

  10. Method for producing high carrier concentration p-Type transparent conducting oxides

    Science.gov (United States)

    Li, Xiaonan; Yan, Yanfa; Coutts, Timothy J.; Gessert, Timothy A.; Dehart, Clay M.

    2009-04-14

    A method for producing transparent p-type conducting oxide films without co-doping plasma enhancement or high temperature comprising: a) introducing a dialkyl metal at ambient temperature and a saturated pressure in a carrier gas into a low pressure deposition chamber, and b) introducing NO alone or with an oxidizer into the chamber under an environment sufficient to produce a metal-rich condition to enable NO decomposition and atomic nitrogen incorporation into the formed transparent metal conducting oxide.

  11. A first order theory of the p/+/-n-n/+/ edge-illuminated silicon solar cell at very high injection levels

    Science.gov (United States)

    Goradia, C.; Sater, B. L.

    1977-01-01

    A first order theory of the edge-illuminated p(+)-n-n(+) silicon solar cell under very high injection levels has been derived. The very high injection level illuminated J-V characteristic is derived for any general base width to diffusion length (W/L) ratio and it includes the minority carrier reflection by the n-n(+) high-low junction. The beneficial effects of the high-low junction are shown to be significant until extremely high injection levels are reached. The theoretical dependencies of Jsc and Voc on temperature, incident intensity, and base resistivity are derived and discussed in detail. Some experimental results are given and these are discussed in relation to the theory.

  12. High-quality epitaxial graphene devices with low carrier density for resistance metrology

    Science.gov (United States)

    Yang, Yanfei; Huang, Lung-I.; Newell, David; Real, Mariano; Elmquist, Randolph

    2014-03-01

    Epitaxially grown graphene on silicon carbide (SiC) is a promising material for both quantum resistance metrology and wafer-scale electronics. However, monolayers are typically found to be heavily n-doped due to the charge exchange between the graphene and the non-conducting buffer layer beneath that is covalently bonded to the SiC substrate. Carrier densities are usually in the range of 1012 ~ 1013 cm-2, where heavy doping shifts the quantized Hall resistance plateau to high magnetic field values. Various gating methods have been developed to reduce the carrier density, but require lithography processes that increase the probability of contamination that degrades the performance of the devices. Recently, we fabricated high-quality Hall devices on diced semi-insulating SiC wafers, obtaining carrier densities in the range of 1010 ~ 1011 cm-2 and mobility above 104 cm2V-1s-1 without gating. Graphene is grown on the Si face of SiC(0001) substrates and devices are fabricated using a metal layer subtractive process without organic chemical contamination of the graphene. We measure well-developed quantum Hall plateaus with filling factor ν = 2, the fingerprint for monolayer graphene, at magnetic fields below 2 T at liquid helium temperature. A variety of quantum phenomena are observed in these clean, high quality graphene devices. NIST and Georgetown University.

  13. "Vivo para consumirla y la consumo para vivir" ["I live to inject and inject to live"]: high-risk injection behaviors in Tijuana, Mexico.

    Science.gov (United States)

    Strathdee, Steffanie A; Fraga, Wendy Davila; Case, Patricia; Firestone, Michelle; Brouwer, Kimberly C; Perez, Saida Gracia; Magis, Carlos; Fraga, Miguel Angel

    2005-09-01

    Injection drug use is a growing problem on the US-Mexico border, where Tijuana is situated. We studied the context of injection drug use among injection drug users (IDUs) in Tijuana to help guide future research and interventions. Guided in-depth interviews were conducted with 10 male and 10 female current IDUs in Tijuana. Topics included types of drug used, injection settings, access to sterile needles, and environmental influences. Interviews were taped, transcribed verbatim, and translated. Content analysis was conducted to identify themes. Of the 20 IDUs, median age and age at first injection were 30 and 18. Most reported injecting at least daily: heroin ("carga", "chiva", "negra"), methamphetamine ("crico", "cri-cri"), or both drugs combined. In sharp contrast to Western US cities, almost all regularly attended shooting galleries ("yongos" or "picaderos") because of the difficulties obtaining syringes and police oppression. Almost all shared needles/paraphernalia ["cuete" (syringe), "cacharros" (cookers), cotton from sweaters/socks (filters)]. Some reported obtaining syringes from the United States. Key themes included (1) pharmacies refusing to sell or charging higher prices to IDUs, (2) ample availability of used/rented syringes from "picaderos" (e.g., charging approximately 5 pesos or "10 drops" of drug), and (3) poor HIV/AIDS knowledge, such as beliefs that exposing syringes to air "kills germs." This qualitative study suggests that IDUs in Tijuana are at high risk of HIV and other blood-borne infections. Interventions are urgently needed to expand access to sterile injection equipment and offset the potential for a widespread HIV epidemic.

  14. Highly sensitive flow-injection chemiluminescence determination of pyrogallol compounds

    Science.gov (United States)

    Kanwal, Shamsa; Fu, Xiaohong; Su, Xingguang

    2009-12-01

    A highly sensitive flow-injection chemiluminescent method for the direct determination of pyrogallol compounds has been developed. Proposed method is based on the enhanced effect of pyrogallol compounds on the chemiluminescence signals of KMnO 4-H 2O 2 system in slightly alkaline medium. Three important pyrogallol compounds, pyrogallic acid, gallic acid and tannic acid, have been detected by this method, and the possible mechanism of the CL reaction is also discussed. The proposed method is simple, convenient, rapid (60 samples h -1), and sensitive, has a linear range of 8 × 10 -10 mol L -1 to 1 × 10 -5 mol L -1, for pyrogallic acid, with a detection limit of 6 × 10 -11 mol L -1, 4 × 10 -8 mol L -1 to 5 × 10 -3 mol L -1 for gallic acid with a detection limit of 9 × 10 -10 mol L -1, and 8 × 10 -8 mol L -1 to 5 × 10 -2 mol L -1 for tannic acid, with a detection limit of 2 × 10 -9 mol L -1, respectively. The relative standard deviation (RSD, n = 15) was 0.8, 1.1 and 1.3% for 5 × 10 -6 mol L -1 pyrogallic acid, gallic acid and tannic acid, respectively. The proposed method was successfully applied to the determination of pyrogallol compounds in tea and coffee samples.

  15. Experimental Research On Gas Injection High Temperature Heat Pump With An Economizer

    OpenAIRE

    He, Yongning; Lei JIN; Cao, Feng; Chen, Shengkun

    2014-01-01

    Gas injection technology is often used in cold regions to solve heat pump’s low heating capacity and high discharge temperature at low ambient temperature. Injecting gas into port opened at specific position of compressor could increase mass flow rate of compressor and total heating capacity of heat pump. Gas injection also changes compression ratio of compressor and decreases discharge temperature. An optimal gas injection pressure is got when the coefficient of performance reached to peak v...

  16. Strontium Insertion in Methylammonium Lead Iodide: Long Charge Carrier Lifetime and High Fill-Factor Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Pérez-del-Rey, Daniel [Instituto de Ciencia Molecular, Universidad de Valencia, C/J. Beltran 2 46980 Paterna Spain; Forgács, Dávid [Instituto de Ciencia Molecular, Universidad de Valencia, C/J. Beltran 2 46980 Paterna Spain; Hutter, Eline M. [Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9 2629 HZ Delft The Netherlands; Savenije, Tom J. [Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9 2629 HZ Delft The Netherlands; Nordlund, Dennis [Stanford Linear Accelerator Campus, Stanford Synchrotron Laboratory, Menlo Park CA 94025 USA; Schulz, Philip [National Center for Photovoltaics, National Renewable Energy Laboratory, 15013 Denver West Parkway Golden CO 80401 USA; Berry, Joseph J. [National Center for Photovoltaics, National Renewable Energy Laboratory, 15013 Denver West Parkway Golden CO 80401 USA; Sessolo, Michele [Instituto de Ciencia Molecular, Universidad de Valencia, C/J. Beltran 2 46980 Paterna Spain; Bolink, Henk J. [Instituto de Ciencia Molecular, Universidad de Valencia, C/J. Beltran 2 46980 Paterna Spain

    2016-09-22

    The addition of Sr2+ in CH3NH3PbI3 perovskite films enhances the charge carrier collection efficiency of solar cells leading to very high fill factors, up to 85%. The charge carrier lifetime of Sr2+-containing perovskites is in excess of 40 us, longer than those reported for perovskite single crystals.

  17. Carrier-wave Rabi-flopping signatures in high-order harmonic generation for alkali atoms.

    Science.gov (United States)

    Ciappina, M F; Pérez-Hernández, J A; Landsman, A S; Zimmermann, T; Lewenstein, M; Roso, L; Krausz, F

    2015-04-10

    We present a theoretical investigation of carrier-wave Rabi flopping in real atoms by employing numerical simulations of high-order harmonic generation (HHG) in alkali species. Given the short HHG cutoff, related to the low saturation intensity, we concentrate on the features of the third harmonic of sodium (Na) and potassium (K) atoms. For pulse areas of 2π and Na atoms, a characteristic unique peak appears, which, after analyzing the ground state population, we correlate with the conventional Rabi flopping. On the other hand, for larger pulse areas, carrier-wave Rabi flopping occurs, and is associated with a more complex structure in the third harmonic. These characteristics observed in K atoms indicate the breakdown of the area theorem, as was already demonstrated under similar circumstances in narrow band gap semiconductors.

  18. Carrier-wave Rabi flopping signatures in high-order harmonic generation for alkali atoms

    CERN Document Server

    Ciappina, M F; Landsman, A S; Zimmermann, T; Lewenstein, M; Roso, L; Krausz, F

    2015-01-01

    We present the first theoretical investigation of carrier-wave Rabi flopping in real atoms by employing numerical simulations of high-order harmonic generation (HHG) in alkali species. Given the short HHG cutoff, related to the low saturation intensity, we concentrate on the features of the third harmonic of sodium (Na) and potassium (K) atoms. For pulse areas of 2$\\pi$ and Na atoms, a characteristic unique peak appears, which, after analyzing the ground state population, we correlate with the conventional Rabi flopping. On the other hand, for larger pulse areas, carrier-wave Rabi flopping occurs, and is associated with a more complex structure in the third harmonic. These new characteristics observed in K atoms indicate the breakdown of the area theorem, as was already demonstrated under similar circumstances in narrow band gap semiconductors.

  19. Materials for High-Pressure Fuel Injection Systems

    Energy Technology Data Exchange (ETDEWEB)

    Blau, P.; Shyam, A.; Hubbard, C.; Howe, J.; Trejo, R.; Yang, N. (Caterpillar, Inc. Technical Center); Pollard, M. (Caterpillar, Inc. Technical Center)

    2011-09-30

    The high-level goal of this multi-year effort was to facilitate the Advanced Combustion Engine goal of 20% improvement (compared to 2009 baseline) of commercial engine efficiency by 2015. A sub-goal is to increase the reliability of diesel fuel injectors by investigating modelbased scenarios that cannot be achieved by empirical, trial and error methodologies alone. During this three-year project, ORNL developed the methodology to evaluate origins and to record the initiation and propagation of fatigue cracks emanating from holes that were electrodischarge machined (EDM), the method used to form spray holes in fuel injector tips. Both x-ray and neutron-based methods for measuring residual stress at four different research facilities were evaluated to determine which, if any, was most applicable to the fuel injector tip geometry. Owing to the shape and small volumes of material involved in the sack area, residual stress data could only be obtained in the walls of the nozzle a few millimeters back from the tip, and there was a hint of only a small compressive stress. This result was consistent with prior studies by Caterpillar. Residual stress studies were suspended after the second year, reserving the possibility of pursuing this in the future, if and when methodology suitable for injector sacks becomes available. The smooth specimen fatigue behavior of current fuel injector steel materials was evaluated and displayed a dual mode initiation behavior. At high stresses, cracks started at machining flaws in the surface; however, below a critical threshold stress of approximately 800 MPa, cracks initiated in the bulk microstructure, below the surface. This suggests that for the next generation for high-pressure fuel injector nozzles, it becomes increasingly important to control the machining and finishing processes, especially if the stress in the tip approaches or exceeds that threshold level. Fatigue tests were also conducted using EDM notches in the gage sections

  20. A simple approach for producing highly efficient DNA carriers with reduced toxicity based on modified polyallylamine

    Energy Technology Data Exchange (ETDEWEB)

    Oskuee, Reza Kazemi [Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad (Iran, Islamic Republic of); Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad (Iran, Islamic Republic of); Dosti, Fatemeh [School of Pharmacy, Mashhad University of Medical Sciences, Mashhad (Iran, Islamic Republic of); Gholami, Leila [Targeted Drug Delivery Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad (Iran, Islamic Republic of); Malaekeh-Nikouei, Bizhan, E-mail: malaekehb@mums.ac.ir [Nanotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad (Iran, Islamic Republic of)

    2015-04-01

    Nowadays gene delivery is a topic in many research studies. Non-viral vectors have many advantages over viral vectors in terms of safety, immunogenicity and gene carrying capacity but they suffer from low transfection efficiency and high toxicity. In this study, polyallylamine (PAA), the cationic polymer, has been modified with hydrophobic branches to increase the transfection efficiency of the polymer. Polyallylamine with molecular weights of 15 and 65 kDa was selected and grafted with butyl, hexyl and decyl acrylate at percentages of 10, 30 and 50. The ability of the modified polymer to condense DNA was examined by ethidium bromide test. The complex of modified polymer and DNA (polyplex) was characterized for size, zeta potential, transfection efficiency and cytotoxicity in Neuro2A cell lines. The results of ethidium bromide test showed that grafting of PAA decreased its ability for DNA condensation but vectors could still condense DNA at moderate and high carrier to DNA ratios. Most of polyplexes had particle size between 150 and 250 nm. The prepared vectors mainly showed positive zeta potential but carriers composed of PAA with high percentage of grafting had negative zeta potential. The best transfection activity was observed in vectors with hexyl acrylate chain. Grafting of polymer reduced its cytotoxicity especially at percentages of 30 and 50. The vectors based of PAA 15 kDa had better transfection efficiency than the vectors made of PAA 65 kDa. In conclusion, results of the present study indicated that grafting PAA 15 kDa with high percentages of hexyl acrylate can help to prepare vectors with better transfection efficiency and less cytotoxicity. - Highlights: • The modified polyallylamine was synthesized as a gene carrier. • Modification of polyallylamine (15 kDa) with high percentages of hexyl acrylate improved transfection activity remarkably. • Grafting of polymer with acrylate derivatives reduced polymer cytotoxicity especially at percentages of

  1. High Bandwidth Zero Voltage Injection Method for Sensorless Control of PMSM

    DEFF Research Database (Denmark)

    Ge, Xie; Lu, Kaiyuan; Kumar, Dwivedi Sanjeet

    2014-01-01

    High frequency signal injection is widely used in PMSM sensorless control system for low speed operations. The conventional voltage injection method often needs filters to obtain particular harmonic component in order to estimate the rotor position; or it requires several voltage pulses to be inj...... in a fast current regulation performance. Injection of zero voltage also minimizes the inverter voltage error effects caused by the dead-time.......High frequency signal injection is widely used in PMSM sensorless control system for low speed operations. The conventional voltage injection method often needs filters to obtain particular harmonic component in order to estimate the rotor position; or it requires several voltage pulses...... to be injected before the position may be estimated. In this paper, a single pulse zero voltage injection method is proposed. The rotor position is directly estimated from the current ripple at half of the switching frequency. No machine parameters are needed and using of filters is avoided. This results...

  2. Supramolecular Aggregate as a High-Efficiency Gene Carrier Mediated with Optimized Assembly Structure.

    Science.gov (United States)

    Zhang, Yi; Duan, Junkun; Cai, Lingguang; Ma, Dong; Xue, Wei

    2016-11-02

    For cancer gene therapy, a safe and high-efficient gene carrier is a must. To resolve the contradiction between gene transfection efficiency and cytotoxicity, many polymers with complex topological structures have been synthesized, although their synthesis processes and structure control are difficult as well as the high molecular weight also bring high cytotoxicity. We proposed an alternative strategy that uses supramolecular inclusion to construct the aggregate from the small molecules for gene delivery, and to further explore the relationship between the topological assembly structure and their ability to deliver gene. Herein, PEI-1.8k-conjugating β-CD through 6-hydroxyl (PEI-6-CD) and 2-hydroxyl (PEI-2-CD) have been synthesized respectively and then assembled with diferrocene (Fc)-ended polyethylene glycol (PEG-Fc). The obtained aggregates were then used to deliver MMP-9 shRNA plasmid for MCF-7 cancer therapy. It was found that the higher gene transfection efficiency can be obtained by selecting PEI-2-CD as the host and tuning the host/guest molar ratios. With the rational modulation of supramolecular architectures, the aggregate played the functions similar to macromolecules which exhibit higher transfection efficiency than PEI-25k, but show much lower cytotoxicity because of the nature of small/low molecules. In vitro and in vivo assays confirmed that the aggregate could deliver MMP-9 shRNA plasmid effectively into MCF-7 cells and then downregulate MMP-9 expression, which induced the significant MCF-7 cell apoptosis, as well inhibit MCF-7 tumor growth with low toxicity. The supramolecular aggregates maybe become a promising carrier for cancer gene therapy and also provided an alternative strategy for designing new gene carriers.

  3. High resistivity and ultrafast carrier lifetime in argon implanted GaAs

    Energy Technology Data Exchange (ETDEWEB)

    Walukiewicz, W.; Liliental-Weber, Z.; Jasinski, J. [Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Almonte, M.; Prasad, A.; Haller, E.E.; Weber, E.R. [Lawrence Berkeley National Laboratory and University of California, Berkeley, California 94720 (United States); Grenier, P.; Whitaker, J.F. [Center for Ultrafast Optical Science, University of Michigan, Ann Arbor, Michigan 48109 (United States)

    1996-10-01

    We have investigated the optoelectronic and structural properties of GaAs that has been implanted with Ar ions and subsequently annealed. The material exhibits all the basic optical and electronic characteristics typically observed in nonstoichiometric, As implanted or low-temperature-grown GaAs. Annealing of Ar implanted GaAs at 600{degree}C produces a highly resistive material with a subpicosecond trapping lifetime for photoexcited carriers. Transmission electron microscopy shows that, instead of As precipitates, characteristic for the nonstoichiometeric GaAs, voids ranging in size from 3 to 5 nm are observed in Ar implanted and annealed GaAs. {copyright} {ital 1996 American Institute of Physics.}

  4. Nodal quasi-particles of the high-Tc superconductors as carriers of heat

    Directory of Open Access Journals (Sweden)

    K. Behnia

    2006-09-01

    Full Text Available   In the quest for understanding correlated electrons, high-temperature superconductivity remains a formidable challenge and a source of insight. This paper briefly recalls the central achievement by the study of heat transport at low temperatures. At very low temperatures, nodal quasi-particles of the d-wave superconducting gap become the main carriers of heat. Their thermal conductivity is unaffected by disorder and reflects the fine structure of the superconducting gap. This finding had led to new openings in the exploration of other unconventional superconductors

  5. Demonstration of high-speed multi-user multi-carrier CDMA visible light communication

    Science.gov (United States)

    Yang, Chao; Wang, Yuanquan; Wang, Yiguang; Huang, Xingxing; Chi, Nan

    2015-02-01

    We experimentally demonstrated a high-speed multi-user multi-carrier code-division multiple access (MC-CDMA) visible light communication (VLC) system. By employing a commercially available red light emitting diode (LED) and an avalanche photo diode (APD), we achieved a 16-user VLC system enabled by MC-CDMA, pre- and post-equalization, with an overall bit rate of 750 Mb/s over 1.5 m free-space transmission. The measured bit error ratio (BER) of each user is below the 7% pre-forward-error-correction (pre-FEC) threshold of 3.8×10-3.

  6. Graded Carrier Concentration Absorber Profile for High Efficiency CIGS Solar Cells

    Directory of Open Access Journals (Sweden)

    Antonino Parisi

    2015-01-01

    Full Text Available We demonstrate an innovative CIGS-based solar cells model with a graded doping concentration absorber profile, capable of achieving high efficiency values. In detail, we start with an in-depth discussion concerning the parametrical study of conventional CIGS solar cells structures. We have used the wxAMPS software in order to numerically simulate cell electrical behaviour. By means of simulations, we have studied the variation of relevant physical and chemical parameters—characteristic of such devices—with changing energy gap and doping density of the absorber layer. Our results show that, in uniform CIGS cell, the efficiency, the open circuit voltage, and short circuit current heavily depend on CIGS band gap. Our numerical analysis highlights that the band gap value of 1.40 eV is optimal, but both the presence of Molybdenum back contact and the high carrier recombination near the junction noticeably reduce the crucial electrical parameters. For the above-mentioned reasons, we have demonstrated that the efficiency obtained by conventional CIGS cells is lower if compared to the values reached by our proposed graded carrier concentration profile structures (up to 21%.

  7. Power-efficient high-speed parallel-sampling adcs for broadband multi-carrier systems

    CERN Document Server

    Lin, Yu; Doris, Kostas; van Roermund, Arthur H M

    2015-01-01

    This book addresses the challenges of designing high performance analog-to-digital converters (ADCs) based on the “smart data converters” concept, which implies context awareness, on-chip intelligence and adaptation. Readers will learn to exploit various information either a-priori or a-posteriori (obtained from devices, signals, applications or the ambient situations, etc.) for circuit and architecture optimization during the design phase or adaptation during operation, to enhance data converters performance, flexibility, robustness and power-efficiency. The authors focus on exploiting the a-priori knowledge of the system/application to develop enhancement techniques for ADCs, with particular emphasis on improving the power efficiency of high-speed and high-resolution ADCs for broadband multi-carrier systems.

  8. In-plane heterostructures of Sb/Bi with high carrier mobility

    Science.gov (United States)

    Zhao, Pei; Wei, Wei; Sun, Qilong; Yu, Lin; Huang, Baibiao; Dai, Ying

    2017-06-01

    In-plane two-dimensional (2D) heterostructures have been attracting public attention due to their distinctive properties. However, the pristine materials that can form in-plane heterostructures are reported only for graphene, hexagonal BN, transition-metal dichalcogenides. It will be of great significance to explore more suitable 2D materials for constructing such ingenious heterostructures. Here, we demonstrate two types of novel seamless in-plane heterostructures combined by pristine Sb and Bi monolayers by means of first-principle approach based on density functional theory. Our results indicate that external strain can serve as an effective strategy for bandgap engineering, and the transition from semiconductor to metal occurs when a compressive strain of -8% is applied. In addition, the designed heterostructures possess direct band gaps with high carrier mobility (˜4000 cm2 V-1 s-1). And the mobility of electrons and holes have huge disparity along the direction perpendicular to the interface of Sb/Bi in-plane heterostructures. It is favorable for carriers to separate spatially. Finally, we find that the band edge positions of Sb/Bi in-plane heterostructures can meet the reduction potential of hydrogen generation in photocatalysis. Our results not only offer alternative materials to construct versatile in-plane heterostructures, but also highlight the applications of 2D in-plane heterostructures in diverse nanodevices and photocatalysis.

  9. Highly efficient low color temperature organic LED using blend carrier modulation layer

    Science.gov (United States)

    Hsieh, Yao-Ching; Chen, Szu-Hao; Shen, Shih-Ming; Wang, Ching-Chiun; Chen, Chien-Chih; Jou, Jwo-Huei

    2012-10-01

    Color temperature (CT) of light has great effect on human physiology and psychology, and low CT light, minimizing melatonin suppression and decreasing the risk of breast, colorectal, and prostate cancer. We demonstrates the incorporation of a blend carrier modulation interlayer (CML) between emissive layers to improve the device performance of low CT organic light emitting diodes, which exhibits an external quantum efficiency of 22.7% and 36 lm W-1 (54 cd A-1) with 1880 K at 100 cd m-2, or 20.8% and 29 lm W-1 (50 cd A-1) with 1940 K at 1000 cd m-2. The result shows a CT much lower than that of incandescent bulbs, which is 2500 K with 15 lmW-1 efficiency, and even as low as that of candles, which is 2000 K with 0.1 lmW-1. The high efficiency of the proposed device may be attributed to its CML, which helps effectively distribute the entering carriers into the available recombination zones.

  10. A New High Frequency Injection Method Based on Duty Cycle Shifting without Maximum Voltage Magnitude Loss

    DEFF Research Database (Denmark)

    Wang, Dong; Lu, Kaiyuan; Rasmussen, Peter Omand

    2015-01-01

    The conventional high frequency signal injection method is to superimpose a high frequency voltage signal to the commanded stator voltage before space vector modulation. Therefore, the magnitude of the voltage used for machine torque production is limited. In this paper, a new high frequency...... injection method, in which high frequency signal is generated by shifting the duty cycle between two neighboring switching periods, is proposed. This method allows injecting a high frequency signal at half of the switching frequency without the necessity to sacrifice the machine fundamental voltage...... amplitude. This may be utilized to develop new position estimation algorithm without involving the inductance in the medium to high speed range. As an application example, a developed inductance independent position estimation algorithm using the proposed high frequency injection method is applied to drive...

  11. Needle-free injection into skin and soft matter with highly focused microjets

    CERN Document Server

    Tagawa, Yoshiyuki; Ghalbzouri, A El; Sun, Chao; Lohse, Detlef

    2012-01-01

    The development of needle-free drug injection systems is of great importance to global healthcare. However, in spite of its great potential and research history over many decades, these systems are not commonly used. One of the main problems is that existing methods use diffusive jets, which result in scattered penetration and severe deceleration of the jets, causing frequent pain and insufficient penetration. Another longstanding challenge is the development of accurate small volume injections. In this paper we employ a novel method of needle-free drug injection, using highly-focused high speed microjets, which aims to solve these challenges. We experimentally demonstrate that these unique jets are able to penetrate human skin: the focused nature of these microjets creates an injection spot smaller than a mosquito's proboscis and guarantees a high percentage of the liquid being injected. The liquid substances can be delivered to a much larger depth than conventional methods, and create a well-controlled disp...

  12. Application of railgun principle to high-velocity hydrogen pellet injection for magnetic fusion reactor fueling

    Energy Technology Data Exchange (ETDEWEB)

    Kim, K.; Zhang, J.

    1992-01-01

    Three separate papers are included which report research progress during this period: (1) A new railgun configuration with perforated sidewalls, (2) development of a fuseless small-bore railgun for injection of high-speed hydrogen pellets into magnetically confined plasmas, and (3) controls and diagnostics on a fuseless railgun for solid hydrogen pellet injection.

  13. Manipulation of magnetic carriers for drug delivery using pulsed-current high T {sub c} superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Yung [Energy Technology Division and Material Science Division, Building 335, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States)]. E-mail: yscha@anl.gov; Chen, Lihua [Energy Technology Division and Material Science Division, Building 335, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States); Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48824 (United States); Askew, Thomas [Energy Technology Division and Material Science Division, Building 335, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States); Physics Department, Kalamazoo College, Kalamazoo, MI 49006 (United States); Veal, Boyd [Energy Technology Division and Material Science Division, Building 335, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States); Hull, John [Energy Technology Division and Material Science Division, Building 335, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States)

    2007-04-15

    An innovative method of manipulating magnetic carriers is proposed, and its feasibility for drug delivery and therapy is demonstrated experimentally. The proposed method employs pulsed-field solenoid coils with high-critical- temperature (T {sub c}) superconductor inserts. Pulsed current is used to magnetize and de-magnetize the superconductor insert. The proposed method was demonstrated to be able to (1) move magnetic particles, ranging in size from a few millimeters to 10 {mu}m, with strong enough forces over a substantial distance, (2) hold the particles at a designated position as long as needed, and (3) reverse the processes and retrieve the particles. We further demonstrated that magnetic particles can be manipulated in a stationary environment, in water flow, and in simulated blood (water/glycerol mixture) flow.

  14. Manipulation of magnetic carriers for drug delivery using pulsed-current high Tc superconductors

    Science.gov (United States)

    Cha, Yung; Chen, Lihua; Askew, Thomas; Veal, Boyd; Hull, John

    2007-04-01

    An innovative method of manipulating magnetic carriers is proposed, and its feasibility for drug delivery and therapy is demonstrated experimentally. The proposed method employs pulsed-field solenoid coils with high-critical- temperature ( Tc) superconductor inserts. Pulsed current is used to magnetize and de-magnetize the superconductor insert. The proposed method was demonstrated to be able to (1) move magnetic particles, ranging in size from a few millimeters to 10 μm, with strong enough forces over a substantial distance, (2) hold the particles at a designated position as long as needed, and (3) reverse the processes and retrieve the particles. We further demonstrated that magnetic particles can be manipulated in a stationary environment, in water flow, and in simulated blood (water/glycerol mixture) flow.

  15. Single Carrier Architecture for High Data Rate Wireless PAN Communications System

    CERN Document Server

    Rakotondrainibe, Lahatra; Zaharia, Gheorghe; Grunfelder, Guy; Zein, Ghaïs El

    2010-01-01

    A 60 GHz wireless Gigabit Ethernet (G.E.) communication system is developed at IETR. As the 60 GHz radio link operates only in a single-room configuration, an additional Radio over Fibre (RoF) link is used to ensure the communications in all the rooms of a residential environment. The realized system covers 2 GHz bandwidth. Due to the hardware constraints, a symbol rate at 875 Mbps is attained using simple single carrier architecture. In the baseband (BB) processing block, an original byte/frame synchronization process is designed to provide a smaller value of the preamble missing detection and false alarm probabilities. Bit error rate (BER) measurements have been realized in a large gym for line-of-sight (LOS) conditions. A Tx-Rx distance greater than 30 meters was attained with low BER using high gain antennas and forward error correction RS (255, 239) coding.

  16. MD 1266: Injection of "high performance reach" 80b 25 ns beam

    CERN Document Server

    Bartmann, Wolfgang; Iadarola, Giovanni; Kain, Verena; Velotti, Francesco Maria; Muller, Jeremy Alfred; CERN. Geneva. ATS Department

    2017-01-01

    This note summarises the measurements and observations performed during the LHC Machine Development concerning the injection of batches of 80 bunches for future “high performance reach” of the LHC.

  17. Compact, Low-Cost, Frequency-Locked Semiconductor Laser for Injection Seeding High Power Laser Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This NASA Small Business Innovative Research Phase II project will develop a compact, low-cost, wavelength locked seed laser for injection locking high powered...

  18. High prevalence of asymptomatic carriers of Tropheryma whipplei in different populations from the North of Spain.

    Science.gov (United States)

    García-Álvarez, Lara; Pérez-Matute, Patricia; Blanco, José Ramón; Ibarra, Valvanera; Oteo, José Antonio

    2016-01-01

    Tropheryma whipplei is the causative agent of Whipple disease. T. whipplei has also been detected in asymptomatic carriers with a very different prevalence. To date, in Spain, there are no data regarding the prevalence of T. whipplei in a healthy population or in HIV-positive patients, or in chronic fatigue syndrome (CFS). Therefore, the aim of this work was to assess the prevalence of T. whipplei in stools in those populations. Stools from 21 HIV-negative subjects, 65 HIV-infected, and 12 CFS patients were analysed using real time-PCR. HIV-negative and positive subjects were divided into two groups, depending on the presence/absence of metabolic syndrome (MS). Positive samples were sequenced. The prevalence of T. whipplei was 25.51% in 98 stool samples analysed. Prevalence in HIV-positive patients was significantly higher than in HIV-negative (33.8% vs. 9.09%, p=0.008). Prevalence in the control group with no associated diseases was 20%, whereas no positive samples were observed in HIV-negative patients with MS, or in those diagnosed with CFS. The prevalence observed in HIV-positive patients without MS was 30.35%, and with MS it was 55.5%. The number of positive samples varies depending on the primers used, although no statistically significant differences were observed. There is a high prevalence of asymptomatic carriers of T. whipplei among healthy and in HIV-infected people from Spain. The role of T. whipplei in HIV patients with MS is unclear, but the prevalence is higher than in other populations. Copyright © 2015 Elsevier España, S.L.U. and Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. All rights reserved.

  19. Magnetized plasma flow injection into tokamak and high-beta compact torus plasmas

    Science.gov (United States)

    Matsunaga, Hiroyuki; Komoriya, Yuuki; Tazawa, Hiroyasu; Asai, Tomohiko; Takahashi, Tsutomu; Steinhauer, Loren; Itagaki, Hirotomo; Onchi, Takumi; Hirose, Akira

    2010-11-01

    As an application of a magnetized coaxial plasma gun (MCPG), magnetic helicity injection via injection of a highly elongated compact torus (magnetized plasma flow: MPF) has been conducted on both tokamak and field-reversed configuration (FRC) plasmas. The injected plasmoid has significant amounts of helicity and particle contents and has been proposed as a fueling and a current drive method for various torus systems. In the FRC, MPF is expected to generate partially spherical tokamak like FRC equilibrium by injecting a significant amount of magnetic helicity. As a circumstantial evidence of the modified equilibrium, suppressed rotational instability with toroidal mode number n = 2. MPF injection experiments have also been applied to the STOR-M tokamak as a start-up and current drive method. Differences in the responses of targets especially relation with beta value and the self-organization feature will be studied.

  20. An experimental study on the effects of high-pressure and multiple injection strategies on DI diesel engine emissions

    KAUST Repository

    Yang, Seung Yeon

    2013-03-25

    An experimental study on effects of high-pressure injections in conjunction with split fuel injections were conducted on an AVL single cylinder DI diesel engine. Various injection schemes were studied through the use of an electronically controlled, common rail injection system capable of injection pressures up to 200 MPa and a maximum of six injections per combustion event. Up to 100 MPa of the fuel injection pressure, the higher injection pressures create faster combustion rates that result in the higher in-cylinder gas temperatures as compared to conventional low-pressure fuel injection systems. When applying high-pressure injections, particulate emission reductions of up to 50% were observed with no change in hydrocarbon emissions, reductions of CO emissions and only slightly higher NOx emissions. Over 100 MPa, on the other hand, the higher injection pressures still reduced up to almost zero-level of particulate emission, at the same time that the NO emission is reduced greatly. Under these high-pressure injection conditions, strong correlations between soot and CO emissions were observed, which compete for the oxidizing OH species. Multiple or split high-pressure injections also investigated as a means to decrease particulate emissions. As a result, a four-split injection strategy resulted in a 55% reduction in particulates and with little or no penalty on NOx emissions. The high pressure split injection strategy with EGR was more effective in reducing particulate and CO emissions simultaneously. Copyright © 2013 SAE International and Copyright © 2013 TSAE.

  1. High charge carrier mobility and efficient charge separation in highly soluble perylenetetracarboxyl-diimides

    NARCIS (Netherlands)

    Günbaş, D.D.; Xue, C.; Patwardhan,S.; Fravventura, M.C.; Zhang, H.; Jager, W.F.; Sudhölter, E.J.R.; Laurens D. A.; Siebbeles, L.D.A.; Savenije, T.J.; Jin, S.; Grozema, F.C.

    2014-01-01

    In this communication we report on the synthesis and charge mobility of highly soluble perylenebisimid derivatives.We show that introduction of alkylester side chains results in compounds combining a high solubility with charge mobilities up to 0.22 cm2 V_1 s_1. These materials are therefore interes

  2. Optimized Carrier Tracking Loop Design for Real-Time High-Dynamics GNSS Receivers

    Directory of Open Access Journals (Sweden)

    Pedro A. Roncagliolo

    2012-01-01

    Full Text Available Carrier phase estimation in real-time Global Navigation Satellite System (GNSS receivers is usually performed by tracking loops due to their very low computational complexity. We show that a careful design of these loops allows them to operate properly in high-dynamics environments, that is, accelerations up to 40 g or more. Their phase and frequency discriminators and loop filter are derived considering the digital nature of the loop inputs. Based on these ideas, we propose a new loop structure named Unambiguous Frequency-Aided Phase-Locked Loop (UFA-PLL. In terms of tracking capacity and noise resistance UFA-PLL has the same advantages of frequently used coupled-loop schemes, but it is simpler to design and to implement. Moreover, it can keep phase lock in situations where other loops cannot. The loop design is completed selecting the correlation time and loop bandwidth that minimize the pull-out probability, without relying on typical rules of thumb. Optimal and efficient ways to smooth the phase estimates are also presented. Hence, high-quality phase measurements—usually exploited in offline and quasistatic applications—become practical for real-time and high-dynamics receivers. Experiments with fixed-point implementations of the proposed loops and actual radio signals are also shown.

  3. The influence of lubricant carrier and lubrication conditions on mechanical-technological properties of high carbon steel wires

    Directory of Open Access Journals (Sweden)

    M. Suliga

    2016-10-01

    Full Text Available In this paper the effect of the type of soap powder and lubricant carriers on lubrication conditions in multipass drawing process of high carbon steel wires has been determined. The wire drawing process was conducted in industrial conditions by means of a modern multi-die Koch drawing machine. For wires drawn on borax and phosphate lubricant carriers the mechanical-technological properties have been carried out, in which yield stress, tensile strength, uniform elongation, number of twists and number of bends were assessed. It has been proved that the application of phosphate lubricant carrier and also the rotary die in the first draft in an essential way improve the lubrication condition in high speed multipass drawing process and makes it possible to refine the mechanical properties of wires.

  4. Influence of high-pressure treatment on charge carrier transport in PbS colloidal quantum dot solids.

    Science.gov (United States)

    Heo, Seung Jin; Yoon, Seokhyun; Oh, Sang Hoon; Yoon, Doo Hyun; Kim, Hyun Jae

    2014-01-21

    We investigated the effects of high-pressure treatment on charge carrier transport in PbS colloidal quantum dot (CQD) solids. We applied high pressure to PbS CQD solids using nitrogen gas to reduce the inter-dot distance. Using this simple process, we obtained conductive PbS CQD solids. Terahertz time-domain spectroscopy was used to study charge carrier transport as a function of pressure. We found that the minimum pressure needed to increase the dielectric constant, conductivity, and carrier mobility was 4 MPa. All properties dramatically improved at 5 MPa; for example, the mobility increased from 0.13 cm(2) V(-1) s(-1) at 0.1 MPa to 0.91 cm(2) V(-1) s(-1) at 5 MPa. We propose this simple process as a nondestructive approach for making conductive PbS CQD solids that are free of chemical and physical defects.

  5. Next-generation sequencing improves thalassemia carrier screening among premarital adults in a high prevalence population: the Dai nationality, China.

    Science.gov (United States)

    He, Jing; Song, Wenhui; Yang, Jinlong; Lu, Sen; Yuan, Yuan; Guo, Junfu; Zhang, Jie; Ye, Kai; Yang, Fan; Long, Fangfang; Peng, Zhiyu; Yu, Haijing; Cheng, Le; Zhu, Baosheng

    2017-09-01

    Thalassemia is one of the most common monogenic diseases in southwestern China, especially among the Dai ethnic group. Here, we explore the feasibility of a next-generation sequencing (NGS) screening method specifically for the Dai people. Blood samples were obtained from Dai people for premarital screening. Double-blind, parallel hemoglobinopathy screening was conducted using both traditional hematological methods (red cell indexes and hemoglobin electrophoresis, then DNA sequencing) and an NGS approach. Among 951 tested individuals, we found a thalassemia carrier rate of 49.5% (471/951) using the NGS screen, in contrast to 22.0% (209/951) found using traditional methods. Almost 74.8% (217/290) of α-thalassemia carriers and 30.5% (25/82) of composite α- and β-thalassemia carriers were missed by traditional screens. The proportion of such α- and β-thalassemia carriers among the Dai people is 8.6% (82/951). For β-thalassemia carriers, the high ratio (66/99) of CD26 mutations may suggest a correlation between CD26 and the environmental adaption of the Dai people. Methodological comparisons demonstrate the superiority of NGS for both sensitivity and specificity, provide a comprehensive assessment of thalassemia screening strategies, and indicate that NGS is a competitive screening method, especially among populations with a high prevalence of disease.Genet Med advance online publication 26 January 2017.

  6. 高速注塑机注射部件设计及应用%Design and Application of Injection Part of High Speed Injection Molding Machine

    Institute of Scientific and Technical Information of China (English)

    王权

    2011-01-01

    The general design principle of injection part of high speed injection molding machine was presented based on the characteristics of high speed injection molding machine. The related parameters of hydraulic accumulator of injection part were calculated and its hydraulic system principle was analyzed. The development and application of high speed injection molding machine were introduced.%针对高速注塑成型机特点,提出其注射部件的一般设计原则,并对注射部件动力源--蓄能器有关参数进行计算,分析注射部件液压系统原理,同时介绍高速注塑成型机的发展及应用.

  7. Generating free charges by carrier multiplication in quantum dots for highly efficient photovoltaics.

    Science.gov (United States)

    Ten Cate, Sybren; Sandeep, C S Suchand; Liu, Yao; Law, Matt; Kinge, Sachin; Houtepen, Arjan J; Schins, Juleon M; Siebbeles, Laurens D A

    2015-02-17

    CONSPECTUS: In a conventional photovoltaic device (solar cell or photodiode) photons are absorbed in a bulk semiconductor layer, leading to excitation of an electron from a valence band to a conduction band. Directly after photoexcitation, the hole in the valence band and the electron in the conduction band have excess energy given by the difference between the photon energy and the semiconductor band gap. In a bulk semiconductor, the initially hot charges rapidly lose their excess energy as heat. This heat loss is the main reason that the theoretical efficiency of a conventional solar cell is limited to the Shockley-Queisser limit of ∼33%. The efficiency of a photovoltaic device can be increased if the excess energy is utilized to excite additional electrons across the band gap. A sufficiently hot charge can produce an electron-hole pair by Coulomb scattering on a valence electron. This process of carrier multiplication (CM) leads to formation of two or more electron-hole pairs for the absorption of one photon. In bulk semiconductors such as silicon, the energetic threshold for CM is too high to be of practical use. However, CM in nanometer sized semiconductor quantum dots (QDs) offers prospects for exploitation in photovoltaics. CM leads to formation of two or more electron-hole pairs that are initially in close proximity. For photovoltaic applications, these charges must escape from recombination. This Account outlines our recent progress in the generation of free mobile charges that result from CM in QDs. Studies of charge carrier photogeneration and mobility were carried out using (ultrafast) time-resolved laser techniques with optical or ac conductivity detection. We found that charges can be extracted from photoexcited PbS QDs by bringing them into contact with organic electron and hole accepting materials. However, charge localization on the QD produces a strong Coulomb attraction to its counter charge in the organic material. This limits the production

  8. Industrially feasible, dopant-free, carrier-selective contacts for high-efficiency silicon solar cells

    KAUST Repository

    Yang, Xinbo

    2017-05-31

    Dopant-free, carrier-selective contacts (CSCs) on high efficiency silicon solar cells combine ease of deposition with potential optical benefits. Electron-selective titanium dioxide (TiO) contacts, one of the most promising dopant-free CSC technologies, have been successfully implemented into silicon solar cells with an efficiency over 21%. Here, we report further progress of TiO contacts for silicon solar cells and present an assessment of their industrial feasibility. With improved TiO contact quality and cell processing, a remarkable efficiency of 22.1% has been achieved using an n-type silicon solar cell featuring a full-area TiO contact. Next, we demonstrate the compatibility of TiO contacts with an industrial contact-firing process, its low performance sensitivity to the wafer resistivity, its applicability to ultrathin substrates as well as its long-term stability. Our findings underscore the great appeal of TiO contacts for industrial implementation with their combination of high efficiency with robust fabrication at low cost.

  9. High-temperature adsorption layers based on fluoridated polyimide and diatomite carrier

    Science.gov (United States)

    Yakovleva, E. Yu.; Shundrina, I. K.; Gerasimov, E. Yu.

    2017-09-01

    A way of preparing separation layers by the pyrolysis of fluorinated polyimide obtained from 2,4,6-trimethyl- m-phenylenediamine (2,4,6-TM mPDA) and 2,2-bis(3',4'-dicarboxyphenyl)hexafluoropropane (6FDA) applied onto a diatomite carrier is described. Thermogravimetry, elemental analysis, low-temperature nitrogen adsorption, high-resolution electron microscopy, and gas chromatography are used to study changes in the texture and chromatographic characteristics of these layers. It is found that changes in the structure and the effectivity of separation characteristic of the layers depend on the temperature of pyrolysis, which ranges from 250 to 1100°C. It is established that a layer of separation is formed at 250-350°C, and the order of elution of hydrocarbons is similar to their chromatographic behavior on such stationary phases as OV-101. Layers of amorphous carbon formed on the surfaces of individual particles on a diatomite surface at 500-700°C. These layers ensure highly stable and selective separation of permanent gases and hydrocarbons when they are present together.

  10. Carrier Envelope Phase Controlled High-Order Harmonic Generation in Ultrashort Laser Pulse

    Institute of Scientific and Technical Information of China (English)

    WANG Bing-Bing; CHEN Jing; LIU Jie; LI Xiao-Feng; FU Pan-Ming

    2005-01-01

    @@ We investigate the carrier envelope phase (CEP) effects on high-order harmonic generation (HHG) in ultrashort pulses with the pulse duration 2.5fs when the laser intensity is high enough so that the initial state is ionized effectively during the laser pulse but remains about 20% population at the end of the laser pulse. We find that the ionization process of the initial state is very sensitive to the CEP during the laser pulse. The ionization process of the initial state determines the continuum state population and hence influences dramatically the weights of the classical trajectories that contribute to HHG. In such a case we can not predict the cutoff and the structure of the harmonic spectrum only by the number and the kinetic energy of the classical trajectories. The harmonic spectrum exhibits abundant characters for different CEP cases. As a result, we can control the cutoff frequency and the plateau structure of the harmonic spectrum with CEP by controlling the time behaviour of the ionization of the initial state.

  11. Investigation of the basic physics of high efficiency semiconductor hot carrier solar cell

    Science.gov (United States)

    Alfano, R. R.; Wang, W. B.; Mohaidat, J. M.; Cavicchia, M. A.; Raisky, O. Y.

    1995-01-01

    The main purpose of this research program is to investigate potential semiconductor materials and their multi-band-gap MQW (multiple quantum wells) structures for high efficiency solar cells for aerospace and commercial applications. The absorption and PL (photoluminescence) spectra, the carrier dynamics, and band structures have been investigated for semiconductors of InP, GaP, GaInP, and InGaAsP/InP MQW structures, and for semiconductors of GaAs and AlGaAs by previous measurements. The barrier potential design criteria for achieving maximum energy conversion efficiency, and the resonant tunneling time as a function of barrier width in high efficiency MQW solar cell structures have also been investigated in the first two years. Based on previous carrier dynamics measurements and the time-dependent short circuit current density calculations, an InAs/InGaAs - InGaAs/GaAs - GaAs/AlGaAs MQW solar cell structure with 15 bandgaps has been designed. The absorption and PL spectra in InGaAsP/InP bulk and MQW structures were measured at room temperature and 77 K with different pump wavelength and intensity, to search for resonant states that may affect the solar cell activities. Time-resolved IR absorption for InGaAsP/InP bulk and MQW structures has been measured by femtosecond visible-pump and IR-probe absorption spectroscopy. This, with the absorption and PL measurements, will be helpful to understand the basic physics and device performance in multi-bandgap InAs/InGaAs - InGaAs/InP - InP/InGaP MQW solar cells. In particular, the lifetime of the photoexcited hot electrons is an important parameter for the device operation of InGaAsP/InP MQW solar cells working in the resonant tunneling conditions. Lastly, time evolution of the hot electron relaxation in GaAs has been measured in the temperature range of 4 K through 288 K using femtosecond pump-IR-probe absorption technique. The temperature dependence of the hot electron relaxation time in the X valley has been measured.

  12. Coherent control of injection currents in high-quality films of Bi2Se3

    CERN Document Server

    Bas, D A; Babakiray, S; Johnson, T A; Borisov, P; Stanescu, T D; Lederman, D; Bristow, A D

    2014-01-01

    Films of the topological insulator Bi2Se3 are grown by molecular beam epitaxy with in-situ reflection high-energy electron diffraction. The films are shown to be high-quality by X-ray reflectivity and diffraction and atomic-force microscopy. Quantum interference control of photocurrents is observed by excitation with harmonically related pulses and detected by terahertz radiation. The injection current obeys the expected excitation irradiance dependence, showing linear dependence on the fundamental pulse irradiance and square-root irradiance dependence of the frequency-doubled optical pulses. The injection current also follows a sinusoidal relative-phase dependence between the two excitation pulses. These results confirm the third-order nonlinear optical origins of the coherently controlled injection current. Experiments are compared to a tight-binding band structure to illustrate the possible optical transitions that occur in the creating the injection current.

  13. High-density carrier-accumulated and electrically stable oxide thin-film transistors from ion-gel gate dielectric

    Science.gov (United States)

    Fujii, Mami N.; Ishikawa, Yasuaki; Miwa, Kazumoto; Okada, Hiromi; Uraoka, Yukiharu; Ono, Shimpei

    2015-12-01

    The use of indium-gallium-zinc oxide (IGZO) has paved the way for high-resolution uniform displays or integrated circuits with transparent and flexible devices. However, achieving highly reliable devices that use IGZO for low-temperature processes remains a technological challenge. We propose the use of IGZO thin-film transistors (TFTs) with an ionic-liquid gate dielectric in order to achieve high-density carrier-accumulated IGZO TFTs with high reliability, and we discuss a distinctive mechanism for the degradation of this organic-inorganic hybrid device under long-term electrical stress. Our results demonstrated that an ionic liquid or gel gate dielectric provides highly reliable and low-voltage operation with IGZO TFTs. Furthermore, high-density carrier accumulation helps improve the TFT characteristics and reliability, and it is highly relevant to the electronic phase control of oxide materials and the degradation mechanism for organic-inorganic hybrid devices.

  14. Spin Injection from Ferromagnetic Metal Directly into Non-Magnetic Semiconductor under Different Injection Currents

    Institute of Scientific and Technical Information of China (English)

    DENG Ning; TANG Jian-Shi; ZHANG Lei; ZHANG Shu-Chao; CHEN Pei-Yi

    2010-01-01

    @@ For ferromagnetic metal(FM)/semiconductor(SC)structure with ohmic contact,the effect of carrier polarization in the semiconductor combined with drift part of injection current on current polarization is investigated.Based on the general model we established here,spin injection efficiency under different injection current levels is calculated.Under a reasonable high injection current,current polarization in the semiconductor is actually much larger than that predicted by the conductivity mismatch model because the effect of carrier polarization is enhanced by the increasing drift current.An appreciable current polarization of 1% could be achieved for the FM/SC structure via ohmic contact,which means that efficient spin injection from FM into SC via ohmic contact is possible.The reported dependence of current polarization on temperature is verified quantitatively.To achieve even larger spin injection efficiency,a gradient doping semiconductor is suggested to enhance the drift current effect.

  15. Solvent additive to achieve highly ordered nanostructural semicrystalline DPP copolymers: toward a high charge carrier mobility.

    Science.gov (United States)

    An, Tae Kyu; Kang, Il; Yun, Hui-jun; Cha, Hyojung; Hwang, Jihun; Park, Seonuk; Kim, Jiye; Kim, Yu Jin; Chung, Dae Sung; Kwon, Soon-Ki; Kim, Yun-Hi; Park, Chan Eon

    2013-12-23

    A facile spin-coating method in which a small percentage of the solvent additive, 1-chloronaphthalene (CN), is found to increase the drying time during film deposition, is reported. The field-effect mobility of a PDPPDBTE film cast from a chloroform-CN mixed solution is 0.46 cm(2) V(-1) s(-1). The addition of CN to the chloroform solution facilitates the formation of highly crystalline polymer structures.

  16. Vincristine liposomal--INEX: lipid-encapsulated vincristine, onco TCS, transmembrane carrier system--vincristine, vincacine, vincristine sulfate liposomes for injection, VSLI.

    Science.gov (United States)

    2004-01-01

    INEX Pharmaceuticals is developing a liposomal formulation of vincristine [Onco TCS, vincacine, VSLI, Vincristine sulfate liposomes for injection] for the treatment of relapsed aggressive non-Hodgkin's lymphoma (NHL) and other cancers. It is being developed using INEX's proprietary drug-delivery technology platform called the transmembrane carrier systems (TCS), which enables the targeted intracellular delivery of various therapeutic agents. Liposomal vincristine is expected to have certain advantages over the existing standard preparation of vincristine because the use of TCS technology enables the vincristine to circulate in the blood for longer, accumulate in the tumour, and be released over an extended period of time at the tumour site. The application of TCS technology to any agent, including vincristine, has the potential to increase the efficacy and decrease the side effects of the agent. INEX decided in 1998 to focus on gaining approval for liposomal vincristine in the treatment of relapsed aggressive NHL because no standard therapy was approved for this indication. In 1999, liposomal vincristine was granted accelerated development status by the US FDA, which enables the FDA to approve it based on the surrogate endpoint of a single clinical trial. In addition, the FDA granted liposomal vincristine fast track status in August 2000. In April 2001, INEX and Elan Corporation formed a joint venture for the development and commercialisation of liposomal vincristine, with both companies contributing assets to the venture including worldwide rights to the product and intellectual property rights. The joint venture was called IE Oncology. However, in June 2002, Elan announced that it was going to focus its business strategy on three specific areas, which would not include cancer therapies. INEX announced it had regained 100% ownership of liposomal vincristine in April 2003, by reacquiring the 19.9% equity interest held by Elan and in addition retaining a fully paid

  17. Injection coupling with high amplitude transverse modes: Experimentation and simulation

    Science.gov (United States)

    Mery, Yoann; Ducruix, Sébastien; Scouflaire, Philippe; Candel, Sébastien

    2009-06-01

    High frequency combustion instabilities have technical importance in the design of liquid rocket engines. These phenomena involve a strong coupling between transverse acoustic modes and combustion. They are currently being investigated by combining experimentation and numerical simulations. On the experimental level, the coupling is examined in a model scale system featuring a multiple injector combustor (MIC) comprising five coaxial injectors fed with liquid oxygen and gaseous methane. This system is equipped with a novel VHAM actuator (Very High Amplitude Modulator) which comprises two nozzles and a rotating toothed wheel blocking the nozzles in an alternate fashion. This device was designed to obtain the highest possible levels of transverse oscillation in the MIC. After a brief review of the VHAM, this article reports cold flow experiments using this modulator. Velocity maps obtained under resonant conditions using the VHAM are examined at different instants during a cycle of oscillation. Experimental data are compared with numerical pressure and velocity fields obtained from an acoustic solver. The good agreement observed in the nozzle vicinity indicates that numerical simulations can be used to analyze the complex flow field generated by the VHAM. To cite this article: Y. Mery et al., C. R. Mecanique 337 (2009).

  18. Investigation of carriers of lustrous carbon at high temperatures by infrared spectroscopy (FTIR

    Directory of Open Access Journals (Sweden)

    S. Eichholz

    2010-10-01

    Full Text Available Lustrous carbon is very important in processes of iron casting in green sand. Lustrous carbon (pirografit is a microcrystalline carbon form, which evolves from a gaseous phase. In the case of applying additions, generating lustrous carbon, for sands with bentonite, there is always a danger of emitting – due to a high temperature of liquid cast iron and a humidity - compounds hazardous for a human health. There can be: CO, SO2, benzene, toluene, ethylbenzene, xylene (the so-called: BTEX as well as polycyclic aromatic hydrocarbons(PAHs. In order to asses the selected mixtures: bentonite – carrier of lustrous carbon, in which a coal dust fraction was limited, thethermogravimetric analysis and the analysis of evolving gases were performed. Examinations were carried out in the ApplictaionsLaboratory NITZSCH-Gerätebau GmbH ,Selb/Bavaria, Germany. The NETZSCH TG 209 F1 Iris® thermal analyzer coupled to the BRUKER Optics FTIR TENSOR(TM was used to measure.

  19. Carrier-wave steepened pulses and gradient-gated high-order harmonic generation

    CERN Document Server

    Radnor, S B P; Kinsler, P; New, G H C

    2008-01-01

    We show how to optimize the process of high-harmonic generation (HHG) by gating the interaction using the field gradient of the driving pulse. Since maximized field gradients are efficiently generated by self-steepening processes, we first present a generalized theory of optical carrier-wave self-steepened (CSS) pulses. This goes beyond existing treatments, which only consider third-order nonlinearity, and has the advantage of describing pulses whose wave forms have a range of symmetry properties. Although a fertile field for theoretical work, CSS pulses are difficult to realize experimentally because of the deleterious effect of dispersion. We therefore consider synthesizing CSS-like profiles using a suitably phased sub-set of the harmonics present in a true CSS wave form. Using standard theoretical models of HHG, we show that the presence of gradient-maximized regions on the wave forms can raise the spectral cut-off and so yield shorter attosecond pulses. We study how the quality of the attosecond bursts cr...

