WorldWideScience

Sample records for high carrier concentration

  1. Carrier concentration induced ferromagnetism in semiconductors

    International Nuclear Information System (INIS)

    Story, T.

    2007-01-01

    In semiconductor spintronics the key materials issue concerns ferromagnetic semiconductors that would, in particular, permit an integration (in a single multilayer heterostructure) of standard electronic functions of semiconductors with magnetic memory function. Although classical semiconductor materials, such as Si or GaAs, are nonmagnetic, upon substitutional incorporation of magnetic ions (typically of a few atomic percents of Mn 2+ ions) and very heavy doping with conducting carriers (at the level of 10 20 - 10 21 cm -3 ) a ferromagnetic transition can be induced in such diluted magnetic semiconductors (also known as semimagnetic semiconductors). In the lecture the spectacular experimental observations of carrier concentration induced ferromagnetism will be discussed for three model semiconductor crystals. p - Ga 1-x Mn x As currently the most actively studied and most perspective ferromagnetic semiconductor of III-V group, in which ferromagnetism appears due to Mn ions providing both local magnetic moments and acting as acceptor centers. p - Sn 1-x Mn x Te and p - Ge 1-x Mn x Te classical diluted magnetic semiconductors of IV-VI group, in which paramagnet-ferromagnet and ferromagnet-spin glass transitions are found for very high hole concentration. n - Eu 1-x Gd x Te mixed magnetic crystals, in which the substitution of Gd 3+ ions for Eu 2+ ions creates very high electron concentration and transforms antiferromagnetic EuTe (insulating compound) into ferromagnetic n-type semiconductor alloy. For each of these materials systems the key physical features will be discussed concerning: local magnetic moments formation, magnetic phase diagram as a function of magnetic ions and carrier concentration as well as Curie temperature and magnetic anisotropy engineering. Various theoretical models proposed to explain the effect of carrier concentration induced ferromagnetism in semiconductors will be briefly discussed involving mean field approaches based on Zener and RKKY

  2. Hole traps associated with high-concentration residual carriers in p-type GaAsN grown by chemical beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Elleuch, Omar, E-mail: mr.omar.elleuch@gmail.com; Wang, Li; Lee, Kan-Hua; Demizu, Koshiro; Ikeda, Kazuma; Kojima, Nobuaki; Ohshita, Yoshio; Yamaguchi, Masafumi [Toyota Technological Institute, 2-12-1 Hisakata, Tempaku, Nagoya 468-8511 (Japan)

    2015-01-28

    The hole traps associated with high background doping in p-type GaAsN grown by chemical beam epitaxy are studied based on the changes of carrier concentration, junction capacitance, and hole traps properties due to the annealing. The carrier concentration was increased dramatically with annealing time, based on capacitance–voltage (C–V) measurement. In addition, the temperature dependence of the junction capacitance (C–T) was increased rapidly two times. Such behavior is explained by the thermal ionization of two acceptor states. These acceptors are the main cause of high background doping in the film, since the estimated carrier concentration from C–T results explains the measured carrier concentration at room temperature using C–V method. The acceptor states became shallower after annealing, and hence their structures are thermally unstable. Deep level transient spectroscopy (DLTS) showed that the HC2 hole trap was composed of two signals, labeled HC21 and HC22. These defects correspond to the acceptor levels, as their energy levels obtained from DLTS are similar to those deduced from C–T. The capture cross sections of HC21 and HC22 are larger than those of single acceptors. In addition, their energy levels and capture cross sections change in the same way due to the annealing. This tendency suggests that HC21 and HC22 signals originate from the same defect which acts as a double acceptor.

  3. Hole traps associated with high-concentration residual carriers in p-type GaAsN grown by chemical beam epitaxy

    International Nuclear Information System (INIS)

    Elleuch, Omar; Wang, Li; Lee, Kan-Hua; Demizu, Koshiro; Ikeda, Kazuma; Kojima, Nobuaki; Ohshita, Yoshio; Yamaguchi, Masafumi

    2015-01-01

    The hole traps associated with high background doping in p-type GaAsN grown by chemical beam epitaxy are studied based on the changes of carrier concentration, junction capacitance, and hole traps properties due to the annealing. The carrier concentration was increased dramatically with annealing time, based on capacitance–voltage (C–V) measurement. In addition, the temperature dependence of the junction capacitance (C–T) was increased rapidly two times. Such behavior is explained by the thermal ionization of two acceptor states. These acceptors are the main cause of high background doping in the film, since the estimated carrier concentration from C–T results explains the measured carrier concentration at room temperature using C–V method. The acceptor states became shallower after annealing, and hence their structures are thermally unstable. Deep level transient spectroscopy (DLTS) showed that the HC2 hole trap was composed of two signals, labeled HC21 and HC22. These defects correspond to the acceptor levels, as their energy levels obtained from DLTS are similar to those deduced from C–T. The capture cross sections of HC21 and HC22 are larger than those of single acceptors. In addition, their energy levels and capture cross sections change in the same way due to the annealing. This tendency suggests that HC21 and HC22 signals originate from the same defect which acts as a double acceptor

  4. Estimation of free carrier concentrations in high-quality heavily doped GaN:Si micro-rods by photoluminescence and Raman spectroscopy

    Science.gov (United States)

    Mohajerani, M. S.; Khachadorian, S.; Nenstiel, C.; Schimpke, T.; Avramescu, A.; Strassburg, M.; Hoffmann, A.; Waag, A.

    2016-03-01

    The controlled growth of highly n-doped GaN micro rods is one of the major challenges in the fabrication of recently developed three-dimensional (3D) core-shell light emitting diodes (LEDs). In such structures with a large active area, higher electrical conductivity is needed to achieve higher current density. In this contribution, we introduce high quality heavily-doped GaN:Si micro-rods which are key elements of the newly developed 3D core-shell LEDs. These structures were grown by metal-organic vapor phase epitaxy (MOVPE) using selective area growth (SAG). We employed spatially resolved micro-Raman and micro-photoluminescence (PL) in order to directly determine a free-carrier concentration profile in individual GaN micro-rods. By Raman spectroscopy, we analyze the low-frequency branch of the longitudinal optical (LO)-phonon-plasmon coupled modes and estimate free carrier concentrations from ≍ 2.4 × 1019 cm-3 up to ≍ 1.5 × 1020 cm-3. Furthermore, free carrier concentrations are determined by estimating Fermi energy level from the near band edge emission measured by low-temperature PL. The results from both methods reveal a good consistency.

  5. Interplay between hopping and band transport in high-mobility disordered semiconductors at large carrier concentrations: The case of the amorphous oxide InGaZnO

    Science.gov (United States)

    Fishchuk, I. I.; Kadashchuk, A.; Bhoolokam, A.; de Jamblinne de Meux, A.; Pourtois, G.; Gavrilyuk, M. M.; Köhler, A.; Bässler, H.; Heremans, P.; Genoe, J.

    2016-05-01

    We suggest an analytic theory based on the effective medium approximation (EMA) which is able to describe charge-carrier transport in a disordered semiconductor with a significant degree of degeneration realized at high carrier concentrations, especially relevant in some thin-film transistors (TFTs), when the Fermi level is very close to the conduction-band edge. The EMA model is based on special averaging of the Fermi-Dirac carrier distributions using a suitably normalized cumulative density-of-state distribution that includes both delocalized states and the localized states. The principal advantage of the present model is its ability to describe universally effective drift and Hall mobility in heterogeneous materials as a function of disorder, temperature, and carrier concentration within the same theoretical formalism. It also bridges a gap between hopping and bandlike transport in an energetically heterogeneous system. The key assumption of the model is that the charge carriers move through delocalized states and that, in addition to the tail of the localized states, the disorder can give rise to spatial energy variation of the transport-band edge being described by a Gaussian distribution. It can explain a puzzling observation of activated and carrier-concentration-dependent Hall mobility in a disordered system featuring an ideal Hall effect. The present model has been successfully applied to describe experimental results on the charge transport measured in an amorphous oxide semiconductor, In-Ga-Zn-O (a-IGZO). In particular, the model reproduces well both the conventional Meyer-Neldel (MN) compensation behavior for the charge-carrier mobility and inverse-MN effect for the conductivity observed in the same a-IGZO TFT. The model was further supported by ab initio calculations revealing that the amorphization of IGZO gives rise to variation of the conduction-band edge rather than to the creation of localized states. The obtained changes agree with the one we

  6. Carrier concentration effects on radiation damage in InP

    International Nuclear Information System (INIS)

    Yamaguchi, M.; Ando, K.; Uemura, C.

    1984-01-01

    Minority carrier diffusion length and carrier concentration studies have been made on room-temperature 1-MeV electron irradiated liquid-encapsulated Czochralski grown Zn-doped p-InP. The damage rate for the diffusion length and carrier removal rate due to irradiation have been found to strongly decrease with an increase in the carrier concentration in InP. These phenomena suggest that the induced defects interact with impurities in InP. A preliminary study on the annealing behavior has also been performed

  7. Limitations of high dose carrier based formulations.

    Science.gov (United States)

    Yeung, Stewart; Traini, Daniela; Tweedie, Alan; Lewis, David; Church, Tanya; Young, Paul M

    2018-06-10

    This study was performed to investigate how increasing the active pharmaceutical ingredient (API) content within a formulation affects the dispersion of particles and the aerosol performance efficiency of a carrier based dry powder inhalable (DPI) formulation, using a custom dry powder inhaler (DPI) development rig. Five formulations with varying concentrations of API beclomethasone dipropionate (BDP) between 1% and 30% (w/w) were formulated as a multi-component carrier system containing coarse lactose and fine lactose with magnesium stearate. The morphology of the formulation and each component were investigated using scanning electron micrographs while the particle size was measured by laser diffraction. The aerosol performance, in terms of aerodynamic diameter, was assessed using the British pharmacopeia Apparatus E cascade impactor (Next generation impactor). Chemical analysis of the API was observed by high performance liquid chromatography (HPLC). Increasing the concentration of BDP in the blend resulted in increasing numbers and size of individual agglomerates and densely packed BDP multi-layers on the surface of the lactose carrier. BDP present within the multi-layer did not disperse as individual primary particles but as dense agglomerates, which led to a decrease in aerosol performance and increased percentage of BDP deposition within the Apparatus E induction port and pre-separator. As the BDP concentration in the blends increases, aerosol performance of the formulation decreases, in an inversely proportional manner. Concurrently, the percentage of API deposition in the induction port and pre-separator could also be linked to the amount of micronized particles (BDP and Micronized composite carrier) present in the formulation. The effect of such dose increase on the behaviour of aerosol dispersion was investigated to gain greater insight in the development and optimisation of higher dosed carrier-based formulations. Copyright © 2018 Elsevier B.V. All

  8. Effect of interlayer tunneling on the electronic structure of bilayer cuprates and quantum phase transitions in carrier concentration and high magnetic field

    International Nuclear Information System (INIS)

    Ovchinnikov, S. G.; Makarov, I. A.; Shneyder, E. I.

    2011-01-01

    We present a theoretical study of the electronic structure of bilayer HTSC cuprates and its evolution under doping and in a high magnetic field. Analysis is based on the t-t′-t″-J* model in the generalized Hartree-Fock approximation. Possibility of tunneling between CuO2 layers is taken into account in the form of a nonzero integral of hopping between the orbitals of adjacent planes and is included in the scheme of the cluster form of perturbation theory. The main effect of the coupling between two CuO 2 layers in a unit cell is the bilayer splitting manifested in the presence of antibonding and bonding bands formed by a combination of identical bands of the layers themselves. A change in the doping level induces reconstruction of the band structure and the Fermi surface, which gives rise to a number of quantum phase transitions. A high external magnetic field leads to a fundamentally different form of electronic structure. Quantum phase transitions in the field are observed not only under doping, but also upon a variation of the field magnitude. Because of tunneling between the layers, quantum transitions are also split; as a result, a more complex sequence of the Lifshitz transitions than in single-layer structures is observed.

  9. High capacity carrier ethernet transport networks

    DEFF Research Database (Denmark)

    Rasmussen, Anders; Zhang, Jiang; Yu, Hao

    2009-01-01

    OAM functions, survivability and the increased bandwidth requirements of carrier class systems. This article provides an overview of PBB-TE and T-MPLS and demonstrates how IPTV services can be realized in the framework of Carrier Ethernet. In addition we provide a case study on performing bit error...

  10. Segregation of chlorine in n-type tin monosulfide ceramics: Actual chlorine concentration for carrier-type conversion

    Science.gov (United States)

    Iguchi, Yuki; Sugiyama, Taiki; Inoue, Kazutoshi; Yanagi, Hiroshi

    2018-05-01

    Tin monosulfide (SnS) is an attractive material for photovoltaic cells because of its suitable band-gap energy, high absorption coefficient, and non-toxic and abundant constituent elements. The primary drawback of this material is the lack of n-type SnS. We recently demonstrated n-type SnS by doping with Cl. However, the Cl-doped n-type SnS bulk ceramics exhibited an odd behavior in which carrier-type conversion but not electron carrier concentration depended on the Cl concentration. In this study, the electron probe microanalysis (EPMA) elemental mapping of Cl-doped SnS revealed continuous homogeneous regions with a relatively low Cl concentration along with the islands of high Cl concentration in which Sn/S is far from unity. The difference between the Cl concentration in the homogeneous region (determined by EPMA) and the bulk Cl concentration (determined by wavelength-dispersive X-ray fluorescence spectroscopy) increased with the increasing Cl doping amount. The carrier concentration and the Hall coefficient clearly depended on the Cl concentration in the homogeneous region. Carrier-type conversion was observed at the Cl concentration of 0.26 at. % (in the homogeneous region).

  11. Electrical and thermal transport properties of Y bxCo4Sb12 filled skutterudites with ultrahigh carrier concentrations

    Directory of Open Access Journals (Sweden)

    Yulong Li

    2015-11-01

    Full Text Available For filled skutterudites, element Yb is one of the most common and important fillers. However, the optimal carrier concentration range in Y bxCo4Sb12 filled skutterudites has not been determined as a result of the low Yb filling fraction limit. In this study, a non-equilibrium fabrication process (MS-SPS process, consisting of a melt-spinning method and a spark plasma sintering technique, has been applied to prepare Y bxCo4Sb12 samples. The Yb filling fraction is successfully extended to 0.35, which provides the possibility to clarify the optimal carrier concentration range for Yb-filled skutterudites. High carrier concentrations, with a maximum of around 1 × 1021 cm−3, were achieved in the MS-SPS Y bxCo4Sb12 samples due to the significantly enhanced Yb filling fractions. The phase compositions, lattice parameters, electrical and thermal transport properties of the MS-SPS Y bxCo4Sb12 samples with high carrier concentrations were systematically investigated. An optimal carrier concentration range of around 5 ∼ 6 × 1020 cm−3, corresponding to the actual Yb filling fraction of around 0.21∼0.26, has been determined, which displays the highest thermoelectric performance in Y bxCo4Sb12 thermoelectric materials.

  12. Highly concentrating Fresnel lenses

    International Nuclear Information System (INIS)

    Kritchman, E.M.; Friesem, A.A.; Yekutieli, G.

    1979-01-01

    A new type of concave Fresnel lens capable of concentrating solar radiation very near the ultimate concentration limit is considered. The differential equations that describe the lens are solved to provide computed solutions which are then checked by ray tracing techniques. The performance (efficiency and concentration) of the lens is investigated and compared to that of a flat Fresnel lens, showing that the new lens is preferable for concentrating solar radiation. (author)

  13. Effect of phosphorus dopant concentration on the carrier mobility in ...

    African Journals Online (AJOL)

    This study investigated the effect of phosphorus dopant concentration on mobility of crystalline silicon (c-Si). It considers different temperature ranges, from 100 K to 500 K, and dopant concentration from 1012 cm-3 to 1020 cm-3 in relation to its effect on the mobility of the crystalline silicon. This study indicates that the ...

  14. Simplified 2DEG carrier concentration model for composite barrier AlGaN/GaN HEMT

    International Nuclear Information System (INIS)

    Das, Palash; Biswas, Dhrubes

    2014-01-01

    The self consistent solution of Schrodinger and Poisson equations is used along with the total charge depletion model and applied with a novel approach of composite AlGaN barrier based HEMT heterostructure. The solution leaded to a completely new analytical model for Fermi energy level vs. 2DEG carrier concentration. This was eventually used to demonstrate a new analytical model for the temperature dependent 2DEG carrier concentration in AlGaN/GaN HEMT

  15. Concentration dependent carriers dynamics in CsPbBr3 perovskite nanocrystals film with transient grating

    Science.gov (United States)

    Wang, Yinghui; Wang, Yanting; Dev Verma, Sachin; Tan, Mingrui; Liu, Qinghui; Yuan, Qilin; Sui, Ning; Kang, Zhihui; Zhou, Qiang; Zhang, Han-Zhuang

    2017-05-01

    The concentration dependence of the carrier dynamics is a key parameter to describe the photo-physical properties of semiconductor films. Here, we investigate the carrier dynamics in the CsPbBr3 perovskite nanocrystal film by employing the transient grating (TG) technique with continuous bias light. The concentration of initial carriers is determined by the average number of photons per nanocrystals induced by pump light (⟨N⟩). The multi-body interaction would appear and accelerate the TG dynamics with ⟨N⟩. When ⟨N⟩ is more than 3.0, the TG dynamics slightly changes, which implies that the Auger recombination would be the highest order multi-body interaction in carrier recombination dynamics. The concentration of non-equilibrium carriers in the film is controlled by the average number of photons per nanocrystals excited by continuous bias light (⟨nne⟩). Increasing ⟨nne⟩ would improve the trapping-detrapping process by filling the trapping state, which would accelerate the carrier diffusion and add the complexity of the mono-molecular recombination mechanism. The results should be useful to further understand the mechanism of carrier dynamics in the CsPbBr3 perovskite nanocrystal film and of great importance for the operation of the corresponding optoelectronic devices.

  16. Enhancing the performance of blue GaN-based light emitting diodes with carrier concentration adjusting layer

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Yao; Huang, Yang; Wang, Junxi; Wang, Guohong [R& D Center for Semiconductor Lighting, Chinese Academy of Sciences, Beijing 100083,P. R. China (China); Liu, Zhiqiang, E-mail: lzq@semi.ac.cn, E-mail: spring@semi.ac.cn; Yi, Xiaoyan, E-mail: lzq@semi.ac.cn, E-mail: spring@semi.ac.cn; Li, Jinmin [R& D Center for Semiconductor Lighting, Chinese Academy of Sciences, Beijing 100083,P. R. China (China); State Key Laboratory of Solid State Lighting, Beijing 100083 (China); Beijing Engineering Research Center for the 3rd Generation Semiconductor Materials and Application, Beijing 100083 (China)

    2016-03-15

    In this work, a novel carrier concentration adjusting insertion layer for InGaN/GaN multiple quantum wells light-emitting diodes was proposed to mitigate the efficiency droop and improve optical output properties at high current density. The band diagrams and carrier distributions were investigated numerically and experimentally. The results indicate that due to the newly formed electron barrier and the adjusted built-in field near the active region, the hole injection has been improved and a better radiative recombination can be achieved. Compared to the conventional LED, the light output power of our new structure with the carrier concentration adjusting layers is enhanced by 127% at 350 mA , while the efficiency only droops to be 88.2% of its peak efficiency.

  17. Effects of carrier concentrations on the charge transport properties in monolayer silicene

    International Nuclear Information System (INIS)

    Abidin, B I; Yeoh, K H; Yong, T K; Ong, D S

    2017-01-01

    Using analytical band Monte Carlo approach, we have carried out a systematic study on the effects of carrier concentrations on the steady-state and transient electron transports that occur within a monolayer silicene. In particular, we have observed the following: First at steady-state, the electron mobility reduces with higher carrier concentrations. Secondly, in the transient regime we found that the drift velocity overshoot can be controlled by varying the carrier concentrations. We uncover that at carrier concentration of 1  ×  10 13 cm −2 , the drift velocity overshoot can reach up to 3.8  ×  10 7 cm s −1 which is close to the steady-state drift velocity saturation of graphene. Thirdly, the distance of the velocity over shoot can be further extended with higher carrier concentrations. Our findings could be useful and can be used as benchmark for future development of nanoscale silicene based devices. (paper)

  18. Enhancement of thermoelectric properties of Mg2Si compounds with Bi doping through carrier concentration tuning

    Science.gov (United States)

    Lee, Ji Eun; Cho, Sang-Hum; Oh, Min-Wook; Ryu, Byungi; Joo, Sung-Jae; Kim, Bong-Seo; Min, Bok-Ki; Lee, Hee-Woong; Park, Su-Dong

    2014-07-01

    The Bi-doped Mg2Si powder was fabricated with solid state reaction method and consolidated with hot pressing method and then its thermoelectric properties were investigated. The n-type transport properties were measured in all samples and temperature dependence of the electrical properties shows a behavior of degenerate semiconductors for Bi-doped samples. The electrical resistivity and the Seebeck coefficient were greatly reduced with Bi, which was mainly due to the increment of the carrier concentration. The samples have maximum carrier concentration of 8.2 × 1018 cm-3. The largest ZT value of 0.61 was achieve at 873 K for Mg2.04SiBi0.02. The Bi-doping was found to be an effective n-type dopant to adjust carrier concentration. [Figure not available: see fulltext.

  19. Study of carrier concentration in single InP nanowires by luminescence and Hall measurements

    International Nuclear Information System (INIS)

    Lindgren, David; Hultin, Olof; Heurlin, Magnus; Storm, Kristian; Borgström, Magnus T; Samuelson, Lars; Gustafsson, Anders

    2015-01-01

    The free electron carrier concentrations in single InP core–shell nanowires are determined by micro-photoluminescence, cathodoluminescence (CL) and Hall effect measurements. The results from luminescence measurements were obtained by solving the Fermi–Dirac integral, as well as by analyzing the peak full width at half maximum (FWHM). Furthermore, the platform used for Hall effect measurements, combined with spot mode CL spectroscopy, is used to determine the carrier concentrations at specific positions along single nanowires. The results obtained via luminescence measurements provide an accurate and rapid feedback technique for the epitaxial development of doping incorporation in nanowires. The technique has been employed on several series of samples in which growth parameters, such as V/III-ratio, temperature and dopant flows, were investigated in an optimization procedure. The correlation between the Hall effect and luminescence measurements for extracting the carrier concentration of different samples were in excellent agreement. (paper)

  20. Evaluation of local free carrier concentrations in individual heavily-doped GaN:Si micro-rods by micro-Raman spectroscopy

    Science.gov (United States)

    Mohajerani, M. S.; Khachadorian, S.; Schimpke, T.; Nenstiel, C.; Hartmann, J.; Ledig, J.; Avramescu, A.; Strassburg, M.; Hoffmann, A.; Waag, A.

    2016-02-01

    Three-dimensional III-nitride micro-structures are being developed as a promising candidate for the future opto-electrical devices. In this study, we demonstrate a quick and straight-forward method to locally evaluate free-carrier concentrations and a crystalline quality in individual GaN:Si micro-rods. By employing micro-Raman mapping and analyzing lower frequency branch of A1(LO)- and E1(LO)-phonon-plasmon-coupled modes (LPP-), the free carrier concentrations are determined in axial and planar configurations, respectively. Due to a gradual doping profile along the micro-rods, a highly spatially resolved mapping on the sidewall is exploited to reconstruct free carrier concentration profile along the GaN:Si micro-rods. Despite remarkably high free carrier concentrations above 1 × 1020 cm-3, the micro-rods reveal an excellent crystalline quality, without a doping-induced stress.

  1. Analyzing nitrogen concentration using carrier illumination (CI) technology for DPN ultra-thin gate oxide

    International Nuclear Information System (INIS)

    Li, W.S.; Wu, Bill; Fan, Aki; Kuo, C.W.; Segovia, M.; Kek, H.A.

    2005-01-01

    Nitrogen concentration in the gate oxide plays a key role for 90 nm and below ULSI technology. Techniques like secondary ionization mass spectroscopy (SIMS) and X-ray photoelectron spectroscopy (XPS) are commonly used for understanding N concentration. This paper describes the application of the carrier illuminationTM (CI) technique to measure the nitrogen concentration in ultra-thin gate oxides. A set of ultra-thin gate oxide wafers with different DPN (decoupled plasma nitridation) treatment conditions were measured using the CI technique. The CI signal has excellent correlation with the N concentration as measured by XPS

  2. Ultra flat ideal concentrators of high concentration

    Energy Technology Data Exchange (ETDEWEB)

    Chaves, Julio [IST, Physics Dept., Lisboa (Portugal); INETI-DER, Lisboa (Portugal); Collares-Pereira, Manuel [INETI-DER, Lisboa (Portugal)

    2000-07-01

    A new method for the design of nonimaging devices is presented. Its application to the design of ultra flat compact concentrators is analysed. These new concentrators are based on a combination of two stages: the first one is composed of a large number of small structures placed side by side and the second one is a very compact single device concentrating the radiation to the limit. These devices are ideal for 2D. These compact designs are much more compact than the traditional ones like lens-mirror combinations or parabolic primaries with nonimaging secondaries. Besides, they can be designed for any acceptance angle, while the traditional ones are limited to small acceptance angles. (Author)

  3. Variation of minority charge carrier lifetime in high-resistance p-type silicon under irradiation

    International Nuclear Information System (INIS)

    Basheleishvili, Z.V.; Garnyk, V.S.; Gorin, S.N.; Pagava, T.A.

    1984-01-01

    The minority carrier lifetime (tau) variation was studied in the process of p-type silicon bombardment with fast 8 MeV electrons. The irradiation and all measurements were carried out at room temperature. The tau quantity was measured by the photoconductivity attenuation method at a low injection level 20% measurement error; the resistivity was measured by the four-probe method (10% error). The resistivity and minority charge carrier lifetime tau are shown to increase with the exposure dose. It is supposed that as radiation dose increases, the rearrangement of the centres responsible for reducing the lifetime occurs and results in a tau increase in the material being irradiated, however the tau value observed in the original samples is not attained. The restoration of the minority carrier lifetime in p-type high-resistance silicon with a growing exposure dose might proceed due to reduction in the free carrier concentration

  4. Sorption of radioiodine at different soil biomass content and carrier iodine concentrations

    International Nuclear Information System (INIS)

    Bors, J.

    1990-01-01

    In previous experiments a good correlation between K d -values for I-125 and artificially decreased and increased biomass between 4% and 136% of its original content was found. Further increase of biomass was ineffective, indicating the exhaustion of the radioiodine as substrate, applied at very low concentrations (≅ 10 -11 mol I - .l -1 ). To test this assumption K d -values in soil samples of a chernozem with different biomass-levels and with carrier iodine (KI) at concentrations between 10 -8 and 10 -3 mol I - .l -1 were determined. The sorption behaviour of radioiodine at carrier concentrations between 10 -8 and 10 -5 mol I - .l -1 applied in bidistilled water in this experiment was similar. (orig./DG) [de

  5. High power terahertz induced carrier multiplication in Silicon

    DEFF Research Database (Denmark)

    Tarekegne, Abebe Tilahun; Pedersen, Pernille Klarskov; Iwaszczuk, Krzysztof

    2015-01-01

    The application of an intense THz field results a nonlinear transmission in high resistivity silicon. Upon increasing field strength, the transmission falls from 70% to 62% due to carrier generation through THz-induced impact ionization and subsequent absorption of the THz field by free electrons....

  6. Access to residual carrier concentration in ZnO nanowires by calibrated scanning spreading resistance microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Wang, L., E-mail: lin.wang@insa-lyon.fr; Brémond, G. [Institut des Nanotechnologies de Lyon (INL), Université de Lyon, CNRS UMR 5270, INSA Lyon, Bat. Blaise Pascal, 7 Avenue Jean Capelle, 69621 Villeurbanne (France); Chauveau, J. M. [Centre de Recherche sur l' Hétéro-Epitaxie et ses Applications (CRHEA), CNRS UPR10, rue Bernard Grégory 06560 Valbonne Sophia Antipolis (France); Physics Department, University of Nice Sophia Antipolis (UNS), Parc Valrose, 06103 Nice (France); Brenier, R. [Institut Lumière Matière (ILM), Université de Lyon, CNRS UMR 5306, Université Claude Bernard Lyon 1, 43 Boulevard du 11 Novembre 1918, 69622 Villeurbanne (France); Sallet, V.; Jomard, F.; Sartel, C. [Groupe d' Étude de la Matière Condensée (GEMaC), CNRS-Université de Versailles St Quentin en Yvelines, Université Paris-Saclay, 45 Avenue des Etats-Unis, 78035 Versailles (France)

    2016-03-28

    Scanning spreading resistance microscopy (SSRM) was performed on non-intentionally doped (nid) ZnO nanowires (NWs) grown by metal-organic chemical vapor deposition in order to measure their residual carrier concentration. For this purpose, an SSRM calibration profile has been developed on homoepitaxial ZnO:Ga multilayer staircase structures grown by molecular beam epitaxy. The Ga density measured by SIMS varies in the 1.7 × 10{sup 17 }cm{sup −3} to 3 × 10{sup 20 }cm{sup −3} range. From measurements on such Ga doped multi-layers, a monotonic decrease in SSRM resistance with increasing Ga density was established, indicating SSRM being a well-adapted technique for two dimensional dopant/carrier profiling on ZnO at nanoscale. Finally, relevant SSRM signal contrasts were detected on nid ZnO NWs, and the residual carrier concentration is estimated in the 1–3 × 10{sup 18 }cm{sup −3} range, in agreement with the result from four-probe measurements.

  7. High concentration agglomerate dynamics at high temperatures.

    Science.gov (United States)

    Heine, M C; Pratsinis, S E

    2006-11-21

    The dynamics of agglomerate aerosols are investigated at high solids concentrations that are typical in industrial scale manufacture of fine particles (precursor mole fraction larger than 10 mol %). In particular, formation and growth of fumed silica at such concentrations by chemical reaction, coagulation, and sintering is simulated at nonisothermal conditions and compared to limited experimental data and commercial product specifications. Using recent chemical kinetics for silica formation by SiCl4 hydrolysis and neglecting aerosol polydispersity, the evolution of the diameter of primary particles (specific surface area, SSA), hard- and soft-agglomerates, along with agglomerate effective volume fraction (volume occupied by agglomerate) is investigated. Classic Smoluchowski theory is fundamentally limited for description of soft-agglomerate Brownian coagulation at high solids concentrations. In fact, these high concentrations affect little the primary particle diameter (or SSA) but dominate the soft-agglomerate diameter, structure, and volume fraction, leading to gelation consistent with experimental data. This indicates that restructuring and fragmentation should affect product particle characteristics during high-temperature synthesis of nanostructured particles at high concentrations in aerosol flow reactors.

  8. Carrier concentration dependence of structural disorder in thermoelectric Sn1−xTe

    Directory of Open Access Journals (Sweden)

    Mattia Sist

    2016-09-01

    Full Text Available SnTe is a promising thermoelectric and topological insulator material. Here, the presumably simple rock salt crystal structure of SnTe is studied comprehensively by means of high-resolution synchrotron single-crystal and powder X-ray diffraction from 20 to 800 K. Two samples with different carrier concentrations (sample A = high, sample B = low have remarkably different atomic displacement parameters, especially at low temperatures. Both samples contain significant numbers of cation vacancies (1–2% and ordering of Sn vacancies possibly occurs on warming, as corroborated by the appearance of multiple phases and strain above 400 K. The possible presence of disorder and anharmonicity is investigated in view of the low thermal conductivity of SnTe. Refinement of anharmonic Gram–Charlier parameters reveals marginal anharmonicity for sample A, whereas sample B exhibits anharmonic effects even at low temperature. For both samples, no indications are found of a low-temperature rhombohedral phase. Maximum entropy method (MEM calculations are carried out, including nuclear-weighted X-ray MEM calculations (NXMEM. The atomic electron densities are spherical for sample A, whereas for sample B the Te electron density is elongated along the 〈100〉 direction, with the maximum being displaced from the lattice position at higher temperatures. Overall, the crystal structure of SnTe is found to be defective and sample-dependent, and therefore theoretical calculations of perfect rock salt structures are not expected to predict the properties of real materials.

  9. Determining the most effective concentration of cypermethrin and the appropriate carrier particle size for fire ant (Hymenoptera: Formicidae) bait.

    Science.gov (United States)

    Kafle, Lekhnath; Shih, Cheng-Jen

    2012-03-01

    The purpose of this study was to determine the most effective particle size of DDGS (distiller's dried grains with solubles) as fire ant bait carrier, as well as the most effective concentration of cypermethrin as a toxicant against the red imported fire ant (RIFA) Solenopsis invicta Buren under laboratory conditions. The DDGS particle size did not affect the fire ant's preference for the bait, but it did affect the mass of DDGS being carried back to the nest. The size of the DDGS particles and the mass of DDGS being carried back to the nest were positively correlated. The most efficient particle size of DDGS was 0.8-2 mm. The concentration of cypermethrin has a specific range for killing fire ants in an efficient manner. Neither a very low nor a very high concentration of cypermethrin was able to kill fire ants efficiently. The most effective concentration of cypermethrin was 0.13% in DDGS when mixed with 15% shrimp shell powders and 11% soybean oil. Based on its ability to kill fire ants when mixed with cypermethrin, as well as the advantage of having a larger area coverage when sprayed in the field, DDGS as the carrier and cypermethrin as the toxicant can be considered to be an efficient way to prepare fire ant bait for controlling fire ants in infested areas. Copyright © 2012 Society of Chemical Industry.

  10. High Dynamic Optimized Carrier Loop Improvement for Tracking Doppler Rates

    Directory of Open Access Journals (Sweden)

    Amirhossein Fereidountabar

    2015-01-01

    Full Text Available Mathematical analysis and optimization of a carrier tracking loop are presented. Due to fast changing of the carrier frequency in some satellite systems, such as Low Earth Orbit (LEO or Global Positioning System (GPS, or some planes like Unmanned Aerial Vehicles (UAVs, high dynamic tracking loops play a very important role. In this paper an optimized tracking loop consisting of a third-order Phase Locked Loop (PLL assisted by a second-order Frequency Locked Loop (FLL for UAVs is proposed and discussed. Based on this structure an optimal loop has been designed. The main advantages of this approach are the reduction of the computation complexity and smaller phase error. The paper shows the simulation results, comparing them with a previous work.

  11. CSF neurofilament light concentration is increased in presymptomatic CHMP2B mutation carriers

    DEFF Research Database (Denmark)

    Rostgaard, Nina; Roos, Peter; Portelius, Erik

    2018-01-01

    OBJECTIVE: A rare cause of familial frontotemporal dementia (FTD) is a mutation in the CHMP2B gene on chromosome 3 (FTD-3), described in a Danish family. Here we examine whether CSF biomarkers change in the preclinical phase of the disease. METHODS: In this cross-sectional explorative study, we...... analyzed CSF samples from 16 mutation carriers and 14 noncarriers from the Danish FTD-3 family. CSF biomarkers included total tau (t-tau) and neurofilament light chain (NfL) as a marker for neurodegeneration, phosphorylated tau (p-tau) as a marker for tau pathology, β-amyloid (Aβ) 38, 40, and 42 (Aβ38, Aβ......40, and Aβ42) to monitor Aβ metabolism, and YKL-40 as a marker of neuroinflammation. Aβ isoform concentrations were measured using a multiplexed immunoassay; t-tau, p-tau, NfL, and YKL-40 concentrations were measured using sandwich ELISAs. RESULTS: CSF NfL concentration was significantly increased...

  12. High mobility and high concentration Type-III heterojunction FET

    Science.gov (United States)

    Tsu, R.; Fiddy, M. A.; Her, T.

    2018-02-01

    The PN junction was introduced in transistors by doping, resulting in high losses due to Coulomb scattering from the dopants. The MOSFET introduced carriers in the form of electrons and holes with an applied bias to the oxide barrier, resulting in carrier transfer without doping. This avoids high scattering losses and dominates the IC industries. With heterojunctions having valence-band maxima near and even above the conduction-band minimum in the formation of Type-III superlattices, very useful devices, introduced by Tsu, Sai-Halacz, and Esaki, soon followed. If the layer thicknesses are more than the carrier mean-free-path, incoherent scattering results in the formation of carrier transfer via diffusion instead of opening up new energy gaps. The exploitation of carriers without scattering represents a new and significant opportunity in what we call a Broken Gap Heterojunction FET.

  13. Compensation of native donor doping in ScN: Carrier concentration control and p-type ScN

    Science.gov (United States)

    Saha, Bivas; Garbrecht, Magnus; Perez-Taborda, Jaime A.; Fawey, Mohammed H.; Koh, Yee Rui; Shakouri, Ali; Martin-Gonzalez, Marisol; Hultman, Lars; Sands, Timothy D.

    2017-06-01

    Scandium nitride (ScN) is an emerging indirect bandgap rocksalt semiconductor that has attracted significant attention in recent years for its potential applications in thermoelectric energy conversion devices, as a semiconducting component in epitaxial metal/semiconductor superlattices and as a substrate material for high quality GaN growth. Due to the presence of oxygen impurities and native defects such as nitrogen vacancies, sputter-deposited ScN thin-films are highly degenerate n-type semiconductors with carrier concentrations in the (1-6) × 1020 cm-3 range. In this letter, we show that magnesium nitride (MgxNy) acts as an efficient hole dopant in ScN and reduces the n-type carrier concentration, turning ScN into a p-type semiconductor at high doping levels. Employing a combination of high-resolution X-ray diffraction, transmission electron microscopy, and room temperature optical and temperature dependent electrical measurements, we demonstrate that p-type Sc1-xMgxN thin-film alloys (a) are substitutional solid solutions without MgxNy precipitation, phase segregation, or secondary phase formation within the studied compositional region, (b) exhibit a maximum hole-concentration of 2.2 × 1020 cm-3 and a hole mobility of 21 cm2/Vs, (c) do not show any defect states inside the direct gap of ScN, thus retaining their basic electronic structure, and (d) exhibit alloy scattering dominating hole conduction at high temperatures. These results demonstrate MgxNy doped p-type ScN and compare well with our previous reports on p-type ScN with manganese nitride (MnxNy) doping.

  14. HBsAg carrier status and the association between gestational diabetes with increased serum ferritin concentration in Chinese women.

    Science.gov (United States)

    Lao, Terence T; Tse, Ka-Yu; Chan, Louis Y; Tam, Kar-Fai; Ho, Lai-Fong

    2003-11-01

    To determine whether the high prevalence of hepatitis B surface antigen (HBsAg) carriage in our population can explain the previous observation of an association between increased maternal serum ferritin concentration and gestational diabetes in Hong Kong Chinese women. A retrospective study was performed on 767 nonanemic women with singleton pregnancy who had iron status assessed at 28-30 weeks. The result of the routine antenatal HBsAg screening was retrieved from patient records. The HBsAg-positive and -negative groups were compared for maternal characteristics, prevalence of gestational diabetes in the third trimester, prevalence of high serum ferritin and iron concentrations, and transferrin saturation, which is defined as a value in the highest quartile established by the measurements obtained from the HBsAg-negative group. The incidences of oral glucose tolerance test and gestational diabetes were significantly increased in the HBsAg-positive group. The HBsAg-positive women with gestational diabetes had significantly increased prevalence of high serum ferritin compared with the HBsAg-negative women, irrespective of the latter's gestational diabetes status. Multiple logistic regression analysis confirmed the independent association between HBsAg carrier status with gestational diabetes (relative risk 3.51, 95% CI 1.83-6.73) but excluded high ferritin as an independent factor. Our results indicate that maternal HBsAg carriage could explain in part the association between increased serum ferritin concentration with gestational diabetes in Hong Kong Chinese women, and that HBsAg carrier status is an independent risk factor for gestational diabetes.

  15. Characterization of cross-linked porous gelatin carriers and their interaction with corneal endothelium: biopolymer concentration effect.

    Directory of Open Access Journals (Sweden)

    Jui-Yang Lai

    Full Text Available Cell sheet-mediated tissue regeneration is a promising approach for corneal reconstruction. However, the fragility of bioengineered corneal endothelial cell (CEC monolayers allows us to take advantage of cross-linked porous gelatin hydrogels as cell sheet carriers for intraocular delivery. The aim of this study was to further investigate the effects of biopolymer concentrations (5-15 wt% on the characteristic and safety of hydrogel discs fabricated by a simple stirring process combined with freeze-drying method. Results of scanning electron microscopy, porosity measurements, and ninhydrin assays showed that, with increasing solid content, the pore size, porosity, and cross-linking index of carbodiimide treated samples significantly decreased from 508±30 to 292±42 µm, 59.8±1.1 to 33.2±1.9%, and 56.2±1.6 to 34.3±1.8%, respectively. The variation in biopolymer concentrations and degrees of cross-linking greatly affects the Young's modulus and swelling ratio of the gelatin carriers. Differential scanning calorimetry measurements and glucose permeation studies indicated that for the samples with a highest solid content, the highest pore wall thickness and the lowest fraction of mobile water may inhibit solute transport. When the biopolymer concentration is in the range of 5-10 wt%, the hydrogels have high freezable water content (0.89-0.93 and concentration of permeated glucose (591.3-615.5 µg/ml. These features are beneficial to the in vitro cultivation of CECs without limiting proliferation and changing expression of ion channel and pump genes such as ATP1A1, VDAC2, and AQP1. In vivo studies by analyzing the rabbit CEC morphology and count also demonstrate that the implanted gelatin discs with the highest solid content may cause unfavorable tissue-material interactions. It is concluded that the characteristics of cross-linked porous gelatin hydrogel carriers and their triggered biological responses are in relation to biopolymer

  16. Renewable carbohydrates are a potential high-density hydrogen carrier

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Y.-H. Percival [Biological Systems Engineering Department, 210-A Seitz Hall, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061 (United States); Institute for Critical Technology and Applied Sciences (ICTAS), Virginia Polytechnic Institute and State University, Blacksburg, VA 24061 (United States); DOE BioEnergy Science Center (BESC), Oak Ridge, TN 37831 (United States)

    2010-10-15

    The possibility of using renewable biomass carbohydrates as a potential high-density hydrogen carrier is discussed here. Gravimetric density of polysaccharides is 14.8 H{sub 2} mass% where water can be recycled from PEM fuel cells or 8.33% H{sub 2} mass% without water recycling; volumetric densities of polysaccharides are >100 kg of H{sup 2}/m{sup 3}. Renewable carbohydrates (e.g., cellulosic materials and starch) are less expensive based on GJ than are other hydrogen carriers, such as hydrocarbons, biodiesel, methanol, ethanol, and ammonia. Biotransformation of carbohydrates to hydrogen by cell-free synthetic (enzymatic) pathway biotransformation (SyPaB) has numerous advantages, such as high product yield (12 H{sub 2}/glucose unit), 100% selectivity, high energy conversion efficiency (122%, based on combustion energy), high-purity hydrogen generated, mild reaction conditions, low-cost of bioreactor, few safety concerns, and nearly no toxicity hazards. Although SyPaB may suffer from current low reaction rates, numerous approaches for accelerating hydrogen production rates are proposed and discussed. Potential applications of carbohydrate-based hydrogen/electricity generation would include hydrogen bioreactors, home-size electricity generators, sugar batteries for portable electronics, sugar-powered passenger vehicles, and so on. Developments in thermostable enzymes as standardized building blocks for cell-free SyPaB projects, use of stable and low-cost biomimetic NAD cofactors, and accelerating reaction rates are among the top research and development priorities. International collaborations are urgently needed to solve the above obstacles within a short time. (author)

  17. Influence of carrier concentration on the performance of CIAS solar cell

    Science.gov (United States)

    Patel, Kinjal; Ray, Jaymin

    2018-05-01

    Photovoltaic research has moved beyond the use of single crystalline materials such as Group IV elemental Si and Group III-V compounds like GaAs to much more complex compounds of the Group I-III-VI2 with chalcopyrite structure. The ternary ABC2 chalcopyrites (A=Cu; B=In, Ga or Al; C= S, Se or Te) form a large group of semiconducting materials with diverse structural and electrical properties. These materials are attractive for thin film photovoltaic application for a number of reasons. The bandgap of CuInSe2 is relatively low, 1.04 eV, but it can be adjusted to better match the solar spectrum either by substituting part of In by Ga or part of Se by S. Most reported and popular Cu(In,Ga)Se2 (CIGS) is one of its derivative. Efficiency of the CIGS devices with Eg >1.3 eV is reduced by the degradation of the electronic properties of the absorber leading to losses in the fill-factor and the open-circuit voltage. Alternatively, the performance can be improved by the addition of Al to form CuInAlSe2 (CIAS) absorber layers with an increase in the bandgap energy, which matches closely with the solar spectrum. In the present work an effort was made in the direction of improving the conversion efficiency by studying the influence of carrier concentration. SCAPS simulation program is used to simulate the CIAS structure numerically. The obtained results intended the significant variation in the values of conversion efficiency. Variation in the efficiency can be considered because of the relation optical absorption and carrier concentration. Observed highest efficiency is 10 %, which can be further improved by considering actual parameters of the device as well as the operating condition.

  18. Theoretical optimization of base doping concentration for radiation resistance of InGaP subcells of InGaP/GaAs/Ge based on minority-carrier lifetime

    International Nuclear Information System (INIS)

    Elfiky, Dalia; Yamaguchi, Masafumi; Sasaki, Takuo

    2010-01-01

    One of the fundamental objectives for research and development of space solar cells is to improve their radiation resistance. InGaP solar cells with low base carrier concentrations under low-energy proton irradiations have shown high radiation resistances. In this study, an analytical model for low-energy proton radiation damage to InGaP subcells based on a fundamental approach for radiative and nonradiative recombinations has been proposed. The radiation resistance of InGaP subcells as a function of base carrier concentration has been analyzed by using the radiative recombination lifetime and damage coefficient K for the minority-carrier lifetime of InGaP. Numerical analysis shows that an InGaP solar cell with a lower base carrier concentration is more radiation-resistant. Satisfactory agreements between analytical and experimental results have been obtained, and these results show the validity of the analytical procedure. The damage coefficients for minority-carrier diffusion length and carrier removal rate with low-energy proton irradiations have been observed to be dependent on carrier concentration through this study. As physical mechanisms behind the difference observed between the radiation-resistant properties of various base doping concentrations, two mechanisms, namely, the effect of a depletion layer as a carrier collection layer and generation of the impurity-related complex defects due to low-energy protons stopping within the active region, have been proposed. (author)

  19. Low-voltage and high-efficiency white organic light emitting devices with carrier balance

    International Nuclear Information System (INIS)

    Wei Fuxiang; Huang, Y.; Fang, L.

    2010-01-01

    White organic light emitting devices with the structure of ITO/m-MTDATA:x%4F-TCNQ/NPB/TBADN:EBDP:DCJTB/Bphen:Liq/LiF/Al have been demonstrated in this paper. High-mobility m-MTDATA:4F-TCNQ is added into the region between ITO and NBP to increase hole injection and transport. The high-mobility Bphen:Liq layer is added into the region between cathode and emission layers to lower cathode barrier and facilitate carrier injection. In the meanwhile, an effective carrier balance (number of holes is equal to number of electrons) between holes and electrons is considered to be one of the most important factors for improving OLEDs. During the experiment, by modulating the doping concentration of 4F-TCNQ, we can control hole injection and transport to make the carriers reach a high-level balance. The maximum current efficiency and power efficiency of devices were 9.3 cd/A and 4.6 lm/A, respectively.

  20. High-throughput bioscreening system utilizing high-performance affinity magnetic carriers exhibiting minimal non-specific protein binding

    International Nuclear Information System (INIS)

    Hanyu, Naohiro; Nishio, Kosuke; Hatakeyama, Mamoru; Yasuno, Hiroshi; Tanaka, Toshiyuki; Tada, Masaru; Nakagawa, Takashi; Sandhu, Adarsh; Abe, Masanori; Handa, Hiroshi

    2009-01-01

    For affinity purification of drug target protein we have developed magnetic carriers, narrow in size distribution (184±9 nm), which exhibit minimal non-specific binding of unwanted proteins. The carriers were highly dispersed in aqueous solutions and highly resistant to organic solvents, which enabled immobilization of various hydrophobic chemicals as probes on the carrier surfaces. Utilizing the carriers we have automated the process of separation and purification of the target proteins that had been done by manual operation previously.

  1. Nonlinear transport in semiconducting polymers at high carrier densities.

    Science.gov (United States)

    Yuen, Jonathan D; Menon, Reghu; Coates, Nelson E; Namdas, Ebinazar B; Cho, Shinuk; Hannahs, Scott T; Moses, Daniel; Heeger, Alan J

    2009-07-01

    Conducting and semiconducting polymers are important materials in the development of printed, flexible, large-area electronics such as flat-panel displays and photovoltaic cells. There has been rapid progress in developing conjugated polymers with high transport mobility required for high-performance field-effect transistors (FETs), beginning with mobilities around 10(-4) cm(2) V(-1) s(-1) to a recent report of 1 cm(2) V(-1) s(-1) for poly(2,5-bis(3-tetradecylthiophen-2-yl)thieno[3,2-b]thiophene) (PBTTT). Here, the electrical properties of PBTTT are studied at high charge densities both as the semiconductor layer in FETs and in electrochemically doped films to determine the transport mechanism. We show that data obtained using a wide range of parameters (temperature, gate-induced carrier density, source-drain voltage and doping level) scale onto the universal curve predicted for transport in the Luttinger liquid description of the one-dimensional 'metal'.

  2. Simultaneous enhancement of carrier mobility and concentration via tailoring of Al-chemical states in Al-ZnO thin films

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Manish, E-mail: manishk@skku.edu; Wen, Long; Sahu, Bibhuti B. [Center for Advance Plasma Surface Technology (CAPST), NU-SKKU Joint Institute for Plasma-Nano Materials (IPNM), School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon-440746 (Korea, Republic of); Han, Jeon Geon [Center for Advance Plasma Surface Technology (CAPST), NU-SKKU Joint Institute for Plasma-Nano Materials (IPNM), School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon-440746 (Korea, Republic of); Department of Industrial Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai-50200 (Thailand)

    2015-06-15

    Simultaneously achieving higher carriers concentration and mobility is a technical challenge against up-scaling the transparent-conductive performances of transparent-conductive oxides. Utilizing one order higher dense (∼1 × 10{sup 11} cm{sup −3}) plasmas (in comparison to the conventional direct current plasmas), highly c-axis oriented Al-doped ZnO films have been prepared with precise control over relative composition and chemical states of constituting elements. Tailoring of intrinsic (O vacancies) and extrinsic (ionic Al and zero-valent Al) dopants provide simultaneous enhancement in mobility and concentration of charge carriers. Room-temperature resistivity as low as 4.89 × 10{sup −4} Ω cm along the carrier concentration 5.6 × 10{sup 20} cm{sup −3} is obtained in 200 nm thick transparent films. Here, the control of atomic Al reduces the charge trapping at grain boundaries and subdues the effects of grain boundary scattering. A mechanism based on the correlation between electron-hole interaction and carrier mobility is proposed for degenerately doped wide band-gap semiconductors.

  3. Analytical procedure for experimental quantification of carrier concentration in semiconductor devices by using electric scanning probe microscopy

    International Nuclear Information System (INIS)

    Fujita, Takaya; Matsumura, Koji; Itoh, Hiroshi; Fujita, Daisuke

    2014-01-01

    Scanning capacitance microscopy (SCM) is based on a contact-mode variant of atomic force microscopy, which is used for imaging two-dimensional carrier (electrons and holes) distributions in semiconductor devices. We introduced a method of quantification of the carrier concentration by experimentally deduced calibration curves, which were prepared for semiconductor materials such as silicon and silicon carbide. The analytical procedure was circulated to research organizations in a round-robin test. The effectiveness of the method was confirmed for practical analysis and for what is expected for industrial pre-standardization from the viewpoint of comparability among users. It was also applied to other electric scanning probe microscopy techniques such as scanning spreading resistance microscopy and scanning nonlinear dielectric microscopy. Their depth profiles of carrier concentration were found to be in good agreement with those characterized by SCM. These results suggest that our proposed method will be compatible with future next-generation microscopy. (paper)

  4. A high resolution EELS study of free-carrier variations in H2+/H+ bombarded (100)GaAs

    International Nuclear Information System (INIS)

    Dubois, L.H.; Schwartz, G.P.

    1984-01-01

    High resolution electron energy loss spectroscopy (EELS) has been used to examine whether thermal recovery of the near-surface free-carrier concentration in Te-doped (100) GaAs is accomplished following low energy (250--1500 eV) hydrogen ion bombardment. For hydrogen ion impact energies below 500 eV, the nominal bulk free-carrier density is recovered by annealing at 725 K for 2 h. For comparable ion doses, the net free-carrier concentration decreases monotonically at higher impact energies under similar annealing conditions. The threshold for damage retention occurs close to the value of transmitted energy which is necessary to create either a Ga or an As interstitial point defect

  5. High school Tay-Sachs disease carrier screening: 5 to 11-year follow-up.

    Science.gov (United States)

    Curd, Helen; Lewis, Sharon; Macciocca, Ivan; Sahhar, Margaret; Petrou, Vicki; Bankier, Agnes; Lieberman, Sari; Levy-Lahad, Ephrat; Delatycki, Martin B

    2014-04-01

    The Melbourne high school Tay-Sachs disease (TSD) carrier screening program began in 1997. The aim of this study was to assess the outcomes of this screening program among those who had testing more than 5 years ago, to evaluate the long-term impact of screening. A questionnaire was used for data collection and consisted of validated scales and purposively designed questions. Questionnaires were sent to all carriers and two non-carriers for each carrier who were screened in the program between 1999 and 2005. Twenty-four out of 69 (34.8 %) carriers and 30/138 (21.7 %) non-carriers completed the questionnaire. Most participants (82 %) retained good knowledge of TSD and there was no evidence of a difference in knowledge between carriers and non-carriers. Most participants (83 %) were happy with the timing and setting of screening and thought that education and screening for TSD should be offered during high school. There was no difference between carriers and non-carriers in mean scores for the State Trait Anxiety Inventory and Decision Regret Scale. This evaluation indicated that 5-11 years post high school screening, those who were screened are supportive of the program and that negative consequences are rare.

  6. Fast pyrolysis of corn stovers with ceramic ball heat carriers in a novel dual concentric rotary cylinder reactor.

    Science.gov (United States)

    Fu, Peng; Bai, Xueyuan; Li, Zhihe; Yi, Weiming; Li, Yongjun; Zhang, Yuchun

    2018-05-09

    Fast pyrolysis of corn stovers with ceramic ball heat carriers in a dual concentric rotary cylinder reactor was studied to explore the product yields and characteristics in response to temperature. The reactor was confirmed to successfully scale up to a 25 kg/h pilot plant, with its performance being excellent. The highest bio-oil yield of 48.3 wt% at 500 °C was attained with the char and gas yields being 26.8 and 24.9 wt%. Phenols content was reduced from 22.3% to 18.9% when elevating temperature from 450 until 600 °C, with guaiacols and alkyl phenols being the predominant compounds, while ketones accounted for 15.8-23.0% and their content showed a continuous increase, with hydroxyacetone being the paramount ketonic one. Acetic acid was the dominant acidic compound with its peak content of 9.4% at 500 °C. The char characteristics in response to temperatures were determined for subsequent processing and high value-added utilization. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Analysis of thermoelectric properties of amorphous InGaZnO thin film by controlling carrier concentration

    Directory of Open Access Journals (Sweden)

    Yuta Fujimoto

    2015-09-01

    Full Text Available We have investigated the thermoelectric properties of amorphous InGaZnO (a-IGZO thin films optimized by adjusting the carrier concentration. The a-IGZO films were produced under various oxygen flow ratios. The Seebeck coefficient and the electrical conductivity were measured from 100 to 400 K. We found that the power factor (PF at 300 K had a maximum value of 82 × 10−6 W/mK2, where the carrier density was 7.7 × 1019 cm−3. Moreover, the obtained data was analyzed by fitting the percolation model. Theoretical analysis revealed that the Fermi level was located approximately above the potential barrier when the PF became maximal. The thermoelectric properties were controlled by the relationship between the position of Fermi level and the height of potential energy barriers.

  8. Characterization of high concentration dust generator

    International Nuclear Information System (INIS)

    Shimura, Toichiro; Yokochi, Akira

    1999-01-01

    This paper describes the development of fluidized bed type high concentration dust generator that keeps for long period dust concentration range of about 10 mg/m 3 for the study of working place monitoring system and evaluation of respirator. The generator is keeping constant powder in fluidized bed for keeping the dust concentration. It is necessary to keep constant feeding rate of powder in order to keep the quantity of dust in the fluidized bed. Our generator enables to obtain constant feeding rate by a screw feeder and by using mixed powder with fluidising particles (glass beads) before feeding. The generator produces high concentration dust of 11.3 mg/m 3 ± 1.0 mg/m 3 for about 5 hours and keeps the dust size 4.2-4.6 μm in mass median aerodynamic diameter with reasonable reproducibility. (author)

  9. Stress concentration effects in high pressure components

    International Nuclear Information System (INIS)

    Aller, J.E.

    1990-01-01

    This paper examines the stress concentration effects of sideholes in thick walled, high pressure cylinders. It has been shown that the theoretical stress concentration factor at the intersection of a small crossbore in a closed end, thick walled cylinder varies between 3.0 and 4.0. Tests have shown that this effect can be greatly reduced in practice by carefully radiusing the bore intersection and autofrettaging the cylinder. It has also been shown that the minimum stress concentration factor occurs when the main bore and sidehole or crossbore have the same diameter, and the radius of the intersection is approximately equal to the sidehole radius. When the bore and sidehole intersection angle decreases from 90 degrees, the stress concentration factor increases significantly. Knowledge of these fundamental relationships can be used in maintaining, as well ad designing, high pressure equipment

  10. Effect of dye-doped concentration on the charge carrier recombination in molecularly doped organic light-emitting devices

    Energy Technology Data Exchange (ETDEWEB)

    Chen Jiangshan; Ma Dongge [State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Graduate School of the Chinese Academy of Sciences, Changchun 130022 (China)

    2006-05-21

    The effect of the concentration of 4-(dicyanomethylene)-2-t-butyl-6- (1, 1, 7, 7-tetramethyljulolidyl-9-enyl)-4H-pyran (DCJTB) as dopant in tris(8-hydroxyquinoline) aluminium (Alq{sub 3}) on the charge carrier recombination was studied by transient electroluminescence (EL). The electron-hole recombination coefficient ({gamma}) was determined from the long-time component of the temporal decay of the EL intensity after a rectangular voltage pulse was turned off. It was found that the coefficient monotonically decreased with an increase in the DCJTB-doping concentration. The monotonic decrease is attributed to concentration quenching on the excitons and coincided well with the reduction of the EL efficiency.

  11. Characterization of naproxen-loaded solid SMEDDSs prepared by spray drying: the effect of the polysaccharide carrier and naproxen concentration.

    Science.gov (United States)

    Čerpnjak, Katja; Zvonar, Alenka; Vrečer, Franc; Gašperlin, Mirjana

    2015-05-15

    The purpose of this study was to prepare solid SMEDDS (sSMEDDS) particles produced by spray-drying using maltodextrin (MD), hypromellose (HPMC), and a combination of the two as a solid carrier. Naproxen (NPX) as the model drug was dissolved (at 6% concentration) or partially suspended (at 18% concentration) in a liquid SMEDDS composed of Miglyol(®) 812, Peceol™, Gelucire(®) 44/14, and Solutol(®) HS 15. Among the sSMEDDSs tested, the MD-based sSMEDDSs (with a granular, smooth-surfaced, microspherical appearance) preserved the self-microemulsifying properties of liquid SMEDDSs and exhibited dissolution profiles similar to those of liquid SMEDDSs, irrespective of the concentration of NPX. In contrast, HPMC-based sSMEDDSs (irregular-shaped microparticles) exhibited slightly prolonged release times due to the polymeric nature of the carrier. Differential scanning calorimetry (DSC), X-ray powder diffraction (XRPD), and Raman mapping analysis confirmed molecularly dissolved NPX (at 6% of drug loading), whereas at 18% NPX loading drug is partially molecularly dissolved and partially in the crystalline state. Copyright © 2015. Published by Elsevier B.V.

  12. Variation of carrier concentration and interface trap density in 8MeV electron irradiated c-Si solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Bhat, Sathyanarayana, E-mail: asharao76@gmail.com; Rao, Asha, E-mail: asharao76@gmail.com [Department of Physics, Mangalore Institute of Technology and Engineering, Moodabidri, Mangalore-574225 (India); Krishnan, Sheeja [Department of Physics, Sri Devi Institute of Technology, Kenjar, Mangalore-574142 (India); Sanjeev, Ganesh [Microtron Centre, Department of Physics, Mangalore University, Mangalagangothri-574199 (India); Suresh, E. P. [Solar Panel Division, ISRO Satellite Centre, Bangalore-560017 (India)

    2014-04-24

    The capacitance and conductance measurements were carried out for c-Si solar cells, irradiated with 8 MeV electrons with doses ranging from 5kGy – 100kGy in order to investigate the anomalous degradation of the cells in the radiation harsh environments. Capacitance – Voltage measurements indicate that there is a slight reduction in the carrier concentration upon electron irradiation due to the creation of radiation induced defects. The conductance measurement results reveal that the interface state densities and the trap time constant increases with electron dose due to displacement damages in c-Si solar cells.

  13. P-GaN/ZnO nanorod heterojunction LEDs—effect of carrier concentration in p-GaN

    Science.gov (United States)

    Ng, A. M. C.; Chen, X. Y.; Fang, F.; Djurišić, A. B.; Chan, W. K.; Cheah, K. W.

    2011-12-01

    We studied the effect of carrier concentration in p-GaN substrate on the performance of p-GaN/n-ZnO nanorod heterojunction LEDs. ZnO nanorods were electrodeposited on commercial p-GaN wafers in a two electrode system from aqueous solutions of zinc nitrate and hexamethylenetetramine. The morphology and optical properties of ZnO nanorods were studied using photoluminescence and electron microscopy, and the LED device performance was studied by electroluminescence (EL) and I-V measurements.

  14. Measurements of hydrogen concentration in liquid sodium by using an inert gas carrier method

    International Nuclear Information System (INIS)

    Funada, T.; Nihei, I.; Yuhara, S.; Nakasuji, T.

    1979-01-01

    A technique was developed to measure the hydrogen level in liquid sodium using an inert gas carrier method. Hydrogen was extracted into an inert gas from sodium through a thin nickel membrane in the form of a helically wound tube. The amount of hydrogen in the inert gas was analyzed by gas chromatography. The present method is unique in that it can be used over the wide range of sodium temperatures (150 to 700 0 C) and has no problems associated with vacuum systems. The partial pressure of hydrogen in sodium was determined as a function of cold-trap temperature (T/sub c/). Sieverts' constant (K/sub s/) was determined as a function of sodium temperature (T). From Sieverts' constant, the solubility of hydrogen in sodium is calculated. It was found that other impurities in sodium, such as (O) and (OH), have little effect on the hydrogen pressure in the sodium loop

  15. Cellulase Inhibition by High Concentrations of Monosaccharides

    DEFF Research Database (Denmark)

    Hsieh, Chia-Wen; Cannella, David; Jørgensen, Henning

    2014-01-01

    Biological degradation of biomass on an industrial scale culminates in high concentrations of end products. It is known that the accumulation of glucose and cellobiose, end products of hydrolysis, inhibit cellulases and decrease glucose yields. Aside from these end products, however, other monosa...

  16. Negative BOLD response and serotonin concentration within rostral subgenual portion of the anterior cingulate cortex for long-allele carriers during perceptual processing of emotional tasks

    Science.gov (United States)

    Hadi, Shamil M.; Siadat, Mohamad R.; Babajani-Feremi, Abbas

    2012-03-01

    We investigated the effect of synaptic serotonin concentration on hemodynamic responses. The stimuli paradigm involved the presentation of fearful and threatening facial expressions to a set of 24 subjects who were either5HTTLPR long- or short-allele carriers (12 of each type in each group). The BOLD signals of the rACC from subjects of each group were averaged to increase the signal-to-noise ratio. We used a Bayesian approach to estimate the parameters of the underlying hemodynamic model. Our results, during this perceptual processing of emotional task, showed a negative BOLD signal in the rACC in the subjects with long-alleles. In contrast, the subjects with short-alleles showed positive BOLD signals in the rACC. These results suggest that high synaptic serotonin concentration in the rACC inhibits neuronal activity in a fashion similar to GABA, and a consequent negative BOLD signal ensues.

  17. Unveiling the Structural Origin of the High Carrier Mobility of a Molecular Monolayer on Boron Nitride

    OpenAIRE

    Xu, Rui; He, Daowei; Zhang, Yuhan; Wu, Bing; Liu, Fengyuan; Meng, Lan; Liu, Jun-Fang; Wu, Qisheng; Shi, Yi; Wang, Jinlan; Nie, Jia-Cai; Wang, Xinran; He, Lin

    2014-01-01

    Very recently, it was demonstrated that the carrier mobility of a molecular monolayer dioctylbenzothienobenzothiophene (C8-BTBT) on boron nitride can reach 10 cm2/Vs, the highest among the previously reported monolayer molecular field-effect transistors. Here we show that the high-quality single crystal of the C8-BTBT monolayer may be the key origin of the record-high carrier mobility. We discover that the C8-BTBT molecules prefer layer-by-layer growth on both hexagonal boron nitride and grap...

  18. Deep vs shallow nature of oxygen vacancies and consequent n -type carrier concentrations in transparent conducting oxides

    Science.gov (United States)

    Buckeridge, J.; Catlow, C. R. A.; Farrow, M. R.; Logsdail, A. J.; Scanlon, D. O.; Keal, T. W.; Sherwood, P.; Woodley, S. M.; Sokol, A. A.; Walsh, A.

    2018-05-01

    The source of n -type conductivity in undoped transparent conducting oxides has been a topic of debate for several decades. The point defect of most interest in this respect is the oxygen vacancy, but there are many conflicting reports on the shallow versus deep nature of its related electronic states. Here, using a hybrid quantum mechanical/molecular mechanical embedded cluster approach, we have computed formation and ionization energies of oxygen vacancies in three representative transparent conducting oxides: In2O3 ,SnO2, and ZnO. We find that, in all three systems, oxygen vacancies form well-localized, compact donors. We demonstrate, however, that such compactness does not preclude the possibility of these states being shallow in nature, by considering the energetic balance between the vacancy binding electrons that are in localized orbitals or in effective-mass-like diffuse orbitals. Our results show that, thermodynamically, oxygen vacancies in bulk In2O3 introduce states above the conduction band minimum that contribute significantly to the observed conductivity properties of undoped samples. For ZnO and SnO2, the states are deep, and our calculated ionization energies agree well with thermochemical and optical experiments. Our computed equilibrium defect and carrier concentrations, however, demonstrate that these deep states may nevertheless lead to significant intrinsic n -type conductivity under reducing conditions at elevated temperatures. Our study indicates the importance of oxygen vacancies in relation to intrinsic carrier concentrations not only in In2O3 , but also in SnO2 and ZnO.

  19. High accuracy positioning using carrier-phases with the opensource GPSTK software

    OpenAIRE

    Salazar Hernández, Dagoberto José; Hernández Pajares, Manuel; Juan Zornoza, José Miguel; Sanz Subirana, Jaume

    2008-01-01

    The objective of this work is to show how using a proper GNSS data management strategy, combined with the flexibility provided by the open source "GPS Toolkit" (GPSTk), it is possible to easily develop both simple code-based processing strategies as well as basic high accuracy carrier-phase positioning techniques like Precise Point Positioning (PPP

  20. Hall mobility of free charge carriers in highly compensated p-Germanium

    International Nuclear Information System (INIS)

    Gavrilyuk, V.Yi.; Kirnas, Yi.G.; Balakyin, V.D.

    2000-01-01

    Hall mobility of free charge carriers in initial detectors Ge (Ga) is studied. It is established that an increase in the compensation factor results in the enlargement of Hall mobility in germanium highly compensated by introduction of Li ions during their drift in an electrical field

  1. Diverse microbial species survive high ammonia concentrations

    Science.gov (United States)

    Kelly, Laura C.; Cockell, Charles S.; Summers, Stephen

    2012-04-01

    Planetary protection regulations are in place to control the contamination of planets and moons with terrestrial micro-organisms in order to avoid jeopardizing future scientific investigations relating to the search for life. One environmental chemical factor of relevance in extraterrestrial environments, specifically in the moons of the outer solar system, is ammonia (NH3). Ammonia is known to be highly toxic to micro-organisms and may disrupt proton motive force, interfere with cellular redox reactions or cause an increase of cell pH. To test the survival potential of terrestrial micro-organisms exposed to such cold, ammonia-rich environments, and to judge whether current planetary protection regulations are sufficient, soil samples were exposed to concentrations of NH3 from 5 to 35% (v/v) at -80°C and room temperature for periods up to 11 months. Following exposure to 35% NH3, diverse spore-forming taxa survived, including representatives of the Firmicutes (Bacillus, Sporosarcina, Viridibacillus, Paenibacillus, Staphylococcus and Brevibacillus) and Actinobacteria (Streptomyces). Non-spore forming organisms also survived, including Proteobacteria (Pseudomonas) and Actinobacteria (Arthrobacter) that are known to have environmentally resistant resting states. Clostridium spp. were isolated from the exposed soil under anaerobic culture. High NH3 was shown to cause a reduction in viability of spores over time, but spore morphology was not visibly altered. In addition to its implications for planetary protection, these data show that a large number of bacteria, potentially including spore-forming pathogens, but also environmentally resistant non-spore-formers, can survive high ammonia concentrations.

  2. Influence of the Compositional Grading on Concentration of Majority Charge Carriers in Near-Surface Layers of n(p)-HgCdTe Grown by Molecular Beam Epitaxy

    Science.gov (United States)

    Voitsekhovskii, A. V.; Nesmelov, S. N.; Dzyadukh, S. M.

    2018-02-01

    The capacitive characteristics of metal-insulator-semiconductor (MIS) structures based on the compositionally graded Hg1-xCdxTe created by molecular beam epitaxy have been experimentally investigated in a wide temperature range (8-77 K). A program has been developed for numerical simulation of ideal capacitance-voltage (C-V) characteristics in the low-frequency and high-frequency approximations. The concentrations of the majority carriers in the near-surface semiconductor layer are determined from the values of the capacitances in the minima of low-frequency C-V curves. For MIS structures based on p-Hg1-xCdxTe, the effect of the presence of the compositionally graded layer on the hole concentration in the near-surface semiconductor layer, determined from capacitive measurements, has not been established. Perhaps this is due to the fact that the concentration of holes in the near-surface layer largely depends on the type of dielectric coating and the regimes of its application. For MIS structures based on n-Hg1-x Cd x Te (x = 0.22-0.23) without a graded-gap layer, the electron concentration determined by the proposed method is close to the average concentration determined by the Hall measurements. The electron concentration in the near-surface semiconductor layer of the compositionally graded n-Hg1-x Cd x Te (x = 0.22-0.23) found from the minimum capacitance value is much higher than the average electron concentration determined by the Hall measurements. The results are qualitatively explained by the creation of additional intrinsic donor-type defects in the near-surface compositionally graded layer of n-Hg1-x Cd x Te.

  3. High-efficiency concentrator silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Sinton, R.A.; Cuevas, A.; King, R.R.; Swanson, R.M. (Stanford Univ., CA (USA). Solid-State Electronics Lab.)

    1990-11-01

    This report presents results from extensive process development in high-efficiency Si solar cells. An advanced design for a 1.56-cm{sup 2} cell with front grids achieved 26% efficiency at 90 suns. This is especially significant since this cell does not require a prismatic cover glass. New designs for simplified backside-contact solar cells were advanced from a status of near-nonfunctionality to demonstrated 21--22% for one-sun cells in sizes up to 37.5 cm{sup 2}. An efficiency of 26% was achieved for similar 0.64-cm{sup 2} concentrator cells at 150 suns. More fundamental work on dopant-diffused regions is also presented here. The recombination vs. various process and physical parameters was studied in detail for boron and phosphorous diffusions. Emitter-design studies based solidly upon these new data indicate the performance vs design parameters for a variety of the cases of most interest to solar cell designers. Extractions of p-type bandgap narrowing and the surface recombination for p- and n-type regions from these studies have a generality that extends beyond solar cells into basic device modeling. 68 refs., 50 figs.

  4. Field-effect measurements of mobility and carrier concentration of Cu2S colloidal quantum dot thin films after ligand exchange

    International Nuclear Information System (INIS)

    Brewer, Adam S.; Arnold, Michael S.

    2014-01-01

    Colloidal quantum dots (CQDs) of copper sulfide (Cu 2 S), an earth-abundant semiconductor, have a number of intriguing applications that require knowledge of their electrical properties. Depending on stoichiometry, mobility, and surface treatment, applications include photoabsorbers for solar cells, tunable plasmonics, and counter-electrodes for polysulfate electrolytes. However, there have not been any direct measurements of electrical properties in Cu 2 S CQD thin films. Here, we exchange as synthesized dodecanethiol ligands with short ethanedithiol or ethylenediamine ligands to form thin films of coupled Cu 2 S CQDs. The mobility and carrier concentration were found to vary by ligand treatment from 10 −5 cm 2 /Vs and 10 19 holes/cm 3 for ethanedithiol ligands to 10 −3 cm 2 /Vs and 10 20 holes/cm 3 for ethylenediamine. These results are consistent with the carrier concentrations inferred from sub-bandgap surface-plasmon-resonances measured by infrared spectroscopy. These results will be useful when designing Cu 2 S materials for future applications. - Highlights: • Colloidal Cu2S quantum dots were synthesized and characterized. • Ligand exchange was performed to alter the Cu2S nanocrystal properties. • Ligand exchange was studied using photoluminescence and infrared spectroscopy. • Field effect mobility and carrier concentration were directly measured. • Carrier concentration was compared to estimates from surface plasmon resonances

  5. Modulated phase matching and high-order harmonic enhancement mediated by the carrier-envelope phase

    International Nuclear Information System (INIS)

    Faccio, Daniele; Serrat, Carles; Cela, Jose M.; Farres, Albert; Di Trapani, Paolo; Biegert, Jens

    2010-01-01

    The process of high-order harmonic generation in gases is numerically investigated in the presence of a few-cycle pulsed-Bessel-beam pump, featuring a periodic modulation in the peak intensity due to large carrier-envelope-phase mismatch. A two-decade enhancement in the conversion efficiency is observed and interpreted as the consequence of a mechanism known as a nonlinearly induced modulation in the phase mismatch.

  6. The mitochondrial pyruvate carrier mediates high fat diet-induced increases in hepatic TCA cycle capacity

    OpenAIRE

    Rauckhorst, Adam J.; Gray, Lawrence R.; Sheldon, Ryan D.; Fu, Xiaorong; Pewa, Alvin D.; Feddersen, Charlotte R.; Dupuy, Adam J.; Gibson-Corley, Katherine N.; Cox, James E.; Burgess, Shawn C.; Taylor, Eric B.

    2017-01-01

    Objective: Excessive hepatic gluconeogenesis is a defining feature of type 2 diabetes (T2D). Most gluconeogenic flux is routed through mitochondria. The mitochondrial pyruvate carrier (MPC) transports pyruvate from the cytosol into the mitochondrial matrix, thereby gating pyruvate-driven gluconeogenesis. Disruption of the hepatocyte MPC attenuates hyperglycemia in mice during high fat diet (HFD)-induced obesity but exerts minimal effects on glycemia in normal chow diet (NCD)-fed conditions. T...

  7. High-flux solar concentration with imaging designs

    Energy Technology Data Exchange (ETDEWEB)

    Feuermann, D. [Ben-Gurion University of the Negev (Israel). Jacob Blaustein Institute for Desert Research; Gordon, J.M. [Ben-Gurion University of the Negev (Israel). Jacob Blaustein Institute for Desert Research; Ben-Gurion University of the Negev (Israel). Dept. of Mechanical Engineering; Ries, H. [Ries and Partners, Munich (Germany)

    1999-02-01

    Most large solar concentrators designed for high flux concentration at high collection efficiency are based on imaging primary mirrors and nonimaging secondary concentrators. In this paper, we offer an alternative purely imaging two-stage solar concentrator that can attain high flux concentration at high collection efficiency. Possible practical virtues include: (1) an inherent large gap between absorber and secondary mirror; (2) a restricted angular range on the absorber; and (3) an upward-facing receiver where collected energy can be extracted via the (shaded) apex of the parabola. We use efficiency-concentration plots to characterize the solar concentrators considered, and to evaluate the potential improvements with secondary concentrators. (author)

  8. Horizontally staggered lightguide solar concentrator with lateral displacement tracking for high concentration applications.

    Science.gov (United States)

    Ma, Hongcai; Wu, Lin

    2015-07-10

    We present the design of a horizontally staggered lightguide solar concentrator with lateral displacement tracking for high concentration applications. This solar concentrator consists of an array of telecentric primary concentrators, a horizontally staggered lightguide layer, and a vertically tapered lightguide layer. The primary concentrator is realized by two plano-aspheric lenses with lateral movement and maintains a high F-number over an angle range of ±23.5°. The results of the simulations show that the solar concentrator achieves a high concentration ratio of 500× with ±0.5° of acceptance angle by a single-axis tracker and dual lateral translation stages.

  9. Cementification for radioactive waste including high-concentration sodium sulfate and high-concentration radioactive nuclide

    International Nuclear Information System (INIS)

    Miyamoto, Shinya; Sato, Tatsuaki; Sasoh, Michitaka; Sakurai, Jiro; Takada, Takao

    2005-01-01

    For the cementification of radioactive waste that has large concentrations of sodium sulfate and radioactive nuclide, a way of fixation for sulfate ion was studied comprising the pH control of water in contact with the cement solid, and the removal of the excess water from the cement matrix to prevent hydrogen gas generation with radiolysis. It was confirmed that the sulfate ion concentration in the contacted water with the cement solid is decreased with the formation of ettringite or barium sulfate before solidification, the pH value of the pore water in the cement solid can control less than 12.5 by the application of zeolite and a low-alkali cement such as alumina cement or fly ash mixed cement, and removal of the excess water from the cement matrix by heating is possible with aggregate addition. Consequently, radioactive waste including high-concentration sodium sulfate and high-concentration radioactive nuclide can be solidified with cementitious materials. (author)

  10. Femtosecond pump-probe studies of phonons and carriers in bismuth under high pressure

    International Nuclear Information System (INIS)

    Kasami, M.; Ogino, T.; Mishina, T.; Yamamoto, S.; Nakahara, J.

    2006-01-01

    We investigate the high-pressure phase of Bi under hydrostatic pressure using pump-probe spectroscopy at pressures up to 3.0 GPa, and we observe coherent phonons signal and relaxation signal of photo-excited carriers at Bi(II) and Bi(III) phases. The pressure dependence of the coherent phonons shows that the amplitude of coherent phonons is extremely small and the frequency of coherent phonons changes at high-pressure phases. As results from our experiment, we obtain its frequencies are 2.5 and 2.2 THz at Bi(II) and Bi(III), respectively. Furthermore, photo-excited carrier relaxation indicates drastic changes near 2.5 GPa. Bismuth transforms from semimetal to semiconductor near 2.5 GPa, and band-overlapping between at L-point and at T-point disappears. We consider that the drastic changes of the photo-excited carrier relaxation are strongly correlated with the band-overlapping disappearing

  11. Theoretical prediction of high carrier mobility in single-walled black phosphorus nanotubes

    Science.gov (United States)

    Li, Q. F.; Wang, H. F.; Yang, C. H.; Li, Q. Q.; Rao, W. F.

    2018-05-01

    One-dimensional semiconductors are promising materials for high-performance nanoscale devices. Using the first-principles calculations combined with deformation potential approximation, we study the electronic structures and carrier transport properties of black phosphorus nanotubes (BPNTs). It is found that both armchair and zigzag BPNTs with diameter 13.5-18.5 Å are direct bandgap semiconductors. At a similar diameter, the carrier mobility of zigzag BPNT is one order of magnitude larger than that of armchair BPNT. For armchair BPNTs, the electron mobility is about 90.70-155.33 cm2 V-1 s-1 at room temperature, which is about three times of its hole counterpart. For zigzag BPNTs, the maximum mobility can reach 2.87 ×103 cm2 V-1 s-1. Furthermore, the electronic properties can be effectively tuned by the strain. For zigzag (0,13) nanotube, there is a direct-to-indirect band gap transition at a tensile strain of about 6%. Moreover, the electron mobility is boosted sharply by one order of magnitude by applying the compressive or tensile strain. The electron mobility increases to 14.05 ×103 cm2 V-1 s-1 at a tensile strain of 9%. Our calculations highlight the tunable electronic properties and superior carrier mobility of BPNTs that are promising for interesting applications in future nano-electronic devices.

  12. A simple approach for producing highly efficient DNA carriers with reduced toxicity based on modified polyallylamine

    Energy Technology Data Exchange (ETDEWEB)

    Oskuee, Reza Kazemi [Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad (Iran, Islamic Republic of); Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad (Iran, Islamic Republic of); Dosti, Fatemeh [School of Pharmacy, Mashhad University of Medical Sciences, Mashhad (Iran, Islamic Republic of); Gholami, Leila [Targeted Drug Delivery Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad (Iran, Islamic Republic of); Malaekeh-Nikouei, Bizhan, E-mail: malaekehb@mums.ac.ir [Nanotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad (Iran, Islamic Republic of)

    2015-04-01

    Nowadays gene delivery is a topic in many research studies. Non-viral vectors have many advantages over viral vectors in terms of safety, immunogenicity and gene carrying capacity but they suffer from low transfection efficiency and high toxicity. In this study, polyallylamine (PAA), the cationic polymer, has been modified with hydrophobic branches to increase the transfection efficiency of the polymer. Polyallylamine with molecular weights of 15 and 65 kDa was selected and grafted with butyl, hexyl and decyl acrylate at percentages of 10, 30 and 50. The ability of the modified polymer to condense DNA was examined by ethidium bromide test. The complex of modified polymer and DNA (polyplex) was characterized for size, zeta potential, transfection efficiency and cytotoxicity in Neuro2A cell lines. The results of ethidium bromide test showed that grafting of PAA decreased its ability for DNA condensation but vectors could still condense DNA at moderate and high carrier to DNA ratios. Most of polyplexes had particle size between 150 and 250 nm. The prepared vectors mainly showed positive zeta potential but carriers composed of PAA with high percentage of grafting had negative zeta potential. The best transfection activity was observed in vectors with hexyl acrylate chain. Grafting of polymer reduced its cytotoxicity especially at percentages of 30 and 50. The vectors based of PAA 15 kDa had better transfection efficiency than the vectors made of PAA 65 kDa. In conclusion, results of the present study indicated that grafting PAA 15 kDa with high percentages of hexyl acrylate can help to prepare vectors with better transfection efficiency and less cytotoxicity. - Highlights: • The modified polyallylamine was synthesized as a gene carrier. • Modification of polyallylamine (15 kDa) with high percentages of hexyl acrylate improved transfection activity remarkably. • Grafting of polymer with acrylate derivatives reduced polymer cytotoxicity especially at percentages of

  13. Synthesis of a smart pH-responsive magnetic nanocomposite as high loading carrier of pharmaceutical agents.

    Science.gov (United States)

    Berah, Razieh; Ghorbani, Mohsen; Moghadamnia, Ali Akbar

    2017-06-01

    To create facile external controlled drug delivery system, a magnetic porous carrier based on Tin oxide nanoparticles was synthesized by an inexpensive and versatile hydrothermal strategy and used for in-vitro process. Magnetic nanocomposites were qualified by Fourier Transform Infrared (FTIR), Scanning Electron Microscopy (SEM), X-Ray Diffraction (XRD), Vibrational Sample Magnetometer (VSM) and Transmission Electron Microscopy (TEM). Results showed that nanoparticles were synthesized successfully with good dispersion of magnetic nanoparticles in cavity, uniform particle size distribution with average size of 65nm and high magnetization of 33.75 emu/mg. Furthermore, the nano-porosity and magnetism allowed high efficiency and remote controlled drug release. In this study, anti-migraine Sumatriptan was used as drug sample and the effect of drug concentration, Fe/Sn ratio and loading time on drug absorption were investigated. The best result was checked for stability at body temperature and different body pH. The sample with drug concentration of 0.25(mg/ml), Fe/Sn=0.22 and loading time of 1.5h had the highest drug efficiency (70%). Finally, in order to simulate the in vivo process for in-vitro step, Amnion was used and drug diffusion rate was measured in different intervals and different pH values. The result illustrated that after 25h, diffusion reached 65% at pH=2 and 56% at pH=7, and then became constant. Based on the above mentioned results, the carrier has an acceptable in vitro yield and therefore could be chosen for future in vivo researches. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Nodal quasi-particles of the high-Tc superconductors as carriers of heat

    Directory of Open Access Journals (Sweden)

    K. Behnia

    2006-09-01

    Full Text Available   In the quest for understanding correlated electrons, high-temperature superconductivity remains a formidable challenge and a source of insight. This paper briefly recalls the central achievement by the study of heat transport at low temperatures. At very low temperatures, nodal quasi-particles of the d-wave superconducting gap become the main carriers of heat. Their thermal conductivity is unaffected by disorder and reflects the fine structure of the superconducting gap. This finding had led to new openings in the exploration of other unconventional superconductors

  15. On the determination of the carrier concentration in large-grain polycrystalline InP, GaAs, and GaP by Hall effect measurements

    International Nuclear Information System (INIS)

    Siegel, W.; Kuehnel, G.; Schneider, H.A.

    1985-01-01

    Hall and conductivity measurements are performed in a wide temperature region on large-grain polycrystalline samples of n-InP, n- and p-GaAs as well as n- and p-GaP. The feasibility of Hall measurements at a given temperature depends mainly on the height PHI/sub B/ of the grain boundary potential barriers and on the average grain size. Measurements at room temperature are possible on large-grain material (average grain size 0.2 to 1 mm) for PHI/sub B/ <= 0.4 eV. For greater barrier heights elevated temperatures are necessary. If the Hall coefficient is measurable than it yields an effective carrier concentration for the polycrystalline sample which agrees well with the carrier concentration in the bulk of the grains. (author)

  16. Effects of low-temperature (120 °C) annealing on the carrier concentration and trap density in amorphous indium gallium zinc oxide thin film transistors

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae-sung; Piao, Mingxing; Jang, Ho-Kyun; Kim, Gyu-Tae, E-mail: gtkim@korea.ac.kr [School of Electrical Engineering, Korea University, Seoul 136-701 (Korea, Republic of); Oh, Byung Su [School of Electrical Engineering, Korea University, Seoul 136-701 (Korea, Republic of); Samsung Display Company, Yongin (Korea, Republic of); Joo, Min-Kyu [School of Electrical Engineering, Korea University, Seoul 136-701 (Korea, Republic of); IMEP-LAHC, Grenoble INP, Minatec, CS 50257, 38016 Grenoble (France); Ahn, Seung-Eon [School of Electrical Engineering, Korea University, Seoul 136-701 (Korea, Republic of); Samsung Advanced Institute of Technology, Samsung Electronics Corporations, Yongin 446-712 (Korea, Republic of)

    2014-12-28

    We report an investigation of the effects of low-temperature annealing on the electrical properties of amorphous indium gallium zinc oxide (a-IGZO) thin-film transistors (TFTs). X-ray photoelectron spectroscopy was used to characterize the charge carrier concentration, which is related to the density of oxygen vacancies. The field-effect mobility was found to decrease as a function of the charge carrier concentration, owing to the presence of band-tail states. By employing the transmission line method, we show that the contact resistance did not significantly contribute to the changes in device performance after annealing. In addition, using low-frequency noise analyses, we found that the trap density decreased by a factor of 10 following annealing at 120 °C. The switching operation and on/off ratio of the a-IGZO TFTs improved considerably after low-temperature annealing.

  17. Study on the adsorption of H2O and CO2 from the carrier gas of high-temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Liao Cuiping; Zheng Zhenhong; Shi Fuen; Zhou Dasen

    1998-01-01

    The author is focused on the experimental studies of the adsorption of moisture and carbon dioxide from the carrier gas of high-temperature gas-cooled reactor (HTGR). A suitable adsorbent--5A type molecular sieve spherical particles with an average diameter of 3 mm is chosen to purify the carrier gas with impurities of moisture and carbon dioxide. Experimental data at different concentration, flow rate, adsorptive temperature, pressure and bed depth are obtained from isothermal adsorption tests in order to examine the effects of these parameters on adsorption dynamic and for the optimal parameters selection of adsorption process. Experimental breakthrough curves, dynamic single component and multicomponent adsorption curves are obtained. The outlet concentration of H 2 O and CO 2 can reach below 1.0 x 10 -5 , so this purification system can meet the demands of HTGR

  18. Development and comparison of new high-efficiency dry powder inhalers for carrier-free formulations.

    Science.gov (United States)

    Behara, Srinivas R B; Longest, P Worth; Farkas, Dale R; Hindle, Michael

    2014-02-01

    High-efficiency dry powder inhalers (DPIs) were developed and tested for use with carrier-free formulations across a range of different inhalation flow rates. Performance of a previously reported DPI was compared with two new designs in terms of emitted dose (ED) and aerosolization characteristics using in vitro experiments. The two new designs oriented the capsule chamber (CC) at different angles to the main flow passage, which contained a three-dimensional (3D) rod array for aerosol deaggregation. Computational fluid dynamics simulations of a previously developed deaggregation parameter, the nondimensional specific dissipation (NDSD), were used to explain device performance. Orienting the CC at 90° to the mouthpiece, the CC90 -3D inhaler provided the best performance with an ED = 73.4%, fine particle fractions (FPFs) less than 5 and 1 μm of 95.1% and 31.4%, respectively, and a mass median aerodynamic diameter (MMAD) = 1.5 μm. For the carrier-free formulation, deaggregation was primarily influenced by capsule aperture position and the NDSD parameter. The new CC-3D inhalers reduced the percent difference in FPF and MMAD between low and high flows by 1-2 orders of magnitude compared with current commercial devices. In conclusion, the new CC-3D inhalers produced extremely high-quality aerosols with little sensitivity to flow rate and are expected to deliver approximately 95% of the ED to the lungs. © 2013 Wiley Periodicals, Inc. and the American Pharmacists Association.

  19. Highly immunogenic and fully synthetic peptide-carrier constructs targetting GnRH

    DEFF Research Database (Denmark)

    Beekman, N.J.C.M.; Schaaper, W.M.M.; Turkstra, J.A.

    1999-01-01

    To use peptides as synthetic vaccines, they have to be coupled to a carrier protein to make them more immunogenic. Coupling efficiency between a carrier protein and a peptide, however, is difficult to control with respect to loading density of the peptide, This makes these carrier proteins poorly...... for the induction of antibodies against GnRH and immunocastration of pigs....

  20. Energy Band Gap, Intrinsic Carrier Concentration and Fermi Level of CdTe Bulk Crystal between 304 K and 1067 K

    Science.gov (United States)

    Su, Ching-Hua

    2007-01-01

    Optical transmission measurements were performed on CdTe bulk single crystal. It was found that when a sliced and polished CdTe wafer was used, a white film started to develop when the sample was heated above 530 K and the sample became opaque. Therefore, a bulk crystal of CdTe was first grown in the window area by physical vapor transport; the optical transmission was then measured and from which the energy band gap was derived between 304 and 1067 K. The band gaps of CdTe can be fit well as a function of temperature using the Varshini expression: Eg (e V) = 1.5860 - 5.9117xl0(exp -4) T(sup 2)/(T + 160). Using the band gap data, the high temperature electron-hole equilibrium was calculated numerically by assuming the Kane's conduction band structure and a heavy-hole parabolic valance band. The calculated intrinsic carrier concentrations agree well with the experimental data reported previously. The calculated intrinsic Fermi levels between 270 and 1200 K were also presented.

  1. Balance the Carrier Mobility To Achieve High Performance Exciplex OLED Using a Triazine-Based Acceptor.

    Science.gov (United States)

    Hung, Wen-Yi; Chiang, Pin-Yi; Lin, Shih-Wei; Tang, Wei-Chieh; Chen, Yi-Ting; Liu, Shih-Hung; Chou, Pi-Tai; Hung, Yi-Tzu; Wong, Ken-Tsung

    2016-02-01

    A star-shaped 1,3,5-triazine/cyano hybrid molecule CN-T2T was designed and synthesized as a new electron acceptor for efficient exciplex-based OLED emitter by mixing with a suitable electron donor (Tris-PCz). The CN-T2T/Tris-PCz exciplex emission shows a high ΦPL of 0.53 and a small ΔET-S = -0.59 kcal/mol, affording intrinsically efficient fluorescence and highly efficient exciton up-conversion. The large energy level offsets between Tris-PCz and CN-T2T and the balanced hole and electron mobility of Tris-PCz and CN-T2T, respectively, ensuring sufficient carrier density accumulated in the interface for efficient generation of exciplex excitons. Employing a facile device structure composed as ITO/4% ReO3:Tris-PCz (60 nm)/Tris-PCz (15 nm)/Tris-PCz:CN-T2T(1:1) (25 nm)/CN-T2T (50 nm)/Liq (0.5 nm)/Al (100 nm), in which the electron-hole capture is efficient without additional carrier injection barrier from donor (or acceptor) molecule and carriers mobilities are balanced in the emitting layer, leads to a highly efficient green exciplex OLED with external quantum efficiency (EQE) of 11.9%. The obtained EQE is 18% higher than that of a comparison device using an exciplex exhibiting a comparable ΦPL (0.50), in which TCTA shows similar energy levels but higher hole mobility as compared with Tris-PCz. Our results clearly indicate the significance of mobility balance in governing the efficiency of exciplex-based OLED. Exploiting the Tris-PCz:CN-T2T exciplex as the host, we further demonstrated highly efficient yellow and red fluorescent OLEDs by doping 1 wt % Rubrene and DCJTB as emitter, achieving high EQE of 6.9 and 9.7%, respectively.

  2. Highly efficient low color temperature organic LED using blend carrier modulation layer

    Science.gov (United States)

    Hsieh, Yao-Ching; Chen, Szu-Hao; Shen, Shih-Ming; Wang, Ching-Chiun; Chen, Chien-Chih; Jou, Jwo-Huei

    2012-10-01

    Color temperature (CT) of light has great effect on human physiology and psychology, and low CT light, minimizing melatonin suppression and decreasing the risk of breast, colorectal, and prostate cancer. We demonstrates the incorporation of a blend carrier modulation interlayer (CML) between emissive layers to improve the device performance of low CT organic light emitting diodes, which exhibits an external quantum efficiency of 22.7% and 36 lm W-1 (54 cd A-1) with 1880 K at 100 cd m-2, or 20.8% and 29 lm W-1 (50 cd A-1) with 1940 K at 1000 cd m-2. The result shows a CT much lower than that of incandescent bulbs, which is 2500 K with 15 lmW-1 efficiency, and even as low as that of candles, which is 2000 K with 0.1 lmW-1. The high efficiency of the proposed device may be attributed to its CML, which helps effectively distribute the entering carriers into the available recombination zones.

  3. In-plane heterostructures of Sb/Bi with high carrier mobility

    Science.gov (United States)

    Zhao, Pei; Wei, Wei; Sun, Qilong; Yu, Lin; Huang, Baibiao; Dai, Ying

    2017-06-01

    In-plane two-dimensional (2D) heterostructures have been attracting public attention due to their distinctive properties. However, the pristine materials that can form in-plane heterostructures are reported only for graphene, hexagonal BN, transition-metal dichalcogenides. It will be of great significance to explore more suitable 2D materials for constructing such ingenious heterostructures. Here, we demonstrate two types of novel seamless in-plane heterostructures combined by pristine Sb and Bi monolayers by means of first-principle approach based on density functional theory. Our results indicate that external strain can serve as an effective strategy for bandgap engineering, and the transition from semiconductor to metal occurs when a compressive strain of -8% is applied. In addition, the designed heterostructures possess direct band gaps with high carrier mobility (˜4000 cm2 V-1 s-1). And the mobility of electrons and holes have huge disparity along the direction perpendicular to the interface of Sb/Bi in-plane heterostructures. It is favorable for carriers to separate spatially. Finally, we find that the band edge positions of Sb/Bi in-plane heterostructures can meet the reduction potential of hydrogen generation in photocatalysis. Our results not only offer alternative materials to construct versatile in-plane heterostructures, but also highlight the applications of 2D in-plane heterostructures in diverse nanodevices and photocatalysis.

  4. Role of dislocations and carrier concentration in limiting the electron mobility of InN films grown by plasma assisted molecular beam epitaxy

    Science.gov (United States)

    Tangi, Malleswararao; De, Arpan; Shivaprasad, S. M.

    2018-01-01

    We report the molecular beam epitaxy growth of device quality InN films on GaN epilayer and nano-wall network (NWN) templates deposited on c-sapphire by varying the film thickness up to 1 μm. The careful experiments are directed towards obtaining high mobility InN layers having a low band gap with improved crystal quality. The dislocation density is quantified by using high resolution X-ray diffraction rocking curve broadening values of symmetric and asymmetric reflections, respectively. We observe that the dislocation density of the InN films grown on GaN NWN is less than that of the films grown on the GaN epilayer. This is attributed to the nanoepitaxial lateral overlayer growth (ELOG) process, where the presence of voids at the interface of InN/GaN NWN prevents the propagation of dislocation lines into the InN epilayers, thereby causing less defects in the overgrown InN films. Thus, this new adaptation of the nano-ELOG growth process enables us to prepare InN layers with high electron mobility. The obtained electron mobility of 2121 cm2/Vs for 1 μm thick InN/GaN NWN is comparable with the literature values of similar thickness InN films. Furthermore, in order to understand the reasons that limit electron mobility, the charge neutrality condition is employed to study the variation of electron mobility as a function of dislocation density and carrier concentration. Overall, this study provides a route to attaining improved crystal quality and electronic properties of InN films.

  5. Dielectric functions and carrier concentrations of Hg{sub 1−x}Cd{sub x}Se films determined by spectroscopic ellipsometry

    Energy Technology Data Exchange (ETDEWEB)

    Lee, A. J.; Peiris, F. C., E-mail: peirisf@kenyon.edu [Department of Physics, Kenyon College, Gambier, Ohio 43022 (United States); Brill, G.; Doyle, K. [U.S. Army Research Laboratory, Adelphi, Maryland 20783-1197 (United States); Myers, T. H. [Department of Physics, Texas State University, San Marcos, Texas 78666 (United States)

    2015-08-17

    Spectroscopic ellipsometry, ranging from 35 meV to 6 eV, was used to determine the dielectric functions of a series of molecular beam epitaxy-grown Hg{sub 1−x}Cd{sub x}Se thin films deposited on both ZnTe/Si(112) and GaSb(112) substrates. The fundamental band gap as well as two higher-order electronic transitions blue-shift with increasing Cd composition in Hg{sub 1−x}Cd{sub x}Se, as expected. Representing the free carrier absorption with a Drude oscillator, we found that the effective masses of Hg{sub 1−x}Cd{sub x}Se (grown on ZnTe/Si) vary between 0.028 and 0.050 times the free electron mass, calculated using the values of carrier concentration and the mobility obtained through Hall measurements. Using these effective masses, we determined the carrier concentrations of Hg{sub 1−x}Cd{sub x}Se samples grown on GaSb, which is of significance as films grown on such doped-substrates posit ambiguous results when measured by conventional Hall experiments. These models can serve as a basis for monitoring Cd-composition during sample growth through in-situ spectroscopic ellipsometry.

  6. Intrinsic carrier concentrations in long wavelength HgCdTe based on the new, nonlinear temperature dependence of Eg(x,T)

    International Nuclear Information System (INIS)

    Seiler, D.G.; Lowney, J.R.; Littler, C.L.; Yoon, I.T.

    1991-01-01

    This paper reports on intrinsic carrier concentrations of narrow-gap Hg 1-x Cd x Te alloys (0.17 ≤ x ≤ 0.30) calculated as a function of temperature between 0 and 300 K by using the new nonlinear temperature dependence of the energy gap obtained previously by two-photon magneto-absorption measurements for samples with 0.24 ≤ x ≤ 0.26. We report here experimental values for E g (x,T) for samples with x = 0.20 and 0.23 obtained by one-photon magneto-absorption measurements. These data confirm the validity of the new E g (x,T) relationship for these x values. In this range of composition and temperature, the energy gap of mercury cadmium telluride is small, and very accurate values are needed for the gap to obtain reliable values of the intrinsic carrier density

  7. High-temperature carrier density and mobility enhancements in AlGaN/GaN HEMT using AlN spacer layer

    Science.gov (United States)

    Ko, Tsung-Shine; Lin, Der-Yuh; Lin, Chia-Feng; Chang, Che-Wei; Zhang, Jin-Cheng; Tu, Shang-Ju

    2017-04-01

    In this paper, we experimentally studied the effect of AlN spacer layer on optical and electrical properties of AlGaN/GaN high electric mobility transistors (HEMTs) grown by metal organic chemical vapor deposition method. For AlGaN layer in HEMT structure, the Al composition of the sample was determined using x-ray diffraction and photoluminescence. Electrolyte electro-reflectance (EER) measurement not only confirmed the aluminum composition of AlGaN layer, but also determined the electric field strength on the AlGaN layer through the Franz-Keldysh oscillation phenomenon. This result indicated that the electric field on the AlGaN layer could be improved from 430 to 621 kV/cm when AlN spacer layer was inserted in HEMT structure, which increased the concentration of two dimensional electron gas (2DEG) and improve the mobility. The temperature dependent Hall results show that both the mobility and the carrier concentration of 2DEG would decrease abruptly causing HEMT loss of function due to phonon scattering and carrier thermal escape when temperature increases above a specific value. Meanwhile, our study also demonstrates using AlN spacer layer could be beneficial to allow the mobility and carrier density of 2DEG sustaining at high temperature region.

  8. Electronic characteristics of p-type transparent SnO monolayer with high carrier mobility

    International Nuclear Information System (INIS)

    Du, Juan; Xia, Congxin; Liu, Yaming; Li, Xueping; Peng, Yuting; Wei, Shuyi

    2017-01-01

    Graphical abstract: SnO monolayer is a p-type transparent semiconducting oxide with high hole mobility (∼641 cm 2 V −1 s −1 ), which is much higher than that of MoS 2 monolayer, which indicate that it can be a promising candidate for high-performance nanoelectronic devices. Display Omitted - Highlights: • SnO monolayer is a p-type transparent semiconducting oxide. • The transparent properties can be still maintained under the strain 8%. • It has a high hole mobility (∼641 cm 2 V −1 s −1 ), which is higher than that of MoS 2 monolayer. - Abstract: More recently, two-dimensional (2D) SnO nanosheets are attaching great attention due to its excellent carrier mobility and transparent characteristics. Here, the stability, electronic structures and carrier mobility of SnO monolayer are investigated by using first-principles calculations. The calculations of the phonon dispersion spectra indicate that SnO monolayer is dynamically stable. Moreover, the band gap values are decreased from 3.93 eV to 2.75 eV when the tensile strain is applied from 0% to 12%. Interestingly, SnO monolayer is a p-type transparent semiconducting oxide with hole mobility of 641 cm 2 V −1 s −1 , which is much higher than that of MoS 2 monolayer. These findings make SnO monolayer becomes a promising 2D material for applications in nanoelectronic devices.

  9. Electronic characteristics of p-type transparent SnO monolayer with high carrier mobility

    Energy Technology Data Exchange (ETDEWEB)

    Du, Juan [College of Physics and Materials Science, Henan Normal University, Xinxiang, Henan 453007 (China); Xia, Congxin, E-mail: xiacongxin@htu.edu.cn [College of Physics and Materials Science, Henan Normal University, Xinxiang, Henan 453007 (China); Liu, Yaming [Henan Institute of Science and Technology, Xinxiang 453003 (China); Li, Xueping [College of Physics and Materials Science, Henan Normal University, Xinxiang, Henan 453007 (China); Peng, Yuting [Department of Physics, University of Texas at Arlington, TX 76019 (United States); Wei, Shuyi [College of Physics and Materials Science, Henan Normal University, Xinxiang, Henan 453007 (China)

    2017-04-15

    Graphical abstract: SnO monolayer is a p-type transparent semiconducting oxide with high hole mobility (∼641 cm{sup 2} V{sup −1} s{sup −1}), which is much higher than that of MoS{sub 2} monolayer, which indicate that it can be a promising candidate for high-performance nanoelectronic devices. Display Omitted - Highlights: • SnO monolayer is a p-type transparent semiconducting oxide. • The transparent properties can be still maintained under the strain 8%. • It has a high hole mobility (∼641 cm{sup 2} V{sup −1} s{sup −1}), which is higher than that of MoS{sub 2} monolayer. - Abstract: More recently, two-dimensional (2D) SnO nanosheets are attaching great attention due to its excellent carrier mobility and transparent characteristics. Here, the stability, electronic structures and carrier mobility of SnO monolayer are investigated by using first-principles calculations. The calculations of the phonon dispersion spectra indicate that SnO monolayer is dynamically stable. Moreover, the band gap values are decreased from 3.93 eV to 2.75 eV when the tensile strain is applied from 0% to 12%. Interestingly, SnO monolayer is a p-type transparent semiconducting oxide with hole mobility of 641 cm{sup 2} V{sup −1} s{sup −1}, which is much higher than that of MoS{sub 2} monolayer. These findings make SnO monolayer becomes a promising 2D material for applications in nanoelectronic devices.

  10. Carrier concentration dependence of donor activation energy in n-type GaN epilayers grown on Si (1 1 1) by plasma-assisted MBE

    International Nuclear Information System (INIS)

    Kumar, Mahesh; Bhat, Thirumaleshwara N.; Roul, Basanta; Rajpalke, Mohana K.; Kalghatgi, A.T.; Krupanidhi, S.B.

    2012-01-01

    Highlights: ► The n-type GaN layers were grown by plasma-assisted molecular beam epitaxy. ► The optical characteristics of a donor level in Si-doped GaN were studied. ► Activation energy of a Si-related donor was estimated from temperature dependent PL measurements. ► PL peak positions, FWHM of PL and activation energies are found to be proportional to the cube root of carrier density. ► The involvement of donor levels is supported by the temperature-dependent electron concentration measurements. -- Abstract: The n-type GaN layers were grown by plasma-assisted MBE and either intentionally doped with Si or unintentionally doped. The optical characteristics of a donor level in Si-doped, GaN were studied in terms of photoluminescence (PL) spectroscopy as a function of electron concentration. Temperature dependent PL measurements allowed us to estimate the activation energy of a Si-related donor from temperature-induced decay of PL intensity. PL peak positions, full width at half maximum of PL and activation energies are found to be proportional to the cube root of carrier density. The involvement of donor levels is supported by the temperature-dependent electron concentration measurements.

  11. Ultra-low carrier concentration and surface-dominant transport in antimony-doped Bi2Se3 topological insulator nanoribbons

    KAUST Repository

    Hong, Seung Sae; Cha, Judy J.; Kong, Desheng; Cui, Yi

    2012-01-01

    A topological insulator is the state of quantum matter possessing gapless spin-locking surface states across the bulk band gap, which has created new opportunities from novel electronics to energy conversion. However, the large concentration of bulk residual carriers has been a major challenge for revealing the property of the topological surface state by electron transport measurements. Here we report the surface-state-dominant transport in antimony-doped, zinc oxide-encapsulated Bi2Se3 nanoribbons with suppressed bulk electron concentration. In the nanoribbon with sub-10-nm thickness protected by a zinc oxide layer, we position the Fermi levels of the top and bottom surfaces near the Dirac point by electrostatic gating, achieving extremely low two-dimensional carrier concentration of 2×10 11cm-2. The zinc oxide-capped, antimony-doped Bi 2Se3 nanostructures provide an attractive materials platform to study fundamental physics in topological insulators, as well as future applications. © 2012 Macmillan Publishers Limited. All rights reserved.

  12. Ultra-low carrier concentration and surface-dominant transport in antimony-doped Bi2Se3 topological insulator nanoribbons

    KAUST Repository

    Hong, Seung Sae

    2012-03-27

    A topological insulator is the state of quantum matter possessing gapless spin-locking surface states across the bulk band gap, which has created new opportunities from novel electronics to energy conversion. However, the large concentration of bulk residual carriers has been a major challenge for revealing the property of the topological surface state by electron transport measurements. Here we report the surface-state-dominant transport in antimony-doped, zinc oxide-encapsulated Bi2Se3 nanoribbons with suppressed bulk electron concentration. In the nanoribbon with sub-10-nm thickness protected by a zinc oxide layer, we position the Fermi levels of the top and bottom surfaces near the Dirac point by electrostatic gating, achieving extremely low two-dimensional carrier concentration of 2×10 11cm-2. The zinc oxide-capped, antimony-doped Bi 2Se3 nanostructures provide an attractive materials platform to study fundamental physics in topological insulators, as well as future applications. © 2012 Macmillan Publishers Limited. All rights reserved.

  13. Nanoliposomal carriers for improvement the bioavailability of high - valued phenolic compounds of pistachio green hull extract.

    Science.gov (United States)

    Rafiee, Zahra; Barzegar, Mohsen; Sahari, Mohammad Ali; Maherani, Behnoush

    2017-04-01

    In present study, nanoliposomes were prepared by thin hydration method with different concentrations of phenolic compounds (500, 750 and 1000ppm) of pure extract and lecithin (1, 2 and 3%w/w) and characterized by considering the particle size, polydispersity index (PDI), zeta potential, encapsulation efficiency (EE) and morphology. The results showed that nanoliposome (90.39-103.78nm) had negative surface charge varied from -51.5±0.9 to -40.2±0.2mV with a narrow size distribution (PDI≈0.069-0.123). Nanoliposomes composed of 1% lecithin with 1000ppm of phenolic compounds had the highest EE (52.93%). The FTIR analysis indicated the formation of hydrogen bonds between the polar zone of phospholipid and the OH groups of phenolic compounds. Phenolic compounds also increased phase transition temperature (Tc) of nanoliposomes (2.01-7.24°C). Moreover, nanoliposomes had considerable stability during storage. Consequently, liposome is an efficient carrier for protection and improving PGHE biofunctional actives in foodstuffs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. High prevalence of asymptomatic carriers of Tropheryma whipplei in different populations from the North of Spain.

    Science.gov (United States)

    García-Álvarez, Lara; Pérez-Matute, Patricia; Blanco, José Ramón; Ibarra, Valvanera; Oteo, José Antonio

    2016-01-01

    Tropheryma whipplei is the causative agent of Whipple disease. T. whipplei has also been detected in asymptomatic carriers with a very different prevalence. To date, in Spain, there are no data regarding the prevalence of T. whipplei in a healthy population or in HIV-positive patients, or in chronic fatigue syndrome (CFS). Therefore, the aim of this work was to assess the prevalence of T. whipplei in stools in those populations. Stools from 21 HIV-negative subjects, 65 HIV-infected, and 12 CFS patients were analysed using real time-PCR. HIV-negative and positive subjects were divided into two groups, depending on the presence/absence of metabolic syndrome (MS). Positive samples were sequenced. The prevalence of T. whipplei was 25.51% in 98 stool samples analysed. Prevalence in HIV-positive patients was significantly higher than in HIV-negative (33.8% vs. 9.09%, p=0.008). Prevalence in the control group with no associated diseases was 20%, whereas no positive samples were observed in HIV-negative patients with MS, or in those diagnosed with CFS. The prevalence observed in HIV-positive patients without MS was 30.35%, and with MS it was 55.5%. The number of positive samples varies depending on the primers used, although no statistically significant differences were observed. There is a high prevalence of asymptomatic carriers of T. whipplei among healthy and in HIV-infected people from Spain. The role of T. whipplei in HIV patients with MS is unclear, but the prevalence is higher than in other populations. Copyright © 2015 Elsevier España, S.L.U. and Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. All rights reserved.

  15. The DC Electrical Resistivity Curves of Bismuth-2212 Ceramic Superconductors: Evaluation of the Hole-Carrier Concentrations per-Cu Ion

    Directory of Open Access Journals (Sweden)

    nurmalita .

    2016-04-01

    Full Text Available In this study the samples of Bismuth ceramic superconductors were synthesized by the melt textured growth methods from a 2212 stoichiometric composition in order to obtain a large amount of pure Bi-2212. The effects of Pb substitution on the properties of Bi-based Bi2−xPbxSr2CaCu2Oy superconductor with x = 0, 0.2, and 0.4 were investigated by means of DC electrical resistivity measurements. It has been found that the hole-carrier concentrations per-Cu ion of the samples change independently of Pb content.

  16. Control of the oxidation kinetics of H-terminated (111)Si by using the carrier concentration and the strain: a second-harmonic-generation investigation

    International Nuclear Information System (INIS)

    Gokce, B.; Gundogdu, K.; Aspnes, D. E.

    2012-01-01

    We discuss recent results regarding the effects of strain, carrier type and concentration on the oxidation of H-terminated (111)Si. Second-harmonic-generation data show that this is a two-stage process where the H of the 'up' bonds of the outermost Si layer is replaced by OH, followed by O insertion into the 'back' bonds. These data provide additional detailed information about both stages. In particular, directional control of the in-plane surface chemistry by using the applied uniaxial stress provides new opportunities for interface control.

  17. Control of the oxidation kinetics of H-terminated (111)Si by using the carrier concentration and the strain: a second-harmonic-generation investigation

    Energy Technology Data Exchange (ETDEWEB)

    Gokce, B.; Gundogdu, K. [North Carolina State University, Raleigh, NC (United States); Aspnes, D. E. [Kyung Hee University, Seoul (Korea, Republic of)

    2012-05-15

    We discuss recent results regarding the effects of strain, carrier type and concentration on the oxidation of H-terminated (111)Si. Second-harmonic-generation data show that this is a two-stage process where the H of the 'up' bonds of the outermost Si layer is replaced by OH, followed by O insertion into the 'back' bonds. These data provide additional detailed information about both stages. In particular, directional control of the in-plane surface chemistry by using the applied uniaxial stress provides new opportunities for interface control.

  18. Highly stable microwave carrier generation using a dual-frequency distributed feedback laser

    NARCIS (Netherlands)

    Khan, M.R.H.; Bernhardi, Edward; Marpaung, D.A.I.; Burla, M.; de Ridder, R.M.; Worhoff, Kerstin; Pollnau, Markus; Roeloffzen, C.G.H.

    2012-01-01

    Photonic generation of microwave carriers by using a dual-frequency distributed feedback waveguide laser in ytterbium-doped aluminum oxide is demonstrated. A highperformance optical frequency locked loop is implemented to stabilize the microwave carrier. This approach results in a microwave

  19. The Effects of L2C Signal Tracking on High-Precision Carrier Phase GPS Positioning

    Science.gov (United States)

    Berglund, H.; Blume, F.; Estey, L. H.; Borsa, A. A.

    2010-12-01

    In 2005, the L2C signal was introduced to improve the accuracy, tracking and redundancy of the GPS system for civilian users. The L2C signal also provides improved SNR data when compared with the L2P(Y) legacy signal, comparable to that of the L1 C/A-code, which allows for better tracking at lower elevations. With the recent launch of the first block II-F satellite (SVN62/PRN25), there are 8 healthy satellites broadcasting L2C signals, or 25% of the constellation. However, GNSS network operators such as the UNAVCO Plate Boundary Observatory (PBO) have been hesitant to use the new signal as it is not well determined how tracking and logging L2C could affect the positions derived from L2 carrier phase measurements for a given receiver. The L2C carrier phase is in quadrature (90° out of phase) with the L2P(Y) phase that has been used by high-precision positioning software since the beginning of GPS. To complicate matters further, some receiver manufacturers (e.g. Trimble) correct for this when logging L2C phase while others (e.g. Topcon) do not. The L2C capability of receivers currently in widespread use in permanent networks can depend on firmware as well as hardware; in some cases receivers can simultaneously track L2C and L2P(Y) phases and some can track only one or the other, and the resulting observation files can depend on how individual operators configure the devices. In cases where both L2C and L2P(Y) are logged simultaneously, translation software (such as UNAVCO’s teqc) must be used carefully in order to select which L2 observation is written to RINEX (2.11) and used in positioning. Modifications were recently made to teqc to eliminate potential confusion in that part of the process; if L2C code observations appear in a RINEX (2.11) file produced by teqc, the L2 phase and S2 SNR observations were from the L2C carrier for those satellites. To date L2C analyses have been restricted to special applications such as snow depth and soil moisture using SNR data

  20. Multijunction Photovoltaic Technologies for High-Performance Concentrators: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    McConnell, R.; Symko-Davies, M.

    2006-05-01

    Multijunction solar cells provide high-performance technology pathways leading to potentially low-cost electricity generated from concentrated sunlight. The National Center for Photovoltaics at the National Renewable Energy Laboratory has funded different III-V multijunction solar cell technologies and various solar concentration approaches. Within this group of projects, III-V solar cell efficiencies of 41% are close at hand and will likely be reported in these conference proceedings. Companies with well-developed solar concentrator structures foresee installed system costs of $3/watt--half of today's costs--within the next 2 to 5 years as these high-efficiency photovoltaic technologies are incorporated into their concentrator photovoltaic systems. These technology improvements are timely as new large-scale multi-megawatt markets, appropriate for high performance PV concentrators, open around the world.

  1. The mitochondrial pyruvate carrier mediates high fat diet-induced increases in hepatic TCA cycle capacity.

    Science.gov (United States)

    Rauckhorst, Adam J; Gray, Lawrence R; Sheldon, Ryan D; Fu, Xiaorong; Pewa, Alvin D; Feddersen, Charlotte R; Dupuy, Adam J; Gibson-Corley, Katherine N; Cox, James E; Burgess, Shawn C; Taylor, Eric B

    2017-11-01

    Excessive hepatic gluconeogenesis is a defining feature of type 2 diabetes (T2D). Most gluconeogenic flux is routed through mitochondria. The mitochondrial pyruvate carrier (MPC) transports pyruvate from the cytosol into the mitochondrial matrix, thereby gating pyruvate-driven gluconeogenesis. Disruption of the hepatocyte MPC attenuates hyperglycemia in mice during high fat diet (HFD)-induced obesity but exerts minimal effects on glycemia in normal chow diet (NCD)-fed conditions. The goal of this investigation was to test whether hepatocyte MPC disruption provides sustained protection from hyperglycemia during long-term HFD and the differential effects of hepatocyte MPC disruption on TCA cycle metabolism in NCD versus HFD conditions. We utilized long-term high fat feeding, serial measurements of postabsorptive blood glucose and metabolomic profiling and 13 C-lactate/ 13 C-pyruvate tracing to investigate the contribution of the MPC to hyperglycemia and altered hepatic TCA cycle metabolism during HFD-induced obesity. Hepatocyte MPC disruption resulted in long-term attenuation of hyperglycemia induced by HFD. HFD increased hepatic mitochondrial pyruvate utilization and TCA cycle capacity in an MPC-dependent manner. Furthermore, MPC disruption decreased progression of fibrosis and levels of transcript markers of inflammation. By contributing to chronic hyperglycemia, fibrosis, and TCA cycle expansion, the hepatocyte MPC is a key mediator of the pathophysiology induced in the HFD model of T2D. Copyright © 2017 The Authors. Published by Elsevier GmbH.. All rights reserved.

  2. Industrially feasible, dopant-free, carrier-selective contacts for high-efficiency silicon solar cells

    KAUST Repository

    Yang, Xinbo

    2017-05-31

    Dopant-free, carrier-selective contacts (CSCs) on high efficiency silicon solar cells combine ease of deposition with potential optical benefits. Electron-selective titanium dioxide (TiO) contacts, one of the most promising dopant-free CSC technologies, have been successfully implemented into silicon solar cells with an efficiency over 21%. Here, we report further progress of TiO contacts for silicon solar cells and present an assessment of their industrial feasibility. With improved TiO contact quality and cell processing, a remarkable efficiency of 22.1% has been achieved using an n-type silicon solar cell featuring a full-area TiO contact. Next, we demonstrate the compatibility of TiO contacts with an industrial contact-firing process, its low performance sensitivity to the wafer resistivity, its applicability to ultrathin substrates as well as its long-term stability. Our findings underscore the great appeal of TiO contacts for industrial implementation with their combination of high efficiency with robust fabrication at low cost.

  3. High-temperature adsorption layers based on fluoridated polyimide and diatomite carrier

    Science.gov (United States)

    Yakovleva, E. Yu.; Shundrina, I. K.; Gerasimov, E. Yu.

    2017-09-01

    A way of preparing separation layers by the pyrolysis of fluorinated polyimide obtained from 2,4,6-trimethyl- m-phenylenediamine (2,4,6-TM mPDA) and 2,2-bis(3',4'-dicarboxyphenyl)hexafluoropropane (6FDA) applied onto a diatomite carrier is described. Thermogravimetry, elemental analysis, low-temperature nitrogen adsorption, high-resolution electron microscopy, and gas chromatography are used to study changes in the texture and chromatographic characteristics of these layers. It is found that changes in the structure and the effectivity of separation characteristic of the layers depend on the temperature of pyrolysis, which ranges from 250 to 1100°C. It is established that a layer of separation is formed at 250-350°C, and the order of elution of hydrocarbons is similar to their chromatographic behavior on such stationary phases as OV-101. Layers of amorphous carbon formed on the surfaces of individual particles on a diatomite surface at 500-700°C. These layers ensure highly stable and selective separation of permanent gases and hydrocarbons when they are present together.

  4. High-density carrier-accumulated and electrically stable oxide thin-film transistors from ion-gel gate dielectric.

    Science.gov (United States)

    Fujii, Mami N; Ishikawa, Yasuaki; Miwa, Kazumoto; Okada, Hiromi; Uraoka, Yukiharu; Ono, Shimpei

    2015-12-18

    The use of indium-gallium-zinc oxide (IGZO) has paved the way for high-resolution uniform displays or integrated circuits with transparent and flexible devices. However, achieving highly reliable devices that use IGZO for low-temperature processes remains a technological challenge. We propose the use of IGZO thin-film transistors (TFTs) with an ionic-liquid gate dielectric in order to achieve high-density carrier-accumulated IGZO TFTs with high reliability, and we discuss a distinctive mechanism for the degradation of this organic-inorganic hybrid device under long-term electrical stress. Our results demonstrated that an ionic liquid or gel gate dielectric provides highly reliable and low-voltage operation with IGZO TFTs. Furthermore, high-density carrier accumulation helps improve the TFT characteristics and reliability, and it is highly relevant to the electronic phase control of oxide materials and the degradation mechanism for organic-inorganic hybrid devices.

  5. Ultrafast nonlinear carrier dynamics in doped semiconductors in high THz fields

    DEFF Research Database (Denmark)

    Hoffmann, Matthias C.; Turchinovich, Dmitry

    2011-01-01

    THz frequency saturable absorption and intervalley carrier scattering in n-type semiconductors were observed using intensity-dependent transmission experiments as well as THz-pump—THz probe spectroscopy with ultrabroadband probe pulses.......THz frequency saturable absorption and intervalley carrier scattering in n-type semiconductors were observed using intensity-dependent transmission experiments as well as THz-pump—THz probe spectroscopy with ultrabroadband probe pulses....

  6. Applications of nonimaging optics for very high solar concentrations

    International Nuclear Information System (INIS)

    O'Gallagher, J.; Winston, R.

    1997-01-01

    Using the principles and techniques of nonimaging optics, solar concentrations that approach the theoretical maximum can be achieved. This has applications in solar energy collection wherever concentration is desired. In this paper, we survey recent progress in attaining and using high and ultrahigh solar fluxes. We review a number of potential applications for highly concentrated solar energy and the current status of the associated technology. By making possible new and unique applications for intense solar flux, these techniques have opened a whole new frontier for research and development of potentially economic uses of solar energy

  7. Case study of elevated layers of high sulfate concentration

    International Nuclear Information System (INIS)

    McNaughton, D.J.; Orgill, M.M.

    1979-01-01

    During studies in August 1976 that were part of the Multi-State Atmospheric Power Production Pollutant Study (MAP3S), Alkezweeny et al., (1977) noted that in the Milwaukee urban plume, layers of relatively high sulfate concentrations occurred at high altitudes with respect to the boundary layer. This paper represents a progress report on studies undertaken to investigate possible causes for a bimodel vertical profile of sulfate concentrations. Data presented by Alkezweeny et al., (1977) serve as a basis for this study. Data from August 23, 1976, and August 24, 1978, indicate concentrations relatively high in sulfate, at 1000 and 6000 ft, respectively, with lower concentrations at lower altitudes. Concentrations of trace metals also indicate no peaks in the vertical concentration profiles above the surface. Initial studies of the high, elevated sulfate concentrations have centered on the August 23 measurements taken over southeast Wisconsin using synoptic data from the national weather service, emissions data from the national emissions data bank system (EPA), air quality data from the national air surveillance network (EPA), and satellite photographs from the EROS Data Center

  8. Effects of the multi-step activation process on the carrier concentration of p-type GaN

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae-Kwan [Department of Materials Science and Metallurgical Engineering, Sunchon National University, Sunchon, Chonnam 540-742 (Korea, Republic of); Jeon, Seong-Ran [LED Research and Business Division, Korea Photonics Technology Institute, Gwanju 500-779 (Korea, Republic of); Lee, Ji-Myon, E-mail: jimlee@sunchon.ac.kr [Department of Printed Electronics Engineering, Sunchon National University, Sunchon, Chonnam 540-742 (Korea, Republic of)

    2014-06-25

    Highlights: • Hole concentration of p-GaN was enhanced by multi-step activation process. • The O{sub 2} plasma treatment is attributed to the enhanced hole concentration of p-GaN. • PL peak intensity was also enhanced by MS activation process. - Abstract: A multi-step activation method, which include an oxygen plasma treatment, chemical treatment, and post annealing in N{sub 2} was proposed to enhance the hole concentration of a p-type GaN epitaxial layer. This process was found to effectively activate p-GaN by increasing the hole concentration compared to that of the conventionally annealed sample. After the optimal oxygen plasma treatment (10 min at a source and table power of 500 W and 100 W, respectively), followed by a HCl and buffered oxide etchant treatment, and then by a post-RTA process in a N{sub 2} environment, the hole concentration was increased from 4.0 × 10{sup 17} to 2.0 × 10{sup 18} cm{sup −3}. The oxygen plasma was found to effectively remove the remaining H atoms and subsequent wet treatment can effectively remove the GaO{sub x} that had formed during O plasma treatment, resulting in the higher intensity of photoluminescence.

  9. Plasma PCSK9 concentrations during an oral fat load and after short term high-fat, high-fat high-protein and high-fructose diets

    Directory of Open Access Journals (Sweden)

    Cariou Bertrand

    2013-01-01

    Full Text Available Abstract Background PCSK9 (Proprotein Convertase Subtilisin Kexin type 9 is a circulating protein that promotes hypercholesterolemia by decreasing hepatic LDL receptor protein. Under non interventional conditions, its expression is driven by sterol response element binding protein 2 (SREBP2 and follows a diurnal rhythm synchronous with cholesterol synthesis. Plasma PCSK9 is associated to LDL-C and to a lesser extent plasma triglycerides and insulin resistance. We aimed to verify the effect on plasma PCSK9 concentrations of dietary interventions that affect these parameters. Methods We performed nutritional interventions in young healthy male volunteers and offspring of type 2 diabetic (OffT2D patients that are more prone to develop insulin resistance, including: i acute post-prandial hyperlipidemic challenge (n=10, ii 4 days of high-fat (HF or high-fat/high-protein (HFHP (n=10, iii 7 (HFruc1, n=16 or 6 (HFruc2, n=9 days of hypercaloric high-fructose diets. An acute oral fat load was also performed in two patients bearing the R104C-V114A loss-of-function (LOF PCSK9 mutation. Plasma PCSK9 concentrations were measured by ELISA. For the HFruc1 study, intrahepatocellular (IHCL and intramyocellular lipids were measured by 1H magnetic resonance spectroscopy. Hepatic and whole-body insulin sensitivity was assessed with a two-step hyperinsulinemic-euglycemic clamp (0.3 and 1.0 mU.kg-1.min-1. Findings HF and HFHP short-term diets, as well as an acute hyperlipidemic oral load, did not significantly change PCSK9 concentrations. In addition, post-prandial plasma triglyceride excursion was not altered in two carriers of PCSK9 LOF mutation compared with non carriers. In contrast, hypercaloric 7-day HFruc1 diet increased plasma PCSK9 concentrations by 28% (p=0.05 in healthy volunteers and by 34% (p=0.001 in OffT2D patients. In another independent study, 6-day HFruc2 diet increased plasma PCSK9 levels by 93% (p Conclusions Plasma PCSK9 concentrations vary

  10. Investigation of carriers of lustrous carbon at high temperatures by infrared spectroscopy (FTIR

    Directory of Open Access Journals (Sweden)

    S. Eichholz

    2010-10-01

    Full Text Available Lustrous carbon is very important in processes of iron casting in green sand. Lustrous carbon (pirografit is a microcrystalline carbon form, which evolves from a gaseous phase. In the case of applying additions, generating lustrous carbon, for sands with bentonite, there is always a danger of emitting – due to a high temperature of liquid cast iron and a humidity - compounds hazardous for a human health. There can be: CO, SO2, benzene, toluene, ethylbenzene, xylene (the so-called: BTEX as well as polycyclic aromatic hydrocarbons(PAHs. In order to asses the selected mixtures: bentonite – carrier of lustrous carbon, in which a coal dust fraction was limited, thethermogravimetric analysis and the analysis of evolving gases were performed. Examinations were carried out in the ApplictaionsLaboratory NITZSCH-Gerätebau GmbH ,Selb/Bavaria, Germany. The NETZSCH TG 209 F1 Iris® thermal analyzer coupled to the BRUKER Optics FTIR TENSOR(TM was used to measure.

  11. Structure, High Affinity, and Negative Cooperativity of the Escherichia coli Holo-(Acyl Carrier Protein):Holo-(Acyl Carrier Protein) Synthase Complex

    Energy Technology Data Exchange (ETDEWEB)

    Marcella, Aaron M.; Culbertson, Sannie J.; Shogren-Knaak, Michael A.; Barb, Adam W.

    2017-11-01

    The Escherichia coli holo-(acyl carrier protein) synthase (ACPS) catalyzes the coenzyme A-dependent activation of apo-ACPP to generate holo-(acyl carrier protein) (holo-ACPP) in an early step of fatty acid biosynthesis. E. coli ACPS is sufficiently different from the human fatty acid synthase to justify the development of novel ACPS-targeting antibiotics. Models of E. coli ACPS in unliganded and holo-ACPP-bound forms solved by X-ray crystallography to 2.05 and 4.10 Å, respectively, revealed that ACPS bound three product holo-ACPP molecules to form a 3:3 hexamer. Solution NMR spectroscopy experiments validated the ACPS binding interface on holo-ACPP using chemical shift perturbations and by determining the relative orientation of holo-ACPP to ACPS by fitting residual dipolar couplings. The binding interface is organized to arrange contacts between positively charged ACPS residues and the holo-ACPP phosphopantetheine moiety, indicating product contains more stabilizing interactions than expected in the enzyme:substrate complex. Indeed, holo-ACPP bound the enzyme with greater affinity than the substrate, apo-ACPP, and with negative cooperativity. The first equivalent of holo-ACPP bound with a KD = 62 ± 13 nM, followed by the binding of two more equivalents of holo-ACPP with KD = 1.2 ± 0.2 μM. Cooperativity was not observed for apo-ACPP which bound with KD = 2.4 ± 0.1 μM. Strong product binding and high levels of holo-ACPP in the cell identify a potential regulatory role of ACPS in fatty acid biosynthesis.

  12. Structure, High Affinity, and Negative Cooperativity of the Escherichia coli Holo-(Acyl Carrier Protein):Holo-(Acyl Carrier Protein) Synthase Complex.

    Science.gov (United States)

    Marcella, Aaron M; Culbertson, Sannie J; Shogren-Knaak, Michael A; Barb, Adam W

    2017-11-24

    The Escherichia coli holo-(acyl carrier protein) synthase (ACPS) catalyzes the coenzyme A-dependent activation of apo-ACPP to generate holo-(acyl carrier protein) (holo-ACPP) in an early step of fatty acid biosynthesis. E. coli ACPS is sufficiently different from the human fatty acid synthase to justify the development of novel ACPS-targeting antibiotics. Models of E. coli ACPS in unliganded and holo-ACPP-bound forms solved by X-ray crystallography to 2.05and 4.10Å, respectively, revealed that ACPS bound three product holo-ACPP molecules to form a 3:3 hexamer. Solution NMR spectroscopy experiments validated the ACPS binding interface on holo-ACPP using chemical shift perturbations and by determining the relative orientation of holo-ACPP to ACPS by fitting residual dipolar couplings. The binding interface is organized to arrange contacts between positively charged ACPS residues and the holo-ACPP phosphopantetheine moiety, indicating product contains more stabilizing interactions than expected in the enzyme:substrate complex. Indeed, holo-ACPP bound the enzyme with greater affinity than the substrate, apo-ACPP, and with negative cooperativity. The first equivalent of holo-ACPP bound with a K D =62±13nM, followed by the binding of two more equivalents of holo-ACPP with K D =1.2±0.2μM. Cooperativity was not observed for apo-ACPP which bound with K D =2.4±0.1μM. Strong product binding and high levels of holo-ACPP in the cell identify a potential regulatory role of ACPS in fatty acid biosynthesis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Differences in Swallowing between High and Low Concentration Taste Stimuli

    Directory of Open Access Journals (Sweden)

    Ahmed Nagy

    2014-01-01

    Full Text Available Taste is a property that is thought to potentially modulate swallowing behavior. Whether such effects depend on taste, intensity remains unclear. This study explored differences in the amplitudes of tongue-palate pressures in swallowing as a function of taste stimulus concentration. Tongue-palate pressures were collected in 80 healthy women, in two age groups (under 40, over 60, stratified by genetic taste status (nontasters, supertasters. Liquids with different taste qualities (sweet, sour, salty, and bitter were presented in high and low concentrations. General labeled magnitude scale ratings captured perceived taste intensity and liking/disliking of the test liquids. Path analysis explored whether factors of taste, concentration, age group, and/or genetic taste status impacted: (1 perceived intensity; (2 palatability; and (3 swallowing pressures. Higher ratings of perceived intensity were found in supertasters and with higher concentrations, which were more liked/disliked than lower concentrations. Sweet stimuli were more palatable than sour, salty, or bitter stimuli. Higher concentrations elicited stronger tongue-palate pressures independently and in association with intensity ratings. The perceived intensity of a taste stimulus varies as a function of stimulus concentration, taste quality, participant age, and genetic taste status and influences swallowing pressure amplitudes. High-concentration salty and sour stimuli elicit the greatest tongue-palate pressures.

  14. Terahertz Conductivity within Colloidal CsPbBr3 Perovskite Nanocrystals: Remarkably High Carrier Mobilities and Large Diffusion Lengths.

    Science.gov (United States)

    Yettapu, Gurivi Reddy; Talukdar, Debnath; Sarkar, Sohini; Swarnkar, Abhishek; Nag, Angshuman; Ghosh, Prasenjit; Mandal, Pankaj

    2016-08-10

    Colloidal CsPbBr3 perovskite nanocrystals (NCs) have emerged as an excellent light emitting material in last one year. Using time domain and time-resolved THz spectroscopy and density functional theory based calculations, we establish 3-fold free carrier recombination mechanism, namely, nonradiative Auger, bimolecular electron-hole recombination, and inefficient trap-assisted recombination in 11 nm sized colloidal CsPbBr3 NCs. Our results confirm a negligible influence of surface defects in trapping charge carriers, which in turn results into desirable intrinsic transport properties, from the perspective of device applications, such as remarkably high carrier mobility (∼4500 cm(2) V(-1) s(-1)), large diffusion length (>9.2 μm), and high luminescence quantum yield (80%). Despite being solution processed and possessing a large surface to volume ratio, this combination of high carrier mobility and diffusion length, along with nearly ideal photoluminescence quantum yield, is unique compared to any other colloidal quantum dot system.

  15. Concentration of High Level Radioactive Liquid Waste. Basic data acquisition

    Energy Technology Data Exchange (ETDEWEB)

    Juvenelle, A.; Masson, M.; Garrido, M.H. [DEN/VRH/DRCP/SCPS/LPCP, BP 17171 - 30207 Bagnols sur Ceze Cedex (France)

    2008-07-01

    Full text of publication follows: In order to enhance its knowledge about the concentration of high level liquid waste (HLLW) from the nuclear fuel reprocessing process, a program of studies was defined by Cea. In a large field of acidity, it proposes to characterize the concentrated solution and the obtained precipitates versus the concentration factor. Four steps are considered: quantification of the salting-out effect on the concentrate acidity, acquisition of solubility data, precipitates characterisation versus the concentration factor through aging tests and concentration experimentation starting from simulated fission products solutions. The first results, reported here, connect the acidity of the concentrated solution to the concentration factor and allow us to precise the field of acidity (4 to 12 N) for the next experiments. In this field, solubility data of various elements (Ba, Sr, Zr...) are separately measured at room temperature, in nitric acid in a first time, then in the presence of various species present in medium (TBP, PO{sub 4}{sup 3-}). The reactions between these various elements are then investigated (formation of insoluble mixed compounds) by following the concentration cations in solution and characterising the precipitates. (authors)

  16. Extremely high concentration of folates in premature newborns.

    Science.gov (United States)

    Zikavska, T; Brucknerova, I

    2014-01-01

    Extremely high concentration of folates in premature newborns: case reports. Folates are a group of water soluble compounds, which are important for metabolic processes in human body. These are important during periods of rapid cell growth. The most accurate indicator of long-term folate level status in the body is the determination of red blood cell (RBC) folate concentrations. The optimal level of RBC folate is not known in neonatal period. Authors discuss the reasons for extremely high level of RBC folate concentrations. In our work we present the cases of two premature newborns with extremely high level of RBC folate concentrations, which were analyzed immunochemically on the first day of life and after six weeks of life. In both cases we measured RBC folate concentrations on the 1st day of life. After 6 weeks we found extremely high RBC folate concentration level (5516.67 ng/ml) in the first case after RBC transfusions. In second case after two months of life the RBC folate concentration level was doubled (2335.1 ng/ml) until 24 hours after RBC transfusion compared to levels after birth. The normal range of RBC folate values vary in newborns. The upper limit of daily dose of folic acid in pregnancy and neonatal period is not known. On the other hand it is an easily excreted water-soluble vitamin but in premature newborn it can lead to the disruption of metabolic balance and slow its degradation. Some factors can have an impact on RBC folate concentration. Blood transfusion can be one of the main influences on RBC folate concentration. To clarify these mechanisms further studies are required (Ref. 29).

  17. A compact spectrum splitting concentrator for high concentration photovoltaics based on the dispersion of a lens

    Science.gov (United States)

    He, J.; Flowers, C. A.; Yao, Y.; Atwater, H. A.; Rockett, A. A.; Nuzzo, R. G.

    2018-06-01

    Photovoltaic devices used in conjunction with functional optical elements for light concentration and spectrum splitting are known to be a viable approach for highly efficient photovoltaics. Conventional designs employ discrete optical elements, each with the task of either performing optical concentration or separating the solar spectrum. In the present work, we examine the performance of a compact photovoltaic architecture in which a single lens plays a dual role as both a concentrator and a spectrum splitter, the latter made possible by exploiting its intrinsic dispersion. A four-terminal two-junction InGaP/GaAs device is prepared to validate the concept and illustrates pathways for improvements. A spectral separation in the visible range is demonstrated at the focal point of a plano-convex lens with a geometric concentration ratio of 1104X with respect to the InGaP subcell.

  18. Synergic Adsorption–Biodegradation by an Advanced Carrier for Enhanced Removal of High-Strength Nitrogen and Refractory Organics

    KAUST Repository

    Ahmad, Muhammad

    2017-03-29

    Coking wastewater contains not only high-strength nitrogen but also toxic biorefractory organics. This study presents simultaneous removal of high-strength quinoline, carbon, and ammonium in coking wastewater by immobilized bacterial communities composed of a heterotrophic strain Pseudomonas sp. QG6 (hereafter referred as QG6), ammonia-oxidizing bacteria (AOB), and anaerobic ammonium oxidation bacteria (anammox). The bacterial immobilization was implemented with the help of a self-designed porous cubic carrier that created structured microenvironments including an inner layer adapted for anaerobic bacteria, a middle layer suitable for coaggregation of certain aerobic and anaerobic bacteria, and an outer layer for heterotrophic bacteria. By coating functional polyurethane foam (FPUF) with iron oxide nanoparticles (IONPs), the biocarrier (IONPs-FPUF) could provide a good outer-layer barrier for absorption and selective treatment of aromatic compounds by QG6, offer a conducive environment for anammox in the inner layer, and provide a mutualistic environment for AOB in the middle layer. Consequently, simultaneous nitrification and denitrification were reached with the significant removal of up to 322 mg L (98%) NH, 311 mg L (99%) NO, and 633 mg L (97%) total nitrogen (8 mg L averaged NO concentration was recorded in the effluent), accompanied by an efficient removal of chemical oxygen demand by 3286 mg L (98%) and 350 mg L (100%) quinoline. This study provides an alternative way to promote synergic adsorption and biodegradation with the help of a modified biocarrier that has great potential for treatment of wastewater containing high-strength carbon, toxic organic pollutants, and nitrogen.

  19. Synergic Adsorption-Biodegradation by an Advanced Carrier for Enhanced Removal of High-Strength Nitrogen and Refractory Organics.

    Science.gov (United States)

    Ahmad, Muhammad; Liu, Sitong; Mahmood, Nasir; Mahmood, Asif; Ali, Muhammad; Zheng, Maosheng; Ni, Jinren

    2017-04-19

    Coking wastewater contains not only high-strength nitrogen but also toxic biorefractory organics. This study presents simultaneous removal of high-strength quinoline, carbon, and ammonium in coking wastewater by immobilized bacterial communities composed of a heterotrophic strain Pseudomonas sp. QG6 (hereafter referred as QG6), ammonia-oxidizing bacteria (AOB), and anaerobic ammonium oxidation bacteria (anammox). The bacterial immobilization was implemented with the help of a self-designed porous cubic carrier that created structured microenvironments including an inner layer adapted for anaerobic bacteria, a middle layer suitable for coaggregation of certain aerobic and anaerobic bacteria, and an outer layer for heterotrophic bacteria. By coating functional polyurethane foam (FPUF) with iron oxide nanoparticles (IONPs), the biocarrier (IONPs-FPUF) could provide a good outer-layer barrier for absorption and selective treatment of aromatic compounds by QG6, offer a conducive environment for anammox in the inner layer, and provide a mutualistic environment for AOB in the middle layer. Consequently, simultaneous nitrification and denitrification were reached with the significant removal of up to 322 mg L -1 (98%) NH 4 , 311 mg L -1 (99%) NO 2 , and 633 mg L -1 (97%) total nitrogen (8 mg L -1 averaged NO 3 concentration was recorded in the effluent), accompanied by an efficient removal of chemical oxygen demand by 3286 mg L -1 (98%) and 350 mg L -1 (100%) quinoline. This study provides an alternative way to promote synergic adsorption and biodegradation with the help of a modified biocarrier that has great potential for treatment of wastewater containing high-strength carbon, toxic organic pollutants, and nitrogen.

  20. The Impact of Metallic Impurities on Minority Carrier Lifetime in High Purity N-type Silicon

    Science.gov (United States)

    Yoon, Yohan

    photovoltaics. The detrimental effects and electrical properties of transition-metal impurities, e.g., iron, and its complexes, such as FeB, in p-type silicon are well-known. However, in n-type silicon wafers, although there is evidence of greater tolerance, the impact of specific metallic impurities on minority lifetimes is not as well established. The major contribution of this dissertation is to provide new electrical data relating to metallic impurities in n-type silicon, e.g. activation energy, capture cross sections. The injection-dependent lifetimes of intentionally metal contaminated n-type CZ silicon wafers were investigated using resonant-coupled photoconductance decay (RCPCD) and the quasi-steady-state photoconductance technique (QSSPC). Finally, a direct correlation between minority carrier lifetime and the concentration of specific electrically active metallic impurities was established using DLTS.

  1. Calcium isotopic composition of high-latitude proxy carrier Neogloboquadrina pachyderma (sin.

    Directory of Open Access Journals (Sweden)

    A. Eisenhauer

    2009-01-01

    Full Text Available The accurate reconstruction of sea surface temperature (SST history in climate-sensitive regions (e.g. tropical and polar oceans became a challenging task in palaeoceanographic research. Biogenic shell carbonate SST proxies successfully developed for tropical regions often fail in cool water environments. Their major regional shortcomings and the cryptic diversity now found within the major high latitude proxy carrier Neogloboquadrina pachyderma (sin. highlight an urgent need to explore complementary SST proxies for these cool-water regions. Here we incorporate the genetic component into a calibration study of a new SST proxy for the high latitudes. We found that the calcium isotopic composition (δ44/40Ca of calcite from genotyped net catches and core-top samples of the planktonic foraminifera Neogloboquadrina pachyderma (sin. is related to temperature and unaffected by genetic variations. The temperature sensitivity has been found to be 0.17 (±0.02‰ per 1°C, highlighting its potential for downcore applications in open marine cool-water environments. Our results further indicate that in extreme polar environments, below a critical threshold temperature of 2.0 (±0.5°C associated with salinities below 33.0 (±0.5‰, a prominent shift in biomineralization affects the δ44/40Ca of genotyped and core-top N. pachyderma (sin., becoming insensitive to temperature. These findings highlight the need of more systematic calibration studies on single planktonic foraminiferal species in order to unravel species-specific factors influencing the temperature sensitivity of Ca isotope fractionation and to validate the proxies' applicability.

  2. Formulation of stable Bacillus subtilis AH18 against temperature fluctuation with highly heat-resistant endospores and micropore inorganic carriers.

    Science.gov (United States)

    Chung, Soohee; Lim, Hyung Mi; Kim, Sang-Dal

    2007-08-01

    To survive the commercial market and to achieve the desired effect of beneficial organisms, the strains in microbial products must be cost-effectively formulated to remain dormant and hence survive through high and low temperatures of the environment during transportation and storage. Dormancy and stability of Bacillus subtilis AH18 was achieved by producing endospores with enhanced heat resistance and using inorganic carriers. Heat stability assays, at 90 degrees C for 1 h, showed that spores produced under a sublethal temperature of 57 degrees C was 100 times more heat-resistant than the ones produced by food depletion at the growing temperature of 37 degrees C. When these highly heat-resistant endospores were formulated with inorganic carriers of natural and synthetic zeolite or kaolin clay minerals having substantial amount of micropores, the dormancy of the endospores was maintained for 6 months at 15-25 degrees C. Meanwhile, macroporous perlite carriers with average pore diameter larger than 3.7 microm stimulated the germination of the spores and rapid proliferation of the bacteria. These results indicated that a B. subtilis AH18 product that can remain dormant and survive through environmental temperature fluctuation can be formulated by producing heat-stressed endospores and incorporating inorganic carriers with micropores in the formulation step.

  3. Recycling Gene Carrier with High Efficiency and Low Toxicity Mediated by L-Cystine-Bridged Bis(β-cyclodextrin)s

    Science.gov (United States)

    Zhang, Yu-Hui; Chen, Yong; Zhang, Ying-Ming; Yang, Yang; Chen, Jia-Tong; Liu, Yu

    2014-12-01

    Constructing safe and effective gene delivery carriers is becoming highly desirable for gene therapy. Herein, a series of supramolecular crosslinking system were prepared through host-guest binding of adamantyl-modified low molecular weight of polyethyleneimine with L-cystine-bridged bis(β-cyclodextrin)s and characterized by 1H NMR titration, electron microscopy, zeta potential, dynamic light-scattering, gel electrophoresis, flow cytometry and confocal fluorescence microscopy. The results showed that these nanometersized supramolecular crosslinking systems exhibited higher DNA transfection efficiencies and lower cytotoxicity than the commercial DNA carrier gold standard (25 kDa bPEI) for both normal cells and cancer cells, giving a very high DNA transfection efficiency up to 54% for 293T cells. Significantly, this type of supramolecular crosslinking system possesses a number of enzyme-responsive disulfide bonds, which can be cleaved by reductive enzyme to promote the DNA release but recovered by oxidative enzyme to make the carrier renewable. These results demonstrate that these supramolecular crosslinking systems can be used as promising gene carriers.

  4. Multiphysics modelling and experimental validation of high concentration photovoltaic modules

    International Nuclear Information System (INIS)

    Theristis, Marios; Fernández, Eduardo F.; Sumner, Mike; O'Donovan, Tadhg S.

    2017-01-01

    Highlights: • A multiphysics modelling approach for concentrating photovoltaics was developed. • An experimental campaign was conducted to validate the models. • The experimental results were in good agreement with the models. • The multiphysics modelling allows the concentrator’s optimisation. - Abstract: High concentration photovoltaics, equipped with high efficiency multijunction solar cells, have great potential in achieving cost-effective and clean electricity generation at utility scale. Such systems are more complex compared to conventional photovoltaics because of the multiphysics effect that is present. Modelling the power output of such systems is therefore crucial for their further market penetration. Following this line, a multiphysics modelling procedure for high concentration photovoltaics is presented in this work. It combines an open source spectral model, a single diode electrical model and a three-dimensional finite element thermal model. In order to validate the models and the multiphysics modelling procedure against actual data, an outdoor experimental campaign was conducted in Albuquerque, New Mexico using a high concentration photovoltaic monomodule that is thoroughly described in terms of its geometry and materials. The experimental results were in good agreement (within 2.7%) with the predicted maximum power point. This multiphysics approach is relatively more complex when compared to empirical models, but besides the overall performance prediction it can also provide better understanding of the physics involved in the conversion of solar irradiance into electricity. It can therefore be used for the design and optimisation of high concentration photovoltaic modules.

  5. Evaluation of radionuclide concentrations in high-level radioactive wastes

    International Nuclear Information System (INIS)

    Fehringer, D.J.