  20. Highly Selective Perchlorate Membrane Electrode Based on Cobalt(Ⅲ) Schiff Base as a Neutral Carrier

    Institute of Scientific and Technical Information of China (English)

    SHOKROLLAHI Ardeshir; GHAEDI Mehrorang; RAJABI, Harold Reza; KIANFAR, Ali Hossein

    2009-01-01

    A highly selective poly(vinyl chloride) (PVC) membrane electrode based on Co(Ⅲ)-Schiff base [Co(5-NO2-Salen)(PBu3)]ClO4·H2O (where 5-NO2-SalenH=bis(5-nitrosalycilaldehyde)ethylenediamine) as a new carrier for construction of perchlorate-selective electrode by incorporating the membrane ingredients on the surface of a graphite electrodes has been reported. The proposed electrode possesses a very wide Nernestian potential linear range to perchlorate from 1.0×10-6 to 5.0×10-1 mol·L-1 with a slope of (59.4±0.9) mV per decade of perchlo-rate concentration with a low detection limit of 5.0×10-7 mol·L-1 and good perchlorate selectivity over the wide variety of other anions. The developed electrode has an especially fast response (<5 s) and a wide pH independent range (3.0-12.0) in comparison with recent reported electrodes and can be used for at least 2 months without any considerable divergence in their potential response. This electrode was used for the determination of perchlorate in river water, drinking water, sludgy water and human urine with satisfactory results without complicated and time consuming pretreatment.

  1. Novel Structural Components Contribute to the High Thermal Stability of Acyl Carrier Protein from Enterococcus faecalis.

    Science.gov (United States)

    Park, Young-Guen; Jung, Min-Cheol; Song, Heesang; Jeong, Ki-Woong; Bang, Eunjung; Hwang, Geum-Sook; Kim, Yangmee

    2016-01-22

    Enterococcus faecalis is a Gram-positive, commensal bacterium that lives in the gastrointestinal tracts of humans and other mammals. It causes severe infections because of high antibiotic resistance. E. faecalis can endure extremes of temperature and pH. Acyl carrier protein (ACP) is a key element in the biosynthesis of fatty acids responsible for acyl group shuttling and delivery. In this study, to understand the origin of high thermal stabilities of E. faecalis ACP (Ef-ACP), its solution structure was investigated for the first time. CD experiments showed that the melting temperature of Ef-ACP is 78.8 °C, which is much higher than that of Escherichia coli ACP (67.2 °C). The overall structure of Ef-ACP shows the common ACP folding pattern consisting of four α-helices (helix I (residues 3-17), helix II (residues 39-53), helix III (residues 60-64), and helix IV (residues 68-78)) connected by three loops. Unique Ef-ACP structural features include a hydrophobic interaction between Phe(45) in helix II and Phe(18) in the α1α2 loop and a hydrogen bonding between Ser(15) in helix I and Ile(20) in the α1α2 loop, resulting in its high thermal stability. Phe(45)-mediated hydrophobic packing may block acyl chain binding subpocket II entry. Furthermore, Ser(58) in the α2α3 loop in Ef-ACP, which usually constitutes a proline in other ACPs, exhibited slow conformational exchanges, resulting in the movement of the helix III outside the structure to accommodate a longer acyl chain in the acyl binding cavity. These results might provide insights into the development of antibiotics against pathogenic drug-resistant E. faecalis strains.

  2. High risk behavior for HIV transmission among former injecting drug users:a survey from Indonesia

    Directory of Open Access Journals (Sweden)

    Iskandar Shelly

    2010-08-01

    Full Text Available Abstract Background Injecting drug use is an increasingly important cause of HIV transmission in most countries worldwide, especially in eastern Europe, South America, and east and southeast Asia. Among people actively injecting drugs, provision of clean needles and opioid substitution reduce HIV-transmission. However, former injecting drug users (fIDUs are often overlooked as a high risk group for HIV transmission. We compared HIV risk behavior among current and former injecting drug users (IDUs in Indonesia, which has a rapidly growing HIV-epidemic largely driven by injecting drug use. Methods Current and former IDUs were recruited by respondent driven sampling in an urban setting in Java, and interviewed regarding drug use and HIV risk behavior using the European Addiction Severity Index and the Blood Borne Virus Transmission Questionnaire. Drug use and HIV transmission risk behavior were compared between current IDUs and former IDUs, using the Mann-Whitney and Pearson Chi-square test. Results Ninety-two out of 210 participants (44% were self reported former IDUs. Risk behavior related to sex, tattooing or piercing was common among current as well as former IDUs, 13% of former IDUs were still exposed to contaminated injecting equipment. HIV-infection was high among former (66% and current (60% IDUs. Conclusion Former IDUs may contribute significantly to the HIV-epidemic in Indonesia, and HIV-prevention should therefore also target this group, addressing sexual and other risk behavior.

  3. Injectable hydrogel as cell carriers: Mechanism of beta-hairpin peptide hydrogel shear thinning, immediate recovery and effects on encapsulated cell payload

    Science.gov (United States)

    Yan, Congqi

    To facilitate future biomedical treatment with localized delivery and higher therapy efficacy, much research effort has been devoted recently to the development of hydrogel biomaterials to transport a therapy to in vivo target sites via simple syringe or catheter injection. Most injectable hydrogel materials are free flowing precursor solutions ex vivo that become crosslinked into hydrogels once injected in vivo in response to exposure to environmental stimuli. However, properties of the final hydrogel formed in vivo are unpredictable due to possible leakage, dilution or change of injected gel precursor solution. As an alternate, more recent strategy for injectable hydrogel therapies, beta-hairpin peptide-based hydrogels are a class of injectable hydrogel solids with significant potential use in injectable therapies. These physical hydrogels can shear-thin and consequently flow as a low-viscosity material under a sufficient shear stress but immediately recover back into a solid upon removal of the stress, allowing them to be injected as preformed gel solids. The shear-thinning and immediate self-healing properties of self-assembled beta-hairpin peptide hydrogels enable a direct delivery of gel-encapsulated cells via benign injection to tissue defect sites with well-defined final gel properties in vivo. In this dissertation, mechanisms of gel shear-thinning and immediate recovery were elucidated by investigating gel behavior during and after flow via mechanical and structural characterizations. All studied beta-hairpin hydrogels shear-thin during flow (gel network fracture into large hydrogel domains) and instantly recover after cessation of flow (gel domains are percolated which immediately reforms the solid hydrogel). Importantly, hydrogel flow behavior was further studied in a capillary geometry that mimicked the actual situation of syringe injection. It was observed that all beta-hairpin peptide hydrogels investigated displayed a promising flow profile for

  4. Adrenaline Injection Plus Argon Plasma Coagulation versus Adrenaline Injection Plus Hemoclips for Treating High-Risk Bleeding Peptic Ulcers: A Prospective, Randomized Trial

    Directory of Open Access Journals (Sweden)

    Seyed Alireza Taghavi

    2009-01-01

    Full Text Available BACKGROUND/OBJECTIVE: Several combination endoscopic therapies are currently in use. The present study aimed to compare argon plasma coagulation (APC + adrenaline injection (AI with hemoclips + AI for the treatment of high-risk bleeding peptic ulcers.

  5. Calcium isotopic composition of high-latitude proxy carrier Neogloboquadrina pachyderma (sin.

    Directory of Open Access Journals (Sweden)

    A. Eisenhauer

    2009-01-01

    Full Text Available The accurate reconstruction of sea surface temperature (SST history in climate-sensitive regions (e.g. tropical and polar oceans became a challenging task in palaeoceanographic research. Biogenic shell carbonate SST proxies successfully developed for tropical regions often fail in cool water environments. Their major regional shortcomings and the cryptic diversity now found within the major high latitude proxy carrier Neogloboquadrina pachyderma (sin. highlight an urgent need to explore complementary SST proxies for these cool-water regions. Here we incorporate the genetic component into a calibration study of a new SST proxy for the high latitudes. We found that the calcium isotopic composition (δ44/40Ca of calcite from genotyped net catches and core-top samples of the planktonic foraminifera Neogloboquadrina pachyderma (sin. is related to temperature and unaffected by genetic variations. The temperature sensitivity has been found to be 0.17 (±0.02‰ per 1°C, highlighting its potential for downcore applications in open marine cool-water environments. Our results further indicate that in extreme polar environments, below a critical threshold temperature of 2.0 (±0.5°C associated with salinities below 33.0 (±0.5‰, a prominent shift in biomineralization affects the δ44/40Ca of genotyped and core-top N. pachyderma (sin., becoming insensitive to temperature. These findings highlight the need of more systematic calibration studies on single planktonic foraminiferal species in order to unravel species-specific factors influencing the temperature sensitivity of Ca isotope fractionation and to validate the proxies' applicability.

  6. Cooling Effect of Water Injection on a High-Temperature Supersonic Jet

    Directory of Open Access Journals (Sweden)

    Jing Li

    2015-11-01

    Full Text Available The high temperature and high pressure supersonic jet is one of the key problems in the design of solid rocket motors. To reduce the jet temperature and noise, cooling water is typically injected into the exhaust plume. Numerical simulations for the gas-liquid multiphase flow field with mixture multiphase model were developed and a series of experiments were carried out. By introducing the energy source terms caused by the vaporization of liquid water into the energy equation, a coupling solution was developed to calculate the multiphase flow field. The temperature data predictions agreed well with the experimental results. When water was injected into the plume, the high temperature core region area was reduced, and the temperature on the head face was much lower than that without water. The relationship between the reduction of temperature on the bottom plate and the momentum ratio is developed, which can be used to predict the cooling effect of water injection in many cases.

  7. Recycling Gene Carrier with High Efficiency and Low Toxicity Mediated by L-Cystine-Bridged Bis(β-cyclodextrin)s

    Science.gov (United States)

    Zhang, Yu-Hui; Chen, Yong; Zhang, Ying-Ming; Yang, Yang; Chen, Jia-Tong; Liu, Yu

    2014-12-01

    Constructing safe and effective gene delivery carriers is becoming highly desirable for gene therapy. Herein, a series of supramolecular crosslinking system were prepared through host-guest binding of adamantyl-modified low molecular weight of polyethyleneimine with L-cystine-bridged bis(β-cyclodextrin)s and characterized by 1H NMR titration, electron microscopy, zeta potential, dynamic light-scattering, gel electrophoresis, flow cytometry and confocal fluorescence microscopy. The results showed that these nanometersized supramolecular crosslinking systems exhibited higher DNA transfection efficiencies and lower cytotoxicity than the commercial DNA carrier gold standard (25 kDa bPEI) for both normal cells and cancer cells, giving a very high DNA transfection efficiency up to 54% for 293T cells. Significantly, this type of supramolecular crosslinking system possesses a number of enzyme-responsive disulfide bonds, which can be cleaved by reductive enzyme to promote the DNA release but recovered by oxidative enzyme to make the carrier renewable. These results demonstrate that these supramolecular crosslinking systems can be used as promising gene carriers.

  8. Recent Experimental Efforts on High-Pressure Supercritical Injection for Liquid Rockets and Their Implications

    Directory of Open Access Journals (Sweden)

    Bruce Chehroudi

    2012-01-01

    Full Text Available Pressure and temperature of the liquid rocket thrust chambers into which propellants are injected have been in an ascending trajectory to gain higher specific impulse. It is quite possible then that the thermodynamic condition into which liquid propellants are injected reaches or surpasses the critical point of one or more of the injected fluids. For example, in cryogenic hydrogen/oxygen liquid rocket engines, such as Space Shuttle Main Engine (SSME or Vulcain (Ariane 5, the injected liquid oxygen finds itself in a supercritical condition. Very little detailed information was available on the behavior of liquid jets under such a harsh environment nearly two decades ago. The author had the opportunity to be intimately involved in the evolutionary understanding of injection processes at the Air Force Research Laboratory (AFRL, spanning sub- to supercritical conditions during this period. The information included here attempts to present a coherent summary of experimental achievements pertinent to liquid rockets, focusing only on the injection of nonreacting cryogenic liquids into a high-pressure environment surpassing the critical point of at least one of the propellants. Moreover, some implications of the results acquired under such an environment are offered in the context of the liquid rocket combustion instability problem.

  9. Analysis of Precooling Injection Transient of Steam Generator for High Temperature Gas Cooled Reactor

    Directory of Open Access Journals (Sweden)

    Yan Wang

    2017-01-01

    Full Text Available After a postulated design basis accident leads high temperature gas cooled reactor to emergency shutdown, steam generator still remains with high temperature level and needs to be cooled down by a precooling before reactor restarts with clearing of fault. For the large difference of coolant temperature between inlet and outlet of steam generator in normal operation, the temperature distribution on the components of steam generator is very complicated. Therefore, the temperature descending rate of the components in steam generator needs to be limited to avoid the potential damage during the precooling stage. In this paper, a pebble-bed high temperature gas cooled reactor is modeled by thermal-hydraulic system analysis code and several postulated precooling injection transients are simulated and compared to evaluate their effects, which will provide support for the precooling design. The analysis results show that enough precooling injection is necessary to satisfy the precooling requirements, and larger mass flow rate of precooling water injection will accelerate the precooling process. The temperature decrease of steam generator is related to the precooling injection scenarios, and the maximal mass flow rate of the precooling injection should be limited to avoid the excessively quick temperature change of the structures in steam generator.

  10. High fructose intake fails to induce symptomatic adaptation but may induce intestinal carriers

    Directory of Open Access Journals (Sweden)

    Debra Heilpern

    2010-01-01

    Full Text Available Fructose has several interactions in man, including intolerance and promotion of some diseases. However, fructose in fruits and in prebiotics may be associated with benefits. Adaptation to regular fructose ingestion as defined for lactose could support a beneficial rather than a deleterious effect. This study was undertaken to evaluate symptomatic response and potential underlying mechanisms of fecal bacterial change and breath hydrogen response to short term regular fructose supplementation. Forty-five participants were recruited for a 3 day recall diet questionnaire and a 50 g fructose challenge. Breath hydrogen was measured for 4.5 hrs and symptoms were recorded. Thirty-eight subjects provided stool samples for analysis by selective culture of 4 groups of bacteria, including bifidobacteria and lactobacilli. Intolerant subjects returned a second time 15 days later. Ten of these served as controls and 16 received 30 g fructose twice a day. Ten of the latter returned 27 days later, after stopping fructose for a third challenge test. Student’s paired, unpaired t-tests and Pearson correlations were used. Significance was accepted at P<0.05. After fructose rechallenge there were no significant reductions in symptoms scores in volunteers in either the fructose supplemented or non supplemented groups. However, total breath hydrogen was reduced between test 1 and test 2 (P=0.03 or test 3 (P=0.04 in the group given fructose then discontinued, compared with controls. There were no statistically significant changes in bacterial numbers between test 2 and 1. This study shows that regular consumption of high dose fructose does not follow the lactose model of adaptation. Observed changes in hydrogen breath tests raise the possibility that intestinal carriers of fructose may be induced potentially aggravating medical problems attributed to fructose.

  11. Introduction of high nitrogen doped graphene as a new cationic carrier in electromembrane extraction.

    Science.gov (United States)

    Atarodi, Atefe; Chamsaz, Mahmoud; Moghaddam, Ali Zeraatkar; Tabani, Hadi

    2016-05-01

    This paper proposes for the first time, the use of high nitrogen doped graphene (HND-G) as a new cationic carrier for the enhancement of electromembrane extraction (EME) performance. Sensitivity of EME was improved by the modification of supported liquid membrane composition through the addition of HND-G into 1-octanol for the extraction of naproxen and sodium diclofenac as model acidic drugs. The comparison between HND-G-modified EME and conventional EME showed that HND-G could increase the overall partition coefficient of acidic drugs in the membrane due to the fact that HND-G acts as an ion pair reagent and there is an electrostatic interaction between positively charged HND-G and acidic drugs with negative charge. During the extraction, model acidic drugs migrated from a 10 mL aqueous sample solution (pH 9.6) through a thin layer of 1-octanol containing 0.6% w/v of HND-G that was impregnated in the pores of a hollow fiber, into a 30 μL basic aqueous acceptor solution (pH 12.3) present in the lumen of the hollow fiber. Equilibrium extraction conditions were obtained after 16 min of operation with the whole assembly agitated at 1000 rpm. Under the optimized conditions, the enrichment factors were between 238 and 322 and also the LODs ranged from 0.1 to 0.7 ng/mL in different samples. Finally, the applicability of this method was evaluated by the extraction and determination of drugs of interest in real urine samples. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Tolerability of High-Volume Subcutaneous Injections of a Viscous Placebo Buffer: A Randomized, Crossover Study in Healthy Subjects.

    Science.gov (United States)

    Dias, Clapton; Abosaleem, Bassam; Crispino, Caroline; Gao, Bing; Shaywitz, Adam

    2015-10-01

    Monoclonal antibody biotherapeutics are often administered by subcutaneous (SC) injection. Due to dose requirements and formulation limitations, SC injections >1 mL are often required. We used a viscous placebo buffer (5 cP), characteristic of a high-concentration antibody formulation, to investigate the effect of dose volume and injection rate on the tolerability of higher-volume SC injections. In this randomized, crossover, single-center study, 48 healthy adults received one 1.2-mL bolus injection over 5 s and three 3.5-mL injections over 1, 4, and 10 min in different abdominal quadrants, with each injection separated by approximately 2 h. The primary objective was to compare pain scores associated with the injections, immediately after administration and 1 h later, using a 100-mm visual analog scale (VAS). Secondary objectives included assessment of adverse events, including injection site reactions and swelling. Mean age was 38.4 (11.6) years and 20 subjects (42%) were female. Lowest mean VAS score was for the 10-min (6.83 mm) and highest for the 1-min injection (19.13 mm). One hour after administration, mean VAS scores were injections. Swelling was similar among the three 3.5-mL injections. After needle removal, leakage occurred following 14 (29%) 1.2-mL injections, eight (17%) 4-min injections, five (10%) 1-min injections, and four (8%) 10-min injections. Fifteen subjects (31%) experienced an adverse event, none of which was serious, fatal, or led to study discontinuation. All injection durations were well tolerated, suggesting a single large-volume SC injection of a biotherapeutic agent could be used instead of multiple injections.

  13. Charging effects on the carrier mobility in silicon-on-insulator wafers covered with a high-k layer

    Science.gov (United States)

    Halley, D.; Norga, G.; Guiller, A.; Fompeyrine, J.; Locquet, J. P.; Drechsler, U.; Siegwart, H.; Rossel, C.

    2003-11-01

    The carrier mobility μ in low-doped silicon-on-insulator wafers is found to be strongly modified by the deposition of a thin ZrO2 or SrZrO3 top layer grown by molecular-beam epitaxy. Pseudo-metal-oxide-semiconductor field-effect-transistor measurements performed on several samples clearly show a correlation between μ and the density of interface traps (Dit) at the Si/buried-oxide interface. The reduction of Dit by a forming gas anneal leads to a corresponding increase in mobility. Moreover, the high-k/Si interface can contribute to the total drain current via the creation of an inversion channel induced by trapped charges in the high-k layer. Using Hall-effect measurements, we took advantage of this additional current to evaluate the carrier mobility at the high-k/Si interface, without the need of a top gate electrode.

  14. High-pressure liquid chromatography with direct injection of gas sample.

    Science.gov (United States)

    Astanin, Anton I; Baram, Grigory I

    2017-06-09

    The conventional method of using liquid chromatography to determine the composition of a gaseous mixture entails dissolving vapors in a suitable solvent, then obtaining a chromatograph of the resulting solution. We studied the direct introduction of a gaseous sample into a C18 reversed-phase column, followed by separation of the components by HPLC with UV detection. Since the chromatography was performed at high pressure, vapors readily dissolved in the eluent and the substances separated in the column as effectively as in liquid samples. Samples were injected into the column in two ways: a) through the valve without a flow stop; b) after stopping the flow and relieving all pressure. We showed that an injectable gas volume could reach 70% of column dead volume. When an injected gaseous sample volume was less than 10% of the column dead volume, the resulting peaks were symmetrical and the column efficiency was high. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. A three-dimensional nitrogen-doped graphene structure: a highly efficient carrier of enzymes for biosensors.

    Science.gov (United States)

    Guo, Jingxing; Zhang, Tao; Hu, Chengguo; Fu, Lei

    2015-01-28

    In recent years, graphene-based enzyme biosensors have received considerable attention due to their excellent performance. Enormous efforts have been made to utilize graphene oxide and its derivatives as carriers of enzymes for biosensing. However, the performance of these sensors is limited by the drawbacks of graphene oxide such as slow electron transfer rate, low catalytic area and poor conductivity. Here, we report a new graphene-based enzyme carrier, i.e. a highly conductive 3D nitrogen-doped graphene structure (3D-NG) grown by chemical vapour deposition, for highly effective enzyme-based biosensors. Owing to the high conductivity, large porosity and tunable nitrogen-doping ratio, this kind of graphene framework shows outstanding electrical properties and a large surface area for enzyme loading and biocatalytic reactions. Using glucose oxidase (GOx) as a model enzyme and chitosan (CS) as an efficient molecular binder of the enzyme, our 3D-NG based biosensors show extremely high sensitivity for the sensing of glucose (226.24 μA mM(-1) m(-2)), which is almost an order of magnitude higher than those reported in most of the previous studies. The stable adsorption and outstanding direct electrochemical behaviour of the enzyme on the nanocomposite indicate the promising application of this 3D enzyme carrier in high-performance electrochemical biosensors or biofuel cells.

  16. Polaron hopping mediated by nuclear tunnelling in semiconducting polymers at high carrier density

    NARCIS (Netherlands)

    Asadi, Kamal; Kronemeijer, Auke J.; Cramer, Tobias; Koster, L. Jan Anton; Blom, Paul W. M.; de Leeuw, Dago M.

    2013-01-01

    The transition rate for a single hop of a charge carrier in a semiconducting polymer is assumed to be thermally activated. As the temperature approaches absolute zero, the predicted conductivity becomes infinitesimal in contrast to the measured finite conductivity. Here we present a uniform descript

  17. Injection molding simulation with variothermal mold temperature control of highly filled polyphenylene sulfide

    Science.gov (United States)

    Birkholz, A.; Tschiersky, M.; Wortberg, J.

    2015-05-01

    For the installation of a fuel cell stack to convert chemical energy into electricity it is common to apply bipolar plates to separate and distribute reaction gases and cooling agents. For reducing manufacturing costs of bipolar plates a fully automated injection molding process is examined. The high performance thermoplastic matrix material, polyphenylene sulfide (PPS), defies against the chemical setting and the operation temperature up to 200 °C. To adjust also high electrical and thermal conductivity, PPS is highly filled with various carbon fillers up to an amount of 65 percentage by volume. In the first step two different structural plates (one-sided) with three different gate heights and molds are designed according to the characteristics of a bipolar plate. To cope with the approach that this plate should be producible on standard injection molding machines with variothermal mold temperature control, injection molding simulation is used. Additionally, the simulation should allow to formulate a quality prediction model, which is transferrable to bipolar plates. Obviously, the basis for a precise simulation output is an accurate description of the material properties and behavior of the highly filled compound. This, the design of the structural plate and mold and the optimization via simulation is presented, as well. The influence of the injection molding process parameters, e.g. injection time, cycle times, packing pressure, mold temperature, and melt temperature on the form filling have been simulated to determine optimal process conditions. With the aid of the simulation and the variothermal mold temperature control it was possible to reduce the required melt temperature below the decomposition temperature of PPS. Thereby, hazardous decomposition products as hydrogen sulfide are obviated. Thus, the health of the processor, the longevity of the injection molding machine as well as the material and product properties can be protected.

  18. Influences of Injection Barrier and Mobility on Recombination Rate and Zone in OLEDs

    Institute of Scientific and Technical Information of China (English)

    ZHU Ru-hui; LI Hong-jian; YAN Ling-ling; HU Jin; PAN Yan-zhi

    2006-01-01

    The luminous efficiency of organic light-emitting devices depends on the recombination probability of electrons injected at the cathode and holes at the anode. A theoretical model to calculate the distribution of current densities and the recombination rate in organic single layer devices is presented taking into account the charge injection process at each electrode, charge transport and recombination in organic layer. The calculated results indicate that efficient single-layer devices are possible by adjusting the barrier heights at two electrodes and the carrier mobilities. Lowering the barrier heights can improve the electroluminescent(EL) efficiency pronouncedly in many cases, and efficient devices are still possible using an ohmic contact to inject the low mobility carrier, and a contact limited contact to inject the high mobility carrier. All in all, high EL efficiency needs to consider sufficient recombination, enough injected carriers and well transport.

  19. Flow-induced birefringence: the hidden PSF killer in high performance injection-molded plastic optics

    Science.gov (United States)

    Chidley, Matthew D.; Tkaczyk, Tomasz; Kester, Robert; Descour, Michael R.

    2006-02-01

    A 7-mm OD, NA = 1 water immersion injection-molded plastic endoscope objective has been fabricated for a laser scanning fiber confocal reflectance microscope (FCRM) system specifically designed for in vivo detection of cervical and oral pre-cancers. Injection-molded optics was selected for the ability to incorporate aspheric surfaces into the optical design and its high volume capabilities. Our goal is high performance disposable endoscope probes. This objective has been built and tested as a stand-alone optical system, a Strehl ratio greater than 0.6 has been obtained. One of the limiting factors of optical performance is believed to be flow-induced birefringence. We have investigated different configurations for birefringence visualization and believe the circular polariscope is most useful for inspection of injection-molded plastic optics. In an effort to decrease birefringence effects, two experiments were conducted. They included: (1) annealing of the optics after fabrication and (2) modifying the injection molding prameters (packing pressures, injection rates, and hold time). While the second technique showed improvement, the annealing process could not improve quality without physically warping the lenses. Therefore, to effectively reduce flow-induced birefringence, molding conditions have to be carefully selected. These parameters are strongly connected to the physical part geometry. Both optical design and fabrication technology have to be considered together to deliver low birefringence while maintaining the required manufacturing tolerances. In this paper we present some of our current results that illustrate how flow-induced birefringence can degrade high performance injection-molded plastic optical systems.

  20. Carrier lifetimes in thin-film photovoltaics

    Science.gov (United States)

    Baek, Dohyun

    2015-09-01

    The carrier lifetimes in thin-film solar cells are reviewed and discussed. Shockley-Read-Hall recombination is dominant at low carrier density, Auger recombination is dominant under a high injection condition and high carrier density, and surface recombination is dominant under any conditions. Because the surface photovoltage technique is insensitive to the surface condition, it is useful for bulk lifetime measurements. The photoconductance decay technique measures the effective recombination lifetime. The time-resolved photoluminescence technique is very useful for measuring thin-film semiconductor or solar-cell materials lifetime, because the sample is thin, other techniques are not suitable for measuring the lifetime. Many papers have provided time-resolved photoluminescence (TRPL) lifetimes for copper-indium-gallium-selenide (CIGS) and CdTe thin-film solar cell. The TRPL lifetime strongly depends on open-circuit voltage and conversion efficiency; however, the TRPL life time is insensitive to the short-circuit current.

  1. Properties of high density polyethylene – Paulownia wood flour composites via injection molding

    Science.gov (United States)

    Paulownia wood (PW) flour is evaluated as a bio-based fiber reinforcement. Composites of high density polyethylene (HDPE), 25% by weight of PW, and either 0% or 5% by weight of maleated polyethylene (MAPE) were produced by twin screw compounding followed by injection molding. Molded test composite...

  2. Microplasma patterning of bonded microchannels using high-precision "injected" electrodes.

    Science.gov (United States)

    Priest, Craig; Gruner, Philipp J; Szili, Endre J; Al-Bataineh, Sameer A; Bradley, James W; Ralston, John; Steele, David A; Short, Robert D

    2011-02-07

    A rapid, high-precision method for localised plasma-treatment of bonded PDMS microchannels is demonstrated. Patterned electrodes were prepared by injection of molten gallium into preformed microchannel guides. The electrode guides were prepared without any additional fabrication steps compared to conventional microchannel fabrication. Alignment of the "injected" electrodes is precisely controlled by the photomask design, rather than positioning accuracy of alignment tools. Surface modification is detected using a fluorescent dye (Rhodamine B), revealing a well-defined micropattern with regions less than 100 µm along the length of the microchannel.

  3. Dynamical behavior of rapeseed oil and methyl ester of rapeseed oil during high-pressure injection

    Science.gov (United States)

    Bambuleac, Dumitru

    2012-04-01

    Fuels' physical properties such as density, viscosity, speed of sound and bulk modulus have and important influence on the engine performance. This work will study the behavior of the rapeseed oil and methyl ester of rapeseed oil during high-pressure injection. Several aspects of the injection and combustion process will be analyzed in order to try to find out in what manner these aspects are influenced by the above-mentioned fuels' characteristics and also by different operating regimes. In such a way, some features of the technical efficiency of the two non-conventional diesel fuels will be determined. As a reference, it will serve the results from testing classical diesel.

  4. Investigation of caprock integrity during high-volume injection into the Utsira formation

    Science.gov (United States)

    Gasda, S. E.; Wangen, M.; Bjørnarå, T. I.

    2015-12-01

    The Utsira formation is a large offshore saline aquifer in the North Sea that is considered a likely candidate for storage of CO2 emissions. Currently, the Utsira is host to the longest operating CO2 storage project, the Sleipner project, which has injected 1 Mt CO2/y since 1996. The entire Utsira formation has an estimated storage capacity of 15 Gt, which is equal to 300 Sleipner-sized projects in simultaneous operation for the next 50 years. Injectivity into the Utsira is exceptionally good, and no pressurization has been observed at Sleipner. The formation is over 100-m thick and comprised of unconsolidated sand with high porosity and permeability (30-40% and 1-3 Darcy). The Nordland shale has been characterized as a high-quality seal that is regionally thick, extensive and absent of significant faults. Significant scale-up of CO2 injection into the Utsira is required to increase storage of regional CO2 emissions well beyond what is currently stored today. Full utilization of the Utsira storage capacity would result in injection rates >100 Mt/y, significantly larger than Sleipner. Despite the lack of pressure effects at Sleipner, higher injection rates will likely lead to pressure build-up in the Utsira. Relatively little is known about the magnitude of pressure build-up and resulting impact on caprock integrity with high-volume injection. The problem is complex, involving multiphase flow and mechanical deformation of the storage reservoir and the surrounding formations, and covers large spatial scales, ranging several hundred kilometers in lateral extent. There are significant challenges in applying fully coupled hydromechanical simulators to problems of this scale. The computational effort required to solve a resolved is significant, and efforts to reduce the complexity of the model are needed. In this study, simplified modeling approaches are investigated. A reduced order multiphase flow model coupled with a geomechanical model results in greater efficiency

  5. High Accuracy Three-dimensional Simulation of Micro Injection Moulded Parts

    DEFF Research Database (Denmark)

    Tosello, Guido; Costa, F. S.; Hansen, Hans Nørgaard

    2011-01-01

    Micro injection moulding (μIM) is the key replication technology for high precision manufacturing of polymer micro products. Data analysis and simulations on micro-moulding experiments have been conducted during the present validation study. Detailed information about the μIM process was gathered...... and used to establish a reliable simulation methodology suitable for μIM parts. Various Simulation set-up parameters that have been considered in order to improve the simulation accuracy: injection speed profile, melt and mould temperatures, 3D mesh, material rheology, inertia effect and shrinkage...

  6. High voltage surface potential measurements in ambient conditions: Application to organic thin-film transistor injection and transport characterization

    Science.gov (United States)

    de Tournadre, Grégoire; Reisdorffer, Frédéric; Rödel, Reinhold; Simonetti, Olivier; Klauk, Hagen; Giraudet, Louis

    2016-03-01

    A scanning surface potential measurement technique suited for thin-film devices operating under high voltages is reported. A commercial atomic force microscope has been customized to enable a feedback-controlled and secure surface potential measurement based on phase-shift detection under ambient conditions. Measurements of the local potential profile along the channel of bottom-gate organic thin-film transistors (TFTs) are shown to be useful to disentangle the contributions from the channel and contacts to the device performance. Intrinsic contact current-voltage characteristics have been measured on bottom-gate, top-contact (staggered) TFTs based on the small-molecule semiconductor dinaphtho[2,3-b:2',3-f]thieno[3,2-b]thiophene (DNTT) and on bottom-gate, bottom-contact (coplanar) TFTs based on the semiconducting polymer polytriarylamine (PTAA). Injection has been found to be linear in the staggered DNTT TFTs and nonlinear in the coplanar PTAA TFTs. In both types of TFT, the injection efficiency has been found to improve with increasing gate bias in the accumulation regime. Contact resistances as low as 130 Ω cm have been measured in the DNTT TFTs. A method that eliminates the influence of bias-stress-induced threshold-voltage shifts when measuring the local charge-carrier mobility in the channel is also introduced, and intrinsic channel mobilities of 1.5 cm2 V-1 s-1 and 1.1 × 10-3 cm2 V-1 s-1 have been determined for DNTT and PTAA. In both semiconductors, the mobility has been found to be constant with respect to the gate bias. Despite its simplicity, the Kelvin probe force microscopy method reported here provides robust and accurate surface potential measurements on thin-film devices under operation and thus paves the way towards more extensive studies of particular interest in emerging fields of solid-state electronics.

  7. Development of High Efficiency and Low Emission Low Temperature Combustion Diesel Engine with Direct EGR Injection

    Science.gov (United States)

    Ho, R. J.; Kumaran, P.; Yusoff, M. Z.

    2016-03-01

    Focus on energy and environmental sustainability policy has put automotive research & development directed to developing high efficiency and low pollutant power train. Diffused flame controlled diesel combustion has reach its limitation and has driven R&D to explore other modes of combustions. Known effective mode of combustion to reduce emission are Low temperature combustion (LTC) and homogeneous charge combustion ignition by suppressing Nitrogen Oxide(NOx) and Particulate Matter (PM) formation. The key control to meet this requirement are chemical composition and distribution of fuel and gas during a combustion process. Most research to accomplish this goal is done by manipulating injected mass flow rate and varying indirect EGR through intake manifold. This research paper shows viable alternative direct combustion control via co-axial direct EGR injection with fuel injection process. A simulation study with OpenFOAM is conducted by varying EGR injection velocity and direct EGR injector diameter performed with under two conditions with non-combustion and combustion. n-heptane (C7H16) is used as surrogate fuel together with 57 species 290 semi-detailed chemical kinetic model developed by Chalmers University is used for combustion simulation. Simulation result indicates viability of co-axial EGR injection as a method for low temperature combustion control.

  8. Endoscopic Injection Therapy in Bleeding Peptic Ulcers. Low Mortality in a High Risk Population

    Directory of Open Access Journals (Sweden)

    Joaqulm Balanzó

    1992-01-01

    Full Text Available Endoscoric injection therapy was performed in 341 patients consecutively admitted with a bleeding peptic ulcer at high risk of further hemorrhage, assessed by the presence of active arterial bleeding or a nonbleeding visible vessel at emergency endoscopy. Initial hemostasis was achieved in 111 of 119 actively bleeding patients (93%. Rebleeding ocurred in 75 cases (23%, at a mean interval of 53±52 h. A second emergency injection was a ttempted in 36 therapeutic failures, and was successful in 20 (55%. Emergency surgery was finally required in 52 patients (15%. Overall mortality was 4.9%. Major complications occurred in four patients (1.2% (two perforations and two aspiration pneumonia; therefore, injection therapy is an effective and simple method for treating bleeding ulcers, achieving the initial control of hemorrhage in a majority of cases although the rate of further hemorrhage is not negligible and complications are not irrelevant.

  9. Analysis of gas turbine engines using water and oxygen injection to achieve high Mach numbers and high thrust

    Science.gov (United States)

    Henneberry, Hugh M.; Snyder, Christopher A.

    1993-01-01

    An analysis of gas turbine engines using water and oxygen injection to enhance performance by increasing Mach number capability and by increasing thrust is described. The liquids are injected, either separately or together, into the subsonic diffuser ahead of the engine compressor. A turbojet engine and a mixed-flow turbofan engine (MFTF) are examined, and in pursuit of maximum thrust, both engines are fitted with afterburners. The results indicate that water injection alone can extend the performance envelope of both engine types by one and one-half Mach numbers at which point water-air ratios reach 17 or 18 percent and liquid specific impulse is reduced to some 390 to 470 seconds, a level about equal to the impulse of a high energy rocket engine. The envelope can be further extended, but only with increasing sacrifices in liquid specific impulse. Oxygen-airflow ratios as high as 15 percent were investigated for increasing thrust. Using 15 percent oxygen in combination with water injection at high supersonic Mach numbers resulted in thrust augmentation as high as 76 percent without any significant decrease in liquid specific impulse. The stoichiometric afterburner exit temperature increased with increasing oxygen flow, reaching 4822 deg R in the turbojet engine at a Mach number of 3.5. At the transonic Mach number of 0.95 where no water injection is needed, an oxygen-air ratio of 15 percent increased thrust by some 55 percent in both engines, along with a decrease in liquid specific impulse of 62 percent. Afterburner temperature was approximately 4700 deg R at this high thrust condition. Water and/or oxygen injection are simple and straightforward strategies to improve engine performance and they will add little to engine weight. However, if large Mach number and thrust increases are required, liquid flows become significant, so that operation at these conditions will necessarily be of short duration.

  10. High intrinsic carrier mobility and photon absorption in the perovskite CH3NH3PbI3.

    Science.gov (United States)

    Wang, Youwei; Zhang, Yubo; Zhang, Peihong; Zhang, Wenqing

    2015-05-07

    The carrier transport and optical properties of the hybrid organic-inorganic perovskite CH3NH3PbI3 are investigated using first-principles approaches. We found that the electron and hole mobilities could reach surprisingly high values of 7-30 × 10(3) and 1.5-5.5 × 10(3) cm(2) V(-1) s(-1), respectively, and both are estimated to be much higher than the current experimental measurements. The high carrier mobility is ascribed to the intrinsically small effective masses of anti-bonding band-edge states. The above results imply that there is still space to improve the performance of related solar cells. This material also has a sharp photon absorption edge and an absorption coefficient as high as 10(5) cm(-1), both of which contribute to effective utilization of solar radiation. Although band-edge states are mainly derived from the inorganic ions of Pb and I, thermal movement of the organic base has indirect influences on the bandgap and carrier effective masses, resulting in the temperature-dependent solar cell efficiencies.

  11. Electronic characteristics of p-type transparent SnO monolayer with high carrier mobility

    Science.gov (United States)

    Du, Juan; Xia, Congxin; Liu, Yaming; Li, Xueping; Peng, Yuting; Wei, Shuyi

    2017-04-01

    More recently, two-dimensional (2D) SnO nanosheets are attaching great attention due to its excellent carrier mobility and transparent characteristics. Here, the stability, electronic structures and carrier mobility of SnO monolayer are investigated by using first-principles calculations. The calculations of the phonon dispersion spectra indicate that SnO monolayer is dynamically stable. Moreover, the band gap values are decreased from 3.93 eV to 2.75 eV when the tensile strain is applied from 0% to 12%. Interestingly, SnO monolayer is a p-type transparent semiconducting oxide with hole mobility of 641 cm2 V-1 s-1, which is much higher than that of MoS2 monolayer. These findings make SnO monolayer becomes a promising 2D material for applications in nanoelectronic devices.

  12. Highly immunogenic and fully synthetic peptide-carrier constructs targetting GnRH

    DEFF Research Database (Denmark)

    Beekman, N.J.C.M.; Schaaper, W.M.M.; Turkstra, J.A.;

    1999-01-01

    using a tandem GnRH peptide as a branched polylysine construct, a lipo-thioester, a lipo-amide or a KLH conjugate in CFA, and the lipoamide peptide in an immuno-stimulating complex (ISCOM). We found the lipo-thioester and the branched polylysine constructs to be the most effective carrier molecules...... for the induction of antibodies against GnRH and immunocastration of pigs....

  13. Band gap tunning in BN-doped graphene systems with high carrier mobility

    KAUST Repository

    Kaloni, T. P.

    2014-02-17

    Using density functional theory, we present a comparative study of the electronic properties of BN-doped graphene monolayer, bilayer, trilayer, and multilayer systems. In addition, we address a superlattice of pristine and BN-doped graphene. Five doping levels between 12.5% and 75% are considered, for which we obtain band gaps from 0.02 eV to 2.43 eV. We demonstrate a low effective mass of the charge carriers.

  14. Thermoplastic polyurethanes for the manufacturing of highly dosed oral sustained release matrices via hot melt extrusion and injection molding.

    Science.gov (United States)

    Claeys, Bart; Vervaeck, Anouk; Hillewaere, Xander K D; Possemiers, Sam; Hansen, Laurent; De Beer, Thomas; Remon, Jean Paul; Vervaet, Chris

    2015-02-01

    This study evaluated thermoplastic polyurethanes (TPUR) as matrix excipients for the production of oral solid dosage forms via hot melt extrusion (HME) in combination with injection molding (IM). We demonstrated that TPURs enable the production of solid dispersions - crystalline API in a crystalline carrier - at an extrusion temperature below the drug melting temperature (Tm) with a drug content up to 65% (wt.%). The release of metoprolol tartrate was controlled over 24h, whereas a complete release of diprophylline was only possible in combination with a drug release modifier: polyethylene glycol 4000 (PEG 4000) or Tween 80. No burst release nor a change in tablet size and geometry was detected for any of the formulations after dissolution testing. The total matrix porosity increased gradually upon drug release. Oral administration of TPUR did not affect the GI ecosystem (pH, bacterial count, short chain fatty acids), monitored via the Simulator of the Human Intestinal Microbial Ecosystem (SHIME). The high drug load (65 wt.%) in combination with (in vitro and in vivo) controlled release capacity of the formulations, is noteworthy in the field of formulations produced via HME/IM.

  15. Low-temperature carrier dynamics in high-mobility organic transistors of alkylated dinaphtho-thienothiophene as investigated by electron spin resonance

    Energy Technology Data Exchange (ETDEWEB)

    Kinoshita, Yutaro; Tanaka, Hisaaki, E-mail: htanaka@nuap.nagoya-u.ac.jp; Kuroda, Shin-ichi [Department of Applied Physics, Nagoya University, Chikusa, Nagoya 464-8603 (Japan); Shimoi, Yukihiro [Nanosystem Research Institute (NRI), National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568 (Japan); Takimiya, Kazuo [Emergent Molecular Function Research Group, RIKEN Center for Emergent Matter Science (CEMS), Wako, Saitama 351-0198 (Japan)

    2014-07-21

    Charge carriers in high-mobility organic thin-film transistors of alkylated dinaphtho-thienothiophene (C{sub 10}-DNTT) have been directly observed by field-induced electron spin resonance (FI-ESR) down to 4 K. FI-ESR spectra of π-electron hole carriers of C{sub 10}-DNTT exhibited clear anisotropy, indicating a highly organized end-on molecular orientation at the device interface. The intra-grain and inter-grain carrier motion were probed by the motional narrowing effect of the ESR spectra. The intra-grain motion was clearly observed even at 4 K, showing intrinsically high mobility of C{sub 10}-DNTT crystallites. On the other hand, significantly low activation energy of ∼10 meV for inter-grain carrier hopping, compared with pristine DNTT, was observed, which shows that the alkyl substitution drastically enhances the carrier mobility of DNTT system.

  16. Intensification of highly exothermic fast reaction by multi-injection microstructured reactor

    OpenAIRE

    Haber, Julien; Jiang, Bo; Maeder, Thomas; Borhani, Navid; Thome, John; Renken, Albert; Kiwi-Minsker, Lioubov

    2014-01-01

    Microstructured reactors (MSR) with characteristic dimensions below 100 μm are warranted to maintain close to isothermal conditions when carrying out quasi-instantaneous highly exothermic reactions. Unfortunately, such small dimensions increase the risk of clogging, create high pressure drop and are costly to number-up. The multi-injection (MI) MSR, where one of the reactants is added stepwise along the reactor length, allows working with larger dimensions (diameter >500 μm) while maintaining...

  17. Specific mold filling characteristics of highly filled phenolic injection molding compounds

    OpenAIRE

    Scheffler, Thomas; Englich, Sascha; Gehde, Michael

    2016-01-01

    Thermosets show excellent mechanical properties and chemical resistance (for most automotive fluids) even at high temperatures up to 300 °C. Furthermore they can be highly efficient processed by injection molding. So they should be particularly suited for e.g. under the bonnet applications. However, the reality shows that thermosets are, except fiber reinforced composites, heavily underrepresented in technical applications. E.g. thermosetting components only account 0,2 % to a vehicle’s weigh...

  18. Aircraft Carriers

    DEFF Research Database (Denmark)

    Nødskov, Kim; Kværnø, Ole

    There are many indications that China is actively researching the design of an aircraft carrier. It is unknown whether China will initiate the actual acquisition of a carrier, but the indications that are available of their research into aircraft carriers and carrier-capable aircraft, as well...... as their purchases of aircraft carrier systems, makes it more than likely that the country is preparing such an acquisition. China has territorial disputes in the South China Sea over the Spratly Islands and is also worried about the security of its sea lines of communications, by which China transports the majority...... of its foreign trade, as well as its oil imports, upon which the country is totally dependent. China therefore has good reasons for acquiring an aircraft carrier to enable it to protect its national interests. An aircraft carrier would also be a prominent symbol of China’s future status as a great power...

  19. High carrier mobility of CoPc wires based field-effect transistors using bi-layer gate dielectric

    Directory of Open Access Journals (Sweden)

    Murali Gedda

    2013-11-01

    Full Text Available Polyvinyl alcohol (PVA and anodized Al2O3 layers were used as bi-layer gate for the fabrication of cobalt phthalocyanine (CoPc wire base field-effect transistors (OFETs. CoPc wires were grown on SiO2 surfaces by organic vapor phase deposition method. These devices exhibit a field-effect carrier mobility (μEF value of 1.11 cm2/Vs. The high carrier mobility for CoPc molecules is attributed to the better capacitive coupling between the channel of CoPc wires and the gate through organic-inorganic dielectric layer. Our measurements also demonstrated the way to determine the thicknesses of the dielectric layers for a better process condition of OFETs.

  20. Single Carrier Cyclic Prefix-Assisted CDMA System with Frequency Domain Equalization for High Data Rate Transmission

    Directory of Open Access Journals (Sweden)

    Chin Francois

    2004-01-01

    Full Text Available Multiple-access interference and interfinger interference limit the capacity of conventional single-carrier DS-CDMA systems. Even though multicarrier CDMA posses the advantages of conventional CDMA and OFDM, it suffers from two major implementation difficulties such as peak-to-average power ratio and high sensitivity to frequency offset and RF phase noise. A novel approach based on single-carrier cyclic prefix-assisted CDMA has been proposed to overcome the disadvantages of single-carrier CDMA and multicarrier modulation. The usefulness of the proposed approach for high-speed packet access with simplified channel estimation procedures are investigated in this paper. The paper also proposes a data-dependent pilot structure for the downlink transmission of the proposed system for enhancing pilot-assisted channel estimation in frequency domain. The performance of the proposed pilot structure is compared against the data-independent common pilot structure. The proposed system is extensively simulated for different channel parameters with different channel estimation and equalization methods and the results are compared against conventional multicarrier CDMA systems with identical system specifications.

  1. Single Carrier Cyclic Prefix-Assisted CDMA System with Frequency Domain Equalization for High Data Rate Transmission

    Directory of Open Access Journals (Sweden)

    Madhukumar A. S.

    2004-01-01

    Full Text Available Multiple-access interference and interfinger interference limit the capacity of conventional single-carrier DS-CDMA systems. Even though multicarrier CDMA posses the advantages of conventional CDMA and OFDM, it suffers from two major implementation difficulties such as peak-to-average power ratio and high sensitivity to frequency offset and RF phase noise. A novel approach based on single-carrier cyclic prefix-assisted CDMA has been proposed to overcome the disadvantages of single-carrier CDMA and multicarrier modulation. The usefulness of the proposed approach for high-speed packet access with simplified channel estimation procedures are investigated in this paper. The paper also proposes a data-dependent pilot structure for the downlink transmission of the proposed system for enhancing pilot-assisted channel estimation in frequency domain. The performance of the proposed pilot structure is compared against the data-independent common pilot structure. The proposed system is extensively simulated for different channel parameters with different channel estimation and equalization methods and the results are compared against conventional multicarrier CDMA systems with identical system specifications.

  2. The indicating FTA elute cartridge a solid sample carrier to detect high-risk HPV and high-grade cervical lesions

    NARCIS (Netherlands)

    Bie, R.P. de; Schmeink, C.E.; Bakkers, J.M.J.E.; Snijders, P.J.L.M.; Quint, W.G.V.; Massuger, L.F.A.G.; Bekkers, R.L.M.; Melchers, W.J.G.

    2011-01-01

    The clinically validated high-risk human papillomavirus (hrHPV) Hybrid Capture 2 (HC2) and GP5+/6+-PCR assays were analyzed on an Indicating FTA Elute cartridge (FTA cartridge). The FTA cartridge is a solid dry carrier that allows safe transport of cervical samples. FTA cartridge samples were

  3. Urban malaria in the Brazilian Western Amazon Region I: high prevalence of asymptomatic carriers in an urban riverside district is associated with a high level of clinical malaria

    Directory of Open Access Journals (Sweden)

    Mauro Shugiro Tada

    2007-06-01

    Full Text Available Cross sectional studies on malaria prevalence was performed in 2001, 2002, and 2004 in Vila Candelária, an urban riverside area of Porto Velho, Rondônia, in the Brazilian Western Amazon, followed by longitudinal surveys on malaria incidence. Vila Candelária is a working class district, provided with electricity, water supply, and basic sanitation. Previous preliminary surveys indicated high malaria incidence in this community. At the end of year 2000 regular diagnostic and treatment measures for malaria were introduced, with active search of febrile cases among residents. Despite of both rapid treatment of cases and relative good sanitary and housing conditions, the malaria incidence persisted at high levels during the following years with an annual parasite index of 150 to 300/1000 inhabitants. Parasite surveys in 2001, 2002, and 2004 achieved through microscopy and polymerase chain reaction to diagnose malaria showed a constant high prevalence of asymptomatic carriers for both Plasmodium falciparum and P. vivax parasites. It was concluded that asymptomatic carriers represent an important reservoirs of parasites and that the carriers might contribute to maintaining the high level of transmission. Comparing our findings to similar geo-demographic situations found in other important urban communities of the Brazilian Amazon, we propose that asymptomatic carriers could explain malaria's outbreaks like the one recently observed in Manaus.

  4. Influence of Powder Injection Parameters in High-Pressure Cold Spray

    Science.gov (United States)

    Ozdemir, Ozan C.; Widener, Christian A.

    2017-08-01

    High-pressure cold spray systems are becoming widely accepted for use in the structural repair of surface defects of expensive machinery parts used in industrial and military equipment. The deposition quality of cold spray repairs is typically validated using coupon testing and through destructive analysis of mock-ups or first articles for a defined set of parameters. In order to provide a reliable repair, it is important to not only maintain the same processing parameters, but also to have optimum fixed parameters, such as the particle injection location. This study is intended to provide insight into the sensitivity of the way that the powder is injected upstream of supersonic nozzles in high-pressure cold spray systems and the effects of variations in injection parameters on the nature of the powder particle kinetics. Experimentally validated three-dimensional computational fluid dynamics (3D CFD) models are implemented to study the particle impact conditions for varying powder feeder tube size, powder feeder tube axial misalignment, and radial powder feeder injection location on the particle velocity and the deposition shape of aluminum alloy 6061. Outputs of the models are statistically analyzed to explore the shape of the spray plume distribution and resulting coating buildup.

  5. Influence of Powder Injection Parameters in High-Pressure Cold Spray

    Science.gov (United States)

    Ozdemir, Ozan C.; Widener, Christian A.

    2017-10-01

    High-pressure cold spray systems are becoming widely accepted for use in the structural repair of surface defects of expensive machinery parts used in industrial and military equipment. The deposition quality of cold spray repairs is typically validated using coupon testing and through destructive analysis of mock-ups or first articles for a defined set of parameters. In order to provide a reliable repair, it is important to not only maintain the same processing parameters, but also to have optimum fixed parameters, such as the particle injection location. This study is intended to provide insight into the sensitivity of the way that the powder is injected upstream of supersonic nozzles in high-pressure cold spray systems and the effects of variations in injection parameters on the nature of the powder particle kinetics. Experimentally validated three-dimensional computational fluid dynamics (3D CFD) models are implemented to study the particle impact conditions for varying powder feeder tube size, powder feeder tube axial misalignment, and radial powder feeder injection location on the particle velocity and the deposition shape of aluminum alloy 6061. Outputs of the models are statistically analyzed to explore the shape of the spray plume distribution and resulting coating buildup.

  6. [Dissemination pathways in high-pressure injection injuries of the hand: an experimental animal model].

    Science.gov (United States)

    Bekler, Halil; Gökçe, Alper; Beyzadeoğlu, Tahsin

    2007-01-01

    High-pressure injection injuries of the hand may compromise the function of the hand or even result in amputations. Based on our clinical observations, we aimed to demonstrate neurovascular dissemination in an animal model. Ten adult New Zealand rabbits with a mean weight of 200 g were used. Under xylazine-ketamine anesthesia and using a triple connection system, the rabbits were injected one milliliter of black Indian ink in the third finger tip of the upper limbs at 4 atmospheric pressure. The rabbits were sacrificed via intracardiac injections for transhumeral amputation of all the upper limbs. All amputations were fixed in 10% formalin, decalcified, and specimens obtained from fingers and distal and proximal regions of the wrist were stained with hematoxylin and eosin for histopathologic examination. Transverse sections of the third finger showed subcutaneous deposition of Indian ink particularly in the pulp in all the specimens. In addition, all specimens from the distal wrist showed penetration into fascia, tendon sheaths, and neurovascular bundles of the third finger. Our results suggest that, in addition to the tissues mentioned in the literature, neurovascular bundles are primarily and seriously affected by high-pressure injection injuries of the hand.

  7. Therapeutic effects of high molecular weight hyaluronan injections for tendinopathy in a rat model.

    Science.gov (United States)

    Yoshida, Mamoru; Funasaki, Hiroki; Kubota, Makoto; Marumo, Keishi

    2015-01-01

    Tendinopathy is the most common tendon disorder. The etiology is still uncertain, and the disorder poses many therapeutic problems. In a few clinical studies, analgesic effects of high molecular weight hyaluronan (HMW HA) injections were observed, but the underlying mechanisms were not elucidated. In the present study, we analyzed the therapeutic effects of hyaluronan injections for tendinopathy in an animal model. We made the tendinopathy rat model using a rodent treadmill machine. Rats with tendinopathy were injected with HMW HA (HA group), normal saline (NS group), or nothing (control group) into the space between the patellar tendon and the fat pad bilaterally, or were injected with HMW HA into the right knees and with saline to the left knees (HA/NS group), 5 times every 4 days. To assess the pain-relieving effect of HA, the spontaneous locomotor activities at night (12 h) and weight bearing of hind paws were measured every day. Histological sections of the patellar tendon stained with hematoxylin-eosin or prepared by TdT-mediated dUTP nick end labeling were microscopically analyzed. The number of spontaneous locomotor activities in the HA group was significantly larger than those in NS or control groups, and in the HA group they recovered up to a healthy level. The percent weight distribution of the right hind paws was significantly increased along with the number of injections. On histologic examinations, the numbers of microtears, laminations, or apoptotic cells in the patellar tendons in the HA group were significantly lower than those in the NS or the control groups. The injections of HMW HA were effective for pain relief and for partial restoration of the patellar tendon in our tendinopathy rat model, and thus may become an effective therapeutic modality for the disease.