    1985-10-01

    This report describes a possible approach for development of a numerical definition of the term ''high-level radioactive waste.'' Five wastes are identified which are recognized as being high-level wastes under current, non-numerical definitions. The constituents of these wastes are examined and the most hazardous component radionuclides are identified. This report suggests that other wastes with similar concentrations of these radionuclides could also be defined as high-level wastes. 15 refs., 9 figs., 4 tabs

  6. High fructose intake fails to induce symptomatic adaptation but may induce intestinal carriers

    Directory of Open Access Journals (Sweden)

    Debra Heilpern

    2010-01-01

    Full Text Available Fructose has several interactions in man, including intolerance and promotion of some diseases. However, fructose in fruits and in prebiotics may be associated with benefits. Adaptation to regular fructose ingestion as defined for lactose could support a beneficial rather than a deleterious effect. This study was undertaken to evaluate symptomatic response and potential underlying mechanisms of fecal bacterial change and breath hydrogen response to short term regular fructose supplementation. Forty-five participants were recruited for a 3 day recall diet questionnaire and a 50 g fructose challenge. Breath hydrogen was measured for 4.5 hrs and symptoms were recorded. Thirty-eight subjects provided stool samples for analysis by selective culture of 4 groups of bacteria, including bifidobacteria and lactobacilli. Intolerant subjects returned a second time 15 days later. Ten of these served as controls and 16 received 30 g fructose twice a day. Ten of the latter returned 27 days later, after stopping fructose for a third challenge test. Student’s paired, unpaired t-tests and Pearson correlations were used. Significance was accepted at P<0.05. After fructose rechallenge there were no significant reductions in symptoms scores in volunteers in either the fructose supplemented or non supplemented groups. However, total breath hydrogen was reduced between test 1 and test 2 (P=0.03 or test 3 (P=0.04 in the group given fructose then discontinued, compared with controls. There were no statistically significant changes in bacterial numbers between test 2 and 1. This study shows that regular consumption of high dose fructose does not follow the lactose model of adaptation. Observed changes in hydrogen breath tests raise the possibility that intestinal carriers of fructose may be induced potentially aggravating medical problems attributed to fructose.

  7. High indoor radon concentrations in some Swedish waterworks

    International Nuclear Information System (INIS)

    Aakerblom, G.; Hagberg, N.; Mjoenes, L.; Heiberg, A.

    2002-01-01

    High indoor radon concentrations in buildings used for water treatment are not uncommon. When raw water is processed in an open system radon escapes from the water to the indoor air of the premises. It is not unusual that the staff of the waterworks have their offices in the building where the water is processed. If large volumes of water are processed and the evaporated radon can reach the workplaces the indoor radon concentration can be very high even if the radon concentration of the raw water is moderate. Groundwaters from aquifers in bedrock and soil and surface water that has been infiltrated through deposits of sand or gravel have the potential to cause high indoor radon levels. In surface water emanating directly from a lake or a river the radon concentrations are normally too low to cause problems. Three waterworks in central Sweden have been studied, Ludvika, Fredriksberg and Kolbaeck. The radon concentrations in the raw water of these waterworks are from 85 Bq/l to 300 Bq/l. Average indoor radon concentrations exceeding 17,000 Bq/m 3 have been measured in Ludvika with peaks of almost 37,000 Bq/m 3 . In Kolbaeck radon concentrations up to 56,000 Bq/m 3 have been measured. It is quite possible that employees of waterworks can receive doses exceeding 20 mSv per year (calculated according to ICRP:s dose conversion convention). Measurements of radon and gamma radiation from the waterworks are reported and methods to lower the indoor radon concentrations are discussed. (author)

  8. Denitrification of fertilizer wastewater at high chloride concentration

    DEFF Research Database (Denmark)

    Ucisik, Ahmed Süheyl; Henze, Mogens

    Wastewater from fertilizer industry is characterized by high contents of chloride concentration, which normally vary between 60 and 76 g/l. Experiments with bilogical denitrification were performed in lab-scale "fill and draw" reactors with synthetic wastewater with chloride concentrations up to 77.......4 g/l. The results of the experiments showed that biological denitrification was feasible at the extreme environmental conditions prevailing in fertilizer wastewater. Stable continuous biological denitrfication of the synthetic high chloride wastewater was performed up to 77.4 g Cl/l at 37 degree C...

  9. Atmospheric conditions during high ragweed pollen concentrations in Zagreb, Croatia

    Science.gov (United States)

    Prtenjak, Maja Telišman; Srnec, Lidija; Peternel, Renata; Madžarević, Valentina; Hrga, Ivana; Stjepanović, Barbara

    2012-11-01

    We examined the atmospheric conditions favourable to the occurrence of maximum concentrations of ragweed pollen with an extremely high risk of producing allergy. Over the 2002-2009 period, daily pollen data collected in Zagreb were used to identify two periods of high pollen concentration (> 600 grains/m3) for our analysis: period A (3-4 September 2002) and period B (6-7 September 2003). Synoptic conditions in both periods were very similar: Croatia was under the influence of a lower sector high pressure system moving slowly eastward over Eastern Europe. During the 2002-2009 period, this type of weather pattern (on ~ 70% of days), in conjunction with almost non-gradient surface pressure conditions in the area (on ~ 30% of days) characterised days when the daily pollen concentrations were higher than 400 grains/m3. Numerical experiments using a mesoscale model at fine resolution showed successful multi-day simulations reproducing the local topographic influence on wind flow and in reasonable agreement with available observations. According to the model, the relatively weak synoptic flow (predominantly from the eastern direction) allowed local thermal circulations to develop over Zagreb during both high pollen episodes. Two-hour pollen concentrations and 48-h back-trajectories indicated that regional-range transport of pollen grains from the central Pannonian Plain was the cause of the high pollen concentrations during period A. During period B, the north-westward regional-range transport in Zagreb was supplemented significantly by pronounced horizontal recirculation of pollen grains. This recirculation happened within the diurnal local circulation over the city, causing a late-evening increase in pollen concentration.

  10. Filtered Carrier Phase Estimator for High-Order QAM Optical Systems

    DEFF Research Database (Denmark)

    Rozental, Valery; Kong, Deming; Corcoran, Bill

    2018-01-01

    We investigate, using Monte Carlo simulations, the performance characteristics and limits of a low-complexity filtered carrier phase estimator (F-CPE) in terms of cycle slip occurrences and SNR penalties. In this work, the F-CPE algorithm has been extended to include modulation formats whose oute...

  11. Polyaspartic Acid Concentration Controls the Rate of Calcium Phosphate Nanorod Formation in High Concentration Systems

    Energy Technology Data Exchange (ETDEWEB)

    Krogstad, Daniel V. [Biosystems and; Wang, Dongbo [Biosystems and; Lin-Gibson, Sheng [Biosystems and

    2017-08-31

    Polyelectrolytes are known to greatly affect calcium phosphate (CaP) mineralization. The reaction kinetics as well as the CaP phase, morphology and aggregation state depend on the relative concentrations of the polyelectrolyte and the inorganic ions in a complex, nonlinear manner. This study examines the structural evolution and kinetics of polyaspartic acid (pAsp) directed CaP mineralization at high concentrations of polyelectrolytes, calcium, and total phosphate (19–30 mg/mL pAsp, 50–100 mM Ca2+, Ca/P = 2). Using a novel combination of characterization techniques including cryogenic transmission electron microscopy (cryo-TEM), spectrophotometry, X-ray total scattering pair distribution function analysis, and attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), it was determined that the CaP mineralization occurred over four transition steps. The steps include the formation of aggregates of pAsp stabilized CaP spherical nanoparticles (sNP), crystallization of sNP, oriented attachment of the sNP into nanorods, and further crystallization of the nanorods. The intermediate aggregate sizes and the reaction kinetics were found to be highly polymer concentration dependent while the sizes of the particles were not concentration dependent. This study demonstrates the complex role of pAsp in controlling the mechanism as well as the kinetics of CaP mineralization.

  12. High-concentration planar microtracking photovoltaic system exceeding 30% efficiency

    Science.gov (United States)

    Price, Jared S.; Grede, Alex J.; Wang, Baomin; Lipski, Michael V.; Fisher, Brent; Lee, Kyu-Tae; He, Junwen; Brulo, Gregory S.; Ma, Xiaokun; Burroughs, Scott; Rahn, Christopher D.; Nuzzo, Ralph G.; Rogers, John A.; Giebink, Noel C.

    2017-08-01

    Prospects for concentrating photovoltaic (CPV) power are growing as the market increasingly values high power conversion efficiency to leverage now-dominant balance of system and soft costs. This trend is particularly acute for rooftop photovoltaic power, where delivering the high efficiency of traditional CPV in the form factor of a standard rooftop photovoltaic panel could be transformative. Here, we demonstrate a fully automated planar microtracking CPV system 660× concentration ratio over a 140∘ full field of view. In outdoor testing over the course of two sunny days, the system operates automatically from sunrise to sunset, outperforming a 17%-efficient commercial silicon solar cell by generating >50% more energy per unit area per day in a direct head-to-head competition. These results support the technical feasibility of planar microtracking CPV to deliver a step change in the efficiency of rooftop solar panels at a commercially relevant concentration ratio.

  13. Beryllium-10 concentrations in water samples of high northern latitudes

    Energy Technology Data Exchange (ETDEWEB)

    Strobl, C.; Eisenhauer, A.; Schulz, V.; Baumann, S.; Mangini, A. [Heidelberger Akademie der Wissenschaften, Heildelberg (Germany); Kubik, P.W. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-09-01

    {sup 10}Be concentrations in the water column of high northern latitudes were not available so far. We present different {sup 10}Be profiles from the Norwegian-Greenland Sea, the Arctic Ocean, and the Laptev Sea. (author) 3 fig., 3 refs.

  14. Effects of high concentration of chromium stress on physiological ...

    African Journals Online (AJOL)

    We studied the effects of high concentration of chromium (Cr) stress on physiological and biochemical characters and accumulation of Cr in Pingyang Tezao tea [Camellia sinensis (L) O. Kutze 'Pingyangtezao'] through a pot experiment. The results show that the indicators of photosynthesis were all suppressed with ...

  15. The virucidal spectrum of a high concentration alcohol mixture

    NARCIS (Netherlands)

    van Engelenburg, F. A. C.; Terpstra, F. G.; Schuitemaker, H.; Moorer, W. R.

    2002-01-01

    The virucidal spectrum of a high concentration alcohol mixture (80% ethanol and 5% isopropanol) was determined for a broad series of lipid-enveloped (LE) and non-lipid-enveloped (NLE) viruses covering all relevant blood-borne viruses. LE viruses were represented by human immunodeficiency virus

  16. Rheological behavior of high-concentration sodium caseinate dispersions.

    Science.gov (United States)

    Loveday, Simon M; Rao, M Anandha; Creamer, Lawrence K; Singh, Harjinder

    2010-03-01

    Apparent viscosity and frequency sweep (G', G'') data for sodium caseinate dispersions with concentrations of approximately 18% to 40% w/w were obtained at 20 degrees C; colloidal glass behavior was exhibited by dispersions with concentration >or=23% w/w. The high concentrations were obtained by mixing frozen powdered buffer with sodium caseinate in boiling liquid nitrogen, and allowing the mixtures to thaw and hydrate at 4 degrees C. The low-temperature G'-G'' crossover seen in temperature scans between 60 and 5 degrees C was thought to indicate gelation. Temperature scans from 5 to 90 degrees C revealed gradual decrease in G' followed by plateau values. In contrast, G'' decreased gradually and did not reach plateau values. Increase in hydrophobicity of the sodium caseinate or a decrease in the effective volume fraction of its aggregates may have contributed to these phenomena. The gelation and end of softening temperatures of the dispersions increased with the concentration of sodium caseinate. From an Eldridge-Ferry plot, the enthalpy of softening was estimated to be 29.6 kJ mol(-1). The results of this study should be useful for creating new products with high concentrations of sodium caseinate.

  17. Investigation of the areas of high radon concentration in Gyeongju

    International Nuclear Information System (INIS)

    Lee, Jung Min; Park, Chan Hee; Kim, Shin Jae; Moon, Joo Hyun

    2013-01-01

    The aim of this study was to survey the radon concentrations at 21 elementary schools in Gyeongju, Republic of Korea, to identify those schools with high radon concentrations. Considering their geological characteristics and the preliminary survey results, three schools were finally placed under close scrutiny. For these three schools, continuous measurements over 48 h were taken at the principal's and administration office. The radon concentrations at one school, Naenam, exceeded the action level (148 Bq/m 3 ) established by the U.S. EPA, while those at the other two schools were below that level. - Highlights: • Preliminary measurements of the indoor radon concentrations were performed at the auditoriums in 23 elementary schools in Gyeongju. • Considering the geological characteristics and preliminary survey results, three elementary schools were screened for closer scrutiny. • For the three schools, continuous measurements were made at their principal's and administration offices over 48-h period. • The scrutiny revealed one elementary school of high radon concentration much higher than the U.S. EPA action level

  18. Unphysiologically high magnesium concentrations support chondrocyte proliferation and redifferentiation.

    Science.gov (United States)

    Feyerabend, Frank; Witte, Frank; Kammal, Michael; Willumeit, Regine

    2006-12-01

    The effect of unphysiologically high extracellular magnesium concentrations on chondrocytes, induced by the supplementation of magnesium sulfate, was studied using a 3-phase tissue engineering model. The experiments showed that chondrocyte proliferation and redifferentiation, on the gene and protein expression level, are enhanced. A negative influence was found during chondrogenesis where an inhibition of extracellular matrix formation was observed. In addition, a direct impact on chondrocyte metabolism, elevated magnesium concentrations also affected growth factor effectiveness by consecutive influences during chondrogenesis. All observations were dosage dependent. The results of this study indicate that magnesium may be a useful tool for cartilage tissue engineering.

  19. A three-dimensional nitrogen-doped graphene structure: a highly efficient carrier of enzymes for biosensors

    Science.gov (United States)

    Guo, Jingxing; Zhang, Tao; Hu, Chengguo; Fu, Lei

    2015-01-01

    In recent years, graphene-based enzyme biosensors have received considerable attention due to their excellent performance. Enormous efforts have been made to utilize graphene oxide and its derivatives as carriers of enzymes for biosensing. However, the performance of these sensors is limited by the drawbacks of graphene oxide such as slow electron transfer rate, low catalytic area and poor conductivity. Here, we report a new graphene-based enzyme carrier, i.e. a highly conductive 3D nitrogen-doped graphene structure (3D-NG) grown by chemical vapour deposition, for highly effective enzyme-based biosensors. Owing to the high conductivity, large porosity and tunable nitrogen-doping ratio, this kind of graphene framework shows outstanding electrical properties and a large surface area for enzyme loading and biocatalytic reactions. Using glucose oxidase (GOx) as a model enzyme and chitosan (CS) as an efficient molecular binder of the enzyme, our 3D-NG based biosensors show extremely high sensitivity for the sensing of glucose (226.24 μA mM-1 m-2), which is almost an order of magnitude higher than those reported in most of the previous studies. The stable adsorption and outstanding direct electrochemical behaviour of the enzyme on the nanocomposite indicate the promising application of this 3D enzyme carrier in high-performance electrochemical biosensors or biofuel cells.In recent years, graphene-based enzyme biosensors have received considerable attention due to their excellent performance. Enormous efforts have been made to utilize graphene oxide and its derivatives as carriers of enzymes for biosensing. However, the performance of these sensors is limited by the drawbacks of graphene oxide such as slow electron transfer rate, low catalytic area and poor conductivity. Here, we report a new graphene-based enzyme carrier, i.e. a highly conductive 3D nitrogen-doped graphene structure (3D-NG) grown by chemical vapour deposition, for highly effective enzyme

  20. Band gap tunning in BN-doped graphene systems with high carrier mobility

    KAUST Repository

    Kaloni, T. P.

    2014-02-17

    Using density functional theory, we present a comparative study of the electronic properties of BN-doped graphene monolayer, bilayer, trilayer, and multilayer systems. In addition, we address a superlattice of pristine and BN-doped graphene. Five doping levels between 12.5% and 75% are considered, for which we obtain band gaps from 0.02 eV to 2.43 eV. We demonstrate a low effective mass of the charge carriers.

  1. High carrier mobility of CoPc wires based field-effect transistors using bi-layer gate dielectric

    Directory of Open Access Journals (Sweden)

    Murali Gedda

    2013-11-01

    Full Text Available Polyvinyl alcohol (PVA and anodized Al2O3 layers were used as bi-layer gate for the fabrication of cobalt phthalocyanine (CoPc wire base field-effect transistors (OFETs. CoPc wires were grown on SiO2 surfaces by organic vapor phase deposition method. These devices exhibit a field-effect carrier mobility (μEF value of 1.11 cm2/Vs. The high carrier mobility for CoPc molecules is attributed to the better capacitive coupling between the channel of CoPc wires and the gate through organic-inorganic dielectric layer. Our measurements also demonstrated the way to determine the thicknesses of the dielectric layers for a better process condition of OFETs.

  2. The indicating FTA elute cartridge a solid sample carrier to detect high-risk HPV and high-grade cervical lesions

    NARCIS (Netherlands)

    Bie, R.P. de; Schmeink, C.E.; Bakkers, J.M.J.E.; Snijders, P.J.L.M.; Quint, W.G.V.; Massuger, L.F.A.G.; Bekkers, R.L.M.; Melchers, W.J.G.

    2011-01-01

    The clinically validated high-risk human papillomavirus (hrHPV) Hybrid Capture 2 (HC2) and GP5+/6+-PCR assays were analyzed on an Indicating FTA Elute cartridge (FTA cartridge). The FTA cartridge is a solid dry carrier that allows safe transport of cervical samples. FTA cartridge samples were

  3. Single Carrier Cyclic Prefix-Assisted CDMA System with Frequency Domain Equalization for High Data Rate Transmission

    Directory of Open Access Journals (Sweden)

    Madhukumar A. S.

    2004-01-01

    Full Text Available Multiple-access interference and interfinger interference limit the capacity of conventional single-carrier DS-CDMA systems. Even though multicarrier CDMA posses the advantages of conventional CDMA and OFDM, it suffers from two major implementation difficulties such as peak-to-average power ratio and high sensitivity to frequency offset and RF phase noise. A novel approach based on single-carrier cyclic prefix-assisted CDMA has been proposed to overcome the disadvantages of single-carrier CDMA and multicarrier modulation. The usefulness of the proposed approach for high-speed packet access with simplified channel estimation procedures are investigated in this paper. The paper also proposes a data-dependent pilot structure for the downlink transmission of the proposed system for enhancing pilot-assisted channel estimation in frequency domain. The performance of the proposed pilot structure is compared against the data-independent common pilot structure. The proposed system is extensively simulated for different channel parameters with different channel estimation and equalization methods and the results are compared against conventional multicarrier CDMA systems with identical system specifications.

  4. Highly concentrated zinc oxide nanocrystals sol with strong blue emission

    International Nuclear Information System (INIS)

    Vafaee, M.; Sasani Ghamsari, M.; Radiman, S.

    2011-01-01

    Highly concentrated ZnO sol was synthesized by an improved sol-gel method. Water was used as a modifier to control the sol-gel reaction and provide a way to increase the sol concentration. Concentration of ZnO in the prepared sol is higher than from other methods. Optical absorption and photoluminescence were used to investigate optical properties of the prepared sol. FTIR test was performed to study the influence of water on the compounds of as-prepared sol. The size and morphology of ZnO nanoparticles have been studied by HRTEM. The prepared colloidal ZnO nanocrystals have narrow size distribution (5-8 nm) and showed strong blue emission. The prepared sol has enough potential for optoelectronic applications. - Research highlights: → Novel sol-gel route has been employed to prepare highly concentrated ZnO colloidal nanocrystals. → Water has been used to control the sources of emission in synthesized material. → A strong blue luminescent material has been obtained.

  5. Nonfaradaic nanoporous electrochemistry for conductometry at high electrolyte concentration.

    Science.gov (United States)

    Bae, Je Hyun; Kang, Chung Mu; Choi, Hyoungseon; Kim, Beom Jin; Jang, Woohyuk; Lim, Sung Yul; Kim, Hee Chan; Chung, Taek Dong

    2015-02-17

    Nanoporous electrified surfaces create a unique nonfaradaic electrochemical behavior that is sensitively influenced by pore size, morphology, ionic strength, and electric field modulation. Here, we report the contributions of ion concentration and applied ac frequency to the electrode impedance through an electrical double layer overlap and ion transport along the nanopores. Nanoporous Pt with uniform pore size and geometry (L2-ePt) responded more sensitively to conductivity changes in aqueous solutions than Pt black with poor uniformity despite similar real surface areas and enabled the previously difficult quantitative conductometry measurements at high electrolyte concentrations. The nanopores of L2-ePt were more effective in reducing the electrode impedance and exhibited superior linear responses to not only flat Pt but also Pt black, leading to successful conductometric detection in ion chromatography without ion suppressors and at high ionic strengths.

  6. Biodegradation studies of oil sludge containing high hydrocarbons concentration

    International Nuclear Information System (INIS)

    Olguin-Lora, P.; Munoz-Colunga, A.; Castorena-Cortes, G.; Roldan-Carrillo, T.; Quej Ake, L.; Reyes-Avila, J.; Zapata-Penasco, I.; Marin-Cruz, J.

    2009-01-01

    Oil industry has a significant impact on environment due to the emission of, dust, gases, waste water and solids generated during oil production all the way to basic petrochemical product manufacturing stages. the aim of this work was to evaluate the biodegradation of sludge containing high hydrocarbon concentration originated by a petroleum facility. A sludge sampling was done at the oil residuals pool (ORP) on a gas processing center. (Author)

  7. High Concentrations of Tranexamic Acid Inhibit Ionotropic Glutamate Receptors.

    Science.gov (United States)

    Lecker, Irene; Wang, Dian-Shi; Kaneshwaran, Kirusanthy; Mazer, C David; Orser, Beverley A

    2017-07-01

    The antifibrinolytic drug tranexamic acid is structurally similar to the amino acid glycine and may cause seizures and myoclonus by acting as a competitive antagonist of glycine receptors. Glycine is an obligatory co-agonist of the N-methyl-D-aspartate (NMDA) subtype of glutamate receptors. Thus, it is plausible that tranexamic acid inhibits NMDA receptors by acting as a competitive antagonist at the glycine binding site. The aim of this study was to determine whether tranexamic acid inhibits NMDA receptors, as well as α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid and kainate subtypes of ionotropic glutamate receptors. Tranexamic acid modulation of NMDA, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid, and kainate receptors was studied using whole cell voltage-clamp recordings of current from cultured mouse hippocampal neurons. Tranexamic acid rapidly and reversibly inhibited NMDA receptors (half maximal inhibitory concentration = 241 ± 45 mM, mean ± SD; 95% CI, 200 to 281; n = 5) and shifted the glycine concentration-response curve for NMDA-evoked current to the right. Tranexamic acid also inhibited α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (half maximal inhibitory concentration = 231 ± 91 mM; 95% CI, 148 to 314; n = 5 to 6) and kainate receptors (half maximal inhibitory concentration = 90 ± 24 mM; 95% CI, 68 to 112; n = 5). Tranexamic acid inhibits NMDA receptors likely by reducing the binding of the co-agonist glycine and also inhibits α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid and kainate receptors. Receptor blockade occurs at high millimolar concentrations of tranexamic acid, similar to the concentrations that occur after topical application to peripheral tissues. Glutamate receptors in tissues including bone, heart, and nerves play various physiologic roles, and tranexamic acid inhibition of these receptors may contribute to adverse drug effects.

  8. Effects of high nitrogen concentrations on the growth of submersed macrophytes at moderate phosphorus concentrations.

    Science.gov (United States)

    Yu, Qing; Wang, Hong-Zhu; Li, Yan; Shao, Jian-Chun; Liang, Xiao-Min; Jeppesen, Erik; Wang, Hai-Jun

    2015-10-15

    Eutrophication of lakes leading to loss of submersed macrophytes and higher turbidity is a worldwide phenomenon, attributed to excessive loading of phosphorus (P). However, recently, the role of nitrogen (N) for macrophyte recession has received increasing attention. Due to the close relationship between N and P loading, disentanglement of the specific effects of these two nutrients is often difficult, and some controversy still exists as to the effects of N. We studied the effects of N on submersed macrophytes represented by Vallisneria natans (Lour.) Hara in pots positioned at three depths (0.4 m, 0.8 m, and 1.2 m to form a gradient of underwater light conditions) in 10 large ponds having moderate concentrations of P (TP 0.03 ± 0.04 mg L(-1)) and five targeted concentrations of total nitrogen (TN) (0.5, 2, 10, 20, and 100 mg L(-1)), there were two ponds for each treatment. To study the potential shading effects of other primary producers, we also measured the biomass of phytoplankton (ChlaPhyt) and periphyton (ChlaPeri) expressed as chlorophyll a. We found that leaf length, leaf mass, and root length of macrophytes declined with increasing concentrations of TN and ammonium, while shoot number and root mass did not. All the measured growth indices of macrophytes declined significantly with ChlaPhyt, while none were significantly related to ChlaPeri. Neither ChlaPhyt nor ChlaPeri were, however, significantly negatively related to the various N concentrations. Our results indicate that shading by phytoplankton unrelated to the variation in N loading and perhaps toxic stress exerted by high nitrogen were responsible for the decline in macrophyte growth. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Correlation between Photoluminescence and Carrier Transport and a Simple In Situ Passivation Method for High-Bandgap Hybrid Perovskites.

    Science.gov (United States)

    Stoddard, Ryan J; Eickemeyer, Felix T; Katahara, John K; Hillhouse, Hugh W

    2017-07-20

    High-bandgap mixed-halide hybrid perovskites have higher open-circuit voltage deficits and lower carrier diffusion lengths than their lower-bandgap counterparts. We have developed a ligand-assisted crystallization (LAC) technique that introduces additives in situ during the solvent wash and developed a new method to dynamically measure the absolute intensity steady-state photoluminescence and the mean carrier diffusion length simultaneously. The measurements reveal four distinct regimes of material changes and show that photoluminescence brightening often coincides with losses in carrier transport, such as in degradation or phase segregation. Further, the measurements enabled optimization of LAC on the 1.75 eV bandgap FA 0.83 Cs 0.17 Pb(I 0.66 Br 0.34 ) 3 , resulting in an enhancement of the photoluminescence quantum yield (PLQY) of over an order of magnitude, an increase of 80 meV in the quasi-Fermi level splitting (to 1.29 eV), an increase in diffusion length by a factor of 3.5 (to over 1 μm), and enhanced open-circuit voltage and short-circuit current from photovoltaics fabricated from the LAC-treated films.

  10. Towards high charge carrier mobilities by rational design of organic semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Andrienko, Denis; Ruehle, Victor; Baumeier, Bjoern; Vehoff, Thorsten; Lukyanov, Alexander; Kremer, Kurt [Max Planck Institute for Polymer Research, Mainz (Germany); Marcon, Valentina [Technische Universitaet Darmstadt (Germany); Kirkpatrick, James; Nelson, Jenny [Imperial College London (United Kingdom); Lennartz, Christian [BASF AG, Ludwigshafen (Germany)

    2010-07-01

    The role of material morphology on charge carrier mobility in partially disordered organic semiconductors is discussed for several classes of materials: derivatives of hexabenzocoronenens, perylenediimides, triangularly-shaped polyaromatic hydrocarbons, and Alq{sub 3}. Simulations are performed using a package developed by Imperial College, London and Max Planck Institute for Polymer Research, Mainz (votca.org). This package combines several techniques into one scheme: quantum chemical methods for the calculation of molecular electronic structures and reorganization energies; molecular dynamics and systematic coarse-graining approaches for simulation of self-assembly and relative positions and orientations of molecules on large scales; kinetic Monte Carlo and master equation for studies of charge transport.

  11. Lipoprotein distribution and serum concentrations of 7α-hydroxy-4-cholesten-3-one and bile acids: effects of monogenic disturbances in high-density lipoprotein metabolism

    DEFF Research Database (Denmark)

    Steiner, Carine; Holleboom, Adriaan G; Karuna, Ratna

    2012-01-01

    BA (bile acid) formation is considered an important final step in RCT (reverse cholesterol transport). HDL (high-density lipoprotein) has been reported to transport BAs. We therefore investigated the effects of monogenic disturbances in human HDL metabolism on serum concentrations and lipoprotein...... concentrations of conjugated and secondary BAs differed between heterozygous carriers of SCARB1 (scavenger receptor class B1) mutations and unaffected individuals (P...

  12. Practical design constraints for using secondary concentrators at high temperatures

    Energy Technology Data Exchange (ETDEWEB)

    O' Gallagher, J.J.; Winston, R.

    1999-07-01

    The optical advantages of using nonimaging secondary concentrators in two-stage solar thermal dish systems are well understood. However, practical questions having to do with the thermal behavior of any secondary and its possible effects on the performance of cavity type receivers have only recently begun to be investigated. A few years ago an experimental demonstration of a trumpet type nonimaging secondary concentrator was carried out with a cavity receiver operating 660 C in combination with the Cummins Power Generation CPG-460 7.5 kWe concentrator system. Lessons learned from this and previous experiments are reviewed. The tests alleviated any operational concerns about the effectiveness of active water cooling and have shown that secondaries can be operated successfully at high temperatures without significant problems. There was no evidence of direct heat loss from the hot receiver to the cooled trumpet. The optical quality of any primary can be expected to fall well below design goals and to deteriorate further with time. This expectation should be taken into account in planning future experiments and developing new concentrating systems.

  13. Fabrication procedures for manufacturing high uranium concentration dispersion fuel elements

    International Nuclear Information System (INIS)

    Souza, J.A.B.; Durazzo, M.

    2010-01-01

    IPEN developed and made available for routine production the technology for manufacturing dispersion type fuel elements for use in research reactors. However, the fuel produced at IPEN is limited to the uranium concentration of 3.0 gU/cm 3 by using the U 3 Si 2 -Al dispersion. Increasing the uranium concentration of the fuel is interesting by the possibility of increasing the reactor core reactivity and lifetime of the fuel. It is possible to increase the concentration of uranium in the fuel up to the technological limit of 4.8 gU/cm 3 for the U 3 Si 2 -Al dispersion, which is well placed around the world. This new fuel will be applicable in the new Brazilian-Multipurpose Reactor RMB. This study aimed to develop the manufacturing process of high uranium concentration fuel, redefining the procedures currently used in the manufacture of IPEN. This paper describes the main procedures adjustments that will be necessary. (author)

  14. Fabrication procedures for manufacturing high uranium concentration dispersion fuel elements

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Jose Antonio Batista de; Durazzo, Michelangelo, E-mail: jasouza@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    IPEN developed and made available for routine production the technology for manufacturing dispersion type fuel elements for use in research reactors. However, the fuel produced at IPEN is limited to the uranium concentration of 3.0 g U/c m3 by using the U{sub 3}Si{sub 2}-Al dispersion. Increasing the uranium concentration of the fuel is interesting by the possibility of increasing the reactor core reactivity and lifetime of the fuel. It is possible to increase the concentration of uranium in the fuel up to the technological limit of 4.8 g U/c m3 for the U{sub 3}Si{sub 2}-Al dispersion, which is well placed around the world. This new fuel will be applicable in the new Brazilian- Multipurpose Reactor RMB. This study aimed to develop the manufacturing process of high uranium concentration fuel, redefining the procedures currently used in the manufacture of IPEN. This paper describes the main procedures adjustments that will be necessary. (author)

  15. Liver imaging with MDCT and high concentration contrast media

    International Nuclear Information System (INIS)

    Spielmann, Audrey L.

    2003-01-01

    Liver imaging has advanced greatly over the last 10 years with helical CT capability and more recently the addition of multidetector-row CT (MDCT). Multidetector CT technology facilitates imaging at faster speeds with improved image quality and less breathing artifact [Abdom. Imaging 25 (2000) 643]. Exquisite three-dimensional data sets can be obtained with thin collimation providing improved lesion detection, multiplanar imaging, and the ability to perform CT angiography of the liver and mesenteric vessels. New challenges arise with this advance in technology including safety considerations. The radiation dose to the patient has increased with MDCT and this is compounded by the ability to perform multi-phase liver imaging. Furthermore, issues of contrast media administration require reconsideration including optimal timing and rate of administration, the total volume of contrast needed and the ideal iodine concentration of the contrast media. Recently, the use of high concentration contrast media (HCCM) has been explored and study results to date will be reviewed

  16. [Condition optimization for bio-oxidation of high-S and high-As gold concentrate].

    Science.gov (United States)

    Yang, Caiyun; Dong, Bowen; Wang, Meijun; Ye, Zhiyong; Zheng, Tianling; Huang, Huaiguo

    2015-12-04

    To study the effects of temperature and lixivium return on the concentrate bio-oxidation and rate of gold cyanide leaching. The bioleaching of a high-sulphur (S) and high-arsenic (As) refractory gold concentrate was conducted, and we studied the effects of different temperature (40 ° and 45 °C) and lixivium return (0 and 600 mL) on the bio-oxidation efficiency. The bacterial community structure also was investigated by 16S rRNA gene clone library. The results showed that both the temperature and lixivium return significantly influenced the oxidation system. The temperature rising elevated the oxidation level, while the addition of lixivium depressed the oxidation. Dissimilarity and DCA (detrended correspondence analysis) indicated the effect of temperature on oxidation system was much greater than lixivium. The bacterial community was comprised by Acidithiocacillus caldu (71%) Leptospirillum ferriphilum (23%) and Sulfobacillus thermosulfidooxidans (6%) indicated by the clone library, and the OTU coverage based on 97% sequence similarity was as high as 93.67%. Temperature rising to 45 T would improve the oxidation efficiency while lixivium return would decrease it. This study is helpful to provide an important guiding value for the industry cost optimization of mesophile bacterial oxidation and reduction process.

  17. Fabrication procedures for manufacturing high uranium concentration dispersion fuel elements

    International Nuclear Information System (INIS)

    Souza, Jose Antonio Batista de

    2011-01-01

    IPEN-CNEN/SP developed the technology to produce the dispersion type fuel elements for research reactors and made it available for routine production. Today, the fuel produced in IPEN-CNEN/SP is limited to the uranium concentration of 3.0 gU/cm 3 for U 3 Si 2 -Al dispersion-based and 2.3 gU/cm 3 for U 3 O 8 -Al dispersion. The increase of uranium concentration in fuel plates enables the reactivity of the reactor core reactivity to be higher and extends the fuel life. Concerning technology, it is possible to increase the uranium concentration in the fuel meat up to the limit of 4.8 gU/cm 3 in U 3 Si 2 -Al dispersion and 3.2 gU/cm 3 U 3 O 8 -Al dispersion. These dispersions are well qualified worldwide. This work aims to develop the manufacturing process of both fuel meats with high uranium concentrations, by redefining the manufacturing procedures currently adopted in the Nuclear Fuel Center of IPEN-CNEN/SP. Based on the results, it was concluded that to achieve the desired concentration, it is necessary to make some changes in the established procedures, such as in the particle size of the fuel powder and in the feeding process inside the matrix, before briquette pressing. These studies have also shown that the fuel plates, with a high concentration of U 3 Si 2 -Al, met the used specifications. On the other hand, the appearance of the microstructure obtained from U 3 O 8 -Al dispersion fuel plates with 3.2 gU/cm 3 showed to be unsatisfactory, due to the considerably significant porosity observed. The developed fabrication procedure was applied to U 3 Si 2 production at 4.8 gU/cm 3 , with enriched uranium. The produced plates were used to assemble the fuel element IEA-228, which was irradiated in order to check its performance in the IEA-R1 reactor at IPEN-CNEN/SP. These new fuels have potential to be used in the new Brazilian Multipurpose Reactor - RMB. (author)

  18. Mitigation of houses with extremely high indoor radon concentrations

    International Nuclear Information System (INIS)

    Jiranek, M.; Neznal, M.

    2006-01-01

    Full text of publication follows: The paper reports on the experience of the Czech Technical University in dealing with mitigation of houses in which unusually high indoor radon concentrations were found. The whole process of remediation is illustrated by example of an old single-family house that was built in the area formed by highly permeable soils with high radon content in the soil air. T he house has a small cellar located under 1/5 of the ground floor area. Two types of floors, i.e. timber floors and cracked concrete slabs were found in the house. As a result of extremely high radon concentration in the sub-floor region (up to 600 kBq/m 3 ) and leaky structures in contact with soil, radon concentrations around 100 kBq/m 3 in the cellar and up to 60 kBq/m 3 in the living rooms on the ground floor were measured prior to mitigation. Mitigation measures that were carried out in the house consist of reconstruction of timber floors and installation of active soil depressurization. Timber floors were replaced with concrete slab fitted with damp proof membrane, thermal insulation and floor covering. The soil depressurization system was made up of two sections. The first section is composed of the network of perforated pipes inserted in the drainage layer placed under the new floors and four perforated tubes drilled under the existing floors. The soil air from this section is extracted by means of a roof fan installed at the top of the vertical exhaust pipe running inside the living space and terminating above the roof. The second section was designed to withdraw by means of a small fan radon-laden air from the filling in the floor above the cellar and from perforated tubes drilled into the sub-floor region under the rooms adjacent to the cellar. It serves also for the active ventilation of the cellar. Pressure, temperature and radon concentration sensors were installed into the drainage layer during the reconstruction of floors to record variations in these

  19. Technical and economic aspects of thermo-chemical decomposition of biomass in the processes of transformation of it in power-consuming energy/carriers by the use of the concentrated gel of sun radiation, has been considered

    International Nuclear Information System (INIS)

    Sultanova, K.D.; Mustafayeva, R.M.; Rzayev, P.F.

    2007-01-01

    Full text: The technical and economic assessment of process of thermo-chemical decomposition of biomass in the processes of transformation of it in power-consuming energy/carriers by the use of the concentrated gel of sun radiation, has been considered

  20. Feasibility of high-speed power line carrier system to Japanese overhead low voltage distribution lines; Teiatsu haidensen hanso no kosokuka no kanosei (hanso sningo denpa purogram no kanosei)

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, T.; Takeshita, K.; Ishino, R.

    2000-06-01

    The high-speed distribution line carrier systems on underground distribution lines are being developed in Germany. To estimate these systems on Japanese overhead low voltage distribution lines, the Carrier Propagation Program has been developed and applicability of OFDM system was roughly estimated. 1. Carrier Propagation Program Carrier Propagation Program that calculates the carrier propagation characteristics of any line structure was developed. 2. Carrier propagation characteristics Carrier propagation characteristics on typical Japanese overhead low voltage distribution lines were calculated 3.Rough estimation of OFDM system Electric fields caused by carrier at near point were calculated on the basis on carrier propagation characteristics. Results of rough estimation are as follows: - Electric field caused by carrier of more than 2Mbps system exceeds the value of the regulation. (author)

  1. Generation of tunable, high repetition rate frequency combs with equalized spectra using carrier injection based silicon modulators

    Science.gov (United States)

    Nagarjun, K. P.; Selvaraja, Shankar Kumar; Supradeepa, V. R.

    2016-03-01

    High repetition-rate frequency combs with tunable repetition rate and carrier frequency are extensively used in areas like Optical communications, Microwave Photonics and Metrology. A common technique for their generation is strong phase modulation of a CW-laser. This is commonly implemented using Lithium-Niobate based modulators. With phase modulation alone, the combs have poor spectral flatness and significant number of missing lines. To overcome this, a complex cascade of multiple intensity and phase modulators are used. A comb generator on Silicon based on these principles is desirable to enable on-chip integration with other functionalities while reducing power consumption and footprint. In this work, we analyse frequency comb generation in carrier injection based Silicon modulators. We observe an interesting effect in these comb generators. Enhanced absorption accompanying carrier injection, an undesirable effect in data modulators, shapes the amplitude here to enable high quality combs from a single modulator. Thus, along with reduced power consumption to generate a specific number of lines, the complexity has also been significantly reduced. We use a drift-diffusion solver and mode solver (Silvaco TCAD) along with Soref-Bennett relations to calculate the variations in refractive indices and absorption of an optimized Silicon PIN - waveguide modulator driven by an unbiased high frequency (10 Ghz) voltage signal. Our simulations demonstrate that with a device length of 1 cm, a driving voltage of 2V and minor shaping with a passive ring-resonator filter, we obtain 37 lines with a flatness better than 5-dB across the band and power consumption an order of magnitude smaller than Lithium-Niobate modulators.

  2. Introduction of high oxygen concentrations into silicon wafers by high-temperature diffusion

    International Nuclear Information System (INIS)

    Casse, G.; Glaser, M.; Lemeilleur, F.; Ruzin, A.; Wegrzecki, M.

    1999-01-01

    The tolerance of silicon detectors to hadron irradiation can be improved by the introduction of a high concentration of oxygen into the starting material. High-resistivity Floating-Zone (FZ) silicon is required for detectors used in particle physics applications. A significantly high oxygen concentration (>10 17 atoms cm -3 ) cannot readily be achieved during the FZ silicon refinement. The diffusion of oxygen at elevated temperatures from a SiO 2 layer grown on both sides of a silicon wafer is a simple and effective technique to achieve high and uniform concentrations of oxygen throughout the bulk of a 300 μm thick silicon wafer

  3. Two-frequency method for measuring Hall emf in high-resistive materials with charge-carrier low mobility

    International Nuclear Information System (INIS)

    Aleksandrov, A.L.; Vedeneev, A.S.; Gulyaev, I.B.; Zhdan, A.G.

    1982-01-01

    A facility for measuring Hall emf in high-resistive materials with low mobility of charge carriers by the two-frequency method using digital synchronous integration is described. The facility permits to detect the minimum Hall emf approxamatety equat to 5 μV at approximatety equal to 1 T Ohm of the investigated.sample resistance during the measuring time of approximately equal to 2000 s. Sensitivity by Hall mobility makes up >= 0.01 cm 2 /Vxs at the same measuring time. Measuring results of the Hall emf on GaAs monocrystals, CdSe films and island film of gold are presented

  4. Particulate Matter Concentrations in East Oakland's High Street Corridor

    Science.gov (United States)

    Lei, P.; Jackson, J.; Lewis, R.; Marigny, A.; Mitchell, J. D.; Nguyen, R.; Philips, B.; Randle, D.; Romero, D.; Spears, D.; Telles, C.; Weissman, D.

    2012-12-01

    Particulate matter (PM) is a complex mixture of small solid pieces and/or liquid droplets in the air. High concentrations of PM can pose a serious health hazard because inhalation can result in breathing problems and/or aggravate asthma. Long term exposure can increase the likelihood of respiratory problems like asthma and emphysema as well as cancer. The smaller the particles, the deeper they can get into the respiratory system. For this reason, the smallest particles, those smaller than 2.5 micrometers in diameter (PM2.5), are the most dangerous. PM2.5 is largely emitted from motor vehicles burning fuels that don't break down fully. Our research team investigated the levels of PM2.5 as well as particles smaller than 10 micrometers (PM10) and total suspended particulate (TSP) along the northeast-southwest trending High Street Corridor, near Fremont High School in East Oakland, California. Using the Aerocet 531 mass particle counter, team members walked through neighborhoods and along major roads within a 1 mile radius of Fremont High School. The Aerocet 531 recorded two minute average measurements of all the relevant PM sizes, which are reported in mg/m3. Measurements were consistently taken in the morning, between 8:30 and 11:30 am. Preliminary results indicate maximum readings of all PM sizes at sites that are in close proximity to a major freeway (Interstate-880). These results support our initial hypothesis that proximity to major roads and freeways, especially those with high diesel-fuel burning truck traffic, would be the primary factor affecting PM concentration levels. Preliminary median and maximum readings all suggest particulate matter levels below what the EPA would consider unhealthy or risky.

  5. Unexpectedly high ultrafine aerosol concentrations above East Antarctic sea ice

    Directory of Open Access Journals (Sweden)

    R. S. Humphries

    2016-02-01

    Full Text Available Better characterisation of aerosol processes in pristine, natural environments, such as Antarctica, have recently been shown to lead to the largest reduction in uncertainties in our understanding of radiative forcing. Our understanding of aerosols in the Antarctic region is currently based on measurements that are often limited to boundary layer air masses at spatially sparse coastal and continental research stations, with only a handful of studies in the vast sea-ice region. In this paper, the first observational study of sub-micron aerosols in the East Antarctic sea ice region is presented. Measurements were conducted aboard the icebreaker Aurora Australis in spring 2012 and found that boundary layer condensation nuclei (CN3 concentrations exhibited a five-fold increase moving across the polar front, with mean polar cell concentrations of 1130 cm−3 – higher than any observed elsewhere in the Antarctic and Southern Ocean region. The absence of evidence for aerosol growth suggested that nucleation was unlikely to be local. Air parcel trajectories indicated significant influence from the free troposphere above the Antarctic continent, implicating this as the likely nucleation region for surface aerosol, a similar conclusion to previous Antarctic aerosol studies. The highest aerosol concentrations were found to correlate with low-pressure systems, suggesting that the passage of cyclones provided an accelerated pathway, delivering air masses quickly from the free troposphere to the surface. After descent from the Antarctic free troposphere, trajectories suggest that sea-ice boundary layer air masses travelled equatorward into the low-albedo Southern Ocean region, transporting with them emissions and these aerosol nuclei which, after growth, may potentially impact on the region's radiative balance. The high aerosol concentrations and their transport pathways described here, could help reduce the discrepancy currently present between

  6. Unexpectedly high ultrafine aerosol concentrations above East Antarctic sea ice

    Science.gov (United States)

    Humphries, R. S.; Klekociuk, A. R.; Schofield, R.; Keywood, M.; Ward, J.; Wilson, S. R.

    2016-02-01

    Better characterisation of aerosol processes in pristine, natural environments, such as Antarctica, have recently been shown to lead to the largest reduction in uncertainties in our understanding of radiative forcing. Our understanding of aerosols in the Antarctic region is currently based on measurements that are often limited to boundary layer air masses at spatially sparse coastal and continental research stations, with only a handful of studies in the vast sea-ice region. In this paper, the first observational study of sub-micron aerosols in the East Antarctic sea ice region is presented. Measurements were conducted aboard the icebreaker Aurora Australis in spring 2012 and found that boundary layer condensation nuclei (CN3) concentrations exhibited a five-fold increase moving across the polar front, with mean polar cell concentrations of 1130 cm-3 - higher than any observed elsewhere in the Antarctic and Southern Ocean region. The absence of evidence for aerosol growth suggested that nucleation was unlikely to be local. Air parcel trajectories indicated significant influence from the free troposphere above the Antarctic continent, implicating this as the likely nucleation region for surface aerosol, a similar conclusion to previous Antarctic aerosol studies. The highest aerosol concentrations were found to correlate with low-pressure systems, suggesting that the passage of cyclones provided an accelerated pathway, delivering air masses quickly from the free troposphere to the surface. After descent from the Antarctic free troposphere, trajectories suggest that sea-ice boundary layer air masses travelled equatorward into the low-albedo Southern Ocean region, transporting with them emissions and these aerosol nuclei which, after growth, may potentially impact on the region's radiative balance. The high aerosol concentrations and their transport pathways described here, could help reduce the discrepancy currently present between simulations and observations of

  7. How High Local Charge Carrier Mobility and an Energy Cascade in a Three-Phase Bulk Heterojunction Enable >90% Quantum Efficiency

    KAUST Repository

    Burke, Timothy M.

    2013-12-27

    Charge generation in champion organic solar cells is highly efficient in spite of low bulk charge-carrier mobilities and short geminate-pair lifetimes. In this work, kinetic Monte Carlo simulations are used to understand efficient charge generation in terms of experimentally measured high local charge-carrier mobilities and energy cascades due to molecular mixing. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. How High Local Charge Carrier Mobility and an Energy Cascade in a Three-Phase Bulk Heterojunction Enable >90% Quantum Efficiency

    KAUST Repository

    Burke, Timothy M.; McGehee, Michael D.

    2013-01-01

    Charge generation in champion organic solar cells is highly efficient in spite of low bulk charge-carrier mobilities and short geminate-pair lifetimes. In this work, kinetic Monte Carlo simulations are used to understand efficient charge generation in terms of experimentally measured high local charge-carrier mobilities and energy cascades due to molecular mixing. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Hydrogen concentration and distribution in high-purity germanium crystals

    International Nuclear Information System (INIS)

    Hansen, W.L.; Haller, E.E.; Luke, P.N.

    1981-10-01

    High-purity germanium crystals used for making nuclear radiation detectors are usually grown in a hydrogen ambient from a melt contained in a high-purity silica crucible. The benefits and problems encountered in using a hydrogen ambient are reviewed. A hydrogen concentration of about 2 x 10 15 cm -3 has been determined by growing crystals in hydrogen spiked with tritium and counting the tritium β-decays in detectors made from these crystals. Annealing studies show that the hydrogen is strongly bound, either to defects or as H 2 with a dissociation energy > 3 eV. This is lowered to 1.8 eV when copper is present. Etching defects in dislocation-free crystals grown in hydrogen have been found by etch stripping to have a density of about 1 x 10 7 cm -3 and are estimated to contain 10 8 H atoms each

  10. Probing surface states in PbS nanocrystal films using pentacene field effect transistors: controlling carrier concentration and charge transport in pentacene.

    Science.gov (United States)

    Park, Byoungnam; Whitham, Kevin; Bian, Kaifu; Lim, Yee-Fun; Hanrath, Tobias

    2014-12-21

    We used a bilayer field effect transistor (FET) consisting of a thin PbS nanocrystals (NCs) film interfaced with vacuum-deposited pentacene to probe trap states in NCs. We interpret the observed threshold voltage shift in context of charge carrier trapping by PbS NCs and relate the magnitude of the threshold voltage shift to the number of trapped carriers. We explored a series of NC surface ligands to modify the interface between PbS NCs and pentacene and demonstrate the impact of interface chemistry on charge carrier density and the FET mobility in a pentacene FET.

  11. Risk factors associated with high linezolid trough plasma concentrations.

    Science.gov (United States)

    Morata, L; De la Calle, C; Gómez-Cerquera, J M; Manzanedo, L; Casals, G; Brunet, M; Cobos-Trigueros, N; Martínez, J A; Mensa, J; Soriano, A

    2016-06-01

    The major concern of linezolid is the adverse events. High linezolid trough serum concentration (Cmin) has been associated with toxicity. The aim of this study was to analyze factors associated with high Cmin. Main clinical characteristics of 104 patients treated with 600 mg/12 hours of linezolid were retrospectively reviewed. Samples were obtained just before the next dose after at least three doses and within the first 8 days of treatment. High Cmin was considered when it was >8 mg/L. Univariate and multivariate analysis were performed. 34.6% patients had a Cmin >8 mg/L, and they were older and had more frequently an estimated glomerular filtration by MDRD 8 was the renal function. Patients with an eGF 80 mL/min (OR: 4.273) and there was a trend towards a high Cmin in patients with eGF between 40-80 mL/min (OR: 2.109). High Cmin were frequent, especially in patients with MDRD <40 mL/min. Therapeutic drug monitoring could be useful to avoid toxicity in patients with renal dysfunction.

  12. Photoinduced Field-Effect Passivation from Negative Carrier Accumulation for High-Efficiency Silicon/Organic Heterojunction Solar Cells.

    Science.gov (United States)

    Liu, Zhaolang; Yang, Zhenhai; Wu, Sudong; Zhu, Juye; Guo, Wei; Sheng, Jiang; Ye, Jichun; Cui, Yi

    2017-12-26

    Carrier recombination and light management of the dopant-free silicon/organic heterojunction solar cells (HSCs) based on poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) are the critical factors in developing high-efficiency photovoltaic devices. However, the traditional passivation technologies can hardly provide efficient surface passivation on the front surface of Si. In this study, a photoinduced electric field was induced in a bilayer antireflective coating (ARC) of polydimethylsiloxane (PDMS) and titanium oxide (TiO 2 ) films, due to formation of an accumulation layer of negative carriers (O 2 - species) under UV (sunlight) illumination. This photoinduced field not only suppressed the silicon surface recombination but also enhanced the built-in potential of HSCs with 84 mV increment. In addition, this photoactive ARC also displayed the outstanding light-trapping capability. The front PEDOT:PSS/Si HSC with the saturated O 2 - received a champion PCE of 15.51% under AM 1.5 simulated sunlight illumination. It was clearly demonstrated that the photoinduced electric field was a simple, efficient, and low-cost method for the surface passivation and contributed to achieve a high efficiency when applied in the Si/PEDOT:PSS HSCs.

  13. DRD4 long allele carriers show heightened attention to high-priority items relative to low-priority items.

    Science.gov (United States)

    Gorlick, Marissa A; Worthy, Darrell A; Knopik, Valerie S; McGeary, John E; Beevers, Christopher G; Maddox, W Todd

    2015-03-01

    Humans with seven or more repeats in exon III of the DRD4 gene (long DRD4 carriers) sometimes demonstrate impaired attention, as seen in attention-deficit hyperactivity disorder, and at other times demonstrate heightened attention, as seen in addictive behavior. Although the clinical effects of DRD4 are the focus of much work, this gene may not necessarily serve as a "risk" gene for attentional deficits, but as a plasticity gene where attention is heightened for priority items in the environment and impaired for minor items. Here we examine the role of DRD4 in two tasks that benefit from selective attention to high-priority information. We examine a category learning task where performance is supported by focusing on features and updating verbal rules. Here, selective attention to the most salient features is associated with good performance. In addition, we examine the Operation Span (OSPAN) task, a working memory capacity task that relies on selective attention to update and maintain items in memory while also performing a secondary task. Long DRD4 carriers show superior performance relative to short DRD4 homozygotes (six or less tandem repeats) in both the category learning and OSPAN tasks. These results suggest that DRD4 may serve as a "plasticity" gene where individuals with the long allele show heightened selective attention to high-priority items in the environment, which can be beneficial in the appropriate context.

  14. Alcohol consumption is associated with high concentrations of urinary hydroxytyrosol.

    Science.gov (United States)

    Schröder, Helmut; de la Torre, Rafael; Estruch, Ramón; Corella, Dolores; Martínez-González, Miguel Angel; Salas-Salvadó, Jordi; Ros, Emilio; Arós, Fernando; Flores, Gemma; Civit, Ester; Farré, Magí; Fiol, Miguel; Vila, Joan; Fernandez-Crehuet, Joaquín; Ruiz-Gutiérrez, Valentina; Lapetra, Jose; Sáez, Guillermo; Covas, María-Isabel

    2009-11-01

    Previously, we reported the presence of hydroxytyrosol in red wine and higher human urinary recovery of total hydroxytyrosol than that expected after a single red wine intake. We hypothesized that the alcohol present in wine could promote endogenous hydroxytyrosol generation. The objective was to assess the relation between alcohol consumption and urinary hydroxytyrosol concentrations. This was a cross-sectional study with baseline data from a subsample of the PREvención con DIeta MEDiterránea (PREDIMED) trial, an intervention study directed at testing the efficacy of the Mediterranean diet on the primary prevention of cardiovascular disease. Participants included 1045 subjects, aged 55-80 y, who were at high cardiovascular risk. Alcohol consumption was estimated through a validated food-frequency questionnaire. Urinary hydroxytyrosol and ethyl glucuronide, a biomarker of alcohol consumption, were measured. Urinary ethyl glucuronide concentrations were directly related to alcohol and wine consumption (P logistic regression analyses showed a significant linear trend (P 20 g (2 drinks)/d and >10 g (1 drink)/d alcohol in men and women, respectively, were associated (P wine as a source of hydroxytyrosol and alcohol as an indirect promoter of endogenous hydroxytyrosol generation. This trial was registered at controlled-trials.com/isrctn/ as ISRCTN 35739639.

  15. Thermal denitration of high concentration nitrate salts waste water

    International Nuclear Information System (INIS)

    Hwang, D. S.; Oh, J. H.; Choi, Y. D.; Hwang, S. T.; Park, J. H.; Latge, C.

    2003-01-01

    This study investigated the thermodynamic and the thermal decomposition properties of high concentration nitrate salts waste water for the lagoon sludge treatment. The thermodynamic property was carried out by COACH and GEMINI II based on the composition of nitrate salts waste water. The thermal decomposition property was carried out by TG-DTA and XRD. Ammonium nitrate and sodium nitrate were decomposed at 250 .deg. C and 730 . deg. C, respectively. Sodium nitrate could be decomposed at 450 .deg. C in the case of adding alumina for converting unstable Na 2 O into stable Na 2 O.Al 2 O 3 . The flow sheet for nitrate salts waste water treatment was proposed based on the these properties data. These will be used by the basic data of the process simulation

  16. Acquisition and Analysis of Data from High Concentration Solutions

    KAUST Repository

    Besong, Tabot M.D.

    2016-05-13

    The problems associated with ultracentrifugal analysis of macromolecular solutions at high (>10 mg/ml) are reviewed. Especially for the case of solutes which are non-monodisperse, meaningful results are not readily achievable using sedimentation velocity approaches. It is shown however by both simulation and analysis of practical data that using a modified form of an algorithm (INVEQ) published in other contexts, sedimentation equilibrium (SE) profiles can be analysed successfully, enabling topics such as oligomer presence or formation to be defined.To achieve this, it is necessary to employ an approach in which the solution density, which in an SE profile is radius-dependent, is taken into consideration. Simulation suggests that any reasonable level of solute concentration can be analysed.

  17. Acquisition and Analysis of Data from High Concentration Solutions

    KAUST Repository

    Besong, Tabot M.D.; Rowe, Arthur J.

    2016-01-01

    The problems associated with ultracentrifugal analysis of macromolecular solutions at high (>10 mg/ml) are reviewed. Especially for the case of solutes which are non-monodisperse, meaningful results are not readily achievable using sedimentation velocity approaches. It is shown however by both simulation and analysis of practical data that using a modified form of an algorithm (INVEQ) published in other contexts, sedimentation equilibrium (SE) profiles can be analysed successfully, enabling topics such as oligomer presence or formation to be defined.To achieve this, it is necessary to employ an approach in which the solution density, which in an SE profile is radius-dependent, is taken into consideration. Simulation suggests that any reasonable level of solute concentration can be analysed.

  18. Characterization of blood donors with high haemoglobin concentration

    DEFF Research Database (Denmark)

    Magnussen, K; Hasselbalch, H C; Ullum, H

    2013-01-01

    Background and Objectives  The literature contains little on the prevalence and causes of high predonation haemoglobin levels among blood donors. This study aimed to characterize and develop an algorithm to manage would-be donors with polycythaemia. Materials and Methods  Between November 2009...... and November 2011, we offered haematology consultations to blood donors with repeated haemoglobin concentration (Hb) above the WHO limit for polycythaemia vera (PV) (10·2 and 11·5 mm/16·5 and 18·5 g/dl for women and men, respectively). Investigation of such donors included Hb, haematocrit, mean cell volume......, erythropoietin, ferritin, platelet count and leucocyte count, JAK2 V617 and JAK2 exon12 analysis, as well as other routine measurements. Results  Among 46 such donors, 39 had a history of smoking, which contributes to erythrocytosis. Two had PV, five had severe hypertension, one of them because of renal artery...

  19. Highly Concentrated Acetic Acid Poisoning: 400 Cases Reviewed

    Directory of Open Access Journals (Sweden)

    Konstantin Brusin

    2012-12-01

    Full Text Available Background: Caustic substance ingestion is known for causing a wide array of gastrointestinal and systemic complications. In Russia, ingestion of acetic acid is a major problem which annually affects 11.2 per 100,000 individuals. The objective of this study was to report and analyze main complications and outcomes of patients with 70% concentrated acetic acid poisoning. Methods: This was a retrospective study of patients with acetic acid ingestion who were treated at Sverdlovsk Regional Poisoning Treatment Center during 2006 to 2012. GI mucosal injury of each patient was assessed with endoscopy according to Zargar’s scale. Data analysis was performed to analyze the predictors of stricture formation and mortality. Results: A total of 400 patients with median age of 47 yr were included. GI injury grade I was found in 66 cases (16.5%, IIa in 117 (29.3%, IIb in 120 (30%, IIIa in 27 (16.7% and IIIb in 70 (17.5%. 11% of patients developed strictures and overall mortality rate was 21%. Main complications were hemolysis (55%, renal injury (35%, pneumonia (27% and bleeding during the first 3 days (27%. Predictors of mortality were age 60 to 79 years, grade IIIa and IIIb of GI injury, pneumonia, stages “I”, “F” and “L” of kidney damage according to the RIFLE scale and administration of prednisolone. Predictors of stricture formation were ingestion of over 100 mL of acetic acid and grade IIb and IIIa of GI injury. Conclusion: Highly concentrated acetic acid is still frequently ingested in Russia with a high mortality rate. Patients with higher grades of GI injury, pneumonia, renal injury and higher amount of acid ingested should be more carefully monitored as they are more susceptible to develop fatal consequences.          

  20. Acetate biodegradation by anaerobic microorganisms at high pH and high calcium concentration

    International Nuclear Information System (INIS)

    Yoshida, Takahiro

    2011-01-01

    Acetate biodegradation at a high pH and a high calcium concentration was examined to clarify the effect of bacterial activity on the migration of organic 14 C compounds in cementitious repositories. Tamagawa river sediment or Teganuma pond sediment was anaerobically cultured with 5 mM acetate and 10 mM nitrate at pH 9.5-12 at 30 o C. After 20 and 90 days, the acetate concentration of the culture medium was analyzed and found to have decreased below 5 mM at pH ≤ 11. On the other hand, it did not decrease when either sediment was incubated in the absence of nitrate. These results suggest that nitrate-reducing bacteria can biodegrade acetate under more alkaline conditions than the reported pH range in which nitrate-reducing bacteria can exhibit activity. Acetate biodegradation was also examined at a high calcium concentration. Sediments were anaerobically cultured at pH 9.5 with 5 mM acetate and 10 mM nitrate in solution, equilibrated with ordinary Portland cement hydrate, in which the Ca concentration was 14.6 mM. No decrease in acetate concentration after incubation of the sediments was observed, nor was it lower than in the absence of cementitious composition, suggesting that kinetics of acetate biodegradation by anaerobic microorganisms is lowered by a high Ca concentration. - Research highlights: → Acetate biodegradation at a high pH and a high calcium concentration was examined to clarify the effect of bacterial activity on the migration of organic 14 C compounds in cementitious repositories. → Nitrate-reducing bacteria can biodegrade acetate at pH ≤ 11. → Kinetics of acetate biodegradation by anaerobic microorganisms might be lowered by a high Ca concentration.

  1. Modelling acceptance of sunlight in high and low photovoltaic concentration

    Energy Technology Data Exchange (ETDEWEB)

    Leutz, Ralf, E-mail: ralf.leutz@leopil.com [Leutz Optics and Illumination UG (haftungsbeschränkt), Marburg (Germany)

    2014-09-26

    A simple model incorporating linear radiation characteristics, along with the optical trains and geometrical concentration ratios of solar concentrators is presented with performance examples for optical trains of HCPV, LCPV and benchmark flat-plate PV.

  2. Modelling acceptance of sunlight in high and low photovoltaic concentration

    Science.gov (United States)

    Leutz, Ralf

    2014-09-01

    A simple model incorporating linear radiation characteristics, along with the optical trains and geometrical concentration ratios of solar concentrators is presented with performance examples for optical trains of HCPV, LCPV and benchmark flat-plate PV.

  3. Modelling acceptance of sunlight in high and low photovoltaic concentration

    International Nuclear Information System (INIS)

    Leutz, Ralf

    2014-01-01

    A simple model incorporating linear radiation characteristics, along with the optical trains and geometrical concentration ratios of solar concentrators is presented with performance examples for optical trains of HCPV, LCPV and benchmark flat-plate PV

  4. Semiconducting lithium indium diselenide: Charge-carrier properties and the impacts of high flux thermal neutron irradiation

    Science.gov (United States)

    Hamm, Daniel S.; Rust, Mikah; Herrera, Elan H.; Matei, Liviu; Buliga, Vladimir; Groza, Michael; Burger, Arnold; Stowe, Ashley; Preston, Jeff; Lukosi, Eric D.

    2018-06-01

    This paper reports on the charge carrier properties of several lithium indium diselenide (LISe) semiconductors. It was found that the charge collection efficiency of LISe was improved after high flux thermal neutron irradiation including the presence of a typically unobservable alpha peak from hole-only collection. Charge carrier trap energies of the irradiated sample were measured using photo-induced current transient spectroscopy. Compared to previous studies of this material, no significant differences in trap energies were observed. Through trap-filled limited voltage measurements, neutron irradiation was found to increase the density of trap states within the bulk of the semiconductor, which created a polarization effect under alpha exposure but not neutron exposure. Further, the charge collection efficiency of the irradiated sample was higher (14-15 fC) than that of alpha particles (3-5 fC), indicating that an increase in hole signal contribution resulted from the neutron irradiation. Finally, it was observed that significant charge loss takes place near the point of generation, producing a significant scintillation response and artificially inflating the W-value of all semiconducting LISe crystals.

  5. Achieving high carrier mobility exceeding 70 cm2/Vs in amorphous zinc tin oxide thin-film transistors

    Science.gov (United States)

    Kim, Sang Tae; Shin, Yeonwoo; Yun, Pil Sang; Bae, Jong Uk; Chung, In Jae; Jeong, Jae Kyeong

    2017-09-01

    This paper proposes a new defect engineering concept for low-cost In- and Ga-free zinc tin oxide (ZTO) thin-film transistors (TFTs). This concept is comprised of capping ZTO films with tantalum (Ta) and a subsequent modest thermal annealing treatment at 200 °C. The Ta-capped ZTO TFTs exhibited a remarkably high carrier mobility of 70.8 cm2/Vs, low subthreshold gate swing of 0.18 V/decade, threshold voltage of -1.3 V, and excellent ION/OFF ratio of 2 × 108. The improvement (> two-fold) in the carrier mobility compared to the uncapped ZTO TFT can be attributed to the effective reduction of the number of adverse tailing trap states, such as hydroxyl groups or oxygen interstitial defects, which stems from the scavenging effect of the Ta capping layer on the ZTO channel layer. Furthermore, the Ta-capped ZTO TFTs showed excellent positive and negative gate bias stress stabilities. [Figure not available: see fulltext.

  6. Composition and carrier-concentration dependence of the electronic structure of InyGa1-yAs1-xNx films with nitrogen mole fraction of less than 0.012

    International Nuclear Information System (INIS)

    Kang, Youn-Seon; Robins, Lawrence H.; Birdwell, Anthony G.; Shapiro, Alexander J.; Thurber, W. Robert; Vaudin, Mark D.; Fahmi, M.M.E.; Bryson, Damian; Mohammad, S. Noor

    2005-01-01

    The electronic structure of Si-doped In y Ga 1-y As 1-x N x films on GaAs substrates, grown by nitrogen-plasma-assisted molecular-beam epitaxy, was examined by photoreflectance (PR) spectroscopy at temperatures between 20 and 300 K. The films were approximately 0.5 μm thick and had nitrogen mole fraction between x=0.0014 and x=0.012, measured indirectly by a secondary-ion-mass spectrometry calibration; indium mole fraction between y=0.052 and y=0.075, measured by electron-dispersive x-ray spectroscopy; and carrier concentration between 2x10 16 and 1.1x10 18 cm -3 , measured by Hall effect. Three critical-point transitions were identified by PR: the fundamental band gap (highest valence band to the lowest conduction band); the spin-orbit split valence band to the lowest conduction band; and the highest valence band to a nitrogen impurity band (above the lowest conduction band). The measured critical-point energies were described by a band anticrossing (BAC) model with the addition of a Burstein-Moss band-filling term. The fitted BAC parameters were similar to previously reported values. The N impurity level was located 0.3004±0.0101 eV above the conduction-band edge at 20 K and 0.3286±0.0089 eV above the conduction-band edge at 295 K. The BAC interaction parameter was 2.588±0.071 eV. From the small magnitude of the Burstein-Moss energy shift with increasing carrier concentration, it was inferred that the carrier concentration probed by PR is reduced from the bulk (Hall-effect) carrier concentration by a reduction factor of 0.266±0.145. The PR lines broadened with increasing carrier concentration; the line broadening tracked the predicted Burstein-Moss energy shift for the bulk carrier concentration. The surface-normal lattice constants of the films were measured by x-ray diffraction. Comparison of the measured lattice constants with Vegard's law showed the presence of tensile strain (in the surface-normal direction) with magnitude between 1.5x10 -3 and 3.0x10

  7. Toward High Carrier Mobility and Low Contact Resistance:Laser Cleaning of PMMA Residues on Graphene Surfaces

    Institute of Scientific and Technical Information of China (English)

    Yuehui Jia; Xin Gong; Pei Peng; Zidong Wang; Zhongzheng Tian; Liming Ren; Yunyi Fu; Han Zhang

    2016-01-01

    Poly(methyl methacrylate)(PMMA) is widely used for graphene transfer and device fabrication.However,it inevitably leaves a thin layer of polymer residues after acetone rinsing and leads to dramatic degradation of device performance.How to eliminate contamination and restore clean surfaces of graphene is still highly demanded.In this paper,we present a reliable and position-controllable method to remove the polymer residues on graphene films by laser exposure.Under proper laser conditions,PMMA residues can be substantially reduced without introducing defects to the underlying graphene.Furthermore,by applying this laser cleaning technique to the channel and contacts of graphene fieldeffect transistors(GFETs),higher carrier mobility as well as lower contact resistance can be realized.This work opens a way for probing intrinsic properties of contaminant-free graphene and fabricating high-performance GFETs with both clean channel and intimate graphene/metal contact.

  8. Radionuclide carrier

    International Nuclear Information System (INIS)

    Hartman, F.A.; Kretschmar, H.C.; Tofe, A.J.

    1978-01-01

    A physiologically acceptable particulate radionuclide carrier is described. It comprises a modified anionic starch derivative with 0.1% to 1.5% by weight of a reducing agent and 1 to 20% by weight of anionic substituents

  9. Carrier Screening

    Science.gov (United States)

    ... How accurate is carrier screening? No test is perfect. In a small number of cases, test results ... in which an egg is removed from a woman’s ovary, fertilized in a laboratory with the man’s ...

  10. Metamaterial Receivers for High Efficiency Concentrated Solar Energy Conversion

    Energy Technology Data Exchange (ETDEWEB)

    Yellowhair, Julius E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Concentrating Solar Technologies Dept.; Kwon, Hoyeong [Univ. of Texas, Austin, TX (United States). Dept. of Electrical and Computer Engineering; Alu, Andrea [Univ. of Texas, Austin, TX (United States). Dept. of Electrical and Computer Engineering; Jarecki, Robert L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Concentrating Solar Technologies Dept.; Shinde, Subhash L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Concentrating Solar Technologies Dept.

    2016-09-01

    Operation of concentrated solar power receivers at higher temperatures (>700°C) would enable supercritical carbon dioxide (sCO2) power cycles for improved power cycle efficiencies (>50%) and cost-effective solar thermal power. Unfortunately, radiative losses at higher temperatures in conventional receivers can negatively impact the system efficiency gains. One approach to improve receiver thermal efficiency is to utilize selective coatings that enhance absorption across the visible solar spectrum while minimizing emission in the infrared to reduce radiative losses. Existing coatings, however, tend to degrade rapidly at elevated temperatures. In this report, we report on the initial designs and fabrication of spectrally selective metamaterial-based absorbers for high-temperature, high-thermal flux environments important for solarized sCO2 power cycles. Metamaterials are structured media whose optical properties are determined by sub-wavelength structural features instead of bulk material properties, providing unique solutions by decoupling the optical absorption spectrum from thermal stability requirements. The key enabling innovative concept proposed is the use of structured surfaces with spectral responses that can be tailored to optimize the absorption and retention of solar energy for a given temperature range. In this initial study through the Academic Alliance partnership with University of Texas at Austin, we use Tungsten for its stability in expected harsh environments, compatibility with microfabrication techniques, and required optical performance. Our goal is to tailor the optical properties for high (near unity) absorptivity across the majority of the solar spectrum and over a broad range of incidence angles, and at the same time achieve negligible absorptivity in the near infrared to optimize the energy absorbed and retained. To this goal, we apply the recently developed concept of plasmonic Brewster angle to suitably designed

  11. Alcoholic fermentation by immobilized yeast at high sugar concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Holcberg, I.B.; Margalith, P.

    1981-01-01

    Glucose fermentation by Saccharomyces cerevisiae immobilized by entrapment in agar, carrageenan, alginate and polyacrylamide gels, was compared to that of freely suspended cells at concentration of 10-50% (w.w.) sugar. The rate of ethanol production by the entrapped cells was 20-25% higher than that of the free cells. Concentrations of up to 14.5% w/w ethanol (30% glucose initial concentration) could be obtained. A number of hypotheses for the improved alcoholic fermentation are discussed.

  12. Cylindrically symmetric Fresnel lens for high concentration photovoltaic

    Science.gov (United States)

    Hung, Yu-Ting; Su, Guo-Dung

    2009-08-01

    High concentration photovoltaic (HCPV) utilizes point-focus cost-effective plastic Fresnel lens. And a millimeter-sized Ill-V compound multi-junction solar cell is placed underneath focusing optics which can achieve cell efficiency potential of up to 40.7 %. The advantage of HCPV makes less solar cell area and higher efficiency; however, the acceptance angle of HCPV is about +/-1°, which is very small and the mechanical tracking of the sun is necessary. In order to reduce the power consumption and the angle tracking error of tracking systems, a light collector model with larger acceptance angle is designed with ZEMAX®. In this model, the original radially symmetric Fresnel lens of HCPV is replaced by cylindrically symmetric Fresnel lens and a parabolic reflective surface. Light is collected in two dimensions separately. And a couple of lenses and a light pipe are added before the solar cell chip in order to collect more light when sun light deviates from incident angle of 00. An acceptance angle of +/-10° is achieved with GCR 400.

  13. High charge carrier density at the NaTaO3/SrTiO3 hetero-interface

    KAUST Repository

    Nazir, Safdar

    2011-08-05

    The formation of a (quasi) two-dimensional electron gas between the band insulators NaTaO3 and SrTiO3 is studied by means of the full-potential linearized augmented plane-wave method of density functional theory. Optimization of the atomic positions points to only small changes in the chemical bonding at the interface. Both the p-type (NaO)−/(TiO2)0 and n-type (TaO2)+/(SrO)0 interfaces are found to be metallic with high charge carrier densities. The effects of O vacancies are discussed. Spin-polarized calculations point to the formation of isolated O 2pmagnetic moments, located in the metallic region of the p-type interface.

  14. Magnetic dipole self-organization of charge carriers in high-temperature superconductors and kinetics of phase transformation

    CERN Document Server

    Voronov, A V; Shuvalov, V V

    2001-01-01

    The phenomenological model, describing the magnetic dipole self-organization of charge carriers (formation of so-called stripe-structures and energy gap in the states spectrum), is designed for interpreting the data on the nonstationary nonlinear spectroscopy of the high-temperature superconductors. It is shown that after fast heating of the superconducting sample the kinetics of the subsequent phase transition depends on the initial temperature T. The destruction of the stripe-structures at low overheating T* < T < T sub m approx = (1.4-1.5)T*, whereby T sub c and T* approx = T sub c are the temperatures of transition into the superconducting state and formation of the stripe-structures occurs slowly (the times above 10 sup - sup 9 s) in spite of practically instantaneous disappearance of the superconductivity

  15. Selection of common bean lines with high grain yield and high grain calcium and iron concentrations

    Directory of Open Access Journals (Sweden)

    Nerinéia Dalfollo Ribeiro

    2014-02-01

    Full Text Available Genetic improvement of common bean nutritional quality has advantages in marketing and can contribute to society as a food source. The objective of this study was to evaluate the genetic variability for grain yield, calcium and iron concentrations in grains of inbred common bean lines obtained by different breeding methods. For this, 136 F7 inbred lines were obtained using the Pedigree method and 136 F7 inbred lines were obtained using the Single-Seed Descent (SSD method. The lines showed genetic variability for grain yield, and concentrations of calcium and iron independently of the method of advancing segregating populations. The Pedigree method allows obtaining a greater number of lines with high grain yield. Selection using the SSD method allows the identification of a larger number of lines with high concentrations of calcium and iron in grains. Weak negative correlations were found between grain yield and calcium concentration (r = -0.0994 and grain yield and iron concentration (r = -0.3926. Several lines show genetic superiority for grain yield and concentrations of calcium and iron in grains and their selection can result in new common bean cultivars with high nutritional quality.

  16. Effects of Spray-Drying and Choice of Solid Carriers on Concentrations of Labrasol® and Transcutol® in Solid Self-Microemulsifying Drug Delivery Systems (SMEDDS

    Directory of Open Access Journals (Sweden)

    Christopher Wai-Kei Lam

    2013-01-01

    Full Text Available Solid self-microemulsifying drug delivery systems (SMEDDS have been used increasingly for improving the bioavailability of hydrophobic drugs. Labrasol® and Transcutol® are used widely as surfactant and solubilizer in the formulation of solid SMEDDS. We investigated the effects of spray-drying and the use of different solid carriers on concentrations of Labrasol® and Transcutol® in solid SMEDDS with scutellarin as the formulated drug. Liquid and gas chromatography tandem mass spectrometry (LC-MS and GC-MS methods were developed for measuring low concentrations of Labrasol® and Transcutol®. In the preparation of solid SMEDDS, lactose, hydroxypropylmethyl cellulose (HPMC and microcrystalline cellulose (MCC were used as solid carriers. Judging from the retention ratios of Labrasol® and Transcutol®, the droplet size of solid SMEDDS increased after spray-drying of liquid SMEDDS, and concentrations of these excipients decreased after the solidifying procedure. In such reduction, Lactose and HPMC were found to preserve Labrasol® and Transcutol® better than MCC during spray-drying, and the resultant droplet sizes were smaller than that of MCC. Labrasol® and Transcutol® showed good thermal stability at 60 °C degree for 10 days. It can be concluded that spray-drying could increase the droplet size of solid SMEDDS and decreased the concentration of Labrasol® and Transcutol® therein, while water-soluble solid carriers could preserve Labrasol® and Transcutol® better than insoluble carriers in the solid SMEDDS.

  17. In Vivo Biological Evaluation of High Molecular Weight Multifunctional Acid-Degradable Polymeric Drug Carriers with Structurally Different Ketals.

    Science.gov (United States)

    Shenoi, Rajesh A; Abbina, Srinivas; Kizhakkedathu, Jayachandran N

    2016-11-14

    Understanding the influence of degradable chemical moieties on in vivo degradation, tissue distribution, and excretion is critical for the design of novel biodegradable drug carriers. Polyketals have recently emerged as a promising therapeutic delivery platform due to their ability to degrade under mild acidic intracellular compartments and generation of nontoxic degradation products. However, the effect of chemical structure of the ketal groups on the in vivo degradation, biodistribution, and pharmacokinetics of water-soluble ketal-containing polymers has not been explored. In the present work, we synthesized high molecular weight, water-soluble biodegradable hyperbranched polyglycerols (BHPGs) through the incorporation of structurally different ketal groups into the main chain of highly biocompatible polyglycerols. BHPGs showed pH and ketal group structure dependent degradation in buffer solutions. When the polymers were intravenously administered in mice, a strong dependence of in vivo degradation, biodistribution, and clearance on the ketal group structure was observed. All the BHPGs demonstrated degradation and clearance in vivo, with minimal tissue accumulation. Interestingly, an unanticipated degradation behavior of BHPGs with structurally different ketal groups was observed in vivo in comparison to their degradation in buffer solutions. BHPGs with cyclohexyl ketal (CHK) and cyclopentyl ketal (CPK) groups degraded much faster and were cleared from circulation much rapidly, while BHPG with glycerol hydroxy butanone ketal (GHBK) group degraded at a much slower rate and exhibited similar plasma half-life as that of nondegradable HPG. BHPG-GHBK also showed significantly lower tissue accumulation than nondegradable HPG after 30 days of administration. The difference in in vivo degradation may be attributed to the difference in hydrophobic characteristics of different ketal containing polymers, which may change their interaction with proteins and cells in vivo

  18. An Automatic High Efficient Method for Dish Concentrator Alignment

    Directory of Open Access Journals (Sweden)

    Yong Wang

    2014-01-01

    for the alignment of faceted solar dish concentrator. The isosceles triangle configuration of facet’s footholds determines a fixed relation between light spot displacements and foothold movements, which allows an automatic determination of the amount of adjustments. Tests on a 25 kW Stirling Energy System dish concentrator verify the feasibility, accuracy, and efficiency of our method.

  19. Starch source in high concentrate rations does not affect rumen pH, histamine and lipopolysaccharide concentrations in dairy cows

    NARCIS (Netherlands)

    Pilachai, R.; Schonewille, J.T.; Thamrongyoswittayakul, C.; Aiumlamai, S.; Wachirapakom, C.; Everts, H.; Hendriks, W.H.

    2012-01-01

    The replacement of ground corn by cassava meal on rumen pH, lipopolysaccharide (LPS) and histamine concentrations under typical Thai feeding conditions (high concentrate diets and rice straw as the sole source of roughage) was investigated. Four rumen-fistulated crossbred Holstein, non-pregnant, dry

  20. Production of high quality sodium iodide preparations labelled with carrier free iodine-125

    International Nuclear Information System (INIS)

    Abdukayumov, M.N.; Chistyakov, P.G.; Shilin, E.A.

    2001-01-01

    Work is related to the problem of high-quality Sodium Iodide preparation production and to the choice of the peptids iodination methods with the purpose of control test developing to determine the Biological activity of the above mentioned preparation

  1. Ultra-high carrier mobility InSb film by rapid thermal annealing on glass substrate

    Directory of Open Access Journals (Sweden)

    Charith Jayanada Koswaththage

    2016-11-01

    Full Text Available InSb films were deposited on both mica and glass substrates using thermal evaporation and subjected to FA or RTA. Crystallinity, composition and electrical properties were investigated. High Hall electron mobility as high as 25,000 cm2/(Vs was obtained with the capped InSb film by keeping the In:Sb ratio after RTA at 520°C for 30 sec or more without adopting epitaxial growth on glass.

  2. Ectopic High Expression of E2-EPF Ubiquitin Carrier Protein Indicates a More Unfavorable Prognosis in Brain Glioma.

    Science.gov (United States)

    Zhang, Xiaohui; Zhao, Fangbo; Zhang, Shujun; Song, Yichun

    2017-04-01

    Ubiquitination of proteins meant for elimination is a primary method of eukaryotic cellular protein degradation. The ubiquitin carrier protein E2-EPF is a key degradation enzyme that is highly expressed in many tumors. However, its expression and prognostic significance in brain glioma are still unclear. The aim of this study was to reveal how the level of E2-EPF relates to prognosis in brain glioma. Thirty low-grade and 30 high-grade brain glioma samples were divided into two tissue microarrays each. Levels of E2-EPF protein were examined by immunohistochemistry and immunofluorescence. Quantitative real-time polymerase chain reaction was used to analyze the level of E2-EPF in 60 glioma and 3 normal brain tissue samples. The relationship between E2-EPF levels and prognosis was analyzed by Kaplan-Meier survival curves. E2-EPF levels were low in normal brain tissue samples but high in glioma nuclei. E2-EPF levels gradually increased as glioma grade increased (p EPF levels in high-grade glioma were significantly higher than in low-grade glioma (p EPF levels was shorter than in patients with low expression (p EPF was significantly shorter than patients with only nuclear E2-EPF (p EPF levels, especially ectopic, are associated with higher grade glioma and shorter survival. E2-EPF levels may play a key role in predicting the prognosis for patients with brain glioma.

  3. Experiences of a High-Risk Population with Prenatal Hemoglobinopathy Carrier Screening in a Primary Care Setting: a Qualitative Study

    NARCIS (Netherlands)

    Holtkamp, Kim C. A.; Lakeman, Phillis; Hader, Hind; Jans, Suze M. J. P.; Hoenderdos, Maria; Playfair, Henna A. M.; Cornel, Martina C.; Peters, Marjolein; Henneman, Lidewij

    2017-01-01

    Carrier screening for hemoglobinopathies (HbPs; sickle cell disease and thalassemia) aims to facilitate autonomous reproductive decision-making. In the absence of a Dutch national HbP carrier screening program, some primary care midwives offer screening on an ad hoc basis. This qualitative

  4. Mechanism of de-activation and clustering of B in Si at extremely high concentration

    International Nuclear Information System (INIS)

    Romano, L.; Piro, A.M.; Privitera, V.; Rimini, E.; Fortunato, G.; Svensson, B.G.; Foad, M.; Grimaldi, M.G.

    2006-01-01

    It is known that B deactivation and clustering occur in the presence of an excess of Si self-interstitials (Is). First principle calculations predicted the path of clusters growth, but the precursor complexes are too small to be visible even by the highest resolution microscopy. Channeling with nuclear reaction analyses allowed to detect the location of small B-Is complexes into the lattice formed as a consequence of the B interaction with the Is. In this work we extend this method to determine the complexes formed during the initial stage of B precipitation in Si doped at extremely high concentration (4 at%) and subjected to thermal treatment. The samples were prepared by excimer laser annealing (ELA) of Si implanted with 1 keV B. The thickness of the molten layer was 100 nm and the B profile was boxlike with a maximum hole concentration of ∼2 x 10 21 cm -3 . The electrical deactivation and carrier mobility of this metastable system has been studied as a function of subsequent annealing in the temperature range between 200 and 850 deg. C. Channeling analyses have been performed to investigate the B lattice location at the initial stage of precipitation. The difference, with respect to previous investigations, is the very small distance (<1 nm) between adjacent B atoms substitutional located in the lattice and the absence of Is that can be released during annealing, since the end of range defects were completely dissolved by ELA. In this way, information on the B complex evolution in a free-of-defects sample have been obtained

  5. A high-gain, compact, nonimaging concentrator: RXI.

    Science.gov (United States)

    Miñano, J C; Gonźlez, J C; Benítez, P

    1995-12-01

    The design procedure of a new nonimaging concentrator (called an RXI) is explained. Rays that impinge on the concentrator aperture, within the acceptance angle, are directed to the receiver by means of one refraction, one reflection, and one total internal reflection. The concentrator can be made as a single dielectric piece (in which the receiver is immersed) whose aspect ratio (thickness/aperture diameter) is close to 1/3. Ray-tracing analysis of a rotational symmetric RXI shows total transmissions of greater than 94.5% (no absorption or reflection losses are considered) when the acceptance angle of the incoming rays is small (<3°) and when the receiver area is the smallest possible (maximal concentration.).

  6. Intercomparison of passive microwave sea ice concentration retrievals over the high-concentration Arctic sea ice

    DEFF Research Database (Denmark)

    andersen, susanne; Tonboe, R.; Kaleschke, L.

    2007-01-01

    [1] Measurements of sea ice concentration from the Special Sensor Microwave Imager (SSM/I) using seven different algorithms are compared to ship observations, sea ice divergence estimates from the Radarsat Geophysical Processor System, and ice and water surface type classification of 59 wide...... with sensor noise between 1.3 and 1.8%. This is in accord with variability estimated from analysis of SSM/I time series. Algorithms, which primarily use 85 GHz information, consistently give the best agreement with both SAR ice concentrations and ship observations. Although the 85 GHz information is more...... sensitive to atmospheric influences, it was found that the atmospheric contribution is secondary to the influence of the surface emissivity variability. Analysis of the entire SSM/I time series shows that there are significant differences in trend between sea ice extent and area, using different algorithms...

  7. Efficacy of high iodine concentration contrast medium with saline pushing in hepatic CT in patients with chronic liver disease. Comparison of high doses-standard contrast medium concentration

    International Nuclear Information System (INIS)

    Matoba, Munetaka; Kondo, Tamaki; Nishikawa, Takahiro; Kuginuki, Yasuaki; Yokota, Hajime; Higashi, Kotaro; Tonami, Hisao

    2006-01-01

    The aim of this study was to compare the enhancement of liver parenchyama with high iodine concentration contrast medium with saline pushing to that with high doses standard iodine concentration in hepatic CT in patients with chronic liver disease. There was no statistically significant difference regarding to the enhancement of liver parenchyama between the 370 mgI/ml of contrast medium with saline pushing and high doses standard iodine concentration contrast medium. (author)

  8. Evaluation of the Combined Effect of Recombinant High-Density Lipoprotein Carrier and the Encapsulated Lovastatin in RAW264.7 Macrophage Cells Based on the Median-Effect Principle.

    Science.gov (United States)

    Jiang, Cuiping; Zhao, Yi; Yang, Yun; He, Jianhua; Zhang, Wenli; Liu, Jianping

    2018-03-05

    Recombinant high-density lipoprotein (rHDL) displays a similar anti-atherosclerotic effect with native HDL and could also be served as a carrier of cardiovascular drug for atherosclerotic plaque targeting. In our previous studies, rHDL has shown a more potent anti-atherosclerotic efficacy as compared to the other conventional nanoparticles with a payload of lovastatin (LS). Therefore, we hypothesized that a synergistic anti-atherosclerotic effect of the rHDL carrier and the encapsulated LS might exist. In this study, the dose-effect relationships and the combined effect of the rHDL and LS were quantitatively evaluated in RAW 264.7 macrophage cells using the median-effect analysis, in which the rHDL carrier was regarded as a drug combined. Median-effect analysis suggested that rHDL and LS exerted a desirable synergistic inhibition on the oxLDL internalization at a ratio of 6:1 ( D m,LS : D m,rHDL ) in RAW 264.7 macrophage cells. About 50% of the reduction on the intracellular lipid contents was found when RAW264.7 cells were treated with LS-loaded rHDLs at their respective median-effect dose ( D m ) concentrations and a synergistic effect on the mediating cholesterol efflux was also observed, which verified the accuracy of the results obtained from the median-effect analysis. The mechanism underlying the synergistic effect of the rHDL carrier and the drug might be attributed to their potent inhibitory effects on SR-A expression. In conclusion, the median-effect analysis was proven to be a feasible method to quantitatively evaluate the synergistic effect of the biofunctional carrier and the drug encapsulated.

  9. High-speed carrier-depletion silicon Mach-Zehnder optical modulators with lateral PN junctions

    Directory of Open Access Journals (Sweden)

    Graham Trevor Reed

    2014-12-01

    Full Text Available This paper presents new experimental data from a lateral PN junction silicon Mach-Zehnder optical modulator. Efficiencies in the 1.4V.cm to 1.9V.cm range are demonstrated for drive voltages between 0V and 6V. High speed operation up to 52Gbit/s is also presented. The performance of the device which has its PN junction positioned in the centre of the waveguide is then compared to previously reported data from a lateral PN junction device with the junction self-aligned to the edge of the waveguide rib. An improvement in modulation efficiency is demonstrated when the junction is positioned in the centre of the waveguide. Finally we propose schemes for achieving high modulation efficiency whilst retaining self-aligned formation of the PN junction.

  10. TEMPO-Oxidized Nanofibrillated Cellulose as a High Density Carrier for Bioactive Molecules.

    Science.gov (United States)

    Weishaupt, Ramon; Siqueira, Gilberto; Schubert, Mark; Tingaut, Philippe; Maniura-Weber, Katharina; Zimmermann, Tanja; Thöny-Meyer, Linda; Faccio, Greta; Ihssen, Julian

    2015-11-09

    Controlled and efficient immobilization of specific biomolecules is a key technology to introduce new, favorable functions to materials suitable for biomedical applications. Here, we describe an innovative and efficient, two-step methodology for the stable immobilization of various biomolecules, including small peptides and enzymes onto TEMPO oxidized nanofibrillated cellulose (TO-NFC). The introduction of carboxylate groups to NFC by TEMPO oxidation provided a high surface density of negative charges able to drive the adsorption of biomolecules and take part in covalent cross-linking reactions with 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide (EDAC) and glutaraldehyde (Ga) chemistry. Up to 0.27 μmol of different biomolecules per mg of TO-NFC could be reversibly immobilized by electrostatic interaction. An additional chemical cross-linking step prevented desorption of more than 80% of these molecules. Using the cysteine-protease papain as model, a highly active papain-TO-NFC conjugate was achieved. Once papain was immobilized, 40% of the initial enzymatic activity was retained, with an increase in kcat from 213 to >700 s(-1) for the covalently immobilized enzymes. The methodology presented in this work expands the range of application for TO-NFC in the biomedical field by enabling well-defined hybrid biomaterials with a high density of functionalization.

  11. Carrier capture efficiency in InGaN/GaN LEDs: Role of high temperature annealing

    Science.gov (United States)

    Vinattieri, A.; Batignani, F.; Bogani, F.; Meneghini, M.; Meneghesso, G.; Zanoni, E.; Zhu, D.; Humphreys, C. J.

    2014-02-01

    By means of time integrated (TI), time-resolved (TR) photoluminescence (PL) and PL excitation spectra, we investigate the role of an high temperature post-growth thermal annealing (TA) on a set of InGaN/GaN LED structures with different dislocation densities. We provide evidence of the nature of the radiative recombination from a wide distribution of non-interacting localised states and we show the beneficial effect of thermal annealing in reducing the contribution of non-radiative recombination in the well region.

  12. Carrier capture efficiency in InGaN/GaN LEDs: Role of high temperature annealing

    Energy Technology Data Exchange (ETDEWEB)

    Vinattieri, A.; Batignani, F. [Dipartimento di Fisica e Astronomia, LENS, CNISM, Università di Firenze (Italy); Bogani, F. [Dipartimento di Ingegneria Industriale, Università di Firenze (Italy); Meneghini, M.; Meneghesso, G.; Zanoni, E. [Dipartimento di Ingegneria dell' Informazione, Università di Padova (Italy); Zhu, D.; Humphreys, C. J. [Department Materials Science, University of Cambridge, Cambridge, CB2 3QZ (United Kingdom)

    2014-02-21

    By means of time integrated (TI), time-resolved (TR) photoluminescence (PL) and PL excitation spectra, we investigate the role of an high temperature post-growth thermal annealing (TA) on a set of InGaN/GaN LED structures with different dislocation densities. We provide evidence of the nature of the radiative recombination from a wide distribution of non-interacting localised states and we show the beneficial effect of thermal annealing in reducing the contribution of non-radiative recombination in the well region.

  13. Highly Sensitive Cadmium Concentration Sensor Using Long Period Grating

    Directory of Open Access Journals (Sweden)

    A. S. Lalasangi

    2011-08-01

    Full Text Available In this paper we have proposed a simple and effective Long Period Grating chemical sensor for detecting the traces of Cadmium (Cd++ in drinking water at ppm level. Long Period gratings (LPG were fabricated by point-by-point technique with CO2 laser. We have characterized the LPG concentration sensor sensitivity for different solutions of Cd concentrations varying from 0.01 ppm to 0.04 ppm by injecting white Light source and observed transmitted spectra using Optical Spectrum Analyzer (OSA. Proper reagents have been used in the solutions for detection of the Cd species. The overall shift in wavelength is 10 nm when surrounding medium gradually changed from water to 0.04 ppm of cadmium concentrations. A comparative study has been done using sophisticated spectroscopic atomic absorption spectrometer (AAS and Inductively Coupled Plasma (ICP instruments. The spectral sensitivity enhancement was done by modifying grating surface with gold nanoparticles.

  14. Carbon dioxide concentrations are very high in developing oilseeds.

    Science.gov (United States)

    Goffman, Fernando D; Ruckle, Mike; Ohlrogge, John; Shachar-Hill, Yair

    2004-09-01

    A new method has been developed to rapidly determine the total inorganic carbon concentration (gaseous [CO2] + aqueous [CO(2)] + [HCO3-] + [CO3(2)-]) in developing seeds. Seeds are rapidly dissected and homogenized in 1 N HCl in gas-tight vials. The headspace gas is then analyzed by infrared gas analysis. Developing rapeseed (Brassica napus L.) and soybean [Glycine max (L.) Merr.] seeds were analyzed and found to have up to 40 and 12 mM total inorganic carbon, respectively. These concentrations are ca. 600-2000-fold higher than in ambient air or values reported for leaves. Carbon dioxide concentrations in rapeseed peaked during the stage of maximum oil synthesis and declined as seeds matured. The consequences for seed metabolism, physiology and carbon economy are discussed.

  15. High-resolution charge carrier mobility mapping of heterogeneous organic semiconductors

    Science.gov (United States)

    Button, Steven W.; Mativetsky, Jeffrey M.

    2017-08-01

    Organic electronic device performance is contingent on charge transport across a heterogeneous landscape of structural features. Methods are therefore needed to unravel the effects of local structure on overall electrical performance. Using conductive atomic force microscopy, we construct high-resolution out-of-plane hole mobility maps from arrays of 5000 to 16 000 current-voltage curves. To demonstrate the efficacy of this non-invasive approach for quantifying and mapping local differences in electrical performance due to structural heterogeneities, we investigate two thin film test systems, one bearing a heterogeneous crystal structure [solvent vapor annealed 5,11-Bis(triethylsilylethynyl)anthradithiophene (TES-ADT)—a small molecule organic semiconductor] and one bearing a heterogeneous chemical composition [p-DTS(FBTTh2)2:PC71BM—a high-performance organic photovoltaic active layer]. TES-ADT shows nearly an order of magnitude difference in hole mobility between semicrystalline and crystalline areas, along with a distinct boundary between the two regions, while p-DTS(FBTTh2)2:PC71BM exhibits subtle local variations in hole mobility and a nanoscale domain structure with features below 10 nm in size. We also demonstrate mapping of the built-in potential, which plays a significant role in organic light emitting diode and organic solar cell operation.

  16. The obtaining a high-grade gadolinium concentrate

    International Nuclear Information System (INIS)

    Soltysiak, I.; Ozga, W.

    1982-01-01

    Gadolinium concentrates obtained by the fractional precipitation of lanthanon-potassium double chromates were separated by ion exchange with 0,4 M lactic acid solution in the presence of 0,1 M ammonium nitrate at pH of the medium 2,95-3,4. It was found out, that using the fractional precipitation of lanthanon-potassium double chromates (as the fast and cheap method that does not need special equipment) together with ion exchange separation with lactic acid solution as the eluent gave a highgrade gadolinium concentrate in a quick and economical way. (author)

  17. Hummingbirds rely on both paracellular and carrier-mediated intestinal glucose absorption to fuel high metabolism

    Science.gov (United States)

    McWhorter, Todd J; Bakken, Bradley Hartman; Karasov, William H; del Rio, Carlos Martínez

    2005-01-01

    Twenty years ago, the highest active glucose transport rate and lowest passive glucose permeability in vertebrates were reported in Rufous and Anna's hummingbirds (Selasphorus rufus, Calypte anna). These first measurements of intestinal nutrient absorption in nectarivores provided an unprecedented physiological foundation for understanding their foraging ecology. They showed that physiological processes are determinants of feeding behaviour. The conclusion that active, mediated transport accounts for essentially all glucose absorption in hummingbirds influenced two decades of subsequent research on the digestive physiology and nutritional ecology of nectarivores. Here, we report new findings demonstrating that the passive permeability of hummingbird intestines to glucose is much higher than previously reported, suggesting that not all sugar uptake is mediated. Even while possessing the highest active glucose transport rates measured in vertebrates, hummingbirds must rely partially on passive non-mediated intestinal nutrient absorption to meet their high mass-specific metabolic demands. PMID:17148346

  18. Stability of Human Telomere Quadruplexes at High DNA Concentrations

    Czech Academy of Sciences Publication Activity Database

    Kejnovská, Iva; Vorlíčková, Michaela; Brázdová, Marie; Sagi, J.

    2014-01-01

    Roč. 101, č. 4 (2014), s. 428-438 ISSN 0006-3525 R&D Projects: GA ČR(CZ) GAP205/12/0466 Institutional support: RVO:68081707 Keywords : quadruplex * DNA concentration * folding topology Subject RIV: BO - Biophysics Impact factor: 2.385, year: 2014

  19. High concentrations of natural rubber latex allergens in gloves used ...

    African Journals Online (AJOL)

    Introduction. Gloves made of natural rubber latex (NRL) are commonly used by healthcare workers because of their good qualities. However, allergic reactions to latex allergens are still commonly reported. Objective. To measure the concentrations of Hev b 1, Hev b 3, Hev b 5 and Hev b 6.02 allergens in gloves used by a ...

  20. A High-Speed Power-Line Communication System with Band-Limited OQAM Based Multi-Carrier Transmission

    Science.gov (United States)

    Kawabata, Naohiro; Koga, Hisao; Muta, Osamu; Akaiwa, Yoshihiko

    As a method to realize a high-speed communication in the home network, the power-line communication (PLC) technique is known. A problem of PLC is that leakage radiation interferes with existing systems. When OFDM is used in a PLC system, the leakage radiation is not sufficiently reduced, even if the subcarriers corresponding to the frequency-band of the existing system are never used, because the signal is not strictly band-limited. To solve this problem, each subcarrier must be band-limited. In this paper, we apply the OQAM based multi-carrier transmission (OQAM-MCT) to a high-speed PLC system, where each subcarrier is individually band-limited. We also propose a pilot-symbol sequence suitable for frequency offset estimation, symbol-timing detection and channel estimation in the OQAM-MCT system. In this method, the pilot signal-sequence consists of a repeated series of the same data symbol. With this method, the pilot sequence approximately becomes equivalent to OFDM sequence and therefore existing pilot-assisted methods for OFDM are also applicable to OQAM-MCT system. Computer simulation results show that the OQAM-MCT system achieves both good transmission rate performance and low out-of-band radiation in PLC channels. It is also shown that the proposed pilot-sequence improves frequency offset estimation, symbol-timing detection and channel estimation performance as compared with the case of using pseudo-noise sequence.

  1. High concentrations of pepsin in bronchoalveolar lavage fluid from children with cystic fibrosis are associated with high interleukin-8 concentrations.

    LENUS (Irish Health Repository)

    McNally, P

    2012-02-01

    BACKGROUND: Gastro-oesophageal reflux is common in children with cystic fibrosis (CF) and is thought to be associated with pulmonary aspiration of gastric contents. The measurement of pepsin in bronchoalveolar lavage (BAL) fluid has recently been suggested to be a reliable indicator of aspiration. The prevalence of pulmonary aspiration in a group of children with CF was assessed and its association with lung inflammation investigated. METHODS: This was a cross-sectional case-control study. BAL fluid was collected from individuals with CF (n=31) and healthy controls (n=7). Interleukin-8 (IL-8), pepsin, neutrophil numbers and neutrophil elastase activity levels were measured in all samples. Clinical, microbiological and lung function data were collected from medical notes. RESULTS: The pepsin concentration in BAL fluid was higher in the CF group than in controls (mean (SD) 24.4 (27.4) ng\\/ml vs 4.3 (4.0) ng\\/ml, p=0.03). Those with CF who had raised pepsin concentrations had higher levels of IL-8 in the BAL fluid than those with a concentration comparable to controls (3.7 (2.7) ng\\/ml vs 1.4 (0.9) ng\\/ml, p=0.004). Within the CF group there was a moderate positive correlation between pepsin concentration and IL-8 in BAL fluid (r=0.48, p=0.04). There was no association between BAL fluid pepsin concentrations and age, sex, body mass index z score, forced expiratory volume in 1 s or Pseudomonas aeruginosa colonisation status. CONCLUSIONS: Many children with CF have increased levels of pepsin in the BAL fluid compared with normal controls. Increased pepsin levels were associated with higher IL-8 concentrations in BAL fluid. These data suggest that aspiration of gastric contents occurs in a subset of patients with CF and is associated with more pronounced lung inflammation.

  2. Clinical evaluation of high-risk HPV detection on self-samples using the indicating FTA-elute solid-carrier cartridge

    NARCIS (Netherlands)

    Geraets, D.T.; Baars, R. van; Alonso, I.; Ordi, J.; Torne, A.; Melchers, W.J.G.; Meijer, C.J.W.; Quint, W.G.V.

    2013-01-01

    BACKGROUND: High-risk human papillomavirus (hrHPV) testing in cervical screening is usually performed on physician-taken cervical smears in liquid-based medium. However, solid-state specimen carriers allow easy, non-hazardous storage and transportation and might be suitable for self-collection by

  3. High pressure inertial focusing for separating and concentrating bacteria at high throughput

    Science.gov (United States)

    Cruz, J.; Hooshmand Zadeh, S.; Graells, T.; Andersson, M.; Malmström, J.; Wu, Z. G.; Hjort, K.

    2017-08-01

    Inertial focusing is a promising microfluidic technology for concentration and separation of particles by size. However, there is a strong correlation of increased pressure with decreased particle size. Theory and experimental results for larger particles were used to scale down the phenomenon and find the conditions that focus 1 µm particles. High pressure experiments in robust glass chips were used to demonstrate the alignment. We show how the technique works for 1 µm spherical polystyrene particles and for Escherichia coli, not being harmful for the bacteria at 50 µl min-1. The potential to focus bacteria, simplicity of use and high throughput make this technology interesting for healthcare applications, where concentration and purification of a sample may be required as an initial step.

  4. High-performance flat-panel solar thermoelectric generators with high thermal concentration

    Science.gov (United States)

    Kraemer, Daniel; Poudel, Bed; Feng, Hsien-Ping; Caylor, J. Christopher; Yu, Bo; Yan, Xiao; Ma, Yi; Wang, Xiaowei; Wang, Dezhi; Muto, Andrew; McEnaney, Kenneth; Chiesa, Matteo; Ren, Zhifeng; Chen, Gang

    2011-07-01

    The conversion of sunlight into electricity has been dominated by photovoltaic and solar thermal power generation. Photovoltaic cells are deployed widely, mostly as flat panels, whereas solar thermal electricity generation relying on optical concentrators and mechanical heat engines is only seen in large-scale power plants. Here we demonstrate a promising flat-panel solar thermal to electric power conversion technology based on the Seebeck effect and high thermal concentration, thus enabling wider applications. The developed solar thermoelectric generators (STEGs) achieved a peak efficiency of 4.6% under AM1.5G (1 kW m-2) conditions. The efficiency is 7-8 times higher than the previously reported best value for a flat-panel STEG, and is enabled by the use of high-performance nanostructured thermoelectric materials and spectrally-selective solar absorbers in an innovative design that exploits high thermal concentration in an evacuated environment. Our work opens up a promising new approach which has the potential to achieve cost-effective conversion of solar energy into electricity.

  5. High-performance flat-panel solar thermoelectric generators with high thermal concentration.

    Science.gov (United States)

    Kraemer, Daniel; Poudel, Bed; Feng, Hsien-Ping; Caylor, J Christopher; Yu, Bo; Yan, Xiao; Ma, Yi; Wang, Xiaowei; Wang, Dezhi; Muto, Andrew; McEnaney, Kenneth; Chiesa, Matteo; Ren, Zhifeng; Chen, Gang

    2011-05-01

    The conversion of sunlight into electricity has been dominated by photovoltaic and solar thermal power generation. Photovoltaic cells are deployed widely, mostly as flat panels, whereas solar thermal electricity generation relying on optical concentrators and mechanical heat engines is only seen in large-scale power plants. Here we demonstrate a promising flat-panel solar thermal to electric power conversion technology based on the Seebeck effect and high thermal concentration, thus enabling wider applications. The developed solar thermoelectric generators (STEGs) achieved a peak efficiency of 4.6% under AM1.5G (1 kW m(-2)) conditions. The efficiency is 7-8 times higher than the previously reported best value for a flat-panel STEG, and is enabled by the use of high-performance nanostructured thermoelectric materials and spectrally-selective solar absorbers in an innovative design that exploits high thermal concentration in an evacuated environment. Our work opens up a promising new approach which has the potential to achieve cost-effective conversion of solar energy into electricity. © 2011 Macmillan Publishers Limited. All rights reserved

  6. Spontaneous deswelling of pNIPAM microgels at high concentrations

    Science.gov (United States)

    Gasser, Urs; Scotti, Andrea; Herman, Emily S.; Pelaez-Fernandez, Miguel; Han, Jun; Menzel, Andreas; Lyon, L. Andrew; Fernandez-Nieves, Alberto

    Polydisperse suspensions of pNIPAM microgel particles show a unique, spontaneous particle deswelling behavior. Beyond a critical concentration, the largest microgels deswell and thereby reduce the polydispersity of the suspension. We have recently unraveled the mechanism of this spontaneous, selective deswelling. pNIPAM microgels carry charged sulfate groups originating from the ammonium persulfate starter used in particle synthesis. Most of the ammonium counterions are trapped close to the microgel surface, but a fraction of them escapes the electrostatic attraction and contributes to the osmotic pressure of the suspension. The counterion clouds of neighboring particles progressively overlap with increasing volume fraction, leading to an increase of free counterions and the osmotic pressure outside but not inside the microgel particles. We find particles to deswell when the resulting osmotic pressure difference between the inside and the outside becomes larger their bulk modulus. For pNIPAM microgels synthesized with the same protocol, the largest particles are the softest and deswell first.

  7. High-density natural luffa sponge as anaerobic microorganisms carrier for degrading 1,1,1-TCA in groundwater.

    Science.gov (United States)

    Wang, Wenbing; Wu, Yanqing; Zhang, Chi

    2017-03-01

    Anaerobic microorganisms were applied to degrade organic contaminants in groundwater with permeable reactive barriers (PRBs). However, anaerobic microorganisms need to select optimal immobilizing material as carrier. The potential of high-density natural luffa sponge (HDLS) (a new variety of luffa) for the immobilization and protection of anaerobic microorganisms was investigated. The HDLS has a dense structure composed of a complicated interwoven fibrous network. Therefore, the abrasion rate of HDLS (0.0068 g s -1 ) was the smallest among the four carriers [HDLS, ordinary natural luffa sponge (OLS), polyurethane sponge (PS), and gel carrier AQUAPOROUSGEL (APG)]. The results suggest that it also had the greatest water retention (10.26 H 2 O-g dry carrier-g -1 ) and SS retention (0.21 g dry carrier-g -1 ). In comparison to well-established commercialized gel carrier APG, HDLS was of much better mechanical strength, hydrophilicity and stability. Microbial-immobilized HDLS also had the best performance for the remediation of 1,1,1-TCA simulated groundwater. Analysis of the clone libraries from microorganism-immobilized HDLS showed the HDLS could protect microorganisms from the toxicity of 1,1,1-TCA and maintain the stability of microbial community diversity. The mechanism of HDLS immobilizing and protecting microorganisms was proposed as follows. The HDLS had a micron-scale honeycomb structure (30-40 μm) and an irregular ravine structure (4-20 μm), which facilitate the immobilization of anaerobic microorganisms and protect the anaerobic microorganisms.

  8. Aircraft Carriers

    DEFF Research Database (Denmark)

    Nødskov, Kim; Kværnø, Ole

    as their purchases of aircraft carrier systems, makes it more than likely that the country is preparing such an acquisition. China has territorial disputes in the South China Sea over the Spratly Islands and is also worried about the security of its sea lines of communications, by which China transports the majority......, submarines, aircraft and helicopters, is not likely to be fully operational and war-capable until 2020, given the fact that China is starting from a clean sheet of paper. The United States of America (USA), the United Kingdom (UK), Russia and India are currently building or have made decisions to build new...

  9. High Concentration Protein Ultrafiltration: a Comparative Fouling Assessment

    Science.gov (United States)

    Lim, Y. P.; Mohammad, A. W.

    2018-05-01

    In this paper, the predominant fouling mechanism via pH manipulation in gelatin ultrafiltration (UF) at constant operating pressure was studied. Two 30 kDa molecular weight cut off (MWCO) UF membranes with different hydrophilic/hydrophobic properties were tested at solution pH near gelatin isoelectric point (IEP), pH below and above gelatin’s IEP. The resistance-in-series model was used to determine quantitatively the contribution of each filtration resistance occurred during gelatin UF. The governing fouling mechanisms were investigated using classical blocking laws. The results demonstrated that concentration polarization remain as dominant fouling resistance in gelatin UF, but exceptional case was observed at pH away from gelatin’s IEP, showing that combined reversible and irreversible fouling resistances contributed around 57% and 37%, respectively to the overall fouling resistances. Under all experimental condition tested, permeate flux decline was accurately predicted by all the models studied. Fouling profile was fitted well with “Standard Blocking”, “Intermediate Blocking” and “Cake Filtration” model for regenerated cellulose acetate (RCA) membrane and “Cake Filtration” model for polyethersulphone (PES) membrane.

  10. Adaptive sensor-based ultra-high accuracy solar concentrator tracker

    Science.gov (United States)

    Brinkley, Jordyn; Hassanzadeh, Ali

    2017-09-01

    Conventional solar trackers use information of the sun's position, either by direct sensing or by GPS. Our method uses the shading of the receiver. This, coupled with nonimaging optics design allows us to achieve ultra-high concentration. Incorporating a sensor based shadow tracking method with a two stage concentration solar hybrid parabolic trough allows the system to maintain high concentration with acute accuracy.

  11. Growth Related Carrier Mobility Enhancement of Pentacene Thin-Film Transistors with High-k Oxide Gate Dielectric

    International Nuclear Information System (INIS)

    Ai-Fang, Yu; Qiong, Qi; Peng, Jiang; Chao, Jiang

    2009-01-01

    Carrier mobility enhancement from 0.09 to 0.59 cm 2 /Vs is achieved for pentacene-based thin-film transistors (TFTs) by modifying the HfO 2 gate dielectric with a polystyrene (PS) thin film. The improvement of the transistor's performance is found to be strongly related to the initial film morphologies of pentacene on the dielectrics. In contrast to the three-dimensional island-like growth mode on the HfO 2 surface, the Stranski-Krastanov growth mode on the smooth and nonpolar PS/HfO 2 surface is believed to be the origin of the excellent carrier mobility of the TFTs. A large well-connected first monolayer with fewer boundaries is formed via the Stranski–Krastanov growth mode, which facilitates a charge transport parallel to the substrate and promotes higher carrier mobility. (cross-disciplinary physics and related areas of science and technology)

  12. Deep Sea Memory of High Atmospheric CO2 Concentration

    Science.gov (United States)

    Mathesius, Sabine; Hofmann, Matthias; Caldeira, Ken; Schellnhuber, Hans Joachim

    2015-04-01

    Carbon dioxide removal (CDR) from the atmosphere has been proposed as a powerful measure to mitigate global warming and ocean acidification. Planetary-scale interventions of that kind are often portrayed as "last-resort strategies", which need to weigh in if humankind keeps on enhancing the climate-system stock of CO2. Yet even if CDR could restore atmospheric CO2 to substantially lower concentrations, would it really qualify to undo the critical impacts of past emissions? In the study presented here, we employed an Earth System Model of Intermediate Complexity (EMIC) to investigate how CDR might erase the emissions legacy in the marine environment, focusing on pH, temperature and dissolved oxygen. Against a background of a world following the RCP8.5 emissions path ("business-as-usual") for centuries, we simulated the effects of two massive CDR interventions with CO2 extraction rates of 5 GtC yr-1 and 25 GtC yr-1, respectively, starting in 2250. We found that the 5 GtC yr-1 scheme would have only minor ameliorative influence on the oceans, even after several centuries of application. By way of contrast, the extreme 25 GtC yr-1 scheme eventually leads to tangible improvements. However, even with such an aggressive measure, past CO2 emissions leave a substantial legacy in the marine environment within the simulated period (i.e., until 2700). In summary, our study demonstrates that anthropogenic alterations of the oceans, caused by continued business-as-usual emissions, may not be reversed on a multi-centennial time scale by the most aspirational geoengineering measures. We also found that a transition from the RCP8.5 state to the state of a strong mitigation scenario (RCP2.6) is not possible, even under the assumption of extreme extraction rates (25 GtC yr-1). This is explicitly demonstrated by simulating additional scenarios, starting CDR already in 2150 and operating until the atmospheric CO2 concentration reaches 280 ppm and 180 ppm, respectively. The simulated

  13. High urinary phthalate concentration associated with delayed pubarche in girls

    DEFF Research Database (Denmark)

    Frederiksen, H; Sørensen, K; Mouritsen, A

    2012-01-01

    Phthalates are a group of chemicals present in numerous consumer products. They have anti-androgenic properties in experimental studies and are suspected to be involved in human male reproductive health problems. A few studies have shown associations between phthalate exposure and changes...... and controls. We demonstrated that delayed pubarche, but not thelarche, was associated with high phthalate excretion in urine samples from 725 healthy school girls, which may suggest anti-androgenic actions of phthalates in our study group of girls....

  14. High plasma uric acid concentration: causes and consequences

    Directory of Open Access Journals (Sweden)

    de Oliveira Erick

    2012-04-01

    Full Text Available Abstract High plasma uric acid (UA is a precipitating factor for gout and renal calculi as well as a strong risk factor for Metabolic Syndrome and cardiovascular disease. The main causes for higher plasma UA are either lower excretion, higher synthesis or both. Higher waist circumference and the BMI are associated with higher insulin resistance and leptin production, and both reduce uric acid excretion. The synthesis of fatty acids (tryglicerides in the liver is associated with the de novo synthesis of purine, accelerating UA production. The role played by diet on hyperuricemia has not yet been fully clarified, but high intake of fructose-rich industrialized food and high alcohol intake (particularly beer seem to influence uricemia. It is not known whether UA would be a causal factor or an antioxidant protective response. Most authors do not consider the UA as a risk factor, but presenting antioxidant function. UA contributes to > 50% of the antioxidant capacity of the blood. There is still no consensus if UA is a protective or a risk factor, however, it seems that acute elevation is a protective factor, whereas chronic elevation a risk for disease.

  15. LIQUIFIED NATURAL GAS (LNG CARRIERS

    Directory of Open Access Journals (Sweden)

    Daniel Posavec

    2010-12-01

    Full Text Available Modern liquefied natural gas carriers are double-bottom ships classified according to the type of LNG tank. The tanks are specially designed to store natural gas cooled to -161°C, the boiling point of methane. Since LNG is highly flammable, special care must be taken when designing and operating the ship. The development of LNG carriers has begun in the middle of the twentieth century. LNG carrier storage space has gradually grown to the current maximum of 260000 m3. There are more than 300 LNG carriers currently in operation (the paper is published in Croatian.

  16. Carrier removal and defect behavior in p-type InP

    Science.gov (United States)

    Weinberg, I.; Swartz, C. K.; Drevinsky, P. J.

    1992-01-01

    A simple expression, obtained from the rate equation for defect production, was used to relate carrier removal to defect production and hole trapping rates in p-type InP after irradiation by 1-MeV electrons. Specific contributions to carrier removal from defect levels H3, H4, and H5 were determined from combined deep-level transient spectroscopy (DLTS) and measured carrier concentrations. An additional contribution was attributed to one or more defects not observed by the present DLTS measurements. The high trapping rate observed for H5 suggests that this defect, if present in relatively high concentration, could be dominant in p-type InP.

  17. High-frequency conductivity of optically excited charge carriers in hydrogenated nanocrystalline silicon investigated by spectroscopic femtosecond pump–probe reflectivity measurements

    Energy Technology Data Exchange (ETDEWEB)

    He, Wei [University of Birmingham, School of Physics and Astronomy, Birmingham B15 2TT (United Kingdom); Yurkevich, Igor V. [Aston University, Nonlinearity and Complexity Research Group, Birmingham B4 7ET (United Kingdom); Zakar, Ammar [University of Birmingham, School of Physics and Astronomy, Birmingham B15 2TT (United Kingdom); Kaplan, Andrey, E-mail: a.kaplan.1@bham.ac.uk [University of Birmingham, School of Physics and Astronomy, Birmingham B15 2TT (United Kingdom)

    2015-10-01

    We report an investigation into the high-frequency conductivity of optically excited charge carriers far from equilibrium with the lattice. The investigated samples consist of hydrogenated nanocrystalline silicon films grown on a thin film of silicon oxide on top of a silicon substrate. For the investigation, we used an optical femtosecond pump–probe setup to measure the reflectance change of a probe beam. The pump beam ranged between 580 and 820 nm, whereas the probe wavelength spanned 770 to 810 nm. The pump fluence was fixed at 0.6 mJ/cm{sup 2}. We show that at a fixed delay time of 300 fs, the conductivity of the excited electron–hole plasma is described well by a classical conductivity model of a hot charge carrier gas found at Maxwell–Boltzmann distribution, while Fermi–Dirac statics is not suitable. This is corroborated by values retrieved from pump–probe reflectance measurements of the conductivity and its dependence on the excitation wavelength and carrier temperature. The conductivity decreases monotonically as a function of the excitation wavelength, as expected for a nondegenerate charge carrier gas. - Highlights: • We study high‐frequency conductivity of excited hydrogenated nanocrystalline silicon. • Reflectance change was measured as a function of pump and probe wavelength. • Maxwell–Boltzmann transport theory was used to retrieve the conductivity. • The conductivity decreases monotonically as a function of the pump wavelength.

  18. High-order optical nonlinearities in nanocomposite films dispersed with semiconductor quantum dots at high concentrations

    International Nuclear Information System (INIS)

    Tomita, Yasuo; Matsushima, Shun-suke; Yamagami, Ryu-ichi; Jinzenji, Taka-aki; Sakuma, Shohei; Liu, Xiangming; Izuishi, Takuya; Shen, Qing

    2017-01-01

    We describe the nonlinear optical properties of inorganic-organic nanocomposite films in which semiconductor CdSe quantum dots as high as 6.8 vol.% are dispersed. Open/closed Z-scan measurements, degenerate multi-wave mixing and femtosecond pump-probe/transient grating measurements are conducted. It is shown that the observed fifth-order optical nonlinearity has the cascaded third-order contribution that becomes prominent at high concentrations of CdSe QDs. It is also shown that there are picosecond-scale intensity-dependent and nanosecond-scale intensity-independent decay components in absorptive and refractive nonlinearities. The former is caused by the Auger process, while the latter comes from the electron-hole recombination process. (paper)

  19. High-power parametric amplification of 11.8-fs laser pulses with carrier-envelope phase control

    NARCIS (Netherlands)

    Zinkstok, R.T.; Witte, S.; Hogervorst, W.; Eikema, K.S.E.

    2005-01-01

    Phase-stable parametric chirped-pulse amplification of ultrashort pulses from a carrier-envelope phase-stabilized mode-locked Ti:sapphire oscillator (11.0 fs) to 0.25 mJ/pulse at 1 kHz is demonstrated. Compression with a grating compressor and a LCD shaper yields near-Fourier-limited 11.8-fs pulses

  20. Emulsifier development for high-concentrated reverse emulsions

    Directory of Open Access Journals (Sweden)

    I.L. Kovalenko

    2016-05-01

    Full Text Available The reverse emulsions have found broad application in ore mining industry as matrixes of emulsion explosive substances and boring washing waters. The defining characteristic of reverse emulsions of industrial explosive substances is the high stability and immunity to crystallization. Aim: The aim of this work is to assess the mechanism of emulsifiers effect like SMO and some PIBSA-derivatives, that are most abundantly used in world practice, and also to develop an effective domestic emulsifier of reverse emulsions. Materials and methods: Using the semi-dynamic method with use of the reverse stalagmometer it was determined the decreasing in interfacial tension on “water / diesel fuel” border in the presence of 0.5 wt % sorbitan monooleate of various producers. Emulsions with use of the chosen emulsifiers using the dynamic mixer on the basis of monosolution of ammonium nitrate and diesel fuel have been produced. The emulsions have the following composition, wt %: ammonium nitrate – 76.8; water – 15.6; diesel fuel – 6.0; emulsifier – 1.6. Results: By the researches results of the interfacial tension “surfactant water / solution in diesel fuel”, the stability of emulsions using monosolution of ammonium nitrate and the IR spectrums of SMO of various producers it is established that presence in product of impurity of oleic acid, di- and trioleates leads to decreasing in interphase activity, increasing of emulsifier oil solubility and decreasing the resistance of emulsions to crystallization. On the basis of the spectral data analysis it is suggested about possibility of specific interaction on the mechanism of “spectral resonance” between emulsifiers of the PIBSA-MEA, LZX type and crystals nucleus of NH4NO3 ammonium nitrate in dispersed phase of emulsion. Amidation of vegetable oils by monoethanol amine is implemented at the reduced temperatures (90…100 °C. It was proved the availability mainly of fatty acids amides in product

  1. Raising awareness of carrier testing for hereditary haemoglobinopathies in high-risk ethnic groups in the Netherlands: a pilot study among the general public and primary care providers

    Directory of Open Access Journals (Sweden)

    Cornel Martina C

    2009-09-01

    Full Text Available Abstract Background In the Netherlands no formal recommendations exist concerning preconceptional or antenatal testing for carriership of hereditary haemoglobinopathies. Those at highest risk may be unaware of the possibility of carrier screening. While universal newborn screening has recently been introduced, neither preconceptional nor antenatal carrier testing is routinely offered by health care services to the general public. A municipal health service and a foundation for public information on medical genetics undertook a pilot project with the aim of increasing knowledge and encouraging informed choice. Two groups were targeted: members of the public from ethnic groups at increased risk, and primary health care providers. This study examines the effectiveness of culturally specific 'infotainment' to inform high-risk ethnic groups about their increased risk for haemoglobinopathies. In addition, the study explores attitudes and intentions of primary care providers towards haemoglobinopathy carrier testing of their patients from high-risk ethnic groups. Methods Informational sessions tailored to the public or professionals were organised in Amsterdam, and evaluated for their effect. Psychological parameters were measured using structured questionnaires based on the Theory of Planned Behaviour. Results The pre-test/post-test questionnaire showed that members of the public gained understanding of inheritance and carriership of haemoglobinopathies from the "infotainment" session (p Conclusion The "infotainment" programme may have a positive effect on people from high-risk groups, but informed general practitioners and midwives were reluctant to facilitate their patients' getting tested. Additional initiatives are needed to motivate primary care providers to facilitate haemoglobinopathy carrier testing for their patients from high-risk backgrounds.

  2. Extraction of niobium and tantalum isotopes using organophosphorus compounds. Pt. 1. Extraction of 'carrier-free' metal concentrations from HCl solutions

    International Nuclear Information System (INIS)

    Gates, J.M.; California Univ., Berkeley, CA; Sudowe, R.; Stavsetra, L.

    2009-01-01

    The extraction of niobium (Nb) and tantalum (Ta) from hydrochloric acid media by bis(2-ethylhexyl) hydrogen phosphate (HDEHP) and bis(2-ethylhexyl) hydrogen phosphite (BEHP) was studied. The goal of the experiments is to find a system that demonstrates selectivity between the members of group five of the Periodic Table and is also suitable for the study of dubnium (Db, Z=105). Experiments were performed at the trace level (10 -16 M Nb or Ta) using hydrochloric acid with concentrations ranging from 1-11 M and short-lived isotopes of Nb and Ta produced in nuclear reactions. When HDEHP was used as the extractant, the Nb extraction yield decreased with increasing acid concentrations above 6 M, while the amount of Ta extracted remained over 75% for all acid concentrations studied. Tantalum was found to be extracted by BEHP at acid concentrations above 6 M, while niobium was not significantly extracted. The data obtained are used as the basis to discuss the speciation of Nb and Ta under the conditions studied and to evaluate possible extraction mechanisms. (orig.)

  3. Photogenerated carriers transfer in dye-graphene-SnO2 composites for highly efficient visible-light photocatalysis.

    Science.gov (United States)

    Zhuang, Shendong; Xu, Xiaoyong; Feng, Bing; Hu, Jingguo; Pang, Yaru; Zhou, Gang; Tong, Ling; Zhou, Yuxue

    2014-01-08

    The visible-light-driven photocatalytic activities of graphene-semiconductor catalysts have recently been demonstrated, however, the transfer pathway of photogenerated carriers especially where the role of graphene still remains controversial. Here we report graphene-SnO2 aerosol nanocomposites that exhibit more superior dye adsorption capacity and photocatalytic efficiency compared with pure SnO2 quantum dots, P25 TiO2, and pure graphene aerosol under the visible light. This study examines the origin of the visible-light-driven photocatalysis, which for the first time links to the synergistic effect of the cophotosensitization of the dye and graphene to SnO2. We hope this concept and corresponding mechanism of cophotosensitization could provide an original understanding for the photocatalytic reaction process at the level of carrier transfer pathway as well as a brand new approach to design novel and versatile graphene-based composites for solar energy conversion.

  4. Tackler’s head position relative to the ball carrier is highly correlated with head and neck injuries in rugby

    Science.gov (United States)

    Hasegawa, Yoshinori; Shiota, Yuki; Ota, Chihiro; Yoneda, Takeshi; Tahara, Shigeyuki; Maki, Nobukazu; Matsuura, Takahiro; Sekiguchi, Masahiro; Itoigawa, Yoshiaki; Tateishi, Tomohiko; Kaneko, Kazuo

    2018-01-01

    Objectives To characterise the tackler’s head position during one-on-one tackling in rugby and to determine the incidence of head, neck and shoulder injuries through analysis of game videos, injury records and a questionnaire completed by the tacklers themselves. Methods We randomly selected 28 game videos featuring two university teams in competitions held in 2015 and 2016. Tackles were categorised according to tackler’s head position. The ‘pre-contact phase’ was defined; its duration and the number of steps taken by the ball carrier prior to a tackle were evaluated. Results In total, 3970 tackles, including 317 (8.0%) with the tackler’s head incorrectly positioned (ie, in front of the ball carrier) were examined. Thirty-two head, neck or shoulder injuries occurred for an injury incidence of 0.8% (32/3970). The incidence of injury in tackles with incorrect head positioning was 69.4/1000 tackles; the injury incidence with correct head positioning (ie, behind or to one side of the ball carrier) was 2.7/1000 tackles. Concussions, neck injuries, ‘stingers’ and nasal fractures occurred significantly more often during tackles with incorrect head positioning than during tackles with correct head positioning. Significantly fewer steps were taken before tackles with incorrect head positioning that resulted in injury than before tackles that did not result in injury. Conclusion Tackling with incorrect head position relative to the ball carrier resulted in a significantly higher incidence of concussions, neck injuries, stingers and nasal fractures than tackling with correct head position. Tackles with shorter duration and distance before contact resulted in more injuries. PMID:29162618

  5. Change in carrier type in high-k gate carbon nanotube field-effect transistors by interface fixed charges

    International Nuclear Information System (INIS)

    Moriyama, N; Ohno, Y; Kitamura, T; Kishimoto, S; Mizutani, T

    2010-01-01

    We study the phenomenon of change in carrier type in carbon nanotube field-effect transistors (CNFETs) caused by the atomic layer deposition (ALD) of a HfO 2 gate insulator. When a HfO 2 layer is deposited on a CNFET, the type of carrier changes from p-type to n-type. The so-obtained n-type device has good performance and stability in air. The conductivity of such a device with a channel length of 0.7 μm is 11% of the quantum conductance 4e 2 /h. The contact resistance for electron current is estimated to be 14 kΩ. The n-type conduction of this CNFET is maintained for more than 100 days. The change in carrier type is attributed to positive fixed charges introduced at the interface between the HfO 2 and SiO 2 layers. We also propose a novel technique to control the type of conduction by utilizing interface fixed charges; this technique is compatible with Si CMOS process technology.

  6. The indicating FTA elute cartridge a solid sample carrier to detect high-risk HPV and high-grade cervical lesions.

    Science.gov (United States)

    de Bie, Roosmarie P; Schmeink, Channa E; Bakkers, Judith M J E; Snijders, Peter J F; Quint, Wim G V; Massuger, Leon F A G; Bekkers, Ruud L M; Melchers, Willem J G

    2011-07-01

    The clinically validated high-risk human papillomavirus (hrHPV) Hybrid Capture 2 (HC2) and GP5+/6+-PCR assays were analyzed on an Indicating FTA Elute cartridge (FTA cartridge). The FTA cartridge is a solid dry carrier that allows safe transport of cervical samples. FTA cartridge samples were compared with liquid-based samples for hrHPV and high-grade cervical intraepithelial neoplasia (CIN) detection. One cervical sample was collected in a liquid-based medium, and one was applied to the FTA cartridge. DNA was eluted directly from the FTA cartridge by a simple elution step. HC2 and GP5+/6+-PCR assays were performed on both the liquid-based and the FTA-eluted DNA of 88 women. Overall agreement between FTA and liquid-based samples for the presence of hrHPV was 90.9% with GP5+/6+-PCR and 77.3% with HC2. The sensitivity for high-grade CIN of hrHPV testing on the FTA cartridges was 84.6% with GP5+/6+-PCR and only 53.8% with HC2. By comparison, these sensitivities on liquid-based samples were 92.3% and 100% for GP5+/6+-PCR and HC2, respectively. Therefore, the FTA cartridge shows reasonably good overall agreement for hrHPV detection with liquid-based media when using GP5+/6+-PCR but not HC2 testing. Even with GP5+/6+-PCR, the FTA cartridge is not yet capable of detecting all high-grade CIN lesions. Copyright © 2011 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  7. Monolayer CS as a metal-free photocatalyst with high carrier mobility and tunable band structure: a first-principles study

    Science.gov (United States)

    Yang, Xiao-Le; Ye, Xiao-Juan; Liu, Chun-Sheng; Yan, Xiao-Hong

    2018-02-01

    Producing hydrogen fuel using suitable photocatalysts from water splitting is a feasible method to harvest solar energy. A desired photocatalyst is expected to have suitable band gap, moderate band edge position, and high carrier mobility. By employing first-principles calculations, we explore a α-CS monolayer as a metal-free efficient photocatalyst. The α-CS monolayer shows good energetic, dynamic, and thermal stabilities and is insoluble in water, suggesting its experimental practicability. Monolayer and bilayer α-CS present not only appropriate band gaps for visible and ultraviolet light absorption but also moderate band alignments with water redox potentials in pH neutral water. Remarkably, the α-CS monolayer exhibits high (up to 8453.19 cm2 V-1s-1 for hole) and anisotropic carrier mobility, which is favorable to the migration and separation of photogenerated carriers. In addition, monolayer α-CS experiences an interesting semiconductor-metal transition by applying uniaxial strain and external electric field. Moreover, α-CS under certain strain and electric field is still dynamically stable with the absence of imaginary frequencies. Furthermore, we demonstrate that the graphite (0 0 1) surface is a potential substrate for the α-CS growth with the intrinsic properties of α-CS maintaining. Therefore, our results could pave the way for the application of α-CS as a promising photocatalyst.

  8. Raising awareness of carrier testing for hereditary haemoglobinopathies in high-risk ethnic groups in the Netherlands: a pilot study among the general public and primary care providers.

    Science.gov (United States)

    Weinreich, Stephanie S; de Lange-de Klerk, Elly Sm; Rijmen, Frank; Cornel, Martina C; de Kinderen, Marja; Plass, Anne Marie C

    2009-09-15

    In the Netherlands no formal recommendations exist concerning preconceptional or antenatal testing for carriership of hereditary haemoglobinopathies. Those at highest risk may be unaware of the possibility of carrier screening. While universal newborn screening has recently been introduced, neither preconceptional nor antenatal carrier testing is routinely offered by health care services to the general public. A municipal health service and a foundation for public information on medical genetics undertook a pilot project with the aim of increasing knowledge and encouraging informed choice. Two groups were targeted: members of the public from ethnic groups at increased risk, and primary health care providers. This study examines the effectiveness of culturally specific 'infotainment' to inform high-risk ethnic groups about their increased risk for haemoglobinopathies. In addition, the study explores attitudes and intentions of primary care providers towards haemoglobinopathy carrier testing of their patients from high-risk ethnic groups. Informational sessions tailored to the public or professionals were organised in Amsterdam, and evaluated for their effect. Psychological parameters were measured using structured questionnaires based on the Theory of Planned Behaviour. The pre-test/post-test questionnaire showed that members of the public gained understanding of inheritance and carriership of haemoglobinopathies from the "infotainment" session (p Perceived behavioural control, i.e. the feeling that they could actually get tested if they wanted to, increased in the targeted age group of 18-45 years (N = 41; p ethnic groups was positive, yet they did not show strong intention to effectuate carrier testing of their patients on the basis of ethnicity. The main factor which explained their (lack of) intention was social norm, i.e. their perception of negative peer opinion (41% variance explained). The majority of primary health care providers felt that policy change was

  9. Organic-inorganic hybrid perovskite quantum dots with high PLQY and enhanced carrier mobility through crystallinity control by solvent engineering and solid-state ligand exchange.

    Science.gov (United States)

    Woo Choi, Jin; Woo, Hee Chul; Huang, Xiaoguang; Jung, Wan-Gil; Kim, Bong-Joong; Jeon, Sie-Wook; Yim, Sang-Youp; Lee, Jae-Suk; Lee, Chang-Lyoul

    2018-05-22

    The photoluminescence quantum yield (PLQY) and charge carrier mobility of organic-inorganic perovskite QDs were enhanced by the optimization of crystallinity and surface passivation as well as solid-state ligand exchange. The crystallinity of perovskite QDs was determined by the Effective solvent field (Esol) of various solvents for precipitation. The solvent with high Esol could more quickly countervail the localized field generated by the polar solvent, and it causes fast crystallization of the dissolved precursor, which results in poor crystallinity. The post-ligand adding process (PLAP) and post-ligand exchange process (PLEP) increase the PLQY of perovskite QDs by reducing non-radiative recombination and the density of surface defect states through surface passivation. Particularly, the post ligand exchange process (PLEP) in the solid-state improved the charge carrier mobility of perovskite QDs in addition to the PLQY enhancement. The ligand exchange with short alkyl chain length ligands could improve the packing density of perovskite QDs in films by reducing the inter-particle distance between perovskite QDs. The maximum hole mobility of 6.2 × 10-3 cm2 V-1 s-1, one order higher than that of pristine QDs without the PLEP, is obtained at perovskite QDs with hexyl ligands. By using PLEP treatment, compared to the pristine device, a 2.5 times higher current efficiency in perovskite QD-LEDs was achieved due to the improved charge carrier mobility and PLQY.

  10. Efficient purification and concentration of viruses from a large body of high turbidity seawater.

    Science.gov (United States)

    Sun, Guowei; Xiao, Jinzhou; Wang, Hongming; Gong, Chaowen; Pan, Yingjie; Yan, Shuling; Wang, Yongjie

    2014-01-01

    Marine viruses are the most abundant entities in the ocean and play crucial roles in the marine ecological system. However, understanding of viral diversity on large scale depends on efficient and reliable viral purification and concentration techniques. Here, we report on developing an efficient method to purify and concentrate viruses from large body of high turbidity seawater. The developed method characterizes with high viral recovery efficiency, high concentration factor, high viral particle densities and high-throughput, and is reliable for viral concentration from high turbidity seawater. Recovered viral particles were used directly for subsequent analysis by epifluorescence microscopy, transmission electron microscopy and metagenomic sequencing. Three points are essential for this method:•The sampled seawater (>150 L) was initially divided into two parts, water fraction and settled matter fraction, after natural sedimentation.•Both viruses in the water fraction concentrated by tangential flow filtration (TFF) and viruses isolated from the settled matter fraction were considered as the whole viral community in high turbidity seawater.•The viral concentrates were re-concentrated by using centrifugal filter device in order to obtain high density of viral particles.

  11. High interpatient variability of raltegravir CSF concentrations in HIV-positive patients: a pharmacogenetic analysis.

    Science.gov (United States)

    Calcagno, Andrea; Cusato, Jessica; Simiele, Marco; Motta, Ilaria; Audagnotto, Sabrina; Bracchi, Margherita; D'Avolio, Antonio; Di Perri, Giovanni; Bonora, Stefano

    2014-01-01

    To analyse the determinants of raltegravir CSF penetration, including the pharmacogenetics of drug transporters located at the blood-brain barrier or blood-CSF barrier. Plasma and CSF raltegravir concentrations were determined by a validated HPLC coupled with mass spectrometry method in adults on raltegravir-based combination antiretroviral therapy undergoing a lumbar puncture. Single nucleotide polymorphisms in the genes encoding drugs transporters (ABCB1 3435, SLCO1A2, ABCC2 and SLC22A6) and the gene encoding hepatocyte nuclear factor 4 α (HNF4α) were determined by real-time PCR. In 41 patients (73.2% male, 95.1% Caucasians), the median raltegravir plasma and CSF concentrations were 165 ng/mL (83-552) and 31 ng/mL (21-56), respectively. CSF-to-plasma ratios (CPRs) ranged from 0.005 to 1.33 (median 0.20, IQR 0.04-0.36). Raltegravir trough CSF concentrations (n = 35) correlated with raltegravir plasma levels (ρ = 0.395, P = 0.019); CPRs were higher in patients with blood-brain barrier damage (0.47 versus 0.18, P = 0.02). HNF4α 613 CG genotype carriers had lower trough CSF concentrations (20 versus 37 ng/mL, P = 0.03) and CPRs (0.12 versus 0.27, P = 0.02). Following multivariate linear regression analysis, the CSF-to-serum albumin ratio was the only independent predictor of raltegravir penetration into the CSF. Raltegravir penetration into the CSF shows a large interpatient variability, although CSF concentrations were above the wild-type IC50 in all patients (and above IC95 in 28.6%). In this cohort, blood-brain barrier permeability is the only independent predictor of raltegravir CPR. The impact of single nucleotide polymorphisms in selected genes on raltegravir penetration warrants further studies.

  12. High temperature annealing of minority carrier traps in irradiated MOCVD n(+)p InP solar cell junctions

    Science.gov (United States)

    Messenger, S. R.; Walters, R. J.; Summers, G. P.

    1993-01-01

    Deep level transient spectroscopy was used to monitor thermal annealing of trapping centers in electron irradiated n(+)p InP junctions grown by metalorganic chemical vapor deposition, at temperatures ranging from 500 up to 650K. Special emphasis is given to the behavior of the minority carrier (electron) traps EA (0.24 eV), EC (0.12 eV), and ED (0.31 eV) which have received considerably less attention than the majority carrier (hole) traps H3, H4, and H5, although this work does extend the annealing behavior of the hole traps to higher temperatures than previously reported. It is found that H5 begins to anneal above 500K and is completely removed by 630K. The electron traps begin to anneal above 540K and are reduced to about half intensity by 630K. Although they each have slightly different annealing temperatures, EA, EC, and ED are all removed by 650K. A new hole trap called H3'(0.33 eV) grows as the other traps anneal and is the only trap remaining at 650K. This annealing behavior is much different than that reported for diffused junctions.

  13. Facilitated transport near the carrier saturation limit

    Directory of Open Access Journals (Sweden)

    Anawat Sungpet

    2002-11-01

    Full Text Available Permeation of ethylbenzene, styrene and 1-hexene through perfluorosulfonate ionomer membranes was carried out with the feed concentrations ranging from 1 M to pure. On comparison, fluxes of ethylbenzene through the Ag+-form membrane were the lowest. Only a small increase in ethylbenzene flux was observed after the feed concentration exceeded 3 M, indicating the existence of carrier saturation. The increase in styrene flux was suppressed to some degree at high concentration driving forces. In contrast, 1-hexene flux was the highest and continued to increase even at very high feed concentrations. After the experiments with pure feeds, extraction of the solutes from the membranes revealed that 62.5% of Ag+ ions reacted with 1-hexene as against 40.6% for styrene and 28.9% for ethylbenzene. Equilibrium constants, determined by distribution method, of 1-hexene, styrene and ethylbenzene were 129, 2.2 and 0.7 M-1 respectively, which suggested that stability of the complex was a key factor in the carrier saturation phenomenon.

  14. High concentration suspended sediment measurments using acontinuous fiber optic in-stream transmissometer

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, Chris G.; Laycak, Danny T.; Hoppes, William; Tran,Nguyen T.; Shi, Frank G.

    2004-05-26

    Suspended sediment loads mobilized during high flow periods in rivers and streams are largely uncharacterized. In smaller and intermittent streams, a large storm may transport a majority of the annual sediment budget. Therefore monitoring techniques that can measure high suspended sediment concentrations at semi-continuous time intervals are needed. A Fiber optic In-stream Transmissometer (FIT) is presented for continuous measurement of high concentration suspended sediment in storm runoff. FIT performance and precision were demonstrated to be reasonably good for suspended sediment concentrations up to 10g/L. The FIT was compared to two commercially available turbidity devices and provided better precision and accuracy at both high and low concentrations. Both turbidity devices were unable to collect measurements at concentrations greater than 4 g/L. The FIT and turbidity measurements were sensitive to sediment particle size. Particle size dependence of transmittance and turbidity measurement poses the greatest problem for calibration to suspended sediment concentration. While the FIT was demonstrated to provide acceptable measurements of high suspended sediment concentrations, approaches to real-time suspended sediment detection need to address the particle size dependence in concentration measurements.

  15. Rheology of dilute acid hydrolyzed corn stover at high solids concentration.

    Science.gov (United States)

    Ehrhardt, M R; Monz, T O; Root, T W; Connelly, R K; Scott, C T; Klingenberg, D J

    2010-02-01

    The rheological properties of acid hydrolyzed corn stover at high solids concentration (20-35 wt.%) were investigated using torque rheometry. These materials are yield stress fluids whose rheological properties can be well represented by the Bingham model. Yield stresses increase with increasing solids concentration and decrease with increasing hydrolysis reaction temperature, acid concentration, and rheometer temperature. Plastic viscosities increase with increasing solids concentration and tend to decrease with increasing reaction temperature and acid concentration. The solids concentration dependence of the yield stress is consistent with that reported for other fibrous systems. The changes in yield stress with reaction conditions are consistent with observed changes in particle size. This study illustrates that torque rheometry can be used effectively to measure rheological properties of concentrated biomass.

  16. Novel DDR Processing of Corn Stover Achieves High Monomeric Sugar Concentrations from Enzymatic Hydrolysis (230 g/L) and High Ethanol Concentration (10% v/v) During Fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xiaowen; Jennings, Ed; Shekiro, Joe; Kuhn, Erik M.; O' Brien, Marykate; Wang, Wei; Schell, Daniel J.; Himmel, Mike; Elander, Richard T.; Tucker, Melvin P.

    2015-04-03

    Distilling and purifying ethanol, butanol, and other products from second and later generation lignocellulosic biorefineries adds significant capital and operating cost for biofuels production. The energy costs associated with distillation affects plant gate and life cycle analysis costs. Lower titers in fermentation due to lower sugar concentrations from pretreatment increase both energy and production costs. In addition, higher titers decrease the volumes required for enzymatic hydrolysis and fermentation vessels. Therefore, increasing biofuels titers has been a research focus in renewable biofuels production for several decades. In this work, we achieved over 200 g/L of monomeric sugars after high solids enzymatic hydrolysis using the novel deacetylation and disc refining (DDR) process on corn stover. The high sugar concentrations and low chemical inhibitor concentrations from the DDR process allowed ethanol titers as high as 82 g/L in 22 hours, which translates into approximately 10 vol% ethanol. To our knowledge, this is the first time that 10 vol% ethanol in fermentation derived from corn stover without any sugar concentration or purification steps has been reported. Techno-economic analysis shows the higher titer ethanol achieved from the DDR process could significantly reduce the minimum ethanol selling price from cellulosic biomass.

  17. Investigating high-concentration monoclonal antibody powder suspension in nonaqueous suspension vehicles for subcutaneous injection.

    Science.gov (United States)

    Bowen, Mayumi; Armstrong, Nick; Maa, Yuh-Fun

    2012-12-01

    Developing high-concentration monoclonal antibody (mAb) liquid formulations for subcutaneous (s.c.) administration is challenging because increased viscosity makes injection difficult. To overcome this obstacle, we investigated a nonaqueous powder suspension approach. Three IgG1 mAbs were spray dried and suspended at different concentrations in Miglyol® 840, benzyl benzoate, or ethyl lactate. Suspensions were characterized for viscosity, particle size, and syringeability; physical stability was visually inspected. Suspensions generally outperformed liquid solutions for injectability despite higher viscosity at the same mAb concentrations. Powder formulations and properties had little effect on viscosity or injectability. Ethyl lactate suspensions had lowest viscosity (Miglyol® 840 improved overall performance in high mAb concentration suspensions. This study demonstrated the viability of high mAb concentration (>300 mg/mL) in suspension formulations for s.c. administration. Copyright © 2012 Wiley Periodicals, Inc.

  18. LIQUIFIED NATURAL GAS (LNG) CARRIERS

    OpenAIRE

    Daniel Posavec; Katarina Simon; Matija Malnar

    2010-01-01

    Modern liquefied natural gas carriers are double-bottom ships classified according to the type of LNG tank. The tanks are specially designed to store natural gas cooled to -161°C, the boiling point of methane. Since LNG is highly flammable, special care must be taken when designing and operating the ship. The development of LNG carriers has begun in the middle of the twentieth century. LNG carrier storage space has gradually grown to the current maximum of 260000 m3. There are more than 300 L...

  19. High-concentration mirror-based Kohler integrating system for tandem solar cells

    Science.gov (United States)

    Winston, R.; Benitez, P.; Cvetkovic, A.

    2006-06-01

    A novel two-mirror high concentration nonimaging optic has been designed that shares the advantages of present two mirror aplanatic imaging concentrators but also overcomes their main limitation of trade-off between acceptance angle and irradiance uniformity. A system concept has been defined, and a first prototype in under development.

  20. Suppressed carrier density for the patterned high mobility two-dimensional electron gas at γ-Al2O3/SrTiO3 heterointerfaces

    DEFF Research Database (Denmark)

    Niu, Wei; Gan, Yulin; Christensen, Dennis Valbjørn

    2017-01-01

    The two-dimensional electron gas (2DEG) at the non-isostructural interface between spinel γ-Al2O3 and perovskite SrTiO3 is featured by a record electron mobility among complex oxide interfaces in addition to a high carrier density up to the order of 1015 cm-2. Herein, we report on the patterning...... is found to be approximately 3×1013 cm-2, much lower than that of the unpatterned sample (~1015 cm-2). Remarkably, a high electron mobility of approximately 3,600 cm2V-1s-1 was obtained at low temperatures for the patterned 2DEG at a carrier density of ~ 7×1012 cm-2, which exhibits clear Shubnikov-de Hass...... quantum oscillations. The patterned high-mobility 2DEG at the γ-Al2O3/SrTiO3 interface paves the way for the design and application of spinel/perovskite interfaces for high-mobility all-oxide electronic devic...

  1. High intensity low temperature (HILT) performance of space concentrator GaInP/GaInAs/Ge MJ SCs

    Energy Technology Data Exchange (ETDEWEB)

    Shvarts, Maxim Z., E-mail: shvarts@scell.ioffe.ru; Kalyuzhnyy, Nikolay A.; Mintairov, Sergey A.; Soluyanov, Andrei A.; Timoshina, Nailya Kh. [Ioffe Physical-Technical Institute, 26 Polytekhnicheskaya str., St.-Petersburg, 194021 (Russian Federation); Gudovskikh, Alexander S. [Saint-Petersburg Academic University - Nanotechnology Research and Education Centre RAS, St. Petersburg, 194021 (Russian Federation); Luque, Antonio [Ioffe Physical-Technical Institute, 26 Polytekhnicheskaya str., St.-Petersburg, 194021, Russia and Instituto de Energia Solar, Universidad Politecnica de Madrid, Madrid (Spain)

    2014-09-26

    In the work, the results of an investigation of GaInP/GaInAs/Ge MJ SCs intended for converting concentrated solar radiation, when operating at low temperatures (down to −190 °C) are presented. A kink of the cell I-V characteristic has been observed in the region close to V{sub oc} starting from −20°C at operation under concentrated sunlight. The causes for its occurrence have been analyzed and the reasons for formation of a built-in potential barrier for majority charge carriers at the n-GaInP/n-Ge isotype hetero-interface are discussed. The effect of charge carrier transport in n-GaInP/n-pGe heterostructures on MJ SC output characteristics at low temperatures has been studied including EL technique.