  8. First-principle theory of high field carrier transport in semiconductors with application to the study of avalanche photodiodes

    Science.gov (United States)

    Moresco, Michele

    2011-12-01

    The objective of this thesis work is twofold: to present a theoretical framework to study high-field carrier transport in semiconductor materials and to provide a deep understanding of the transport properties of GaN and HgCdTe. The validation of this model is performed by applying it to the study of Avalanche Photodiodes. The model we developed is based on Monte Carlo techniques and it includes the full details of the band structure, derived from the empirical pseudopotential method (EPM), and a numerically calculated impact ionization transition rate based on a wave-vector dependent dielectric function. The nonpolar carrier-phonon interaction is treated within the framework of the rigid pseudoion (RPI) approximation using ab initio techniques to determine the phonon dispersion relation. The calculated phonon scattering rates are consistent with the electronic structure and the phonon dispersion relation thus removing adjustable parameters such as deformation potential coefficients. Band-to-band carrier tunneling has been treated by solving the time-dependent multiband Schroedinger equation. The multiband description predicts a considerable increase of the impact ionization coefficients compared with simulations not considering tunneling. Specifically, the present model has been applied to the study of two distinct semiconductor materials: GaN and HgCdTe. The former is a wide bandgap while the second is a narrow bandgap semiconductor. In spite of their constantly increasing technological reliability both materials lack theoretical understanding of high-field carrier transport. Avalanche photodiodes (APDs) offer an ideal environment to test and validate the model developed in this thesis work because of the large electric field involved in these devices. APDs based on both GaN and HgCdTe are investigated, consistently with the physics-based models described above. Key quantities such as gain, breakdown voltage, bandwidth and noise characteristics are estimated. The

  9. Process influences and correction possibilities for high precision injection molded freeform optics

    Science.gov (United States)

    Dick, Lars; Risse, Stefan; Tünnermann, Andreas

    2016-08-01

    Modern injection molding processes offer a cost-efficient method for manufacturing high precision plastic optics for high volume applications. Besides form deviation of molded freeform optics, internal material stress is a relevant influencing factor for the functionality of a freeform optics in an optical system. This paper illustrates dominant influence parameters of an injection molding process relating to form deviation and internal material stress based on a freeform demonstrator geometry. Furthermore, a deterministic and efficient way for 3D mold correcting of systematic, asymmetrical shrinkage errors is shown to reach micrometer range shape accuracy at diameters up to 40 mm. In a second case, a stress-optimized parameter combination using unusual molding conditions was 3D corrected to reach high precision and low stress freeform polymer optics.

  10. Properties of Laser-Produced Highly Charged Heavy Ions for Direct Injection Scheme

    CERN Document Server

    Sakakibara, Kazuhiko; Hayashizaki, Noriyosu; Ito, Taku; Kashiwagi, Hirotsugu; Okamura, Masahiro

    2005-01-01

    To accelerate highly charged intense ion beam, we have developed the Direct Plasma Injection Scheme (DPIS) with laser ion source. In this scheme an ion beam from a laser ion source is injected directly to a RFQ linac without a low energy beam transport (LEBT) and the beam loss in the LEBT can be avoided. We achieved high current acceleration of carbon ions (60mA) by DPIS with the high current optimized RFQ. As the next setp we will use heavier elements like Ag, Pb, Al and Cu as target in LIS (using CO2, Nd-YAG or other laser) for DPIS and will examine properties of laser-produced plasma (the relationship of between charge state and laser power density, the current dependence of the distance from the target, etc).

  11. Elimination of Fuel Pressure Fluctuation and Multi-injection Fuel Mass Deviation of High Pressure Common-rail Fuel Injection System

    Institute of Scientific and Technical Information of China (English)

    LI Pimao; ZHANG Youtong; LI Tieshuan; XIE Lizhe

    2015-01-01

    The influence of fuel pressure fluctuation on multi-injection fuel mass deviation has been studied a lot, but the fuel pressure fluctuation at injector inlet is still not eliminated efficiently. In this paper, a new type of hydraulic filter consisting of a damping hole and a chamber is developed for elimination of fuel pressure fluctuation and multi-injection fuel mass deviation. Linear model of the improved high pressure common-rail system(HPCRS) including injector, the pipe connecting common-rail with injector and the hydraulic filter is built. Fuel pressure fluctuation at injector inlet, on which frequency domain analysis is conducted through fast Fourier transformation, is acquired at different target pressure and different damping hole diameter experimentally. The linear model is validated and can predict the natural frequencies of the system. Influence of damping hole diameter on fuel pressure fluctuation is analyzed qualitatively based on the linear model, and it can be inferred that an optimal diameter of the damping hole for elimination of fuel pressure fluctuation exists. Fuel pressure fluctuation and fuel mass deviation under different damping hole diameters are measured experimentally, and it is testified that the amplitude of both fuel pressure fluctuation and fuel mass deviation decreases first and then increases with the increasing of damping hole diameter. The amplitude of main injection fuel mass deviation can be reduced by 73%at most under pilot-main injection mode, and the amplitude of post injection fuel mass deviation can be reduced by 92%at most under main-post injection mode. Fuel mass of a single injection increases with the increasing of the damping hole diameter. The hydraulic filter proposed by this research can be potentially used to eliminate fuel pressure fluctuation at injector inlet and improve the stability of HPCRS fuel injection.

  12. Significant relaxation of residual negative carrier in polar Alq3 film directly detected by high-sensitivity photoemission

    Science.gov (United States)

    Kinjo, Hiroumi; Lim, Hyunsoo; Sato, Tomoya; Noguchi, Yutaka; Nakayama, Yasuo; Ishii, Hisao

    2016-02-01

    Tris(8-hydroxyquinoline)aluminum (Alq3) has been widely applied as a good electron-injecting layer (EIL) in organic light-emitting diodes. High-sensitivity photoemission measurement revealed a clear photoemission by visible light, although its ionization energy is 5.7 eV. This unusual photoemission is ascribed to Alq3 anions captured by positive polarization charges. The observed electron detachment energy of the anion was about 1 eV larger than the electron affinity reported by inverse photoemission. This difference suggests that the injected electron in the Alq3 layer is energetically relaxed, leading to the reduction in injection barrier. This nature is one of the reasons why Alq3 worked well as the EIL.

  13. Step-taper active-region quantum cascade lasers for carrier-leakage suppression and high internal differential efficiency

    Science.gov (United States)

    Kirch, J. D.; Chang, C.-C.; Boyle, C.; Mawst, L. J.; Lindberg, D.; Earles, T.; Botez, D.

    2016-03-01

    By stepwise tapering both the barrier heights and quantum-well depths in the active regions of 8.7 μm- and 8.4 μm-emitting quantum cascade lasers (QCLs) virtually complete carrier-leakage suppression is achieved, as evidenced by high values for both the threshold-current characteristic temperature coefficient T0 (283 K and 242 K) and the slope-efficiency characteristic temperature coefficient T1 (561 K and 279 K), over the 20-60 °C heatsink-temperature range, for low- and high-doped devices, respectively. Such high values are obtained while the threshold-current density is kept relatively low for 35-period, low- and high-doped devices: 1.58 kA/cm2 and 1.88 kA/cm2, respectively. In addition, due to resonant extraction from the lower laser level, high differential-transition-efficiency values (89-90%) are obtained. In turn, the slope-efficiency for 3 mm-long, 35-period high-reflectivity (HR)-coated devices are: 1.15-1.23 W/A; that is, 30- 40 % higher than for same-geometry and similar-doping conventional 8-9 μm-emitting QCLs. As a result of both efficient carrier-leakage suppression as well as fast and efficient carrier extraction, the values for the internal differential efficiency are found to be ≍ 86%, by comparison to typical values in the 58-67 % range for conventional QCLs emitting in the 7-11 μm wavelength range.

  14. Towards high charge carrier mobilities by rational design of organic semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Andrienko, Denis; Ruehle, Victor; Baumeier, Bjoern; Vehoff, Thorsten; Lukyanov, Alexander; Kremer, Kurt [Max Planck Institute for Polymer Research, Mainz (Germany); Marcon, Valentina [Technische Universitaet Darmstadt (Germany); Kirkpatrick, James; Nelson, Jenny [Imperial College London (United Kingdom); Lennartz, Christian [BASF AG, Ludwigshafen (Germany)

    2010-07-01

    The role of material morphology on charge carrier mobility in partially disordered organic semiconductors is discussed for several classes of materials: derivatives of hexabenzocoronenens, perylenediimides, triangularly-shaped polyaromatic hydrocarbons, and Alq{sub 3}. Simulations are performed using a package developed by Imperial College, London and Max Planck Institute for Polymer Research, Mainz (votca.org). This package combines several techniques into one scheme: quantum chemical methods for the calculation of molecular electronic structures and reorganization energies; molecular dynamics and systematic coarse-graining approaches for simulation of self-assembly and relative positions and orientations of molecules on large scales; kinetic Monte Carlo and master equation for studies of charge transport.

  15. Measurement of high carrier mobility in graphene in an aqueous electrolyte environment

    Science.gov (United States)

    Brown, Morgan A.; Crosser, Michael S.; Leyden, Matthew R.; Qi, Yabing; Minot, Ethan D.

    2016-08-01

    Graphene is a promising material for applications in aqueous electrolyte environments. To explore the impact of such environments on graphene's electrical properties, we performed Hall bar measurements on electrolyte-gated graphene. Assuming a Drude model, we find that the room temperature carrier mobility in water-gated, SiO2-supported graphene reaches 7000 cm2/Vs, comparable to the best dry SiO2-supported graphene devices. Our results show that the electrical performance of graphene is robust, even in the presence of dissolved ions that introduce an additional mechanism for Coulomb scattering.

  16. Clock and carrier recovery in high-speed coherent optical communication systems

    Science.gov (United States)

    Amado, Sofia B.; Ferreira, Ricardo; Costa, Pedro S.; Guiomar, Fernando P.; Ziaie, Somayeh; Teixeira, António L.; Muga, Nelson J.; Pinto, Armando N.

    2014-08-01

    In this paper, the implementations of clock and carrier recovery in digital domain are analyzed. Hardware implementation details, resources estimation and real-time results are presented. Analog-to-Digital Converters (ADC), operating at 1.25Gsa/s, and a Virtex-6 Field-Programmable Gate Array (FPGA), have been used, allowing the implementation of a real-time Quadrature Phase Shift Keying (QPSK) system operating at 1.25Gb/s. The real-time mode operation is successfully demonstrated over 80 km of Standard Single Mode Fiber (SSMF).

  17. Correlation between Photoluminescence and Carrier Transport and a Simple In Situ Passivation Method for High-Bandgap Hybrid Perovskites.

    Science.gov (United States)

    Stoddard, Ryan J; Eickemeyer, Felix T; Katahara, John K; Hillhouse, Hugh W

    2017-07-20

    High-bandgap mixed-halide hybrid perovskites have higher open-circuit voltage deficits and lower carrier diffusion lengths than their lower-bandgap counterparts. We have developed a ligand-assisted crystallization (LAC) technique that introduces additives in situ during the solvent wash and developed a new method to dynamically measure the absolute intensity steady-state photoluminescence and the mean carrier diffusion length simultaneously. The measurements reveal four distinct regimes of material changes and show that photoluminescence brightening often coincides with losses in carrier transport, such as in degradation or phase segregation. Further, the measurements enabled optimization of LAC on the 1.75 eV bandgap FA0.83Cs0.17Pb(I0.66Br0.34)3, resulting in an enhancement of the photoluminescence quantum yield (PLQY) of over an order of magnitude, an increase of 80 meV in the quasi-Fermi level splitting (to 1.29 eV), an increase in diffusion length by a factor of 3.5 (to over 1 μm), and enhanced open-circuit voltage and short-circuit current from photovoltaics fabricated from the LAC-treated films.

  18. Optimizing the Dopant and Carrier Concentration of Ca5Al2Sb6 for High Thermoelectric Efficiency

    Science.gov (United States)

    Yan, Yuli; Zhang, Guangbiao; Wang, Chao; Peng, Chengxiao; Zhang, Peihong; Wang, Yuanxu; Ren, Wei

    2016-01-01

    The effects of doping on the transport properties of Ca5Al2Sb6 are investigated using first-principles electronic structure methods and Boltzmann transport theory. The calculated results show that a maximum ZT value of 1.45 is achieved with an optimum carrier concentration at 1000 K. However, experimental studies have shown that the maximum ZT value is no more than 1 at 1000 K. By comparing the calculated Seebeck coefficient with experimental values, we find that the low dopant solubility in this material is not conductive to achieve the optimum carrier concentration, leading a smaller experimental value of the maximum ZT. Interestingly, the calculated dopant formation energies suggest that optimum carrier concentrations can be achieved when the dopants and Sb atoms have similar electronic configurations. Therefore, it might be possible to achieve a maximum ZT value of 1.45 at 1000 K with suitable dopants. These results provide a valuable theoretical guidance for the synthesis of high-performance bulk thermoelectric materials through dopants optimization. PMID:27406178

  19. Pneumatic Microvalve-Based Hydrodynamic Sample Injection for High-Throughput, Quantitative Zone Electrophoresis in Capillaries

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, Ryan T.; Wang, Chenchen; Rausch, Sarah J.; Lee, Cheng S.; Tang, Keqi

    2014-07-01

    A hybrid microchip/capillary CE system was developed to allow unbiased and lossless sample loading and high throughput repeated injections. This new hybrid CE system consists of a polydimethylsiloxane (PDMS) microchip sample injector featuring a pneumatic microvalve that separates a sample introduction channel from a short sample loading channel and a fused silica capillary separation column that connects seamlessly to the sample loading channel. The sample introduction channel is pressurized such that when the pneumatic microvalve opens briefly, a variable-volume sample plug is introduced into the loading channel. A high voltage for CE separation is continuously applied across the loading channel and the fused silica capillary separation column. Analytes are rapidly separated in the fused silica capillary with high resolution. High sensitivity MS detection after CE separation is accomplished via a sheathless CE/ESI-MS interface. The performance evaluation of the complete CE/ESI-MS platform demonstrated that reproducible sample injection with well controlled sample plug volumes could be achieved by using the PDMS microchip injector. The absence of band broadening from microchip to capillary indicated a minimum dead volume at the junction. The capabilities of the new CE/ESI-MS platform in performing high throughput and quantitative sample analyses were demonstrated by the repeated sample injection without interrupting an ongoing separation and a good linear dependence of the total analyte ion abundance on the sample plug volume using a mixture of peptide standards. The separation efficiency of the new platform was also evaluated systematically at different sample injection times, flow rates and CE separation voltages.

  20. High-Risk Geographic Mobility Patterns among Young Urban and Suburban Persons who Inject Drugs and their Injection Network Members.

    Science.gov (United States)

    Boodram, Basmattee; Hotton, Anna L; Shekhtman, Louis; Gutfraind, Alexander; Dahari, Harel

    2017-09-05

    Young people in the USA who inject drugs, particularly those at a risk of residence instability, experience the highest incidence of hepatitis C (HCV) infections. This study examined associations between geographic mobility patterns and sociodemographic, behavioral, and social network characteristics of 164 young (ages 18-30) persons who inject drugs (PWID). We identified a potential bridge sub-population who reported residence in both urban and suburban areas in the past year (crossover transients) and higher-risk behaviors (receptive syringe sharing, multiple sex partners) compared to their residentially localized counterparts. Because they link suburban and urban networks, crossover transients may facilitate transmission of HIV and HCV between higher and lower prevalence areas. Interventions should address risk associated with residential instability, particularly among PWID who travel between urban and suburban areas.

  1. Control of high-Z PFC erosion by local gas injection in DIII-D

    Energy Technology Data Exchange (ETDEWEB)

    Rudakov, D.L., E-mail: rudakov@fusion.gat.com [University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0417 (United States); Stangeby, P.C. [University of Toronto Institute for Aerospace Studies, Toronto M3H 5T6 (Canada); Wong, C.P.C. [General Atomics, P. O. Box 85608, San Diego, CA 92186-5608 (United States); McLean, A.G. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550 (United States); Wampler, W.R. [Sandia National Laboratory, P.O. Box 5800, Albuquerque, NM 87185 (United States); Watkins, J.G. [Sandia National Laboratory, P.O. Box 969, Livermore, CA 94551-0969 (United States); Boedo, J.A. [University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0417 (United States); Briesemeister, A. [Oak Ridge National Laboratory, Oak Ridge, TN 37830 (United States); Buchenauer, D.A. [Sandia National Laboratory, P.O. Box 969, Livermore, CA 94551-0969 (United States); Chrobak, C.P. [General Atomics, P. O. Box 85608, San Diego, CA 92186-5608 (United States); Elder, J.D. [University of Toronto Institute for Aerospace Studies, Toronto M3H 5T6 (Canada); Fenstermacher, M.E. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550 (United States); Guo, H.Y. [General Atomics, P. O. Box 85608, San Diego, CA 92186-5608 (United States); Lasnier, C.J. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550 (United States); Leonard, A.W. [General Atomics, P. O. Box 85608, San Diego, CA 92186-5608 (United States); Maingi, R. [Princeton Plasma Physics Laboratory, PO Box 451, Princeton, NJ 08543 (United States); Moyer, R.A. [University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0417 (United States)

    2015-08-15

    Reduced erosion of a high-Z PFC divertor surface was observed in DIII-D with local injection of methane and deuterium gases. Molybdenum-coated silicon samples were exposed in the lower divertor of DIII-D using DiMES under plasma conditions previously shown to cause significant net erosion of Mo. Three exposures with {sup 13}CH{sub 4} and one exposure with D{sub 2} gas injection about 12 cm upstream of the samples located within 1–2 cm of the attached strike point were performed. Reduction of Mo erosion was evidenced in-situ by the suppression of MoI line radiation at 386.4 nm once the gas injection started. Post-mortem ion beam analysis demonstrated that the net erosion of molybdenum near the center of the samples exposed with {sup 13}CH{sub 4} injection was below the measurement resolution of 0.5 nm, corresponding to a rate of ⩽0.04 nm/s. Compared to the previously measured erosion rates, this constitutes a reduction by a factor of >10.

  2. High SO{sub 2} removal duct injection: A low-cost FGD alternative

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, S.G. [Sorbent Technologies Corp., Twinsburg, OH (United States)

    1995-12-01

    Sorbent Technologies Corporation, of the United States, is currently developing and demonstrating a new waste free, retrofitable, high-SO{sub 2} removal duct-injection process. Up to 85 percent SO{sub 2} removal is achieved by simply injecting a new dry lime-based sorbent into the flue-gas duct, collecting the sorbent downstream in a particulate collector, and then recycling the sorbent. By avoiding large, expensive components, the process can have low capital costs, making it especially appropriate for smaller, older, less-utilized plants. The key to the new technology is the use of sorbent supports. Supported sorbents are produced by coating hydrated lime onto inexpensive mineral supports, such as exfoliated vermiculite or perlite. Consequently, there are no liquid, sludge, or solid wastes with the new technology. Once saturated with SO{sub 2}, the spent sorbent can be easily pelletized into a valuable soil-conditioning agricultural by-product, for the sustainable development that the future requires. This paper describes Sorbent Technologies` pilot demonstration of supported sorbent injection at the Ohio Edison Company`s R.E. Burger station. The Burger effort is also the first demonstration of the Electric Power Research Institute`s new {open_quotes}COHPAC{close_quotes} baghouse technology in a sorbent-injection desulfurization application.

  3. Interfacial Study To Suppress Charge Carrier Recombination for High Efficiency Perovskite Solar Cells.

    Science.gov (United States)

    Adhikari, Nirmal; Dubey, Ashish; Khatiwada, Devendra; Mitul, Abu Farzan; Wang, Qi; Venkatesan, Swaminathan; Iefanova, Anastasiia; Zai, Jiantao; Qian, Xuefeng; Kumar, Mukesh; Qiao, Qiquan

    2015-12-09

    We report effects of an interface between TiO2-perovskite and grain-grain boundaries of perovskite films prepared by single step and sequential deposited technique using different annealing times at optimum temperature. Nanoscale kelvin probe force microscopy (KPFM) measurement shows that charge transport in a perovskite solar cell critically depends upon the annealing conditions. The KPFM results of single step and sequential deposited films show that the increase in potential barrier suppresses the back-recombination between electrons in TiO2 and holes in perovskite. Spatial mapping of the surface potential within perovskite film exhibits higher positive potential at grain boundaries compared to the surface of the grains. The average grain boundary potential of 300-400 mV is obtained upon annealing for sequentially deposited films. X-ray diffraction (XRD) spectra indicate the formation of a PbI2 phase upon annealing which suppresses the recombination. Transient analysis exhibits that the optimum device has higher carrier lifetime and short carrier transport time among all devices. An optimum grain boundary potential and proper band alignment between the TiO2 electron transport layer (ETL) and the perovskite absorber layer help to increase the overall device performance.

  4. Experimental study of water effects on gas desorption during high-pressure water injection

    Institute of Scientific and Technical Information of China (English)

    ZHANG Guo-hua; LIU Xian-xin; BI Ye-wu; PU Wen-long

    2011-01-01

    For the question of applying high-pressure water injection to increase gas extraction efficiency by increasing the permeability of water to drive gas action,an independently designed gas desorption experimental measuring device was used under the condition of external solution invasion.The law of water effect on gas desorption was obtained after water invasion through experiment for the first time.The results show that water's later invasion not only can make the quantity of gas desorption greatly reduced,but also can make gas desorption end early.Therefore,when evaluating the applications of high-pressure water injection to increase gas extraction efficiency,we should take water damaging effects on gas desorption into account.

  5. Injection locking of a high power ultraviolet laser diode for laser cooling of ytterbium atoms.

    Science.gov (United States)

    Hosoya, Toshiyuki; Miranda, Martin; Inoue, Ryotaro; Kozuma, Mikio

    2015-07-01

    We developed a high-power laser system at a wavelength of 399 nm for laser cooling of ytterbium atoms with ultraviolet laser diodes. The system is composed of an external cavity laser diode providing frequency stabilized output at a power of 40 mW and another laser diode for amplifying the laser power up to 220 mW by injection locking. The systematic method for optimization of our injection locking can also be applied to high power light sources at any other wavelengths. Our system does not depend on complex nonlinear frequency-doubling and can be made compact, which will be useful for providing light sources for laser cooling experiments including transportable optical lattice clocks.

  6. High-temperature heat pump, phase 1: using a compressor with a vapour injection port; Pompe a chaleur haute temperature, phase 1: solution avec compresseur a injection vapeur

    Energy Technology Data Exchange (ETDEWEB)

    Brand, F.; Zehnder, M.; Favrat, D.

    2000-07-01

    The High Temperature Heat Pump project aims at developing an air-to-water heat pump that can replace a gas or fuel boiler in a house. To reach this goal, the heat pump must be able to produce domestic hot water at high temperature to allow the house's network to properly operate. A first objective is to produce hot water at 65 {sup o}C. A first prototype has been developed, starting from one of the most efficient heat pumps on the market. The pump was modified so as to function with a prototype compressor equipped with a vapour injection port. A series of tests highlighted not only the performance improvements due to the vapour injection but also the increase of the operation range of the heat pump and the optimal operating range of the injection. In terms of the coefficient of performance (COP) the gain increases with the reduction in temperature of the intake air; the improvement is on an average 13% in the operating range tested. With an ambient-air temperature of -12 {sup o}C it is possible to obtain hot water at 65 {sup o}C, whereas without injection the intake air must be at least 2 {sup o}C to reach the same water temperature. An average gain of 25% is obtained by injection for hot power. For measurement with de-icing, point A2/W50 with an optimal injection makes it possible to obtain a COP of 2.7 with a hot power of 9.4 kW. The defrosting cycle analysis makes possible to expect an improvement of these performances by optimisation and adjustment of the heat pump parameters. A thermostatic valve, whose probe is placed at the compressor output, controls the injection. It makes it possible to obtain an optimal operation for flows injected. Measurement results support a theoretical analysis of the whole installation and in particular of the compressor with injection port. This analysis will be used within the framework of a more detailed thermo economic heat pump study. (author)

  7. Panretinal photocoagulation versus intravitreal injection retreatment pain in high-risk proliferative diabetic retinopathy

    Directory of Open Access Journals (Sweden)

    Célia Regina Farias de Araújo Lucena

    2013-02-01

    Full Text Available PURPOSE: To compare pain related to intravitreal injection and panretinal photocoagulation in the management of patients with high-risk proliferative diabetic retinopathy. METHODS: Prospective study including patients with high-risk proliferative diabetic retinopathy and no prior laser treatment randomly assigned to receive panretinal photocoagulation (PRP group or panretinal photocoagulation plus intravitreal ranibizumab (PRPplus group. In all patients, panretinal photocoagulation was administered in two sessions (weeks 0 and 2, and intravitreal ranibizumab was administered at the end of the first laser session in the PRPplus group. Retreatment was performed at weeks 16 and 32 if active new vessels were detected at fluorescein angiography. Patients in the PRPplus group received intravitreal ranibizumab and patients in the PRP group received 500-µm additional spots per quadrant of active new vessels. After the end of retreatment, a 100-degree Visual Analog Scale was used for pain score estimation. The patient was asked about the intensity of pain during the whole procedure (retinal photocoagulation session or intravitreal ranibizumab injection. Statistics for pain score comparison were performed using a non-parametric test (Wilcoxon rank sums. RESULTS: Seventeen patients from PRPplus and 14 from PRP group were evaluated for pain scores. There were no significant differences between both groups regarding gender, glycosylated hemoglobin and disease duration. Mean intravitreal injection pain (±SEM was 4.7 ± 2.1 and was significantly lower (p<0.0001 than mean panretinal photocoagulation pain (60.8 ± 7.8. Twelve out of 17 patients from the PRPplus group referred intensity pain score of zero, while the minimal score found in PRP group was found in one patient with 10.5. CONCLUSION: In patients with high-risk proliferative diabetic retinopathy who needed retreatment for persistent new vessels, there was more comfort for the patient when retreatment

  8. Enhanced carrier injection in InGaN/GaN multiple quantum wells LED with polarization-induced electron blocking barrier

    Science.gov (United States)

    Li, Chengguo; Liu, Hongfei; Chua, Soo Jin

    2016-03-01

    In this report, we designed a light emitting diode (LED) structure in which an N-polar p-GaN layer is grown on top of Ga-polar In0.1Ga0.9N/GaN quantum wells (QWs) on an n-GaN layer. Numerical simulation reveals that the large polarization field at the polarity inversion interface induces a potential barrier in the conduction band, which can block electron overflow out of the QWs. Compared with a conventional LED structure with an Al0.2Ga0.8N electron blocking layer (EBL), the proposed LED structure shows much lower electron current leakage, higher hole injection, and a significant improvement in the internal quantum efficiency (IQE). These results suggest that the polarization induced barrier (PIB) is more effective than the AlGaN EBL in suppressing electron overflow and improving hole transport in GaN-based LEDs.

  9. Anisotropic charge carrier mobilities in bulk silicon at high electric fields

    CERN Document Server

    Becker, Julian; Klanner, Robert

    2010-01-01

    The mobility of electrons and holes in silicon depends on many parameters. Two of them are the electric field and the temperature. It has been observed previously that the mobility in the transition region between ohmic transport and saturation velocities is a function of the orientation of the crystal lattice. This paper presents a new set of parameters for the mobility as function of temperature and electric field for $$ and $$ crystal orientation. These parameters are derived from time of flight measurements of drifting charge carriers in planar p$^+$nn$^+$ diodes in the temperature range between -30$^\\circ$C and 50$^\\circ$C and electric fields of 2$\\times$10$^3$~V/cm to 2$\\times$10$^4$~V/cm.

  10. High-performance evanescently-coupled uni-traveling-carrier photodiodes

    Institute of Scientific and Technical Information of China (English)

    Zhang Yun-Xiao; Liao Zai-Yi; Wang Wei

    2009-01-01

    A new evanescently-coupled uni-traveling-carrier photodiode (EC-UTC PD) based on a multimode diluted waveguide (MDW) structure is fabricated, analysed and characterized. Optical and electrical characteristics of the device are investigated. The excellent characteristics are demonstrated such as a responsivity of 0.36 A/W, a bandwidth of 11.5 GHz and a small-signal 1-dB compression current greater than 18 mA at 10 GHz. The saturation current is significantly improved compared with those of similar evanescently-coupled pin photodiodes. The radio frequency (RF)bandwidth can be further improved by eliminating RF losses induced by the cables, the probe and the bias tee between the photodiode and the spectrum analyzer.

  11. A New Multilevel Converter Structure For High-Power Applications using Multi-carrier PWM Switching Strategy

    Directory of Open Access Journals (Sweden)

    Rasoul Shalchi Alishah

    2015-06-01

    Full Text Available In recent, several numbers of multilevel inverter structures have been introduced that the numbers of circuit devices have been reduced.  This paper introduces a new structure for multilevel inverter which can be used in high-power applications. The proposed topology is based on cascaded connection of basic units. This topology consists of minimum number of circuit components such as IGBT, gate driver circuit and antiparallel diode. For proposed topology, two methods are presented for determination of dc voltage sources values. Multi-carrier PWM method for 25-level proposed topology is used. Verification of the analytical results is done using MATLAB simulation.

  12. Analytical Estimation of Carrier Phase Recovery Approaches in Long-Haul High-Speed Optical Communication Systems

    CERN Document Server

    Xu, Tianhua

    2016-01-01

    The analytical study on the carrier phase estimation (CPE) approaches, involving a one-tap normalized least-mean-square (NLMS) algorithm, a block-wise average (BWA) algorithm, and a Viterbi-Viterbi (VV) algorithm has been investigated in the long-haul high-speed n-level phase shift keying (n-PSK) coherent optical fiber communication systems. The close-form predictions for the bit-error-rate (BER) performance have been derived and analyzed by considering both the intrinsic laser phase noise and the equalization enhanced phase noise (EEPN).

  13. Feasibility of high-speed power line carrier system to Japanese overhead low voltage distribution lines; Teiatsu haidensen hanso no kosokuka no kanosei (hanso sningo denpa purogram no kanosei)

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, T.; Takeshita, K.; Ishino, R.

    2000-06-01

    The high-speed distribution line carrier systems on underground distribution lines are being developed in Germany. To estimate these systems on Japanese overhead low voltage distribution lines, the Carrier Propagation Program has been developed and applicability of OFDM system was roughly estimated. 1. Carrier Propagation Program Carrier Propagation Program that calculates the carrier propagation characteristics of any line structure was developed. 2. Carrier propagation characteristics Carrier propagation characteristics on typical Japanese overhead low voltage distribution lines were calculated 3.Rough estimation of OFDM system Electric fields caused by carrier at near point were calculated on the basis on carrier propagation characteristics. Results of rough estimation are as follows: - Electric field caused by carrier of more than 2Mbps system exceeds the value of the regulation. (author)

  14. Analytical description of the injection ratio of self-biased bipolar transistors under the very high injection conditions of ESD events

    Science.gov (United States)

    Gendron, A.; Renaud, P.; Bafleur, M.; Nolhier, N.

    2008-05-01

    This paper proposes a 1D-analytical description of the injection ratio of a self-biased bipolar transistor under very high current injection conditions. Starting from an expression of the current gain based on the stored charge into the emitter and base regions, we derive a new analytical expression of the current injection ratio. This analytical description demonstrates the presence of an asymptotic limit for the injection ratio at very high current densities, as the ratio of electron/hole mobilities in the case of an NPN transistor and to the ratio of hole/electron saturation velocities for a PNP. Moreover, for the first time, a base narrowing effect is demonstrated and explained in the case of a self-biased PNP, in contrast with the base widening effect (Kirk effect [Kirk CT, A theory of transistor cutoff frequency (fT) falloff at high current densities, IRE Trans Electr Dev 1961: p. 164-73]) reported for lower current density. These results are validated by numerical simulation and show a good agreement with experimental characterizations of transistors especially designed to operate under extreme condition such as electrostatic discharge (ESD) events.

  15. High-current negative hydrogen ion beam production in a cesium-injected multicusp source

    Energy Technology Data Exchange (ETDEWEB)

    Takeiri, Y.; Tsumori, K.; Kaneko, O. [National Inst. for Fusion Science, Nagoya (Japan)] [and others

    1997-12-31

    A high-current negative hydrogen ion source has been developed, where 16.2 A of the H{sup -} current was obtained with a current density of 31 mA/cm{sup 2}. The ion source is a multicusp source with a magnetic filter for negative ion production, and cesium vapor is injected into the arc chamber, leading to enhancement of the negative ion yields. The cesium-injection effects are discussed, based on the experimental observations. Although the surface production of the negative ions on the cesium-covered plasma grid is thought to be a dominant mechanism of the H{sup -} current enhancement, the cesium effects in the plasma volume, such as the cesium ionization and the electron cooling, are observed, and could contribute to the improved operation of the negative ion source. (author)

  16. How High Local Charge Carrier Mobility and an Energy Cascade in a Three-Phase Bulk Heterojunction Enable >90% Quantum Efficiency

    KAUST Repository

    Burke, Timothy M.

    2013-12-27

    Charge generation in champion organic solar cells is highly efficient in spite of low bulk charge-carrier mobilities and short geminate-pair lifetimes. In this work, kinetic Monte Carlo simulations are used to understand efficient charge generation in terms of experimentally measured high local charge-carrier mobilities and energy cascades due to molecular mixing. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Achieving a long-lived high-beta plasma state by energetic beam injection.

    Science.gov (United States)

    Guo, H Y; Binderbauer, M W; Tajima, T; Milroy, R D; Steinhauer, L C; Yang, X; Garate, E G; Gota, H; Korepanov, S; Necas, A; Roche, T; Smirnov, A; Trask, E

    2015-04-23

    Developing a stable plasma state with high-beta (ratio of plasma to magnetic pressures) is of critical importance for an economic magnetic fusion reactor. At the forefront of this endeavour is the field-reversed configuration. Here we demonstrate the kinetic stabilizing effect of fast ions on a disruptive magneto-hydrodynamic instability, known as a tilt mode, which poses a central obstacle to further field-reversed configuration development, by energetic beam injection. This technique, combined with the synergistic effect of active plasma boundary control, enables a fully stable ultra-high-beta (approaching 100%) plasma with a long lifetime.

  18. Tailpipe emissions from gasoline direct injection (GDI) and port fuel injection (PFI) vehicles at both low and high ambient temperatures.

    Science.gov (United States)

    Zhu, Rencheng; Hu, Jingnan; Bao, Xiaofeng; He, Liqiang; Lai, Yitu; Zu, Lei; Li, Yufei; Su, Sheng

    2016-09-01

    Vehicle emissions are greatly influenced by various factors that are related to engine technology and driving conditions. Only the fuel injection method and ambient temperature are investigated in this research. Regulated gaseous and particulate matter (PM) emissions from two advanced gasoline-fueled vehicles, one with direct fuel injection (GDI) and the other with port fuel injection (PFI), are tested with conventional gasoline and ethanol-blended gasoline (E10) at both -7 °C and 30 °C. The total particle number (PN) concentrations and size distributions are monitored with an Electrical Low Pressure Impactor (ELPI(+)). The solid PN concentrations are measured with a condensation particle counter (CPC) after removing volatile matters through the particle measurement program (PMP) system. The results indicate that decreasing the ambient temperature from 30 °C to -7 °C significantly increases the fuel consumption and all measured emissions except for NOx. The GDI vehicle exhibits lower fuel consumption than the PFI vehicle but emits more total hydrocarbons (THC), PM mass and solid PN emissions at 30 °C. The adaptability of GDI technology appears to be better than that of PFI technology at low ambient temperature. For example, the CO, THC and PM mass emission factors of the PFI vehicle are higher than those of the GDI vehicle and the solid PN emission factors are comparable in the cold-start tests at -7 °C. Specifically, during start-up the particulate matter emissions of the PFI are much higher than the GDI. In most cases, the geometric mean diameter (GMD) of the accumulation mode particles is 58-86 nm for both vehicles, and the GMD of the nucleation mode particles is 10-20 nm. The results suggest that the gaseous and particulate emissions from the PFI vehicle should not be neglected compared to those from the GDI vehicle especially in a cold environment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Deflectometric analysis of high volume injection molds for production of occupational eye wear.

    Science.gov (United States)

    Speck, Alexis; Zelzer, Benedikt; Speich, Marco; Börret, Rainer; Langenbucher, Achim; Eppig, Timo

    2013-12-01

    Most of the protective eye wear devices currently on the market are manufactured on simple polycarbonate shields, produced by injection molding techniques. Despite high importance of optical quality, injection molds are rarely inspected for surface quality before or during the manufacturing process. Quality degradation is mainly monitored by optical testing of the molded parts. The purpose of this work was to validate a non-contact deflectometric measurement technique for surface and shape analysis of injection molds to facilitate deterministic surface quality control and to monitor minor conformity of the injection mold with the design data. The system is based on phase-measuring deflectometry with a operating measurement field of 80×80 mm(2) (±18° slope), a lateral resolution of 60μm and a local sensitivity of some nanometers. The calibration was tested with a calibration normal and a reference sphere. The results were crosschecked against a measurement of the same object with a tactile coordinate measuring machine. Eight injection molds for production of safety goggles with radii of +58mm (convex) and -60mm (concave) were measured in this study. The molds were separated into two groups (cavity 1 and 2 of the tool with different polishing techniques) and measured to test whether the measurement tool could extract differences. The analysis was performed on difference height between the measured surface and the spherical model. The device could derive the surface change due to polishing and discriminate between both polishing techniques, on the basis of the measured data. The concave nozzle sides of the first group (cavity 1) showed good shape conformity. In comparison, the nozzle sides of the second group (cavity 2) showed local deviations from design data up to 14.4μm. Local form variations of about 5μm occurred in the field of view. All convex ejector sides of both groups (cavity 1 and 2) showed rotational symmetric errors and the molds were measured in

  20. Achievement of Runaway Electron Energy Dissipation by High-Z Gas Injection in DIII-D

    Science.gov (United States)

    Hollmann, E. M.

    2014-10-01

    Disruption runaway electron (RE) formation followed by RE beam-wall strikes is a concern for future tokamaks, motivating the study of mitigation techniques to reduce the RE beam energy in a controlled manner. A promising approach for doing this is the injection of high-Z gas into the RE beam. Massive (100 torr-l) injection of high-Z gas into RE beams in DIII-D is shown to significantly dissipate both RE magnetic and kinetic energy. For example, injection of argon into a typical 300 kA current RE beam is observed to cause a drop in kinetic energy from 50 kJ to 10 kJ in 10 ms, thus rapidly reducing the damage-causing capability of the RE beam. Both the RE kinetic energy and pitch angle are important for determining the resulting wall damage, with high energy, high pitch angle electrons typically considered most dangerous. The RE energy distribution is found to be more skewed toward low energies than predicted by avalanche theory. The pitch angle is not found to be constant, as is frequently assumed, but is shown to drop from sin(θ) ~ 1 for energies less than 1 MeV to sin(θ) ~ 0 . 2 for energies greater than 10 MeV. Injection of high-Z impurities does not appear to change the overall shape of the energy or pitch angle distributions dramatically. The enhanced RE energy dissipation appears to be caused primarily via collisions with the cold plasma leading to line radiation. Synchrotron power loss only becomes significant in the absence of high-Z impurities, while radial transport loss of REs is seen to become dominant if the RE beam moves sufficiently close to the vessel walls. The experiments demonstrate that avalanche theory somewhat underestimates collisional dissipation of REs in the presence of high-Z atoms, even in the absence of radial transport losses, meaning that reducing RE wall damage in large tokamaks should be easier than previously expected. Supported by the US Department of Energy under DE-FG02-07ER54917 and DE-FC02-04ER54698.

  1. Study on effects of high pressure injection for DI diesel combustion. Koatsu funsha ni yoru chokufun diesel no nensho kaizen

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, S.; Takahashi, T.; Sami, H. (Toyota Motor Corp., Aichi (Japan)); Nakakita, K.; Osawa, K. (Toyota Centeral Research and Development Lab., Aichi (Japan))

    1990-08-01

    A study was conducted on properties of exhaust gas of diesel engine by using high pressure injection type diesel engine equipped with pressure-reservoir for changing injection pressure, together with improvement of combustion conditions by high pressure injection of fuel. Equipments for the experiments were explained by figures. As for experiment, effects of injection pressure and its timing on emission quantities of NO {sub x} and paticulate were measured. Based upon the obtained results, those were understood that NO {sub x} and particulate were to be reduced by adjusting injection pressure and injection timing, and that, by reducing initial injection pressure, trade-off effect between NO {sub x} and particulate were improved. Observation of combustion conditions by inside-visible engine, those were recognized that low injection pressure caused poor atomization and, by that, delay of vaporization, that propagation of flame rapid to whole combustion room in case of pressure-reservoir type, and that lower injection rate at initial stage suppressed combustion rate and reduced NO {sub x} generation. 4 refs., 16 figs., 3 tabs.

  2. High-resolution MRI predicts steroid injection response in carpal tunnel syndrome patients

    Energy Technology Data Exchange (ETDEWEB)

    Aoki, Takatoshi; Oki, Hodaka; Kinoshita, Shunsuke; Yamashita, Yoshiko; Takahashi, Hiroyuki; Hayashida, Yoshiko; Korogi, Yukunori [University of Occupational and Environmental Health School of Medicine, Department of Radiology, Kitakyushu (Japan); Oshige, Takahisa; Sakai, Akinori [University of Occupational and Environmental Health School of Medicine, Department of Orthopaedic Surgery, Kitakyushu (Japan); Matsuyama, Atsushi; Hisaoka, Masanori [University of Occupational and Environmental Health School of Medicine, Department of Pathology and Oncology, Kitakyushu (Japan)

    2014-03-15

    To correlate median nerve T2 signal and shape at the carpal tunnel with steroid injection (SI) response in carpal tunnel syndrome (CTS) patients. One hundred and sixty-three CTS wrists of 92 consecutive patients who were scheduled to undergo SI were prospectively evaluated with 3-T magnetic resonance imaging (MRI) and a nerve conduction study. All patients underwent axial high-resolution T2-weighted MRI (in-plane resolution of 0.25 x 0.25 mm). The CTS wrists were classified into three groups according to the nerve T2 signal and the flattening ratio at the hook of hamate level: group 1, high and oval; group 2, high and flat; group 3, low and flat. Clinical response to SI was evaluated at 6 months after injection. One hundred and thirteen of the 163 wrists (69.3 %) responded well to SI. The percentage of improvement was 81.7 % (49/60) in group 1, 69.9 % (51/73) in group 2, and 43.3 % (13/30) in group 3 (P < 0.01). On stepwise logistic regression analysis high-resolution MRI was the only significant independent factor for SI response in CTS patients (P < 0.01). High-resolution MRI correlates well with SI response in CTS patients and seems useful for predicting SI response. (orig.)

  3. Study of high mobility carriers in Ni-doped CdO films

    Indian Academy of Sciences (India)

    A A Dakhel

    2013-10-01

    Cadmium oxide (CdO) doped with different amounts of nickel ion thin films have been prepared on silicon and glass substrates by vacuum evaporation technique. The effects of nickel doping on the structural, electrical, optical and optoelectronic properties of the host CdO films were systematically studied. The sample elemental composition was determined by the X-ray fluorescence spectroscopy method. The X-ray diffraction method was used to study the crystalline structure of the samples. It shows that some of Ni3+ ions occupy mainly locations when in interstitial positions and Cd2+-ion vacancies of CdO lattice. The bandgap of Ni-doped CdO suffers narrowing till 10–12% compared to undoped CdO. Such bandgap narrowing was studied within the framework of the available models. The electrical behaviours show that all the prepared Ni-doped CdO films are degenerate semiconductors. However, the nickel doping influences all the optoelectrical properties of CdO. Their d.c. conductivity, carrier concentration and mobility increased compared to undoped CdO film. The largest mobility of 112.6 cm2/V.s was measured for 1–2% Ni-doped CdO film. From optoelectronics point of view, Ni-doped CdO can be used in infrared-transparent-conducting-oxide (NIR–TCO) applications.

  4. Enhanced carrier collection efficiency in hierarchical nano-electrode for a high-performance photoelectrochemical cell

    Science.gov (United States)

    Hien, Truong Thi; Van Lam, Do; Kim, Chunjoong; Vuong, Nguyen Minh; Quang, Nguyen Duc; Kim, Dahye; Chinh, Nguyen Duc; Hieu, Nguyen Minh; Lee, Seung-Mo; Kim, Dojin

    2016-12-01

    The photoelectrochemical properties of CdS-sensitized ZnO nanorods grown on Pt-coated WO3 nanoplates are investigated to evaluate their effectiveness in hydrogen production. WO3 nanonanoplates are synthesized on glass substrates, followed by atomic layer deposition of Pt thin films as the terminal electrode to efficiently collect the photo-carriers generated from the ZnO/CdS absorption layers. Optimization of the fabrication process for the 3D hierarchical structure is performed, and the morphology and its effect on the photoelectrochemical performance of the electrodes are carefully studied using scanning electron microscopy, x-ray diffraction, and measurements of the photocurrent density and photo-conversion efficiencies. The enhanced PEC performance is elucidated by the 3D hierarchical geometry of the electrode. The optimized electrode shows a photocurrent density of ∼ 13 mA cm-2 and a conversion efficiency of ∼8.0% at -0.83 V (vs. SCE) in 0.5 M Na2S solution under the illumination of simulated solar light.

  5. Stable overload conditions of high-temperature superconductors at alternating current injection

    Science.gov (United States)

    Romanovskii, V. R.

    2015-01-01

    The stability of alternating current injected into a high-temperature superconductor or into a current-carrying element on its basis is studied under weak cooling. The stability conditions of the current varying with time by a sinusoidal law are studied versus its frequency. It is shown that before unstable states set in, the peak values of the electric field intensity, current, and temperature in the superconductor are higher than the values determining a thermal electrodynamic stability boundary of the current permanently flowing through the superconductor—the so-called thermal quench current. It is found that ultimate stable alternating currents cause high stable thermal losses in superconductors; these losses being not considered in the modern theory of losses. Such stable conditions can be referred to as overload conditions. Analysis shows that there are characteristic times determining the time intervals within which alternating current is stable under overload conditions. Main thermoelectrodynamic mechanisms behind the existence of these intervals are formulated. They explain why the superconductor stable overheating and induced electric field reach high values before the injected alternating current becomes unstable. The existence of overload conditions considerably extends the application area of high-temperature superconductors.

  6. Median Nerve Injury Due to High-Pressure Water Jet Injection: A Case Report and Review of Literature.

    Science.gov (United States)

    Emre, Ufuk; Unal, Aysun

    2009-08-01

    High-pressure injuries that occur accidentally are potentially destructive injuries that often affect the nondominant hands of young men. A variety of products such as paint, gasoline, grease, fuel oil, cement, thinner and solvents have been reported as destructive agents. High-pressure water jet injection injuries to soft tissues have rarely been reported. In this study, we present the first case of median nerve injury due to high-pressure water jet injection by a water spray gun.

  7. Natural killer cells in highly exposed hepatitis C-seronegative injecting drug users.

    Science.gov (United States)

    Mina, M M; Cameron, B; Luciani, F; Vollmer-Conna, U; Lloyd, A R

    2016-06-01

    Injecting drug use remains the major risk factor for hepatitis C (HCV) transmission. A minority of long-term injecting drug users remain seronegative and aviraemic, despite prolonged exposure to HCV - termed highly exposed seronegative subjects. Natural killer (NK) cells have been implicated in this apparent protection. A longitudinal nested, three group case-control series of subjects was selected from a prospective cohort of seronegative injecting drug users who became incident cases (n = 11), remained seronegative (n = 11) or reported transient high-risk behaviour and remained uninfected (n = 11). The groups were matched by age, sex and initial risk behaviour characteristics. Stored peripheral blood mononuclear cells were assayed in multicolour flow cytometry to enumerate natural killer cell subpopulations and to assess functional activity using Toll-like receptor ligands before measurement of activation, cytokine production and natural cytotoxicity receptor expression. Principal components were derived to describe the detailed phenotypic characteristics of the major NK subpopulations (based on CD56 and CD16 co-expression), before logistic regression analysis to identify associations with exposed, seronegative individuals. The CD56(dim) CD16(+) (P = 0.05, OR 6.92) and CD56(dim) CD16(-) (P = 0.05, OR 6.07) principal components differed between exposed, seronegative individuals and pre-infection samples of the other two groups. These included CD56(dim) CD16(+) and CD56(dim) CD16(-) subsets with CD56(dim) CD16(+) IFN-γ and TNF-α on unstimulated cells, and CD56(dim) CD16(-) CD69(+) , CD107a(+) , IFN-γ and TNF-α following TLR stimulation. The cytotoxic CD56(dim) NK subset thus distinguished highly exposed, seronegative subjects, suggesting NK cytotoxicity may contribute to protection from HCV acquisition. Further investigation of the determinants of this association and prospective assessment of protection against HCV infection are warranted.

  8. HIGH RESOLUTION PREDICTION OF GAS INJECTION PROCESS PERFORMANCE FOR HETEROGENEOUS RESERVOIRS

    Energy Technology Data Exchange (ETDEWEB)

    Franklin M. Orr, Jr.

    2001-06-30

    This report outlines progress in the third 3 quarter of the first year of the DOE project ''High Resolution Prediction of Gas Injection Process Performance for Heterogeneous Reservoirs.'' A simple theoretical formulation of vertical flow with capillary/gravity equilibrium is described. Also reported are results of experimental measurements for the same systems. The results reported indicate that displacement behavior is strongly affected by the interfacial tension of phases that form on the tie line that extends through the initial oil composition.

  9. Thermal Control Method for High-Current Wire Bundles by Injecting a Thermally Conductive Filler

    Science.gov (United States)

    Rodriguez-Ruiz, Juan; Rowles, Russell; Greer, Greg

    2011-01-01

    A procedure was developed to inject thermal filler material (a paste-like substance) inside the power wire bundle coming from solar arrays. This substance fills in voids between wires, which enhances the heat path and reduces wire temperature. This leads to a reduced amount of heat generated. This technique is especially helpful for current and future generation high-power spacecraft (1 kW or more), because the heat generated by the power wires is significant enough to cause unacceptable overheating to critical components that are in close contact with the bundle.

  10. Injection locking of a low cost high power laser diode at 461 nm

    OpenAIRE

    Pagett, C. J. H.; Moriya, P. H.; Teixeira, R. Celistrino; Shiozaki, R. F.; Hemmerling, M.; Courteille, Ph. W.

    2016-01-01

    Stable laser sources at 461 nm are important for optical cooling of strontium atoms. In most existing experiments this wavelength is obtained by frequency doubling infrared lasers, since blue laser diodes either have low power or large emission bandwidths. Here, we show that injecting less than 10 mW of monomode laser radiation into a blue multimode 500 mW high power laser diode is capable of slaving at least 50% of the power to the desired frequency. We verify the emission bandwidth reductio...

  11. N-Linked Glycans Are Assembled on Highly Reduced Dolichol Phosphate Carriers in the Hyperthermophilic Archaea Pyrococcus furiosus.

    Science.gov (United States)

    Chang, Michelle M; Imperiali, Barbara; Eichler, Jerry; Guan, Ziqiang

    2015-01-01

    In all three domains of life, N-glycosylation begins with the assembly of glycans on phosphorylated polyisoprenoid carriers. Like eukaryotes, archaea also utilize phosphorylated dolichol for this role, yet whereas the assembled oligosaccharide is transferred to target proteins from dolichol pyrophosphate in eukaryotes, archaeal N-linked glycans characterized to date are derived from a dolichol monophosphate carrier, apart from a single example. In this study, glycan-charged dolichol phosphate from the hyperthermophile Pyrococcus furiosus was identified and structurally characterized. Normal and reverse phase liquid chromatography-electrospray ionization mass spectrometry revealed the existence of dolichol phosphate charged with the heptasaccharide recently described in in vitro studies of N-glycosylation on this species. As with other described archaeal dolichol phosphates, the α- and ω-terminal isoprene subunits of the P. furiosus lipid are saturated, in contrast to eukaryal phosphodolichols that present only a saturated α-position isoprene subunit. Interestingly, an additional 1-4 of the 12-14 isoprene subunits comprising P. furiosus dolichol phosphate are saturated, making this lipid not only the longest archaeal dolichol phosphate described to date but also the most highly saturated.

  12. N-Linked Glycans Are Assembled on Highly Reduced Dolichol Phosphate Carriers in the Hyperthermophilic Archaea Pyrococcus furiosus.

    Directory of Open Access Journals (Sweden)

    Michelle M Chang

    Full Text Available In all three domains of life, N-glycosylation begins with the assembly of glycans on phosphorylated polyisoprenoid carriers. Like eukaryotes, archaea also utilize phosphorylated dolichol for this role, yet whereas the assembled oligosaccharide is transferred to target proteins from dolichol pyrophosphate in eukaryotes, archaeal N-linked glycans characterized to date are derived from a dolichol monophosphate carrier, apart from a single example. In this study, glycan-charged dolichol phosphate from the hyperthermophile Pyrococcus furiosus was identified and structurally characterized. Normal and reverse phase liquid chromatography-electrospray ionization mass spectrometry revealed the existence of dolichol phosphate charged with the heptasaccharide recently described in in vitro studies of N-glycosylation on this species. As with other described archaeal dolichol phosphates, the α- and ω-terminal isoprene subunits of the P. furiosus lipid are saturated, in contrast to eukaryal phosphodolichols that present only a saturated α-position isoprene subunit. Interestingly, an additional 1-4 of the 12-14 isoprene subunits comprising P. furiosus dolichol phosphate are saturated, making this lipid not only the longest archaeal dolichol phosphate described to date but also the most highly saturated.

  13. Achieving high carrier mobility exceeding 70 cm2/Vs in amorphous zinc tin oxide thin-film transistors

    Science.gov (United States)

    Kim, Sang Tae; Shin, Yeonwoo; Yun, Pil Sang; Bae, Jong Uk; Chung, In Jae; Jeong, Jae Kyeong

    2017-09-01

    This paper proposes a new defect engineering concept for low-cost In- and Ga-free zinc tin oxide (ZTO) thin-film transistors (TFTs). This concept is comprised of capping ZTO films with tantalum (Ta) and a subsequent modest thermal annealing treatment at 200 °C. The Ta-capped ZTO TFTs exhibited a remarkably high carrier mobility of 70.8 cm2/Vs, low subthreshold gate swing of 0.18 V/decade, threshold voltage of -1.3 V, and excellent ION/OFF ratio of 2 × 108. The improvement (> two-fold) in the carrier mobility compared to the uncapped ZTO TFT can be attributed to the effective reduction of the number of adverse tailing trap states, such as hydroxyl groups or oxygen interstitial defects, which stems from the scavenging effect of the Ta capping layer on the ZTO channel layer. Furthermore, the Ta-capped ZTO TFTs showed excellent positive and negative gate bias stress stabilities. [Figure not available: see fulltext.

  14. Fast high-throughput screening of temoporfin-loaded liposomal formulations prepared by ethanol injection method.

    Science.gov (United States)

    Yang, Kewei; Delaney, Joseph T; Schubert, Ulrich S; Fahr, Alfred

    2012-03-01

    A new strategy for fast, convenient high-throughput screening of liposomal formulations was developed, utilizing the automation of the so-called ethanol-injection method. This strategy was illustrated by the preparation and screening of the liposomal formulation library of a potent second-generation photosensitizer, temoporfin. Numerous liposomal formulations were efficiently prepared using a pipetting robot, followed by automated size characterization, using a dynamic light scattering plate reader. Incorporation efficiency of temoporfin and zeta potential were also detected in selected cases. To optimize the formulation, different parameters were investigated, including lipid types, lipid concentration in injected ethanol, ratio of ethanol to aqueous solution, ratio of drug to lipid, and the addition of functional phospholipid. Step-by-step small liposomes were prepared with high incorporation efficiency. At last, an optimized formulation was obtained for each lipid in the following condition: 36.4 mg·mL(-1) lipid, 13.1 mg·mL(-1) mPEG(2000)-DSPE, and 1:4 ethanol:buffer ratio. These liposomes were unilamellar spheres, with a diameter of approximately 50 nm, and were very stable for over 20 weeks. The results illustrate this approach to be promising for fast high-throughput screening of liposomal formulations.

  15. Study on effects of high pressure injection for DI diesel combustion. Koatsu funsha ni yoru chokufun diesel no nensho kaizen

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, S.; Takahashi, T.; Sami, H.; Nakakita, K.; Osawa, K. (Toyota Motor Corp., Aichi, (Japan) Toyota Central Research and Development Labs. Inc., Aichi, (Japan))

    1990-04-25

    Accumulator type high pressure fuel injection equipment (HPIE), able to freely set the fuel injection pressure, was applied to a 94mm bore small type high speed direct injection Diesel engine (with turbo-charger), of which exhaust gas characteristics were investigated. Also by using a 102mm bore visualized single-cylinder engine, was observed combustion improvement effect by the HPIE. As a result, partial load exhaust gas characteristics were investigated at the rotation, 60% of the maximum number of rotations. That accumulator type HPIE changed in initial injection ratio due to the injection pressure. NO {sub x} emission depending upon both the injection pressure and timing, increase in NO {sub x} emission due to increase by 20MPa in injection pressure could be balanced with a CA delay by about 2 degrees in injection timing angle. Particulate is different by load in exhaust characteristics. In combustion observation, soot decreased in produced quantity with diminution in luminous portion of flame. 3 refs., 12 figs., 2 tabs.

  16. Unexpectedly high injection drug use, HIV and hepatitis C prevalence among female sex workers in the Republic of Mauritius.

    Science.gov (United States)

    Johnston, Lisa Grazina; Corceal, Sewraz

    2013-02-01

    Female sex workers (FSW) often have a disproportionately high prevalence of HIV infection and they, along with their clients, are considered a core group contributing to the transmission of HIV in many countries. In 2010, females who reported having vaginal/anal/oral sex in the last 6 months with a male in exchange for money or gifts, aged ≥15 years, and living in Mauritius were recruited into a survey using respondent driven sampling. Consenting females (n = 299) completed a behavioral questionnaire and provided venous blood for HIV, HCV and HBV testing. HIV seroprevalence among FSW was 28.9 % and 43.8 % were infected with HCV; among HIV seropositive FSW, 88.2 % were also infected with HCV. Almost 40 % of FSW reported injecting drugs sometime in their lives and 30.5 % of all FSW reported doing so in the previous 3 months. Among those who ever injected drugs, 82.5 % did so in the past 3 months and among those 60 % reported injecting drugs at least once a day. Among FSW who ever injected drugs, 17.5 % reported sharing a needle at last injection. Regression analyses found injection drug use behaviors to be positively associated with HIV seroprevalence. These findings indicate that FSW, especially those who inject drugs, are at high risk for HIV and HCV infection and transmission and illustrates the need for gender responsive HIV and injection drug use prevention and treatment models that respond to the unique situations that affect this population.

  17. Injection molding of high precision optics for LED applications made of liquid silicone rubber

    Energy Technology Data Exchange (ETDEWEB)

    Hopmann, Christian; Röbig, Malte [Institute of Plastics Processing (IKV), RWTH Aachen University, Pontstraße 49, 52062 Aachen (Germany)

    2016-03-09

    Light Emitting Diodes (LED) conquer the growing global market of lighting technologies. Due to their advantages, they are increasingly used in consumer products, in lighting applications in the home and in the mobility sector as well as in industrial applications. Particularly, with regard to the increasing use of high-power LED (HP-LED) the materials in the surrounding area of the light emitting semiconductor chip are of utmost importance. While the materials behind the semiconductor chip are optimized for maximum heat dissipation, the materials currently used for the encapsulation of the semiconductor chip (primary optics) and the secondary optics encounter their limits due to the high temperatures. In addition certain amounts of blue UV radiation degrade the currently used materials such as epoxy resins or polyurethanes for primary optics. In the context of an ongoing joint research project with various partners from the industry, an innovative manufacturing method for high precision optics for LED applications made of liquid silicone rubber (LSR) is analyzed at the Institut of Plastics Processing (IKV), Aachen. The aim of this project is to utilize the material-specific advantages of high transparent LSR, especially the excellent high temperature resistance and the great freedom in design. Therefore, a high integrated injection molding process is developed. For the production of combined LED primary and secondary optics a LED board is placed in an injection mold and overmolded with LSR. Due to the integrated process and the reduction of subcomponents like the secondary optics the economics of the production process can be improved significantly. Furthermore combined LED optics offer an improved effectiveness, because there are no losses of the light power at the transition of the primary and secondary optics.

  18. Access to highly active antiretroviral therapy for injection drug users: adherence, resistance, and death

    Directory of Open Access Journals (Sweden)

    David Vlahov

    Full Text Available Injection drug users (IDUs continue to comprise a major risk group for HIV infection throughout the world and represent the focal population for HIV epidemics in Asia and Eastern Europe/Russia. HIV prevention programs have ranged from HIV testing and counseling, education, behavioral and network interventions, drug abuse treatment, bleach disinfection of needles, needle exchange and expanded syringe access, as well as reducing transition to injection and primary substance abuse prevention. With the advent of highly active antiretroviral therapy (HAART in 1996, dramatic clinical improvements have been seen. In addition, the treatment's impact on reducing HIV viral load (and therefore transmission by all routes provides a stronger rationale for an expansion of the focus on prevention to emphasize early identification and treatment of HIV infected individuals. However, treatment of IDUs has many challenges including adherence, resistance and relapse to high risk behaviors, all of which impact issues of access and ultimately effectiveness of potent antiretroviral treatment. A major current challenge in addressing the HIV epidemic revolves around an appropriate approach to HIV treatment for IDUs.

  19. Understanding different efficiency droop behaviors in InGaN-based near-UV, blue and green light-emitting diodes through differential carrier lifetime measurements

    CERN Document Server

    Wang, Lai; Wang, Jiaxing; Hao, Zhibiao; Luo, Yi; Sun, Changzheng; Han, Yanjun; Xiong, Bing; Wang, Jian; Li, Hongtao

    2016-01-01

    Efficiency droop effect under high injection in GaN-based light emitting diodes (LEDs) strongly depends on wavelength, which is still not well understood. In this paper, through differential carrier lifetime measurements on commercialized near-UV, blue, and green LEDs, their different efficiency droop behaviors are attributed to different carrier lifetimes, which are prolonged as wavelength increases. This relationship between carrier lifetime and indium composition of InGaN quantum well is believed owing to the polarization-induced quantum confinement Stark effect. Long carrier lifetime not only increases the probability of carrier leakage, but also results in high carrier concentration in quantum well. In other words, under the same current density, the carrier concentration in active region in near-UV LED is the lowest while that in green one is the highest. If considering the efficiency droop depending on carrier concentration, the behaviors of LEDs with different wavelengths do not show any abnormality. ...

  20. Wall-slip of highly filled powder injection molding compounds: Effect of flow channel geometry and roughness

    Energy Technology Data Exchange (ETDEWEB)

    Hausnerova, Berenika; Sanetrnik, Daniel [Dept. of Production Engineering, Faculty of Technology, Tomas Bata University in Zlin, nám. T.G. Masaryka 5555, 760 01 Zlín, Czech Republic and Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Nad Ovc (Czech Republic); Paravanova, Gordana [Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Nad Ovcírnou 3685, 760 01 Zlín (Czech Republic)

    2014-05-15

    The paper deals with the rheological behavior of highly filled compounds proceeded via powder injection molding (PIM) and applied in many sectors of industry (automotive, medicine, electronic or military). Online rheometer equipped with slit dies varying in surface roughness and dimensions was applied to investigate the wall-slip as a rheological phenomenon, which can be considered as a parameter indicating the separation of compound components (polymer binder and metallic powder) during high shear rates when injection molded.

  1. Effect of light backscattering on high-speed modulation performance in strongly injection-locked unidirectional semiconductor ring lasers

    Science.gov (United States)

    Smolyakov, Gennady A.; Osinski, Marek

    2014-03-01

    Greatly enhanced high-speed modulation performance has been recently predicted in numerical calculations for a novel injection-locking scheme involving a DBR or DFB master laser monolithically integrated with a unidirectional semiconductor microring laser. In this work, we investigate the effect of light backscattering between the two counterpropagating modes on high-speed modulation performance of strongly injection-locked unidirectional semiconductor microring lasers.

  2. High risk behavior for HIV transmission among former injecting drug users: A survey from Indonesia

    NARCIS (Netherlands)

    Iskandar, S.; Basar, D.; Hidayat, T.; Siregar, I.M.P.; Pinxten, W.J.L.; Crevel, R. van; Ven, A.J.A.M. van der; Jong, C.A.J. de

    2010-01-01

    Background: Injecting drug use is an increasingly important cause of HIV transmission in most countries worldwide, especially in eastern Europe, South America, and east and southeast Asia. Among people actively injecting drugs, provision of clean needles and opioid substitution reduce

  3. High risk behavior for HIV transmission among former injecting drug users: A survey from Indonesia

    NARCIS (Netherlands)

    Iskandar, S.; Basar, D.; Hidayat, T.; Siregar, I.M.; Pinxten, L.; Crevel, R. van; Ven, A.J.A.M. van der; Jong, C.A.J. de

    2010-01-01

    BACKGROUND: Injecting drug use is an increasingly important cause of HIV transmission in most countries worldwide, especially in eastern Europe, South America, and east and southeast Asia. Among people actively injecting drugs, provision of clean needles and opioid substitution reduce

  4. High charge carrier density at the NaTaO3/SrTiO3 hetero-interface

    KAUST Repository

    Nazir, Safdar

    2011-08-05

    The formation of a (quasi) two-dimensional electron gas between the band insulators NaTaO3 and SrTiO3 is studied by means of the full-potential linearized augmented plane-wave method of density functional theory. Optimization of the atomic positions points to only small changes in the chemical bonding at the interface. Both the p-type (NaO)−/(TiO2)0 and n-type (TaO2)+/(SrO)0 interfaces are found to be metallic with high charge carrier densities. The effects of O vacancies are discussed. Spin-polarized calculations point to the formation of isolated O 2pmagnetic moments, located in the metallic region of the p-type interface.

  5. Simultaneous drop in mean free path and carrier density at the pseudogap onset in high-{T}_{{\\rm{c}}} cuprates

    Science.gov (United States)

    Storey, J. G.

    2017-10-01

    High-temperature superconducting cuprates are distinguished by an enigmatic pseudogap which opens near optimal doping where the superconducting transition temperature is highest. Key questions concern its origin and whether it is essential in any way to superconductivity. Recent field-induced normal-state transport experiments on hole-doped cuprates have measured abrupt changes in the doping-dependent Hall number and resistivity, consistent with a drop in carrier density from 1+p to p holes per copper atom, on entering the pseudogap phase. In this work the change in resistivity is analyzed in terms of an antiferromagnetic-order-induced Fermi surface reconstruction model that has already successfully described the Hall number. In order for this model to describe the resistivity we find that the zero-temperature mean free path must also drop abruptly in proportion to the size of the Fermi surface. This suggests that intrapocket scattering underlies the observed upturn in resistivity in the pseudogap state.

  6. Study on No- carrier-added Separation of 126Sn From High-level Liquid Waste

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    126Sn is a long-lived fission product nuclide, its fission yield values, in fission of 235U by thermalneutron, fission spectrum neutron and high energy neutron, are 5.59×10-2%, 1.39×10-1% and 1.76%,respectively. So scientists are paying more attention to 126Sn in high radioactive waste disposal.

  7. Identification of the Allergenic Ingredients in Reduning Injection by Ultrafiltration and High-Performance Liquid Chromatography

    Directory of Open Access Journals (Sweden)

    Fang Wang

    2016-01-01

    Full Text Available Reduning injection is a traditional Chinese medicine injection which has multiple functions such as clearing heat, dispelling wind, and detoxification. Although Reduning injection was widely utilized, reports of its allergenicity emerged one after another. However, there is little research on its allergenic substances. The aim of this study is to evaluate the sensitization of Reduning injection and explore the underlying cause of the anaphylactic reaction. The main ingredients in Reduning injection were analyzed before and after ultrafiltration. Ultrafiltrate Reduning injection, unfiltered Reduning injection, egg albumin, Tween-80, and nine effective components in Reduning injection were utilized to sensitize guinea pigs. The serum 5-hydroxytryptamine level was used to assess the sensitization effect of Reduning injection. We found a significant decrease in Tween-80 content comparing to other components in the injection after ultrafiltration. Unfiltered Reduning injection, Tween-80, chlorogenic acid, and cryptochlorogenin acid caused remarkable anaphylactoid reaction on guinea pigs while ultrafiltration Reduning resulted in a significantly lower degree of sensitization. Our results suggest that ultrafiltration could significantly reduce the sensitization of Reduning injection, which is likely due to the decrease of Tween-80. We also conjectured that the form of chlorogenic acid and cryptochlorogenin acid within the complex solution mixture may also affect the sensitizing effect.

  8. High Voltage Performance of the Beam Screen of the LHC Injection Kicker Magnets

    CERN Document Server

    Barnes, MJ; Bregliozzi, G; Calatroni, S; Costa Pinto, P; Day, H; Ducimetière, L; Kramer, T; Namora, V; Mertens, V; Taborelli, M

    2014-01-01

    The LHC injection kicker magnets include beam screens to shield the ferrite yokes against wakefields resulting from the high intensity beam. The screening is provided by conductors lodged in the inner wall of a ceramic support tube. The design of the beam screen has been upgraded to overcome limitations and permit LHC operation with increasingly higher bunch intensity and short bunch lengths: the new design also significantly reduces the electric field associated with the screen conductors, decreasing the probability of electrical breakdown. The high voltage conditioning process for the upgraded kicker magnets is presented and discussed. In addition a test setup has been utilized to study flashover, on the inner wall of the ceramic tube, as a function of both applied voltage and vacuum pressure: results from the test setup are presented.

  9. High accuracy and precision micro injection moulding of thermoplastic elastomers micro ring production

    DEFF Research Database (Denmark)

    Calaon, Matteo; Tosello, Guido; Elsborg, René

    2016-01-01

    of using tool geometries as reference calibrated artefacts to establish effective process technology development and control. The results allow identifying the correct process windows for optimal part quality reducing product dimensional variation in the micrometer dimensional range. The proposed......The mass-replication nature of the process calls for fast monitoring of process parameters and product geometrical characteristics. In this direction, the present study addresses the possibility to develop a micro manufacturing platform for micro assembly injection moulding with real-time process/product...... monitoring and metrology. The study represent a new concept yet to be developed with great potential for high precision mass-manufacturing of highly functional 3D multi-material (i.e. including metal/soft polymer) micro components. The activities related to HINMICO project objectives proves the importance...

  10. High-Yield Lithium-Injection Fusion-Energy (HYLIFE) reactor

    Energy Technology Data Exchange (ETDEWEB)

    Blink, J.A.; Hogam, W.J.; Hovingh, J.; Meier, E.R.; Pitts, J.H. (comps.)

    1985-12-23

    The High-Yield Lithium-Injection Fusion Energy (HYLIFE) concept to convent inertial confinement fusion energy into electric power has undergone intensive research and refinement at LLNL since 1978. This paper reports on the final HYLIFE design, focusing on five major areas: the HYLIFE reaction chamber (which includes neutronics, liquid-metal jet-array hydrocynamics, and structural design), supporting systems, primary steam system and balance of plant, safety and environmental protection, and costs. An annotated bibliography of reports applicable to HYLIFE is also provided. We conclude that HYLIFE is a particularly viable concept for the safe, clean production of electrical energy. The liquid-metal jet array, HYLIFE's key design feature, protects the surrounding structural components from x-rays, fusion fuel-pellet debris, neutron damage and activation, and high temperatures and stresses, allowing the structure to last for the plant's entire 30-year lifetime without being replaced. 127 refs., 18 figs.

  11. HIGH RESOLUTION PREDICTION OF GAS INJECTION PROCESS PERFORMANCE FOR HETEROGENEOUS RESERVOIRS

    Energy Technology Data Exchange (ETDEWEB)

    Franklin M. Orr, Jr.

    2001-03-31

    This report outlines progress in the second 3 months of the first year of the DOE project ''High Resolution Prediction of Gas Injection Process Performance for Heterogeneous Reservoirs.'' The development of an automatic technique for analytical solution of one-dimensional gas flow problems with volume change on mixing is described. The aim of this work is to develop a set of ultra-fast compositional simulation tools that can be used to make field-scale predictions of the performance of gas injection processes. To achieve the necessary accuracy, these tools must satisfy the fundamental physics and chemistry of the displacement from the pore to the reservoir scales. Thus this project focuses on four main research areas: (1) determination of the most appropriate methods of mapping multicomponent solutions to streamlines and streamtubes in 3D; (2) development of techniques for automatic generation of analytical solutions for one-dimensional flow along a streamline; (3) experimental investigations to improve the representation of physical mechanisms that govern displacement efficiency along a streamline; and (4) theoretical and experimental investigations to establish the limitations of the streamline/streamtube approach. In this report they briefly review the status of the research effort in each area. They then give a more in depth discussion of their development of techniques for analytic solutions along a streamline including volume change on mixing for arbitrary numbers of components.

  12. High heritability is compatible with the broad distribution of set point viral load in HIV carriers.

    Directory of Open Access Journals (Sweden)

    Sebastian Bonhoeffer

    2015-02-01

    Full Text Available Set point viral load in HIV patients ranges over several orders of magnitude and is a key determinant of disease progression in HIV. A number of recent studies have reported high heritability of set point viral load implying that viral genetic factors contribute substantially to the overall variation in viral load. The high heritability is surprising given the diversity of host factors associated with controlling viral infection. Here we develop an analytical model that describes the temporal changes of the distribution of set point viral load as a function of heritability. This model shows that high heritability is the most parsimonious explanation for the observed variance of set point viral load. Our results thus not only reinforce the credibility of previous estimates of heritability but also shed new light onto mechanisms of viral pathogenesis.

  13. Access to highly active antiretroviral therapy (HAART) for injecting drug users in the WHO European Region 2002-2004

    DEFF Research Database (Denmark)

    Donoghoe, Martin C; Bollerup, Annemarie R; Lazarus, Jeff

    2007-01-01

    Providing equitable access to highly active antiretroviral treatment (HAART) to injecting drug users (IDUs) is both feasible and desirable. Given the evidence that IDUs can adhere to HAART as well as non-IDUs and the imperative to provide universal and equitable access to HIV/AIDS treatment for all...... the injecting status of those initiating HAART and the use of opioid substitution therapy among HAART patients, and discuss how HAART might be better delivered to injecting drug users. Our data adds to the evidence that IDUs in Europe have poor and inequitable access to HAART, with only a relatively small...

  14. Spin Injection in Indium Arsenide

    Directory of Open Access Journals (Sweden)

    Mark eJohnson

    2015-08-01

    Full Text Available In a two dimensional electron system (2DES, coherent spin precession of a ballistic spin polarized current, controlled by the Rashba spin orbit interaction, is a remarkable phenomenon that’s been observed only recently. Datta and Das predicted this precession would manifest as an oscillation in the source-drain conductance of the channel in a spin-injected field effect transistor (Spin FET. The indium arsenide single quantum well materials system has proven to be ideal for experimental confirmation. The 2DES carriers have high mobility, low sheet resistance, and high spin orbit interaction. Techniques for electrical injection and detection of spin polarized carriers were developed over the last two decades. Adapting the proposed Spin FET to the Johnson-Silsbee nonlocal geometry was a key to the first experimental demonstration of gate voltage controlled coherent spin precession. More recently, a new technique measured the oscillation as a function of channel length. This article gives an overview of the experimental phenomenology of the spin injection technique. We then review details of the application of the technique to InAs single quantum well (SQW devices. The effective magnetic field associated with Rashba spin-orbit coupling is described, and a heuristic model of coherent spin precession is presented. The two successful empirical demonstrations of the Datta Das conductance oscillation are then described and discussed.

  15. Thick Homoepitaxial GaN with Low Carrier Concentration for High Blocking Voltage

    Science.gov (United States)

    2010-01-01

    demonstrated that GaN Schottky diodes fabricated on freestanding GaN substrates with simple metal overlap edge termination show reverse recovery time...Prior to ramping up to the growth temperature for MOCVD deposition of GaN, the flows of palladium -diffused high purity hydrogen and ammonia were

  16. Development of high quality carrier materials for field delivery of key microorganisms used as bio-fertilisers and bio-pesticides

    Energy Technology Data Exchange (ETDEWEB)

    Yardin, M. Roseline E-mail: m.yardin@uws.edu.au; Kennedy, Ivan R.; Thies, Janice E

    2000-03-01

    High quality inoculants used as bio-fertilisers and bio-pesticides depend on having high concentrations of the microorganism(s), long shelf-life and a formulation appropriate for field delivery. To maintain the microorganisms in a viable state, commercially available carrier materials are typically based on milled peat, clays, rice, bran, seeds, or other complex organic matrices. To manufacture a high quality microbial product, it is essential that the carrier material is pre-packaged and pre-sterilised. This allows for non-competitive multiplication and maintenance of the microorganisms in a nutrient rich environment. This paper reports on the efficacy and problems inherent in the sterilisation of complex carbon-based carrier materials such as peat. Resident microbial survivors of gamma irradiation doses in excess of 50 kGy, commonly Gram positive spore-formers such as Bacillus or actinomycetes were consistently observed. (author)

  17. Coherent control of injection currents in high-quality films of Bi{sub 2}Se{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Bas, D. A.; Vargas-Velez, K.; Babakiray, S.; Johnson, T. A.; Borisov, P.; Stanescu, T. D.; Lederman, D.; Bristow, A. D., E-mail: alan.bristow@mail.wvu.edu [Department of Physics and Astronomy, West Virginia University, Morgantown, West Virginia 26506-6315 (United States)

    2015-01-26

    Films of the topological insulator Bi{sub 2}Se{sub 3} are grown by molecular beam epitaxy with in-situ reflection high-energy electron diffraction. The films are shown to be high-quality by X-ray reflectivity and diffraction and atomic-force microscopy. Quantum interference control of photocurrents is observed by excitation with harmonically related pulses and detected by terahertz radiation. The injection current obeys the expected excitation irradiance dependence, showing linear dependence on the fundamental pulse irradiance and square-root irradiance dependence of the frequency-doubled optical pulses. The injection current also follows a sinusoidal relative-phase dependence between the two excitation pulses. These results confirm the third-order nonlinear optical origins of the coherently controlled injection current. Experiments are compared to a tight-binding band structure to illustrate the possible optical transitions that occur in creating the injection current.

  18. Endometrium is not the primary site of origin of pelvic high-grade serous carcinoma in BRCA1 or BRCA2 mutation carriers

    NARCIS (Netherlands)

    Reitsma, Welmoed; Mourits, Marian J. E.; de Bock, Geertruida H.; Hollema, Harry

    2013-01-01

    Serous endometrial intraepithelial carcinoma has been proposed to be a potential precursor lesion of pelvic high-grade serous carcinoma. If true, an increased incidence of uterine papillary serous carcinomas would be expected in BRCA1 and BRCA2 mutation carriers, who are at high-risk of developing p

  19. Ionic Wind Phenomenon and Charge Carrier Mobility in Very High Density Argon Corona Discharge Plasma

    Science.gov (United States)

    Nur, M.; Bonifaci, N.; Denat, A.

    2014-04-01

    Wind ions phenomenon has been observed in the high density argon corona discharge plasma. Corona discharge plasma was produced by point to plane electrodes and high voltage DC. Light emission from the recombination process was observed visually. The light emission proper follow the electric field lines that occur between point and plane electrodes. By using saturation current, the mobilities of non-thermal electrons and ions have been obtained in argon gas and liquid with variation of density from 2,5 1021 to 2 1022 cm-3. In the case of ions, we found that the behaviour of the apparent mobility inversely proportional to the density or follow the Langevin variation law. For non-thermal electron, mobility decreases and approximately follows a variation of Langevin type until the density <= 0,25 the critical density of argon.

  20. High-speed carrier-depletion silicon Mach-Zehnder optical modulators with lateral PN junctions

    Directory of Open Access Journals (Sweden)

    Graham Trevor Reed

    2014-12-01

    Full Text Available This paper presents new experimental data from a lateral PN junction silicon Mach-Zehnder optical modulator. Efficiencies in the 1.4V.cm to 1.9V.cm range are demonstrated for drive voltages between 0V and 6V. High speed operation up to 52Gbit/s is also presented. The performance of the device which has its PN junction positioned in the centre of the waveguide is then compared to previously reported data from a lateral PN junction device with the junction self-aligned to the edge of the waveguide rib. An improvement in modulation efficiency is demonstrated when the junction is positioned in the centre of the waveguide. Finally we propose schemes for achieving high modulation efficiency whilst retaining self-aligned formation of the PN junction.

  1. Breast cancer size estimation with MRI in BRCA mutation carriers and other high risk patients

    Energy Technology Data Exchange (ETDEWEB)

    Mann, R.M., E-mail: r.mann@rad.umcn.nl [Radboud University Nijmegen Medical Centre, Department of Radiology, Nijmegen (Netherlands); Bult, P., E-mail: p.bult@path.umcn.nl [Radboud University Nijmegen Medical Centre, Department of Pathology, Nijmegen (Netherlands); Laarhoven, H.W.M. van, E-mail: h.vanlaarhoven@amc.uva.nl [Academic Medical Centre, University of Amsterdam, Department of Medical Oncology, Amsterdam (Netherlands); Radboud University Nijmegen Medical Centre, Department of Medical Oncology, Nijmegen (Netherlands); Span, P.N., E-mail: p.span@rther.umcn.nl [Radboud University Nijmegen Medical Centre, Department of Radiation Oncology, Nijmegen (Netherlands); Schlooz, M., E-mail: m.schlooz@chir.umcn.nl [Radboud University Nijmegen Medical Centre, Department of Surgery, Nijmegen (Netherlands); Veltman, J., E-mail: j.veltman@zgt.nl [Hospital group Twente (ZGT), Department of Radiology, Almelo (Netherlands); Hoogerbrugge, N., E-mail: n.hoogerbrugge@gen.umcn.nl [Radboud University Nijmegen Medical Centre, Department of Human Genetics, Nijmegen (Netherlands)

    2013-09-15

    Objective: To assess the value of breast MRI in size assessment of breast cancers in high risk patients, including those with a BRCA 1 or 2 mutation. Guidelines recommend invariably breast MRI screening for these patients and therapy is thus based on these findings. However, the accuracy of breast MRI for staging purposes is only tested in sporadic cancers. Methods: We assessed concordance of radiologic staging using MRI with histopathology in 49 tumors in 46 high risk patients (23 BRCA1, 12 BRCA2 and 11 Non-BRCA patients). The size of the total tumor area (TTA) was compared to pathology. In invasive carcinomas (n = 45) the size of the largest focus (LF) was also addressed. Results: Correlation of MRI measurements with pathology was 0.862 for TTA and 0.793 for LF. TTA was underestimated in 8(16%), overestimated in 5(10%), and correctly measured in 36(73%) cases. LF was underestimated in 4(9%), overestimated in 5(11%), and correctly measured in 36(80%) cases. Impact of BRCA 1 or 2 mutations on the quality of size estimation was not observed. Conclusions: Tumor size estimation using breast MRI in high risk patients is comparable to its performance in sporadic cancers. Therefore, breast MRI can safely be used for treatment planning.

  2. High HCV seroprevalence and HIV drug use risk behaviors among injection drug users in Pakistan

    Directory of Open Access Journals (Sweden)

    Zafar Tariq

    2006-08-01

    Full Text Available Abstract Introduction HIV and HCV risk behaviors among injection drug users (IDUs in two urban areas in Pakistan were identified. Methods From May to June 2003, 351 IDUs recruited in harm-reduction drop-in centers operated by a national non-governmental organization in Lahore (Punjab province and Quetta (Balochistan province completed an interviewer-administered survey and were tested for HIV and HCV. Multivariable logistic regression identified correlates of seropositivity, stratifying by site. All study participants provided written, informed consent. Results All but two were male; median age was 35 and Discussion Despite no HIV cases, overall HCV prevalence was very high, signaling the potential for a future HIV epidemic among IDUs across Pakistan. Programs to increase needle exchange, drug treatment and HIV and HCV awareness should be implemented immediately.

  3. Injection locking of a low cost high power laser diode at 461 nm

    CERN Document Server

    Pagett, C J H; Teixeira, R C; Shiozaki, R F; Hemmerling, M; Courteille, Ph W

    2016-01-01

    Stable laser sources at 461 nm are important for optical cooling of strontium atoms. In most existing experiments this wavelength is obtained by frequency doubling infrared lasers, since blue laser diodes either have low power or large emission bandwidths. Here, we show that injecting less than 10 mW of monomode laser radiation into a blue multimode 500 mW high power laser diode is capable of slaving at least 50% of the power to the desired frequency. We verify the emission bandwidth reduction by saturation spectroscopy on a strontium gas cell and by direct beating of the slave with the master laser. We also demonstrate that the laser can efficiently be used within the Zeeman slower for optical cooling of a strontium atomic beam.

  4. Injection locking of a low cost high power laser diode at 461 nm

    Science.gov (United States)

    Pagett, C. J. H.; Moriya, P. H.; Celistrino Teixeira, R.; Shiozaki, R. F.; Hemmerling, M.; Courteille, Ph. W.

    2016-05-01

    Stable laser sources at 461 nm are important for optical cooling of strontium atoms. In most existing experiments, this wavelength is obtained by frequency doubling infrared lasers, since blue laser diodes either have low power or large emission bandwidths. Here, we show that injecting less than 10 mW of monomode laser radiation into a blue multimode 500 mW high power laser diode is capable of slaving at least 50% of the power to the desired frequency. We verify the emission bandwidth reduction by saturation spectroscopy on a strontium gas cell and by direct beating of the slave with the master laser. We also demonstrate that the laser can efficiently be used within the Zeeman slower for optical cooling of a strontium atomic beam.

  5. Highly uniform platinum icosahedra made by hot injection-assisted GRAILS method.

    Science.gov (United States)

    Zhou, Wei; Wu, Jianbo; Yang, Hong

    2013-06-12

    Highly uniform Pt icosahedral nanocrystals with an edge length of 8.8 nm were synthesized in nonhydrolytic systems using the hot injection-assisted GRAILS (gas reducing agent in liquid solution) method. The results show the key factors for the shape control include fast nucleation, kinetically controlled growth, and protection from oxidation by air. The effect of oxygen molecules on the Pt morphology was experimentally confirmed based on the study of shape evolution of icosahedral crystals upon exposure to oxygen gas. The Pt icosahedral catalysts obtained had an area-specific activity of 0.83 mA/cm(2) Pt, four times that of 0.20 mA/cm(2) Pt for typical Pt/C catalysts, in an oxygen reduction reaction (ORR).

  6. Injection locking of a low cost high power laser diode at 461 nm.

    Science.gov (United States)

    Pagett, C J H; Moriya, P H; Celistrino Teixeira, R; Shiozaki, R F; Hemmerling, M; Courteille, Ph W

    2016-05-01

    Stable laser sources at 461 nm are important for optical cooling of strontium atoms. In most existing experiments, this wavelength is obtained by frequency doubling infrared lasers, since blue laser diodes either have low power or large emission bandwidths. Here, we show that injecting less than 10 mW of monomode laser radiation into a blue multimode 500 mW high power laser diode is capable of slaving at least 50% of the power to the desired frequency. We verify the emission bandwidth reduction by saturation spectroscopy on a strontium gas cell and by direct beating of the slave with the master laser. We also demonstrate that the laser can efficiently be used within the Zeeman slower for optical cooling of a strontium atomic beam.

  7. High-Frequency Link Inverter for Fuel Cells Based on Multiple-Carrier PWM

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    HIGH-FREQUENCY (I-IF) ac link inverter topologies, with or without soft switching, have important practical advantages compared to more conventional dc link inverters in terms of isolation, size of magnetics, and other properties. It is possible to obtain these basic advantages directly in a conventional PWM inverter with trans former-coupled output, but only if the transformer can handle the low modulating frequency. HF link topologies have not been common for medium power (1 to 20kW), largely because of the number of power stages and control complexity.

  8. Influence of high-conductivity buffer composition on field-enhanced sample injection coupled to sweeping in CE.

    Science.gov (United States)

    Anres, Philippe; Delaunay, Nathalie; Vial, Jérôme; Thormann, Wolfgang; Gareil, Pierre

    2013-02-01

    The aim of this work was to clarify the mechanism taking place in field-enhanced sample injection coupled to sweeping and micellar EKC (FESI-Sweep-MEKC), with the utilization of two acidic high-conductivity buffers (HCBs), phosphoric acid or sodium phosphate buffer, in view of maximizing sensitivity enhancements. Using cationic model compounds in acidic media, a chemometric approach and simulations with SIMUL5 were implemented. Experimental design first enabled to identify the significant factors and their potential interactions. Simulation demonstrates the formation of moving boundaries during sample injection, which originate at the initial sample/HCB and HCB/buffer discontinuities and gradually change the compositions of HCB and BGE. With sodium phosphate buffer, the HCB conductivity increased during the injection, leading to a more efficient preconcentration by staking (about 1.6 times) than with phosphoric acid alone, for which conductivity decreased during injection. For the same injection time at constant voltage, however, a lower amount of analytes was injected with sodium phosphate buffer than with phosphoric acid. Consequently sensitivity enhancements were lower for the whole FESI-Sweep-MEKC process. This is why, in order to maximize sensitivity enhancements, it is proposed to work with sodium phosphate buffer as HCB and to use constant current during sample injection. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Oxidative stability of high-oleic sunflower oil in a porous starch carrier.

    Science.gov (United States)

    Belingheri, Claudia; Giussani, Barbara; Rodriguez-Estrada, Maria Teresa; Ferrillo, Antonio; Vittadini, Elena

    2015-01-01

    This study evaluates the oxidation level of high-oleic sunflower oil (HOSO) plated onto porous starch as an alternative to spray drying. Encapsulated oils were subjected to accelerated oxidation by heat and light exposure, and peroxide value (PV) and conjugated dienes (CD) were measured. Bulk oil was the control. PV increased in all samples with increased light exposure, with similar values being reached by oil carried on porous starch and spray dried oil. The encapsulation processes determined a reduced effect of light on the increase of CD in the oil, as compared to bulk oil. Spray dried oil presented the highest CD in the experimental domain considered. Since similar levels of PV and lower levels of CD were shown in the HOSO carried on porous starch compared to the spray dried HOSO, plating flavour oils on porous starch could be a suitable technological alternative to spray drying, for flavour encapsulation.

  10. Highly sensitive nonlinear luminescent ceramics for volumetric and multilayer data carriers

    Energy Technology Data Exchange (ETDEWEB)

    Martynovich, E F; Dresvyanskiy, V P [Irkutsk Branch of Institute of Laser Physics, Siberian Branch, Russian Academy of Sciences, Irkutsk (Russian Federation); Voitovich, A P [B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk (Belarus); Bagayev, S N [Institute of Laser Physics, Siberian Branch, Russian Academy of Sciences, Novosibirsk (Russian Federation)

    2015-10-31

    The interaction of optical ceramics based on wide-bandgap crystals with near-IR femtosecond laser radiation is studied experimentally. The formation of luminescent centres in LiF and MgF{sub 2} ceramics under the action of single laser pulses is considered. Two interaction regimes are used. In the regime of low-aperture focusing of laser radiation (800 nm, 30 fs, 0.3 mJ), multiple selffocusing and filamentation in the samples are observed. The luminescent centres are formed in thin channels induced by light filaments. The average effective self-focusing length is ∼100 μm; the formation of luminescent centres begins at this length and ceases at a wavelength of about 380 mm. The luminescent trace (spur) induced by a single laser filament was ∼30 μm long and 1.3 μm in diameter. The second regime of light interaction with the sample was based on high-aperture focusing with a simultaneous decrease in the laser pulse energy. This led to the formation of single pits with a diameter smaller than the optical diffraction limit. The luminescent centres induced by the laser radiation were aggregated colour centres. The mechanism of their creation included the highly-nonlinear generation of electron – hole pairs in the filamentation region, their recombination with the formation of anion excitons and the decay of excitons into Fresnel defects by the Lushchik – Vitol – Hersh – Pooley mechanism, as well as their recharging, migration and aggregation. (laser applications and other topics in quantum electronics)

  11. 基于载流子注入产热机制的半导体激光器热模型分析%Analysis of the Thermal Model Based on the Carrier Injection Mechanisms within the Semiconductor Laser

    Institute of Scientific and Technical Information of China (English)

    张建伟; 宁永强; 张星; 张建; 刘云; 秦莉; 王立军

    2012-01-01

    为解决常用经验计算公式参数复杂、产热项考虑不足等问题,采用优化的激光器热模型分析了激光器连续工作时有源区温度的变化并进行了实验验证.通过分析有源区注入载流子产热机制,建立了替代传统的热源计算公式的经验计算公式,考虑了载流子通过激光器内部渐变异质结时的势垒电阻以提高焦耳热计算精度.制作了电极尺寸为10μm、台面尺寸为20 μm的半导体激光器件并对器件热特性进行了模拟.由于未考虑热载流子注入效应,利用传统经验公式得出的有源区热功率密度比提出的优化模型偏低,因而理论模拟的器件内部温升也偏低.对激光器出光特性进行测试,推导出不同注入电流下激光器内部有源区的温升.测量与理论分析对比表明,采用经验公式得出的结果比实际测试结果偏低,而优化的热模型解决了该问题,利用该方法得出的有源区温升与测试结果最大偏差仅为0.2K,且温升随注入电流的变化趋势一致.%In order to solve the problems existed in the calculation of self heating in the active layer of semiconductor lasers, a new model for simulating the self-heating is introduced. The heat source induced by the carrier injection is analyzed. And the method for calculating the conductance of hetero-junction is also investigated to improve the precision of calculated joule heat. Edge emitting laser is fabricated, and the width of P-contact and stripe of fabricated laser are 10 μmand 20 μm, respectively. From the simulation result, the heat source density deduced from the traditional experience model is much lower than that from the optimized thermal model suggested. Thus a lower temperature rising is proposed in the experience model. By testing the shift of the lasing characteristics at different injected currents, the temperature of active layer is gained. Finally, the change of temperature with injected current obtained from

  12. Nonlinear Modeling of a High Precision Servo Injection Molding Machine Including Novel Molding Approach

    Institute of Scientific and Technical Information of China (English)

    何雪松; 王旭永; 冯正进; 章志新; 杨钦廉

    2003-01-01

    A nonlinear mathematical model of the injection molding process for electrohydraulic servo injection molding machine (IMM) is developed.It was found necessary to consider the characteristics of asymmetric cylinder for electrohydraulic servo IMM.The model is based on the dynamics of the machine including servo valve,asymmetric cylinder and screw,and the non-Newtonian flow behavior of polymer melt in injection molding is also considered.The performance of the model was evaluated based on novel approach of molding - injection and compress molding,and the results of simulation and experimental data demonstrate the effectiveness of the model.

  13. Optimized High Frequency Signal Injection Based Permanent Magnet Synchronous Motor Rotor Position Estimation Applied to Washing Machines

    Directory of Open Access Journals (Sweden)

    Olfa B.H.B. Kechiche

    2011-01-01

    Full Text Available Problem statement: This study investigates a novel optimized scheme of a High Frequency Signal Injection (HFSI based sensorless technique in order to carry out a precise and robust rotor position error estimation of a Permanent Magnet Synchronous Motor (PMSM drive designed for washing machines. The study is carried out for standstill condition, where precise position information is required for this application. Approach: In order to get rotor position error information, a PMSM high frequency model is considered in the estimated rotor reference frame (d,q. Then, the impact of the HFSI technique parameters choice on the PMSM rotor position estimation performance is studied and experimentally tested, under various injection conditions. Results: The experimental results show that the amplitude of the high frequency current, resulting from injection, is not significant to carry out high performance rotor position estimation. In order to improve rotor position estimation performance and robustness, a modified demodulation of the high frequency current resulting from injection is proposed by using a high pass filter amplifier applied to PMSM measured currents. The novel proposed rotor position error extraction scheme is implemented on a dsPIC30F6010A and is experimentally validated on a 1kW washing salient pole PMSM. Conclusion: This study presents an improved high frequency voltage injection based sensorless control for Permanent Magnet Synchronous Motor (PMSM designed for washing machines. The optimal parameters choice of the HFSI technique and the use of a high pass filter amplifier have allowed to take the most of the high frequency injected signal for extracting the rotor position error at standstill, compared to a conventional scheme.

  14. High Speed A/D DSP Interface for Carrier Doppler Tracking

    Science.gov (United States)

    Baggett, Timothy

    1998-01-01

    As on-board satellite systems continue to increase in ability to perform self diagnostic checks, it will become more important for satellites to initiate ground communications contact. Currently, the NASA Space Network requires users to pre-arranged times for satellite communications links through the Tracking and Data Relay Satellite (TDRS). One of the challenges in implementing an on-demand access protocol into the Space Network, is the fact that a low Earth orbiting (LEO) satellite's communications will be subject to a doppler shift which is outside the capability of the NASA ground station to lock onto. In a prearranged system, the satellite's doppler is known a priori, and the ground station is able to lock onto the satellite's signal. This paper describes the development of a high speed analog to digital interface into a Digital Signal Processor (DSP). This system will be used for identifying the doppler shift of a LEO satellite through the Space Network, and aiding the ground station equipment in locking onto the signal. Although this interface is specific to one application, it can be used as a basis for interfacing other devices with a DSP.

  15. Quenching of a highly superheated porous medium by injection of water

    Science.gov (United States)

    Fichot, F.; Bachrata, A.; Repetto, G.; Fleurot, J.; Quintard, M.

    2012-11-01

    Understanding of two-phase flow through porous medium with intense phase change is of interest in many situations, including nuclear, chemical or geophysical applications. Intense boiling occurs when the liquid is injected into a highly superheated medium. Under such conditions, the heat flux extracted by the fluid from the porous medium is mainly governed by the nucleation of bubbles and by the evaporation of thin liquid films. Both configurations are possible, depending on local flow conditions and on the ratio of bubble size to pore size. The present study is motivated by the safety evaluation of light water nuclear reactors in case of a severe accident scenario, such as the one that happened in Fukushima Dai-ichi plant in March, 2011. If water sources are not available for a long period of time, the reactor core heats up due to the residual power and eventually becomes significantly damaged due to intense oxidation of metals and fragmentation of fuel rods resulting in the formation of a porous medium where the particles have a characteristic length-scale of 1 to 5 mm. The coolability of the porous medium will depend on the water flow rate which can enter the medium under the available driving head and on the geometrical features of the porous matrix (average pore size, porosity). Therefore, it is of high interest to evaluate the conditions for which the injection of water in such porous medium is likely to stop the progression of the accident. The present paper addresses the issue of modelling two-phase flow and heat transfers in a porous medium initially dry, where water is injected. The medium is initially at a temperature well above the saturation temperature of water. In a first part, a summary of existing knowledge is provided, showing the scarcity of models and experimental data. In a second part, new experimental results obtained in an IRSN facility are analysed. The experiment consists in a bed of steel particles that are heated up to 700

  16. Effect of Injection Velocity on Structure Part Characteristic in AZ50 Die Casting Process with High Vacuum System

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    When diecasting large and thin Mg alloy parts, material defects occur, which include porosity, nonuniform mechanical properties, irregular surfaces, and incomplete filling. To resolve these problems, it is necessary to have uniform injection velocities and temperatures as well as control the melt. This study investigated the feasibility of producing large and thin components using a die caster by attaching a high vacuum system. In particular, the effects of injection velocity on surface quality and the mechanical properties of the products were investigated. Hence, an injection velocity scheme and a die structure capable of casting in a vacuum were proposed. As a result, it was found that the critical low injection velocity was 0.2 m/s to produce large thin Mg alloy structures having good mechanical properties.

  17. Very-high-flow injection rate for upper abdominal CT angiography

    Energy Technology Data Exchange (ETDEWEB)

    Kimura, Masashi; Minamiguti, Hiroki; Hagihira, Takami; Kishi, Kazushi; Sato, Morio [Wakayama Medical Coll. (Japan); Shioyama, Yasukazu; Okumura, Toshiyuki; Yamada, Kouji; Kawashima, Michihisa [Central Hospital and Cancer Center of Ibaraki Prefecture, Tomobe (Japan)

    2002-06-01

    The purpose of this study was to compare a very-high-flow injection-rate method (group A) and a conventional injection-rate method (group B) for visualization of upper abdominal arteries by multidetector helical computed tomography (MDHCT). The subjects were 240 patients suspected to have abdominal lesions. They were randomly assigned to group A (120 patients) and group B (120 patients). In group A, the bilateral medial cubital veins were punctured, and contrast medium was infused at a rate of 8.6-9.6 ml/s. In group B, the unilateral medial cubital vein was punctured, and contrast medium was infused at a rate of 2.0-3.0 ml/s. The quality of vascular visualization was graded as poor, good, or excellent by three radiologists. All visualizations of the celiac trunk (CE) and superior mesenteric artery (SMA) were graded as excellent in both group A and group B. Visualization grades of the subsegmental branches of the hepatic artery (HA), right gastric artery (RGA), cystic artery, dorsal pancreatic artery (DPA), and superior pancreaticoduodenal artery (SPDA) were good or excellent in 75% (paging method)/53.3% (three-dimensional method), 85%/30%, 77.7%/18.3%, 76.7%/28.3%, and 88.3%/42.5%, respectively, in group A, and 33.3%/11.7%, 46.7%/3.4%, 41.6%/5%, 55%/4.2%, and 72.5%/14.2%, respectively, in group B. The appearance rate of intrahepatic portal branches was 28.3% in group A and 66.7% in group B in the arterial dominant phase. Group A showed better visualization results than Group B in upper abdominal arteries according to MDHCT. (author)

  18. Carrier localization in InN/InGaN multiple-quantum wells with high In-content

    OpenAIRE

    Valdueza Felip, Sirona; Rigutti, Lorenzo; Naranjo, Fernando; Ruterana, Pierre; Mangeney, Juliette; Julien, François H; González-Herráez, Miguel; Monroy, Eva

    2012-01-01

    We study the carrier localization in InN/In0.9Ga0.1N multiple-quantum-wells (MQWs) and bulk InN by means of temperature-dependent photoluminescence and pump-probe measurements at 1.55 lm. The S-shaped thermal evolution of the emission energy of the InN film is attributed to carrier localization at structural defects with an average localization energy of 12 meV. Carrier localization is enhanced in the MQWs due to well/barrier thickness and ternary alloy composition fluctuations, ...

  19. Bacteria in the injection water differently impacts the bacterial communities of production wells in high-temperature petroleum reservoirs

    Directory of Open Access Journals (Sweden)

    Hongyan eRen

    2015-05-01

    Full Text Available Water flooding is widely used for oil recovery. However, how the introduction of bacteria via water flooding affects the subsurface ecosystem remains unknown. In the present study, the distinct bacterial communities of an injection well and 6 adjacent production wells were revealed using denaturing gradient gel electrophoresis (DGGE and pyrosequencing. All sequences of the variable region 3 of the 16S rRNA gene retrieved from pyrosequencing were divided into 543 operational taxonomic units (OTUs based on 97% similarity. Approximately 13.5% of the total sequences could not be assigned to any recognized phylum. The Unifrac distance analysis showed significant differences in the bacterial community structures between the production well and injection water samples. However, highly similar bacterial structures were shown for samples obtained from the same oil-bearing strata. More than 69% of the OTUs detected in the injection water sample were absent or detected in low abundance in the production wells. However, the abundance of two OTUs reached as high as 17.5% and 26.9% in two samples of production water, although the OTUs greatly varied among all samples. Combined with the differentiated water flow rate measured through ion tracing, we speculated that the transportation of injected bacteria was impacted through the varied permeability from the injection well to each of the production wells. Whether the injected bacteria predominate the production well bacterial community might depend both on the permeability of the strata and the reservoir conditions.

  20. Preparation of high nitrogen and nickel-free austenitic stainless steel by powder injection molding

    Institute of Scientific and Technical Information of China (English)

    Dawei Cui; Junsheng Jiang; Guangming Cao; Enzhong Xiao; Xuanhui Qu

    2008-01-01

    High nitrogen and nickel-free austenitic stainless steel has received much recognition worldwide because it can solve the problem of "nickel-allergy" and has outstanding mechanical and physical properties. In this article, 0Cr17Mn11Mo3N was prepared by powder injection molding (PIM) technique accompanied with solid-nitriding. The results show that the critical solid loading can achieve up to 64vo1% by use of gas-atomized powders with the average size of 17.4 μm. The optimized sintering conditions are de- termined to be 1300℃,2 h in flowing nitrogen atmosphere, at which the relative density reaches to 99% and the N content is as high as 0.78wt%. After solution annealing at 1150℃for 90 min and water quench, the 0.2% yield strength, ultimate tensile strength (UTS), elongation, reduction in area, and hardness can reach as high as 580 MPa, 885 MPa, 26.0%, 29.1%, and Hv 222, respectively. C 2008 University of Science and Technology Beijing. All rights reserved.

  1. Injectable, high-density collagen gels for annulus fibrosus repair: An in vitro rat tail model.

    Science.gov (United States)

    Borde, Brandon; Grunert, Peter; Härtl, Roger; Bonassar, Lawrence J

    2015-08-01

    A herniated intervertebral disc often causes back pain when disc tissue is displaced through a damaged annulus fibrosus. Currently, the only methods available for annulus fibrosus repair involve mechanical closure of defect, which does little to address biological healing in the damaged tissue. Collagen hydrogels are injectable and have been used to repair annulus defects in vivo. In this study, high-density collagen hydrogels at 5, 10, and 15 mg/mL were used to repair defects made to intact rat caudal intervertebral discs in vitro. A group of gels at 15 mg/mL were also cross-linked with riboflavin at 0.03 mM, 0.07 mM, or 0.10 mM. These cross-linked, high-density collagen gels maintained their presence in the defect under loading and contributed positively to the mechanical response of damaged discs. Discs exhibited increases to 95% of undamaged effective equilibrium and instantaneous moduli as well as up to fourfold decreases in effective hydraulic permeability from the damaged discs. These data suggest that high-density collagen gels may be effective at restoring mechanical function of injured discs as well as potential vehicles for the delivery of biological agents such as cells or growth factors that may aid in the repair of the annulus fibrosus.

  2. The next generation of injection systems for high-speed diesel engines

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Ralph Michael; Senghaas, Clemens; Ziegler, Thomas; Willmann, Michael [L' Orange GmbH, Stuttgart (Germany)

    2011-11-15

    With the introduction of Tier 4 engines in the off-highway sector, L'Orange is presenting the next generation of its common rail fuel injection system. The system represents an evolution of the current series and has been improved and enhanced in detail, especially for increased injection pressures and heightened requirements regarding metering accuracy. (orig.)

  3. Carrier localization in InN/InGaN multiple-quantum wells with high In-content

    Science.gov (United States)

    Valdueza-Felip, S.; Rigutti, L.; Naranjo, F. B.; Ruterana, P.; Mangeney, J.; Julien, F. H.; González-Herráez, M.; Monroy, E.

    2012-08-01

    We study the carrier localization in InN/In0.9Ga0.1N multiple-quantum-wells (MQWs) and bulk InN by means of temperature-dependent photoluminescence and pump-probe measurements at 1.55 μm. The S-shaped thermal evolution of the emission energy of the InN film is attributed to carrier localization at structural defects with an average localization energy of ˜12 meV. Carrier localization is enhanced in the MQWs due to well/barrier thickness and ternary alloy composition fluctuations, leading to a localization energy above 35 meV and longer carrier relaxation time. As a result, the luminescence efficiency in the MQWs is improved by a factor of five over bulk InN.

  4. Comparison of a needle-free high-pressure injection system with needle-tipped injection of intracavernosal alprostadil for erectile dysfunction.

    Science.gov (United States)

    Harding, L M; Adeniyi, A; Everson, R; Barker, S; Ralph, D J; Baranowski, A P

    2002-12-01

    Patients identified from hospital records as using alprostadil injections for erectile dysfunction were invited to take part in this open crossover study. On alternate weeks eight patients were given intracavernosal needle injections and transdermal needle-free injection of alprostadil in a randomized order. Efficacy of injection and associated pain were assessed and compared for the two methods. Pain produced during injection was significantly greater with the needle-free system than with the needle-tipped injection whilst efficacy was significantly less. Bruising was reported in all except one patient following needle-free injection only. Patient ratings of the needle-free injector were significantly lower than ratings for needle-tipped alprostadil delivery and when asked to express a preference, every patient chose the needle-tipped injection over the needle-free device.

  5. Continued high prevalence of HIV, HBV and HCV among injecting and noninjecting drug users in Italy

    Directory of Open Access Journals (Sweden)

    Laura Camoni

    2010-03-01

    Full Text Available We estimated the prevalence of HIV, HBV and HCV infections among injecting and non-injecting drug users treated within public drug-treatment centres in Italy to determine the correlates of infection. In the sample of 1330 drug users, the prevalence of HIV was 14.4% among drug injectors and 1.6% among non-injectors; the prevalence of HBV was 70.4% among injecting drug users and 22.8% among non-injectors and of HCV was 83.2% among injecting drug users and 22.0% among non-injectors. Old age, unemployment, and intravenous drug use were significantly correlated with each of the infections, as well as a longer history of injecting drug use. The results indicate that these infections continue to circulate among drug users, highlighting the need for monitoring of this group in Italy.

  6. Third harmonic current injection into highly saturated multi-phase machines

    Directory of Open Access Journals (Sweden)

    Klute Felix

    2017-03-01

    Full Text Available One advantage of multi-phase machines is the possibility to use the third harmonic of the rotor flux for additional torque generation. This effect can be maximised for Permanent Magnet Synchronous Machines (PMSM with a high third harmonic content in the magnet flux. This paper discusses the effects of third harmonic current injection (THCI on a five-phase PMSM with a conventional magnet shape depending on saturation. The effects of THCI in five-phase machines are shown in a 2D FEM model in Ansys Maxwell verified by measurement results. The results of the FEM model are analytically analysed using the Park model. It is shown in simulation and measurement that the torque improvement by THCI increases significantly with the saturation level, as the amplitude of the third harmonic flux linkage increases with the saturation level but the phase shift of the rotor flux linkage has to be considered. This paper gives a detailed analysis of saturation mechanisms of PMSM, which can be used for optimizing the efficiency in operating points of high saturations, without using special magnet shapes.

  7. Synthesis of highly fluorescent hydrophobic carbon dots by hot injection method using Paraplast as precursor.

    Science.gov (United States)

    Talib, Abou; Pandey, Sunil; Thakur, Mukeshchand; Wu, Hui-Fen

    2015-03-01

    We have reported synthesis of bright blue colored hydrophobic carbon dots (hC-dots) using highly pure blend of polymers called Paraplast. We developed a hot injection method for making nearly monodispersed hC-dots with a diameter in a range: 5-30nm as confirmed by high resolution transmission electron microscopy (HRTEM). The involvement of various functional groups was confirmed by Fourier transform infra-red (FTIR) spectroscopy. These hC-dots were incubated with breast cancer stem cells in order to check the entry as well as biological imaging. The cells were analyzed using epifluorescent microscopy. hC-dots showed concentration dependent cytotoxicity (LD50: 50mg/ml) and could be used for bioimaging even at lower concentration (0.5mg/ml). hC-dots were found to be versatile agents for peeping inside the cells which could also be used for delivery of water insoluble chemotherapeutic agents to variety of solid tumors.

  8. Surface-active derivative of inulin (Inutec® SP1) is a superior carrier for solid dispersions with a high drug load

    NARCIS (Netherlands)

    Srinarong, Parinda; Hämäläinen, Suvi; Visser, Marinella R.; Hinrichs, Wouter L.J; Ketolainen, Jarkko; Frijlink, Henderik W.

    2011-01-01

    The aim of this study was to compare the applicability of inulin, its surface-active derivative (Inutec® SP1), and polyvinylpyrrolidone (PVP) as carriers in high drug load solid dispersions (SDs) for improving the dissolution rate of a range of lipophilic drugs (diazepam, fenofibrate, ritonavir, and

  9. Clinical evaluation of high-risk HPV detection on self-samples using the indicating FTA-elute solid-carrier cartridge

    NARCIS (Netherlands)

    Geraets, D.T.; Baars, R. van; Alonso, I.; Ordi, J.; Torne, A.; Melchers, W.J.G.; Meijer, C.J.W.; Quint, W.G.V.