  2. Development of carrier usage for the treatment of radioactive effluent

    Energy Technology Data Exchange (ETDEWEB)

    Kahraman, A [Cekmece Nuclear Research and Training Center, Istanbul (Turkey)

    1997-02-01

    Low level radioactive liquid wastes are produced in many nuclear applications. Their physico-chemical characteristics may very considerably. Chemical precipitation is a convenient treatment method for the liquid streams of high salinity or solid content containing different radionuclide types. Generally, the concentrations of nuclides in liquid wastes are extremely low. For example, 1000 Bq of {sup 137}Cs makes about 3{center_dot}10{sup -10} g of caesium. Therefore conventional precipitation cannot be applied since the solubility product value is not exceeded. The carriers which are capable to adsorb the nuclides are used to achieve the nuclide removal. Stable isotopes of the nuclide are usually added as the carriers but any reagent which has similar chemical specifications with the nuclide can also be used as the carrier. Precipitation of these non-radioactive carriers ion together with the radionuclide is called co-precipitation. The operational steps of the chemical precipitation process should be established and applied in a treatment facility. Thus, the most suitable carrier for a particular nuclide and its usage conditions are required to be determined. In this study, the carriers for removal of {sup 137}Cs and uranium, their accurate amounts and usage conditions to achieve highest decontamination factors (DF) have been investigated. Residual sludge volumes were evaluated for cementation purposes. The cement composite samples were prepared for each set of experiments and hardening times were measured. 9 refs, 9 figs.

  3. Development of carrier usage for the treatment of radioactive effluent

    International Nuclear Information System (INIS)

    Kahraman, A.

    1997-01-01

    Low level radioactive liquid wastes are produced in many nuclear applications. Their physico-chemical characteristics may very considerably. Chemical precipitation is a convenient treatment method for the liquid streams of high salinity or solid content containing different radionuclide types. Generally, the concentrations of nuclides in liquid wastes are extremely low. For example, 1000 Bq of 137 Cs makes about 3·10 -10 g of caesium. Therefore conventional precipitation cannot be applied since the solubility product value is not exceeded. The carriers which are capable to adsorb the nuclides are used to achieve the nuclide removal. Stable isotopes of the nuclide are usually added as the carriers but any reagent which has similar chemical specifications with the nuclide can also be used as the carrier. Precipitation of these non-radioactive carriers ion together with the radionuclide is called co-precipitation. The operational steps of the chemical precipitation process should be established and applied in a treatment facility. Thus, the most suitable carrier for a particular nuclide and its usage conditions are required to be determined. In this study, the carriers for removal of 137 Cs and uranium, their accurate amounts and usage conditions to achieve highest decontamination factors (DF) have been investigated. Residual sludge volumes were evaluated for cementation purposes. The cement composite samples were prepared for each set of experiments and hardening times were measured. 9 refs, 9 figs

  4. Development of automatic high-concentration boron measurement technique; Konodo hoso jido sokutei gijutsu no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Maeda, T.; Honda, S.; Ito, A. [Kyushu Electric Power Co. Inc., Fukuoka (Japan)

    1997-03-01

    The technology that can automatically measure the boron concentration in boric acid water was developed. A high-concentration boric acid solution must be held at a high temperature to prevent the deposition. Skill and precision ({plus_minus}0.2 to 0.3% for 10 to 2500 ppm as boron concentration, and {plus_minus}2 to 3% for 2500 to 25,000 ppm) are required to analyze the boric acid solution manually. In theory, the boron concentration in a wide range can be measured, and boron has a constant-temperature function. A density hydrometer method that facilitates the treatment and calibration in high precision and at low cost was chosen. The vibration period generated when vibration is given to the solution specimen put in a U-tube is higher as the density is lower. On the basis of this theory, the density of a specimen can be obtained according to the relation with the same data of the known-concentration boric acid water. The high-concentration boric acid water that cannot be measured by the existing boron densitometer can be measured directly. It can also be measured in a low-concentration area. The technique can be used in a laboratory as the simplified method that is replaced by the current manual analysis. The reduction effect of analytical chemical`s waste liquid can also be expected. In the electric power industry, automated equipment is required for high efficiency and labor saving. 13 figs., 3 tabs.

  5. Using fractional extraction method to separate Mo from U in high concentration solution

    International Nuclear Information System (INIS)

    Zhao Pinzhi; Cheng Guangrong; Ma Xiuhua

    1996-01-01

    The author presents investigation on separating Mo from U in acid high concentration lixivium with fractional extraction of secondary amine (7203) and D2EHPA and preparing qualified products of ammonium molybdate and sodium diuranate

  6. Application of Hydrothermal Treatment to High Concentrated Sewage Sludge for Anaerobic Digestion Process

    OpenAIRE

    M. Orikawa; H. Kamahara; Y. Atsuta; H. Daimon

    2013-01-01

    Tomato and seaweed were produced by utilizing CO2 and heat discharged from power generation using biogas in Toyogawa biomass park, Japan. The biogas was obtained by anaerobic digestion with hydrothermal treatment. The hydrothermal treatment was applied to the high concentrated sewage sludge (22 % total solids (TS) dewatered sludge). The purpose of this study is to clarify the effect of hydrothermal treatment on the qualities of high concentrated sewage sludge, by analyzing particulate organic...

  7. High surface hole concentration p-type GaN using Mg implantation

    International Nuclear Information System (INIS)

    Long Tao; Yang Zhijian; Zhang Guoyi

    2001-01-01

    Mg ions were implanted on Mg-doped GaN grown by metalorganic chemical vapor deposition (MOCVD). The p-type GaN was achieved with high hole concentration (8.28 x 10 17 cm -3 ) conformed by Van derpauw Hall measurement after annealing at 800 degree C for 1 h. this is the first experimental report of Mg implantation on Mg-doped GaN and achieving p-type GaN with high surface hole concentration

  8. Compact high-flux two-stage solar collectors based on tailored edge-ray concentrators

    Science.gov (United States)

    Friedman, Robert P.; Gordon, Jeffrey M.; Ries, Harald

    1995-08-01

    Using the recently-invented tailored edge-ray concentrator (TERC) approach for the design of compact two-stage high-flux solar collectors--a focusing primary reflector and a nonimaging TERC secondary reflector--we present: 1) a new primary reflector shape based on the TERC approach and a secondary TERC tailored to its particular flux map, such that more compact concentrators emerge at flux concentration levels in excess of 90% of the thermodynamic limit; and 2) calculations and raytrace simulations result which demonstrate the V-cone approximations to a wide variety of TERCs attain the concentration of the TERC to within a few percent, and hence represent practical secondary concentrators that may be superior to corresponding compound parabolic concentrator or trumpet secondaries.

  9. Gravitational settling of a highly concentrated system of solid spherical particles

    Science.gov (United States)

    Arkhipov, V. A.; Usanina, A. S.

    2017-09-01

    In the present paper, we report on the results of an experimental study of the process of gravity sedimentation of a cloud of monodispersed solid spherical particles with initial volume concentration C > 0.03, which was performed in a wide range of Reynolds numbers. An analytical estimate of the settling regimes of spherical particle clouds is presented. A new method for creating a spherical particle cloud with a high concentration of particles is proposed. A qualitative picture of the settling process of a highly concentrated particle cloud under gravity is revealed. A criterial dependence for the drag coefficient of a sedimenting spherical particle cloud as an entity is obtained.

  10. Concentrations of long-chain acyl-acyl carrier proteins during fatty acid synthesis by chloroplasts isolated from pea (Pisum sativum), safflower (Carthamus tinctoris), and amaranthus (Amaranthus lividus) leaves

    International Nuclear Information System (INIS)

    Roughan, G.; Nishida, I.

    1990-01-01

    Fatty acid synthesis from [1-14C]acetate by chloroplasts isolated from peas and amaranthus was linear for at least 15 min, whereas incorporation of the tracer into long-chain acyl-acyl carrier protein (ACP) did not increase after 2-3 min. When reactions were transferred to the dark after 3-5 min, long-chain acyl-ACPs lost about 90% of their radioactivity and total fatty acids retained all of theirs. Half-lives of the long-chain acyl-ACPs were estimated to be 10-15 s. Concentrations of palmitoyl-, stearoyl-, and oleoyl-ACP as indicated by equilibrium labeling during steady-state fatty acid synthesis, ranged from 0.6-1.1, 0.2-0.7, and 0.4-1.6 microM, respectively, for peas and from 1.6-1.9, 1.3-2.6, and 0.6-1.4 microM, respectively, for amaranthus. These values are based on a chloroplast volume of 47 microliters/mg chlorophyll and varied according to the mode of the incubation. A slow increase in activity of the fatty acid synthetase in safflower chloroplasts resulted in long-chain acyl-ACPs continuing to incorporate labeled acetate for 10 min. Upon re-illumination following a dark break, however, both fatty acid synthetase activity and acyl-ACP concentrations increased very rapidly. Palmitoyl-ACP was present at concentrations up to 2.5 microM in safflower chloroplasts, whereas those of stearoyl- and oleoyl-ACPs were in the lower ranges measured for peas. Acyl-ACPs were routinely separated from extracts of chloroplasts that had been synthesising long-chain fatty acids from labeled acetate by a minor modification of the method of Mancha et al. The results compared favorably with those obtained using alternative analytical methods such as adsorption to filter paper and partition chromatography on silicic acid columns

  11. Accurate evaluation of subband structure in a carrier accumulation layer at an n-type InAs surface: LDF calculation combined with high-resolution photoelectron spectroscopy

    Directory of Open Access Journals (Sweden)

    Takeshi Inaoka

    2012-12-01

    Full Text Available Adsorption on an n-type InAs surface often induces a gradual formation of a carrier-accumulation layer at the surface. By means of high-resolution photoelectron spectroscopy (PES, Betti et al. made a systematic observation of subbands in the accumulation layer in the formation process. Incorporating a highly nonparabolic (NP dispersion of the conduction band into the local-density-functional (LDF formalism, we examine the subband structure in the accumulation-layer formation process. Combining the LDF calculation with the PES experiment, we make an accurate evaluation of the accumulated-carrier density, the subband-edge energies, and the subband energy dispersion at each formation stage. Our theoretical calculation can reproduce the three observed subbands quantitatively. The subband dispersion, which deviates downward from that of the projected bulk conduction band with an increase in wave number, becomes significantly weaker in the formation process. Accurate evaluation of the NP subband dispersion at each formation stage is indispensable in making a quantitative analysis of collective electronic excitations and transport properties in the subbands.

  12. Metal modulation epitaxy growth for extremely high hole concentrations above 1019 cm-3 in GaN

    Science.gov (United States)

    Namkoong, Gon; Trybus, Elaissa; Lee, Kyung Keun; Moseley, Michael; Doolittle, W. Alan; Look, David C.

    2008-10-01

    The free hole carriers in GaN have been limited to concentrations in the low 1018cm-3 range due to the deep activation energy, lower solubility, and compensation from defects, therefore, limiting doping efficiency to about 1%. Herein, we report an enhanced doping efficiency up to ˜10% in GaN by a periodic doping, metal modulation epitaxy growth technique. The hole concentrations grown by periodically modulating Ga atoms and Mg dopants were over ˜1.5×1019cm-3.

  13. Metal modulation epitaxy growth for extremely high hole concentrations above 1019 cm-3 in GaN

    International Nuclear Information System (INIS)

    Namkoong, Gon; Trybus, Elaissa; Lee, Kyung Keun; Moseley, Michael; Doolittle, W. Alan; Look, David C.

    2008-01-01

    The free hole carriers in GaN have been limited to concentrations in the low 10 18 cm -3 range due to the deep activation energy, lower solubility, and compensation from defects, therefore, limiting doping efficiency to about 1%. Herein, we report an enhanced doping efficiency up to ∼10% in GaN by a periodic doping, metal modulation epitaxy growth technique. The hole concentrations grown by periodically modulating Ga atoms and Mg dopants were over ∼1.5x10 19 cm -3

  14. High serum uric acid concentration predicts poor survival in patients with breast cancer.

    Science.gov (United States)

    Yue, Cai-Feng; Feng, Pin-Ning; Yao, Zhen-Rong; Yu, Xue-Gao; Lin, Wen-Bin; Qian, Yuan-Min; Guo, Yun-Miao; Li, Lai-Sheng; Liu, Min

    2017-10-01

    Uric acid is a product of purine metabolism. Recently, uric acid has gained much attraction in cancer. In this study, we aim to investigate the clinicopathological and prognostic significance of serum uric acid concentration in breast cancer patients. A total of 443 female patients with histopathologically diagnosed breast cancer were included. After a mean follow-up time of 56months, survival was analysed using the Kaplan-Meier method. To further evaluate the prognostic significance of uric acid concentrations, univariate and multivariate Cox regression analyses were applied. Of the clinicopathological parameters, uric acid concentration was associated with age, body mass index, ER status and PR status. Univariate analysis identified that patients with increased uric acid concentration had a significantly inferior overall survival (HR 2.13, 95% CI 1.15-3.94, p=0.016). In multivariate analysis, we found that high uric acid concentration is an independent prognostic factor predicting death, but insufficient to predict local relapse or distant metastasis. Kaplan-Meier analysis indicated that high uric acid concentration is related to the poor overall survival (p=0.013). High uric acid concentration predicts poor survival in patients with breast cancer, and might serve as a potential marker for appropriate management of breast cancer patients. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Motor carrier evaluation program plan

    International Nuclear Information System (INIS)

    Portsmouth, J.H.; Maxwell, J.E.; Boness, G.O.; Rice, L.E.

    1991-04-01

    The US Department of Energy (DOE) Transportation Management Program (TMP) has established a program to assist the DOE field offices and their contractors in evaluating the motor carriers used to transport DOE-owned hazardous and radioactive materials. This program was initiated to provide the DOE field offices with the tools necessary to help ensure, during this period of motor carrier deregulation, that only highly qualified carriers transport radioactive and hazardous commodities for the DOE. This program will assist DOE in maintaining their excellent performance record in the safe transportation of hazardous commodities. The program was also developed in response to public concern surrounding the transportation of hazardous materials. Representatives of other federal agencies, states, and tribal governments, as well as the news media, have expressed concern about the selection and qualification of carriers engaged in the transportation of Highway Route-Controlled Quantities (HRCQ) and Truckload (TL) quantities of radioactive material for the DOE. 8 refs

  16. Study on high concentration solar concentrator using a Fresnel lens with a secondary concentrator; Fresnel lens to niji shukokei wo mochiita solar chemistry yo kobairitsu shukokei ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Aihara, T; Suzuki, A; Fujibayashi, K [Tokyo University of Agriculture and Technology, Tokyo (Japan)

    1997-11-25

    A high concentration light collection system for solar chemistry was devised by using an inexpensive Fresnel lens in a primary concentration system and a conical type concentrator in a secondary concentration system. A Fresnel lens alone would not achieve sufficiently high light collecting magnification to attain high temperatures because of restrictions in the opening angle as seen from a focus. Therefore, a secondary concentration system was installed on a focus for an attempt of stopping. Reflection plane of a three-dimensional compound parabolic concentrator (CPC) is a rotary parabolic plane, whose process is expensive because of its surface processing accuracy. Therefore, a conical type concentrator was employed as a secondary concentration system. This system may not be capable of achieving as high concentration as in the CPC, but its shape is simple and it is inexpensive. In its optimization, a complete black body surface placed in vacuum atmosphere was hypothesized as a light concentrating part for the secondary concentration system to calculate heat collecting efficiencies at respective temperature settings. Using simultaneously the secondary concentration system, rather than collecting heat by using a Fresnel lens alone, has attained as high value as from 5.99% (500 degC) to 43.47% (1400 degC). Economical high-temperature heat collection of solar chemistry level may be possible by using a Fresnel lens and a conical secondary concentration system. 1 ref., 7 figs., 2 tabs.

  17. Methods to assess high-resolution subsurface gas concentrations and gas fluxes in wetland ecosystems

    DEFF Research Database (Denmark)

    Elberling, Bo; Kühl, Michael; Glud, Ronnie Nøhr

    2013-01-01

    The need for measurements of soil gas concentrations and surface fluxes of greenhouse gases at high temporal and spatial resolution in wetland ecosystem has lead to the introduction of several new analytical techniques and methods. In addition to the automated flux chamber methodology for high-re...

  18. SiNx layers on nanostructured Si solar cells: Effective for optical absorption and carrier collection

    International Nuclear Information System (INIS)

    Cho, Yunae; Kim, Eunah; Gwon, Minji; Kim, Dong-Wook; Park, Hyeong-Ho; Kim, Joondong

    2015-01-01

    We compared nanopatterned Si solar cells with and without SiN x layers. The SiN x layer coating significantly improved the internal quantum efficiency of the nanopatterned cells at long wavelengths as well as short wavelengths, whereas the surface passivation helped carrier collection of flat cells mainly at short wavelengths. The surface nanostructured array enhanced the optical absorption and also concentrated incoming light near the surface in broad wavelength range. Resulting high density of the photo-excited carriers near the surface could lead to significant recombination loss and the SiN x layer played a crucial role in the improved carrier collection of the nanostructured solar cells

  19. Prodigious Effects of Concentration Intensification on Nanoparticle Synthesis: A High-Quality, Scalable Approach

    KAUST Repository

    Williamson, Curtis B.

    2015-12-23

    © 2015 American Chemical Society. Realizing the promise of nanoparticle-based technologies demands more efficient, robust synthesis methods (i.e., process intensification) that consistently produce large quantities of high-quality nanoparticles (NPs). We explored NP synthesis via the heat-up method in a regime of previously unexplored high concentrations near the solubility limit of the precursors. We discovered that in this highly concentrated and viscous regime the NP synthesis parameters are less sensitive to experimental variability and thereby provide a robust, scalable, and size-focusing NP synthesis. Specifically, we synthesize high-quality metal sulfide NPs (<7% relative standard deviation for Cu2-xS and CdS), and demonstrate a 10-1000-fold increase in Cu2-xS NP production (>200 g) relative to the current field of large-scale (0.1-5 g yields) and laboratory-scale (<0.1 g) efforts. Compared to conventional synthesis methods (hot injection with dilute precursor concentration) characterized by rapid growth and low yield, our highly concentrated NP system supplies remarkably controlled growth rates and a 10-fold increase in NP volumetric production capacity (86 g/L). The controlled growth, high yield, and robust nature of highly concentrated solutions can facilitate large-scale nanomanufacturing of NPs by relaxing the synthesis requirements to achieve monodisperse products. Mechanistically, our investigation of the thermal and rheological properties and growth rates reveals that this high concentration regime has reduced mass diffusion (a 5-fold increase in solution viscosity), is stable to thermal perturbations (64% increase in heat capacity), and is resistant to Ostwald ripening.

  20. Origin of high carrier mobility and low residual stress in RF superimposed DC sputtered Al doped ZnO thin film for next generation flexible devices

    Science.gov (United States)

    Kumar, Naveen; Dubey, Ashish; Bahrami, Behzad; Venkatesan, S.; Qiao, Qiquan; Kumar, Mukesh

    2018-04-01

    In this work, the energy and flux of high energetic ions were controlled by RF superimposed DC sputtering process to increase the grain size and suppress grain boundary potential with minimum residual stress in Al doped ZnO (AZO) thin film. AZO thin films were deposited at different RF/(RF + DC) ratios by keeping total power same and were investigated for their electrical, optical, structural and nanoscale grain boundaries potential. All AZO thin film showed high crystallinity and orientation along (002) with peak shift as RF/(RF + DC) ratio increased from 0.0, pure DC, to 1.0, pure RF. This peak shift was correlated with high residual stress in as-grown thin film. AZO thin film grown at mixed RF/(RF + DC) of 0.75 showed high electron mobility, low residual stress and large crystallite size in comparison to other AZO thin films. The nanoscale grain boundary potential was mapped using Kelvin Probe Force Microscopy in all AZO thin film and it was observed that carrier mobility is controlled not only by grains size but also by grain boundary potential. The XPS analysis confirms the variation in oxygen vacancies and zinc interstitials which explain the origin of low grain boundaries potential and high carrier mobility in AZO thin film deposited at 0.75 RF/(RF + DC) ratio. This study proposes a new way to control the grain size and grain boundary potential to further tune the optoelectronic-mechanical properties of AZO thin films for next generation flexible and optoelectronic devices.

  1. High nitrate concentrations in some Midwest United States streams in 2013 after the 2012 drought

    Science.gov (United States)

    Van Metre, Peter C.; Frey, Jeffrey W.; Musgrove, MaryLynn; Nakagaki, Naomi; Qi, Sharon L.; Mahler, Barbara J.; Wieczorek, Michael; Button, Daniel T.

    2016-01-01

    Nitrogen sources in the Mississippi River basin have been linked to degradation of stream ecology and to Gulf of Mexico hypoxia. In 2013, the USGS and the USEPA characterized water quality stressors and ecological conditions in 100 wadeable streams across the midwestern United States. Wet conditions in 2013 followed a severe drought in 2012, a weather pattern associated with elevated nitrogen concentrations and loads in streams. Nitrate concentrations during the May to August 2013 sampling period ranged from nitrate concentrations at the 100 sites were compared with May to June concentrations predicted from a regression model developed using historical nitrate data. Observed concentrations for 17 sites, centered on Iowa and southern Minnesota, were outside the 95% confidence interval of the regression-predicted mean, indicating that they were anomalously high. The sites with a nitrate anomaly had significantly higher May to June nitrate concentrations than sites without an anomaly (means, 19.8 and 3.6 mg L−1, respectively) and had higher antecedent precipitation indices, a measure of the departure from normal precipitation, in 2012 and 2013. Correlations between nitrate concentrations and watershed characteristics and nitrogen and oxygen isotopes of nitrate indicated that fertilizer and manure used in crop production, principally corn, were the dominant sources of nitrate. The anomalously high nitrate levels in parts of the Midwest in 2013 coincide with reported higher-than-normal nitrate loads in the Mississippi River.

  2. A selective electrocatalyst-based direct methanol fuel cell operated at high concentrations of methanol.

    Science.gov (United States)

    Feng, Yan; Liu, Hui; Yang, Jun

    2017-06-01

    Owing to the serious crossover of methanol from the anode to the cathode through the polymer electrolyte membrane, direct methanol fuel cells (DMFCs) usually use dilute methanol solutions as fuel. However, the use of high-concentration methanol is highly demanded to improve the energy density of a DMFC system. Instead of the conventional strategies (for example, improving the fuel-feed system, membrane development, modification of electrode, and water management), we demonstrate the use of selective electrocatalysts to run a DMFC at high concentrations of methanol. In particular, at an operating temperature of 80°C, the as-fabricated DMFC with core-shell-shell Au@Ag 2 S@Pt nanocomposites at the anode and core-shell Au@Pd nanoparticles at the cathode produces a maximum power density of 89.7 mW cm -2 at a methanol feed concentration of 10 M and maintains good performance at a methanol concentration of up to 15 M. The high selectivity of the electrocatalysts achieved through structural construction accounts for the successful operation of the DMFC at high concentrations of methanol.

  3. A selective electrocatalyst–based direct methanol fuel cell operated at high concentrations of methanol

    Science.gov (United States)

    Feng, Yan; Liu, Hui; Yang, Jun

    2017-01-01

    Owing to the serious crossover of methanol from the anode to the cathode through the polymer electrolyte membrane, direct methanol fuel cells (DMFCs) usually use dilute methanol solutions as fuel. However, the use of high-concentration methanol is highly demanded to improve the energy density of a DMFC system. Instead of the conventional strategies (for example, improving the fuel-feed system, membrane development, modification of electrode, and water management), we demonstrate the use of selective electrocatalysts to run a DMFC at high concentrations of methanol. In particular, at an operating temperature of 80°C, the as-fabricated DMFC with core-shell-shell Au@Ag2S@Pt nanocomposites at the anode and core-shell Au@Pd nanoparticles at the cathode produces a maximum power density of 89.7 mW cm−2 at a methanol feed concentration of 10 M and maintains good performance at a methanol concentration of up to 15 M. The high selectivity of the electrocatalysts achieved through structural construction accounts for the successful operation of the DMFC at high concentrations of methanol. PMID:28695199

  4. High frequency measurement of nitrate concentration in the Lower Mississippi River, USA

    Science.gov (United States)

    Duan, Shuiwang; Powell, Rodney T.; Bianchi, Thomas S.

    2014-11-01

    Nutrient concentrations in the Mississippi River have increased dramatically since the 1950s, and high frequency measurements on nitrate concentration are required for accurate load estimations and examinations on nitrate transport and transformation processes. This three year record of high temporal resolution (every 2-3 h) data clearly illustrates the importance of high frequency sampling in improving load estimates and resolving variations in nitrate concentration with river flow and tributary inputs. Our results showed large short-term (days to weeks) variations in nitrate concentration but with no diurnal patterns. A repeatable and pronounced seasonal pattern of nitrate concentration was observed, and showed gradual increases from the lowest values in September (during base-flow), to the highest in June - which was followed by a rapid decrease. This seasonal pattern was only moderately linked with water discharge, and more controlled by nitrogen transformation/export from watershed as well as mixing patterns of the two primary tributaries (the upper Mississippi and the Ohio Rivers), which have distinctly different nitrate concentrations and flow patterns. Based on continuous in situ flow measurements, we estimated 554-886 × 106 kg of nitrate-N was exported from the Mississippi River system during years 2004-2006, which was <9% and <16% lower than U.S. Geological Survey's (USGS) estimates using their LOADEST or composite methods, respectively. USGS methods generally overestimated nitrate loads during rising stages and underestimated the loads during falling stages. While changes in nitrate concentrations in large rivers are generally not as responsive to alterations in diurnal inputs and/or watershed hydrology as small rivers, high-frequency water quality sampling would help in monitoring short-term (days to weeks) variations in nutrient concentration patterns and thus improve the accuracy of nutrient flux estimates.

  5. Investigation of carrier removal in electron irradiated silicon diodes

    International Nuclear Information System (INIS)

    Taylor, S.J.; Yamaguchi, M.; Matsuda, S.; Hisamatsu, T.; Kawasaki, O.

    1997-01-01

    We present a detailed study of n + p p + silicon diodes irradiated with fluences of 1 MeV electrons high enough to cause device failure due to majority carrier removal. Capacitance voltage (C V) measurements were used to monitor the change in the carrier concentration of the base of the device as a function of radiation fluence. These were compared to the defect spectra in the same region obtained by deep level transient spectroscopy, and to the current voltage characteristics of the device, both before and after annealing. We observed the expected deep levels with activation energies of 0.18 and 0.36 eV, but the C endash V results imply that other trap levels must play a more important role in the carrier removal process. copyright 1997 American Institute of Physics

  6. Clearly Transparent Nanopaper from Highly Concentrated Cellulose Nanofiber Dispersion Using Dilution and Sonication

    Directory of Open Access Journals (Sweden)

    Takaaki Kasuga

    2018-02-01

    Full Text Available Nanopaper prepared from holocellulose pulp is one of the best substrates for flexible electronics because of its high thermal resistance and high clear transparency. However, the clearness of nanopaper decreases with increasing concentration of the starting cellulose nanofiber dispersion—with the use of a 2.2 wt % dispersion, for example—resulting in translucent nanopaper with a high haze of 44%. To overcome this problem, we show that the dilution of this high-concentration dispersion with water followed by sonication for 10 s reduces the haze to less than 10% while maintaining the high thermal resistance of the nanopaper. Furthermore, the combination of water dilution and a short sonication treatment improves the clearness of the nanopaper, which would translate into cost savings for the transportation and storage of this highly concentrated cellulose nanofiber dispersion. Finally, we demonstrate the improvement of the electrical conductivity of clear transparent nanopaper prepared from an initially high-concentration dispersion by dropping and heating silver nanowire ink on the nanopaper. These achievements will pave the way toward the realization of the mass production of nanofiber-based flexible devices.

  7. High Voltage Solar Concentrator Experiment with Implications for Future Space Missions

    Science.gov (United States)

    Mehdi, Ishaque S.; George, Patrick J.; O'Neill, Mark; Matson, Robert; Brockschmidt, Arthur

    2004-01-01

    This paper describes the design, development, fabrication, and test of a high performance, high voltage solar concentrator array. This assembly is believed to be the first ever terrestrial triple-junction-cell solar array rated at over 1 kW. The concentrator provides over 200 W/square meter power output at a nominal 600 Vdc while operating under terrestrial sunlight. Space-quality materials and fabrication techniques were used for the array, and the 3005 meter elevation installation below the Tropic of Cancer allowed testing as close as possible to space deployment without an actual launch. The array includes two concentrator modules, each with a 3 square meter aperture area. Each concentrator module uses a linear Fresnel lens to focus sunlight onto a photovoltaic receiver that uses 240 series-connected triple-junction solar cells. Operation of the two receivers in series can provide 1200 Vdc which would be adequate for the 'direct drive' of some ion engines or microwave transmitters in space. Lens aperture width is 84 cm and the cell active width is 3.2 cm, corresponding to a geometric concentration ratio of 26X. The evaluation includes the concentrator modules, the solar cells, and the materials and techniques used to attach the solar cells to the receiver heat sink. For terrestrial applications, a finned aluminum extrusion was used for the heat sink for the solar cells, maintaining a low cell temperature so that solar cell efficiency remains high.

  8. Structural changes induced by high-pressure processing in micellar casein and milk protein concentrates.

    Science.gov (United States)

    Cadesky, Lee; Walkling-Ribeiro, Markus; Kriner, Kyle T; Karwe, Mukund V; Moraru, Carmen I

    2017-09-01

    Reconstituted micellar casein concentrates and milk protein concentrates of 2.5 and 10% (wt/vol) protein concentration were subjected to high-pressure processing at pressures from 150 to 450 MPa, for 15 min, at ambient temperature. The structural changes induced in milk proteins by high-pressure processing were investigated using a range of physical, physicochemical, and chemical methods, including dynamic light scattering, rheology, mid-infrared spectroscopy, scanning electron microscopy, proteomics, and soluble mineral analyses. The experimental data clearly indicate pressure-induced changes of casein micelles, as well as denaturation of serum proteins. Calcium-binding α S1 - and α S2 -casein levels increased in the soluble phase after all pressure treatments. Pressurization up to 350 MPa also increased levels of soluble calcium and phosphorus, in all samples and concentrations, whereas treatment at 450 MPa reduced the levels of soluble Ca and P. Experimental data suggest dissociation of calcium phosphate and subsequent casein micelle destabilization as a result of pressure treatment. Treatment of 10% micellar casein concentrate and 10% milk protein concentrate samples at 450 MPa resulted in weak, physical gels, which featured aggregates of uniformly distributed, casein substructures of 15 to 20 nm in diameter. Serum proteins were significantly denatured by pressures above 250 MPa. These results provide information on pressure-induced changes in high-concentration protein systems, and may inform the development on new milk protein-based foods with novel textures and potentially high nutritional quality, of particular interest being the soft gel structures formed at high pressure levels. The Authors. Published by the Federation of Animal Science Societies and Elsevier Inc. on behalf of the American Dairy Science Association®. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

  9. Highly Localized Acoustic Streaming and Size-Selective Submicrometer Particle Concentration Using High Frequency Microscale Focused Acoustic Fields.

    Science.gov (United States)

    Collins, David J; Ma, Zhichao; Ai, Ye

    2016-05-17

    Concentration and separation of particles and biological specimens are fundamental functions of micro/nanofluidic systems. Acoustic streaming is an effective and biocompatible way to create rapid microscale fluid motion and induce particle capture, though the >100 MHz frequencies required to directly generate acoustic body forces on the microscale have traditionally been difficult to generate and localize in a way that is amenable to efficient generation of streaming. Moreover, acoustic, hydrodynamic, and electrical forces as typically applied have difficulty manipulating specimens in the submicrometer regime. In this work, we introduce highly focused traveling surface acoustic waves (SAW) at high frequencies between 193 and 636 MHz for efficient and highly localized production of acoustic streaming vortices on microfluidic length scales. Concentration occurs via a novel mechanism, whereby the combined acoustic radiation and streaming field results in size-selective aggregation in fluid streamlines in the vicinity of a high-amplitude acoustic beam, as opposed to previous acoustic radiation induced particle concentration where objects typically migrate toward minimum pressure locations. Though the acoustic streaming is induced by a traveling wave, we are able to manipulate particles an order of magnitude smaller than possible using the traveling wave force alone. We experimentally and theoretically examine the range of particle sizes that can be captured in fluid streamlines using this technique, with rapid particle concentration demonstrated down to 300 nm diameters. We also demonstrate that locations of trapping and concentration are size-dependent, which is attributed to the combined effects of the acoustic streaming and acoustic forces.

  10. Photoluminescence of highly compensated GaAs doped with high concentration of Ge

    Science.gov (United States)

    Watanabe, Masaru; Watanabe, Akira; Suezawa, Masashi

    1999-12-01

    We have studied the photoluminescence (PL) properties of Ge-doped GaAs crystals to confirm the validity of a theory developed by Shklovskii and Efros to explain the donor-acceptor pair (DAP) recombination in potential fluctuation. GaAs crystals doped with Ge of various concentrations were grown by a liquid-encapsulated Czochralski method. They were homogenized by annealing at 1200°C for 20 h under the optimum As vapor pressure. Both quasi-continuous and time-resolved PL spectra were measured at 4.2 K. The quasi-continuous PL spectra showed that the peak position shifted to lower energy as the Ge concentration increased, which was consistent with the Shklovskii and Efros's theory. Under very strong excitation in time-resolved measurements, the exciton peak appeared within short periods after excitation and then the peak shifted to that of DAP recombination. This clearly showed that the potential fluctuation disappeared under strong excitation and then recovered as the recombination proceeded.

  11. Storage in high-barrier pouches increases the sulforaphane concentration in broccoli florets.

    Directory of Open Access Journals (Sweden)

    Yoshio Makino

    Full Text Available Sulforaphane is a phytochemical that is usually found in cruciferous vegetables and is known to have a depressive effect on gastric cancer. Preliminary investigations showed that the sulforaphane concentration in broccoli (Brassica oleracea var. italica florets increased under anoxia. Therefore, in the present study, we examined the effect of different atmospheric conditions on the sulforaphane concentration in broccoli and also tested whether there are concurrent effects on the concentration of ethanol, which is an unfavorable byproduct of fermentation. The sulforaphane concentration in broccoli florets was significantly elevated by 1.9- to 2.8-fold after 2 d of storage under hypoxia at ca. 0% O2 and ca. 24% CO2 at 20°C, whereas no such increase was observed following storage under normoxia at ca. 0% O2 without CO2 at 20°C. Furthermore, after 2 d, the sulforaphane concentration under hypoxia was 1.6- to 2.3-fold higher than that under normoxia. These results suggest that storage under hypoxia with high CO2 levels can elevate the sulforaphane concentration in broccoli florets. However, the elevated sulforaphane concentration could not be maintained beyond 2 d. There was no significant difference in the concentration of ethanol between florets that were stored under hypoxia with/without CO2 or normoxia at 2 d. However, the ethanol concentrations inside the pouches significantly increased between 2 d and 7 d. These findings indicate that the quality of broccoli florets can be improved through storage under hypoxia with high CO2 levels at 20°C for 2 d.

  12. Storage in high-barrier pouches increases the sulforaphane concentration in broccoli florets.

    Science.gov (United States)

    Makino, Yoshio; Nishimura, Yuto; Oshita, Seiichi; Mizosoe, Takaharu; Akihiro, Takashi

    2018-01-01

    Sulforaphane is a phytochemical that is usually found in cruciferous vegetables and is known to have a depressive effect on gastric cancer. Preliminary investigations showed that the sulforaphane concentration in broccoli (Brassica oleracea var. italica) florets increased under anoxia. Therefore, in the present study, we examined the effect of different atmospheric conditions on the sulforaphane concentration in broccoli and also tested whether there are concurrent effects on the concentration of ethanol, which is an unfavorable byproduct of fermentation. The sulforaphane concentration in broccoli florets was significantly elevated by 1.9- to 2.8-fold after 2 d of storage under hypoxia at ca. 0% O2 and ca. 24% CO2 at 20°C, whereas no such increase was observed following storage under normoxia at ca. 0% O2 without CO2 at 20°C. Furthermore, after 2 d, the sulforaphane concentration under hypoxia was 1.6- to 2.3-fold higher than that under normoxia. These results suggest that storage under hypoxia with high CO2 levels can elevate the sulforaphane concentration in broccoli florets. However, the elevated sulforaphane concentration could not be maintained beyond 2 d. There was no significant difference in the concentration of ethanol between florets that were stored under hypoxia with/without CO2 or normoxia at 2 d. However, the ethanol concentrations inside the pouches significantly increased between 2 d and 7 d. These findings indicate that the quality of broccoli florets can be improved through storage under hypoxia with high CO2 levels at 20°C for 2 d.

  13. Cation effect on small phosphonium based ionic liquid electrolytes with high concentrations of lithium salt

    Science.gov (United States)

    Chen, Fangfang; Kerr, Robert; Forsyth, Maria

    2018-05-01

    Ionic liquid electrolytes with high alkali salt concentrations have displayed some excellent electrochemical properties, thus opening up the field for further improvements to liquid electrolytes for lithium or sodium batteries. Fundamental computational investigations into these high concentration systems are required in order to gain a better understanding of these systems, yet they remain lacking. Small phosphonium-based ionic liquids with high concentrations of alkali metal ions have recently shown many promising results in experimental studies, thereby prompting us to conduct further theoretical exploration of these materials. Here, we conducted a molecular dynamics simulation on four small phosphonium-based ionic liquids with 50 mol. % LiFSI salt, focusing on the effect of cation structure on local structuring and ion diffusional and rotational dynamics—which are closely related to the electrochemical properties of these materials.

  14. High-dimensional orbital angular momentum entanglement concentration based on Laguerre–Gaussian mode selection

    International Nuclear Information System (INIS)

    Zhang, Wuhong; Su, Ming; Wu, Ziwen; Lu, Meng; Huang, Bingwei; Chen, Lixiang

    2013-01-01

    Twisted photons enable the definition of a Hilbert space beyond two dimensions by orbital angular momentum (OAM) eigenstates. Here we propose a feasible entanglement concentration experiment, to enhance the quality of high-dimensional entanglement shared by twisted photon pairs. Our approach is started from the full characterization of entangled spiral bandwidth, and is then based on the careful selection of the Laguerre–Gaussian (LG) modes with specific radial and azimuthal indices p and ℓ. In particular, we demonstrate the possibility of high-dimensional entanglement concentration residing in the OAM subspace of up to 21 dimensions. By means of LabVIEW simulations with spatial light modulators, we show that the Shannon dimensionality could be employed to quantify the quality of the present concentration. Our scheme holds promise in quantum information applications defined in high-dimensional Hilbert space. (letter)

  15. Both Hemophilia Health Care Providers and Hemophilia A Carriers Report that Carriers have Excessive Bleeding

    Science.gov (United States)

    Paroskie, Allison; Oso, Olatunde; DeBaun, Michael R.; Sidonio, Robert F

    2014-01-01

    Introduction Hemophilia A, the result of reduced factor VIII (FVIII) activity, is an X-linked recessive bleeding disorder. Previous reports of Hemophilia A carriers suggest an increased bleeding tendency. Our objective was to determine the attitudes and understanding of the Hemophilia A carrier bleeding phenotype, and opinions regarding timing of carrier testing from the perspective of both medical providers and affected patients. Data from this survey was used as preliminary data for an ongoing prospective study. Material and Methods An electronic survey was distributed to physicians and nurses employed at Hemophilia Treatment Centers (HTC), and Hemophilia A carriers who were members of Hemophilia Federation of America. Questions focused on the clinical understanding of bleeding symptoms and management of Hemophilia A carriers, and the timing and intensity of carrier testing. Results Our survey indicates that 51% (36/51) of providers compared to 78% (36/46) of carriers believe that Hemophilia A carriers with normal FVIII activity have an increased bleeding tendency (pHemophilia A carriers report a high frequency of bleeding symptoms. Regarding carrier testing, 72% (50/69) of medical providers recommend testing after 14 years of age, conversely 65% (29/45) of Hemophilia A carriers prefer testing to be done prior to this age (pHemophilia A carriers self-report a higher frequency of bleeding than previously acknowledged, and have a preference for earlier testing to confirm carrier status. PMID:24309601

  16. An assessment of a spiral duct centrifuge using standard and high concentration aerosols

    International Nuclear Information System (INIS)

    Smith, A.D.

    1982-12-01

    The Stoeber spiral duct centrifuge has been calibrated by means of polystyrene latex microspheres for the subsequent measurement of aerosol particle size distributions. Intermediate (1 g m -3 ) ad high (100 g m -3 ) sodium chloride aerosol concentrations have been sampled by the centrifuge to determine possible limitations in the equipment. Corrections have to be made for the effect of Coriolis forces, and aerosol concentrations above 1 g m -3 should be diluted before sampling. The spiral duct centrifuge is an extremely versatile instrument for aerosol analysis, and shows a high degree of reliability when operated under well-defined conditions. (author)

  17. High surface hole concentration p-type GaN using Mg implantation

    CERN Document Server

    Long Tao; Zhang Guo Yi

    2001-01-01

    Mg ions were implanted on Mg-doped GaN grown by metalorganic chemical vapor deposition (MOCVD). The p-type GaN was achieved with high hole concentration (8.28 x 10 sup 1 sup 7 cm sup - sup 3) conformed by Van derpauw Hall measurement after annealing at 800 degree C for 1 h. this is the first experimental report of Mg implantation on Mg-doped GaN and achieving p-type GaN with high surface hole concentration

  18. Long term carrier envelope phase stabilization of a grating based high power femtosecond laser using the direct locking method

    International Nuclear Information System (INIS)

    Lee, Jae Hwan; Lee, Youg Soo; Park, Juyun; Nam, Chang Hee; Yu, Tae Jun

    2008-01-01

    The carrier envelope phase (CEP)stabilization of femtosecond laser pulses has been intensively investigated for ultrafast science as well as for frequency metrology. In the case of few cycle pulses stabilization and control of the CEP is an important issue, since the electric field profile changes with CEP variation. We have developed the direct locking method to stabilize the CEP for the investigation of attosecond physics. The direct locking method uses the beating signal itself, measured using an f to 2f interferometer, as an error signal to a feedback loop. The direct locking method quenches the beating signal so that the CEP variation between successive pulses become zero and every pulses from the oscillator ts identical. Due to the direct use of the beating signal, the signal processing is simple and complex equipment, used in the case of the phase locked loop (PLL)method operating in the frequency domain, are not required. For long term stability, we have proposed and implemented a double feedback technique, and achieved CEP stabilization of the oscillator for 24 hours, as shown in Fig. 1. This long term CEP stabilization was achieved without realignment of any optical components. The CEP stabilization for a whole day is a clear demonstration of the robustness of the direct locking method. The amplification of CEP stabilized laser pulses induces additional CEP variation. Even though the CEP of an oscillator is stabilized, the CEP drift is generated again during amplification due to external perturbations, such as pumping power fluctuation and beam pointing fluctuation. To measure the CEP drift of the amplified pulses, a spectral interferometer (SI)was employed. The CEP drift obtained from SI was used as the error signal of another feedback loop installed in the amplifier chain. To compensate for the large CEP drift induced during amplification, the grating separation of the pulse compressor was adjusted. Figure 2 shows the result of CEP stabilization of

  19. Vitamin E concentrations in adults with HIV/AIDS on highly active antiretroviral therapy.

    Science.gov (United States)

    Itinoseki Kaio, Daniella J Itinoseki; Rondó, Patricia Helen C; Luzia, Liania Alves; Souza, José Maria P; Firmino, Aline Vale; Santos, Sigrid Sousa

    2014-09-15

    HIV/AIDS patients are probably more predisposed to vitamin E deficiency, considering that they are more exposed to oxidative stress. Additionally, there are an extensive number of drugs in the highly active antiretroviral therapy (HAART) regimens that may interfere with vitamin E concentrations. The objective of this study was to compare serum concentrations of alpha-tocopherol in 182 HIV/AIDS patients receiving different HAART regimens. The patients were divided into three groups according to regimen: nucleoside analog reverse-transcriptase inhibitors (NRTIs) + non-nucleoside analog reverse-transcriptase inhibitors (NNRTIs); NRTIs + protease inhibitors + ritonavir; NRTIs + other classes. Alpha-tocopherol was assessed by high-performance liquid chromatography. Multiple linear regression analysis was used to evaluate the effects of HAART regimen, time of use, and compliance with the regimen on alpha-tocopherol concentrations. Alpha-tocopherol concentrations were on average 4.12 μmol/L lower for the NRTIs + other classes regimen when compared to the NRTIs + NNRTIs regimen (p = 0.037). A positive association (p < 0.001) was observed between alpha-tocopherol and cholesterol concentrations, a finding due, in part, to the relationship between liposoluble vitamins and lipid profile. This study demonstrated differences in alpha-tocopherol concentrations between patients using different HAART regimens, especially regimens involving the use of new drugs. Long-term prospective cohort studies are needed to monitor vitamin E status in HIV/AIDS patients since the beginning of treatment.

  20. Synergic Adsorption–Biodegradation by an Advanced Carrier for Enhanced Removal of High-Strength Nitrogen and Refractory Organics

    KAUST Repository

    Ahmad, Muhammad; Liu, Sitong; Mahmood, Nasir; Mahmood, Asif; Ali, Muhammad; Zheng, Maosheng; Ni, Jinren

    2017-01-01

    Coking wastewater contains not only high-strength nitrogen but also toxic biorefractory organics. This study presents simultaneous removal of high-strength quinoline, carbon, and ammonium in coking wastewater by immobilized bacterial communities

  1. Separation and Concentration without Clogging Using a High-Throughput Tunable Filter

    Science.gov (United States)

    Mossige, E. J.; Jensen, A.; Mielnik, M. M.

    2018-05-01

    We present a detailed experimental study of a hydrodynamic filtration microchip and show how chip performance can be tuned and clogging avoided by adjusting the flow rates. We demonstrate concentration and separation of microspheres at throughputs as high as 29 ml /min and with 96% pureness. Results of streakline visualizations show that the thickness of a tunable filtration layer dictates the cutoff size and that two different concentration mechanisms exist. Particles larger than pores are concentrated by low-velocity rolling over the filtration pillars, while particles smaller than pores are concentrated by lateral drift across the filtration layer. Results of microscopic particle image velocimetry and particle-tracking velocimetry show that the degree of lateral migration can be quantified by the slip velocity between the particle and the surrounding fluid. Finally, by utilizing differences in inertia and separation mode, we demonstrate size-based separation of particles in a mixture.

  2. Optical performance evaluation of a solar furnace by measuring the highly concentrated solar flux

    International Nuclear Information System (INIS)

    Lee, Hyunjin; Chai, Kwankyo; Kim, Jongkyu; Lee, Sangnam; Yoon, Hwanki; Yu, Changkyun; Kang, Yongheack

    2014-01-01

    We evaluated optical performance of a solar furnace in the KIER (Korea Institute of Energy Research) by measuring the highly concentrated solar flux with the flux mapping method. We presented and analyzed optical performance in terms of concentrated solar flux distribution and power distribution. We investigated concentration ratio, stagnation temperature, total power, and concentration accuracy with help of a modeling code based on the ray tracing method and thereby compared with other solar furnaces. We also discussed flux changes by shutter opening angles and by position adjustment of reflector facets. In the course of flux analysis, we provided a better understanding of reference flux measurement for calibration, reflectivity measurement with a portable reflectometer, shadowing area consideration for effective irradiation, as well as accuracy and repeatability of flux measurements. The results in the present study will help proper utilization of a solar furnace by facilitating comparison between flux measurements at different conditions and flux estimation during operation

  3. PKU: high plasma phenylalanine concentrations are associated with increased prevalence of mood swings.

    Science.gov (United States)

    Anjema, Karen; van Rijn, Margreet; Verkerk, Paul H; Burgerhof, Johannes G M; Heiner-Fokkema, M Rebecca; van Spronsen, Francjan J

    2011-11-01

    In phenylketonuria, knowledge about the relation between behavior and plasma phenylalanine is scarce. The aim of this study was to determine whether high phenylalanine is associated with disturbed behavior noticed by the patient and or close environment (parents or partners). 48 early treated PKU patients (median age 8.5, range 0-35 years) participated (median phenylalanine concentration in total sample 277 (range 89-1171) μmol/l; and in patients introvert or extravert behavior. The interviewer as well as the respondents were blinded with regard to the phenylalanine concentration. Patients reported less deviant behavior compared to close environment. Mood swings were positively associated with phenylalanine concentrations in the total group (P=0.039) and patients introvert and extravert behavior were not statistically significant. there is a positive association between phenylalanine concentrations and mood swings. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. Methane biofiltration using autoclaved aerated concrete as the carrier material.

    Science.gov (United States)

    Ganendra, Giovanni; Mercado-Garcia, Daniel; Hernandez-Sanabria, Emma; Boeckx, Pascal; Ho, Adrian; Boon, Nico

    2015-09-01

    The methane removal capacity of mixed methane-oxidizing bacteria (MOB) culture in a biofilter setup using autoclaved aerated concrete (AAC) as a highly porous carrier material was tested. Batch experiment was performed to optimize MOB immobilization on AAC specimens where optimum methane removal was obtained when calcium chloride was not added during bacterial inoculation step and 10-mm-thick AAC specimens were used. The immobilized MOB could remove methane at low concentration (~1000 ppmv) in a biofilter setup for 127 days at average removal efficiency (RE) of 28.7 %. Unlike a plug flow reactor, increasing the total volume of the filter by adding a biofilter in series did not result in higher total RE. MOB also exhibited a higher abundance at the bottom of the filter, in proximity with the methane gas inlet where a high methane concentration was found. Overall, an efficient methane biofilter performance could be obtained using AAC as the carrier material.

  5. Carrier Statistics and Quantum Capacitance Models of Graphene Nanoscroll

    Directory of Open Access Journals (Sweden)

    M. Khaledian

    2014-01-01

    schematic perfect scroll-like Archimedes spiral. The DOS model was derived at first, while it was later applied to compute the carrier concentration and quantum capacitance model. Furthermore, the carrier concentration and quantum capacitance were modeled for both degenerate and nondegenerate regimes, along with examining the effect of structural parameters and chirality number on the density of state and carrier concentration. Latterly, the temperature effect on the quantum capacitance was studied too.

  6. Tunable high-order-sideband generation and carrier-envelope-phase-dependent effects via microwave fields in hybrid electro-optomechanical systems

    Science.gov (United States)

    Si, Liu-Gang; Guo, Ling-Xia; Xiong, Hao; Wu, Ying

    2018-02-01

    We investigate the high-order-sideband generation (HSG) in a hybrid cavity electro-photomechanical system in which an optical cavity is driven by two optical fields (a monochromatic pump field and a nanosecond Gaussian probe pulse with huge numbers of wave cycles), and at the same time a microwave cavity is driven by a monochromatic ac voltage bias. We show that even if the input powers of two driven optical fields are comparatively low the HSG spectra can be induced and enhanced, and the sideband plateau is extended remarkably with the power of the ac voltage bias increasing. It is also shown that the driven ac voltage bias has profound effects on the carrier-envelope-phase-dependent effects of the HSG in the hybrid cavity electro-photomechanical system. Our research may provide an effective way to control the HSG of optical fields by using microwave fields in cavity optomechanics systems.

  7. Enhanced Enzymatic Production of Cephalexin at High Substrate Concentration with in situ Product Removal by Complexation

    Directory of Open Access Journals (Sweden)

    Dengchao Li

    2008-01-01

    Full Text Available Cephalexin (CEX was synthesized with 7-amino-3-deacetoxycephalosporanic acid (7-ADCA and D(–-phenylglycine methyl ester (PGME using immobilized penicillin G acylase from Escherichia coli. It was found that substrate concentration and in situ product could remarkably influence the ratio of synthesis to hydrolysis (S/H and the efficiency of CEX synthesis. The optimal ratio of enzyme to substrate was 65 IU/mM 7-ADCA. High substrate concentration improved the 7-ADCA conversion from 61 to 81 % in the process without in situ product removal (ISPR, while in the synthetic process with ISPR, high substrate concentration increased the 7-ADCA conversion from 88 to 98 %. CEX was easily separated from CEX/β-naphthol complex and its purity and overall yield were 99 and 70 %, respectively.

  8. Niacin alters the ruminal microbial composition of cattle under high-concentrate condition

    Directory of Open Access Journals (Sweden)

    Dan Luo

    2017-06-01

    Full Text Available To understand the effects of niacin on the ruminal microbial ecology of cattle under high-concentrate diet condition, Illumina MiSeq sequencing technology was used. Three cattle with rumen cannula were used in a 3 × 3 Latin-square design trial. Three diets were fed to these cattle during 3 periods for 3 days, respectively: high-forage diet (HF; forage-to-concentrate ratio = 80:20, high-concentrate diet (HC; forage-to-concentrate ratio = 20:80, and HC supplemented with 800 mg/kg niacin (HCN. Ruminal pH was measured before feeding and every 2 h after initiating feeding. Ruminal fluid was sampled at the end of each period for microbial DNA extraction. Overall, our findings revealed that subacute ruminal acidosis (SARA was induced and the α-diversity of ruminal bacterial community decreased in the cattle of HC group. Adding niacin in HC could relieve the symptoms of SARA in the cattle but the ruminal pH value and the Shannon index of ruminal bacterial community of HCN group were still lower than those of HF group. Whatever the diet was, the ruminal bacterial community of cattle was dominated by Bacteroidetes, Firmicutes and Proteobacteria. High-concentrate diet significantly increased the abundance of Prevotella, and decreased the abundance of Paraprevotella, Sporobacter, Ruminococcus and Treponema than HF. Compared with HC, HCN had a trend to decrease the percentage of Prevotella, and to increase the abundance of Succiniclasticum, Acetivibrio and Treponema. Increasing concentrate ratio could decrease ruminal pH value, and change the ruminal microbial composition. Adding niacin in HC could increase the ruminal pH value, alter the ruminal microbial composition.

  9. Implications of Industrial Processing Strategy on Cellulosic Ethanol Production at High Solids Concentrations

    DEFF Research Database (Denmark)

    Cannella, David

    The production of cellulosic ethanol is a biochemical process of not edible biomasses which contain the cellulose. The process involves the use of enzymes to hydrolyze the cellulose in fermentable sugars to finally produce ethanol via fermentative microorganisms (i.e. yeasts). These biomasses...... are the leftover of agricultural productions (straws), not edible crops (giant reed) or wood, thus the ethanol so produced is also called second generation (or 2G ethanol), which differs from the first generation produced from starch (sugar beets mostly). In the industrial production of cellulosic ethanol high...... solids strategy resulted critical for its cost effectiveness: high concentration of initial biomass it will lead to high concentration of the final product (ethanol), thus more convenient to isolate. This thesis investigate the implementation of a high solids loading concept into cellulosic ethanol...

  10. Analytical Study of High Concentration PCB Paint at the Heavy Water Components Test Reactor

    International Nuclear Information System (INIS)

    Lowry, N.J.

    1998-01-01

    This report provides results of an analytical study of high concentration PCB paint in a shutdown nuclear test reactor located at the US Department of Energy's Savannah River Site (SRS). The study was designed to obtain data relevant for an evaluation of potential hazards associated with the use of and exposure to such paints

  11. Analytical Study of High Concentration PCB Paint at the Heavy Water Components Test Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lowry, N.J.

    1998-10-21

    This report provides results of an analytical study of high concentration PCB paint in a shutdown nuclear test reactor located at the US Department of Energy's Savannah River Site (SRS). The study was designed to obtain data relevant for an evaluation of potential hazards associated with the use of and exposure to such paints.

  12. Resting serum concentration of high-sensitivity C-reactive protein ...

    African Journals Online (AJOL)

    Resting serum concentration of high-sensitivity C-reactive protein (hs-CRP) in sportsmen and untrained male adults. F.A. Niyi-Odumosu, O. A. Bello, S.A. Biliaminu, B.V. Owoyele, T.O. Abu, O.L. Dominic ...

  13. The preparation and ethanol fermentation of high-concentration sugars from steam-explosion corn stover.

    Science.gov (United States)

    Xie, Hui; Wang, Fengqin; Yin, Shuangyao; Ren, Tianbao; Song, Andong

    2015-05-01

    In the field of biofuel ethanol, high-concentration- reducing sugars made from cellulosic materials lay the foundation for high-concentration ethanol fermentation. In this study, corn stover was pre-treated in a process combining chemical methods and steam explosion; the cellulosic hydrolyzed sugars obtained by fed-batch saccharification were then used as the carbon source for high-concentration ethanol fermentation. Saccharomyces cerevisiae 1308, Angel yeast, and Issatchenkia orientalis were shake-cultured with Pachysolen tannophilus P-01 for fermentation. Results implied that the ethanol yields from the three types of mixed strains were 4.85 g/100 mL, 4.57 g/100 mL, and 5.02 g/100 mL (separately) at yield rates of 91.6, 89.3, and 92.2%, respectively. Therefore, it was inferred that shock-fermentation using mixed strains achieved a higher ethanol yield at a greater rate in a shorter fermentation period. This study provided a theoretical basis and technical guidance for the fermentation of industrial high-concentrated cellulosic ethanol.

  14. Mapping the Life Satisfaction of Adolescents in Hong Kong Secondary Schools with High Ethnic Concentration

    Science.gov (United States)

    Yuen, Yuet Mui Celeste; Lee, Moosung

    2016-01-01

    The present study aims to map the life satisfaction of adolescents from ethnic minority/immigrant backgrounds in schools with high concentrations of co-ethnic peers by comparing them with their mainstream counterparts in Hong Kong. The life satisfaction of 1,522 students was measured by the validated Multidimensional Students' Life Satisfaction…

  15. Production of ethanol from wheat straw by pretreatment and fermentation at high dry matter concentrations

    NARCIS (Netherlands)

    Groenestijn, J.W. van; Slomp, R.S.

    2011-01-01

    High concentrations of substrate and product are important for the economy of second-generation bioethanol production. By a dilute acid thermal pretreatment of large pieces of relatively dry wheat straw using a novel rapid heating method, followed by fed-batch preliquefaction with hydrolytic

  16. Decadal and seasonal trends of nutrient concentration and export from highly managed coastal catchments.

    Science.gov (United States)

    Wan, Yongshan; Wan, Lei; Li, Yuncong; Doering, Peter

    2017-05-15

    Understanding anthropogenic and hydro-climatic influences on nutrient concentrations and export from highly managed catchments often necessitates trend detection using long-term monitoring data. This study analyzed the temporal trend (1979-2014) of total nitrogen (TN) and total phosphorus (TP) concentrations and export from four adjacent coastal basins in south Florida where land and water resources are highly managed through an intricate canal network. The method of integrated seasonal-trend decomposition using LOESS (LOcally weighted regrESSion) was employed for trend detection. The results indicated that long-term trends in TN and TP concentrations (increasing/decreasing) varied with basins and nutrient species, reflecting the influence of basin specific land and water management practices. These long-term trends were intervened by short-term highs driven by high rainfall and discharges and lows associated with regional droughts. Seasonal variations in TP were more apparent than for TN. Nutrient export exhibited a chemostatic behavior for TN from all the basins, largely due to the biogenic nature of organic N associated with the ubiquity of organic materials in the managed canal network. Varying degrees of chemodynamic export was present for TP, reflecting complex biogeochemical responses to the legacy of long-term fertilization, low soil P holding capacity, and intensive stormwater management. The anthropogenic and hydro-climatic influences on nutrient concentration and export behavior had great implications in nutrient loading abatement strategies for aquatic ecosystem restoration of the downstream receiving waterbody. Published by Elsevier Ltd.

  17. Innovative encapsulated oxygen-releasing beads for bioremediation of BTEX at high concentration in groundwater.

    Science.gov (United States)

    Lin, Chi-Wen; Wu, Chih-Hung; Guo, Pei-Yu; Chang, Shih-Hsien

    2017-12-15

    Both a low concentration of dissolved oxygen and the toxicity of a high concentration of BTEX inhibit the bioremediation of BTEX in groundwater. A novel method of preparing encapsulated oxygen-releasing beads (encap-ORBs) for the biodegradation of BTEX in groundwater was developed. Experimental results show that the integrality and oxygen-releasing capacity of encap-ORBs exceeded those of ORBs. The use of polyvinyl alcohol (PVA) with high M.W. to prepare encap-ORBs improved their integrality. The encap-ORBs effectively released oxygen for 128 days. High concentration of BTEX (480 mg L -1 ) inhibited the biodegradation by the free cells. Immobilization of degraders in the encap-ORB alleviated the inhibition. Scanning electron microscope analysis reveals that the BTEX degraders grew on the surface of encap-ORB after bioremediation. The above results indicate that the encap-ORBs were effective in the bioremediation of BTEX at high concentration in groundwater. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Quality of care and patient satisfaction in hospitals with high concentrations of black patients.

    Science.gov (United States)

    Brooks-Carthon, J Margo; Kutney-Lee, Ann; Sloane, Douglas M; Cimiotti, Jeannie P; Aiken, Linda H

    2011-09-01

    To examine the influence of nursing-specifically nurse staffing and the nurse work environment-on quality of care and patient satisfaction in hospitals with varying concentrations of Black patients. Cross-sectional secondary analysis of 2006-2007 nurse survey data collected across four states (Florida, Pennsylvania, New Jersey, and California), the Hospital Consumer Assessment of Healthcare Providers and Systems survey, and administrative data. Global analysis of variance and linear regression models were used to examine the association between the concentration of Black patients on quality measures (readiness for discharge, patient or family complaints, health care-associated infections) and patient satisfaction, before and after accounting for nursing and hospital characteristics. Nurses working in hospitals with higher concentrations of Blacks reported poorer confidence in patients' readiness for discharge and more frequent complaints and infections. Patients treated in hospitals with higher concentrations of Blacks were less satisfied with their care. In the fully adjusted regression models for quality and patient satisfaction outcomes, the effects associated with the concentration of Blacks were explained in part by nursing and structural hospital characteristics. This study demonstrates a relationship between nursing, structural hospital characteristics, quality of care, and patient satisfaction in hospitals with high concentrations of Black patients. Consideration of nursing factors, in addition to other important hospital characteristics, is critical to understanding and improving quality of care and patient satisfaction in minority-serving hospitals. © 2011 Sigma Theta Tau International.

  19. High concentrations of thiosulfate in scala tympani perilymph after systemic administration in the guinea pig.

    Science.gov (United States)

    Pierre, Pernilla Videhult; Engmér, Cecilia; Wallin, Inger; Laurell, Göran; Ehrsson, Hans

    2009-02-01

    High concentrations of the antioxidant thiosulfate reach scala tympani perilymph after i.v. administration in the guinea pig. Thiosulfate concentrations in perilymph remain elevated longer than in blood. This warrants further studies on the possibility of obtaining otoprotection by thiosulfate administration several hours before that of cisplatin without compromising the anticancer effect caused by cisplatin inactivation in the blood compartment. Thiosulfate may reduce cisplatin-induced ototoxicity, presumably by oxidative stress relief and formation of inactivate platinum complexes. This study aimed to explore to what extent thiosulfate reaches scala tympani perilymph after systemic administration in the guinea pig. Scala tympani perilymph (1 microl) was aspirated from the basal turn of each cochlea up to 3 h after thiosulfate administration (103 mg/kg b.w., i.v.). Blood samples were also taken. Thiosulfate was quantified by HPLC and fluorescence detection. Substantial thiosulfate concentrations were found in perilymph. The area under the concentration-time curve for thiosulfate in perilymph and blood was 3100 microMxmin and 6300 microMxmin, respectively. The highest thiosulfate concentrations in perilymph were found at the first sampling at about 10 min. Due to a more rapid elimination from blood, perilymph concentrations exceeded those of blood towards the end of the experiment.

  20. Concentration-Induced Association in a Protein System Caused by a Highly Directional Patch Attraction.

    Science.gov (United States)

    Li, Weimin; Persson, Björn A; Lund, Mikael; Bergenholtz, Johan; Zackrisson Oskolkova, Malin

    2016-09-01

    Self-association of the protein lactoferrin is studied in solution using small-angle X-ray scattering techniques. Effective static structure factors have been shown to exhibit either a monotonic or a nonmonotonic dependence on protein concentration in the small wavevector limit, depending on salt concentration. The behavior correlates with a nonmonotonic dependence of the second virial coefficient on salt concentration, such that a maximum appears in the structure factor at a low protein concentration when the second virial coefficient is negative and close to a minimum. The results are interpreted in terms of an integral equation theory with explicit dimers, formulated by Wertheim, which provides a consistent framework able to explain the behavior in terms of a monomer-dimer equilibrium that appears because of a highly directional patch attraction. Short attraction ranges preclude trimer formation, which explains why the protein system behaves as if it were subject to a concentration-dependent isotropic protein-protein attraction. Superimposing an isotropic interaction, comprising screened Coulomb repulsion and van der Waals attraction, on the patch attraction allows for a semiquantitative modeling of the complete transition pathway from monomers in the dilute limit to monomer-dimer systems at somewhat higher protein concentrations.

  1. Physiological epidermal growth factor concentrations activate high affinity receptors to elicit calcium oscillations.

    Directory of Open Access Journals (Sweden)

    Béatrice Marquèze-Pouey

    Full Text Available Signaling mediated by the epidermal growth factor (EGF is crucial in tissue development, homeostasis and tumorigenesis. EGF is mitogenic at picomolar concentrations and is known to bind its receptor on high affinity binding sites depending of the oligomerization state of the receptor (monomer or dimer. In spite of these observations, the cellular response induced by EGF has been mainly characterized for nanomolar concentrations of the growth factor, and a clear definition of the cellular response to circulating (picomolar concentrations is still lacking. We investigated Ca2+ signaling, an early event in EGF responses, in response to picomolar doses in COS-7 cells where the monomer/dimer equilibrium is unaltered by the synthesis of exogenous EGFR. Using the fluo5F Ca2+ indicator, we found that picomolar concentrations of EGF induced in 50% of the cells a robust oscillatory Ca2+ signal quantitatively similar to the Ca2+ signal induced by nanomolar concentrations. However, responses to nanomolar and picomolar concentrations differed in their underlying mechanisms as the picomolar EGF response involved essentially plasma membrane Ca2+ channels that are not activated by internal Ca2+ store depletion, while the nanomolar EGF response involved internal Ca2+ release. Moreover, while the picomolar EGF response was modulated by charybdotoxin-sensitive K+ channels, the nanomolar response was insensitive to the blockade of these ion channels.

  2. Physiological epidermal growth factor concentrations activate high affinity receptors to elicit calcium oscillations.

    Science.gov (United States)

    Marquèze-Pouey, Béatrice; Mailfert, Sébastien; Rouger, Vincent; Goaillard, Jean-Marc; Marguet, Didier

    2014-01-01

    Signaling mediated by the epidermal growth factor (EGF) is crucial in tissue development, homeostasis and tumorigenesis. EGF is mitogenic at picomolar concentrations and is known to bind its receptor on high affinity binding sites depending of the oligomerization state of the receptor (monomer or dimer). In spite of these observations, the cellular response induced by EGF has been mainly characterized for nanomolar concentrations of the growth factor, and a clear definition of the cellular response to circulating (picomolar) concentrations is still lacking. We investigated Ca2+ signaling, an early event in EGF responses, in response to picomolar doses in COS-7 cells where the monomer/dimer equilibrium is unaltered by the synthesis of exogenous EGFR. Using the fluo5F Ca2+ indicator, we found that picomolar concentrations of EGF induced in 50% of the cells a robust oscillatory Ca2+ signal quantitatively similar to the Ca2+ signal induced by nanomolar concentrations. However, responses to nanomolar and picomolar concentrations differed in their underlying mechanisms as the picomolar EGF response involved essentially plasma membrane Ca2+ channels that are not activated by internal Ca2+ store depletion, while the nanomolar EGF response involved internal Ca2+ release. Moreover, while the picomolar EGF response was modulated by charybdotoxin-sensitive K+ channels, the nanomolar response was insensitive to the blockade of these ion channels.

  3. Plasma methylphenidate concentrations in youths treated with high-dose osmotic release oral system formulation.

    Science.gov (United States)

    Stevens, Jonathan R; George, Robert A; Fusillo, Steven; Stern, Theodore A; Wilens, Timothy E

    2010-02-01

    Children and adolescents are being treated increasingly for attention-deficit/hyperactivity disorder (ADHD) with a variety of stimulants in higher than Food and Drug Administration (FDA)-approved doses and in combination with other medications. We sought to determine methylphenidate (MPH) concentrations in children and adolescents treated with high-dose, extended-release osmotic release oral system (OROS) MPH plus concomitant medications, and to examine MPH concentrations with respect to the safety and tolerability of treatment. Plasma MPH concentrations were measured by liquid chromatography-mass spectrometry 4-5 hours after administration of medication in a sample of youths diagnosed with ADHD. These youths were treated naturalistically with higher than FDA-approved doses of OROS MPH in addition to their concomitant medications. Markers of safety and tolerability (e.g., measures of blood pressure and heart rate) were also examined. Among the 17 patients (with a mean age of 16.2 +/- 2 years and a mean number of concurrent medications of 2.23 +/- 0.94), the mean plasma MPH concentration was 28 +/- 9.1 ng/mL, despite a mean daily dose of OROS MPH of 169 +/- 5 mg (3.0 +/- 0.8 mg/kg per day). No patient had a plasma MPH level >or=50 ng/mL or clinical signs of stimulant toxicity. No correlation was found between plasma MPH concentrations and OROS MPH dose or changes in vital signs. High-dose OROS MPH, used in combination with other medications, was not associated with either unusually elevated plasma MPH concentrations or with clinically meaningful changes in vital signs. Study limitations include a single time-point sampling of MPH concentrations, a small sample size, and a lack of outcome measures to address treatment effectiveness.

  4. Investigation on the effect of thermal resistances on a highly concentrated photovoltaic-thermoelectric hybrid system

    International Nuclear Information System (INIS)

    Zhang, Jin; Xuan, Yimin

    2016-01-01

    Highlights: • The highly concentrated PV-TE hybrid system is studied. • The performances of different cooling systems are analyzed and compared. • Sandwiching a copper plate between the PV and TE can improve the efficiency. • Four thermal design principles of the system are proposed. - Abstract: A thermal analysis of a highly concentrated photovoltaic-thermoelectric (PV-TE) hybrid system is carried out in this paper. Both the output power and the temperature distribution in the hybrid system are calculated by means of a three-dimensional numerical model. Three possible approaches for designing the highly concentrated PV-TE hybrid system are presented by analyzing the thermal resistance of the whole system. First, the sensitivity analysis shows that the thermal resistance between the TE module and the environment has a more great effect on the output power than the thermal resistance between the PV and the TE. The influence of the natural convection and the radiation can be ignored for the highly concentrated PV-TE hybrid system. Second, it is necessary to sandwich a copper plate between the PV and the TE for decreasing the thermal resistance between the PV and the TE. The role of the copper plate is to improve the temperature uniformity. Third, decreasing the area of PV cells can improve the efficiency of the highly concentrated PV-TE hybrid system. It should be pointed out that decreasing the area of PV cells also increases the total thermal resistance, but the raise of the efficiency is caused by the reduction of the heat transfer rate of the system. Therefore, the principle of minimizing the total thermal resistance may not be suitable for optimizing the area of PV cells.

  5. Influence of vibration on structure rheological properties of a highly concentrated suspension

    Science.gov (United States)

    Ouriev Uriev, Boris N.; Uriev, Naum B.

    2005-08-01

    The influence of mechanical vibration on the flow properties of a highly concentrated multiphase food system is explored in this work. An experimental set-up was designed and adapted to a conventional rotational rheometer with precise rheological characterization capability. A number of calibration tests were performed prior to fundamental experiments with a highly concentrated chocolate suspension. Also, the prediction of wall slippage in shear flow under vibration was evaluated. Analysis of the boundary conditions shows that no side effects such as wall slippage or the Taylor effect were present during the shear experiment under vibration. It was found that superposition of mechanical vibration and shear flow radically decreases the shear viscosity. Comparison between reference shear viscosities at specified shear rates and those measured under vibration shows considerable differences in flow properties. Conversion of the behaviour of the concentrated suspension from strongly shear-thinning to Newtonian flow is reported. Also, the appearance of vibration-induced dilatancy as a new phenomenon is described. It is suggested to relate such phenomena to the non-equilibrium between structure formation and disintegration under vibration and hydrodynamic forces of shear flow. The influence of vibration on structure formation can be well observed during measurement of the yield value of the chocolate suspension under vibration. Comparison with reference data shows how sensitive the structure of the concentrated suspension is to vibration in general. The effects and observations revealed provide a solid basis for further fundamental investigations of structure formation regularities in the flow of any highly concentrated system. The results also show the technological potential for non-conventional treatment of concentrated, multiphase systems.

  6. Design and Optimization of Fresnel Lens for High Concentration Photovoltaic System

    Directory of Open Access Journals (Sweden)

    Lei Jing

    2014-01-01

    Full Text Available A practical optimization design is proposed, in which the solar direct light spectrum and multijunction cell response range are taken into account in combination, particularly for the Fresnel concentrators with a high concentration and a small aspect ratio. In addition, the change of refractive index due to temperature variation in outdoor operation conditions is also considered in the design stage. The calculation results show that this novel Fresnel lens achieves an enhancement of energy efficiency of about 10% compared with conventional Fresnel lens for a given solar spectrum, solar cell response, and corrected sunshine hours of different ambient temperature intervals.

  7. Enhanced Cycling Stability of Rechargeable Li-O2 Batteries Using High Concentration Electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Bin; Xu, Wu; Yan, Pengfei; Sun, Xiuliang; Bowden, Mark E.; Read, Jeffrey; Qian, Jiangfeng; Mei, Donghai; Wang, Chong M.; Zhang, Jiguang

    2016-01-26

    The electrolyte stability against reactive reduced-oxygen species is crucial for the development of rechargeable Li-O2 batteries. In this work, we systematically investigated the effect of lithium salt concentration in 1,2-dimethoxyethane (DME)-based electrolytes on the cycling stability of Li-O2 batteries. Cells with high concentration electrolyte illustrate largely enhanced cycling stability under both the full discharge/charge (2.0-4.5 V vs. Li/Li+) and the capacity limited (at 1,000 mAh g-1) conditions. These cells also exhibit much less reaction-residual on the charged air electrode surface, and much less corrosion to the Li metal anode. The density functional theory calculations are conducted on the molecular orbital energies of the electrolyte components and the Gibbs activation barriers for superoxide radical anion to attack DME solvent and Li+-(DME)n solvates. In a highly concentrated electrolyte, all DME molecules have been coordinated with salt and the C-H bond scission of a DME molecule becomes more difficult. Therefore, the decomposition of highly concentrated electrolyte in a Li-O2 battery can be mitigated and both air-cathodes and Li-metal anodes exhibits much better reversibility. As a results, the cyclability of Li-O2 can be largely improved.