    2013-01-01

    BACKGROUND: High-risk human papillomavirus (hrHPV) testing in cervical screening is usually performed on physician-taken cervical smears in liquid-based medium. However, solid-state specimen carriers allow easy, non-hazardous storage and transportation and might be suitable for self-collection by

  10. High incidence of loss of heterozygosity at chromosome 17p13 in breast tumours from BRCA2 mutation carriers.

    Science.gov (United States)

    Eiriksdottir, G; Barkardottir, R B; Agnarsson, B A; Johannesdottir, G; Olafsdottir, K; Egilsson, V; Ingvarsson, S

    1998-01-08

    Breast tumours from BRCA1 and BRCA2 mutation carriers are genetically instable and display specific patterns of chromosomal aberrations, suggestive of distinct genetic pathways in tumour progression. The frequency of abnormalities affecting chromosome 17p and the TP53 gene was determined in 27 breast tumours from 26 female patients carrying the Icelandic BRCA2 founder mutation (999del5). Loss of heterozygosity (LOH) was detected in 23 of the 27 tumours (85%). The majority of tumours manifesting LOH had lost a large region on 17p, although a more restricted loss, including the TP53 locus was seen in a few tumours. Positive p53 immunostaining was observed in 18 of 26 tumours (69%). However, mutations in the TP53 gene were detected in only three tumours (11%), including a missense (codon 139) and a nonsense mutation (codon 306) in two tumours with moderate p53 expression and a frameshift deletion (codon 182) in a tumour with no detectable p53 expression. Positive p53 immunostaining, mainly weak, was observed in 16 of the 24 tumours (66%) without TP53 mutation. The high frequency of LOH at chromosome 17p13 suggests that one or more genes from this region are involved in the development of BRCA2-induced breast cancer. The frequent finding of weak overexpression of, presumably wild type p53 protein, suggests an alternative mechanism of TP53 involvement specific to these tumours.

  11. Synergic Adsorption–Biodegradation by an Advanced Carrier for Enhanced Removal of High-Strength Nitrogen and Refractory Organics

    KAUST Repository

    Ahmad, Muhammad

    2017-03-29

    Coking wastewater contains not only high-strength nitrogen but also toxic biorefractory organics. This study presents simultaneous removal of high-strength quinoline, carbon, and ammonium in coking wastewater by immobilized bacterial communities composed of a heterotrophic strain Pseudomonas sp. QG6 (hereafter referred as QG6), ammonia-oxidizing bacteria (AOB), and anaerobic ammonium oxidation bacteria (anammox). The bacterial immobilization was implemented with the help of a self-designed porous cubic carrier that created structured microenvironments including an inner layer adapted for anaerobic bacteria, a middle layer suitable for coaggregation of certain aerobic and anaerobic bacteria, and an outer layer for heterotrophic bacteria. By coating functional polyurethane foam (FPUF) with iron oxide nanoparticles (IONPs), the biocarrier (IONPs-FPUF) could provide a good outer-layer barrier for absorption and selective treatment of aromatic compounds by QG6, offer a conducive environment for anammox in the inner layer, and provide a mutualistic environment for AOB in the middle layer. Consequently, simultaneous nitrification and denitrification were reached with the significant removal of up to 322 mg L (98%) NH, 311 mg L (99%) NO, and 633 mg L (97%) total nitrogen (8 mg L averaged NO concentration was recorded in the effluent), accompanied by an efficient removal of chemical oxygen demand by 3286 mg L (98%) and 350 mg L (100%) quinoline. This study provides an alternative way to promote synergic adsorption and biodegradation with the help of a modified biocarrier that has great potential for treatment of wastewater containing high-strength carbon, toxic organic pollutants, and nitrogen.

  12. High Speed Fault Injection Tool Implemented With Verilog HDL on FPGA for Testing Fault Tolerance Designs

    Directory of Open Access Journals (Sweden)

    G. Gopinath Reddy

    2013-11-01

    Full Text Available This paper presents an FPGA-based fault injection tool, called FITO that supports several synthesizable fault models for dependability analysis of digital systems modeled by Verilog HDL. Using the FITO, experiments can be performed in real-time with good controllability and observability. As a case study, an Open RISC 1200 microprocessor was evaluated using an FPGA circuit. About 4000 permanent, transient, and SEUfaults were injected into this microprocessor. The results show that the FITO tool is more than 79 times faster than a pure simulation-based fault injection with only 2.5% FPGA area overhead.

  13. Self-Injection and Acceleration of Monoenergetic Electron Beams from Laser Wakefield Accelerators in a Highly Relativistic Regime

    Institute of Scientific and Technical Information of China (English)

    H. Yoshitama; WEN Xian-Lun; WEN Tian-Shu; WU Yu-Chi; ZHANG Bao-San; ZHU Qi-Hua; HUANG Xiao-Jun; AN Wei-Min; HUNG Wen-Hui; TANG Chuan-Xiang; LIN Yu-Zheng; T. Kameshima; WANG Xiao-Dong; CHEN Li-Ming; H. Kotaki; M. Kando; K. Nakajima; GU Yu-Qiu; GUO Yi; JIAO Chun-Ye; LIU Hong-Jie; PENG Han-Sheng; TANG Chuan-Ming; WANG Xiao-Dong

    2008-01-01

    @@ Self-injection and acceleration of monoenergetic electron beams from laser wakefield accelerators are first in-vestigated in the highly relativistic regime, using 100 TW class, 27 fs laser pulses. Quasi-monoenergetic multi-bunched beams with energies as high as multi-hundredMeV are observed with simultaneous measurements of side-scattering emissions that indicate the formation of self-channelling and self-injection of electrons into a plasma wake, referred to as a 'bubble'. The three-dimensional particle-in-cell simulations confirmed multiple self-injection of electron bunches into the bubble and their beam acceleration with gradient of 1.5 GeV/cm.

  14. HIGH RESOLUTION PREDICTION OF GAS INJECTION PROCESS PERFORMANCE FOR HETEROGENEOUS RESERVOIRS

    Energy Technology Data Exchange (ETDEWEB)

    Franklin M. Orr, Jr.

    2003-03-31

    This report outlines progress in the second quarter of the third year of the DOE project ''High Resolution Prediction of Gas Injection Process Performance for Heterogeneous Reservoirs''. This report presents results of an investigation of the effects of variation in interfacial tension (IFT) on three-phase relative permeability. We report experimental results that demonstrate the effect of low IFT between two of three phases on the three-phase relative permeabilities. In order to create three-phase systems, in which IFT can be controlled systematically, we employed analog liquids composing of hexadecane, n-butanol, isopropanol, and water. Phase composition, phase density and viscosity, and IFT of three-phase system were measured and are reported here. We present three-phase relative permeabilities determined from recovery and pressure drop data using the Johnson-Bossler-Naumann (JBN) method. The phase saturations were obtained from recovery data by the Welge method. The experimental results indicate that the wetting phase relative permeability was not affected by IFT variation whereas the other two-phase relative permeabilities were clearly affected. As IFT decreases the ''oil'' and ''gas'' phases become more mobile at the same phase saturations.

  15. Development of a Kingdon ion trap system for trapping externally injected highly charged ions.

    Science.gov (United States)

    Numadate, Naoki; Okada, Kunihiro; Nakamura, Nobuyuki; Tanuma, Hajime

    2014-10-01

    We have developed a Kingdon ion trap system for the purpose of the laboratory observation of the x-ray forbidden transitions of highly charged ions (HCIs). Externally injected Ar(q+) (q = 5-7) with kinetic energies of 6q keV were successfully trapped in the ion trap. The energy distribution of trapped ions is discussed in detail on the basis of numerical simulations. The combination of the Kingdon ion trap and the time-of-flight mass spectrometer enabled us to measure precise trapping lifetimes of HCIs. As a performance test of the instrument, we measured trapping lifetimes of Ar(q+) (q = 5-7) under a constant number density of H2 and determined the charge-transfer cross sections of Ar(q+)(q = 5, 6)-H2 collision systems at binary collision energies of a few eV. It was confirmed that the present cross section data are consistent with previous data and the values estimated by some scaling formula.

  16. Fe-burden quality at high coal injection rates. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Muelheims, K.; Rosenplaenter, R.; Hess, E.; Lectard, E.; Sert, D.; Pastore, M.; Lindert, M.Te.; Matthews, T. [TKS, Duisburg (Germany)

    2002-07-01

    The aim of the project, funded by the ECSC, was to investigate the chemical and physical properties of different production and laboratory sinter and to improve the sinter quality to characterise the quality requirements for high coal injection rates in the blast furnace. Studies on synthetically prepared material have shown that softening is triggered by the initial formation of metal within the core region of partly reduced iron bearing material. The temperatures at which the deformation of pellets or sinter started do not correspond with the temperatures detected by the differential thermal analysis on single phases. From sinter pot and sinter plant test results it could be confirmed that sinter disintegration can be influenced by its chemical composition. The basicity has a dominant influence on the sinter quality. The sinter degradation decreases as the FeO content increases and the porosity decreases. Results from the melting down tests showed that the reduction of sinter at different temperatures progresses faster as the porosity increases. Further on, the beginning of the melting down temperature increases as the reduction degree increases. Pilot blast furnace trials increased confidence in the validity of the melting down test in evaluating key material parameters and assisted in establishing realistic gas/temperature reducing cycles. The ASAM tests highlighted the importance of gangue composition in determining the sinter's melting/dripping qualities.

  17. High Stability White Organic Light-Emitting Diode (WOLED Using Nano-Double-Ultra Thin Carrier Trapping Materials

    Directory of Open Access Journals (Sweden)

    Kan-Lin Chen

    2014-01-01

    Full Text Available The structure of indium tin oxide (ITO (100 nm/molybdenum trioxide (MoO3 (15 nm/N,N0-bis-(1-naphthyl-N,N0-biphenyl-1,10-biphenyl-4,40-diamine (NPB (40 nm/4,4′-Bis(2,2-diphenylvinyl-1,1′-biphenyl (DPVBi (10 nm/5,6,11,12-tetraphenylnaphthacene (Rubrene (0.2 nm/DPVBi (24 nm/Rubrene (0.2 nm/DPVBi (6 nm/4,7-diphenyl-1,10-phenanthroline (BPhen: cesium carbonate (Cs2Co3 (10 nm/Al (120 nm with high color purity and stability white organic light-emitting diode (WOLED was fabricated. The function of the multiple-ultra-thin material (MUTM, such as Rubrene, is as the yellow light-emitting layer and trapping layer. The results show that the MUTM has an excellent carrier capture effect, resulting in high color stability of the device at different applied voltages. The Commissions Internationale De L’Eclairage (CIE coordinate of this device at 3~7 V is few displacement and shows a very slight variation of (±0.01, ±0.01. The maximum brightness of 9986 cd/m2 and CIE coordinates of (0.346, 0.339 are obtained at 7 V. The enhanced performance of the device may result from the direct charge trapping in MUTM and it can be found in the electroluminescence (EL process.

  18. High Opening Injection Pressure Is Associated With Needle-Nerve and Needle-Fascia Contact During Femoral Nerve Block.

    Science.gov (United States)

    Gadsden, Jeff; Latmore, Malikah; Levine, D Matt; Robinson, Allegra

    2016-01-01

    High opening injection pressures (OIPs) have been shown to predict sustained needle tip contact with the roots of the brachial plexus. Such roots have a uniquely high ratio of fascicular versus connective tissue. It is unknown if this relationship is preserved during multifascicular nerve blockade. We hypothesized that OIP can predict needle-nerve contact during femoral nerve block, as well as detect needle contact with the fascia iliaca. Twenty adults scheduled for femoral block were recruited. Using ultrasound, a 22-gauge needle was sequentially placed in 4 locations: indenting the fascia iliaca, advanced through the fascia iliaca while lateral to the nerve, slightly indenting the femoral nerve, and withdrawn from the nerve 1 mm. At each location, the OIP required to initiate an injection of 1 mL D5W (5% dextrose in water) at 10 mL/min was recorded. Blinded investigators performed evaluations and aborted injections when an OIP of 15 psi was reached. Opening injection pressure was 15 psi or greater for 90% and 100% of cases when the needle indented the femoral nerve and fascia iliaca, respectively. Opening injection pressure was less than 15 psi for all 20 patients when the needle was withdrawn 1 mm from the nerve as well as at the subfascial position (McNemar χ2 P fascia iliaca (100%). Needle tip positions not indenting these structures were associated with OIP of less than 15 psi (100%).

  19. Coke, char and organic waste behaviour in the blast furnace with high injection rate

    Directory of Open Access Journals (Sweden)

    Gudenau, H. W.

    2003-10-01

    Full Text Available Blast furnace operation with low coke rate, high amount of auxiliary hydrocarbons and use of nut coke causes a change in coke quality requirements. In particular, not burned in the raceway residues of injected substances (char and ash can influence the coke behaviour. Therefore combustion efficiency of various organic wastes with and without pulverized coal injection (PCI and coal char has been investigated under the raceway simulation conditions. Mixing of various substances improves their combustion efficiency. Study on coke gasification by carbon dioxide in the presence of char showed that with the increase of char concentration, coke strength reduction becomes smaller. The reactivity of char with CO2 is higher than that of coke. Therefore char is consumed preferentially. In presence of injected char, total pore volume in coke and its wear resistance were increased. Coke reactivity and microstructure in the presence of various kinds of ash has been studied. Many ash spheres were observed on the surface of coke matrix and its size was dependent on ash properties.

    La operación del horno alto con una tasa baja de coque, una cantidad elevada de hidrocarburos auxiliares y el empleo de coque calibrado, origina un cambio en las necesidades de calidad del coque. En particular, pueden influir en el comportamiento del coque los residuos inquemados en el raceway (cavidad enfrente a las toberas del horno de las sustancias que se inyectan (char y cenizas. El char es el residuo de carbón que se origina después que el carbón libera sus sustancias volátiles. Por tanto, se ha investigado la eficiencia de la combustión de varios residuos orgánicos con y sin inyección de carbón pulverizado (ICP y char, bajo las condiciones de simulación del raceway. La mezcla de varias sustancias mejora la eficiencia a la combustión. El estudio de la gasificación del coque por el dióxido de carbono en la

  20. H$^{-}$ painting injection system for the JKJ 3 GeV high-intensity proton synchrotron

    CERN Document Server

    Sakai, I; Irie, Y; Ishi, Y; Machida, S; Noda, F; Shigaki, K; Shimada, T; Sugai, I; Takeda, Y; Watanabe, Y; Yamamoto, K

    2002-01-01

    The JAERI KEK Joint Project 3 GeV proton synchrotron is designed to accelerate 8.3*l0/sup 13/ protons per pulse at a 25 Hz repetition rate. The incoming beam emittance of the 400 MeV linac is 4 pi .mm.mrad and the acceptance in the 3 GeV synchrotron is 324 pi .mm.mrad in both the horizontal and vertical planes. Painting injection is designed to realize a uniform distribution of charged particles in real space. The bump orbit for painting injection is designed to have a full acceptance of the circulating orbit through the injection period. A full-acceptance bump orbit will enable both correlated and anticorrelated painting injection. (4 refs).

  1. High carrier mobility of Sn-doped polycrystalline-Ge films on insulators by thickness-dependent low-temperature solid-phase crystallization

    Science.gov (United States)

    Sadoh, Taizoh; Kai, Yuki; Matsumura, Ryo; Moto, Kenta; Miyao, Masanobu

    2016-12-01

    To realize the advanced thin-film transistors (TFTs), high-carrier-mobility semiconductor films on insulator structures should be fabricated with low-temperature processing conditions (≤500 °C). To achieve this, we investigated the solid-phase crystallization of amorphous-GeSn films on insulating substrates under a wide range of Sn concentrations (0%-20%), film thicknesses (30-500 nm), and annealing temperatures (380-500 °C). Our results reveal that a Sn concentration close to the solid solubility of Sn in Ge (˜2%) is effective in increasing the grain-size of poly-GeSn. In addition, we discovered that the carrier mobility depends on the film thickness, where the mobilities are determined by the counterbalance between two different carrier scattering mechanisms. Here, vacancy-related defects dominate the carrier scattering near the insulating substrates (≤˜120 nm), and grain-size determined by bulk nucleation dominates the grain-boundary scattering of thick films (≥˜200 nm). Consequently, we obtained the maximum mobilities in samples with a Sn concentration of 2% and a film thickness of 200 nm. The effect of increasing the grain-size of poly-GeSn by lowering the annealing temperature was also clarified. By combining these results, a very high carrier mobility of 320 cm2/Vs was obtained at a low temperature of 380 °C. This mobility is about 2.5 times as high as previously reported data for Ge and GeSn films grown at low temperatures (≤500 °C). Our technique therefore opens up the possibility of high-speed TFTs for use in the next generation of electronics.

  2. Advanced Production Surface Preparation Technology Development for Ultra-High Pressure Diesel Injection

    Energy Technology Data Exchange (ETDEWEB)

    Grant, Marion B.

    2012-04-30

    In 2007, An Ultra High Injection Pressure (UHIP) fueling method has been demonstrated by Caterpillar Fuel Systems - Product Development, demonstrating ability to deliver U.S. Environment Protection Agency (EPA) Tier 4 Final diesel engine emission performance with greatly reduced emissions handling components on the engine, such as without NOx reduction after-treatment and with only a through-flow 50% effective diesel particulate trap (DPT). They have shown this capability using multiple multi-cylinder engine tests of an Ultra High Pressure Common Rail (UHPCR) fuel system with higher than traditional levels of CEGR and an advanced injector nozzle design. The system delivered better atomization of the fuel, for more complete burn, to greatly reduce diesel particulates, while CEGR or high efficiency NOx reduction after-treatment handles the NOx. With the reduced back pressure of a traditional DPT, and with the more complete fuel burn, the system reduced levels of fuel consumption by 2.4% for similar delivery of torque and horsepower over the best Tier 4 Interim levels of fuel consumption in the diesel power industry. The challenge is to manufacture the components in high-volume production that can withstand the required higher pressure injection. Production processes must be developed to increase the toughness of the injector steel to withstand the UHIP pulsations and generate near perfect form and finish in the sub-millimeter size geometries within the injector. This project resulted in two developments in 2011. The first development was a process and a machine specification by which a high target of compressive residual stress (CRS) can be consistently imparted to key surfaces of the fuel system to increase the toughness of the steel, and a demonstration of the feasibility of further refinement of the process for use in volume production. The second development was the demonstration of the feasibility of a process for imparting near perfect, durable geometry to

  3. Advanced Production Surface Preparation Technology Development for Ultra-High Pressure Diesel Injection

    Energy Technology Data Exchange (ETDEWEB)

    Grant, Marion B.

    2012-04-30

    In 2007, An Ultra High Injection Pressure (UHIP) fueling method has been demonstrated by Caterpillar Fuel Systems - Product Development, demonstrating ability to deliver U.S. Environment Protection Agency (EPA) Tier 4 Final diesel engine emission performance with greatly reduced emissions handling components on the engine, such as without NOx reduction after-treatment and with only a through-flow 50% effective diesel particulate trap (DPT). They have shown this capability using multiple multi-cylinder engine tests of an Ultra High Pressure Common Rail (UHPCR) fuel system with higher than traditional levels of CEGR and an advanced injector nozzle design. The system delivered better atomization of the fuel, for more complete burn, to greatly reduce diesel particulates, while CEGR or high efficiency NOx reduction after-treatment handles the NOx. With the reduced back pressure of a traditional DPT, and with the more complete fuel burn, the system reduced levels of fuel consumption by 2.4% for similar delivery of torque and horsepower over the best Tier 4 Interim levels of fuel consumption in the diesel power industry. The challenge is to manufacture the components in high-volume production that can withstand the required higher pressure injection. Production processes must be developed to increase the toughness of the injector steel to withstand the UHIP pulsations and generate near perfect form and finish in the sub-millimeter size geometries within the injector. This project resulted in two developments in 2011. The first development was a process and a machine specification by which a high target of compressive residual stress (CRS) can be consistently imparted to key surfaces of the fuel system to increase the toughness of the steel, and a demonstration of the feasibility of further refinement of the process for use in volume production. The second development was the demonstration of the feasibility of a process for imparting near perfect, durable geometry to

  4. A Novel Multi-carrier Radar for High-speed Wide-bandwidth Stepped-Frequency GPR

    Science.gov (United States)

    Kyoo Kim, Dong; Choi, Young Woo; Kang, Do Wook

    2015-04-01

    Ground Penetrating Radar (GPR) is one of the non-destructive testing methods for studying underground situations by using the electro-magnetic wave radiation effect. Two classical sensing techniques, impulsive GPR and stepped-frequency GPR, are used for a long time in various GPR applications. Signal bandwidths generated by the two techniques ranges from several hundred MHz to several GHz. For the research area of pavement survey the surveying speed is emphasized, thus impulsive GPR has been preferred to stepped-frequency GPR. To make a complete single scan operation, stepped-frequency GPR needs over hundreds of different frequency continuous wave (CW) radiations within its signal bandwidth which is the main time taking process. In case of impulsive GPR, it needs also several repeated pulses, for example from 64 to 512 repeated pulses, to do a complete single scan operation. Although the two techniques need several repeated internal operation processes, impulsive GPR is generally considered to be fast than stepped-frequency GPR. On the other hand, many studies of stepped-frequency GPR emphasizes that high-resolution scanning accuracy can be achieved by controlling each frequency component differently, such as frequency power profile, flexible bandwidth control. In case of pavement survey area, high-accuracy scanning is required within one meter deep as well as high-speed survey. The required accuracy is up to several centimeter in the material where dielectric constant is about 10. When surveying pavement, multi-element array antenna gives advantages to the measurement accuracy enhancement, where the scanning region of a 3 meters wide paved road is divided into several sub-regions as the number of the antenna element. For example, when stepped-frequency GPR requires 6msec for single scan operation and 15-element antenna is considered, the survey speed is limited to 15km/h in order to scan the road every 5cm, which is slow compared with common driving condition on

  5. Fabrication and characterization of novel high-speed InGaAs/InP uni-traveling-carrier photodetector for high responsivity

    Institute of Scientific and Technical Information of China (English)

    陈庆涛; 任晓敏; 黄永清; 费嘉瑞; 段晓峰; 刘凯; 刘锋; 康超; 汪君楚; 房文敬

    2015-01-01

    A top-illuminated circular mesa uni-traveling-carrier photodetector (UTC-PD) is proposed in this paper. By employ-ing Gaussian graded doping in InGaAs absorption layer and InP depleted layer, the responsivity and high speed response characteristics of the device are optimized simultaneously. The responsivity up to 1.071 A/W (the external quantum effi-ciency of 86%) is obtained at 1550 nm with a 40-µm diameter device under 10-V reverse bias condition. Meanwhile, the dark current of 7.874 nA and the 3-dB bandwidth of 11 GHz are obtained with the same device at a reverse bias voltage of 3V.

  6. Drug injection practices among high-risk youths: The first shot of ketamine

    OpenAIRE

    Lankenau, Stephen E.; Clatts, Michael C.

    2004-01-01

    Ketamine, a “club drug” commonly administered intranasally among youths for its disassociative properties, has emerged as a drug increasingly common among a new hidden population of injection drug users. Because of a scarcity of epidemiological data, little is known about ketamine injection practices, associated risk behaviors, or the demographic characteristics of ketamine injectors. Using an ethno-epidemiological methodology, we interviewed 40 young (

  7. Generation of high quality electron beams via ionization injection in a plasma wakefield accelerator

    Science.gov (United States)

    Vafaei-Najafabadi, Navid; Joshi, Chan; E217 SLAC Collaboration

    2016-10-01

    Ionization injection in a beam driven plasma wakefield accelerator has been used to generate electron beams with over 30 GeV of energy in a 130 cm of lithium plasma. The experiments were performed using the 3 nC, 20.35 GeV electron beam at the FACET facility of the SLAC National Accelerator Laboratory as the driver of the wakefield. The ionization of helium atoms in the up ramp of a lithium plasma were injected into the wake and over the length of acceleration maintained an emittance on the order of 30 mm-mrad, which was an order of magnitude smaller than the drive beam, albeit with an energy spread of 10-20%. The process of ionization injection occurs due to an increase in the electric field of the drive beam as it pinches through its betatron oscillations. Thus, this energy spread is attributed to the injection region encompassing multiple betatron oscillations. In this poster, we will present evidence through OSIRIS simulations of producing an injected beam with percent level energy spread and low emittance by designing the plasma parameters appropriately, such that the ionization injection occurs over a very limited distance of one betatron cycle. Work at UCLA was supported by the NSF Grant Number PHY-1415386 and DOE Grant Number DE-SC0010064. Work at SLAC was supported by DOE contract number DE-AC02-76SF00515. Simulations used the Hoffman cluster at UCLA.

  8. High-pressure injection of dissolved oxygen for hydrocarbon remediation in a fractured dolostone aquifer

    Science.gov (United States)

    Greer, K. D.; Molson, J. W.; Barker, J. F.; Thomson, N. R.; Donaldson, C. R.

    2010-10-01

    A field experiment was completed at a fractured dolomite aquifer in southwestern Ontario, Canada, to assess the delivery of supersaturated dissolved oxygen (supersaturated with respect to ambient conditions) for enhanced bioremediation of petroleum hydrocarbons in groundwater. The injection lasted for 1.5 h using iTi's gPro® oxygen injection technology at pressures of up to 450 kPa and at concentrations of up to 34 mg O 2/L. A three-dimensional numerical model for advective-dispersive transport of dissolved oxygen within a discretely-fractured porous medium was calibrated to the observed field conditions under a conservative (no-consumption) scenario. The simulation demonstrated that oxygen rapidly filled the local intersecting fractures as well as the porous matrix surrounding the injection well. Following injection, the local fractures were rapidly flushed by the natural groundwater flow system but slow back-diffusion ensured a relatively longer residence time in the matrix. A sensitivity analysis showed significant changes in behaviour with varying fracture apertures and hydraulic gradients. Applying the calibrated model to a 7-day continuous injection scenario showed oxygen residence times (at the 3 mg/L limit), within a radius of 2-4 m from the injection well, of up to 100 days. This study has demonstrated that supersaturated dissolved oxygen can be effectively delivered to this type of a fractured and porous bedrock system at concentrations and residence times potentially sufficient for enhanced aerobic biodegradation.

  9. Hole traps associated with high-concentration residual carriers in p-type GaAsN grown by chemical beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Elleuch, Omar, E-mail: mr.omar.elleuch@gmail.com; Wang, Li; Lee, Kan-Hua; Demizu, Koshiro; Ikeda, Kazuma; Kojima, Nobuaki; Ohshita, Yoshio; Yamaguchi, Masafumi [Toyota Technological Institute, 2-12-1 Hisakata, Tempaku, Nagoya 468-8511 (Japan)

    2015-01-28

    The hole traps associated with high background doping in p-type GaAsN grown by chemical beam epitaxy are studied based on the changes of carrier concentration, junction capacitance, and hole traps properties due to the annealing. The carrier concentration was increased dramatically with annealing time, based on capacitance–voltage (C–V) measurement. In addition, the temperature dependence of the junction capacitance (C–T) was increased rapidly two times. Such behavior is explained by the thermal ionization of two acceptor states. These acceptors are the main cause of high background doping in the film, since the estimated carrier concentration from C–T results explains the measured carrier concentration at room temperature using C–V method. The acceptor states became shallower after annealing, and hence their structures are thermally unstable. Deep level transient spectroscopy (DLTS) showed that the HC2 hole trap was composed of two signals, labeled HC21 and HC22. These defects correspond to the acceptor levels, as their energy levels obtained from DLTS are similar to those deduced from C–T. The capture cross sections of HC21 and HC22 are larger than those of single acceptors. In addition, their energy levels and capture cross sections change in the same way due to the annealing. This tendency suggests that HC21 and HC22 signals originate from the same defect which acts as a double acceptor.

  10. Growth Related Carrier Mobility Enhancement of Pentacene Thin-Film Transistors with High-k Oxide Gate Dielectric

    Institute of Scientific and Technical Information of China (English)

    YU Ai-Fang; QI Qiong; JIANG Peng; JIANG Chao

    2009-01-01

    Carrier mobifity enhancement from 0.09 to 0.59cm2/Vs is achieved for pentacene-based thin-film transistors (TFTs) by modifying the HfO2 gate dielectric with a polystyrene (PS) thin film. The improvement of the transistor's performance is found to be strongly related to the initial film morphologies of pentacene on the dielectrics. In contrast to the three-dimensional island-like growth mode on the HfO2 surface, the Stranski-Krastanov growth mode on the smooth and nonpolar PS/HfO2 surface is believed to be the origin of the excellent carrier mobifity of the TFTs. A large well-connected first monolayer with fewer boundaries is formed via the Stranski-Krastanov growth mode, which facilitates a charge transport parallel to the substrate and promotes higher carrier mobility.

  11. Biphasic contrast medium injection in cardiac CT: moderate versus high concentration contrast material at identical iodine flux and iodine dose.

    NARCIS (Netherlands)

    Rutten, A.; Meijs, M.F.; Vos, A.M.C.; Seidensticker, P.R.; Prokop, M.

    2010-01-01

    OBJECTIVE: To prospectively investigate the influence of contrast material concentration on enhancement in cardiac CT by using a biphasic single-injection protocol. METHODS: Sixty-four-row multidetector cardiac CT angiography was performed in 159 patients randomised to a moderate or high contrast me

  12. Solution-Processable Graphene Oxide as an Efficient Hole Injection Layer for High Luminance Organic Light-Emitting Diodes

    OpenAIRE

    Shi, Shengwei; Sadhu, Veera; Moubah, Reda; Schmerber, Guy; Bao, Qinye; Silva, S. Ravi P.

    2014-01-01

    The application of solution-processable graphene oxide (GO) as hole injection layer in organic light-emitting diodes (OLEDs) is demonstrated. High luminance of over 53,000 cd m-2 is obtained at only 10 V. The results will unlock a route of applying GO in flexible OLEDs and other electrode applications.

  13. High-Frequency Link Inverter for Fuel Cells Based on Multiple-Carrier PWM (to continue)

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    C. Operation of a PWM Cycloconverter The concepts in Section Ⅱ-B, present a progression of solutions to known design difficulties. To incorporate these benefits and eliminate the redundant conversion step shown in Fig. 6, we propose the PWM cycloconverter shown in Fig. 7. It will be shown in Section Ⅲ. that the conventional PWM inverter can be unified through a multiple-carrier PWM framework. The control concept introduced is extended to demonstrate that multiple-carrier PWM methods lead to HF link inverters that are nearly as simple to control as conventional PWM inverters.

  14. Study of iron structure stability in high temperature molten lead-bismuth eutectic with oxygen injection using molecular dynamics simulation

    Energy Technology Data Exchange (ETDEWEB)

    Arkundato, Artoto [Physics Department, Faculty of Mathematical and Natural Sciences, Jember University, Jl. Kalimantan 37 Jember (Indonesia); Su' ud, Zaki [Physics Department, Faculty of Mathematical and Natural Sciences, Bandung Institute of Technology, Jl. Ganesha 10, Bandung (Indonesia); Sudarko [Chemistry Department, Faculty of Mathematical and Natural Sciences, Jember University, Jl. Kalimantan 37 Jember (Indonesia); Shafii, Mohammad Ali [Physics Department, Faculty of Mathematical and Natural Sciences, Andalas University, Padang (Indonesia); Celino, Massimo [ENEA, CR Casaccia, Via Anguillarese 301, Rome (Italy)

    2014-09-30

    Corrosion of structural materials in high temperature molten lead-bismuth eutectic is a major problem for design of PbBi cooled reactor. One technique to inhibit corrosion process is to inject oxygen into coolant. In this paper we study and focus on a way of inhibiting the corrosion of iron using molecular dynamics method. For the simulation results we concluded that effective corrosion inhibition of iron may be achieved by injection 0.0532 wt% to 0.1156 wt% oxygen into liquid lead-bismuth. At this oxygen concentration the structure of iron material will be maintained at about 70% in bcc crystal structure during interaction with liquid metal.

  15. Numerical simulation of the processes of small-diameter high-current electron beam shaping and injection

    CERN Document Server

    Gordeev, V S; Myskov, G A

    2001-01-01

    With the aid of BEAM 25 program there was carried out the numerical simulation of the non-stationary process of shaping a small-diameter (<= 20mm) high-current hollow electron beam in a diode with magnetic insulation,as well as of the process of beam injection into the accelerating LIA track. The diode configuration for the purpose of eliminating the leakage of electron flux to the anode surface was update. Presented are the results of calculation of the injected beam characteristics (amplitude-time parameters of a current pulse, space-angle distributions of electrons etc.) depending on diode geometric parameters.

  16. LIQUIFIED NATURAL GAS (LNG CARRIERS

    Directory of Open Access Journals (Sweden)

    Daniel Posavec

    2010-12-01

    Full Text Available Modern liquefied natural gas carriers are double-bottom ships classified according to the type of LNG tank. The tanks are specially designed to store natural gas cooled to -161°C, the boiling point of methane. Since LNG is highly flammable, special care must be taken when designing and operating the ship. The development of LNG carriers has begun in the middle of the twentieth century. LNG carrier storage space has gradually grown to the current maximum of 260000 m3. There are more than 300 LNG carriers currently in operation (the paper is published in Croatian.

  17. Electrically Injected UV-Visible Nanowire Lasers

    Energy Technology Data Exchange (ETDEWEB)

    Wang, George T.; Li, Changyi; Li, Qiming; Liu, Sheng; Wright, Jeremy Benjamin; Brener, Igal; Luk, Ting -Shan; Chow, Weng W.; Leung, Benjamin; Figiel, Jeffrey J.; Koleske, Daniel D.; Lu, Tzu-Ming

    2015-09-01

    There is strong interest in minimizing the volume of lasers to enable ultracompact, low-power, coherent light sources. Nanowires represent an ideal candidate for such nanolasers as stand-alone optical cavities and gain media, and optically pumped nanowire lasing has been demonstrated in several semiconductor systems. Electrically injected nanowire lasers are needed to realize actual working devices but have been elusive due to limitations of current methods to address the requirement for nanowire device heterostructures with high material quality, controlled doping and geometry, low optical loss, and efficient carrier injection. In this project we proposed to demonstrate electrically injected single nanowire lasers emitting in the important UV to visible wavelengths. Our approach to simultaneously address these challenges is based on high quality III-nitride nanowire device heterostructures with precisely controlled geometries and strong gain and mode confinement to minimize lasing thresholds, enabled by a unique top-down nanowire fabrication technique.

  18. High quality electron beam acceleration by ionization injection in laser wakefields with mid-infrared dual-color lasers

    CERN Document Server

    Zeng, Ming; Chen, Min; Mori, Warren B; Sheng, Zheng-Ming; Hidding, Bernhard

    2016-01-01

    For the laser wakefield acceleration, suppression of beam energy spread while keeping sufficient charge is one of the key challenges. In order to achieve this, we propose bichromatic laser ionization injection with combined laser wavelengths of $2.4\\rm \\mu m$ and $0.8\\rm \\mu m$ for wakefield excitation and for triggering electron injection via field ionization, respectively. A laser pulse at $2.4\\rm \\mu m$ wavelength enables one to drive an intense acceleration structure with relatively low laser power. To further reduce the requirement of laser power, we also propose to use carbon dioxide as the working gas medium, where carbon acts as the injection element. Our full three dimensional particle-in-cell simulations show that electron beams at the GeV energy level with both low energy spreads (around one percent) and high charges (several tens of picocoulomb) can be obtained by this scheme with laser parameters achievable in the near future.

  19. Effect of High-Volume Injection, Platelet-Rich Plasma, and Sham Treatment in Chronic Midportion Achilles Tendinopathy

    DEFF Research Database (Denmark)

    Boesen, Anders Ploug; Hansen, Rudi; Boesen, Morten Ilum

    2017-01-01

    BACKGROUND: Injection therapies are often considered alongside exercise for chronic midportion Achilles tendinopathy (AT), although evidence of their efficacy is sparse. PURPOSE: To determine whether eccentric training in combination with high-volume injection (HVI) or platelet-rich plasma (PRP...... with eccentric training in chronic AT seems more effective in reducing pain, improving activity level, and reducing tendon thickness and intratendinous vascularity than eccentric training alone. HVI may be more effective in improving outcomes of chronic AT than PRP in the short term. Registration: NCT02417987......) injections improves outcomes in AT. STUDY DESIGN: Randomized controlled trial; Level of evidence, 1. METHODS: A total of 60 men (age, 18-59 years) with chronic (>3 months) AT were included and followed for 6 months (n = 57). All participants performed eccentric training combined with either (1) one HVI...

  20. Evolution of High Intensity Beams in the CERN PS Booster after H⁻ Injection and Phase Space Painting

    CERN Document Server

    Cieslak-Kowalska, Magdalena; Benedetto, Elena; Bracco, Chiara

    2016-01-01

    With the LHC Injector Upgrade (LIU) project, the injection energy of PS Booster (PSB) ' first circular accelerator in the LHC injector chain ' will be raised from 50 MeV to 160 MeV and the present multiturn injection will be upgraded to H⁻ injection with transverse and longitudinal painting. In the scope of this project, it is planned to double the beam intensities, profiting from the fact that the βγ2 factor will be two times larger (0.35 at 50 MeV and 0.71 at 160 MeV), so the resulting tune spread driven by a direct space charge should remain similar. This paper describes the feasibility to double the intensity of high intensity and large emittance beams, looking into the evolution under space charge and taking into account losses constrains in the ring and in the extraction lines.

  1. Upgrade of the SPS Injection Kicker System for the LHC High Luminosity Operation with Heavy Ion Beam

    CERN Document Server

    Kramer, T; Goddard, B; Ducimetière, L; Sermeus, L; Uythoven, J; Velotti, FM

    2014-01-01

    In the context of the LHC High Luminosity Upgrade project a performance upgrade for heavy ions is envisaged. One of the performance limitations is the rise time of the present SPS injection kicker system MKP. A reduction of the rise time for lead ions was studied in line with a modification of the whole injection system. This paper briefly describes the different rise time options studied for an initially proposed dedicated ion kicker system MKP-I, focuses however on a cost effective alternative using the presently installed 12 MKPS magnets connected to a new fast pulse forming line. As only 12 out of the 16 injection kicker magnets would be fast enough to be used in an upgraded system, additional deflection has to be provided by the septa. The beam optics for that variant is highlighted and first requirements for the septum elements are stipulated. The paper concludes with a failure analysis of the proposed scheme.

  2. High Human T Cell Leukemia Virus Type-1(HTLV-1 Provirus Load in Patients with HTLV-1 Carriers Complicated with HTLV-1-unrelated disorders

    Directory of Open Access Journals (Sweden)

    Yamada Yasuaki

    2010-04-01

    Full Text Available Abstract Background To address the clinical and virological significance of a high HTLV-1 proviral load (VL in practical blood samples from asymptomatic and symptomatic carriers, we simultaneously examined VL and clonal expansion status using polymerase chain reaction (PCR quantification (infected cell % of peripheral mononuclear cells and Southern blotting hybridization (SBH methods. Results The present study disclosed extremely high VL with highly dense smears with or without oligoclonal bands in SBH. A high VL of 10% or more was observed in 16 (43.2% of a total of 33 samples (one of 13 asymptomatic carriers, 8 of 12 symptomatic carriers, and 7 of 8 patients with lymphoma-type ATL without circulating ATL cells. In particular, an extremely high VL of 50% or more was limited to symptomatic carriers whose band findings always contained at least dense smears derived from polyclonally expanded cells infected with HTLV-1. Sequential samples revealed that the VL value was synchronized with the presence or absence of dense smears, and declined at the same time as disappearing dense smears. Dense smears transiently emerged at the active stage of the underlying disease. After disappearance of the smears, several clonal bands became visible and were persistently retained, explaining the process by which the clonality of HTLV-1-infected cells is established. The cases with only oligoclonal bands tended to maintain a stable VL of around 20% for a long time. Two of such cases developed ATL 4 and 3.5 years later, suggesting that a high VL with oligoclonal bands may be a predisposing risk to ATL. Conclusion The main contributor to extremely high VL seems to be transient emergence of dense smears detected by the sensitivity level of SBH, corresponding to polyclonal expansion of HTLV-1-infected cells including abundant small clones. Major clones retained after disappearance of dense smears stably persist and acquire various malignant characteristics step by

  3. Emerging flow injection mass spectrometry methods for high-throughput quantitative analysis.

    Science.gov (United States)

    Nanita, Sergio C; Kaldon, Laura G

    2016-01-01

    Where does flow injection analysis mass spectrometry (FIA-MS) stand relative to ambient mass spectrometry (MS) and chromatography-MS? Improvements in FIA-MS methods have resulted in fast-expanding uses of this technique. Key advantages of FIA-MS over chromatography-MS are fast analysis (typical run time quantitative screening of chemicals needs to be performed rapidly and reliably. The FIA-MS methods discussed herein have demonstrated quantitation of diverse analytes, including pharmaceuticals, pesticides, environmental contaminants, and endogenous compounds, at levels ranging from parts-per-billion (ppb) to parts-per-million (ppm) in very complex matrices (such as blood, urine, and a variety of foods of plant and animal origin), allowing successful applications of the technique in clinical diagnostics, metabolomics, environmental sciences, toxicology, and detection of adulterated/counterfeited goods. The recent boom in applications of FIA-MS for high-throughput quantitative analysis has been driven in part by (1) the continuous improvements in sensitivity and selectivity of MS instrumentation, (2) the introduction of novel sample preparation procedures compatible with standalone mass spectrometric analysis such as salting out assisted liquid-liquid extraction (SALLE) with volatile solutes and NH4(+) QuEChERS, and (3) the need to improve efficiency of laboratories to satisfy increasing analytical demand while lowering operational cost. The advantages and drawbacks of quantitative analysis by FIA-MS are discussed in comparison to chromatography-MS and ambient MS (e.g., DESI, LAESI, DART). Generally, FIA-MS sits 'in the middle' between ambient MS and chromatography-MS, offering a balance between analytical capability and sample analysis throughput suitable for broad applications in life sciences, agricultural chemistry, consumer safety, and beyond.

  4. High-resolution quantitative metabolome analysis of urine by automated flow injection NMR.

    Science.gov (United States)

    Da Silva, Laeticia; Godejohann, Markus; Martin, François-Pierre J; Collino, Sebastiano; Bürkle, Alexander; Moreno-Villanueva, María; Bernhardt, Jürgen; Toussaint, Olivier; Grubeck-Loebenstein, Beatrix; Gonos, Efstathios S; Sikora, Ewa; Grune, Tilman; Breusing, Nicolle; Franceschi, Claudio; Hervonen, Antti; Spraul, Manfred; Moco, Sofia

    2013-06-18

    Metabolism is essential to understand human health. To characterize human metabolism, a high-resolution read-out of the metabolic status under various physiological conditions, either in health or disease, is needed. Metabolomics offers an unprecedented approach for generating system-specific biochemical definitions of a human phenotype through the capture of a variety of metabolites in a single measurement. The emergence of large cohorts in clinical studies increases the demand of technologies able to analyze a large number of measurements, in an automated fashion, in the most robust way. NMR is an established metabolomics tool for obtaining metabolic phenotypes. Here, we describe the analysis of NMR-based urinary profiles for metabolic studies, challenged to a large human study (3007 samples). This method includes the acquisition of nuclear Overhauser effect spectroscopy one-dimensional and J-resolved two-dimensional (J-Res-2D) (1)H NMR spectra obtained on a 600 MHz spectrometer, equipped with a 120 μL flow probe, coupled to a flow-injection analysis system, in full automation under the control of a sampler manager. Samples were acquired at a throughput of ~20 (or 40 when J-Res-2D is included) min/sample. The associated technical analysis error over the full series of analysis is 12%, which demonstrates the robustness of the method. With the aim to describe an overall metabolomics workflow, the quantification of 36 metabolites, mainly related to central carbon metabolism and gut microbial host cometabolism, was obtained, as well as multivariate data analysis of the full spectral profiles. The metabolic read-outs generated using our analytical workflow can therefore be considered for further pathway modeling and/or biological interpretation.

  5. HIGH RESOLUTION PREDICTION OF GAS INJECTION PROCESS PERFORMANCE FOR HETEROGENEOUS RESERVOIRS

    Energy Technology Data Exchange (ETDEWEB)

    Franklin M. Orr, Jr.

    2003-09-30

    This report outlines progress in the first quarter of the extension of the DOE project ''High Resolution Prediction of Gas Injection Process Performance for Heterogeneous Reservoirs''. This report presents experimental results that demonstrate combined scaling effects of viscous, capillary, and gravity crossflow mechanisms that apply to the situations in which streamline models are used. We designed and ran a series of experiments to investigate combined effects of capillary, viscous, and gravity forces on displacement efficiency in layered systems. Analog liquids (isooctane, isopropanol, and water) were employed to control scaling parameters by changing interfacial tension (IFT), flow rate, and density difference. The porous medium was a two-dimensional (2-D) 2-layered glass bead model with a permeability ratio of about 1:4. In order to analyze the combined effect of only capillary and viscous forces, gravity effects were eliminated by changing the orientation of the glass bead model. We employed a commercial simulator, Eclipse100 to calculate displacement behavior for comparison with the experimental data. Experimental results with minimized gravity effects show that the IFT and flow rate determine how capillary and viscous forces affect behavior of displacement. The limiting behavior for scaling groups for two-phase displacement was verified by experimental results. Analysis of the 2-D images indicates that displacements having a capillary-viscous equilibrium give the best sweep efficiency. Experimental results with gravity effects, but with low IFT fluid systems show that slow displacements produce larger area affected by crossflow. This, in turn, enhances sweep efficiency. The simulation results represent the experimental data well, except for the situations where capillary forces dominate the displacement.

  6. Hydrogen carriers

    Science.gov (United States)

    He, Teng; Pachfule, Pradip; Wu, Hui; Xu, Qiang; Chen, Ping

    2016-12-01

    Hydrogen has the potential to be a major energy vector in a renewable and sustainable future energy mix. The efficient production, storage and delivery of hydrogen are key technical issues that require improvement before its potential can be realized. In this Review, we focus on recent advances in materials development for on-board hydrogen storage. We highlight the strategic design and optimization of hydrides of light-weight elements (for example, boron, nitrogen and carbon) and physisorbents (for example, metal-organic and covalent organic frameworks). Furthermore, hydrogen carriers (for example, NH3, CH3OH-H2O and cycloalkanes) for large-scale distribution and for on-site hydrogen generation are discussed with an emphasis on dehydrogenation catalysts.

  7. Interplay between hopping and band transport in high-mobility disordered semiconductors at large carrier concentrations: The case of the amorphous oxide InGaZnO

    Science.gov (United States)

    Fishchuk, I. I.; Kadashchuk, A.; Bhoolokam, A.; de Jamblinne de Meux, A.; Pourtois, G.; Gavrilyuk, M. M.; Köhler, A.; Bässler, H.; Heremans, P.; Genoe, J.

    2016-05-01

    We suggest an analytic theory based on the effective medium approximation (EMA) which is able to describe charge-carrier transport in a disordered semiconductor with a significant degree of degeneration realized at high carrier concentrations, especially relevant in some thin-film transistors (TFTs), when the Fermi level is very close to the conduction-band edge. The EMA model is based on special averaging of the Fermi-Dirac carrier distributions using a suitably normalized cumulative density-of-state distribution that includes both delocalized states and the localized states. The principal advantage of the present model is its ability to describe universally effective drift and Hall mobility in heterogeneous materials as a function of disorder, temperature, and carrier concentration within the same theoretical formalism. It also bridges a gap between hopping and bandlike transport in an energetically heterogeneous system. The key assumption of the model is that the charge carriers move through delocalized states and that, in addition to the tail of the localized states, the disorder can give rise to spatial energy variation of the transport-band edge being described by a Gaussian distribution. It can explain a puzzling observation of activated and carrier-concentration-dependent Hall mobility in a disordered system featuring an ideal Hall effect. The present model has been successfully applied to describe experimental results on the charge transport measured in an amorphous oxide semiconductor, In-Ga-Zn-O (a-IGZO). In particular, the model reproduces well both the conventional Meyer-Neldel (MN) compensation behavior for the charge-carrier mobility and inverse-MN effect for the conductivity observed in the same a-IGZO TFT. The model was further supported by ab initio calculations revealing that the amorphization of IGZO gives rise to variation of the conduction-band edge rather than to the creation of localized states. The obtained changes agree with the one we

  8. Quantitative Imaging of Turbulent Mixing Dynamics in High-Pressure Fuel Injection to Enable Predictive Simulations of Engine Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Frank, Jonathan H. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Reacting Flows Dept.; Pickett, Lyle M. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Engine Combustion Dept.; Bisson, Scott E. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Remote Sensing and Energetic Materials Dept.; Patterson, Brian D. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). combustion Chemistry Dept.; Ruggles, Adam J. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Reacting Flows Dept.; Skeen, Scott A. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Engine Combustion Dept.; Manin, Julien Luc [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Engine Combustion Dept.; Huang, Erxiong [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Reacting Flows Dept.; Cicone, Dave J. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Engine Combustion Dept.; Sphicas, Panos [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Engine Combustion Dept.

    2015-09-01

    In this LDRD project, we developed a capability for quantitative high - speed imaging measurements of high - pressure fuel injection dynamics to advance understanding of turbulent mixing in transcritical flows, ignition, and flame stabilization mechanisms, and to provide e ssential validation data for developing predictive tools for engine combustion simulations. Advanced, fuel - efficient engine technologies rely on fuel injection into a high - pressure, high - temperature environment for mixture preparation and com bustion. Howe ver, the dynamics of fuel injection are not well understood and pose significant experimental and modeling challenges. To address the need for quantitative high - speed measurements, we developed a Nd:YAG laser that provides a 5ms burst of pulses at 100 kHz o n a robust mobile platform . Using this laser, we demonstrated s patially and temporally resolved Rayleigh scattering imaging and particle image velocimetry measurements of turbulent mixing in high - pressure gas - phase flows and vaporizing sprays . Quantitativ e interpretation of high - pressure measurements was advanced by reducing and correcting interferences and imaging artifacts.

  9. Electrical spin injection and detection in high mobility 2DEG systems

    Science.gov (United States)

    Ciorga, M.

    2016-11-01

    In this review paper we present the current status of research related to the topic of electrical spin injection and detection in two-dimensional electron gas (2DEG) systems, formed typically at the interface between two III-V semiconductor compounds. We discuss both theoretical aspects of spin injection in case of ballistic transport as well as give an overview of available reports on spin injection experiments performed on 2DEG structures. In the experimental part we focus particularly on our recent work on all-semiconductor structures with a 2DEG confined at an inverted GaAs/(Al,Ga)As interface and with a ferromagnetic semiconductor (Ga,Mn)As employed as a source of spin-polarized electrons.

  10. A harmonic injection SPWM method for the high-responsive PMSM control system

    Science.gov (United States)

    Lei, Wang; Shuanghui, Hao; Minghui, Hao; Baoyu, Song

    2016-01-01

    In a permanent magnet synchronous motor (PMSM) control system, usually, the phase voltage instruction is limited independently to prevent a three-phase pulse width modulation (PWM) wave from overflowing. This method decreases the efficiency of the bus voltage and causes voltage vector direction errors. To solve these problems, we propose a harmonic injection sinusoidal pulse-width modulation (SPWM). This method uses harmonic injected sinusoidal PWM to improve the utilisation ratio of the bus voltage, and consequently improve system performance. In this paper, we analyse the problem in terms of potential difference. The simulation results show that the proposed method can increase the utilisation ratio of the bus voltage up to 15.4%, and the voltage vector mode obtained with the proposed algorithm is larger than that obtained with the conventional one. The method with harmonic injection consequently improves current response, without affecting voltage vector accuracy. The experiment results validate the proposed method.

  11. Optical injection and spectral filtering of high-power UV laser diodes

    CERN Document Server

    Schäfer, V M; Tock, C J; Lucas, D M

    2015-01-01

    We demonstrate injection-locking of 120mW laser diodes operating at 397nm. We achieve stable operation with injection powers of ~100uW and a slave laser output power of up to 110mW. We investigate the spectral purity of the slave laser light via photon scattering experiments on a single trapped Ca40 ion. We show that it is possible to achieve a scattering rate indistinguishable from that of monochromatic light by filtering the laser light with a diffraction grating to remove amplified spontaneous emission.

  12. [Importance of drug carriers in the treatment of visceral leishmaniasis].

    Science.gov (United States)

    Fusai, T; Durand, R; Boulard, Y; Paul, M; Bories, C; Rivollet, D; Houin, R; Deniau, M

    1995-01-01

    Visceral leishmaniasis is caused by hemoflagellate protozoa which are obligatory parasites of the mononuclear phagocyte system. Leishmaniasis causes high morbidity and mortality worldwide. The treatment of choice remains pentavalent antimonials, but high toxicity and failures have been reported. An alternative to conventional treatment is delivery anti-leishmania agents using colloidal carrier systems. Carriers improve drug activity against intracellular disease involving the mononuclear phagocyte system. The principle of drug delivery by carrier systems has been applied successfully for anticancer drugs. Recently complete remission of polyresistant visceral leishmaniasis was obtained by injection of liposomal amphotericin B. At present, no colloidal drug carrier for antimony derivatives is available, but pentamidine can be linked experimentally to methacrylate polymer nano-particles. Drug-loaded nanoparticles have been shown to be effective against amastigote leishmania both in vitro and in vivo. Another colloidal system of major interest for drug delivery, the liposome has already been loaded with amphotericin B and used for human therapy. The concept of particulate drug carriers opens the way for new chemotherapeutic approaches in the field of parasitology.

  13. Effect of High Injection Pressure of Algae and Jatropha Derived Biodiesel on Ignition Delay and Combustion Process

    Science.gov (United States)

    Rahman, Nurdin; Khalid, Amir; Manshoor, Bukhari; Jaat, Norrizam; Zaman, Izzuddin; Sunar, Norshuhaila

    2016-11-01

    This paper presents the investigation of the effect of high injection pressure on the ignition delay period and emission characteristics. Few experiments were conducted in a rapid compression machine (RCM). Four types of fuels were tested inside a RCM which are standard diesel (SD), Algae biodiesel (A2), Palm Oil biodiesel (B5, B10, and B15) and Jatropha biodiesel (J5, J10, J15). The experiments were conducted at high injection pressure of 130 MPa. The ambient temperature of constant volume chamber at the time of fuel injection was set at 850 K. The results indicate that the combined factors of specific of ambient temperature and higher injection pressure produces shorter ignition delay time. B5 has the shortest ignition delay with 1.5 ms. Biodiesel has the shorter ignition delay which is prolonged with increasing biodiesel content in the blends. In terms of emissions, Carbon dioxide (CO2), Carbon monoxide (CO), hydrocarbon (HC) and smoke emissions decreased with all biodiesel-diesel blends. However, oxides of nitrogen (NOx) emission of the biodiesel was relatively higher than those of the diesel under all test conditions. In addition, the increase of blends in terms of biodiesel ratio was found to be significant in enhancing the combustion process.

  14. High resolution 3D MRI of mouse mammary glands with intra-ductal injection of contrast media.

    Science.gov (United States)

    Markiewicz, Erica; Fan, Xiaobing; Mustafi, Devkumar; Zamora, Marta; Roman, Brian B; Jansen, Sanaz A; Macleod, Kay; Conzen, Suzanne D; Karczmar, Gregory S

    2015-01-01

    The purpose of this study was to use high resolution three-dimensional (3D) magnetic resonance imaging (MRI) to study mouse mammary gland ductal architecture based on intra-ductal injection of contrast agents. Female FVB/N mice age 12-20 weeks (n=12), were used in this study. A 34G, 45° tip Hamilton needle with a 25μL Hamilton syringe was inserted into the tip of the nipple. Approximately 20-25μL of a Gadodiamide/Trypan blue/saline solution was injected slowly over one minute into the nipple and duct. To prevent washout of contrast media from ducts due to perfusion, and maximize the conspicuity of ducts on MRI, mice were sacrificed one minute after injection. High resolution 3D T1-weighted images were acquired on a 9.4T Bruker scanner after sacrifice to eliminate motion artifacts and reduce contrast media leakage from ducts. Trypan blue staining was well distributed throughout the ductal tree. MRI showed the mammary gland ductal structure clearly. In spoiled gradient echo T1-weighted images, the signal-to-noise ratio of regions identified as enhancing mammary ducts following contrast injection was significantly higher than that of muscle (pcontrast media (pcontrast agents to measure metabolism or target receptors in normal ducts and ducts with in situ cancers.