  8. Fast dissolution of poorly water soluble drugs from fluidized bed coated nanocomposites: Impact of carrier size.

    Science.gov (United States)

    Azad, Mohammad; Moreno, Jacqueline; Bilgili, Ecevit; Davé, Rajesh

    2016-11-20

    Formation of core-shell nanocomposites of Fenofibrate and Itraconazole, model poorly water soluble drugs, via fluidized bed (FB) coating of their well-stabilized high drug loaded nanosuspensions is investigated. Specifically, the extent of dissolution enhancement, when fine carrier particles (sub-50μm) as opposed to the traditional large carrier particles (>300μm) are used, is examined. This allows testing the hypothesis that greatly increased carrier surface area and more importantly, thinner shell for finer carriers at the same drug loading can significantly increase the dissolution rate when spray-coated nanosuspensions are well-stabilized. Fine sub-50μm lactose (GranuLac ® 200) carrier particles were made fluidizable via dry coating with nano-silica, enabling decreased cohesion, fluidization and subsequent nanosuspension coating. For both drugs, 30% drug loaded suspensions were prepared via wet-stirred media milling using hydroxypropyl methyl cellulose and sodium dodecyl sulfate as stabilizers. The stabilizer concentrations were varied to affect the milled particle size and prepare a stable nanosuspension. The suspensions were FB coated onto hydrophilic nano-silica (M-5P) dry coated sub-50μm lactose (GranuLac ® 200) carrier particles or larger carrier particles of median size >300μm (PrismaLac ® 40). The resulting finer composite powders (sub-100μm) based on GranuLac ® 200 were freely flowing, had high bulk density, and had much faster, immediate dissolution of the poorly water-soluble drugs, in particular for Itraconazole. This is attributed to a much higher specific surface area of the carrier and corresponding thinner coating layer for fine carriers as opposed to those for large carrier particles. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Spectral and Concentration Sensitivity of Multijunction Solar Cells at High Temperature: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Friedman, Daniel J.; Steiner, Myles A.; Perl, Emmett E.; Simon, John

    2017-06-14

    We model the performance of two-junction solar cells at very high temperatures of ~400 degrees C and beyond for applications such as hybrid PV/solar-thermal power production, and identify areas in which the design and performance characteristics behave significantly differently than at more conventional near-room-temperature operating conditions. We show that high-temperature operation reduces the sensitivity of the cell efficiency to spectral content, but increases the sensitivity to concentration, both of which have implications for energy yield in terrestrial PV applications. For other high-temperature applications such as near-sun space missions, our findings indicate that concentration may be a useful tool to enhance cell efficiency.

  10. Influence of a High-Pressure Comminution Technology on Concentrate Yields in Copper Ore Flotation Processes

    Directory of Open Access Journals (Sweden)

    Saramak D.

    2014-10-01

    Full Text Available The article concerns the issues of flotation process effectiveness in relationship to the operating conditions of a high-pressure comminution process course. Experimental programme covering a flotation laboratory batch tests was a verification technique of a high-pressure crushing operations course. The most favorable values of flotation concentrate weight recoveries were obtained for the pressing force 6 kN and 4% of the feed moisture. It was also determined the model of the concentrate weight recovery as a function of pressing force in the press and feed moisture content. This model was the basis for the optimization of effects of copper ore flotation processes preceded in high-pressure crushing operation in roller presses.

  11. The role of silicon interstitials in the deactivation and reactivation of high concentration boron profiles

    Energy Technology Data Exchange (ETDEWEB)

    Aboy, Maria [Campus Miguel Delibes, University of Valladolid, 47011 Valladolid (Spain)]. E-mail: marabo@tel.uva.es; Pelaz, Lourdes [Campus Miguel Delibes, University of Valladolid, 47011 Valladolid (Spain); Marques, Luis A. [Campus Miguel Delibes, University of Valladolid, 47011 Valladolid (Spain); Lopez, Pedro [Campus Miguel Delibes, University of Valladolid, 47011 Valladolid (Spain); Barbolla, Juan [Campus Miguel Delibes, University of Valladolid, 47011 Valladolid (Spain); Venezia, V.C. [Philips Research Leuven, Leuven (Belgium); Duffy, R. [Philips Research Leuven, Leuven (Belgium); Griffin, Peter B. [Stanford University, Stanford, CA (United States)

    2004-12-15

    Boron cluster formation and dissolution in high concentration B profiles and the role of Si interstitials in these processes are analyzed by kinetic non-lattice Monte Carlo atomistic simulations. For this purpose, we use theoretical structures as simplifications of boron implants into preamorphized Si, followed by low-temperature solid phase epitaxial (SPE) regrowth or laser thermal annealing process. We observe that in the presence of high B concentrations (above 10{sup 20} cm{sup -3}), significant deactivation occurs during high temperature anneal, even in the presence of only equilibrium Si interstitials. The presence of additional Si interstitials from an end of range (EOR) damage region accelerates the deactivation process and makes B deactivation slightly higher. We show that B deactivation and reactivation processes can be clearly correlated to the evolution of Si interstitial defects at the EOR. The minimum level of activation occurs when the Si interstitial defects at EOR dissolve or form very stable defects.

  12. Phenomenon of energy concentration in super-high energy γ-hadron families

    International Nuclear Information System (INIS)

    Dai Zhiqiang; Xue Liang; Li Jinyu; Zhang Xueyao; Feng Cunfeng; Fu Yu; Li Jie; Cao Peiyuan; Zhang Naijian; He Mao; Wang Chengrui; Ren Jingru; Lu Suiling

    2000-01-01

    The family events observed with iron emulsion chambers at Mt. Kanbala are analyzed and compared with the simulations by the COSMOS code and CORSIKA code respectively. A detailed study on the production of super-high energy γ-hadron families with energy concentration behavior is carried out. The preliminary conclusions are: 1) the energy concentration behavior of super-high energy γ-hadron families is the external embodiment of high energy central shower clusters contained in the families. 2) the mean lateral spread of these clusters is about 0.37 cm. 3) the frequency of this phenomenon appeared under the conditions of R≤10 mm and X 10 ≥90% is (20.5 +- 3.1)%. 4) compared to the COSMOS code based on the phenomenological multi-cluster model, the simulation by the CORSIKA code that adopts SIBYLL model is closer to the analytical results of experiment

  13. High concentrations of H2O2 make aerobic glycolysis energetically more favourable than cellular respiration.

    Directory of Open Access Journals (Sweden)

    Hamid R Molavian

    2016-08-01

    Full Text Available Since the original observation of the Warburg Effect in cancer cells, over eight decades ago, the major question of why aerobic glycolysis is favored over oxidative phosphorylation has remained unresolved. An understanding of this phenomenon may well be the key to the development of more effective cancer therapies. In this paper, we use a semi-empirical method to throw light on this puzzle. We show that aerobic glycolysis is in fact energetically more favorable than oxidative phosphorylation for concentrations of peroxide (H2O2 above some critical threshold value. The fundamental reason for this is the activation and high engagement of the pentose phosphate pathway (PPP in response to the production of reactive oxygen species H2O2 by mitochondria and the high concentration of H2O2 (produced by mitochondria and other sources. This makes oxidative phosphorylation an inefficient source of energy since it leads (despite high levels of ATP production to a concomitant high energy consumption in order to respond to the hazardous waste products resulting from cellular processes associated with this metabolic pathway. We also demonstrate that the high concentration of H2O2 results in an increased glucose consumption, and also increases the lactate production in the case of glycolysis.

  14. Quality evaluation of moluodan concentrated pill using high-performance liquid chromatography fingerprinting coupled with chemometrics.

    Science.gov (United States)

    Tao, Lingyan; Zhang, Qing; Wu, Yongjiang; Liu, Xuesong

    2016-12-01

    In this study, a fast and effective high-performance liquid chromatography method was developed to obtain a fingerprint chromatogram and quantitative analysis simultaneously of four indexes including gallic acid, chlorogenic acid, albiflorin and paeoniflorin of the traditional Chinese medicine Moluodan Concentrated Pill. The method was performed by using a Waters X-bridge C 18 reversed phase column on an Agilent 1200S high-performance liquid chromatography system coupled with diode array detection. The mobile phase of the high-performance liquid chromatography method was composed of 20 mmol/L phosphate solution and acetonitrile with a 1 mL/min eluent velocity, under a detection temperature of 30°C and a UV detection wavelength of 254 nm. After the methodology validation, 16 batches of Moluodan Concentrated Pill were analyzed by this high-performance liquid chromatography method and both qualitative and quantitative evaluation results were achieved by similarity analysis, principal component analysis and hierarchical cluster analysis. The results of these three chemometrics were in good agreement and all indicated that batch 10 and batch 16 showed significant differences with the other 14 batches. This suggested that the developed high-performance liquid chromatography method could be applied in the quality evaluation of Moluodan Concentrated Pill. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Vasopressin activates Akt/mTOR pathway in smooth muscle cells cultured in high glucose concentration

    Energy Technology Data Exchange (ETDEWEB)

    Montes, Daniela K.; Brenet, Marianne; Muñoz, Vanessa C.; Burgos, Patricia V.; Villanueva, Carolina I. [Department of Physiology, Universidad Austral de Chile, Valdivia 509-9200 (Chile); Figueroa, Carlos D. [Department of Anatomy, Histology and Pathology, Universidad Austral de Chile, Valdivia 509-9200 (Chile); González, Carlos B., E-mail: cbgonzal@uach.cl [Department of Physiology, Universidad Austral de Chile, Valdivia 509-9200 (Chile); Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555 (United States)

    2013-11-29

    Highlights: •AVP induces mTOR phosphorylation in A-10 cells cultured in high glucose concentration. •The mTOR phosphorylation is mediated by the PI3K/Akt pathway activation. •The AVP-induced mTOR phosphorylation inhibited autophagy and stimulated cell proliferation. -- Abstract: Mammalian target of rapamycin (mTOR) complex is a key regulator of autophagy, cell growth and proliferation. Here, we studied the effects of arginine vasopressin (AVP) on mTOR activation in vascular smooth muscle cells cultured in high glucose concentration. AVP induced the mTOR phosphorylation in A-10 cells grown in high glucose, in contrast to cells cultured in normal glucose; wherein, only basal phosphorylation was observed. The AVP-induced mTOR phosphorylation was inhibited by a PI3K inhibitor. Moreover, the AVP-induced mTOR activation inhibited autophagy and increased thymidine incorporation in cells grown in high glucose. This increase was abolished by rapamycin which inhibits the mTORC1 complex formation. Our results suggest that AVP stimulates mTOR phosphorylation by activating the PI3K/Akt signaling pathway and, subsequently, inhibits autophagy and raises cell proliferation in A-10 cells maintained in high glucose concentration.

  16. Circulating adiponectin concentration and body composition are altered in response to high-intensity interval training.

    Science.gov (United States)

    Shing, Cecilia M; Webb, Jessica J; Driller, Matthew W; Williams, Andrew D; Fell, James W

    2013-08-01

    Adiponectin influences metabolic adaptations that would prove beneficial to endurance athletes, and yet to date there is little known about the response of adiponectin concentrations to exercise, and, in particular, the response of this hormone to training in an athlete population. This study aimed to determine the response of plasma adiponectin concentrations to acute exercise after 2 different training programs and to determine the influence of the training on body composition. Seven state-level representative rowers (age: 19 ± 1.2 years [mean ± SD], height: 1.77 ± 0.10 m, body mass: 74.0 ± 10.7 kg, VO2peak 62.1 ± 7.0 ml·kg·min) participated in the double-blind, randomized crossover investigation. Rowers performed an incremental graded exercise test before and after completing 4 weeks of high-intensity interval ergometer training and 4 weeks of traditional ergometer rowing training. Rowers' body composition was assessed at baseline and after each training program. Significant increases in plasma adiponectin concentration occurred in response to maximal exercise after completion of the high-intensity interval training (p = 0.016) but not after traditional ergometer rowing training (p = 0.69). The high-intensity interval training also resulted in significant increases in mean 4-minute power output (p = 0.002) and VO2peak (p = 0.05), and a decrease in body fat percentage (p = 0.022). Mean 4-minute power output, VO2peak, and body fat percentage were not significantly different after 4 weeks of traditional ergometer rowing training (p > 0.05). Four weeks of high-intensity interval training is associated with an increase in adiponectin concentration in response to maximal exercise and a reduction in body fat percentage. The potential for changes in adiponectin concentration to reflect positive training adaptations and athlete performance level should be further explored.

  17. A high concentration of recombinant human bone morphogenetic protein-2 induces low-efficacy bone regeneration in sinus augmentation: a histomorphometric analysis in rabbits.

    Science.gov (United States)

    Hong, Ji-Youn; Kim, Min-Soo; Lim, Hyun-Chang; Lee, Jung-Seok; Choi, Seong-Ho; Jung, Ui-Won

    2016-12-01

    The aim of the study was to elucidate the efficacy of bone regeneration at the early stage of healing in rabbit sinuses grafted with a biphasic calcium phosphate (BCP) carrier soaked in a high concentration of recombinant human bone morphogenetic protein-2 (rhBMP-2). Both maxillary sinuses of eight male rabbits were used. The sinus on one side (assigned randomly) was grafted with BCP loaded with rhBMP-2 (1.5 mg/ml; test group) using a soaking method, while the other was grafted with saline-soaked BCP (control group). After a 2-week healing period, the sinuses were analyzed by micro-computed tomography and histomorphometry. The total augmented area and soft tissue space were significantly larger in the test group than in the control group, whereas the opposite was true for the area of residual material and newly formed bone. Most of the new bone in the test group was localized to the Schneiderian membrane (SM), while very little bone formation was observed in the window and center regions of the sinus. New bone was distributed evenly in the control group sinuses. Within the limitations of this study, it appeared that application of a high concentration of rhBMP-2 soaked onto a BCP carrier inhibited bone regeneration from the pristine bone and increased soft tissue swelling and inflammatory response at the early healing stage of sinus augmentation, although osteoinductive potential was found along the SM. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. Low temperature carrier transport properties in isotopically controlled germanium

    Energy Technology Data Exchange (ETDEWEB)

    Itoh, Kohei [Univ. of California, Berkeley, CA (United States)

    1994-12-01

    Investigations of electronic and optical properties of semiconductors often require specimens with extremely homogeneous dopant distributions and precisely controlled net-carrier concentrations and compensation ratios. The previous difficulties in fabricating such samples are overcome as reported in this thesis by growing high-purity Ge single crystals of controlled 75Ge and 70Ge isotopic compositions, and doping these crystals by the neutron transmutation doping (NTD) technique. The resulting net-impurity concentrations and the compensation ratios are precisely determined by the thermal neutron fluence and the [74Ge]/[70Ge] ratios of the starting Ge materials, respectively. This method also guarantees unprecedented doping uniformity. Using such samples the authors have conducted four types of electron (hole) transport studies probing the nature of (1) free carrier scattering by neutral impurities, (2) free carrier scattering by ionized impurities, (3) low temperature hopping conduction, and (4) free carrier transport in samples close to the metal-insulator transition.

  19. Ultrastable green fluorescence carbon dots with a high quantum yield for bioimaging and use as theranostic carriers

    DEFF Research Database (Denmark)

    Yang, Chuanxu; Thomsen, Rasmus Peter; Ogaki, Ryosuke

    2015-01-01

    to widely used semiconductor quantum dots. However, it remains a great challenge to prepare highly stable, water-soluble green luminescent Cdots with a high quantum yield. Herein we report a new synthesis route for green luminescent Cdots imbuing these desirable properties and demonstrate their potential...... in biomedical applications. Oligoethylenimine (OEI)–β-cyclodextrin (βCD) Cdots were synthesised using a simple and fast heating method in phosphoric acid. The synthesised Cdots showed strong green fluorescence under UV excitation with a 30% quantum yield and exhibited superior stability over a wide pH range. We...

  20. Inhibition of raw starch digestion by one glucoamylase preparation from black Aspergillus at high enzyme concentration

    Energy Technology Data Exchange (ETDEWEB)

    Saka, B C; Veda, S

    1981-09-01

    Raw starch digestion by glucoamylase I (Ab. G-I) preparation from black Aspergillus was inhibited significantly at relatively high concentration of the enzyme. The properties of this enzyme were studied together with those of another glucoamylase I (Nor. G-I), also from black Aspergillus. The two glucoamylases do not differ so much in their physico-chemical properties such as molecular weight, pH and thermal stability, pH and temperature optimum, substrate specificity, debranching activity, isoelectric point etc. The adsorption rate of both enzymes on raw starch increased by the increase of enzyme concentration. The raw starch digestion rate by adsorbed Ab. G-I, however, was decreased with the increase of concentration of enzyme whereas the same was increased in case of Nor. G-I. The inhibitory effect was weaker at 60 deg. Celcius or above. (Refs. 11).

  1. Advanced Oxidation Processes (AOPs for Refinery Wastewater Treatment Contains High Phenol Concentration

    Directory of Open Access Journals (Sweden)

    Azizah Alif Nurul

    2018-01-01

    Full Text Available Petroleum Refinery wastewater is characterized by a high phenol content. Phenol is toxic and resistant to biological processes for treatment of the petroleum refinery wastewater. The combination of an AOP and a biological process can be used for treatment of the refinery wastewater. It is necessary to conduct a study to determine the appropriate condition of AOP to meet the phenol removal level. Two AOP configurations were investigated: H2O2 / UV and H2O2 / UV / O3. From each process samples, COD, phenol and pH were measured. The oxidation was carried out until the targeted phenol concentration of treated effluent were obtained. The better result obtained by using process H2O2 / UV / O3 with the H2O2 concentration 1000 ppm. After 120 minutes, the final target has been achieved in which phenol concentration of 37.5 mg/L or phenol degradation of 93.75%.

  2. Diffusion of ion-implanted B in high concentration P- and As-doped silicon

    International Nuclear Information System (INIS)

    Fair, R.B.; Pappas, P.N.

    1975-01-01

    The diffusion of ion-implanted B in Si in the presence of a uniform background of high concentration P or As was studied by correlating numerical profile calculations with profiles determined by secondary-ion mass spectrometry (SIMS). Retarded B diffusion is observed in both As- and P-doped Si, consistent with the effect of the local Fermi-level position in the Si band gap on B diffusivity, D/sub B/. It is shown that D/sub B/ is linearly dependent on the free hole concentration, p, over the range 0.1 less than p/n/sub ie/ less than 30, where n/sub ie/ is the effective intrinsic electron concentration. This result does not depend on the way in which the background dopant has been introduced (implantation predeposition or doped-oxide source), nor the type of dopant used (P or As). (U.S.)

  3. Effect of Temperature on Chinese Rice Wine Brewing with High Concentration Presteamed Whole Sticky Rice

    Directory of Open Access Journals (Sweden)

    Dengfeng Liu

    2014-01-01

    Full Text Available Production of high quality Chinese rice wine largely depends on fermentation temperature. However, there is no report on the ethanol, sugars, and acids kinetics in the fermentation mash of Chinese rice wine treated at various temperatures. The effects of fermentation temperatures on Chinese rice wine quality were investigated. The compositions and concentrations of ethanol, sugars, glycerol, and organic acids in the mash of Chinese rice wine samples were determined by HPLC method. The highest ethanol concentration and the highest glycerol concentration both were attained at the fermentation mash treated at 23°C. The highest peak value of maltose (90 g/L was obtained at 18°C. Lactic acid and acetic acid both achieved maximum values at 33°C. The experimental results indicated that temperature contributed significantly to the ethanol production, acid flavor contents, and sugar contents in the fermentation broth of the Chinese rice wines.

  4. Effect of Temperature on Chinese Rice Wine Brewing with High Concentration Presteamed Whole Sticky Rice

    Science.gov (United States)

    Zhang, Hong-Tao; Xiong, Weili; Hu, Jianhua; Xu, Baoguo; Lin, Chi-Chung; Xu, Ling; Jiang, Lihua

    2014-01-01

    Production of high quality Chinese rice wine largely depends on fermentation temperature. However, there is no report on the ethanol, sugars, and acids kinetics in the fermentation mash of Chinese rice wine treated at various temperatures. The effects of fermentation temperatures on Chinese rice wine quality were investigated. The compositions and concentrations of ethanol, sugars, glycerol, and organic acids in the mash of Chinese rice wine samples were determined by HPLC method. The highest ethanol concentration and the highest glycerol concentration both were attained at the fermentation mash treated at 23°C. The highest peak value of maltose (90 g/L) was obtained at 18°C. Lactic acid and acetic acid both achieved maximum values at 33°C. The experimental results indicated that temperature contributed significantly to the ethanol production, acid flavor contents, and sugar contents in the fermentation broth of the Chinese rice wines. PMID:24672788

  5. Gas-solids kinetics of CuO/Al2O3 as an oxygen carrier for high-pressure chemical looping processes : the influence of the total pressure

    NARCIS (Netherlands)

    San Pio Bordeje, M.A.; Gallucci, F.; Roghair, I.; van Sint Annaland, M.

    2017-01-01

    Copper oxide on alumina is often used as oxygen carrier for chemical looping combustion owing to its very high reduction rates at lower temperatures and its very good mechanical and chemical stability at not too high temperatures. In this work, the redox kinetics of CuO/Al2O3 have been studied at

  6. Biodegradation of high concentrations of phenol by baker’s yeast in anaerobic sequencing batch reactor

    Directory of Open Access Journals (Sweden)

    Ali Asghar Najafpoor

    2015-06-01

    Full Text Available Background: Phenol, as a pure substance, is used in many fields because of its disinfectant, germicidal, local anesthetic, and peptizing properties. Aqueous solutions of phenol are produced as waste in industries and discharged into the environment. Therefore, elevated concentrations of phenol may be found in air or water because of industrial discharge or the use of phenolic products. Method: The strains of Saccharomyces cerevisiae used in this project were natural strains previously purchased from Razavy company. They were grown at 30°C on Petri plates containing yeast extract glucose (YGC and then purified by being spread onto new plates, and isolated colonies were obtained. These colonies provided the basis of selection. Prepared strains were applied in anaerobic sequencing batch reactors (ASBRs as first seed. The experiment conditions were optimized using response surface methodology (RSM. After the determined runs were performed using Design-Expert software, data were analyzed using mentioned software as well. Results: This study evaluated the capability of baker’s yeast to remove phenol in high concentrations. The tested strains showed excellent tolerance to phenol toxicity at concentrations up to 6100 mg/L. Study of the batch degradation process showed that the phenol removal rate could exceed 99.9% in 24 hours at a concentration of 1000 mg/L. The results showed catechol is the first intermediate product of phenol degradation. In survey results of the Design–Expert software, R2 and Adeq precision were 0.97 and 25.65, respectively. Conclusion: The results demonstrated that ASBR performs robustly under variable influent concentrations of inhibitory compounds. The high removal performance despite the high phenol concentration may be a result of reactor operating strategies. Based on the progressive increase of inlet phenol concentration, allowing for an enhanced biomass acclimation in a short time, results at the microbiological levels

  7. Generation of high-titer viral preparations by concentration using successive rounds of ultracentrifugation

    Directory of Open Access Journals (Sweden)

    Ichim Christine V

    2011-08-01

    Full Text Available Abstract Background Viral vectors provide a method of stably introducing exogenous DNA into cells that are not easily transfectable allowing for the ectopic expression or silencing of genes for therapeutic or experimental purposes. However, some cell types, in particular bone marrow cells, dendritic cells and neurons are difficult to transduce with viral vectors. Successful transduction of such cells requires preparation of highly concentrated viral stocks, which permit a high virus concentration and multiplicity of infection (MOI during transduction. Pseudotyping with the vesicular stomatitis virus G (VSV-G envelope protein is common practice for both lentiviral and retroviral vectors. The VSV-G glycoprotein adds physical stability to retroviral particles, allowing concentration of virus by high-speed ultracentrifugation. Here we describe a method report for concentration of virus from large volumes of culture supernatant by means of successive rounds of ultracentrifugation into the same ultracentrifuge tube. Method Stable retrovirus producer cell lines were generated and large volumes of virus-containing supernatant were produced. We then tested the transduction ability of virus following varying rounds of concentration by ultra-centrifugation. In a second series of experiments lentivirus-containing supernatant was produced by transient transfection of 297T/17 cells and again we tested the transduction ability of virus following multiple rounds of ultra-centrifugation. Results We report being able to centrifuge VSV-G coated retrovirus for as many as four rounds of ultracentrifugation while observing an additive increase in viral titer. Even after four rounds of ultracentrifugation we did not reach a plateau in viral titer relative to viral supernatant concentrated to indicate that we had reached the maximum tolerated centrifugation time, implying that it may be possible to centrifuge VSV-G coated retrovirus even further should it be necessary

  8. Inert carriers for column extraction chromatography

    International Nuclear Information System (INIS)

    Katykhin, G.S.

    1978-01-01

    Inert carriers used in column extraction chromatography are reviewed. Such carriers are devided into two large groups: hydrophilic carriers which possess high surface energy and are well wetted only with strongly polar liquids (kieselguhrs, silica gels, glasses, cellulose, Al 2 O 3 ) and water-repellent carriers which possess low surface energy and are well wetted with various organic solvents (polyethylene, polytetrafluorethylene polytrifluorochlorethylene). Properties of various carriers are presented: structure, chemical and radiation stability, adsorption properties, extracting agent capacity. The effect of structure and sizes of particles on the efficiency of chromatography columns is considered. Ways of immovable phase deposition on the carrier and the latter's regeneration. Peculiarities of column packing for preparative and continuous chromatography are discussed

  9. Performance analysis of high-concentrated multi-junction solar cells in hot climate

    Science.gov (United States)

    Ghoneim, Adel A.; Kandil, Kandil M.; Alzanki, Talal H.; Alenezi, Mohammad R.

    2018-03-01

    Multi-junction concentrator solar cells are a promising technology as they can fulfill the increasing energy demand with renewable sources. Focusing sunlight upon the aperture of multi-junction photovoltaic (PV) cells can generate much greater power densities than conventional PV cells. So, concentrated PV multi-junction solar cells offer a promising way towards achieving minimum cost per kilowatt-hour. However, these cells have many aspects that must be fixed to be feasible for large-scale energy generation. In this work, a model is developed to analyze the impact of various atmospheric factors on concentrator PV performance. A single-diode equivalent circuit model is developed to examine multi-junction cells performance in hot weather conditions, considering the impacts of both temperature and concentration ratio. The impacts of spectral variations of irradiance on annual performance of various high-concentrated photovoltaic (HCPV) panels are examined, adapting spectra simulations using the SMARTS model. Also, the diode shunt resistance neglected in the existing models is considered in the present model. The present results are efficiently validated against measurements from published data to within 2% accuracy. Present predictions show that the single-diode model considering the shunt resistance gives accurate and reliable results. Also, aerosol optical depth (AOD) and air mass are most important atmospheric parameters having a significant impact on HCPV cell performance. In addition, the electrical efficiency (η) is noticed to increase with concentration to a certain concentration degree after which it decreases. Finally, based on the model predictions, let us conclude that the present model could be adapted properly to examine HCPV cells' performance over a broad range of operating conditions.

  10. Serum vitamin E concentrations among highly functioning hip fracture patients are higher than in nonfracture controls.

    Science.gov (United States)

    D'Adamo, Christopher R; Shardell, Michelle D; Hicks, Gregory E; Orwig, Denise L; Hochberg, Marc C; Semba, Richard D; Yu-Yahiro, Janet A; Ferrucci, Luigi; Magaziner, Jay S; Miller, Ram R

    2011-03-01

    fracture patients demonstrated higher vitamin E concentrations. Thus, the relatively high degree of function among this cohort of hip fracture patients may explain their higher-than-expected vitamin E concentrations. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. Fluidized bed combustion of single coal char particles at high CO{sub 2} concentration

    Energy Technology Data Exchange (ETDEWEB)

    Scala, F.; Chirone, R. [CNR, Naples (Italy)

    2010-12-15

    Combustion of single coal char particles was studied at 850{sup o}C in a lab-scale fluidized bed at high CO{sub 2} concentration, typical of oxyfiring conditions. The burning rate of the particles was followed as a function of time by continuously measuring the outlet CO and O{sub 2} concentrations. Some preliminary evaluations on the significance of homogeneous CO oxidation in the reactor and of carbon gasification by CO{sub 2} in the char were also carried out. Results showed that the carbon burning rate increases with oxygen concentration and char particle size. The particle temperature is approximately equal to that of the bed up to an oxygen concentration of 2%, but it is considerably higher for larger oxygen concentrations. Both CO{sub 2} gasification of char and homogeneous CO oxidation are not negligible. The gasification reaction rate is slow and it is likely to be controlled by intrinsic kinetics. During purely gasification conditions the extent of carbon loss due to particle attrition by abrasion (estimated from the carbon mass balance) appears to be much more important than under combustion conditions.

  12. The method for production of high purity carrier free ortophosphoric acid labeled with isotopes Phosphorus-32 and Phosphorus-33

    International Nuclear Information System (INIS)

    Abdukayumov, M.N.; Abdusalyamov, A.N.; Chistyakov, P.G.; Yuldashev, B.S.

    2001-01-01

    Extensive application for various radioactive isotopes was found in an extremity of the 20-Th century in a science and production. Labeled compounds are used with growing effectiveness in a molecular biology, gene engineering, medicine and other areas. Phosphorus-32 and Phosphorus-33 isotopes as a different labeled compounds that are used mainly in molecular biology are produced at the Radiopreparat enterprise of the Institute of Nuclear Physics of Academy of Sciences of Uzbekistan Republic. The quality of labeled preparations is very high. The specifications for above mentioned preparations corresponds to demands most of customers in different countries. P-32 or P-33 labeled orthophosphoric acid has high radiochemical purity (more than 99 %) and specific radioactivity close to theoretical. Orthophosphoric acid prepared by the described above method has radiochemical purity about 95 % and output of the target product 99%

  13. Technical note: False low turbidity readings from optical probes during high suspended-sediment concentrations

    Science.gov (United States)

    Voichick, Nicholas; Topping, David J.; Griffiths, Ronald E.

    2018-03-01

    Turbidity, a measure of water clarity, is monitored for a variety of purposes including (1) to help determine whether water is safe to drink, (2) to establish background conditions of lakes and rivers and detect pollution caused by construction projects and stormwater discharge, (3) to study sediment transport in rivers and erosion in catchments, (4) to manage siltation of water reservoirs, and (5) to establish connections with aquatic biological properties, such as primary production and predator-prey interactions. Turbidity is typically measured with an optical probe that detects light scattered from particles in the water. Probes have defined upper limits of the range of turbidity that they can measure. The general assumption is that when turbidity exceeds this upper limit, the values of turbidity will be constant, i.e., the probe is pegged; however, this assumption is not necessarily valid. In rivers with limited variation in the physical properties of the suspended sediment, at lower suspended-sediment concentrations, an increase in suspended-sediment concentration will cause a linear increase in turbidity. When the suspended-sediment concentration in these rivers is high, turbidity levels can exceed the upper measurement limit of an optical probe and record a constant pegged value. However, at extremely high suspended-sediment concentrations, optical turbidity probes do not necessarily stay pegged at a constant value. Data from the Colorado River in Grand Canyon, Arizona, USA, and a laboratory experiment both demonstrate that when turbidity exceeds instrument-pegged conditions, increasing suspended-sediment concentration (and thus increasing turbidity) may cause optical probes to record decreasing false turbidity values that appear to be within the valid measurement range of the probe. Therefore, under high-turbidity conditions, other surrogate measurements of turbidity (e.g., acoustic-attenuation measurements or suspended-sediment samples) are necessary to

  14. Novel bioevaporation process for the zero-discharge treatment of highly concentrated organic wastewater.

    Science.gov (United States)

    Yang, Benqin; Zhang, Lei; Lee, Yongwoo; Jahng, Deokjin

    2013-10-01

    A novel process termed as bioevaporation was established to completely evaporate wastewater by metabolic heat released from the aerobic microbial degradation of the organic matters contained in the highly concentrated organic wastewater itself. By adding the glucose solution and ground food waste (FW) into the biodried sludge bed, the activity of the microorganisms in the biodried sludge was stimulated and the water in the glucose solution and FW was evaporated. As the biodegradable volatile solids (BVS) concentration in wastewater increased, more heat was produced and the water removal ratio increased. When the volatile solids (VS) concentrations of both glucose and ground FW were 120 g L(-1), 101.7% and 104.3% of the added water was removed, respectively, by completely consuming the glucose and FW BVS. Therefore, the complete removal of water and biodegradable organic contents was achieved simultaneously in the bioevaporation process, which accomplished zero-discharge treatment of highly concentrated organic wastewater. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. High Pb concentration stress on Typha latifolia growth and Pb removal in microcosm wetlands.

    Science.gov (United States)

    Han, Jianqiu; Chen, Fengzhen; Zhou, Yumei; Wang, Chaohua

    2015-01-01

    When constructed wetlands are used to treat high-Pb wastewater, Pb may become a stress to wetland plants, which subsequently reduces treatment performance and the other ecosystem services. To facilitate the design and operation of constructed wetlands for treatment of Pb-rich wastewater, we investigated the irreversible inhibitory level of Pb for Typha latifolia through experiments in microcosm wetlands. Seven horizontal subsurface flow constructed wetlands were built with rectangular plastic tanks and packed with marble chips and sand. All wetlands were transplanted with nine stems of Typha latifolia each. The wetlands were batch operated in a greenhouse with artificial wastewater (10 L each) for 12 days. Influent to the seven wetlands had different concentrations of Pb: 0 mg/L, 10 mg/L, 25 mg/L, 50 mg/L, 100 mg/L, 200 mg/L, and 500 mg/L, respectively. The results suggested that leaf chlorophyll relative content, relative growth rate, photosynthetic characteristics, activities of superoxide dismutase, peroxidase, and content of malondialdehyde were not affected when initial Pb concentration was at 100 mg/L and below. But when initial Pb concentration was above 100 mg/L, all of them were seriously affected. We conclude that high Pb concentrations wastewater could inhibit the growth of Typha latifolia and decrease the removal rate of wetlands.

  16. Investigation on the improved radiation hardness of silicon detectors with high oxygen concentration

    CERN Document Server

    Moll, Michael; Lindström, G

    2000-01-01

    We present an investigation on the influence of the oxygen concentration on radiation-induced changes in the effective doping concentration of silicon detectors. Diodes fabricated from silicon with interstitial oxygen content ranging from below 2*10/sup 14/ to 9*10/sup 17/ cm/sup -3/ have been irradiated with fast neutrons up to a fluence of 2*10/sup 15/ cm/sup -2/. Our main interest focused on the so-called stable damage component in the change of the effective doping concentration being of prime importance for the application of silicon detectors in high-energy physics experiments. We demonstrate, that with a high oxygen enrichment the donor removal is appreciably reduced, reaching a value of only 10601130f the initial doping concentration for [O/sub i/]=9*10/sup 17/ cm/sup -3/, while for normal detector grade material with [O/sub i/] below 5*10/sup 16/ cm /sup -3/ that value is 60-90Furthermore, we show that the fluence proportional introduction of stable acceptors is independent of the oxygen concentratio...

  17. Concentrate Supplement Modifies the Feeding Behavior of Simmental Cows Grazing in Two High Mountain Pastures.

    Science.gov (United States)

    Romanzin, Alberto; Corazzin, Mirco; Piasentier, Edi; Bovolenta, Stefano

    2018-05-16

    During grazing on Alpine pastures, the use of concentrates in dairy cows' diet leads to a reduction of the environmental sustainability of farms, and influences the selective pressure on some plant species. In order to minimize the use of concentrates, it is imperative to obtain data on the grazing behavior of cows. The aim of this study was to assess the effect of concentrate levels on the behavior of dairy cows during grazing. One hundred and ten lactating Italian Simmental cows, that sequentially grazed two pastures characterized by Poion alpinae (Poion) and Seslerion caeruleae (Seslerion) alliance, were considered. For each pasture, eight cows were selected and assigned to two groups: High and Low, supplemented with 4 kg/head/d, and 1 kg/head/d of concentrate respectively. Cows were equipped with a noseband pressure sensor and a pedometer (RumiWatch system, ITIN-HOCH GmbH) to assess grazing, ruminating, and walking behavior. In addition, the plant selection of the animals was assessed. On Poion, increased supplement intake caused a more intense selection of legumes, without affecting feeding and walking times. On Seslerion, grazing time was higher in Low than High. Grazing management in alpine region must take into account the great variability of pastures that largely differ from a floristic and nutritional point of view.

  18. Concentrate Supplement Modifies the Feeding Behavior of Simmental Cows Grazing in Two High Mountain Pastures

    Directory of Open Access Journals (Sweden)

    Alberto Romanzin

    2018-05-01

    Full Text Available During grazing on Alpine pastures, the use of concentrates in dairy cows’ diet leads to a reduction of the environmental sustainability of farms, and influences the selective pressure on some plant species. In order to minimize the use of concentrates, it is imperative to obtain data on the grazing behavior of cows. The aim of this study was to assess the effect of concentrate levels on the behavior of dairy cows during grazing. One hundred and ten lactating Italian Simmental cows, that sequentially grazed two pastures characterized by Poion alpinae (Poion and Seslerion caeruleae (Seslerion alliance, were considered. For each pasture, eight cows were selected and assigned to two groups: High and Low, supplemented with 4 kg/head/d, and 1 kg/head/d of concentrate respectively. Cows were equipped with a noseband pressure sensor and a pedometer (RumiWatch system, ITIN-HOCH GmbH to assess grazing, ruminating, and walking behavior. In addition, the plant selection of the animals was assessed. On Poion, increased supplement intake caused a more intense selection of legumes, without affecting feeding and walking times. On Seslerion, grazing time was higher in Low than High. Grazing management in alpine region must take into account the great variability of pastures that largely differ from a floristic and nutritional point of view.

  19. High Concentrations of Measles Neutralizing Antibodies and High-Avidity Measles IgG Accurately Identify Measles Reinfection Cases

    Science.gov (United States)

    Rota, Jennifer S.; Hickman, Carole J.; Mercader, Sara; Redd, Susan; McNall, Rebecca J.; Williams, Nobia; McGrew, Marcia; Walls, M. Laura; Rota, Paul A.; Bellini, William J.

    2016-01-01

    In the United States, approximately 9% of the measles cases reported from 2012 to 2014 occurred in vaccinated individuals. Laboratory confirmation of measles in vaccinated individuals is challenging since IgM assays can give inconclusive results. Although a positive reverse transcription (RT)-PCR assay result from an appropriately timed specimen can provide confirmation, negative results may not rule out a highly suspicious case. Detection of high-avidity measles IgG in serum samples provides laboratory evidence of a past immunologic response to measles from natural infection or immunization. High concentrations of measles neutralizing antibody have been observed by plaque reduction neutralization (PRN) assays among confirmed measles cases with high-avidity IgG, referred to here as reinfection cases (RICs). In this study, we evaluated the utility of measuring levels of measles neutralizing antibody to distinguish RICs from noncases by receiver operating characteristic curve analysis. Single and paired serum samples with high-avidity measles IgG from suspected measles cases submitted to the CDC for routine surveillance were used for the analysis. The RICs were confirmed by a 4-fold rise in PRN titer or by RT-quantitative PCR (RT-qPCR) assay, while the noncases were negative by both assays. Discrimination accuracy was high with serum samples collected ≥3 days after rash onset (area under the curve, 0.953; 95% confidence interval [CI], 0.854 to 0.993). Measles neutralizing antibody concentrations of ≥40,000 mIU/ml identified RICs with 90% sensitivity (95% CI, 74 to 98%) and 100% specificity (95% CI, 82 to 100%). Therefore, when serological or RT-qPCR results are unavailable or inconclusive, suspected measles cases with high-avidity measles IgG can be confirmed as RICs by measles neutralizing antibody concentrations of ≥40,000 mIU/ml. PMID:27335386

  20. Highly fluorescent and morphology-controllable graphene quantum dots-chitosan hybrid xerogels for in vivo imaging and pH-sensitive drug carrier

    Energy Technology Data Exchange (ETDEWEB)

    Lv, Ouyang; Tao, Yongxin; Qin, Yong [Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164 (China); Chen, Chuanxiang [School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003 (China); Pan, Yan; Deng, Linhong [Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou 213164 (China); Liu, Li [School of pharmaceutical Engineering & Life Science, Changzhou University, Changzhou 213164 (China); Kong, Yong, E-mail: yzkongyong@126.com [Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164 (China)

    2016-10-01

    Highly fluorescent graphene quantum dots (GQDs)-chitosan (CS) hybrid xerogels (GQDs-CS) were facilely synthesized, and the morphology of GQDs-CS was controllable by varying the content of GQDs in the xerogel. The GQDs-CS exhibited a porous and three-dimensional (3D) network structure when the content of GQDs reached 43% (wt%) in the xerogel, which was beneficial for drug loading and sustained release. The as-prepared GQDs-CS could also be applied for in vivo imaging since it showed strong blue, green and red luminescence under excitation of varying wavelengths. Moreover, the pH-induced protonation/deprotonation of the –NH{sub 2} groups on CS chains can result in a pH-dependent drug delivery behavior of the GQDs-CS hybrid xerogel. - Graphical abstract: Highly fluorescent and morphology-controllable graphene quantum dots-chitosan hybrid xerogels for in vivo imaging and pH-sensitive drug carrier. Display Omitted - Highlights: • Highly fluorescent GQDs-CS hybrid xerogels were facilely synthesized. • The as-made xerogels exhibited various morphologies with different GQDs contents. • The GQDs-CS exhibited a porous and 3D network when the content of GQDs reached 43%. • The GQDs-CS could be applied for in vivo imaging since it showed strong luminescence. • The protonation/deprotonation of –NH{sub 2} on CS result in a pH-dependent drug delivery.

  1. Highly fluorescent and morphology-controllable graphene quantum dots-chitosan hybrid xerogels for in vivo imaging and pH-sensitive drug carrier

    International Nuclear Information System (INIS)

    Lv, Ouyang; Tao, Yongxin; Qin, Yong; Chen, Chuanxiang; Pan, Yan; Deng, Linhong; Liu, Li; Kong, Yong

    2016-01-01

    Highly fluorescent graphene quantum dots (GQDs)-chitosan (CS) hybrid xerogels (GQDs-CS) were facilely synthesized, and the morphology of GQDs-CS was controllable by varying the content of GQDs in the xerogel. The GQDs-CS exhibited a porous and three-dimensional (3D) network structure when the content of GQDs reached 43% (wt%) in the xerogel, which was beneficial for drug loading and sustained release. The as-prepared GQDs-CS could also be applied for in vivo imaging since it showed strong blue, green and red luminescence under excitation of varying wavelengths. Moreover, the pH-induced protonation/deprotonation of the –NH_2 groups on CS chains can result in a pH-dependent drug delivery behavior of the GQDs-CS hybrid xerogel. - Graphical abstract: Highly fluorescent and morphology-controllable graphene quantum dots-chitosan hybrid xerogels for in vivo imaging and pH-sensitive drug carrier. Display Omitted - Highlights: • Highly fluorescent GQDs-CS hybrid xerogels were facilely synthesized. • The as-made xerogels exhibited various morphologies with different GQDs contents. • The GQDs-CS exhibited a porous and 3D network when the content of GQDs reached 43%. • The GQDs-CS could be applied for in vivo imaging since it showed strong luminescence. • The protonation/deprotonation of –NH_2 on CS result in a pH-dependent drug delivery.

  2. Diatomite: A promising natural candidate as carrier material for low, middle and high temperature phase change material

    International Nuclear Information System (INIS)

    Qian, Tingting; Li, Jinhong; Min, Xin; Deng, Yong; Guan, Weimin; Ning, Lei

    2015-01-01

    Graphical abstract: Low-temperature PCMs are always the objects of prime investigations, however, the field of PCMs’ applications is not limited to low temperatures only. In the present study, three kinds of PCMs: polyethylene glycol (PEG), lithium nitrate, and sodium sulfate were respectively employed as the low-, middle- and high-temperature storage medium. A series of novel form-stable phase change materials (fs-PCMs) were tailor-made by blending diatomite and the three kinds of PCMs via a vacuum impregnation method or a facile mixing and sintering method. Various techniques were employed to characterize their structural and thermal properties. - Highlights: • Low-temperature PEG/diatomite was prepared. • Middle-temperature LiNO 3 /diatomite was prepared. • High-temperature Na 2 SO 4 /diatomite was prepared. - Abstract: Low-temperature PCMs are always the objects of prime investigations, however, the field of PCM’s application is not only limited to low temperatures. In this study, polyethylene glycol (PEG), lithium nitrate (LiNO 3 ), and sodium sulfate (Na 2 SO 4 ) were respectively employed as the low-, middle- and high-temperature storage medium. A series of novel form-stable phase change materials (fs-PCMs) were tailor-made by blending diatomite and the three PCMs via a vacuum impregnation method or a facile mixing and sintering method. Various techniques were employed to characterize their structural and thermal properties. The maximum loads of PEG, LiNO 3 , and Na 2 SO 4 in diatomite powder could respectively reach 58%, 60%, and 65%, while PCM melts during the solid–liquid phase transformation. SEM, XRD, and FT-IR results indicated that PCMs were well dispersed into diatomite pores and no chemical changes took place during the heating and cooling process. The prepared fs-PCMs were quite stable in terms of thermal and chemical manner even after a 200-cycle of melting and freezing. The resulting composite fs-PCMs were promising candidates to

  3. High Concentration of Melatonin Regulates Leaf Development by Suppressing Cell Proliferation and Endoreduplication in Arabidopsis.

    Science.gov (United States)

    Wang, Qiannan; An, Bang; Shi, Haitao; Luo, Hongli; He, Chaozu

    2017-05-05

    N -acetyl-5-methoxytryptamine (Melatonin), as a crucial messenger in plants, functions in adjusting biological rhythms, stress tolerance, plant growth and development. Several studies have shown the retardation effect of exogenous melatonin treatment on plant growth and development. However, the in vivo role of melatonin in regulating plant leaf growth and the underlying mechanism are still unclear. In this study, we found that high concentration of melatonin suppressed leaf growth in Arabidopsis by reducing both cell size and cell number. Further kinetic analysis of the fifth leaves showed that melatonin remarkably inhibited cell division rate. Additionally, flow cytometic analysis indicated that melatonin negatively regulated endoreduplication during leaf development. Consistently, the expression analysis revealed that melatonin regulated the transcriptional levels of key genes of cell cycle and ribosome. Taken together, this study suggests that high concentration of melatonin negatively regulated the leaf growth and development in Arabidopsis , through modulation of endoreduplication and the transcripts of cell cycle and ribosomal key genes.

  4. High pressure-temperature electrical conductivity of magnesiowustite as a function of iron oxide concentration

    Science.gov (United States)

    Li, Xiaoyuan; Jeanloz, Raymond

    1990-01-01

    The electrical conductivity of (Mg, Fe)O magnesiowustite containing 9 and 27.5 mol pct FeO has been measured at simultaneously high pressures (30-32 GPa) and temperatures using a diamond anvil cell heated with a continuous wave Nd:YAG laser and an external resistance heater. The conductivity depends strongly on the FeO concentration at both ambient and high pressures. At the pressures and temperatures of about 30 GPa and 2000 K, conditions expected in the lower mantle, the magnesiowustite containing 27.5 percent FeO is 3 orders of magnitude more conductive than that containing 9 percent FeO. The activation energy of magnesiowustite decreases with increasing iron concentration from 0.38 (+ or - 0.09) eV at 9 percent FeO to 0.29 (+ or - 0.05) eV at 27.5 percent FeO.

  5. High concentrations of cadmium, cerium and lanthanum in indoor air due to environmental tobacco smoke

    International Nuclear Information System (INIS)

    Böhlandt, Antje; Schierl, Rudolf; Diemer, Juergen; Koch, Christoph; Bolte, Gabriele; Kiranoglu, Mandy; Fromme, Hermann; Nowak, Dennis

    2012-01-01

    Background: Environmental tobacco smoke (ETS) is one of the most important sources for indoor air pollution and a substantial threat to human health, but data on the concentrations of the trace metals cerium (Ce) and lanthanum (La) in context with ETS exposure are scarce. Therefore the aim of our study was to quantify Ce and La concentrations in indoor air with high ETS load. Methods: In two subsequent investigations Ce, La and cadmium (Cd) in 3 smokers' (11 samples) and 7 non-smokers' (28 samples) households as well as in 28 hospitality venues in Southern Germany were analysed. Active sampling of indoor air was conducted continuously for seven days in every season in the smokers' and non-smokers' residences, and for 4 h during the main visiting hours in the hospitality venues (restaurants, pubs, and discotheques). Results: In terms of residences median levels of Cd were 0.1 ng/m 3 for non-smokers' and 0.8 ng/m 3 for smokers' households. Median concentrations of Ce were 0.4 ng/m 3 and 9.6 ng/m 3 , and median concentrations of La were 0.2 ng/m 3 and 5.9 ng/m 3 for non-smokers' and for smokers' households, respectively. In the different types of hospitality venues median levels ranged from 2.6 to 9.7 ng/m 3 for Cd, from 18.5 to 50.0 ng/m 3 for Ce and from 10.6 to 23.0 ng/m 3 for La with highest median levels in discotheques. Conclusions: The high concentrations of Ce and La found in ETS enriched indoor air of smokers' households and hospitality venues are an important finding as Ce and La are associated with adverse health effects and data on this issue are scarce. Further research on their toxicological, human and public health consequences is urgently required. - Highlights: ► We quantified cer, lanthanum and cadmium concentrations in indoor air. ► Cer and lanthanum concentrations were high in tobacco smoke enriched locations. ► Both elements can be considered as good markers for indoor air quality.

  6. Probing Carrier Transport and Structure-Property Relationship of Highly Ordered Organic Semiconductors at the Two-Dimensional Limit.

    Science.gov (United States)

    Zhang, Yuhan; Qiao, Jingsi; Gao, Si; Hu, Fengrui; He, Daowei; Wu, Bing; Yang, Ziyi; Xu, Bingchen; Li, Yun; Shi, Yi; Ji, Wei; Wang, Peng; Wang, Xiaoyong; Xiao, Min; Xu, Hangxun; Xu, Jian-Bin; Wang, Xinran

    2016-01-08

    One of the basic assumptions in organic field-effect transistors, the most fundamental device unit in organic electronics, is that charge transport occurs two dimensionally in the first few molecular layers near the dielectric interface. Although the mobility of bulk organic semiconductors has increased dramatically, direct probing of intrinsic charge transport in the two-dimensional limit has not been possible due to excessive disorders and traps in ultrathin organic thin films. Here, highly ordered single-crystalline mono- to tetralayer pentacene crystals are realized by van der Waals (vdW) epitaxy on hexagonal BN. We find that the charge transport is dominated by hopping in the first conductive layer, but transforms to bandlike in subsequent layers. Such an abrupt phase transition is attributed to strong modulation of the molecular packing by interfacial vdW interactions, as corroborated by quantitative structural characterization and density functional theory calculations. The structural modulation becomes negligible beyond the second conductive layer, leading to a mobility saturation thickness of only ∼3  nm. Highly ordered organic ultrathin films provide a platform for new physics and device structures (such as heterostructures and quantum wells) that are not possible in conventional bulk crystals.

  7. Full-scale wind-tunnel tests of high-lift system modifications on a carrier based fighter aircraft

    Science.gov (United States)

    Meyn, Larry A.; Zell, Peter T.; Hagan, John L.; Schoch, David

    1993-01-01

    Modifications to the high-lift system of a full-scale F/A-I8A were tested in the 80- by 120-Foot Wind Tunnel of the National Full-Scale Aerodynamics Complex at the NASA Ames Research Center in Moffett Field, California. The objective was to measure the effect of simple modifications on the aerodynamic performance of the high-lift system. The modifications included the placement of a straight fairing in the shroud cove above the trailing-edge flap and the addition of seals to prevent air leakage through the hinge lines of the leading-edge flap, the trailing-edge shroud, and the wing fold. The test was carried out on an actual F/A-18A with it's flaps deployed in the landing approach configuration. The angle of attack ranged from 0 to 16 degrees and the wind speed was 100 knots. At an angle of attack of 8 degrees, the trimmed lift coefficient was improved by 0.09 with all wing seals in place. This corresponds to a reduction in the approach speed for the F/A-I8A of about 5 knots. The seal along the wing fold hinge, a feature present on many naval aircraft, provided one third of the total increment in trimmed lift. A comparison of the full-scale wind-tunnel results with those obtained from flight test is also presented.

  8. Hypercalcemia and high parathyroid hormone-related protein concentration associated with malignant melanoma in a dog.

    Science.gov (United States)

    Pressler, Barrak M; Rotstein, David S; Law, Jerry M; Rosol, Thomas J; LeRoy, Bruce; Keene, Bruce W; Jackson, Mark W

    2002-07-15

    A 12-year-old Cocker Spaniel with an oral malignant melanoma was evaluated for progressive lethargy and anorexia. No metastases were identified during antemortem evaluation, but severe hypercalcemia was evident. Antemortem diagnostic testing failed to identify a cause for the hypercalcemia. No neoplasms other than the melanoma were identified on postmortem examination. Serum parathyroid hormone-related protein concentration was markedly high, and the melanoma had moderate to marked immunostaining for this protein. Paraneoplastic syndromes are rare in dogs with malignant melanoma.

  9. Effect of high concentration of molybdenum on the structure and properties of niobium

    International Nuclear Information System (INIS)

    Trekina, M.I.; Vasil'eva, E.V.

    1989-01-01

    The effect of alloying of 20,25 and 30 % Mo on the structure and mechanical properties of niobium is studied. It is shown that niobium alloying with molybdenum in the studied concentration leads to grain grinding, which increases with the molybdenum content growth in the alloy. The effective energy values of recrystallization activation of the studied niobium and molybdenum alloys are determined. The high hardness level at some plasticity and deformability of niobium alloy with 20 % Mo is established

  10. Natural radionuclides in food in an area with high concentrations of radionuclides

    International Nuclear Information System (INIS)

    Pereira, W.S.; Moraes, S.R.; Cavalcante, J.J.V.; Kelecom, A.; Silva, A.X. da; Lopez, J.M.; Filgueiras, R.; Carmo, A.S.

    2017-01-01

    Areas of high natural radiation expose the local population to doses greater than the world average. One of the routes of exposure is food intake. The activity concentration (AC) of 5 natural radionuclides in 7 types of foods was analyzed. The highest CA measured was 2.40 Bq.kg -1 for the U nat in the potato. The multivariate statistic identified two groups: (U nat e 232 Th) and [( 210 Pb and 228 Ra) and 226 Ra

  11. High concentrations of heavy metals in PM from ceramic factories of Southern Spain

    Science.gov (United States)

    Sánchez de la Campa, Ana M.; de la Rosa, Jesús D.; González-Castanedo, Yolanda; Fernández-Camacho, Rocío; Alastuey, Andrés; Querol, Xavier; Pio, Casimiro

    2010-06-01

    In this study, physicochemical characterization of Atmospheric Particulate Matter (PM) was performed in an urban-industrial site background (Bailén, Southern Spain), highly influenced by the impact of emission plumes from ceramic factories. This area is considered one of the towns with the highest PM 10 levels and average SO 2 concentration in Spain. A three stages methodology was used: 1) real-time measurements of levels of PM 10 and gaseous pollutants, and sampling of PM; 2) chemical characterization using ICP-MS, ICP-OES, CI and TOT, and source apportionment analysis (receptor modelling) of PM; and 3) chemical characterization of emission plumes derived from representative factories. High ambient air concentrations were found for most major components and trace elements compared with other industrialized towns in Spain. V and Ni are considered fingerprints of PM derived from the emissions of brick factories in this area, and were shown to be of particular interest. This highlights the high V and Ni concentrations in PM 10 (122 ngV/m 3 and 23.4 ngNi/m 3), with Ni exceeding the 2013 annual target value for the European Directive 2004/107/EC (20 ng/m 3). The methodology of this work can be used by Government departments responsible for Environment and Epidemiology in planning control strategies for improving air quality.

  12. Significant relaxation of residual negative carrier in polar Alq3 film directly detected by high-sensitivity photoemission

    Science.gov (United States)

    Kinjo, Hiroumi; Lim, Hyunsoo; Sato, Tomoya; Noguchi, Yutaka; Nakayama, Yasuo; Ishii, Hisao

    2016-02-01

    Tris(8-hydroxyquinoline)aluminum (Alq3) has been widely applied as a good electron-injecting layer (EIL) in organic light-emitting diodes. High-sensitivity photoemission measurement revealed a clear photoemission by visible light, although its ionization energy is 5.7 eV. This unusual photoemission is ascribed to Alq3 anions captured by positive polarization charges. The observed electron detachment energy of the anion was about 1 eV larger than the electron affinity reported by inverse photoemission. This difference suggests that the injected electron in the Alq3 layer is energetically relaxed, leading to the reduction in injection barrier. This nature is one of the reasons why Alq3 worked well as the EIL.

  13. Direct Analysis of Proteins from Solutions with High Salt Concentration Using Laser Electrospray Mass Spectrometry

    Science.gov (United States)

    Karki, Santosh; Shi, Fengjian; Archer, Jieutonne J.; Sistani, Habiballah; Levis, Robert J.

    2018-05-01

    The detection of lysozyme, or a mixture of lysozyme, cytochrome c, and myoglobin, from solutions with varying salt concentrations (0.1 to 250 mM NaCl) is compared using laser electrospray mass spectrometry (LEMS) and electrospray ionization-mass spectrometry (ESI-MS). Protonated protein peaks were observed up to a concentration of 250 mM NaCl in the case of LEMS. In the case of ESI-MS, a protein solution with salt concentration > 0.5 mM resulted in predominantly salt-adducted features, with suppression of the protonated protein ions. The constituents in the mixture of proteins were assignable up to 250 mM NaCl for LEMS and were not assignable above a NaCl concentration of 0.5 mM for ESI. The average sodium adducts () bound to the 7+ charge state of lysozyme for LEMS measurements from salt concentrations of 2.5, 25, 50, and 100 mM NaCl are 1.71, 5.23, 5.26, and 5.11, respectively. The conventional electrospray measurements for lysozyme solution containing salt concentrations of 0.1, 1, 2, and 5 mM NaCl resulted in of 2.65, 6.44, 7.57, and 8.48, respectively. LEMS displays an approximately two orders of magnitude higher salt tolerance in comparison with conventional ESI-MS. The non-equilibrium partitioning of proteins on the surface of the charged droplets is proposed as the mechanism for the high salt tolerance phenomena observed in the LEMS measurements. [Figure not available: see fulltext.

  14. Modulating fluorescence quantum yield of highly concentrated fluorescein using differently shaped green synthesized gold nanoparticles

    International Nuclear Information System (INIS)

    John, Jisha; Thomas, Lincy; Kurian, Achamma; George, Sajan D.

    2016-01-01

    The interaction of dye molecules with differently shaped nanoparticles is of great interest owing to the potential applications in areas of bioimaging, sensing and photodynamic therapy (biology) as well as solar cells (photonics) applications. For such applications, noble metallic nanoparticles are commonly employed to either enhance or quench the luminescence of a nearby fluorophore. However, in most of the studies, the dye concentration is limited to avoid self-quenching. This paper reports the influence of differently shaped gold nanoparticles (spherical, bean and star), prepared via green synthesis, on the emission behavior as well as on the fluorescence quantum yield of fluorescein dye at concentrations for which self-quenching occurs. The emission behavior is probed via laser based steady state fluorescence whereas quantum yield is measured using a dual beam laser based thermal lens technique. The experimentally observed fluorescence quenching with a concomitant increase in thermal lens signal in the vicinity of nanoparticles are explained in terms of nonradiative energy transfer between the donor and the acceptor. Further, the influence of pH of the prepared gold nanofluid on the absorption, emission as well as quantum yield are also accounted. These studies elucidate that even at high concentrations of dye, the gold nanoparticle and its shape clearly influences the optical properties of nearby dye molecules and thus can be exploited for future applications. - Highlights: • Green synthesis of differently shaped gold nanoparticles. • Tailoring emission properties of fluorescein with respect to nanoparticle concentration and shape. • Tailoring the quantum yield of highly concentrated fluorescein with nanoparticles.

  15. Investigation on the improved radiation hardness of silicon detectors with high oxygen concentration

    International Nuclear Information System (INIS)

    Moll, M.; Fretwurst, E.; Lindstroem, G.

    2000-01-01

    We present an investigation on the influence of the oxygen concentration on radiation-induced changes in the effective doping concentration of silicon detectors. Diodes fabricated from silicon with interstitial oxygen content ranging from below 2x10 14 to 9x10 17 cm -3 have been irradiated with fast neutrons up to a fluence of 2x10 15 cm -2 . Our main interest focused on the so-called stable damage component in the change of the effective doping concentration being of prime importance for the application of silicon detectors in high-energy physics experiments. We demonstrate, that with a high oxygen enrichment the donor removal is appreciably reduced, reaching a value of only 10% of the initial doping concentration for [O i ]=9x10 17 cm -3 , while for normal detector grade material with [O i ] below 5x10 16 cm -3 that value is 60-90%. Furthermore, we show that the fluence proportional introduction of stable acceptors is independent of the oxygen concentration with an averaged introduction rate of (1.49±0.03)x10 -2 cm -1 . Only one material was found exhibiting a significantly smaller value of about 0.6x10 -2 cm -1 and thus indicating the possibility to suppress the radiation-induced acceptor creation by material modification. Finally, we show that the experimental findings disagree in several important aspects with predictions made by microscopic defect kinetics models, leaving the physical background of some of the measured data as an open question

  16. On the peculiarities of LDA method in two-phase flows with high concentrations of particles

    Science.gov (United States)

    Poplavski, S. V.; Boiko, V. M.; Nesterov, A. U.

    2016-10-01

    Popular applications of laser Doppler anemometry (LDA) in gas dynamics are reviewed. It is shown that the most popular method cannot be used in supersonic flows and two-phase flows with high concentrations of particles. A new approach to implementation of the known LDA method based on direct spectral analysis, which offers better prospects for such problems, is presented. It is demonstrated that the method is suitable for gas-liquid jets. Owing to the progress in laser engineering, digital recording of spectra, and computer processing of data, the method is implemented at a higher technical level and provides new prospects of diagnostics of high-velocity dense two-phase flows.

  17. Chip-carrier thermal barrier and its impact on lateral thermal lens profile and beam parameter product in high power broad area lasers

    Science.gov (United States)

    Rieprich, J.; Winterfeldt, M.; Kernke, R.; Tomm, J. W.; Crump, P.

    2018-03-01

    High power broad area diode lasers with high optical power density in a small focus spot are in strong commercial demand. For this purpose, the beam quality, quantified via the beam parameter product (BPP), has to be improved. Previous studies have shown that the BPP is strongly affected by current-induced heating and the associated thermal lens formed within the laser stripe. However, the chip structure and module-assembly related factors that regulate the size and the shape of the thermal lens are not well known. An experimental infrared thermographic technique is used to quantify the thermal lens profile in diode lasers operating at an emission wavelength of 910 nm, and the results are compared with finite element method simulations. The analysis indicates that the measured thermal profiles can best be explained when a thermal barrier is introduced between the chip and the carrier, which is shown to have a substantial impact on the BPP and the thermal resistance. Comparable results are observed in further measurements of samples from multiple vendors, and the barrier is only observed for junction-down (p-down) mounting, consistent with the barrier being associated with the GaAs-metal transition.

  18. 4-Aminobenzoic Acid-Coated Maghemite Nanoparticles as Potential Anticancer Drug Magnetic Carriers: A Case Study on Highly Cytotoxic Cisplatin-Like Complexes Involving 7-Azaindoles

    Directory of Open Access Journals (Sweden)

    Pavel Štarha

    2014-01-01

    Full Text Available This study describes a one-pot synthesis of superparamagnetic maghemite-based 4-aminobenzoic acid-coated spherical core-shell nanoparticles (PABA@FeNPs as suitable nanocomposites potentially usable as magnetic carriers for drug delivery. The PABA@FeNPs system was subsequently functionalized by the activated species (1* and 2* of highly in vitro cytotoxic cis-[PtCl2(3Claza2] (1; 3Claza stands for 3-chloro-7-azaindole or cis-[PtCl2(5Braza2] (2; 5Braza stands for 5-bromo-7-azaindole, which were prepared by a silver(I ion assisted dechlorination of the parent dichlorido complexes. The products 1*@PABA@FeNPs and 2*@PABA@FeNPs, as well as an intermediate PABA@FeNPs, were characterized by a combination of various techniques, such as Mössbauer, FTIR and EDS spectroscopy, thermal analysis, SEM and TEM. The results showed that the products consist of well-dispersed maghemite-based nanoparticles of 13 nm average size that represent an easily obtainable system for delivery of highly cytotoxic cisplatin-like complexes in oncological practice.

  19. Proposal of a broadband, polarization-insensitive and high-efficiency hot-carrier schottky photodetector integrated with a plasmonic silicon ridge waveguide

    International Nuclear Information System (INIS)

    Yang, Liu; Kou, Pengfei; Shen, Jianqi; Lee, El Hang; He, Sailing

    2015-01-01

    We propose a broadband, polarization-insensitive and high-efficiency plasmonic Schottky diode for detection of sub-bandgap photons in the optical communication wavelength range through internal photoemission (IPE). The distinctive features of this design are that it has a gold film covering both the top and the sidewalls of a dielectric silicon ridge waveguide with the Schottky contact formed at the gold–silicon interface and the sidewall coverage of gold can be easily tuned by an insulating layer. An extensive physical model on IPE of hot carriers is presented in detail and is applied to calculate and examine the performance of this detector. In comparison with a diode having only the top gold contact, the polarization sensitivity of the responsivity is greatly minimized in our photodetector with gold film covering both the top and the sidewall. Much higher responsivities for both polarizations are also achieved over a broad wavelength range of 1.2–1.6 μm. Moreover, the Schottky contact is only 4 μm long, leading to a very small dark current. Our design is very promising for practical applications in high-density silicon photonic integration. (paper)

  20. Strength-controllable graphene oxide amphiprotic aerogels as highly efficient carrier for anionic and cationic azo molecules

    Science.gov (United States)

    Xiong, Jiaqing; Jiao, Chenlu; Xu, Sijun; Tao, Jin; Zhang, Desuo; Lin, Hong; Chen, Yuyue

    2015-06-01

    Ice-bath self-assembly was employed to fabricate the GO/AP-MCC/CS aerogel based on natural materials. The components are amphiprotic microcrystalline cellulose (AP-MCC), chitosan (CS), and graphene oxide (GO), which act as the main framework, auxiliary framework and adhesive, respectively. The results of characterization determines the components form the GO/AP-MCC/CS aerogel according to chemical interactions. The mechanical properties depend largely on the mass ratio of AP-MCC/CS, which can be regulated by controlling the contents of AP-MCC and CS. The resultant GO/AP-MCC/CS aerogel was observed possessing three-dimensional (3D) interpenetrating porous networks with wrinkled structure on the inner wall, which provide a good encapsulation capacity for the guest molecules. As expected, owing to the amphiprotic properties and large specific surface area, GO/AP-MCC/CS aerogel exhibits high-efficiency load capacity for both anionic (CR) and cationic azo molecules (MB), which can reach up to about 132.2 mg/g for CR and 123.2 mg/g for MB, respectively.

  1. Estimating NOx emissions and surface concentrations at high spatial resolution using OMI

    Science.gov (United States)

    Goldberg, D. L.; Lamsal, L. N.; Loughner, C.; Swartz, W. H.; Saide, P. E.; Carmichael, G. R.; Henze, D. K.; Lu, Z.; Streets, D. G.

    2017-12-01

    In many instances, NOx emissions are not measured at the source. In these cases, remote sensing techniques are extremely useful in quantifying NOx emissions. Using an exponential modified Gaussian (EMG) fitting of oversampled Ozone Monitoring Instrument (OMI) NO2 data, we estimate NOx emissions and lifetimes in regions where these emissions are uncertain. This work also presents a new high-resolution OMI NO2 dataset derived from the NASA retrieval that can be used to estimate surface level concentrations in the eastern United States and South Korea. To better estimate vertical profile shape factors, we use high-resolution model simulations (Community Multi-scale Air Quality (CMAQ) and WRF-Chem) constrained by in situ aircraft observations to re-calculate tropospheric air mass factors and tropospheric NO2 vertical columns during summertime. The correlation between our satellite product and ground NO2 monitors in urban areas has improved dramatically: r2 = 0.60 in new product, r2 = 0.39 in operational product, signifying that this new product is a better indicator of surface concentrations than the operational product. Our work emphasizes the need to use both high-resolution and high-fidelity models in order to re-calculate vertical column data in areas with large spatial heterogeneities in NOx emissions. The methodologies developed in this work can be applied to other world regions and other satellite data sets to produce high-quality region-specific emissions estimates.

  2. Comparison of Low Concentration and High Concentration Arsenic Removal Techniques and Evaluation of Concentration of Arsenic in Ground Water: A Case Study of Lahore, Pakistan

    International Nuclear Information System (INIS)

    Yasar, Abdullah; Tabinda, Amtul Bari; Shahzadi, Uzma; Saleem, Pakeeza

    2014-01-01

    The main focus of this study was the evaluation of arsenic concentration in the ground water of Lahore at different depth and application of different mitigation techniques for arsenic removal. Twenty four hours of solar oxidation gives 90% of arsenic removal as compared to 8 hr. or 16 hr. Among oxides, calcium oxide gives 96% of As removal as compared to 93% by lanthanum oxide. Arsenic removal efficiency was up to 97% by ferric chloride, whereas 95% by alum. Activated alumina showed 99% removal as compared to 97% and 95% removal with bauxite and charcoal, respectively. Elemental analysis of adsorbents showed that the presence of phosphate and silica can cause a reduction of arsenic removal efficiency by activated alumina, bauxite and charcoal. This study has laid a foundation for further research on arsenic in the city of Lahore and has also provided suitable techniques for arsenic removal

  3. Comparison of Low Concentration and High Concentration Arsenic Removal Techniques and Evaluation of Concentration of Arsenic in Ground Water: A Case Study of Lahore, Pakistan

    Energy Technology Data Exchange (ETDEWEB)

    Yasar, Abdullah; Tabinda, Amtul Bari; Shahzadi, Uzma; Saleem, Pakeeza [GC University, Lahore (Pakistan)

    2014-10-15

    The main focus of this study was the evaluation of arsenic concentration in the ground water of Lahore at different depth and application of different mitigation techniques for arsenic removal. Twenty four hours of solar oxidation gives 90% of arsenic removal as compared to 8 hr. or 16 hr. Among oxides, calcium oxide gives 96% of As removal as compared to 93% by lanthanum oxide. Arsenic removal efficiency was up to 97% by ferric chloride, whereas 95% by alum. Activated alumina showed 99% removal as compared to 97% and 95% removal with bauxite and charcoal, respectively. Elemental analysis of adsorbents showed that the presence of phosphate and silica can cause a reduction of arsenic removal efficiency by activated alumina, bauxite and charcoal. This study has laid a foundation for further research on arsenic in the city of Lahore and has also provided suitable techniques for arsenic removal.

  4. A highly concentrated diet increases biogas production and the agronomic value of young bull's manure.

    Science.gov (United States)

    Mendonça Costa, Mônica Sarolli Silva de; Lucas, Jorge de; Mendonça Costa, Luiz Antonio de; Orrico, Ana Carolina Amorim

    2016-02-01

    The increasing demand for animal protein has driven significant changes in cattle breeding systems, mainly in feedlots, with the use of young bulls fed on diets richer in concentrate (C) than in forage (F). These changes are likely to affect animal manure, demanding re-evaluation of the biogas production per kg of TS and VS added, as well as of its agronomic value as a biofertilizer, after anaerobic digestion. Here, we determined the biogas production and agronomic value (i.e., the macronutrient concentration in the final biofertilizer) of the manure of young bulls fed on diets with more (80% C+20% F; 'HighC' diet) or less (65% C+35% F; 'LowC' diet) concentrate, evaluating the effects of temperature (25, 35, and 40°C) and the use of an inoculum, during anaerobic digestion. A total of 24 benchtop reactors were used, operating in a semi-continuous system, with a 40-day hydraulic retention time (HRT). The manure from animals given the HighC diet had the greatest potential for biogas production, when digested with the use of an inoculum and at 35 or 40°C (0.6326 and 0.6207m(3)biogas/kg volatile solids, or VS, respectively). We observed the highest levels of the macronutrients N, P, and K in the biofertilizer from the manure of animals given HighC. Our results show that the manure of young bulls achieves its highest potential for biogas production and agronomic value when animals are fed diets richer in concentrate, and that biogas production increases if digestion is performed at higher temperatures, and with the use of an inoculum. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. High fetal plasma adenosine concentration: a role for the fetus in preeclampsia?

    LENUS (Irish Health Repository)

    Espinoza, Jimmy

    2012-02-01

    OBJECTIVE: Clinical observations suggest a role for the fetus in the maternal manifestations of preeclampsia, but the possible signaling mechanisms remain unclear. This study compares the fetal plasma concentrations of adenosine from normal pregnancies with those from preeclampsia. STUDY DESIGN: This secondary data analysis included normal pregnancies (n = 27) and patients with preeclampsia (n = 39). Patients with preeclampsia were subclassified into patients with (n = 25) and without (n = 14) abnormal uterine artery Doppler velocimetry (UADV). RESULTS: Fetal plasma concentrations of adenosine were significantly higher in patients with preeclampsia (1.35 +\\/- 0.09 mumol\\/L) than in normal pregnancies (0.52 +\\/- 0.06 mumol\\/L; P < .0001). Fetal plasma concentrations of adenosine in patients with preeclampsia with abnormal UADV (1.78 +\\/- 0.15 mumol\\/L), but not with normal UADV (0.58 +\\/- 0.14 mumol\\/L), were significantly higher than in normal pregnancies (P < .0001). CONCLUSION: Patients with preeclampsia with sonographic evidence of chronic uteroplacental ischemia have high fetal plasma concentrations of adenosine.

  6. Origin of methane and sources of high concentrations in Los Angeles groundwater

    Science.gov (United States)

    Kulongoski, Justin; McMahon, Peter B.; Land, Michael; Wright, Michael; Johnson, Theodore; Landon, Matthew K.

    2018-01-01

    In 2014, samples from 37 monitoring wells at 17 locations, within or near oil fields, and one site >5 km from oil fields, in the Los Angeles Basin, California, were analyzed for dissolved hydrocarbon gas isotopes and abundances. The wells sample a variety of depths of an aquifer system composed of unconsolidated and semiconsolidated sediments under various conditions of confinement. Concentrations of methane in groundwater samples ranged from 0.002 to 150 mg/L—some of the highest concentrations reported in a densely populated urban area. The δ13C and δ2H of the methane ranged from −80.8 to −45.5 per mil (‰) and −249.8 to −134.9‰, respectively, and, along with oxidation‐reduction processes, helped to identify the origin of methane as microbial methanogenesis and CO2 reduction as its main formation pathway. The distribution of methane concentrations and isotopes is consistent with the high concentrations of methane in Los Angeles Basin groundwater originating from relatively shallow microbial production in anoxic or suboxic conditions. Source of the methane is the aquifer sediments rather than the upward migration or leakage of thermogenic methane associated with oil fields in the basin.

  7. The ability of fungus Mucor racemosus Fresenius to degrade high concentration of detergent

    Directory of Open Access Journals (Sweden)

    Jakovljević Violeta D.

    2014-01-01

    Full Text Available The ability of fungus Mucor racemosus Fresenius to decompose high concentration of commercial detergent (MERIX, Henkel, Serbia was investigated in this study. Fungus was cultivated in liquid growth medium by Czapek with addition of detergent at concentration 0.5% during 16 days. The biochemical changes of pH, redox potential, amount of free and total organic acids, and activity of alkaline phosphatase were evaluated by analysis of fermentation broth. Simultaneously, biodegradation percentage of anionic surfactant of tested detergent was confirmed by MBAS assay. At the same time, the influence of detergent on fungal growth and total dry weight biomass was determined. Detergent at concentration 0.5% influenced on decreasing of pH value and increasing of redox potential as well as increasing of free and total organic acids. Enzyme activity of alkaline phosphatase was reduced by detergent at concentration 0.5%. The fungus was decomposed about 62% of anionic surfactant during 16 day. Due to fungus was produced higher dry weight biomass (53% in relation to control. [Projekat Ministarstva nauke Republike Srbije, br. III 43004

  8. Is a high serum copper concentration a risk factor for implantation failure?

    Science.gov (United States)

    Matsubayashi, Hidehiko; Kitaya, Kotaro; Yamaguchi, Kohei; Nishiyama, Rie; Takaya, Yukiko; Ishikawa, Tomomoto

    2017-08-10

    Copper-containing contraceptive devices may deposit copper ions in the endometrium, resulting in implantation failure. The deposition of copper ions in many organs has been reported in patients with untreated Wilson's disease. Since these patients sometimes exhibit subfertility and/or early pregnancy loss, copper ions were also considered to accumulate in the uterine endometrium. Wilson's disease patients treated with zinc successfully delivered babies because zinc interfered with the absorption of copper from the gastrointestinal tract. These findings led to the hypothesis that infertile patients with high serum copper concentrations may have implantation failure due to the excess accumulation of copper ions. The relationship between implantation (pregnancy) rates and serum copper concentrations has not yet been examined. The Japanese government recently stated that actual copper intake was higher among Japanese than needed. Therefore, the aim of the present study was to investigate whether serum copper concentrations are related to the implantation (pregnancy) rates of human embryos in vivo. We included 269 patients (age copper, and zinc concentrations were measured 16 days after the first date of progesterone replacement. We compared 96 women who were pregnant without miscarriage at 10 weeks of gestation (group P) and 173 women who were not pregnant (group NP). No significant differences were observed in age or BMI between the groups. Copper concentrations were significantly higher in group NP (average 193.2 μg/dL) than in group P (average 178.1 μg/dL). According to the area under the curve (AUC) on the receiver operating characteristic curve for the prediction of clinical pregnancy rates, the Cu/Zn ratio (AUC 0.64, 95% CI 0.54-0.71) was a better predictor than copper or zinc. When we set the cut-off as 1.59/1.60 for the Cu/Zn ratio, sensitivity, specificity, the positive predictive value, and negative predictive value were 0.98, 0.29, 0.71, and 0

  9. Highly Stable Operation of Lithium Metal Batteries Enabled by the Formation of a Transient High Concentration Electrolyte Layer

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Jianming; Yan, Pengfei; Mei, Donghai; Engelhard, Mark H.; Cartmell, Samuel S.; Polzin, Bryant; Wang, Chong M.; Zhang, Jiguang; Xu, Wu

    2016-02-08

    Lithium (Li) metal has been extensively investigated as an anode for rechargeable battery applications due to its ultrahigh specific capacity and the lowest redox potential. However, significant challenges including dendrite growth and low Coulombic efficiency are still hindering the practical applications of rechargeable Li metal batteries. Here, we demonstrate that long-term cycling of Li metal batteries can be realized by the formation of a transient high concentration electrolyte layer near the surface of Li metal anode during high rate discharge process. The highly concentrated Li+ ions in this transient layer will immediately solvate with the available solvent molecules and facilitate the formation of a stable and flexible SEI layer composed of a poly(ethylene carbonate) framework integrated with other organic/inorganic lithium salts. This SEI layer largely suppresses the corrosion of Li metal anode by free organic solvents and enables the long-term operation of Li metal batteries. The fundamental findings in this work provide a new direction for the development and operation of Li metal batteries that could be operated at high current densities for a wide range of applications.

  10. Hydrogen-bonded structure in highly concentrated aqueous LiBr solutions

    International Nuclear Information System (INIS)

    Imano, Masahiro; Kameda, Yasuo; Usuki, Takeshi; Uemura, Osamu

    2001-01-01

    Neutron diffraction measurements were carried out for H/D isotopically substituted aqueous 10, 25 and 33 mol% LiBr solutions in order to obtain structural information on the intermolecular hydrogen bonds among water molecules in highly concentrated aqueous solutions. Observed scattering cross sections for D 2 O (99.9 % D), 0 H 2 O(35.9 % D) and 0-2 H 2 O(68.0 % D) solutions were combined to deduce partial structure factors, a HH (Q), a XH (Q) and a XX (Q) (X: O, Br and Li). The least squares fitting analysis was applied to the observed partial structure factors to determine the nearest neighbor interatomic distance, root-mean-square amplitude and coordination number. Intermolecular distances, r OH =1.91(1) A, r HH =2.38(1) A and r OO =3.02(1) A, between the nearest neighbor water molecules, were obtained for the 10 mol% LiBr solution. On the other hand, the intermolecular O···H interaction was found to almost disappear in concentrated 25 and 33 mol% LiBr solutions. The result implies that the hydrogen-bonded network is completely broken in highly concentrated aqueous LiBr solutions. (author)

  11. Analysis of serotonin concentrations in human milk by high-performance liquid chromatography with fluorescence detection.

    Science.gov (United States)

    Chiba, Takeshi; Maeda, Tomoji; Tairabune, Tomohiko; Tomita, Takashi; Sanbe, Atsushi; Takeda, Rika; Kikuchi, Akihiko; Kudo, Kenzo

    2017-03-25

    Serotonin (5-hydroxytryptamine, 5-HT) plays an important role in milk volume homeostasis in the mammary gland during lactation; 5-HT in milk may also affect infant development. However, there are few reports on 5-HT concentrations in human breast milk. To address this issue, we developed a simple method based on high-performance liquid chromatography with fluorescence detection (HPLC-FD) for measuring 5-HT concentrations in human breast milk. Breast milk samples were provided by four healthy Japanese women. Calibration curves for 5-HT in each sample were prepared with the standard addition method between 5 and 1000 ng/ml, and all had correlation coefficients >0.999. The recovery of 5-HT was 96.1%-101.0%, with a coefficient of variation of 3.39%-8.62%. The range of 5-HT concentrations estimated from the calibration curves was 11.1-51.1 ng/ml. Thus, the HPLC-FD method described here can effectively extract 5-HT from human breast milk with high reproducibility. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Tailoring Microbial Electrochemical Cells for Production of Hydrogen Peroxide at High Concentrations and Efficiencies.

    Science.gov (United States)

    Young, Michelle N; Links, Mikaela J; Popat, Sudeep C; Rittmann, Bruce E; Torres, César I

    2016-12-08

    A microbial peroxide producing cell (MPPC) for H 2 O 2 production at the cathode was systematically optimized with minimal energy input. First, the stability of H 2 O 2 was evaluated using different catholytes, membranes, and catalyst materials. On the basis of these results, a flat-plate MPPC fed continuously using 200 mm NaCl catholyte at a 4 h hydraulic retention time was designed and operated, producing H 2 O 2 for 18 days. H 2 O 2 concentration of 3.1 g L -1 H 2 O 2 with 1.1 Wh g -1 H 2 O 2 power input was achieved in the MPPC. The high H 2 O 2 concentration was a result of the optimum materials selected. The small energy input was largely the result of the 0.5 cm distance between the anode and cathode, which reduced ionic transport losses. However, >50 % of operational overpotentials were due to the 4.5-5 pH unit difference between the anode and cathode chambers. The results demonstrate that a MPPC can continuously produce H 2 O 2 at high concentration by selecting compatible materials and appropriate operating conditions. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Leaching of copper concentrates with high arsenic content in chlorine-chloride media

    International Nuclear Information System (INIS)

    Herreros, O.; Fuentes, G.; Quiroz, R.; Vinals, J.

    2003-01-01

    This work reports the results of copper concentrates leaching which have high arsenic concepts (up to 2.5%). The treatments were carried out using chlorine that forms from sodium hypochlorite and sulphuric acid. The aim of this work is to obtain a solution having high copper content 4 to 6 g/l and 5 to 7 g/l free acid in order to submit it directly to a solvent extraction stage. In addition, this solution should have minimum content of arsenic and chloride ions. To carry out this investigation, an acrylic reactor was constructed where the leaching tests were made at constant temperature in a thermostatic bath under atmospheric pressure. The concentrate samples were obtained from mineral processing plants from Antofagasta, Chile. Typical variables were studied, such as leaching agent concentration, leaching time, pulp density and temperature among others. Some of the residues were analyzed by XRD and EPS. On the other hand, the solutions were analyzed by Atomic Absorption Spectroscopy. The results indicate solutions having the contents stated above can be obtained. (Author) 19 refs

  14. Research on high-temperature heat receiver in concentrated solar radiation system

    Directory of Open Access Journals (Sweden)

    Estera Przenzak

    2017-01-01

    Full Text Available The article presents the results of experimental and computer simulations studies of the high temperature heat receiver working in the concentrated solar radiation system. In order to study the radiation absorption process and heat exchange, the two types of computer simulations were carried out. The first one was used to find the best location for absorber in the concentrating installation. Ray Tracing Monte Carlo (RTMC method in Trace Pro software was used to perform the optical simulations. The results of these simulations were presented in the form of the solar radiation distribution map and chart. The data obtained in RTMC simulations were used as a second type boundary conditions for Computational Fluid Dynamics (CFD simulations. These studies were used to optimize the internal geometry of the receiver and also to select the most effective flow parameters of the working medium. In order to validate the computer simulations, high temperature heat receiver was tested in experimental conditions. The article presents the results of experimental measurements in the form of temperature, radiation intensity and power graphs. The tests were performed for varied flow rate and receiver location. The experimental and computer simulation studies presented in this article allowed to optimize the configuration of concentrating and heat receiving system.

  15. High Efficiency Nanostructured III-V Photovoltaics for Solar Concentrator Application

    Energy Technology Data Exchange (ETDEWEB)

    Hubbard, Seth

    2012-09-12

    The High Efficiency Nanostructured III-V Photovoltaics for Solar Concentrators project seeks to provide new photovoltaic cells for Concentrator Photovoltaics (CPV) Systems with higher cell efficiency, more favorable temperature coefficients and less sensitivity to changes in spectral distribution. The main objective of this project is to provide high efficiency III-V solar cells that will reduce the overall cost per Watt for power generation using CPV systems.This work is focused both on a potential near term application, namely the use of indium arsenide (InAs) QDs to spectrally "tune" the middle (GaAs) cell of a SOA triple junction device to a more favorable effective bandgap, as well as the long term goal of demonstrating intermediate band solar cell effects. The QDs are confined within a high electric field i-region of a standard GaAs solar cell. The extended absorption spectrum (and thus enhanced short circuit current) of the QD solar cell results from the increase in the sub GaAs bandgap spectral response that is achievable as quantum dot layers are introduced into the i-region. We have grown InAs quantum dots by OMVPE technique and optimized the QD growth conditions. Arrays of up to 40 layers of strain balanced quantum dots have been experimentally demonstrated with good material quality, low residual stain and high PL intensity. Quantum dot enhanced solar cells were grown and tested under simulated one sun AM1.5 conditions. Concentrator solar cells have been grown and fabricated with 5-40 layers of QDs. Testing of these devices show the QD cells have improved efficiency compared to baseline devices without QDs. Device modeling and measurement of thermal properties were performed using Crosslight APSYS. Improvements in a triple junction solar cell with the insertion of QDs into the middle current limiting junction was shown to be as high as 29% under one sun illumination for a 10 layer stack QD enhanced triple junction solar cell. QD devices have strong

  16. Process evaluation of enzymatic hydrolysis with filtrate recycle for the production of high concentration sugars.

    Science.gov (United States)

    Xue, Ying; Rusli, Jannov; Chang, Hou-Min; Phillips, Richard; Jameel, Hasan

    2012-02-01

    Process simulation and lab trials were carried out to demonstrate and confirm the efficiency of the concept that recycling hydrolysate at low total solid enzymatic hydrolysis is one of the options to increase the sugar concentration without mixing problems. Higher sugar concentration can reduce the capital cost for fermentation and distillation because of smaller retention volume. Meanwhile, operation cost will also decrease for less operating volume and less energy required for distillation. With the computer simulation, time and efforts can be saved to achieve the steady state of recycling process, which is the scenario for industrial production. This paper, to the best of our knowledge, is the first paper discussing steady-state saccharification with recycling of the filtrate form enzymatic hydrolysis to increase sugar concentration. Recycled enzymes in the filtrate (15-30% of the original enzyme loading) resulted in 5-10% higher carbohydrate conversion compared to the case in which recycled enzymes were denatured. The recycled hydrolysate yielded 10% higher carbohydrate conversion compared to pure sugar simulated hydrolysate at the same enzyme loading, which indicated hydrolysis by-products could boost enzymatic hydrolysis. The high sugar concentration (pure sugar simulated) showed inhibition effect, since about 15% decrease in carbohydrate conversion was observed compared with the case with no sugar added. The overall effect of hydrolysate recycling at WinGEMS simulated steady-state conditions with 5% total solids was increasing the sugar concentration from 35 to 141 g/l, while the carbohydrate conversion was 2% higher for recycling at steady state (87%) compared with no recycling strategy (85%). Ten percent and 15% total solid processes were also evaluated in this study.

  17. Bleaching and enamel surface interactions resulting from the use of highly-concentrated bleaching gels.

    Science.gov (United States)

    Grazioli, Guillermo; Valente, Lisia Lorea; Isolan, Cristina Pereira; Pinheiro, Helena Alves; Duarte, Camila Gonçalves; Münchow, Eliseu Aldrighi

    2018-03-01

    Tooth bleaching is considered a non-invasive treatment, although the use of highly-concentrated products may provoke increased surface roughness and enamel demineralization, as well as postoperative sensitivity. Thus, the aim of this study was to investigate whether hydrogen peroxide (H 2 O 2 ) concentration would affect tooth bleaching effectiveness and the enamel surface properties. Enamel/dentin bovine specimens (6 × 4 mm) were immersed in coffee solution for 7 days and evaluated with a spectrophotometer (Easyshade; baseline), using the CIEL * a * b * color parameters. Hardness was measured using a hardness tester. The specimens were randomly assigned into four groups: one negative control, in which the specimens were not bleached, but they were irradiated with a laser-light source (Whitening Lase II, DMC Equipments); and three groups using distinct H 2 O 2 concentration, namely LP15% (15% Lase Peroxide Lite), LP25% (25% Lase Peroxide Sensy), and LP35% (35% Lase Peroxide Sensy), all products from DMC. The bleached specimens were also irradiated with the laser-light source. After bleaching, all specimens were evaluated using scanning electron microscopy (SEM). pH kinetics and rate was monitored during bleaching. The data were analyzed using ANOVA and Tukey's test (p bleaching gels produced similar color change (p > 0.05). Concerning hardness, only the LP25% and LP35% significantly reduced hardness after bleaching; also, there was a progressive tendency for a greater percentage reduction in hardness with increased H 2 O 2 concentration of the gel (R 2  = 0.9973, p bleaching effectiveness, and may increase the possibility for alteration of enamel hardness, surface morphology, and acidity of the medium. When using H 2 O 2 -based bleaching agents, dental practitioners should choose for less concentrated gels, e.g., around the 15% level. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Diagnostic of N2(A) concentration in high velocity nitrogen afterglow at atmospheric pressure

    Science.gov (United States)

    Pointu, Anne-Marie; Mintusov, Evgeny

    2009-10-01

    An optical emission diagnostic was used to measure N2(A) concentration in a high velocity (1000 cm/s) N2 flowing afterglow of corona discharge at atmospheric pressure, used for biological decontamination. Introducing impurities of NO (measured at different axial distances and for different values of NO injected flow. Moreover, it has been demonstrated that N2(A) creation comes from N+N+N2 atom recombination with a global rate around 2e-33 cm^6/s, a result which agrees with literature, as well as N2(A) loss mechanisms were confirmed to go via quenching with O and N atoms. The order of magnitude of obtained N2(A) concentration, about 1e11 cm-3, coincides with the results of direct measurement (by Vegard-Kaplan band), using a spectrometer of better resolution.

  19. Carbon dioxide as working fluid for medium and high-temperature concentrated solar thermal systems

    Directory of Open Access Journals (Sweden)

    Van Duong

    2014-03-01

    Full Text Available This paper explores the benefits and drawbacks of using carbon dioxide in solar thermal systems at medium and high operating temperatures. For medium temperatures, application of CO2 in non-imaging-optics based compound parabolic concentrators (CPC combined with evacuated-tube collectors is studied. These collectors have been shown to obtain efficiencies higher than 40% operating at around 200℃ without the need of tracking. Validated numerical models of external compound parabolic concentrators (XCPCs are used to simulate their performance using CO2 as working fluid. For higher temperatures, a mathematical model is implemented to analyze the operating performance of a parabolic trough solar collector (PTC using CO2 at temperatures between 100℃ and 600℃.

  20. Phenomenon of energy concentration in high-energy family events of cosmic rays

    CERN Document Server

    Wang He; Dai Zhi Qiang; Xue Liang; Feng Cun Feng; Zhang Xue Yao; Li Jin; Zhang Nai Jian; He Mao; Wang Cheng Rui; Ren Jing Ru; Lu Sui Ling

    2002-01-01

    The phenomenon of energy concentration in high-energy family events of cosmic rays is studied by comparing the results of family events of total visible energies 100-400 TeV observed in the Kanbala emulsion chamber experiment with the Monte Carlo simulation data. The simulation is made by the program CORSIKA in which QGSJET is applied as the hadronic interaction model, and the chemical composition of primary cosmic rays is obtained from the rigidity-cut model and the extrapolation of new results of direct measurements. This shows that the whole distribution tendency of the rate of energy concentration of simulated family events is basically consistent with that of the experiment

  1. Green synthesis of highly concentrated aqueous colloidal solutions of large starch-stabilised silver nanoplatelets.

    Science.gov (United States)

    Cheng, Fei; Betts, Jonathan W; Kelly, Stephen M; Hector, Andrew L

    2015-01-01

    A simple, environmentally friendly and cost-effective method has been developed to prepare a range of aqueous silver colloidal solutions, using ascorbic acid as a reducing agent, water-soluble starch as a combined crystallising, stabilising and solubilising agent, and water as the solvent. The diameter of silver nanoplatelets increases with higher concentrations of AgNO3 and starch. The silver nanoparticles are also more uniform in shape the greater the diameter of the nanoparticles. Colloidal solutions with a very high concentration of large, flat, hexagonal silver nanoplatelets (~230 nm in breadth) have been used to deposit and fix an antibacterial coating of these large starch-stabilised silver nanoplates on commercial cotton fibres, using a simple dip-coating process using water as the solvent, in order to study the dependence of the antibacterial properties of these nanoplatelets on their size. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Observations of high droplet number concentrations in Southern Ocean boundary layer clouds

    Directory of Open Access Journals (Sweden)

    T. Chubb

    2016-01-01

    Full Text Available Cloud physics data collected during the NSF/NCAR High-performance Instrumented Airborne Platform for Environmental Research (HIAPER Pole-to-Pole Observations (HIPPO campaigns provide a snapshot of unusual wintertime microphysical conditions in the boundary layer over the Southern Ocean. On 29 June 2011, the HIAPER sampled the boundary layer in a region of pre-frontal warm air advection between 58 and 48° S to the south of Tasmania. Cloud droplet number concentrations were consistent with climatological values in the northernmost profiles but were exceptionally high for wintertime in the Southern Ocean at 100–200 cm−3 in the southernmost profiles. Sub-micron (0.06  < D <  1 µm aerosol concentrations for the southern profiles were up to 400 cm−3. Analysis of back trajectories and atmospheric chemistry observations revealed that while conditions in the troposphere were more typical of a clean remote ocean airmass, there was some evidence of continental or anthropogenic influence. However, the hypothesis of long-range transport of continental aerosol fails to explain the magnitude of the aerosol and cloud droplet concentration in the boundary layer. Instead, the gale force surface winds in this case (wind speed at 167 m above sea level was  > 25 m s−1 were most likely responsible for production of sea spray aerosol which influenced the microphysical properties of the boundary layer clouds. The smaller size and higher number concentration of cloud droplets is inferred to increase the albedo of these clouds, and these conditions occur regularly, and are expected to increase in frequency, over windy parts of the Southern Ocean.

  3. The salivary microbiome is altered in the presence of a high salivary glucose concentration.

    Directory of Open Access Journals (Sweden)

    J Max Goodson

    Full Text Available Type II diabetes (T2D has been associated with changes in oral bacterial diversity and frequency. It is not known whether these changes are part of the etiology of T2D, or one of its effects.We measured the glucose concentration, bacterial counts, and relative frequencies of 42 bacterial species in whole saliva samples from 8,173 Kuwaiti adolescents (mean age 10.00 ± 0.67 years using DNA probe analysis. In addition, clinical data related to obesity, dental caries, and gingivitis were collected. Data were compared between adolescents with high salivary glucose (HSG; glucose concentration ≥ 1.0 mg/d, n = 175 and those with low salivary glucose (LSG, glucose concentration < 0.1 mg/dL n = 2,537.HSG was associated with dental caries and gingivitis in the study population. The overall salivary bacterial load in saliva decreased with increasing salivary glucose concentration. Under HSG conditions, the bacterial count for 35 (83% of 42 species was significantly reduced, and relative bacterial frequencies in 27 species (64% were altered, as compared with LSG conditions. These alterations were stronger predictors of high salivary glucose than measures of oral disease, obesity, sleep or fitness.HSG was associated with a reduction in overall bacterial load and alterations to many relative bacterial frequencies in saliva when compared with LSG in samples from adolescents. We propose that hyperglycemia due to obesity and/or T2D results in HSG and subsequent acidification of the oral environment, leading to a generalized perturbation in the oral microbiome. This suggests a basis for the observation that hyperglycemia is associated with an increased risk of dental erosion, dental caries, and gingivitis. We conclude that HSG in adolescents may be predicted from salivary microbial diversity or frequency, and that the changes in the oral microbial composition seen in adolescents with developing metabolic disease may the consequence of hyperglycemia.

  4. Root based responses account for Psidium guajava survival at high nickel concentration.

    Science.gov (United States)

    Bazihizina, Nadia; Redwan, Mirvat; Taiti, Cosimo; Giordano, Cristiana; Monetti, Emanuela; Masi, Elisa; Azzarello, Elisa; Mancuso, Stefano

    2015-02-01

    The presence of Psidium guajava in polluted environments has been reported in recent studies, suggesting that this species has a high tolerance to the metal stress. The present study aims at a physiological characterization of P. guajava response to high nickel (Ni) concentrations in the root-zone. Three hydroponic experiments were carried out to characterize the effects of toxic Ni concentrations on morphological and physiological parameters of P. guajava, focusing on Ni-induced damages at the root-level and root ion fluxes. With up to 300μM NiSO4 in the root-zone, plant growth was similar to that in control plants, whereas at concentrations higher than 1000μM NiSO4 there was a progressive decline in plant growth and leaf gas exchange parameters; this occurred despite, at all considered concentrations, plants limited Ni(2+) translocation to the shoot, therefore avoiding shoot Ni(2+) toxicity symptoms. Maintenance of plant growth with 300μM Ni(2+) was associated with the ability to retain K(+) in the roots meanwhile 1000 and 3000μM NiSO4 led to substantial K(+) losses. In this study, root responses mirror all plant performances suggesting a direct link between root functionality and Ni(2+) tolerance mechanisms and plant survival. Considering that Ni was mainly accumulated in the root system, the potential use of P. guajava for Ni(2+) phytoextraction in metal-polluted soils is limited; nevertheless, the observed physiological changes indicate a good Ni(2+) tolerance up to 300μM NiSO4 suggesting a potential role for the phytostabilization of polluted soils. Copyright © 2014 Elsevier GmbH. All rights reserved.

  5. High Ice Water Concentrations in the 19 August 2015 Coastal Mesoconvective System

    Science.gov (United States)

    Proctor, Fred H.; Harrah, Steven; Switzer, George F.; Strickland, Justin K.; Hunt, Patricia J.

    2017-01-01

    During August 2015, NASA's DC-8 research aircraft was flown into High Ice Water Content (HIWC) events as part of a three-week campaign to collect airborne radar data and to obtain measurements from microphysical probes. Goals for this flight campaign included improved characterization of HIWC events, especially from an airborne radar perspective. This paper focuses on one of the flight days, in which a coastal mesoscale convective system (MCS) was investigated for HIWC conditions. The system appears to have been maintained by bands of convection flowing in from the Gulf of Mexico. These convective bands were capped by a large cloud canopy, which masks the underlying structure if viewed from an infrared sensing satellite. The DC-8 was equipped with an IsoKinetic Probe that measured ice concentrations of up to 2.3 g m(exp -3) within the cloud canopy of this system. Sustained measurements of ice crystals with concentrations exceeding 1 g m(exp -3) were encountered for up to ten minutes of flight time. Airborne Radar reflectivity factors were found to be weak within these regions of high ice water concentrations, suggesting that Radar detection of HIWC would be a challenging endeavor. This case is then investigated using a three-dimensional numerical cloud model. Profiles of ice water concentrations and radar reflectivity factor demonstrate similar magnitudes and scales between the flight measurements and model simulation. Also discussed are recent modifications to the numerical model's ice-microphysics that are based on measurements during the flight campaign. The numerical model and its updated ice-microphysics are further validated with a simulation of a well-known case of a supercell hailstorm measured during the Cooperative Convective Precipitation Experiment. Differences in HIWC between the continental supercell and the coastal MCS are discussed.

  6. Use of high concentrations of carbon dioxide for stunning rabbits reared for meat production

    Directory of Open Access Journals (Sweden)

    A. Dalmau

    2016-03-01

    Full Text Available Abstract: An investigation was performed to determine whether high concentrations of carbon dioxide (CO2 at 70-98% in atmospheric air are a suitable alternative for stunning rabbits compared to conventional approaches such as electronarcosis. Aversion to the gas and efficacy in causing prolonged unconsciousness and death were studied in a total of 480 rabbits by means of behavioural parameters, physiological indicators (presence of rhythmic breathing and corneal reflex and electroencephalography (EEG, brain function. The use of any of the 4 studied concentrations of the gas caused more nasal discomfort and vocalisations than the use of atmospheric air (P<0.001. EEG activity confirmed that loss of posture is a good indicator of the onset of unconsciousness in rabbits exposed to CO2, occurring earlier (P<0.05 at 90 and 98% than at 70 and 80%. Rabbits showed signs of aversion for 15 s before the onset of unconsciousness, which occurred around 30 s after the beginning of the exposure to the gas, similar to species such as swine in which high concentrations of CO2 are also used for stunning. CO2 at 80 to 98% is suggested as a reasonable concentration range to induce a long state of unconsciousness and death in rabbits, while 70% CO2 is not recommended because it requires too long duration of exposure (more than 360 s to ensure effectiveness. Despite the advantages in terms of pre-stun handling and irreversibility, CO2 is not free of animal welfare concerns. In consequence, a debate is necessary to ascertain if CO2 can be considered a suitable alternative to stun rabbits, considering the advantages and drawbacks cited, quantified in the present study as 15 s of aversion (nasal discomfort and vocalisations before losing posture.

  7. Factors affecting biotic mercury concentrations and biomagnification through lake food webs in the Canadian high Arctic

    Energy Technology Data Exchange (ETDEWEB)

    Lescord, Gretchen L., E-mail: glescord@gmail.com [University of New Brunswick/Canadian Rivers Institute, 100 Tucker Park Rd, Saint John, NB E2L 4A6 (Canada); Kidd, Karen A. [University of New Brunswick/Canadian Rivers Institute, 100 Tucker Park Rd, Saint John, NB E2L 4A6 (Canada); Kirk, Jane L. [Environment Canada, Aquatic Contaminants Research Division, 867 Lakeshore Rd, Burlington, ON L7S 1A1 (Canada); O' Driscoll, Nelson J. [Acadia University, 15 University Ave, Wolfville, NS B4P 2R6 (Canada); Wang, Xiaowa; Muir, Derek C.G. [Environment Canada, Aquatic Contaminants Research Division, 867 Lakeshore Rd, Burlington, ON L7S 1A1 (Canada)

    2015-03-15

    In temperate regions of Canada, mercury (Hg) concentrations in biota and the magnitude of Hg biomagnification through food webs vary between neighboring lakes and are related to water chemistry variables and physical lake features. However, few studies have examined factors affecting the variable Hg concentrations in landlocked Arctic char (Salvelinus alpinus) or the biomagnification of Hg through their food webs. We estimated the food web structure of six high Arctic lakes near Resolute Bay, Nunavut, Canada, using stable carbon (δ{sup 13}C) and nitrogen (δ{sup 15}N) isotopes and measured Hg (total Hg (THg) in char, the only fish species, and methylmercury (MeHg) in chironomids and zooplankton) concentrations in biota collected in 2010 and 2011. Across lakes, δ{sup 13}C showed that benthic carbon (chironomids) was the dominant food source for char. Regression models of log Hg versus δ{sup 15}N (of char and benthic invertebrates) showed positive and significant slopes, indicting Hg biomagnification in all lakes, and higher slopes in some lakes than others. However, no principal components (PC) generated using all water chemistry data and physical characteristics of the lakes predicted the different slopes. The PC dominated by aqueous ions was a negative predictor of MeHg concentrations in chironomids, suggesting that water chemistry affects Hg bioavailability and MeHg concentrations in these lower-trophic-level organisms. Furthermore, regression intercepts were predicted by the PCs dominated by catchment area, aqueous ions, and MeHg. Weaker relationships were also found between THg in small char or MeHg in pelagic invertebrates and the PCs dominated by catchment area, and aqueous nitrate and MeHg. Results from these high Arctic lakes suggest that Hg biomagnification differs between systems and that their physical and chemical characteristics affect Hg concentrations in lower-trophic-level biota. - Highlights: • Mercury (Hg) in Arctic char and invertebrates

  8. Reactive Transport Modeling Investigation of High Dissolved Sulfide Concentrations in Sedimentary Basin Rocks

    Science.gov (United States)

    Xie, M.; Mayer, U. K.; MacQuarrie, K. T. B.

    2017-12-01

    Water with total dissolved sulfide in excess of 1 mmol L-1is widely found in groundwater at intermediate depths in sedimentary basins, including regions of the Michigan basin in southeastern Ontario, Canada. Conversely, at deeper and shallower depths, relatively low total dissolved sulfide concentrations have been reported. The mechanisms responsible for the occurrence of these brackish sulfide-containing waters are not fully understood. Anaerobic microbial sulfate reduction is a common process resulting in the formation of high sulfide concentrations. Sulfate reduction rates depend on many factors including the concentration of sulfate, the abundance of organic substances, redox conditions, temperature, salinity and the species of sulfate reducing bacteria (SRB). A sedimentary basin-specific conceptual model considering the effect of salinity on the rate of sulfate reduction was developed and implemented in the reactive transport model MIN3P-THCm. Generic 2D basin-scale simulations were undertaken to provide a potential explanation for the dissolved sulfide distribution observed in the Michigan basin. The model is 440 km in the horizontal dimension and 4 km in depth, and contains fourteen sedimentary rock units including shales, sandstones, limestones, dolostone and evaporites. The main processes considered are non-isothermal density dependent flow, kinetically-controlled mineral dissolution/precipitation and its feedback on hydraulic properties, cation exchange, redox reactions, biogenic sulfate reduction, and hydromechanical coupling due to glaciation-deglaciation events. Two scenarios were investigated focusing on conditions during an interglacial period and the transient evolution during a glaciation-deglaciation cycle. Inter-glaciation simulations illustrate that the presence of high salinity brines strongly suppress biogenic sulfate reduction. The transient simulations show that glaciation-deglaciation cycles can have an impact on the maximum depth of

  9. Solution Behavior and Activity of a Halophilic Esterase under High Salt Concentration

    Science.gov (United States)

    Rao, Lang; Zhao, Xiubo; Pan, Fang; Li, Yin; Xue, Yanfen; Ma, Yanhe; Lu, Jian R.

    2009-01-01

    Background Halophiles are extremophiles that thrive in environments with very high concentrations of salt. Although the salt reliance and physiology of these extremophiles have been widely investigated, the molecular working mechanisms of their enzymes under salty conditions have been little explored. Methodology/Principal Findings A halophilic esterolytic enzyme LipC derived from archeaon Haloarcula marismortui was overexpressed from Escherichia coli BL21. The purified enzyme showed a range of hydrolytic activity towards the substrates of p-nitrophenyl esters with different alkyl chains (n = 2−16), with the highest activity being observed for p-nitrophenyl acetate, consistent with the basic character of an esterase. The optimal esterase activities were found to be at pH 9.5 and [NaCl] = 3.4 M or [KCl] = 3.0 M and at around 45°C. Interestingly, the hydrolysis activity showed a clear reversibility against changes in salt concentration. At the ambient temperature of 22°C, enzyme systems working under the optimal salt concentrations were very stable against time. Increase in temperature increased the activity but reduced its stability. Circular dichroism (CD), dynamic light scattering (DLS) and small angle neutron scattering (SANS) were deployed to determine the physical states of LipC in solution. As the salt concentration increased, DLS revealed substantial increase in aggregate sizes, but CD measurements revealed the maximal retention of the α-helical structure at the salt concentration matching the optimal activity. These observations were supported by SANS analysis that revealed the highest proportion of unimers and dimers around the optimal salt concentration, although the coexistent larger aggregates showed a trend of increasing size with salt concentration, consistent with the DLS data. Conclusions/Significance The solution α-helical structure and activity relation also matched the highest proportion of enzyme unimers and dimers. Given that

  10. Peptide-Carrier Conjugation

    DEFF Research Database (Denmark)

    Hansen, Paul Robert

    2015-01-01

    To produce antibodies against synthetic peptides it is necessary to couple them to a protein carrier. This chapter provides a nonspecialist overview of peptide-carrier conjugation. Furthermore, a protocol for coupling cysteine-containing peptides to bovine serum albumin is outlined....

  11. Air Carrier Traffic Statistics.

    Science.gov (United States)

    2013-11-01

    This report contains airline operating statistics for large certificated air carriers based on data reported to U.S. Department of Transportation (DOT) by carriers that hold a certificate issued under Section 401 of the Federal Aviation Act of 1958 a...

  12. Air Carrier Traffic Statistics.

    Science.gov (United States)

    2012-07-01

    This report contains airline operating statistics for large certificated air carriers based on data reported to U.S. Department of Transportation (DOT) by carriers that hold a certificate issued under Section 401 of the Federal Aviation Act of 1958 a...

  13. On the correct interpretation of the low voltage regime in intrinsic single-carrier devices.

    Science.gov (United States)

    Röhr, Jason A; Kirchartz, Thomas; Nelson, Jenny

    2017-05-24

    We discuss the approach of determining the charge-carrier density of a single-carrier device by combining Ohm's law and the Mott-Gurney law. We show that this approach is seldom valid, due to the fact that whenever Ohm's law is applicable the Mott-Gurney law is usually not, and vice versa. We do this using a numerical drift-diffusion solver to calculate the current density-voltage curves and the charge-carrier density, with increasing doping concentration. As this doping concentration is increased to very large values, using Ohm's law becomes a sensible way of measuring the product of mobility and doping density in the sample. However, in the high-doping limit, the current is no longer governed by space-charge and it will no longer be possible to determine the charge-carrier mobility using the Mott-Gurney law. This leaves the value for the mobility as an unknown in the mobility-doping density product in Ohm's law. We also show that, when the charge-carrier mobility for an intrinsic semiconductor is known in advance, the carrier density is underestimated up to many orders of magnitude if Ohm's law is used. We finally seek to establish a window of conditions where the two methods can be combined to yield reasonable results.

  14. On the correct interpretation of the low voltage regime in intrinsic single-carrier devices

    International Nuclear Information System (INIS)

    Röhr, Jason A; Nelson, Jenny; Kirchartz, Thomas

    2017-01-01

    We discuss the approach of determining the charge-carrier density of a single-carrier device by combining Ohm’s law and the Mott–Gurney law. We show that this approach is seldom valid, due to the fact that whenever Ohm’s law is applicable the Mott–Gurney law is usually not, and vice versa. We do this using a numerical drift-diffusion solver to calculate the current density–voltage curves and the charge-carrier density, with increasing doping concentration. As this doping concentration is increased to very large values, using Ohm’s law becomes a sensible way of measuring the product of mobility and doping density in the sample. However, in the high-doping limit, the current is no longer governed by space-charge and it will no longer be possible to determine the charge-carrier mobility using the Mott–Gurney law. This leaves the value for the mobility as an unknown in the mobility-doping density product in Ohm’s law. We also show that, when the charge-carrier mobility for an intrinsic semiconductor is known in advance, the carrier density is underestimated up to many orders of magnitude if Ohm’s law is used. We finally seek to establish a window of conditions where the two methods can be combined to yield reasonable results. (paper)

  15. Selective cortical decrease of high-affinity choline uptake carrier in Alzheimer's disease: an autoradiographic study using 3H-hemicholinium-3

    International Nuclear Information System (INIS)

    Rodriguez-Puertas, R.; Pazos, A.; Zarranz, J.J.; Pascual, J.

    1994-01-01

    H-hemicholinium-3 (H-HC-3) binding, a marker of the presynaptic high-affinity choline uptake carrier (HACU), was measured by autoradiography in several brain regions of 17 Alzheimer's disease (AD) patients and of 11 matched controls. A significant decrease in the density of H-HC-3 binding sites was found in entorhinal cortex, hippocampus and layers I-III of the frontal cortex. By contrast, in the caudate-putamen the number of H-HC-3 binding sites in AD cases was comparable to that of control striata. These data concur with previous results using classical presynaptic markers and reflect the loss in the activity of HACU, and, hence, in the synthesis of acetylcholine, that selectively occurs in cortical areas of AD brains due to the degeneration of presynaptic cholinergic terminals arising from the basal forebrain. However, the relatively low mean reduction in HACU in cortical areas (-40 %), together with the apparent indemnity of this marker in certain severely demented AD cases, suggest that AD dementia cannot be explained simply by the loss of presynaptic terminals originating in the basal forebrain. These data seem to be a good explanation for the poor response to cholinergic replacement in AD. (author)

  16. Selective cortical decrease of high-affinity choline uptake carrier in Alzheimer`s disease: an autoradiographic study using {sup 3}H-hemicholinium-3

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez-Puertas, R; Pazos, A [Dept. of Physiology and Pharmacology, Unit of Pharmacology, Univ. of Cantabria, Santander (Spain); Zarranz, J J [Dept. of Neuroscience, Univ. of the Basque Country, Leioa (Spain); Pascual, J [Dept. of Medicine, Service of Neurology, Univ. Hospital ` Marques de Valdecilla` , Univ. of Cantabria, Santander (Spain)

    1994-12-31

    H-hemicholinium-3 (H-HC-3) binding, a marker of the presynaptic high-affinity choline uptake carrier (HACU), was measured by autoradiography in several brain regions of 17 Alzheimer`s disease (AD) patients and of 11 matched controls. A significant decrease in the density of H-HC-3 binding sites was found in entorhinal cortex, hippocampus and layers I-III of the frontal cortex. By contrast, in the caudate-putamen the number of H-HC-3 binding sites in AD cases was comparable to that of control striata. These data concur with previous results using classical presynaptic markers and reflect the loss in the activity of HACU, and, hence, in the synthesis of acetylcholine, that selectively occurs in cortical areas of AD brains due to the degeneration of presynaptic cholinergic terminals arising from the basal forebrain. However, the relatively low mean reduction in HACU in cortical areas (-40 %), together with the apparent indemnity of this marker in certain severely demented AD cases, suggest that AD dementia cannot be explained simply by the loss of presynaptic terminals originating in the basal forebrain. These data seem to be a good explanation for the poor response to cholinergic replacement in AD. (author).

  17. Two-dimensional n -InSe/p -GeSe(SnS) van der Waals heterojunctions: High carrier mobility and broadband performance

    Science.gov (United States)

    Xia, Cong-xin; Du, Juan; Huang, Xiao-wei; Xiao, Wen-bo; Xiong, Wen-qi; Wang, Tian-xing; Wei, Zhong-ming; Jia, Yu; Shi, Jun-jie; Li, Jing-bo

    2018-03-01

    Recently, constructing van der Waals (vdW) heterojunctions by stacking different two-dimensional (2D) materials has been considered to be effective strategy to obtain the desired properties. Here, through first-principles calculations, we find theoretically that the 2D n -InSe/p -GeSe(SnS) vdW heterojunctions are the direct-band-gap semiconductor with typical type-II band alignment, facilitating the effective separation of photogenerated electron and hole pairs. Moreover, they possess the high optical absorption strength (˜105 ), broad spectrum width, and excellent carrier mobility (˜103c m2V-1s-1 ). Interestingly, under the influences of the interlayer coupling and external electric field, the characteristics of type-II band alignment is robust, while the band-gap values and band offset are tunable. These results indicate that 2D n -InSe/p -GeSe(SnS) heterojunctions possess excellent optoelectronic and transport properties, and thus can become good candidates for next-generation optoelectronic nanodevices.

  18. Soil and Water Assessment Tool model predictions of annual maximum pesticide concentrations in high vulnerability watersheds.

    Science.gov (United States)

    Winchell, Michael F; Peranginangin, Natalia; Srinivasan, Raghavan; Chen, Wenlin

    2018-05-01

    Recent national regulatory assessments of potential pesticide exposure of threatened and endangered species in aquatic habitats have led to increased need for watershed-scale predictions of pesticide concentrations in flowing water bodies. This study was conducted to assess the ability of the uncalibrated Soil and Water Assessment Tool (SWAT) to predict annual maximum pesticide concentrations in the flowing water bodies of highly vulnerable small- to medium-sized watersheds. The SWAT was applied to 27 watersheds, largely within the midwest corn belt of the United States, ranging from 20 to 386 km 2 , and evaluated using consistent input data sets and an uncalibrated parameterization approach. The watersheds were selected from the Atrazine Ecological Exposure Monitoring Program and the Heidelberg Tributary Loading Program, both of which contain high temporal resolution atrazine sampling data from watersheds with exceptionally high vulnerability to atrazine exposure. The model performance was assessed based upon predictions of annual maximum atrazine concentrations in 1-d and 60-d durations, predictions critical in pesticide-threatened and endangered species risk assessments when evaluating potential acute and chronic exposure to aquatic organisms. The simulation results showed that for nearly half of the watersheds simulated, the uncalibrated SWAT model was able to predict annual maximum pesticide concentrations within a narrow range of uncertainty resulting from atrazine application timing patterns. An uncalibrated model's predictive performance is essential for the assessment of pesticide exposure in flowing water bodies, the majority of which have insufficient monitoring data for direct calibration, even in data-rich countries. In situations in which SWAT over- or underpredicted the annual maximum concentrations, the magnitude of the over- or underprediction was commonly less than a factor of 2, indicating that the model and uncalibrated parameterization

  19. Technical note: False low turbidity readings from optical probes during high suspended-sediment concentrations

    Science.gov (United States)

    Voichick, Nicholas; Topping, David; Griffiths, Ronald

    2018-01-01

    Turbidity, a measure of water clarity, is monitored for a variety of purposes including (1) to help determine whether water is safe to drink, (2) to establish background conditions of lakes and rivers and detect pollution caused by construction projects and stormwater discharge, (3) to study sediment transport in rivers and erosion in catchments, (4) to manage siltation of water reservoirs, and (5) to establish connections with aquatic biological properties, such as primary production and predator–prey interactions. Turbidity is typically measured with an optical probe that detects light scattered from particles in the water. Probes have defined upper limits of the range of turbidity that they can measure. The general assumption is that when turbidity exceeds this upper limit, the values of turbidity will be constant, i.e., the probe is pegged; however, this assumption is not necessarily valid. In rivers with limited variation in the physical properties of the suspended sediment, at lower suspended-sediment concentrations, an increase in suspended-sediment concentration will cause a linear increase in turbidity. When the suspended-sediment concentration in these rivers is high, turbidity levels can exceed the upper measurement limit of an optical probe and record a constant pegged value. However, at extremely high suspended-sediment concentrations, optical turbidity probes do not necessarily stay pegged at a constant value. Data from the Colorado River in Grand Canyon, Arizona, USA, and a laboratory experiment both demonstrate that when turbidity exceeds instrument-pegged conditions, increasing suspended-sediment concentration (and thus increasing turbidity) may cause optical probes to record decreasing false turbidity values that appear to be within the valid measurement range of the probe. Therefore, under high-turbidity conditions, other surrogate measurements of turbidity (e.g., acoustic-attenuation measurements or suspended-sediment samples

  20. Preparation of a highly concentrated, completely monomeric, active sarcoplasmic reticulum Ca2+-ATPase.

    Science.gov (United States)

    Lüdi, H; Hasselbach, W

    1985-11-21

    Sarcoplasmic reticulum vesicles from fast skeletal muscle were partially delipidated with sodium cholate at high ionic strength and sedimented in a discontinuous sucrose gradient. Phospholipid content was reduced from 0.777 mumol/mg protein to 0.242 mumol/mg protein. As judged from gel electrophoresis and high pressure liquid gel chromatography, accessory proteins were removed during centrifugation and the Ca2+-ATPase was obtained in an almost pure form. Addition of myristoylglycerophosphocholine (1 mg/mg protein) reactivates ATPase and dinitrophenylphosphatase activity to the same degree obtained with native vesicles. Using the analytical ultracentrifuge it could be demonstrated that the reactivated Ca2+-ATPase was present exclusively in a monomeric state. These results were obtained at high and low ionic strength and up to a protein concentration of 10 mg/ml. Therefore this preparation should be very useful to investigate differences between oligomeric and monomeric Ca2+-ATPase.

  1. Large-area, high-intensity PV arrays for systems using dish concentrating optics

    Energy Technology Data Exchange (ETDEWEB)

    Ward, J.S.; Duda, A.; Zweibel, K.; Coutts, T.J. [National Renewable Energy Lab., Golden, CO (United States)

    1998-09-01

    In this paper, the authors report on efforts to fabricate monolithic interconnected modules (MIMs) using III-V semiconductors with bandgaps appropriate for the terrestrial solar spectrum. The small size of the component cells comprising the MIM allows for operation at extremely high flux densities and relaxes the requirement for a small spot size to be generated by the optics. This makes possible a PV option for the large dish concentrator systems that have been developed by the solar thermal community for use with Stirling engines. Additionally, the highly effective back-surface reflector integrated into the MIM design is an effective tool for thermal management of the array. Development of this technology would radically alter the projections for PV manufacturing capacity because of the potential for extremely high power generation per unit area of semiconductor material.

  2. Corrosion mechanism of 13Cr stainless steel in completion fluid of high temperature and high concentration bromine salt

    International Nuclear Information System (INIS)

    Liu, Yan; Xu, Lining; Lu, Minxu; Meng, Yao; Zhu, Jinyang; Zhang, Lei

    2014-01-01

    Highlights: • The corrosion behavior of 13Cr steel exposed to bromine salt completion fluid containing high concentration bromine ions was investigated. • There are passive circles around pits on the 13Cr steel surface after 7 d of exposure. • Macroscopic galvanic corrosion formed between the passive halo and the pit. • The mechanism of pitting corrosion on 13Cr stainless steel exposed to heavy bromine brine was established. - Abstract: A series of corrosion tests of 13Cr stainless steel were conducted in a simulated completion fluid environment of high temperature and high concentration bromine salt. Corrosion behavior of specimens and the component of corrosion products were investigated by means of scanning electron microscope (SEM), confocal laser scanning microscopy (CLSM) and X-ray photoelectron spectroscopy (XPS). The results indicate that 13Cr steel suffers from severe local corrosion and there is always a passive halo around every pit. The formation mechanism of the passive halo is established. OH − ligand generates and adsorbs in a certain scale because of abundant OH − on the surface around the pits. Passive film forms around each pit, which leads to the occurrence of passivation in a certain region. Finally, the dissimilarities in properties and morphologies of regions, namely the pit and its corresponding passive halo, can result in different corrosion sensitivities and may promote the formation of macroscopic galvanic pairs

  3. Characteristics and treatment mechanism of mine water with high concentration of iron and manganese

    Energy Technology Data Exchange (ETDEWEB)

    Li, F.; Yang, J.; He, X.; Yang, J.; Tian, T. [Hebei University of Engineering, Handan (China)

    2006-12-15

    The characteristics and treatment of mine water with high concentration or iron and manganese were studied with mine water produced in Jiukuang and Siwan belonging to Hebi Coal Industry Group Co., Ltd. Analysis shows that the mine water is abundant in dissolved oxygen and has high TDS and high turbidity so the mine water does not need aeration. The effect of removal of iron and manganese by coagulation-sedimentation and the influence of filter material and influent water flow rate on effluent quality were investigated. It is shown that the removal rate of iron can reach 90% while removal of manganese can only reach about 20%. The concentration of iron and manganese in the effluent is lower than 0.1 mg/L with filter material of manganese sand which was immersed in KMnO{sub 4} solution at a filtration rate of 7 - 9 m/h. The results show that the layer of activated compound substance membrane formed on the surface of the manganese sand plays an important role in the removal of manganese. 7 refs., 2 figs., 3 tabs.

  4. Preparation of ultra-light magnetic nanocomposites using highly concentrated emulsions

    International Nuclear Information System (INIS)

    Ghosh, Goutam; Vilchez, Alejandro; Esquena, Jordi; Solans, Conxita; Rodriguez-Abreu, Carlos

    2011-01-01

    Highlights: → Polystyrene-divinylbenzene-iron oxide nanocomposites. → Porous magnetic nanocomposites from highly concentrated emulsions. → Ultralight materials with relatively high magnetic moment. - Abstract: Hybrid inorganic-organic ultra-light magnetic solid foams with iron oxide nanoparticles embedded in a divinylbenzene-polystyrene matrix were prepared using a highly concentrated emulsion polymerization method. Iron oxide nanoparticles with diameters of 3 and 10 nm were synthesized using two different methods. For comparison purposes, nanocomposites with magnetite nanoparticles dispersed in a non-porous polymeric matrix obtained by bulk polymerization were also investigated. Materials were characterized using several techniques such as dynamic light scattering (DLS), X-ray diffraction (XRD), thermogravimetric analysis (TGA), small angle X-ray scattering (SAXS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR) and magnetization measurements. SEM and TEM images showed that solid foams are made of well-defined macro pores with nanoparticles embedded in the walls. The density of the solid foams was ca. 50-70 kg m -3 , which is about 20 times lighter than the non-porous monoliths. The magnetic measurements show that both nanocomposites are superparamagnetic, and that there are differences regarding the interparticle interactions depending on matrix porosity. The synthesized materials may find applications in adsorbents, tissue reparation, enzyme supports, microreactors, or in water decontamination.

  5. Preparation of ultra-light magnetic nanocomposites using highly concentrated emulsions

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Goutam; Vilchez, Alejandro; Esquena, Jordi; Solans, Conxita [Instituto de Quimica Avanzada de Cataluna, Consejo Superior de Investigaciones Cientificas (IQAC-CSIC), Jordi Girona 18-26, 08034 Barcelona (Spain); Rodriguez-Abreu, Carlos, E-mail: carlos.rodriguez@inl.int [Instituto de Quimica Avanzada de Cataluna, Consejo Superior de Investigaciones Cientificas (IQAC-CSIC), Jordi Girona 18-26, 08034 Barcelona (Spain); International Iberian Nanotechnology Laboratory (INL), Av. Mestre Jose Veiga, 4715-330 Braga (Portugal)

    2011-10-17

    Highlights: {yields} Polystyrene-divinylbenzene-iron oxide nanocomposites. {yields} Porous magnetic nanocomposites from highly concentrated emulsions. {yields} Ultralight materials with relatively high magnetic moment. - Abstract: Hybrid inorganic-organic ultra-light magnetic solid foams with iron oxide nanoparticles embedded in a divinylbenzene-polystyrene matrix were prepared using a highly concentrated emulsion polymerization method. Iron oxide nanoparticles with diameters of 3 and 10 nm were synthesized using two different methods. For comparison purposes, nanocomposites with magnetite nanoparticles dispersed in a non-porous polymeric matrix obtained by bulk polymerization were also investigated. Materials were characterized using several techniques such as dynamic light scattering (DLS), X-ray diffraction (XRD), thermogravimetric analysis (TGA), small angle X-ray scattering (SAXS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR) and magnetization measurements. SEM and TEM images showed that solid foams are made of well-defined macro pores with nanoparticles embedded in the walls. The density of the solid foams was ca. 50-70 kg m{sup -3}, which is about 20 times lighter than the non-porous monoliths. The magnetic measurements show that both nanocomposites are superparamagnetic, and that there are differences regarding the interparticle interactions depending on matrix porosity. The synthesized materials may find applications in adsorbents, tissue reparation, enzyme supports, microreactors, or in water decontamination.

  6. Mechanisms of astrocytic K(+) clearance and swelling under high extracellular K(+) concentrations.

    Science.gov (United States)

    Murakami, Shingo; Kurachi, Yoshihisa

    2016-03-01

    In response to the elevation of extracellular K(+) concentration ([K(+)]out), astrocytes clear excessive K(+) to maintain conditions necessary for neural activity. K(+) clearance in astrocytes occurs via two processes: K(+) uptake and K(+) spatial buffering. High [K(+)]out also induces swelling in astrocytes, leading to edema and cell death in the brain. Despite the importance of astrocytic K(+) clearance and swelling, the underlying mechanisms remain unclear. Here, we report results from a simulation analysis of astrocytic K(+) clearance and swelling. Astrocyte models were constructed by incorporating various mechanisms such as intra/extracellular ion concentrations of Na(+), K(+), and Cl(-), cell volume, and models of Na,K-ATPase, Na-K-Cl cotransporter (NKCC), K-Cl cotransporter, inwardly-rectifying K(+) (KIR) channel, passive Cl(-) current, and aquaporin channel. The simulated response of astrocyte models under the uniform distribution of high [K(+)]out revealed significant contributions of NKCC and Na,K-ATPase to increases of intracellular K(+) and Cl(-) concentrations, and swelling. Moreover, we found that, under the non-uniform distribution of high [K(+)]out, KIR channels localized at synaptic clefts absorbed excess K(+) by depolarizing the equivalent potential of K(+) (E K) above membrane potential, while K(+) released through perivascular KIR channels was enhanced by hyperpolarizing E K and depolarizing membrane potential. Further analysis of simulated drug effects revealed that astrocyte swelling was modulated by blocking each of the ion channels and transporters. Our simulation analysis revealed controversial mechanisms of astrocytic K(+) clearance and swelling resulting from complex interactions among ion channels and transporters.

  7. Regional and local meteorology influences high-resolution tropospheric ozone concentration in the Los Angeles Basin

    Science.gov (United States)

    Koutzoukis, S.; Jenerette, D.; Chandler, M.; Wang, J.; Ge, C.; Ripplinger, J.

    2017-12-01

    Urban air quality and climate directly affect resident health. The Los Angeles (LA) Basin is a highly populated metropolitan area, with widespread point sources of ozone (O3) precursors (NOx , Volatile Organic Compounds, CO) from fossil fuel combustion. The LA basin exists on a coast-to-mountain gradient, with increasing temperatures towards the Transverse Ranges, which rise to 1700m. Frequently not compliant with 8-hour O3 standards, the LA and South Coast Air Basins are designated as severe and extreme non-attainment areas. Summer weather in the LA basin is characterized by a persistent high pressure system, creating an inversion that traps air pollutants, including O3 precursors, coupled with physical geography that blocks prevailing upper atmosphere air flow. These interactions make neighborhood-level O3 levels more variable than common regional models. Over the summer of 2017, we investigated the importance of local meteorology, wind patterns and air temperature, in transporting and mixing ozone precursors from point sources along the coast-to-mountain gradient. We deployed a network of six EPA federal equivalent method ozone and meteorological sensors in three campaigns in the LA basin along the coast-to-mountain transect. Each campaign, we collaborated with citizen scientists to deploy three sensor stations in two, 4 km2 quadrats, for a total of six high-resolution 4 km2 pixels. O3 concentrations vary greatly along the transect. At the coastal sites, daily O3 ranges from 0ppm to 60ppm and the range increases at the inland sites, to 100ppm. At all sites, there was a positive relationship between wind speed, air temperature, and O3 concentration, with increasing correlation inland. The Pearson correlation coefficient between wind speed and O3 concentration doubles from the coast to inland, and triples between air temperature and O3. The site-specific relationships between O3 and wind direction and temperature vary, suggesting neighborhood-effects from local

  8. Effects of meals rich in either monounsaturated or saturated fat on lipid concentrations and on insulin secretion and action in subjects with high fasting triglyceride concentrations.

    Science.gov (United States)

    Lopez, Sergio; Bermudez, Beatriz; Ortega, Almudena; Varela, Lourdes M; Pacheco, Yolanda M; Villar, Jose; Abia, Rocio; Muriana, Francisco J G

    2011-03-01

    The nature of dietary fats and fasting concentrations of triglycerides affect postprandial hypertriglyceridemia and glucose homeostasis. The objectives were to examine the effects of meals enriched in monounsaturated fatty acids (MUFAs) or saturated fatty acids (SFAs) on postprandial lipid, glucose, and insulin concentrations and to examine the extent of β cell function and insulin sensitivity in subjects with high fasting triglyceride concentrations. Fourteen men with fasting hypertriglyceridemia and normal glucose tolerance were given meals (≈10 kcal/kg body weight) containing MUFAs, SFAs, or no fat. Blood samples were collected at baseline and hourly over 8 h for analysis. The high-fat meals significantly increased postprandial concentrations of triglycerides, nonesterified fatty acids, and insulin and postprandial indexes of β cell function. However, postprandial indexes of insulin sensitivity decreased significantly. These effects were significantly attenuated with MUFAs relative to SFAs. MUFAs postprandially buffered β cell hyperactivity and insulin intolerance relative to SFAs in subjects with high fasting triglyceride concentrations. These data suggest that, in contrast with SFAs, MUFA-based strategies may provide cardiovascular benefits to persons at risk by limiting lipid and insulin excursions and may contribute to optimal glycemic control after meal challenges.

  9. Effect of concentrate feeder design on performance, eating and animal behavior, welfare, ruminal health, and carcass quality in Holstein bulls fed high-concentrate diets.

    Science.gov (United States)

    Verdú, M; Bach, A; Devant, M

    2015-06-01

    A total of 240 Holstein bulls (121 ± 2.0 kg initial BW; 99 ± 1.0 d of age), from 2 consecutive fattening cycles, were randomly allocated in 1 of 6 pens and assigned to 1 of the 3 treatments consisting of different concentrate feeder designs: a control feeder with 4 feeding spaces (CF), a feeder with less concentrate capacity (CFL), and a single-space feeder with lateral protections (SF). Each pen had a straw feeder and a drinker. All animals were fed a high-concentrate diet for ad libitum intake. Concentrate consumption was recorded daily using a computerized feeder, straw consumption was recorded weekly, and BW was recorded every 14 d. Animal behavior was registered on d 1, 3, 5, 8, and 14 and every 28 d by scan sampling. Eating behavior at concentrate feeders was filmed on d 12, 125, and 206. On d 7, 120, and 204, samples of rumen contents were collected for measurement of pH and VFA and blood samples were obtained to analyze NEFA, haptoglobin, glucose, and insulin. Animals were slaughtered after 223 d, and HCW and lesions of the rumen wall and liver were recorded. The accumulative concentrate consumption per animal tended (P = 0.09) to be greater with CF than with CFL and SF. Also, CV of concentrate consumption was greater (P carcass data. Also, no differences among treatments in rumen wall evaluation and liver abscesses were observed. At 7 and 204 d of study, SF bulls had greater (P animal welfare in Holstein bulls fed high-concentrate diets. However, at the beginning, there was evidence that animals fed using SF had problems with adaptation.

  10. Study on automatic control of high uranium concentration solvent extraction with pulse sieve-plate column

    International Nuclear Information System (INIS)

    You Wenzhi; Xing Guangxuan; Long Maoxiong; Zhang Jianmin; Zhou Qin; Chen Fuping; Ye Lingfeng

    1998-01-01

    The author mainly described the working condition of the automatic control system of high uranium concentration solvent extraction with pulse sieve-plate column on a large scale test. The use of the automatic instrument and meter, automatic control circuit, and the best feedback control point of the solvent extraction processing with pulse sieve-plate column are discussed in detail. The writers point out the success of this experiment on automation, also present some questions that should be cared for the automatic control, instruments and meters in production in the future

  11. Carbon assimilation in Eucalyptus urophylla grown under high atmospheric CO2 concentrations: A proteomics perspective.

    Science.gov (United States)

    Santos, Bruna Marques Dos; Balbuena, Tiago Santana

    2017-01-06

    Photosynthetic organisms may be drastically affected by the future climate projections of a considerable increase in CO 2 concentrations. Growth under a high concentration of CO 2 could stimulate carbon assimilation-especially in C3-type plants. We used a proteomics approach to test the hypothesis of an increase in the abundance of the enzymes involved in carbon assimilation in Eucalyptus urophylla plants grown under conditions of high atmospheric CO 2 . Our strategy allowed the profiling of all Calvin-Benson cycle enzymes and associated protein species. Among the 816 isolated proteins, those involved in carbon fixation were found to be the most abundant ones. An increase in the abundance of six key enzymes out of the eleven core enzymes involved in carbon fixation was detected in plants grown at a high CO 2 concentration. Proteome changes were corroborated by the detection of a decrease in the stomatal aperture and in the vascular bundle area in Eucalyptus urophylla plantlets grown in an environment of high atmospheric CO 2 . Our proteomics approach indicates a positive metabolic response regarding carbon fixation in a CO 2 -enriched atmosphere. The slight but significant increase in the abundance of the Calvin enzymes suggests that stomatal closure did not prevent an increase in the carbon assimilation rates. The sample enrichment strategy and data analysis used here enabled the identification of all enzymes and most protein isoforms involved in the Calvin-Benson-Bessham cycle in Eucalyptus urophylla. Upon growth in CO 2 -enriched chambers, Eucalyptus urophylla plantlets responded by reducing the vascular bundle area and stomatal aperture size and by increasing the abundance of six of the eleven core enzymes involved in carbon fixation. Our proteome approach provides an estimate on how a commercially important C3-type plant would respond to an increase in CO 2 concentrations. Additionally, confirmation at the protein level of the predicted genes involved in

  12. Composition of highly concentrated silicate electrolytes and ultrasound influencing the plasma electrolytic oxidation of magnesium

    Science.gov (United States)

    Simchen, F.; Rymer, L.-M.; Sieber, M.; Lampke, T.

    2017-03-01

    Magnesium and its alloys are increasingly in use as lightweight construction materials. However, their inappropriate corrosion and wear resistance often prevent their direct practical use. The plasma electrolytic oxidation (PEO) is a promising, environmentally friendly method to improve the surface characteristics of magnesium materials by the formation of oxide coatings. These PEO layers contain components of the applied electrolyte and can be shifted in their composition by increasing the concentration of the electrolyte constituents. Therefore, in contrast to the use of conventional low concentrated electrolytes, the process results in more stable protective coatings, in which electrolyte species are the dominating constitutes. In the present work, the influence of the composition of highly concentrated alkaline silicate electrolytes with additives of phosphate and glycerol on the quality of PEO layers on the magnesium alloy AZ31 was examined. The effect of ultrasound coupled into the electrolyte bath was also considered. The process was monitored by recording the electrical process variables with a transient recorder and by observation of the discharge phenomena on the sample surface with a camera. The study was conducted on the basis of a design of experiments. The effects of the process parameter variation are considered with regard to the coatings thickness, hardness and corrosion resistance. Information about the statistical significance of the effects of the parameters on the considered properties is obtained by an analysis of variance (ANOVA).

  13. High plasma concentrations of asymmetric dimethylarginine inhibit ischemic cardioprotection in hypercholesterolemic rats

    International Nuclear Information System (INIS)

    Landim, M.B.P.; Dourado, P.M.M.; Casella-Filho, A.; Chagas, A.C.P.; Luz, P.L. da

    2013-01-01

    A low concentration of nitric oxide associated with a high concentration of asymmetric dimethylarginine (ADMA) can explain the lack of ischemic cardioprotection observed in the presence of hypercholesterolemia. The objective of the present study was to evaluate the effect of hypercholesterolemia on ischemic pre- and postconditioning and its correlation with plasma concentrations of ADMA. Male Wistar rats (6-8 weeks old) fed a 2% cholesterol diet (n = 21) for 8 weeks were compared to controls (n = 25) and were subjected to experimental myocardial infarction and reperfusion, with ischemic pre- and postconditioning. Total cholesterol and ADMA were measured in plasma before the experimental infarct and the infarct area was quantified. Weight, total cholesterol and plasma ADMA (means ± SE; 1.20 ± 0.06, 1.27 ± 0.08 and 1.20 ± 0.08 vs 0.97 ± 0.04, 0.93 ± 0.05 and 0.97 ± 0.04 µM) were higher in animals on the hypercholesterolemic diet than in controls, respectively. Cardioprotection did not reduce infarct size in the hypercholesterolemic animals (pre: 13.55% and post: 8% compared to 7.95% observed in the group subjected only to ischemia and reperfusion), whereas infarct size was reduced in the animals on a normocholesterolemic diet (pre: 8.25% and post: 6.10% compared to 12.31%). Hypercholesterolemia elevated ADMA and eliminated the cardioprotective effects of ischemic pre- and postconditioning in rats

  14. High plasma concentrations of asymmetric dimethylarginine inhibit ischemic cardioprotection in hypercholesterolemic rats

    Energy Technology Data Exchange (ETDEWEB)

    Landim, M.B.P.; Dourado, P.M.M.; Casella-Filho, A.; Chagas, A.C.P.; Luz, P.L. da [Unidade de Aterosclerose, Instituto do Coração, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP (Brazil)

    2013-05-10

    A low concentration of nitric oxide associated with a high concentration of asymmetric dimethylarginine (ADMA) can explain the lack of ischemic cardioprotection observed in the presence of hypercholesterolemia. The objective of the present study was to evaluate the effect of hypercholesterolemia on ischemic pre- and postconditioning and its correlation with plasma concentrations of ADMA. Male Wistar rats (6-8 weeks old) fed a 2% cholesterol diet (n = 21) for 8 weeks were compared to controls (n = 25) and were subjected to experimental myocardial infarction and reperfusion, with ischemic pre- and postconditioning. Total cholesterol and ADMA were measured in plasma before the experimental infarct and the infarct area was quantified. Weight, total cholesterol and plasma ADMA (means ± SE; 1.20 ± 0.06, 1.27 ± 0.08 and 1.20 ± 0.08 vs 0.97 ± 0.04, 0.93 ± 0.05 and 0.97 ± 0.04 µM) were higher in animals on the hypercholesterolemic diet than in controls, respectively. Cardioprotection did not reduce infarct size in the hypercholesterolemic animals (pre: 13.55% and post: 8% compared to 7.95% observed in the group subjected only to ischemia and reperfusion), whereas infarct size was reduced in the animals on a normocholesterolemic diet (pre: 8.25% and post: 6.10% compared to 12.31%). Hypercholesterolemia elevated ADMA and eliminated the cardioprotective effects of ischemic pre- and postconditioning in rats.

  15. Compact high-sensitivity potentiometer for detection of low ion concentrations in liquids

    Science.gov (United States)

    Balevicius, Z.; Lescinskas, R.; Celiesiute, R.; Stirke, A.; Balevicius, S.; Kersulis, S.; Bleizgys, V.; Maciuleviciene, R.; Ramanavicius, A.; Zurauskiene, N.

    2018-04-01

    The compact potentiometer, based on an electronic circuit protected from electrostatic and electromagnetic interference, was developed for the measurement of low ion concentrations in liquids. The electronic circuit of the potentiometer, consisting of analogous and digital parts, enables the measurement of fA currents. This makes it possible to perform reliable measurements of ion concentrations in liquids that are as small as 10-8-10-7M. The instrument was tested using electrodes that were selective for tetraphenylphosphonium (TPP+) ions. It was demonstrated that the characteristic response time of the potentiometer electronic circuit to changes in the concentration of these ions in a liquid was in the order of 10 s. An investigation of TPP+ absorption by baker yeast has shown that this device can be successfully used for long term (several hours) measurements with zero signal drift, which was about 1 μV/s. Finally, due to the small dimensions of the electronic circuit (7.5 × 2 × 1.5 cm), this potentiometer can be easily installed at a large apparatus in the laboratory condition (≈25 °C), such as high pulsed electrical generators of magnetic fields that are used in electroporation studies of biological cells.

  16. Effect of thymol and carvacrol on nutrient digestibility in rams fed high or low concentrate diets.

    Science.gov (United States)

    Zamiri, M J; Azizabadi, E; Momeni, Z; Rezvani, M R; Atashi, H; Akhlaghi, A

    2015-01-01

    Published data on the effects of essential oils (EO) on in vivo nutrient digestibility in sheep are contradictory. In 2 experiments, the effect of thymol and carvacrol on nutrient digestibility was studied in sheep fed with high (70%) or low (52%) concentrate diets, using incomplete Latin Square designs. The essential oils were mixed with the concentrate portion of the diet at the rate of 0.0, 0.3, or 0.6 g per kg dry matter (DM) diet. Supplementation of thymol had no significant effect on digestibility of dry matter (DM), organic matter (OM), crude protein (CP) and acid detergent fiber (ADF). The main effect of thymol on neutral detergent fiber (NDF) and ether extract (EE) digestibility and on nitrogen balance (NB) was significant (Pdigestibility. The main effect of carvacrol on ruminal ammonia levels and NB was significant, but within each level of dietary concentrate no significant differences were observed in ammonia levels and NB. Inclusion of 0.3 g/kg diet DM of carvacrol or thyme was more effective than 0.6 g/kg diet DM in terms of NB but neither dose affected nutrient digestibility. Future research should determine the long-term effects of essential oils on digestibility and performance in sheep, before recommendation can be made for their use under practical husbandry conditions.

  17. High resolution 4-D spectroscopy with sparse concentric shell sampling and FFT-CLEAN.

    Science.gov (United States)

    Coggins, Brian E; Zhou, Pei

    2008-12-01

    Recent efforts to reduce the measurement time for multidimensional NMR experiments have fostered the development of a variety of new procedures for sampling and data processing. We recently described concentric ring sampling for 3-D NMR experiments, which is superior to radial sampling as input for processing by a multidimensional discrete Fourier transform. Here, we report the extension of this approach to 4-D spectroscopy as Randomized Concentric Shell Sampling (RCSS), where sampling points for the indirect dimensions are positioned on concentric shells, and where random rotations in the angular space are used to avoid coherent artifacts. With simulations, we show that RCSS produces a very low level of artifacts, even with a very limited number of sampling points. The RCSS sampling patterns can be adapted to fine rectangular grids to permit use of the Fast Fourier Transform in data processing, without an apparent increase in the artifact level. These artifacts can be further reduced to the noise level using the iterative CLEAN algorithm developed in radioastronomy. We demonstrate these methods on the high resolution 4-D HCCH-TOCSY spectrum of protein G's B1 domain, using only 1.2% of the sampling that would be needed conventionally for this resolution. The use of a multidimensional FFT instead of the slow DFT for initial data processing and for subsequent CLEAN significantly reduces the calculation time, yielding an artifact level that is on par with the level of the true spectral noise.

  18. Unexpectedly high ultrafine aerosol concentrations above East Antarctic sea-ice

    Science.gov (United States)

    Humphries, R. S.; Klekociuk, A. R.; Schofield, R.; Keywood, M.; Ward, J.; Wilson, S. R.

    2015-10-01

    The effect of aerosols on clouds and their radiative properties is one of the largest uncertainties in our understanding of radiative forcing. A recent study has concluded that better characterisation of pristine, natural aerosol processes leads to the largest reduction in these uncertainties. Antarctica, being far from anthropogenic activities, is an ideal location for the study of natural aerosol processes. Aerosol measurements in Antarctica are often limited to boundary layer air-masses at spatially sparse coastal and continental research stations, with only a handful of studies in the sea ice region. In this paper, the first observational study of sub-micron aerosols in the East Antarctic sea ice region is presented. Measurements were conducted aboard the ice-breaker Aurora Australis in spring 2012 and found that boundary layer condensation nuclei (CN3) concentrations exhibited a five-fold increase moving across the Polar Front, with mean Polar Cell concentrations of 1130 cm-3 - higher than any observed elsewhere in the Antarctic and Southern Ocean region. The absence of evidence for aerosol growth suggested that nucleation was unlikely to be local. Air parcel trajectories indicated significant influence from the free troposphere above the Antarctic continent, implicating this as the likely nucleation region for surface aerosol, a similar conclusion to previous Antarctic aerosol studies. The highest aerosol concentrations were found to correlate with low pressure systems, suggesting that the passage of cyclones provided an accelerated pathway, delivering air-masses quickly from the free-troposphere to the surface. After descent from the Antarctic free troposphere, trajectories suggest that sea ice boundary layer air-masses travelled equator-ward into the low albedo Southern Ocean region, transporting with them emissions and these aerosol nuclei where, after growth, may potentially impact on the region's radiative balance. The high aerosol concentrations and

  19. Individual and environmental risk factors for high blood lead concentrations in Danish indoor shooters.

    Science.gov (United States)

    Grandahl, Kasper; Suadicani, Poul; Jacobsen, Peter

    2012-08-01

    International studies have shown blood lead at levels causing health concern in recreational indoor shooters. We hypothesized that Danish recreational indoor shooters would also have a high level of blood lead, and that this could be explained by shooting characteristics and the physical environment at the shooting range. This was an environmental case study of 58 male and female shooters from two indoor shooting ranges with assumed different ventilation and cleaning conditions. Information was obtained on general conditions including age, gender, tobacco and alcohol use, and shooting conditions: weapon type, number of shots fired, frequency of stays at the shooting range and hygiene habits. A venous blood sample was drawn to determine blood lead concentrations; 14 non-shooters were included as controls. Almost 60% of the shooters, hereof five out of 14 women, had a blood lead concentration above 0.48 micromol/l, a level causing long-term health concern. All controls had blood lead values below 0.17 micromol/l. Independent significant associations with blood lead concentrations above 0.48 micromol/l were found for shooting at a poorly ventilated range, use of heavy calibre weapons, number of shots and frequency of stays at the shooting range. A large proportion of Danish recreational indoor shooters had potentially harmful blood lead concentrations. Ventilation, amounts of shooting, use of heavy calibre weapons and stays at the shooting ranges were independently associated with increased blood lead. The technical check at the two ranges was performed by the Danish Technological Institute and costs were defrayed by the Danish Rifle Association. To pay for the analyses of blood lead, the study was supported by the The Else & Mogens Wedell-Wedellsborg Foundation. The Danish Regional Capital Scientific Ethics Committee approved the study, protocol number H-4-2010-130.

  20. High-resolution respirometry of fine-needle muscle biopsies in pre-manifest Huntington's disease expansion mutation carriers shows normal mitochondrial respiratory function.

    Directory of Open Access Journals (Sweden)

    Eva Buck

    Full Text Available Alterations in mitochondrial respiration are an important hallmark of Huntington's disease (HD, one of the most common monogenetic causes of neurodegeneration. The ubiquitous expression of the disease causing mutant huntingtin gene raises the prospect that mitochondrial respiratory deficits can be detected in skeletal muscle. While this tissue is readily accessible in humans, transgenic animal models offer the opportunity to cross-validate findings and allow for comparisons across organs, including the brain. The integrated respiratory chain function of the human vastus lateralis muscle was measured by high-resolution respirometry (HRR in freshly taken fine-needle biopsies from seven pre-manifest HD expansion mutation carriers and nine controls. The respiratory parameters were unaffected. For comparison skeletal muscle isolated from HD knock-in mice (HdhQ111 as well as a broader spectrum of tissues including cortex, liver and heart muscle were examined by HRR. Significant changes of mitochondrial respiration in the HdhQ knock-in mouse model were restricted to the liver and the cortex. Mitochondrial mass as quantified by mitochondrial DNA copy number and citrate synthase activity was stable in murine HD-model tissue compared to control. mRNA levels of key enzymes were determined to characterize mitochondrial metabolic pathways in HdhQ mice. We demonstrated the feasibility to perform high-resolution respirometry measurements from small human HD muscle biopsies. Furthermore, we conclude that alterations in respiratory parameters of pre-manifest human muscle biopsies are rather limited and mirrored by a similar absence of marked alterations in HdhQ skeletal muscle. In contrast, the HdhQ111 murine cortex and liver did show respiratory alterations highlighting the tissue specific nature of mutant huntingtin effects on respiration.