  15. Ultra high-temperature solids-free insulating packer fluid for oil and gas production, steam injection and geothermal wells

    Energy Technology Data Exchange (ETDEWEB)

    Ezell, R.G.; Harrison, D.J. [Society of Petroleum Engineers, Canadian Section, Calgary, AB (Canada)]|[Halliburton Energy Services, Calgary, AB (Canada)

    2008-10-15

    Uncontrolled heat transfer from production/injection tubing during thermal oil recovery via steam injection can be detrimental to the integrity of the casing and to the quality of the steam that is injected into the reservoir. An aqueous-based insulating packer fluid (IPF) was introduced to improve the steam injection process by controlling the total heat loss from the produced fluids to the surrounding wellbore, internal annuli and formation. The IPF was developed for elevated temperature environments through extensive investigation across multidisciplinary technology. The innovative system delivers performance beyond conventional systems of comparable thermal conductivity. Its density range and conductivity measurements were presented in this paper. High-temperature static aging tests showed superior gel integrity without any phase separation after exposure to temperatures higher than 260 degrees C. The new fluids are hydrate inhibitive, non-corrosive and pass oil and grease testing. They are considered to be environmentally sound by Gulf of Mexico standards. It was concluded that the new ultra high-performance insulating packer fluid (HTIPF) reduced the heat loss significantly by both conduction and convection. Heat transfer within the aqueous-based HTIPF was 97 per cent less than that of pure water. It was concluded that the HTIPF can be substituted for conventional packer fluids without compromising any well control issues. 21 refs., 1 tab., 4 figs.

  16. Intraperitoneal injection of d-serine inhibits high-fat diet intake and preference in male mice.

    Science.gov (United States)

    Sasaki, Tsutomu; Yasoshima, Yasunobu; Matsui, Sho; Yokota-Hashimoto, Hiromi; Kobayashi, Masaki; Kitamura, Tadahiro

    2017-11-01

    d-serine is a co-agonist of the N-methyl d-aspartate (NMDA) receptor, an important modulator of glutamatergic excitatory synaptic transmission. We previously reported that oral d-serine ingestion inhibited the intake of highly preferred food and promoted the intake of less preferred food in mice. Here, we analyzed the effects of intraperitoneal (IP) d-serine injections on feeding behavior in mice. We assessed the effects of d-serine during both the acquisition and maintenance of a preference for high-fat diets (HFDs). Aversiveness of IP d-serine was analyzed in the conditioned taste aversion paradigm. The effects on food intake were assessed by providing liquid meals with different fat contents. Finally, we measured brain d-serine and l-serine levels after d-serine administration. We found that IP-injected d-serine effectively inhibited the acquisition of a HFD preference, but failed to prevent expression of a previously learned HFD preference. IP-injected d-serine was not sufficient to condition taste aversion. The effect on HFD preference acquisition was associated with increases in d-serine levels in the cerebral cortex, hypothalamus, and cerebellum. IP-injected d-serine most effectively inhibited the intake of liquid meals with high fat content. This effect was dose-dependent, but the responses varied significantly among male C57BL/6J mice. The differential responses to d-serine were consistent among multiple trials in each mouse. In summary, IP-injected d-serine inhibited HFD intake and the acquisition of an HFD preference. Individual mice with the same genetic background showed different sensitivities to d-serine; thus, d-serine sensitivity may be associated with unidentified traits. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  17. Lance for injecting highly-loaded coal slurries into the blast furnace

    Energy Technology Data Exchange (ETDEWEB)

    Illuminati, D.

    1991-10-29

    A lance is used to inject fuel oil into a blast furnace. This simple design permits conversion of coal water and coal tar slurries to a fine mist at very low flow rates. This design prevents the build-up of deposits which increases service life and steadies the flow rate.

  18. Optimal design of Tilting-Pad Thrust Bearings with High Pressure Injection Pockets

    DEFF Research Database (Denmark)

    Heinrichson, Niels; Santos, Ilmar

    2006-01-01

    A thermo-elasto-hydrodynamic(TEHD) model based on the Reynolds equation has been used to study the effect of oil injection pockets on the performance of tilting pad thrust bearings. The optimal position of the pivot both with respect to load carrying capacity and minimal power consumption is seen...

  19. Optimal design of Tilting-Pad Thrust Bearings with High Pressure Injection Pockets

    DEFF Research Database (Denmark)

    Heinrichson, Niels; Santos, Ilmar

    2006-01-01

    A thermo-elasto-hydrodynamic(TEHD) model based on the Reynolds equation has been used to study the effect of oil injection pockets on the performance of tilting pad thrust bearings. The optimal position of the pivot both with respect to load carrying capacity and minimal power consumption is seen...

  20. Raising awareness of carrier testing for hereditary haemoglobinopathies in high-risk ethnic groups in the Netherlands: a pilot study among the general public and primary care providers

    Directory of Open Access Journals (Sweden)

    Cornel Martina C

    2009-09-01

    Full Text Available Abstract Background In the Netherlands no formal recommendations exist concerning preconceptional or antenatal testing for carriership of hereditary haemoglobinopathies. Those at highest risk may be unaware of the possibility of carrier screening. While universal newborn screening has recently been introduced, neither preconceptional nor antenatal carrier testing is routinely offered by health care services to the general public. A municipal health service and a foundation for public information on medical genetics undertook a pilot project with the aim of increasing knowledge and encouraging informed choice. Two groups were targeted: members of the public from ethnic groups at increased risk, and primary health care providers. This study examines the effectiveness of culturally specific 'infotainment' to inform high-risk ethnic groups about their increased risk for haemoglobinopathies. In addition, the study explores attitudes and intentions of primary care providers towards haemoglobinopathy carrier testing of their patients from high-risk ethnic groups. Methods Informational sessions tailored to the public or professionals were organised in Amsterdam, and evaluated for their effect. Psychological parameters were measured using structured questionnaires based on the Theory of Planned Behaviour. Results The pre-test/post-test questionnaire showed that members of the public gained understanding of inheritance and carriership of haemoglobinopathies from the "infotainment" session (p Conclusion The "infotainment" programme may have a positive effect on people from high-risk groups, but informed general practitioners and midwives were reluctant to facilitate their patients' getting tested. Additional initiatives are needed to motivate primary care providers to facilitate haemoglobinopathy carrier testing for their patients from high-risk backgrounds.

  1. HIGH RESOLUTION PREDICTION OF GAS INJECTION PROCESS PERFORMANCE FOR HETEROGENEOUS RESERVOIRS

    Energy Technology Data Exchange (ETDEWEB)

    Franklin M. Orr, Jr.

    2004-05-01

    This final technical report describes and summarizes results of a research effort to investigate physical mechanisms that control the performance of gas injection processes in heterogeneous reservoirs and to represent those physical effects in an efficient way in simulations of gas injection processes. The research effort included four main lines of research: (1) Efficient compositional streamline methods for 3D flow; (2) Analytical methods for one-dimensional displacements; (3) Physics of multiphase flow; and (4) Limitations of streamline methods. In the first area, results are reported that show how the streamline simulation approach can be applied to simulation of gas injection processes that include significant effects of transfer of components between phases. In the second area, the one-dimensional theory of multicomponent gas injection processes is extended to include the effects of volume change as components change phase. In addition an automatic algorithm for solving such problems is described. In the third area, results on an extensive experimental investigation of three-phase flow are reported. The experimental results demonstrate the impact on displacement performance of the low interfacial tensions between the gas and oil phases that can arise in multicontact miscible or near-miscible displacement processes. In the fourth area, the limitations of the streamline approach were explored. Results of an experimental investigation of the scaling of the interplay of viscous, capillary, and gravity forces are described. In addition results of a computational investigation of the limitations of the streamline approach are reported. The results presented in this report establish that it is possible to use the compositional streamline approach in many reservoir settings to predict performance of gas injection processes. When that approach can be used, it requires substantially less (often orders of magnitude) computation time than conventional finite difference

  2. Glacier evolution in high-mountain Asia under stratospheric sulfate aerosol injection geoengineering

    Science.gov (United States)

    Zhao, Liyun; Yang, Yi; Cheng, Wei; Ji, Duoying; Moore, John C.

    2017-06-01

    Geoengineering by stratospheric sulfate aerosol injection may help preserve mountain glaciers by reducing summer temperatures. We examine this hypothesis for the glaciers in high-mountain Asia using a glacier mass balance model driven by climate simulations from the Geoengineering Model Intercomparison Project (GeoMIP). The G3 and G4 schemes specify use of stratospheric sulfate aerosols to reduce the radiative forcing under the Representative Concentration Pathway (RCP) 4.5 scenario for the 50 years between 2020 and 2069, and for a further 20 years after termination of geoengineering. We estimate and compare glacier volume loss for every glacier in the region using a glacier model based on surface mass balance parameterization under climate projections from three Earth system models under G3, five models under G4, and six models under RCP4.5 and RCP8.5. The ensemble projections suggest that glacier shrinkage over the period 2010-2069 is equivalent to sea-level rise of 9.0 ± 1.6 mm (G3), 9.8 ± 4.3 mm (G4), 15.5 ± 2.3 mm (RCP4.5), and 18.5 ± 1.7 mm (RCP8.5). Although G3 keeps the average temperature from increasing in the geoengineering period, G3 only slows glacier shrinkage by about 50 % relative to losses from RCP8.5. Approximately 72 % of glaciated area remains at 2069 under G3, as compared with about 30 % for RCP8.5. The widely reported reduction in mean precipitation expected for solar geoengineering is unlikely to be as important as the temperature-driven shift from solid to liquid precipitation for forcing Himalayan glacier change. The termination of geoengineering at 2069 under G3 leads to temperature rise of about 1.3 °C over the period 2070-2089 relative to the period 2050-2069 and corresponding increase in annual mean glacier volume loss rate from 0.17 to 1.1 % yr-1, which is higher than the 0.66 % yr-1 under RCP8.5 during 2070-2089.

  3. Glacier evolution in high-mountain Asia under stratospheric sulfate aerosol injection geoengineering

    Directory of Open Access Journals (Sweden)

    L. Zhao

    2017-06-01

    Full Text Available Geoengineering by stratospheric sulfate aerosol injection may help preserve mountain glaciers by reducing summer temperatures. We examine this hypothesis for the glaciers in high-mountain Asia using a glacier mass balance model driven by climate simulations from the Geoengineering Model Intercomparison Project (GeoMIP. The G3 and G4 schemes specify use of stratospheric sulfate aerosols to reduce the radiative forcing under the Representative Concentration Pathway (RCP 4.5 scenario for the 50 years between 2020 and 2069, and for a further 20 years after termination of geoengineering. We estimate and compare glacier volume loss for every glacier in the region using a glacier model based on surface mass balance parameterization under climate projections from three Earth system models under G3, five models under G4, and six models under RCP4.5 and RCP8.5. The ensemble projections suggest that glacier shrinkage over the period 2010–2069 is equivalent to sea-level rise of 9.0 ± 1.6 mm (G3, 9.8 ± 4.3 mm (G4, 15.5 ± 2.3 mm (RCP4.5, and 18.5 ± 1.7 mm (RCP8.5. Although G3 keeps the average temperature from increasing in the geoengineering period, G3 only slows glacier shrinkage by about 50 % relative to losses from RCP8.5. Approximately 72 % of glaciated area remains at 2069 under G3, as compared with about 30 % for RCP8.5. The widely reported reduction in mean precipitation expected for solar geoengineering is unlikely to be as important as the temperature-driven shift from solid to liquid precipitation for forcing Himalayan glacier change. The termination of geoengineering at 2069 under G3 leads to temperature rise of about 1.3 °C over the period 2070–2089 relative to the period 2050-2069 and corresponding increase in annual mean glacier volume loss rate from 0.17 to 1.1 % yr−1, which is higher than the 0.66 % yr−1 under RCP8.5 during 2070–2089.

  4. High risk behaviors of injection drug users registered with harm reduction programme in Karachi, Pakistan

    Directory of Open Access Journals (Sweden)

    Memon Ashraf

    2007-02-01

    Full Text Available Abstract Background Surveillance data of Sindh AIDS Control Programme, Pakistan suggest that HIV infection is rapidly increasing among IDUs in Karachi and has reached 9% in 2004–5 indicating that the country has progressed from nascent to concentrated level of HIV epidemic. Findings of 2nd generation surveillance in 2004–5 also indicate 104/395 (26.3% IDUs HIV positive in the city. Methods We conducted a cross sectional study among registered IDUs of a needle exchange and harm reduction programme in Karachi, Pakistan. A total of 161 IDUs were included in the study between October–November 2003. A detailed questionnaire was implemented and blood samples were collected for HIV, hepatitis B & C and syphilis. HIV, hepatitis B and C antibody tests were performed using Enzyme Linked Immunosorbent Assay (ELISA method. Syphilis tests (RPR & TPHA were performed on Randox kit. Besides calculating frequencies univariate analysis was performed using t tests for continuous variables as age, age at first intercourse and average age of initiation of addiction and chi square for categorical variables like paid for sex or not to identify risk factors for hepatitis B and C and syphilis. Results Average age of IDU was 35.9 years and average age of initiation of drugs was 15.9 years. Number of drug injections per day was 2.3. Shooting drugs in group sharing syringes was reported by 128 (79.5% IDUs. Over half 94 (58.3% reported paying for sex and 64% reported never using a condom. Commercial selling of blood was reported by 44 (28%. 1 of 161 was HIV positive (0.6%. The prevalence of hepatitis B was 12 (7.5%, hepatitis C 151 (94.3% and syphilis 21 (13.1%. IDUs who were hepatitis C positive were more likely to start sexual activity at an earlier age and had never used condoms. Similarly IDUs who were hepatitis B positive were more likely to belong to a younger age group. Syphilis positive IDUs were more likely to have paid for sex and had never used a condom

  5. Study of carrier dynamics and radiative efficiency in InGaN/GaN LEDs with Monte Carlo method

    Energy Technology Data Exchange (ETDEWEB)

    Lu, I. Lin; Wu, Yuh-Renn [Institute of Photonics and Optoelectronics and Department of Electrical Engineering, National Taiwan University, Taipei (China); Singh, Jasprit [Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI (United States)

    2011-07-15

    In this paper, we have applied the Monte Carlo method to study carrier dynamics in InGaN quantum well. Vertical and lateral transport and its impact on device radiative efficiency is studied for different In compositions, dislocation densities, temperatures, and carrier densities. Our results show that the non-radiative recombination caused by the defect trapping plays a dominating role for higher indium composition and this limits the internal quantum efficiency (IQE). For lower indium composition cases, carrier leakage plays some role in the mid to high injection conditions and carrier leakage is strong in very high carrier density in all cases. Our results suggest that reducing the trap density and QCSE are still the key factors to improve the IQE. The paper examines the relative roles of leakage and non-radiative processes on IQE. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  6. Microbially Enhanced Oil Recovery by Sequential Injection of Light Hydrocarbon and Nitrate in Low- And High-Pressure Bioreactors.

    Science.gov (United States)

    Gassara, Fatma; Suri, Navreet; Stanislav, Paul; Voordouw, Gerrit

    2015-10-20

    Microbially enhanced oil recovery (MEOR) often involves injection of aqueous molasses and nitrate to stimulate resident or introduced bacteria. Use of light oil components like toluene, as electron donor for nitrate-reducing bacteria (NRB), offers advantages but at 1-2 mM toluene is limiting in many heavy oils. Because addition of toluene to the oil increased reduction of nitrate by NRB, we propose an MEOR technology, in which water amended with light hydrocarbon below the solubility limit (5.6 mM for toluene) is injected to improve the nitrate reduction capacity of the oil along the water flow path, followed by injection of nitrate, other nutrients (e.g., phosphate) and a consortium of NRB, if necessary. Hydrocarbon- and nitrate-mediated MEOR was tested in low- and high-pressure, water-wet sandpack bioreactors with 0.5 pore volumes of residual oil in place (ROIP). Compared to control bioreactors, those with 11-12 mM of toluene in the oil (gained by direct addition or by aqueous injection) and 80 mM of nitrate in the aqueous phase produced 16.5 ± 4.4% of additional ROIP (N = 10). Because toluene is a cheap commodity chemical, HN-MEOR has the potential to be a cost-effective method for additional oil production even in the current low oil price environment.

  7. High HIV incidence among persons who inject drugs in Pakistan: greater risk with needle sharing and injecting frequently among the homeless.

    Directory of Open Access Journals (Sweden)

    Rab Nawaz Samo

    Full Text Available BACKGROUND: The incidence of HIV among persons who inject drugs (PWIDU has fallen in many nations, likely due to successes of clean needle/syringe exchange and substance abuse treatment and service programs. However in Pakistan, prevalence rates for PWID have risen dramatically. In several cities, prevalence exceeded 20% by 2009 compared to a 2003 baseline of just 0.5%. However, no cohort study of PWID has ever been conducted. METHODS: We enrolled a cohort of 636 HIV seronegative PWID registered with three drop-in centers that focus on risk reduction and basic social services in Karachi. Recruitment began in 2009 (March to June and PWID were followed for two years. We measured incidence rates and risk factors associated with HIV seroconversion. RESULTS: Incidence of HIV was 12.4 per 100 person-years (95% exact Poisson confidence interval [CI]: 10.3-14.9. We followed 474 of 636 HIV seronegative persons (74.5% for two years, an annual loss to follow-up of <13 per 100 person years. In multivariable Cox regression analysis, HIV seroconversion was associated with non-Muslim religion (Adjusted risk ratio [ARR] = 1.7, 95%CI:1.4, 2.7, p = 0.03, sharing of syringes (AR  = 2.3, 95%CI:1.5, 3.3, p<0.0001, being homeless (ARR = 1.7, 95%CI:1.1, 2.5, p = 0.009, and daily injection of drugs (ARR = 1.1, 95%CI:1.0, 1.3, p = 0.04. CONCLUSIONS: Even though all members of the cohort of PWID were attending risk reduction programs, the HIV incidence rate was very high in Karachi from 2009-2011. The project budget was low, yet we were able to retain three-quarters of the population over two years. Absence of opiate substitution therapy and incomplete needle/syringe exchange coverage undermines success in HIV risk reduction.

  8. A fast draw. Analysis of a level playing field for a high-speed line and low cost carriers; Snel naar gelijk spel. Aanzet tot analyse van een gelijk speelveld voor hoge snelheidslijn en low cost carriers

    Energy Technology Data Exchange (ETDEWEB)

    Van Essen, H.P.; Warringa, G.E.A.; Boon, B.H.

    2004-11-01

    For several lines in Europe Low Cost Carriers (LCCs) are considered as competitive means of transportation for high-speed lines (HSL in Dutch). A desk study has been carried out to gain insight in marginal external costs and levies of LCCs and HSLs in the Netherlands. The results can contribute to the discussion on a level playing field in this sector. Also an overview is given of other costs and levies. [Dutch] Low Cost Carriers (LCC's) worden op verschillende trajecten in Europa nogal eens beschouwd als concurrenten van de hoge snelheidslijnen (HSL). Om inzicht te verkrijgen in de externe kosten van LCC's en HSL en daarmee een bijdrage te leveren aan de discussie over een gelijk speelveld ('level playing field') heeft CE in opdracht van het Ministerie van Verkeer en Waterstaat DG Luchtvaart een deskstudie uitgevoerd naar de marginale externe kosten en heffingen van LCC's en HSL in Nederland. Daarnaast is een globale inventarisatie gemaakt van de overige kosten en heffingen. Tegenover de meeste externe kostenposten staat geen noemenswaardige heffing om de kosten te internaliseren,met als enige uitzondering geluidsoverlast door het vliegtuig. Dit betekent dat in het algemeen er te weinig rekening wordt gehouden met de externe effecten die zowel de HSL als het vliegtuig veroorzaken. Deze studie vormt een eerste aanzet tot een antwoord op de vraag naar een gelijk speelveld en rechtvaardigt geen definitief oordeel. Voor een eerlijke vergelijking tussen HSL en LCC dienen naast de externe kosten, in het bijzonder de kosten, afschrijvingen en overdrachten van bestaande luchtvaart- en HSL-infrastructuur en verschillende vormen van directe en indirecte overheidssteun nader te worden onderzocht.

  9. 电加热高光注塑模具设计%Electric Heating High Light Injection Mold Design

    Institute of Scientific and Technical Information of China (English)

    黄元贵

    2011-01-01

    A high gloss injection molding, in mold core equipped with electric heating components, in the mold core with insulation on the tank, while the main body in the mold and the mold core with insulation between the plates, to achieve high optical injection in At the same time, greatly reduce energy consumption. This method and technology is useful in the practical production.%一种高光注塑模具在模芯内设有电加热件,在模芯上设有隔热槽,同时在模具主体与模芯之间设有隔热板,使其在实现高光注塑的同时,大幅地降低了能耗.该工艺方法的设计研究,具有显著的科研和工程实用价值.

  10. Research on High Pressure Gas Injection As a Method of Fueling, Disruption Mitigation and Plasma Termination for Future Tokamak Reactors

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    High-pressure gas injection has proved to be an effective disruption mitigation technique in DⅢ-D tokamak experiments. If the method can be applied in future tokamak reactors not only for disruption mitigation but also for plasma termination and fueling, it will have an attractive advantage over the pellet and liquid injection from the viewpoint of economy and engineering design. In order to investigate the feasibility of this option, a study has been carried out with relevant parameters for conveying tubes of different geometrical sizes and for different gases.These parameters include pressure drop, lagger time after the valve's opening, gas diffusion in an ultra-high vacuum condition, and particle number contour.

  11. Computational Fluid Dynamics (CFD) Modeling for High Rate Pulverized Coal Injection (PCI) into the Blast Furnace

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Chenn Zhou

    2008-10-15

    Pulverized coal injection (PCI) into the blast furnace (BF) has been recognized as an effective way to decrease the coke and total energy consumption along with minimization of environmental impacts. However, increasing the amount of coal injected into the BF is currently limited by the lack of knowledge of some issues related to the process. It is therefore important to understand the complex physical and chemical phenomena in the PCI process. Due to the difficulty in attaining trus BF measurements, Computational fluid dynamics (CFD) modeling has been identified as a useful technology to provide such knowledge. CFD simulation is powerful for providing detailed information on flow properties and performing parametric studies for process design and optimization. In this project, comprehensive 3-D CFD models have been developed to simulate the PCI process under actual furnace conditions. These models provide raceway size and flow property distributions. The results have provided guidance for optimizing the PCI process.

  12. Tensile Strength Assessment of Injection-Molded High Yield Sugarcane Bagasse-Reinforced Polypropylene

    OpenAIRE

    2016-01-01

    Sugarcane bagasse was treated to obtain sawdust, in addition to mechanical, thermomechanical, and chemical-thermomechanical pulps. The obtained fibers were used to obtain reinforced polypropylene composites prepared by injection molding. Coupling agent contents ranging from 2 to 10% w/w were added to the composite to obtain the highest tensile strength. All the composites included 30% w/w of reinforcing fibers. The tensile strength of the different sugarcane bagasse fiber composites were test...

  13. Study of magnetic helicity injection via plasma imaging using a high-speed digital camera

    OpenAIRE

    Hsu, S. C.; Bellan, P. M.

    2002-01-01

    The evolution of a plasma generated by a novel planar coaxial gun is photographed using a state-of-the-art digital camera, which captures eight time-resolved images per discharge. This experiment is designed to study the fundamental physics of magnetic helicity injection, which is an important issue in fusion plasma confinement, as well as solar and astrophysical phenomena such as coronal mass ejections and accretion disk dynamics. The images presented in this paper are not only beautiful but...

  14. Estimation of free carrier concentrations in high-quality heavily doped GaN:Si micro-rods by photoluminescence and Raman spectroscopy

    Science.gov (United States)

    Mohajerani, M. S.; Khachadorian, S.; Nenstiel, C.; Schimpke, T.; Avramescu, A.; Strassburg, M.; Hoffmann, A.; Waag, A.

    2016-03-01

    The controlled growth of highly n-doped GaN micro rods is one of the major challenges in the fabrication of recently developed three-dimensional (3D) core-shell light emitting diodes (LEDs). In such structures with a large active area, higher electrical conductivity is needed to achieve higher current density. In this contribution, we introduce high quality heavily-doped GaN:Si micro-rods which are key elements of the newly developed 3D core-shell LEDs. These structures were grown by metal-organic vapor phase epitaxy (MOVPE) using selective area growth (SAG). We employed spatially resolved micro-Raman and micro-photoluminescence (PL) in order to directly determine a free-carrier concentration profile in individual GaN micro-rods. By Raman spectroscopy, we analyze the low-frequency branch of the longitudinal optical (LO)-phonon-plasmon coupled modes and estimate free carrier concentrations from ≍ 2.4 × 1019 cm-3 up to ≍ 1.5 × 1020 cm-3. Furthermore, free carrier concentrations are determined by estimating Fermi energy level from the near band edge emission measured by low-temperature PL. The results from both methods reveal a good consistency.

  15. Effect of p-GaN layer grown with H2 carrier gas on wall-plug efficiency of high-power LEDs

    Science.gov (United States)

    Lu, Kuan Fu; Lin, Tien Kun; Liou, Jian Kai; Yang, Chyi Da; Lee, Chong Yi; Tsai, Jeng Da

    2017-06-01

    The effect of employing different carrier gases (H2 only and 1:1 vol% N2:H2) in the p-type GaN (p-GaN) layer on the wall-plug efficiency (WPE) of high-power light-emitting diodes (LEDs) is studied. Since GaN crystal could be a two-dimension (2-D) growth mode in H2 ambient, better quality and smoother surface of the p-GaN were obtained. The current spreading performance of the p-GaN layer using H2 alone as the carrier gas was enhanced, resulting in advanced light output power (LOP). In addition, turn-on voltage and dynamic resistance at 500 mA, which can strongly contribute to the WPE, were also reduced by 0.12 V and 0.13 Ω, respectively. The studied device with H2 as the carrier gas in the p-GaN layer (p-H2 layer) exhibits 9.5% and 12.4% improvements in LOP and WPE at 500 mA over the device (N2/H2 = 1:1), as well as significantly better electrostatic discharge robustness. Therefore, the use of a p-H2 layer can effectively improve the performance of GaN-based LEDs for high power applications.

  16. Efficient conversion of high concentration of glycerol to Monacolin K by solid-state fermentation of Monascus purpureus using bagasse as carrier.

    Science.gov (United States)

    Lu, Li-Ping; Zhang, Bo-Bo; Xu, Gan-Rong

    2013-03-01

    High concentration of glycerol was used as the sole carbon source for efficient production of Monacolin K (MK) by solid-state fermentation (SSF) of Monascus purpureus 9901 using agricultural residue (bagasse), as an inert carrier. A comparative study showed that MK production in SSF was about 5.5 times higher than that of submerged fermentation when 26 % of glycerol was used, which may be due to the formation of glycerol concentration gradients in the inert carrier and less catabolite repression in SSF. For enhancement of MK yield in SSF, the effects of different influential variables, such as glycerol concentration, nitrogen source and its concentration, initial moisture content, inoculum size and particle size of bagasse, were systematically examined. All the factors mentioned above had an effect on the MK production in SSF to some extent. The maximal yield of MK (12.9 mg/g) was achieved with 26 % glycerol, 5 % soybean meal, 51 % initial moisture content, 20 % inoculum size and 1 mm particle size of bagasse. The results in this study may expand our understanding on the application of SSF using agricultural residue as carrier for production of useful microbial metabolites, especially the efficient conversion of high concentration of glycerol to MK by Monascus purpureus.

  17. Production and quality assurance of bright steel products for high performance components in fuel injection systems

    Energy Technology Data Exchange (ETDEWEB)

    Janssen, P.; Bodenstein, F. [Mittal Steel Ruhrort GmbH, Duisburg (Germany); Engineer, S. [EZM Edelstahlzieherei Mark, Wetter (Germany)

    2005-07-01

    In the last years the demands on the technological properties of steels in fuel injection systems are constantly increasing. There has been for instance a significant increase in the pressure of fuel injections systems. This means even small imperfections in steels can lead to field failures. The grades 47Pb2 and 42CrMo4 for fuel injection systems have stringent requirements regarding the production and application of the components. In order to obtain the best possible quality all stages of the production system have to be monitored very carefully. The steel making process in the steel plant has to follow strict rules to avoid detrimental oxide inclusions, reduce segregation, improve lead distribution, provide a good surface quality and homogeneous structure. The process of manufacturing bright steel bars from the hot rolled wire rods also involves capable processes with intensive 100% testing of all the bars supplied to the customer. The wire rods are drawn to bars and ground to narrow tolerances. The bars undergo an eddy current test to determine surface defects and also a sophisticated ultra sonic test at a flat bottom hole of 0.7. In spite of all the process monitoring and tests carried out from the melting up to grinding the bars there is still a chance of certain imperfection or defects remaining on the bars, which are more likely detectable on processing the bars to components. Therefore is also a necessity to carry out a test during the stage of component manufacturing. (orig.)

  18. Oral kanglaite injection (KLTI) attenuates the lung cancer-promoting effect of high-fat diet (HFD)-induced obesity

    OpenAIRE

    Cao, Ning; Ma, Xiaofang; Guo, Zhenzhen; Zheng, Yaqiu; Geng, Shengnan; Meng, Mingjing; Du, Zhenhua; Lin, Haihong; Duan, Yongjian; Du, Gangjun

    2016-01-01

    Obesity is a risk factor for cancer and cancer-related mortality, however, its role in lung cancer progression remains controversial. This study aimed to assess whether high-fat diet (HFD)-induced obesity promotes lung cancer progression and whether the promotion can be decreased by Kanglaite injection (KLTI). In vivo, HFD-induced overweight or obesity increases the lung carcinoma incidence and multiplicity in a urethane-induced lung carcinogenic model and cancer-related mortality in a LLC al...

  19. Study on using high injection voltage and spiral inflector in the central region of VEC

    Indian Academy of Sciences (India)

    V S Pandit

    2002-12-01

    A feasibility study of using high injection voltage and spiral inflector in the present heavy ion central region of VEC is described. Conditions necessary for waist-to-waist transfer of the ion beam in the hole lens of main magnet have been obtained. The results of orbit studies of a variety of heavy ions indicate that a spiral inflector can be used in the central region.

  20. Charge carrier dynamics investigation of CuInS2 quantum dots films using injected charge extraction by linearly increasing voltage (i-CELIV): the role of ZnS Shell

    Science.gov (United States)

    Bi, Ke; Sui, Ning; Zhang, Liquan; Wang, Yinghui; Liu, Qinghui; Tan, Mingrui; Zhou, Qiang; Zhang, Hanzhuang

    2016-12-01

    The role of ZnS shell on the photo-physical properties within CuInS2/ZnS quantum dots (QDs) is carefully studied in optoelectronic devices. Linearly increasing voltage technique has been employed to investigate the charge carrier dynamics of both CuInS2 and CuInS2/ZnS QDs films. This study shows that charge carriers follow a similar behavior of monomolecular recombination in this film, with their charge transfer rate correlates to the increase of applied voltage. It turns out that the ZnS shell could affect the carrier diffusion process through depressing the trapping states and would build up a potential barrier.

  1. Experimental investigation of hydraulic effects of two-stage fuel injection on fuel-injection systems and diesel combustion in a high-speed optical common-rail diesel engine

    OpenAIRE

    Herfatmanesh, MR; Zhao, H.

    2014-01-01

    In order to meet the ever more stringent emission standards, significant efforts have been devoted to the research and development of internal combustion engines. The requirements for more efficient and responsive diesel engines have led to the introduction and implementation of multiple injection strategies. However, the effects of such injection modes on the hydraulic systems, such as the high-pressure pipes and fuel injectors, must be thoroughly examined and compensated for since the combu...

  2. Effects of Injection Timing on Fluid Flow Characteristics of Partially Premixed Combustion Based on High-Speed Particle Image Velocimetry

    KAUST Repository

    Izadi Najafabadi, Mohammad

    2017-03-28

    Partially Premixed Combustion (PPC) is a promising combustion concept ,based on judicious tuning of the charge stratification, to meet the increasing demands of emission legislation and to improve fuel efficiency. Longer ignition delays of PPC in comparison with conventional diesel combustion provide better fuel/air mixture which decreases soot and NO emissions. Moreover, a proper injection timing and strategy for PPC can improve the combustion stability as a result of a higher level of fuel stratification in comparison with the Homogeneous Charge Compression Ignition (HCCI) concept. Injection timing is the major parameter with which to affect the level of fuel and combustion stratification and to control the combustion phasing and the heat release behavior. The scope of the present study is to investigate the fluid flow characteristics of PPC at different injection timings. To this end, high-speed Particle Image Velocimetry (PIV) is implemented in a light-duty optical engine to measure fluid flow characteristics, including the flow fields, mean velocity and cycle-resolved turbulence, inside the piston bowl as well as the squish region with a temporal resolution of 1 crank angle degree at 800 rpm. Two injectors, having 5 and 7 holes, were compared to see their effects on fluid flow and heat release behavior for different injection timings. Reactive and non-reactive measurements were performed to distinguish injection-driven and combustion-driven turbulence. Formation of vortices and higher turbulence levels enhance the air/fuel interaction, changing the level of fuel stratification and combustion duration. Results demonstrate clearly how turbulence level correlates with heat release behavior, and provide a quantitative dataset for validation of numerical simulations.

  3. Medroxyprogesterone Injection

    Science.gov (United States)

    Medroxyprogesterone intramuscular (into a muscle) injection and medroxyprogesterone subcutaneous (under the skin) injection are used to prevent pregnancy. Medroxyprogesterone subcutaneous injection is also used to treat endometriosis (a condition in which ...

  4. Pentamidine Injection

    Science.gov (United States)

    Pentamidine injection is used to treat pneumonia caused by a fungus called Pneumocystis carinii. It is in ... Pentamidine injection comes as powder to be mixed with liquid to be injected intramuscularly (into a muscle) ...

  5. Thermal analysis of injection beam dump of high-intensity rapid-cycling synchrotron in J-PARC

    Science.gov (United States)

    Kamiya, J.; Saha, P. K.; Yamamoto, K.; Kinsho, M.; Nihei, T.

    2017-10-01

    The beam dump at the beam injection area in the J-PARC 3-GeV rapid cycling synchrotron (RCS) accepts beams that pass through the charge exchange foil without ideal electron stripping during the multi-turn beam injection. The injection beam dump consists of the beam pipe, beam stopper, radiation shield, and cooling mechanism. The ideal beam power into the injection beam dump is 400 W in the case of design RCS extraction beam power of 1 MW with a healthy foil, which has 99.7 % charge stripping efficiency. On the other hand, as a radiation generator, the RCS is permitted to be operated with maximum average beam power of 4 kW into the injection beam dump based on the radiation shielding calculation, in consideration of lower charge stripping efficiency due to the foil deterioration. In this research, to evaluate the health of the RCS injection beam dump system from the perspective of the heat generation, a thermal analysis was performed based on the actual configuration with sufficiently large region, including the surrounding concrete and soil. The calculated temperature and heat flux density distribution showed the validity of the mesh spacing and model range. The calculation result showed that the dumped 4 kW beam causes the temperature to increase up to 330, 400, and 140 °C at the beam pipe, beam stopper, and radiation shield, respectively. Although these high temperatures induce stress in the constituent materials, the calculated stress values were lower than the ultimate tensile strength of each material. Transient temperature analysis of the beam stopper, which simulated the sudden break of the charge stripper foil, demonstrated that one bunched beam pulse with the maximum beam power does not lead to a serious rise in the temperature of the beam stopper. Furthermore, from the measured outgassing rate of stainless steel at high temperature, the rise in beam line pressure due to additive outgassing from the heated beam pipe was estimated to have a negligible

  6. Associations of Body Mass Index with Sexual Risk-Taking and Injection Drug Use among US High School Students

    Directory of Open Access Journals (Sweden)

    Richard Lowry

    2014-01-01

    Full Text Available The purpose of this study was to determine if body mass index (BMI is associated with behaviors that may increase risk for HIV and other sexually transmitted diseases (STDs among US high school students. We analyzed nationally representative data from the 2005–2011 national Youth Risk Behavior Surveys (YRBS to examine associations of BMI categories with sexual risk behaviors and injection drug use among sexually active high school students, using sex-stratified logistic regression models. Controlling for race/ethnicity and grade, among female and male students, both underweight (BMI < 5th percentile and obesity (BMI ≥ 95th percentile were associated with decreased odds of being currently sexually active (i.e., having had sexual intercourse during the past 3 months. However, among sexually active female students, obese females were more likely than normal weight females to have had 4 or more sex partners (odds ratio, OR = 1.59, not used a condom at last sexual intercourse (OR = 1.30, and injected illegal drugs (OR = 1.98. Among sexually active male students, overweight (85th percentile ≤ BMI < 95th percentile was associated with not using a condom at last sexual intercourse (OR = 1.19 and obesity was associated with injection drug use (OR = 1.42. Among sexually active students, overweight and obesity may be indicators of increased risk for HIV and other STDs.

  7. Micro injection moulding process validation for high precision manufacture of thermoplastic elastomer micro suspension rings

    DEFF Research Database (Denmark)

    Calaon, M.; Tosello, G.; Elsborg Hansen, R.

    Micro injection moulding (μIM) is one of the most suitable micro manufacturing processes for flexible mass-production of multi-material functional micro components. The technology was employed in this research used to produce thermoplastic elastomer (TPE) micro suspension rings identified...... as critical component in micro acoustic applications (e.g. phono cartridges, see Figure 1a). The suspension ring holds in place the preassembled aluminium cantilever, magnet and diamond tip seen (see Figure 1b and 1c). The specific damping properties of the TPE material reduces vibrations differently depended...

  8. Evolution of High-Temperature Superconductivity from a Low-T_{c} Phase Tuned by Carrier Concentration in FeSe Thin Flakes.

    Science.gov (United States)

    Lei, B; Cui, J H; Xiang, Z J; Shang, C; Wang, N Z; Ye, G J; Luo, X G; Wu, T; Sun, Z; Chen, X H

    2016-02-19

    We report the evolution of superconductivity in an FeSe thin flake with systematically regulated carrier concentrations by the liquid-gating technique. With electron doping tuned by the gate voltage, high-temperature superconductivity with an onset at 48 K can be achieved in an FeSe thin flake with T_{c} less than 10 K. This is the first time such high temperature superconductivity in FeSe is achieved without either an epitaxial interface or external pressure, and it definitely proves that the simple electron-doping process is able to induce high-temperature superconductivity with T_{c}^{onset} as high as 48 K in bulk FeSe. Intriguingly, our data also indicate that the superconductivity is suddenly changed from a low-T_{c} phase to a high-T_{c} phase with a Lifshitz transition at a certain carrier concentration. These results help to build a unified picture to understand the high-temperature superconductivity among all FeSe-derived superconductors and shed light on the further pursuit of a higher T_{c} in these materials.

  9. Investigating thermal donors in n-type Cz silicon with carrier density imaging

    Directory of Open Access Journals (Sweden)

    Yu Hu

    2012-09-01

    Full Text Available A new method to map the thermal donor concentration in silicon wafers using carrier density imaging is presented. A map of the thermal donor concentration is extracted with high resolution from free carrier density images of a silicon wafer before and after growth of thermal donors. For comparison, free carrier density mapping is also performed using the resistivity method together with linear interpolation. Both methods reveal the same distribution of thermal donors indicating that the carrier density imaging technique can be used to map thermal donor concentration. The interstitial oxygen concentration can also be extracted using the new method in combination with Wijaranakula's model. As part of this work, the lifetime at medium injection level is correlated to the concentration of thermal donors in the as-grown silicon wafer. The recombination rate is found to depend strongly on the thermal donor concentration except in the P-band region.

  10. The fluid mechanics of a high aspect ratio slot with an impressed pressure gradient and secondary injection

    Science.gov (United States)

    Sobanik, John Bertram

    1993-01-01

    A high aspect ratio slot flow (which emulates the gas leakage path in a gas turbine engine outer turbine air seal) is studied by use of a high aspect ratio slot using water as the working fluid. The cross section of the geometry is similar to a 'T', the slot being the vertical stroke and the main flow being the cross bar. A pressure gradient in the axial direction is created by blocking the main flow at a discreet location with an orifice plate (or blade tip simulator), located above the slot. Seven individually metered secondary flow injectors are located periodically along the bottom of the wall of the slot. Two slot widths, 1/8 and 1/4 inch, were investigated for length to width aspect ratios of 384 and 192 and height to width aspect ratios 33.2 and 16.6 respectively. Orifice plate pressure drops sufficient to give Reynolds numbers based upon half width of the slot, without secondary injection turned on, of 2350 and 4700 in the 1/8 inch slot and 4700 and 9400 in the 1/4 inch slot were run. Various secondary injection scenarios were added to the flow, the cases most studied being the no-injection and the all injectors flowing equal mass rates. Total injection rates for all seven injectors of 3.78 and 7.56 slot volumes per second were run. Laser velocimetry data and flow visualization pictures using fluorescein dye in the secondary flow are compared with computational results form the TEACH 3-D computer code. Major features and trends of the flow are captured by the computational model. Recommendations for further improvement of the numerical accuracy involves modification of the TEACH 3-D code to allow the 'slip condition' on all confining boundaries of the flow, or using a code which permits the 'slip condition' on all boundaries as a built-in option.

  11. Image-guided spinal injection procedures in open high-field MRI with vertical field orientation: feasibility and technical features

    Energy Technology Data Exchange (ETDEWEB)

    Streitparth, F.; Walter, T.; Wonneberger, U.; Wagner, M.; Hermann, K.G.; Hamm, B.; Teichgraeber, U. [Charite, Humboldt-Universitaet zu Berlin, Department of Radiology, Berlin (Germany); Chopra, S. [Charite-Universitaetsmedizin Berlin, Campus Virchow Klinikum, Department of General, Visceral, and Transplantation Surgery, Berlin (Germany); Wichlas, F. [Charite-Universitaetsmedizin Berlin, Campus Virchow Klinikum, Center for Musculoskeletal Surgery, Berlin (Germany)

    2010-02-15

    We prospectively evaluated the feasibility and technical features of MR-guided lumbosacral injection procedures in open high-field MRI at 1.0 T. In a CuSO{sub 4}.5H{sub 2}O phantom and five human cadaveric spines, fluoroscopy sequences (proton-density-weighted turbo spin-echo (PDw TSE), T1w TSE, T2w TSE; balanced steady-state free precession (bSSFP), T1w gradient echo (GE), T2w GE) were evaluated using two MRI-compatible 20-G Chiba-type needles. Artefacts were analysed by varying needle orientation to B{sub 0}, frequency-encoding direction and slice orientation. Image quality was described using the contrast-to-noise ratio (CNR). Subsequently, a total of 183 MR-guided nerve root (107), facet (53) and sacroiliac joint (23) injections were performed in 53 patients. In vitro, PDw TSE sequence yielded the best needle-tissue contrasts (CNR = 45, 18, 15, 9, and 8 for needle vs. fat, muscle, root, bone and sclerosis, respectively) and optimal artefact sizes (width and tip shift less than 5 mm). In vivo, PDw TSE sequence was sufficient in all cases. The acquisition time of 2 s facilitated near-real-time MRI guidance. Drug delivery was technically successful in 100% (107/107), 87% (46/53) and 87% (20/23) of nerve root, facet and sacroiliac joint injections, respectively. No major complications occurred. The mean procedure time was 29 min (range 19-67 min). MR-guided spinal injections in open high-field MRI are feasible and accurate using fast TSE sequence designs. (orig.)

  12. Linear Electro Optic Effect for High Repetition Rate Carrier Envelope Phase Control of Ultra Short Laser Pulses

    Directory of Open Access Journals (Sweden)

    Michel Comte

    2013-02-01

    Full Text Available This paper is devoted to analyzing the principle and applications of the linear electro-optic (EO effect for the control of the carrier-envelope-phase (CEP. We introduce and detail here an original method, which relies on the use of an EO dispersive prism pair in a compressor-like configuration. We show that, by choosing an adequate geometry, it is possible to shift the CEP without changing the group delay (isochronous carrier-envelope-phase shifter or change the induced group delay without varying the CEP. According to our calculations, when applying an electric field around 400 V/cm to the rubidium titanyle phosphate (RTP prisms in a double pass configuration (2 × 40 mm total length, one obtains a CEP shift of π rad at 800 nm without inducing a group delay. In contrast, this CEP shift is obtained for an electric field around 1.4 kV/cm in a RTP rectangular slab of the same total length and, in this case, the group delay is of the order of a few fs.

  13. Carrier-selective contacts for Si solar cells

    Science.gov (United States)

    Feldmann, F.; Simon, M.; Bivour, M.; Reichel, C.; Hermle, M.; Glunz, S. W.

    2014-05-01

    Carrier-selective contacts (i.e., minority carrier mirrors) are one of the last remaining obstacles to approaching the theoretical efficiency limit of silicon solar cells. In the 1980s, it was already demonstrated that n-type polysilicon and semi-insulating polycrystalline silicon emitters form carrier-selective emitters which enabled open-circuit voltages (Voc) of up to 720 mV. Albeit promising, to date a polysilicon emitter solar cell having a high fill factor (FF) has not been demonstrated yet. In this work, we report a polysilicon emitter related solar cell achieving both a high Voc = 694 mV and FF = 81%. The passivation mechanism of these so-called tunnel oxide passivated contacts will be outlined and the impact of TCO (transparent conductive oxide) deposition on the injection-dependent lifetime characteristic of the emitter as well as its implications on FF will be discussed. Finally, possible transport paths across the tunnel oxide barrier will be discussed and it will be shown that the passivating oxide layer does not lead to a relevant resistive loss and thus does not limit the solar cell's carrier transport. Contrary to amorphous silicon-based heterojunction solar cells, this structure also shows a good thermal stability and, thus, could be a very appealing option for next generation high-efficiency silicon solar cells.

  14. Ethanol injection is highly effective for hepatocellular carcinoma smaller than 2 cm

    Institute of Scientific and Technical Information of China (English)

    Maurizio Pompili; Gian Ludovico Rapaccini; Erica Nicolardi; Valeria Abbate; Luca Miele; Laura Riccardi; Marcello Covino; Nicoletta De Matthaeis; Antonio Grieco; Raffaele Landolfi

    2011-01-01

    AIM: To analyze the long-term prognosis in a cohort of western cirrhotic patients with single hepatocellular carcinoma treated with ethanol injection. METHODS: One-hundred forty-eight patients with solitary hepatocellular carcinoma were enrolled. The tumor diameter was lower than 2 cm in 47 patients but larger in the remaining 101 patients. The impact of some pretreatment clinical and laboratory parameters and of tumor recurrence on patients' survival was assessed. RESULTS: Among the pre-treatment parameters, only a tumor diameter of less than 2 cm was an independent prognostic factor of survival. The occurrence of new nodules in other liver segments and the neoplastic portal invasion were linked to a poorer prognosis at univariate analysis. Patients with a single hepatocellular carcinoma smaller than 2 cm showed a better 5-year cumulative survival (73.0% vs 47.9%) (P = 0.009), 3-year local recurrence rate (29.1% vs 51.5%) (P = 0.011), and 5-year distant intrahepatic recurrence rate (52.9% vs 62.8%) (P = 0.054) compared to patients with a larger tumor. CONCLUSION: The 5-year survival rate of patients with single hepatocellular carcinoma < 2 cm undergoing ethanol injection is excellent and comparable to that achieved using radiofrequency ablation.

  15. High-responsivity vertical-illumination Si/Ge uni-traveling-carrier photodiodes based on silicon-on-insulator substrate

    CERN Document Server

    Li, Chong; Liu, Zhi; Cong, Hui; Cheng, Buwen; Guo, Xia; Liu, Wuming

    2015-01-01

    Si/Ge uni-traveling carrier photodiodes exhibit higher output current when space-charge effects are overcome and thermal effects are suppressed, which is highly beneficial for increasing the dynamic range of various microwave photonic systems and simplifying high-bit-rate digital receivers in different applications. From the point of view of packaging, detectors with vertical-illumination configuration can be easily handled by pick-and-place tools and are a popular choice for making photo-receiver modules. However, vertical-illumination Si/Ge uni-traveling carrier (UTC) devices suffer from inter-constraint between high speed and high responsivity. Here, we report a high responsivity vertical-illumination Si/Ge UTC photodiode based on a silicon-on-insulator substrate. The maximum absorption efficiency of the devices was 2.4 times greater than the silicon substrate owing to constructive interference. The Si/Ge UTC photodiode was successfully fabricated and had a dominant responsivity at 1550 nm of 0.18 A/W, a 5...

  16. Observing Exoplanets with High-dispersion Coronagraphy. II. Demonstration of an Active Single-mode Fiber Injection Unit

    Science.gov (United States)

    Mawet, D.; Ruane, G.; Xuan, W.; Echeverri, D.; Klimovich, N.; Randolph, M.; Fucik, J.; Wallace, J. K.; Wang, J.; Vasisht, G.; Dekany, R.; Mennesson, B.; Choquet, E.; Delorme, J.-R.; Serabyn, E.

    2017-04-01

    High-dispersion coronagraphy (HDC) optimally combines high-contrast imaging techniques such as adaptive optics/wavefront control plus coronagraphy to high spectral resolution spectroscopy. HDC is a critical pathway toward fully characterizing exoplanet atmospheres across a broad range of masses from giant gaseous planets down to Earth-like planets. In addition to determining the molecular composition of exoplanet atmospheres, HDC also enables Doppler mapping of atmosphere inhomogeneities (temperature, clouds, wind), as well as precise measurements of exoplanet rotational velocities. Here, we demonstrate an innovative concept for injecting the directly imaged planet light into a single-mode fiber, linking a high-contrast adaptively corrected coronagraph to a high-resolution spectrograph (diffraction-limited or not). Our laboratory demonstration includes three key milestones: close-to-theoretical injection efficiency, accurate pointing and tracking, and on-fiber coherent modulation and speckle nulling of spurious starlight signal coupling into the fiber. Using the extreme modal selectivity of single-mode fibers, we also demonstrated speckle suppression gains that outperform conventional image-based speckle nulling by at least two orders of magnitude.

  17. Application of railgun principle to high-velocity hydrogen pellet injection for magnetic fusion reactor fueling. Progress report, August 16, 1991--September 30, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Kim, K.; Zhang, J.

    1992-12-01

    Three separate papers are included which report research progress during this period: (1) A new railgun configuration with perforated sidewalls, (2) development of a fuseless small-bore railgun for injection of high-speed hydrogen pellets into magnetically confined plasmas, and (3) controls and diagnostics on a fuseless railgun for solid hydrogen pellet injection.

  18. Botulinum toxin injection for hypercontractile or spastic esophageal motility disorders: may high-resolution manometry help to select cases?

    Science.gov (United States)

    Marjoux, S; Brochard, C; Roman, S; Gincul, R; Pagenault, M; Ponchon, T; Ropert, A; Mion, F

    2015-01-01

    Endoscopic injections of botulinum toxin in the cardia or distal esophagus have been advocated to treat achalasia and spastic esophageal motility disorders. We conducted a retrospective study to evaluate whether manometric diagnosis using the Chicago classification in high-resolution manometry (HRM) would be predictive of the clinical response. Charts of patients with spastic and hypertensive motility disorders diagnosed with HRM and treated with botulinum toxin were retrospectively reviewed at two centers. HRM recordings were systematically reanalyzed, and a patient's phone survey was conducted. Forty-five patients treated between 2008 and 2013 were included. Most patients had achalasia type 3 (22 cases). Other diagnoses were jackhammer esophagus (8 cases), distal esophageal spasm (7 cases), esophagogastric junction outflow obstruction (5 cases), nutcracker esophagus (1 case), and 2 unclassified cases. Botulinum toxin injections were performed into the cardia only in 9 cases, into the wall of the distal esophagus in 19 cases, and in both locations (cardia and distal esophagus) in 17 cases. No complication occurred in 31 cases. Chest pain was noticed for less than 7 days in 13 cases. One death related to mediastinitis occurred 3 weeks after botulinum toxin injection. Efficacy was assessed in 42 patients: 71% were significantly improved 2 months after botulinum toxin, and 57% remained satisfied for more than 6 months. No clear difference was observed in terms of response according to manometric diagnosis; however, type 3 achalasia previously dilated and with normal integrated relaxation pressure (4s-integrated relaxation pressure botulinum toxin. Endoscopic injections of botulinum toxin may be effective in some patients with spastic or hypercontractile esophageal motility disorders. The manometric Chicago classification diagnosis does not seem to predict the results. Prospective randomized trials are required to identify patients most likely to benefit from

  19. Injection to the pick-up ion regime from high energies and induced ion power laws

    CERN Document Server

    Fahr, H -J; Verscharen, D

    2008-01-01

    Though pick-up ions (PUIs) are a well known phenomenon in the inner heliosphere, their phase-space distribution nevertheless is a theoretically unsettled problem. Especially the question of how pick-up ions form their suprathermal tails, extending to far above their injection energies, still now is unsatistactorily answered. Though Fermi-2 velocity diffusion theories have revealed that such tails are populated, they nevertheless show that resulting population densities are much less than seen in observations showing power-laws with a velocity index of ``-5''. We first investigate here, whether or not observationally suggested power-laws can be the result of a quasi-equilibrium state between suprathermal ions and magnetohydrodynamic turbulences in energy exchange with eachother. We demonstrate that such an equilibrium cannot be established. We furthermore show that Fermi-2 type energy diffusion in the outer heliosphere is too inefficient to determine the shape of the distribution function there. As we can show...

  20. Injection molding micro patterns with high aspect ratio using a polymeric flexible stamper

    Directory of Open Access Journals (Sweden)

    2011-11-01

    Full Text Available Poor filling occurs during the injection molding process of micro- or nano- scale patterns mainly because the hot polymer melt rapidly cools and its skin quickly solidifies upon contact with the mold surface. In this study, it is proposed to use Polyethylene terephthalate (PET film coated with patterned polyurethane acrylate (PUA as an effective thermal barrier. It can significantly hinder heat transfer into the mold during the molding process and thus may keep the melt viscosity low for longer duration. As a result, the replication would be improved not only during the filling phase but also during the packing phase. In order to verify the validity of the use of polymeric stamper, the melt-film interface temperature was evaluated by numerical simulation. Experimental results indicated that patterns possessing widths within the range of one to tens of micrometers and a height of approximately 10 µm were successfully filled and demolded.

  1. High Energy, Short Pulse Fiber Injection Lasers at Lawrence Livermore National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Dawson, J W; Messerly, M J; Phan, H H; Crane, J K; Beach, R J; Siders, C W; Barty, C J

    2008-09-10

    A short pulse fiber injection laser for the Advanced Radiographic Capability (ARC) on the National Ignition Facility (NIF) has been developed at Lawrence Livermore National Laboratory (LLNL). This system produces 100 {micro}J pulses with 5 nm of bandwidth centered at 1053 nm. The pulses are stretched to 2.5 ns and have been recompressed to sub-ps pulse widths. A key feature of the system is that the pre-pulse power contrast ratio exceeds 80 dB. The system can also precisely adjust the final recompressed pulse width and timing and has been designed for reliable, hands free operation. The key challenges in constructing this system were control of the signal to noise ratio, dispersion management and managing the impact of self phase modulation on the chirped pulse.

  2. Transient saturation absorption spectroscopy excited near the band gap at high excitation carrier density in GaAs

    Institute of Scientific and Technical Information of China (English)

    Wu Song-Jiang; Wang Dan-Ling; Jiang Hong-Bing; Yang Hong; Gong Qi-Huang; Ji Ya-Lin; Lu Wei

    2004-01-01

    @@ Transient saturation absorption spectroscopy in GaAs thin films was investigated using femtosecond pump and supercontinuum probe technique at excitation densities higher than 1× 1019 cm-3. The Coulomb enhancement factor of the electron-hole plasma results in a spectrum hole at the pump wavelength. Two distinct transmission peaks at two sides of the pump wavelength are observed, arising from the bleaching of transitions from the heavy- and light-hole bands to the conduction band. The dynamic process of the transient saturation absorption is fitted using a bi-exponential function. The fast decay process is dominated by the carrier-phonon scattering and the slow process may be attributed to the electron-hole recombination.

  3. Performance tradeoff between lateral and interdigitated doping patterns for high speed carrier-depletion based silicon modulators.

    Science.gov (United States)

    Yu, Hui; Pantouvaki, Marianna; Van Campenhout, Joris; Korn, Dietmar; Komorowska, Katarzyna; Dumon, Pieter; Li, Yanlu; Verheyen, Peter; Absil, Philippe; Alloatti, Luca; Hillerkuss, David; Leuthold, Juerg; Baets, Roel; Bogaerts, Wim

    2012-06-04

    Carrier-depletion based silicon modulators with lateral and interdigitated PN junctions are compared systematically on the same fabrication platform. The interdigitated diode is shown to outperform the lateral diode in achieving a low VπLπ of 0.62 V∙cm with comparable propagation loss at the expense of a higher depletion capacitance. The low VπLπ of the interdigitated PN junction is employed to demonstrate 10 Gbit/s modulation with 7.5 dB extinction ration from a 500 µm long device whose static insertion loss is 2.8 dB. In addition, up to 40 Gbit/s modulation is demonstrated for a 3 mm long device comprising a lateral diode and a co-designed traveling wave electrode.

  4. Hot-Carrier Seebeck Effect: Diffusion and Remote Detection of Hot Carriers in Graphene

    Science.gov (United States)

    Sierra, Juan F.; Neumann, Ingmar; Costache, Marius V.; Valenzuela, Sergio O.

    2015-06-01

    We investigate hot carrier propagation across graphene using an electrical nonlocal injection/detection method. The device consists of a monolayer graphene flake contacted by multiple metal leads. Using two remote leads for electrical heating, we generate a carrier temperature gradient that results in a measurable thermoelectric voltage VNL across the remaining (detector) leads. Due to the nonlocal character of the measurement, VNL is exclusively due to the Seebeck effect. Remarkably, a departure from the ordinary relationship between Joule power P and VNL, VNL ~ P, becomes readily apparent at low temperatures, representing a fingerprint of hot-carrier dominated thermoelectricity. By studying VNL as a function of bias, we directly determine the carrier temperature and the characteristic cooling length for hot-carrier propagation, which are key parameters for a variety of new applications that rely on hot-carrier transport.

  5. Hot-Carrier Seebeck Effect: Diffusion and Remote Detection of Hot Carriers in Graphene.

    Science.gov (United States)

    Sierra, Juan F; Neumann, Ingmar; Costache, Marius V; Valenzuela, Sergio O

    2015-06-10

    We investigate hot carrier propagation across graphene using an electrical nonlocal injection/detection method. The device consists of a monolayer graphene flake contacted by multiple metal leads. Using two remote leads for electrical heating, we generate a carrier temperature gradient that results in a measurable thermoelectric voltage V(NL) across the remaining (detector) leads. Due to the nonlocal character of the measurement, V(NL) is exclusively due to the Seebeck effect. Remarkably, a departure from the ordinary relationship between Joule power P and V(NL), V(NL) ∼ P, becomes readily apparent at low temperatures, representing a fingerprint of hot-carrier dominated thermoelectricity. By studying V(NL) as a function of bias, we directly determine the carrier temperature and the characteristic cooling length for hot-carrier propagation, which are key parameters for a variety of new applications that rely on hot-carrier transport.

  6. Structure and Dynamics of Fuel Jets Injected into a High-Temperature Subsonic Crossflow: High-Data-Rate Laser Diagnostic Investigation under Steady and Oscillatory Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Lucht, Robert [Purdue Univ., West Lafayette, IN (United States); Anderson, William [Purdue Univ., West Lafayette, IN (United States)

    2015-01-23

    An investigation of subsonic transverse jet injection into a subsonic vitiated crossflow is discussed. The reacting jet in crossflow (RJIC) system investigated as a means of secondary injection of fuel in a staged combustion system. The measurements were performed in test rigs featuring (a) a steady, swirling crossflow and (b) a crossflow with low swirl but significant oscillation in the pressure field and in the axial velocity. The rigs are referred to as the steady state rig and the instability rig. Rapid mixing and chemical reaction in the near field of the jet injection is desirable in this application. Temporally resolved velocity measurements within the wake of the reactive jets using 2D-PIV and OH-PLIF at a repetition rate of 5 kHz were performed on the RJIC flow field in a steady state water-cooled test rig. The reactive jets were injected through an extended nozzle into the crossflow which is located in the downstream of a low swirl burner (LSB) that produced the swirled, vitiated crossflow. Both H2/N2 and natural gas (NG)/air jets were investigated. OH-PLIF measurements along the jet trajectory show that the auto-ignition starts on the leeward side within the wake region of the jet flame. The measurements show that jet flame is stabilized in the wake of the jet and wake vortices play a significant role in this process. PIV and OH–PLIF measurements were performed at five measurement planes along the cross- section of the jet. The time resolved measurements provided significant information on the evolution of complex flow structures and highly transient features like, local extinction, re-ignition, vortex-flame interaction prevalent in a turbulent reacting flow. Nanosecond-laser-based, single-laser-shot coherent anti-Stokes Raman scattering (CARS) measurements of temperature and H2 concentraiton were also performed. The structure and dynamics of a reacting transverse jet injected into a vitiated oscillatory crossflow presents a unique opportunity for

  7. High voltage measurements on a prototype PFN for the LHC injection kickers

    CERN Document Server

    Barnes, M J; Carlier, E; Ducimetière, L; Schröder, G; Vossenberg, Eugène B

    1999-01-01

    Two LHC injection kicker magnet systems must produce a kick of 1.3 T.m each with a flattop duration of 4.25 mu s or 6.5 mu s, a rise time of 900 ns, and a fall time of 3 mu s. The ripple in the field must be less than +or-0.5The electrical circuit of the complete system has been simulated with PSpice. The model includes a 66 kV resonant charging power supply (RCPS), a 5 Omega pulse forming network (PFN), a terminated 5 Omega kicker magnet, and all known parasitic quantities. Component selection for the PEN was made on the basis of models in which a theoretical field ripple of less than +or-0.1as attained. A prototype 66 kV RCPS was built at TRIUMF and shipped to CERN. A prototype 5 Omega system including a PFN, thyratron switches, and terminating resistors, was built at CERN. The system (without a kicker magnet) was assembled as designed without trimming of any PFN component values. The PFN was charged to 60 kV via the RCPS operating at 0.1 Hz. The thyratron timing was adjusted to provide a 30 kV, 5.5 mu s du...

  8. High heat flux engineering for the upgraded neutral beam injection systems of MAST-U

    Energy Technology Data Exchange (ETDEWEB)

    Dhalla, F., E-mail: Fahim.dhalla@ccfe.ac.uk; Mistry, S.; Turner, I.; Barrett, T.R.; Day, I.; McAdams, R.

    2015-10-15

    Highlights: • A new Residual Ion Dump (RID) and bend magnet system for the upgraded NBI systems have been designed for the 5 s MAST-U pulse requirements. • Design scoping was performed using numerical ion-tracing analysis software (MAGNET and OPERA codes). • A more powerful bending magnet will separate the residual ions into full, half and third energy components. • Three separate CuCrZr dumps spread the power loading resulting in acceptable power footprints. • FE thermo-mechanical analyses using ANSYS to validate the designs against the ITER SDC-IC code. • New bend magnet coils, yoke and CuCrZr water-cooled plates are in the procurement phase. - Abstract: For the initial phase of MAST-U operation the two existing neutral beam injection systems will be used, but must be substantially upgraded to fulfil expected operational requirements. The major elements are the design, manufacture and installation of a bespoke bending magnet and Residual Ion Dump (RID) system. The MAST-design full energy dump is being replaced with new actively-cooled full, half and third energy dumps, designed to receive 2.4 MW of ion power deflected by an iron-cored electromagnet. The main design challenge is limited space available in the vacuum vessel, requiring ion-deflection calculations to ensure acceptable heat flux distribution on the dump panels. This paper presents engineering and physics analysis of the upgraded MAST beamlines and reports the current status of manufacture.

  9. The aerodynamic effects of wheelspace coolant injection into the mainstream flow of a high pressure gas turbine

    Science.gov (United States)

    McLean, Christopher Elliot

    Modern gas turbine engines operate with mainstream gas temperatures exceeding 1450°C in the high-pressure turbine stage. Unlike turbine blades, rotor disks and other internal components are not designed to withstand the extreme temperatures found in mainstream flow. In modern gas turbines, cooling air is pumped into the wheelspace cavities to prevent mainstream gas ingestion and then exits through a seal between the rotor and the nozzle guide vane (NGV) thereby mixing with the mainstream flow. The primary purpose for the wheelspace cooling air is the cooling of the turbine wheelspace. However, secondary effects arise from the mixing of the spent cooling air with the mainstream flow. The exiting cooling air is mixed with the hot mainstream flow effecting the aerodynamic and performance characteristics of the turbine stage. The physics underlying this mixing process and its effects on stage performance are not yet fully understood. The relative aerodynamic and performance effects associated with rotor - NGV gap coolant injections were investigated in the Axial Flow Turbine Research Facility (AFTRF) of the Center for Gas Turbines and Power of The Pennsylvania State University. This study quantifies the secondary effects of the coolant injection on the aerodynamic and performance character of the turbines main stream flow for root injection, radial cooling, and impingement cooling. Measurement and analysis of the cooling effects were performed in both stationary and rotational frames of reference. The AFTRF is unique in its ability to perform long duration cooling measurements in the stationary and rotating frames. The effects of wheelspace coolant mixing with the mainstream flow on total-to-total efficiency, energy transport, three dimensional velocity field, and loading coefficient were investigated. Overall, it was found that a small quantity (1%) of cooling air can have significant effects on the performance character and exit conditions of the high pressure stage

  10. High conversion self-curing sealer based on a novel injectable polyurethane system for root canal filling

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Bin [Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu 610064 (China); Zuo, Yi, E-mail: zoae@scu.edu.cn [Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu 610064 (China); Li, Jidong; Wang, Li [Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu 610064 (China); Tang, Kuangyun [The State Key Laboratory of Oral Diseases and Orthognathic Surgery, Sichuan University West China College of Stomatology, Chengdu 610064 (China); Huang, Di; Du, Jingjing; Luo, Peipei; Li, Yubao [Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu 610064 (China)

    2013-08-01

    Low monomer–polymer conversion is the key factor leading to cytotoxicity for resin-containing restorative materials. This paper provides a new root canal filling system based on self-curing injectable polyurethane which can achieve high conversion in a short time. Traced FTIR spectra show more than 90% NCO group participated in the curing reaction after 4 h, and only about 5% remained after 24 h. The calculated data also testified the curing process supports a third-order reaction, and this efficient and sufficient reaction is postulated to weaken the toxic stimulation. By culturing with L929 murine fibroblasts, the PU sealer is shown to be favorable for cell attachment and proliferation. Then physicochemical properties of the injectable PU-based sealer were evaluated according to the Standard [ISO 6876:2001 (E)] for clinical application. A series of physicochemical properties of PU sealer have been tested comparing with AH Plus and Apexit Plus. And the results present that the self-curing PU sealer could not only match the clinic requirements, but even has better properties than the other two commercial sealers. We expect the high conversion PU sealer has a tremendous potential in the field of root canal filling after further biological evaluation. - Highlights: • A new root canal sealer based on self-curing injectable polyurethane was provided. • More than 90% NCO group reacted after 4h, and only about 5% remained after 24 h. • By culturing with L929 murine fibroblasts, the PU sealer showed perfect cytocompatibility. • Volumetric dilatancy after curing will make the sealer achieve a tight seal.

  11. High-resolution microarray analysis unravels complex Xq28 aberrations in patients and carriers affected by X-linked blue cone monochromacy.

    Science.gov (United States)

    Yatsenko, S A; Bakos, H A; Vitullo, K; Kedrov, M; Kishore, A; Jennings, B J; Surti, U; Wood-Trageser, M A; Cercone, S; Yatsenko, A N; Rajkovic, A; Iannaccone, A

    2016-01-01

    The human X chromosome contains ∼ 1600 genes, about 15% of which have been associated with a specific genetic condition, mainly affecting males. Blue cone monochromacy (BCM) is an X-linked condition caused by a loss-of-function of both the OPN1LW and OPN1MW opsin genes. The cone opsin gene cluster is composed of 2-9 paralogs with 99.8% sequence homology and is susceptible to deletions, duplications, and mutations. Current diagnostic tests employ polymerase chain reaction (PCR)-based technologies; however, alterations remain undetermined in 10% of patients. Furthermore, carrier testing in females is limited or unavailable. High-resolution X chromosome-targeted CGH microarray was applied to test for rearrangements in males with BCM and female carriers from three unrelated families. Pathogenic alterations were revealed in all probands, characterized by sequencing of the breakpoint junctions and quantitative real-time PCR. In two families, we identified a novel founder mutation that consisted of a complex 3-kb deletion that embraced the cis-regulatory locus control region and insertion of an additional aberrant OPN1MW gene. The application of high-resolution X-chromosome microarray in clinical diagnosis brings significant advantages in detection of small aberrations that are beyond the resolution of clinically available aCGH analysis and which can improve molecular diagnosis of the known conditions and unravel previously unrecognized X-linked diseases.

  12. Improved high-temperature switching characteristics of Y{sub 2}O{sub 3}/TiO{sub x} resistive memory through carrier depletion effect

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Zhi-Wei [Institute of Microelectronics, Chinese Academy of Sciences, Beijing (China); Hsu, Hsiao-Hsuan [Department of Electronics Engineering, National Chiao Tung University, Hsinchu (China); Cheng, Chun-Hu [Department of Mechatronic Technology, National Taiwan Normal University, Taipei (China); Chen, Po-Chun [Department of Engineering and System Science, National Tsing Hua University, Hsinchu (China)

    2014-05-15

    We report a stacked Y{sub 2}O{sub 3}/TiO{sub x} resistive random access memory (RRAM) device, showing good high-temperature switching characteristics of extremely low reset current of 1 μA at 150 C, large off/on resistance window (>200) at 150 C, large rectification ratio of ∝300 at 150 C and good current distribution at 85 C. The good rectifying property, lower high-temperature sneak current and tighter high-temperature current distribution can be attributed to the combined results of the oxygen vacancies in TiO{sub x} and the related carrier depletion effect. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  13. Low Frequency Noise Degradation in 45 nm High-k nMOSFETs due to Hot Carrier and Constant Voltage Stress

    Science.gov (United States)

    Rahman, M. Shahriar; ćelik-Butler, Zeynep; Quevedo-Lopez, M. A.; Shanware, Ajit; Colombo, Luigi

    2009-04-01

    Hafnium based materials are the leading candidates to replace conventional SiON as the gate dielectric in complementary metal-oxide-semiconductor devices. Hot carrier and constant voltage stress induced 1/f noise behavior is presented for HfSiON nMOSFETs. The additional low-frequency noise introduced through stressing was evaluated on nMOSFETs with TiN metal gate and HfSiON gate dielectric. Nitridation of HfSiO was achieved either by high temperature thermal nitridation or by relatively lower temperature plasma nitridation. The difference in stress induced noise behavior is attributed to the nitrogen profile across high-k/Si interface and bulk of high-k gate oxide caused by different nitridation techniques.

  14. Concentration and mobility of charge carriers in thin polymers at high temperature determined by electrode polarization modeling

    Science.gov (United States)

    Diaham, Sombel; Locatelli, Marie-Laure

    2012-07-01

    Charge carrier concentration (n0) and effective mobility (μeff) are reported in two polymer films (dielectric spectroscopy data. It is shown that the glass transition temperature (Tg) occurrence has a strong influence on the temperature dependence of n0 and μeff. We carry out that n0 presents two distinct Arrhenius-like behaviors below and above Tg, while μeff exhibits a Vogel-Fulcher-Tamman behavior only above Tg whatever the polymer under study. For polyimide films, n0 varies from 1 × 1014 to 4 × 1016 cm-3 and μeff from 1 × 10-8 to 2 × 10-6 cm2 V-1 s-1 between 200 °C to 400 °C. Poly(amide-imide) films show n0 values between 6 × 1016 and 4 × 1018 cm-3 from 270 °C to 400 °C, while μeff varies between 1 × 10-10 and 2 × 10-7 cm2 V-1 s-1. Considering the activation energies of these physical parameters in the temperature range of investigation, n0 and μeff values appear as coherent with those reported in the literature at lower temperature (Polyimide films appear as good candidates due to nS values less than 1011 cm-2 up to 300 °C.

  15. Theory of high field carrier transport and impact ionization in wurtzite GaN. Part II: Application to avalanche photodetectors

    Science.gov (United States)

    Moresco, Michele; Bertazzi, Francesco; Bellotti, Enrico

    2009-09-01

    The coming to age of GaN-based ultraviolet avalanche photodiodes (APDs) has made them increasingly preferred over PIN photodetectors in several areas spanning from communication to defense systems, and from commercial to scientific applications. In this work, which is the second article of a two-part series, we study the physics and performance of GaN APDs using the full-band Monte Carlo (FBMC) model described in Part I. The proposed FBMC model is based on a realistic electronic structure obtained by pseudopotential calculations and a phonon dispersion relation determined by ab initio techniques. We determine the key performance figures such as the carrier multiplication gain and the breakdown voltage for several GaN APD structures that have been fabricated by a number of experimental groups. The calculated electron and hole multiplication gains as a function of the applied bias, as well as the breakdown voltage, are found to be in good agreement with the experimental data available. Based on the FBMC results we also propose an efficient recurrence equation model, which provides a first-order estimate of the multiplication gain without resorting to the full fledge microscopic approach.

  16. Content Distribution for Telecom Carriers

    Directory of Open Access Journals (Sweden)

    Ben Falchuk

    2006-08-01

    Full Text Available Distribution of digital content is a key revenue opportunity for telecommunications carriers. As media content moves from analog and physical media-based distribution to digital on-line distribution, a great opportunity exists for carriers to claim their role in the media value chain and grow revenue by enhancing their broadband “all you can eat” high speed Internet access offer to incorporate delivery of a variety of paid content. By offering a distributed peer to peer content delivery capability with authentication, personalization and payment functions, carriers can gain a larger portion of the revenue paid for content both within and beyond their traditional service domains. This paper describes an approach to digital content distribution that leverages existing Intelligent Network infrastructure that many carriers already possess, as well as Web Services.

  17. Comparison of aerodynamic characteristics between a novel highly loaded injected blade with curvature induced pressure-recovery concept and one with conventional design

    Directory of Open Access Journals (Sweden)

    Zhiyuan CAO

    2017-06-01

    Full Text Available This paper introduces a novel design method of highly loaded compressor blades with air injection. CFD methods were firstly validated with existing data and then used to develop and investigate the new method based on a compressor cascade. A compressor blade is designed with a curvature induced pressure-recovery concept. A rapid drop of the local curvature on the blade suction surface results in a sudden increase in the local pressure, which is referred to as a curvature induced ‘Shock’. An injection slot downstream from the ‘Shock’ is used to prevent ‘Shock’ induced separation, thus reducing the loss. As a result, the compressor blade achieves high loading with acceptable loss. First, the design concept based on a 2D compressor blade profile is introduced. Then, a 3D cascade model is investigated with uniform air injection along the span. The effects of the incidence are also investigated on emphasis in the current study. The mid-span flow field of the 3D injected cascade shows excellent agreement with the 2D designed flow field. For the highly loaded cascade without injection, the flow separates immediately downstream from the ‘Shock’; the initial location of separation shows little change in a large incidence range. Thus air injection with the same injection configuration effectively removes the flow separation downstream from the curvature induced ‘Shock’ and reduces the size of the separation zone at different incidences. Near the endwall, the flow within the incoming passage vortex mixes with the injected flow. As a result, the size of the passage vortex reduces significantly downstream from the injection slot. After air injection, the loss coefficient along spanwise reduces significantly and the flow turning angle increases.

  18. Photon Upconversion with Hot Carriers in Plasmonic Systems

    CERN Document Server

    Naik, Gururaj V

    2015-01-01

    We propose a novel scheme of photon upconversion based on harnessing the energy of plasmonic hot carriers. Low-energy photons excite hot electrons and hot holes in a plasmonic nanoparticle, which are then injected into an adjacent semiconductor quantum well where they radiatively recombine to emit a photon of higher energy. We theoretically study the proposed upconversion scheme using Fermi-liquid theory and determine the upconversion quantum efficiency to be as high as 25% in 5 nm silver nanocubes. This upconversion scheme is linear in its operation, does not require coherent illumination, offers spectral tunability, and is more efficient than conventional upconverters.

  19. A metabolomic strategy to screen the prototype components and metabolites of Qingkailing injection in rat urine by high-performance liquid chromatography with tandem mass spectrometry.

    Science.gov (United States)

    Guo, Mingxing; Zhang, Li; Liu, Haiyu; Qin, Lingling; Zhang, Zhixin; Bai, Xu; Gao, Xiaoyan

    2014-10-01

    Xenobiotic metabolome identification of Chinese herbal formula in biological systems is a very challenging task. Qingkailing injection is a typical Chinese herbal injection, which is wildly used clinically in China. However, the holistic metabolic fate of the ingredient from Qingkailing injection remains unclear. In this work, a metabolomic strategy for comprehensively elucidating Qingkailing injection derived prototype components and metabolites in rat urine conducted by hybrid linear ion trap high-resolution mass spectrometry was developed. High-performance liquid chromatography coupled with hybrid linear ion trap high-resolution mass spectrometry was developed to obtain the urine profiling between the control group and Qingkailing injection treated group. Orthogonal partial least squares discriminate analysis was applied to distinguish the exogenous and the endogenous. In the S-plot, 37 xenobiotics derived from Qingkailing injection were found in urine, including 18 prototype compounds and 19 metabolites. The characterization of the prototype components and metabolites in rat's urine provided essential data for further pharmacological studies of Qingkailing injection. Our results indicated that the metabolomic approach was an effective tool to discover, screen, and analyze the multiple prototype components and their metabolites from complicated traditional Chinese preparations in vivo.

  20. Mathematical Modeling of Fuel Pressure inside High Pressure Fuel Pipeline of Combination Electronic Unit Pump Fuel Injection System

    Directory of Open Access Journals (Sweden)

    Qaisar Hayat

    2013-08-01

    Full Text Available In order to completely understand the trend of pressure variations inside High Pressure (HP fuel pipeline of Combination Electronic Unit Pump (CEUP fuel injection system and study the impact of two major physical properties of fuel i.e., density and dynamic viscosity on pressure a 1D nonlinear dynamic mathematical model of fuel pressure inside pipeline using Wave Equation (WE has been developed in MATLAB using finite difference method. The developed model is based on the structural parameters of CEUP fuel injection system. The impact of two major physical properties of the fuel has been studied as a function of pressure at various operating conditions of diesel engine. Nearly 13.13 bars of increase in pressure is observed by increasing the density from 700 kg/m3 to 1000 kg/m3. Whereas an increase of viscosity from 2 kg/m.s to 6 kg/m.s results in decrease of pressures up to 44.16 bars. Pressure corrections in the mathematical model have been incorporated based on variations of these two fuel properties with the pressure. The resultant pressure profiles obtained from mathematical model at various distances along the pipeline are verified by correlating them with the profiles obtained from simulated AMESim numerical model of CEUP. The results show that MATLAB mathematical results are quite coherent with the AMESim simulated results and validate that the model is an effective tool for predicting pressure inside HP pipelines. The application of the this mathematical model with minute changes can therefore be extended to pressure modeling inside HP rail of Common Rail (CR fuel injection system.

  1. High-density lipoprotein as a potential carrier for delivery of a lipophilic antitumoral drug into hepatoma cells

    Institute of Scientific and Technical Information of China (English)

    Bin Lou; Xue-Ling Liao; Man-Ping Wu; Pei-Fang Cheng; Chun-Yan Yin; Zheng Fei

    2005-01-01

    AIM: To investigate the possibility of recombinant highdensity lipoprotein (rHDL) being a carrier for delivering antitumoral drug to hepatoma cells.METHODS: Recombinant complex of HDL and aclacinomycin(rHDL-ACM) was prepared by cosonication of apoproteins from HDL (Apo HDL) and ACM as well as phosphatidylcholine.Characteristics of the rHDL-ACM were elucidated by electrophoretic mobility, including the size of particles,morphology and entrapment efficiency. Binding activity of rHDL-ACM to human hepatoma cells was determined by competition assay in the presence of excess native HDL. The cytotoxicity of rHDL-ACM was assessed by MTT method.RESULTS: The density range of rHDL-ACM was 1.063-1.210g/mL, and the same as that of native HDL. The purity of all rHDL-ACM preparations was more than 92%.Encapsulated efficiencies of rHDL-ACM were more than90%. rHDL-ACM particles were typical sphere model of lipoproteins and heterogeneous in particle size. The average diameter was 31.26±5.62 nm by measure of 110rHDL-ACM particles in the range of diameter of lipoproteins.rHDL-ACM could bind on SMMC-7721 cells, and such binding could be competed against in the presence of excess native HDL. rHDL-ACM had same binding capacity as native HDL. The cellular uptake of rHDL-ACM by SMMC-7721 hepatoma cells was significantly higher than that of free ACM at the concentration range of 0.5-10 μg/mL(P<0.01). Cytotoxicity of rHDL-ACM to SMMC-7721 cells was significantly higher than that of free ACM at concentration range of less than 5 μg/mL (P<0.01) and IC50 of rHDL-ACM was lower than IC50 of free ACM(1.68 nmol/L vs3 nmol/L). Compared to L02 hepatocytes,a normal liver cell line, the cellular uptake of rHDL-ACM by SMMC-7721 cells was significantly higher (P<0.01) and in a dose-dependent manner at the concentration range of 0.5-10 μg/mL. Cytotoxicity of the rHDL-ACM to SMMC-7721 cells was significantly higher than that to L02 cells at concentration range of 1-7.5 μg/mL (P<0.01). IC50 for

  2. Doripenem Injection

    Science.gov (United States)

    ... injection is in a class of medications called carbapenem antibiotics. It works by killing bacteria.Antibiotics such ... if you are allergic to doripenem injection; other carbapenem antibiotics such as imipenem/cilastatin (Primaxin) or meropenem ( ...

  3. Methotrexate Injection

    Science.gov (United States)

    Methotrexate injection is used alone or in combination with other medications to treat gestational trophoblastic tumors (a ... in bones) after surgery to remove the tumor. Methotrexate injection is also used to treat severe psoriasis ( ...

  4. Bendamustine Injection

    Science.gov (United States)

    Bendamustine injection is used to treat chronic lymphocytic leukemia (CLL; a type of cancer of the white ... injection. You should use birth control to prevent pregnancy in yourself or your partner during your treatment ...

  5. Caspofungin Injection

    Science.gov (United States)

    Caspofungin injection is used in adults and children 3 months of age and older to treat yeast ... people with a weakened ability to fight infection. Caspofungin injection is in a class of antifungal medications ...

  6. Temozolomide Injection

    Science.gov (United States)

    Temozolomide is used to treat certain types of brain tumors. Temozolomide is in a class of medications called alkylating ... Temozolomide injection comes as a powder to be added to fluid and injected over 90 minutes intravenously ( ...

  7. Pembrolizumab Injection

    Science.gov (United States)

    Pembrolizumab injection is used to treat melanoma (a type of skin cancer) that cannot be treated with ... who have a specific type of melanoma tumor. Pembrolizumab injection is also used to treat a certain ...

  8. Lacosamide Injection

    Science.gov (United States)

    ... injection is in a class of medications called anticonvulsants. It works by decreasing abnormal electrical activity in ... older (about 1 in 500 people) who took anticonvulsants like lacosamide injection to treat various conditions during ...

  9. Midazolam Injection

    Science.gov (United States)

    ... injection is in a class of medications called benzodiazepines. It works by slowing activity in the brain ... breast-feeding.talk to your doctor about the risks and benefits of receiving midazolam injection if you ...

  10. Doxycycline Injection

    Science.gov (United States)

    Doxycycline injection is used to treat or prevent bacterial infections, including pneumonia and other respiratory tract infections. ... certain skin, genital, intestine, and urinary system infections. Doxycycline injection may be used to treat or prevent ...

  11. Paclitaxel Injection

    Science.gov (United States)

    ... with other medications. Paclitaxel injection manufactured with polyoxyethylated castor oil is used to treat ovarian cancer (cancer that ... cancer, and lung cancer. Paclitaxel injection with polyoxyethylated castor oil is also used to treat Kaposi's sarcoma (a ...

  12. Etanercept Injection

    Science.gov (United States)

    ... will be using the prefilled syringe or automatic injection device, tell your doctor if you or the person who will be injecting the medication for you are allergic to rubber or latex.tell your doctor and pharmacist what ...

  13. Cyclosporine Injection

    Science.gov (United States)

    Cyclosporine injection is used with other medications to prevent transplant rejection (attack of the transplanted organ by ... who have received kidney, liver, and heart transplants. Cyclosporine injection should only be used to treat people ...

  14. Estrogen Injection

    Science.gov (United States)

    The estradiol cypionate and estradiol valerate forms of estrogen injection are used to treat hot flushes (hot ... should consider a different treatment. These forms of estrogen injection are also sometimes used to treat the ...

  15. Cefotaxime Injection

    Science.gov (United States)

    Cefotaxime injection is used to treat certain infections caused by bacteria including pneumonia and other lower respiratory ... skin, blood, bone, joint, and urinary tract infections. Cefotaxime injection may also be used before surgery, and ...

  16. Intraurethral prostate injections with mepivacaine epinephrine: effects on patient comfort, treatment time and energy consumption during high-energy transurethral microwave thermotherapy.

    Science.gov (United States)

    Knutson, Tomas; Johansson, Annika; Damber, Jan-Erik; Fall, Magnus; Vesely, Stepan; Peeker, Ralph

    2009-01-01

    To investigate the effects of intraprostatic mepivacaine epinephrine injections administered by the Schelin catheter during high-energy transurethral microwave thermotherapy (TUMT) using the CoreTherm Prostalund Feedback Treatment (PLFT) system. The study included 85 men with lower urinary tract symptoms due to benign prostatic enlargement. One group had intraprostatic injections with mepivacaine epinephrine by the new Schelin catheter, while patients in the other group were treated without intraprostatic injections. All men were treated by TUMT using the PLFT system. Before treatment, transrectal ultrasound (TRUS) volume was measured. During the procedure, treatment time, energy consumption, cell-kill parameter and maximal prostate temperature were recorded. Patients who needed perioperative intravenous analgesics and the rate of perioperative and postoperative complications were registered. The patients who had intraprostatic and periprostatic injections with mepivacaine epinephrine had shorter effective treatment time and reduced energy consumption. There was also a difference between the two groups in that 70% of patients without intraprostatic injections and only 11% of injected patients needed intravenous analgesics. No differences were found in TRUS volume, estimated cell-kill, maximal prostate temperature or complication rates. Intraprostatic injections with mepivacaine epinephrine distributed by the Schelin catheter reduce the number of patients needing intravenous analgesics during PLFT, as well as the treatment time and energy consumption during treatment. Besides improved patient comfort, intraprostatic and periprostatic injections condense the treatment time without side-effects, making PLFT less cumbersome for most patients.

  17. Charge carrier dynamics in thin film solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Strothkaemper, Christian

    2013-06-24

    This work investigates the charge carrier dynamics in three different technological approaches within the class of thin film solar cells: radial heterojunctions, the dye solar cell, and microcrystalline CuInSe{sub 2}, focusing on charge transport and separation at the electrode, and the relaxation of photogenerated charge carriers due to recombination and energy dissipation to the phonon system. This work relies mostly on optical-pump terahertz-probe (OPTP) spectroscopy, followed by transient absorption (TA) and two-photon photoemission (2PPE). The charge separation in ZnO-electrode/In{sub 2}S{sub 3}-absorber core/shell nanorods, which represent a model system of a radial heterojunction, is analyzed by OPTP. It is concluded, that the dynamics in the absorber are determined by multiple trapping, which leads to a dispersive charge transport to the electrode that lasts over hundreds of picoseconds. The high trap density on the order of 10{sup 19}/cm{sup 3} is detrimental for the injection yield, which exhibits a decrease with increasing shell thickness. The heterogeneous electron transfer from a series of model dyes into ZnO proceeds on a time-scale of 200 fs. However, the photoconductivity builds up just on a 2-10 ps timescale, and 2PPE reveals that injected electrons are meanwhile localized spatially and energetically at the interface. It is concluded that the injection proceeds through adsorbate induced interface states. This is an important result because the back reaction from long lived interface states can be expected to be much faster than from bulk states. While the charge transport in stoichiometric CuInSe{sub 2} thin films is indicative of free charge carriers, CuInSe{sub 2} with a solar cell grade composition (Cu-poor) exhibits signs of carrier localization. This detrimental effect is attributed to a high density of charged defects and a high degree of compensation, which together create a spatially fluctuating potential that inhibits charge transport. On

  18. Glycosylation of solute carriers

    DEFF Research Database (Denmark)

    Pedersen, Nis Borbye; Carlsson, Michael C; Pedersen, Stine Helene Falsig

    2016-01-01

    as their posttranslational regulation, but only relatively little is known about the role of SLC glycosylation. Glycosylation is one of the most abundant posttranslational modifications of animal proteins and through recent advances in our understanding of protein-glycan interactions, the functional roles of SLC......Solute carriers (SLCs) are one of the largest groups of multi-spanning membrane proteins in mammals and include ubiquitously expressed proteins as well as proteins with highly restricted tissue expression. A vast number of studies have addressed the function and organization of SLCs as well...

  19. High-Temperature Oxidation Behavior of Two Nickel-Based Superalloys Produced by Metal Injection Molding for Aero Engine Applications

    Science.gov (United States)

    Albert, Benedikt; Völkl, Rainer; Glatzel, Uwe

    2014-09-01

    For different high-temperature applications like aero engines or turbochargers, metal injection molding (MIM) of superalloys is an interesting processing alternative. For operation at high temperatures, oxidation behavior of superalloys produced by MIM needs to match the standard of cast or forged material. The oxidation behavior of nickel-based superalloys Inconel 713 and MAR-M247 in the temperature interval from 1073 K to 1373 K (800 °C to 1100 °C) is investigated and compared to cast material. Weight gain is measured discontinuously at different oxidation temperatures and times. Analysis of oxidized samples is done via SEM and EDX-measurements. MIM samples exhibit homogeneous oxide layers with a thickness up to 4 µm. After processing by MIM, Inconel 713 exhibits lower weight gain and thinner oxide layers than MAR-M247.

  20. Spectrum of genetic changes in patients with non-syndromic hearing impairment and extremely high carrier frequency of 35delG GJB2 mutation in Belarus.

    Science.gov (United States)

    Danilenko, Nina; Merkulava, Elena; Siniauskaya, Marina; Olejnik, Olga; Levaya-Smaliak, Anastasia; Kushniarevich, Alena; Shymkevich, Andrey; Davydenko, Oleg

    2012-01-01

    The genetic nature of sensorineural hearing loss (SNHL) has so far been studied for many ethnic groups in various parts of the world. The single-nucleotide guanine deletion (35delG) of the GJB2 gene coding for connexin 26 was shown to be the main genetic cause of autosomal recessive deafness among Europeans. Here we present the results of the first study of GJB2 and three mitochondrial mutations among two groups of Belarusian inhabitants: native people with normal hearing (757 persons) and 391 young patients with non-syndromic SNHL. We have found an extremely high carrier frequency of 35delG GJB2 mutation in Belarus -5.7%. This point deletion has also been detected in 53% of the patients with SNHL. The 312del14 GJB2 was the second most common mutation in the Belarus patient cohort. Mitochondrial A1555G mt-RNR1 substitution was found in two SNHL patients (0.55%) but none were found in the population cohort. No individuals carried the A7445G mutation of mitochondrial mt-TS1. G7444A as well as T961G substitutions were detected in mitochondrial mt-RNR1 at a rate of about 1% both in the patient and population cohorts. A possible reason for Belarusians having the highest mutation carrier frequency in Europe 35delG is discussed.

  1. Design of tunneling injection quantum dot lasers

    Institute of Scientific and Technical Information of China (English)

    JIA Guo-zhi; YAO Jiang-hong; SHU Yong-chun; WANG Zhan-guo

    2007-01-01

    To implement high quality tunneling injection quantum dot lasers,effects of primary factors on performance of the tunneling injection quantum dot lasers were investigated. The considered factors were tunneling probability,tunneling time and carriers thermal escape time from the quantum well. The calculation results show that with increasing of the ground-state energy level in quantum well,the tunneling probability increases and the tunneling time decreases,while the thermal escape time decreases because the ground-state energy levelis shallower. Longitudinal optical phonon-assisted tunneling can be an effective method to solve the problem that both the tunneling time and the thermal escape time decrease simultaneously with the ground-state energy level increasing in quantum well.

  2. Ustekinumab Injection

    Science.gov (United States)

    ... Do not inject into an area where the skin is tender, bruised, red, or hard or where you have scars or stretch marks.Your doctor or pharmacist will ... injection.you should know that ustekinumab injection may decrease your ability ... new or changing skin lesions, minor infections (such as open cuts or ...

  3. Ranitidine Injection

    Science.gov (United States)

    Ranitidine injection comes as a solution (liquid) to be mixed with another fluid and injected intravenously (into a vein) over 5 to 20 minutes. Ranitidine may also be injected into a muscle. It is usually given every 6 to 8 hours, but may also be given ...

  4. Trade-off between morphology, extended defects, and compositional fluctuation induced carrier localization in high In-content InGaN films

    Science.gov (United States)

    Ju, James Zi-Jian; Loitsch, Bernhard; Stettner, Thomas; Schuster, Fabian; Stutzmann, Martin; Koblmüller, Gregor

    2014-08-01

    We elucidate the role of growth parameters (III/N flux ratio, temperature TG) on the morphological and structural properties, as well as compositional homogeneity and carrier localization effects of high In-content (x(In) > 0.75) In-polar InGaN films grown by plasma-assisted molecular beam epitaxy (PAMBE). Variations in III/N flux ratio evidence that higher excess of In yields higher threading dislocation densities as well as larger compositional inhomogeneity as measured by x-ray diffraction. Most interestingly, by variation of growth temperature TG we find a significant trade-off between improved morphological quality and compositional homogeneity at low-TG (˜450-550 °C) versus improved threading dislocation densities at high-TG (˜600-630 °C), as exemplified for InGaN films with x(In) = 0.9. The enhanced compositional homogeneity mediated by low-TG growth is confirmed by systematic temperature-dependent photoluminescence (PL) spectroscopy data, such as lower PL peakwidths, >5× higher PL efficiency (less temperature-induced quenching) and a distinctly different temperature-dependent S-shape behavior of the PL peak energy. From these, we find that the carrier localization energy is as low as ˜20 meV for low-TG grown films (TG = 550 °C), while it rises to ˜70 meV for high-TG grown films (TG = 630 °C) right below the onset of In-N dissociation. These findings point out that for the kinetically limited metal-rich PAMBE growth of high In-content InGaN a III/N flux ratio of ˜1 and low-to-intermediate TG are required to realize optically more efficient materials.

  5. High dead-space syringes and the risk of HIV and HCV infection among injecting drug users.

    Science.gov (United States)

    Zule, William A; Bobashev, Georgiy

    2009-03-01

    This study examines the association between using and sharing high dead-space syringes (HDSSs)--which retain over 1000 times more blood after rinsing than low dead-space syringes (LDSSs)--and prevalent HIV and hepatitis C virus (HCV) infections among injecting drug users (IDUs). A sample of 851 out-of-treatment IDUs was recruited in Raleigh-Durham, North Carolina, between 2003 and 2005. Participants were tested for HIV and HCV antibodies. Demographic, drug use, and injection practice data were collected via interviews. Data were analyzed using multiple logistic regression analysis. Participants had a mean age of 40 years and 74% are male, 63% are African American, 29% are non-Hispanic white, and 8% are of other race/ethnicity. Overall, 42% of participants had ever used an HDSS and 12% had shared one. HIV prevalence was 5% among IDUs who had never used an HDSS compared with 16% among IDUs who had shared one. The HIV model used a propensity score approach to adjust for differences between IDUs who had used an HDSS and those who had never used one. The HCV models included all potential confounders as covariates. A history of sharing HDSSs was associated with prevalent HIV (odds ratio=2.50; 95% confidence interval=1.01, 6.15). Use and sharing of HDSSs were also associated with increased odds of HCV infection. Prospective studies are needed to determine if sharing HDSSs is associated with increased HIV and HCV incidence among IDUs.

  6. Development of heating device / development of the high current ion source for neutral beam injection

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Heon Ju; Lee, Dong Gyu; Lee, Kyong Jin; Ko Tae Kyong [Cheju National Univ., Cheju (Korea)

    1998-08-01

    The design and fabrication of a high current ion source for NBI was carried out. The scale of an ion source was reduced for mock-up test. To develop the high current ion source with the high operational stability and the long lifetime, the parameters including an arc current, gas pressure and extraction voltage should be optimized. If fabricated ion source would be tested, its parameters could be optimized experimentally. Through the optimization of the ion source parameter, the core technology for NBI is established and the experiment of current drive in the fusion device can be performed. This technology also can be applied to the ion beam technology in the field of new material synthesis and semiconductor industry. 24 refs., 22 figs., 13 tabs. (Author)

  7. High quality ion channels recordings on an injection molded polymer chip

    DEFF Research Database (Denmark)

    Tanzi, Simone

    , or in recent years using consumable microfluidic chips of high costs. The patch clamping method is widely used both in fundamental studies of electrophysiology of living cells and tissue and in drug discovery. The findings of this work will allow direct recordings of ion channel activity to be made using...... to form high resistance seals in the GOhm range, the so called gigaseals, is demonstrated with a success rate of 15%. The devices were functionally tested with Human Embryonice Kidney (HEK) cells expressing voltage-gated sodium channels and benchmarked against a commercial state-of-the-art system...

  8. Study on Luminescence Performance of GaN-based μLEDs under High Injection Level%GaN基微米LED大注入条件下发光特性研究

    Institute of Scientific and Technical Information of China (English)

    王溯源; 陶岳彬; 陈志忠; 俞锋; 姜爽; 张国义

    2012-01-01

    The luminescence performance of micro-light emitting diodes(μLEDs) under high injection level was investigated by injection current dependent electroluminescence(EL) and numerical simulations.It is shown in EL measurements that the power output density of μLED(10 μm) seems not saturate under extremely high current density of 16 kA/cm2,and also there is no obvious self-heating-related wavelength redshift under high injection level.The degree of strain relaxation is estimated to be 23% for 10 μm LED based on the blueshift of EL peak under the same injection level as compared to 300 μm LED.APSYS simulations show that the current distribution and carrier concentration are much more homogeneous among the wells for μLED due to strain relaxation and uniform current spreading.These uniform distributions lead to high luminous efficiency and high current density endurance for μLED.%利用变注入强度的电致发光(EL)测试和数值模拟方法研究了微米LED大注入条件下的发光特性。EL测试结果显示,微米LED(10μm)在工作电流密度高达16kA/cm2时光功率密度输出未饱和,同时不存在明显的由于自热效应引起的发光波长红移。和300μm LED相比,相同注入水平下,10μm LED的EL峰值波长相对蓝移,表明微米LED中存在应力弛豫,10μmLED相对300μm LED应力弛豫大了约23%。APYSY模拟发现,由于应力弛豫和良好的电流扩展,微米LED中电流分布和载流子浓度更加均匀,这种均匀的分布使得微米LED具有高的发光效率,同时能够承受高的电流密度。

  9. Carrier-based Modulation and Capacitor Voltage Balance Control Method With Voltage Offset Injection of Single Phase Cascaded H-bridge Rectifiers%基于电压补偿分量注入的单相级联H桥整流器载波调制与电容电压平衡方法

    Institute of Scientific and Technical Information of China (English)

    王顺亮; 宋文胜; 冯晓云

    2015-01-01

    无工频牵引变压器技术是实现高速列车轻量化的手段之一。该文首先分析了无工频变压器电力牵引传动系统前端级联 H 桥整流器的工作原理,以及开关状态和网侧电流对直流侧电容充放电的影响。针对级联 H 桥整流器电容电压平衡问题,为了实现负载严重不对称情况下直流侧电容电压快速平衡的控制目标,以传统的载波移相脉宽调制方法为基础,提出了一种基于电压补偿分量注入的载波移相脉宽调制算法。考虑负载不平衡度很大的恶劣情况,对该算法的电压补偿分量进行设计与定量计算,并针对该算法多个 H 桥级联拓扑的应用进行了理论扩展。计算机仿真和半实物实验都验证了该算法的有效性和正确性。%Transformerless technology is one of the realization of high-speed railway train lightweight. The operation principle of the front-end cascaded H-bridge rectifiers is analyzed, as well as switching states and the line current’s influence on DC-link capacitors’ charging and discharging. A carrier phase-shift PWM with voltage offset injection (CPSPWM-VOI) algorithm based on the conventional CPSPWM is proposed to balance DC-link capacitors’ voltages quickly in severe terrible application condition. Voltage offset component is designed and calculated quantitatively in a bad load imbalance degree. And the proposed algorithm is extended in multiple cascaded H-bridge rectifiers. The effectiveness and correctness of the CPSPWM-VOI algorithm are verified by the computer simulation and hardware-in-the-loop experiments.

  10. Electrically assisted turbocompound systems for high speed direct injection diesel engines

    Energy Technology Data Exchange (ETDEWEB)

    Shahed, S.M.; Beatty, D.J. [Allied Signal Turbocharging Systems (United States)

    1999-07-01

    Turbocharged diesel engines are already the most efficiency prime movers. Further fuel economy gains are being realized by down-sizing engines but with compromised response. AlliedSignal's Electrical Turbocompounding system solves this challenge and further improves fuel economy and power density. It provides additional boost at low speeds and transfers excess turbocharger power to the crankshaft at high speeds. Analysis using a typical baseline engine shows that at low speeds, boost is increased by 100 to 407 mbars and torque by 12 to 50%, by supplying 0.5 to 2.0 kW power assist. At high speeds, up to 10kW of power can be recovered from the turbocharger, improving efficiency by 6-10%. Transient response analysis shows that with electrical assist turbochargers can reach full boost within 0.3-0.5 seconds. (author)

  11. High dynamic GPS carrier tracking loop design utilizing PID%应用PID思想的高动态GPS载波跟踪环路设计

    Institute of Scientific and Technical Information of China (English)

    高帅和; 赵琳; 丁继成

    2011-01-01

    传统的GPS载波跟踪环路对载体的高速运动敏感,难以适应动态环境下基带处理的要求,因此提出一种应用PID思想,融合频率误差微分控制项的环路优化设计方案.分析了载波跟踪环路锁相环的基本结构,将环路中对本地数控振荡器的控制近似为PI模型;根据锁相环的相位输出结果,提取频率误差量,作为增加的微分控制项的输入;适当选取模型参数,构建应用PID控制的GPS载波跟踪环路.仿真结果初步表明,改进方案的环路达到稳态时间比原始方案缩短了10 ms以上,在动态适应性方面显著优于传统跟踪环路.%Traditional GPS carrier tracking loop in GPS receiver is sensitive to high-speed motion of the vehicle, which is difficult to meet the requirements of baseband processing in dynamic environment. So an improved tracking loop scheme is put forward which applies proportion, integration and differentiation (PID)control to fuse differential control items of frequency errors. The basic structure of the carrier tracking phase locked loop (PLL) is analyzed, and the control on the local numerically controlled oscillator (NCO) is approximated to be PI model. According to the phase output of PLL, the magnitude of fiequency error is extracted and taken as the input of the added differential control items. The model parameters are appropriately selected to construct the GPS carrier tracking loop utilizing PID. The simulation results indicate that the improved scheme could reduce the settling time by more than I0 ms, which is more suitable to work in high dynamic environment than traditional tracking loop.

  12. Successful Endoscopic Injection Sclerotherapy of High-Risk Gastroesophageal Varices in a Cirrhotic Patient with Hemophilia A

    Directory of Open Access Journals (Sweden)

    Kohei Fukumoto

    2010-01-01

    Full Text Available A 68-year-old man with hemophilia A and liver cirrhosis caused by hepatitis C virus was referred to our hospital to receive prophylactic endoscopic treatment for gastroesophageal varices (GOV. He had large, tense, and winding esophageal varices (EV with cherry red spots extending down to lesser curve, predicting the likelihood of bleeding. Esophageal endoscopic injection sclerotherapy (EIS was performed with a total 15 mL of 5% ethanolamine oleate with iopamidol (EOI. Radiographic imaging during EIS demonstrated that 5% EOI reached the afferent vein of the varices. He was administered sufficient factor VIII concentrate before and after EIS to prevent massive bleeding from the varices. Seven days after EIS, upper gastrointestinal endoscopy (UGIE showed that the varices were eradicated almost completely. Eighteen months after EIS, the varices continued to diminish. We report a successful case of safe and effective EIS for GOV in a high-risk cirrhotic patient with hemophilia A.

  13. Determination of nifuroxazide in biological fluids by automated high-performance liquid chromatography with large-volume injection.

    Science.gov (United States)

    Guinebault, P R; Broquaire, M; Braithwaite, R A

    1981-01-16

    A high-performance liquid chromatographic method for the measurement of nifuroxazide in plasma is described. The technique is based on the single extraction of the drug from buffered plasma with chloroform, using nifuratel as internal standard. The chromatographic system consisted of a 15 cm x 4.6 mm I.D. stainless-steel column packed with Spherisorb ODS, 5 micrometer, and the mobile phase was acetonitrile-orthophosphoric acid (pH 2.5) (30:70). The method was able to measure accurately plasma nifuroxazide concentrations down to 2 ng . ml-1 using 2 ml of sample with no interference from endogenous compounds. The coefficients of variation of the method at 200 and 2 ng . ml-1 were 3% and 15%, respectively, and the calibration graph was linear in this range. The use of automatic injection makes the method suitable for the routine analysis of large numbers of samples.

  14. High-purity 60GHz band millimeter-wave generation based on optically injected semiconductor laser under subharmonic microwave modulation.

    Science.gov (United States)

    Fan, Li; Xia, Guangqiong; Chen, Jianjun; Tang, Xi; Liang, Qing; Wu, Zhengmao

    2016-08-08

    Based on an optically injected semiconductor laser (OISL) operating at period-one (P1) nonlinear dynamical state, high-purity millimeter-wave generation at 60 GHz band is experimentally demonstrated via 1/4 and 1/9 subharmonic microwave modulation (the order of subharmonic is with respect to the frequency fc of the acquired 60 GHz band millimeter-wave but not the fundamental frequency f0 of P1 oscillation). Optical injection is firstly used to drive a semiconductor laser into P1 state. For the OISL operates at P1 state with a fundamental frequency f0 = 49.43 GHz, by introducing 1/4 subharmonic modulation with a modulation frequency of fm = 15.32 GHz, a 60 GHz band millimeter-wave with central frequency fc = 61.28 GHz ( = 4fm) is experimentally generated, whose linewidth is below 1.6 kHz and SSB phase noise at offset frequency 10 kHz is about -96 dBc/Hz. For fm is varied between 13.58 GHz and 16.49 GHz, fc can be tuned from 54.32 GHz to 65.96 GHz under matched modulation power Pm. Moreover, for the OISL operates at P1 state with f0 = 45.02 GHz, a higher order subharmonic modulation (1/9) is introduced into the OISL for obtaining high-purity 60 GHz band microwave signal. With (fm, Pm) = (7.23 GHz, 13.00 dBm), a microwave signal at 65.07 GHz ( = 9fm) with a linewidth below 1.6 kHz and a SSB phase noise less than -98 dBc/Hz is experimentally generated. Also, the central frequency fc can be tuned in a certain range through adjusting fm and selecting matched Pm.

  15. Electroluminescence in organic single-layer light-emitting diodes at high fields

    Institute of Scientific and Technical Information of China (English)

    杨盛谊; 徐征; 王振家; 侯延冰; 徐叙; 张希清

    2001-01-01

    By considering the interaction between Fowler-Nordheim tunneling injection theory and charge carriers transporting through the bulk, an electroluminescence model for organic single-layer diodes is presented. The expressions of the recombination current density, recombination efficiency and conductivity of the diodes are provided, which elucidate the controlling role of the electric field on mobility and recombination zone. The equilibrium of two opposite charge carriers injection and the central position of recombination zone are two important preconditions for reducing the leakage current. Space-charge-limited current occurs only over a certain high bias, meanwhile, the quantity of injection carriers increases over the transport capacity of the bulk.

  16. Reflection measurement of waveguide-injected high-power microwave antennas.

    Science.gov (United States)

    Yuan, Chengwei; Peng, Shengren; Shu, Ting; Zhang, Qiang; Zhao, Xuelong

    2015-12-01

    A method for reflection measurements of High-power Microwave (HPM) antennas excited with overmoded waveguides is proposed and studied systemically. In theory, principle of the method is proposed and the data processing formulas are developed. In simulations, a horn antenna excited by a TE11 mode exciter is examined and its reflection is calculated by CST Microwave Studio and by the method proposed in this article, respectively. In experiments, reflection measurements of two HPM antennas are conducted, and the measured results are well consistent with the theoretical expectations.

  17. Electropolymerized poly(Toluidine Blue)-modified carbon felt for highly sensitive amperometric determination of NADH in flow injection analysis

    Institute of Scientific and Technical Information of China (English)

    Yasushi Hasebe; Yue Wang; Kazuya Fukuoka

    2011-01-01

    Poly(pheniothiazine) films were prepared on a porous carbon felt (CF) electrode surface by an electrooxidative polymerization of three phenothiazine derivatives (i.e.,Tthionine (TN), Toluidine Blue (TB) and Methylene Blue (MB)) from 0.1 mol/L phosphate buffer solution (pH 7.0).Among the three phenothiazies, the poly(TB) film-modified CF exhibited an excellent electrocatalytic activity for the oxidation of nicotinamide adenine dinucleotide reduced form (NADH) at +0.2 V vs.Ag/AgCl.The poly(TB) film-modified CF was successfully used as working electrode unit of highly sensitive amperometric flow-through detector for NADH.The peak currents (peak heights) were almost unchanged, irrespective of a carrier flow rate ranging from 2.0 to 4.1 mL/min, resulting in the measurement of NADH (ca.30 samples/hr) at 4.1 mL/min.The peak current responses of NADH showed linear relationship over the concentration range from 1 to 30 μmol/L (sensitivity: 0.318 μA/(μmol/L); correlation coefficient: 0.997).The lower detection limit was found to be 0.3 μmol/L (S/N = 3).

  18. The IsoDAR High Intensity H$_2^+$ Transport and Injection Tests

    CERN Document Server

    Alonso, Jose; Calabretta, Luciano; Campo, Daniela; Celona, Luigi; Conrad, Janet M; Day, Alexandra; Castro, Giuseppe; Labrecque, Francis; Winklehner, Daniel

    2015-01-01

    This technical report reviews the tests performed at the Best Cyclotron Systems, Inc. facility in regards to developing a cost effective ion source, beam line transport system, and acceleration system capable of high H$_2^+$ current output for the IsoDAR (Isotope Decay At Rest) experiment. We begin by outlining the requirements for the IsoDAR experiment then provide overview of the Versatile Ion Source, Low Energy Beam Transport system, spiral inflector, and cyclotron. The experimental measurements are then discussed and the results are compared with a thorough set of simulation studies. Of particular importance we note that the Versatile Ion Source (VIS) proved to be a reliable ion source capable of generating a large amount of H$_2^+$ current. The results suggest that with further upgrades, the VIS could potentially be a suitable candidate for IsoDAR. The conclusion outlines the key results from our tests and introduces the forthcoming work this technical report has motivated.