  1. Extremely high hole concentrations in c-plane GaN

    Energy Technology Data Exchange (ETDEWEB)

    Trybus, Elaissa; Moseley, Michael; Henderson, Walter; Billingsley, Daniel [Department of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA (United States); Namkoong, Gon [Old Dominion University, Applied Research Center, Newport News, VA (United States); Look, David C. [Wright State University, Semiconductor Research Center, Dayton, OH (United States); Doolittle, W.A.

    2009-06-15

    Metal Modulated Epitaxy (S. D. Burnham et al., J. Appl. Phys. 104, 024902 (2008)[1]) is extended to include modulation of both the shutters of Ga and Mg, the Mg being delivered from a Veeco corrosive series valved cracker (S. D. Burnham et al., Mater. Res. Soc. Proc. 798, Y8.11 (2003)[2]). The Ga fluxes used are sufficiently large that droplets rapidly form when the Ga shutter opens and are subsequently depleted when the Ga shutter closes. The result is the ability to limit surface faceting while predominantly growing under average N-rich growth conditions and thus, possibly reduce N-vacancy defects. N-vacancy defects are known to result in compensation. This ability to grow higher quality materials under N-rich conditions results in very high hole concentrations and low resistivity p-type materials. Hole concentrations as high as 2 x 10{sup 19} cm{sup -3} have been achieved on c-plane GaN resulting in resistivities as low as 0.38 ohm-cm. The dependence on Ga flux, shutter timing, the corresponding RHEED images for each condition is detailed and clearly show minimization of faceting and crystal quality variations as determined by X-ray diffraction. Quantification of the Mg incorporation and residual impurities such as hydrogen, oxygen, and carbon by SIMS, eliminates co-doping, while temperature dependent hall measurements show reduced activation energies. X-ray diffraction data compares crystalline quality with hole concentration. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  2. Adaptation to high salt concentrations in halotolerant/ halophilic fungi: a molecular perspective

    Directory of Open Access Journals (Sweden)

    Ana ePlemenitas

    2014-05-01

    Full Text Available Molecular studies of salt tolerance of eukaryotic microorganisms have until recently been limited to the baker’s yeast Saccharomyces cerevisiae and a few other moderately halotolerant yeast. Discovery of the extremely halotolerant and adaptable fungus Hortaea werneckii and the obligate halophile Wallemia ichthyophaga introduced two new model organisms into studies on the mechanisms of salt tolerance in eukaryotes. H. werneckii is unique in its adaptability to fluctuations in salt concentrations, as it can grow without NaCl as well as in the presence of up to 5 M NaCl. On the other hand, W. ichthyophaga requires at least 1.5 M NaCl for growth, but also grows in up to 5 M NaCl. Our studies have revealed the novel and intricate molecular mechanisms used by these fungi to combat high salt concentrations, which differ in many aspects between the extremely halotolerant H. werneckii and the halophilic W. ichthyophaga. Specifically, the high osmolarity glycerol signalling pathway that is important for sensing and responding to increased salt concentrations is here compared between H. werneckii and W. ichthyophaga. In both of these fungi, the key signalling components are conserved, but there are structural and regulation differences between these pathways in H. werneckii and W. ichthyophaga. We also address differences that have been revealed from analysis of their newly sequenced genomes. The most striking characteristics associated with H. werneckii are the large genetic redundancy, the expansion of genes encoding metal cation transporters, and a relatively recent whole genome duplication. In contrast, the genome of W. ichthyophaga is very compact, as only 4,884 protein-coding genes are predicted, which cover almost three quarters of the sequence. Importantly, there has been a significant increase in their hydrophobins, cell-wall proteins that have multiple cellular functions.

  3. Plasmonic Refractive Index Sensor with High Figure of Merit Based on Concentric-Rings Resonator

    Science.gov (United States)

    Zhang, Zhaojian; Yang, Junbo; He, Xin; Zhang, Jingjing; Huang, Jie; Chen, Dingbo; Han, Yunxin

    2018-01-01

    A plasmonic refractive index (RI) sensor based on metal-insulator-metal (MIM) waveguide coupled with concentric double rings resonator (CDRR) is proposed and investigated numerically. Utilizing the novel supermodes of the CDRR, the FWHM of the resonant wavelength can be modulated, and a sensitivity of 1060 nm/RIU with high figure of merit (FOM) 203.8 is realized in the near-infrared region. The unordinary modes, as well as the influence of structure parameters on the sensing performance, are also discussed. Such plasmonic sensor with simple framework and high optical resolution could be applied to on-chip sensing systems and integrated optical circuits. Besides, the special cases of bio-sensing and triple rings are also discussed. PMID:29300331

  4. Derived air concentration for high exposure plutonium : revised values based on ICRP -30 recommendations

    International Nuclear Information System (INIS)

    Sharma, Lata; Janardhanan, S.; Krishnamurthi, T.N.

    1983-01-01

    Derived Air Concentration (DAC) limits for plutonium isotopic mixtures, as obtained from reprocessing of spent fuel heavy water reactors, are presented in this paper. DAC for the mixtures is expressed in terms of alpha activity of plutonium. Growth of 241 Am in the product is taken into consideration. Current recommedations on DAC limits for individual Pu isotopes, as laid down in ICRP-30 report, are used for estimating DAC for the mixture. DACsub(α) for high exposure plutonium is found to be less by a factor of 2-3, when compared with the limit for 239 Pu. As a result, detection and alarm limits for air monitoring instruments should be scaled down while handling high exposure plutonium. (author)

  5. Derived air concentration for high exposure plutonium : revised values based on ICRP -30 recommendations

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, L.; Janardhanan, S.; Krishnamurthi, T.N. (Bhabha Atomic Research Centre, Bombay (India). Health Physics Div.)

    Derived Air Concentration (DAC) limits for plutonium isotopic mixtures, as obtained from reprocessing of spent fuel heavy water reactors, are presented in this paper. DAC for the mixtures is expressed in terms of alpha activity of plutonium. Growth of /sup 241/Am in the product is taken into consideration. Current recommedations on DAC limits for individual Pu isotopes, as laid down in ICRP-30 report, are used for estimating DAC for the mixture. DACsub(..cap alpha..) for high exposure plutonium is found to be less by a factor of 2-3, when compared with the limit for /sup 239/Pu. As a result, detection and alarm limits for air monitoring instruments should be scaled down while handling high exposure plutonium.

  6. The uropathogenic species Staphylococcus saprophyticus tolerates a high concentration of D-serine.

    Science.gov (United States)

    Sakinç, Türkân; Michalski, Nadine; Kleine, Britta; Gatermann, Sören G

    2009-10-01

    Human urine contains a relatively high concentration of d-serine, which is toxic to several nonuropathogenic bacteria, but can be utilized or detoxified by uropathogenic Escherichia coli (UPEC). The sequenced genome of uropathogenic Staphylococcus saprophyticus contains a gene with homology to the d-serine deaminase gene (dsdA) of UPEC. We found the gene in several clinical isolates of S. saprophyticus; however, the gene was absent in Staphylococcus xylosus and Staphylococcus cohnii, phylogenetically close relatives of S. saprophyticus, and could also not be detected in isolates of Staphylococcus aureus, Staphylococcus epidermidis and 13 other staphylococcal species. In addition, the genomes of other sequenced staphylococci do not harbor homologues of this operon. Interestingly, S. saprophyticus could grow in media supplemented with relatively high concentrations of d-serine, whereas S. aureus, S. epidermidis and other staphylococcal species could not. The association of the dsdA gene with growth in media including d-serine was proved by introducing the gene into S. aureus Newman. Given the fact that UPEC and S. saprophyticus tolerate this compound, d-serine utilization and detoxification may be a general property of uropathogenic bacteria. © 2009 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  7. High Concentration of Red Clay as an Alternative for Antibiotics in Aquaculture.

    Science.gov (United States)

    Jung, Jaejoon; Jee, Seung Cheol; Sung, Jung-Suk; Park, Woojun

    2016-01-01

    The use of antibiotics in aquaculture raises environmental and food safety concerns because chronic exposure of an aquatic ecosystem to antibiotics can result in the spread of antibiotic resistance, bioaccumulation of antibiotics in the organisms, and transfer of antibiotics to humans. In an attempt to overcome these problems, high-concentration red clay was applied as an alternative antibiotic against the following common fish pathogens: Aeromonas salmonicida, Vibrio alginolyticus, and Streptococcus equinus. The growth of A. salmonicida and V. alginolyticus was retarded by red clay, whereas that of S. equinus was promoted. Phase contrast and scanning electron microscopy analyses confirmed the attachment of red clay on cell surfaces, resulting in rapid gravitational removal and cell surface damage in both A. salmonicida and V. alginolyticus, but not in S. equinus. Different cell wall properties of grampositive species may explain the unharmed cell surface of S. equinus. Significant levels of oxidative stress were generated in only the former two species, whereas significant changes in membrane permeability were found only in S. equinus, probably because of its physiological adaptation. The bacterial communities in water samples from Oncorhynchus mykiss aquacultures supplemented with red clay showed similar structure and diversity as those from oxytetracycline-treated water. Taken together, the antibiotic effects of high concentrations of red clay in aquaculture can be attributed to gravitational removal, cell surface damage, and oxidative stress production, and suggest that red clay may be used as an alternative for antibiotics in aquaculture.

  8. Highly Concentrated Alginate-Gellan Gum Composites for 3D Plotting of Complex Tissue Engineering Scaffolds

    Directory of Open Access Journals (Sweden)

    Ashwini Rahul Akkineni

    2016-04-01

    Full Text Available In tissue engineering, additive manufacturing (AM technologies have brought considerable progress as they allow the fabrication of three-dimensional (3D structures with defined architecture. 3D plotting is a versatile, extrusion-based AM technology suitable for processing a wide range of biomaterials including hydrogels. In this study, composites of highly concentrated alginate and gellan gum were prepared in order to combine the excellent printing properties of alginate with the favorable gelling characteristics of gellan gum. Mixtures of 16.7 wt % alginate and 2 or 3 wt % gellan gum were found applicable for 3D plotting. Characterization of the resulting composite scaffolds revealed an increased stiffness in the wet state (15%–20% higher Young’s modulus and significantly lower volume swelling in cell culture medium compared to pure alginate scaffolds (~10% vs. ~23%. Cytocompatibility experiments with human mesenchymal stem cells (hMSC revealed that cell attachment was improved—the seeding efficiency was ~2.5–3.5 times higher on the composites than on pure alginate. Additionally, the composites were shown to support hMSC proliferation and early osteogenic differentiation. In conclusion, print fidelity of highly concentrated alginate-gellan gum composites was comparable to those of pure alginate; after plotting and crosslinking, the scaffolds possessed improved qualities regarding shape fidelity, mechanical strength, and initial cell attachment making them attractive for tissue engineering applications.

  9. High 5-hydroxymethylfurfural concentrations are found in Malaysian honey samples stored for more than one year.

    Science.gov (United States)

    Khalil, M I; Sulaiman, S A; Gan, S H

    2010-01-01

    5-Hydroxymethylfurfural (HMF) content is an indicator of the purity of honey. High concentrations of HMF in honey indicate overheating, poor storage conditions and old honey. This study investigated the HMF content of nine Malaysian honey samples, as well as the correlation of HMF formation with physicochemical properties of honey. Based on the recommendation by the International Honey Commission, three methods for the determination of HMF were used: (1) high performance liquid chromatography (HPLC), (2) White spectrophotometry and (3) Winkler spectrophotometry methods. HPLC and White spectrophotometric results yielded almost similar values, whereas the Winkler method showed higher readings. The physicochemical properties of honey (pH, free acids, lactones and total acids) showed significant correlation with HMF content and may provide parameters that could be used to make quick assessments of honey quality. The HMF content of fresh Malaysian honey samples stored for 3-6 months (at 2.80-24.87 mg/kg) was within the internationally recommended value (80 mg/kg for tropical honeys), while honey samples stored for longer periods (12-24 months) contained much higher HMF concentrations (128.19-1131.76 mg/kg). Therefore, it is recommended that honey should generally be consumed within one year, regardless of the type. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  10. Performance of high amylose starch-composited gelatin films influenced by gelatinization and concentration.

    Science.gov (United States)

    Wang, Wenhang; Wang, Kun; Xiao, Jingdong; Liu, Yaowei; Zhao, Yana; Liu, Anjun

    2017-01-01

    In order to study the impact of starch in film performance, high amylose corn starch was composited in gelatin films under different gelatinization conditions and, in high and low concentrations (10 and 50wt.%). It was found that hot water gelatinized starch (Gel-Shw) increased film mechanical strength and was dependent upon the starch concentration. The addition of an alkali component to the starch significantly enhanced the swelling of the starch granules and expedited the gelatinization process. Incorporation of starch, especially the alkalized starch (Sha), into the gelatin films decreased film solubility which improved its water resistance and water vapor permeability (WVP). Multiple techniques (DSC, TGA, FT-IR, and XRD) were used to characterize the process and results, including the crosslinking of the dissolved starch molecules and the particles formed from gelatinized starch during retrogradation process, which played an important role in improving the thermal stability of the composited gelatin films. Overall, the starch-gelatin composition provides a potential approach to improve gelatin film performance and benefit its applications in the food industry. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Ozone concentrations at a selected high-elevation forest site downwind Mexico City

    Science.gov (United States)

    Torres-JArdon, R.

    2013-05-01

    Torres-Jardón, R.*, Rosas-Pérez, I., Granada-Macías, L. M., Ruiz-Suárez, L. G. Centro de Ciencias de la Atmósfera, UNAM, México D. F. México * rtorres@unam.mx For many years, the vegetation of forest species such as Abies religiosa in natural parks located in the southwest mountains of Mexico City has attracted much attention since these parks have been experiencing a severe decline of unclear etiology. The high ozone levels in the area and the observed naked eye macroscopic, histological and cytological injuries on these species, strongly suggest an important contribution of tropospheric ozone to this deterioration process. Apart of historical short monitoring campaigns for measuring ozone levels in these mountains, it is known just a little is known about the present exposure levels at which the local vegetation is exposed. A continuous ozone analyzer has been in operation since 2011 at a high-elevation forest site (Parque Nacional Miguel Hidalgo, PNMH; 3110 m above mean sea level) located downwind of Mexico City Metropolitan Area (MCMA), in order to characterize the local ozone diel amplitude and its seasonal trend, as well as the influence of MCMA on the local O3 concentrations. Hourly average ozone data in PNMH shows that in general, the diel of ozone concentrations in the forest site has a statistical significant correlation with the pattern of ozone levels observed in several monitoring sites (smog receptor sites) within the MCMA, although the high elevation O3 levels are relatively lower than those in the urban area (around 2200 m above mean sea level). It is possible that a part of the oxidants in the air masses are removed by sink deposition processes during the air mass transport across the hills. The diel amplitude of ozone concentrations is small in the cold season, increasing as the seasons advance to June. As in the city, the highest ozone concentrations occur in April or May and the lowest levels during the rainy season, which extends from

  12. Thermoelectric properties of high electron concentration materials under large temperature gradients

    International Nuclear Information System (INIS)

    Bulat, L.P.; Stefansky, V.A.

    1994-01-01

    Theoretical methods of investigating of transport properties in solids under large temperature gradients are grounded. The nonlinear and non-local expressions for current density and heat flow are obtained with degenerated of current carriers gas. A number of new effects with large temperature gradients have been tested. Use of large temperature gradients leads to the increasing of the thermoelectric figure of merit. copyright 1995 American Institute of Physics

  13. Ultrafast Carrier Trapping of a Metal-Doped Titanium Dioxide Semiconductor Revealed by Femtosecond Transient Absorption Spectroscopy

    KAUST Repository

    Sun, Jingya; Yang, Yang; Khan, Jafar I.; Alarousu, Erkki; Guo, Zaibing; Zhang, Xixiang; Zhang, Qiang; Mohammed, Omar F.

    2014-01-01

    We explored for the first time the ultrafast carrier trapping of a metal-doped titanium dioxide (TiO2) semiconductor using broad-band transient absorption (TA) spectroscopy with 120 fs temporal resolution. Titanium dioxide was successfully doped layer-by-layer with two metal ions, namely tungsten and cobalt. The time-resolved data demonstrate clearly that the carrier trapping time decreases progressively as the doping concentration increases. A global-fitting procedure for the carrier trapping suggests the appearance of two time components: a fast one that is directly associated with carrier trapping to the defect state in the vicinity of the conduction band and a slow one that is attributed to carrier trapping to the deep-level state from the conduction band. With a relatively long doping deposition time on the order of 30 s, a carrier lifetime of about 1 ps is obtained. To confirm that the measured ultrafast carrier dynamics are associated with electron trapping by metal doping, we explored the carrier dynamics of undoped TiO2. The findings reported here may be useful for the implementation of high-speed optoelectronic applications and fast switching devices.

  14. Ultrafast Carrier Trapping of a Metal-Doped Titanium Dioxide Semiconductor Revealed by Femtosecond Transient Absorption Spectroscopy

    KAUST Repository

    Sun, Jingya

    2014-06-11

    We explored for the first time the ultrafast carrier trapping of a metal-doped titanium dioxide (TiO2) semiconductor using broad-band transient absorption (TA) spectroscopy with 120 fs temporal resolution. Titanium dioxide was successfully doped layer-by-layer with two metal ions, namely tungsten and cobalt. The time-resolved data demonstrate clearly that the carrier trapping time decreases progressively as the doping concentration increases. A global-fitting procedure for the carrier trapping suggests the appearance of two time components: a fast one that is directly associated with carrier trapping to the defect state in the vicinity of the conduction band and a slow one that is attributed to carrier trapping to the deep-level state from the conduction band. With a relatively long doping deposition time on the order of 30 s, a carrier lifetime of about 1 ps is obtained. To confirm that the measured ultrafast carrier dynamics are associated with electron trapping by metal doping, we explored the carrier dynamics of undoped TiO2. The findings reported here may be useful for the implementation of high-speed optoelectronic applications and fast switching devices.

  15. Superlattice assembly of graphene oxide (GO) and titania nanosheets: fabrication, in situ photocatalytic reduction of GO and highly improved carrier transport

    Science.gov (United States)

    Cai, Xingke; Ma, Renzhi; Ozawa, Tadashi C.; Sakai, Nobuyuki; Funatsu, Asami; Sasaki, Takayoshi

    2014-11-01

    Two different kinds of two-dimensional (2D) materials, graphene oxide (GO) and titanium oxide nanosheets (Ti0.87O20.52-), were self-assembled layer-by-layer using a polycation as a linker into a superlattice film. Successful construction of an alternate molecular assembly was confirmed by atomic force microscopy and UV-visible absorption spectroscopy as well as X-ray diffraction analysis. Exposure of the resulting film to UV light effectively promoted photocatalytic reduction of GO as well as decomposition of the polycation, which are due to their intimate molecular-level contact. The reduction completed within 3 hours, bringing about a decrease of the sheet resistance by ~106. This process provides a clean and mild route to reduced graphene oxide (rGO), showing advantages over other chemical and thermal reduction processes. A field-effect-transistor device was fabricated using the resulting superlattice assembly of rGO/Ti0.87O20.52- as a channel material. The rGO in the film was found to work as a unipolar n-type conductor, which is in contrast to ambipolar or unipolar p-type behavior mostly reported for rGO films. This unique property may be associated with the electron doping effect from Ti0.87O20.52- nanosheets. A significant improvement in the conductance and electron carrier mobility by more than one order of magnitude was revealed, which may be accounted for by the heteroassembly with Ti0.87O20.52- nanosheets with a high dielectric constant as well as the better 2D structure of rGO produced via the soft photocatalytic reduction.Two different kinds of two-dimensional (2D) materials, graphene oxide (GO) and titanium oxide nanosheets (Ti0.87O20.52-), were self-assembled layer-by-layer using a polycation as a linker into a superlattice film. Successful construction of an alternate molecular assembly was confirmed by atomic force microscopy and UV-visible absorption spectroscopy as well as X-ray diffraction analysis. Exposure of the resulting film to UV light

  16. High-concentration boron doping of graphene nanoplatelets by simple thermal annealing and their supercapacitive properties

    Science.gov (United States)

    Yeom, Da-Young; Jeon, Woojin; Tu, Nguyen Dien Kha; Yeo, So Young; Lee, Sang-Soo; Sung, Bong June; Chang, Hyejung; Lim, Jung Ah; Kim, Heesuk

    2015-05-01

    For the utilization of graphene in various energy storage and conversion applications, it must be synthesized in bulk with reliable and controllable electrical properties. Although nitrogen-doped graphene shows a high doping efficiency, its electrical properties can be easily affected by oxygen and water impurities from the environment. We here report that boron-doped graphene nanoplatelets with desirable electrical properties can be prepared by the simultaneous reduction and boron-doping of graphene oxide (GO) at a high annealing temperature. B-doped graphene nanoplatelets prepared at 1000 °C show a maximum boron concentration of 6.04 ± 1.44 at %, which is the highest value among B-doped graphenes prepared using various methods. With well-mixed GO and g-B2O3 as the dopant, highly uniform doping is achieved for potentially gram-scale production. In addition, as a proof-of-concept, highly B-doped graphene nanoplatelets were used as an electrode of an electrochemical double-layer capacitor (EDLC) and showed an excellent specific capacitance value of 448 F/g in an aqueous electrolyte without additional conductive additives. We believe that B-doped graphene nanoplatelets can also be used in other applications such as electrocatalyst and nano-electronics because of their reliable and controllable electrical properties regardless of the outer environment.

  17. High-concentration boron doping of graphene nanoplatelets by simple thermal annealing and their supercapacitive properties.

    Science.gov (United States)

    Yeom, Da-Young; Jeon, Woojin; Tu, Nguyen Dien Kha; Yeo, So Young; Lee, Sang-Soo; Sung, Bong June; Chang, Hyejung; Lim, Jung Ah; Kim, Heesuk

    2015-05-05

    For the utilization of graphene in various energy storage and conversion applications, it must be synthesized in bulk with reliable and controllable electrical properties. Although nitrogen-doped graphene shows a high doping efficiency, its electrical properties can be easily affected by oxygen and water impurities from the environment. We here report that boron-doped graphene nanoplatelets with desirable electrical properties can be prepared by the simultaneous reduction and boron-doping of graphene oxide (GO) at a high annealing temperature. B-doped graphene nanoplatelets prepared at 1000 °C show a maximum boron concentration of 6.04 ± 1.44 at %, which is the highest value among B-doped graphenes prepared using various methods. With well-mixed GO and g-B2O3 as the dopant, highly uniform doping is achieved for potentially gram-scale production. In addition, as a proof-of-concept, highly B-doped graphene nanoplatelets were used as an electrode of an electrochemical double-layer capacitor (EDLC) and showed an excellent specific capacitance value of 448 F/g in an aqueous electrolyte without additional conductive additives. We believe that B-doped graphene nanoplatelets can also be used in other applications such as electrocatalyst and nano-electronics because of their reliable and controllable electrical properties regardless of the outer environment.

  18. Use of high concentration contrast media (HCCM): principles and rationale--body CT

    International Nuclear Information System (INIS)

    Brink, James A.

    2003-01-01

    Numerous complex pharmacokinetic interrelationships affect the use of contrast media for computed tomography (CT) imaging. The volume, concentration, and rate of injection, all affect the degree of enhancement that is achieved with an injection of contrast material. In addition, the injection technique, whether the contrast is infused with a constant injection rate (uniphasic injection) or whether the rate is altered during the injection (multiphasic injection) also affect the magnitude and duration of contrast enhancement. In body CT imaging, the liver poses unique challenges in managing the use of intravenous contrast material because of its dual blood supply and the need to complete imaging before equilibrium occurs between the intravascular and extravascular compartments. The magnitude of hepatic enhancement that is ultimately achieved is related primarily to the amount of iodinated contrast material that accumulates in the extravascular space within the target organ, independent of the speed of the CT scanner. The key determinant of the onset of the equilibrium phase is the injection duration. Given that a high injection flow rate (4-5 ml/s) is desirable for arterial phase imaging, the injection duration is maintained with use of an appropriate contrast volume. Thus, modifications of total iodine dose are best done with alterations in contrast concentration. The magnitude of arterial enhancement that is achieved is related to both the concentration and rate of contrast administration. The speed of the scanner determines its ability to record image data during the most advantageous time period, the peak of arterial enhancement. Thus, rapid imaging is particularly advantageous for optimal contrast use in CT angiography as well as in multiphasic imaging of the parenchymal organs

  19. Ultrafine particles in inhabited areas in the Arctic - From very low to high concentrations

    DEFF Research Database (Denmark)

    Pétursdóttir, Una; Kirkelund, Gunvor Marie; Press-Kristensen, Kåre

    2017-01-01

    The Arctic is considered a pristine environment, where pollution mainly originates from global sources. The present study examines particle number concentrations (PNCs) and the main sources of airborne ultrafine particles (UFPs, d < 100 nm) in the town Sisimiut and two nearby settlements, Sarfann......The Arctic is considered a pristine environment, where pollution mainly originates from global sources. The present study examines particle number concentrations (PNCs) and the main sources of airborne ultrafine particles (UFPs, d ..., Sarfannguit and Itilleq, in West Greenland. Measurements were carried out during three weeks in April and May 2016. Air temperatures during the measurements ranged from −4.4 to +8.7 °C. A portable condensation particle counter (P-Trak) was used for the measurements. Results showed that the lowest...... in Sisimiut, while subsequent measurements at the same location showed much lower PNCs. The presence of heavy machinery elevated PNCs highly during two measurement events, giving PNCs up to 270,993 cm−3 but dropping to 1180 cm−3 10 min later, after the vehicle had passed by. A measurement event in Sisimiut...

  20. A study of building structural features associated with high indoor air concentrations of organochlorine termiticides.

    Science.gov (United States)

    Pisaniello, D L; Gun, R T; Tkaczuk, M N; Hann, C; Crea, J

    1993-09-01

    As part of a two-year study of post-treatment residential exposure to the termiticide, aldrin, the building structural features of ten houses with crawl-space-type floors were assessed by an independent inspector. Building attributes recorded on a checklist included the age of the dwelling, room characteristics, floor details and the nature of subfloor ventilation. At the end of each inspection, the inspector, who was blinded to data on airborne aldrin concentrations, provided a rating of expected indoor air contamination. Several of the building attributes, including the age of the house, the area of exterior subfloor vents, as well as the inspector's rating, were significantly correlated with airborne aldrin values. No single building variable, however, was highly correlated with every measure of aldrin concentration over a 12-month period. The observed data are consistent with poor subfloor ventilation and a 'leaky' floor being important contributors to indoor air pollution. It is recommended that pest control companies advise householders about any obvious floor and ventilation deficiencies before soil treatment work is undertaken. Pesticide exposure (by analogy with geological radon exposure) may be reduced by sealing gaps in floors and/or by improving subfloor ventilation.

  1. High Concentrations of Organic Contaminants in Air from Ship Breaking Activities in Chittagong, Bangladesh.

    Science.gov (United States)

    Nøst, Therese H; Halse, Anne K; Randall, Scott; Borgen, Anders R; Schlabach, Martin; Paul, Alak; Rahman, Atiqur; Breivik, Knut

    2015-10-06

    The beaches on the coast of Chittagong in Bangladesh are one of the most intense ship breaking areas in the world. The aim of the study was to measure the concentrations of organic contaminants in the air in the city of Chittagong, including the surrounding ship breaking areas using passive air samplers (N = 25). The compounds detected in the highest amounts were the polycyclic aromatic hydrocarbons (PAHs) and short-chain chlorinated paraffins (SCCPs), whereas dichlorodiphenyltrichloroethanes (DDTs), hexachlorobenzene (HCB), and polychlorinated biphenyls (PCBs) were several orders of magnitude lower in comparison. PCBs, PAHs, and HCB were highest at sites near the ship breaking activities, whereas DDTs and SCCPs were higher in the urban areas. Ship breaking activities likely act as atmospheric emission sources of PCBs, PAHs, and HCB, thus adding to the international emphasis on responsible recycling of ships. Concentrations of PAHs, PCBs, DDTs, HCB, and SCCPs in ambient air in Chittagong are high in comparison to those found in similar studies performed in other parts of Asia. Estimated toxic equivalent quotients indicate elevated human health risks caused by inhalation of PAHs at most sites.

  2. Novel approach in k0-NAA for highly concentrated REE Samples.

    Science.gov (United States)

    Abdollahi Neisiani, M; Latifi, M; Chaouki, J; Chilian, C

    2018-04-01

    The present paper presents a new approach for k 0 -NAA for accurate quantification with short turnaround analysis times for rare earth elements (REEs) in high content mineral matrices. REE k 0 and Q 0 values, spectral interferences and nuclear interferences were experimentally evaluated and improved with Alfa Aesar Specpure Plasma Standard 1000mgkg -1 mono-rare earth solutions. The new iterative gamma-ray self-attenuation and neutron self-shielding methods were investigated with powder standards prepared from 100mg of 99.9% Alfa Aesar mono rare earth oxide diluted with silica oxide. The overall performance of the new k 0 -NAA method for REEs was validated using a certified reference material (CRM) from Canadian Certified Reference Materials Project (REE-2) with REE content ranging from 7.2mgkg -1 for Yb to 9610mgkg -1 for Ce. The REE concentration was determined with uncertainty below 7% (at 95% confidence level) and proved good consistency with the CRM certified concentrations. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Arbuscular mycorrhizal fungi differentially affect the response to high zinc concentrations of two registered poplar clones

    International Nuclear Information System (INIS)

    Lingua, Guido; Franchin, Cinzia; Todeschini, Valeria; Castiglione, Stefano; Biondi, Stefania; Burlando, Bruno; Parravicini, Valerio; Torrigiani, Patrizia; Berta, Graziella

    2008-01-01

    The effects of a high concentration of zinc on two registered clones of poplar (Populus alba Villafranca and Populus nigra Jean Pourtet), inoculated or not with two arbuscular mycorrhizal fungi (Glomus mosseae or Glomus intraradices) before transplanting them into polluted soil, were investigated, with special regard to the extent of root colonization by the fungi, plant growth, metal accumulation in the different plant organs, and leaf polyamine concentration. Zinc accumulation was lower in Jean Pourtet than in Villafranca poplars, and it was mainly translocated to the leaves; the metal inhibited mycorrhizal colonization, compromised plant growth, and, in Villafranca, altered the putrescine profile in the leaves. Most of these effects were reversed or reduced in plants pre-inoculated with G. mosseae. Results indicate that poplars are suitable for phytoremediation purposes, confirming that mycorrhizal fungi can be useful for phytoremediation, and underscore the importance of appropriate combinations of plant genotypes and fungal symbionts. - Inoculation with arbuscular mycorrhizal fungi can improve poplar tolerance to heavy metals in phytoremediation programmes

  4. High concentration tritium gas measurement with small volume ionization chambers for fusion fuel gas monitors

    International Nuclear Information System (INIS)

    Uda, Tatsuhiko; Okuno, Kenji; Matsuda, Yuji; Naruse, Yuji

    1991-01-01

    To apply ionization chambers to fusion fuel gas processing systems, high concentration tritium gas was experimentally measured with small volume 0.16 and 21.6 cm 3 ionization chambers. From plateau curves, the optimum electric field strength was obtained as 100∼200 V/cm. Detection efficiency was confirmed as dependent on the ionization ability of the filled gas, and moreover on its stopping power, because when the range of the β-rays was shortened, the probability of energy loss by collisions with the electrode and chamber wall increased. Loss of ions by recombination was prevented by using a small volume ionization chamber. For example the 0.16 cm 3 ionization chamber gave measurement with linearity to above 40% tritium gas. After the tritium gas measurements, the concentration levels inside the chamber were estimated from their memory currents. Although more than 1/4,000 of the maximum, current was observed as a memory effect, the smaller ionization chamber gave a smaller memory effect. (author)

  5. Nitrogen concentration profiles in oxy-nitrited high-speed steel

    International Nuclear Information System (INIS)

    Barcz, A.; Turos, A.; Wielunski, L.

    1976-01-01

    Nuclear microanalysis has been applied for the determination of in-depth concentration profiles of nitrogen in oxy-nitrided high-speed steel. The concentration profiles were deduced from measurements of the nitrogen content, determined by means of the 14 N(d,α) 12 C reaction for the set of initially identical samples after the removal of surface layers of sequentially increasing thicknesses. The 1.2 MeV deuterons were obtained from the Institute of Nuclear Research Van de Graaf accelerator LECH. The α-particles produced in the 14 N(d,α) 12 C reaction were detected by means of silicon surface barrier detector mounted at 150 deg C. Strong blocking of the nitrogen diffusion due to the presence of oxygen has been observed. The accuracy of nitrogen detection is of the order of 5% for nitrogen-rich regions and 10% for the matrix. However, the local non-uniformity of the steel may cause a spread of about 20% of the measured values. (T.G.)

  6. Concentrations of radionuclides in cassava growing in high background radiation area and their transfer

    Energy Technology Data Exchange (ETDEWEB)

    Jialin, Huang; Yongru, Zha; Yicao, Guo

    1985-04-01

    The concentrations of several natural radionuclides in common cassava (Manihot esculenta Crantz) growing in Yangjiang County, a high background radiation area in Guangdong Province, and their uptake from soil and distribution in the plant were investigated. The results show that the concentrations of natural uranium and thorium in cassava root are of the order of 10/sup -6/ g/kg, and those of radium-226, radium-228, lead-210 and polonium-210 are of the order of 10/sup -11/ Ci/kg. The highest level is 9.30 +- 0.30 x 10/sup -11/ Ci/kg (lead-210), and the lowest is 3.99 +- 0.20 x 10/sup -11/ Ci/kg (radium-226). The levels of natural uranium, thorium, radium-226 and polonium-210 in cassava are below the limits stipulated by the regulations for food hygiene in China, while the lead-210 level approaches the limit. It is noticeable that the highest level of radium-228 is 7.28 +- 1.03 x 10/sup -11/ Ci/kg, 10.4 times higher than the limit. The transfer of all the nuclides from soil to different parts of cassava shows a pattern contrary to that of he nuclides in the other regions where uranium-and radium-containing waste water and phosphate fertilizer are used in agriculture.

  7. Concentrations of radionuclides in cassava growing in high background radiation area and their transfer

    International Nuclear Information System (INIS)

    Huang Jialin; Zha Yongru; Guo Yicao

    1985-01-01

    The concentrations of several natural radionuclides in common cassava (Manihot esculenta Crantz) growing in Yangjiang County, a high background radiation area in Guangdong Province, and their uptake from soil and distribution in the plant were investigated. The results show that the concentrations of natural uranium and thorium in cassava root are of the order of 10 -6 g/kg, and those of radium-226, radium-228, lead-210 and polonium-210 are of the order of 10 -11 Ci/kg. The highest level is 9.30 +- 0.30 x 10 -11 Ci/kg (lead-210), and the lowest is 3.99 +- 0.20 x 10 -11 Ci/kg (radium-226). The levels of natural uranium, thorium, radium-226 and polonium-210 in cassava are below the limits stipulated by the regulations for food hygiene in China, while the lead-210 level approaches the limit. It is noticeable that the highest level of radium-228 is 7.28 +- 1.03 x 10 -11 Ci/kg, 10.4 times higher than the limit. The transfer of all he nuclides from soil to different parts of cassava shows a pattern contrary to that of he nuclides in the other regions where uranium-and radium-containing waste water and phosphate fertilizer are used in agriculture

  8. Highly efficient luminescent solar concentrators based on earth-abundant indirect-bandgap silicon quantum dots

    Science.gov (United States)

    Meinardi, Francesco; Ehrenberg, Samantha; Dhamo, Lorena; Carulli, Francesco; Mauri, Michele; Bruni, Francesco; Simonutti, Roberto; Kortshagen, Uwe; Brovelli, Sergio

    2017-02-01

    Building-integrated photovoltaics is gaining consensus as a renewable energy technology for producing electricity at the point of use. Luminescent solar concentrators (LSCs) could extend architectural integration to the urban environment by realizing electrode-less photovoltaic windows. Crucial for large-area LSCs is the suppression of reabsorption losses, which requires emitters with negligible overlap between their absorption and emission spectra. Here, we demonstrate the use of indirect-bandgap semiconductor nanostructures such as highly emissive silicon quantum dots. Silicon is non-toxic, low-cost and ultra-earth-abundant, which avoids the limitations to the industrial scaling of quantum dots composed of low-abundance elements. Suppressed reabsorption and scattering losses lead to nearly ideal LSCs with an optical efficiency of η = 2.85%, matching state-of-the-art semi-transparent LSCs. Monte Carlo simulations indicate that optimized silicon quantum dot LSCs have a clear path to η > 5% for 1 m2 devices. We are finally able to realize flexible LSCs with performances comparable to those of flat concentrators, which opens the way to a new design freedom for building-integrated photovoltaics elements.

  9. Human parvovirus B19 infection in hemophiliacs first infused with two high-purity, virally attenuated factor VIII concentrates.

    Science.gov (United States)

    Azzi, A; Ciappi, S; Zakvrzewska, K; Morfini, M; Mariani, G; Mannucci, P M

    1992-03-01

    Human parvovirus B19 can be transmitted by coagulation factor concentrates and is highly resistant to virucidal methods. To evaluate whether the additional removal of virus by chromatographic methods during the manufacture of high-purity concentrates reduces the risk of B19 transmission, we have prospectively evaluated the rate of anti-B19 seroconversion in two groups of susceptible (anti-B19 negative) hemophiliacs infused with high-purity, heated (pasteurized) or solvent-detergent-treated factor VIII concentrates. Both products infected a relatively high proportion of patients (nine of 20).

  10. The protective role of low-concentration alcohol in high-fructose induced adverse cardiovascular events in mice.

    Science.gov (United States)

    Wu, Xiaoqi; Pan, Bo; Wang, Ying; Liu, Lingjuan; Huang, Xupei; Tian, Jie

    2018-01-01

    Cardiovascular disease remains a worldwide public health issue. As fructose consumption is dramatically increasing, it has been demonstrated that a fructose-rich intake would increase the risk of cardiovascular disease. In addition, emerging evidences suggest that low concentration alcohol intake may exert a protective effect on cardiovascular system. This study aimed to investigate whether low-concentration alcohol consumption would prevent the adverse effects on cardiovascular events induced by high fructose in mice. From the results of hematoxylin-eosin staining, echocardiography, heart weight/body weight ratio and the expression of hypertrophic marker ANP, we found high-fructose result in myocardial hypertrophy and the low-concentration alcohol consumption would prevent the cardiomyocyte hypertrophy from happening. In addition, we observed low-concentration alcohol consumption could inhibit mitochondria swollen induced by high-fructose. The elevated levels of glucose, triglyceride, total cholesterol in high-fructose group were reduced by low concentration alcohol. Low expression levels of SIRT1 and PPAR-γ induced by high-fructose were significantly elevated when fed with low-concentration alcohol. The histone lysine 9 acetylation (acH3K9) level was decreased in PPAR-γ promoter in high-fructose group but elevated when intake with low concentration alcohol. The binding levels of histone deacetylase SIRT1 were increased in the same region in high-fructose group, while the low concentration alcohol can prevent the increased binding levels. Overall, our study indicates that low-concentration alcohol consumption could inhibit high-fructose related myocardial hypertrophy, cardiac mitochondria damaged and disorders of glucose-lipid metabolism. Furthermore, these findings also provide new insights into histone acetylation-deacetylation mechanisms of low-concentration alcohol treatment that may contribute to the prevention of cardiovascular disease induced by high

  11. Bottom-Up Cost Analysis of a High Concentration PV Module; NREL (National Renewable Energy Laboratory)

    Energy Technology Data Exchange (ETDEWEB)

    Horowitz, K.; Woodhouse, M.; Lee, H.; Smestad, G.

    2015-04-13

    We present a bottom-up model of III-V multi-junction cells, as well as a high concentration PV (HCPV) module. We calculate $0.65/Wp(DC) manufacturing costs for our model HCPV module design with today’s capabilities, and find that reducing cell costs and increasing module efficiency offer the promising pathways for future cost reductions. Cell costs could be significantly reduced via an increase in manufacturing scale, substrate reuse, and improved manufacturing yields. We also identify several other significant drivers of HCPV module costs, including the Fresnel lens primary optic, module housing, thermal management, and the receiver board. These costs could potentially be lowered by employing innovative module designs.

  12. EPRI 25kW high concentration photovoltaic integrated array concept and associated economics

    International Nuclear Information System (INIS)

    Gunn, J.A.; Dostalek, F.J.

    1993-01-01

    This paper describes a cost effective photovoltaic array design for the high concentration technology being developed by the Electric Power Research Institute for utility scale applications. The concept of an ''integrated array'' is to attach Fresnel lens parquets directly to the front of the tracker structure and PV panels directly to the back of the structure thereby eliminating redundant structural components. The concept also incorporates the maximum use of automated manufacturing techniques for all components thereby minimizing material waste, fabrication and assembly labor. This paper also describes the results of a first approach cost and economic study for the technology which shows the potential for levelized energy cost below $0.10/kWh for a 50 MW ac plant given a mature technology

  13. Ozone concentration characteristics in and over a high-altitude forest

    Energy Technology Data Exchange (ETDEWEB)

    Wooldridge, G.L.; Zeller, K.F.; Musselman, R.C. [USDA Rocky Mountain Forest and Range Experiment Station, Fort Collins, CO (United States)

    1994-12-31

    Four years of atmospheric ozone data from a subalpine forest site at an elevation of 3180 m above mean sea level (msl) about 55 km west of Laramie, Wyoming, U.S.A., and at a 2680 msl forest-steppe ecotone site 15 km to the southeast, have been analyzed. These sites appear to be free of any urban or industrial pollutants. Data for January through June show that the amplitude of the diurnal cycle of hourly mean values is small in winter, then increases through June. The highest monthly mean concentrations occur in April or May, and decrease in June. Episodal high O{sub 3} values were measured during spring months in connection with cutoff low pressure centers aloft and probable stratospheric intrusions. Spectral analyses yield a peak at the diurnal period and broad peaks at longer periodicities, particularly during the spring season. (orig.)

  14. Formulation and make-up of simulated concentrated water, high ionic content aqueous solution

    International Nuclear Information System (INIS)

    Gdowski, G.

    1997-01-01

    This procedure describes the formulation and make-up of Simulated Concentrated Water (SCW), a high-ionic-content water to be used for Activity E-20-50 Long-Term Corrosion Studies. This water has an ionic content which is nominally a factor of a thousand higher than that of representative waters at or near Yucca Mountain. Representative waters were chosen as J-13 well water [Harrar, 1990] and perched water at Yucca Mountain [Glassley, 1996]. J-13 well water is obtained from ground water that is in contact with the Topopah Spring tuff, which is the repository horizon rock. The perched water is located in the Topopah Spring tuff, but below the repository horizon and above the water table. A nominal thousand times higher ionic content was chosen to simulate the water that would result from the wetting of salts which have been previously deposited on a container surface

  15. Study on radon concentration monitoring using activated charcoal canisters in high humidity environments

    International Nuclear Information System (INIS)

    Wang Yuexing; Wang Haijun; Yang Yifang; Qin Sichang; Wang Zhentao; Zhang Zhenjiang

    2009-01-01

    The effects of humidity on the sensitivity using activated charcoal canisters for measuring radon concentrations in high humidity environments were studied. Every canister filled with 80 g of activated charcoal, and they were exposed to 48 h or 72 h in the relative humidity of 68%, 80%, 88% and 96% (28 degree C), respectively. The amount of radon absorbed in the canisters was determined by counting the gamma rays from 214 Pb and 214 Bi (radon progeny). The results showed that counts decreased with the increase of relative humidity. There was a negative linear relationship between count and humidity. In the relative humidity range of 68%-96%, the sensitivity of radon absorption decreased about 2.4% for every 1% (degree)rise in humidity. The results also showed that the exposure time of the activated charcoal canisters should be less than 3 days. (authors)

  16. Cesium Isotherm Testing with Spherical Resorcinol-Formaldehyde Resin at High Sodium Concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Russell, Renee L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Fiskum, Sandra K. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Smoot, Margaret R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Rinehart, Donald E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-04-01

    Washington River Protection Solutions (WRPS) is developing a Low-Activity Waste Pretreatment System (LAWPS) to provide low-activity waste (LAW) directly to the Hanford Tank Waste Treatment and Immobilization Plant (WTP) Low-Activity Waste Facility for immobilization. The pretreatment that will be conducted on tank waste supernate at the LAWPS facility entails filtration to remove entrained solids and cesium (Cs) ion exchange to remove Cs from the product sent to the WTP. Currently, spherical resorcinol-formaldehyde (sRF) resin (Microbeads AS, Skedsmokorset, Norway) is the Cs ion exchange resin of choice. Most work on Cs ion exchange efficacy in Hanford tank waste has been conducted at nominally 5 M sodium (Na). WRPS is examining the possibility of processing supernatant at high Na concentrations—up to 8 M Na—to maximize processing efficiency through the LAWPS. Minimal Cs ion exchange work has been conducted at 6 M and 8 M Na concentrations..

  17. Improving the Output Power Stability of a High Concentration Photovoltaic System with Supercapacitors: A Preliminary Evaluation

    Directory of Open Access Journals (Sweden)

    Yu-Pei Huang

    2015-01-01

    Full Text Available The output power of a high concentration photovoltaic (HCPV system is very sensitive to fluctuating tracking errors and weather patterns. To help compensate this shortcoming, supercapacitors have been successfully incorporated into photovoltaic systems to improve their output power stability. This study examined the output power stability improvement of an HCPV module with a supercapacitor integrated into its circuit. Furthermore, the equivalent model of the experimental circuit is presented and analyzed. Experimental results suggest that integrating a supercapacitor into an HCPV module could improve its output power stability and further extend its acceptance angle. This paper provides preliminary data of the improvement and its evaluation method, which could be utilized for further improvements to an HCPV system.

  18. Use of high concentration contrast media: principles and rationale--vascular district

    International Nuclear Information System (INIS)

    Fleischmann, Dominik.

    2003-01-01

    Optimal contrast medium delivery remains a crucial issue in CT angiography and it will become even more critical with continuously evolving, faster CT scanner technology. This review article first explains the fundamentals of arterial enhancement using mathematical models of early contrast medium dynamics. The relationship of contrast medium volume, injection flow rates and injection duration are explicitly illustrated. Next, current techniques of contrast medium application are reviewed, with particular attention to methods of accurate timing of the scanning delay (test-bolus and automated bolus triggering), tools for automated saline-flushing of the veins (double-syringe power injectors) and the use of high-concentration contrast medium. From there, rational CT angiographic injection protocols for a wide range of selectable acquisition times for 4-, 8- and 16-channel MDCT are proposed

  19. Concentration of 210Po in local foodstuffs grown nearby High Background Areas (HBRA)

    International Nuclear Information System (INIS)

    Kamesh Viswanathan, B.; Arunachalam, Kantha D.; Sathesh Kumar, A.; Jayakrishna, K.; Rao, D.D.

    2012-01-01

    210 Po is the decay product of natural radionuclide of 238 U series. The presence of a radionuclide migrates from soil > plant > food and ingested by the humans residing in the areas of syentite rocks nearby the High Background Radiation Area's (HBRA). The food samples were studied by Market Basket Study (MBS). The average concentration of 210 Po in foodstuffs like green leafy vegetables, other vegetables, roots and tubers; fruits, fish, other flesh foods, milk and cereals were 1671 ± 163.3, 28.2 ± 7.3, 320 ± 99, 53 ± 17.5, 251.5 ± 54.5, 37 ± 14.5, 16 ± 6 and 230 ± 75 mBq. Kg -1 fresh weight. (author)

  20. Water temperature and concentration measurements within the expanding blast wave of a high explosive

    International Nuclear Information System (INIS)

    Carney, J R; Lightstone, J M; Piecuch, S; Koch, J D

    2011-01-01

    We present an application of absorption spectroscopy to directly measure temperature and concentration histories of water vapor within the expansion of a high explosive detonation. While the approach of absorption spectroscopy is well established, the combination of a fast, near-infrared array, broadband light source, and rigid gauge allow the first application of time-resolved absorption measurements in an explosive environment. The instrument is demonstrated using pentaerythritol tetranitrate with a sampling rate of 20 kHz for 20 ms following detonation. Absorption by water vapor is measured between 1335 and 1380 nm. Water temperatures are determined by fitting experimental transmission spectra to a simulated database. Water mole fractions are deduced following the temperature assignment. The sources of uncertainty and their impact on the results are discussed. These measurements will aid the development of chemical-specific reaction models and the predictive capability in technical fields including combustion and detonation science

  1. Graphene oxide as efficient high-concentration formaldehyde scavenger and reutilization in supercapacitor.

    Science.gov (United States)

    Liang, Hongyu; Bu, Yongfeng; Zhang, Yutian; Zhang, Junyan

    2015-04-15

    Graphene oxide (GO) was investigated as a low-cost and high-efficient scavenger for high-concentration formaldehyde in alkali media. It showed very high removal capacity, 411 mg of formaldehyde per milligram of GO, and strong resistant to temperature changes. Additionally, the used GO can be easily renewed by a simple electrochemical method. By analyzing the componential and electrochemical characterizations of GO before and after use, the results showed that the degradation mechanism of formaldehyde is a collaborative process of chemical oxidation and physical adsorption, and the former dominates the degradation process. With the aid of oxygen-containing groups in GO, most formaldehyde can be easily oxidized by GO in alkaline media (this is equivalent to GO was reduced by formaldehyde). On the other hand, the used GO (reduced GO, noted as rGO) exhibits more ideal electronic double-layer capacitor (EDLC) feature than GO, along with higher rate capacitance (up to 136 F g(-1) at 50 A g(-1)). In short, GO is not only an efficient formaldehyde scavenger, but the used GO (rGO) can serve as promising electrical energy storage material. This study provides new insights for us to reutilize the discarded adsorbents generated from the environmental protection. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Improved high temperature solar absorbers for use in Concentrating Solar Power central receiver applications.

    Energy Technology Data Exchange (ETDEWEB)

    Stechel, Ellen Beth; Ambrosini, Andrea; Hall, Aaron Christopher; Lambert, Timothy L.; Staiger, Chad Lynn; Bencomo, Marlene

    2010-09-01

    Concentrating solar power (CSP) systems use solar absorbers to convert the heat from sunlight to electric power. Increased operating temperatures are necessary to lower the cost of solar-generated electricity by improving efficiencies and reducing thermal energy storage costs. Durable new materials are needed to cope with operating temperatures >600 C. The current coating technology (Pyromark High Temperature paint) has a solar absorptance in excess of 0.95 but a thermal emittance greater than 0.8, which results in large thermal losses at high temperatures. In addition, because solar receivers operate in air, these coatings have long term stability issues that add to the operating costs of CSP facilities. Ideal absorbers must have high solar absorptance (>0.95) and low thermal emittance (<0.05) in the IR region, be stable in air, and be low-cost and readily manufacturable. We propose to utilize solution-based synthesis techniques to prepare intrinsic absorbers for use in central receiver applications.

  3. Inhibition of Coenzyme Qs Accumulation in Engineered Escherichia coli by High Concentration of Farnesyl Diphosphate

    Science.gov (United States)

    Samoudi, Mojtaba; Omid Yeganeh, Negar; Shahbani Zahiri, Hossein; Shariati, Parvin; Hajhosseini, Reza

    2015-01-01

    Background: Coenzyme Q 10 (CoQ 10 ) is an isoprenoid component used widely in nutraceutical industries. Farnesyl diphosphate synthase (FPPS) is a responsible enzyme for biosynthesis of farnesyl diphosphate (FPP), a key precursor for CoQs production. This research involved investigating the effect of FPPS over-expression on CoQs production in engineered CoQ 10 -producing Escherichia coli (E. coli). Methods: Two CoQ 10 -producing strains, as referred to E. coli Ba and E. coli Br, were transformed by the encoding gene for FPPS (ispA) under the control of either the trc or P BAD promoters. Results: Over-expression of ispA under the control of P BAD promoter led to a relative increase in CoQ 10 production only in recombinant E. coli Br although induction by arabinose resulted in partial reduction of CoQ 10 production in both recombinant E. coli Ba and E. coli Br strains. Over-expression of ispA under the control of stronger trc promoter, however, led to a severe decrease in CoQ 10 production in both recombinant E. coli Ba and E. coli Br strains, as reflected by reductions from 629±40 to 30±13 and 564±28 to 80±14 μg/g Dried Cell Weight (DCW), respectively. The results showed high level of FPP reduces endogenous CoQ 8 production as well and that CoQs are produced in a complimentary manner, as the increase in production of one decreases the production of the other. Conclusion: The reduction in CoQ 10 production can be a result of Dds inhibition by high FPP concentration. Therefore, more effort is needed to verify the role of intermediate metabolite concentration and to optimize production of CoQ 10 . PMID:26306151

  4. Quantified Hole Concentration in AlGaN Nanowires for High-Performance Ultraviolet Emitters

    KAUST Repository

    Zhao, Chao; Ebaid, Mohamed; Zhang, Huafan; Priante, Davide; Janjua, Bilal; Zhang, Daliang; Wei, Nini; Alhamoud, Abdullah; Shakfa, M. Khaled; Ng, Tien Khee; Ooi, Boon S.

    2018-01-01

    P-type doping in wide bandgap and new classes of ultra-wide bandgap materials has long been a scientific and engineering problem. The challenges arise from the large activation energy of dopants and high densities of dislocations in materials. We report here, a significantly enhanced p-type conduction using high-quality AlGaN nanowires. For the first time, the hole concentration in Mg-doped AlGaN nanowires is quantified. The incorporation of Mg into AlGaN was verified by correlation with photoluminescence and Raman measurements. The open-circuit potential measurements further confirmed the p-type conductivity; while Mott-Schottky experiments measured a hole concentration of 1.3×1019 cm-3. These results from photoelectrochemical measurements allow us to design prototype ultraviolet (UV) light-emitting diodes (LEDs) incorporating the AlGaN quantum-disks-in-nanowire and optimized p-type AlGaN contact layer for UV-transparency. The ~335-nm LEDs exhibited a low turn-on voltage of 5 V with a series resistance of 32 Ω, due to the efficient p-type doping of the AlGaN nanowires. The bias-dependent Raman measurements further revealed the negligible self-heating of devices. This study provides an attractive solution to evaluate electrical properties of AlGaN, which is applicable to other wide bandgap nanostructures. Our results are expected to open doors to new applications for wide and ultra-wide bandgap materials.

  5. Quantified Hole Concentration in AlGaN Nanowires for High-Performance Ultraviolet Emitters

    KAUST Repository

    Zhao, Chao

    2018-05-29

    P-type doping in wide bandgap and new classes of ultra-wide bandgap materials has long been a scientific and engineering problem. The challenges arise from the large activation energy of dopants and high densities of dislocations in materials. We report here, a significantly enhanced p-type conduction using high-quality AlGaN nanowires. For the first time, the hole concentration in Mg-doped AlGaN nanowires is quantified. The incorporation of Mg into AlGaN was verified by correlation with photoluminescence and Raman measurements. The open-circuit potential measurements further confirmed the p-type conductivity; while Mott-Schottky experiments measured a hole concentration of 1.3×1019 cm-3. These results from photoelectrochemical measurements allow us to design prototype ultraviolet (UV) light-emitting diodes (LEDs) incorporating the AlGaN quantum-disks-in-nanowire and optimized p-type AlGaN contact layer for UV-transparency. The ~335-nm LEDs exhibited a low turn-on voltage of 5 V with a series resistance of 32 Ω, due to the efficient p-type doping of the AlGaN nanowires. The bias-dependent Raman measurements further revealed the negligible self-heating of devices. This study provides an attractive solution to evaluate electrical properties of AlGaN, which is applicable to other wide bandgap nanostructures. Our results are expected to open doors to new applications for wide and ultra-wide bandgap materials.

  6. High concentrations of manganese and sulfur in deposits on Murray Ridge, Endeavour Crater, Mars

    Science.gov (United States)

    Arvidson, Raymond E.; Squyres, Steven W.; Morris, Richard V.; Knoll, Andrew H.; Gellert, Ralf; Clark, Benton C.; Catalano, Jeffrey G.; Jolliff, Bradley L.; McLennan, Scott M.; Herkenhoff, Kenneth E.; VanBommel, Scott; Mittelfehldt, David W.; Grotzinger, John P.; Guinness, Edward A.; Johnson, Jeffrey R.; Bell, James F.; Farrand, William H.; Stein, Nathan; Fox, Valerie K.; Golombek, Matthew P.; Hinkle, Margaret A. G.; Calvin, Wendy M.; de Souza, Paulo A.

    2016-01-01

    Mars Reconnaissance Orbiter HiRISE images and Opportunity rover observations of the ~22 km wide Noachian age Endeavour Crater on Mars show that the rim and surrounding terrains were densely fractured during the impact crater-forming event. Fractures have also propagated upward into the overlying Burns formation sandstones. Opportunity’s observations show that the western crater rim segment, called Murray Ridge, is composed of impact breccias with basaltic compositions, as well as occasional fracture-filling calcium sulfate veins. Cook Haven, a gentle depression on Murray Ridge, and the site where Opportunity spent its sixth winter, exposes highly fractured, recessive outcrops that have relatively high concentrations of S and Cl, consistent with modest aqueous alteration. Opportunity’s rover wheels serendipitously excavated and overturned several small rocks from a Cook Haven fracture zone. Extensive measurement campaigns were conducted on two of them: Pinnacle Island and Stuart Island. These rocks have the highest concentrations of Mn and S measured to date by Opportunity and occur as a relatively bright sulfate-rich coating on basaltic rock, capped by a thin deposit of one or more dark Mn oxide phases intermixed with sulfate minerals. We infer from these unique Pinnacle Island and Stuart Island rock measurements that subsurface precipitation of sulfate-dominated coatings was followed by an interval of partial dissolution and reaction with one or more strong oxidants (e.g., O2) to produce the Mn oxide mineral(s) intermixed with sulfate-rich salt coatings. In contrast to arid regions on Earth, where Mn oxides are widely incorporated into coatings on surface rocks, our results demonstrate that on Mars the most likely place to deposit and preserve Mn oxides was in fracture zones where migrating fluids intersected surface oxidants, forming precipitates shielded from subsequent physical erosion.

  7. Formation of calcium phosphates by vapour diffusion in highly concentrated ionic micro-droplets

    Energy Technology Data Exchange (ETDEWEB)

    Iafisco, M. [Alma Mater Studiorum Universita di Bologna, Dipartimento di Chimica ' ' G. Ciamician' ' , Via Selmi 2, 40126 Bologna (Italy); Universita del Piemonte Orientale, Dipartimento di Scienze Mediche, Via Solaroli 4, 28100 Novara (Italy); Delgado-Lopez, J.M.; Gomez-Morales, J.; Hernandez-Hernandez, M.A.; Rodriguez-Ruiz, I. [Laboratorio de Estudios Cristalograficos, IACT CSIC-UGR, Edificio Lopez Neyra, Avenida del Conocimiento, s/n 18100 Armilla (Spain); Roveri, N. [Alma Mater Studiorum Universita di Bologna, Dipartimento di Chimica ' ' G. Ciamician' ' , Via Selmi 2, 40126 Bologna (Italy)

    2011-08-15

    In this work we have used the sitting drop vapour diffusion technique, employing the ''crystallization mushroom '' to analyze the evolution of calcium phosphate crystallization in micro-droplets containing high initial concentrations of Ca{sup 2+} and HPO{sub 4}{sup 2-}. The decomposition of NH{sub 4}HCO{sub 3} solution produces vapours of NH{sub 3} and CO{sub 2} which diffuse through the droplets containing an aqueous solution of Ca(CH{sub 3}COO){sub 2} and (NH{sub 4}){sub 2}HPO{sub 4}. The result is the increase of pH by means of the diffusion of NH{sub 3} gas and the doping of the calcium phosphate with CO{sub 3}{sup 2-} ions by means of the diffusion of CO{sub 2} gas. The pH of the crystallization process is monitored and the precipitates at different times are characterized by XRD, FTIR, TGA, SEM and TEM techniques. The slow increase of pH and the high concentration of Ca{sup 2+} and HPO{sub 4}{sup 2-} in the droplets induce the crystallization of three calcium phosphate phases: dicalcium phosphate dihydrate (DCPD, brushite), octacalcium phosphate (OCP) and carbonate-hydroxyapatite (HA). The amount of HA nanocrystals with needle-like morphology and dimensions of about 100 nm, closely resembling the inorganic phase of bones, gradually increases, with the precipitation time up to 7 days, whereas the amount of DCPD, growing along the b axis, increases up to 3 days. Then, DCDP crystals start to hydrolyze yielding OCP nanoribbons and HA nanocrystals. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  8. Microwave enhanced Fenton-like process for the treatment of high concentration pharmaceutical wastewater

    International Nuclear Information System (INIS)

    Yang Yu; Wang Peng; Shi Shujie; Liu Yuan

    2009-01-01

    This paper explored a novel process for wastewater treatment, i.e. microwave enhanced Fenton-like process. This novel process was introduced to treat high concentration pharmaceutical wastewater with initial COD loading of 49,912.5 mg L -1 . Operating parameters were investigated and the optimal condition included as follows: microwave power was 300 W, radiation time was 6 min, initial pH was 4.42, H 2 O 2 dosage was 1300 mg L -1 and Fe 2 (SO 4 ) 3 dosage was 4900 mg L -1 , respectively. Within the present experimental condition used, the COD removal and UV 254 removal reached to 57.53% and 55.06%, respectively, and BOD 5 /COD was enhanced from 0.165 to 0.470. The variation of molecular weight distribution indicated that both macromolecular substances and micromolecular substances were eliminated quite well. The structure of flocs revealed that one ferric hydrated ion seemed to connect with another ferric hydrated ion and/or organic compound molecule to form large-scale particles by means of van der waals force and/or hydrogen bond. Subsequently, these particles aggregated to form flocs and settled down. Comparing with traditional Fenton-like reaction and conventional heating assisted Fenton-like reaction, microwave enhanced Fenton-like process displayed superior treatment efficiency. Microwave was in favor of improving the degradation efficiency, the settling quality of sludge, as well as reducing the yield of sludge and enhancing the biodegradability of effluent. Microwave enhanced Fenton-like process is believed to be a promising treatment technology for high concentration and biorefractory wastewater.

  9. Higs-instrument: design and demonstration of a high performance gas concentration imager

    Science.gov (United States)

    Verlaan, A. L.; Klop, W. A.; Visser, H.; van Brug, H.; Human, J.

    2017-09-01

    Climate change and environmental conditions are high on the political agenda of international governments. Laws and regulations are being setup all around the world to improve the air quality and to reduce the impact. The growth of a number of trace gasses, including CO2, Methane and NOx are especially interesting due to their environmental impact. The regulations made are being based on both models and measurements of the trend of those trace gases over the years. Now the regulations are in place also enforcement and therewith measurements become more and more important. Instruments enabling high spectral and spatial resolution as well as high accurate measurements of trace gases are required to deliver the necessary inputs. Nowadays those measurements are usually performed by space based spectrometers. The requirement for high spectral resolution and measurement accuracy significantly increases the size of the instruments. As a result the instrument and satellite becomes very expensive to develop and to launch. Specialized instruments with a small volume and the required performance will offer significant advantages in both cost and performance. Huib's Innovative Gas Sensor (HIGS, named after its inventor Huib Visser), currently being developed at TNO is an instrument that achieves exactly that. Designed to measure only a single gas concentration, opposed to deriving it from a spectrum, it achieves high performance within a small design volume. The instrument enables instantaneous imaging of the gas distribution of the selected gas. An instrument demonstrator has been developed for NO2 detection. Laboratory measurements proved the measurement technique to be successful. An on-sky measurement campaign is in preparation. This paper addresses both the instrument design as well as the demonstrated performances.

  10. Economic Justification of Concentrating Solar Power in High Renewable Energy Penetrated Power Systems

    Energy Technology Data Exchange (ETDEWEB)

    Hodge, Brian S [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Kroposki, Benjamin D [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Du, Ershun [Tsinghua University; Zhang, Ning [Tsinghua University; Kang, Chongqing [Tsinghua University; Xia, Qing [Tsinghua University

    2018-04-24

    Concentrating solar power (CSP) plants are able to provide both renewable energy and operational flexibility at the same time due to its thermal energy storage (TES). It is ideal generation to power systems lacking in flexibility to accommodate variable renewable energy (VRE) generation such as wind power and photovoltaics. However, its investment cost currently is too high to justify its benefit in terms of providing renewable energy only. In this paper we evaluate the economic benefit of CSP in high renewable energy penetrated power systems from two aspects: generating renewable energy and providing operational flexibility to help accommodating VRE. In order to keep the same renewable energy penetration level during evaluation, we compare the economic costs between the system with a high share of VRE and another in which some part of the VRE generation is replaced by CSP generation. The generation cost of a power system is analyzed through chronological operation simulation over a whole year. The benefit of CSP is quantified into two parts: (1) energy benefit - the saving investment of substituted VRE generation and (2) flexibility benefit - the reduction in operating cost due to substituting VRE with CSP. The break-even investment cost of CSP is further discussed. The methodology is tested on a modified IEEE RTS-79 system. The economic justifications of CSP are demonstrated in two practical provincial power systems with high penetration of renewable energy in northwestern China, Qinghai and Gansu, where the former province has massive inflexible thermal power plants but later one has high share of flexible hydro power. The results suggest that the CSP is more beneficial in Gansu system than in Qinghai. The levelized benefit of CSP, including both energy benefit and flexibility benefit, is about 0.177-0.191 $/kWh in Qinghai and about 0.238-0.300 $/kWh in Gansu, when replacing 5-20% VRE generation with CSP generation.

  11. Study on the conversion of H2 and CO from the helium carrier gas of high temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Liao Cuiping; Zheng Zhenhong; Shi Fuen

    1995-01-01

    The conversions of hydrogen and carbon monoxide into water vapor and carbon dioxide on CuO-ZnO-Al 2 O 3 catalyst are studied. The effects of different temperature, system atmospheric pressure, impurity gas concentration, flow and dew point on properties of cupric oxide bed are investigated. The conversion characteristics curves of H 2 and CO are given. Experimental data of conversion capacity, action period and conversion efficiency of CuO-ZnO-Al 2 O 3 are obtained and the optimal parameters are determined. The results show that the concentration of H 2 and CO of the effluent gas after purification can reach below 2 x 10 -6 , respectively. So it can meet the demands of high temperature gas-cooled reactor and also provide optimal design parameters and reliable data for conversion of H 2 and CO on CuO-ZnO-Al 2 O 3 catalyst

  12. Near-bed observations of high-concentration sediment transport in the Changjiang Estuary

    Science.gov (United States)

    Zhou, Z.; Ge, J.; Ding, P.

    2017-12-01

    The North Passage, the core of turbidity maximum in the Changjiang Estuary, is now under the strong sedimentation due to the abundant sediment supply from the upstream Changjiang River and the river-tide interacted dynamics. Recent studies suggested that strong siltation could be attributed to bottom high-concentration sediment transport, which however is very difficult to be detected and observed by vessel-anchored survey methods. To better understand the mechanisms of sediment transport and deposition in the channel region of the North Passage and its adjacent areas, we conducted continuous field observations which covered spring and neap tide period in the wintertime of 2016, the summertime of 2015 and 2017, focusing on near-bottom sediment transport. Tripods mounted with multiple instruments, including up-looking and down-looking Acoustic Doppler Current Profilers(ADCP), Vector Current Meter(ADV), Optical Backscatter Sensor(OBS), ASM, ALEC and RBR were used to observe the near-bottom physical process and its induced sediment dynamics. Results of these observations clearly described the current-wave-sediment interaction, which produced different patterns of bottom mud suspension at different tripods. Both hydrodynamic features and suspended sediment showed variations between spring and neap tide. Taking data of 2016 as an example, averaged suspended sediment concentration(SSC) at two tripods was 1.52 g/L and 2.13 g/L during the neap tide, 4.51 g/L and 5.75 g/L with the peak value reaching 25 g/L during the spring tide. At the tripod which was closer to the channel region, three peaks of SSC during the spring tide occurred near the flood slack with notable salinity increase, indicating the impact of saltwater intrusion on the bottom hydrodynamics. The results showed the occurrence of high-concentration suspended sediment was probably related to combined effects of bottom salinity intrusion, turbulent kinetic energy(TKE) and local stratification due to density

  13. Plasma capric acid concentrations in healthy subjects determined by high-performance liquid chromatography.

    Science.gov (United States)

    Shrestha, Rojeet; Hui, Shu-Ping; Imai, Hiromitsu; Hashimoto, Satoru; Uemura, Naoto; Takeda, Seiji; Fuda, Hirotoshi; Suzuki, Akira; Yamaguchi, Satoshi; Hirano, Ken-Ichi; Chiba, Hitoshi

    2015-09-01

    Capric acid (FA10:0, decanoic acid) is a medium-chain fatty acid abundant in tropical oils such as coconut oil, whereas small amounts are present in milk of goat, cow, and human. Orally ingested FA10:0 is transported to the liver and quickly burnt within it. Only few reports are available for FA10:0 concentrations in human plasma. Fasting (n = 5, male/female = 3/2, age 31 ± 9.3 years old) and non-fasting (n = 106, male/female = 44/62, age 21.9 ± 3.2 years old) blood samples were collected from apparently healthy Japanese volunteers. The total FA10:0 in the plasma were measured by high-performance liquid chromatography after derivatization with 2-nitrophenylhydrazine followed by UV detection. Inter and intra-assay coefficient of variation of FA10:0 assay at three different concentrations ranged in 1.7-3.9 and 1.3-5.4%, respectively, with an analytical recovery of 95.2-104.0%. FA10:0 concentration was below detection limit (0.1 µmol/L) in each fasting human plasma. FA10:0 was not detected in 50 (47.2%) of 106 non-fasting blood samples, while 29 (27.4%) plasma samples contained FA10:0 less than or equal to 0.5 µmol/L (0.4 ± 0.1), and 27 (25.5%) contained it at more than 0.5 µmol/L (0.9 ± 0.3). A half of the non-fasting plasma samples contained detectable FA10:0. This simple, precise, and accurate high-performance liquid chromatography method might be useful for monitoring plasma FA10:0 during medium-chain triglycerides therapy. © The Author(s) 2015.

  14. Assessment of high precision, high accuracy Inductively Coupled Plasma-Optical Emission Spectroscopy to obtain concentration uncertainties less than 0.2% with variable matrix concentrations

    International Nuclear Information System (INIS)

    Rabb, Savelas A.; Olesik, John W.

    2008-01-01

    The ability to obtain high precision, high accuracy measurements in samples with complex matrices using High Performance Inductively Coupled Plasma-Optical Emission Spectroscopy (HP-ICP-OES) was investigated. The Common Analyte Internal Standard (CAIS) procedure was incorporated into the High Performance Inductively Coupled Plasma-Optical Emission Spectroscopy method to correct for matrix-induced changes in emission intensity ratios. Matrix matching and standard addition approaches to minimize matrix-induced errors when using High Performance Inductively Coupled Plasma-Optical Emission Spectroscopy were also assessed. The High Performance Inductively Coupled Plasma-Optical Emission Spectroscopy method was tested with synthetic solutions in a variety of matrices, alloy standard reference materials and geological reference materials

  15. Development of Concentration and Calcination Technology For High Level Liquid Waste

    International Nuclear Information System (INIS)

    Pande, D.P.

    2006-01-01

    The concentrated medium and high-level liquid radio chemicals effluents contain nitric acid, water along with the dissolved chemicals including the nitrates of the radio nuclides. High level liquid waste contain mainly nitrates of cesium, strontium, cerium, zirconium, chromium, barium, calcium, cobalt, copper, pickle, iron etc. and other fission products. This concentrated solution requires further evaporation, dehydration, drying and decomposition in temperature range of 150 to 700 deg. C. The addition of the calcined solids in vitrification pot, instead of liquid feed, helps to avoid low temperature zone because the vaporization of the liquid and decomposition of nitrates do not take place inside the melter. In our work Differential and thermo gravimetric studies has been carried out in the various stages of thermal treatment including drying, dehydration and conversion to oxide forms. Experimental studies were done to characterize the chemicals present in high-level radioactive waste. A Rotary Ball Kiln Calciner was used for development of the process because this is amenable for continuous operation and moderately good heat transfer can be achieved inside the kiln. This also has minimum secondary waste and off gases generation. The Rotary Ball Kiln Calciner Demonstration facility system was designed and installed for the demonstration of calcination process. The Rotary Ball Kiln Calciner is a slowly rotating slightly inclined horizontal tube that is externally heated by means of electric resistance heating. The liquid feed is sprayed onto the moving bed of metal balls in a slowly rotating calciner by a peristaltic type-metering pump. The vaporization of the liquid occurs in the pre-calcination zone due to counter current flow of hot gases. The dehydration and denitration of the solids occurs in the calcination zone, which is externally heated by electrical furnace. The calcined powder is cooled in the post calcination portion. It has been demonstrated that the

  16. Response of plants to high concentrations of uranium stress and the screening of remediation plants

    International Nuclear Information System (INIS)

    Tang Yongjin; Luo Xuegang; Zeng Feng; Jiang Shijie

    2013-01-01

    Studies of the resistance and accumulation ability of different plant species to uranium (U) has important influence on the bioremediation of U contaminated soil. The resistance and enrichment ability of high concentrations of U (500 mg · kg"-"1 soil) in fourteen plant species were investigated and evaluated in this study in order to screen remediation plants for governance soil U contamination. The results showed that: (1) high concentrations of U stress had different effects on the emergence and survival of the different plants. The seed emergence of Hibiscus esculentus was reduced by 2/3, but the seed emergence of Gynura cusimbua (D. Don) S. Moore, Chenopodium album L. and Phaseolus vulgaris var. humilis Alef were not reduced. Under the contaminated soil, all the sesamum indicum died within a month after the emergence and the survival number of Amaranth and Iresine herbstii 'Aureo-reticulata' reduced by about 80%. But the survival number of Alternanthera philoxeroides (Mart.) Griseb., Chenopodium album L. and Phaseolus vulgaris var. humilis Alef were not influenced. (2) The biomass of the plants would be reduced by 8-99% in the uranium-contaminated soil. The anti-stress ability of Phaseolus vulgaris var. humilis Alef was the strongest in the fourteen plants, and Cucurbita pepo L., Sorghumbicolor (L.) Moench, Ipomoea aquatica Forsk, Helianthus annuus, Chenopodium album L. and Alternanthera philoxeroides (Mart.) Griseb. showed some the anti-stress ability. (3) Significant differences were found in the capacity of plants to absorb uranium between under high-uranium contaminated soil and under the non-uranium contaminated soil were. The plants with higher uranium content in thenon-contaminated soil were Gomphrena globosa, and Cucurbita pepo L., which wer