  19. Pharmacokinetics of high doses of cyanocobalamin administered by intravenous injection for 26 weeks in rats.

    Science.gov (United States)

    Nava-Ocampo, Alejandro A; Pastrak, Aleksandra; Cruz, Tony; Koren, Gideon

    2005-01-01

    1. High doses of vitamin B12 (cyanocobalamin) may be therapeutically effective to treat neurological alterations secondary to a wide range of disease states. The aim of the present study was to evaluate the effect of dose and repeated administration on the pharmacokinetics of cyanocobalamin in rats. 2. Forty-eight rats were randomly assigned to receive 1, 5, 25 or 100 mg/kg cyanocobalamin for 182 days (26 weeks). Cyanocobalamin plasma levels were quantified by HPLC on days 1, 85 and 182 of treatment and were analysed by means of non-compartment pharmacokinetic (PK) analysis. In addition, population PK analysis was used to fit cyanocobalamin plasma concentrations to time by means of a two-compartment model for intravascular administration. 3. The half-life of cyanocobalamin ranged from approximately 20 to 50 min, clearance ranged from 4.5 to 9 mL/min and the volume of distribution at steady state ranged from 140 to 470 mL. A statistically significant negative relationship existed between the dose of cyanocobalamin and the normalized area under the plasma concentration-time curve (AUC). This non-linearity was not exhibited in population PK analysis. No evidence of toxicity was observed. 4. At very high and prolonged doses (up to 100 mg/kg for 26 weeks), intravascular administration of cyanocobalamin in rats follows a two-compartment kinetic model and cyanocobalamin undergoes extensive extravascular distribution. The negative relationship between dose and normalized AUC is compatible with possible saturation of tubular reabsorption, thus increasing renal clearance at higher doses.

  20. Development of a Flow Injection Based High Frequency Dual Channel Quartz Crystal Microbalance.

    Science.gov (United States)

    Liang, Jinxing; Zhang, Jing; Zhou, Wenxiang; Ueda, Toshitsugu

    2017-05-16

    When the quartz crystal microbalance (QCM) is used in liquid for adsorption or desorption monitoring based bio- or chemical sensing applications, the frequency shift is not only determined by the surface mass change, but also by the change of liquid characteristics, such as density and viscosity, which are greatly affected by the liquid environmental temperature. A monolithic dual-channel QCM is designed and fabricated by arranging two QCM resonators on one single chip for cancelling the fluctuation induced by environmental factors. In actual applications, one QCM works as a specific sensor by modifying with functional membranes and the other acts as a reference, only measuring the liquid property. The dual-channel QCM is designed with an inverted-mesa structure, aiming to realize a high frequency miniaturized chip and suppress the frequency interference between the neighbored QCM resonators. The key problem of dual-channel QCMs is the interference between two channels, which is influenced by the distance of adjacent resonators. The diameter of the reference electrode has been designed into several values in order to find the optimal parameter. Experimental results demonstrated that the two QCMs could vibrate individually and the output frequency stability and drift can be greatly improved with the aid of the reference QCM.

  1. Gas-Assisted Heating Technology for High Aspect Ratio Microstructure Injection Molding

    Directory of Open Access Journals (Sweden)

    Shia-Chung Chen

    2013-01-01

    Full Text Available A hot gas is used for heating the cavity surface of a mold. Different mold gap sizes were designed. The mold surface temperature was heated to above the glass transition temperature of the plastic material, and the mold then closed for melt filling. The cavity surface can be heated to 130°C to assist the melt filling of the microfeatures. Results show that hot gas heating can improve the filling process and achieve 91% of the high aspect ratio microgrooves (about 640.38 μm of the maximum of 700 μm. The mold gap size strongly affects the heating speed and heating uniformity. Without surface preheating, the center rib is the highest. When the heating target temperature is 90°C or 100°C, the three microribs have a good uniformity of height. However, when the target temperature exceeds 100°C, the left side rib is higher than the other ribs.

  2. MHD modeling of coronal loops: injection of high-speed chromospheric flows

    CERN Document Server

    Petralia, A; Orlando, S; Klimchuk, J A

    2014-01-01

    Observations reveal a correspondence between chromospheric type II spicules and bright upwardly moving fronts in the corona observed in the EUV band. However, theoretical considerations suggest that these flows are unlikely to be the main source of heating in coronal magnetic loops. We investigate the propagation of high-speed chromospheric flows into coronal magnetic flux tubes, and the possible production of emission in the EUV band. We simulate the propagation of a dense $10^4$ K chromospheric jet upwards along a coronal loop, by means of a 2-D cylindrical MHD model, including gravity, radiative losses, thermal conduction and magnetic induction. The jet propagates in a complete atmosphere including the chromosphere and a tenuous cool ($\\sim 0.8$ MK) corona, linked through a steep transition region. In our reference model, the jet's initial speed is 70 km/s, its initial density is $10^{11}$ cm$^{-3}$, and the ambient uniform magnetic field is 10 G. We explore also other values of jet speed and density in 1-...

  3. MHD Modelling of Coronal Loops: Injection of High-Speed Chromospheric Flows

    Science.gov (United States)

    Petralia, A.; Reale, F.; Orlando, S.; Klimchuk, J. A.

    2014-01-01

    Context. Observations reveal a correspondence between chromospheric type II spicules and bright upward-moving fronts in the corona observed in the extreme-ultraviolet (EUV) band. However, theoretical considerations suggest that these flows are probably not the main source of heating in coronal magnetic loops. Aims. We investigate the propagation of high-speed chromospheric flows into coronal magnetic flux tubes and the possible production of emission in the EUV band. Methods. We simulated the propagation of a dense 104 K chromospheric jet upward along a coronal loop by means of a 2D cylindrical MHD model that includes gravity, radiative losses, thermal conduction, and magnetic induction. The jet propagates in a complete atmosphere including the chromosphere and a tenuous cool (approximately 0.8 MK) corona, linked through a steep transition region. In our reference model, the jet initial speed is 70 km per second, its initial density is 10(exp 11) per cubic centimeter, and the ambient uniform magnetic field is 10 G. We also explored other values of jet speed and density in 1D and different magnetic field values in 2D, as well as the jet propagation in a hotter (approximately 1.5 MK) background loop. Results. While the initial speed of the jet does not allow it to reach the loop apex, a hot shock-front develops ahead of it and travels to the other extreme of the loop. The shock front compresses the coronal plasma and heats it to about 10(exp 6) K. As a result, a bright moving front becomes visible in the 171 Angstrom channel of the SDO/AIA mission. This result generally applies to all the other explored cases, except for the propagation in the hotter loop. Conclusions. For a cool, low-density initial coronal loop, the post-shock plasma ahead of upward chromospheric flows might explain at least part of the observed correspondence between type II spicules and EUV emission excess.

  4. In vivo resorption behavior of a high strength injectable calcium-phosphate cement

    Energy Technology Data Exchange (ETDEWEB)

    Wolke, J.G.C.; Ooms, E.M.; Jansen, J.A. [Univ. Medical Center, Nijmegen (Netherlands). Dept. Biomaterials

    2001-07-01

    A high strength calcium-phosphate-cement powder was prepared from a composition comprising of {alpha}-TCP, CaHPO{sub 4} (monetite), CaCO{sub 3} and some seeds of precipitated apatite. An aqueous solution of 4% Na{sub 2}HPO{sub 4} was used as liquid to start the setting reaction. The powder was mixed with cement liquid in three different liquid/powder ratios respectively 0.3, 0.35 and 0.4. Observation of the setting reaction versus time revealed that the maximum of compressive strength was achieved after 3 days reaching the value of 81 MPa. The X-ray diffraction pattern of the Ca-P cement measured 3 days after mixing and storage in Ringer's solution at 37 C showed that the {alpha}-TCP was transformed to hydroxylapatite with superposition of the peaks for monetite. XRD showed that after eight weeks of implantation the monetite peaks had disappeared. Further, the clinical handling properties of all three types of Ca-P cement appeared to be excellent. No problems in setting time or cavity filling were met during the application. The histological evaluation after two weeks of implantation showed abundant bone apposition on the cement surface without inflammatory reaction. At later time points the Ca-P cements were totally covered by a thin layer of bone and osteoclast-like cells in remodeling lacunae at the interface were resorbing the cement. At all implantation periods the PMMA controls showed the presence of a thin fibrous membrane. (orig.)

  5. Subcutaneous Injections

    DEFF Research Database (Denmark)

    Thomsen, Maria

    This thesis is about visualization and characterization of the tissue-device interaction during subcutaneous injection. The tissue pressure build-up during subcutaneous injections was measured in humans. The insulin pen FlexTouchr (Novo Nordisk A/S) was used for the measurements and the pressure...... build-up was evaluated indirectly from the changes in the flow rate between subcutaneous injections and air injections. This method enabled the tissue counter pressure to be evaluated without a formal clinical study approval. The measurements were coupled to a model for the pressure evolution...

  6. Injection of fully-defined signal mixtures: a novel high-throughput tool to study neuronal encoding and computations.

    Directory of Open Access Journals (Sweden)

    Vladimir Ilin

    Full Text Available Understanding of how neurons transform fluctuations of membrane potential, reflecting input activity, into spike responses, which communicate the ultimate results of single-neuron computation, is one of the central challenges for cellular and computational neuroscience. To study this transformation under controlled conditions, previous work has used a signal immersed in noise paradigm where neurons are injected with a current consisting of fluctuating noise that mimics on-going synaptic activity and a systematic signal whose transmission is studied. One limitation of this established paradigm is that it is designed to examine the encoding of only one signal under a specific, repeated condition. As a result, characterizing how encoding depends on neuronal properties, signal parameters, and the interaction of multiple inputs is cumbersome. Here we introduce a novel fully-defined signal mixture paradigm, which allows us to overcome these problems. In this paradigm, current for injection is synthetized as a sum of artificial postsynaptic currents (PSCs resulting from the activity of a large population of model presynaptic neurons. PSCs from any presynaptic neuron(s can be now considered as "signal", while the sum of all other inputs is considered as "noise". This allows us to study the encoding of a large number of different signals in a single experiment, thus dramatically increasing the throughput of data acquisition. Using this novel paradigm, we characterize the detection of excitatory and inhibitory PSCs from neuronal spike responses over a wide range of amplitudes and firing-rates. We show, that for moderately-sized neuronal populations the detectability of individual inputs is higher for excitatory than for inhibitory inputs during the 2-5 ms following PSC onset, but becomes comparable after 7-8 ms. This transient imbalance of sensitivity in favor of excitation may enhance propagation of balanced signals through neuronal networks. Finally, we

  7. 4-D High-Resolution Seismic Reflection Monitoring of Miscible CO2 Injected into a Carbonate Reservoir

    Energy Technology Data Exchange (ETDEWEB)

    Richard D. Miller; Abdelmoneam E. Raef; Alan P. Byrnes; William E. Harrison

    2007-06-30

    The objective of this research project was to acquire, process, and interpret multiple high-resolution 3-D compressional wave and 2-D, 2-C shear wave seismic data in the hopes of observing changes in fluid characteristics in an oil field before, during, and after the miscible carbon dioxide (CO{sub 2}) flood that began around December 1, 2003, as part of the DOE-sponsored Class Revisit Project (DOE No.DE-AC26-00BC15124). Unique and key to this imaging activity is the high-resolution nature of the seismic data, minimal deployment design, and the temporal sampling throughout the flood. The 900-m-deep test reservoir is located in central Kansas oomoldic limestones of the Lansing-Kansas City Group, deposited on a shallow marine shelf in Pennsylvanian time. After 30 months of seismic monitoring, one baseline and eight monitor surveys clearly detected changes that appear consistent with movement of CO{sub 2} as modeled with fluid simulators and observed in production data. Attribute analysis was a very useful tool in enhancing changes in seismic character present, but difficult to interpret on time amplitude slices. Lessons learned from and tools/techniques developed during this project will allow high-resolution seismic imaging to be routinely applied to many CO{sub 2} injection programs in a large percentage of shallow carbonate oil fields in the midcontinent.

  8. Multidimensional high-performance liquid chromatography on Pinkerton ISRP and RP18 columns: direct serum injection to quantify creatinine.

    Science.gov (United States)

    Puhlmann, A; Dülffer, T; Kobold, U

    1992-10-02

    A two-dimensional high-performance liquid chromatographic method for the determination of creatinine with direct serum injection without sample pretreatment has been developed. The column-switching technique allowed a switch from columns packed with internal surface reversed-phase (ISRP) material to columns of almost any other material, even if the eluents necessary in a particular case do not appear to be directly compatible. A Pinkerton ISRP column, which stands out because of its very good stability when loaded with undiluted serum samples, was used as precolumn. The creatinine-containing fraction was switched to a reversed-phase Shandon RP18 column and was focused there by alteration of the eluent from pH 6.5 to phosphoric acid-ion-pair reagent. The separation occurs via a pH gradient, with ultraviolet detection at 234 nm. This method stands out particularly for its good long-term stability, simple sample handling without pretreatment, high selectivity, a broad linearity (0.3-30 mg/dl creatinine), good reproducibility (inter-assay coefficient of variation less than 3%) and high recovery (97-100%) relative to values obtained with gas chromatography-mass spectrometry.

  9. High coverage needle/syringe programs for people who inject drugs in low and middle income countries: a systematic review

    Directory of Open Access Journals (Sweden)

    Des Jarlais Don C

    2013-01-01

    Full Text Available Abstract Background Persons who inject drugs (PWID are at an elevated risk for human immunodeficiency virus (HIV and hepatitis C virus (HCV infection. In many high-income countries, needle and syringe exchange programs (NSP have been associated with reductions in blood-borne infections. However, we do not have a good understanding of the effectiveness of NSP in low/middle-income and transitional-economy countries. Methods A systematic literature review based on PRISMA guidelines was utilized to collect primary study data on coverage of NSP programs and changes in HIV and HCV infection over time among PWID in low-and middle-income and transitional countries (LMICs. Included studies reported laboratory measures of either HIV or HCV and at least 50% coverage of the local injecting population (through direct use or through secondary exchange. We also included national reports on newly reported HIV cases for countries that had national level data for PWID in conjunction with NSP scale-up and implementation. Results Studies of 11 NSPs with high-coverage from Bangladesh, Brazil, China, Estonia, Iran, Lithuania, Taiwan, Thailand and Vietnam were included in the review. In five studies HIV prevalence decreased (range −3% to −15% and in three studies HCV prevalence decreased (range −4.2% to −10.2%. In two studies HIV prevalence increased (range +5.6% to +14.8%. HCV incidence remained stable in one study. Of the four national reports of newly reported HIV cases, three reported decreases during NSP expansion, ranging from −30% to −93.3%, while one national report documented an increase in cases (+37.6%. Estimated incidence among new injectors decreased in three studies, with reductions ranging from −11/100 person years at risk to −16/100 person years at risk. Conclusions While not fully consistent, the data generally support the effectiveness of NSP in reducing HIV and HCV infection in low/middle-income and transitional-economy countries. If

  10. Advanced and flexible multi-carrier receiver architecture for high-count multi-core fiber based space division multiplexed applications

    Science.gov (United States)

    Asif, Rameez

    2016-06-01

    Space division multiplexing (SDM), incorporating multi-core fibers (MCFs), has been demonstrated for effectively maximizing the data capacity in an impending capacity crunch. To achieve high spectral-density through multi-carrier encoding while simultaneously maintaining transmission reach, benefits from inter-core crosstalk (XT) and non-linear compensation must be utilized. In this report, we propose a proof-of-concept unified receiver architecture that jointly compensates optical Kerr effects, intra- and inter-core XT in MCFs. The architecture is analysed in multi-channel 512 Gbit/s dual-carrier DP-16QAM system over 800 km 19-core MCF to validate the digital compensation of inter-core XT. Through this architecture: (a) we efficiently compensates the inter-core XT improving Q-factor by 4.82 dB and (b) achieve a momentous gain in transmission reach, increasing the maximum achievable distance from 480 km to 1208 km, via analytical analysis. Simulation results confirm that inter-core XT distortions are more relentless for cores fabricated around the central axis of cladding. Predominantly, XT induced Q-penalty can be suppressed to be less than 1 dB up-to ‑11.56 dB of inter-core XT over 800 km MCF, offering flexibility to fabricate dense core structures with same cladding diameter. Moreover, this report outlines the relationship between core pitch and forward-error correction (FEC).

  11. High-fat diet combined with low-dose streptozotocin injections induces metabolic syndrome in Macaca mulatta.

    Science.gov (United States)

    Li, Linzhao; Liao, Guangneng; Yang, Guang; Lu, Yanrong; Du, Xiaojiong; Liu, Jingping; Li, Lan; Wang, Chengshi; Li, Li; Ren, Yan; Zhong, Zhihui; Cheng, Jingqiu; Chen, Younan

    2015-08-01

    Metabolic syndrome (MetS) is associated with abdominal obesity, hyperlipidemia, insulin resistance, and type 2 diabetes mellitus, and increases the risk of cardiovascular disease. Given the complex multifactorial pathogenesis of MetS, qualified animal models are currently seriously limited for researchers. The aim of our study was to develop a MetS model in juvenile rhesus monkeys (Macaca mulatta). Rhesus monkeys (1-year-old) fed a high-fat diet (15 % fat, 2 % cholesterol) were used as the HF group (n = 6), and those on a normal diet (5 % fat) were used as the control group (n = 4). After being fed a high-fat diet for approximately 12 months, 2 monkeys (HF + STZ group) were injected with low-dose streptozotocin (STZ, 25 mg/kg) twice, with a 7 days interval, and were then fed the same diet continuously for another 24 months. After 36 months of treatment, the high-fat diet monkeys, including the HF and HF + STZ groups, had acquired increased body weights, abnormal serum lipids, and impaired glucose tolerance compared to the control group. In addition, much more marked metabolic changes were observed in the two monkeys of the HF + STZ group, particularly in terms of high-blood glucose level and insulin resistance. Morphological observation of biopsies of liver and pancreatic tissues showed decreased islet number and mass and decreased insulin staining in the monkeys of the HF + STZ group. In addition, Oil red O staining suggested remarkable accumulation of lipid droplets in the hepatocytes. Our study suggested that a long-term high-fat diet followed with a low-dose STZ was able to induce MetS in juvenile rhesus monkeys with faster pathophysiological progress compared with high-fat diet induction alone. Our primary data showed that this method may have potentials to develop MetS animal model in non-human primates.

  12. Optical injection in semiconductor ring lasers

    CERN Document Server

    Coomans, W; Van der Sande, G; Gelens, L; Danckaert, J; 10.1103/PhysRevA.81.033802

    2011-01-01

    We theoretically investigate optical injection in semiconductor ring lasers and disclose several dynamical regimes. Through numerical simulations and bifurcation continuation, two separate parameter regions in which two different injection-locked solutions coexist are revealed, in addition to a region in which a frequency-locked limit cycle coexists with an injection-locked solution. Finally, an antiphase chaotic regime without the involvement of any carrier dynamics is revealed. Parallels are drawn with the onset of chaos in the periodically forced Duffing oscillator.

  13. Ultrastable green fluorescence carbon dots with a high quantum yield for bioimaging and use as theranostic carriers

    DEFF Research Database (Denmark)

    Yang, Chuanxu; Thomsen, Rasmus Peter; Ogaki, Ryosuke

    2015-01-01

    in biomedical applications. Oligoethylenimine (OEI)–β-cyclodextrin (βCD) Cdots were synthesised using a simple and fast heating method in phosphoric acid. The synthesised Cdots showed strong green fluorescence under UV excitation with a 30% quantum yield and exhibited superior stability over a wide pH range. We......Carbon dots (Cdots) have recently emerged as a novel platform of fluorescent nanomaterials. These carbon nanoparticles have great potential in biomedical applications such as bioimaging as they exhibit excellent photoluminescence properties, chemical inertness and low cytotoxicity in comparison...... to widely used semiconductor quantum dots. However, it remains a great challenge to prepare highly stable, water-soluble green luminescent Cdots with a high quantum yield. Herein we report a new synthesis route for green luminescent Cdots imbuing these desirable properties and demonstrate their potential...

  14. Study of Charge Carrier Transport in GaN Sensors

    Directory of Open Access Journals (Sweden)

    Eugenijus Gaubas

    2016-04-01

    Full Text Available Capacitor and Schottky diode sensors were fabricated on GaN material grown by hydride vapor phase epitaxy and metal-organic chemical vapor deposition techniques using plasma etching and metal deposition. The operational characteristics of these devices have been investigated by profiling current transients and by comparing the experimental regimes of the perpendicular and parallel injection of excess carrier domains. Profiling of the carrier injection location allows for the separation of the bipolar and the monopolar charge drift components. Carrier mobility values attributed to the hydride vapor phase epitaxy (HVPE GaN material have been estimated as μe = 1000 ± 200 cm2/Vs for electrons, and μh = 400 ± 80 cm2/Vs for holes, respectively. Current transients under injection of the localized and bulk packets of excess carriers have been examined in order to determine the surface charge formation and polarization effects.

  15. Study of Charge Carrier Transport in GaN Sensors.

    Science.gov (United States)

    Gaubas, Eugenijus; Ceponis, Tomas; Kuokstis, Edmundas; Meskauskaite, Dovile; Pavlov, Jevgenij; Reklaitis, Ignas

    2016-04-18

    Capacitor and Schottky diode sensors were fabricated on GaN material grown by hydride vapor phase epitaxy and metal-organic chemical vapor deposition techniques using plasma etching and metal deposition. The operational characteristics of these devices have been investigated by profiling current transients and by comparing the experimental regimes of the perpendicular and parallel injection of excess carrier domains. Profiling of the carrier injection location allows for the separation of the bipolar and the monopolar charge drift components. Carrier mobility values attributed to the hydride vapor phase epitaxy (HVPE) GaN material have been estimated as μe = 1000 ± 200 cm²/Vs for electrons, and μh = 400 ± 80 cm²/Vs for holes, respectively. Current transients under injection of the localized and bulk packets of excess carriers have been examined in order to determine the surface charge formation and polarization effects.

  16. Highly fluorescent and morphology-controllable graphene quantum dots-chitosan hybrid xerogels for in vivo imaging and pH-sensitive drug carrier

    Energy Technology Data Exchange (ETDEWEB)

    Lv, Ouyang; Tao, Yongxin; Qin, Yong [Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164 (China); Chen, Chuanxiang [School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003 (China); Pan, Yan; Deng, Linhong [Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou 213164 (China); Liu, Li [School of pharmaceutical Engineering & Life Science, Changzhou University, Changzhou 213164 (China); Kong, Yong, E-mail: yzkongyong@126.com [Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164 (China)

    2016-10-01

    Highly fluorescent graphene quantum dots (GQDs)-chitosan (CS) hybrid xerogels (GQDs-CS) were facilely synthesized, and the morphology of GQDs-CS was controllable by varying the content of GQDs in the xerogel. The GQDs-CS exhibited a porous and three-dimensional (3D) network structure when the content of GQDs reached 43% (wt%) in the xerogel, which was beneficial for drug loading and sustained release. The as-prepared GQDs-CS could also be applied for in vivo imaging since it showed strong blue, green and red luminescence under excitation of varying wavelengths. Moreover, the pH-induced protonation/deprotonation of the –NH{sub 2} groups on CS chains can result in a pH-dependent drug delivery behavior of the GQDs-CS hybrid xerogel. - Graphical abstract: Highly fluorescent and morphology-controllable graphene quantum dots-chitosan hybrid xerogels for in vivo imaging and pH-sensitive drug carrier. Display Omitted - Highlights: • Highly fluorescent GQDs-CS hybrid xerogels were facilely synthesized. • The as-made xerogels exhibited various morphologies with different GQDs contents. • The GQDs-CS exhibited a porous and 3D network when the content of GQDs reached 43%. • The GQDs-CS could be applied for in vivo imaging since it showed strong luminescence. • The protonation/deprotonation of –NH{sub 2} on CS result in a pH-dependent drug delivery.

  17. Injection MD

    CERN Document Server

    Bartmann, W; Bracco, C; Drosdal, L; Gianfelice, E; Goddard, B; Kain, V; Papaphilippou, Y; Vanbavinckhove, G

    2012-01-01

    This note summarizes the results obtained at injection during the 2nd MD block and the floating MD block in July. Highlights are presented for injection in the LHC with the Q20 SPS optics, influence of the supercycle and injection with 25 ns bunch spacing. Beams were successfully injected into the LHC using the Q20 optics [1, 3]. Small corrections were needed to steer the beam in the transfer lines. Dispersion measurements were conducted for both beams. The horizontal normalized dispersion in TI2 was a factor 2 smaller for Q20 with respect to Q26, for TI8 on the other hand the opposite was observed. The results for injection loss dependency on super cycle composition show only a small increase in losses for beam 2. The losses observed must therefore mainly come from other sources such as shot-by-shot stability or quality of scraping. For the injection with 25 ns bunch spacing bunches were injected for both beams. For B1 up to the maximum of 288 bunches. For B2 on the other only up to 144 bunches were injected...

  18. Novel high efficient coatings for anti-microbial surgical sutures using chlorhexidine in fatty acid slow-release carrier systems.

    Directory of Open Access Journals (Sweden)

    Andreas Obermeier

    Full Text Available Sutures can cause challenging surgical site infections, due to capillary effects resulting in bacteria permeating wounds. Anti-microbial sutures may avoid these complications by inhibiting bacterial pathogens. Recently, first triclosan-resistances were reported and therefore alternative substances are becoming clinically relevant. As triclosan alternative chlorhexidine, the "gold standard" in oral antiseptics was used. The aim of the study was to optimize novel slow release chlorhexidine coatings based on fatty acids in surgical sutures, to reach a high anti-microbial efficacy and simultaneously high biocompatibility. Sutures were coated with chlorhexidine laurate and chlorhexidine palmitate solutions leading to 11, 22 or 33 µg/cm drug concentration per length. Drug release profiles were determined in aqueous elutions. Antibacterial efficacy against Staphylococcus aureus was assessed in agar diffusion tests. Biocompatibility was evaluated via established cytotoxicity assay (WST-1. A commercially triclosan-containing suture (Vicryl Plus, was used as anti-microbial reference. All coated sutures fulfilled European Pharmacopoeia required tensile strength and proved continuous slow drug release over 96 hours without complete wash out of the coated drug. High anti-microbial efficacy for up to 5 days was observed. Regarding biocompatibility, sutures using 11 µg/cm drug content displayed acceptable cytotoxic levels according to ISO 10993-5. The highest potential for human application were shown by the 11 µg/cm chlorhexidine coated sutures with palmitic acid. These novel coated sutures might be alternatives to already established anti-microbial sutures such as Vicryl Plus in case of triclosan-resistance. Chlorhexidine is already an established oral antiseptic, safety and efficacy should be proven for clinical applications in anti-microbial sutures.

  19. Carrier induced epitopic suppression of antibody responses induced by virus-like particles is a dynamic phenomenon caused by carrier-specific antibodies.

    Science.gov (United States)

    Jegerlehner, Andrea; Wiesel, Melanie; Dietmeier, Klaus; Zabel, Franziska; Gatto, Dominique; Saudan, Philippe; Bachmann, Martin F

    2010-07-26

    Pre-existing immunity against vaccine carrier proteins has been reported to inhibit the immune response against antigens conjugated to the same carrier by a process termed carrier induced epitopic suppression (CIES). Hence understanding the phenomenon of CIES is of major importance for the development of conjugate vaccines. Virus-like particles (VLPs) are a novel class of potent immunological carriers which have been successfully used to enhance the antibody response to virtually any conjugated antigen. In the present study we investigated the impact of a pre-existing VLP-specific immune response on the development of antibody responses against a conjugated model peptide after primary, secondary and tertiary immunization. Although VLP-specific immune responses led to reduced peptide-specific antibody titers, we showed that CIES against peptide-VLP conjugates could be overcome by high coupling densities, repeated injections and/or higher doses of conjugate vaccine. Furthermore we dissected VLP-specific immunity by adoptively transferring VLP-specific antibodies, B-cells or T(helper) cells separately into naïve mice and found that the observed CIES against peptide-VLP conjugates was mainly mediated by carrier-specific antibodies.

  20. Low pressure and high power rf sources for negative hydrogen ions for fusion applications (ITER neutral beam injection).

    Science.gov (United States)

    Fantz, U; Franzen, P; Kraus, W; Falter, H D; Berger, M; Christ-Koch, S; Fröschle, M; Gutser, R; Heinemann, B; Martens, C; McNeely, P; Riedl, R; Speth, E; Wünderlich, D

    2008-02-01

    The international fusion experiment ITER requires for the plasma heating and current drive a neutral beam injection system based on negative hydrogen ion sources at 0.3 Pa. The ion source must deliver a current of 40 A D(-) for up to 1 h with an accelerated current density of 200 Am/(2) and a ratio of coextracted electrons to ions below 1. The extraction area is 0.2 m(2) from an aperture array with an envelope of 1.5 x 0.6 m(2). A high power rf-driven negative ion source has been successfully developed at the Max-Planck Institute for Plasma Physics (IPP) at three test facilities in parallel. Current densities of 330 and 230 Am/(2) have been achieved for hydrogen and deuterium, respectively, at a pressure of 0.3 Pa and an electron/ion ratio below 1 for a small extraction area (0.007 m(2)) and short pulses (ITER source but without extraction system, is intended to demonstrate the size scaling and plasma homogeneity of rf ion sources. The source operates routinely now. First results on plasma homogeneity obtained from optical emission spectroscopy and Langmuir probes are very promising. Based on the success of the IPP development program, the high power rf-driven negative ion source has been chosen recently for the ITER beam systems in the ITER design review process.

  1. Short-term, high-dose administration of corticosterone by injection facilitates trace eyeblink conditioning in young male rats.

    Science.gov (United States)

    Wentworth-Eidsaune, Christine L; Hennessy, Michael B; Claflin, Dragana I

    2016-02-01

    Glucocorticoids released as part of the physiological response to stress are known to affect cognitive function, presumably via effects on the hippocampus. Trace classical eyeblink conditioning is an associative learning task which depends on the hippocampus and has been used to examine the development of learning processes in young mammals. Previously, we demonstrated deficits in trace eyeblink conditioning associated with postnatal administration of the glucocorticoid corticosterone by creating a sustained elevation with methods such as subcutaneous timed-release pellets and osmotic mini-pumps which were active over several days. In the present study, we examined the effects of an oscillating pattern of corticosterone elevation on subsequent trace eyeblink conditioning. Twice daily corticosterone injections (high, low, or vehicle) were administered over a 3-day period, starting at postnatal day 15. Then, on postnatal day 28, animals underwent trace classical eyeblink conditioning to examine the possible influence of earlier corticosterone elevations on the development of learning and memory. Eyeblink conditioning was affected by corticosterone treatments, but only for males, and only very early in acquisition; Males receiving the high dose of corticosterone exhibited facilitation of learning relative to controls. These data demonstrate that oscillating corticosterone elevations produce opposite effects on this associative learning task than do sustained elevations.

  2. Highly efficient gene knockout by injection of TALEN mRNAs into oocytes and host transfer in Xenopus laevis.

    Science.gov (United States)

    Nakajima, Keisuke; Yaoita, Yoshio

    2015-01-16

    Zinc-finger nucleases, transcription activator-like effector nucleases (TALENs) and the CRISPR/Cas (clustered regularly interspaced short palindromic repeats/CRISPR-associated proteins) system are potentially powerful tools for producing tailor-made knockout animals. However, their mutagenic activity is not high enough to induce mutations at all loci of a target gene throughout an entire tadpole. In this study, we present a highly efficient method for introducing gene modifications at almost all target sequences in randomly selected embryos. The gene modification activity of TALEN is enhanced by adopting the host-transfer technique. In our method, the efficiency is further improved by injecting TALEN mRNAs fused to the 3'UTR of the Xenopus DEADSouth gene into oocytes, which are then transferred into a host female frog, where they are ovulated and fertilized. The addition of the 3'UTR of the DEADSouth gene promotes mRNA translation in the oocytes and increases the expression of TALEN proteins to near-maximal levels three hours post fertilization (hpf). In contrast, TALEN mRNAs without this 3'UTR are translated infrequently in oocytes. Our data suggest that genomic DNA is more sensitive to TALEN proteins from fertilization to the midblastula (MBT) stage. Our method works by increasing the levels of TALEN proteins during the pre-MBT stages.

  3. Highly efficient gene knockout by injection of TALEN mRNAs into oocytes and host transfer in Xenopus laevis

    Directory of Open Access Journals (Sweden)

    Keisuke Nakajima

    2015-01-01

    Full Text Available Zinc-finger nucleases, transcription activator-like effector nucleases (TALENs and the CRISPR/Cas (clustered regularly interspaced short palindromic repeats/CRISPR-associated proteins system are potentially powerful tools for producing tailor-made knockout animals. However, their mutagenic activity is not high enough to induce mutations at all loci of a target gene throughout an entire tadpole. In this study, we present a highly efficient method for introducing gene modifications at almost all target sequences in randomly selected embryos. The gene modification activity of TALEN is enhanced by adopting the host-transfer technique. In our method, the efficiency is further improved by injecting TALEN mRNAs fused to the 3′UTR of the Xenopus DEADSouth gene into oocytes, which are then transferred into a host female frog, where they are ovulated and fertilized. The addition of the 3′UTR of the DEADSouth gene promotes mRNA translation in the oocytes and increases the expression of TALEN proteins to near-maximal levels three hours post fertilization (hpf. In contrast, TALEN mRNAs without this 3′UTR are translated infrequently in oocytes. Our data suggest that genomic DNA is more sensitive to TALEN proteins from fertilization to the midblastula (MBT stage. Our method works by increasing the levels of TALEN proteins during the pre-MBT stages.

  4. BiVO4 photoanodes for water splitting with high injection efficiency, deposited by reactive magnetron co-sputtering

    Science.gov (United States)

    Gong, Haibo; Freudenberg, Norman; Nie, Man; van de Krol, Roel; Ellmer, Klaus

    2016-04-01

    Photoactive bismuth vanadate (BiVO4) thin films were deposited by reactive co-magnetron sputtering from metallic Bi and V targets. The effects of the V-to-Bi ratio, molybdenum doping and post-annealing on the crystallographic and photoelectrochemical (PEC) properties of the BiVO4 films were investigated. Phase-pure monoclinic BiVO4 films, which are more photoactive than the tetragonal BiVO4 phase, were obtained under slightly vanadium-rich conditions. After annealing of the Mo-doped BiVO4 films, the photocurrent increased 2.6 times compared to undoped films. After optimization of the BiVO4 film thickness, the photocurrent densities (without a catalyst or a blocking layer or a hole scavenger) exceeded 1.2 mA/cm2 at a potential of 1.23 VRHE under solar AM1.5 irradiation. The surprisingly high injection efficiency of holes into the electrolyte is attributed to the highly porous film morphology. This co-magnetron sputtering preparation route for photoactive BiVO4 films opens new possibilities for the fabrication of large-scale devices for water splitting.

  5. BiVO4 photoanodes for water splitting with high injection efficiency, deposited by reactive magnetron co-sputtering

    Directory of Open Access Journals (Sweden)

    Haibo Gong

    2016-04-01

    Full Text Available Photoactive bismuth vanadate (BiVO4 thin films were deposited by reactive co-magnetron sputtering from metallic Bi and V targets. The effects of the V-to-Bi ratio, molybdenum doping and post-annealing on the crystallographic and photoelectrochemical (PEC properties of the BiVO4 films were investigated. Phase-pure monoclinic BiVO4 films, which are more photoactive than the tetragonal BiVO4 phase, were obtained under slightly vanadium-rich conditions. After annealing of the Mo-doped BiVO4 films, the photocurrent increased 2.6 times compared to undoped films. After optimization of the BiVO4 film thickness, the photocurrent densities (without a catalyst or a blocking layer or a hole scavenger exceeded 1.2 mA/cm2 at a potential of 1.23 VRHE under solar AM1.5 irradiation. The surprisingly high injection efficiency of holes into the electrolyte is attributed to the highly porous film morphology. This co-magnetron sputtering preparation route for photoactive BiVO4 films opens new possibilities for the fabrication of large-scale devices for water splitting.

  6. Strontium insertion in methlyammonium lead iodide: long charge carrier lifetime and high fill factor solar cells (Conference Presentation)

    Science.gov (United States)

    Momblona, Cristina; Gil-Escrig, Lidón; Ávila, Jorge; Pérez-Del-Rey, Daniel; Forgács, David; Sessolo, Michele; Bolink, Hendrik J.

    2016-09-01

    Organic-inorganic (hybrid) lead halide perovskites are taking the lead among the emerging photovoltaics technologies, thanks to the demonstration of power conversion efficiencies exceeding 20 %. Hybrid perovskites have a wide spectrum of desirable properties; they are direct bandgap semiconductors with very high absorption coefficients, high and balanced hole and electron mobility, and large diffusion length. A unique feature of these materials is their versatility in terms of bandgap energy, which can be tuned by simple exchange of their components. In this paper we present vacuum and hybrid deposition routes for the preparation of different organic-inorganic lead perovskite thin films, and their incorporation into efficient solar cells. The influence of the type of organic semiconductors used as hole/electron transport layer in p-i-n solar cells will be presented. We also discuss their electroluminescence properties, either for applications in light-emitting diodes or as a diagnostic tool of the optical and electronic quality of perovskite thin films. Finally, the effect of additives and dopants in the perovskite absorber as well as in the charge selective layers will be described.

  7. Subcutaneous Injections

    DEFF Research Database (Denmark)

    Thomsen, Maria

    This thesis is about visualization and characterization of the tissue-device interaction during subcutaneous injection. The tissue pressure build-up during subcutaneous injections was measured in humans. The insulin pen FlexTouchr (Novo Nordisk A/S) was used for the measurements and the pressure...... build-up was evaluated indirectly from the changes in the flow rate between subcutaneous injections and air injections. This method enabled the tissue counter pressure to be evaluated without a formal clinical study approval. The measurements were coupled to a model for the pressure evolution...... in subcutaneous tissue, based on mass conservation and flow in a porous medium. From the measurements the flow permeability and bulk modulus of the tissue were determined. In the adipose tissue the drug forms a bolus from where it is absorbed by the blood capillaries. The spatial distribution of the injected...

  8. Dimethyl Ether Injection Studies

    DEFF Research Database (Denmark)

    Sorenson, Spencer C.; Glensvig, Michael; Abata, Duane L.

    1998-01-01

    effects of DME in high pressure injection have also been observed. DME has a higher compressibility than diesel fuel, resulting in larger pressure oscillations in the injection system during the injection process. The oscillations with DME also have a slower delay rate than those of diesel fuel......A series of preliminary investigations has been performed in order to investigate the behavior of DME in a diesel injection environment. These studies have in-cluded visual observations of the spray penetration and angles for high pressure injection into Nitrogen using conventional jerk pump...... in the same system. As a first attempt to simulate combustion of DME in Diesel engines, the results of the spray studies have been incorporated into a simplified spray combustion model. A turbulent jet structure was adjusted to fit the penetration rates of the observed sprays. The observed spray widths agreed...

  9. Appraisal of efficacy and safety of intralesional injection of high concentration of bleomycin A5 for treatment of huge macrocystic lymphatic malformations in cervical region.

    Science.gov (United States)

    Xu, Da-Peng; Zhai, Qin-Kai; Cheng, Chen; Gong, He; Wang, Hong-Wei; Wang, Xu-Kai

    2014-09-01

    The objective of this study was to investigate the therapeutic effects and safety of intralesional injection of high concentration of bleomycin A5 for huge (more than 5 cm in diameter) macrocystic lymphatic malformations (LMs) in the cervical region. Thirty-two patients with huge macrocystic LMs were treated with percutaneous injection of bleomycin A5 in our department between 2006 and 2011. Among them, 13 patients had unilateral submandibular lesions, and 19 patients had lesions in anterior cervical regions. The age of patients ranged from 10 months to 29 years (mean age, 11.4 y). The concentration of the drug was as high as 2.7 mg/mL (8 mg/3 mL) with an addition of dexamethasone. The mean sessions of injection were 1.6 (1-3 sessions). Repeated injection interval was 4 to 6 weeks. The follow-up period was 6 months to 4 years after the last treatment, and the mean follow-up time was 18 months. The results were evaluated based on clinical examination and Doppler ultrasonography scan. The clinical follow-up showed excellent response in 28 of the 32 patients, whereas 4 of the 32 patients also had a satisfactory response. No serious complications were encountered. Intralesional injection of high concentration of bleomycin A5 was an effective and safe treatment of huge macrocystic LMs in the cervical region and can obtain satisfactory results esthetically and functionally without surgery.

  10. High-rate nitrogen removal and microbial community of an up-flow anammox reactor with ceramics as biomass carrier.

    Science.gov (United States)

    Ren, Yuhui; Li, Dong; Li, Xiangkun; Yang, Liu; Ding, An; Zhang, Jie

    2014-10-01

    Nitrogen removal performance and responsible microbial community of anammox process at low temperatures, and long term effect of dissolved oxygen (DO) on the performance of anammox process were investigated in a biofilm reactor, which was operated at 33±1°C (159d) and 20±2°C (162d) with an influent DO concentration of 0.7-1.5mgL(-1). Nitrogen removal recovered to 70% after 2wk with the temperature drastically decreasing from 33±1°C to 20±2°C. At 20±2°C, the average effluent (NH4(+)-N+NO2(-)-N) concentration was 0.08±0.08mgL(-1) at a hydraulic retention time of 1.5h. A total nitrogen removal efficiency of the reactor of 1.0gNL(-1)d(-1) was obtained for up to one month while the nitrogen loading rate was 1.16gNL(-1)d(-1). Results of T-RFLP and 16S rRNA phylogenic analysis revealed that Candidatus Jettenia asiatica, as confirmed to adapt to low temperature, was considered to be responsible for the stable and high nitrogen removal performance.

  11. Strength-controllable graphene oxide amphiprotic aerogels as highly efficient carrier for anionic and cationic azo molecules

    Science.gov (United States)

    Xiong, Jiaqing; Jiao, Chenlu; Xu, Sijun; Tao, Jin; Zhang, Desuo; Lin, Hong; Chen, Yuyue

    2015-06-01

    Ice-bath self-assembly was employed to fabricate the GO/AP-MCC/CS aerogel based on natural materials. The components are amphiprotic microcrystalline cellulose (AP-MCC), chitosan (CS), and graphene oxide (GO), which act as the main framework, auxiliary framework and adhesive, respectively. The results of characterization determines the components form the GO/AP-MCC/CS aerogel according to chemical interactions. The mechanical properties depend largely on the mass ratio of AP-MCC/CS, which can be regulated by controlling the contents of AP-MCC and CS. The resultant GO/AP-MCC/CS aerogel was observed possessing three-dimensional (3D) interpenetrating porous networks with wrinkled structure on the inner wall, which provide a good encapsulation capacity for the guest molecules. As expected, owing to the amphiprotic properties and large specific surface area, GO/AP-MCC/CS aerogel exhibits high-efficiency load capacity for both anionic (CR) and cationic azo molecules (MB), which can reach up to about 132.2 mg/g for CR and 123.2 mg/g for MB, respectively.

  12. Real-time tracking of CO₂ injected into a subsurface coal fire through high-frequency measurements of the ¹³CO₂ signature.

    Science.gov (United States)

    Krevor, Samuel C M; Ide, Taku; Benson, Sally M; Orr, Franklin M

    2011-05-01

    CO₂ was injected into a coal fire burning at a depth of 15 m in the subsurface in southwestern Colorado, USA. Measurements were made of the ¹³CO₂ isotopic signature of gas exhaust from an observation well and two surface fissures. The goal of the test was to determine (1) whether CO₂ with a distinct isotopic signature could be used as a tracer to identify flow pathways and travel times in a combustion setting where CO₂ was present in significant quantities in the gases being emitted from the coalbed fire, and (2) to confirm the existence of a self-propagating system of air-intake and combustion gas exhaust that has been previously proposed. CO₂ was injected in three separate periods. The ¹³CO₂ isotopic signature was measured at high frequency (0.5 Hz) before, during, and after the injection periods for gas flowing from fissures over the fire and from gas entering an observation well drilled into the formation just above the fire but near the combustion zone. In two cases, a shift in the isotopic signature of outgassing CO₂ provided clear evidence that injected CO₂ had traveled from the injection well to the observation point, while in a third case, no response was seen and the fissure could not be assumed to have a flowpath connected with the injection well. High-frequency measurements of the ¹³CO₂ signature of gas in observation wells is identified as a viable technique for tracking CO₂ injected into subsurface formations in real-time. In addition, a chimney-like coupled air-intake and exhaust outlet system feeding the combustion of the coal seam was confirmed. This can be used to further develop strategies for extinguishing the fire.

  13. Trade-off between morphology, extended defects, and compositional fluctuation induced carrier localization in high In-content InGaN films

    Energy Technology Data Exchange (ETDEWEB)

    Ju, James; Loitsch, Bernhard; Stettner, Thomas; Schuster, Fabian; Stutzmann, Martin; Koblmüller, Gregor, E-mail: Gregor.Koblmueller@wsi.tum.de [Walter Schottky Institut and Physik Department, Technische Universität München, Garching 85748 (Germany)

    2014-08-07

    We elucidate the role of growth parameters (III/N flux ratio, temperature T{sub G}) on the morphological and structural properties, as well as compositional homogeneity and carrier localization effects of high In-content (x(In) > 0.75) In–polar InGaN films grown by plasma–assisted molecular beam epitaxy (PAMBE). Variations in III/N flux ratio evidence that higher excess of In yields higher threading dislocation densities as well as larger compositional inhomogeneity as measured by x-ray diffraction. Most interestingly, by variation of growth temperature T{sub G} we find a significant trade-off between improved morphological quality and compositional homogeneity at low–T{sub G} (∼450–550 °C) versus improved threading dislocation densities at high–T{sub G} (∼600–630 °C), as exemplified for InGaN films with x(In) = 0.9. The enhanced compositional homogeneity mediated by low–T{sub G} growth is confirmed by systematic temperature-dependent photoluminescence (PL) spectroscopy data, such as lower PL peakwidths, >5× higher PL efficiency (less temperature-induced quenching) and a distinctly different temperature-dependent S-shape behavior of the PL peak energy. From these, we find that the carrier localization energy is as low as ∼20 meV for low–T{sub G} grown films (T{sub G} = 550 °C), while it rises to ∼70 meV for high–T{sub G} grown films (T{sub G} = 630 °C) right below the onset of In–N dissociation. These findings point out that for the kinetically limited metal-rich PAMBE growth of high In-content InGaN a III/N flux ratio of ∼1 and low-to-intermediate T{sub G} are required to realize optically more efficient materials.

  14. Use of testicular sperm for intracytoplasmic sperm injection in men with high sperm DNA fragmentation: a SWOT analysis.

    Science.gov (United States)

    Esteves, Sandro C; Roque, Matheus; Garrido, Nicolás

    2017-04-18

    Spermatozoa retrieved from the testis of men with high levels of sperm DNA fragmentation (SDF) in the neat semen tend to have better DNA quality. Given the negative impact of SDF on the outcomes of Assisted Reproductive Technology (ART), an increased interest has emerged about the use of testicular sperm for intracytoplasmic sperm injection (Testi-ICSI). In this article, we used a SWOT (strengths, weaknesses, opportunities, and threats) analysis to summarize the advantages and drawbacks of this intervention. The rationale of Testi-ICSI is bypass posttesticular DNA fragmentation caused by oxidative stress during sperm transit through the epididymis. Hence, oocyte fertilization by genomically intact testicular spermatozoa may be optimized, thus increasing the chances of creating a normal embryonic genome and the likelihood of achieving a live birth, as recently demonstrated in men with high SDF. However, there is still limited evidence as regards the clinical efficacy of Testi-ICSI, thus creating opportunities for further confirmatory clinical research as well as investigation of Testi-ICSI in clinical scenarios other than high SDF. Furthermore, Testi-ICSI can be compared to other laboratory preparation methods for deselecting sperm with damaged DNA. At present, the available literature supports the use of testicular sperm when performing ICSI in infertile couples whose male partners have posttesticular SDF. Due to inherent risks of sperm retrieval, Testi-ICSI should be offered when less invasive treatments for alleviating DNA damage have failed. A call for continuous monitoring is nonetheless required concerning the health of generated offspring and the potential complications of sperm retrieval.

  15. Photo-doped carrier dynamics in Mott insulatoring systems

    Science.gov (United States)

    Iyoda, Eiki; Ishihara, Sumio

    2013-03-01

    Electron/hole doping in Mott insulators, for example two-dimensional cuprates, has been well investigated in relation to high-Tc superconductivity. Especially related to photo-doping, many experiments on photo-induced phase transition in strongly correlated systems have been made. In the usual photo-doping setup, the system is excited with fs-laser pulse and generated electron-hole pairs affect properties of materials. Recently, another type of photo-doped experiment with heterostructure has been made, and hole or electron carriers are dynamically injected through the heterostructure. In this theoretical study, we examine photo-doped carrier dynamics in the t-J model with dynamically doped holes. We formulate dynamics of the carriers by non-equilibrium Green functions. We take an initial state of holes and decompose the non-equilibrium Green's function into a series of equilibrium Green's functions by using Wick's theorem. The effect of the initial distribution appears from the higher terms in the series. We treat magnons with the self-consistent Born approximation. The non-equilibrium Green function derived in this way shows double time dependence. We will present physical quantities in transient process, for example, one-particle excitation spectra for holes.

  16. Spin currents injected electrically and thermally from highly spin polarized Co{sub 2}MnSi

    Energy Technology Data Exchange (ETDEWEB)

    Pfeiffer, Alexander; Reeve, Robert M.; Kronenberg, Alexander; Jourdan, Martin; Kläui, Mathias, E-mail: klaeui@uni-mainz.de [Institut für Physik, Johannes Gutenberg-Universität Mainz, 55099 Mainz (Germany); Hu, Shaojie [Research Center for Quantum Nano-Spin Sciences, Kyushu University, 6-10-1 Hakozaki, Fukuoka 812-8581 (Japan); Kimura, Takashi [Research Center for Quantum Nano-Spin Sciences, Kyushu University, 6-10-1 Hakozaki, Fukuoka 812-8581 (Japan); Department of Physics, Kyushu University, 6-10-1 Hakozaki, Fukuoka 812-8581 (Japan)

    2015-08-24

    We demonstrate the injection and detection of electrically and thermally generated spin currents probed in Co{sub 2}MnSi/Cu lateral spin valves. Devices with different electrode separations are patterned to measure the non-local signal as a function of the electrode spacing and we determine a relatively high effective spin polarization α of Co{sub 2}MnSi to be 0.63 and the spin diffusion length of Cu to be 500 nm at room temperature. The electrically generated non-local signal is measured as a function of temperature and a maximum signal is observed for a temperature of 80 K. The thermally generated non-local signal is measured as a function of current density and temperature in a second harmonic measurement detection scheme. We find different temperature dependences for the electrically and thermally generated non-local signals, which allows us to conclude that the temperature dependence of the signals is not just dominated by the transport in the Cu wire, but there is a crucial contribution from the different generation mechanisms, which has been largely disregarded till date.

  17. Oral kanglaite injection (KLTI) attenuates the lung cancer-promoting effect of high-fat diet (HFD)-induced obesity.

    Science.gov (United States)

    Cao, Ning; Ma, Xiaofang; Guo, Zhenzhen; Zheng, Yaqiu; Geng, Shengnan; Meng, Mingjing; Du, Zhenhua; Lin, Haihong; Duan, Yongjian; Du, Gangjun

    2016-09-20

    Obesity is a risk factor for cancer and cancer-related mortality, however, its role in lung cancer progression remains controversial. This study aimed to assess whether high-fat diet (HFD)-induced obesity promotes lung cancer progression and whether the promotion can be decreased by Kanglaite injection (KLTI). In vivo, HFD-induced overweight or obesity increases the lung carcinoma incidence and multiplicity in a urethane-induced lung carcinogenic model and cancer-related mortality in a LLC allograft model by increasing oxidative stress and cellular signaling molecules including JAK, STAT3, Akt, mTOR, NF-κB and cyclin D1. These changes resulted in increases in vascular disruption and the lung water content, thereby promoting lung epithelial proliferation and the epithelial-mesenchymal transition (EMT) during carcinogenesis. Chronic KLTI treatment substantially prevented the weight gain resulting from HFD consumption, thereby reversing the metabolic dysfunction-related physiological changes and reducing susceptibility to lung carcinogenesis. In vitro, KLTI significantly suppressed the proliferation and induced apoptosis and differentiation in 3T3-L1 preadipocyte cells and attenuated endothelial cell permeability in HUVECs. Our study indicates that there is a potential relationship between obesity and lung cancer. This is the first study to show that obesity can directly accelerate carcinogen-induced lung cancer progression and that KLTI can decrease the lung cancer-promoting effect of HFD-induced obesity.

  18. EPOCH code simulation of a non-thermal distribution driven by neutral beam injection in a high-beta plasma

    Science.gov (United States)

    Necas, A.; Tajima, T.; Nicks, S.; Magee, R.; Clary, R.; Roche, T.; Tri Alpha Energy Team

    2016-10-01

    In Tri Alpha Energy's C-2U experiment, advanced beam-driven field-reversed configuration (FRC) plasmas were sustained via tangential neutral beam injection. The dominant fast ion population made a dramatic impact on the overall plasma performance. To explain an experimentally observed anomalous neutron signal (100x thermonuclear), we use EPOCH PIC code to simulate possible beam driven non-destructive instabilities that transfer energy from fast ions to the plasma, causing phase space bunching. We propose that the hydrogen beam ion population drives collective modes in the deuterium target plasma, giving rise to the instability and increased fusion rate. The instability changes character from electrostatic in the low beta edge to fully electromagnetic in the core, with an associated reduction in growth rates. The DD reactivity enhancement is calculated using a two-body correlation function and compared to the experimentally observed neutron yield. The high-energy tails in the distributions of the plasma deuterons and beam protons are observed via a mass-resolving Neutral Particle Analyzer (NPA) diagnostic. This observation is qualitatively consistent with EPOCH simulation of the beam-plasma instability.

  19. High-speed fuel tracer fluorescence and OH radical chemiluminescence imaging in a spark-ignition direct-injection engine.

    Science.gov (United States)

    Smith, James D; Sick, Volker

    2005-11-01

    An innovative technique has been demonstrated to achieve crank-angle-resolved planar laser-induced fluorescence (PLIF) of fuel followed by OH* chemiluminescence imaging in a firing direct-injected spark-ignition engine. This study used two standard KrF excimer lasers to excite toluene for tracking fuel distribution. The intensified camera system was operated at single crank-angle resolution at 2000 revolutions per minute (RPM) for 500 consecutive cycles. Through this work, it has been demonstrated that toluene and OH* can be imaged through the same optical setup while similar signal levels are obtained from both species, even at these high rates. The technique is useful for studying correlations between fuel distribution and subsequent ignition and flame propagation without the limitations of phase-averaging imaging approaches. This technique is illustrated for the effect of exhaust gas recirculation on combustion and will be useful for studies of misfire causes. Finally, a few general observations are presented as to the effect of preignition fuel distribution on subsequent combustion.

  20. REVIVING ABANDONED RESERVOIRS WITH HIGH-PRESSURE AIR INJECTION: APPLICATION IN A FRACTURED AND KARSTED DOLOMITE RESERVOIR

    Energy Technology Data Exchange (ETDEWEB)

    Robert Loucks; Steve Ruppel; Julia Gale; Jon Holder; Jon Olsen; Deanna Combs; Dhiraj Dembla; Leonel Gomez

    2003-06-01

    The Bureau of Economic Geology and Goldrus Producing Company have assembled a multidisciplinary team of geoscientists and engineers to evaluate the applicability of high-pressure air injection (HPAI) in revitalizing a nearly abandoned carbonate reservoir in the Permian Basin of West Texas. The characterization phase of the project is utilizing geoscientists and petroleum engineers from the bureau of Economic Geology and the Department of Petroleum Engineering (both at The University of Texas at Austin) to define the controls on fluid flow in the reservoir as a basis for developing a reservoir model. This model will be used to define a field deployment plant that Goldrus, a small independent oil company, will implement by drilling both vertical and horizontal wells during the demonstration phase of the project. Additional reservoir data are being gathered during the demonstration phase to improve the accuracy of the reservoir model. The results of the demonstration are being closely monitored to provide a basis for improving the design of the HPAI field deployment plan. The results of the reservoir characterization field demonstration and monitoring program will be documented and widely disseminated to facilitate adoption of this technology by oil operators in the Permian Basin and elsewhere in the US.